
ULTRIX-32™

Supplementary Documents
Volume 2 Programmer

Order Number: AA-MF07 A-TE

/

UL TRIX-32 Supplementary Documents
Programmer

Order No. AA-MF07 A-TE

UL TRIX-32 Operating System, Version 3.0

Digital Equipment Corporation

Copyright © 1984, 1988 by Digital Equipment Corporation.

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the term~ of such license.

No responsibility is assumed for the use or reliability of software on equip
ment that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC US
MASSBUS
PDP
ULTRIX
ULTRIX~ll

ULTRIX-32
UNIBUS
VAX
VMS
VT

~D~DDmD™

UNIX is a trademark of AT&T Bell Laboratories.

Information herein is derived from copyrighted material as permitted under a
license agreement with AT&T Bell Laboratories.

This software and documentation is based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California. We ackp.owledge the Electrical Engineering and Computer Science
Departments at the Berkeley Campµs of the Up,iversity of California for their
role in its development.

iii

This software and documentation is based in part on the Fourth Berkeley Software Distribution under
license from The Regents of the University of California. Digital Equipment Corporation acknowledges
the following individuals and institutions for their role in its development:

"The UNIX Time-Sharing System": Copyright c 1974, Association for Computing Machinery, Inc.
reprinted by permission. This is a revised version of an article that appeared in Communications of the
ACM, 17, No. 7 (July 1974), pp. 365-375. That article was a revised version of a paper presnted at the
Fourth ACM Symposium on Operating Systems Principles, IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, October 15-17, 1973. Acknowledgements: for their help and support,
R.H. Canaday, R. Morris, M.D. Mcilroy, and J.F. Ossanna.

"Advanced Editing on UNIX" acknowledgement: Ted Dolotta for his ideas and assistance.

"An Introduction to the UNIX Shell" acknowledgements: Dennis Ritchie, John Mashey and Joe Maran
zano for their help and support.

"LEARN - Computer-Aided Instruction on UNIX" acknowledgements: for their help and support, M.E.
Bittrich, J.L. Blue, S.I. Feldman, P.A. Fox, M.J. McAlpin, E.Z. Rothkopf, Don Jackowski, and Tom
Plum.

"A System for Typesetting Mathematics" acknowledgements: J.F. Ossanna, A.V. Aho, and S.C. Johnson,
for their ideas and assistance.

"A TROFF Tutorial" acknowledgements: J. F. Ossanna, Jim Blinn, Ted Dolotta, Doug Mcilroy, Mike
Lesk and Joel Sturman, for their help and support.

The document "The C Programming Language - Reference Manual" is reprinted, with minor changes,
from "The C Programming Language, by Brian W. Kernighan and Dennis M. Ritchie, Prentice-Hall,
Inc., 1978.

"Make - A Program for Maintaining Computer Programs" ackowledgements: S.C. Johnson, and H.
Gajewska, for their ideas and assistance.

"YACC: Yet Another Compiler-Compiler" acknowledgements: B.W. Kernighan, P.J. Plauger, S.I. Feld
man, C. Imagna, M.E. Lesk, A. Snyder, C.B. Haley, D.M. Ritchie, M.O. Harris and Al Aho, for their
ideas and assistance.

"Lex - A Lexical Analyzer Generator" acknowledgements: S.C. Johnson, A.V. Aho, and Eric Schmidt, for
their help as originators of much of Lex, as well as debuggers of it.

The document "RATFOR - A Preprocessor for a Rational Fortran" is a revised and expanded version of
the one published in Software - Practice and Experience, October 1975. The Ratfor described here is
the one in use on UNIX and GCOS at A T & T Bell Laboratories. Acknowledgements: Dennis Ritchie,
and Stuart Feldman, for their ideas and assistance.

"The M4 Macro Processor" acknowledgements: Rick Becker, John Chambers, Doug Mcilroy, and Jim
Weythman, for the help and support.

"BC - An Arbitrary Precision Desk-Calculator Language" acknowledgement: The compiler is written in
YACC; its original version was written by S.C. Johnson.

"A Dial-Up Network of UNIX TM Systems" acknowledgements: G.L. Chesson, A.S. Cohen, J. Lions,
and P.F. Long, for their suggestions and assistance.

Copyright c 1979, 1980 Regents of the University of California. Permission to copy these documents or
any portion thereof as necessary for licensed use of the software is granted to licensees of this software,
provided this copyright notice and statement of permission are included.

The document "Writing Tools - The STYLE and DICTION Programs" is copyrighted© 1979 by AT &
T Bell Laboratories. Holders of a UNIX TM/32V software license are permitted to copy this document,
or any portion of it, as necessary for licensed use of the software, provided this copyright notice and
statement of permission are included.

iv

The document "The Programming Language EFL" is copyrighted® 1979 by AT & T Bell Laboratories.
EFL has been approved for general release, so that one. may copy it subject only to the restriction of giv
ing proper acknowledgement to A T & T Bell Laboratories.

The documents "A Portable Fortran 77 Compiler" and "Fsck - The UNIX File System Check Program"
are modifications of earlier documents which are copyrighted ® 1979 by A T & T Bell Laboratories.
Holders of a UNIX TM/32V software license are permitted to copy these documents, or any portion of
them, as necessary for licensed use of the software, provided this copyright notice and statement of per
mission are included. This manual reflects system enhancements made at Berkeley and sponsored in
part by NSF Grants MCS-7807291, MCS-8005144, and MCS-74-07644-A04; DOE Contract DE-AT03-
76SF00034 and Project Agreement DE-AS03-79ER10358; and by Defense Advanced Research Projects
Agency (DoD) ARPA Order No. 4031, monitored by Naval Electronics Systems Command under Con
tract No. N00039-80-K-0649.

"Ex Reference Manual" acknowledgements: Chuck Haley contributed greatly to the early development
of ex. Bruce Englar encouraged the redesign which led to ex version 1. Bill Joy wrote versions 1 and 2.0
through 2.7, and created the framework that users see in the present editor. Mark Horton added macros
and other features and made the editor work on a large number of terminals and UNIX systems.

"A Guide to the Dungeons of Doom" acknowledgements: Rogue was originally conceived by Glenn Wich
man and Michael Toy. Ken Arnold and Michael Toy then smoothed out the user interface, and added
many new features. We would like to thank Bob Arnold, Michelle Busch, Andy Hatcher, Kipp Hickman,
Mark Horton, Daniel Jensen, Bill Joy, Joe Kalash, Steve Maurer, Marty McNary, Jan Miller, and Scott
Nelson for their ideas and assistance.

The document "The FRANZ LISP Manual" is copyrighted c 1980, 1981, 1983 by the Regents of the
University of California. (exceptions: Chapters 13, 14 (first half), 15 and 16 have separate copyrights, as
indicated. These are reproduced by permission of the copyright holders.) Permission to copy without
fee all or part of this material is granted provided that the copies are not made or distributed for direct
commercial advantage, and the copyright notice of the Regents, University of California, is given. All
rights reserved. Work reported herein was supported in part by the U.S. Department of Energy, Con
tract DE-AT03-76SF00034, Project Agreement DE-AS03-79ER10358, and the National Science Founda
tion under Grant No. MCS 7807291. MC68000 is a trademark of Motorola Semiconductor Products, Inc.

"The FRANZ LISP Manual" acknowledgements: Richard Fateman, Mike Curry, John Breedlove, Jeff
Levinsky, Bill Rowan, Tom London, Keith Sklower, Kipp Hickman, Charles Koester, Mitch Marcus,
Don Cohen, John Foderaro, and Kevin Layer.

The document "Berkeley Pascal User's Manual" is copyrighted c 1977, 1979, 1980, 1983 by W.N. Joy,
S.L. Graham, C.B. Haley, M.K. McKusick, P.B. Kessler. The financial support of the first and second
authors' work by the National Science Foundation under grants MCS74-07644-A04, MCS78-07291, and
MCS80-05144, and the first author's work by an IBM Graduate Fellowship are gratefully acknowledged.

"Introduction to the f77 1/0 Library" acknowledgement: Peter J. Weinberger originally wrote the 1/0/
Library at A T & T Bell Laboratories.

"Writing Papers with NROFF Using -ME", and "-ME Reference Manual" acknowledgements: Bob
Epstein, Bill Joy, Larry Rowe, Ricki Blau, Pamela Humphrey, and Jim Joyce, for their ideas and assis
tance. UNIX, NROFF, and TROFF are trademarks of A T & T Bell Laboratories.

"Refer - A Bibliography System" acknowledgements: Mike Lesk of A T & T Bell Laboratories wrote the
original refer software, including the indexing programs. Al Stanberger of the Forestry Department
wrote the first version of addbib, then called bibin. Greg Shenaut of the Linguistics Department wrote
the original versions of sortbib and roffbib.

"Screen Updating and Cursor Movement Optimization: A Library Package" acknowledgements: For
their help and support, Bill Joy, Doug Merritt, Kurt Shoens, Ken Abrams, Alan Char, Mark Horton, and
Joe Kalash.

"Disc Quotas in a UNIX Environment" acknowledgements: Sam Leffler and Kirk McKusick, for their

\
)

v

work on the quota code. The current disc quota system is loosely based on a very early scheme imple
mented at the University of New South Wales and Syndey University.

The document, "Fsck - The UNIX File System Check Program", is a revision by Marshall Kirk
McKusick; T.J. Kowalski wrote the original paper. For their help and support, we thank Bill Joy, Sam
Leffler, Robert Elz, Dennis Ritchie, Robert Henry, Larry A. Wehr, and Rick B. Brandt. Our sponsors
were the National Science Foundation under grant MCSS0-05144, and the Defense Advance Research
Projects Agency (DoD) under Arpa Order No. 4031 monitored by Naval Electronic System Command
under Contract No. N00039-82-C-0235.

"A Fast File System for UNIX" acknowledgements: William N. Joy, Samuel J. Leffler, Robert S. Fabry,
Marshall Kirk McKusick, Robert Elz, Michael Powell, Peter Kessler, Rober Henry, and Dennis Ritchie.
This work was done under grants from the National Science Foundation under grant MCSS0-05144, and
the Defense Advance Research Projects Agency (DoD) under ARPA No. 4031 monitored by Naval Elec
tronic System Command under Contract No. N00039-82-C-0235.

"4.2BSD Networking Implementation Notes" acknowledgements: The internal structure of the system is
patterned after the Xerox PUP architecture [Boggs79]. The use of software interrupts for process invo
cation is based on similar facilities found in the VMS operating system. Many of the ideas are based on
Rob Gurwitz's TCP/IP implementation for the 4.lBSD version of UNIX on the VAX [Gurwitz81]. Greg
Chesson explained his use of trailer encapsulations in Datakit, instigating their use in our system.

"SENDMAIL - An Internetwork Mail Router" acknowledgements: For their ideas and assistance, Kurt
Shoens, Bill Joy, Mark Horton, Erick Schmidt, Kirk McKusick, Marvin Solomon, Mike Stonebraker, and
Bob Epstein. A considerable part of this work was done while under the employ of the INGRES Project
at the University of California at Berkeley.

vii

BEFORE YOU START

This is the second volume of ULTRIX-32 Supplementary Documents, a three volume set that
contains articles describing the U{, TRIX-32 system. The authors are computer scientists and
program developers at Bell Laboratories and the University of California at Berkeley. The
articles explain the software tools and utilities available on your ULTRIX-32 system. They
constitute most of the lore that enriches this operating system; topics range from getting
started to the details of screen updating and cursor movement facilities.

Each volume in this set contains several parts, and each part begins with an introduction.
The introduction to each part serves as a map that will help you find your way around in the
documentation, allowing you to select articles that relate to your interest. Each introduction
gives an overview of the material covered in the part and a description of the articles included.
Most readers will not need to read all articles, since many articles cover parallel topics.

These articles provide authoritative and accurate information that is unavailable elsewhere.
However, you should be aware that some of the information in some articles is dated. We
include those articles because many of the concepts they develop are still current and impor
tant.

At the end of each volume in this set, you will find a master index identifying topics in all
thr~e volumes.

Topics in Volume II
The articles in this second volume deal with programming and support tools for programmers
on the ULTRIX-32 system. Most of the authors assume that readers are familiar with one or
more programming languages. For example, the articles on FORTRAN 77 are written for peo-
ple wllo already know a standard version of FORTRAN. ,

"UNIX Programming - Se(:ond Edition," in Part 1 of this volume, tells how to write programs
that cooper&te with the operating system. Many readers will find it useful to read this article
before going on to articles on the languages and utilities.

The articles in Part 2 deal with four languages and four pr~processors. The languages are:
• c
• FORTRAN 77 . .

• Franz Lisp

• Pascal

The four preprocessors are:

• RATFOR

• EFL

• FP

• M4

viii

Part 3, Supporting Tools, offers articles on three kinds of utilities:

• Program and library maintenance tools

• Program checking and debugging tools

• Compiler and preprocessor development tools

And the articles in Part 4, System Programming, cover topics such as:

• Inner workings of the ULTRIX-32 system

• System and kernel facilities available to user programs

• Assembly language (as)

• Screen manipulation functions

• The ULTRIX-32 line printer spooler

The features described in this volume provide the flexibility and programming power for
which UNIX is famous. A good understanding of many of the concepts and procedures
presented here is essential for efficient use of your ULTRIX-32 system.

\

BEFORE YOU START

PART 1: PROGRAMMING CONSIDERATIONS

UNIX PROGRAMMING

INTRODUCTION
BASICS

Program Arguments.
The "Standard Input" and "Standard Output"

THE STANDARD VO LIBRARY

File Access
Error Handling - Stderr and Exit .
Miscellaneous VO Functions

LOW-LEVEL VO ..
File Descriptors.
Read and Write
Open, Creat, Close, Unlink .
Random Access - Seek and Lseek .
Error Processing

PROCESSES

The "System" Function
Low-Level Process Creation - Execl and Execv.
Control of Processes - Fork and Wait ..
Pipes

SIGNALS - INTERRUPTS AND ALL THAT .
APPENDIX: THE STANDARD VO LIBRARY.

General Usage
Calls

PART 2: LANGUAGES

Table of Contents ix

. 1-3

. 1-3

. 1-3

. 1-4

. 1-5

. 1-5

. 1-7

. 1-8

. 1-8

. 1-8

. 1-9
1-10
1-11
1-12

1-12

1-12
1-13
1-14
1-14

1-17
1-21

1-21
1-21

THE C PROGRAMMING LANGUAGE REFERENCE MANUAL

INTRODUCTION
LEXICAL CONVENTIONS .

Comments
Identifiers (Names) .
Keywords
Constants

Integer Constants
Explicit Long Constants .
Character Constants .
Floating Constants ..

Strings
Hardware Characteristics .

SYNTAX NOTATION.
WHAT'S IN A NAME?

. 2-5

. 2-5

. 2-5

. 2-5

. 2-5

. 2-6

. 2-6

. 2-6

. 2-6

. 2-6

. 2-6

. 2-6

. 2-7

. 2-7

x Table of Contents

THE C PROGRAMMING LANGUAGE REFERENCE MANUAL (continued)

OBJECTS AND !VALUES. .
CONVERSIONS

Characters and Integers .
Float and Double . . .
Floating and Integral .
Pointers and Integers .
Unsigned
Arithmetic Conversions .

EXPRESSIONS

Primary Expressions
Unary Operators . .
Multiplicative Operators
Additive Operators .
Shift Operators . . .
Relational Operators
Equality Operators .
Bitwise AND Operator
Bitwise Exclusive OR Operator
Bitwise Inclusive OR Operator.
Logical AND Operator
Logical OR Operator .
Conditional Operator .
Assignment Operators.
Comma Operator . . .

DECLARATIONS

Storage Class Specifiers.
Type Specifiers
Declarators.
Meaning of Declarators .
Structure and Union Declarations .
Initialization .
Type Names.
Typedef ...

STATEMENTS ..

Expression Statement.
Compound Statements, or Block.
Conditional Statement
While Statement .
Do Statement . .
For Statement . .
Switch Statement
Break Statement .
Continue Statement
Return Statement .
Goto Statement . .
Labeled Statement .
Null Statement. . .

. 2-8

. 2-8

. 2-8

. 2-8

. 2-8

. 2-8

. 2-8

. 2-8

. 2-9

. 2-9
2-10
2-11
2-11
2-12
2-12
2-12
2-12
2-12
2-13
2-13
2-13
2-13
2-13
2-14

2-14

2-14
2-15
2-15
2-15
2-16
2-18
2-19
2-20

2-20

2-20
2-20
2-21
2-21
2-21
2-21
2-21
2-22
2-22
2-22
2-22
2-22
2-23

EXTERNAL DEFINITIONS. . . .

External Function Definitions .
External Data Definitions .

SCOPE RULES

Lexical Scope
Scope of Externals

COMPILER CONTROL LINES

Token Replacement. . .
File Inclusion.
Conditional Compilation
Line Control

IMPLICIT DECLARATIONS
TYPES REVISITED. . . .

Structures and Unions .
Functions
Arrays, Pointers, and Subscripting.
Explicit Pointer Conversions . .

CONSTANT EXPRESSIONS
PORTABILITY CONSIDERATIONS.
ANACHRONISMS . .
SYNTAX SUMMARY.

Expressions . . .
Declarations . . .
Statements
External Definitions
Preprocessor

RECENT CHANGES TO C .

Structure Assignment.
Enumeration Type ...

A TOUR THROUGH THE PORTABLE C COMPILER

INTRODUCTION . . .
OVERVIEW
THE SOURCE FILES .
DATA STRUCTURE CONSIDERATIONS.
PASS ONE
LEXICAL ANALYSIS.
PARSING
STORAGE CLASSES .
SYMBOL TABLE MAINTENANCE.
TREE BUILDING.
INITIALIZATION .
STATEMENTS ..
OPTIMIZATION .
MACHINE DEPENDENT STUFF .
FIRST PASS SUMMARY.
PASS TWO
OVERVIEW
THE MACHINE MODEL .

Table of Contents xi

2-23

2-23
2-24

2-24

2-24
2-24

2-25

2-25
2-25
2-25
2-26

2-26
2-26

2-26
2-26
2-27
2-27

2-28
2-28
2-29
2-30

2-30
2-31
2-32
2-33
2-33

2-35

2-35
2-35

2-37
2-38
2-39
2-40
2-41
2-41
2-41
2-42
2-43
2-44
2...,45
2-46
2-47
2-47
2-49
2-49
2-49
2-50

xii Table of Contents

A TOUR THROUGH THE PORTABLE C COMPILER (continued)

GENERAL ORGANIZATION
THE TEMPLATES
THE TEMPLATE MATCHING ALGORITHM.
REGISTER ALLOCATION
THE MACHINE DEPENDENT INTERFACE
THE REWRITING RULES
THE SETHI-ULLMAN COMPUTATION
REGISTER ALLOCATION ...
COMPILER BUGS
SUMMARY AND CONCLUSION

A TOUR THROUGH THE UNIX C COMPILER

THE INTERMEDIATE LANGUAGE
EXPRESSION OPTIMIZATION.
CODE GENERATION
DELA YING AND REORDERING . .

INTRODUCTION TO THE F77 VO LIBRARY

FORTRAN VO
Types of I/0 . . .

Direct Access
Sequential Access .
List Directed VO
Internal I/0

VO Execution

IMPLEMENTATION DETAILS.

Number of Logical Units
Standard Logical Units .
Vertical Format Control.
The Open Statement .
Format Interpretation.
List Directed Output . .
VO Errors

NON-"ANSI STANDARD" EXTENSIONS.

Format Specifiers.
Print Files
Scratch Files . . .
List Directed I/0 .

RUNNING OLDER PROGRAMS

Traditional Unit Control Parameters.
Preattachment of Logical Units .

MAGNETIC TAPE I/0
CAVEAT PROGRAMMER
APPENDIX A: I/0 LIBRARY ERROR MESSAGES.
APPENDIX B: EXCEPTIONS TO THE ANSI STANDARD

2-50
2-53
2-54
2-55
2-56
2-56
2-58
2-59
2-59
2-60

2-63
2-66
2-68
2-76

2-79

2-79

2-79
2-79
2-79
2-80

2-80

2-80

2-80
2-80
2-81
2-81
2-81
2-82
2-82

2-82

2-82
2-83
2-83
2-83

2-83

2-83
2-84

2-84
2-84
2-85
2-88

A PORTABLE FORTRAN 77 COMPILER

INTRODUCTION

Usage
Documentation Conventions.
Implementation Strategy . .

LANGUAGE EXTENSIONS ...

Double Complex Data Type .
Internal Files
Implicit Undefined Statement .
Recursion
Automatic Storage . .
Source Input Format .
Include Statement . .
Binary Initialization Constants
Character Strings
Hollerith
Equivalence Statements.
One-Trip DO Loops ...
Commas in Formatted Input
Short Integers
Additional Intrinsic Functions .

VIOLATIONS OF THE STANDARD.

Double Precision Alignment . .
Dummy Procedure Arguments.
T and TL Formats
Carriage Control
Assigned Goto

INTER-PROCEDURE INTERFACE .

Procedure Names ...
Data Representations .
Return Values .
Argument Lists

FILE FORMATS

Structure of Fortran Files .
Portability Considerations.
Pre-Connected Files and File Positions.

Table of Contents xiii

2-89

2-89
2-90
2-91

2-91

2-91
2-91
2-91
2-91
2-91
2-92
2-92
2-92
2-92
2-93
2-93
2-93
2-93
2-93
2-94

2-94

2-94
2-94
2-94
2-94
2-95

2-95

2-95
2-95
2-95
2-96

2-96

2-96
2-97
2-97

xiv Table of Contents

A PORTABLE FORTRAN 77 COMPILER (continued)

APPENDIX A: DIFFERENCES BETWEEN FORTRAN 66 AND FORTRAN 77

Features Deleted from Fortran 66

Hollerith
Extended Range .

Program Form

Blank Lines . . .
Program and Block Data Statements .
ENTRY Statement
DO Loops
Alternate Returns .

Declarations

CHARACTER Data Type
IMPLICIT Statement . .
PARAMETER Statement
Array Declarations. . .
SA VE Statement . . .
INTRINSIC Statement

Expressions

Character Constants .
Concatenation
Character String Assignment .
Substrings.
Exponentiation
Relaxation of Restrictions

Executable Statements .

IF-THEN-ELSE ..
Alternate Returns .

Input/Output.

Format Variables .
END=, ERR=, and IOSTAT= Clauses
Formatted VO

Character Constants . .
Positional Editing Codes
Colon
Optional Plus Signs. . .
Blanks on Input
Unrepresentable Values .
lw.m
Floating Point . .
"A" Format Code.

Standard Units
List-Directed Formatting.
Direct VO . .
Internal Files

2-98

2-98

2-98
2-98

2-98

2-98
2-98
2-98
2-99
2-99

2-99

2-99
2-99

. 2-100

. 2-100

. 2-100

. 2-100

. 2-100

. 2-100

. 2-101

. 2-101

. 2-101

. 2-101

. 2-101

. 2-102

. 2-102

. 2-102

. 2-102

. 2-102

. 2-103

. 2-103

. 2-103

. 2-103

. 2-103

. 2-104

. 2-104

. 2-104

. 2-104

. 2-104

. 2-104

. 2-104

. 2-105

. 2-105

. 2-105

\

OPEN, CLOSE, and INQUIRE Statements.

OPEN ..
CLOSE
INQUIRE

APPENDIX B: REFERENCES AND BIBLIOGRAPHY .

Table of Contents xv

. 2-106

. 2-106

. 2-106

. 2-106

. 2-109

RATFOR: A PREPROCESSOR FOR A RATIONAL FORTRAN

INTRODUCTION
LANGUAGE DESCRIPTION

Design
Statement Grouping
The "Else" Clause
Nested Ifs
If-Else Ambiguity. .
The "Switch" Statement
The "Do" Statement . .
"Break" and "Next" . .
The "While" Statement.
The "For" Statement . .
The "Repeat-Until" Statement
More on Break and Next
"Return" Statement
Cosmetics
Free-Form Input . .
Translation Services
"Define" Statement.
"Include" Statement .
Pitfalls, Botches, Blemishes and Other Failings.

IMPLEMENTATION.
EXPERIENCE . .

Good Things .
Bad Things ..

CONCLUSIONS .
APPENDIX: USAGE ON UNIX AND GCOS.

THE PROGRAMMING LANGUAGE EFL

INTRODUCTION .

Purpose .
History
Notation .. .

LEXICAL FORM .

Character Set
Lines

White Space.
Comments .
Include Files
Continuation
Multiple Statements on a Line .

. 2-111

. 2-111

. 2-111

. 2-112

. 2-112

. 2-113

. 2-113

. 2-114

. 2-114

. 2-115

. 2-115

. 2-116

. 2-117

. 2-117

. 2-117

. 2-117

. 2-117

. 2-118

. 2-118

. 2-118

. 2-119

. 2-119

. 2-120

. 2-120

. 2-120

. 2-121

. 2-122

. 2-123

. 2-123

. 2-123

. 2-123

. 2-124

. 2-124

. 2-124

. 2-124

. 2-124

. 2-124

. 2-124

. 2-125

xvi Table of Contents

THE PROGRAMMING LANGUAGE EFL (continued)

Tokens

Identifiers .
Strings ..
Integer Constants
Floating Point Constants .
Punctuation .
Operators .

Macros

PROGRAM FORM

Files
Procedures .
Blocks ...
Statements.
Labels ...

DATA TYPES AND VARIABLES

Basic Types
Constants ..
Variables ...
Storage Class.
Scope of Names
Precision.
Arrays ...
Structures .

EXPRESSIONS .

Primaries .

Constants.
Variables .
Array Elements
Structure Members
Procedure Invocations
Input/Output Expressions
Coercions .
Sizes . . .

Parentheses . .
Unary Operators

Arithmetic
Logical ..

Binary Operators .

Arithmetic .
Logical ...
Relational Operators .
Assignment Operators

Dynamic Structures ..
Repetition Operator. .
Constant Expressions .

. 2-125

. 2-125

. 2-125

. 2-126

. 2-126

. 2-126

. 2-126

. 2-126

. 2-127

. 2-127

. 2-127

. 2-127

. 2-127

. 2-128

. 2-128

. 2-128

. 2-128

. 2-129

. 2-129

. 2-129

. 2-129

. 2-129

. 2-130

. 2-130

. 2-130

. 2-131

. 2-131

. 2-131

. 2-131

. 2-131

. 2-132

. 2-132

. 2-132

. 2-132

. 2-132

. 2-133

. 2-133

. 2-133

. 2-133

. 2-133

. 2-134

. 2-134

. 2-134

. 2-135

. 2-135

DECLARATIONS.

Syntax
Attributes . .

Basic Types .
Arrays ..
Structures.
Precision
Common
External

Variable List .
The Initial Statement.

EXECUTABLE STATEMENTS .

Expression Statements . . .

Subroutine Call
Assignment Statements

Blocks
Test Statements .

If Statement.
If-Else ...
Se.lect Statement

Loops

While Statement

For Statement

Repeat Statement .
Repeat ... Until Statement.
Do Loops

Branch Statements . .

Goto Statement .
Break Statement
Next Statement .
Return

Input/Output Statements .

Input/Output Units .
Binary Input/Output.
Formatted Input/Output .
Iolists.
Formats
Manipulation Statements

PROCEDURES

Procedure Statement .
End Statement
Argument Association.
Execution and Return Values .
Known Functions

Minimum and Maximum Functions
Absolute Value
Elementary Functions . .
Other Generic Functions .

Table of Contents xvii

. 2-135

. 2-135

. 2-135

. 2-135

. 2-136

. 2-136

. 2-136

. 2-136

. 2-137

. 2-137

. 2-137

. 2-137

. 2-137

. 2-137

. 2-138

. 2-138

. 2-138

. 2-138

. 2-138

. 2-139

. 2-139

. 2-139

. 2-139

. 2-140

. 2-140

. 2-140

. 2-141

. 2-141

. 2-141

. 2-142

. 2-142

. 2-142

. 2-142

. 2-143

. 2-143

. 2-143

. 2-143

. 2::..144

. 2-144

. 2-144

. 2-145

. 2-145

. 2-145

. 2-145

. 2-145

. 2-145

. 2-145

. 2-146

xviii Table of Contents

THE PROGltAMMING LANGUAGE EFL (continued)

ATAVISMS .. , ..

Escape Lines . .
Call Statement .
Obsolete Keywords .
Numeric Labels ...
Implicit Deciarations .
Computed Goto . .
Go To Statement . .
Dot Names. . ., . .
Complex Constants .
Function Values . .
Equivalence
Minimum and Mali'.imurn Functions .

COMPILER OPTIONS . . .

Default Options '• .
Input Language Options . . .
Input/Output Error Handling .
Continuation Conventions.
Default Formats . ,
Alignments and Sizes
Default Input/Output Units .
Miscellaneous Output Control Options.

EXAMPLES . . . ; . . .

File Copying
Matrix Multiplication. .
Searching a Linked List.
Walking a Tree .

PORTABILITY , . .

Primitives i , •

Character String Copying
Character String Comparisons

..

APPENDIX A: RELATION BETWEEN EFL ANb RATFOR.
APPENDIX B: COMPILER .

Current Version
Diagnostics.
Quality of Fortran Produced.

I i

APPENDIX C: CONSTRAINTS ON THE DESIGN OF THE EFL LANGUAGE .

External Names ..
Procedure Interface .
Pointers
Recursion
Storage Allocation

. .

. 2-146

. 2-146

. 2-146

. 2-146

. 2-146

. 2-147

. 2-147

. 2-147

. 2-147

. 2-148

. 2-148

. 2-148

. 2-148

. 2-148

. 2-149

. 2-149

. 2-149

. 2-149

. 2-149

. 2-149

. 2-i50

. 2-150

. 2-150

. 2-150

. 2-150
• . 2-150

. 2-151

. 2-153

. 2-153

. 2-153

. 2-154

. 2-155

. 2-155

. 2-155

. 2-155

. 2-155

. 2-156

. 2-157

. 2-157

. 2-i57

. 2-157

. 2-157

BERKELEY PASCAL USER'S MANUAL

SOURCES OF INFORMATION . . .

Where To Get Documentation. .
Documentation Describing UNIX
Text Editing Documents
Pascal Documents: The language
Pascal Documents: The Berkeley Implementation
References

BASIC UNIX PASCAL

A First Program .
A Larger Program
Correcting the First Errors
Executing the Second Example
Formatting the Program Listing .
Execution Profiling . . .

ERROR DIAGNOSTICS

Translator Syntax Errors . .
Translator Semantic Eerrors
Translator Panics, VO Errors

INPUT/OUTPUT .

Introduction .
Eof and Eoln .
More about Eoln .
Output Buffering .
Files, Reset, and Rewrite
Argc and Argv

DETAILS ON THE COMPONENTS OF THE SYSTEM.

Options
Options Common to Pi, Pc, and Pix .
Options Available in Pi .
Options Available in Px. .
Options Available in Pc. .
Options Available in Pxp .
Formatting Programs using Pxp .
Pxref
Multi-File Programs
Separate Compilation with Pc. .

APPENDIX TO WIRTH'S PASCAL REPORT

Extensions to the Language Pascal . . .
Resolution of the Undefined Specifications .
Restrictions and Limitations
Added Types, Operators, Procedures and Functions
Remarks on Standard and Portable Pascal

Table of Contents xix

. 2-160

. 2-160

. 2-160

. 2-161

. 2-161

. 2-162

. 2-162

. 2-165

. 2-165

. 2-168

. 2-169

. 2-171

. 2-173

. 2-173

. 2-177

. 2-177

. 2-180

. 2-184

. 2-186

. 2-186

. 2-187

. 2-188

. 2-189

. 2-190

. 2-190

. 2-193

. 2-193

. 2-193

. 2-195

. 2-195

. 2-195

. 2-196

. 2-197

. 2-199

. 2-199

. 2-199

. 2-202

. 2-202

. 2-203

. 2-206

. 2-207

. 2-208

xx Table of Contents

THE FRANZ LISP MANUAL

INTRODUCTION .

Data Types ..

Lispval .
Symbol.
List. ..
Binary .
Fixnum.
Flonum.
Bignum.
String.
Port ..
Vector
Array.
Value.
Hunk.
Other.

Documentation .

DATA STRUCTURE ACCESS.

Lists

List Creation .
List Predicates
List Accessing .
List Manipulation .

Predicates
Symbols and Strings . .

Symbol and String Creation
String and Symbol Predicates
Symbol and String Accessing.
Symbol and String Manipulation .

Vectors

Vector Creation .
Vector Reference.
Vector Modification

Arrays

Array Creation
Array Predicate
Array Accessors .
Array Manipulation

Hunks

Hunk Creation
Hunk Accessor.
Hunk Manipulators

Beds

. 2-211

. 2-211

. 2-212

. 2-212

. 2-212

. 2-213

. 2-213

. 2-213

. 2-213

. 2-214

. 2-214

. 2-214

. 2-214

. 2-215

. 2-215

. 2-215

. 2-215

. 2-217

. 2-217

. 2-217

. 2-219

. 2-219

. 2-221

. 2-223

. 2-226

. 2-226

. 2-228

. 2-228

. 2-229

. 2-231

. 2-231

. 2-231

. 2-232

. 2-232

. 2-232

. 2-233

. 2-233

. 2-234

. 2-235

. 2-235

. 2-236

. 2-236

. 2-236

Structures

Assoc List ..
Property List
Tconc Structure .
Fclosures ..

Random Functions . .

ARITHMETIC FUNCTIONS

Simple Arithmetic Functions
Predicates
Trignometric Functions .
Bignum Functions
Bit Manipulation . .
Other Functions . .

SPECIAL FUNCTIONS .
INPUT/OUTPUT
SYSTEM FUNCTIONS .
THE LISP READER

Introduction . . .
Syntax Classes . .
Reader Operations
Character Classes.
Syntax Classes . .
Character Macros.

Types

Normal
Splicing
Infix.

Invocations

Functions ...

FUNCTIONS, FCLOSURES, AND MACROS

Valid Function Objects .
Functions
Macros

Macro Forms
Defmacro . ·.
The Backquote Character Macro .
Sharp Sign Character Macro . . .

Conditional Inclusion
Fixnum Character Equivalents
Read Time Evaluation

Fclosures

An Example .. .
Useful Functions.
Internal Structure .

Foreign Subroutfoes and Functions

Table of Contents xxi

. 2-237

. 2-237

. 2-238

. 2-240

. 2-240

. 2-241

. 2-244

. 2-244

. 2-245

. 2-247

. 2-247

. 2-248

. 2-248

. 2-251

. 2-266

. 2-275

. 2-287

. 2-287

. 2-287

. 2-288

. 2-288

. 2-291

. 2-293

. 2-293

. 2-293

. 2-294

. 2-294

. 2-295

. 2-296

. 2-297

. 2-297

. 2-297

. 2-297

. 2-299

. 2-299

. 2-299

. 2-300

. 2-300

. 2-301

. 2-301

. 2-302

. 2-302

. 2-303

. 2-304

. 2-304

xxii Table of Contents

THE FRANZ LISP MANUAL (continued)

ARRAYS AND VECTORS. . . .

General Arrays
Subparts of an Array Object

Access Function .
Auxiliary
Data .
Length .
Delta ..

The Maclisp Compatible Array Package .
Vectors
Anatomy of Vectors.

Size
Property .. .
Internal Order.

Immediate-Vectors .

EXCEPTION HANDLING

Errset and Error Handler Functions .
The Anatomy of an Error .
Error Handling Algorithm.
Default Aids
Autoloading
Interrupt Processing . . .

THE JOSEPH LISTER TRACE PACKAGE
LISZT - THE LISP COMPILER. . .

General Strategy of the Compiler
Running the Compiler
Special Forms

Macro Expansion
Classification .

Using the Compiler.
Compiler Options.
Autorun
Pure Literals . . .
Transfer Tables. .
Fixnum Functions

THE CMU USER TOPLEVEL AND THE FILE PACKAGE

User Command Input Top Level.
The File Package

THE LISP STEPPER

Simple Use of Stepping .
Advanced Features . . .

Selectively Turning On Stepping .
Stepping with Breakpoints .

Overhead of Stepping ...
Evalhook and Funcallhook

THE FIXIT DEBUGGER . . .

. 2-309

. 2-309

. 2-310

. 2-310

. 2-310

. 2-310

. 2-310

. 2-310

. 2-310

. 2-311

. 2-312

. 2-312

. 2-312

. 2-312

. 2-312

. 2-314

. 2-314

. 2-314

. 2-314

. 2-315

. 2-315

. 2-316

. 2-317

. 2-321

. 2-321

. 2-321

. 2-321

. 2-321

. 2-322

. 2-323

. 2-324

. 2-326

. 2-327

. 2-327

. 2-328

. 2-329

. 2-329

. 2-330

. 2-334

. 2-334

. 2-335

. 2-335

. 2-336

. 2-336

. 2-336

. 2-338

Introduction
Interaction with Trace
Interaetion with Step .
Multiple Error Levels.

THE LISP EDITOR. .

The Editors ...
Scope of Attention
Pattern Matching Commands .

Commands That Search .

Location Specifications .

The Edit Chain

Printing Commands . . . , . . .
Structure Modification .Commands
Extraction and Embedding Commands
Move and Copy Commands . . .
Parentheses Moving Commands .

Using To and Thrti .

Undoing Commands ...
Commands That Evaluate
Commands That Text . .
Editor Macros
Miscellaneous Editor Commands
Editor Functions

APPENDIX A: SPECIAL SYMBOLS
APPENDIX B: SHORT SUBJECTS .

The Garbage Collector . . .
Debugging
The Interpreter's Top Level .

BERKELEY FP USER'S MANUAL

BACKGROUND
SYSTEM DESCRIPTION •

Objects ..
Application .. .
Functions .. .

Structural .
Predicate (Test) Functions .
Arithmetic/Logical .
Library Routines. .

Functional Forms. . . .
User Defined Functions.

GETTING ON AND OFF THE SYSTEM

Comments
Breaks
Non-Termination.

Table of Contents xxiii

'

. 2-338

. 2-340

. 2-340

. 2-340

. 2-341

. 2-341

. 2-341

. 2-342

. 2-343

. 2-344

. 2-345

. 2-345

. 2-345

. 2-346

. 2-347

. 2-347

. 2-348

. 2-348

. 2-349

. 2-349

. 2-350

. 2-351

. 2-351

. 2-354

. 2-357

. 2-357

. 2-357

. 2-358

. 2-359

. 2-36i

. 2-36i

. 2-361

. 2-362

. 2-363

. 2-364

. 2-364

. 2-365

. 2-365

. 2-367

. 2-368

. 2-368

. 2-368

. 2-368

xxiv Table of Contents

BERKELEY FP USER'S MANUAL (continued)

SYSTEM COMMANDS .

Load
Save
Csave and Fsave , .
Cload . ·
Pfn ..
Delete .
Fns ..
Stats ..

On
Off.
Print
Reset .

Trace
Timer
Script
Help.
Special System Functions .

Lisp
Debug

PROGRAMMING EXAMPLES

MergeSort
FP Session

IMPLEMENTATION NOTES.

The Top Level . . .
The Scanner
The Parser
The Code Generator
Function Definition and Application .
Function Naming Conventions
Measurement Impelementation . . .

Data Structures
Interpretation of Data Structures .

Times ..
Size ...
Funargno.
Funargtyp

Trace Information .

APPENDIX A: LOCAL MODIFICATIONS.

Character Set Changes . . .
Syntactic Modifications . . .

While and Conditional.
Function Definitions . .
Sequence Construction .

User Interface
Additions and Ommissions .

. 2-368

. 2-368

. 2-368

. 2-368

. 2-369

. 2-369

. 2-369

. 2-369

. 2-369

. 2-370

. 2-370

. 2-370

. 2-370

. 2-371

. 2-371

. 2-371

. 2-371

. 2-372

. 2-372

. 2-372

. 2-373

. 2-373

. 2-375

. 2-381

. 2-381

. 2-381

. 2-381

. 2-382

. 2-383

. 2-383

. 2-383

. 2-383

. 2-384

. 2-384

. 2-384

. 2-384

. 2-384

. 2-384

. 2-386

. 2-386

. 2-386

. 2-386

. 2-386

. 2-386

. 2-387

. 2-387

APPENDIX B: FP GRAMMAR ,
APPENDIX C: COMMAND SYNTAX
APPENDIX D: TOKEN-NAME CORRESPONDENCES . . .
APPENDIX E: SYMBOLIC PRIMITIVE FUNCTION NAMES

THE M4 MACRO PROCESSOR

INTRODUCTION . . .
USAGE
DEFINING MACROS .
QUOTING
ARGUMENTS
ARITHMETIC BUILT-INS
FILE MANIPULATION ..
SYSTEM COMMAND . .
CONDITIONALS
STRING MANIPULATION
PRINTING
SUMMARY OF BUILT-INS .

PART 3: SUPPORTING TOOLS

Table of Contents xxv

. 2-388

. 2-389

. 2-390

. 2-391

. 2-393

. 2-393

. 2-393

. 2-394

. 2-395

. 2-395

. 2-396

. 2-396

. 2-397

. 2-397

. 2-397

. 2-398

AWK: A PATTERN SCANNING AND PROCESSING LANGUAGE

INTRODUCTION . . .

Usage
Program Structure
Records and Fields .
Printing

PATTERNS

BEGIN and END ..
Regular Expressions
Relational Expressions
Combinations of Patterns .
Pattern Ranges . .

ACTIONS

Built-In Functions
Variables, Expressions, and Assignments.
Field Variables
String Concatenation
Arrays
Flow-of-Control Statements .

DESIGN
IMPLEMENTATION

. 3-5

. 3-5

. 3-5

. 3-5

. 3-6

. 3-6

. 3-6

. 3-7

. 3-7

. 3-7

. 3-7

. 3-7

. 3-8

. 3-8

. 3-8

. 3-9

. 3-9

. 3-9

. 3-9
3-10

xxvi Table of Contents

MAKE: A PROGRAM FOR MAINTAINING COMPUTER PROGRAMS

INTRODUCTION
BASIC FEATURES
DESCRIPTION FILE& 4ND SUBSTJTUTIONS
COMMAND USAGE
IMPLICIT RULES :
EXAMPLE
SUGGESTIONS AND WARNINGS
APPENDIX: SUFFIXES AND TRANSFORMATION RULES.

AN I1']''fRODUCTION TO THE SOURCE CODE CONTROL SYSTEM

INTRODUCTION
LEARNING THE LINGO .

S-file
Deltas
SID's (or, Version Numbers)
Id keywords . . . ,

CREATING FILES , .
GETTING FILES FOR COMPILATION .
CHANGING FILES (OR, CREATING DELTAS).

Getting a Copy To Edit •
Merging the Changes B11ck into the S-File .
When To Make Deltas , . . .
What's Going On: The lnfo Command.
ID Keywords , :

The What Command
Where To Put ID Keywords . . .

Keeping SID's Cotisistetit Across Files .
Creating New Releases ..

RESTORING OLD VE~SIONS . .

Reverting to Old Versions . . .
Selectively Oelet~ni Old D~ltas

AUDITING CHANGES

The Prt Command
Fini:ling Why Lines Were Inserted .
Fiq~ing What Ch11nges You liave Made .

SHORTHAND NOTATIONS

Delget .. .
Fix
Unt;1i:lit . . .
Th~ :...d Flag

USING SCCS 'ON A PROJECT
SAVING YOURSELF

Recovering a Munged Edit File
Restoring the S-File

USING THE ADMIN COMMAND.

..
' .

' .

3-13
3-13
3-15
3-16
3-17
3-18
3-20
3-21

3-23
3-23

3-23
3-24
3-24
3-24

3-24
3-25
3-25

3-25
3-25
3-26
3-26
3-26

3-26
3-27

3-27
3-27

3-27

3-27
3-28

3-28

3-28
3-29
3-29

3-29

3-29
3-29
3-29
3-30

3-30
3-30

3-30
3-30

3-31

\

Table of Contents xxvii

MAINTAINING DIFFERENT VERSIONS (BRANCHES). 3-31

Creating a Branch 3-31
Merging a Branch Back into the Main Trunk 3-31
A More Detailed Example. 3-32
A Warning 3-32

USING SCCS WITH MAKE. . . . 3-32

To Maintain Single Programs . 3-33
To Maintain a Library 3-33
To Maintain a Large Program . 3-34
Further Information. 3-35

QUICK REFERENCE . 3-36

Commands . . 3-36
Id Keywords . . . 3-37

LINT, A C PROGRAM CHECKER

INTRODUCTION AND USAGE
A WORD ABOUT PHILOSOPHY
UNUSED VARIABLES AND FUNCTIONS
SET/USED INFORMATION.
FLOW OF CONTROL.
FUNCTION VALUES
TYPE CHECKING
TYPE CASTS
NONPORTABLE CHARACTER USE
ASSIGNMENTS OF LONGS TO INTS
STRANGE CONSTRUCTIONS
ANCIENT HISTORY
POINTER ALIGNMENT
MULTIPLE USES AND SIDE EFFECTS
IMPLEMENTATION
PORTABILITY
SHUTTING LINT UP.
LIBRARY DECLARATION FILES.
BUGS, ETC
APPENDIX: CURRENT LINT OPTIONS

A TUTORIAL INTRODUCTION TO ADB

INTRODUCTION .
A QUICK SURVEY .

Invocation .
Current Address
Formats .
General Request Meanings

DEBUGGING C PROGRAMS .

Debugging a Core Image
Multiple Functions .
Setting Breakpoints.
Advanced Breakpoint Usage.
Other Breakpoint Facilities .

3-39
3-39
3-39
3-40
3-40
3-41
3-41
3-42
3-42
3-42
3-43
3-43
3-44
3-44
3-44
3-45
3-46
3-47
3-47
3-50

3-51
3-51

3-51
3-51
3-52
3-52

3-53

3-53
3-54
3-55
3-56
3-58

xxviii Table of Contents

A TUTORIAL INTRODUCTION TO ADB (continued)

MAPS
ADVANCED USAGE .

Formatted Dump .
Directory Dump .
Ilist Dump
Converting Values

PATCHING
ANOMALIES .. .
ADB SUMMARY .

YACC: YET ANOTHER COMPILER-COMPILER

INTRODUCTION
BASIC SPECIFICATIONS.
ACTIONS
LEXICAL ANALYSIS . . .
HOW THE PARSER WORKS .
AMBIGUITY AND CONFLICTS.
PRECEDENCE
ERROR HANDLING
THE YACC ENVIRONMENT . .
HINTS FOR PREPARING SPECIFICATIONS.

Input Style. . .
Left Recursion .
Lexical Tie-Ins .
Reserved Words

ADVANCED TOPICS .

Simulating Error and Accept in Actions .
Accessing Values in Enclosing Rules.
Support for Arbitrary Value Types ..

APPENDIX A: A SIMPLE EXAMPLE. .
APPENDIX B: YACC INPUT SYNTAX .
APPENDIX C: AN ADVANCED EXAMPLE.
APPENDIX D: OLD FEATURES SUPPORTED BUT NOT ENCOURAGED

LEX: A LEXICAL ANALYZER GENERATOR

INTRODUCTION
LEX SOURCE
LEX REGULAR EXPRESSIONS

Operators
Character Classes. . .
Arbitrary Character. .
Optional Expression .
Repeated Expressions .

ALTERNATION AND GROUPING

Context Sensitivity
Repetitions and Definitions . .

3-58
3-59

3-59
3-61
3-61
3-61

3-62
3-62
3-77

3-79
3-81
3-83
3-84
3-86
3-89
3-92
3-94
3-96
3-97

3-97
3-97
3-98
3-98

3-99

3-99
3-99
3-99

. 3-102

. 3-104

. 3-106

. 3-111

. 3-113

. 3-115

. 3-115

. 3-115

. 3-116

. 3-116

. 3-116

. 3-116

. 3-116

. 3-116

. 3-117

\
LEX ACTIONS
AMBIGUOUS SOURCE RULES .
LEX SOURCE DEFINITIONS.
USAGE ...

UNIX.
GCOS.
TSO ..

LEX AND YACC .
EXAMPLES ...
LEFT CONTEXT SENSITIVITY
CHARACTER SET
SUMMARY OF SOURCE FORMAT .
CAVEATS AND BUGS

PART 4: System Programming

UNIX IMPLEMENTATION

INTRODUCTION
PROCESS CONTROL.

Process Creation and Program Execution.
Swapping
Synchronization and Scheduling .

VO SYSTEM

Block VO System . . .
Character VO System .

Disk Drivers. . .
Character Lists .
Other Character Devices .

THE FILE SYSTEM

File System Implementation
Mounted File Systems .
Other System Functions

4.2BSD System Manual

NOTATION AND TYPES . .
KERNEL PRIMITIVES . . .

Processes and protection

Host and Process Identifiers
Process Creation and Termination
User and Group Ids
Process Groups . . .

Memory Management. . .

Text, Data and Stack
Mapping Pages . . .
Page Protection Control
Giving and Getting Advice .

Table of Contents xxix

. 3-117

. 3-119

. 3-120

. 3-120

. 3-121

. 3-121

. 3-121

. 3-121

. 3-121

. 3-123

. 3-124

. 3-124

. 3-125

. 4-5

. 4-5

. 4-6

. 4-7

. 4-7

. 4-8

. 4-9

. 4-9

. 4-9
4-10
4-10

4-10

4-11
4-13
4-13

4-15
4-16

4-17

4-17
4-17
4-18
4-19

4-20

4-20
4-20
4-21
4-21

xxx Table of Contents

4.2BSD System Manual

Signals

Overview ..
Signal Types
Signal Handlers .
Sending Signals .
Protecting Critical Sections
Signal Stacks

Timers

Real Time .. .
Interval Time .

Descriptors.

The Reference Table .
Descriptor Properties.
Managing Descriptor References
Multiplexing Requests .
Descriptor Wrapping.

Resource Controls.

Process Priorities . .
Resource Utilization .
Resource Limits . . .

System Operation Support

Bootstrap Operations
Shutdown Operations
Accounting . .

SYSTEM FACILITIES .

Generic Operations .

Read and Write .
Input/Output Control
Nonblocking and Asynchronous Operations

File System .

Overview
Naming.
Creation and Removal .

Directory Creation and Removal.
File Creation
Creating References to Devices .
Portal Creation
File, Device, and Portal Removal

Reading and Modifying File Attributes
Links and Renaming. . .
Extension and Truncation
Checking Accessibility .
Locking ...
Disk Quotas

. '

4-22

4-22
4-22
4-23
4-23
4-24
4-24

4-25

4-25
4-25

4-27

4-27
4-27
4-27
4-27
4-28

4-30

4-30
4-30
4-31

4-32

4-32
4-32
4-32

4-33

4-34

4-34
4-34
4-35

4-36

4-36
4-36
4-36

4-36
4-37
4-37
4-37
4-38

4-38
4-39
4-39
4-41
4-41
4-41

Table of Contents xxxi

Interprocess Communications

Interprocess Communication Primitives .

Communication Domains
Socket Types and Protocols
Socket Creation, Naming and Service Establishment .
Accepting Connections . . .
Making Connections
Sending and Receiving Data.
Scatter/Gather and Exchanging Access Ri~hts
Using Read and Write with Sockets 1

Shutting Down Halves of Full-Duplex Con.nectipns .
Socket and Protocol Options

UNIX Domain.

fypes of Sockets .
Naming
Access Rights Transmission .

INTERNET Domain.

Socket Types and Protocols .
Socket Naming
Access Rights Transmission .
Raw Access.

Terminals and Devices

Terminals

Terminal Ip.put .

Input ¥odes
Intermpt Characters .
Line Editing

Termin~l Output
Terminal Control Operations
Terlllin.al Hardware Support.

Structured Devices
Unstructured Devices . . ,

Process and Kernel Descriptors

SUMMARY OF FACILITIES . . .

. '
. '

~

BER~ELEY VAX/UNIX ASSEMBLER REFE~ENCE MANUAL

INTROPUCTION . , . .

Assembler Revi$ions Since November 5, 1979
Fe~tu:res Supported, But No Longer Encouraged as of February 9, 1983

USAGE
LEXICAL CONVENTIONS .

Identifiers . . . ' . . .
Constants

Scalar Constants .
Floating Point Constants.
String Const~nts

4-42

4-42

4-42
4-42
4-42
4-43
4-43
4-44
4-44
4-45
4-45
4-45

4-45

4-45
4-45
4-46

4-46

4-46
4-46
4-46
4-46

4-47

4-47

4-47

4-47
4-47
4-47

4-47
4-47
4-48

4-48
4-48

4-49

4-50

4-53

4-53
4-53

4-53
4-54

4-54
4-54

4-54
4-55
4,..55

xxxii Table of Contents

BERKELEY VAX/UNIX ASSEMBLER REFERENCE MANUAL (continued)

Operators
Blanks
Scratch Mark Comments .
"C" Style Comments . . .

SEGMENTS AND LOCATION COUNTERS.
STATEMENTS

Named Global Labels.
Numeric Local Labels.
Null Statements . . .
Keyword Statements .

EXPRESSIONS.

Expression Operators .
Data Types

TYPE PROPAGATION IN EXPRESSIONS
PSEUDO-OPERATIONS (DIRECTIVES)

Interface to a Previous Pass .
Location Counter Control .
Filled Data
Symbol Definitions . . .
Initialized Data.

MACHINE INSTRUCTIONS

Character Set
Specifying Displacement Lengths
Casex Instructions
Extended Branch Instructions .

DIAGNOSTICS
LIMITS
ANNOYANCES AND FUTURE WORK

THE UNIX 1/0 SYSTEM

DEVICE CLASSES
OVERVIEW OF 1/0 ,
CHARACTER DEVICE DRIVERS . .
THE BLOCK-DEVICE INTERFACE.
BLOCK DEVICE DRIVERS .
RAW BLOCK-DEVICE 1/0

SCREEN UPDATING AND CURSOR MOVEMENT OPTIMIZATION

OVERVIEW
TERMINOLOGY (OR, WORDS YOU CAN SAY TO SOUND BRILLIANT) .
COMPILING THINGS . .
SCREEN UPDATING. . .

Naming Conventions .

VARIABLES

4-55
4-55
4-55
4-56

4-56
4-56

4-56
4-56
4-57
4-57

4-57

4-57
4-57

4-58
4-59

4-59
4-60
4-60
4-61
4-61

4-63

4-63
4-63
4-64
4-64

4-64
4-64
4-65

4-67
4-67
4-68
4-70
4-72
4-73

4-75
4-75
4-75
4-76

4-76

4-77

I

\

,
(
\

Table of Contents xxxiii

USAGE. 4-77

Starting Up . . . 4-77
The Ni tty-Gritty . 4-78

Output . . . 4-78
Input 4-78
Miscellaneous . 4-78

Finishing up 4-78

CURSOR MOTION OPTIMIZATION: STANDING ALONE 4-78

Terminal Information. 4-79
Movement Optimizations, or, Getting Over Yonder. 4-80

THE FUNCTIONS . . 4-80

Output Functions. 4-80
Input Functions . 4-84
Miscellaneous Functions 4-85
Details . . 4-87

APPENDIX A. 4-89

Capabilities from Termcap 4-89

Disclaimer 4-89
Overview 4-89
Variables Set By Setterm(). 4-89
Variables Set By Gettmode() . 4-90

APPENDIX B. 4-91

The WINDOW structure 4-91

APPENDIX C. . . . 4-92

Examples . . . 4-92
Screen Updating 4-92
Twinkle 4-92
Life 4-94
Motion Optimization . 4-97

Twinkle 4-97

4.2BSD LINE PRINTER SPOOLER MANUAL

OVERVIEW
COMMANDS

LPD - Line Printer Dameon
LPQ - Show Line Printer Queue
LPRM - Remove Jobs from a Queue.
LPC - Line Printer Control Program.

ACCESS CONTROL
SETTING UP

Creating a Printcap File

Printers on Serial Lines
Remote Printers .

Output Filters

4-99
4-99

4-99
. 4-100
. 4-100
. 4-100

. 4-100

. 4-101

. 4-101

. 4-101

. 4-101

. 4-102

xxxiv Table of Contents

4.2BSD LINE PRINTER SPOOLER MANUAL (continued)

OUTPUT FILTER SPECIFICATIONS.
LINE PRINTER ADMINISTRATION
TROUBLESHOOTING

LPR ..
LPQ ..
LPRM.
LPD.
LPC ..

. 4-102

. 4-103

. 4-103

. 4-103

. 4-104

. 4-105

. 4-105

. 4-105

Introduction 1-1

PART 1: PROGRAMMING CONSIDERATIONS

This part contains one article, "UNIX Programming - Second Edition," by Kernighan and
Ritchie. The article gives background information that will help you write programs that
make full use of the ULTRIX-32 system. Readers should be familiar with the fundamentals
of the ULTRIX-32 system (or the UNIX system). Although the techniques shown in the arti
cle apply to programming in any language available on the ULTRIX-32 system, the sample
programs are written in the C language.

The authors explain how to:

• Pass arguments to and from a program

• Send program output to a file, to a pipe, or to a terminal

• Use the standard 1/0 (input/output) library

• Handle 1/0 errors

• Use low level 1/0

• Execute a program from within another

• Handle signals (interrupts)

\
\

UNIX Programning - Second Edit ion 1-3

UNIX Programning - Second Edition

1. INTRODUCTION

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

This paper describes how to write programs that interface with the UNIX operating
system in a non-trivial way. This includes programs that use files by name, that use
pipes, that invoke other commands as they run, or that attempt to catch interrupts and
other signals during execution.

The document collects material which is scattered throughout several sections of The
UNIX Programmer's Manual [1] for Version 7 UNIX. There is no attempt to be complete;
only generally useful material is dealt with. It is assumed that you will be programming
in C, so you must be able to read the language roughly up to the level of The C Program
ming Language [2]. Some of the material in sections 2 through 4 is based on topics
covered more carefully there. You should also be familiar with UNIX itself at least to the
level of UNIX for Beginners [3].

2. BASICS

2.1. Program Arguments

When a C program is run as a command, the arguments on the command line are
made available to the function main as an argument count a r g c and an array a r gv of
pointers to character strings that contain the arguments. By convention, a r gv [0] is the
command name itself, so argc is always greater than 0.

The following program illustrates the mechanism: it simply echoes its arguments back
to the terminal. (This is essentially the echo command.)

:main(argc, argv) /* echo argunents */
int argc;
char *argv[] ;
{

int i;

for (i = 1; i < argc; i++)
printf(''o/t.So/oe", argv[i], (i<argc-1) ? ' ' : '\.n');

}

argv is a pointer to an array whose individual elements are pointers to arrays of charac
ters; each is terminated by \ 0, so they can be treated as strings. The program starts by
printing argv[l] and loops until it has printed them all.

The argument count and the arguments are parameters to main. If you want to keep
them around so other routines can get at them, you must copy them to external variables.

UNIX is a Trademark of Bell Laboratories

1-4 lNIX Programning - Second Edit ion

2.2. The "Standard Input" and "Standard Output"

The simplest input mechanism is to read the "standard input," which is generally the
user's terminal. The function get char returns the next input character each time it is
called. A file may be substituted for the terminal by using the < convention: if prog uses
get char, then the command line

prog <file

causes prog to read f i 1 e instead of the terminal. prog itself need know nothing about
where its input is coming from. This is also true if the input comes from another program
via the

otherprog I prog

provides the standard input for prog from the standard output of o therprog.

getchar returns the value :EDF when it encounters the end of file (or an error) on
whatever you are reading. The value of EDF is normally defined to be -1, but it is unwise
to take any advantage of that knowledge. As will become clear shortly, this value is
automatically defined for you when you compile a program, and need not be of any con
cern.

Similarly, put char (c) puts the character c on the "standard output," which is also
by default the terminal. The output can be captured on a file by using >: if prog uses
put char,

prog >0utfi le

writes the standard output on ou tf i 1 e instead of the terminal. ou tf i 1 e is created if it
doesn't exist; if it already exists, its previous contents are overwritten. And a pipe can be
used:

prog I otherprog

puts the standard output of prog into the standard input of otherprog.

The function pr int f, which formats output in various ways, uses the same mechanism
as putchar does, so calls to printf and putchar may be intermixed in any order; the
output will appear in the order of the calls.

Similarly, the function scanf provides for formatted input conversion; it will read the
standard input and break it up into strings, numbers, etc., as desired. scanf uses the
same mechanism as getchar, so calls to them may also be intermixed.

Many programs read only one input and write one output; for such programs 1/0 with
getchar, putchar, scanf, and printf may be entirely adequate, and it is almost
always enough to get started. This is particularly true if the UNIX pipe facility is used to
connect the output of one program to the input of the next. For example, the following
program strips out all ascii control characters from its input (except for newline and tab).

#include <stdio.Ii>

DBin()
{

t• ccstrip: strip non-graphic characters •/

The line

int c;
while ((c = getchar()) != IDF)

if ((c>=' '&&c<0177) Ii c= '\t' II c
putchar(c);

exit(O);

#include <stdio.Ii>

'\n')

)

~ Progranning-Second F.dition 1-5

should appear at the beginning of each source file. It causes the C compiler to read a file
(/usr/include/stdio.h) of standard routines and symbols that includes the definition of EDF.

If it is necessary to treat multiple files, you can use cat to collect the files for you:

cat fi lel fi le2 . . . I ccstrip >Output

and thus avoid learning how to access files from a program. By the way, the call to exit
at the end is not necessary to make the program work properly, but it assures that any
caller of the program will see a normal termination status (conventionally 0) from the pro
gram when it completes. Section 6 discusses status returns in more detail.

3. THE STANDARD 1/0 LIBRARY

The "Standard I/0 Library" is a collection of routines intended to provide efficient
and portable I/0 services for most C programs. The standard 1/0 library is available on
each system that supports C, so programs that confine their system interactions to its
facilities can be transported from one system to another essentially without change.

In this section, we will discuss the basics of the standard 1/0 library. The appendix
contains a more complete description of its capabilities.

3.1. File Access

The programs written so far have all read the standard input and written the standard
output, which we have assumed are magically pre-defined. The next step is to write a pro
gram that accesses a file that is not already connected to the program. One simple exam
ple is we, which counts the lines, words and characters in a set of files. For instance, the
command

WC X.C y.c

prints the number of lines, words and characters in x . c and y • c and the totals.

The question is how to arrange for the named files to be read - that is, how to con
nect the file system names to the 1/0 statements which actually read the data.

The rules are simple. Before it can be read or written a file has to be opened by the
standard library function fopen. fopen takes an external name (like x. c or y. c), does
some housekeeping and negotiation with the operating system, and returns an internal
name which must be used in subsequent reads or writes of the file.

This internal name is actually a pointer, called a file pointer, to a structure which con
tains information about the file, such as the location of a buffer, the current character
position in the buffer, whether the file is being read or written, and the like. Users don't
need to know the details, because part of the standard I/0 definitions obtained by includ
ing stdio . h is a structure definition called FILE. The only declaration needed for a file
pointer is exemplified by

FIIE *fp, *fopen();

This says that f p is a pointer to a FII.E, and f open returns a pointer to a FILE. (FII.E is
a type name, like int, not a structure tag.

The actual call to f open in a program is

fp = fopen(name, nnde);

The first ar~ument of f open is the name of the file, as a character string. The second
argument is ~ode, also as a character string, which indicates how you intend to use
the file. The only all.owable modes are read ("r"), write (''w''), or append ("a").

If a file that you open for writing or appending does not exist, it is created (if possi
ble). Opening an existing file for writing causes the old contents to be discarded. Trying
to read a file that does not exist is an error, and there 1pay be other causes of error as well

1-6 lNIX Programning - Second Edit ion

(like trying to read a file when you don't have permission). If there is any error, fopen
will return the null pointer value NJ.IL (which is defined as zero in stdio . h).

The next thing needed is a way to read or write the file once it is open. There are
several possibilities, of which getc and putc are the simplest. getc returns the next
character from a file; it needs the file pointer to tell it what file. Thus

c = getc(fp)

places in c the next character from the file referred to by f p; it returns FDF when it
reaches end of file. putc is the inverse of getc:

putc(c, fp)

puts the character con the file fp and returns c. getc and putc return FDF on error.

When a program is started, three files are opened automatically, and file pointers are
provided for them. These files are the standard input, the standard output, and the stan
dard error output; the corresponding file pointers are called stdin, stdout, and stderr.
Normally these are all connected to the terminal, but may be redirected to files or pipes as
described in Section 2.2. stdin, stdout and stderr are pre-defined in the 1/0 library
as the standard input, output and error files; they may be used anywhere an object of type
FILE *can be. They are constants, however, not variables, so don't try to assign to them.

With some of the preliminaries out of the way, we can now write we. The basic design
is one that has been found convenient for many programs: if there are command-line argu
ments, they are processed in order. If there are no arguments, the standard input is pro
cessed. This way the program can be used stand-alone or as part of a larger process.

(

\

lNIX Progrmming -Second F.dition 1-7

#include <stdio.II>

nain(argc, argv) /*we: count lines, words, chars */
int argc;
char *argv[] ;
{

}

int c, i, inword;
FIIE *fp, *fopen();
long linect, wordct, charct;
long tlinect = 0, twordct = 0, tcharct = O;

i = 1;
fp = stdin;
do {

if (argc > 1 && (fp=fopen(argv[i], "r")) == N.JIL)
fprintf(stderr, ''we: can't open o/160, argv[i]);
continue;

}
linect = wordct = charct = inword = O;
while ((c = getc(fp)) !=EDF) {

}

charct++;
if (c = '0)

linect++;
if <c = • • I I c == • • I I c 'O>

inword = O;
else if (inword == 0) {

inword = 1;
wordct++;

printf("%7ld %7ld %7ld", linect, wordct, charct);
printf(argc > 1 ? " o/160 : "0, argv[i]);
fclose(fp);
tlinect += linect;
twordc t += wordc t ;
tcharct += charct;

} while (++i < argc);
if (argc > 2)

printf("o/o7ld %7ld %7ld totalO, tlinect, twordct, tcharct);
exit (0);

The function f print f is identical to print f, save that the first argument is a file pointer
that specifies the file to be written.

The function fclose is the inverse of fopen; it breaks the connection between the
file pointer and the external name that was established by f open, freeing the file pointer
for another file. Since there is a limit on the number of files that a program may have
open simultaneously, it's a good idea to free things when they are no longer needed.
There is also another reason to call fclose on an output file - it flushes the buffer in
which putc is collecting output. (fclose is called automatically for each open file when
a program terminates normally.)

3.2. Error Handling - Stderr and Exit

stderr is assigned to a program in the same way that stdin and stdout are. Out
put written on s tderr appears on the user's terminal even if the standard output is
redirected. we writes its diagnostics on stderr instead of stdout so that if one of the
files can't be accessed for some reason, the message finds its way to the user's terminal
instead of disappearing down a pipeline or into an output file.

1-8 lNIX Programning - Second Edit ion

The program actually signals errors in another way, using the function ex i t to ter
minate program execution. The argument of ex i t is available to whatever process called
it (see Section 6), so the success br failure of the program can be tested by another pro
gram that uses this one as a sub-process. By convention, a return value of 0 signals that
all is well; non-zero values signal Qbnormal situations.

exit itself calls fclose for each open output file, to flush out any buffered output,
then calls a routine named ex i t. The function ex i t causes immediate termination
without any buffer :flushing; it may be called directly if desired.

3.3. Miscellaneous 1/0 Functions

The standard 1/0 library provides several other 1/0 functions besides those we have
illustrated above.

Normaiiy output with putc, etc., is buffered (except to stderr); to force it out
immediately, use fflush(fp).

fscanf is identical to scanf, except that its first argument is a file pointer (as with
f print f) that specifies the file from which the input comes; it returns H>F at end of file.

The functions sscanf and sprintf are identical to fscanf and fprintf, except
that the first argument names a character string instead of a file pointer. The conversion
is done from the string for sscanf and into it for sprint f.

f gets (buf , s i ze , f p) copies the next line from f p, up to and including a newline,
into buf; at most size-1 characters are copied; it returns NJ.LL at end of file.
fputs(buf, fp) writes the string in buf onto file fp.

The function unge t c (c , f p) "pushes back" the character c onto the input stream
fp; a subsequent call to getc, fscanf, etc., will encounter c. Only one character of
pushback per file is permitted.

4. LOW-LEVEL 1/0

This section describes the bottom level of 1/0 on the UNIX system. The lowest level
of 1/0 in UNIX provides no buffering or any other services; it is in fact a direct entry into
the operating system. You are entirely on your own, but on the other hand, you have the
most control over what happens. And since the calls and usage are quite simple, this isn't
as bad as it sounds.

4.1. File Descriptors

In the UNIX operating system, all input and output is done by reading or writing files,
because all peripheral devices, even the user's terminal, are files in the file system. This
means that a single, homogeneous interface handles all communication between a program
and peripheral devices.

In the most general case, before reading or writing a file, it is necessary to inform the
system of your intent to do so, a process called "opening" the file. If you are going to
write on a file, it may also be necessary to create it. The system checks your right to do
so (Does the file exist? Do you have permission to access it?), and if all is well, returns a
small positive integer called a file descriptor. Whenever 1/0 is to be done on the file, the
file descriptor is used instead of the name to id,entify the file. (This is roughly analogous
to the use of READ(5, ...) and WRITE(6, ...) in Fortran.) All information about an open file is
maintained by the system; the user program refers to the file only by the file descriptor.

The file pointers discussed in section 3 are similar in spirit to file descriptors, but file
descriptors are more fundamental. A file pointer is a pointer to a structure that contains,
among other things, the file descriptor for the file in question.

Since input and output involving the user's terminal are so common, special arrange
ments exist to make this convenient. When the command interpreter (the "shell") runs a

lNIX Progranming - Second :Edit ion 1-9

program, it opens three files, with file descriptors 0, 1, and 2, called the standard input,
the standard output, and the standard error output. All of these are normally connected
to the terminal, so if a program reads file descriptor 0 and writes file descriptors 1 and 2,
it can do terminal 1/0 without worrying about opening the files.

If 1/0 is redirected to and from files with< and>, as in

prog <infile >0utfile

the shell changes the default assignments for file descriptors 0 and 1 from the terminal to
the named files. Similar observations hold if the input or output is associated with a pipe.
Normally file descriptor 2 remains attached to the terminal, so error messages can go
there. In all cases, the file assignments are changed by the shell, not by the program. The
program does not need to know where its input comes from nor where its output goes, so
long as it uses file 0 for input and 1 and 2 for output.

4.2. Read and Write

All input and output is done by two functions called read and write. For both, the
first argument is a file descriptor. The second argument is a buffer in your program where
the data is to come from or go to. The third argument is the number of bytes to be
transferred. The calls are

n read= read(fd, buf, n);

n written= write(fd, buf, n);

Each call returns a byte count which is the number of bytes actually transferred. On
reading, the number of bytes returned may be less than the number asked for, because
fewer than n bytes remained to be read. (When the file is a terminal, read normally
reads only up to the next newline, which is generally less than what was requested.) A
return value of zero bytes implies end of file, and -1 indicates an error of some sort. For
writing, the returned value is the number of bytes actually written; it is generally an error
if this isn't equal to the number supposed to be written.

The number of bytes to be read or written is quite arbitrary. The two cost common
values are 1, which means one character at a time ("unbuffered"), and 512, which
corresponds to a physical blocksize on many peripheral devices. This latter size will be
most efficient, but even character at a time 1/0 is not inordinately expensive.

Putting these facts together, we can write a simple program to copy its input to its
output. This program will copy anything to anything, since the input and output can be
redirected to any file or device.

#define llJFSIZE 512 /* best size for :RI>-11 lNIX */

ma.in() /* copy input to output */
{

char buf [llJFSIZE] ;
int n;

while ((n = read(O, buf, llJFSIZE)) > 0)
write(l, buf, n);

exit(O);

If the file size is not a multiple of IUFSIZE, some read will return a smaller number of
bytes to be written by wr i t e; the next call to read after that will return zero.

It is instructive to see how read and write can be used to construct higher level rou
tines like get char, put char, etc. For example, here is a version of get char which does
unbuffered input.

1-10 lNIX Progranming - Second :Edit ion

#define ~ 0377 /* for making char's > 0 */

getchar()
{

/* unbuffered single character input */

char c;

return((read(O, &.c, 1) > 0) ? c & ~ : EDF);
}

c must be declared char, because read accepts a character pointer. The character being
returned must be masked with 0377 to ensure that it is positive; otherwise sign extension
may make it negative. (The constant 0377 is appropriate for the PDP-11 but not neces
sarily for other machines.)

The second version of get char does input in big chunks, and hands out the charac
ters one at a time.

#define ~ 0377 /* for making char's > 0 */
#define JIJFSIZE 512

getchar() I* buffered version *I
{

static char buf [JIJFSIZE] ;
static char *bufp = buf;
static int n = O;

if (n == 0) { /* buffer is ent>tY */
n = read(O, buf, JIJFSIZE);
bufp = buf;

}
return((--n >= 0) ? *bufp+t & ~ EDF);

}

4.3. Open, Creat, Close, Unlink

Other than the default standard input, output and error files, you must explicitly open
files in order to read or write them. There are two system entry points for this, open and
creat [sic].

open is rather like the f open discussed in the previous section, except that instead of
returning a file pointer, it returns a file descriptor, which is just an int.

int fd;

fd = open(name, rwnode);

As with f open, the name argument is a character string corresponding to the external file
name. The access mode argument is different, however: rwnode is 0 for read, 1 for write,
and 2 for read and write access. open returns -1 if any error occurs; otherwise it returns
a valid file descriptor.

It is an error to try to open a file that does not exist. The entry point creat is pro
vided to create new files, or to re-write old ones.

fd = creat(name, pnode);

returns a file descriptor if it was able to create the file called name, and -1 if not. If the
file already exists, creat will truncate it to zero length; it is not an error to creat a file
that already exists.

If the file is brand new, creat creates it with the protection mode specified by the
pmde argument. In the UNIX file system, there are nine bits of protection information

lNIX Programning - Second Fili t ion 1-11

associated with a file, controlling read, write and execute permission for the owner of the
file, for the owner's group, and for all others. Thus a three-digit octal number is most
convenient for specifying the permissions. For example, 0755 specifies read, write and
execute permission for the owner, and read and execute permission for the group and
everyone else.

To illustrate, here is a simplified version of the UNIX utility cp, a program which
copies one file to another. (The main simplification is that our version copies only one
file, and does not permit the second argument to be a directory.)

#define NJIL 0
#define IIJFSIZE 512
#define IMIE 0644 /* BV for owner, R for group, others */

nain(argc, argv) /* cp: copy fl to f2 */
int argc;
char *argv[];
{

int fl, f2, n;
char buf[IIJFSIZE];

if (argc I= 3)
error(''Usage: cp frmi to", NJIL);

if ((fl= open(argv[l], 0)) == -1)
error("cp: can't open o/<S", argv[l]);

if ((f2 = creat(argv[2], IMIE)) == -1)
error("cp: can't create o/<S", argv[2]);

while ((n = read(fl, buf, IIJFSIZE)) > 0)
if (write(f2, buf, n) I= n)

error ("cp: write error", NJIL) ;
exit(O);

error(sl, s2) /* print error message and die */
char *sl, *s2;
{

printf(sl, s2);
printf("O);
exi t(l);

As we said earlier, there is a limit (typically 15-25) on the number of files which a pro
gram may have open simultaneously. Accordingly, any program which intends to process
many files must be prepared to re-use file descriptors. The routine close breaks the con
nection between a file descriptor and an open file, and frees the file descriptor for use with
some other file. Termination of a program via exit or return from the main program
closes all open files.

The function un I ink (f i I ename) removes the file f i I ename from the file system.

4.4. Random Access - Seek and Lseek

File 1/0 is normally sequential: each read or write takes place at a position in the
file right after the previous one. When necessary, however, a file can be read or written in
any arbitrary order. The system call lseek provides a way to move around in a file
without actually reading or writing:

lseek(fd, offset, origin);

forces the current position in the file whose descriptor is fd to move to position offset,

1-12 lNIX Programning - Second Edit ion

which is taken relative to the location specified by origin. Subsequent reading or writ
ing will begin at that position. offset is a long; fd and origin are int's. origin can
be 0, 1, or 2 to specify that offset is to be measured from the beginning, from the
current position, or from the end of the file respectively. For example, to append to a file,
seek to the end before writing:

lseek(fd, OL, 2);

To get back to the beginning ("rewind"),

lseek(fd, OL, O);

Notice the OL argument; it could also be written as (long) 0.

With 1 seek, it is possible to treat files more or less like large arrays, at the price of
slower access. For example, the following simple function reads any number of bytes from
any arbitrary place in a file.

get(fd, pos, buf, n) /* read n bytes fr<Dl position pos */
int fd, n;
long pos;
char *buf;
{

lseek(fd, pos, O); /*get to pos */
return(read(fd, buf, n));

In pre-version 7 UNIX, the basic entry point to the 1/0 system is called seek. seek is
identical to lseek, except that its offset argument is an int rather than a long.
Accordingly, since PDP-11 integers have only 16 bits, the offset specified for seek is
limited to 65,535; for this reason, origin values of 3, 4, 5 cause seek to multiply the
given offset by 512 (the number of bytes in one physical block) and then interpret origin
as if it were 0, 1, or 2 respectively. Thus to get to an arbitrary place in a large file
requires two seeks, first one which selects the block, then one which has origin equal to
1 and moves to the desired byte within the block.

4.5. Error Processing

The routines discussed in this section, and in fact all the routines which are direct
entries into the system can incur errors. Usually they indicate an error by returning a
value of -1. Sometimes it is nice to know what sort of error occurred; for this purpose all
these routines, when appropriate, leave an error number in the external cell errno. The
meanings of the various error numbers are listed in the introduction to Section II of the
UNIX Programmer's Manual, so your program can, for example, determine if an attempt to
open a file failed because it did not exist or because the user lacked permission to read it.
Perhaps more commonly, you may want to print out the reason for failure. The routine
perror will print a message associated with the value of errno; more generally,
sys -errno is an array of character strings which can be indexed by errno and printed
by your program.

5. PROCESSES

It is often easier to use a program written by someone else than to invent one's own.
This section describes how to execute a program from within another.

5.1. The "System" Function

The easiest way to execute a program from another is to use the standard library rou
tine sys tan. sys tan takes one argument, a command string exactly as typed at the ter
minal (except for the newline at the end) and executes it. For instance, to time-stamp the
output of a program,

(

11Bin()
{

system("date");
I* rest of processing */

mix Progrmnning - Second Edition 1-13

If the command string has to be built from pieces, the in-memory formatting capabilities
of sprintf may be useful.

Remember than get c and put c normally buffer their input; terminal 1/0 will not be
properly synchronized unless this buffering is defeated. For output, use fflush; for
input, see set buf in the appendix.

5.2. Low-Level Process Creation - Execl and Execv

If you're not using the standard library, or if you need finer control over what hap
pens, you will have to construct calls to other programs using the more primitive routines
that the standard library's sys t Em routine is based on.

The most basic operation is to execute another program without returning, by using
the routine exec I. To print the date as the last action of a running program, use

execl("/bin/date", "date", N.JIL);

The first argument to exec I is the file name of the command; you have to know where it
is found in the file system. The second argument is conventionally the program name
(that is, the last component of the file name), but this is seldom used except as a place
holder. If the command takes arguments, they are strung out after this; the end of the list
is marked by a NJ.LL argument.

The exec I call overlays the existing program with the new one, runs that, then exits.
There is no return to the original program.

More realistically, a program might fall into two or more phases that communicate
only through temporary files. Here it is natural to make the second pass simply an exec I
call from the first.

The one exception to the rule that the original program never gets control back occurs
when there is an error, for example if the file can't be found or is not executable. If you
don't know where date is located, say

execl("/bin/date", "date", N.JIL);
execl("/usr/bin/date", "date", N.JIL);
fprintf(stderr, "Soneone stole 'date'O);

A variant of exec I called execv is useful when you don't know in advance how many
arguments there are going to be. The call is

execv(filename, argp);

where argp is an array of pointers to the arguments; the last pointer in the array must be
NJ.LL so execv can tell where the list ends. As with exec 1, f i 1 ename is the file in which
the program is found, and argp[O] is the name of the program. (This arrangement is
identical to the argv array for program arguments.)

Neither of these routines provides the niceties of normal command execution. There
is no automatic search of multiple directories - you have to know precisely where the
command is located. Nor do you get the expansion of metacharacters like <, >, *, ? , and
[] in the argument list. If you want these, use exec 1 to invoke the shell sh, which then
does all the work. Construct a string cmmandl ine that contains the complete command
as it would have been typed at the terminal, then say

execl("/bin/sh", "sh", "-c", CCUDIUldline, NJlL);

1-14 lNIX Programdng-Second F.dition

The shell is assumed to be at a fixed place, I bin I sh. Its argument - c says to treat the
next argument as a whole command line, so it does just what you want. The only problem
is in constructing the right information in cmmandl ine.

5.3. Control of Processes - Fork and Wait

So far what we've talked about isn't really all that useful by itself. Now we will show
how to regain control after running a program with exec l or execv. Since these routines
simply overlay the new program on the old one, to save the old one requires that it first be
split into two copies; one of these can be overlaid, while the other waits for the new, over
laying program to finish. The splitting is done by a routine called fork:

proc id= fork();

splits the program into two copies, both of which continue to run. The only difference
between the two is the value of proc id, the "process id." In one of these processes (the
"child"), proc id is zero. In the other (the "parent"), proc id is non-zero; it is the pro
cess number of the child. Thus the basic way to call, and return from, another program is

if (fork() == 0)
execl("/bin/sh", "sh", "-c", mid, N.1.L);/• in child •t

And in fact, except for handling errors, this is sufficient. The fork makes two copies of
the program. In the child, the value returned by fork is zero, so it calls exec l which
does the cmnm.nd and then dies. In the parent, fork returns non-zero so it skips the
execl. (If there is any error, fork returns -1).

More often, the parent wants to wait for the child to terminate before continuing
itself. This can be done with the function wa i t:

int status;

if (fork() == 0)
execl(...);

wait (&stat us);

This still doesn't handle any abnormal conditions, such as a failure of the execl or fork,
or the possibility that there might be more than one child running simultaneously. (The
wa i t returns the process id of the terminated . child, if you want to check it against the
value returned by fork.) Finally, this fragment doesn't deal with any funny behavior on
the part of the child (which is reported in status). Still, these three lines are the heart
of the standard library's sys tElll routine, which we'll show in a moment.

The status returned bywai t encodes in its low-order eight bits the system's idea of
the child's termination status; it is 0 for normal termination and non-zero to indicate vari
ous kinds of problems. The next higher eight bits are taken from the argument of the call
to exit which caused a normal termination of the child process. It is good coding prac
tice for all programs to return meaningful status.

When a program is called by the shell, the three file descriptors 0, 1, and 2 are set up
pointing at the right files, and all other possible file descriptors are available for use.
When this program calls another one, correct etiquette suggests making sure the same
conditions hold. Neither fork nor the exec calls affects open files in any way. If the
parent is buffering output that must come out before output from the child, the parent
must flush its buffers before the exec I. Conversely, if a caller buffers an input stream,
the called program will lose any information that has been read by the caller.

5.4. Pipes

A pipe is an 1/0 channel intended for use between two cooperating processes: one pro
cess writes into the pipe, while the other reads. The system looks after buffering the data
and synchronizing the two processes. Most pipes are created by the shell, as in

\

lNIX Programning - Second Edition 1-15

ls I pr

which connects the standard output of 1 s to the standard input of pr. Sometimes, how
ever, it is most convenient for a process to set up its own plumbing; in this section, we will
illustrate how the pipe connection is established and used.

The system call pipe creates a pipe. Since a pipe is used for both reading and writ
ing, two file descriptors are returned; the actual usage is like this:

int fd[2];

stat= pipe(fd);
if (stat == -1)

I* there was an error ... *I

f d is an array of two file descriptorSjwhere f d [0] is the read side of the pipe and f d [1]
is for writing. These may be used in read, write and close calls just like any other file
descriptors.

If a process reads a pipe which is empty, it will wait until data arrives; if a process
writes into a pipe which is too full, it will wait until the pipe empties somewhat. If the
write side of the pipe is closed, a subsequent read will encounter end of file.

To illustrate the use of pipes in a realistic setting, let us write a function called
popen(md, DDde), which creates a process end Gust as system does), and returns a
file descriptor that will either read or write that process, according to DDde. That is, the
call

fout = popen("pr", WU1E) ;

creates a process that executes the pr command; subsequent wr i t e calls using the file
descriptor f out will send their data to that process through the pipe.

popen first creates the the pipe with a pipe system call; it then forks to create two
copies of itself. The child decides whether it is supposed to read or write, closes the other
side of the pipe, then calls the shell (via execl) to run the desired process. The parent
likewise closes the end of the pipe it does not use. These closes are necessary to make
end-of-file tests work properly. For example, if a child that intends to read fails to close
the write end of the pipe, it will never see the end of the pipe file, just because there is
one writer potentially active.

1-16 lNIX Prograrming - Second Fili t ion

#include <stdio.Ir>

#define
#define
#define
static

READ 0
\'\RI1E 1
tst (a, b) (m>de == READ ? (b)
int popen pid;

popen (md, m>de)
char *md;
int m>de;
{

int p[2];

if (pipe(p) < 0)
return(.J.llJIL); ,

if ((popen pid =fork()) == 0) {
close(tst(p[\\Rl1E], p[BFAD]));
close(tst(O, l));
dup(tst (p[RFAD], p[\\Rl1E]));
close(tst (p[RFAD), p[Wll1E]));
execl("/bin/sh", "sh", "-c'', mil, O);

(a))

exit(l); /*disaster has Occurred if we get here*/
}
if (popen pid == -1)

return(NJii);
close(tst(p[RFAD], p[\\Ri1E]));
return(tst(p[\\Rl1E], p(RFAD]));

The sequence of closes in the child is a bit tricky. Suppose that the task is to create a
child process that will read data from the parent. Then the first close closes the write
side of the pipe, leaving the read side open. The lines

close(tst(O, l));
dup(tst (p[RFAD), p[\\RI1E]));

are the conventional way to associate the pipe descriptor with the standard input of the
child. The close closes file descriptor 0, that is, the standard input. dup is a system call
that returns a duplicate of an hlready open file descriptor. File descriptors are assigned in
increasing order and the first available one is returned, so the effect of the dup is to copy
the file descriptor for the pipe (read side) to file descriptor O; thus the read side of the
pipe becomes the standard input. (Yes, this is a bit tricky, but it's a standard idiom.)
Finally, the old read side of the pipe is closed.

A similar sequence of operations takes place when the child process is supposed to
write from the parent instead of reading. You may find it a useful exercise to step
through that case.

The job is not quite done, for we still need a function pclose to close the pipe
created by popen. The main reason for using a separate function rather than close is
that it is desirable to wait for the termination of the child process. First, the return value
from pc lose indicates whether the process succeeded. Equally important when a process
creates several children is that only a bounded number of unwaited-for children can exist,
even if some of them have terminated; performing the wa i t lays the child to rest. Thus:

\
I

#include <signal.h>

pclose(fd) /* close pipe fd */
int fd;
{

lNIX Progrmming-Second F.dition 1-17

register r, (*hstat)(), (*istat)(), (*qstat)();
int status;
extern int popen pid;

close(fd);
istat = signal(SIGil\T, SIG IGS');
qstat = signal(SI(JJJIT, SIG IGS');
hstat = signal (SI<HJP, SIG IGS');
while ((r = wait(&status)) I= popen pid && r I= -1);
if (r = -1)

status = -1;
signal(SIGil\T, istat);
signal(SI(JJJIT, qstat);
signal(SICJIJP, hstat);
return(status);

The calls to s i gna I make sure that no interrupts, etc., interfere with the waiting process;
this is the topic of the next section.

The routine as written has the limitation that only one pipe may be open at once,
because of the single shared variable popen pi d; it really should be an array indexed by
file descriptor. A popen function, with slightly different arguments and return value is
available as part of the standard I/0 library discussed below. As currently written, it
shares the same limitation.

6. SIGNALS-INTERRUPTS AND ALL THAT

This section is concerned with how to deal gracefully with signals from the outside
world (like interrupts), and with program faults. Since there's nothing very useful that
can be done from within C about program faults, which arise mainly from illegal memory
references or from execution of peculiar instructions, we'll discuss only the outside-world
signals: interrupt, which is sent when the DEL character is typed; quit, generated by the
FS character; hangup, caused by hanging up the phone; and terminate, generated by the
kill command. When one of these events occurs, the signal is sent to all processes which
were started from the corresponding terminal; unless other arrangements have been made,
the signal terminates the process. In the quit case, a core image file is written for debug
ging purposes.

The routine which alters the default action is called signal. It has two arguments:
the first specifies the signal, and the second specifies how to treat it. The first argument is
just a number code, but the second is the address is either a function, or a somewhat
strange code that requests that the signal either be ignored, or that it be given the default
action. The include file s i gna I . h gives names for the various arguments, and should
always be included when signals are used. Thus

#include <signal.h>

signal(SIGil\T, SIG IGS');

causes interrupts to be ignored, while

signal (SIGil\T, SIG DFL);

restores the default action of process termination. In all cases, signal returns the previ
ous value of the signal. The second argument to s i gna I may instead be the name of a

1-18 lNIX Progranming - Second Edit ion

function (which has to be declared explicitly if the compiler hasn't seen it already). In
this case, the named routine will be called when the signal occurs. Most commonly this
facility is used to allow the program to clean up unfinished business before terminating,
for example to delete a temporary file:

#include <signal.h>

imin()
{

}

int onintr();

if (signal(SIGINI', SIG I~) !=SIG I~)
signal(SIGINI', onintr);

I* Process ... *I

exit(O);

onintr()
{

}

unlink(tE1q>file);
exit(l);

Why the test and the double call to s i gna l? Recall that signals like interrupt are
sent to all processes started from a particular terminal. Accordingly, when a program is to
be run non-interactively (started by&), the shell turns off interrupts for it so it won't be
stopped by interrupts intended for foreground processes. If this program began by
announcing that all interrupts were to be sent to the on int r routine regardless, that
would undo the shell's effort to protect it when run in the background.

The solution, shown above, is to test the state of interrupt handling, and to continue
to ignore interrupts if they are already being ignored. The code as written depends on the
fact that s i gna I returns the previous state of a particular signal. If signals were already
being ignored, the process should continue to ignore them; otherwise, they should be
caught.

A more sophisticated program may wish to intercept an interrupt and interpret it as a
request to stop what it is doing and return to its own command-processing loop. Think of
a text editor: interrupting a long printout should not cause it to terminate and lose the
work already done. The outline of the code for this case is probably best written like this:

#include <signal.h>
#include <setj...,.h>
jDt> buf sjbuf;

imin()
{

int (*istat)(), onintr();

istat = signal(SIGINI', SIG I~); /*save original status*/
setjDt>(sjbuf); /* save current stack position*/
if (istat !=SIG I~)

signal(SIGINI', onintr);

I* imin processing loop */

lNlX Progrmming - Second Edit ion 1-19

onintr()
{

printf("OnterruptO);
longjiq>(sjbuf); /* return to saved state */

}

The include file set j1q>. h declares the type jmp buf an object in which the state can be
saved. s j buf is such an object; it is an array of some sort. The set jmp routine then
saves the state of things. When an interrupt occurs, a call is forced to the onintr rou
tine, which can print a message, set flags, or whatever. longjmp takes as argument an
object stored into by set jmp, and restores control to the location after the call to
set j1q>, so control (and the stack level) will pop back to the place in the main routine
where the signal is set up and the main loop entered. Notice, by the way, that the signal
gets set again after an interrupt occurs. This is necessary; most signals are automatically
reset to their default action when they occur.

Some programs that want to detect signals simply can't be stopped at an arbitrary
point, for example in the middle of updating a linked list. If the routine called on
occurrence of a signal sets a flag and then returns instead of calling exit or longjmp,
execution will continue at the exact point it was interrupted. The interrupt flag can then
be tested later.

There is one difficulty associated with this approach. Suppose the program is reading
the terminal when the interrupt is sent. The specified routine is duly called; it sets its
flag and returns. If it were really true, as we said above, that "execution resumes at the
exact point it was interrupted," the program would continue reading the terminal until
the user typed another line. This behavior might well be confusing, since the user might
not know that the program is reading; he presumably would prefer to have the signal take
effect instantly. The method chosen to resolve this difficulty is to ter~inate the terminal
read when execution resumes after the signal, returning an error code which indicates
what happened.

Thus programs which catch and resume execution after signals should be prepared for
"errors" which are caused by interrupted system calls. (The ones to watch out for are
reads from a terminal, wait, and pause.) A program whose onintr program just sets
intflag, resets the interrupt signal, and returns, should usually include code like the fol
lowing when it reads the standard input:

if (getchar() == J!DF)
if (intflag)

I* 1!DF caused by interrupt */
else

I* true end-of-file */

A final subtlety to keep in mind becomes important when signal-catching is combined
with execution of other programs. Suppose a program catches interrupts, and also
includes a method (like "!" in the editor) whereby other programs can be executed. Then
the code should look something like this:

if (fork() == O)
execl(••.);

signal(SIGINI', SIG IQ\J); /* ignore interrupts */
wait(&status); /*until the child is done*/
signal(SIGINI', onintr); /* restore interrupts */

Why is this? Again, it's not obvious but not really difficult. Suppose the program you call
catches its own interrupts. If you interrupt the subprogram, it will get the signal and
return to its main loop, and probably read your terminal. But the calling program will
also pop out of its wait for the subprogram and read your terminal. Having two processes
reading your terminal is very unfortunate, since the system figuratively flips a coin to

1-20 lNIX Progranming - Second Edit ion

decide who should get each line of input. A simple way out is to have the parent program
ignore interrupts until the child is done. This reasoning is reflected in the standard I/O
library function system

#include <signal.II>

system(s)
char *s;

I* run ccnma.nd string s */

{
int status, pid, w;
register int (*istat)(), (*qstat)();

if ((pid = fork()) == 0) {
execl("/bin/sh", "sh", "-c", s, O);
exit(127);

}
istat = signal(SIGINr, SIG IQ'li);
qstat = signal(SI<IJJIT, SIG IQ'li);
while ((w = wait(&status)) != pid && w != -1)

if (w == -1)
status = -1;

signal(SIGINr, istat);
signal(SI<IJJIT, qstat);
return(status);

As an aside on declarations, the function s i gna 1 obviously has a rather strange
second argument. It is in fact a pointer to a function delivering an integer, and this is
also the type of the signal routine itself. The two values SIG ICN and SIG IFL have the
right type, but are chosen so they coincide with no possible actual functions. For the
enthusiast, here is how they are defined for the PDP-11; the definitions should be
sufficiently ugly and nonportable to encourage use of the include file.

#define SIGDFL (int (*)())O
#define SIG IQ'li (int (*)())1

References

(1) K. L. Thompson and D. M. Ritchie, The UNIX Programmer's Manual, Bell Labora
tories, 1978.

[2] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Inc.,
1978.

[3] B. W. Kernighan, "UNIX for Beginners - Second Edition." Bell Laboratories, 1978.

(

lNIX Progranming - Second Edit ion 1-21

Appendix - The Standard 1/0 Library

D. M. Ritchie

The standard I/0 library was designed with the following goals in mind.

1. It must be as efficient as possible, both in time and in space, so that there will be no
hesitation in using it no_ matter how critical the application.

2. It must be simple to use, and also free of the magic numbers and mysterious calls
whose use mars the understandability and portability of many programs using older
packages.

3. The interface provided should be applicable on all machines, whether or not the pro
grams which implement it are directly portable to other systems, or to machines other
than the PDP-11 running a version of UNIX.

1. General Usage

Each program using the library must have the line

#include <stdio.h>

which defines certain macros and variables. The routines are in the normal C library, so
no special library argument is needed for loading. All names in the include file intended
only for internal use begin with an underscore to reduce the possibility of collision with
a user name. The names intended to be visible outside the package are

stdin The name of the standard input file

s tdout The name of the standard output file

stderr The name of the standard error file

BlF is actually -1, and is the value returned by the read routines on end-of-file or
error.

NJIL is a notation for the null pointer, returned by pointer-valued functions to indi
cate an error

FILE expands to st rue t i ob and is a useful shorthand when declaring pointers to
streams.

BJFSIZ is a number (viz. 512) of the size suitable for an I/O buffer supplied by the user.
See sethuf, below.

getc, getchar, putc, putchar, feof, ferror, tileno
are defined as macros. Their actions are described below; they are mentioned
here to point out that it is not possible to redeclare them and that they are not
actually functions; thus, for example, they may not have breakpoints set on
them.

The routines in this package offer the convenience of automatic buffer allocation and
output flushing where appropriate. The names stdin, stdout, and stderr are in effect
constants and may not be assigned to.

2. Calls

FILE *fopen(filename, type) char *filename, •type;
opens the file and, if needed, allocates a buffer for it. f i l ename is a character string
specifying the name. type is a character string (not a single character). It may be
"r", "w", 01 "a" to indicate intent to read, write, or append. The value returned is a
file pointer. If it is NJIL the attempt to open failed.

FILE *freopen(filenmne, type, ioptr) char *filename, •type; FILE *ioptr;

1-22 lNIX Progrmnning - Second Edit ion

The stream named by ioptr is closed, if necessary, and then reopened as· if by fopen.
If the attempt to open fails, NJIL is returned, otherwise ioptr, which will now refer
to the new file. Often the reopened stream is std in or s tdou t.

int getc(ioptr) FILE *ioptr;
returns the next character from the stream named by ioptr, which is a pointer to a
file such as returned by fopen, or the name stdin. The integer FDF is returned on
end-of-file or when an error occurs. The null character xO is a legal character.

int fgetc(ioptr) FILE *ioptr;
acts like get c but is a genuine function, not a macro, so it can be pointed to, passed
as an argument, etc.

putc(c, ioptr) FILE *ioptr;
putc writes the character c on the output stream named by ioptr, which is a value
returned from fopen or perhaps stdout or stderr. The character is returned as
value, but FDF is returned on error.

fputc(c, ioptr) FILE *ioptr;
acts like put c but is a genuine function, not a macro.

fclose(ioptr) FILE *ioptr;
The file corresponding to ioptr is closed after any buffers are emptied. A buffer allo
cated by the 1/0 system is freed. fclose is automatic on normal termination of the
program.

fflush(ioptr) FILE *ioptr;
Any buffered information on the (output) stream named by ioptr is written out.
Output files are normally buffered if and only if they are not directed to the terminal;
however, stderr always starts off unbuffered and remains so unless setbuf is used,
or unless it is reopened.

exit (errcode);
terminates the process and returns its argument as status to the parent. This is a spe
cial version of the routine which calls f flush for each output file. To terminate
without flushing, use exit.

feof(ioptr) FILE *ioptr;
returns non-zero when end-of-file has occurred on the specified input stream.

ferror(ioptr) FILE *ioptr;
returns non-zero when an error has occurred while reading or writing the named
stream. The error indication lasts until the file has been closed.

getchar();
is identical to getc(stdin).

putchar(c);
is identical to putc(c, stdout).

char *fgets(s, n, ioptr) char *s; FILE *ioptr;
reads up to n-1 characters from the stream ioptr into the character pointer s. The
read terminates with a newline character. The newline character is placed in the
buffer followed by a null character. fgets returns the first argument, or NJlL if error
or end-of-file occurred.

fputs(s, ioptr) char *s; FILE *ioptr;
writes the null-terminated string (character array) s on the stream ioptr. No new
line is appended. No value is returned.

ungetc(c, ioptr) FILE *ioptr;
The argument character c is pushed back on the input stream named by ioptr. Only

(

lNIX Progrmnning - Second F.di t ion 1-23

one character may be pushed back.

printf(fonnat, al, ...)char *fonnat;
fprintf(ioptr, fonnat, al, .•.)FILE *ioptr; char *fonnat;
sprintf(s, fonnat, al, ...)char *s, *fonnat;

printf writes on the standard output. fprintf writes on the named output stream.
spr intf puts characters in the character array (string) named by s. The
specifications are as described in section pr intf(3) of the UNIX Programmer's
Manual.

scanf(fonnat, al, ...)char *fonnat;
fscanf(ioptr, fonnat, al, •..)FILE *ioptr; char *fonnat;
sscanf(s, fonnat, al, ...) char *s, *fonnat;

scanf reads from the standard input. fscanf reads from the named input stream.
sscanf reads from the character string supplied as s. scanf reads characters, inter
prets them according to a format, and stores the results in its arguments. Each rou
tine expects as arguments a control string fonnat, and a set of arguments, each of
which must be a pointer, indicating where the converted input should be stored.

scanf returns as its value the number of successfully matched and assigned input
items. This can be used to decide how many input items were found. On end of file,
H>F is returned; note that this is different from 0, which means that the next input
character does not match what was called for in the control string.

fread(ptr, sizeof(*ptr), nitems, ioptr) FILE *ioptr;
reads ni tems of data beginning at ptr from file ioptr. No advance notification that
binary 1/0 is being done is required; when, for portability reasons, it becomes
required, it will be done by adding an additional character to the mode-string on the
fopen call.

fwrite(ptr, sizeof(*ptr), nitems, ioptr) FILE *ioptr;
Like fread, but in the other direction.

rewind(ioptr) FILE *ioptr;
rewinds the stream named by ioptr. It is not very useful except on input, since a
rewound output file is still open only for output.

system(string) char *string;
The string is executed by the shell as if typed at the terminal.

getw(ioptr) FILE *ioptr;
returns the next word from the input stream named by ioptr. H>F is returned on
end-of-file or error, but since this a perfectly good integer feof and ferror should be
used. A "word" is 16 bits on the PDP-11.

putw(w, ioptr) FILE *ioptr;
writes the integer w on the named output stream.

setbuf(ioptr, buf) FILE *ioptr; char *buf;
setbuf may be used after a stream has been opened but before I/O has started. If
buf is NJLL, the stream will be unbuffered. Otherwise the buffer supplied will be
used. It must be a character array of sufficient size:

char buf[llJFSIZ];

fileno(ioptr) FILE *ioptr;
returns the integer file descriptor associated with the file.

fseek(ioptr, offset, ptrname) FILE *ioptr; long offset;
The location of the next byte in the stream named by ioptr is adjusted. offset is a
long integer. If ptrname is 0, the offset is measured from the beginning of the file; if
ptrname is 1, the offset is measured from the current read or write pointer; if

1-24 lNIX Progrsmning - Second Edit ion

ptrnmne is 2, the offset is measured from the end of the file. The routine accounts
properly for any buffering. (When this routine is used on non-UNIX systems, the
offset must be a value returned from ftel 1 and the ptrname must be 0).

long ftell(ioptr) FIIE *ioptr;
The byte offset, measured from the beginning of the file, associated with the named
stream is returned. Any buffering is properly accounted for. (On non-UNIX systems
the value of this call is useful only for handing to fseek, so as to position the file to
the same place it was when ftel 1 was called.)

getpw(uid, buf) char *buf;
The password file is searched for the given integer user ID. If an appropriate line is
found, it is copied into the character array buf, and 0 is returned. If no line is found
corresponding to the user ID then 1 is returned.

char *malloc(nlDl);
allocates n\Dl bytes. The pointer returned is sufficiently well aligned to be usable for
any purpose. NJlL is returned if no space is available.

char *calloc(nlDl, size);
allocates space for D\Dl items each of size s i ze. The space ill guaranteed to be set to 0
and the pointer is sufficiently well aligned to be usable for any purpose. NJLL is
returned if no space is available .

cfree(ptr) char *ptr;
Space is returned to the pool used by ca 11 oc. Di!ilorder can be expected if the
pointer was not obtained from ca 11 oc.

The following are macros whose definitions may be obtained by including <ctype .h>.

i sa I pha (c) returns non-zero if the argument is alphabetic.

i supper (c) returns non-zero if the argument is upper-case alphabetic.

is 1 ower (c) returns non-zero if the argument is lower-case alphabetic.

i sd i g i t (c) returns non-zero if the argument is a digit.

isspace(c) returns non-zero if the argument is a spacing character: tab, newline, car
riage return, vertical tab, form feed, space.

is punc t (c) returns non-zero if the argument is any punctuation character, i.e., not a
space, letter, digit or control character.

i sa 1 nmt(c) returns non-zero if the argument is a letter or a digit.

is print (c) returns non-zero if the argument is printable - a letter, digit, or punctua
tion character.

iscntrl(c) returns non-zero ifthe argument is a control character.

i sas c i i (c) returns non-zero if the argument is an ascii character, i.e., less than octal
0200.

toupper (c) returns the upper-case character correspon~ing to the lower-case letter c.

tolower(c) returns the lower-case character corresponding to the upper-case letter c.

/

Introduction 2-1

PART 2: LANGUAGES

This part includes articles on four of the languages and four of the language preprocessors
available on UL TRIX-32:

• c
• FORTRAN77

• RATFOR

• EFL

• Pascal

• Franz Lisp

• FP

• M4

These articles are authoritative reference materials appropriate for people familiar with pro
gramming in the languages described. Each article defines the implementation of a language
or preprocessor on the ULTRIX-32 system. With the exception of the articles on Pascal,
RATFOR, and M4, these articles are not tutorial, and they are not for beginners.

C Language

The first three articles deal with the C language. "The C Programming Language - Reference
Manual" lists in detail the rules, conventions, and concepts that define the implementation of
C on the VAX computer. This is reprinted from an appendix in The C Programming
Language [1], by Kernighan and Ritchie. Before you use this article, you should know how to
write programs in C and have read The C Programming Language.

The next two articles describe C language compilers. "A Tour Through the Portable C Com
piler," by Johnson, explains the Berkeley C compiler available in the ULTRIX-32 system. It
tells what happens when you compile a C program on ULTRIX-32 and is meant for people
who may support the C compiler. This article gives an excellent overview of the organization,
operation, and background of the ULTRIX-32 C compiler. The Ritchie article, "A Tour
Through the UNIX C Compiler," describes the Bell UNIX C compiler, not implemented on
ULTRIX-32.

FORTRAN

The two articles that follow describe f77 FORTRAN. The "Introduction to the f77 1/0
Library," by Wasley, lists specifications and rules for using the f77 1/0 library routines. These
routines make use of the standard C 1/0 library routines in ULTRIX-32. The article explains

[1] Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Prentice Hall, Englewood
Cliffs, N.J., 1978.

2-2 Introduction

the different methods available for accessing files, rules for use of logical units for 1/0, and
error and status handling for 1/0 processing. It tells in detail how the standard FORTRAN
commands and concepts are implemented on the ULTRIX-32 system. In addition, the article
identifies non-ANSI standard extensions to the library and shows methods you can use tO
make older FORTRAN programs compatible with this 1/0 library.

"A Portable FORTRAN 77 Compiler," by Feldman and Weinberger, describes the rules and
conventions of FORTRAN 77 as implemented on the ULTRIX-32 system. Familiarity with
FORTRAN 66 or another standard FORTRAN is prerequisite tO comprehending this article.

RATFOR and EFL

The next two articles deal with FORTRAN preprocessors. RATFOR and EFL translate input
files into FORTRAN source code. They overcome some of the cosmetic and control-flow
defects of FORTRAN while retaining desirable FORTRAN features such as universality and
efficiency. RATFOR and EFL programs are compatible with FORTRAN libraries, yet they
offer a significant improvement over standard FORTRAN.

The article "RATFOR - A Preprocessor for a Rational FORTRAN," by Kernighan, tells how
tO write RATFOR code that is easier to read and write than FORTRAN code. The article also
explains how to:

• Eliminate goto statements

• Group statements within a conditional construction

• Include the else clause as a part of a conditional construction

• Improve do, while, for, and repeat until functions

Readers will find this article easy to read and full of useful examples.

EFL is a descendant of RATFOR. EFL is more flexible; it allows more general forms for
expressions and it provides a more uniform syntax. "The Programming Language EFL," by
Feldman, lists concepts and rules and provides some programming examples.

Berkeley Pascal

The "Berkeley Pascal User's Manual" tells what you need to know tO write and execute Pas
cal programs on the ULTRIX-32 system if you are already familiar with Pascal programming.
The article is arranged in tutorial format; it lists reference materials, explains how to use an
editor tO create a Pascal program, and gives various execution options. Berkeley Pascal
includes six utilities for translating, compiling, running, and analyzing programs:

pi Translates the source program into object code and stOres the object code

px Interprets (executes) the object code created by pi

pix Translates the source program and then executes it

pc Processes the source program tO compile an executable binary file

pxp Creates an execution profile for a program when used tOgether with pi or pix

pxref Produces a program listing and a cross-reference identifier from a source pro-
gram

"The Berkeley Pascal User's Manual" explains how tO use these utilities, how tO handle pip
ing, input, and output, how to interpret error diagnostics, how to include source text from
several files for the translatOr, and how tO compile separate segments of a Pascal program tO
be linked for running later. An appendix gives a precise definition of Berkeley Pascal.

Introduction 2-3

Franz Lisp
"The Franz Lisp Manual" gives a detailed and extensive description of the Berkeley dialect of
Lisp. Franz Lisp is a sophisticated language that provides a complete environment in which
you can develop and run programs. In addition, it offers:

• 14 data types

• Both a compiler and an interpreter

• Special functions (such as apply)

• System control functions (such as memory allocation)

• Macros and fclosures

• Compatibility with foreign subroutines

• Error handling capabilities

• Powerful debugging tools (trace, stepper, fixit)

• A CMU top-level package that serves as an alternative to the default Franz Lisp top
level package

• A file package that allows you to save functions for use in other sessions

• An editor specially designed for modifying Lisp programs

Because this long article is organized as a reference manual, you may find it useful to read the
introductory section in each chapter to gain an overview, before reading the chapters in depth.

FP
FP is a preprocessor that produces Franz Lisp source code. The "Berkeley FP User's
Manual" is appropriate reading for sophisticated programmers familiar with Lisp. The article
describes, in terse terms, the principles and rules of the language. This description includes
definitions of:

• Objects

• Operations

• Functions

• Input and output procedures

• Execution options

You may find the extensive programming examples helpful.

M4
M4 is a macro processor that provides string substitution. It accepts as input source code in
any computer language and substitutes a defined text for each occurrence of a macro name.
"The M4 Macro Processor," by Kernighan and Ritchie, offers readable explanations and good
examples. You can use M4 to:

• Set up your own macros

• Create and use macros that take several arguments

• Use a set of built-in macros

• Bring in new files with an include function

• Call shell functions with a system command

'\
'

//

The C Programming Language 2-5

The C Programming Language - Reference Manual

Dennis M. Ritchie

Bell Laboratories. Murray Hill. New Jersey

This manual is reprinted. with minor changes. from The C Programming Language. by Brian W. Ker
nighan and Dennis M. Ritchie. Prentic:e·Hall. Inc: .• 1978.

1. Introduction
This manual describes the C language on 1he DEC POP-I I. ·the DEC \'AX· I I. the Honeywell 6000.

the IBM System/370. and the Interdata 8/32. Where differences exist. it concentrates on the PDP· I I. but
tries to point out implementation-dependent details. With few exceptions. these dependencies follow
directly from the underlying properties of the hardware; the various compilers are generally quite c:ompa·
tible.

2. Lexical conventions
There are six classes of tokens: identifiers. keywords. constants. strings. operators. and other separa

tors. Blanks. tabs. newlines. and comments kollec:tively ... white space ..) ~described below are ignored
except as they serve 10 separ-•te tokens. Some white space is required to separate otherwise adjacent
identifiers. keywords. and constants.

If the input stream has been parsed into tokens up to a given character. the next token is taken to
inc:lude the longest string of characters which could possibly constitute a token.

2.1 Comments
The characters / • introduce a comment. which terminates with the characters • /. Comments do not

nest.

2.2 ldeQUfiers (Names)
An identifier is a sequence of letters and digits; the first character must be a letter. The underscore _

counts as a letter. Upper and lower case letters are different. No more thilll the first eight characters are
significant, although more may be used. External identifiers. which are used by various assemblers and
loaders. are more restricted:

DEC PDP·ll
DEC VAX-I I
Honeywell 6000
IBM 360/370
Interdata 8/32

2.3 Keywords

7 characters. 2 cases
8 characters. 2 cases
6 characters. I case
7 characters. I case
8 characters. 2 cases

The following identifiers are reserved for use as keywords. and may not be used otherwise:

int extern ehe
char reqister for
float typedef do
double static while
struct 9oto switch
union return case
lon9 sizeof default
short break entry
unsiqned continue
auto if

The entry keyword is not currently implemented by any compiler but is reserved for future use. Some

t UNIX is a Trademark of Bell L.aboralones.

----· --··-- -- ·------------ --- ·-------

2-6 The C Programming Language

implement;itions also reserve the words for-::ran and asm.

2.4 Constants
There Jre several lcinds of constants. as listed below. Hoird'<lr"llre characteristics which affect sizes are

summarized in §2.6.

2.4. l Integer constants
An integer constant consisting of a sequence of digits is taken to be octal if it begins with o (digit

zero>. decimal otherwise. The digits 8 and 9 have octal value 10 and 11 respectively. A sequence of
digits preceded by Ox or OX (digit zero) is taken to be a hexadecimal integer. The hexadecimal digilS
include a or A through f or F with values 10 through 15. A decimal constant whose value exceeds the
largest signed machine integer is taken to be loner. an octal or hex constant which exceeds the largest
unsigned machine integer is likewise taken to be lone;.

2.4.2 Explicic tong constanlS
A decimal. oaal. or hexadecimal inceger constanl immediacely followed by l Clener ell) or t. is a long

constant. As discussed below. on some machines integer and long values may be considered identical.

2.4.3 Character coastanlS
A character constant is a character enclosed in single quotes. as in ' x'. The value of a character

constant is the numerical value of the character in the machine•s character set.
Certain non-graphic characters. the single quote • and the backslash \. may be represented according

to the f oltowing table of escape sequences:

newline NL <LF) \n
horizontal tab HT \t
backspace BS \b
carriage retum CR \r
form feed FF \f
backslash \ \\
single quote \'
bit pattern ddd \ddd

The escape \dddconsists of the backslash followed by t. 2. or 3 octal digits which are taken to specify the
value of the desired character. A special case of this construction is \0 (not followed by a digit), which
indicates the charaeter NUL. If the character followin& a backslash is not one of those specified, the
backslash is ignored.

2.4.4 Ftoatin& constants
A Roating constant consists or an integer part. a decimal point. a f raclion part. an e or !. and an

optionally signed integer exponent. The integer and fraction pans both consist of a sequence of digits.
Either the integer part or the fraction pan (not both) may be missing: either the decimal point or the e
and the exponent (not both) may be missing. Every Roating constant is taken to be double-precision.

2.5 Strings
A string is a sequence of characters surrounded by double quotes. as in " ••• "· A string has type

"array of characters" and storage class static (see §4 below) and is initialized with the given characters.
All strings. even when written identially, are distinct. The compiler places a null byte \0 at the end 01'

each string so that programs which sc:tn the string can find its end. In a string~ the double quote char:ic·
ter " must be preceded by a \; in addition. the same escapes as described for character const:intS may be
used. Finally, a \ and an immediately following newline are ignored.

2.6 Hardware characteristics
The following uble summarizes cert;iin hardware properties which vary from machine to machine.

Alrhough these affect program portability. in practice they are less of a problem than might be thought a
prtor1.

(

\

(
\

!
I

\

The C Programming Language 2-7

DEC PDP-I I Honeywell 6000 IBM 370 Interdata 8/32

ASCII ASCII EBCDIC ASCII
ehar 8 bits 9 bits 8 bits 8 bits
int 16 36 32 32
short 16 36 16 16
lonq 32 36 32 32
float 32 36 32 32
double 64 72 64 64
range ±10=31 ±10=3• ±10::76 ±10::76

The v AX-11 is identical to the POP· I I except that intqers have 32 bits.

3. Syntax notation
Jn the syntax notation used in this manual. syntactic categories are indicated by italic type, and literal

words and characters in bold type. Alternative categories are listed on separate lines. An optional ter·
minal or non-terminal symbol is indicated by the subscript "opt." so that

l aprasion.,,)

indicates an optional expression enclosed in braces. The syntax is summarized in § 18.

4. What's in a name?
C bases the interpretation of an identifier upon two attributes of the identifier: its s1ar~ class and its

ty~ •• The storage class determines the location and lifetime of the storage associated with an identifier;
the type determines the meaning of the values found in the identifier's storage.

There are four declarable storage classes: automatic. static. external. and register. Automatic vari
ables are IOC31 to each invocation of a block (§9.2). and are discarded upon exit from the block; static
variables are local to a block. but retain their values upon reentry to a block even after control has left
the block: external variables exist and retain their values throughout the execution of the entire program,
and may be used for communication between functions. even separately compiled functions. Register
variables are (if possible) storeki in the fast reijsters of the machine; like automatic variables they are
local to each block and disappear on exit from the block.

C supports several fundamental types of objects:
Objects declared as characters (char) are large enough to store any member of the implementation's

character set. and if a genuine character from that character set is stored in a character variable. its value
is equivalent to the intqer code for that character. Other quantities may be stored into characte!' vari
ables. but the implementation is machine~epcndent.

Up to three sizes of integer. declared short int. int, and lonq int. are available. Longer
intqers provide no less storage than shorter ones. but the implementation may make either short
intqers, or long integers, or both. equivalent to plain integers. "Plain" integers have the natural size
suggested by the host machine architecture: the other sizes are provided to meet special needs.

Unsigned intqers. declared unsiqned, obey the laws of arithmetic modulo 2" where n is the
number o(bits in the representation. (On the PDP·l l, unsigned long quantities are not supported.)

Single-precision Ooating point (float) and double-precision Ooating point (double) may be
synonymous in some implementations.

Because objects or the forqoing types can usefully be interpreted as numbers, they will be referred
to as arithntic types. Types char and int of all sizes will collectively be called integral types. float
and double will collectively be called ,floating types.

Besides the fundamental arithmetic types there is a conceptually infinite class of derived types con-
structed from the fundamental types in the following ways:

a"ays of objects o(most types;
functions which return objects of a given type;
painters to objects o(a given type;
s1n1crures containing a sequence of objects of various types:
unions capable of containing any one of several objects of various types.

In general these methods of constructing objects can be applied recursively.

2-8 The C Programming Language

S. Objects and lv:ilues
An object is a manipulatable region of storage: an lvaiue is an expression referring to an object. An

obvious example of an [value expression is an identifier. There are operators which yield !values: for
ex:imple. if ::: is an expression of pointer type. then •!:: is an !value expression referring to the object to
which E: points. The name .. !value" comes from the assignment expression :::1 • £2 in which the left
operand £1 must be an !value expression. The discussion of e:ich operator below indicates whe!her it
expectS !value oper:inds and whether it yields an !value.

6. Conversions
A number of operators may. depending on their operands. cause conversion of the value of an

operand from one type to another. This section explains the result to be expected from such conver
sions. §6.6 summ:irizes the conversions demanded by most ordinary operators; it will be supplemented as
required by the discussion or e:ich operatC\r.

6.1 Characters and integers
A character or a short integer may be used wherever an inte;er may be used. tn all cases the value

is convened to an integer. Conversion of a shorter integer to a longer always involves sign extension;
integers are signed quantities. Whether or not sign-extension occurs for characters is machine dependent.
but it is guaranteed that a member of the standard character set is non-negative. Of the machines treated
by this manual. only the POP-11 si1n-extends. On the POP·ll. character variables range in value from
-128 to 127; the characters of the ASCII alphabet are all positive. A character constant specified with an
octal escape su fers sign extension and may appe:ir negative; for example, • \377 • has the value -1.

When 1 Ir nger integer is converted to a shorter or to a c:har, it is truncated on the left; excess bits
are simpiy di!" vded.

6.2 float and double
All Ooatin1 arithmetic in C is carried out in double·precision; whenever a floa.t appears in an

expression it is lengthened to dou!lle by zero-padding its fraction. When a doUble must be converted
to flo&1:. for example by an assignment. the double is rounded before truncation to ~loa.t length.

6.3 floating and integral
Conversions of Ooating values to integral type tend tO be rather machine-dependent; in particular the

direction of truncation of negative numbers varies rrom machine to machine. The result is undefined if
the value will not fit in the space providCd.

Conversions of inteiral values to ftoatin& type are well behaved. Some loss of precision occurs ir the
destination lac:ks sufficient bits.

6.4 Pointers and integers
An integer or Iona intqer may be added to or subtracted from a pointer. in such a case the first is

convened as specified in the discussion of the addition operator.
Two pointers to objects of the same 1ype may be subtracted; in this case the result is converted to an

integer as specift~ in 1he discussion of the subtraction operator.

6.5 Uosigned
Whenever an unsigned integer and a plain integer are combined. the plain integer is converted to

unsigned and the result is unsigned. The value is 1he least unsigned integer congruent to the signed
integer (modulo 2wordsi&e). In a l's complement representation. this conversion is conc:e;nual and there is
no actual change in the bit pattern.

When an unsigned inleger is convened to lonq. the value of the result is 1he same numerically as
that of the unsigned integer. Thus the conversion amounts to padding with zeros on the left.

6.6 Arithmetic conversions
A great many operators cause conversions and yield result types in a similar way. This pattern will

be called the .. usual arithmetic conversions ...

First. any operands of type c:ha.r or shcr'C are convert1:d to int, and any of type floa.t are con
verted to dou!lle. (

The C Programming Language 2-9

Then. if either operand is double, the other is converted to double and that is the type of the
result.
Otherwise. if either operand is lonq, the other is converted to lone;; and that is the type of the
result.
Otherwise. if either operand is unsic;;ned, the other is converted to unsic;;ned and that is the type
of the result.
Otherwise. both operands must be int, and that is the type of the result.

7. Expressions
The precedence of expression operators is the same as the order of the major subsections of this sec·

tion. highest precedence first. Thus. for example. the expressions referred to as the operands of+ (§7.4>
are those expressions defined in §§7.1-7.3. Within each subsection. the operators have the same pre·
cedence. Left· or right-associativity is specified in each subsection for the operators discussed therein.
The precedence and associativity of all the expression operators is summarized in the grammar of § 18.

Otherwise the order of evaluation of expressions is undefined. In particular the compiler considers
itself free to compute subexpressions in the order it believes most efficient. even if the subexpressions
involve side effects. The order in which side effects take place is unspecified. Expressions involving a
commutative and associative operator (*· +. &. 1 ...) may be rearranged arbitrarily. even in the presence
of parentheses: to force a particular order of evaluation an explicit temporary must be used.

The handling of overflow and divide check in expression evaluation is machine-dependent. All exist·
ing implementations of C ignore integer overflows: treatment of division by O. and all floating-point
exceptions. varies between machines. and is usually adjustable by a library function.

7.1 Primary expressions
Primary expressions involving •• ->. subscripting. and function calls group left to right.

primary-vcprtssion:
idtntijier
constant
stri~
(txprtssion)
prima~ession C vcprtssion l
primary-'expression (vcprtssion-list.,,. l
primary-lwzlue • identifier
primary-exprtssion -> identifier

txpression-list:
expression
vcpression-list , exprtssion

An identifier is a primary expression. provided it has been suitably declared as discussed below. Its type
is specified by its declaration. If the type of the identifier is .. array of , however, then the value of
the identifier-expression is a pointer to the first object in the array, and the type of the expression is
.. pointer to Moreover. an array identifier is not an lvalue expression. Likewise. an identifier which
is declared .. function returning , when used except in the function-name position of a call. is con
verted to .. pointer to function returning

A constant is a primary expression. Its type may be int. lone;. or double depending on its form.
Character constants have type int: floating constants are double.

A string is a primary expression. Its type is originally ••array of eha.r"; but following the same rule
given above for identifiers. this is modified to .. pointer to char" and the result is a pointer to the first
character in the string. (There is an exception in certain initializers; see §8.6.)

A parenthesized expression is a primary expression whose type and value are identical to those of the
unadorned expression. The presence of parentheses does not affect whether the expression is an !value.

A primary expression followed by an expression in square brackets is a primary expression. The
intuitive meaning is that of a subscript. Usually. the primary expression has type .. pointer to ... ". the
subscript expression is int. and the type of the result Is The expression E1 (E2] is identical (by
definition) to * ((E1 l + CE2) l. All the clues needed to understand this notation are contained in this sec·
tion together with the discussions in§§ 7.1. 7.2, and 7.4 on identifiers. •, and +respectively; §14.3 below
summarizes the implications.

2-10 The C Programming Language

A function c:ill is a primary expression followed by parentheses c:ont:uning a possibly empty.
comma-separated list of expressions which constitute the actual arguments co the function. The primary
expression must be of type •·function returning ... ••• and the result of the function oil is of type •• ... ••.
As indic::ued below. a hitherto unseen identifier followed immediately by a left parenthesis is contextually
declared to represent a function retuminc an integer: 1hus in the most common case. integer-valued
functions need not be declared.

Any actual argumentS or type !loaC are converted to double before the C31l~ any of type cha= Or
short are converted to in~ and as usuaJ. array names are converted to pointers. No other conversions
are performed automatically; in particular. the compiler does not compare the types of actual arguments
with those of formaJ arguments.. If conversion is needed. use a cast; see §7.2. 8. 7.

In preparing for the c:aU to a function. a copy is made of each actual parameter: thus. aU argument·
passin1 in C is strictly by value. A function may change the values of its formal parameters. but these
changes cannot affect the values of the ac:tual parameters. On the other hand. it is possible to pass a
pointer on the understanding that the function may change the value of the object to which the pointer
points.. An array name is a pointer expression. The order of evaluation of arguments is undefined by the
lan1uage; take note that the various compilers differ.

Recursive calls to any function are permitted.
A primary expression followed by a dot followed by an identifier is an expression. The first expres·

sion must be an !value namins a structure or a union. and the identifier must name a member or the
structure or union. The result is an !value referring to the named member of the structure or union.

A primary expression followed by an arrow (built from a - and a » followed by an identifier is an
expression. The first expression must be a pointer to a structure or a union and the identifier must name
a member of that structure or union. The result is an lvalue referring to the named member of the struc·
ture or union to which the pointer expression points.

Thus the expression E1 ->MOS is the same as (•E1 > • MOS. Structures and unions are discussed in
§8.5. The rules given here for the use or structures and unions are not enforced strictly. in order to allow
an escape ,from the typing mr-hanism. See §l 4.1.

7.2 Unary operators
Expressions with unary operators group right-to-left.

unary-aprtssion: ·
* aprtssion
5 lvalut
- ccprtssion
I ccprusion
• ccprusion
++ /valw
- lvoluc
lvalu• ++
/val~-
(typt-na/M) aprasion
sizeof e:rprtssion
sizeof (rypt-nanw)

The unary • operator means indil'«tion: the expression must be a pointe·r. and the result is an !value
referring to the object to which the expression points. If the type of the expression is .. pointer to
the type of the result is ••

The result or the unary ' operator is a pointer to the object referred to by ~he !value. If the type of
the !value is•• ... ", the·type of the result is ''pointer to ... ".

The re:sult of the unary - operator is the negative of its operand. The usual arithmetic conversions
are performed. The negative of an unsigned quantity is computed by subtracting itS value from 2".
where n is the number of bitS in an inc. There is no unary + operator.

The result of the logical negation operator ! is 1 if the value of its operand is O. 0 if the value of its
operand is non-zero. The type of the result is inc. lt is applicable to any arithmetic: type or to pointers.

The • operator yields the one's complement of its operand. The usual arithmetic conversions are
petfortned. The type of the operand must be integral.

The object referred to by the !value operand of prefix ++is incremented. The value is the new value
of the operand. but is not an !value. The expression x is equivalent to x~· 1 . Se: the discussions oi
addition <§7.4) and assignment operators (§7.14) for information on conversions.

(

j

The C Programming Language 2-11

The !value operand of prefix -- is decremented analogously to the prefix •+ operator.
When postfix ++ is applied to an !value the result is the value of the object referred to by the !value.

After the result is noted, the object is incremented in the same manner as for the prefix ++ operator.
The type of the result is the same as the type of the !value expression.

When postfix -- is applied to an !value the result is the value of the object referred to by the !value.
After the result is noted. the object is decremented in the manner as for the prefix -- operator. The type
of the result is the same as the type of the lvalue expression.

An expression preceded by the parenthesized name of a data type causes conversion of the value of
the expression to the named type. This construction is called a cast. Type names are described in §8. 7.

The sizeof operator yields the size. in bytes. of its operand. (A byte is undefined by the language
except in terms of the value of sizeof. However, in all existing implementations a byte is the space
required to hold a char.> When applied to an array, the result is the total number of bytes in the array.
The size is determined from the declarations of the objects in the expression. This expression is semanti
cally an integer constant and may be used anywhere a constant is required. Its major use is in communi
cation with routines like storage allocators and l/O systems.

The sizeof operator may also be applied to a parenthesized type name. In that case it yields the
size, in bytes, of an object of the indicated type.

The construction sizeof (type) is taken to be a unit, so the expression sizeof (type> -2 is the
same as (sizeof(type))-2.

7 .3 Multiplicative operators
The multiplicative operators *• /, and "' group left-to-righl. The usual arithmetic conversions are

performed.

multiplicatiw-expression:
aprasion * expression
exprasion I expression
apression"' expression

The binary • operator indicates multiplication. The • operator is associative and expressions with
several multiplications at the same level may be rearranged by the compiler.

The binary I operato.r indicates division. When positive integers are divided truncation is toward 0,
but the form of truncation is machine-dependent if either operand is negative. On ali machines covered
by this manual, the remainder has the same sign as the dividend. It is always true that (a/b) •b + a."'b
is equal to a (if bis not 0). '

The binary "' operator yields the remainder from the division of the first expression by the second.
The usual arithmetic conversions arc performed. The operands must not be float.

7 .4 Additive operators
The additive operators + and - group left-to-right. The usual arithmetic conversions arc performed.

There are some additional type possibilities for each operator.

additiw-expression:
expreuion + exprasion
,expression - expression

The result of the + operator is the sum of the operands. A pointer .. to an object in an array and a value of
any integral type may be added. The latter is in all cases converted to an address offset by multiplying it
by the length of the object to which the pointer points. The result is a pointer of the same type as the
original pointer, and which points to another object in the same array, appropriately offset from the origi
nal object. Thus if P is a pointer to an object in an array, the expression P+1 is a pointer to the next
object in the array.

No further type combinations are allowed for pointers.
The + operator is associative and expressions with several additions at the same level may be rear·

ranged by the compiler.
The result of the - operator is the difference of the operands. The usual arithmetic conversions are

performed. Additionally, a value of any integral type may be subtracted from a pointer, and then the
same conversions as for addition apply.

If two pointers to objects of the same type are subtracted, the result is converted (by division by the
length of the object) to an int representing the number of objects separating the pointed-to objects.
This conversion will in general give unexpected results unless the pointers point to objects in the same

2-12 The C Programming Language

array. sine:: pointers. ~ven to objectS or the same type. do not nec::ssarily differ by a multiple of the
objec:t·length.

1.S Shift operators
The shift operators << and >> group left-to-right. Both perform the usual arithmetic: conversions on

their operands. each of which must be integral. Then the right operand is converted to in~ the type of
the result is that of the left operand. The .result is undefined if the right operand is negative. or greater
than or equal to the length of the object in bitS.

shift-exprtssion:
aprn:sion << aprtssion
upnssion >> aprtssion

The value of E1 «E2 is !1 (interpreted as a bit pattern) left-shifted £2 bitS: vacated bits are 0-filled.
The value of !1 »!2 is E1 right-shifted E2 bit positions. The right shirt is guaranteed to be logical ro.
fill) if E1 is unsic;ned: otherwise it may be (and is. on the PDP-11) arithmetic: (fill by a copy of the sign
bit>.

1.6 Relational operators
The relational operators group left-to-right. but this fact is not very useful: a.<b<c does not mean

what it se:ms to.

rtlational-cprtssion:
aprasion < aprmion
aprasion > aprtssion
aprasion <• txprtssion
aprasion >- aprmion

The operators < (less than). >{greater than). <•(less than or equal to) and >• (greater than or equal to)
all yield 0 if the specified relation is false and l it it is true. The type of the result is in~ The usual
arithmetic conversions are pert'ormed. Two pointers may be compared: the result depends on the relative
locations in the address space of the pointed-to objec:tS. Pointer comparison is portable only when the
pointers point to objec:tS in the same amy.

1.1 Equality operators

tqlllJlity-aprtssion:
aprn:sian - t:cprasion
aprasion ! • expression

The •• (equal to) and the ! • (not equal to) operators are exactly analogous to the relational operators
except ror their lower prec:denc:e. <Thus a<b •• c<d is 1 whenever a.<b and c<d have the same
truth-value).

A pointer may be compared to an integer. but the result is machine dependent unless the integer is
the constant 0. A pointer to which 0 has been assigned is guaranteed not to point to any object. and will
appear to be equal to O: in conventional usage. such a pointer is considered to be null.

7 .8 Bitwise AND operator

and-exprnsion:
tqJrasion ' aprtSSion

The ' operator is associative and expressions involving ' may be rearranged. The usual arithmetic:
c:onversior.s are performed: the result is the bitwise AND runction or the operands. The operator applies
only to integral operands.

7.9 Bitwise exclusive OR. operator

urlusiv•-or·t:cpr•ssion:
apn:uion .. tqJrt:ssion

The • operator is associative and expressions involving • may be rearranged. The usual arithmetic:
conversions are performed: the result is the bitwise exclusive OR function of the operands. The operator
applies only to integr:il operands.

(

7 .10 Bitwise inclusive OR operator

inclusiw-or~pression:

e."Cpression I expression

The C Programming Language 2-13

The I operator is associative and expressions involving I may be re3rranged. The usual arithmetic
conversions are performed: the result is the bitwise inclusive OR function of its operands. The operator
applies only to integral operands.

7.11 Logical AND operator

logical-and-expression:
expression && expression

The && operator groups left-to-right. It returns 1 if both its operands are non-zero. 0 otherwise. Unlike
&. r.& guarantees left-to-right evaluation: moreover the second operand is not evaluated if the first
operand is 0.

The operands need not have the same type, but each must have one of the fundamental types or be
a pointer. The result is always int.

7 .12 Logical OR operator

logical-or-expression:
expression I I expression

The I I operator groups left-to-right. It returns I if either of its operands is non-zero. and 0 otherwise.
Unlike I. 11 guarantees left-to-right evaluation: moreover, the second operand is not evaluated if the
value of the first operand is non-zero.

The operands need not have the same type, but each must have one of the fundamental types or be
a pointer. The result is always int.

7 .13 Conditional operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right-to-left. The first expression is evaluated and if it is non-zero. the
result is the value of the second expression. otherwise that of third expression. If possible. the usual
arithmetic conversions are performed to bring the second and third expressions to a common type: other·
wise. if both are pointers of the same type. the result has the common type: otherwise. one must be a
pointer and the other the constant 0, and the result has the type of the pointer. Only one of the second
and third expressions is evaluated.

7 .14 Assignment operators
There are a number of assignment operators. all of which group right-to-left. All require an !value as

their left operand. and the type of an assignment expression is that· of its left operand. The value is the
value stored in the left operand after the assignment has taken place. The two par.ts of a compound
assignment operator arc separate tokens.

assignment-expression:
/value • expression
/value +• expression
/value -· expression
/value•• expression
/value /• expression
/value~- expression
/value >>• expression
/value<<• expression
/value&• expression
/value "'• expression
/value I • expression

In the simple assignment with •, the value of the expression replaces that of the object referred to by
the !value. If both operands have arithmetic type. the right operand is converted to the type of the left

2-14 The C Programming Language

preparatory to the assignment.
The behavior of an expression of the form !!1 op• !!2 may be inferred by t3king it as equivalent to

!:1 • E1 op (£2); however. !:1 is evaluated only once. In +• and -•. the left operand may be a
pointer. in which case the (integral) right operand is convened as explained in §7.4; all right operands
and ail non-pointer left operands must have arithmetic type.

The compilers currently allow a pointer to be assigned to an integer. an integer to a pointer. and a
pointer to a pointer of another type. The assignment is a pure copy operation. with no conversion. This
usage is nonportable. and may produce pointers which cause addressing exceptions when used. However.
it is guaranteed that assignment of the constant 0 to a pointer will produce a null ,Pointer distinguishable
from a pointer to any object.

7 .1 S Comma operator

comma-ap,asion:
apl'USion , aprmion

A pair of expressions separated by a comma is evaluated left-to-ri1ht and the value of the left expression
is disc:arded. The type and value or the result are the type and value of the right operand. This operator
groups left-to-right. In contexts where comma is zjven a special meaning. for example in a list of actual
arguments to functions (§7.1) and lists of initializers (§8.6), the comma operator as described in this se~
tion can only appear in parentheses; for example,

tea, Ct•l, t+2), e)

has three arguments. the se=nd of which has the value S.

a. Declarations
Declarations are used to specify the interpretation which C aives to each identifter: they do not

necessarily reserve stora1e associated with the idenlifter. Declarations have the form

d«ltmztion:
d«l-sp«ijien tf«la,ator-lisl.,, ;

The dedarators in the declarator-list contain the identifters being declared.
sequence of type and storage class specifiers.

deel-sp«ijirn:
tyf*StJ«i/it!r ded-speei/it!n.,
$C•S{J«i/it!r d«l•S{J«i/it!n.,,

The list must be self-consistent in a way described below.

8.1 Storage class specifiers
The sc-spccifiers are:

SC•S{J«i/it!r.
auto
S1:&tie
extern
r119is1:e:'
tr,:iedef

The decl-specifters consist of a

The eypedef specifier does not reserve storage arid is called a .. stor:ige class SlJccifter" only for syntactic
convenience: it is discussed in §8.S. The meanings of the various storage classes were discussed in §4.

The au1:o. static. and r119ister declarations also serve as definitions in that they auie an
appropriate amount of srorage to be reserved. ln the extern case there must be an external definition
(§10) for the given identifiers somewhere outside the runction in which they are declared.

A reqister dectar.uion is best thought of as an auto declaration. together with a hint to the com
piler that the variables declared will be heavily used. Only the first few such decl:imions are effective.
Moreover, only variables of certain types will be stored in. registers; on the PDP·l l. they are int. char.
or pointer. One other restriction applies to register vari:ibles: the address-of operator ' c:innot be :ipplied
to them. Smaller~ faster programs c:in be expected if register d«larations are used appropriately. but
future improvements in code gener:ition m:iy render them unnecessary.

(

I

\

\

,I
\

\
'i

/

The C Programming Language 2-15

At most one sc-specifier may be given in a declaration. If the sc-specifier is missing from a declara
tion. it is taken to be auto inside a function. extern outside. Exception: functions are never automatic.

1.2 Type specifiers
The type-specifiers are

ry~sp«ijier:

char
short
int
lone;
unSiCJtled
float
double
struct-M•llnion-specifin
ty~tkf-na~

The words long, short. and unsiCJtled may be thought of as adjectives: the following combinations are
acceptable.

short int
lonq int
unsiqned int
lonq float

The meanin1 of the last is the same as double. Otherwise. at most one type-specifier may be given in a
declaration. If the type-specifier is missing from a declaration. it is taken to be int.

'Specifiers for structures and unions are discussed in §8.S: declarations with typedef names are dis
cussed in §8.8.

8.3 Declarators
The declarator-list appearing in a declaration is a comma-separated sequence of declarators. each of

which may have an initializer.

d«larator-lisc
init-d«larator
init-declarator , declarator-list

init-declarator:
d«larator initialiur.,

Initializers are discussed in §8.6. The specifiers in the declaration indicate the type and storage class of
the objects to which the declarators refer. Declarators have the syntax:

d«larator:
identif~r
(declarator l
• declarator
d«larator (l
d«larator C constant-expression.,, l

The groupin1 is the same as in expressions.

8.4 Meaning oC declarators
Each declarator is taken to be an assenion that when a construction of the same form as the declara

tor appears in an expression. it yields an object of the indicated type and storage class. Each declarator
contains exactly one identifier: it is this identifier that is declared.

(fan unadorned identifier appears as a declarator. then it has the type indicated by the specifier head
ing the declaration.

A declarator in parentheses is identical to the unadorned declarator. but the binding of complex
declarators may be altered by parentheses. See the examples below.

Now ima;;ine a declaration

2-16 The C Programming Language

T D1

where T is a type-specifier (like in'!. etc.) and 01 is a declarator. Suppose this declar:ition makes the
identifier have type •• ... T. •• where the •• ... " is empty if 01 is just a plain identifier (so lhat the 1ype of
x in ·• in1: x" is just i.ncl. Then if 01 has the form

the type of the conuine:1 identifier is " . . . pointer to T. ••
lf 01 has the form

DO

then the contained identifier has the type " ... function returning T. ••
lf 01 has the form ,

D (cansranc~"Cpressian)

or

D(]

then the contained identifier has type .. • • • array of T." ln the first case the constant expression is an
expression whose value is determinable at compile time. and whose type is int. (Constant expressions
are defined precisely in §IS.) When several "array of' .. spec:iftcations are adjacent. a multi-dimensional
arr.1y is created~ the constant expressions which specify the bounds of the arrays may be missing only for
the first member of the sequence. This elision is useful when the array is external and the actual
definition. which allocates storage. is given elsewhere. The first constant-expression may also be omitted
when the declarator is followed by initialization. In this case the size is c:alc:ulated from the number of
initial elements supplied.

An amy may be constructed from one of the basic types. from a pointer. from a structure or union.
or from another array (to generate a multi-dimensional array).

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions are as
follows: functiom may not return arrays. structures. unions or functions, although they may return
pointers to ~uc:h things; there are no arrays of functions, although there may be arrays of pointers to
functions. Likewise a structure or union may not c:onuin a function. but it may contain a pointer to a
function.

As an example, the declaration

in1: i, dp, f(), •fip(), C•pfilO;

declares an integer i. a pointer ip to an integer, a runctibn f returning an integer. a function fip
returning a pointer to an integer, and a pointer pfi to a function which returns an integer. It is espe·
cially useful to compare the last two. The binding of •fip() is •<fip() l, so that the declaration sus·
sests. and the same construction in an expression requires. the calling of a function fip, and then using
indirection through the (pointer) result to yield an integer. In the declarator (•pfil (), the extra
parentheses are necessary, as they are also in an expression. to indicate that indirection through a pointer
to a function yields a function, which is then call~ it returns an inteaer.

As another example.

floa1: fa(17], •afp(17];

declares an array of floa1: numbers and an array of pointers to floa1: numbers. Finally,

sta1:ic in1: xld(l] (5](7];

declares a static three-dimensional array of integers. with rank 3 xSx7. In c:Omplete detail. xld is an
array of three items: eac:h item iS an array of five arrays; each of the latter arrays is an array of seven
integers. Any of the e.:cprmions xld. xld Ci J. xJd Ci J C j l • xld (i l (j l (kl may reasonably appear in
an expression. The first three have type "array." the last has type int.

8.S Structure aod unioa declarations
A structure is an object consisting of a sequence of named members. Each member may have any

type. A union is an object which may. at a given time. contain any one of several members. Strucsure
and union specifiers have the same form.

The C Programming Language 2-17

stTUct-or-union-s{J«ifier:
struct-or-union I struct-decl-list I
struct-or-union identifier I stTUct·d«l-list I
srrucr-or-union identifier

struct-or-union:
struct
union

The struct-decl-list is a sequence of declarations for the members of the structure or union:

srruct-decl-list:
srruct-declaration
struct-declaration srrucr-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
srruct-declarator , srruct-declarator-list

In the usual case. a struct-declarator is just a declarator for a member of a structure or union. A struc
ture member may also consist of a specified number of bits. Such a member is also called a field: itS
length is set off from the field name by a colon.

strucr-declarator:
declarator
declarator : constant-expression
: constant-expression

Within a structure. the objects declared have addresses which increase as their declarations are read left·
to-right. Each non-field member of a structure begins on an addressing boundary appropriate to itS type;
therefore. there may be unnamed holes in a structure. Field members are packed into machine integers;
they do not straddle words. A· field which does not fit into the space remaining in a word is put into the
next word. No field may be wider than a word. Fields are assigned right-to-left on the PDP-11. left-to·
right on other machines.

A struct-declarator with no declarator. only a colon and a width, indicates an unnamed field useful
for padding to conform to externally-imposed layouts. As a special case, an unnamed field with a width
of 0 specifies alignment of the next field at a word boundary. The .. next field .. presumably is a field. not
an ordinary structure member. because in the latter case the alignment would have been automatic.

The language does not restrict the types of things that are declared as fields. but implementations are
not required to support any but integer fields. Moreover, even int fields may be considered to be
unsigned. On the PDP·ll. fields are not signed and have only integer values. In all implementations.
there are no arrays of fields, and the address-of operator ' may not be applied to them. so that there are
no pointers to fields.

A union may be thought of as a structure all of whose members begin at offset 0 and whose size is
sufficient to contain any of its members. At most one of the members can be stored in a union at any
time.

A structure or union specifier of the second form. that is. one of

struct identifier (struct-decl-list I
union identifier (stTUct-det:l-list I

declares the identifier to be the structure t.ag (or union tag) of the structure specified by the list. A subse·
quent declaration may then use the third form of specifier, one of

struct identifier
union identifier

Structure tags allow definition of self-referential structures; they also permit the long part of the declara
tion to be given once and used several times. It is illegal to declare a structure or union which contains
an instance of itself, but a structure or union may contain a pointer to an instance of itself.

2-18 The C Programming Language

The names of members and tags may be the same as ordinary variables. However, names oi ta;s
and members must be mutually distinct.

Two structures may share a common initial sequence of members: that is. the same member may
appear in two different structures if it has the same type in both and if all previous members are the same
in both. (Actually. the compiler checks only that a name in two different structures has the same type
and olfset in both. but if preceding members differ the construction is nonportable.)

A simple example of a structure declaration is

st::ucc cnode (
cha.r twcrd C 20] ;
inc ccunc;
st::uct c.~cde •lefc;
sc:uct tnode •:iqhc;

which contains an array of 20 characters. an integer. and two pointers to similar structures. Once this
declaration has been given. the declaration

st:ucc tnode s, •sp;

declares s to be a structure of the given sort and sp 10 be a pointer to a structure of the given sort. With
these declarations. the expression

sp->ccunc

refers to the ccunc field of the mucture to which sp points:

s.left

refers to the left subtree pointer of the structure s~ and

s.riqht->t--'Ord(Ol

refers to the first character of the OolCrd member of the right subtree of s.

8.6 Initialization
A declarator may specify an initial value for the identifier being declared. The initializer is preceded

by •, and consists of an expression or a list of values nested in braces ..

initialiur:
• txpnssion
• I initializa-·list I
• I inititlli:a-·list ,

initializ~·list:
aprasion
initialiur·list , initiali;er·list
I initiali:8·1ist I

All the expressions in an initializer for a static or external variable must be constant expressions.
which are described in §IS. or expressions which reduce to the address of a previously declared variable.
possibly offset by a constant expression. Automatic or register variables may be initialized by arbitrary
expressions involving constants. and previously declared variables and functions.

Static and external variables which are no< initialized are guaranteed to start off as ().~ automatic: and
register variables which are not initialized are guaranteed to start off' as garbage:

When an initializer applies to a scalar (a pointer or an object of arithmetic: typeJ. it consists of a sin
gle expression. perhaps in braces. The initial value of the object is taken from the expression: the S3me
conversions as for assignment are performed.

When the declared variable is an aggr1gare (a structure or array) then the initializer consists of a
brace-enclosed. comma-separated list of initializers for the members of the aggregate. written in increas
ing subscript or member order. If the aggregate contains subaggregates. this rule applies recursively to
the members of the aggregate. If there ue fewer initializers in the list than there arc members of the
aggregate. then the aggrcpte is padded with O's. It is not permitted to initialize unions or automatic:
aggregates.

The C Programming Language 2-19

Braces may be elided as follows. If the initializer begins with a left brace. then the succeeding
comma-separated list of initializers initializes the members of the aggregate; it is erroneous for there to
be more initializers than members. If. however. the initializer docs not begin with a left brace. then only
enough elements from the list are taken to account for the members of the aggregate; any remaining
members are left to initialize the next member of the aggregate of which the current aggregate is a part.

A final abbreviation allows a char array to be initialized by a string. In this case successive charac·
ters of the string initialize the members of the array.

For example,

int x Cl • I 1 , 3 , S I ;

declares and initializes x as a I-dimensional array which has three members. since no size was specified
and there are three initializers.

float y(4] (J] • I
11,3,SJ,
I :Z, 4, 6 I,
13,S,71,

I;

is a completely-bracketed initialization: l, 3, and S initialize the first row of the array y (O]. namely
y(O] (O], y(O] [1), and y[O) C:ZJ. Likewise the next two lines initialize y(1 l and y(:Z]. The initial
izer ends early and therefore y [3) is initialized with 0. Precisely the same effect could have been
achieved by

float y(4](3] •I
1, 3, s, :z, 4, 6, 3, s, 7

I;

The initializer for y begins with a left brace, but that for y[O) does not, therefore 3 elements from the
list are used. Likewise the next three arc taken successively for y[1) and y[:Z). Also.

float y[4)[3) •I
I 1 J, I :Z I, I 3 J, I 4 l

I;

initializes the first column of y (regarded as a two-dimensional array) and leaves the rest 0.
Finally,

char msc;Cl • "Syntax error on line "s\n";

shows a character array whose members arc initialized with a string.

8. 7 Type names
In two contexts (to specify type conversions explicitly by means of a cast, and as an argument of

sizeof) it is desired to supply the name of a data type. This is accomplished using a ••type name."
which in essence is a declaration for an object of that type which omits the name of the objcd.

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
• abstract·declararor
abstract-declarator ()
abstract-declarator [constant-expression.,,,]

To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be non-empty. Under this restriction, it is possible to identify
uniquely the location in the abstract-declarator where the identifier would appear if the construction were
a declarator in a declaration. The named type is then the same as the type of the hypothetical identifier. -
For example.

2-20 The C Programming Language

int
int •
int •(3}
int <•> Cll
int • ()
int <•l ()

n:ime respectively the types .. intcger pointer to integer," ··array of .3 pointers to integers.·· .. pointer
to an array of 3 integers.•• .. function returning pointer to integer." and .. pointer to function returning an
integer."

8.8 Typedef
Declarations whose .. storage class" is typedef do not define storage. but instead define identifiers

which Clln be ~ed later as if they were type keywords naming fundamental or derived types.

ry~f-name:

iMnli/i~r

Within the scope of a declaration involving typedef. each identifier appearing as part of any declarator
therein bea>me syntactically equivalent to the type keyword naming the type associated with the identifier
in the way deseribed in §8.4. For example, after

typedef int MILES, •ICI.ICXSP;
typedef struct (double re, im;I complex;

the constructions

MILES distance;
~em lCLICXSP metriei);
complex z, •zp;

are all lepl declarations: the type of distance is int. that of metric? is .. pointer to int." and that of
z is the specified structure. zp is a pointer to such a struc:ture.

typedef does not introduce brand new types. only synonyms for types which could be specified in
another way. Thus in the example above distance is considered to have exac:tly the same type as any
other int object.

9. Statements
Exc::pt as indicated. statements are executed in sequenc::.

9 .1 Expression statement
Most statements are expression statements. which have the form

txpnUion;

Us~lly expression statements are assignments or function calls.

9.2 Cqmpound statement. or bloclc
So that several statements an be used where one is expected. the .. compound statement (also. and

equivalently. called "block") is provided:

compound·stat~~nt:

(dttlaration-lis10,, stat~t'Mnt-list,,. I

dttlara11on-list:
dttlaration
d«laration d«laration-list

s1a~m~nt·lis1:

sta~~nt

sraterrwnt s1a1~m~n1-list

If any of the identifiers in the declaration-list were previously declared, the outer declaration is pushed
down ror the duration of the block. after which it resumes its force.

(

\

The C Programming Language 2-21

Any initializations of auto or register variables are performed each time the block is en~ .u
the top. It is currently possible (but a bad practice) to transfer into a block; in that case the initializations
are not performed. Initializations of static variables are performed only once when the program begins
execution. Inside a block. extern declarations do not reserve storage so initialization is not permitted.

9.J Conditional statement
The two forms of the conditional statement are

if (expression l statement
if (expression) statement else statement

In both cases the expression is evaluated and if it is non-zero. the first substatement is executed. In the
second case the second substatement is executed if the expression is 0. As usual the "else" ambiguity is
resolved by connecting an else with the last encountered else-less if.

9.4 While statement
The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression remains non-zero. The
test takes place before each execution of the statement.

9.S Do statement
The do statement has the form

do statement while (expression) ;

The substatement is executed repeatedly until the value of the expression becomes zero. The test takes
place after each execution of the statement.

9.6 For statement
The for statement has the form

for (expression-I.,, ; expression-2.,, ; expression-].,, > statement

This statement is equivalent to

expression-I ;
while (expression-2)

statement
expression-] ;

Thus the first expression specifies initialization for the loop; the second specifies a test, made before each
iteration. such that the loop is exited whert the expression becomes 0; the third expression often specifies
an incrementation which is performed after each iteration.

Any or all of the expressions may be dropped. A missing expression-2 makes the implied while
clause equivalent to while C 1) ; other missing expressions are simply dropped from the expansion above.

9.7 Switch statement
The switch statement causes control to be transferred to one of several statements depending on

the value of an expression. It has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result must be int. The state·
ment is typically compound. Any statement within the statement may be labeled with one or more case
prefixes as follows:

case constant-expression :

where the constant expression must be int. No two of the case constants in the same switch may ha..-e
the same value. Constant expressions are precisely defined in §15.

There may also be at most one statement prefix of the form

2-22 The C Programming Language

default: :

When the s-.ritch statement is executed. its expression is evalua1ed and compared wi1h each c:ise con
stant. If one of the case constants is ec:;ual 10 the value of the expression. control is passed to the state•
ment following the matched case prefix. If no c:ase constant matches the expression. and if there is a
defa11lt prefix. control passes to the prefixed statement. If no case ma1ches and if there is no default
then none of the statements in the switch is executed.

case and defa.ul t prefixes in themselves do not alter the flow of control. which continues unim
peded across such prefixes. To exit rrom a switch. see brea.lc. §9.8.

Usually the statement that is the subject of a switch is compound. Declarations may appear at the
head of this statement. but initializations of automatic or register variables are ineffective.

9.S Break statement
The statement

break ;

causes termination of the smallest enclosing while. do. for. or switch statement: control passes to the
statement f ollowin1 the terminated statement.

9.9 Continue statement
The statement

continue ;

causes control to pass to the loop.continuation portion of the smallest enclosing vhile. do. or for state·
ment: that is to the end of the loop. More precisely, in each of the statements

while (•••)

concin: ;
I

do I

c:oncin: ;
I while I ••• J ;

for (••• l

c:oncin: ;
I

a continue is equivalent to c;oco c:oncin. (Followin1 the c:oncin: is a null statement. §9.13.)

9.10 Return statement
A function returns to its caller by me:ins of the return statement, which has one of the rorms

return ;
return apr~ssion ;

In the first case the returned value is undefined. In the second case. the value of the expression is
returned to the caller of the function. If required. the expression is converted. as if by assignment. to the
type of the function in which it appears. Flowing oft" the end of a function is equivalent to a return with
no returned value.

9.11 Ooto statement
Control may be transferred unconditionally by means of the statement

c;oco i<Unti/iu ;

The identifier must be a label (§9.12) located in the current function.

9.12 Labeled statement
Any statement may be preceded by l:abel prefixes of the form

identljier :

which serve to declare the identifier as a label. The only use of a label is as a target of a qoto. The
scope of a label is the current function. excluding any sub-blocks in which the same identifier has been
redeclared. See § 11.

f

\

The C Programming Language 2-23

9.13 Null statement
The null statement has the form

A null statement is useful to carry a label just before the I of a compound statement or to supply a null
body to a looping statement such as while.

10. External definitions
A C program consists of a sequence of external definitions. An external definition declares an

identifier to have storage class extern (by default) or perhaps static. and a specified type. The type·
specifier (§8.2) may also be empty. in which case the type is taken to be int. The scope of external
definitions persists to the end of the file in which they are declared just as the effect of declarations per
sists to the end of a block. The syntax of external definiiions is the same as that of all declarations.
except that only at this level may the code for functions be given.

10.1 External function definitions
Function definitions have the form

junction-definition:
decl-specijiers,,,.function-declarator function-body

The only sc:-specifiers allowed among the decl-specifiers are extern or static; see §11.2 for the distinc·
tion between them. A function declaraior is similar to a declarator for a .. function returning ... •• except
that it lists the formal parameters of the function being defined.

function-declarator:
declarator (parameter-list,,,, l

parameter-list:
identifier
idt!ntiflt!r , parameter-list

The function-body ha5 the form

function-~dy:
declaration-list compound-statement

The identifiers in the parameter list. and only those identifiers. may be declared in !he declaration list.
Any identifiers whose type is not given are taken to be int. The only storage class which may be
specified is reqister. if it is specified. the corresponding actual parameter will be copied. if possible.
into a register at the outset of the function.

A simple example of a complete function definition is

int max(a, b, cl
int a, b 1 c;
(

int m;

m • (a > bl ? a : b;
return((m >cl ? m cl;

Here int is the type-specifier; max< a 1 b, cl is. the function-declarator. int a, b, c; is the
declaration-list for the formal parameters; I • . • I is the block giving the code for the statement.

C converts all float actual parameters to double, so formal parameters declared float have their
declaration adjusted to read double. Also. since a reference to an array in any context (in particular as
an actual parameter) is taken to mean a pointer to the first element of the array. declarations of formal
parameters declared "array of are adjusted to read "pointer to ... ". Finally. because structures.
unions and functions cannot be passed to a function, it is useless to declare a formal parameter to be a
structure. union or function (pointers to such objects are of course permitted).

2-24 The C Programming Language

10.2 External data definitions
An external data definition has the form

data-definition:
declarauon

The storage class or suc:h data may be eX1:e=n (which is the default) or s1:a1:ic. but not au-:o or
r~is1:er.

11. Scope rules
A C pro1ram need not all be compiled at the same time: the sourc:e text of the program may be kept

in several files. and precompiled routines may be loaded from libraries. Communication amon1 the func·
tions or a program may be c:irried out both through explicit c:ills and through manipulation of external
data.

Therefore. there are two kinds or scope to consider: first. what may be called the le."Cical scope.of an
identifier. which is essentially the region of a program during which it may be used without drawing
··undefined identifier'' diagnostics; and second. the scope associated with external identifiers. which is
characterized by the rule that references to the same external identifier are referenc:es to the same object.

11.l Lexical scope
The lexical scope or identifiers declared in external definitions persists from the definition through

the end or the source file in which they appear. The lexial scope of identifiers which are fcrmal parame·
ters persists through the function with which they are associated. The lexical scope of identifiers declared
at the head or bloc:ks persists until the end or the bloclc. The lexical scope or labels is the wh.ole or the
function in which they appear.

Because all references to the same external identifier refer to the same object (see §11.2> the c:om·
piler c:hecks all declarations or the same external identifier for c:ompatibility: in effect their scope is
inc:reased to the whole file in which they appear.

In a,11 c:ases. however. if an identifier is explicitly dedared at the head of a bloc:k. inc:luding the block
constituting a function. any dec:larouion or that identifier outside the block is suspended until the end of
the block.

Remember also (§8.S) that identifiers associated with ordinary variables on the one hand and those
associated with structure and union members and tags on the other form two disjoint c:lasses whic:h do
not c:onilict. Members and tap follow the same scope rules as other identifiers. typedef names are in
the same class as ordinary identifiers. They may be redeclared in inner blocks. but an explicit type must
be given in the inner declaration:

typedef float distance;

auto int distance:

The int must be present in the second declaration. or it would be taken to be a declaration with no
declarators and type dis~c:et.

11.2 Scope or externals
If a func:tion refers to an identifier declared to be extern. then somewhere among the files or

libraries c:onstituting the c:omplete program there must be an external definition for the identifier. All
runc:tions in a given program which refer to the same extern:al identifier refer to the same object, so c:are
must be taken that the type and size specified in the definition are compatible with those specified by e:ich
runc:tion whic:h references the data.

The :appearance of the ex1:ern keyword in an external definition indic:ates that storage for the
identifiers bein1 declared will be allocated in another file. Thus in a multi-tile program. an external data
definition without the ex1:ern specifier must appear in exactly one of the files. Any other files which
wish to give an external definition for the identifier must include the ex-=e::n in the definition. The
identifier can be initialized only in the dec:taration where storage is allocated.

Identifiers declared sta~ic: at the top level in external definitions are not visible in other tiles.
Func:tions may be declared sta1:ic.

th is itrn4 111a1 1lle u:e is 1111n llcre.

\

The C Programming Language 2-25

12. Compiler control lines
The C compiler contains a preprocessor capable of macro substitution. conditional compilation. and

inclusion of named files. Lines beginning with t communicate with this preprocessor. These lines have
syntax independent of the rest of the language; they may appear anywhere and have effect which lasts
(independent of scope) until the end of the source program file.

12.1 Token replacement
A compiler-control line of the form

#define identifier token-string

(note: no trailing semicolon) causes the preprocessor to replace subsequent instances of the identifier with
the given string of tokens. A line of the form

tdefine identifier(identifier , • • • , identifier l token-string

where there is no space between the first identifier and the (, is a macro definition with arguments. Sub
sequent instances of the first identifier followed by a c. a sequence of tokens delimited by commas. and a
> are replaced by the token string in the definition. Each occurrence of an identifier mentioned in the
formal parameter list of the definition is replaced by the corresponding token string rrom the call. The
actual arguments in the call are token strings separated by commas; however commas in quoted strings or
protected by parentheses do not separate arguments. The number of formal and actual parameters must
be the same. Text inside a string or a character constant is not subject to replacement.

In both forms the replacement string is rescanned for more defined identifiers. In both forms a long
definition may be continued on another line by writing \ at the end of the line to be continued.

This facility is most valuable for definition of "manifest constantS." as in

#define TABSIZE 100

int table[TABSIZE];

A control line of the form

#undef identifier

causes the identifier's preprocessor definition to be forgotten.

12.2 File inclusion
A compiler control line of the form

#include "filename"

causes the replacement of that line by the entire contents of the file filename. The named file is searched
for first in the directory of the original source file, and then in a sequence of standard places. Alterna
tively, a control line or the form

#include </ikname>

searches only the standard places. and not the directory of the source file.
tinclude's may be nested.

12.3 Conditional compilation
A compiler control line of the form

#if constant-expression

checlcs whether the constant expression (see §15) evaluates to non-zero. A control line of the form

#ifdef identifier

c:heclcs whether the identifier is currently defined in the preprocessor; that is. whether it has been the
subject of a tdefine control line. A control line of the form

#ifndef identifier

checlcs whether the identifier is currently undefined in the preprocessor.
All three forms are followed by an arbitrary number of lines. possibly containing a control line

2-26 The C Programming Language

•else

and then by a control line

Jendif

(f the checked condition is true then any lines between hlse and •endif are ignored. If the checked
condition is false then any lines between the test and an •else or. lacking an •else. the #endif. are
ignored.

These constructions may be nested.

12.4 Line control
For the benefit of other preprocessors which generate C programs. a line of the form

Uine constant identifier

c:u.ises the compiler to believe. for purposes of error diagnostics. that the line number of the next source
line is given by the constant and the current input file is named by the identifier. If the identifie:- is
absent the remembered file name does not change.

13. Implicit declarations
It is not always necessary to specify both the storage class and the type of identifiers in a declaration.

The storage class is supplied by the context in external definitions and in declarations of formal parame·
ters and structure members. In a declaration inside a function. if a storage class but no type is given. the
identifier is assumed to be int: if a type but no storage class is indicated. the identifier is assumed to be
auto. An exception to the latter rule is made for functions. since auto functions are meaningless CC
being inapable or compiling code into the stack); if the type of an identifier is .. functior. returning ...••• it
is implicitly declared to be extern.

ln an expression. an identifier followed by (and not already declared is contextually declared to be
.. function returning int ...

14. Types revisited
This section summarizes the operations which can be performed on objects of certain types.

J 4.1 Structures and unions
There are only two things tha~ can be done with a structure or union: name one of its members (by

means of the • operator); or take iis•address (by unary &.). Other operations. sµc:h as assigning from or
to it or passing it as a parameter. draw an error message. ln the future. it is expected that these opera·
tions. but not necessarily others. will be allowed.

§7.l says that in a direct or indirect structure reference (with • or -» the name on the right must
be a member of the structure named or pointed to by the expression on the left. To allow an escape
from the typing rufes. this restriction is not firmly enforced by the compiler. In fact. any lvalue is ailowed
before •• and that !value is then assumed to have the form of the structure of which the name on the
right is a member. Also. the expression before a -> is required only to be a pointer or an integer. If a
pointer. it is assumed to poinc to a scructure of which the name on the right is a member. If an integer.
it is taken to be the absolute address. in machine storage units. of the appropriate structure.

Such constructions are non-portable.

14.2 Functions
There are only two things that can be done with a function: call it. or take its address. If the name

of a function appears in an expression not in the function-name position of a all. a pointer to the rune·
tion is generated. Thus. to pass one function to another. one might say

int f (}:

CJ (f):

Then the definition of CJ might read

qCfuncp)
int (•funcpl ();
(

The C Programming Language 2-27

Notice that f must be declared explicitly in the calling routine since its appearance in q <fl was not fol·
lowed by (.

14.3 Arrays. pointers. and subscripting
Every 1ime an identifier of array type appears in an expression. ii is converted into a pointer to the

first member of the array. Because of this conversion. arrays are not lvalues. By definition, the subscript
operator (J is interpreted in such a way that E1 (E2) is identical to * ((E1 l + < E2 l l. Because of the
conversion rules which apply to +, if E1 is an array and E2 an integer. then E1 (E2] refers to the E2·th
member of E1. Therefore. despite its asymmetric appearance. subscripting is a commutative operation.

A consistent rule is followed in the case of multi-dimensional arrays. If E is an n·dimensional array
of rank iXjX • • • x k. then E appearing in an expression is converted to a pointer to an (n-1).
dimensional array with rank jx · · · xk. If the *operator. either explicitly or implicitly as a result of
subscripting. is applied to this pointer. the result is the pointed-to (n-0-dimensional array. which itself
is immediately converted into a pointer.

For example. consider

int x(JJ(S);

Here xis a JxS array of integers. When x appears in an expression. it is converted to a pointer to (the
first of three) S-membered arrays of integers. In the expression x(i). which is equivalent to • (x+il. x
is first converted to a pointer as described; then i is converted to the type of x. which involves multiply
ing i by the length the object to which the pointer points. namely S integer objects. The results are
added and indirection applied to yield an array (of S integers) which in tum is converted to a pointer to
the first of the integers. If there is another subscript the same argument applies again; this time the
result is an integer. .

It follows from all this that'arrays in Care stored row-wise (last subscript varies fastest) and that the
first subscript in the declaration helps determine the amount of storage consumed by an array but plays
no other part in subscript calculations.

14.4 Explicit pointer conversions
Certain conversions involving pointers are permitted but have implementation-dependent aspects.

They are all specified by means of an explicit type-conversion operator. §§7.2 and 8. 7.
A pointer may be converted to any of the integral types large enough to hold it. Whether an int or

lonq is required is machine dependent. The mapping function is also machine dependent, but is
intended to be unsurprising to those who know the addressing structure of the machine. Details for
some particular machines are given below.

An object of integral type may be explicitly converted to a pointer. The mapping always carries an
integer converted from a pointer back to the same pointer, but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type. The resulting pointer may
cause addressing exceptions upon use if the subject pointer does not refer to an object suitably aligned in
storage. It is guaranteed that a pointer to an object of a given size may be converted to a pointer to an
object of a smaller size and back again without change.

For example. a storage-allocation routine might accept a size (in bytes) of an object to allocate, and
return a char pointer: it might be used in this way.

extern char •alloc(l;
double •dp;

dp • (double •> alloc(sizeof(double)l;
•dp • 22.0 I 7.0;

alloc must ensure (in a machine-dependent way) that its return value is suitable for conversion to a
pointer to double; then the use of the function is portable.

2-28 The C Programming Language

The pointer representation on the POP· 11 corresponds to a 16-bit integer and is me:isured in bytes.
chars have no alignment requirements: everything else must have an even address.

On the Honeywell 6000. a pointer corresponds to a 36-bit integer: the word part is in the left 18 bits.
:ind the two bits that select the character in a word just to their right. Thus c:hAr pointers are measured
in units of 2111 bytes: everything else is me:isured in units of 211 machine words. double quantities .ind
aggreptes containing them must lie on an even word address (0 mod 219l.

The IBM 370 and the Interdata S/32 are similar. On both. addresses are measured in bytes: elemen·
tary objects must be aligned on a boundary equal to their length. so pointers to shor~ must be 0 mod 2.
to inc :ind floac 0 mod 4, and to double 0 mod 8. Aggreiates are aligned on the strictest boundary
required by any of their constituents.

1 S. Constant expressions
ln several places C requires expressions which evaluate to a constant: after c:ase. as array bounds.

and in initializers. In the first two cases. the expression c::in involve only integer constants. character con·
st:ints. and sizeof expressions. possibly connected by the binary operators

+ • I ,. ' << >> •• I• < > <• >•

or by the unary operators

or by the ternary operuor

?:

Parentheses c:an be used for grouping. but not for function cails.
More latitude is permitted for initializers: besides constant expressions as discussed above. one can

also apply the unary ' operator to external or Static: objectS. and to external or static: arrays subscripted
with a CO'nStant expression. The unary ' can also be appljed implicitly by appearance of unsubscripted
arrays and functions. The basic: rule is that initializers must evaluate either to a constant or to the
address of a previously declared external or static: object plus or minus a constant.

16. Portability considerations
Certain parts of C are inherently machine dependent. The following list of potential trouble spots is

not me:int to be all-inclusive. but io point out the main ones.
Purely hardware issues like word size and the properties of floating point arithmetic: and integer divi·

sion have proven in practice: to be not much of a problem. Other facets of the hardware are reflected in
differing implementations. Some of these. particularly sign extension (converting a negative character
into a negative inteier) and the order in which bytes are placed in a word. are a nuisance that must be
carefully watched. Most of the others are only minor problems.

The number of reqister variables that can actually be placed in registers varies from machine to
machine. as does the set of valid types. Nonetheless. the compilers all do things properly for their own
machine: excess or invalid reqister declarations are ignored.

Some difficulties arise only when dubious coding practices are used. It is exc:e:dingly unwise to write
programs that depend on any of these properties.

The order of evaluation of function arguments is not specified by the-language. It is right to left on
the POP·l l. and VAX·! I. left to right on the others. The order in which side effects take plac:: is also
unspecified.

Since character constants are really objects of type i.nt. multi-character character c:oRstants may be
permitted. The specific: implementation is very machine dependent. however. because the order in which
characters are assigned to a word varies from one machine to another.

Fields are assigned to words and characters to integers right-to-left on the POP· I I and VAX· I I and
left-to-right on other machines. These differences are invisible to isolated programs which do not indulge
in type punning (for example. by converting an int: pointer to a char pointer and inspecting the
pointed-to storage). but must be accounted for when conforming to e~ternally-imposed storage layouts.

The language accepted by the various compilers differs in minor details. Most notably, the current
PDP· I I compiler will not initialize structures containing bit·lields. and does not accept a few assignment
operators in certain contexts where the value of the assignment is used.

(

/

The C Programming Larl.guage 2-29

17. Anachronisms .
Since C is an evolving language. cenain obsolete constructions may be found in older programs.

Ahhough most versions or the compiler supp<>rt such anachronisms. ultimately they will di~appear. leav
ing only a portability problem ~hind.

Earlier versions or c used the rorm -op instead of op- for assignment operators. This leads lO

ambiguities. typifted by

X•-1

which actually decrement$:ic since the • and the - are adjaceni. but which might easily be intended to
assign -1 to x.

The syntax or initializers has changed: previously. the equals sign that introduces an initializer was
not present. so instead or

int x • 1;

one used

int x 1;

The change wu made beciusd the initialization

int f (1 +2)

resembles a function declaration closely enough to conruse the compilers.

. 2-30 The C Programming Language

18. Syntax Summary
This summary of C syntax is intended more for aidin1 comprehension than as an exact statement or

the lan1uage.

18.1 Expressions
The basic expressions are:

upnssion:
primary
• e.Tf1',SSion
'apr,ssion
- aprmion
! aprmion
- upnssion
- tvalw
- lva/w
lwztw
lvalw-
sizeof txfl'tSSIOn

(ty~'lltlnw) aprasion
Dqlf'ttSion binop aprnsion
aprtssion ? aprasion : apnssion
lwzlw asgnop aprasion
Dqlf'asiotr I ~tr

primary:
itantifwr
constant
$11'inf

(aplTSSiOlf)

primary < apnuion-lin.,, >
primaly . (txprasion l
IYG/w • id,ntijier
primary-> id,,nti/itr

lvalw:
irknti/ler
primary (aprtssion l
Iva/rut , ifknti/iB
primary -> itkntijier
• apttUion
< /.wzlw >

The primary-expression operators

() (] ->

have highest priority and group lefMo-right. The unary operators . ' - sizeof (~-nam' l

have priority below the primary operators but higher than any binary operator. and group right·to•left.
Binary operators group left-to-right~ they have priority decreasing as indiated below. The conditional
operator groups right 10 left.

The C Programming Language 2-31

bi nap:
• I ,,.
+
>> <<
< > <• >• -- I•

'

" II
?:

Assignmenl operators all have the same priority, and all group right-to-left.

asgnap:
- +•

The comma operator has the lowest priority, and groups left-to-right.

I 1.2 Declarations

d«lal'tltion:
d«/•SJl«ijiBS init-t/«fal'tltrw•list.,, ;

d«l-sP«ifters:
IYIM-SfJ«ifter decl·SP«ifien.,,
SC·sp«ifier d«l·sp«ifiers.,,

SC•sp«if1er:
auto
static
extern
r~ister

typedef

IY/M'"SP«ifier:
ch&r
short
int
lonq
unsiqned
float
double
srruct·or-union·sp«ifier
typedef-natM

init·d«larator-list:
init·declaratol'
init-<Jeclaratrw , init-d«larator·list

init-declarator:
d«lal'tltor initializer.,,

declarator:
identifier
< declarator)
• declarator
declarator ()
declarator (constant-expression.,,]

~-32 The C Programmi]Jg LJinguage

suuct-"'~urrio~·s~ifitt:
s t:ruc t: I struet·fi«l·lisz I
st:ruc1: id1ntiffer I struct-d«J.list I
si:ruc 1: itkntifltt
gziion I SITUCt..d«l·list)
uniQn idtntifltr I stTUCt•dtt/.list I
union idlntfjkr

SITUCt-d«l·list:
Stl'flCt•dttfatatlQn
struet•d«f(l1'9lion SlftlCt.-d«/.liSl

Strflt:t-d«larq1io,,:
fYll*-sp«ifier Sln,lt:t·d«larator·list ;

Sll'flCt-d«lotatqr·list;
StlVCtC/a'°"tar
stn1Ct·d«larator , str11C1"'1«/ara«Jr·lisz

S11'11Ct_.dararor:
dcclqrator
d«latator : CfltUlf!nt-1.'CpraSion
: COllStQ(ft•Cttf!'mHJll

initialiur:
• txpaJion
• (ini11t1it;a-liSl I
• (iflili(lli:D·liSl '

inititl/;ur·list:
CIC/#~iO(f

inifiali?'·list , initialiu,.list
I initit1li:er·lis1 I

tyfJ(t-nanw:
IY!*'~V"' a~uact~/arotor

absuoct-dfC/qtatar:

'"''"' C .ab$lract-M(laratw I
' a(Js"4ct·dttlantror
abslract-dtttOn,ior < >
abstract-dtclalflltl' ~ constant~pnssion.,,]

ryptdtf-nt1m#:
i•nrifitr

18.3 Statements

compound-srattmtnt:
I dttlarattan·list"" stattmtnt·list.,, I

dttlaratt01'-ljfr.
dttlarotton
dttlarar1on d«lara11on·list

\

statement-list:
statement
statement statement-list

statement:
compound-statement
ccpression ;
if (expression) statement

The C Programming Language 2-33

if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (expression-/°" ; expression-2°" ; expression·).., l statement
switch (e."Cpression) statement
case constant-expression : statement
default : statement
break ;
continue ;
return ;
return expression ;
9oto identifier ;
identifter : statement

18.4 External definitions

fJ'Otram:
external-definition
external-definition program

external-definition:
function-definition
data-defi1filion

function-definition:
type-specifier°" function-declarator function-body

function-declarator:
declararor (parameter-list°" >

parameter-list:
identifter
identifier , parameter-list

function-body:
rype-decl-list function-statement

function-statement·
(declaration-list., statement-list I

data-definition:

18.S Preprocessor

extern.,, type-specifier.,,, init-declarator-list°" ;
static.,, rype-specijier °" init-declarator-list°" ;

2-34 The C Programming Language

IJdefine identt/ier token-string
tdefine identifier< identifier , • • • , id4ntijier > token-suing
lunde f identifier
tinc:lude "Jilena~"
Unc:lude <jilellll~>
t if r:onstant.uprf!SS/on
lifdef id4ntifier
ftifndef identifier
telse
tendif
llin• const4nt id4ntijier

' I
/

The C Programming Language 2-35

Recent Changes to C

November 15. 1978

A rew extensions have been made to the C language beyond what is described in the rererence docu
ment ("The C Programming Language." Kernighan and Ritchie. Prentice-Hall. 1978).

I. Structure assignment

Structures may be assigned. passed as arguments to runctions. and returned by functions. The types
of operands taking part must be the same. Other plausible operators. such as equality comparison. have
not been implemented.

There is a subtle defect in the POP-I I implementation or fonctions that return structures: ir an inter
rupt occurs during the return sequence, and the same function is called reentrantly during the interrupt.
the value returned rrom the first call may be corrupted. The problem can occur only in the presence or
true interrupts, as in an operating system or a user program that makes significant use or signals: ordinary
recursive calls are quite safe.

2. Enumeration type

There is a new data type analogous to the scalar types of Pascal. To the type-specifiers in the syntax
on p. 193 of the C book add

with syntax

enum-specifier

enum-specifier:
enu.m. I enum-list I
enu.m. identifier I enum-list I
enu.m. identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier • constant-expression

The role of the identifier in the enum-specifi.er is entirely analogous to that or the structure tag in a
struct-specifier: it names a particular enumeration. For example,

enu.m. color I chartreuse, burgundy, claret, winedark l;

enwn color •cp, col;

makes color the enumeration-tag of a type describing various colors, and then declares ep as a pointer
to an object of that type, and col as an object of that type.

The identifiers in the enum-list are declared as constants. and may appear wherever constants are
required. If no enumerators with •appear. then the values of the constants begin at 0 and increase by I
as the declaration is read from left to right. An enumerator with • gives the associated identifier the
value indicated: subsequent identifiers continue the progression from the assigned value.

Enumeration tags and constants must all be distinct. and. unlike structure tags and members, are
drawn from the same set as ordinary identifiers.

Objects of a given enumeration type are regarded as having a type distinct from objects of all other
types. and lint flags type mismatches. In the PDP·ll implementation all enumeration variables are treated
as if they were int.

Introduction

A Tour Through the Portable C Compiler 2-37

A Tour Through the Portable C Compiler

S. C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

A C compiler has been implemented that has proved to be quite portable, serving as the
basis for C compilers on roughly a dozen machines, including the Honeywell 6000, IBM 370,
and Interdata 8/32. The compiler is highly compatible with the C language standard.1

Among the goals of this compiler are portability, high reliability, and the use of state-of
the-art techniques and tools wherever practical. Although the efficiency of the compiling pro
cess is not a primary goal, the compiler is efficient enough, and produces good enough code, to
serve as a production compiler.

The language implemented is highly compatible with the current PDP-11 version of C.
Moreover, roughly 75% of the compiler, including nearly all the syntactic and semantic rou
tines, is machine independent. The compiler also serves as the major portion of the program
lint, described elsewhere. 2

A number of earlier attempts to make portable compilers are worth noting. While on
CO-OP assignment to Bell Labs in 1973, Alan Snyder wrote a portable C compiler which was
the basis of his Master's Thesis at M.I.T.3 This compiler was very slow and complicated, and
contained a number of rather serious implementation difficulties; nevertheless, a number of
Snyder's ideas appear in this work.

Most earlier portable compilers, including Snyder's, have proceeded by defining an inter
mediate language, perhaps based on three-address code or code for a stack machine, and writ
ing a machine independent program to translate from the source code to this intermediate
code. The intermediate code is then read by a second pass, and interpreted or compiled. This
approach is elegant, and has a number of advantages, especially if the target machine is far
removed from the host. It suffers from some disadvantages as well. Some constructions, like
initialization and subroutine prologs, are difficult or expensive to express in a machine
independent way that still allows them to be easily adapted to the target assemblers. Most of
these approaches require a symbol table to be constructed in the second (machine dependent)
pass, and/or require powerful target assemblers. Also, many conversion operators may be gen
erated that have no effect on a given machine, but may be needed op. others (for example,
pointer to pointer conversions usually do nothing in C, but must be generated because there
are some machines where they are significant).

For these reasons, the first pass of the portable compiler is not entirely machine
independent. It contains some machine dependent features, such as initialization, subroutine
prolog and epilog, certain storage allocation functions, code for the switch statement, and code
to throw out unneeded conversion operators.

As a crude measure of the degree of portability actually achieved, the Interdata 8/32 C
compiler has roughly 600 machine dependent lines of source out of 4600 in Pass 1, and 1000
out of 3400 in Pass 2. In total, 1600 out of 8000, or 20%, of the total source is machine
dependent (12% in Pass 1, 30% in Pass 2). These percentages can be expected to rise slightly
as the compiler is tuned. The percentage of machine-dependent code for the IBM is 22 % , for
the Honeywell 25 % . If the assembler format and structure were the same for all these

2-38 A Tour Through the Portable C Compiler

machines, perhaps another 5-10% of the code would become machine independent.

These figures are sufficiently misleading as to be almost meaningless. A large fraction of
the machine dependent code can be converted in a straightforward, almost mechanical way.
On the other hand, a certain amount of the code requres hard intellectual effort to convert,
since the algorithms embodied in this part of the code are typically complicated and machine
dependent.

To summarize, however, if you need a C compiler written for a machine with a reason
able architecture, the compiler is already three quarters finished!

Overview

---- This paper discusses the structure and Q!&_anization of the portable compiler. The intent
is to JvetlieoifPICture;-·ratlier.than ciiSC:\i-;-ing 'iiie <ietaffsor aparliCiilarmacliiiie implemen
tation. After a brief overview and a discussion of the source file structure, the paper describes
the major data structures, and then delves more closely into the two passes. Some of the
theoretical work on which the compiler is based, and its application to the compiler, is dis
cussed elsewhere.4 One of the major design issues in any C compiler, the design of the calling
sequence and stack frame, is the subject of a separate memorandum.5

The compiler consists of two passes, passl and pass2, that together turn C source code
into assembler code for the target machine. The two passes are preceded by a preprocessor,
that handles the #define and #include statements, and related features (e.g., #ifdef, etc.).
It is a nearly machine independent program, and will not be further discussed here.

The output of the preprocessor is a text file that is read as the standard input of the first
pass. This produces as standard output another text file that becomes the standard input of
the second pass. The second pass produces, as standard output, the desired assembler
language sourc'e code. The preprocessor and the two passes all write error messages on the
standard error file. Thus the compiler itself makes few demands on the 1/0 library support,
aiding in the bootstrapping process.

Although the compiler is divided into two passes, this represents historical accident more
than deep necessity. In fact, the compiler can optionally be loaded so that both passes
operate in the same program. This "one pass" operation eliminates the overhead of reading
and writing the intermediate file, so the compiler operates about 30% faster in this mode. It
also occupies about 30 % more space than the larger of the two component passes.

Because the compiler is fundamentally structured as two passes, even when loaded as
one, this document· primarily describes the two pass version.

The first pass does the lexical analysis, parsing, and symbol table maintenance. It also
constructs parse trees for expressions, and keeps track of the types of the nodes in these trees.
Additional code is devoted to initialization. Machine dependent portions of the first pass
serve to generate subroutine prologs and epilogs, code for switches, and code for branches,
label definitions, alignment operations, changes of location counter, etc.

The intermediate file is a text file organized into lines. Lines beginning with a right
parenthesis are copied by the second pass directly to its output file, with the parenthesis
stripped off. Thus, when the first pass produces assembly code, such as subroutine prologs,
etc., each line is prefaced with a right parenthesis; the second pass passes these lines to
through to the assembler.

The major job done by the second pass is generation of code for expressions. The
expression parse trees produced in the first pass are written onto the intermediate file in Pol
ish Prefix form: first, there is a line beginning with a period, followed by the source file line
number and name on which the expression appeared (for debugging purposes). The successive
lines represent the nodes of the parse tree, one node per line. Each line contains the node
number, type, and any values (e.g., values of constants) that may appear in the node. Lines
representing nodes with descendants are immediately followed by the left subtree of descen
dants, then the right. Since the number of descendants of any node is completely determined

' \

/

/

A Tour Through the Portable C Compiler 2-39

by the node number, there is no need to mark the end of the tree.

There are only two other line types in the intermediate file. Lines beginning with a left
square bracket ('[') represent the beginning of blocks (delimited by { ... } in the C source);
lines beginning with right square brackets (']') represent the end of blocks. The remainder of
these lines tell how much stack space, and how many register variables, are currently in use.

Thus, the second pass reads the intermediate files, copies the')' lines, makes note of the
information in the '[' and ']' lines, and devotes most of its effort to the '.' lines and their asso
ciated expression trees, turning them turns into assembly code to evaluate the expressions.

In the one pass version of the compiler, the expression trees tha,t are built by the first
pass have been declared to have room for the second pass information as well. Instead of
writing the trees onto an intermediate file, each tree is transformed in place into an acceptable
form for the code generator. The code generator then writes the result of compiling this tree
onto the standard output. Instead of'[' and ']'lines in the intermediate file, the information
is passed directly to the second pass routines. Assembly code produced by the first pass is
simply written out, without the need for')' at the head of each line.

The Source Files
The compiler source consists of 22 source files. Two files, manifest and macdefs, are

header files included with all other files. Manifest has declarations for the node numbers,
types, storage classes, and other global data definitions. Macdefs has machine-dependent
definitions, such as the size and alignment of the various data representations. Two machine
independent header files, mfilel and mfile2, contain the data structure and manifest
definitions for the first and second passes, respectively. In the second pass, a machine depen
dent header file, mac2defs, contains declarations of register names, etc.

There is a file, common, containing (machine independent) routines used in both passes.
These include routines for allocating and freeing trees, walking over trees, printing debugging
information, and printing error messages. There are two dummy files, comml .c and comm2.c,
that simply include common within the scope of the appropriate passl or pass2 header files.
When the compiler is loaded as a single pass, common only needs to be included once:
comm2.c is not needed.

Entire sections of this document are devoted to the detailed structure of the passes. For
the moment, we just give a brief description of the files. The first pass is obtained by compil
ing and loading scan.c, cgram.c, xdefs.c, pftn.c, trees.c, optim.c, local.c, code.c, and
comml.c. Scan.c is the lexical analyzer, which is used by cgram.c, the result of applying
Yacc6 to the input grammar cgram.y. Xdefs.c is a short file of external definitions. Pftn.c
maintains the symbol table, and does initialization. Trees.c builds the expression trees, and
computes the node types. Optim.c does some machine independent optimizations on the
expression trees. Comml.c includes common, that contains service routines common to the
two passes of the compiler. All the above files are machine independent. The files local.c and
code.c contain machine dependent code for generating subroutine prologs, switch code, and
the like.

The second pass is produced by compiling and loading reader.c, allo.c, match.c,
comml .c, order.c, local.c, and table.c. Reader.c reads the intermediate file, and controls the
major logic of the code generation. Allo.c keeps track of busy and free registers. Match.c
controls the matching of code templates to subtrees of the expression tree to be compiled.
Comm2.c includes the file common, as in the first pass. The above files are machine indepen
dent. Order.c controls the machine dependent details of the code generation strategy.
Local2.c has many small machine dependent routines, and tables of opcodes, register types,
etc. Table.c has the code template tables, which are also clearly machine dependent.

2-40 A Tour Through the Portable C Compiler

Data Structure Considerations.

This section discusses the node numbers, type words, and expression trees, used
throughout both passes of the compiler.

The file manifest defines those symbols used throughout both passes. The intent is to
use the same symbol name (e.g., MINUS) for the given operator throughout the lexical
analysis, parsing, tree building, and code generation phases; this requires some synchroniza-
tion with the Yacc input file, cgram.y, as well. ,

A token like MINUS may be seen in the lexical analyzer before it is known whether it is
a unary or binary operator; clearly, it is necessary to know this by the time the parse tree is
constructed. Thus, an operator (really a macro) called UNARY is provided, so that MINUS
and UNARY MINUS are both distinct node numbers. Similarly, many binary operators exist
in an assignment form (for example, -=), and the operator ASG may be applied to such node
names to generate new ones, e.g. ASG MINUS.

It is frequently desirable to know if a node represents a leaf (no descendants), a unary
operator (one descendant) or a binary operator (two descendants). The macro optype(o)
returns one of the manifest constants LTYPE, UTYPE, or BITYPE, respectively, depending
on the node number o. Similarly, asgop(o) returns true if o is an assignment operator
number (=, +=,etc.), and logop(o) returns true if o is a relational or logical (&&, 11,or !)
operator.

C has a rich typing structure, with a potentially infinite number of types. To begin with,
there are the basic types: CHAR, SHORT, INT, LONG, the unsigned versions known as
UCHAR, USHORT, UNSIGNED, ULONG, and FLOAT, DOUBLE, and finally STRTY (a
structure), UNIONTY, and ENUMTY. Then, there are three operators that can be applied to
types to make others: if t is a type, we may potentially have types pointer to t, function
returning t, and array of t's generated from t. Thus, an arbitrary type in C consists of a
basic type, and zero or more of these operators.

In the compiler, a type is represented by an unsigned integer; the rightmost four bits
hold the basic type, and the remaining bits are divided into two-bit fields, containing 0 (no
operator), or one of the three operators described above. The modifiers are read right to left
in the word, starting with the two-bit field adjacent to the basic type, until a field with 0 in it
is reached. The macros PTR, FTN, and ARY represent the pointer to, function returning,
and array of operators. The macro values are shifted so that they align with the first two-bit
field; thus PTR+ INT represents the type for an integer pointer, and

ARY+ (PTR<<2) + (FTN<<4) +DOUBLE

represents the type of an array of pointers to functiorls returning doubles.

The type words are ordinarily manipulated by macros. If t is a type word, BTYPE(t)
gives the basic type. ISPTR(t), ISARY(t), and ISFTN(t) ask if an object of this type is a
pointer, array, or a function, respectively. MOJ)TYPE(t,b) sets the basic type of t to b.
DECREF(t) gives the type resulting from removing the first operator from t. Thus, if t is a
pointer to t', a function returning t', or an array of t', then DECREF(t) would equal t'.
INCREF(t) gives the type representing a pointer to t. Finally, there are operators for dealing
with the unsigned types, ISUNSIGNED(t) returns true if t is one of the four basic unsigned
types; in this case, DEUNSIGN(t) gives the associated 'signed' type. Similarly,
UNSIGNABLE(t) returns true if t is one of the four basic types that could become unsigned,
and ENUNSIGN(t) retuq1s the u:ru;igned analogue oft in this case.

The other important global data structure is that of expression trees. The actual shapes
of the nodes are given in mfilel and mfile2, They are not the same in the two passes; the
first pass nodes contain dimension and size information, while the second pass nodes contain
register allocation information. Nevertheless, all nodes contain fields called op, containing the
node number, and type, containing the type word. A function called talloc() returns a
pointer to a new tree node. To free a node, its op field need merely be set to FREE. The

A Tour Through the Portable C Compiler 2-41

other fields in the node will remain intact at least until the next allocation.

Nodes representing binary operators contain fields, left and right, that contain pointers
to the left and right descendants. Unary operator nodes have the left field, and a value field
called rval. Leaf nodes, with no descendants, have two value fields: lval and rval.

At appropriate times, the function tcheck() can be called, to check that there are no
busy nodes remaining. This is used as a compiler consistency check. The function tcopy(p)
takes a pointer p that points to an expression tree, and returns a pointer to a disjoint copy of
the tree. The function walkf(p,f) performs a postorder walk of the tree pointed to by p, and
applies the function f to each node. The function fwalk(p,f,d) does a preorder walk of the
tree pointed to by p. At each node, it calls a function f, passing to it the node pointer, a
value passed down from its ancestor, and two pointers to values to be passed down to the left
and right descendants (if any). The value d is the value passed down to the root. Fwalk is
used for a number of tree labeling and debugging activities.

The other major data structure, the symbol table, exists only in pass one, and will be
discussed later.

Pass One
The first pass does lexical analysis, parsing, symbol table maintenance, tree building,

optimization, and a number of machine dependent things. This pass is largely machine
independent, and the machine independent sections can be pretty successfully ignored. Thus,
they will be only sketched here.

Lexical Analysis

The lexical analyzer is a conceptually simple routine that reads the input and returns
the tokens of the C language as it encounters them: names, constants, operators, and key
words. The conceptual simplicity of this job is confounded a bit by several other simple jobs
that unfortunately must go on simultaneously. These include

• Keeping track of the current filename and line number, and occasionally setting this
information as the result of preprocessor control lines.

• Skipping comments.

• Properly dealing with octal, decimal, hex, floating point, and character constants, as well
as character strings.

To achieve speed, the program maintains several tables that are indexed into by charac
ter value, to tell the lexical analyzer what to do next. To achieve portability, these tables
must be initialized each time the compiler is run, in order that the table entries reflect the
local character set values.

Parsing
As mentioned above, the parser is generated by Yacc from the grammar on file cgram.y.

The grammar is relatively readable, but contains some unusual features that are worth com
ment.

Perhaps the strangest feature of the grammar is the treatment of declarations. The
problem is to keep track of the basic type and the storage class while interpreting the various
stars, brackets, and parentheses that may surround a given name. The entire declaration
mechanism must be recursive, since declarations may appear within declarations of structures
and unions, or even within a sizeof construction inside a dimension in another declaration!

There are some difficulties in using a bottom-up parser, such as produced by Yacc, to
handle constructions where a lot of left context information must be kept around. The prob
lem is that the original PDP-11 compiler is top-down in implementation, and some of the
semantics of C reflect this. In a top-down parser, the input rules are restricted somewhat, but
one can naturally associate temporary storage with a rule at a very early stage in the

2-42 A Tour Through the Portable C Compiler

recognition of that rule. In a bottom-up parser, there is more freedom in the specification of
rules, but it is more difficult to know what rule is being matched until the entire rule is seen.
The parser described by cgram.c makes effective use of the bottom-up parsing mechanism in
some places (notably the treatment of expressions), but struggles against the restrictions in
others. The usual result is that it is necessary to run a stack of values "on the side", indepen
dent of the Yacc value stack, in order to be able to store and access information deep within
inner constructions, where the relationship of the rules being recognized to the total picture is
not yet clear.

In the case of declarations, the attribute information (type, etc.) for a declaration is care
fully kept immediately to the left of the declarator (that part of the declaration involving the
name). In this way, when it is time to declare the name, the name and the type information
can be quickly brought together. The "$0" mechanism of Y ace is used to accomplish this.
The result is not pretty, but it works. The storage class information changes more slowly, so
it is kept in an external variable, and stacked if necessary. Some of the grammar could be
considerably cleaned up by using some more recent features of Y ace, notably actions within
rules and the ability to return multiple values for actions.

A stack is also used to keep track of the current location to be branched to when a
break or continue statement is processed.

This use of external stacks dates from the time when Yacc did not permit values to be
structures. Some, or most, of this use of external stacks could be eliminated by redoing the
grammar to use the mechanisms now provided. There are some areas, however, particularly
the processing of structure, union, and enum declarations, function prologs, and switch state
ment processing, when having all the affected data together in an array speeds later process
ing; in this case, use of external storage seems essential.

The cgram.y file also contains some small functions used as utility functions in the
parser. These include routines for saving case values and labels in processing switches, and
stacking and popping values on the external stack described above.

Storage Classes

C has a finite, but fairly extensive, number of storage classes available. One of the com
piler design decisions was to process the storage class information totally in the first pass; by
the second pass, this information must have been totally dealt with. This means that all of
the storage allocation must take place in the first pass, so that references to automatics and
parameters can be turned into references to cells lying a certain number of bytes offset from
certain machine registers. Much of this transformation is machine dependent, and strongly
depends on the storage class.

The classes include EXTERN (for externally declared, but not defined variables),
EXTDEF (for external definitions), and similar distinctions for USTATIC and STATIC,
UFORTRAN and FORTRAN (for fortran functions) and ULABEL and LABEL. The storage
classes REGISTER and AUTO are obvious, as are STNAME, UNAME, and ENAME (for
structure, union, and enumeration tags), and the associated MOS, MOU, and MOE (for the
members). TYPEDEF is treated as a storage class as well. There are two special storage
classes: PARAM and SNULL. SNULL is used to distinguish the case where no explicit
storage class has been given; before an entry is made in the symbol table the true storage class
is discovered. Similarly, PARAM is used for the temporary entry in the symbol table made
before the declaration of function parameters is completed.

The most complexity in the storage class process comes from bit fields. A separate
storage class is kept for each width bit field; a k bit bit field has storage class k plus FIELD.
This enables the size to be quickly recovered from the storage class.

A Tour Through the Portable C Compiler 2-43

Symbol Table Maintenance.

The symbol table routines do far more than simply enter names into the symbol table;
considerable semantic processing and checking is done as well. For example, if a new declara
tion comes in, it must be checked to see if there is a previous declaration of the same symbol.
If there is, there are many cases. The declarations may agree and be compatible (for example,
an extern declaration can appear twice) in which case the new declaration is ignored. The
new declaration may add information (such as an explicit array dimension) to an already
present declaration. The new declaration may be different, but still correct (for example, an
extern declaration of something may be entered, and then later the definition may be seen).
The new declaration may be incompatible, but appear in an inner block; in this case, the old
declaration is carefully hidden away, and the new one comes into force until the block is left.
Finally, the declarations may be incompatible, and an error message must be produced.

A number of other factors make for additional complexity. The type declared by the
user is not always the type entered into the symbol table (for example, if an formal parameter
to a function is declared to be an array, C requires that this be changed into a pointer before
entry in the symbol table). Moreover, there are various kinds of illegal types that may be
declared which are difficult to check for syntactically (for example, a function returning an
array). Finally, there is a strange feature in C that requires structure tag names and member
names for structures and unions to be taken from a different logical symbol table than ordi
nary identifiers. Keeping track of which kind of name is involved is a bit of struggle (consider
typedef names used within structure declarations, for example).

The symbol table handling routines have been rewritten a number of times to extend
features, improve performance, and fix bugs. They address the above problems with reason
able effectiveness but a singular lack of grace.

When a name is read in the input, it is hashed, and the routine lookup is called,
together with a flag which tells which symbol table should be se~rched (actually, both symbol
tables are stored in one, and a flag is used to distinguish individual entries). If the name is
found, lookup returns the index to the entry found; otherwise, it makes a new entry, marks it
UNDEF (undefined), and returns the index of the new entry. This index is stored in the rval
field of a NAME node.

When a declaration is being parsed, this NAME node is made part of a tree with
UNARY MUL nodes for each*, LB nodes for each array descriptor (the right descendant has
the dimension), and UNARY CALL nodes for each function descriptor. This tree is passed to
the routine tymerge, along with the attribute type of the whole declaration; this routine col
lapses the tree to a single node, by calling tyreduce, and then modifies the type to reflect the
overall type of the declaration.

Dimension and size information is stored in a table called dimtab. To properly describe
a type in C, one needs not just the type information but also size information (for structures
and enums) and dimension information (for arrays). Sizes and offsets are dealt with in the
compiler by giving the associated indices into dimtab. Tymerge and tyreduce call dstash to
put the discovered dimensions away into the dimtab array. Tymerge returns a pointer to a
single node that contains the symbol table index in its rval field, and the size and dimension
indices in fields csiz and cdim, respectively. This information is properly considered part of
the type in the first pass, and is carried around at all times.

To enter an element into the symbol table, the routine defid is called; it is handed a
storage class, and a pointer to the node produced by tymerge. Defid calls fix type, which
adjusts and checks the given type depending on the storage class, and converts null types
appropriately. It then calls fixclass, which does a similar job for the storage class; it is here,
for example, that register declarations are either allowed or changed to auto.

The new declaration is now compared against an older one, if present, and several pages
of validity checks performed. If the definitions are compatible, with possibly some added
information, the processing is straightforward. If the definitions differ, the block levels of the

2-44 A Tour Through the Portable C Compiler

current and the old declaration are compared. The current block level is kept in blevel, an
external variable; the old declaration level is kept in the symbol table. Block level 0 is for
external declarations, 1 is for arguments to functions, and 2 and above are blocks within a
function. If the current block level is the same as the old declaration, an error results. If the
current block level is higher, the new declaration overrides the old. This is done by marking
the old symbol table entry "hidden", and making a new entry, marked "hiding". Lookup will
skip over hidden entries. When a block is left, the symbol table is searched, and any entries
defined in that block are destroyed; if they hid other entries, the old entries are "unhidden".

This nice block structure is warped a bit because labels do not follow the block structure
rules (one can do a goto into a block, for example); default definitions of functions in inner
blocks also persist clear out to the outermost scope. This implies that cleaning up the symbol
table after block exit is more subtle than it might first seem.

For successful new definitions, defid also initializes a "general purpose" field, offset, in
the symbol table. It contains the stack offset for automatics and parameters, the register
number for register variables, the bit offset into the structure for structure members, and the
internal label number for static variables and labels. The offset field is set by falloc for bit
fields, and dclstruct for structures and unions.

The symbol table entry itself thus contains the name, type word, size and dimension
offsets, offset value, and declaration block level. It also has a field of flags, describing what
symbol table the name is in, and whether the entry is hidden, or hides another. Finally, a
field gives the line number of the last use, or of the definition, of the name. This is used
mainly for diagnostics, but is useful to lint as well.

In some special cases, there is more than the above amount of information kept for the
use of the compiler. This is especially true with structures; for use in initialization, structure
declarations must have access to a list of the members of the structure. This list is also kept
in dimtab. Because a structure can be mentioned long before the members are known, it is
necessary to have another level of indirection in the table. The two words following the csiz
entry in dimtab are used to hold the alignment of the structure, and the index in dimtab of
the list of members. This list contains the symbol table indices for the structure members,
terminated by a -1.

Tree Building
The portable compiler transforms expressions into expression trees. As the parser recog

nizes each rule making up an expression, it calls buildtree which is given an operator number,
and pointers to the left and right descendants. Buildtree first examines the left and right
descendants, and, if they are both constants, and the operator is appropriate, simply does the
constant computation at compile time, and returns the result as a constant. Otherwise, build
tree allocates a node for the head of the tree, attaches the descendants to it, and ensures that
conversion operators are generated if needed, and that the type of the new node is consistent
with the types of the operands. There is also a considerable amount of semantic complexity
here; many combinations of types are illegal, and the portable compiler makes a strong effort
to check the legality of expression types completely. This is done both for lint purposes, and
to prevent such semantic errors from being passed through to the code generator.

The heart of buildtree is a large table, accessed by the routine opact. This routine
maps the types of the left and right operands into a rather smaller set of descriptors, and then
accesses a table (actually encoded in a switch statement) which for each operator and pair of
types causes an action to be returned. The actions are logical or's of a number of separate
actions, which may be carried out by buildtree. These component actions may include check
ing the left side to ensure that it is an lvalue (can be stored into), applying a type conversion
to the left or right operand, setting the type of the new node to the type of the left or right
operand, calling various routines to balance the types of the left and right operands, and
suppressing the ordinary conversion of arrays and function operands to pointers. An impor
tant operation is OTHER, which causes some special code to be invoked in buildtree, to

A Tour Through the Portable C Compiler 2-45

handle issues which are unique to a particular operator. Examples of this are structure and
union reference (actually handled by the routine stref), the building of NAME, ICON,
STRING and FCON (floating point constant) nodes, unary * and &, structure assignment,
and calls. In the case of unary * and &, buildtree will cancel a * applied to a tree, the top
node of which is &, and conversely.

Another special operation is PUN; this causes the compiler to check for type
mismatches, such as intermixing pointers and integers.

The treatment of conversion operators is still a rather strange area of the compiler (and
of C!). The recent introduction of type casts has only confounded this situation. Most of the
conversion operators are generated by calls to tymatch and ptmatch, both of which are given
a tree, and asked to make the operands agree in type. Ptmatch treats the case where one of
the operands is a pointer; tymatch treats all other cases. Where these routines have decided
on the proper type for an operand, they call makety, which is handed a tree, and a type word,
dimension offset, and size offset. If necessary, it inserts a conversion operation to make the
types correct. Conversion operations are never inserted on the left side of assignment opera
tors, however. There are two conversion operators used; PCONV, if the conversion is to a
non-basic type (usually a pointer), and SCONV, if the conversion is to a basic type (scalar).

To allow for maximum flexibility, every node produced by buildtree is given to a
machine dependent routine, clocal, immediately after it is produced. This is to allow more or
less immediate rewriting of those nodes which must be adapted for the local machine. The
conversion operations are given to clocal as well; on most machines, many of these conversions
do nothing, and should be thrown away (being careful to retain the type). If this operation is
done too early, however, later calls to buildtree may get confused about correct type of the
subtrees; thus clocal is given the conversion ops only after the entire tree is built. This topic
will be dealt with in more detail later.

Initialization

Initialization is one of the messier areas in the portable compiler. The only consolation
is that most of the mess takes place in the machine independent part, where it is may be
safely ignored by the implementor of the compiler for a particular machine.

The basic problem is that the semantics of initialization really calls for a co-routine
structure; one collection of programs reading constants from the input stream, while another,
independent set of programs places these constants into the appropriate spots in memory.
The dramatic differences in the local assemblers also come to the fore here. The parsing
problems are dealt with by keeping a rather extensive stack containing the current state of the
initialization; the assembler problems are dealt with by having a fair number of machine
dependent routines.

The stack contains the symbol table number, type, dimension index, and size index for
the current identifier being initialized. Another entry has the offset, in bits, of the beginning
of the current identifier. Another entry keeps track of how many elements have been seen, if
the current identifier is an array. Still another entry keeps track of the current member of a
structure being initialized. Finally, there is an entry containing flags which keep track of the
current state of the initialization process (e.g., tell if a } has been seen for the current
identifier.)

When an initialization begins, the routine beginit is called; it handles the alignment res
trictions, if any, and calls instk to create the stack entry. This is done by first making an
entry on the top of the stack for the item being initialized. If the top entry is an array,
another entry is made on the stack for the first element. If the top entry is a structure,
another entry is made on the stack for the first member of the structure. This continues until
the top element of the stack is a scalar. lnstk then returns, and the parser begins collecting
initializers.

2-46 A Tour Through the Portable C Compiler

When a constant is obtained, the routine doinit is called; it examines the stack, and does
whatever is necessary to assign the current constant to the scalar on the top of the stack.
gotscal is then called, which rearranges the stack so that the next scalar to be initialized gets
placed on top of the stack. This process continues until the end of the initializers; endinit
cleans up. If a { or } is encountered in the string of initializers, it is handled by calling
ilbrace or irbrace, respectively.

A central issue is the treatment of the "holes" that arise as a result of alignment restric
tions or explicit requests for holes in bit fields. There is a global variable, inoff, which con
tains the current offset in the initialization (all offsets in the first pass of the compiler are in
bits). Doinit figures out from the top entry on the stack the expected bit offset of the next
identifier; it calls the machine dependent routine inforce which, in a machine dependent way,
forces the assembler to set aside space if need be so that the next scalar seen will go into the
appropriate bit offset position. The scalar itself is passed to one of the machine dependent
routines fincode (for floating point initialization), incode (for fields, and other initializations
less than an int in size), and cinit (for all other initializations). The size is passed to all these
routines, and it is up to the machine dependent routines to ensure that the initializer occupies
exactly the right size.

Character strings represent a bit of an exception. If a character string is seen as the ini
tializer for a pointer, the characters making up the string must be put out under a different
location counter. When the lexical analyzer sees the quote at the head of a character string, it
returns the token STRING, but does not do anything with the contents. The parser calls
getstr, which sets up the appropriate location counters and flags, and calls lxstr to read and
process the contents of the string.

If the string is being used to initialize a character array, lxstr calls put byte, which in
effect simulates doinit for each character read. If the string is used to initialize a character
pointer, lxstr calls a machine dependent routine, bycode, which stashes away each character.
The pointer to this string is then returned, and processed normally by doinit.

The null at the end of the string is treated as if it were read explicitly by lxstr.

Statements

The first pass addresses four main areas; declarations, expressions, initialization, and
statements. The statement processing is relatively simple; most of it is carried out in the
parser directly. Most of the logic is concerned with allocating label numbers, defining the
labels, and branching appropriately. An external symbol, reached, is 1 if a statement can be
reached, 0 otherwise; this is used to do a bit of simple flow analysis as the program is being
parsed, and also to avoid generating the subroutine return sequence if the subroutine cannot
"fall through" the last statement.

Conditional branches are handled by generating an expression node, CBRANCH, whose
left descendant is the conditional expression and the right descendant is an ICON node con
taining the internal label number to be branched to. For efficiency, the semantics are that the
label is gone to if the condition is false.

The switch statement is compiled by collecting the case entries, and an indication as to
whether there is a default case; an internal label number is generated for each of these, and
remembered in a big array. The expression comprising the value to be switched on is com
piled when the switch keyword is encountered, but the expression tree is headed by a special
node, FORCE, which tells the code generator to put the expression value into a special dis
tinguished register (this same mechanism is used for processing the return statement). When
the end of the switch block is reached, the array containing the case values is sorted, and
checked for duplicate entries (an error); if all is correct, the machine dependent routine
genswitch is called, with this array of labels and values in increasing order. Genswitch can
assume that the value to be tested is already in the register which is the usual integer return
value register.

A Tour Through the Portable C Compiler 2-47

Optimization

There is a machine independent file, optim.c, which contains a relatively short optimiza
tion routine, optim. Actually the word optimization is something of a misnomer; the results
are not optimum, only improved, and the routine is in fact not optional; it must be called for
proper operation of the compiler.

Optim is called after an expression tree is built, but before the code generator is called.
The essential part of its job is to call clocal on the conversion operators. On most machines,
the treatment of & is also essential: by this time in the processing, the only node which is a
legal descendant of & is NAME. (Possible descendants of * have been eliminated by build
tree.) The address of a static name is, almost by definition, a constant, and can be
represented by an ICON node on most machines (provided that the loader has enough power).
Unfortunately, this is not universally true; on some machine, such as the IBM 370, the issue of
addressability rears its ugly head; thus, before turning a NAME node into an ICON node, the
machine dependent function andable is called.

The optimization attempts of optim are currently quite limited. It is primarily con
cerned with improving the behavior of the compiler with operations one of whose arguments is
a constant. In the simplest case, the constant is placed on the right if the operation is com
mutative. The compiler also makes a limited search for expressions such as

(x+a)+b

where a and b are constants, and attempts to combine a and b at compile time. A number of
special cases are also examined; additions of 0 and multiplications by 1 are removed, although
the correct processing of these cases to get the type of the resulting tree correct is decidedly
nontrivial. In some cases, the addition or multiplication must be replaced by a conversion op
to keep the types from becoming fouled up. Finally, in cases where a relational operation is
being done, and one operand is a constant, the operands are permuted, and the operator
altered, if necessary, to put the constant on the right. Finally, multiplications by a power of 2
are changed to shifts.

There are dozens of similar optimizations that can be, and should be, done. It seems
likely that this routine will be expanded in the relatively near future.

Machine Dependent Stuft'

A number of the first pass machine dependent routines have been discussed above. In
general, the routines are short, and easy to adapt from machine to machine. The two excep
tions to this general rule are clocal and the function prolog and epilog generation routines,
bf code and ef code.

Clocal has the job of rewriting, if appropriate and desirable, the nodes constructed by
buildtree. There are two major areas where this is important; NAME nodes and conversion
operations. In the case of NAME nodes, clocal must rewrite the NAME node to reflect the
actual physical location of the name in the machine. In effect, the NAME node must be
examined, the symbol table entry found (through the rval field of the node), and, based on
the storage class of the node, the tree must be rewritten. Automatic variables and parameters
are typically rewritten by treating the reference to the variable as a structure reference, off the
register which holds the stack or argument pointer; the stref routine is set up to be called in
this way, and to build the appropriate tree. In the most general case, the tree consists of a
unary * node, whose descendant is a + node, with the stack or argument register as left
operand, and a constant offset as right operand. In the case of LABEL and internal static
nodes, the rval field is rewritten to be the negative of the internal label number; a negative
rval field is taken to be an internal label number. Finally, a name of class REGISTER must
be converted into a REG node, and the rval field replaced by the register number. In fact,
this part of the clocal routine is nearly machine independent; only for machines with addres
sability problems (IBM 370 again!) does it have to be noticeably different,

2-48 A Tout' Through the Portable C Compiler

The conversion operator treatment is rather tricky. It is necessary to handle the appli
cation of conversion operators to constants in clocal, in order that all constant expressions can
have their values known at compile time. In extreme cases, this may mean that some simula
tion of the arithmetic of the target machine might have to be done in a cross-compiler. In the
most common case; conversions from pointer to pointer do nothing. For some machines, how
ever, conversion from byte pointer to short or long pointer might require a shift or rotate
operation, which would have to be generated here.

The extension of the portable compiler to machines where the size of a pointer depends
on its type would be straightforward, but has not yet been done.

The other major machine dependent issue involves the subroutine prolog and epilog gen
eration. The hard part here is the design of the stack frame and calling sequence; this design
issue is discussed elsewhere.5 The routine bfcode is called with the number of arguments the
function is defined with, and an array containing the symbol table indices of the declared
parameters. Bfcode must generate the code to establish the new stack frame, save the return
address and previous stack pointer value on the stack, and save whatever registers are to be
used for register variables. The stack size and the number of register variables is not known
when bfcode is called, so these numbers must be referred to by assembler constants, which are
defined when they are known (usually in the second pass, after all register variables, automat
ics, and temporaries have been seen). The final job is to find those parameters which may
have been declared register, and generate the code to initialize the register with the value
passed on the stack. Once again, for most machines, the general logic of bfcode remains the
same, but the contents of the print{ calls in it will change from machine to machine. efcode
is rather simpler, having just to generate the default return at the end of a function. This
may be nontrivial in the case of a function returning a structure or union, however.

There seems to be no really good place to discuss structures and unions, but this is as
good a place as any. The C language now supports structure assignment, and the passing of
structures as arguments to functions, and the receiving of structures back from functions.
This was added rather late to C, and thus to the portable compiler. Consequently, it fits in
less well than the older features. Moreover, most of the burden of making these features work
is placed on the machine dependent code.

There are both conceptual and practical problems. Conceptually, the compiler is struc
tured around the idea that to compute something, you put it into a register and work on it.
This notion causes a bit of trouble on some machines (e.g., machines with 3-address opcodes),
but matches many machines quite well. Unfortunately, this notion breaks down with struc
tures. The closest that one can come is to keep the addresses of the structures in registers.
The actual code sequences used to move structures vary from the trivial (a multiple byte
move) to the horrible (a function call), and are very machine dependent.

The practical proble91 is more painful. When a function returning a structure is called,
this function has to have some place to put the structure value. If it places it on the stack, it
has difficulty popping its stack frame. If it places the value in a static temporary, the routine
fails to be reentrant. The most logically consistent way of implementing this is for the caller
to pass in a pointer to a spot where the called function should put the value before returning.
This is relatively straightforward, although a bit tedious, to implement, but means that the
caller must have properly declared the function type, even if the value. is never used. On some
machines, such Els the Interdata 8/32, the return value simply overlays the argument region
(which on the 8/32 is part of the caller's stack frame). The caller takes care of leaving enough
room if the returned value is larger than the arguments. This also assumes that the caller
know and declares the function properly.

The PDP-11 and the VAX have stack hardware which is used in function calls and
returns; this makes it very inconvenient to use either of the above mechanisms. In these
machines, a static area within the called functionis allocated, and the function return value is
copied into it on return; the function returns the address of that region. This is simple to
implement, but is non-reentrant. However, the function can now be called as a subroutine

A Tour Through the Portable C Compiler 2-49

without being properly declared, without the disaster which would otherwise ensue. No
matter what choice is taken, the convention is that the function actually returns the address
of the return structure value.

In building expression trees, the portable compiler takes a bit for granted about struc
tures. It assumes that functions returning structures actually return a pointer to the struc
ture, and it assumes that a reference to a structure is actually a reference to its address. The
structure assignment operator is rebuilt so that the left operand is the structure being
assigned to, but the right operand is the address of the structure being assigned; this makes it
easier to deal with

a=b=c

and similar constructions.

There are four special tree nodes associated with these operations: STASG (structure
assignment), STARG (structure argument to a function call), and STCALL and UNARY
STCALL (calls of a function with nonzero and zero arguments, respectively). These four
nodes are unique in that the size and alignment information, which can be determined by the
type for all other objects in C, must be known to carry out these operations; special fields are
set aside in these nodes to contain this information, and special intermediate code is used to
transmit this information.

First Pass Summary

There are may other issues which have been ignored here, partly to justify the title
"tour", and partially because they have seemed to cause little trouble. There are some debug
ging flags which may be turned on, by giving the compiler's first pass the argument

-X[flags]

Some of the more interesting flags are - Xd for the defining and freeing of symbols, - Xi for
initialization comments, and - Xb for various comments about the building of trees. In many
cases, repeating the flag more than once gives more information; thus, - Xddd gives more
information than - Xd. In the two pass version of the compiler, the flags should not be set
when the output is sent to the second pass, since the debugging output and the intermediate
code both go onto the standard output.

We turn now to consideration of the second pass.

Pass Two

Code generation is far less well understood than parsing or lexical analysis, and for this
reason the second pass is far harder to discuss in a file by file manner. A great deal of the
difficulty is in understanding the issues and the strategies employed to meet them. Any par
ticular function is likely to be reasonably straightforward.

Thus, this part of the paper will concentrate a good deal on the broader aspects of stra
tegy in the code generator, and will not get too intimate with the details.

Overview.

It is difficult to organize a code generator to be flexible enough to generate code for a
large number of machines, and still be efficient for any one of them. Flexibility is also impor
tant when it comes time to tune the code generator to improve the output code quality. On
the other hand, too much flexibility can lead to semantically incorrect code, and potentially a
combinatorial explosion in the number of cases to be considered in the compiler.

One goal of the code generator is to have a high degree of correctness. It is very desir
able to have the compiler detect its own inability to generate correct code, rather than to pro
duce incorrect code. This goal is achieved by having a simple model of the job to be done
(e.g., an expression tree) and a simple model of the machine state (e.g., which registers are

2-50 A Tour Through the Portable C Compiler

free). The act of generating an instruction performs a transformation on the tree and the
machine state; hopefully, the tree eventually gets reduced to a single node. If each of these
instruction/transformation pairs is correct, and if the machine state model really represents
the actual machine, and if the transformations reduce the input tree to the desired single
node, then the output code will be correct.

For most real machines, there is no definitive theory of code generation that encom
passes all the C operators. Thus the selection of which instruction/transformations to gen
erate, and in what order, will have a heuristic flavor. If, for some expression tree, no transfor
mation applies, or, more seriously, if the heuristics select a sequence of
instruction/transformations that do not in fact reduce the tree, the compiler will report its
inability to generate code, and abort.

A major part of the code generator is concerned with the model and the transformations,
- most of this is machine independent, or depends only on simple tables. The flexibility
comes from the heuristics that guide the transformations of the trees, the selection of
subgoals, and the ordering of the computation.

The Machine, Model
The machine is assumed to have a number of registers, of at most two different types: A

and B. Within each register class, there may be scratch (temporary) registers and dedicated
registers (e.g., register variables, the stack pointer, etc.). Requests to allocate and free regis
ters involve only the temporary registers.

Each of the registers in the machine is given a name and a number in the mac2defs file;
the numbers are used as indices into various tables that describe the registers, so they should
be kept small. One such table is the rstatus table on file local2.c. This table is indexed by
register number, and contains expressions made up from manifest constants describing the
register types: SAREG for dedicated AREG's, SAREG/STAREG for scratch AREGS's, and
SBREG and SBREG\ STBREG similarly for BREG's. There are macros that access this infor
mation: isbreg(r) returns true if register number r is a BREG, and istreg(r) returns true if
register number r is a temporary AREG or BREG. Another table, rnames, contains the regis
ter names; this is used when putting out assembler code and diagnostics.

The usage of registers is kept track of by an array called busy. Busy[r] is the number
of uses of register r in the current tree being processed. The allocation and freeing of regis
ters will be discussed later as part of the code generation algorithm.

General Organization
As mentioned above, the second pass reads lines from the intermediate file, copying

through to the output unchanged any lines that begin with a')', and making note of the infor
mation about stack usage and register allocation contained on lines beginning with ']' and '['.
The expression trees, whose beginning is indicated by a line beginning with '.', are read and
rebuilt into trees. If the compiler is loaded as one pass, the expression trees are immediately
available to the code generator.

The actual code generation is done by a hierarchy of routines. The routine delay is first
given the tree; it attempts to delay some postfix ++ and -- computations that might reason
ably be done after the smoke clears. It also attempts to handle comma (,) operators by com
puting the left side expression first, and then rewriting the tree to eliminate the operator.
Delay calls codgen to control the actual code generation process. Codgen takes as arguments
a pointer to the expression tree, and a second argument that, for socio-historical reasons, is
called a cookie. The cookie describes a set of goals that would be acceptable for the code gen
eration: these are assigned to individual bits, so they may be logically or'ed together to form a
large number of possible goals. Among the possible goals are FOREFF (compute for side
effects only; don't worry about the value), INTEMP (compute and store value into a tem
porary location in memory), INAREG (compute into an A register), INTAREG (compute into
a scratch A register), INBREG and INTBREG similarly, FORCC (compute for condition

A Tour Through the Portable C Compiler 2-51

codes), and FORARG (compute it as a function argument; e.g., stack it if appropriate).

Codgen first canonicalizes the tree by calling canon. This routine looks for certain
transformations that might now be applicable to the tree. One, which is very common and
very powerful, is to fold together an indirection operator (UNARY MUL) and a register
(REG); in most machines, this combination is addressable directly, and so is similar to a
NAME in its behavior. The UNARY MUL and REG are folded together to make another
node type called OREG. In fact, in many machines it is possible to directly address not just
the cell pointed to by a register, but also cells differing by a constant offset from the cell
pointed to by the register. Canon also looks for Sl!Ch easel"; calling the machine dependent
routine notoff to decide if the offset is acceptable (for example, in the IBM 370 the offset
must be between 0 and 4095 bytes). Another optimization is w replace bit field operations by
shifts and masks if the operation involves extracting the field. Finally, a machine dependent
routine, sucomp, is called that computes the Sethi-Ullman numbers for the tree (see below).

After the tree is canonicalized, codgen calls the routine store whose job is to select a
subtree of the tree to be computed and (usually) stored before beginning the computation of
the full tree. Store must return a tree that can be computed without need for any temporary
storage locations. In effect, the only store operations generated while processing the subtree
must be as a response to explicit assignment operators in the tree. This division of the job
marks one of the more significant, and successful, departures from most other compilers. It
means that the code generator can operate under the assumption that there are enough regis
ters to do its job, without worrying about temporary storage. If a store into a temporary
appears in the output, it is always as a direct result of logic in the store routine; this makes
debugging easier.

One consequence of this organization is that code is not generated by a treewalk. There
are theoretical results that support this decision. 7 It may be desirable to compute several sub
trees and store them before tackling the whole tree; if a subtree is to be stored, this is known
before the code generation for the subtree is begun, and the subtree is computed when all
scratch registers are available.

The store routine decides what subtrees, if any, should be stored by making use of
numbers, called Sethi-Ullman numbers, that give, for each subtree of an expression tree, the
minimum number of scratch registers required to compile the subtree, without any stores into
temporaries.a These numbers are computed by the machine-dependent routine sucomp, called
by canon. The basic notion is that, knowing the Sethi-Ullman numbers for the descendants
of a node, and knowing the operator of the node and some information about the machine, the
Sethi-Ullman number of the node itself can be computed. If the Sethi-Ullman number for a
tree exceeds the number of scratch registers available, some subtree must be stored. Unfor
tunately, the theory behind the Sethi-Ullman numbers applies only to uselessly simple
machines and operators. For the rich set of C operators, and for machines with asymmetric
registers, register pairs, different kinds of registers, and exceptional forms of addressing, the
theory cannot be applied directly. The basic idea of estimation is a good one, however, and
well worth applying; the application, especially when the compiler comes to be tuned for high
code quality, goes beyond the park of theory into the swamp of heuristics. This topic will be
taken up again later, when more of the compiler structure has been described.

After examining the Sethi-Ullman numbers, store selects a subtree, if any, to be stored,
and returns the subtree and the associated cookie in the external variables stotree and sto
cook. If a subtree has been selected, or if the whole tree is ready to be processed, the routine
order is called, with a tree and cookie. Order generates code for trees that do not require
temporary locations. Order may make recursive calls on itself, and, in some cases, on codgen;
for example, when processing the operators &&, 11, and comma (','), that have a left to right
evaluation, it is incorrect for store examine the right operand for subtrees to be stored. In
these cases, order will call codgen recursively when it is permissible to work on the r~ht
operand. A similar issue arises with the? : operator.

2-52 A Tour Through the Portable C Compiler

The order routine works by matching the current tree with a set of code templates. If a
template is discovered that will match the current tree and cookie, the associated assembly
language statement or statements are generated. The tree is then rewritten, as specified by
the template, to represent the effect of the output instruction(s). If no template match is
found, first an attempt is made to find a match with a different cookie; for example, in order
to compute an expression with cookie INTEMP (store into a temporary storage location), it is
usually necessary to compute the expression into a scratch register first. If all attempts to
match the tree fail, the heuristic part of the algorithm becomes dominant. Control is typically
given to one of a number of machine-dependent routines that may in turn recursively call
order to achieve a subgoal of the computation (for example, one of the arguments may be
computed into a temporary register). After this subgoal has been achieved, the process begins
again with the modified tree. If the machine-dependent heuristics are unable to reduce the
tree further, a number of default rewriting rules may be considered appropriate. For example,
if the left operand of a + is a scratch register, the + can be replaced by a += operator; the
tree may then match a template.

To close this introduction, we will discuss the steps in compiling code for the expression

a+= b

where a and b are static variables.

To begin with, the whole expression tree is examined with cookie FOREFF, and no
match is found. Search with other cookies is equally fruitless, so an attempt at rewriting is
made. Suppose we are dealing with the Interdata 8/32 for the moment. It is recognized that
the left hand and right hand sides of the += operator are addressable, and in particular the
left hand side has no side effects, so it is permissible to rewrite this as

a=a+b

and this is done. No match is found on this tree either, so a machine dependent rewrite is
done; it is recognized that the left hand side of the assignment is addressable, but the right
hand side is not in a register, so order is called recursively, being asked to put the right hand
side of the assignment into a register. This invocation of order searches the tree for a match,
and fails. The machine dependent rule for + notices that the right hand operand is address
able; it decides to put the left operand into a scratch register. Another recursive call to order
is made, with the tree consisting solely of the leaf a, and the cookie asking that the value be
placed into a scratch register. This now matches a template, and a load instruction is emitted.
The node consisting of a is rewritten in place to represent the register into which a is loaded,
and this third call to order returns. The second call to order now finds that it has the tree

reg+ b

to consider. Once again, there is no match, but the default rewriting rule rewrites the + as a
+= operator, since the left operand is a scratch register. When this is done, there is a match:
in fact,

reg+= b

simply describes the effect of the add instruction on a typical machine. After the add is emit
ted, the tree is rewritten to consist merely of the register node, since the result of the add is
now in the register. This agrees with the cookie passed to the second invocation of order, so
this invocation terminates, returning to the first level. The original tree has now become

a= reg

which matches a template for the store instruction. The store is output, and the tree rewrit
ten to become just a single register node. At this point, since the top level call to order was
interested only in side effects, the call to order returns, and the code generation is completed;
we have generated a load, add, and store, as might have been expected.

A Tour Through the Portable C Compiler 2-53

The effect of machine architecture on this is considerable. For example, on the
Honeywell 6000, the machine dependent heuristics recognize that there is an "add to storage"
instruction, so the strategy is quite different; b is loaded in to a register, and then an add to
storage instruction generated to add this register in to a. The transformations, involving as
they do the semantics of C, are largely machine independent. The decisions as to when to use
them, however, are almost totally machine dependent.

Having given a broad outline of the code generation process, we shall next consider the
heart of it: the templates. This leads naturally into discussions of template matching and
register allocation, and finally a discussion of the machine dependent interfaces and strategies.

The Templates

The templates describe the effect of the target machine instructions on the model of
computation around which the compiler is organized. In effect, each template has five logical
sections, and represents an assertion of the form:

If we have a subtree of a given shape (1), and we have a goal (cookie) or goals to achieve
(2), and we have sufficient free resources (3), then we may emit an instruction or
instructions (4), and rewrite the subtree in a particular manner (5), and the rewritten
tree will achieve the desired goals.

These five sections will be discussed in more detail later. First, we give an example of a
template:

ASGPLUS, INAREG,
SAREG,
SN AME,

TINT,
TINT,
0,
"

RLEFT,
add AL,AR\n",

The top line specifies the operator(+=) and the cookie (compute the value of the subtree into
an AREG). The second and third lines specify the left and right descendants, respectively, of
the += operator. The left descendant must be a REG node, representing an A register, and
have integer type, while the right side must be a NAME node, and also have integer type.
The fourth line contains the resource requirements (no scratch . registers or temporaries
needed), and the rewriting rule (replace the subtree by the left descendant). Finally, the
quoted string on the last line represents the output to the assembler: lower case letters, tabs,
spaces, etc. are copied verbatim. to the output; upper case letters trigger various macro-like
expansions. Thus, AL would expand into the Address form of the Left operand - presum
ably the register number. Similarly, AR would expand into the name of the right operand.
The add instruction of the last section might well be emitted by this template.

In principle, it would be possible to make separate templates for all legal combinations
of operators, cookies, types, and shapes. In practice, the number of combinations is very large.
Thus, a considerable amount of mechanism is present to permit a large number of subtrees to
be matched by a single template. Most of the shape and type specifiers are individual bits,
and can be logically or'ed together. There are a number of special descriptors for matching
classes of operators. The cookies can also be combined. As an example of the kind of tem
plate that really arises in practice, the actual template for the Interdata 8/32 that subsumes
the above example is:

ASG OPSIMP, INAREGIFORCC,
SAREG, TINTITUNSIGNEDITPOINT,
SAREGISNAMEISOREGISCON, . TINTITUNSIGNEDITPOIN1

0, RLEFTIRESCC,
" OI AL,AR\n",

Here, OPSIMP represents the operators + • - • I, &, and A. The 01 macro in the output string
expands into the appropriate Integer Opcode for the operator. The left and right sides can be

2-54 A Tour Through the Portable C Compiler

integers, unsigned, or pointer types. The right side can be, in addition to a name, a register, a
memory location whose address is given by a register and displacement (OREG), or a con
stant. Finally, these instructions set the condition codes, and so can be used in condition con
texts: the cookie and rewriting rules reflect this.

The Template Matching Algorithm.
The heart of the second pass is the template matching algorithm, in the routine match.

Match is called with a tree and a cookie; it attempts to match the given tree against some
template that will transform it according to one of the goals given in the cookie. If a match is
suceessful, the transformation is applied; expand is called to generate the assembly code, and
then reclaim rewrites the tree, and reclaims the resources, such as registers, that might have
become free as a result of the generated code.

This part of the compiler is among the most time critical. There is a spectrum of imple
mentation techniques available for doing this matching. The most naive algorithm simply
looks at the templates one by one. This can be considerably improved upon by restricting the
search for an acceptable template. It would be possible to do better than this if the templates
were given to a separate program that, ate them and generated a template matching subrou
tine. This would make maintenance of the compiler much more complicated, however, so this
has not been done.

The matching algorithm is actually carried out by restricting the range in the table that
must be searched for each opcode. This introduces a number of complications, however, and
needs a bit of sympathetic help by the person constructing the compiler in order to obtain
best results. The exact tuning of this algorithm continues; it is best to consult the code and
comments in match for the latest version.

In order to match a template to a tree, it is necessary to match not only the cookie and
the op of the root, but also the types and shapes of the left and right descendants (if any) of
the tree. A convention is established here that is carried out throughout the second pass of
the compiler. If a node represents a unary operator, the single descendant is always the "left"
descendant. If a node represents a unary operator or a leaf node (no descendants) the "right"
descendant is taken by convention to be the node itself. This enables templates to easily
match leaves and conversion operators, for example, without any additional mechanism in the
matching program.

The type matching is straightforward; it is possible to specify any combination of basic
types, general pointers, and pointers to one or more of the basic types. The shape matching is
somewhat more complicated, but still pretty simple. Templates have a collection of possible
operand shapes on which the opcode might match. In the simplest case, an add operation
might be able to add to either a register variable or a scratch register, and might be able (with
appropriate help from the assembler) to add an integer constant (ICON), a static memory cell
(NAME), or a stack location (OREG).

It is usually attractive to specify a number of such shapes, and distinguish between them
when the assembler output is produced. It is possible to describe the union of many elemen
tary shapes such as ICON, NAME, OREG, AREG or BREG (both scratch and register forms),
etc. To handle at least the simple forms of indirection, one can also match some more compli
cated forms of trees; ST ARNM and ST ARREG can match more complicated trees headed by
an indirection operator, and SFLD can match certain trees headed by a FLD operator: these
patterns call machine dependent routines that match the patterns of interest on a given
machine. The shape SW ADD may be used to recognize NAME or OREG nodes that lie on
word boundaries: this may be of some importance on word-addressed machines. Finally,
there are some special shapes: these may not be used in conjunction with the other shapes,
but may be defined and extended in machine dependent ways. The special shapes SZERO,
SONE, and SMONE are predefined and match constants 0, 1, and -1, respectively; others are
easy to add and match by using the machine dependent routine special.

A Tour Through the Portable C Compiler 2-55

When a template has been found that matches the root of the tree, the cookie, and the
shapes and types of the descendants, there is still one bar to a total match: the template may
call for some resources (for example, a scratch register). The routine allo is called, and it
attempts to allocate the resources. If it cannot, the match fails; no resources are allocated. If
successful, the allocated resources are given numbers 1, 2, etc. for later reference when the
assembly code is generated. The routines expand and reclaim are then called. The match
routine then returns a special value, MDONE. If no match was found, the value MNOPE is
returned; this is a signal to the caller to try more cookie values, or attempt a rewriting rule.
Match is also used to select rewriting rules, although the way of doing this is pretty straight
forward. A special cookie, FORREW, is used to ask match to search for a rewriting rule. The
rewriting rules are keyed to various opcodes; most are carried out in order. Since the question
of when to rewrite is one of the key issues in code generation, it will be taken up again later.

Register Allocation.

The register allocation routines, and the allocation strategy, play a central role in the
correctness of the code generation algorithm. If there are bugs in the Sethi-Ullman computa
tion that cause the number of needed registers to be underestimated, the compiler may run
out of scratch registers; it is essential that the allocator keep track of those registers that are
free and busy, in order to detect such conditions.

Allocation of registers takes place as the result of a template match; the routine allo is
called with a word describing the number of A registers, B registers, and temporary locations
needed. The allocation of temporary locations on the stack is relatively straightforward, and
will not be further covered; the bookkeeping is a bit tricky, but conceptually trivial, and
requests for temporary space on the stack will never fail.

Register allocation is less straightforward. The two major complications are pairing and
sharing. In many machines, some operations (such as multiplication and division), and/or
some types (such as longs or double precision) require even/odd pairs of registers. Operations
of the first type are exceptionally difficult to deal with in the compiler; in fact, their theoreti
cal properties are rather bad as well. 9 The second issue is dealt with rather more successfully;
a machine dependent function called szty(t) is called that returns 1 or 2, depending on the
number of A registers required to hold an object of type t. If szty returns 2, an even/odd pair
of A registers is allocated for each request.

The other issue, sharing, is more subtle, but important for good code quality. When
registers are allocated, it is possible to reuse registers that hold address information, and use
them to contain the values computed or accessed. For example, on the IBM 360, if register 2
has a pointer to an integer in it, we may load the integer into register 2 itself by saying:

L 2,0(2)

If register 2 had a byte pointer, however, the sequence for loading a character involves clearing
the target register first, and then inserting the desired character:

SR 3,3
IC 3,0(2)

In the first case, if register 3 were used as the target, it would lead to a larger number of regis
ters used for the expression than were required; the compiler would generate inefficient code.
On the other hand, if register 2 were used as the target in the second case, the code would
simply be wrong. In the first case, register 2 can be shared while in the second, it cannot.

In the specification of the register needs in the templates, it is possible to indicate
whether required scratch registers may be shared with possible registers on the left or the
right of the input tree. In order that a register be shared, it must be scratch, and it must be
used only once, on the appropriate side of the tree being compiled.

The allo routine thus has a bit more to do than meets the eye; it calls freereg to obtain
a free register for each A and B register request. Freereg makes multiple calls on the routine

2-56 A Tour Through the Portable C Compiler

usable to decide if a given register can be used to satisfy a given need. Usable calls shareit if
the register is busy, but might be shared. Finally, shareit calls ushare to decide if the desired
register is actually in the appropriate subtree, and can be shared.

Just to add additional complexity, on some inachinefl (such as the IBM 370) it is possible
to have "double indexing" forms of addressing; these are represented by OREGS's with the
base and index registers encoded intd the register field. While the register allocation and
deallocation per se is not made more difficult by this phenomenon, the code itself is somewhat
more complex.

Having allocated the registers and expanded the assembly language, it is. time to reclaim
the resources; the routine reclaim does this. Many operations produce more than one result.
For example, many arithmetic operations may produce a value in a register, and also set the
condition codes. Assignment operations may leave results both in a register and in memory.
Reclaim is passed three parameters; the tree and cookie that were matched, and the. rewriting
field of the template. The rewriting field ailows the specification of possible results; the tree is
rewritten to reflect the results of the operation. If the tree was computed for side effects only
(FOREFF), the tree is freed, and all resources in it reclaimed. If the tree was computed for
condition codes, the resources are a1so freed, and the tree replaced by a special node type,
FORCC. Otherwise, the value may be found in the left argument of the root, the right argu
ment of the root, or one of the temporary resources allocated. In these cases, first the
resources of the tree, and the newly allocated resources, are freed; then the resources needed
by the result are made busy again. The final result must always match the shape of the input
cookie; otherwise, the cotnpiler error "cannot reclaim" is generated. There are some machine
dependent ways of preferring results in registers or memory when there are multiple results
matching multiple goals in the cookie.

The Machine Dependent Interface
The files order.c, local2.c; and table.c, as well as the header file mac2defs, represertt the

machine dependent portion of the seeond pass. The machine dependent portion can be
toughly divided into two: the easy portion and the hard portion. The easy portion tells the
compiler the names of the registers, and arranges that the compiler generate the proper
assembler formats, opcode names, location counters, etc. The hard portion involves the
Sethi-Ullman computation, the rewriting rules, and, to some extent, the templates. It is hard
because there are no real algorithms that apply; most of this portion is based on heuristics.
This section discusses the easy pottiort; the next several sections will discuss the hard portion.

If the compiler is adapted from a compiler for a machine of similar architecture, the easy
part is indeed easy. In mac2defs, the register numbers are defined, as well as various parame
ters for the stack frame, and various tnacros that describe the machine architecture. If double
indexing is to be permitted, for etample, the symbol R2REGS is defined. Also, a number of
macros that are involved in function call processing, especially for unusual function call
mechanisms, are defined here.

In local2.c, a large number of simple functions are defined. These do things such as
write out opcodes, register names, and address forms for the assembler. Part of the function
call code is defined here; that is nontrivial to design, but typically rather straightforward to
implement. Among the easy routines in order.c are routines for generating a created label,
defining a label, and generating the argutnents of a function call.

These routines tend to have a local effect, and depend on a fairly straightforward way on
the target assembler and the design decisions already made about the compiler. Thus they
will not be further treated here.

The Rewriting Rules
When a tree fails to match any template, it becomes a candidate for rewriting. Before

the tree is rewritten, the machine dependent routine nextcook is called with the tree and the
cookie; it suggests another cookie that might be a better candidate for the matching of the

A Tour Through the Portable C Compiler 2-57

tree. If all else fails, the templates are searched with the cookie FORREW, to look for a
rewriting rule. The rewriting rules are of two kinds; for most of the common operators, there
are machine dependent rewriting rules that may be applied; these are handled by machine
dependent functions that are called and given the tree to be computed. These routines may
recursively call order or codgen to cause certain subgoals to be achieved; if they actually call
for some alteration of the tree, they return 1, and the code generation algorithm recanonical
izes and tries again. If these routines choose not to deal with the tree, the default rewriting
rules are applied.

The assignment ops, when rewritten, call the routine setasg. This is assumed to rewrite
the tree at least to the point where there are no side effects in the left hand side. If there is
still no template match, a default rewriting is done that causes an expression such as

a+= b

to be rewritten as

a=a+b

This is a useful default for certain mixtures of strange types (for example, when a is a bit field
and b an character) that otherwise might need separate table entries.

Simple assignment, structure assignment, and all forms of calls are handled completely
by the machine dependent routines. For historical reasons, the routines generating the calls
return 1 on failure, 0 on success, unlike the other routines.

The machine dependent routine setbin handles binary operators; it too must do most of
the job. In particular, when it returns 0, it must do so with the left hand side in a temporary
register. The default rewriting rule in this case is to convert the binary operator into the asso
ciated assignment operator; since the left hand side is assumed to be a temporary register, this
preserves the semantics and often allows a considerable saving in the template table.

The increment and decrement operators may be dealt with with the machine dependent
routine setincr. If this routine chooses not to deal with the tree, the rewriting rule replaces

x ++

by

((x += 1) - 1)

which preserves the semantics. Once again, this is not too attractive for the most common
cases, but can generate close to optimal code when the type of x is unusual.

Finally, the indirection (UNARY MUL) operator is also handled in a special way. The
machine dependent routine off star is extremely important for the efficient generation of code.
Offstar is called with a tree that is the direct descendant of a UNARY MUL node; its job is to
transform this tree so that the combination of UNARY MUL with the transformed tree
becomes addressable. On most machines, offstar can simply compute the tree into an A or B
register, depending on the architecture, and then canon will make the resulting tree into an
OREG. On many machines, offstar can profitably choose to do less work than computing its
entire argument into a register. For example, if the target machine supports OREGS with a
constant offset from a register, and offstar is called with a tree of the form

expr + const

where const is a constant, then offstar need only compute expr into the appropriate form of
register. On machines that support double indexing, offstar may have even more choice as to
how to proceed. The proper tuning of off star, which is not typically too difficult, should be
one of the first tries at optimization attempted by the compiler writer.

2-58 A Tour Through the Portable C Compiler

The Sethi-Ullman Computation

The heart of the heuristics is the computation of the Sethi-Ullman numbers. This com
putation is closely linked with the rewriting rules and the templates. As mentioned before,
the Sethi-Ullman numbers are expected to estimate the number of scratch registers needed to
compute the subtrees without using any stores. However, the original theory does not apply
to real machines. For one thing, the theory assumes that all registers are interchangeable.
Real machines have general purpose, floating point, and index registers, register pairs, etc.
The theory also does not account for side effects; this rules out various forms of pathology
that arise from assignment and assignment ops. Condition codes are also undreamed of.
Finally, the influence of types, conversions, and the various addressability restrictions and
extensions of real machines are also ignored.

Nevertheless, for a "useless" theory, the basic insight of Sethi and Ullman is amazingly
useful in a real compiler. The notion that one should attempt to estimate the resource needs
of trees before starting the code generation provides a natural means of splitting the code gen
eration problem, and provides a bit of redundancy and self checking in the compiler. More
over, if writing the Sethi-Ullman routines is hard, describing, writing, and debugging the alter
native (routines that attempt to free up registers by stores into temporaries "on the fly") is
even worse. Nevertheless, it should be clearly understood that these routines exist in a realm
where there is no "right" way to write them; it is an art, the realm of heuristics, and, conse
quently, a major source of bugs in the compiler. Often, the early, crude versions of these rou
tines give little trouble; only after the compiler is actually working and the code quality is
being improved do serious problem have to be faced. Having a simple, regular machine archi
tecture is worth quite a lot at this time.

The major problems arise from asymmetries in the registers: register pairs, having
different kinds of registers, and the related problem of needing more than one register (fre
quently a pair) to store certain data types (such as longs or doubles). There appears to be no
general way of treating this problem; solutions have to be fudged for each machine where the
problem arises. On the Honeywell 66, for example, there are only two general purpose regis
ters, so a need for a pair is the same as the need for two registers. On the IBM 370, the regis
ter pair (0,1) is used to do multiplications and divisions; registers 0 and 1 are not generally
considered part of the scratch registers, and so do not require allocation explicitly. On the
Interdata 8/32, after much consideration, the decision was made not to try to deal with the
register pair issue; operations such as multiplication and division that required pairs were sim
ply assumed to take all of the scratch registers. Several weeks of effort had failed to produce
an algorithm that seemed to have much chance of running successfully without inordinate
debugging effort. The difficulty of this issue should not be minimized; it represents one of the
main intellectual efforts in porting the compiler. Nevertheless, this problem has been fudged
with a degree of success on nearly a dozen machines, so the compiler writer should not aban
don hope.

The Sethi-Ullman computations interact with the rest of the compiler in a number of
rather subtle ways. As already discussed, the store routine uses the Sethi-Ullman numbers to
decide which subtrees are too difficult to compute in registers, and must be stored. There are
also subtle interactions between the rewritl.ng routines and the Sethi-Ullman numbers. Sup
pose we have a tree such as

A-B

where A and B are expressions; suppose further that B takes two registers, and A one. It is
possible to compute the full expression in two registers by first computing B, and then, using
the scratch register used by B, but not containing the answer, compute A. The subtraction
can then be done, computing the expression. (Note that this assumes a number of things, not
the least of which are register-to-register subtraction operators and symmetric registers.) If the
machine dependent routine setbin, however, is not prepared to recognize this case and com
pute the more difficult side of the expression first, the Sethi-Ullman number must be set to
three. Thus, the Sethi-Ullman number for a tree should represent the code that the machine

A Tour Through the Portable C Compiler 2-59

dependent routines are actually willing to generate.

The interaction can go the other way. If we take an expression such as

*(p+i)

where p is a pointer and i an integer, this can probably be done in one register on most
machines. Thus, its Sethi-Ullman number would probably be set to one. If double indexing is
possible in the machine, a possible way of computing the expression is to load both p and i
into registers, and then use double indexing. This would use two scratch registers; in such a
case, it is possible that the scratch registers might be unobtainable, or might make some other
part of the computation run out of registers. The usual solution is to cause offstar to ignore
opportunities for double indexing that would tie up more scratch registers than the Sethi
Ullman number had reserved.

In summary, the Sethi-Ullman computation represents much of the craftsmanship and
artistry in any application of the portable compiler. It is also a frequent source of bugs. Algo
rithms are available that will produce nearly optimal code for specialized machines, but unfor
tunately most existing machines are far removed from these ideals. The best way of proceed
ing in practice is to start with a compiler for a similar machine to the target, and proceed very
carefully.

Register Allocation

After the Sethi-Ullman numbers are computed, order calls a routine, rallo, that does
register allocation, if appropriate. This routine does relatively little, in general; this is espe
cially true if the target machine is fairly regular. There are a few cases where it is assumed
that the result of a computation takes place in a particular register; switch and function
return are the two major places. The expression tree has a field, rall, that may be filled with
a register number; this is taken to be a preferred register, and the first temporary register allo
cated by a template match will be this preferred one, if it is free. If not, no particular action
is taken; this is just a heuristic. If no register preference is present, the field contains
NOPREF. In some cases, the result must be placed in a given register, no matter what. The
register number is placed in rall, and the mask MUSTDO is logically or'ed in with it. In this
case, if the subtree is requested in a register, and comes back in a register other than the
demanded one, it is moved by calling the routine rmove. If the target register for this move is
busy, it is a compiler error.

Note that this mechanism is the only one that will ever cause a register-to-register move
between scratch registers (unless such a move is buried in the depths of some template). This
simplifies debugging. In some cases, there is a rather strange interaction between the register
allocation and the Sethi-Ullman number; if there is an operator or situation requiring a partic
ular register, the allocator and the Sethi-Ullman computation must conspire to ensure that the
target register is not being used by some intermediate result of some far-removed computa
tion. This is most easily done by making the special operation take all of the free registers,
preventing any other partially-computed results from cluttering up the works.

Compiler Bugs

The portable compiler has an excellent record of generating correct code. The require
ment for reasonable cooperation between the register allocation, Sethi-Ullman computation,
rewriting rules, and templates builds quite a bit of redundancy into the compiling process.
The effect of this is that, in a surprisingly short time, the compiler will start generating
correct code for those programs that it can compile. The hard part of the job then becomes
finding and eliminating those situations where the compiler refuses to compile a program
because it knows it cannot do it right. For example, a template may simply be missing; this
may either give a compiler error of the form "no match for op ... ", or cause the compiler to go
into an infinite loop applying various rewriting rules. The compiler has a variable, nrecur,
that is set to 0 at the beginning of an expressions, and incremented at key spots in the

2-60 A Tour Through the Portable C Compiler

compilation process; if this parameter gets too large, the compiler decides that it is in a loop,
and aborts. Loops are also characteristic of botches in the machine-dependent rewriting rules.
Bad Sethi-Ullman computations usually cause the scratch registers to run out; this often
means that the Sethi-Ullman number was underestimated, so store did not store something it
should have; alternatively, it can mean that the rewriting rules were not smart enough to find
the sequence that sucomp assumed would be used.

The best approach when a compiler error is detected involves several stages. First, try to
get a small example program that steps on the bug. Second, turn on various debugging flags
in the code generator, and follow the tree through the process of being matched and rewritten.
Some flags of interest are -e, which prints the expression tree, -r, which gives information
about the allocation of registers, -a, which gives information about the performance of rallo,
and -o, which gives information about the behavior of order. This technique should allow
most bugs to be found relatively quickly.

Unfortunately, finding the bug is usually not enough; it must also be fixed! The
difficulty arises because a fix to the particular bug of interest tends to break other code that
·already works. Regression tests, tests that compare the performance of a new compiler against
the performance of an older one, are very valuable in preventing major catastrophes.

Summary and Conclusion

The portable compiler has been a useful tool for providing C capability on a large
number of diverse machines, and for testing a number of theoretical constructs in a practical
setting. It has many blemishes, both in style and functionality. It has been applied to many
more machines than first anticipated, of a much wider range than originally dreamed of. Its
use has also spread much faster than expected, leaving parts of the compiler still somewhat
raw in shape.

On the theoretical side, there is some hope that the skeleton of the sucomp routine
could be generated for many machines directly from the templates; this would give a consider
able boost to the portability and correctness of the compiler, but might affect tunability and
code quality. There is also room for more optimization, both within optim and in the form of
a portable "peephole" optimizer.

On the practical, development side, the compiler could probably be sped up and made
smaller without doing too much violence to its basic structure. Parts of the compiler deserve
to be rewritten; the initialization code, register allocation, and parser are prime candidates. It
might be that doing some or all of the parsing with a recursive descent parser might save
enough space and time to be worthwhile; it would certainly ease the problem of moving the
compiler to an environment where Yacc is not already present.

Finally, I would like to thank the many people who have sympathetically, and even
enthusiastically, helped me grapple with what has been a frustrating program to write, test,
and install. D. M. Ritchie and E. N. Pinson provided needed early encouragement and philo
sophical guidance; M. E. Lesk, R. Muha, T. G. Peterson, G. Riddle, L. Rosier, R. W. Mitze, B.
R. Rowland, S. I. Feldman, and T. B. London have all contributed ideas, gripes, and all, at
one time or another, climbed "into the pits" with me to help debug. Without their help this
effort would have not been possible; with it, it was often kind of fun.

A Tour Through the Portable C Compiler 2-61

References

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall,
Englewood Cliffs, New Jersey, 1978.

2. S. C. Johnson, "Lint, a C Program Checker," Comp. Sci. Tech. Rep. No. 65, 1978.
updated version TM 78-1273-3

3. A. Snyder, A Portable Compiler for the Language C, Master's Thesis, M.I.T., Cam
bridge, Mass., 1974.

4. S. C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on
Principles of Programming Languages, pp. 97-104, January 1978.

5. M. E. Lesk, S. C. Johnson, and D. M. Ritchie, The C Language Calling Sequence, 1977.

6. S. C. Johnson, "Yacc - Yet Another Compiler-Compiler," Comp. Sci. Tech. Rep. No.
32, Bell Laboratories, Murray Hill, New Jersey, July 1975.

7. A. V. Aho and S. C. Johnson, "Optimal Code Generation for Expression Trees," J.
Assoc. Comp. Mach., vol. 23, no. 3, pp. 488-501, 1975. Also in Proc. ACM Symp. on
Theory of Computing, pp. 207-217, 1975.

8. R. Sethi and J. D. Ullman, "The Generation of Optimal Code for Arithmetic Expres
sions," J. Assoc. Comp. Mach., vol. 17, no. 4, pp. 715-728, October 1970. Reprinted as
pp. 229-247 in Compiler Techniques, ed. B. W. Pollack, Auerbach, Princeton NJ (1972).

9. A. V. Aho, S. C. Johnson, and J. D. Ullman, "Code Generation for Machines with Mul
tiregister Operations," Proc. 4th ACM Symp. on Principles of Programming Languages,
pp. 21-28, January 1977.

A Tour Through the UNIX C Compiler 2-63

A Tour Through the UNIXt C Compiler

D. M. Ritchie

Bell Laboratories,
Murray Hill, New Jersey 07974

The Intermediate Language

Communication between the two phases of the compiler proper is carried out by means
of a pair of intermediate files. These files are treated as having identical structure, although
the second file contains only the code generated for strings. It is convenient to write strings
out separately to reduce the need for multiple location counters in a later assembly phase.

The intermediate language is not machine-independent; its structure in a number of
ways reflects the fact that C was originally a one-pass compiler chopped in two to reduce the
maximum memory requirement. In fact, only the latest version of the compiler has a com
plete intermediate language at all. Until recently, the first phase of the compiler generated
assembly code for those constructions it could deal with, and passed expression parse trees, in
absolute binary form, to the second phase for code generation. Now, at least, all inter-phase
information is passed in a describable form, and there are no absolute pointers involved, so
the coupling between the phases is not so strong.

The areas in which the machine (and system) dependencies are most noticeable are

1. Storage allocation for automatic variables and arguments has already been ·performed,
and nodes for such variables refer to them by offset from a display pointer. Type
conversion (for example, from integer to pointer) has already occurred using the assump
tion of byte addressing and 2-byte words.

2. Data representations suitable to the PDP-11 are assumed; in particular, floating point
constants are passed as four words in the machine representation.

As it happens, each intermediate file is represented as a sequence of binary numbers
without any explicit demarcations. It consists of a sequence of conceptual lines, each headed
by an operator, and possibly containing various operands. The operators are small numbers;
to assist in recognizing failure in synchronization, the high-order byte of each operator word is
always the octal number 376. Operands are either 16-bit binary numbers or strings of charac
ters representing names. Each name is terminated by a null character. There is no alignment
requirement for numerical operands and so there is no padding. after a name string.

The binary representation was chosen to avoid the necessity of converting to and from
character form and to minimize the size of the files. It would be very easy to make each
operator-operand 'line' in the file be a genuine, printable line, with the numbers in octal or
decimal; this in fact was the representation originally used.

The operators fall naturally into two classes: those which represent part of an expression,
and all others. Expressions are transmitted in a reverse-Polish notation; as they are being
read, a tree is built which is isomorphic to the tree constructed in the first phase. Expressions
are p;tSsed as a whole, with no non-expression operators intervening. The reader maintains a
stack; each leaf of the expression tree (name, constant) is pushed on the stack; each unary

tUNIX is a Trademark of Bell Laboratories.

2-64 A Tour Through the UNIX C Compiler

operator replaces the top of the stack by a node whose operand is the old top-of-stack; each
binary operator replaces the top pair on the stack with a single entry. When the expression is
cpmplete there is exactly one item on the stack. Following each expression is a special opera
tor which passes the unique previoµs expression to the 'optimizer' described below and then to
the code generator. . , .

Here is the list of operators not themselves part of expressions.

EOF
marks the end of an input file.

BDAT A flag data ...

specifies a sequence of bytes to be assembled as static data. It is followed by pairs of
words; the first member of the pair is non-zero to indicate that the data continue; a zero
flag is not followed by data and terminates the operator. The data bytes occupy the
low-order part of a word.

WDATA flag data ...

specifies a sequence of words to be assembled as static data; it is identical to the BDATA
operator except that entire words, not just bytes, are passed.

PROG
means that subsequent information is to be compiled as program text.

DATA
means that subsequent information is to be compiled as static data.

BSS

means that subsequent information is to be compiled as unitialized static data.

SYMDEF name

means that the symbol name is an external name defined in the current program. It is
produced for each external data or function definition.

CSPACE name size

indicates that the name refers to a data area whose size is the spe~ified number of bytes.
It is produced for external data definitions without explicit initialization.

SSPACE size

indicates that size bytes should be set aside for data storage. It is used to pad out short
initializations of external data and to reserve space for static (internal) data. It will be
preceded by an appropriate label.

EVEN

is produced after each external data definition whose size is not an integral number of
words. It is not produced after strings except when they initialize a character array.

NLABEL name

is produced just before a BDATA or WDATA initializing external data, and serves as a
label for the data.

\

A Tour Through the UNIX C Compiler 2-65

RLABELname
is produced just before each function definition, and labels its entry point.

SN AME name number

is produced at the start of each function for each static variable or label declared
therein. Subsequent uses of the variable will be in terms of the given number. The code
generator uses this only to produce a debugging symbol table.

ANAME name number

Likewise, each automatic variable's name and stack offset is specified by this operator.
Arguments count as automatics.

RNAME name number

Each register variable is similarly named, with its register number.

SAVE number

produces a register-save sequence at the start of each function, just after its label (RLA
BEL).

SETREG number

is used to indicate the number of registers used for register variables. It actually gives
the register number of the lowest free register; it is redundant because the RNAME
operators could be counted instead.

PRO FIL
is produced before the save sequence for functions when the profile option is turned on.
It produces code to count the number of times the function is called.

SWIT defl,ab line label value ...

is produced for switches. When control flows into it, the value being switched on is in
the register forced by RFORCE (below). The switch statement occurred on the indi
cated line of the source, and the label number of the default location is defiab. Then the
operator is followed by a sequence of label-number and value pairs; the list is terminated
by a 0 label.

LABEL number

generates an internal label. It is referred to elsewhere using the given number.

BRANCH number

indicates an unconditional transfer to the internal label number given.

RETRN
produces the return sequence for a function. It occurs only once, at the end of each
function.

EXPR line

causes the expression just preceding to be compiled. The argument is the line number in
the source where the expression occurred.

2-66 A Tour Through the UNIX C Compiler

NAME class type name

NAME class type number

indicates a name occurring in an expression. The first form is used when the name is
external; the second when the name is automatic, static, or a register. Then the number
indicates the stack offset, the label number, or the register number as appropriate. Class
and type encoding is described elsewhere.

CON type value

transmits an integer constant. This and the next two operators occur as part of expres
sions.

FCON type 4-word-value

transmits a floating constant as four words in PDP-11 notation.

SFCON type value

transmits a floating-point constant whose value is correctly represented by its high-order
word in PDP-11 notation.

NULL

indicates a null argument list of a function call in an expression; call is a binary operator
whose second operand is the argument list.

CBRANCH label cond

produces a conditional branch. It is an expression operator, and will be followed by an
EXPR. The branch to the label number takes place if the expression's truth value is the
same as that of cond. That is, if cond=I and the expression evaluates to true, the
branch is taken.

binary-operator type

There are binary operators corresponding to each such source-language operator; the
type of the result of each is passed as well. Some perhaps-unexpected ones are:
COMMA, which is a right-associative operator designed to simplify right-to-left evalua
tion of function arguments; prefix and postfix ++ and --, whose second operand is the
increment amount, as a CON; QUEST and COLON, to express the conditional expres
sion as 'a?(b:c)'; and a sequence of special operators for expressing relations between
pointers, in case pointer comparison is different from integer comparison (e.g. unsigned).

unary-operator type

There are also numerous unary operators. These include ITOF, FTOI, FTOL, LTOF,
ITOL, L TOI which convert among floating, long, and integer; JUMP which branches
indirectly through a label expression; INIT, which compiles the value of a constant
expression used as an initializer; RFORCE, which is used before a return sequence or a
switch to place a value in an agreed-upon register.

Expression Optimization

Each expression tree, as it is read in, is subjected to a fairly comprehensive analysis.
This is performed by the optim routine and a number of subroutines; the major things done
are

1. Modifications and simplifications of the tree so its value may be computed more
efficiently and conveniently by the code generator.

A Tour Through the UNIX C Compiler 2-67

2. Marking each interior node with an estimate of the number of registers required to
evaluate it. This register count is needed to guide the code generation algorithm.

One thing that is definitely not done is discovery or exploitation of common subexpres
sions, nor is this done anywhere in the compiler.

The basic organization is simple: a depth-first scan of the tree. Optim does nothing for
leaf nodes (except for automatics; see below), and calls unoptim to handle unary operators.
For binary operators, it calls itself to process the operands, then treats each operator
separately. One important case is commutative and associative operators, which are handled
by acommute.

Here is a brief catalog of the transformations carried out by by optim itself. It is not
intended to be complete. Some of the transformations are machine-dependent, although they
may well be useful on machines other than the PDP-11.

1. As indicated in the discussion of unoptim below, the optimizer can create a node type
corresponding to the location addressed by a register plus a constant offset. Since this is
precisely the implementation of automatic variables and arguments, where the register is
fixed by convention, such variables are changed to the new form to simplify later pro
cessing.

2. Associative and commutative operators are processed by the special routine acommute.

3. After processing by acommute, the bitwise & operator is turned into a new andn opera
tor; 'a & b' becomes 'a andn -b'. This is done because the PDP-11 provides no and
operator, but only andn. A similar transformation takes place for'=&'.

4. Relationals are turned around so the more complicated expression is on the left. (So
that '2 > f(x)' becomes 'f(x) < 2'). This improves code generation since the algorithm
prefers to have the right operand require fewer registers than the left.

5. An expression minus a constant is turned into the expression plus the negative constant,
and the acommute routine is called to take advantage of the properties of addition.

6. Operators with constant operands are evaluated.

7. Right shifts (unless by 1) are turned into left shifts with a negated right operand, since
the PDP-11 lacks a general right-shift operator.

8. A number of special cases are simplified, such as division or multiplication by 1, and
shifts by 0.

The unoptim routine performs the same sort of processing for unary operators.

1. '*&x' and '&*x' are simplified to 'x'.

2. If r is a register and c is a constant or the address of a static or external variable, the
expressions '*(r+c)' and '*r' are turned into a special kind of name node which expresses
the name itself and the offset. This simplifies subsequent processing because such con
structions can appear as the the address of a PDP-11 instruction.

3. When the unary '&' operator is applied to a name node of the special kind just dis
cussed, it is reworked to make the addition explicit again; this is done because the PDP-
11 has no 'load address' instruction.

4. Constructions like '*r++' and '*--r' where r is a register are discovered and marked as
being implementable using the PDP-11 auto-increment and -decrement modes.

5. If '!' is applied to a relational, the '!' is discarded and the sense of the relational is
reversed.

6. Special cases involving reflexive use of negation and complementation are discovered.

7. Operations applying to constants are evaluated.

The acommute routine, called for associative and commutative operators, discovers clus
ters of the same operator at the top levels of the current tree, and arranges them in a list: for
'a+((b+c)+(d+f))' the list would be'a,b,c,d,e,r. After each subtree is optimized, the list is

2-68 A Tour Through the UNIX C Compiler

sorted in decreasing difficulty of computation; as mentioned above, the code generation algo
rithm works best when left operands are the difficult ones. The 'degree of difficulty' computed
is actually finer than the mere number of registers required; a constant is considered simpler
than the address of a static or external, which is simpler than reference to a variable. This
makes it easy to fold all the constants together, and also to merge together the sum of a con
stant and the address of a static or external (since in such nodes there is space for an 'offset'
value). There are also special cases, like multiplication by 1 and addition of 0.

A special routine is invoked to handle sums of products. Distrib is based on the fact that it is
better to compute 'cl *c2*x + cl *y' as 'cl *(c2*x + y)' and makes the divisibility tests required
to assure the correctness of the transformation. This transformation is rarely possible with
code directly written by the user, but it invariably occurs as a result of the implementation of
multi-dimensional arrays.

Finally, acommute reconstructs a tree from the list of expressions which result.

Code Generation

The grand plan for code-generation is independent of any particular machine; it depends
largely on a set of tables. But this fact does not necessarily make it very easy to modify the
compiler to produce code for other machines, both because there is a good deal of machine
dependent structure in the tables, and because in any event such tables are non-trivial to
prepare.

The arguments to the basic code generation routine rcexpr are a pointer to a tree
representing an expression, the name of a code-generation table, and the number of a register
in which the value of the expression should be placed. Rcexpr returns the number of the
register in which the value actually ended up; its caller may need to produce a mov instruction
if the value really needs to be in the given register. There are four code generation tables.

Regtab is the basic one, which actually does the job described above: namely, compile
code which places the value represented by the expression tree in a register.

Cctab is used when the value of the expression is not actually needed, but instead the
value of the condition codes resulting from evaluation of the expression. This table is used,
for example, to evaluate the expression after if. It is clearly silly to calculate the value (O or 1)
of the expression 'a==b' in the context 'if (a==b) ... '

The sptab table is used when the value of an expression is to be pushed on the stack, for
example when it is an actual argument. For example in the function call 'f(a)' it is a bad idea
to load a into a register which is then pushed on the stack, when there is a single instruction
which does the job.

The efftab table is used when an expression is to be evaluated for its side effects, not its
value. This occurs mostly for expressions which are statements, which have no value. Thus
the code for the statement 'a = b' need produce only the approoriate mov instruction, and
need not leave the value of bin a register, while in the expression 'a + (b = c)' the value of 'b
= c' will appear in a register.

All of the tables besides regtab are rather small, and handle only a relatively few special
cases. If one of these subsidiary tables does not contain an entry applicable to the given
expression tree, rcexpr uses regtab to put the value of the expression into a register and then
fixes things up; nothing need be done when the table was efftab, but a tst instruction is pro
duced when the table called for was cctab, and a mov instruction, pushing the register on the
stack, when the table was sptab.

The rcexpr routine itself picks off some special cases, then calls cexpr to do the real
work. Cexpr tries to find an entry applicable to the given tree in the given table, and returns
-1 if no such entry is found, letting rcexpr try again with a different table. A successful
match yields a string containing both literal characters which are written out and pseudo
operations, or macros, which are expanded. Before studying the contents of these strings we

(

A Tour Through the UNIX C Compiler 2-69

will consider how table entries are matched against trees.

Recall that most non-leaf nodes in an expression tree contain the name of the operator,
the type of the value represented, and pointers to the subtrees (operands). They also contain
an estimate of the number of registers requirecl to evaluate the expression, placed there by the
expression-optimizer routines. The register counts are used to guide the code generation pro
cess, which is based on the Sethi-Ullman algorithm.

The main code generation tables consh\!t of entries each containing an operator number
and a pointer to a subtable for the corresponding operator. A subtable consists of a sequence
of entries, each with a key describing certain propertieii of the operands of the operator
involved; associated with the key is a code string. Once the subtable corresponding to the
operator is found, the subtable is searched linearly until a key is foµnd such that the proper
ties demanded by the key are compatible with the operands of the tree node. A successful
match returns the code string; an unsuccessful search, either for the operator in the main
table or a compatble key in the subtable, returns a failure indication.

The tables are all contained in a file which must be processed to obtain an assembly
language program. Thus they are written in a special-purpose language. To provided
definiteness to the following discussion, here is an example of a subtable entry.

%n,aw
F
add A2,R

The '%' indicates the key; the information following (up to a blank line) specifies the code
string. Very briefly, this entry is in the subtable for '+' of regtab; the key specifies that the
left operand is any integer, character, or pointer expression, and the right operand is any word
quantity which is directly addressible (e.g. a variable or constant). The code string calls for
the generation of the code to compile the left (first) operand into the current register ('F') and
then to produce an 'add' instruc~ion which adds the second operand ('A2') to the register ('R').
All of the notation will be explained below.

Only three features of the operands are used in deciding whether a match has occurred.
They are:

1. Is the type of the operand compatible with that demanded?

2. Is the 'degree of difficulty' (in a sense described below) compatible?

3. The table may demand that the operand have a'*' (indirection oper~tor) as its highest
operator.

As suggested above, the key for a subtable entry is indicated by a '% ,' and a comma
separated pair of specifications for the operands. (The second specification is ignored for
unary operators). A specification indicates a type requirement by including one of the follow
ing letters. If no type letter is p~esent, any integer, character, or ppintjilr operand will satisfy
the requirement (not float, double, or long).

b A byte (character) operand is required.

w A word (integer or pointer) operand is required.

f A float or double operand is required.

d A double operand is required.

A long (32-bit integer) operand is required.

Before discussing the 'qegree of difficulty' specification, the algorithm has to be
explained more completeJy, :Rcf!xpr (and cexpr) are called with a register number in which to
place their result. Registers Q, 1, ... are used during evaluation of expressions; the maximum
register which can be used inthifi! way depends on the number of register variables, but in any
event only registers 0 through 4 are available since r5 is used as a stack frame header and r6
(sp) and r7 (pc) have special hardware properties. The code genert}tion routines assume that
when called with register n as argument, they may use n+l, ... (up to the first register

2-70 A Tour Through the UNIX C Compiler

variable) as temporaries. Consider the expression 'X+Y', where both X and Y are expres
sions. As a first approximation, there are three ways of compiling code to put this expression
in register n.

1. If Y is an addressible cell, (recursively) put X into register n and add Y to it.

2. If Y is an expression that can be calculated in k registers, where k smaller than the
number of registers available, compile X into register n, Y into register n+ 1, and add
register n + 1 to n.

3. Otherwise, compile Y into register n, save the result in a temporary (actually, on the
stack) compile X into register n, then add in the temporary.

The distinction between cases 2 and 3 therefore depends on whether the right operand
can be compiled in fewer than k registers, where k is the number of free registers left after
registers 0 through n are taken: 0 through n-1 . are presumed to contain already computed
temporary results; n will, in case 2, contain the value of the left operand while the right is
being evaluated.

These considerations should make clear the specification codes for the degree of
difficulty, bearing in mind that a number of special cases are also present:

z is satisfied when the operand is zero, so that special code can be produced for expres
sions like 'x = O'.

1 is satisfied when the operand is the constant 1, to optimize cases like left and right shift
by 1, which can be done efficiently on the PDP-11.

c is satisfied when the operand is a positive (16-bit) constant; this takes care of some spe
cial cases in long arithmetic.

a is satisfied when the operand is addressible; this occurs not only for variables and con
stants, but also for some more complicated constructions, such as indirection through a
simple variable, '*p++' where p is a register variable (because of the PDP-ll's auto
increment address mode), and '*(p+c)' where p is a register and c is a constant. Pre
cisely, the requirement is that the operand refers to a cell whose address can be written
as a source or destination of a PDP-11 instruction.

e is satisfied by an operand whose value can be generated in a register using no more than
k registers, where k is the number of registers left (not counting the current register).
The 'e' stands for 'easy.'

n is satisfied by any operand. The 'n' stands for 'anything.'

These degrees of difficulty are considered to lie in a linear ordering and any operand
which satisfies an earlier-mentioned requirement will satisfy a later one. Since the subtables
are searched linearly, if a 'l' specification is included, almost certainly a 'z' must be written
first to prevent expressions containing the constant 0 to be compiled as if the 0 were 1.

Finally, a key specification may contain a '*' which requires the operand to have an
indirection as its leading operator. Examples below should clarify the utility of this
specification.

Now let us consider the contents of the code string associated with each subtable entry.
Conventionally, lower-case letters in this string represent literal information which is copied
directly to the output. Upper-case letters generally introduce specific macro-operations, some
of which may be followed by modifying information. The code strings in the tables are writ
ten with tabs and new-lines used freely to suggest instructions which will be generated; the
table-compiling program compresses tabs (using the 0200 bit of the next character) and throws
away some of the new-lines. For example the macro 'F' is ordinarily written on a line by
itself; but since its expansion will end with a new-line, the new-line after 'F' itself is dispens
able. This is all to reduce the size of the stored tables.

· The first set of macro-operations is concerned with compiling subtrees. Recall that this
is done by the cexpr routine. In the following discussion the 'current register' is generally the

A Tour Through the UNIX C Compiler 2-71

argument register to cexpr; that is, the place where the result is desired. The 'next register' is
numbered one higher than the current register. (This explanation isn't fully true because of
complications, described below, involving operations which require even-odd register pairs.)

F causes a recursive call to the rcexpr routine to compile code which places the value of
the first (left) operand of the operator in the current register.

Fl generates code which places the value cif the first operand in the next register. It is
incorrectly used if there might be no next register; that is, if the degree of difficulty of
the first operand is not 'easy;' if not, another register might not be available.

FS generates code which pushes the value of the first operand on the stack, by calling
rcexpr specifying sptab as the table.

Analogously,

S,Sl,SS
compile the second (right) operand into the current register, the next register, or onto
the stack.

To deal with registers, there are

R which expands into the name of the current register.

Rl which expands into the name of the next register.

R+ which expands into the the name of the current register plus 1. It was suggested above
that this is the same as the next register, except for complications; here is one of them.
Long integer variables have 32 bits and require 2 registers; in such cases the next register
is the current register plus 2. The code would like to talk about both halves of the long
quantity, so R refers to the register with the high-order part and R+ to the low-order
part.

R- This is another complication, involving division and mod. These operations involve a
pair of registers of which the odd-numbered contains the left operand. Cexpr arranges
that the current register is odd; the R- notation allows the code to refer to the next
lower, even-numbered register.

To refer to addressible quantities, there are the notations:

Al causes generation of the address specified by the first operand. For this to be legal, the
operand must be addressible; its key must contain an 'a' or a more restrictive
specification.

A2 correspondingly generates the address of the second operand providing it has one.

We now have enough mechanism to show a complete, if suboptimal, table for the +
operator on word or byte operands.

2-72 A Tour Through the UNIX C Compiler

%n,z
F

%n,l
F
inc

%n,aw
F
add

%n,e
F
81
add

%n,n
SS
F
add

R

A2,R

Rl,R

(sp)+,R

The first two.sequences handle some special cases. Actually it turns out that handling a right
operand of 0 is unnecessary since the expression-optimizer throws out adds of 0. Adding 1 by
using the 'increment' instruction is done next, and then the case where the right operand is
addressible. It pmst be a wo~d quantity, since the PDP-11 lacks an 'add byte' instruction.
Finally the cases where the right operand either can, or cannot, be done in the available regis
ters are treated.

The next macro-instructions are conveniently introduced by noticipg that the above
table is suitable for subtraction as well as addition, since no use is made of the commutativity
of addition. All that is needed is substitution of 'sub' for 'add' and 'dee' for 'inc.' Consider
able saving of space is achieved by factoring out li\everal similar operations.

I is replaced by a string from another table indexed by the operator in the . node being
expanded. This secondary table actually contains two strings per operator.

I' is replaced by the second string in the side table entry for the current operator.

Thus, given that the entries for'+' apd '-'in the side table (which is called instab) are
'add' and 'inc,' 'sub' ap.d 'dee' respectively, the middle of of the above addition table can be
written

%n,1
F
I' R

%n,aw
F
I A2,R

and it will be suitable for subtraction, and several other operators, as well.

Next, there is the question of chara~ter an4 floating-point operations.

Bl generates the letter 'b' if tJie qrst operam;l is a character, 'f' if it is float or double, and
nothing otherwise. It is µsed in a c(mt~xt like 'movBl' which generates a 'mov', 'movb',
or 'movf' instruction according t~ the tYI>e of the operand.

B2 is just like Bl but applies to the i;iecond operand.

A Tour Through the UNIX C Compiler 2-73

BE generates 'b' if either operand is a character and null otherwise.

BF generates •r if the type of the operator node itself is float or double, otherwise null.

For example, there is an entry in el/tab for the'=' operator

%a,aw
%ab,a

IBE A2,Al

Note first that two key specifications can be applied to the same code string. Next, observe
that when a word is assigned to a byte or to a word, or a word is assigned to a byte, a single
instruction, a mov or movb as appropriate, does the job. However, when a byte is assigned to
a word, it must pass through a register to implement the sign-extension rules:

%a,n
s
IBl R,Al

Next, there is the question of handling indirection properly. Consider the expression 'X
+ *Y', where X and Y are expressions, Assuming that Y is more complicated than just a vari
able, but on the other hand qualifies as 'easy' in the context, the expression would be com
piled by placing the value of X in a register, that of *Y in the next register, and adding the
registers. It is easy to see that a better job can be done by compiling X, then Y (into the next
register), and producing the instruction symbolized by 'add (Rl),R'. This scheme avoids gen
erating the instruction 'mov (Rl),Rl' required actually to place the value of *Y in a register.
A related situation occurs with the expression 'X + *(p+6)', which exemplifies a construction
frequent in structure and array references. The addition table shown above would produce

[put X in register R]
mov p,Rl
add $6,Rl
mov (Rl),Rl
add Rl,R

when the best code is

[put X in R]
mov p,Rl
add 6(Rl),R

As we said above, a key specification for a code table entry may require an operand to have an
indirection as its highest operator. To make use of the requirement, the following macros are
provided.

F* the first operand must have the form *X. If in particular it has the form *(Y + c), for
some constant c, then code is produced which places the value of Y in the current regis
ter. Otherwise, code is produced which loads X into the current register.

Fl* resembles F* except that the next register is loaded.

S* resembles F* except that the second operand is loaded.

Sl * resembles S* except that the next register is loaded.

FS* The first operand must have the form '*X'. Push the value of X on the stack.

SS* resembles FS* except that it applies to the second operand.

To capture the constant that may have been skipped over in -the above macros, there are

#1 The first operand must have the form *X; jf in particular it has the form *(Y + c) for c
a constant, then the constant is written out, otherwise a null string.

#2 is the same as #1 except that the second operand is used.

2-74 A Tour Through the UNIX C Compiler

Now we can improve the addition table above. Just before the '% n,e' entry, put

%n,ew*
F
Sl*
add #2(Rl),R

and just before the '% n,n' put

%n,nw*
SS*
F
add *(sp)+,R

When using the stacking macros there is no place to use the constant as an index word, so
that particular special case doesn't occur.

The constant mentioned above can actually be more general than a .number. Any quan
tity acceptable to the assembler as an expression will do, in particular the address of a static
cell, perhaps with a numeric offset. If x is an external character array, the expression 'x[i+5]
= O' will generate the code

mov i,rO
clrb x+5(r0)

via the table entry (in the'=' part of efftab)

%e*,z
F
I'Bl #l(R)

Some machine operations place restrictions on the registers used. The divide instruction, used
to implement the divide and mod operations, requires the dividend to be placed in the odd
member of an even-odd pair; other peculiarities of multiplication make it simplest to put the
multiplicand in an odd-numbered register. There is no theory which optimally accounts for
this kind of requirement. Cexpr handles it by checking for a multiply, divide, or mod opera
tion; in these cases, its argument register number is incremented by one or two so that it is
odd, and if the operation was divide or mod, so that it is a member of a free even-odd pair.
The routine which determines the number of registers required es_timates, conservatively, that
at least two registers are required for a multiplication and three for the other peculiar opera
tors. After the expression is compiled, the register where the result actually ended up is
returned. (Divide and mod are actually the same operation except for the location of the
result).

These operations are the ones which cause results to end up in unexpected places, and
this possibility adds a further level of complexity. The simplest way of handling the problem
is always to move the result to the place where the caller expected it, but this will produce
unnecessary register moves in many simple cases; 'a = b*c' would generate

mov b,rl
mul c,rl
mov rl,rO
mov rO,a

The next thought is used the passed-back information as to where the result landed to change
the notion of the current register. While compiling the'=' operation above, which comes from
a table entry like

%a,e
s
mov R,Al

A Tour Through the UNIX C Compiler 2-75

it is sufficient to redefine the meaning of 'R' after processing the 'S' which does the multiply.
This technique is in fact used; the tables are written in such a way that correct code is pro
duced. The trouble is that the technique cannot be used in general, because it invalidates the
count of the number of registers required for an expression. Consider just 'a*b + X' where X
is some expression. The algorithm assumes that the value of a*b, once computed, requires
just one register. If there are three registers available, and X requires two registers to com
pute, then this expression will match a key specifying '%n,e'. If a*b is computed and left in
register 1, then there are, contrary to expectations, no longer two registers available to com
pute X, but only one, and bad code will be produced. To guard against this possibility, cexpr
checks the result returned by recursive calls which implement F, S and their relatives. If the
result is not in the expected register, then the number of registers required by the other
operand is checked; if it can be done using those registers which remain even after making
unavailable the unexpectedly-occupied register, then the notions of the 'next register' and pos
sibly the 'current register' are redefined. Otherwise a register-copy instruction is produced. A
register-copy is also always produced when the current operator is one of those which have
odd-even requirements.

Finally, there are a few loose-end macro operations and facts about the tables. The
operators:

V is used for long operations. It is written with an address like a machine instruction; it
expands into 'adc' (add carry) if the operation is an additive operator, 'she' (subtract
carry) if the operation is a subtractive operator, and disappears, along with the rest of
the line, otherwise. Its purpose is to allow common treatment of logical operations,
which have no carries, and additive and subtractive operations, which generate carries.

T generates a 'tst' instruction if the first operand of the tree does not set the condition
codes correctly. It is used with divide and mod operations, which require a sign
extended 32-bit operand. The code table for the operations contains an 'sxt' (sign
extend) instruction to generate the high-order part of the dividend.

H is analogous to the 'F' and 'S' macros, except that it calls for the generation of code for
the current tree (not one of its operands) using regtab. It is used in cctab for all the
operators which, when executed normally, set the condition codes properly according to
the result. It prevents a 'tst' instruction from being generated for constructions like 'if
(a+b) .. .'since after calculation of the value of 'a+b' a conditional branch can be written
immediately.

All of the discussion above is in terms of operators with operands. Leaves of the expres
sion tree (variables and constants), however, are peculiar in that they have no operands. In
order to regularize the matching process, cexpr examines its operand to determine if it is a
leaf; if so, it creates a special 'load' operator whose operand is the leaf, and substitutes it for
the argument tree; this allows the table entry for the created operator to use the 'Al' notation
to load the leaf into a register.

Purely to save space in the tables, pieces of subtables can be labelled and referred to
later. It turns out, for example, that rather large portions of the the et/tab table for the '='
and'=+' operators are identical. Thus'=' has an entry

3 [move3:]
%a,aw
%ab,a

IBE A2,Al

while part of the '=+' table is

%aw,aw
3 [move3]

Labels are written as '3 [... :] ', before the key specifications; references are written with '3 [
...]' after the key. Peculiarities in the implementation make it necessary that labels appear

2-76 A Tour Through the UNIX C Compiler

before references to them.

The example illustrates the utility of allowing separate keys to point to the same code
string. The assignment code works properly if either the right operand is a word, or the left
operand is a byte; but since there is no 'add byte' instruction the addition code has to be res
tricted to word operands.

Delaying and reordering

Intertwined with the code generation routines are two other, interrelated processes. The
first, implemented by a routine called delay, is based on the observation that naive code gen
eration for the expression 'a= b++' would produce

mov b,rO
inc b
mov rO,a

The point is that the table for postfix ++ has to preserve the value of b before incrementing
it; the general way to do this is to preserve its value in a register. A cleverer scheme would
generate

mov b,a
inc b

Delay is called for each expression input to rcexpr, and it searches for postfix ++ and -
operators. If one is found applied to a variable, the tree is patched to bypass the operator and
compiled as it stands; then the increment or decrement itself is done. The effect is as if 'a =
b; b++' had been written. In this example, of course, the user himself could have done the
same job, but more complicated examples are easily constructed, for example 'switch (x++)'.
An essential restriction is that the condition codes not be required. It would be incorrect to
compile 'if (a++) .. .'as

tst a
inc a
beq

because the 'inc' destroys the required setting of the condition codes.

Reordering is a similar sort of optimization. Many cases which it detects are useful
mainly with register variables. If r is a register variable, the expression 'r = x+y' is best com
piled as

mov x,r
add y,r

but the codes tables would produce

mov x,rO
add y,rO
mov rO,r

which is in fact preferred if r is not a register. (If r is not a register, the two sequences are the
same size, but the second is slightly faster.) The scheme is to compile the expression as if it
had been written 'r = x; r =+ y'. The reorder routine is called with a pointer to each tree
that rcexpr is about to compile; if it has the right characteristics, the 'r = x' tree is con
structed and passed recursively to rcexpr; then the original tree is modified to read 'r =+ y'
and the calling instance of rcexpr compiles that instead. Of course the whole business is itself
recursive so that more extended forms of the same phenomenon are handled, like 'r = x + y I
z'.

Care does have to be taken to avoid 'optimizing' an expression like 'r = x + r' into 'r =
x; r =+ r'. It is required that the right operand of the expression on the right of the'=' be a
', distinct from the register variable.

A Tour Through the UNIX C Compiler 2-77

The second case that reorder handles is expressions of the form 'r = X' used as a subex-
pression. Again, the code out of the tables for 'x = r = y' would be

mov y,rO
mov rO,r
mov rO,x

whereas if r were a register it would be better to produce

mov y,r
mov r,x

When reorder discovers that a register variable is being assigned to in a subexpression, it calls
rcexpr recursively to compile the subexpression, then fiddles the tree passed to it so that the
register variable itself appears as the operand instead of the whole subexpression. Here care
has to be taken to avoid an infinite regress, with rcexpr and reorder calling each other forever
to handle assignments to registers.

A third set of cases treated by reorder comes up when any name, not necessarily a regis
ter, occurs as a left operand of an assignment operator other than '=' or as an operand of
prefix '++' or '--'. Unless condition-code tests are involved, when a subexpression like '(a
=+ b)' is seen, the assignment is performed and the argument tree modified so that a is its
operand; effectively 'x + (y =+ z)' is compiled as 'y =+ z; x + y'. Similarly, prefix increment
and decrement are pulled out and performed first, then the remainder of the expression.

Throughout code generation, the expression optimizer is called whenever delay or
reorder change the expression tree. This allows some special cases to be found that otherwise
would not be seen.

Introduction to the F77 1/0 Library 2-79

Introduction to the f77 1/0 Library

David L. Wasley

University of California, Berkeley
Berkeley, California 94720

The f77 1/0 library, libl77.a, includes routines to perform all of the standard types of
FORTRAN input and output. Several enhancements and extensions to FORTRAN 1/0 have
been added. The f77 library routines use the C stdio library routines to provide efficient
buffering for file 1/0.

1. FORTRAN 1/0

The requirements of the ANSI standard impose significant overhead on programs that do
large amounts of 1/0. Formatted 1/0 can be very "expensive" while direct access binary 1/0 is
usually very efficient. Because of the complexity of FORTRAN 1/0, some general concepts
deserve clarification.

1.1. Types of 1/0

There are three forms of 1/0: formatted, unformatted, and list-directed. The last
is related to formatted but does not obey all the rules for formatted 1/0. There are two
modes of access to external and internal files: direct and sequential. The definition of a
logical record depends upon the combination of 1/0 form and mode specified by the FOR
TRAN 1/0 statement.

1.1.1. Direct access

A logical record in a direct access external file is a string of bytes of a length specified
when the file is opened. Read and write statements must not specify logical records longer
than the original record size definition. Shorter logical records are allowed. Unformatted
direct writes leave the unfilled part of the record undefined. Formatted direct writes cause
the unfilled record to be padded with blanks.

1.1.2. Sequential access

Logical records in sequentially accessed external files may be of arbitrary and vari
able length. Logical record length for unformatted sequential files is determined by the size
of items in the iolist. The requirements of this form of 1/0 cause the external physical record
size to be somewhat larger than the logical record size. For formatted write statements, logi
cal record length is determined by the format statement interacting with the iolist at execu
tion time. The "newline" character is the logical record delimiter. Formatted sequential
access causes one or more logical records ending with "newline" characters to be read or writ
ten.

1.1.3. List directed 1/0

Logical record length for list-directed 1/0 is relatively meaningless. On output, the
record length is dependent on the magnitude of the data items. On input, the record length is
determined by the data types and the file contents.

2-80 Introduction to the F77 1/0 Lib:tary

1.1.4. Internal 1/0

The logical record length for an internal read or write is the length of· the character
variable or array element. Thus a simple character variable is a single logical record. A charac
ter variable array is similar to a fixed length direct access file, and obeys the same rules.
Unformatted 1/0 is not allowed on "internal" files.

1.2. 1/0 execution

Note that each execution of a FORTRAN unformatted 1/0 statement causes a single
logical record to be read or written. Each execution of a FORTRAN formatted 1/0 statement
causes one or more logical records to be read or written.

A slash, "/", will terminate assignment of values to the input list during list-directed
input and the remainder of the current input line is skipped. The standard is rather vague on
this point but seems to require that a new external logical record be found at the start of any
formatted input. Therefore data following the slash is ignored and may be used to comment
the data file.

Direct access list-directed 1/0 is not allowed. Unformatted internal 1/0 is not
allowed. Both the above will be caught by the compiler. All other flavors of 1/0 are allowed,
although some are not part of the ANSI standard.

Any error detected during 1/0 processing will cause the program to abort unless alterna
tive action has been provided specifically in the program. Any 1/0 statement may include an
err= clause (and iostat= clause) to specify an alternative branch to be taken on errors (and
return the specific error code). Read statements may include end= to branch on end-of-file.
File position and the value of 1/0 list items is undefined following an error.

2. lmplementaiion details

Some details of the current implementation may be useful in understanding constraints
on FORTRAN 1/0.

2.1. Number of logical units

The maximum number of logical units that a program may have open at one time is the
same as the UNIXt system limit, currently 20. Unit numbers must be in the range 0 - 19
because they are used to index an internal control table.

2.2. Standard logical units

By default, logical units 0, 5, and 6 are opened to "stderr"1 "stdin", and "stdout" respec
tively. However they can be re-defined with an open statement. To preserve error reporting,
it is an error to close logical unit 0 although it may be reopened to another file.

If you want to open the default file name for any preconnected logical unit, remember to
close the unit first. Redefining the standard units may impair normal console 1/0. An alter
native is to use shell re-direction to externally re-define the above units. To re-define default
blank control or format of the standard input or output files, use the open statement specify
ing the unit number arid no file name (see § 2.4).

The standard units, 0, 5, and 6, are naliled internally "stderr~', "stdin", and "stdout"
respectively. These are not actual file names and can not be used for opening these units.
Inquire will not return these names and will indicate that the above units are not named
unless they have been opened to real files. The names are meant to make error reporting
more meaningful.

t UNIX is a trademark of Bell Laboratories.

Introduction to the F77 1/0 Library 2-81

2.3. Vertical format control

Simple vertical format control is implemented. The logical unit must be opened for
sequential access with form = 'print' (see § 3.2). Control codes "O" and "l" are replaced in
the output file with "\n" and "\f'' respectively. The control character "+" is not implemented
and, like any other character in the first position of a record written to a "print" file, is
dropped. No vertical format control is recognized for direct formatted output or list
directed output.

2.4. The open statement

An open statement need not specify a file name. If it refers to a logical unit that is
already open, the blank= and form= specifiers may be redefined without affecting the
current file position. Otherwise, if status = 'scratch' is specified, a temporary file with a
name of the form "tmp.FXXXXXX" will be opened, and, by default, will be deleted when
closed or during termination of program execution. Any other status= specifier without an
associated file name results in opening a file named "fort.N" where N is the specified logical
unit number.

It is an error to try to open an existing file with status = 'new' . It is an error to try to
open a nonexistent file with status = 'old' . By default, status = 'unknown' will be
assumed, and a file will be created if necessary.

By default, files are positioned at their beginning upon opening, but see ioinit(3f) for
alternatives. Existing files are never truncated on opening. Sequentially accessed external
files are truncated to the current file position on close , backspace , or rewind only if the
last access to the file was a write. An endfile always causes such files to be truncated to the
current file position.

2.5. Format interpretation

Formats are parsed at the beginning of each execution of a formatted 1/0 statement.
Upper as well as lower case characters are recognized in format statements and all the alpha
betic arguments to the 1/0 library routines.

If the external representation of a datum is too large for the field width specified, the
specified field is filled with asterisks (*). On Ew.dEe output, the exponent field will be filled
with asterisks if the exponent representation is too large. This will only happen if "e" is zero
(see appendix B).

On output, a real value that is truly zero will display as "O." to distinguish it from a very
small non-zero value. This occurs in F and G format conversions. This was not done for E
and D since the embedded blanks in the external datum causes problems for other input sys
tems.

Non-destructive tabbing is implemented for both internal and external formatted 1/0.
Tabbing left or right on output does not affect previously written portions of a record. Tab
bing right on output causes unwritten portions of a record to be filled with blanks. Tabbing
right off the end of an input logical record is an error. Tabbing left beyond the beginning of
an input logical record leaves the input pointer at the beginning of the record. The format
specifier T must be followed by a positive non-zero number. If it is not, it will have a
different meaning (see § 3.1).

Tabbing left requires seek ability on the logical unit. Therefore it is not allowed in 1/0
to a terminal or pipe. Likewise, nondestructive tabbing in either direction is possible only on
a unit that can seek. Otherwise tabbing right or spacing with X will write blanks on the out
put.

2-82 Introduction to the F77 1/0 Library

2.6. List directed output

In formatting list directed output, the 1/0 system tries to prevent output lines longer
than 80 characters. Each external datum will be separated by two spaces. List-directed out
put of complex values includes an appropriate comma. List-directed output distinguishes
between real and double precision values and formats them differently. Output of a char
acter string that includes "\n" is interpreted reasonably by the output system.

2. 7. 1/0 errors

If 1/0 errors are not trapped by the user's program an appropriate error message will be
written to "stderr" before aborting. An error number will be printed in [] along with a brief
error message showing the logical unit and 1/0 state. Error numbers < 100 refer to UNIX
errors, and are described in the introduction to chapter 2 of the UNIX Programmer's Manual.
Error numbers ;;::.. 100 come from the 1/0 library, and are described further in the appendix to
this writeup. For internal 1/0, part of the string will be printed with "I" at the current posi
tion in the string. For external 1/0, part of the current record will be displayed if the error
was caused during reading from a file that can backspace.

3. Non-"ANSI Standard" extensions

Several extensions have been added to the 1/0 system to provide for functions omitted
or poorly defined in the standard. Programmers should be aware that these are non-portable.

3.1. Format specifiers

B is an acceptable edit control specifier. It causes return to the default mode of blank
interpretation. This is consistent with S which returns to default sign control.

P by itself is equivalent to OP . It resets the scale factor to the default value, 0.

The form of the Ew.dEe format specifier has been extended to D also. The form Ew.d.e
is allowed but is not standard. The "e" field specifies the minimum number of digits or
spaces in the exponent field on output. If the value of the exponent is too large, the exponent
notation e. or d will be dropped from the output to allow one more character position. If this
is still not adequate, the "e" field will be filled with asterisks (*). The default value for "e" is
2.

An additional form of tab control specification has been added. The ANSI standard
forms TRn, TLn, and Tn are supported where n is a positive non-zero number. If Tor nT is
specified, tabbing will be to the next (or n-th) 8-column tab stop. Thus columns of
alphanumerics can be lined up without counting.

A format control specifier has been added to suppress the newline at the end of the last
record of a formatted sequential write. The specifier is a dollar sign ($). It is constrained by
the same rules as the colon (:). It is used typically for console prompts. 'For example:

write (*, "('enter value for x: ',$)")
read(*,*) x

Radices other than 10 can be specified for formatted integer 1/0 conversion. The
specifier is patterned after P, the scale factor for floating point conversion. It remains in effect
until another radix is specified or format interpretation is complete. The specifier is defined as
[n]R where 2 .;;; n .;;; 36. If n is omitted, the default decimal radix is restored.

In conjunction with the above, a sign control specifier has been added to cause integer
values to be interpreted as unsigned during output conversion. The specifier is SU and
remains in effect until another sign control specifier is encountered, or format interpretation is
complete. Radix and "unsigned" specifiers could be used to format a hexadecimal dump, as
follows:

Introduction to the F77 1/0 Library 2-83

2000 format (SU, 16R, 8110.8)

Note: Unsigned integer values greater than (2**30 - 1), i.e. any signed negative value, can not
be read by FORTRAN input routines. All internal values will be output correctly.

3.2. Print :files

The ANSI standard is ambiguous regarding the definition of a "print" file. Since UNIX
has no default "print" file, an additional form= specifier is now recognized in the open state
ment. Specifying form = 'print' implies formatted and enables vertical format control for
that logical unit. Vertical format control is interpreted only on sequential formatted writes to
a "print" file.

The inquire statement will return print in the form= string variable for logical units
opened as "print" files. It will return -1 for the unit number of an unconnected file.

If a logical unit is already open, an open statement including the form= option or the
blank= option will do nothing but re-define those options. This instance of the open state
ment need not include the file name, and must not include a file name if unit= refers to a
standard input or output. Therefore, to re-define the standard output as a "print" file, use:

open (unit=6, form='print')

3.3. Scratch :files

A close statement with status = 'keep' may be specified for temporary files. This is
the default for all other files. Remember to get the scratch file's real name, using inquire , if
you want to re-open it later.

3.4. List directed 1/0

List directed read has been modified to allow input of a string not enclosed in quotes.
The string must not start with a digit, and can not contain a separator (, or /) or blank (space
or tab). A newline will terminate the string unless escaped with x Any string not meeting the
above restrictions must be enclosed in quotes (" or ').

Internal list-directed 1/0 has been implemented. During internal list reads, bytes are
consumed until the iolist is satisfied, or the 'end-of-file' is reached. During internal list writes,
records are filled until the iolist is satisfied. The length of an internal array element should be
at least 20 bytes to avoid logical record overflow when writing double precision values. Inter
nal list read was implemented to make command line decoding easier. Internal list write
should be avoided.

· 4. Running older programs

Traditional FORTRAN environments usually assume carriage control on all logical units,
usually interpret blank spaces on input as "O"s, and often provide attachment of global file
names to logical units at run time. There are several routines in the I/O library to provide
these functions.

4.1. Traditional unit control parameters

If a program reads and writes only units 5 and 6, then including -1166 in the f77 com
mand will cause carriage control to be interpreted on output and cause blanks to be zeros on
input without further modification of the program. If this is not adequate, the routine
ioinit(3f) can be called to specify control parameters separately, including whether files should
be positioned at their beginning or end upon opening.

2-84 Introduction to the F77 I/O Library

4.2. Preattachment of logical units
The ioinit routine also can be used to attach logical units to specific files at run time. It

will look for names of a user specified form in the environment and open the corresponding
logical unit for sequential formatted 1/0. Names must be of the form PREFIXnn where
PREFIX is specified in the call to ioinit and nn is the logical unit to be opened. Unit
numbers< 10 must include the leading "O".

loinit should prove adequate for most programs as written. However, it is written in
FORTRAN-77 specifically so that it may serve as an example for similar user-supplied rou
tines. A copy may be retrieved by "ar x /usr/lib/libl77.a ioinit.f".

5. Magnetic tape I/O
Because the 1/0 library uses stdio buffering, reading or writing magnetic tapes should be

done with great caution, or avoided if possible. · A set of routines has been provided to read
and write arbitrary sized buffers to or from tape directly. The buffer must be a character
object. Internal 1/0 can be used to fill or interpret the buffer. These routines do not use
normal FORTRAN 1/0 processing and do not obey FORTRAN 1/0 rules. See tapeio(3{).

6. Caveat Programmer
The 1/0 library is extremely complex yet we believe there are few bugs left. We've tried

to make the system as correct as possible according to the ANSI X3.9-1978 document and
keep it compatible with the UNIX file system. Exceptions to the standard are noted in appen
dix B.

Introduction to the F77 1/0 Library 2-85

Appendix A

1/0 Library Error Messages

The following error messages are generated by the 1/0 library. The error numbers are
returned in the iostat= variable if the err= return is taken. Error numbers < 100 are gen
erated by the UNIX kernel. See the introduction to chapter 2 of the UNIX Programmers
Manual for their description.

/* 100 */ "error in format"
See error message output for the location
of the error in the format. Can be caused
by more than 10 levels of nested (), or
an extremely long format statement.

/* 101 *I "illegal unit number"
It is illegal to close logical unit 0.
Negative unit numbers are not allowed.
The upper limit is system dependent.

/* 102 */ "formatted io not allowed"
The logical unit was opened for
unformatted 1/0.

/* 103 *I "unformatted io not allowed"
The logical unit was opened for
formatted 1/0.

/* 104 */ "direct io not allowed"
The logical unit was opened for sequential
access, or the logical record length was
specified as 0.

/* 105 *I "sequential io not allowed"
The logical unit was opened for direct
access 1/0.

/* 106 */ "can't backspace file"
The file associated with the logical unit
can't seek. May be a device or a pipe.

/* 107 */ "off beginning of record"
The format specified a left tab beyond the
beginning of an internal input record.

/* 108 */ "can't stat file"
The system can't return status information
about the file. Perhaps the directory is
unreadable.

/* 109 *I "no * after repeat count"
Repeat counts in list-directed 1/0 must be
followed by an * with no blank spaces.

2-86 Introduction to the F77 1/0 Library

/* 110 */ "off end of record"
A formatted write tried to go beyond the
logical end-of-record. An unformatted read
or write will also cause this.

/* 111 */ "truncation failed"
The truncation of an external sequential file on
'close', 'backspace', 'rewind' or 'endfile' failed.

/* 112 *I "incomprehensible list input"
List input has to be just right.

/* 113 *I "out of free space"
The library dynamically creates buffers for
internal use. You ran out of memory for this.
Your program is too big!

/* 114 */ "unit not connected"
The logical unit was not open.

/* 115 *I "read unexpected character"
Certain format conversions can't tolerate
non-numeric data. Logical data must be
TorF.

/* 116 */ "blank logical input field"

/* 117 *I "'new' file exists"
You tried to open an existing file with
"status= 'new'".

/* 118 */ "can't find 'old' file"
You tried to open a non-existent file
with "status='old'".

/* 119 *I "unknown system error"
Shouldn't happen, but

/* 120 *I "requires seek ability"
Direct access requires seek ability.
Sequential unformatted 1/0 requires seek
ability on the file due to the special
data structure required. Tabbing left
also requires seek ability.

/* 121 *I "illegal argument"
Certain arguments to 'open', etc. will be
checked for legitimacy. Often only non
default forms are looked for.

----~----

Introduction to the F77 1/0 Library 2-87

/* 122 *I "negative repeat count"
The repeat count for list directed input
must be a positive integer.

/* 123 *I "illegal operation for unit"
An operation was requested for a device
associated with the logical unit which
was not possible. This error is returned
by the tape 1/0 routines if attempting to
read past end-of-tape, etc.

2-88 Introductio:li to the F77 1/0 Library

Appendix B

Exceptions to the ANSI Standard

A few exceptions to the ANSI standard remain.

1) Vertical format control

The "+" carriage control specifier is not implemented. It would be difficult to imple
ment it correctly and still provide UNIX-like file 1/0.

Furthermore, the carriage control implementation is asymmetrical. A file written with
carriage control interpretation can not be read again with the same characters in colutnn 1.

An alternative to interpreting carriage control internally is to run the output file through
a "FORTRAN output filter" before printing. This filter could recognize a much broader range
of carriage control and ihclude terminal dependent processing.

2) Default files

Files created by default use of rewind or end:file statements are opened for sequen
tial formatted access. There is no way to redefine such a file to allow direct or unformat
ted access.

3) Lower case strings

It is not clear if the ANSI standard requires internally generated strings to be upper case
or not. As currently written, the inquire statement will return lower case strings for any
alphanumeric data.

4) Exponent representation on Ew.dEe output

If the field width for the exponent is too small, the standard allows dropping the
exponent character but only if the exponent is> 99 .. This system does not enforce that restric
tion. Further, the standard implies that the entire field, 'w', should be filled with asterisks if
the exponent can not be displayed. This system fills only the exponent field in the above case
since that is more diagnostic.

\

/

A Portable Fortran 77 Compiler 2-89

A Portable Fortran 77 Complier

S. I. Feldman

P. J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION
The Fortran languqe has been revised. The new language, known as Fortran 77, became an
official American National Standard (1) on April 3, 1978. Fortran 77 supplants 1966 Standard
Fortran [2]. We report here on a compiler and run-time system for the new extended language.
The compiler and computation library were written by S.I.F., the 1/0 system by P.J.W. We
believe ours to be the first complete Fortran 77 system to be implemented. This compiler is
designed to be portable to a number of dift'erent machines, to be correct and complete, and to
generate code compatible with calling sequences produced by compilers for the C language (3).
In particular. it is in use on UNIX systems. Two families of C compilers are in use at Bell
Laboratories, those based on D. M. Ritchie's PDP-11 compiler (4) and those based on S. C.
Johnson's portable C compiler [SJ. This Fortran compiler can drive the second passes of either
family. In this paper, we describe the lanauaae compiled, interfaces between procedures, and
file formats assumed by the 1/0 system. We will describe implementation details in companion
papers.

1.1. u ... e
At present, versions of the compiler run on and compile for the PDP-11, the VAX-111780,
and the Interdata 8/32 UNIX systems. The command to run the compiler is

f77 ftags file .•.

177 is a general-purpoM command for compiling and loading Fortran and Fortran-related
files. EFL [6] and Ratfor [7] source files will be preprocessed before being presented to
the Fortran compiler. C and assembler source files will be compiled by the appropriate
programs. Object files will be loaded. (The f77 and cc commands cause slightly different
loading sequences to be generated, since Fortran programs need a few extra libraries and a
different startup routine than do C programs.) The f ollowina file name suftixes are under
stood:

.f Fortran source file

.F Fortran source file

.e EFL source file

.r Ratfor source file

.c C source file

•• Assembler source file

•• Object file

Arguments whose names end with .f are taken to be Fortran 77 source programs; they are
compiled, and each object program is left on the file in the current directory whose name
is that of the source with .o substituted for .f.
Arguments whose names end with .F are also taken to be Fortran 77 source programs;
these are first processed by the C preprocessor before being compiled by f77.

2-90 A Portable Fortran 77 Compiler

Arauments whose names end with .r or .e are taken to be Ratfor or EFL source programs,
respectively; these are first transformed by the appropriate preprocessor, then compiled by
rn.
In the same way, arguments whose names end with .c or .1 are taken to be C or assembly
source programs and are compiled or assembled, producing a .o file.

The followin1 flap are understood:

-12

-m

-ofile

-onetrlp

-p

-"
-w

-·''
-a
-c
-Dname-def
-Dname

-Estr
-r

-ldir

-0
-llstr

-u

-s

Compile but do not load. Output for "S..f, "S..F, "S..e, 'S..r, "S..c, or s.s is put
on file "S..o.

Have the compiler produce additional symbol table information for
dbx(l). This only applies on the Vax UNIX system. Do not use with -0.

On machines which support short integers, make the default integer con
stants and variables short (see section 2.14). (-14 is the standard value
of this option). All loaical quantities will be short.

Apply the M4 macro preprocessor to each EFL or Ratfor source file before
using the appropriate compiler.

Put executable module on file file. (Default is a.out).

Compile code that performs every do loop at least once (see section 2.12).
Generate code to produce usage profiles.

Generate code in the manner of -p, but invoke a run-time recording
mechanism that keeps more extensive statistics.

Suppress all warning messages.

Suppress warnings about Fortran 66 features used.

Make the default type of a variable andelned (see section 2.3).

Compile code that checks that subscripts are within array bounds.

Define the name to the C preprocessor, as if by '#define'. If no definition
is pven, the name is defined as •1•. (.F files only).

Use the string str as an EFL option in processing .e files.

Ratfor and and EFL source programs are pre-processed into Fortran files,
but those files are not compiled or removed.

'#include' files whose names do not beain with '/'are always sought first
in the directory of the file argument, then in directories named in -I
options, then in directories on a standard list. (.F files only).

Invoke the object code optimizer. Do not use with-..

Use the string str as a Ratfor option in processing .r files.

Do not convert upper case letters to lower case. The def a ult is to convert
Fortran programs to lower case except within character string constants.

Generate assembler output for each source file, but do not assemble it.
Assembler output for a source file s.f, s.F, s.e, s.r, or s.c is put on file
s.1.

Other flap, all library names (arguments beainning -1), and any names not ending with
one of the understood suffixes are passed to the loader.

1.2. Doeamentadon Connntlons

In running text, we write Fortran keywords and other literal strings in boldface lower case.
Examples will be presented in ligbtf ace lower case. Names representing a class of values
will be printed in italics.

A Portable Fortran 77 Compiler 2-91

1.3. Implementation Strateu

The compiler and library are written entirely in C. The compiler aenerates C compiler
intermediate code. Since there are C compilers runnina on a variety of machines, rela
tively small chanaes will make this Fortran compiler aenerate code for any of them.
Furthermore, this approach auarantees that the resultina prolfams are compatible with C
usqe. The runtime computational library is complete. The runtime 1/0 library makes
use of D. M. Ritchie's Standard C 1/0 package (8) for transferrina data. With the few
exceptions described below, only documented calls are used, so it should be relatively
euy to modify to run on other operatina systems.

2. LANGUAGE IXTINSIONS

Fortran 77 includes almost all of Fortran 66 as a subset. We describe the differences briefly in
Appendix A. The most important additions are a character strina data type, file-oriented
input/output statements, and random access 1/0. Also, the lanauaae has been cleaned up con
siderably.

In addition to implementina the lanauaae specified in the new Standard, our compiler imple
ments a few extensions described in this section. Most are useful additions to the language.
The remainder are extensions to make it easier to communicate with C procedures or to permit
compilation of old (1966 Standard) prOlfams.

2.1. Doable Comples Data Tne
The new type Mable eomples is defined. Each datum is represented by a pair of double
precision real variables. A double complex version of every comples built-in function is
provided. The specific function names beain with z instead of c.

2.2. Internal fll•
The Fortran 77 standard introduces "internal files" (memory arrays), but restricts their
use to formatted sequential 1/0 statements. Our 1/0 system also permits internal files to
be used in formatted direct reads and writes.

2.3. lmplidt Undehed Statement

Fortran 66 has a fixed rule that the type of a variable that does not appear in a type state
ment is lnteaer if its first letter is I, J, k, I, m or n, and real otherwise. Fortran 77 has an
Implicit statement for overridina this rule. As an aid to aood prolfamming practice, we
permit an additional type, andehed. The statement

implicit undefined (a-z)

turns oft' the automatic data typina mechanism, and the compiler will issue a diagnostic
for each variable that is used but does not appear in a type statement. Specifying the -u
compiler flag is equivalent to beainnina each procedure with this statement.

2.4. Reeanlon

Procedures may caU themselves, direcdy or throuah a chain of other procedures.

2.5. Automatic Storqe

Two new keywords are recognized, static and automatic. These keywords may appear as
"types" in type statements and in Implicit statements. Local variables are static by
default; there is exacdy one copy of the datum, and its value is retained between calls.
There is one copy of each variable declared automatic for each invocation of the pro
cedure. Automatic variables may not appear in equivalence, data, or save statements.

2-92 A Portable Fortran 77 Compiler

2.6. Soarce lnpat Format
The Standard expects input to the compiler to be in 72-column format: except in com
ment lines, the first five characters are the statement number, the next is the continuation
character, and the next 66 are the body of the line. (If there are fewer than 72 characters
on a line, the compiler pads it with blanks; characters after the seventy-second are
isnored.)

In order to make it easier to type Fortran programs, our compiler also accepts input in
variable leqth lines. An ampersand "cl" in the first position of a line indicates a con
tinuation line; the remainin1 characters form the body of the line. A tab character in one
of the first six positions of a line sisnals the end of the statement number and continua
tion part of the line; the remaining characters form the body of the line. A tab elsewhere
on the line is treated as another kind of blank by the compiler.

In the Standard, there are only 26 letters - Fortran is a one-case language. Consistent
with ordinary UNIX system usage, our compiler expects lower case input. By default, the
compiler converts all upper case characters to lower case except those inside character
constants. However, if the -U compiler flag is specified, upper case letters are not
transformed. In this mode, it is possible to specify external names with upper case letters
in them, and to have distinct variables differing only in case. Regardless of the setting of
the Dag, keywords will only be recognized in lower case.

2. 7. lndade Statemat
The statement

include 'stuff'

is replaced by the contents of the file staff; lndade statements may be nested to a reason
able depth, currendy ten.

2.1. BlnUJ lnldallzadon Constants
A variable may be initialized in a data statement by a binary constant, denoted by a letter
followed by a quoted string. If the letter is It, the string is binary, and only zeroes and
ones are permitted. If the letter is o, the string is octal, with digits 0-7. If the letter is z
ors, the strina is hexadecimal, with digits 0-t, a-f. Thus, the statements

inte1er a(3)
data a I b'lOlO', o'l2', z'a' I

initialize all three elements of a to ten.

2.t. Character Strln1s
For compatibility with C usage, the following backslash escapes are recognized:

\n newline
\t tab
\• backspace
\f form feed
\0 null
\' apostrophe (does not terminate a string)
\• quotation mark (does not terminate a string)
\\ \
\x x, where xis any other character

Fortran 77 only has one quoting character, the apostrophe. Our compiler and 1/0 system
recognize both the apostrophe " ' " and the double-quote " " 0 • If a string begins with
one variety of quote mark, the other may be embedded within it without using the
repeated quote or backslash escapes.

(

"" I I

A Portable Fortran 77 Compiler 2-93

Each character string constant appearing outside a data statement is followed by a null
character to eue communication with C routines.

2.10. Hollerith
Fortran 77 does not have the old Hollerith "nb" notation, though the new Standard
recommends implementing the old Hollerith feature in order to improve compatibility
with old proarams. In our compiler, Hollerith data may be used in place of character
string constants, and may also be used to initialize non-character variables in data state
ments.

2.11. 14aulnlence Statements
As a very special and peculiar case, Fortran 66 permits an element of a multiply
dimensioned array to be represented by a singly-subscripted reference in equivalence
statements. Fortran 77 does not permit this usage, since subscript lower bounds may now
be dift'erent from 1. Our compiler permits single subscripts in equivalence statements,
under the interpretation that all missing subscripts are equal to 1. A warning message is
printed for each such incomplete subscript.

2.12. One-Trip DO Loops
The Fortran 77 Standard requires that the range of a do loop not be performed if the ini
tial value is already past the limit value, as in

do 10 i - 2, 1

The 1966 Standard stated that the effect of such a statement was undefined, but it was
common practice that the ranae of a do loop would be performed at least once. In order
to accommodate old proarams, though they were in violation of the 1966 Standard, the
-onetrlp compiler Oas causes non-standard loops to be 1enerated.

2.13. Commas In formatted Input
The UO system attempts to be more lenient than the Standard when it seems worthwhile.
When doina a formatted read of non-character variables, commas may be used as value
separators in the input record, overriding the field lenaths given in the format statement.
Thus, the format

(ilO, f20.10, i4)

will read the record

-34S,.0Se-3, 12

correctly.

2.14. Short Intesen
On machines that support halfword integers, the compiler accepts declarations of type
lntesere2. (Ordinary integers follow the Fortran rules about occupying the same space as
a REAL variable; they are assumed to be of C type lon1 Int; halfword integers are of C
type short Int.) An expression involvina only objecta of type lnteaer•2 is of that type.
Generic functions return short or long integers depending on the actual types of their
aquments. If a procedure is compiled using the -12 Oq, all small integer constants will
be of type lntesere2. If the precision of an integer-valued intrinsic function is not deter
mined by the 1eneric function rules, one will be chosen that returns the prevailing length
(lntesere2 when the -12 command 0q is in effect). When the -12 option is in etrect, all
quantities of type loalcal will be short. Note that these short integer and logical quantities
do not obey the standard rules for storage association.

2-94 A Portable Fortran 77 Compiler

2.15. Additional Intrinsic F11nctlon1
This compiler supports all of the intrinsic functions specified in the Fortran 77 Standard.
In addition, there are functions for performing bitwise Boolean operations (or, and, sor,
and not) and for accessing the UNIX command arguments (setaq and laqc) and environ
ment (setenT).

3. VIOLATIONS OF THE STANDARD
We know only a few ways in which our Fortran system violates the new standard:

3.1. Double Precision Allpment
The Fortran Standards (both 1966 and 1977) permit common or eqalnlence statements
to force a double precision quantity onto an odd word boundary, as in the following exam
ple:

real a(4)
double precision b,c

equivalence (a(l),b), (a(4),c)

Some machines (e.g., Honeywell 6000, IBM 360) require that double precision quantities
be on double word boundaries; other machines (e.g., IBM 370), run inefficiently if this
alignment rule is not observed. It is possible to tell which equivalenced and common
variables suft'er from a forced odd alignment, but every double precision argument would
have to be assumed on a bad boundary. To load such a quantity on some machines, it
would be necessary to use separate operations to move the upper and lower halves into
the halves of an aligned temporary, then to load that double precision temporary; the
reverse would be needed to store a result. We have chosen to require that all double pre
cision real and complex quantities fall on even word boundaries on machines with
corresponding hardware requirements, and to issue a diagnostic if the source code
demands a violation of the rule.

3.2. Dummr Procedure A1111ments
If any argument of a procedure is of type character, all dummy procedure arguments of
that procedure must be declared in an e:s:temal statement. This requirement arises as a
subtle corollary of the way we represent character string arguments and of the one-pass
nature of the compiler. A warning is printed if a dummy procedure is not declared exter
nal. Code is correct if there are no character arguments.

3.3. T and TL Formats
The implementation of the t (absolute tab) and ti (leftward tab) format codes is defective.
These codes allow rereading or rewriting part of the record which has already been pro
cessed (section 6.3.2 in Appendix A). The implementation uses seeks, so if the unit is
not one which allows seeks, such as a terminal, the program is in error. A benefit of the
implementation chosen is that there is no upper limit on the length of a record, nor is it
necessary to predeclare any record lengths except where specifically required by Fortran or
the operating system.

3 • .C. Curlqe Control
The Standard leaves as implementation dependent which logical unit(s) are treated as
"printer" files. In this implementation there is no printer file and thus no carriage control
is recop.ized on formatted output, except by special arrangement [9].

(

\
;

A Portable Fortran 77 Compiler 2-95

3.5. A11lpell Goto

The optional list associated with an assigned 1oto statement is not checked against the
actual assianed value during execution.

4. INTER-PROCEDUllEINTERFACE

To be able to write C procedures that call or are called by Fortran procedures, it is necessary to
know the conventions for procedure names, data representation, return values, and argument
lists that the compiled code obeys.

4.1. Procedure Names

On UNIX systems, the name of a common block or a Fortran procedure has an underscore
appended to it by the compiler to distinguish it from a C procedure or external variable
with the same user-assigned name. Fortran library procedure names have embedded
underscores to avoid clashes with user-assigned subroutine names.

4.2. Data Representadon1
The following is a table of corresponding Fortran and C declarations:

Fortna C

integer•2 x short int x;
integer x long int x;
logical x long int x;
real x float x;
double precision x double x;
complex x struct (float r, i; } x;
double complex x struct { double dr, di; } x;
character•6 x char x[6];

(By the rules of Fortran, inteser, lodcal, and real data occupy the same amount of
memory.)

4.3. Return Values
A function of type lnteser, I01ical, real, or double precision declared as a C function
returns the corresponding type. A complex or doable complex function is equivalent to a
C routine with an additional initial argument that points to the place where the return
value is to be stored. Thus,

complex function f(...)

is equivalent to

f_(temp, ...)
struct { float r, i; } •temp;

A character-valued function is equivalent to a C routine with two extra initial arguments:
a data address and a length. Thus,

character•lS function g(...)

is equivalent to

g_ (result, length, ...)
char result[];
long int length;

and could be invoked in C by

2-96 A Portable Fortran 77 Compiler

char chars[lS];

L(chars, ISL, ...);

Subroutines are invoked u if they were lnteser-valued functions whose value specifies
which alternate return to use. Alternate return arguments (statement labels) are not
passed to the function, but are used to do an indexed branch in the calling procedure. (If
the subroutine bu no entry points with alternate return arguments, the returned value is
undefined.) The statement

call met(•l, •2, •3)

is treated exactly u if it were the computed 1oto

aoto (1, 2, 3), met()

4.4. Arpment L11t1

All Fortran arauments are passed by address. In addition, for every araument that is of
type character or that is a dummy procedure, an argument giving the lenath of the value
is passed. (The strina lenaths are Iona Int quantities pused by value.) The order of argu
ments is then:

Extra arauments for complex and character functions
Address for each datum or function
A lon1 Int for each character or procedure argument

Thus, the call in

external f
character•7 s
inteaer b(3)

call sam(f, b(2), s)

is equivalent to that in

int fO;
char s[7];
Iona int b[3);

sam_(f, ctb[l], s, OL, 7L);

Note that the first element of a C array always bu subscript zero, but Fortran arrays begin
at 1 by default. Fortran arrays are stored in column-major order, C arrays are stored in
row-major order.

5. FILE FORMATS

5.1. Straetan of Fortna Files
Fortran requires four kinds of external files: sequential formatted and unformatted, and
direct formatted and unformatted. On UNIX systems, these are all implemented u ordi
~ files which are usumed to have the proper internal structure.

Fortran I/O is basect on records. When a direct file is opened in a Fortran program, the
recont lenath of the records must be given, and this is us~ by the Fortran 110 system to
make ·the file look u if it is made up of records of the given lenath. In the special cue
that the record length is given u 1, the files are not considered to be divided into records,
but· are treated u byte-addressable byte strinp; that is, u ordinary UNIX file system files.
(A read or write request on such a file keeps consuming bytes until satisfied, rather than

\.
/

A Portable Fortran 77 Compiler 2-97

beina restricted to a sinale record.)
The peculiar requirements on sequential unformatted files make it unlikely that they will
ever be read or written by any means except Fortran 1/0 statements. Each record is pre·
ceded and followed by an inteaer containing the record's lenath in bytes.
The Fortran 1/0 system breaks sequential formatted files into records while reading by
usina each newline as a record separator. The result of readina oft' the end of a record is
undefined according to the Standard. The 1/0 system is permissive and treats the record
as beina extended by blanks. On output, the 110 system will write a newline at the end of
each record. It is also possible for proarams to write newlines for themselves. This is an
error, but the only eft'ect will be that the single record the user thouaht he wrote will be
treated as more than one record when beina read or backspaced over.

5.2. PortabUltJ Consldendons

The Fortran 1/0 system uses only the facilities of the standard C 110 library, a widely
available and fairly portable package, with the foil owing two nonstandard features: the 1/0
system needs to know whether a flle can be used for direct 1/0, and whether or not it is
possible to backspace. Both of these facilities are implemented using the fseek routine, so
there is a routine eaaseek which determines if fseek will have the desired eft'ect. Also,
the laqalre statement provides the user with the ability to find out if two files are the
same, and to get the name of an already opened file in a form which would enable the
proaram to reopen it. Therefore there are two routines which depend on facilities of the
operatina system to provide these two services. In any case, the 1/0 system runs on the
PDP-11, VAX-111780, and Interdata 8/32 UNIX systems.

5.3. Pre-Connected Files ud File P•ldons
Units S, 6, and 0 are preconnected when the proaram starts. Unit S is connected to the
standard input, unit 6 is connected to the standard output, and unit 0 is connected to the
standard error unit. All are connected for sequential formatted 1/0.

All the other units are also preconnected when execution begins. Unit n is connected to
a flle named fort.n. These flies need not exist, nor will they be created unless their units
are used without first executina an open. The default connection is for sequential format·
ted 1/0.

The Standard does not specify where a ftle which has been explicitly opened for sequential
110 is initially positioned. The 1/0 system will position the file at the beginning. There
fore a write will destroy any data already in the ftle, but a read will work reasonably. To
position a ftle to its end, use a 'read' loop, or the system dependent 'fseek' function. The
preconnected units 0, S, and 6 are positioned as they come from the program's parent
process.

2-98 A Portable Fortran 77 Compiler

APPENDIX A: Differences Between Fortran " and Fortran 77
The following is a very brief description of the differences between the 1966 (2) and the 1977
(1) Standard languages. We assume that the reader is familiar with Fortran 66. We do not pre
tend to be complete, precise, or unbiased, but plan to describe what we feel are the most
important aspects of the new lanauqe. The best current information on the 1977 Standard is
in publications of the X3J3 Subcommittee of the American National Standards Institute, and the
ANSI. Xl.9-1978 document, the official description of the language. The Standard is written in
English rather than a meta-languqe, but it is f orbiddin1 and legalistic. A number of tutorials
and textbooks are available (see Appendix B).

t. Feahuel Deleted from Fortran "

1.1. Hollerith
All notions of "Hollerith" (nh) as data have been officially removed, although our com
piler, like almost all in the foreseeable future, will continue to support this archaism.

1.2. Enended l.an1e
In Fortran 66, under a set of very restrictive and rarely-understood conditions, it is per
missible to jump out of the range of a do loop, then jump back into it. Extended range
bas been removed in the Fortran 77 language. The restrictions are so special, and the
implementation of extended ranae is so unreliable in many compilers, that this change
really counts as no loss.

2. Propam Form

2.1. Blank Lines
Completely blank lines are now legal comment lines.

2.2. Propam and Block Data Statement•
A main program may now beain with a statement that gives that program an external
name:

program work

Block data procedures may also have names.

block data stuff

There is now a rule that only one unnamed block data procedure may appear in a pro
gram. (This rule is not enforced by our system.) The Standard does not specify the etrect
of the program and block data names, but they are clearly intended to aid conventional
loaders.

2.3. ENTRY Statement
Multiple entry points are now legal. Subroutine and function subprograms may have addi
tional entry points, declared by an entrJ statement with an optional argument list.

entry extra(a, b, c)

Execution begins at the first statement followin1 the entrJ line. All variable declarations
must precede all executable statements in the procedure. If the procedure beains with a
1abroatlne statement, all entry points are subroutine names. If it begins with a function
statement, each entry is a function entry point, with type determined by the type declared
for the entry name. If any entry is a character-valued function, then all entries must be.
In a function, an entry name of the same type as that where control entered must be
assisned a value. Arguments do not retain their values between calls. (The ancient trick

(

A Portable Fortran 77 Compiler 2-99

of calling one entry point with a large number of arguments to cause the procedure to
"remember" the locations of those arguments, then invoking an entry with just a few
arguments for later calculation, is still illegal. Furthermore, the trick doesn't work in our
implementation, since arguments are not kept in static storage.)

2.4. DO LooPI
do variables and range parameters may now be of integer, real, or double precision types.
(The use of floating paint do variables is very dangerous because of the possibility of
unexpected roundoff, and we strongly recommend against their use.) The action of the do
statement is now defined for all values of the do parameters. The statement

do 10 i - 1, u, d

performs max(O, l<u-l+d)/d J) iterations. The do variable has a predictable value when
exitin1 a loop: the value at the time a 1oto or retum terminates the loop; otherwise the
value that failed the limit test.

2.5. Alternate Retams

In a sabroatlne or subroutine entrJ statement, some of the arguments may be noted by
an asterisk, u in

subroutine s(a, •, b, •)

The meaning of the "alternate returns" is described in section S.2 of Appendix A.

3. Deeluadons

3.1. CHARACTER Data Tne
One of the biggest improvements to the language is the addition of a character-string data
type. Local and common character variables must have a length denoted by a constant
expression:

character•17 a, b(3,4)
character• (6 + 3) c

If the len1th is omitted entirely, it is assumed equal to 1. A character string argument
may have a constant length, or the length may be declared to be the same u that of the
correspondina actual argument at run time by a statement like

character-(•) a

(There is an intrinsic function lea that returns the actual length of a character string.)
Character arrays and common blocks containing character variables must be packed: in an
array of character variables, the first character of one element must follow the Jut charac
ter of the precedina element, without holes.

3.2. IMPLICIT Statement

The traditional implied declaration rules still hold: a variable whose name begins with 1, J,
k, I, m, or n is of type lnteaer; other variables are of type real, unless otherwise declared.
This general rule may be overridden with an lmplldt statement:

implicit real(a-c,g), complex(w-z), character•(l 7) (s)

declares that variables whose name begins with an a ,b, c, or 1 are real, those beginning
with w, s, 1, or 1 are assumed comples, and so on. It is still poor practice to depend on
implicit typing, but this statement is an industry standard.

2-100 A Portable Fortran 77 Compiler

3.3. PARAMETER Statement
It is now possible to aive a constant a symbolic name, as in

parameter (x-17, y-x/3, pi-3.141S9d0, s-'hello')

The type of each parameter name is aovemed by the same implicit and explicit rules as
for a variable. The right side of each equal sip must be a constant expression (an
expression made up of constants, operaton, and already defined parameten).

3.•. Ana1 Dedaradoa1
Arrays may now have as many as seven dimensions. (Only three were permitted in
1966.) The lower bound of each dimension may be declared to be other than 1 by using a
colon. Furthermore, an acljustable array bound may be an integer expression involving
constants, arauments, and variables in commoa.

real a(-5:3, 7, m:n'.), b(n+1:2•n)

The upper bound on the last dimension of an array argument may be denoted by an aster
isk to indicate that the upper bound is not specifted:

inteaer a(S, •), b(•), c(O:l, -2:•)

3.5. SA VE Statemeat
A poorly known rule of Fortran 66 is that local variables in a procedure do not necessarily
retain their values between invocations of that procedure. At any instant in the execution
of a proaram, if a common block is declared neither in the currently executina procedure
nor in any of the procedures in the chain of callen, all of the variables in that common
block also become undefined. (The only exceptions are variables that have been defined
in a data statement and never changed.) These rules permit overlay and stack implemen
tations for the aft'ected variables. Fortran 77 permits one to specify that certain variables
and common blocks are to retain their values between invocations. The declaration

save a, /b/, c

leaves the values of the variables a and c and all of the contents of common block b
unaffected by a retum. The simple declaration

save

has this effect on all variables and common blocks in the procedure. A common block
must be sand in every procedure in which it is declared if the desired effect is to occur.

3.6. INTRINSIC Statemeat
All of the functions specified in the Standard are in a single category, "intrinsic func
tions", rather than being divided into "intrinsic" and "basic external" functions. If an
intrinsic function is to be passed to another procedure, it must be declared intrinsic.
Declarina it estemal (as in Fortran 66) causes a function other than the built-in one to be
passed.

•· lsprea1loa1

•.t. Character Constaats
Character string constants are marked by strings surrounded by apostrophes. If an apos
trophe is to be included in a constant, it is repeated:

'abc'
'ain"t'

(

\

(

\

A Portable Fortran 77 Compiler 2-101

There are no null (zero-lenath) character strinp in Fortran 77. Our compiler has two
dift'erent quotation mub. 0 ' 0 and " • ". (See section 2.9 in the main text.)

•.z. Concatenadon
One new operator has been actded, chuacter strina concatenation, muked by a double
slash '' //". The result of a concatenation is the strina contajning the chuacters of the
left operand followed by the chuacters of the right operand. The strings

'ab'// 'cd'
'abed'

are equal. The strinp being concatenated must be of constant lensth in all concatenations
that are not the right sides of assignments. (The only concatenation expressions in which
a cbuacter string declared acljustable with a "•(•)" modifier Qr a substring denotation
with nonconstant position values may appear are the right sides of assignments.)

4.3. Character Strbq Aulpmeat
The left and right sides of a character assignment mar not share storage. (The assumed
implementation of character assignment is to copy characters from the right to the left
side.) If the left side is longer than tJie right, it is padded with blanks. If the left side is
shorter than the right, trailing chuacters are discarded.

'·'· Sab1trln11
It is possible to extract a substrin1 of a chuacter variable or chuacter array element, using
the colon notation:

a(i,j) (m:n)

is the string of (n-m+l) chuacters beginning at the m•h chuacter of the character array
element au. R.esults are undefined unless m < n. Substrings may be used on the left
sides of assisnments and u procedure actual qµments.

•.$. l•••ndatloa
It is now permissible to raise real quantities to complex powers, or complex quantities to
real pr complex powers. (The principal part of the ioaarithm is used.) Also, multjple
exponentiation is now defined:

a••h--c is equivalent to a •• (b-•c)

4.6. Reluatlo-. of Restrictions
Mixed mode expressions are now permitted. (For instance, it is permissible to combine
inteaer and complex quantities in an expression.)

CQnstant expressions are pennitted where a constant is allowed, except in data state
ments. (A constant expression is made up of e~pUctt constants and parameters and the
Fortran operators, except for exponentiation tq a ftoatins'!point power.) An a(ljustable
dimension may now be an inteaer expression involvln• constants, arauments, and vari
~bles in 1' common.

Subl!lcripts may now be aeneral inte1er expressions; ~e old cv ± c' rules have been
removed. .. loop bounds may be general inteatr, real, pr double precision expressiop.s.
Computed 1oto expressions and 1/0 unit numbers may be general integer expressions.

2-102 A Portable Fortran 77 Compiler

5. E1:ecutable Statements

5.1. IF-THEN-ELSE
At last, the if-then-else branchina structure bas been added to Fortran. It is called a
"Block If". A Block If beai.ns with a statement of the form

if (...)then

and ends with an

end if

statement. Two other new statements may appear in a Block If. There may be several

else if (...) then

statements, followed by at most one

else

statement. If the loaical expression in the Block If statement is true, the statements fol
lowina it up to the next else If, else, or end If are executed. Otherwise, the next else If
statement in the group is executed. If none of the else If conditions are true, control
passes to the statements f ollowina the else statement, if any. (The else block must follow
all else If blocks in a Block If. Of course, there may be Block Ifs embedded inside of
other Block If structures.) A case construct may be rendered:

if (s .eq. 'ab') then

else if (s .eq. 'cd') then

else

end if

5.2. Altemate Returns
Some of the arauments of a subroutine call may be statement labels preceded by an aster
isk, as in:

call joe(j, •10, m, •2)

A ntum statement may have an integer expression, such as:

return k

If the entry point bas n alternate return (asterisk) arguments and if 1 Et k Et n, the return
is followed by a branch to the correspondina statement label; otherwise the usual return to
the statement following the call is executed.

'· Inpat/Oatpat

,.1. Format Variables
A format may be the value of a character expression (constant or otherwise), or be stored
in a character array, as in:

write(6, '(iS)') x

A Portable Fortran 77 Compiler 2-103

6.2. END•, ERR•, ud IOSTAT• Clauses
A read or write statement may contain ead•, en•, and lostat• clauses, as in:

write(6, 101, err-20, iostat-a(4))
read(S, 101, err-20, end-30, iostat-x)

Here S and 6 are the unitl on which the 1/0 is done, 101 is the statement number of the
associated format, 20 and 30 ue statement numbers, and a and s ue inteaers. If an error
occurs duriq 1/0, control returns to the proaram at statement 20. If the end of the file is
reached, control returns to the proaram at statement 30. In any case, the variable
referred to in the loltat • clause is aiven a value when the 1/0 statement finishes. (Yes,
the value is assianed to the name on the riaht side of the equal sian.) This value is zero if
all went well, neptive for end of ftle, and some positive value for errors.

6.3. Formatted 1/0

6.3.1. Cbuaeter Coa1tut1
Chuacter constants in formats ue copied literally to the output. It is not allowed to read
into chuacter constants or hollerith fields.
A format may be specified as a chuacter constant within the read or write statement.

write(6,'(i2," im""t ",il)') 7, 4

produces

7 isn't 4

In the example above, the format is the chuacter constant

(i2,' isn"t ',il)

and the imbedded chuacter constant

isn't

is copied into the output.
The example could have been written more leaibly by takina advantaae of the two types
of quote marks.

write(6,'(i2,. isn"t • ,il)') 7. 4

However, the double quote is not standud Fortran 77.

6.3.2. Posldoaal Edltba1 Codes
t, ti, tr, ands codes control where the next character is in the record. trn or a specifies
that the next chuacter is n to the riaht of the current position. tin specifies that the next
character is n to the left of the current position, allowina puts of the record to be recon
sidered. tn says that the next character is to be character number n in the record. (See
section 3.3 in the main text.)

6.3.3. Celoa
A colon in the format terminates the UO operation if there ue no more data items in the
UO list, otherwise it has no effect. In the fraament

x-'(•heno•, :, •there-, i4)'
write(6, x) 12
write(6, x)

the first write statement prints

2-104 A Portable Fortran 77 Compiler

hello there 12

while the second only prints

hello

6.3.4. Optloaal Pia• SJla•
Accordina to the Standard, each ~pleQ1entation has the option of putting plus signs in
front of non-negative numeric output. The 1p format code may be used to make the
optional plus signs actually appear for ill SQJ>sequent i~ms while the format is active. The
11 f onnat code guarantees that Ui• 1/0 8"lem will not insert the optional plus signs, and
the 1 format code r~tor~ the defaql~ be~vior of the 1/0 system. (Since we never put
out optional plus sians, 11 and 1 codes have the same effect in our implementation.)

6.3.5. Blok.I oa lapat
Blanks in numeric input fields, other than leading blanks, will be ignored following a bn
code in a format statement, and Will be treated as zeros following a bz code in a format
statement. Th,e default for a wiit may be changed by using the open statement. (Blanks
are ipored by default.)

6.3.,. Un~presentable V alaes
The Stanct.,rd requires that if a numeric item cannot be represented in the form required
by a format code, the output field must be fllled with asterisks. (We think this should
have been an option.)

6.3.7. Iw.m
There is a new integer output code, lw.m. It is the same as lw, except that there will be at
least m digits in the output field, including, if necessary, leading zeros. The case I w. 0 is
special, in that if the value being printed is 0, the output field is entirely blank. I w.1 is
the same as I w.

6.3.I. noat1a1 Point
On input, exponents may start with the letter E, D, e, or d. All have the same meanina.
Qn outpµt we always use e or d. The e and d format codes also have identical meanings.
A leadina zero before the decimal point in e output without a scale factor is optional with
the implementation. Tllere is a 1w.d format code which is the same as ew.d and fw.d on
input,· but which chooses f or e formats for output depending on the size of the number
and of d.

6.3.9. "A" format Cade

The a code is u-1 for cllaracter data. aw uses a field width of w, while a plain a uses the
lenath of the internal character item.

6.4. Standard Ualt1
There are 4efault formatted input and output units. The statement

read 10, a, b

reads frqm the stanctard unit using format statement 10. The default unit may be expli-
citly specified by an asterisk, as in ·

read(•, 10) a,b

SUnilartY, the standard output unit is specified by a print statement or an as.terisk unit:

print 10
write(•, 10)

,.S. Llst-Dlrected Formattln1

A Portable Fortran 77 Compiler 2-105

List-directed 1/0 is a kind of free form input for sequential 1/0. It is invoked by using an
asterisk as the format identifier, as in

read(6, •) a,b,c

On input, values are separated by strings of blanks and possibly a comma. Values, except
for character strings, cannot contain blanks. End of record counts as a blank, except in
character strings, where it is ignored. Complex constants are given as two real constants
separated by a comma and enclosed in parentheses. A null input field, such as between
two consecutive commas, means the corresponding variable in the 1/0 list is not changed.
Values may be preceded by repetition counts, as in

4•(3.,2.) 2•, 4•'hello'

which stands for 4 complex constants, 2 null values, and 4 string constants.

For output, suitable formats are chosen for each item. The values of character strings are
printed; they are not enclosed in quotes, so they cannot be read back using list-directed
input.

'·'· Direct 1/0
A file connected for direct access consists of a set of equal-sized records each of which is
uniquely identified by a positive integer. The records may be written or read in any order,
using direct access 1/0 statements.

Direct access read and write statements have an extra argument, rec•, which gives the
record number to be read or written.

read(2, rec-13, err-20) (a(i), i-1, 203)

reads the thirteenth record into the array a.

The size of the records must be given by an open statement (see below). Direct access
files may be connected for either formatted or unformatted 110.

'· 7. lntemal Flies
Internal files are character string objects, such as variables or substrings, or arrays of type
character. In the former cases there is only a single record in the file; in the latter case
each array element is a record. The Standard includes only sequential formatted 110 on
internal files. (I/O is not a very precise term to use here, but internal files are dealt with
using read and write.) There is no list-directed 1/0 on internal files. Internal files are
used by giving the name of the character object in place of the unit number, as in

character•80 x
read(S,'(a)') x
read(x,'(i3,i4)') nl,n2

which reads a character string into s and then reads two integers from the front of it. A
sequential read or write always starts at the beginning of an internal file.

We also support a compatible extension, direct 1/0 on internal files. This is like direct 110
on external files, except that the number of records in the file cannot be changed. In this
case a record is a single element of an array of character strings.

2-106 A Portable Fortran 77 Compiler

6.1. OPEN, CLOSE, ud INQUIRE Statemeatl

These statements are used to connect and disconnect units and files, and to pther infor
mation about units and flies.

6.1.1. OPEN

The open statement is used to connect a flle with a unit, or to alter some properties of the
connection. The f ollowina is a minimal example.

open(l, flle-'fortjunk')

open takes a variety of arauments with meaninp described below.

aalt• a small non-neptive inteaer which is the unit to which the flle is to be connected.
We allow, at the time of this writina, 0 throuah 19. If this parameter is the first one
in the open statement, the aalt• can be omitted.

lostat • is the same u in read or write.

en• is the same u in nad or write.

lie• a character expression, which when stripped of trailin& blanks, is the name of the
file to be connected to the unit. The filename should not be aiven if the
1tata1•'scratch'.

1tata1• one of 'old', 'new', 'scratch', or 'ulmowa'. If this parameter is not aiven,
'ukaowa' is usumed. The meanina of 'uknowa' is processor dependent; our sys
tem will create the file if it doesn't exist. If 'scratch' is aiven, a temporary file will
be created. Temporary files are destroyed at the end of execution. If 'new' is aiven,
the file must not exist. It will be created for both readina and writina. If 'old' is
aiven, it is an error for the file not to exist.

aceeu• 'seqaentlal' or 'dlnct', dependina on whether the flle is to be opened for
sequential or direct 1/0.

form• 'formatted' or 'unformatted'. On UNIX systems form•'prbat' implies 'formatted'
with vertical format control.

reel• a positive inteaer specifyina the record lenath of the direct access file being opened.
We meuure all record lenaths in bytes. On UNIX systems a record length of 1 has
the special meanina explained in section S. l of the text. ••ut• 'n.U' or '1en'. This parameter bu meanina only for formatted 1/0. The default
value is 'nall'. 'zero' means that blanks, other than leadina blanks, in numeric input
flelds ue to be treated u zeros.

Openina a new file on a unit which is already connected has the effect of first closing the
old file.

6.1.2. CLOSE

dose seven the connection between a unit and a flle. The unit number must be given.
The optional parameten are l0ttat• and err• with their usual meaninas. and status•
either 'keep' or 'delete'. For scratch files the default is 'delete'; otherwise 'keep' is the
default. 'delete' means the file will be removed. A simple example is

close(3, err•l7)

,.1.3. INQUIRE

The Inquire statement aives information about a unit ("inquire by unit") or a file
("inquire by flle"). Simple examples are:

\

A Portable Fortran 77 Compiler 2-107

inquire(unit-3, namexx)
inquire (file-]unk', number-n, exist-I)

Ile• a character variable specifies the file the Inquire is about. Trailing blanks in the file
name are ianored.

ult• an integer variable specifies the unit the lnqalre is about. Exactly one of Ile• or
ult• must be used.

loltat•, en• are as before.

eslst• a logical variable. The logical variable is set to .trae. if the file or unit exists and
is set to .false. otherwise.

opened• a logical variable. The logical variable is set to .trae. if the file is connected to
a unit or if the unit is connected to a file, and it is set to .false. otherwise.

namller• an integer variable to which is assianed the number of the unit connected to
the file, if any.

named• a loaical variable to which is assianed .trae. if the file has a name, or .false.
otherwise.

name• a character variable to which is assianed the name of the file (inquire by file) or
the name of the file connected to the unit (inquire by unit). The name will be the
full name of the file.

access• a character variable to which will be assianed the value 'sequential' if the con
nection is for sequential 110, 'direct' if the connection is for direct 1/0. The value
becomes undefined if there is no connection.

sequential• a character variable to which is assiped the value '1es' if the file could be
connected for sequential 1/0, 'ao' if the file could not be connected for sequential
110, and 'aaluaowa' if we can't tell.

direct• a character variable to which is assianed the value '1es' if the file could be con
nected for direct 1/0, 'ao' if the file could not be connected for direct 1/0, and 'unk
nown' if we can't tell.

form• a character variable to which is assianed the value unformatted' if the file is con
nected for unformatted 110, 'formatted' if the file is connected for formatted 110, or
'print' for formatted 110 with vertical format control.

formatt•• a character variable to which is assiped the value 'yes' if the file could be
connected for formatted 110, 'ao' if the file could not be connected for formatted
110, and 'ubown' if we can't tell.

uformatted• a character variable to which is assiped the value '1es' if the file could be
connected for unformatted 110, 'ao' if the file could not be connected for unf ormat
ted 110, and 'aaluaown' if we can't tell.

nd • an inteaer variable to which is assiped the record length of the records in the file
if the file is connected for direct access.

aestrec• an integer variable to which is assiped one more than the number of the the
last record read from a file connected for direct access.

ltlank • a character variable to which is assigned the value 'nail' if null blank control is in
etfect for the file connected for formatted 110, 'zero' if blanks are being converted to
zeros and the file is connected for formatted 110.

The gentle reader will remember that the people who wrote the Standard probably weren't
thinking of his needs. Here is an example. The declarations are omitted.

open(l, file-'/dev/console')

On a UNIX system this statement opens the console for formatted sequential 110. An

2~108 A Portable Fortran 77 Compiler

Inquire statement for either unit 1 or file •/dev/console• would reveal that the file exists,
is connected to unit 1, bu a name, namely •/dev/console•, is opened for sequential 110,
could be connected for sequential 110, could not be connected for direct 1/0 (can't seek),
is connected for formatted 110, could be connected for formatted 1/0, could not be con
nected for unformatted 110 (can't seek), bu neither a record lenath nor a next record
number, and is ianorina blanks in numeric fields.

In the FOllTllAN environment, the only way to discover what permissions you have for a
file is to open it and try to read and write it. The err• parameter will return system error
numbers. The Inquire statement does not pve a way of determinina permissions.

For further discussion of the UNIX Fortran 110 system see "Introduction to the f77 1/0
Library" [9].

A Portable Fortran 77 Compiler 2-109

APPENDIX B: References ud Blbll011Sph1

Refereaees
1. American National Standard Programming Language FORTRAN, A.NS/ XJ.9-1978. New York:

American National Standards Institute, 1978.
2. USA Slllndard FORTRAN, USAS XJ.9-1966. New York: United States of America Standards

Institute, 196(;. Clarified in Comm. A.CM 12:289 (1969) and Comm. ACM 14:628 (1971).
3. Kerniahan, B. W., and D. M. Ritchie. The C Progra,,,ming Language. Enaiewood Cliffs:

Prentice-Hall, 1978.
4. Ritchie, D. M. Private communication.
S. Johnson, S. C. "A Portable Compiler: Theory and Practice," Proceedings of Fifth ACM Sym

posium on Principles of Programming Languagei. 1978.
6. Feldman, S. I. "An Informal °'5c1iption of EFL," internal memorandum.
7. Kerniahan, B. W. "RATFOR-A Preprocessor for :Rational Fortran," Bell Laboratories Com

puting Sciena Technical Report # 55. 1977.
8. Ritchie, D. M. Private communication.
9. Wasley, D. L. "Introduction to the n7 1/0 Library", UNIX Programmer's Manual, VolfJme

2c.

BlbllOll'SPhJ
11le f ollowina books or documents describe aspects of Fortran 77. This list cannot prete~d to
be complete. Certainly no particular endorsement is implied.
1. Brainerd, Walter S., et al. Fortran 77 Programming. Harper Row, 1978.
2. Day, A. C. Compatible Fortran. Cambridae University Press, 1979.
3. Dock, V. Thomas. Structured Fortran JV Programming. West, 1979.
4. Feldman, S. I. "The Programmina Lanauaae EFL," Bell Laboratories Technical Report. June

1979.
S. Hume, J. N., and R. C. Holt. Programming Fortran 77. Reston, 1979.
6. Katzan, Harry, Jr. Fortran 77. Van Nostrand-Reinhold, 1978.
7. Meissner, Loren P., and Orpnick, Elliott I. Fortrpn 77 Featuring Structured Programming,

Addison-Wesley, 1979.
8. Merchant, Michael J. ABC's of Fortran Programmlffl. Wa~orth, 1979.
9. Page, Rex, and Richard Didday. Fortran 77 for J(umans. West, 19~0.
10. Wqener, Jerrold L. Principles of Fortran 71 Programming. Wiley, 1980.

RATFOR 2-111

RATFOR - A Preprocessor for a Rational Fortran

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

Most programmers will agree that Fortran
is an unpleasant language to program in, yet
there are many occasions when they are forced
to use it. For example, Fortran is often the only
language thoroughly supported on the local com
puter. Indeed, it is the closest thing to a univer
sal programming language currently available:
with care it is possible to write large, truly port
able Fortran programs[!]. Finally, Fortran is
often the most "efficient" language available,
particularly for programs requiring much compu
tation.

But Fortran is unpleasant. Perhaps the
worst deficiency is in the control flow statements
- conditional branches and loops - which
express the logic of the program. The condi
tional statements in Fortran are primitive. The
Arithmetic IF forces the user into at least two
statement numbers and two (implied) GOTO's; it
leads to unintelligible code, and is eschewed by
good programmers. The Logical IF is better, in
that the test part can be stated clearly, but
hopelessly restrictive because the statement that
follows the IF can only be one Fortran statement
(with some further restrictions!). And of course
there can be no ELSE part to a Fortran IF: there
is no way to specify an alternative action if the
IF is not satisfied.

The Fortran DO restricts the user to going
forward in an arithmetic progression. It is fine
for "l to N in steps of 1 (or 2 or ...)'', but there
is no direct way to go backwards, or even (in
ANSI Fortran[2]) to go from 1 to N-1. And of
course the DO is useless if one's problem doesn't
map into an arithmetic progression.

The result of these failings is that Fortran
programs must be written with numerous labels
and branches. The resulting code is particularly
difficult to read and understand, and thus hard
to debug and modify.

When one is faced with an unpleasant
language, a useful technique is to define a new
language that overcomes the deficiencies, and to
translate it into the unpleasant one with a
preprocessor. This is the approach taken with
Ratfor. (The preprocessor idea is of course not
new, and preprocessors for Fortran are especially
popular today. A recent listing (3) of preproces
sors shows more than 50, of which at least half a
dozen are widely available.)

2. LANGUAGE DESCRIPTION

Design

Ratfor attempts to retain the merits of
Fortran (universality, portability, efficiency)
while hiding the worst Fortran inadequacies.
The language is Fortran except for two aspects.
First, since control flow is central to any pro
gram, regardless of the specific application, the
primary task of Ratfor is to conceal this part of
Fortran from the user, by providing decent con
trol flow structures. These structures are
sufficient and comfortable for structured pro
gramming in the narrow sense of programming
without GOTO's. Second, since the preprocessor
must examine an entire program to translate the
control structure, it is possible at the same time
to clean up many of the "cosmetic" deficiencies
of Fortran, and thus provide a language which is
easier and more pleasant to read and write.

Beyond these two aspects - control flow
and cosmetics - Ratfor does nothing about the
host of other weaknesses of Fortran. Although it
would be straightforward to extend it to provide
character strings, for example, they are not
needed by everyone, and of course the prepro
cessor would be harder to implement.
Throughout, the design principle which has
determined what should be in Ratfor and what
should not has been Ratfor doesn't know any
Fortran. Any language feature which would

This paper is a revised and expanded version of one published in Software-Practice and Experience Oc-
tober 1975. ~he Ratfor described here is the one in use on UNIX and Gcos at Bell Laboratories, Murray' Hill,
N. J. UNIX is a Trademark of Bell Laboratories

2-112 RATFOR

require that Ratfor really understand Fortran
has been omitted. We will return to this point
in the section on implementation.

Even within the confines of control flow
and cosmetics, we have attempted to be selective
in what features to provide. The intent has
been to provide a small set of the most useful
constructs, rather than to throw in everything
that has ever been thought useful by someone.

The rest of this section contains art infor
mal description of the Ratfor language. The
control flow aspects will be quite familiar to
readers used to languages like Algol, PL/I, Pas
cal, etc., and the cosmetic changes are equally
straightforward. We shall concentrate on show
ing what the language looks like.

Statement Grouping

Fortran provides no way to group state
ments together, short of making them into a
subroutine. The standard construction "if a
condition is true, do this group of things," for
example,

if (x > 100)
{ call error("x> 100"); err = 1; return }

cannot be written ditectly in Fortran. Instead a
programmer is forced to translate this relatively
clear thought into murky Fortran, by stating the
negative condition and branching around the
group of statements:

10

if (x .le. 100) goto 10
call error(5hx>100)
err= 1
return

when the program doesn't work, or when it
must be modified, this must be translated back
into a clearer form before one can be sure what
it does.

Ratfor eliminates this error-prone and
confusing back-and-forth translation; the first
form is the way the computation is written in
Ratfor. A group of statements can be treated as
a unit by enclosing them in the braces { and }.
This is true throughout the language: wherever a
single Ratfor statement can be used, there can
be several enclosed in braces. (Braces seem
clearer and less obtrusive than begin and end
or do and end, and of course do and end
already have Fortran meanings.)

Cosmetics contribute to the readability of
code, and thus to its understandability. The
character ">" is clearer than ".GT.'', so Ratfor
translates it appropriately, along with several
other similar shorthands. Although many For
tran compilers permit character strings in quotes

(like "x>lOO"), quotes are not allowed in ANSI

Fortran, so Ratfor converts it into the right
number of H's: computers count better than
people do.

Ratfor is a free-form language: statements
may appear anywhere on a line, and several may
appear on one line if they are separated by semi
colons. The example above could also be written
as

if (x > 100) {

}

call error("x> 100")
err= 1
return

In this case, no semicolon is needed at the end
of each line because Ratfor assumes there is one
statement per line unless told otherwise.

Of course, if the statement that follows the
if is a single statement (Ratfor or otherwise), no
braces are needed:

if (y <= 0.0 & z <= 0.0)
write(6, 20) y, z

No continuation need be indicated because the
statement is clearly not finished on the first line.
In general Ratfor continues lines when it seems
obvious that they are not yet done. (The con
tinuation convention is discussed in detail later.)

Although a free-form language permits
wide latitude in formatting styles, it is wise to
pick one that is readable, then stick to it. In
particular, proper indentation is vital, to make
the logical structure of the program obvious to
the reader.

The "else" Clause

Ratfor provides an else statement to han
dle the construction "if a condition is true, do
this thing, otherwise do that thing."

if (a<= b)
{ sw = O; write(6, 1) a, b }

else
{ sw = 1; write(6, 1) b, a }

This writes out the smaller of a and b, then the
larger, and sets sw appropriately.

The Fortran equivalent of this code is cir
cuitous indeed:

10

20

if (a .gt. b) goto 10
SW= 0
write(6, 1) a, b
goto 20

SW= 1
write(6, 1) b, a

This is a mechanical translation; shorter forms
exist, as they do for many similar situations.
But all translations suffer from the same prob
lem: since they are translations, they are less
clear and understandable than code that is not a
translation. To understand the Fortran version,
one must scan the entire program to make sure
that no other statement branches to statements
10 or 20 before one knows that indeed this is an
if-else construction. With the Ratfor version,
there is. no question about how one gets to the
parts of the statement. The if-else is a single
unit, which can be read, understood, and ignored
if not relevant. The program says what it
means.

As before, if the statement following an if
or an else is a single statement, no braces are
needed:

if (a<= b)
SW= 0

else
SW= 1

The syntax of the if statement is

if (legal Fortran condition)
Ratfor statement

else
Ratfor statement

where the else part is optional. The legal For
tran condition is anything that can legally go
into a Fortran Logical IF. Ratfor does not check
this clause, since it does not know enough For
tran to know what is permitted. The Ratfor
statement is any Ratfor or Fortran statement, or
any collection of them in braces.

Nested if's

Since the statement that follows an if or
an else can be any Ratfor statement, this leads
immediately to the possibility of another if or
else. As a useful example, consider this prob
lem: the variable f is to be set to -1 if x is less
than zero, to + 1 if x is greater than 100, and to
0 otherwise. Then in Ratfor, we write

if (x < O)
f = -1

else if (x > 100)
f = +1

else
f = 0

Ratfor 2-113

Here the statement after the first else is
another if-else. Logically it is just a single
statement, although it is rather complicated.

This code says what it means. Any ver
sion written in straight Fortran will necessarily
be indirect because Fortran does not let you say
what you mean. And as always, clever shortcuts
may turn out to be too clever to understand a
year from now.

Following an else with an if is one way to
write a multi-way branch in Ratfor. In general
the structure

if(...)

else if(...)

else if(...)

else

provides a way to specify the choice of exactly
one of several alternatives. (Ratfor also provides
a switch statement which does the same job in
certain special cases; in more general situations,
we have to make do with spare parts.) The tests
are laid out in sequence, and each one is fol
lowed by the code associated with it. Read
down the list of decisions until one is found that
is satisfied. The code associated with this condi
tion is executed, and then the entire structure is
finished. The trailing else part handles the
"default" case, where none of the other condi
tions apply. If there is no default action, this
final else part is omitted:

if (x < O)
x=O

else if (x > 100)
x = 100

if-else ambiguity

There is one thing to notice about compli
cated structures involving nested if's and else's.
Consider

2-114 RATFOR

if (x > O)
if (y > O)

write(6, 1) x, y
else

write(6, 2) y

There are two if's and only one else. Which if
does the else go with?

This is a genuine ambiguity in Ratfor, as
it is in many other programming languages. The
ambiguity is resolved in Ratfor (as elsewhere) by
saying that in such cases the else goes with the
closest previous un-else'ed if. Thus in this case,
the else goes with the inner if, as we have indi
cated by the indentation.

It is a wise practice to resolve such cases
by explicit braces, just to make your intent clear.
In the case above, we would write

if (x > O) {
if (y > 0)

write(6, 1) x, y
else

write(6, 2) y
}

which does not change the meaning, but leaves
no doubt in the reader's mind. If we want the
other association, we must write

if (x > O) {
if (y > 0)

write(6, 1) x, y
}
else

write(6, 2) y

The "switch" Statement

The switch statement provides a clean
way to express multi-way branches which branch
on the value of some integer-valued expression.
The syntax is

switch (expression) {

}

case exprl:
statements

case expr2, expr3 :
statements

default:
statements

Each case is followed by a list of comma
separated integer expressions. The expression
inside switch is compared against the case
expressions exprl, expr2, and so on in turn until
one m11tches, at which time the statements fol
lowing that case are executed. If no cases

match expression, and there is a default sec
tion, the statements with it are done; if there is
no default, nothing is done. In all situations,
as soon as some block of statements is executed,
the entire switch is exited immediately.
(Readers familiar with C[4] should beware that
this behavior is not the same as the C switch.)

The "do" Statement

The do statement in Ratfor is quite simi
lar to the DO statement in Fortran, except that it
uses no statement number. The statement
number, after all, serves only to mark the end of
the DO, and this can be done just as easily with
braces. Thus

do i = 1, n {

}

x(i) = 0.0
y(i) = 0.0
z(i) = 0.0

is the same as

10

do 10 i = 1, n
x(i) = 0.0
y(i) = 0.0
z(i) = 0.0

continue

The syntax is:

do legal-Fortran-DO-text
Ratfor statement

The part that follows the keyword do has to be
something that can legally go into a Fortran DO

statement. Thus if a local version of Fortran
allows DO limits to be expressions (which is not
currently permitted in ANSI Fortran), they can
be used in a Ratfor do.

The Ratfor statement part will often be
enclosed in braces, but as with the if, a single
statement need not have braces around it. This
code sets an array to zero:

do i = 1, n
x(i) = 0.0

Slightly more complicated,

do i = 1, n
do j = 1, n

m(i, j) = 0

sets the entire array m to zero, and

do i = l, n
do j = 1, n

if (i < j)
m(i, j) = -1

else if (i == j)
m(i, j) = 0

else
m(i, j) = +1

sets the upper triangle of m to -1, the diagonal
to zero, and the lower triangle to + 1. (The
operator == is "equals", that is, ".EQ.".) In each
case, the statement that follows the do is logi
cally a single statement, even though compli
cated, and thus needs no braces.

"break" and "next"

Ratfor provides a statement for leaving a
loop early, and one for beginning the next itera
tion. break causes an immediate exit from the
do; in effect it is a branch to the statement after
the do. next is a branch to the bottom of the
loop, so it causes the next iteration to be done.
For example, this code skips over negative values
in an array:

do i = 1, n {

}

if (x(i) < 0.0)
next

process positive element

break and next also work in the other Ratfor
looping constructions that we will talk about in
the next few sections.

break and next can be followed by an
integer to indicate breaking or iterating that
level of enclosing loop; thus

break 2

exits from two levels of enclosing loops, and
break 1 is equivalent to break. next 2
iterates the second enclosing loop. (Realistically,
multi-level break's and next's are not likely to
be much used because they lead to code that is
hard to understand and somewhat risky to
change.)

The "while" Statement

One of the problems with the Fortran DO

statement is that it generally insists upon being
done once, regardless of its limits. If a loop
begins

DO I= 2, 1

this will typically be done once with I set to 2,
even though common sense would suggest that

Ratfor 2-115

perhaps it shouldn't be. Of course a Ratfor do
can easily be preceded by a test

if (j <= k)
do i = j, k {

but this has to be a conscious act, and is often
overlooked by programmers.

A more serious problem with the DO state
ment is that it encourages that a program be
written in terms of an arithmetic progression
with small positive steps, even though that may
not be the best way to write it. If code has to be
contorted to fit the requirements imposed by the
Fortran DO, it is that much harder to write and
understand.

To overcome these difficulties, Ratfor pro
vides a while statement, which is simply a loop:
"while some condition is true, repeat this group
of statements". It has no preconceptions about
why one is looping. For example, this routine to
compute sin(x) by the Maclaurin series combines
two termination criteria.

real function sin(x, e)
returns sin(x) to accuracy e, by
sin(x) = x - x**3/3! + x**5/5! - ...

sin= x
term= x

i = 3
while (abs(term)>e & i<lOO) {

term = -term * x**2 I float(i*(i-1))
sin = sin + term
i=i+2

return
end

Notice that if the routine is entered with
term already smaller than e, the loop will be
done zero times, that is, no attempt will be
made to compute x**3 and thus a potential
underflow is avoided. Since the test is made at
the top of a while loop instead of the bottom, a
special case disappears - the code works at one
of its boundaries. (The test i<lOO is the other
boundary - making sure the routine stops after
some maximum number of iterations.)

As an aside, a sharp character "#" in a
line marks the beginning of a comment; the rest
of the line is comment. Comments .and code can
co-exist on the same line - one can make mar
ginal remarks, which is not possible with
Fortran's "C in column l" convention. Blank
lines are also permitted anywhere (they are not

2-116 Ratfor

in Fortran); they should be used to emphasize
the natural divisions of a program.

The syntax of the while statement is

while (legal Fortran condition)
Ratfor statement

As with the if, legal Fortran condition is some
thing that can go into a Fortran Logical IF, and
Ratfor statement is a single statement, which
may be multiple statements in braces.

The while encourages a style of coding
not normally practiced by Fortran programmers.
For example, suppose nextch is a function
which returns the next input character both as a
function value and in its argument. Then a loop
to find the first non-blank character is just

while (nextch(ich) = = iblank)

A semicolon by itself is a null statement, which
is necessary here to mark the end of the while;
if it were not present, the while would control
the next statement. When the loop is broken,
ich contains the first non-blank. Of course the
same code can be written in Fortran as

100 if (nextch(ich) .eq. iblank) goto 100

but many Fortran programmers (and a few com
pilers) believe this line is illegal. The language
at one's disposal strongly influences how one
thinks about a problem.

The "for" Statement

The for statement is another Ratfor loop,
which attempts to carry the separation of loop
body from reason-for-looping a step further than
the while. A for statement allows explicit ini
tialization and increment steps as part of the
statement. For example, a DO loop is just

for (i = 1; i <= n; i = i + 1) ...

This is equivalent to

i = 1
while (i <= n) {

i=i+l

The initialization and increment of i have been
moved into the for statement, making it easier
to see at a glance what controls the loop.

The for and while versions have the
advantage that they will be done zero times if n
is less than 1; this is not true of the do.

The loop of the sine routine in the previ
ous section can be re-written with a for as

for (i=3; abs(term) > e & i < 100; i=i+2) {
term =-term * x**2 I ftoat(i*(i-l))
sin = sin + term

}

The syntax of the for statement is

for (init ; condition ; increment)
Ratfor statement

init is any single Fortran statement, which gets
done once before the loop begins. increment is
any single Fortran statement, which gets done at
the end of each pass through the loop, before the
test. condition is again anything that is legal in
a logical IF. Any of init, condition, and incre
ment may be omitted, although the semicolons
must always be present. A non-existent condi
tion is treated as always true, so for(;;) is an
indefinite repeat. (But see the repeat-until in
the next section.)

The for statement is particularly useful
for backward loops, chaining along lists, loops
that might be done zero times, and similar
things which are hard to express with a DO state
ment, and obscure to write out with IF's and
GOTO's. For example, here is a backwards DO
loop to find the last non-blank character on a
card:

for (i = 80; i > O; i = i - 1)
if (card(i) != blank)

break

("!=" is the same as ".NE."). The code scans the
columns from 80 through to 1. If a non-blank is
found, the loop is immediately broken. (break
and next work in for's and while's just as in
do's). If i reaches zero, the card is all blank.

This code is rather nasty to write with a
regular Fortran DO, since the loop must go for
ward, and we must explicitly set up proper con
ditions when we fall out of the loop. (Forgetting
this is a common error.) Thus:

DO 10 J = 1, 80
I= 81 -J
IF (CARD(I) .NE. BLANK) GO TO 11

10 CONTINUE
I= 0

11

The version that uses the for handles the termi
nation condition properly for free; i is zero when
we fall out of the for loop.

The increment in a for need not be an
arithmetic progression; the following program
walks along a list (stored in an integer array
ptr) until a zero pointer is found, adding up ele
ments from a parallel array of values:

sum= 0.0
for (i = first; i > O; i = ptr(i))

sum = sum + value(i)

Notice that the code works correctly if the list is
empty. Again, placing the test at the top of a
loop instead of the bottom eliminates a potential
boundary error.

The "repeat-until" statement

In spite of the dire warnings, there are
times when one really needs a loop that tests at
the bottom after one pass through. This service
is provided by the repeat-until:

repeat
Ratfor statement

until (legal Fortran condition)

The llatfor statement part .is done once, then
the condition is evaluated. If it is true, the loop
is exited; if it is false, another pass is made.

The until part is optional, so a bare
repeat is the cleanest way to specify an infinite
loop. Of course such a loop must ultimately be
broken by some transfer of control such as stop,
return, or break, or an implicit stop such as
running out of input with a READ statement.

As a matter of observed fact[8], the
repeat-until statement is much less used than
the other looping constructions; in particular, it
is typically outnumbered ten to one by for and
while. Be cautious about using it, for loops that
test only at the bottom often don't handle null
cases weU.

More on break and next

break exits immediately from do, while,
for, and repeat-until. next goes to the test
part of do, while and repeat-until, and to the
increment step of a for.

"return" Statement

The standard Fortran mechanism for
returning a value from a function uses the name
of the function as a variable which can be
assigned to; the. last value stored in it, is the
function value upon return. For example, here
is a routine equal which returns 1 if two arrays
are identical, and zero if they differ. The array
ends are marked by the special value -1.

Ratfor 2-117

equal _compare strl to str2;
return 1 if equal, 0 if not

irtteger function equal(strl, str2)
integer strl(lOO), str2(100)
integer i

says

for (i = 1; strl(i) = = str2(i); i = i + 1)
if (strl(i) = = -1) {

}
equal= 0
return
end

equal= 1
return

In many languages (e.g., PL/I) one instead

return (expression)

to return a value from a function. Since this is
often clearer, Ratfor provides such a return
statement in a function F,
return(expression) is equivalent to

{ F = expression; return }

For example, here is equal again:

equal -compare strl to str2;
return 1 if equal, 0 if not

integer function equal(strl, str2)
integer strl(lOO), str2(100)
integer i

for (i = 1; strl(i) == str2(i); i = i + 1)
if (strl(i) == -1)

return(O)
end

return(l)

If there is no parenthesized expression after
return, a normal RETURN is made. (Another
version of equal is presented shortly.)

Cosmetics

As we said above, the visual appearance of
a language has a substantial effect on how easy
it is to read and understand programs. Accord
ingly, Ratfor provides a number of cosmetic
facilities which may be used to make programs
more readable.

Free-form Input

Statements can be placed anywhere on a
line; long statements are continued automati
cally, as are long conditions in if, while, for,
and until. Blank lines are ignored. Multiple
statements may appear on one line, if they are
separated by semicolons. No semicolon is

2-118 Ratfor

needed at the end of a line, if Ratfor can make
some reasonable guess about whether the state
ment ends there. Lines ending with any of the
characters

+ - * I &

are assumed to be continued on the next line.
Underscores are discarded wherever they occur;
all others remain as part of the statement.

Any statement that begins with an all
numeric field is assumed to be a Fortran label,
and placed in columns 1-5 upon output. Thus

write(6, 100); 100 format("hello")

is converted into

write(6, 100)
100 format(5hhello)

Translation Services

Text enclosed in matching single or double
quotes is converted to nH... but is otherwise
unaltered (except for formatting - it may get
split across card boundaries during the reformat
ting process). Within quoted strings, the
backslash '\' serves as an escape character: the
next character is taken literally. This provides a
way to get quotes (and of course the backslash
itself) into quoted strings:

"\\\"'
is a string containing a backslash and an apos
trophe. (This is not the standard convention of
doubled quotes, but it is easier to use and more
general.)

Any line that begins with the character
'%' is left absolutely unaltered except for strip
ping off the '%' and moving the line one posi
tion to the left. This is useful for inserting con
trol cards, and other things that should not be
transmogrified (like an existing Fortran pro
gram). Use '%' only for ordinary statements,
not for the condition parts of if, while, etc., or
the output may come out in an unexpected
place.

The following character translations are
made, except within single or double quotes or
on a line beginning with a ' % '.

. eq. != .ne .
> .gt. >= .ge .
< .lt. <= .le.
& .and. .or.

.not. .not.

In addition, the following translations are pro
vided for input devices with restricted character
sets.

[
$(

"define" Statement

l
$)

Any string of alphanumeric characters can
be defined as a name; thereafter, whenever that
name occurs in the input (delimited by non
alphanumerics) it is replaced by the rest of the
definition line. (Comments and trailing white
spaces are stripped off). A defined name can be
arbitrarily long, and must begin with a letter.

define is typically used to create symbolic
parameters:

define ROWSlOO
define COLS 50

dimension a(ROWS), b(ROWS, COLS)

if (i > ROWS I j > COLS) ...

Alternately, definitions may be written as

define(ROWS, 100)

In this case, the defining text is everything after
the comma up to the balancing right
parenthesis; this allows multi-line definitions.

It is generally a wise practice to use sym
bolic parameters for most constants, to help
make clear the function of what would otherwise
be mysterious numbers. As an example, here is
the routine equal again, this time with symbolic
constants.

define
define
define
define

YES
NO
EOS
ARB

1
0
-1
100

equal _compare strl to str2;
return YES if equal, NO if not

integer function equal(strl, str2)
integer strl(ARB), str2(ARB)
integer i

for (i = 1; strl(i) == str2(i); i = i + 1)
if (strl(i) == EOS)

return(YES)
return(NO)
end

"include" Statement

The statement

include file

inserts the file found on input stream file into
the Ratfor input in place of the include state
ment. The standard usage is to place COMMON

blocks on a file, and include that file whenever

a copy is needed:

subroutine x
include commonblocks

end

suroutine y
include commonblocks

end

This ensures that all copies of the COMMON

blocks are identical

Pitfalls, Botches, Blemishes and other
Failings

Ratfor catches certain syntax errors, such
as missing braces, else clauses without an if,
and most errors involving missing parentheses in
statements. Beyond that, since Ratfor knows no
Fortran, any errors you make will be reported by
the Fortran compiler, so you will from time to
time have to relate a Fortran diagnostic back to
the Ratfor source.

Keywords are reserved - using if, else,
etc., as variable names will typically wreak
havoc. Don't leave spaces in keywords. Don't
use the Arithmetic IF.

The Fortran nH convention is not recog
nized anywhere by Ratfor; use quotes instead.

3. IMPLEMENTATION

Ratfor was originally written in C[4] on
the UNIX operating system[5]. The language is
specified by a context free grammar and the
compiler constructed using the YACC compiler
compiler[6].

The Ratfor grammar is simple and
straightforward, being essentially

prog : stat
I prog stat

stat : if (...) stat
J if (...) stat else stat
I while (...) stat
I for (... ; ... ; ...) stat
I do ... stat
I repeat stat
I repeat stat until (...)
I switch (...) { case ... : prog ...

I return
I break
I next
I digits stat
I { prog}

default: prog }

I anything unrecognizable

The observation that Ratfor knows no Fortran

Ratfor 2-119

follows directly from the rule that says a state
ment is "anything unrecognizable". In fact most
of Fortran falls into this category, since any
statement that does not begin with one of the
keywords is by definition "unrecognizable."

Code generation is also simple. If the first
thing on a source line is not a keyword (like if,
else, etc.) the entire statement is simply copied
to the output with appropriate character transla
tion and formatting. (Leading digits are treated
as a label.) Keywords cause only slightly more
complicated actions. For example, when if is
recognized, two consecutive labels L and L+ 1
are generated and the value of L is stacked. The
condition is then isolated, and the code

if (.not. (condition)) goto L

is output. The statement part of the if is then
translated. When the end of the statement is
encountered (which may be some distance away
and include nested if's, of course), the code

L continue

is generated, unless there is an else clause, in
which case the code is

goto L+l
L continue

In this latter case, the code

L+ 1 continue

is produced after the statement part of the else.
Code generation for the various loops is equally
simple.

One might argue that more care should be
taken in code generation. For example, if there
is no trailing else,

if (i > O) x =a

should be left alone, not converted into

if (.not. (i .gt. O)) goto 100
x=a

100 continue

But what are optimizing compilers for, if not to
improve code? It is a rare program indeed
where this kind of "inefficiency" will make even
a measurable difference. In the few cases where
it is important, the offending lines can be pro
tected by '% '.

The use of a compiler-compiler is
definitely the preferred method of software
development. The language is well-defined, with
few syntactic irregularities. Implementation is
quite simple; the original construction took
under a week. The language is sufficiently sim
ple, however, that an ad hoc recognizer can be
readily constructed to do the same job if no

2-120 RATFOR

compiler-compiler is available.

The C version of Ratfor is used on UNIX
and on the Honeywell GCOS systems. C com
pilers are not. as widely available as Fortran,
however, so there is also ll Ratfor written in
itself and originally bootstrapped with the C ver
sion. The Ratfor version was written so as to
translate into the portable subset of Fortran
described in [1], so it is portable, having been
run essentially without change on at least twelve
distinct machines. (The main restrictions of the
portable subset are: only one character per
machine word; subscripts in the form c *v ± c;
avoiding expressions in places like DO loops; con
sistency in subroutine argument usage, and in
COMMON declarations. Ratfor itself will not gra
tuitously generate non-standard Fortran.)

The Ratfor versiort is about 1500 lines of
Ratfor (compared to about 1000 lines of C); this
compiles into 2500 lines of Fortran. This expan
sion ratio is somewhat higher than average, since
the compiled code contains unnecessary
occurrences of COMMON declarations. The · exe
cution time of the Ratfor version is dominated
by two routines thst read and write cards.
Clearly these routines - could be replaced by
machine coded local versions; unless this is done,
the efficiency of other parts of the translation
process is largely irrelevant.

4. EXPERIENCE

Good Things

"It's so much better than Fortran" is the
most common response of users when asked how
well Ratfor meets their needs. Although cynics
might consider this to be vacuous, it does seem
to be true that decent control flow and cosmetics
converts Fortran from a bad language into quite
a reasonable one, assumirig that Fortran data
structures are adequate for the task at hand.

Although there are no quantitative results,
Users feel that coding in Ratfor is at least twice
as fast as in Fottrari. More important, debug
ging and subsequent revision are much faster
than in Fortran. Plirtly this is simply because
the code can be read. The looping statements
which test at the top instead of the bottom seem
to eliminate or at least reduce the occurrence of
a wide class of boundary errors. And of course it
is easy to do structured programming in Ratfor;
this self-discipline also contributes markedly to
reliability.

One interesting and encouraging fact is
that programs written in Ratfor tend to be as
readable as programs written in tnore modern
languages like Pascal. Once one is freed from
the shackles of Fortran's clerical detail and rigid

input format, it is easy to write code that is
readable, even esthetically pleasing. For exam
ple, here is a Ratfor implementation of the
linear table search discussed by Knuth [7]:

A(m+l) = x
for (i = l; A(i) != x; i = i + 1)

if (i > m) {
m = i
B(i) = 1

else
B(i) = B(i) + 1

A large corpus (5400 lines) of Ratfor, including a
subset of the Ratfor preprocessor itself, can be
found in [8].

Bad Things

The biggest single problem is that many
Fortran syntax errors are not detected by Ratfor
but by the local Fortran compiler. The compiler
then prints a message in terms of the generated
Fortran, and in a few cases this may be difficult
to relate back to the offending Ratfor line, espe
cially if the implementation conceals the gen
erated . Fortran. This problem could be dealt
with by tag"ing each generated line with some
indication of the source line that created it, but
this is inherently implementation-dependent, so
no action has Fet b~eq taken. Error message
interpretation is actlially not so arduous as
might be thought. Since Ratfor generates no
variables, onlJ.y a simple pattern of IF's and
GOTO's, data-re18.ted errors like missing DIMEN
SION statements are easy to find in the Fortrah.
Furthermore, there has been , a steady improve
ment in Ratfor's ability to catch trivial syntactic
errors like unbalanced. parentheses and quotes.

There are a number of implemeritation
weaknesses that are a nuisance, especially to new
users. For example, keywords are reserved.
This rarely makes any difference, except for
those hardy souls who want to use an Arithmetic
IF. A few standard Fortran constructions are not
accepted by Ratfor, and this is perceived as a
problem by users with a large corpus of existing
Fortran progtams. Protecting every line with a
'%' is not really a complete solution, although it
serves as a stop-gap. The best long-term solu
tion is provided by the program Struct [9];
which converts arbitrary Fortran programs into
Ratfor.

Users who export programs often complain
that the generated Fortran is "unreadable"
because it is not tastefully formatted and con
tains extraneous CONTINUE statements. To some
extent this can be ameliorated (Ratfor now has
an option to copy Ratfor comments into the gen-

erated Fortran), but it has always seemed that
effort is better spent on the input language than
on the output esthetics.

One final problem is partly attributable to
success - since Ratfor is relatively easy to
modify, there are now several dialects of Ratfor.
Fortunately, so far most of the differences are in
character set, or in invisible aspects like code
generation.

5. CONCLUSIONS

Ratfor demonstrates that with modest
effort it is possible to convert Fortran from a
bad language into quite a good one. A prepro
cessor is clearly a useful way to extend or
ameliorate the facilities of a base language.

When designing a language, it is important
to concentrate on the essential requirement of
providing the user with the best language possi
ble for a given effort. One must avoid throwing
in "features" - things which the user may trivi
ally construct within the existing framework.

One must also avoid getting sidetracked
on irrelevancies. For instance it seems pointless
for Ratfor to prepare a neatly formatted listing
of either its input or its output. The user is
presumably capable of the self-discipline
required to prepare neat input that reflects his
thoughts. It is much more important that the
language provide free-form input so he can for
mat it neatly. No one should read the output
anyway except in the most dire circumstances.

Acknowledgements

C. A. R. Hoare once said that "One thing
[the language designer] should not do is to
include untried ideas of his own." Ratfor follows
this precept very closely - everything in it has
been stolen from someone else. Most of the con
trol flow structures are taken directly from the
language C[4] developed by Dennis Ritchie; the
comment and continuation conventions are
adapted from Altran[lO].

I am grateful to Stuart Feldman, whose
patient simulation of an innocent user during
the early days of Ratfor led to several design
improvements and the eradication of bugs. He
also translated the C parse-tables and YACC

parser into Fortran for the first Ratfor version of
Ratfor.

References

[1] B. G. Ryder, "The PFORT Verifier,"
Software-Practice & Experience,
October 1974.

[2] .-\merican National Standard Fortran.
American National Standards Institute,

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Ratfor 2-121

New York, 1966.

For-word: Fortran Development
Newsletter, August 1975.

B. W. Kernighan and D. M. Ritchie, The
C Programming Language, Prentice-Hall,
Inc., 1978.

D. M. Ritchie and K. L. Thompson, "The
UNIX Time-sharing System." CACM, July
1974.

S. C. Johnson, "YACC - Yet Another
Compiler-Compiler." Bell Laboratories
Computing Science Technical Report #32,
1978.

D. E. Knuth, "Structured Programming
with goto Statements." Computing Sur
veys, December 1974.

B. W. Kernighan and P. J. Plauger,
Software Tools, Addison-Wesley, 1976.

B. S. Baker, "Struct - A Program which
Structures Fortran", Bell Laboratories
internal memorandum, December 1975.

A. D. Hall, "The Altran System for
Rational Function Manipulation - A Sur
vey." CACM, August 1971.

2-122 Ratfor

Appendix: Usage on UNIX and GCOS.

Beware - local customs vary. Check with a native before going into the jungle.

UNIX

The program ratfor is the basic translator; it takes either a list of file names or the standard
input and writes Fortran on the standard output. Options include -6x, which uses x as a continuation
character in column 6 (UNIX uses & in column 1), and -C, which causes Ratfor comments to be copied
into the generated Fortran.

The program re provides an interface to the ratfor command which is much the same as cc.
Thus

re [options] files

compiles the files specified by files. Files with names ending in .r are Ratfor source; other files are
assumed to be for the loader. The flags -C and -6x described above are recognized, as are

-e compile only; don I load
-f save intermediate Fortran .f files
-I" Ratfor only; implies -e and -f
-2 use big Fortran compiler (for large programs)
-U flag undeclared variables (not universally available)

Other flags are passed on to the loader.

GCOS

The program ./ratfor is the bare translator, and is identical to the UNIX version, except that the
continuation convention is & in column 6. Thus

./ratfor files >output

translates the Ratfor source on files and collects the generated Fortran on file 'output' for subsequent
processing.

Jrc provides much the same services as re (within the limitations of GCOS), regrettably with a
somewhat different syntax. Options recognized by ./re include

name
h=/name
r=/name
a=
C=
f=name
g=name

Ratfor source or library, depending on type
make TSS H* file (runnable version); run as /name
update and use random library
compile as ascii (default is bed)
copy comments into Fortran
Fortran source file
gmap source file

Other options are as specified for the ./cc command described in [4].

TSO, TSS, and other systems

Ratfor exists on various other systems; check with the author for specifics.

1. INTRODUCTION

1.1. Purpose

The Programming Language EFL

Stuart I. Feldman

Bell Laboratories
Murray Hill, New Jersey 07974

EFL 2-123

EFL is a clean, general purpose computer language intended to encourage portable pro
gramming. It has a uniform and readable syntax and good data and control flow structuring.
EFL programs can be translated into efficient Fortran code, so the EFL programmer can take
advantage of the ubiquity of Fortran, the valuable libraries of software written in that language.
and the portability that comes with the use of a standardized language, without suffering from
Fortran's many failings as a language. It is especially useful for numeric programs. Thus, the
EFL language permits the programmer to express complicated ideas in a comprehensible way.
while permitting access to the power of the Fortran environment.

1.2. History
EFL can be viewed as a descendant of B. W. Kemighan's Ratfor [l]; the name originally

srood for 'Extended Fortran Language'. A. D. Hall designed the initial version of the language
and wrote a preliminary version of a compiler. I extended and modified the language and wrote
a full compiler (in C) for it. The current compiler is much more than a simple preprocessor: it
attempts to diagnose all syntax errors, to provide readable Fortran output, and to avoid a
number of niggling restrictions. To achieve this goal, a sizable two-pass translator is needed.

1.3. Notation
In examples and syntax specifications, boldface type is used to indicate literal words and

punctuation, such as while. Words in italic type indicate an item in a category, such as an
expression. A construct surrounded by double brackets represents a list of one or more of those
items, separated by commas. Thus, the notation

[item)

could ref er to any of the following:

item
item, item
item, item, item

The reader should have a fair degree of familiarity with some procedural language. There
will be occasional references to Ratfor and to Fortran which may be ignored if the reader is
unfamiliar with those languages.

2-124 EFL

2. LEXICAL FORM

2.1. Character Set
The following characters are legal in an EFL program:

letters a b c d e f g h i J k I m

digits
white space
quotes.
sharp
continuation
braces
parentheses
other

nopqrstuvwxyz
0123456789
blank tab
••

-{ }
()
,;:.+-•/
•<>&-IS

Letter case (upper or lower) is ignored except within strings, so •a• and •A' are treated as the
same character. All of the examples below are printed in lower case. An exclamation mark
('!') may be used in place of a tilde ('-'). Square brackets ('{' and ']') may be used in place of
braces ('{'and'}').

2.2. Lines
EFL is a line-oriented language. Except in special cases (discussed below}, the end of a

line marks the end of a token and the. end of a statement. The trailing portion of a line may be
used for a comment. There is a mechanism for diverting input from one source file to another.
so a single line in the program may be replaced by a number of lines from the other file. Diag
nostic messages are labeled with the line number of the file on which they are detected.

2.2.1. White Space
Outside of a character string or comment, any sequence of one or more spaces or tab

characters acts as a single space. Such a space terminates a token.

2.2.2. Comments
A comment may appear at the end of any line. It is introduced by a sharp (#) character,

and continues to the end of the line. (A sharp inside of a quoted string does not mark a com
ment.) The sharp and succeeding characters on the line are discarded. A blank line is also a
comment. Comments have no effect on execution.

2.2.3. Include Files
It is possible to insert the contents of a file at a point in the source text, by referencing it

in a line like

include Joe

No statement or comment may follow an include on a line. In effect, the include line is
replaced by the lines in the named file, but diagnostics refer to the line number in the included
file. Includes may be nested at least ten deep.

2.2.4. Continuation
Lines may be continued explicitly by using the underscore (_) character. If the last char

acter of a line (after comments and trailing white space have been stripped) is an underscore,
the end of line and the initial blanks on the next line are ignored. Underscores are ignored in
other contexts (except inside of quoted strings). Thus

equals 109•

1_000_000_
000

EFL 2-125

There are also rules for continuing lines automatically: the end of line is ignored when
ever it is obvious that the statement is not complete. To be specific. a statement is continued if
the last token on a line is an operator, comma. left brace. or left parenthesis. (A statement is
not continued just because of unbalanced braces or parentheses.) Some compound statements
are also continued automatically; these points are noted in the sections on executable state
·ments.

2.2.S. Multiple Statements on a Line
A semicolon terminates the current statement. Thus. it is possible to write more than one

statement on a line. A line consisting only of a semicolon, or a semicolon following a semi
colon. forms a null statement.

2.3. Tokens

A program is made up of a sequence of tokens. Each token is a sequence of characters.
A blank terminates any token other than a quoted string. End of line also terminates a token
unless explicit continuation (see above) is signaled by an underscore.

2.3.1. Identifiers

An identifier is a letter or a letter followed by letterS or digits. The following is a list of
the reserved words that have special meaning in EFL. They will be discussed later.

array
automatic
break
call
case
character
common
complex
continue
debug
default
define
dimension
do
double
doubleprecision
else
end
equivalence

exit
external
false
field
for
function
go
goto
if
implicit
include
initial
integer
internal
lengtbof
logical
long
next
option

precision
procedure
read
readbin
real
repeat
return
select
short
sizeof
static
struct
subroutine
true
until
value
while
write
writebin

The use of these words is discussed below. These words may not be used for any other pur
pose.

2.3.l. Strings

A character string is a sequence of characters surrounded by quotation marks. If the
" string is bounded by single-quote marks (•) , it may contain double quote marks (") , and vice

versa. A quoted string may not be broken across a line boundary.

2-126 EFL

'hello there·
"ain't misbehavin'"

2.3.3. Integer Constants
An integer constant is a sequence of one or more digits.

0
57
123456

2.3.4. Floating Point Constants
A floating point constant contains a dot and/or an exponent field. An exponent field is a

letter d or e followed by an optionally signed integer constant. If I and J are integer constants
and E is an exponent field, then a floating constant has one of the following forms:

.I
I.
J.J
IE
J.E
.IE
J.JE

2.3.S. Punctuation
Certain characters are used to group or separate objects in the language. These are

parentheses ()
braces { }
comma
semicolon
colon
end-of -line

The end-of-line is a token (statement separator) when the line is neither blank nor continued.

2.3.6. Operators

The EFL operators are written as sequences of one or more non-alphanumeric characters.

+ - • I ••
< <- > >- -- --&& II & I
+- -- ,_ ··-
&&- II- &- I-
-> s

A dot ('. ') is an operator when it qualifies a structure element name, but not when it acts as a
decimal point in a numeric constant. There is a special mode (see the Atavisms section) in
which some of the operators may be represented by a string consisting of a dot, an identifier,
and a dot (e.g., .It.) .

2.4. Macros

EFL has a simple macro substitution facility. An identifier may be defined to be equal to
a string of tokens; whenever that name appears as a token in the program, the string replaces it.
A macro name is given a value in a define statement like

---·---···-~-·---

\
define count n + - 1

Any time the name count appears in the program. it is replaced by the statement

n += 1

A define statement must appear alone on a line; the form is

define name rest-of-line

Trailing comments are part of the string.

3. PROGRAM FORM

3.1. Files

EFL 2-127

A file is a sequence of lines. A file is compiled as a single unit. It may contain one or
more procedures. Declarations and options that appear outside of a procedure affect the
succeeding procedures on that file.

3.2. Procedures

Procedures are the largest grouping of statements in EFL. Each procedure has a name by
which it is invoked. (The first procedure invoked during execution. known as the main pro
cedure, has the null name.) Procedure calls and argument passing are discussed in Section 8.

3.3. Blocks

Statements may be formed into groups inside of a procedure. To describe the scope of
names, it is convenient to introduce the ideas of block and of nesting level. The beginning of a
program file is at nesting level zero. Any options, macro definitions, or variable declarations
there are also at level zero. The text immediately following a procedure statement is at level 1.
After the declarations, a left brace marks the beginning of a new block and increases the nest
ing level by 1; a right brace drops the level by 1. (Braces inside declarations do not mark
blocks.) (See Section 7.2). An end statement marks the end of the procedure, level I. and the
return to level 0. A name (variable or macro) that is de.fined at level k is de.fined throughout
that block and in all deeper nested levels in which that name is not redefined or redeclared.
Thus, a procedure might look like the following:

3.4. Statements

block O
procedure george
real x
x•l

if(x > 2)
#new block

integer x # a different variable
do x = 1,7

write(,.x)

end of block
end # end of procedure, return to block 0

A statement is terminated by end of line or by a semicolon. Statements are of the follow
ing types:

2-128 EFL

Option
Include
Define
Procedure
End

Declarative
Executable

The optl,n statement is described in Section 10. The include, define, and end statements have
been d~bed above; they may not be followed by another statement on a line. Each pro
cedure ~egins with a procetlure statements and finishes with an end statement; these are dis
cussed ip Section 8. Declarations describe types and values of variables and procedures. Exe·
cutable ~tatements cause specific actions to be taken. A block is an example of an executable
s~temept; it is made up of declarative and executable statcrments.

3.S. Labels

An executable statement may have a label which may be used in a branch statement. A
label is an identifier fallowed by a colon, as in

read(, x)
if(x < 3) goto error

error: fatal ("bad input")

4. DATA TYPES AND VARIABLES
EFL supports a small number of basic (scalar) types. The programmer may define objects

made up of variables of bas~c type; other aggregates may then be defined in terms of previously
defined aggregates.

4.1. Basic Types
The basic types are

logical
integer
fteld(m :n)
real
complex
long real
long complex
character(n)

A logical quantity may take on the two values true and false. An integer may take on any
whole number value in some machine-dependent range. A field quantity is an integer restricted
to a particular closed interval ([m:n]). A 'real' quantity is a floating point approximation to a
real or rational number. A long real is a more precise approximation to a rational. (Real quan
Uties are represented as single precision floating point numbers; long reals are double precision
floating point numbers.) A complex quantity is an approximation to a complex number. and is
represented as a pair of reals. A character quantity is a fixed-length string of n characters.

4.2. Constants

There is a notation for a constant of each basic type.
A logical may take on the two values

true
false

EFL 2-129

An integer or field constant is a fixed point constant, optionally preceded by a plus or minus
sign, as in

17
-94
+6
0

A long real ('double precision') constant is a floating point constant containing an exponent
field that begins with the letter d. A real ('single precision') constant is any other floating point
constant. A real or long real constant may be preceded by a plus or minus sign. The following
are valid real constants:

17.3
-.4
7.9e-6 (- 7.9x10-6)

14e9 (- l.4x 1010)

The following are valid long real constants

7.9d-6 (- 7.9x10-6)
Sd3

A character constant is a quoted string.

4.3. Variables

A variable is a quantity with a name and a location. At any particular time the variable
may also have a value. (A variable is said to be undefined before it is initialized or assigned its
first value, and after certain indefinite operations are performed.) Each variable has certain
attributes:

4.3.1. Storage Class

The association of a name and a location is either transitory or permanent. Transitory
association is achieved when arguments are passed to procedures. Other associations are per
manent (static). (A future extension of EFL may include dynamically allocated variables.)

4.3.l. Scope of Names

The names of common areas are global, as are procedure names: these names may be
used anywhere in the program. All other names are local to the block in which they are
declared.

4.3.3. Precision

Floating point variables are either of normal or long precision. This attribute may be
stated independently of the basic type.

4.4. Arrays

It is possible to declare rectangular arrays (of any dimension) of values of the same type.
The index set is always a cross-product of intervals of integers. The lower and upper bounds of
the intervals must be constants for arrays that are local or common. A formal argument array
may have intervals that are of length equal to one of the other formal arguments. An element
of an array is denoted by the array name followed by a parenthesized comma-separated list of
integer values, each of which must lie within the corresponding interval. (The intervals may
include negative numbers.) Entire arrays may be passed as procedure arguments or in

---------- -··-·--

2-130 EFL

input/output lists, or they may be initialized; all other array references must be to individual
elements.

4.5. Structures

It is possible to define new types which are made up of elements of other types. The
compound object is known as a structure; its constituents are called members of the structure.
The structure may be given a name, which acts as a type name in the remaining statements
within the scope of its declaration. The elements of a structure may be of any type (including
previously defined structures), or they may be arrays of such objects. Entire structures may be
passed to procedures or be used in input/output lists; individual elements of structures may be
referenced. The uses of structures will be detailed below. The following structure might
represent a symbol table:

S. EXPRESSIONS

struct tableentry
{
character(8) name
Integer hashvalue
Integer numberofelements
field(O:l) initialized, used, set
field(O:lO) type
}

Expressions are syntactic forms that yield a value. An expression may have any of the
followina forms, recursively applied:

primary
(expression)
unary-operator expression
expression binary-operator expression

In the following table of operators, atl operators on a line have equal precedence and have
higher precedence than operators on later lines. The meanings of these operators are described
in sections S.3 and S.4.

->
••
• I unary + - + + - -
+ -
< <• > >• -- -=
&: &:&:
111
s
• +• -== •• I= ••• &:• I• &:&:• 11=-

Examples of expressions are

a<b &:& b<c
-(a + sin(x)) I (5+cos(x))••2

5.1. Primaries

Primaries are the basic elements of expressions, as follows:

EFL 2-131

S.1.1. Constants
Constants are described in Section 4.2.

5.1.2. Variables
Scalar variable names are primaries. They may appear on the left or the right side of an

assignment. Unqualified names of aggregates (structures or arrays) may only appear as pro
cedure arguments and in input/output lists.

5.1.3. Array Elements
An element of an array is denoted by the array name followed by a parenthesized list of

subscripts, one integer value for each declared dimension:

a(5)
b(6, -3, 4)

5.1.4. Structure Members
A structure name followed by a dot followed by the name of a member of that structure

constitutes a reference to that element. If that element is itself a structure, the reference may
be further qualified.

5.1.5. Procedure Invocations

a.b
x(3).y(4).z(5)

A procedure is invoked by an expression of one of the forms

procedurename ()
procedurename (expression)
procedurename (expression-], ... , expression-n)

The procedurename is either the name of a variable declared external or it is the name of a
function known to the EFL compiler (see Section 8.5), or it is the actual name of a procedure.
as it appears in a procedure statement. If a procedurename is declared external and is an argu
ment of the current procedure, it is associated with the procedure name passed as actual argu
ment; otherwise it is the actual name of a procedure. Each expression in the above is called an
actual argument. Examples of procedure invocations are

f(x)
workO
g(x, y+J, 'xx')

When one of these procedure invocations is to be performed, each of the actual argument
expressions is first evaluated. The types, precisions, and bounds of actual and formal argu
ments should agree. If an actual argument is a variable name, array element, or structure
member, the called procedure is permitted to use the corresponding formal argument as the left
side of an assignment or in an input list; otherwise it may only use the value. After the formal
and actual arguments are associated, control is passed to the first executable statement of the
procedure. When a return statement is executed in that procedure, or when control reaches
the end statement of that procedure, the function value is made available as the value of the
procedure invocation. The type of the value is determined by the attributes of the pro
cedurename that are declared or implied in the calling procedure, which must agree with the
attributes declared for the function in its procedure. In the special case of a generic function.
the type of the result is also atf ected by the type of the argument. See Chapter 8 for details.

2-132 EFL

S.1.6. Input/Output Expressions
The EFL input/output syntactic forms may be used as integer primaries that have a non

zero value if an error occurs during the input or output. See Section 7. 7.

S.1.7. Coercions
An expression of one precision or type may be converted to another by an expression of

the form

attributes (expression)

At present, the only attributes permitted are precision and basic types. Attributes are separated
by white space. An arithmetic value of one type may be coerced to any other arithmetic type; a
character expression of one length may be coerced to a character expression of another length;
logical expressions may not be coerced to a nonlogical type. As a special case, a quantity of
complex or 1001 complex type may be constructed from two integer or real quantities by pass
ing two expressions (separated by a comma) in the coercion. Examples and equivalent values
are

integer(S.3) =- S
lon1 real (5) • S.OdO
complex(S,3) • S+3i

Most conversions are done implicitly, since most binary operators permit operands of different
arithmetic types. Explicit coercions are of most use when it is necessary to convert the type of
an actual argument to match that of the corresponding formal parameter in a procedure call.

S.1.8. Sizes
There is a notation which yields the amount of memory required to store a datum or an

item of specified type:

sizeof (leftside)
sizeof (attributes)

In the first case, leftside can denote a variable, array, array element, or structure member. The
value of sizeof is an integer, which gives the size in arbitrary units. If the size is needed in
terms of the size of some specific unit, this can be computed by division:

(

(
\

sizeof(x) I sizeof(lnteger) '\

yields the size of the variable x in integer words.

The distance between consecutive elements of an array may not equal sizeof because cer
tain data types require final padding on some machines. The lengthof operator gives this larger
value, again in arbitrary units. The syntax is

S.l. Parentheses

lengthof (leftside)
lengthof (attributes)

An expression surrounded by parentheses is itself an expression. A parenthesized expres
sion must be evaluated before an expression of which it is a part is evaluated.

S.3. Unary Operators

All of the unary operators in EFL are prefix operators. The result of a unary operator has ('
the same type as its operand. '\

EFL 2-133

5.3.1. Arithmetic
Unary + has no effect. A unary - yields the negative of its operand.

The prefix operator + + adds one to its operand. The prefix operator - - subtracts one
from its operand. The value of either expression is the result of the addition or subtraction.
For these two operators, the operand must be a scalar, array element, or structure member of
arithmetic type. (As a side effect, the operand value is changed.)

5.3.l. Logical
The only logical unary operator is complement (-). This operator is defined by the equa

tions

- true == false
- false • true

5.4. Binary Operators
Most EFL operators have two operands, separated by the operator. Because the character

set must be limited, some of the operators are denoted by strings of two or three special charac
ters. All binary operators except exponentiation are left $5Sociative.

5.4.1. Arithmetic
The binary arithmetic operators are

+ addition
subtraction

• multiplication
I division
•• exponelltiation

Exponentiation is right associative: a .. b .. c - a••(b••c) - a1bc> The operations have the con
ventional meaninp: 8+2 - 10, 8-2 - 6, 8•2 - 16, 8/2 - 4, 3 .. 2 - 82 - 64.

The type of the result of a binary operation A op B is determined by the types of its
operands: ·

Type of B

Type of A integer real long real complex long complex
integer integer real long real complex long complex
real real real lpng real complex long complex
long re.al long real long real long real long complex long complex
complex complex complex long complex complex long complex
long complex long complex long complex long complex long complex long complex

If the type of an operand differs from the type of the resqlt, the calculation is done as if the
operand were first coerced to the type of the result. lf both operands are integers, the result is
of type integer, and is computed exactly. (Quotients are truncated toward zero, so 8/3-2.)

5.4.l. Logical
The two binary logical operations in Efl, and cµld or, are defined by the truth tables:

A B A and B A or B
false
false
true
true

false,
true
false
tnie

fl}lSe
false
false
true

false
true
true
true

Each of these operators comes in two form~. In one form, the order of evaluation is specified.

2-134 EFL

The expression

a&& b

is evaluated by first evaluating a; if it is false then the expression is false and b is not evaluated;
otherwise the expression has the value of b. The expression

a 11 b

is evaluated by first evaluating a; if it is true then the expression is true and b is not evaluated;
otherwise the expression has the value of b. The other forms of the operators (& for and and I
for or) do not imply an order of evaluation. With the latter operators. the compiler may speed
up the code by evaluating the operands in any order.

5.4.3. Relational Operators

There are six relations between arithmetic quantities. These operators are not associative.

EFL Operator Meaning
< < less than
< - ~ less than or equal to
-- - equal to
-- ;= not equal to
> > greater than
> - ~ greater than or equal

Since the complex numbers are not ordered, the only relational operators that may take com
plex operands are • • and - • . The character collating sequence is not defined.

5.4.4. Assignment Operators

All of the assignment operators are right associative. The simple form of assignment is

basic-left-side • expression

A basic-left-side is a scalar variable name, array element, or structure member of basic type.
This statement computes the expression on the right side. and stores that value (possibly after
coercing the value to the type of the left side) in the location named by the left side. The
value of the assignment expression is the value assigned to the left side after coercion.

There is also an assignment operator corresponding to each binary arithmetic and logical
operator. In each case, a op- b is equivalent to a - a op b. (The operator and equal sign
must not be separated by blanks.) Thus, n + •2 adds 2 to n. The location of the left side is
evaluated only once.

5.S. Dynamic Structures

EFL does not have an address (pointer. reference) type. However. there is a notation for
dynamic structures,

leftside - > structurename

This expression is a structure with the shape implied by structurename but starting at the loca
tion of leftside. In effect, this overlays the structure template at the specified location. The left
side must be a variable, array, array element, or structure member. The type of the lefiside
must be one of the types in the structure declaration. An element of such a structure is
denoted in the usual way using the dot operator. Thus,

place(i) - > st.elt

refers to the elt member of the st structure starting at the ;'" element of the array place.

(
\

EFL 2-135

S.6. Repetition Operator

Inside of a list, an element of the form

integer-constant-expression $ constant-expression

is equivalent to the appearance of the expression a number of times equal to the first expression.
Thus,

(3, 3$4, 5)

is equivalent to

(3, 4, 4, 4, S)

S. 7. Constant Expressions

If an expression is built up out of operators {other than functions) and constants. the
value of the expression is a constant, and may be used anywhere a constant is required.

6. DECLARATIONS

Declarations statement describe the meaning, shape, and size of named objects in the
EFL language.

6.1. Syntax

A declaration statement is made up of attributes and variables. Declaration statements are
of two form:

allributes variable-list
attributes { declarations

In the first case, each name in the variable-list has the specified attributes. In the second, each
name in the declarations also has the specified attributes. A variable name may appear in more
than one variable list, so long as the attributes are not contradictory. Each name of a nonargu
ment variable may be accompanied by an initial value specification. The declarations inside the
braces are one or more declaration statements. Examples of declarations are

6.2. Attributes

6.2.1. Basic Types

Integer k=2

long real b(7,3)

common (cname)
{
integer i
long real array(S,0:3) x, y
character(7) ch
}

The following are basic types in declarations

logical
integer
fteld(m:n)
character(k)
real
complex

2-136 EFL

In the above. the quantities k. m. and n denote integer constant expressions with the proper
ties k > 0 and n > m.

6.2.2. Arrays
The dimensionality may be declared by an array attribute

array(bi. ...• b,,)

Each of the b; may either be a sirigle integer expression or a pair of integer expressions
separated by a colon. The pair of expressions form a lower and an upper bound; the single
expression is an upper bound with an implied lower bound of 1. The number of dimensions is
equal to n. the number of bounds. All of the integer expressions must be constants. An
exception is permitted only if all of the variables associated with an array declarator are formal
arguments of the procedure~ in this case, each bound must have the property that
upper-lower+ 1 is equal to a formal argument of the procedure. (The compiler has limited abil
ity to simplify expressions. but it will recognize important cases such as (O:n-1). The upper
bol.lnd for the last dimension (b,,) may be marked by an asterisk (•) if the size of the array is
not known. The fallowing are legal array attributes:

6.2.J. Structures

array(S)
array(S, 1:5, -3:0)
array(S, •)
array(O:m-1, m)

A structure declaration is of the form

struct structnqme { declaration statements }

The structname is optional; if it is present. it acts as if it were the name of a type in the rest of
its scope. Each name that appears inside the declarations is a memberof the structure. and has a
special meaning when used to qualify any variable declared with the structure type. A name
may appear as a member of any number of structures. and may also be the name of an ordinary
variable. since a structure member name is used only in contexts where the parent type is
known. The following are valid structure attributes

struct xx
{
integer a, b
real x(5)
}

struct { xx z (3); character(5) y }

The last line defines a structure containing an array of three xx's and a character string.

6.2.4. Precision
Variables of floating point (real or complex) type may be declared to be long to ensure

they have higher precision than ordinary floating point variables. The default precision is short.

6.2.5. Common

Certain objects called common areas have external scope. and may be referenced by any
procedure that has a declaration for the name using a

common (commonareaname)

attribute. All of the variables declared with a particular common attribute are in the same

EFL 2-137

block; the order in which they are declared is significant. Declarations for the same block in
differing procedures must have the variables in the same order and with the same types. preci
sion, and shapes, though not necessarily with the same names.

6.2.6. External
If a name is used as the procedure name in a procedure invocation. it is implicitly

declared to have the external attribute. If a procedure name is to be passed as an argument. it
is necessary to declare it in a statement of the form

external (name]

If a name has the external attribute and it is a formal argument of the procedure. then it is
associated with a procedure identifier passed as an actual argument at each call. If the name is
not a formal argument, then that name is the actual name of a procedure, as it appears in the
corresponding procedure statement.

6.3. Variable List

The elements of a variable list in a declaration consist of a name, an optional dimension
specification, and an optional initial value specification. The name follows the usual rules. The
dimension specification is the same form and meaning as the parenthesized list in an array
attribute. The initial value specification is an equal sign (•) followed by a constant expressi<'n.
If the name is an array, the right side of the equal sign may be a parenthesized list of constant
expressions, or repeated elements or lists; the total number of elements in the list must not
exceed the number of elements of the array, which are filled in column-major order.

6.4. The Initial Statement
An initial value may also be specified for a simple variable, array, array element. or

member of a structure using a statement of the form

initial (var = val]

The var may be a variable name, array element specification, or member of structure. The
right side follows the same rules as for an initial value specification in other declaration state
ments.

7. EXECUTABLE STATEMENTS

Every useful EFL program contains executable statements - otherwise it would not do
anything and would not need to be run. Statements are frequently made up of other state·
ments. Blocks are the most obvious case, but many other forms contain statements as consti
tuents.

To increase the legibility of EFL programs, some of the statement forms can be broken
without an explicit continuation. A square (O) in the syntax represents a point where the end
of a line will be ignored.

7.1. Expression Statements

7 .1.1. Subroutine Call

A procedure invocation that returns no value is known as a subroutine call. Such an
invocation is a statement. Examples are

work (in, out)
run()

Input/output statements (see Section 7.7) resemble procedure invocations but do not
yield a value. If an error occurs the program stops.

2-'138 EFL

7.1.2. Assignment Statements
An expression that is a simple assignment { =) or a compound assignment (+ • etc.> is a

statement:

7.2. Blocks

a•b
a= sin(:d/6
x •= y

A block is a compound statement that acts as a statement. A block begins with a left
brace. optionally followed by declarations, optionally followed by executable statements, fol
lowed by a right brace. A block may be used anywhere a statement is permitted. A block is
not an expression and does not have a value. An example of a block is

{
integer i # this variable is unknown outside the braces

bi1 - 0
do i • 1,n

if(big < a(i))
big • a(i)

7 .3. Test Statements

Test statements permit execution of certain statements conditional on the truth of a predi·
cate.

7.3.1. If Statement

The simplest of the test statements is the if statement, of form

if (logical-expression) CJ statement

the logical expression is evaluated; if it is true, then the statement is executed.

7.3.2. If-Else
A more general statement is of the form

if (logical-expression) CJ statement-I CJ else CJ starement-2

If the expression is true then statement-] is executed, otherwise statemenr-2 is executed. Either
of the consequent statements may itself be an If-else so a completely nested test sequence is
possible:

if(x<y)
if(a<b)
k•l

else
k•2

else
if(a<b)

m = 1
else

m = 2

An else applies to the nearest preceding un-elsed if. A more common use is as a sequential
test:

7 .3.3. Select Statement

if(x•=l)
k==l

else if(x==J I x===S)
k==2

else
k=3

EFL 2-139

A multiway test on the value of a quantity is succinctly stated as a select statement, which
has the general form

select (expression) Cl block

Inside the block two special types of labels are recognized. A prefix of the form

case I constant I :
marks the statement to which control is passed if the expression in the select has a value equal
to one of the case constants. If the expression equals none of these constants, but there is a
label default inside the select, a branch is taken to that point; otherwise the statement following
the right brace is executed. Once execution begins at a case or default label, it continues until
the next case or default is encountered. The else-if example above is better written as

select(x)
{
case 1:

k•l
case 3,S:

k=2
default:

k==J

Note that control does not 'fall through' to the next case.

7.4. Loops
The loop forms provide the best way of repeating a statement or sequence of operations.

The simplest (while) form is theoretically sufficient, but it is very convenient to have the more
general loops available, since each expresses a mode of control that arises frequently in practice.

7 .4.1. While Statement

This construct has the form

while (logical-expression) Cl statement

The expression is evaluated; if it is true, the statement is executed, and then the test is per
formed again. If the expression is false, execution proceeds to the next statement.

7 .S. For Statement

The for statement is a more elaborate looping construct. It has the form

for (initial-statement , Cl logical-expression , Cl iteration-statement) Cl body-statement

Except for the behavior of the next statement (see Section 7.6.3), this construct is equivalent
to

2-140 EFL

initial-statement
while (logical-expression)

(
body-statement
iteration-statement
}

This form is useful for general arithmetic iterations, and for various pointer-type operations.
The sum of the integers from 1 to 100 can be computed by the fragment

n•O
for(i = 1, i < = 100, i + = 1)

n += i
Alternatively, the computation could be done by the single statement

for((n•O; i•l}, 1<•100, (n+=i; ++i})

Note that the body of the for loop is a null statement in this case. An example of following a
linked list will be given later.

7 .S.1. Repeat Statement

The statement

repeat Cl statement

executes the statement, then does it again, without any termination test. Obviously, a test
inside the statement is needed to stop the loop.

7 .S.2. Repeat ••• Until Statement

The while loop performs a test before each iteration. The statement

repeat Cl statement Cl until (logical-expression)

executes the statement. then evaluates the logical; if the logical is true the loop is complete~ oth
erwise control returns to the statement. Thus, the body is always executed at least once. The
until refers to the nearest preceding repeat that has not been paired with an until. In practice.
this appears to be the least frequently used looping construct.

7.5.3. Do Loops
The simple arithmetic progression is a very common one in numerical .applications. EFL

has a special loop form for ranging over an ascending arithmetic sequence

do variable= expression-I. expression-2, expression-3
statement

The variable is first given the value expression-I. The statement is executed, then expression-3
is added to the variable. The loop is repeated until the variable exceeds expression-2. If
expression-3 and the preceding comma are omitted, the increment is taken to be 1. The loop
above is equivalent to

t2 - expression-2
t3 - expression-3
for(variable - expression-I , variable < - t2 , variable +- t3)

statement

(The compiler translates EFL do statements into Fortran DO statements, which are in tum usu
ally compiled into excellent code.) The do variable may not be changed inside of the loop, and
expression-] must not exceed expression-2. The sum of the first hundred positive integers could

EFL 2-141

be computed by

n•O
do i = 1, 100

n += i

7 .6. Branch Statements

Most of the need for branch statements in programs can be averted by using the loop and
test constructs. but there are programs where they are very useful.

7.6.1. Goto Statement

The most general, and most dangerous, branching statement is the simple unconditional

goto label

After executing this statement, the next statement performed is the one following the given
label. Inside of a select the case labels of that block may be used as labels. as in the following
example:

select(k)

case 1:
error(7)

case 2:
k•2
1oto case 4

case 3:
k=5
goto case 4

case 4:
flxup(k)
1oto def a ult

default:
prmsg ("ouch")

(If two select statements are nested, the case labels of the outer select are not accessible from
the inner one.)

7 .6.2. Break Statement

A safer statement is one which transfers control td the statement fallowing the currem
select or loop form. A statement of this sort is almost always needed in a repeat loop:

repeat
{
do a computation
if (finished)

break

More general forms permit controlling a branch out of more than one construct.

2-142 EFL

break 3

transfers control to the statement following the third loop and/or select surrounding the state
ment. It is possible to specify which type of construct (for, while. repeat. do. or select) is to
be counted. The statement

break while

breaks out of the first surrounding while statement. Either of the statements

break 3 for
break for 3

will transfer to the statement after the third enclosing for loop.

7.6.3. Next Statement
The next statement causes the first surrounding loop statement to go on to the next itera

tion: the next operation performed is the test of a while, the iteration-statement of a for, the
body of a repeat, the test of a repeat ••• until, or the increment of a do. Elaborations similar to
those for break are available:

next
next 3
next 3 for
next for 3

A next statement ignores select statements.

7 .6.4. Retum
The last statement of a procedure is followed by a return of control to the caller. If it is

desired to effect such a return from any other point in the procedure, a

retum

statement may be executed. Inside a function procedure, the function value is specified as an
argument of the statement:

retum (expression)

7.7. Input/Output Statements
EFL has two input statements (read and readbin), two output statements (write and wri

tebin), and three control statements (endfile. rewind, and backspace). These forms may be
used either as a primary with a integer value or as a statement. If an exception occurs when
one of these forms is used as a statement, the result is undefined but will probably be treated as
a fatal error. If they are used in a context where they return a value, they return zero if no
exception occurs. For the input forms, a negative value indicates end-of -file and a positive
value an error. The input/output part of EFL very strongly reflects the facilities of Fortran.

7.7.1. Input/Output Units
Each 110 statement refers to a 'unit', identified by a small positive integer. Two special

units are defined by EFL, the standard input unit and the standard output unit. These particular
units are assumed if no unit is specified in an 1/0 transmission statement.

The data on the unit are organized into records. These records may be read or written in a
fixed sequence, and each transmission moves an integral number of records. Transmission
proceeds from the first record until the end of file.

\

/

EFL 2-143

7. 7 .2. Binary Input/Output
The readbin and writebin statements transmit data in a machine-dependent but swift

manner. The statements are of the form

writebin (unit , binary-output-list)
readbin (unit , binary-input-list)

Each statement moves one unformatted record between storage and the device. The unit is an
integer expression. A binary-output-list is an iolist (see below) without any format specifiers. A
binary-input-list is an iolist without format specifiers in which each of the expressions is a vari
able name, array element, or structure member.

7.7.3. Formatted Input/Output
The read and write statements transmit data in the form of lines of characters. Each

statement moves one or more records Oines). Numbers are translated into decimal notation.
The exact form of the lines is determined by format specifications, whether provided explicitly
in the statement or implicitly. The syntax of the statements is

write(unit, formatted-output-list)·
read (unit , formatted-input-list)

The lists are of the same form as for binary 1/0, except that the lists may include format
specifications. If the unit is omitted, the standard input or output unit is used.

7. 7 .4. lolists
An iolist specifies a set of values to be written or a set of variables into which values are to

be read. An iolist is a list of one or more ioexpressions of the form

expression
{ iolist}
do-specification { iolist }

For formatted 1/0, an ioexpression may also have the forms

ioexpression : format-specifier
: format-specifier

A do-specification looks just like a do statement, and has a similar effect: the values in the braces
are transmitted repeatedly until the do execution is complete.

7. 7 .5. Formats
The following are permissible format-specifiers. The quantities w, d, and k must be

integer constant expressions.

2-144 EFL

i(w) integer with w digits
f(w,"' floating point number of w characters,

d of them to the right of the decimal point.
e(w,a) floating point number of w characters,

d of them to the right of the decimal point,
with the exponent field marked with the letter e

I (w) logical field of width w characters,
the first of which is t or t
(the rest are blank on output, ignored on input)
Standing for true and false respectively

c character string of width equal to the length of the datum
c(w) character string of width w
s (k) skip k lines
x(k) skip k spaces
• " use the characters inside the string as a Fortran format

If no format is specified for an item in a formatted input/output statement, a default form is
chosen.

If an item in a list is art array name, then the entire array is transmitted as a sequence of
elements, each with its own format. The elements are transmitted in column-major order. the
same order used for array initializations.

7. 7 .6. Manipulation statements
The three input/output statements

backspace (unit)
rewind (unit)
endftle(unit)

look like ordinary procedure cails. but may be used either as statements or as integer expres
sions which yield non-zero if an error is detected. backspace causes the specified unit to back
up, so that the next read will re-read the previous record. and the next write will over-write it.
rewind moves the device to its begiMing, so that the next input statement will read the first
record. endfile causes the file to be marked so that the record most recently written will be the
last record on the file, and any attempt to read past is an error.

8. PROCEDURES
Procedures are the basic unit of an EFL program, and provide the means of segmenting a

program into separately compilable and named parts.

8.1. Procedure Statement

Each procedure begins with a statement of one of the forms

procedure
attributes procedure procedurename
attributes procedure procedurename ()
attributes procedure procedurename ((name])

The first case specifies the main procedure, where execution begins. In the two other cases. the
a11ributes may specify precision and type, or they may be omitted entirely. The precision and
type of the procedure may be declared in an ordinary declaration statement. If no type is
declared, then the procedure is called a subroutine and no value' may be returned for it. Other
wise, the procedure is a function and a value of the declared type is returned for each call.
Each name inside the parentheses in the last form above is called a formal argument of the pro
cedure.

(

\

I

I

,/

EFL 2-145

8.2. End Statement
Each procedure terminates with a statement

end

8.3. Araument Association
When a procedure is invoked, the actual arguments are evaluated. If an actual argument

is the name of a variable. an array element. or a structure member. that entity becomes associ
ated with the formal argument, and the procedure may reference the values in the object, and
assign to it. Otherwise, the value of the actual is associated with the formal argument, but the
procedure may not attempt to change the value of that formal argument.

If the value of one of the arguments is changed in the procedure. it is not permitted that
the corresponding actual argument be associated with another formal argument or with a com·
mon element that is referenced in the procedure.

8.4. Execution and Return Values

After actual and formal arguments have been associated, control passes to the first execut
able statement of the procedure. Control returns to the invoker either when the end statement
of the procedure is reached or when a retum statement is executed. If the procedure is a func
tion (has a declared type). and a return (value) is executed, the value is coerced to the correct
type and precision and returned.

8.5. Known Functions

A number of functions are known to EFL. and need not be declared. The compiler
knows the types of these functions. Some of them are gtneric; i.e., they name a family of func
tions that differ in the types of their arguments and return values. The compiler chooses which
element of the set to invoke based upon the attributes of the actual arguments.

8.5.1. Minimum and Maximum Functions

The generic functions are min and max. The min calls return the value of their smallest
argument; the max calls return the value of their largest argument. These are the only func
tions that may take different numbers of arguments in different calls. If any of the arguments
are long real then the result is long real. Otherwise. if any of the arguments are real then the
result is real; otherwise all the arguments and the result must be integer. Examples are

8.5.2. Absolute Value

min(S, x, -3.20)
max(i, z)

The abs function is a generic function that returns the magnitude of its argument. For
integer and real arguments the type of the result is identical to the type of the argument; for
complex arguments the type of the result is the real of the same precision.

8.5.3. Elementary Functions
The following generic functions take arguments of real, long real, or complex type and

return a result of the same type:

2-146 EFL

sin
cos
exp
log
loglO
sqrt

sine function
cosine function
exponential function Ce·'").
natural (base e) logarithm
common (base 10) logarithm
square root function (.JX).

In addition, the following functions accept only real or long real arguments:

a tan

atan2

atan (x)-tan-1x

atan2(x y)-tan-1~
' y

8.5.4. Other Generic Functions

The sign functions takes two arguments of identical type; sign{x,y) - sgn(y)lxl. The
mod function yields the remainder of its first argument when divided by its second. These
functions accept integer and real arguments.

9. ATAVISMS

Certain facilities are included in the EFL language to ease the conversion of old Fortran
or Ratfor programs to EFL.

9.1. Escape Lines

In order to make use of nonstandard features of the local Fortran compiler, it is occasion
ally necessary to pass a particular line through to the EFL compiler output. A line that begins
with a percent sign ('Oft') is copied through to the output, with the percent sign removed but no
other change. Inside of a procedure. each escape line is treated as an executable statement. If
a sequence of lines constitute a continued Fortran statement, they should be enclosed in braces.

9.2. Call Statement

A subroutine call may be preceded by the keyword call.

call joe
call work (17)

9.3. Obsolete Keywords

The following keywords are recognized as synonyms of EFL keywords:

9.4. Numeric Labels

Fortran

double precision
function
subroutine

EFL

long real
procedure
procedure (untyped)

Standard statement labels are identifiers. A numeric (positive integer constant) label is
also permitted; the colon is optional following a numeric label.

(

EFL 2-147

9.S. lmpJlcit Declarations
If a name is used but does not appear in a declaration. the EFL compiler gives a warning

and assumes a declaration for it. If it is used in the context of a procedure invocation. it is
assumed to be a procedure name; otherwise it is assumed to be a local variable defined at nest
ing level 1 in the current procedure. The assumed type is determined by the first letter of the
name. The association of letters and types may be given in an implicit statement. with syntax

implicit (letter-list) type

where a letter-list is a list of individual letters or ranges (pair of letters separated by a minus
sign). If no implicit statement appears, the following rules are assumed:

implicit (a-h, o-z) real
implicit (i-n) integer

9.6. Computed goto

Fonran contains an indexed multi-way branch; this facility may be used in EFL by the
computed GOTO:

goto ((label)) , expression

The expression must be of type integer and be positive but be no larger than the number of
labels in the list. Control is passed to the statement marked by the label whose position in the
list is equal to the expression.

9.7. Go To Statement

In unconditional and computed goto statements, it is permissible to separate the go and to
words, as in

go to xyz

9 .8. Dot Names

Fonran uses a restricted character set, and represents certain operators by multi-character
sequences. There is an option (dots=on; see Section 10.2) which forces the compiler to recog
nize the forms in the second column below:

< .It.
<= .le.
> .gt.
>• .ge. -- .eq. -- .ne.
&: .and.
I .or.
&:&: .andand.
II .oror •

• not •
true • true.
false .false.

In this mode. no structure element may be named It, le, etc. The readable forms in the left
column are always recognized.

2-148 EFL

9.9. Complex Constants
A complex constant may be written as a parenthesized list of real quantities. such as

(1.5, 3.0)

The preferred notation is by a type coercion,

complex(l.S, 3.0)

9.10. Function Values
The preferred way to return a value from a function in EFL is the return (value) con

struct. However, the name of the function acts as a variable to which values may be assigned;
an ordinary return statement returns the last value assigned to that name as the function value.

9.11. Equivalence

A statement of the form

equivalence vi. v2 •••• , Vn

declares that each of the v; starts at the same memory location. Each of the v; may be a vari
able name, array element name, or structure member.

9.12. Minimum and Maximum Functions
There are a number of non-generic functions in this category. which differ in the required

types of the arguments and the type of the return value. They may also have variable numbers
of arguments, but all the arguments must have the same type.

10. COMPILER OPTIONS

Function
amino
aminl
minO
minl
dminl

amaxO
amaxl
maxO
maxl
dmaxl

Argument Type
integer
real
integer
real
long real

integer
real
integer
real
long real

Result Type
real
real
integer
integer
long real

real
real
integer
integer
long real

A number of options can be used to control the output and to tailor it for various com
pilers and systems. The defaults chosen are conservative, but it is sometimes necessary to
change the output to match peculiarities of the target environment.

Options are set with statements of the form

option (opt 1
where each opt is of one of the forms

option name
optionname = optionvalue

The optionvalue is either a constant (numeric or string) or a name associated with that option.
The two names yes and no apply to a number of options.

EFL 2-149

10.1. Default Options
Each option has a default setting. It is possible to change the whole set of defaults to

those appropriate for a particular environment by using the system option. At present, the only
valid values are system=unix and system=gcns.

10.2. Input Language Options

The dots option determines whether the compiler recognizes .It. and similar forms. The
default setting is no.

10.3. Input/Output Error Handling

The ioerror option can be given three values: none means that norte of the 110 statements
may be used in expressions, since there is no way to detect errors. The implemerttation of the
ibm form uses ERR- and END- clauses. The implementation of the fortran77 form uses
IOSTAT- clauses.

10.4. Continuation Conventions

By default, continued Fortran statements are indicated by a character in column 6 (Stan
dard Fortran). The option continue-column! puts an ampersand (&) in the first column of
the continued lines instead.

10.5. Default Formats

If no format is specified for a datum in an iolist for a read or write statement, a default is
provided. The default formats can be changed by setting certain options

Option
iformat
rformat
dformat
zformat
zdformat
lformat

Type
integer
real
long real
complex
long complex
logical

The associated value must be a Fortran format, such as

option rformat=f22.6

10.6. Alignments and Sizes

In order to implement character variables, structures, and the sizeof and lengthof opera
tors. it is necessary to know how much space various Fortran data types require, and what
boundary alignment properties they demand. The relevant options are

Fortran Type Size Option Alignment Option
integer isize ialign
real rsize ralign
long real dsize dalign
complex zsize zalign
logical I size lalign

The sizes are given in terms of an arbitrary unit~ the aHgnment is given in the same units. The
option charperint gives the number of characters per integer variable.

2-150 EFL

10.7. Default Input/Output Units

The options ftnin and ftnout are the numbers of the standard input and output units.
The default values are ftnin=S and ftnout=6.

10.8. Miscellaneous Output Control Options

Each Fortran procedure generated by the compiler will be preceded by the value of the
procheader option.

No Hollerith strings will be passed as subroutine arguments if hollincaJl=no is specified.
The Fortran statement numbers normally start at 1 and increase by I. It is possible to

change the increment value by using the deltastno option.

11. EXAMP.LES
In order to show the flavor or programming in EFL, we present a few examples. They are

short, but show some of the convenience of the language.

11.1. File Copying

The following short program copies the standard input to the standard output, provided
that the input is a formatted file containing lines no longer than a hundred characters.

procedure # main program
character<tOO) 11.IRe

while(read(, 11.Jte) =• 0)
write(, line)

end

Since read returns zero until the end of file (or a read error), this program keeps reading and
writing until the input is exhausted.

11.2. Matrix Multiplication

The following procedure multiplies the m x n matrix a by the n x p matrix b to give the
m x p matrix c. The calculation obeys the formula cu - !, a;k bk1.

procedure matmul (a,b,c, m,n,p)
integer i, j, k, m, n, p
long real a (m,n), b(n,p), c(m,p)

do i = 1,m
do J = 1,p

end

{
c(ij) = O
do k • 1,n

c(ij) + = a(i,k) • b(kj)

11.3. Searching a Linked List

Assume we have a list of pairs of numbers (x ,y). The list is stored as a linked list sorted
in ascending order of x values. The following procedure searches this list for a particular value
of x and returns the corresponding y value.

define LAST 0
define NOTFOUND -1

integer procedure val (list, first, x)

list is an array of structures.
Each structure contains a thread index value, an x, and a y value.

struct

integer nextindex
integer x, y
} list(•)

integer first, p, arg

for(p •first , p00 =LAST && list(p).x< =x, p • list(p).nextindex)
if (list (p) .x • = x)

retum (NOTFOUND)
end

return(llst(p).y)

EFL 2-151

The search is a single for loop that begins with the head of the list and examines items until
either the list is exhausted (p- -LAST) or until it is known that the specified value is not on
the list Oist(p).x > x). The two tests in the conjunction must be performed in the specified
order to avoid using an invalid subscript in the list(p) reference. Therefore. the && operator is
used. The next element in the chain is found by the iteration statement p=list(p).nextindex.

11.4. Walking a Tree
As an example of a more complicated problem, let us imagine we have an expression tree

stored in a common area. and that we want to print out an infix form of the tree. Each node is
either a leaf (containing a numeric value) or it is a binary operator, pointing to a left and a right
descendant. In a recursive language, such a tree walk would be implement by the following
simple pseudocode:

if this node is a leaf
print its value

otherwise
print a left parenthesis
print the left node
print the operator
print the right node
print a right parenthesis

In a nonrecursive language like EFL, it is necessary to maintain an explicit stack to keep track
of the current state of the computation. The following procedure calls a procedure outch to
print a single character and a procedure outval to print a value.

2-152 EFL

procedure walk (first) # print out an expression tree

integer first # index of root node
integer currentnode
integer stackdepth
common (nodes) struct

struct

{
character(t> op
integer leftp, rightp
real val
} treeUOO) # array of structures

integer nextstate
integer nodep
} stackframe(lOO)

define NODE tree<currentnode)
define ST ACK stackframe (stick depth)

nextstate values
define DOWN 1
define LEFT 2
define RIGHT 3

initialize stack with root node
stackdepth • 1
ST ACK.nextstate = DOWN
ST ACK.nodep • first

""\

EFL 2-153

while(stackdepth > 0)

end

(
currentnode = ST ACK.nodep
select(STACK.nextstate)

(
case DOWN:

if(NODE.op = = " ") # a leaf
(
outvaH NODE.val)
stackdepth - • 1
}

else (# a binary operator node
outch("(")

case LEFT:

ST ACK.nextstate • LEFT
stackdepth + = 1
STACK.nextstate • DOWN
STACK.nodep = NODE.leftp
}

outch (NODE.op)
STACK.nextstate =RIGHT
stackdepth + = 1
STACK.nextstate • DOWN
STACK.nodep = NODE.rightp

case RIGHT:
outch(")")
stackdepth - = 1

12. PORTABILITY

One of the major goals of the EFL language is to make it easy to write ponable programs.
The output of the EFL compiler is intended to be acceptable to any Standard Fortran compiler
(unless the fortran77 option is specified).

12.1. Primitives

Certain EFL operations cannot be implemented in portable Fortran. so a few machine
dependent procedures must be provided in each environment.

12.1.1. Character String Copying

The subroutine efiasc is called to copy one character string to another. If the target string
is shorter than the source, the final characters are not copied. If the target string is longer. its
end is padded with blanks. The calling sequence is

subroutine eflasc(a. la. b, lb)
integer a(•), la, b(•), lb

and it must copy the first lb characters from b to the first la characters of a.

2-154 EFL

12.1.2. Character Strini Comparisons
The function eficmc is invoked to determine the order of two character strings. The

declaration is

integer function eflcmc(a. la, b. lb)
integer a(•). la. b(•). lb

The function returns a negative value if the string a of length la precedes the string b of length
lb. It returns zero if the strings are equal. and a positive value otherwise. If the strings are of
differing length. the comparison is carried out as if the end of the shorter string were padded
with blanks.

13. ACK~OWLEDGMENTS
A. D. Hall originated the EFL language and wrote the first compiler for it~ he also gave

inestimable aid when I took up the project. B. W. Kernighan and W. S. Brown made a number
of useful suggestions about the language and about this report. N. L. Schryer has acted as wil
ling. cheerful, and severe firs~ user and helpful critic of each new version and facility. J. L.
Blue. L. C. Kaufman. and D. 0. Warner made very useful contributions by making serious use
of the compiler. and noting and tolerating its misbehaviors.

14. REFERENCE
1. B. W. Kernighan, "Ratfor - A Preprocessor for a Rational Fortran". Bell Laboratories

Computing Science Technical Report #SS

EFL 2-155

APPENDIX A. Relation Between EFL and Ratfor
There are a number of differences between Ratfor and EFL, since EFL is a defined

language while Ratfor is the union of the special control structures and the language accepted
by the underlying Fortran compiler. Ratfor running over Standard Fortran is almost a subset of
EFL. Most of the features described in the Atavisms section are present to ease the conversion
of Ratfor programs to EFL.

There are a few incompatibilities: The syntax of the for statement is slightly different in
the two languages: the three clauses are separated by semicolons in Ratfor, but by commas in
EFL. (The initial and iteration statements may be compound statements in EFL because of
this change). The input/output syntax is quite different in the two languages, and there is no
FORMAT statement in EFL. There are no ASSIGN or assigned GOTO statements in EFL.

The major linguistic additions are character data, factored declaration syntax, block struc
ture, assignment and sequential test operators, generic functions, and data structures. EFL per
mits more general forms for expressions, and provides a more uniform syntax. (One need not
worry about the Fortran/Ratfor restrictions on subscript or DO expression forms, for example.)

APPENDIX B. COMPILER

B.1. Current Version
The current version of the EFL compiler is a two-pass translator written in portable C. It

.implements all of the features of the language described above except for long complex
numbers. Versions of this compiler run under the and uN1xt operating systems.

B.l. Dia1nostics
The EFL compiler diagnoses all syntax errors. It gives the line and file name (if known)

on which the error was detected. Warnings are given for variables that are used but not expli
citly declared.

B.3. Quality of Fortran Produced

The Fortran produced by EFL is quite clean and readable. To the extent possible, the
variable names that appear in the EFL program are used in the Fortran code. The bodies of
loops and test constructs are indented. Statement numbers are consecutive. Few unneeded
GOTO and CONTINUE statements are used. It is considered a compiler bug if incorrect For
tran is produced (except for escaped lines). The following is the Fortran procedure produced
by the EFL compiler for the matrix multiplication example (Section 11.2):

subroutine matmul (a, b, c, m, n, p)
integer m, n, p
double precision a(m, n), b(n, p), c(m, p)
integer i, j, k
do 3 i • 1, m

do 2 j = 1, p
c(i, j) = 0
do 1 k • 1, n

c(i, j) = c(i, j) +a(i, k)*b(k, j)
1 continue
2 continue
3 continue

end

The following is the procedure for the tree walk (Section 11.4):

tUNIX is a Trademark of Bell Laboratories.

2-156 EFL

subroutine walk (first>
integer first
common /nodes/ tree
integer tree(4, 100)
real treel (4, 100)
integer staame(2, 100), staptb, curode
integer constl(l)
equivalence (tree(l,1), treet<l,l))
data constl (1) I 4h I

c print out an expression tree
c index of root node
c array of structures
c nextstate values
c initialize stack with root node

stapth = 1
staame(l, stapth) = 1
staame(2, staptb) = first

1 if (stapth .le. 0) goto 9
curode = staame(2, stapth)
1oto 7

2 if (tree(l, curode) .ne. constl (1)) goto 3

c a leaf "

3

call outvaHtreeH4, curode))

stapth = stapth-1
goto 4
caJI out ch (1h0

c a binary operator node
staame(l, staptb) = 2
stapth = stapth+l
staame(l, staptb) = 1
staame(2, stapth) = tree(2, curode)

4 goto 8
5 call outch (tree(l, curode))

staame(l, stapth) = 3
stapth = stapth + 1
staame(l, stapth) = 1
staame(2, stapth) = tree(J, curode)
goto 8

6 call outch (1 b))
stapth = stapth-1
goto 8

7 if (staame(l, stapth) .eq. 3) goto 6
if (staame(l, staptb) .eq. 2) goto 5
if (staame(l, stapth) .eq. 1) goto 2

8 continue
goto 1

9 continue
end

APPENDIX C. CONSTRAINTS ON THE DESIGN OF THE EFL LANGUAGE

Although Fortran can be used to simulate any finite computation. there are realistic limits
on the generality of a language that can be translated into Fortran. The design of EFL was con
strained by the implementation strategy. Certain of the restrictions are petty (six character
external names). but others are sweeping (lack of pointer variables). The following paragraphs

\

EFL 2-157

describe the major limitations imposed by Fortran.

C.1. External Names

External names (procedure and COMMON block names) must be no longer than six
characters in Fortran. Further, an external name is global to the entire program. Therefore.
EFL can support block structure within a procedure. but it can have only one level of external
name if the EFL procedures are to be compilable separately. as are Fortran procedures.

C.2. Procedure Interface

The Fortran standards. in eft'ect. permit arguments to be passed between Fortran pro
cedures either by reference or by copy-in/copy-out. This indeterminacy of specification shows
through into EFL. A program that depends on the method of argument transmission is illegal
in either language.

There are no procedure-valued variables in Fortran: a procedure name may only be passed
as an argument or be invoked; it cannot be stored. Fortran (and EFL> would be noticeably
simpler if a procedure variable mechanism were available.

C.3. Pointers

The most grievous problem with Fortran is its lack of a pointer-like data type. The imple
mentation of the compiler would have been far easier if certain hard cases could have been
handled by pointers. Further. the language could have been simplified considerably if pointers
were accessible in Fortran. (There are several ways of simulating pointers by using subscripts.
but they founder on the problems of external variables and initialization.)

C.4. Recursion
Fortran procedures are not recursive. so it was not practical to permit EFL procedures to

be recursive. (Recursive procedures with arguments can be simulated only with great pain.)

C.S. Storage Allocation
The definition of Fortran does not specify the lifetime of variables. It would be possible

but cumbersome to implement stack or heap storage disciplines by using COMMON blocks.

Introduction

Berkeley Pascal User's Manual 2-159

Berkeley Pascal User's Manual
Version 3.0 - July 1983

William N. Joy, Susan L. Graham, Charles B. Ha/(!)¢,
Marshall Kirk McKusick, and Peter B. Kessler

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

The Berkeley Pascal User's Manual consists of five major sections and an appendix. In
section 1 we give sources of information about UNIX, about the programming language Pascal,
and about the Berkeley implementation of the language. Section 2 introduces the Berkeley
implementation and provides a number of tutorial examples. Section 3 discusses the error diag
nostics produced by the translators pc and pi, and the runtime interpreter px. Section 4
describes input/output with special attention given to features of the interactive implementation
and to features unique to UNIX. Section 5 gives details on the components of the system and
explanation of all relevant options. The User's Manual concludes with an appendix to Wirth's
Pascal Report with which it forms a precise definition of the implementation.

History of the implementation

The first Berkeley system was written by Ken Thompson in early 1976. The main
features of the present system were implemented by Charles Haley and William Joy during the
latter half of 1976. Earlier versions of this system have been in use since January, 1977.

The system was moved to the v AX-11 by Peter Kessler and Kirk McKusick with the port
ing of the interpreter in the spring of 1979, and the implementation of the compiler in the sum
mer of 1980.

2-160 Berkeley Pascal User's Manual

1. Sources of information

This section lists the resources available for information about general features of lJ!';IX. t
text editing. the Pascal language. and the Berkeley Pascal implementation. concluding with a list
of references. The available documents include both so.-called standard documents - those
distributed with all UNIX system - and documents (such as this one) written at Berkeley.

1.1. Where to get documentation
Current documentation for most of the UNIX system is available .. on line" at your termi

nal. Details on getting such documentation interactively are given in section 1.3.

1.2. Documentation describing UNIX

The following documents are those recommended as tutorial and reference material about
the UNIX system. We give the documents with the introductory and tutorial materials first, the
reference materials last. ·

UNIX For Beginners - Second Edition

This document is the basic tutorial for UNIX available with the standard system.

Communicating with UNIX

This is also a basic: tutorial on the system and assumes no previous familiarity with com
puters~ it was written at Berkeley.

An introduction to the C shell

This document introduces csh. the shell in common use at Berkeley. and provides a good
deal of general description about the way in which the system functions. It provides a useful
glossary of terms used in discussing the system.

UNIX Programmer's Manual

This manual is the major source of details on the components of the UNIX system. It con
sists of an Introduction, a permuted index. and eight command sections. Section 1 consists of
descriptions of most of the .. commands" of UNIX. Most of the other sections have limited
relevance to the user of Berkeley Pascal, being of interest mainly to system programmers.

UNIX documentation often refers the reader to sections of the manual. Such a reference
consists of a command name and a section number or name. An example of such a reference
would be: ed (1). Here ed is a command name - the standard UNIX text editor, and '(l)' indi
cates that its documentation is in section 1 of the manual.

The pieces of the Berkeley Pascal system are pi (1). px (1). the combined Pascal translator
and interpretive executor pix (1), the Pascal compiler pc (l). the Pascal execution profiler pxp
(1). and the Pascal cross-reference generator pxref (1).

It is possible to obtain a copy of a manual section by using the man (1) command. To get
the Pascal documentation just described one could issue the command:

% man pi

to the shell. The user input here is shown in bold face~ the '% ', which was printed by the shell
as a prompt. is not. Similarly the command:

% man man

tUNIX is a Trademark of Bell Laboratories.

Berkeley Pascal User's Manual 2-161

asks the man command to describe itself.

1.3. Text editing documents
The following documents introduce the various UNIX text editors. Most Berkeley users

use a version of the text editor ex: either edit, which is a version of ex for new and casual users.
ex itself, or vi (visual) which focuses on the display editing portion of ex.

A Tutorial Introduction to the UNIX Text Editor
This document, written _by Brian Kernighan of Bell Laboratories. is a tutorial for the stan

dard UNIX text editor ed. It introduces you to the basics of text editing. and provides enough
information to meet day-to-day editing needs. for ed users.

Edit: A tutorial
This introduces the use of edit, an editor similar to ed which provides a more hospitable

environment for beginning users.

Ex/ edit Command Summary
This summarizes the features of the editors ex and edit in a concise form. If you have

used a line oriented editor before this summary alone may be enough to get you started.

Ex Reference Manual - Version 3.5
A complete reference on the features of ex and edit.

An Introduction to Display Editing with Vi
Vi is a display oriented text editor. It can be used on most any CRT terminal. and uses the

screen as a window into the file you are editing. Changes you make to the file are reflected in
what you see. This manual serves both as an introduction to editing with vi and a reference
manual.

Vi Quick Reference
This reference card is a handy quick guide to vi; you should get one when you get the

introduction to vi.

1.4. Pascal documents - The language
This section describes the documents on the Pascal language which are likely to be most

useful to the Berkeley Pascal user. Complete references for these documents are given in sec
tion I. 7.

Pascal User Manual
By Kathleen Jensen and Niklaus Wirth, the User Manual provides a tutorial introduction

to the features of the language Pascal. and serves as an excellent quick-reference to the
language. The reader with no familiarity with Algol-like languages may prefer one of the Pascal
text books listed below. as they provide more examples and explanation. Particularly important
here are pages 116-118 which define the syntax of the language. Sections 13 and 14 and
Appendix F pertain only to the 6000-3.4 implementation of Pascal.

Pascal Report

By Niklaus Wirth. this document is bound with the User Manual. It is the guiding ref er
ence for implementors and the fundamental definition of the language. Some programmers
find this report too concise to be of practical use. preferring the User Manual as a reference.

2-162 Berkeley Pascal User's Manual

Books on Pascal

Several good books which teach Pascal or use it as a medium are available. The books by
Wirth Systematic Programming and Algorithms+ Data Structures - Programs use Pascal as a vehi
cle for teaching programming and data structure concepts respectively. They are both recom
mended. Other books on Pascal are listed in the references below.

1.5. Pascal documents - The Berkeley Implementation

This section describes the documentation which is available describing the Berkeley imple
mentation of Pascal.

User's Manual

The document you are reading is the User's Manual for Berkeley Pascal. We often ref er
the reader to the Jensen-Wirth User Manual mentioned above. a different document with a
similar name.

Manual sections

The sections relating to Pascal in the UNIX Programmer's Ma11ual are pix (]). pi (}), pc
(]). px (1), pxp (1), and pxref (l). These sections give a description of each program. summar
ize the available options. indicate files used by the program, give basic information on the diag
nostics produced and include a list of known bugs.

Implementation notes

For those interested in the internal organization of the Berkeley Pascal system there are a
series of Implementation Notes describing these details. The Berkeley Pascal PXP lmpleme111atio11
Notes describe the Pascal interpreter px; and the Berkeley Pascal PX /mplemematio11 Notes
describe the structure of the execution profiler pxp.

1.6. References

UNIX Documents

Communicating With UNIX
Computer Center
University of California. Berkeley
January. 1978.

Edit: a tutorial
Ricki Blau and James Joyce
Computing Services Division. Computing Affairs
University of California. Berkeley
January. 1978.

£"</edit Command Summary
Computer Center
University of California, Berkeley
August. 1978.

£r: Reference Manual - Version 3.5
An lmroduction to Display Editing with Vi
Vi Quick Reference
William Joy
Computer Science Division

Berkeley Pascal User's Manual 2-163

Department of Electrical Engineering and Computer Science
University of California. Berkeley
October. 1980.

A11 lmroduction to the C shell (Revised)
William Joy
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California. Berkeley
October. 1980.

Brian W. Kernighan
UNIX for Beginners - Second Edition
Bell Laboratories
Murray Hill. New Jersey.

Brian W. Kernighan
A Tutorial lmroduction to the UNIX Text Editor
Bell Laboratories
Murray Hill. New Jersey.

Dennis M. Ritchie and Ken Thompson
The UNIX Time Sharing System
Communications of the ACM
July 1974
365-378.

B. W. Kernighan and M. D. Mcllroy
UNIX Programmer's Manual - Seve11th Editio11
Bell Laboratories
Murray Hill. New Jersey
December. 1978.
(Virtual VAX/11 Version.
U. C. Berkeley
Berkeley, Ca.
November. 1980.)

Pascal Language Documents

Conway. Gries and Zimmerman
A Primer on PASCAL
Winthrop. Cambridge Mass.
1976. 433 pp.

Kathleen Jensen and Niklaus Wirth
Pascal - User Manual and Report
Springer-Verlag. New York.
1975. 167 pp.

2-164 Berkeley Pascal User's Manual

C. A. G. Webster
Introduction to Pascal
Heyden and Son. New York
1976. l 29pp.

Niklaus Wirth
Algorithms+ Data structures- Programs
Prentice-Hall. New York.
1976. 366 pp.

Niklaus Wirth
Systematic Programming
Prentice-Hall. New York.
1973, 169 pp.

Berkeley Pascal documents

The following documents are available from the Computer Center Library at the Univer
sity of California. Berkeley.

William N. Joy, Susan L. Graham. and Charles B. Haley
Berkeley Pascal User's Manual - Version 2. 0
October 1980.

William N. Joy
Berkeley Pascal PX Implementation Notes
Version I. I. April 1979.
(Vax-11 Version 2.0 By Kirk McKusick •. December, 1979)

William N. Joy
Berkeley Pascal PXP Implementation Notes
Version 1.1. April 1979.

Berkeley Pascal User's Manual 2-165

2. Basic UNIX Pascal

The following sections explain the basics of using Berkeley Pascal. In examples here we
use the text editor ex (1). Users of the text editor ed should have little trouble following these
examples. as ex is similar to ed. We use ex because it allows us to make clearer examples. t The
new UNtxt user will find it helpful to read one of the text editor documents described in section
1.4 before continuing with this section.

2.1. A first program

To prepare a program for Berkeley Pascal we first need to have an account on UNIX and to
'login' to the system on this account. These procedures are described in the documents Com
municating with UNIX and UNIX for Beginners.

Once we are logged in we need to choose a name for our program; let us call it 'first' as
this is the first example. We must also choose a name for the fi1e in wl'Jich the program will be
stored. The Berkeley Pascal system requires that programs reside in files which have names
ending with the sequence '.p' so we will call our file 'tirst.p'.

A sample editing session to create this file would begin:

% ex first.p
"first.p" [New file}

We didn't expect the file to exist, so the error diagnostic doesn't bother us. The editor now
knows the name of the file we are creating. The •:' prompt inqicates that it is ready for com
mand input. We can add the text for our program using the •append' command as follows.

:append
program first (output>
begin

writeln ('Hello. world!')
end.

The line containing the single • .' character here indicated the end of tfle appended text. The ':'
prompt indicates that ex is ready for another command. As the editQr operates in a temporary
work space we must now store the contents of this work space in the file •first.p' so we can use
the Pascal translator and executor pix on it.

:write
"first.p" [New file] 4 lines, 59 characters
:quit
o/o

We wrote out the file from the edit buffer here with the ·write• command, and ex indicated the
number 1of lines and characters written. We then quit the editor, and now have a prompt from
the shell.i

t Users with CRT terminals should find the editor 1•i more pleasant to use: we do no1 show its use here be·
cause its display oriented nature makes it difficult 10 illustrale.
tUNIX is a Trademark of Bell Laboratories.
* Our examples here assume you are using ,·sir.

2-166 Berkeley Pascal User's Manual

We are ready to try to translate and execute our program.

% pix ftrst.p
Tue Oct 14 21:371980 first.p:

2 begin
e ---T-- Inserted ·; •
Execution begins ...
Hello. world!
Execution terminated.

1 statements executed in 0.02 seconds cpu time.
%

The translator first printed a syntax error diagnostic. The number 2 here indicates that
the rest of the line is an image of the second line of our program. The translator is saying that
it expected to find a •;' before the keyword begin on this line. If we look at the Pascal syntax
charts in the Jensen-Wirth User Ma11ual. or at some of the sample programs therein. we will see
that we have omitted the terminating •;' of the program statement on the first line of our pro
gram.

One other thing to notice about the error diagnostic is the letter •e' at the beginning. It
stands for •error'. indicating that our input was not legal Pascal. The fact that it is an ·e· rather
than an 'E' indicates that the translator managed to recover from this error well enough that
generation of code and execution could take place. Executio·n is possible whenever no fatal • E •
errors occur during translation. The other classes of diagnostics are •w' warnings. which do not
necessarily indicate errors in the program. but point out inconsistencies which are likely to be
due to program bugs. and 's' standard-Pascal violations. t

After completing the translation of the program to interpretive code. the Pascal system
indicates that execution of the translated program began. The output from the execution of the
program then appeared. At program termination. the Pascal runtime system indicated the
number of statements executed. and the amount of cpu time used. with the resolution of the
latter being l/60'th of a second.

Let us now fix the error in the program and translate it to a permanent object code file obj
using pi. The program pi translates Pascal programs but stores the object code instead of exe
cuting it*.

% ex ftrst.p
"first.p" 4 lines. 59 characters
:1 print
program first(output)
:s/S/;
program first (output);
:write
"first.p" 4 lines. 60 characters
:quit
% pi first.p
%

tThe standard Pascal warnings occur only when the associated s translator option is enabled. The s option is
discussed in sections 5.1 and A.6 below. Warning diagnostics are discussed at the end of section 3.2. the as
sociated w option is described in section 5.2.
*This script indicates some other useful approaches to debugging Pascal programs. As in eel we can shorten
commands in e:c to an initial prefix of the command name as we did with the s11bsmu1e command here. We
have also used the "!' shell escape command here to execute other commands with a shell without leaving
the editor.

Berkeley Pascal User's Manual 2-167

If we now use the UNIX Is list files command we can see what files we have:

% ls
first.p
obj
%

The file •obj' here contains the Pascal interpreter code. We can execute this by typing:

% px obj
Hello. world!

I statements executed in 0.02 seconds cpu time.
%

Alternatively. the command:

% obj

will have the same effect. Some examples of different ways to execute the program follow.

% px
Hello. world!

I statements executed in 0.02 seconds cpu time.
% pi -p first.p
% px obj
Hello. world!
% pix -p first.p
Hello. world!
%

Note that px will assume that 'obf is the file we wish to execute if we don't tell it other
wise. The last two translations use the -p no-post-mortem option to eliminate execution
statistics and •Execution begins' and 'Execution terminated' messages. See section 5.2 for
more details. If we now look at the files in our directory we will see:

% ls
first.p
obj
%

We can give our object program a name other than 'obj' by using the move command 1111· <1).
Thus to name our program 'hello':

% mv obj hello
% hello
Hello. world!
% ls
first.p
hello
%

Finally we can get rid of the Pascal object code by using the rm (1) remove file command. e.g.:

% rm hello
o/o ls
first.p
%

2-168 Berkeley Pascal User's Manual

For small programs which are being developed pix tends to be more convenient to use
than pi and px. Except for absence of the obj file after a pix run. a pix command is equivalent to
a pi command followed by a px command. For larger programs. where a number of runs testing
different parts of the program are to be made. pi is useful as this obj file can be executed any
desired number of times.

2.2. A larger program
Suppose that we have used the editor to put a larger program in the file 'bigger.p'. We

can list this program with line numbers by using the program cat-n i.e.:

% cat -n bigger.p
%

This program is similar to program 4. 9 on page 30 of the Jensen-Wirth User Manual. A
number of problems have been introduced into this example for pedagogical reasons.

If we attempt to translate and execute the program using pix we get the following ,
response:

% pix bigger. p
Tue Oct 14 21:37, 1980 bigger.p:

9 h - 34~ (•Character position of x-axis •)
w ---------------------------1 ------ (• in a (• ... •) comment

16 for i :- 0 to lim begin
e ------------------------------ t ·----- Inserted keyword do

18 y :- exp(-x9 • sin(i • x);
E ·---------·---···--·--------l ------ Undefined variable
e ····-·····-··-------···-·-------·-····--···------· t --·--- Inserted ')'

19 n :- Round(s • y) + h;
E --------------·-···----- l----·- Undefined function
E ----··········---------·--···-------······-··· T-----· Undefined variable

23 writeln('.')
e ·······-····--·---T----·- Inserted ':'

24 end.
E --- l --··· Expected keyword until
E --------· t ···-·· Unexpected end-of-file - QUIT
Execution suppressed due to compilation errors
%

Since there were fatal 'E' errors in our program. no code was generated and execution was
necessarily suppressed. One thing which would be useful at this point is a listing of the pro
gram with the error messages. We can get this by using the command:

% pi -1 bigger.p

There is no point in using pix here. since we know there are fatal errors in the program. This
command will produce the output at our terminal. If we are at a terminal which does not pro
duce a hard copy we may wish to print this listing off-line on a line printer. We can do this
with the command:

% pi -I bigger.p I Ipr

In the next few sections we will illustrate various aspects of the Berkeley Pascal system by
correcting this program.

Berkeley Pascal User's Manual 2-169

2.3. Correcting the first errors

Most of the errors which occurred in this program were symac:tic: errors. those in the for
mat and structure of the program rather than its content. Syntax errors are flagged by printing
the offending line. and then a line which flags the location at which an error was detected. The
flag line also gives an explanation stating either a possible cause of the error. a simple action
which can be taken to recover from the error so as to be able to continue the analysis. a symbol
which was expected at the point of error. or an indication that the input was 'malformed'. In
the last case. the recovery may skip ahead in the input to a point where analysis of the program
can continue.

In this example. the first error diagnostic indicates that the translator detected a comment
within a comment. While this is not considered an error in 'standard' Pascal. it usually
corresponds to an error in the program which is being translated. In this case. we have acciden
tally omitted the trailing '•)' of the comment on line 8. We can begin an editor session to
correct this problem by doing:

% ex bigger.p
"bigger.p" 24 lines. 512 characters
:8s/$/ •)

s - 32; (• 32 character width for interval [x. x+ 1] •)

The second diagnostic. given after line 16. indicates that the keyword do was expected
before the keyword begin in the for statement. If we examine the staremem syntax chart on
page 118 of the Jensen-Wirth User Manual we will discover that do is a necessary part of the for
statement. Similarly. we could have referred to section C.3 of the Jensen-Wirth User Manual
to learn about the for statement and gotten the same information there. It is often useful to
ref er to these syntax charts and to the relevant sections of this book.

We can correct this problem by first scanning for the keyword for in the file and then sub
stituting the keyword do to appear in front of the keyword begin there. Thus:

:/for
for i :- 0 to lim begin

:s/begin/do &
for i :- 0 to lim do begin

The next error in the program is easy to pinpoint. On line 18, we didn't hit the shift key and
got a '9' instead of a ')'. The translator diagnosed that 'x9' was an undefined variable and.
later. that a ')' was missing in the statement. It should be stressed that pi is not suggesting that
you should insert a')' before the ';'. It is only indicating that making this change will help it to
be able to continue analyzing the program so as to be able to diagnose further errors. You
must then determine the true cause of the error and make the appropriate correction to the
source text.

This error also illustrates the fact that one error in the input may lead to multiple error
diagnostics. Pi attempts to give only one diagnostic for each error. but single errors in the
input sometimes appear to be more than one error. It is also the case that pi may not detect an
error when it occurs. but may detect it later in the input. This would have happened in this
example if we had typed 'x' instead of 'x9'.

The translator next detected. on line 19, that the function Round and the variable h were
undefined. It does not know about Round because Berkeley Pascal normally distinguishes
between upper and lower case. t On UNIX lower-case is pref erred;, and all keywords and built-in

tin ·•standard" Pascal no distinction is made based on case.
;Qne good reason for using lower-ase is that it is easier to type.

2-170 Berkeley Pascal User's Manual

procedure and function name~ are composed of lower-case letters. just as they are in the
Jensen-Wirth Pascal Report. Thus we need to use the function round here. As far as his con
cerned. we can see why it is Uindefined if we look back to line 9 and note that its definition was
lost in the non-terminated comment. This diagnostic need not. therefore. concern us.

The next error which occurred in the program caused the translator to insert a ·: • before
the statement calling write/11 on line 23. If we examine the program around the point of error
we will see that the actual error is that the keyword until and an associated expression have
been omitted here. Note that the diagnostic from the translator does not indicate the actual
error. and is somewhat misleading. The translator made the correction which seemed to be
most plausible. As the omission of a •:' character is a common mistake, the translator chose to
indicate this as a possible fix here. It later detected that the keyword until was missing. but not
until it saw the keyword end on line 24. The combination of these diagnostics indicate to us
the true problem.

The final syntactic error -message indicates that the translator needed an end keyword to
match the begin at line 15. Since the end at line 24 is supposed to match this begin. we can
inf er that another begin must have been mismatched, and have matched this end. Thus we see
that we need an end to match the begin at line 16. and to appear before the final end. We can
make these corrections:

:/x9/s//x)
y :- exp(-x) • sin(i • x):

:+s/Round/round

:/write

:/

:insert

:$
end.
:insert

end

n :- round(s • y) + h:

writer ·>:
writeln('•)

until n - O;

At the end of each procedure or function and the end of the program the translator sum·
marizes references to undefined variables and improper usages of variables. It also gives warn
ings about potential errors. In our program, the summary errors do not indicate any further
problems but the warning that c is unused is somewhat suspicious. Examining the program we
see that the constant was intended to be used in the expression which is an argument to sin, so
we can correct this expression. and translate the program. We have now made a correction for
each diagnosed error in our program.

:?i ?s//c/
y :- exp(-x) • sin(c • x):

:write
"bigger.p" 26 lines, 538 characters
:quit
% pi bigger.p
%

It should be noted that the translator suppresses warning diagnostics for a particular procedure.
function or the main program when it finds severe syntax errors in that part of the source text.
This is to prevent possibly confusing and incorrect warning diagnostics from being produced.

Berkeley Pascal User's Manual 2-171

Thus these warning diagnostics may not appear in a program with bad syntax errors until these
errors are corrected.

We are now ready to execute our program for the first time. We will do so in the next
section after giving a listing of the corrected program for reference purposes.

% cat -n bigger.p
1 (•
2 • Graphic representation of a function
3 • f(x) • exp(-x) • sin(2 • pi • x)
4 •)
5 program graph I (output);

%

6 const
7
8
9

10
11
12 var
13
14
15 begin
16
17
18
19
20
21
22
23
24
25
26 end.

d • 0.0625; (• 1/16. 16 lines for interval [x. x+l] •>
s • 32; (• 32 character width for interval [x. x+l] •)
h - 34; (• Character position of x-axis •)
c - 6.28138; (• 2 • pi •)
lim - 32;

x. y: real;
i. n: integer;

for i :- 0 to Jim do begin
x :- d Ii;

end

y :- exp(-x) • sin(c • x);
n :• round(s • y) + h;
repeat

write{' ');
n :- n - 1

until n - O;
writeln('•)

2.4. Executing the second example
We are now ready to execute the second example. The following output was produced by

our first run.

% px
Execution begins ...

Floating point division error

Error in "graphl"+2 near line 17.
Execution terminated abnormaJly.

2 statements executed in 0.05 seconds cpu time.
%

Here the interpreter is presenting us with a runtime error diagnostic. It detected a 'division by
zero' at line 17. Examining line 17, we see that we have written the statement 'x :- d / i'
instead of 'x :- d • i'. We can correct this and rerun the program:

% ex bigger.p

2-172 Berkeley Pascal User's Manual

•bigger.p" 26 lines. 538 characters
:17

x :-d/ i
:s·r·

x :- d. i
:write
•bigger.p• 26 lines, 538 characters
:q
% pix bigger. p
Execution begins ...

•
•
•
•

•

•

•

•
•
•
•
•

•
•

Execution terminated.

•

•
•

•
•

•
•
•
•

•
•

•

•

•
•

•
•

•
•

2550 statements executed in 0.30 seconds cpu time.
%

This appears to be the output we wanted. We could now save the output in a file if we
wished by using the shell to redirect the output:

% p:x >graph

We can use car (1) to see the contents of the file graph. We can also make a listing of the
graph on the line printer without putting it into a file, e.g.

% px I Jpr
Execution begins ...
Execution terminated.

Berkeley Pascal User's Manual 2-173

2550 statements executed in 0.37 seconds cpu time.
%

Note here that the statistics lines came out on our terminal. The statistics line comes out on
the diagnostic output (unit 2.) There are two ways to get rid of the statistics line. We can
redirect the statistics message to the printer using the syntax 'I&' to the shell rather than 'I'. i.e.:

% px I& lpr
%

or we can translate the program with the p option disabled on the command line as we did
above. This will disable all post-mortem dumping including the statistics line. thus:

% pi -p bigger.p
% px I lpr
%

This option also disables the statement limit which normally guards against infinite looping.
You should not use it until your program is debugged. Also if p is specified and an error
occurs, you will not get run time diagnostic information to help you determine what the prob
lem is.

2.S. Formatting the program listing

It is possible to use special lines within the source text of a program to format the pro
gram listing. An empty line (one with no characters on it) corresponds to a 'space' macro in an
assembler, leaving a completely blank line without a line number. A line containing only a
control-I (form-feed) character will cause a page eject in the listing with the corresponding line
number suppressed. This corresponds to an 'eject' pseudo-instruction. See also section 5.2 for
details on the n and i options of pi.

2.6. Execution profiling
An execution profile consists of a structured listing of (all or part of) a program with

information about the number of times each statement in the program was executed for a par
ticular run of the program. These profiles can be used for several purposes. In a program
which was abnormally terminated due to excessive looping or recursion or by a program fault.
the counts can facilitate location of the error. Zero counts mark portions of the program which
were not executed~ during the early debugging stages they should prompt new test data or a re
examination of the program logic. The profile is perhaps most valuable, however. in drawing
attention to the (typically small) portions of the program that dominate execution time. This
information can be used for source level optimization.

An example

A prime number is a number which is divisible only by itself and the number one. The
program primes. written by Niklaus Wirth, determines thefirst few prime numbers. In translat
ing the program we have specified the z option to pix. This option causes the translator to gen
erate counters and count instructions sufficient in number to determine the number of times
each statement in the program was executed. t When execution of the program completes.

tThe counts are completely accurate only in the absence of rumime errors and nonlocal i=oto Slatements.
This is not generally a problem. however. as in structured programs nonlocal goto statements occur infre·
quently. and counts are incorrect after abnormal termination only when the upward look described below to
get a count passes a suspended call point.

2-174 Berkeley Pascal User's Manual

either normally or abnormally. this count data is wrinen to the file pmo11.ou1 in the current
directory.; It is then possible to prepare an execution profile by giving pxp the name of the file
associated with this data. as was done in the following example.

% pix -I -z primes.p
Berkeley Pascal PI - Version 2.0 (Sat Oct 18 21:01:54 1980)

Tue Oct 14 21:38 1980 primes.p

1
2
3
4
s
6
7
8
9

10
11
12
13

program primes(output);
const n - SO; nl - 7; (•nl - sqrt(n)•)
var i.k.x.inc.lim.square.1: integer;

prim: boolean;
p, v: array(l..nl] of integer;

begin
write(2:6. 3:6); 1 :- 2;
x :- l; inc :- 4; Jim :- l; square :- 9;
for i :- 3 to n do
begin (•find next prime•)

repeat x :- x + inc; inc :- 6-inc;
if square < - x then

begin lim :- lim+ 1;
14 v[lim] :- square; square:- sqr(p[lim+l])
15
16
17
18

end;
k :- 2; prim :- true;
while prim and (k<lim) do
begin k :- k+l;

19
20

if v(k] < x then v[k] :- v[k] + 2•p[k];
prim :- x < > v(k]

21
22
23
24
25
26
27

end
until prim;
if i <- nl then p[i] :- x;
write(x:6); 1 :- l+l;
if 1 - 10 then

begin writeln; 1 :- 0
end

28 end;
29 writeln;
30 end.

Execution begins ...
2 3

31 37
73 79

127 131
179 181

5
41
83

137
191

Execution terminated.

7
43
89

139
193

11
47
97

149
197

13
53

101
151
199

17
59

103
157
211

1404 statements executed in 0.17 seconds cpu time.
%

19
61

107
163
223

23
67

109
167
227

29
71

113
173
229

'+Pmm1.0111 has a name similar to mo11.ou1 the monitor file produced by the profiling facility of the C compiler
,.,. (l l. See prof' (I l for a discussion of the C compiler profiling facilities.

Berkeley Pascal User's Manual 2-175

Discussion

The header lines of the outputs of pix and pxp in this example indicate the version of the
translator and execution profiler in use at the time this example was prepared. The time given
with the file name (also on the header line) indicates the time of last modification of the pro
gram source file. This time serves to version stamp the input program. Pxp also indicates the
time at which the profile data was gathered.

% pxp -z primes. p
Berkeley Pascal PXP -- Version 1.1 (May 7. 1979)

Tue Oct 14 21:38 1980 primes.p

Profiled Tue Oct 21 18:48 1980

1 1.-----IProgram primes(output):
2 ~onst
2 I n - 50:
2 I nl - 7; (•nl - sqrt(n)•)
3 Ivar
3 I i. k. x. inc, lim, square. I: integer:
4 I prim: boolean:
S I p. v: array [l..n 1] of integer:
6 lbegin
1 I write<2: 6. 3: 6>:
1 I 1 :- 2:
8 I x :- I;
8 I inc:- 4;
s I lim :- 1;
8 I square :- 9:
9 I for i :- 3 ton do begin (•find next prime•)
9 48.-----1 repeat

11 76.-----1 x :- x + inc:
11 I inc :- 6 - inc:
12 I if square <- x then begin
13 5.-----1 lim :- lim + 1;
14 I v[lim] :- square:
14 I square :- sqr(p[lim + I])
14 I end:
16 I k :- 2:
16 I prim :- true:
17 I while prim and (k < lim) do begin
18 157.-----1 k :- k + I;
19 I if v[k] < x then
19 42.-----1 v[k] :- v[k] + 2 • p[k]:
20 I prim:- x < > v[k]
20 I end
20 !until prim;
23 I if i <- n 1 then
23 S.-----1 p(i] :- x:
24 I write(x: 6):
24 I I :-1 +I:
25 I if I - 10 then begin
26 5.-----1 writeln:
26 I I:- 0
26 end

2-176 Berkeley Pascal User's Manual

%

26
29
29

I end:
I writeln
lend.

To determine the number of times a statement was executed, one looks to the left of the
statement and finds the corresponding vertical bar i'. If this vertical bar is labelled with a count
then that count gives the number of times the statement was executed. If the bar is not
labelled. we look up in the listing to find the first i' which directly above the original one which
has a count and that is the answer. Thus. in our example. k was incremented 157 times on line
18. while the 'l\·rite procedure call on line 24 was executed 48 times as given by the count on the
repeal.

More information on pxp can be found in its manual section pxp (1) and in sections 5.4.
5.5 and S.10.

Berkeley Pascal User's Manual 2-177

3. Error diagnostics
This section of the User's Manual discusses the error diagnostics of the programs pi. pt:

and px. Pix is a simple but useful program which invokes pi and px to do all the real processing.
See its manual section pix (1) and section 5.2 below for more details. All the diagnostics given
by pi will also be given by pc.

3.1. Translator syntax errors
A few comments on the general nature of the syntax errors usually made by Pascal pro

grammers and the recovery mechanisms of the current translator may help in using the system.

Illegal characters
Characters such as ·s·. •!',and '@'are not part of the language Pascal. If they are found

in the source program, and are not part of a constant string. a constant character, or a com
ment. they are considered to be •megal characters'. This can happen if you leave off an open
ing string quote •••. Note that the character , although used in English to quote strings. is
not used to quote strings in Pascal. Most non-printing characters in your input are also illegal
except in character constants and character strings. Except for the tab and form feed charac
ters. which are used to ease formatting of the program. non-printing characters in the input file
print as the -character •?' so that they will show in your listing.

String errors
There is no character string of length 0 in Pascal. Consequently the input •••• is not

acceptable. Similarly, encountering an end-of-line after an opening string quote ··• without
encountering the matching closing quote yields the diagnostic .. Unmatched • for string'". It is
permissible to use the character •#' instead of ••• to delimit character and constant strings for
portability reasons. For this reason, a spuriously placed '#' sometimes causes the diagnostic
about unbalanced quotes. Similarly, a •#' in column one is used when preparing programs
which are to be kept in multiple files. See section 5.11 for details.

Comments in a comment, non-terminated comments

As we saw above, these errors are usually caused by leaving off a comn:ient delimiter.
You can convert parts of your program to comments without generating this diagnostic since
there are two different kinds of comments - those delimited by 'I' and'}', and those delimited
by ' (•' and '•) '. Thus consider:

{ This is a comment enclosing a piece of program
a:- functioncall; (•comment within comment•)
procedurecall;
lbs :- rhs; (• another comment •)
}

By using one kind of comment exclusively in your program you can use the other delim
iters when you need to ••comment out" parts of your programt. In this way you will also allow
the translator to help by detecting statements accidentally placed within comments.

If a comment does not terminate before the end of the input file, the translator will point
to the beginning of the comment. indicating that the comment is not terminated. In this case
processing will terminate immediately. See the discussion of "QUIT' below.

tlf you wish to transport your program. especially to the 6000-3.4 implementation. you should use the char·
acter sequence '(•' to delimit comments. For transportation over the "·slink to Pascal 6000-3.4. the character
'#'should be used to delimit characters and constant strings.

2-178 Berkeley Pascal User's Manual

Digits in numbers

This part of the language is a minor nuisance. Pascal requires digits in real numbers both
before and after the decimal point. Thus the following statements. which look quite reasonable
to FORTRAN users. generate diagnostics in Pascal:

Tue Oct 14 21 :37 1980 digits.p:
4 r :- 0.;

e ··---------T ·----· Digits required after decimal point
S r :- .O;

e ---------T------ Digits required before decimal point
6 r :- l.elO;

e ·-----------T ·----- Digits required after decimal point
7 r :- .OSe-10;

e ·-------T----- Digits required before decimal point

These same constructs are also illegal as input to the Pascal interpreter px.

Replacements. insertions, and deletions

When a syntax error is encountered in the input text. the parser invokes an error recovery
procedure. This procedure examines the input text immediately after the point of error and
considers a set of simple corrections to see whether they will allow the analysis to continue.
These corrections involve replacing an input token with a different token. inserting a token. or
replacing an input token with a different token. Most of these changes will not cause fatal syn·
tax errors. The exception is the insertion of or replacement with a symbol such as an identifier
or a number; in this case the recovery makes no altempt to determine tt·hich identifier or what
number should be inserted. hence these are considered fatal syntax errors.

Consider the following example.

% pix -I synerr.p
Berkeley Pascal PI -- Version 2.0 (Sat Oct 18 21:01:54 1980)

Tue Oct 21 23:51 1980 synerr.p

1 program syn(output);
2 var i, j are integer;

e ------------T-- Replaced identifier with a·:·
3 begin
4 for j :• 1 to 20 begin

e -----------------T--- Replaced·.· with a·-·
e ---------------------------T--- Inserted keyword do

5 write(j);
6 i - 2 •• j;

e ---------------------T--- Inserted · :'
E ------------------------··· T ·-· Inserted identifier

7 write!n (i))
E ----------------------------T ··· Deleted ·r

8 end
9 end.

%

The only surprise here may be that Pascal does not have an exponentiation operator. hence the
complaint about '••'. This error illustrates that. if you assume that the language has a feature
which it does not. the translator diagnostic may not indicate this. as the translator is unlikely to
recognize the construct you supply.

Berkeley Pascal User's Manual 2-179

Undefined or improper identifiers

If an identifier is encountered in the input but is undefined, the error recovery will replace
it with an identifier of the appropriate class. Further references to this identifier will be sum
marized at the end of the containing procedure or function or at the end of the program if the
reference occurred in the main program. Similarly, if an identifier is used in an inappropriate
way. e.g. if a type identifier is used in an assignment statement, or if a simple variable is used
where a record variable is required. a diagnostic will be produced and an identifier of the
appropriate type inserted. Further incorrect references to this identifier will be flagged only if
they involve incorrect use in a different way, with all incorrect uses being summarized in the
same way as undefined variable uses are.

Expected symbols, malformed constructs

If none of the above mentioned corrections appear reasonable. the error recovery will
examine the input to the left of the point of error to see if there is only one symbol which can
follow this input. If this is the case. the recovery will print a diagnostic which indicates that the
given symbol was •Expected'.

In cases where none of these corrections resolve the problems in the input, the recovery
may issue a diagnostic that indicates that the input is .. malformed". If necessary, the translator
may then skip forward in the input to a place where analysis can continue. This process may
cause some errors in the text to be missed.

Consider the fallowing example:

% pix -I synerr2.p
Berkeley Pascal Pl -- Version 2.0 (Sat Oct 18 21 :01:54 1980)

Tue Oct 14 21:38 1980 synerr2.p

I program synerr2(input,outpu);
2 integer a(lO)

E --- t --- Malf armed declaration
3 begin
4 read(b);

E ······-----------T ····-· Undefined variable
5 for c :- I to I 0 do

E ····----·----T----- Undefined variable
6 a(c) :- b • c;

E ··········-····--T ··-··· Undefined procedure
E ····-·····-·--···----T ······ Malformed statement

7 end.
E I - File outpu listed in program statement but not declared
e I - The file output must appear in the program statement file list
In program synerr2:

E - a undefined on line 6
E - b undefined on line 4
E - c undefined on lines S 6

Execution suppressed due to compilation errors
%

Here we misspelled output and gave a FORTRAN style variable declaration which the translator
diagnosed as a 'Malformed declaration'. When, on line 6. we used '('and ')' for subscripting
(as in FORTRAN) rather than the '[' and ']' which are used in Pascal. the translator noted that a
was not defined as a procedure. This occurred because procedure and function argument lists
are delimited by parentheses in Pascal. As it is not permissible to assign to procedure calls the
translator diagnosed a malformed statement at the point of assignment.

2-180 Berkeley Pascal User's Manual

Expected and unexpected end-of-file, "QUIT ..

If the translator finds a complete program. but there is more non-comment text in the
input file. then it will indicate that an end-of-file was expected. This situation may occur after a
bracketing error. or if too many ends are present in the input. The message may appear after
the recovery says that it .. Expected • .'" since '.' is the symbol that terminates a program.

If severe errors in the input prohibit funher processing the translator may produce a diag
nostic followed by ''QUIT". One example of this was given above - a non-terminated com
ment~ another example is a line which is longer than 160 characters. Consider also the follow
ing example.

% pix -I mism.p
Berkeley Pascal PI -- Version 2.0 (Sat Oct 18 21:01:54 1980)

Tue Oct 14 21:38 1980 mism.p

1 program mismatch (output)
2 begin

e ·-· T ----- Inserted • ~ •
3 writeln r •••');
4 I The next line is the last line in the file }
5 writeln

E ------------------T------ Unexpected end-of-file - QUIT
%

3.2. Translator semantic errors
The extremely large number of semantic diagnostic messages which the translator pro

duces make it unreasonable to discuss each message or group of messages in detail. The mes
sages are. however. very informative. We will here explain the typical formats and the termi
nology used in the error messages so that you will be able to make sense out of them. In any
case in which a diagnostic is not completely comprehensible you can refer to the User Manual
by Jensen and Wirth for examples.

Format of the error diagnostics
As we saw in the example program above. the error diagnostics from the Pascal translator

include the number of a line in the text of the program as well as the text of the error message.
While this number is most often the line where the error occurred. it is occasionally the
number of a line containing a bracketing keyword like end or until. In this case. the diagnostic
may refer to the previous statement. This occurs because of the method the translator uses for
sampling line numbers. The absence of a trailing ';' in the previous statement causes the line
number corresponding to the end or until. to become associated with the statement. As Pascal
is a free-format language. the line number associations can only be approximate and may seem
arbitrary to some users. This is the only notable exception. however. to reasonable associa
tions.

Incompatible types

Since Pascal is a strongly typed language. many semantic errors manifest themselves as
type errors. These are called 'type clashes' by the translator. The types allowed for various
operatorS in the language are summarized on page 108 of the Jensen-Wirth User Manual. It is
important to know that the Pascal translator. in its diagnostics. distinguishes between the fol
lowing type 'classes':

Berkeley Pascal User's Manual 2-181

array Boolean char file integer
pointer real record scalar string

These words are plugged into a great number of error messages. Thus. if you tried to assign an
integer value to a char variable you would receive a diagnostic like the following:

Tue Oct 14 21 :37 1980 clash.p:
E 7 - Type clash: integer is incompatible with char

... Type of expression clashed with type of variable in assignment

In this case. one error produced a two line error message. If the same error occurs more than
once. the same explanatory diagnostic will be given each time.

Scalar

The only class whose meaning is not self-explanatory is •scalar'. Scalar has a precise
meaning in the Jensen-Wirth User Manual where. in fact. it refers to char. i111eger. real. and
Boolean types as well as the enumerated types. For the purposes of the Pascal translator. scalar
in an error message refers to a user-defined. enumerated type. such as ops in the example
above or color in

type color - (red. green. blue)

For integers. the more explicit denotation integer is used. Although it would be correct. in the
context of the User Manual to refer to an integer variable as a scalar variable pi prefers the
more specific identification.

Function and procedure type errors

For built-in procedures and functions. two kinds of errors occur. If the routines are called
with the wrong number of arguments a message similar to:

Tue Oct 14 21:38 1980 sinl.p:
E 12 - sin takes exactly one argument

is given. If the type of the argument is wrong. a message like

Tue Oct 14 21:38 1980 sin2.p:
E 12 - sin's argument must be integer or real. not char

is produced. A few functions and procedures implemented in Pascal 6000-3.4 are diagnosed as
unimplemented in Berkeley Pascal. notably those related to segmented tiles.

Can't read and write scalars, etc.

The messages which state that scalar (user-defined) types cannot be written to and from
files are often mysterious. It is in fact the case that if you define

type color - (red. green, blue)

.. standard" Pascal does not associate these constants with the strings 'red', 'green'. and 'blue'
in any way. An extension has been added which allows enumerated types to be read and writ
ten. however if the program is to be portable. you will have to write your own routines to per
form these functions. Standard Pascal only allows the reading of characters, integers and real
numbers from text files. You cannot read strings or Booleans. It is possible to make a

file of color

but the representation is binary rather than string.

2-182 Berkeley Pascal User's Manual

Expression diagnostics
The diagnostics for semantically ill-formed expressions are very explicit. Consider this

sample translation:

% pi -I expr.p
Berkeley Pascal Pl - Version 2.0 (Sat Oct 18 21:01:54 1980)

Tue Oct 14 21:37 1980 expr.p

1 program x (output);
2 var
3 a: set of char:
4 b: Boolean:
5 c: (red. green. blue);
6 p: T integer:
7 A: alfa;
8 8: packed array (1 .• 5) of char:
9 begin

10 b :- true;
11
12
13
14
15
16
17
18
19
20
21 end.

c :- red:
new(p);
a:• 0:
A :- 'Hello. yellow·;
b :- a and b;
a:- a• 3;
if input < 2 then writelnCboo'):
if p <- 2 then writeln('sure nutr);
if A - B then writelnCsame');
if c - true then writeln('hue"s and color"s')

E 14 - Constant string too long
E 15 - Left operand of and must be Boolean. not set
E 16 - Cannot mix sets with integers and reals as operands of •
E 17 - files may not participate in comparisons
E 18 - pointers and integers cannot be compared - operator was <
E 19 - Strings not same length in - comparison
E 20 - scalars and Booleans cannot be compared - operator was -
In program x:

w - constant green is never used
w - constant blue is never used
w - variable B is used but never sei

%

This example is admittedly far-fetched. but illustrates that the error messages are sufficiently
clear to allow easy determination of the problem in the expressions.

Type equivalence
Several diagnostics produced by the Pascal translator complain about ·non-equivalent

types'. In general. Berkeley Pascal considers variables to have the same type only if they were
declared with the same constructed type or with the same type identifier. Thus. the variables x
and y declared as

var
x: T integer:
y: T integer.

Berkeley Pascal User's Manual 2-183

do not have the same type. The assignment

x :-y

thus produces the diagnostics:

Tue Oct 14 21:38 1980 typequ.p:
E 7 - Type clash: non-identical pointer types

... Type of expression clashed with type of variable in assignment

Thus it is always necessary to declare a type such as

type intptr - T integer;

and use it to declare

var x: intptr; y: intptr.

Note that if we had initially declared

var x. y: T integer;

then the assignment statement would have worked. The statement

xf :- YT

is allowed in either case. Since the parameter to a procedure or function must be declared with
a type identifier rather than a constructed type. it is always necessary. in practise. to declare any
type which will be used in this way.

Unreachable statements

Berkeley Pascal flags unreachable statements. Such statements usually correspond to
errors in the program logic. Note that a statement is considerrd to be reachable if there is a
potential path of control. even if it can never be taken. Thus, no diagnostic is produced for the
statement:

if false then
writeln ('impossible!')

Goto's into structured statements

The translator detects and complains about goto statements which transfer control into
structured statements (for. while, etc.) It does not allow such jumps, nor does it allow branch
ing from the then part of an if statement into the else part. Such checks are made only within
the body of a single procedure or function.

Unused variables, never set variables

Although p; always clears variables to 0 at procedure and function entry, pc does not
unless runtime checking is enabled using the C option. It is not good programming practice to
rely on this initialization. To discourage this practice. and to help detect errors in program
logic. pi flags as a 'w' warning error:

1) Use of a variable which is never assigned a value.

2) A variable which is declared but never used. distinguishing between those variables
for which values are computed but which are never used. and those completely
unused.

In fact. these diagnostics are applied to all declared items. Thus a const or a procedure which is
declared but never used is flagged. The w option of p; may be used to suppress these warnings~
see sections 5.1 and 5.2.

2-184 Berkeley Pascal User's Manual

3.3. Translator panics. i/o errors

Panics

One class of error which rarely occurs. but which causes termination of all processing
when it does is a panic. A panic indicates a translator-detected internal inconsistency. A typical
panic message is:

snark (rvalue) line-110 yyline-109
Snark in pi

If you receive such a message. the translation will be quickly and perhaps ungracefully ter
minated. You should contact a teaching assistant or a member of the system staff. after saving
a copy of your program for later inspection. If you were making changes to an existing program
when the problem occurred. you may be able to work around the problem by ascertaining
which change caused the s11ark and making a different change or correcting an error in the pro
gram. A small number of panics are possible in px. All panics should be reported to a teaching
assistant or systems staff so that they can be fixed.

Out of memory

The only other error which will abort translation when no errors are detected is running
out of memory. All tables in the translator. with the exception of the parse stack. are dynami
cally allocated. and can grow to take up the full available process space of 64000 bytes on the
PDP-11. On the VAX-11. table sizes are extremely generous and very large (25000) line pro
grams have been easily accommodated. For the PDP-11, it is generally true that the size of the
largest translatable program is directly related to procedure and function size. A number of
non-trivial Pascal programs. including some with more than 2000 lines and 2500 statements
have been translated and interpreted using Berkeley Pascal on PDP-11 's. Notable among these
are the Pascal-S interpreter. a large set of programs for automated generation of code genera
tors. and a general context-free parsing program which has been used to parse sentences with a
grammar for a superset of English. In general, very large programs should be translated using
p<: and the separate compilation facility.

If you receive an out of space message from the translator during translation of a large
procedure or function or one containing a large number of string constants you may yet be able
to translate your program if you break this one procedure or function into several routines.

1/0 errors

Other errors which you may encounter when running pi relate to input-output. If pi can
not open the file you specify, or if the file is empty, you will be so informed.

3.4. Run-time errors

We saw, in our second example. a run-time error. We here give the general description
of run-time errors. The more unusual interpreter error messages are explained briefly in the
manual section for px (1).

Start-up errors

These errors occur when the object file to be executed is not available or appropriate.
Typical errors here are caused by the specified object file not existing, not being a Pascal object.
or being inaccessible to the user.

Program execution errors

These errors occur when the program interacts with the Pascal runtime environment in an
inappropriate way. Typical errors are values or subscripts out of range, bad arguments to built
in functions. exceeding the statement limit because of an infinite loop, or running out of

Berkeley Pascal User's Manual 2-185

memory;. The interpreter will produce a backtrace after the error occurs. showing all the active
routine calls. unless the p option was disabled when the program was translated. UnfortunaLely.
no variable values are given and no way of extracting them is available.•

As an example of such an error, assume that we have accidentally declared the consLant
11 I to be 6. instead of 7 on line 2 of the program primes as given in section 2.6 above. If we
run this program we get the following response.

% pix primes.p
Execution begins ...

2 3 5 7 11 13 17
31 37 41 43 47 53 59
73 79 83 89 97 101 103

127 131 137 139 149 151 157

Subscript out of range

Error in "primes"+8 near line 14.
Execution terminated abnormally.

941 statements executed in 0.50 seconds cpu time.
%

19 23 29
61 67 71

107 109 113
163 167

Here the interpreter indicates that the program terminated abnormally due to a subscript
out of range near line 14. which is eight lines into the body of the program primes.

Interrupts

If the program is interrupted while executing and the p option was not specified. then a
backtrace will be printed. t The file pmo11.out of profile information will be written if the pro
gram was translated with the z option enabled to pi or pix.

1/0 interaction errors

The final class of interpreter errors results from inappropriate interactions with files.
including the user's terminal. Included here are bad formats for integer and real numbers
(such as no digits after the decimal point) when reading.

;The checks for running out of memory are not foolproof and there is a chance that the interpreter will fault.
producing a core image when it runs out of memory. This situation occurs very rarely.
• On the VAX· I I. each variable is restricted to allocate at most 65000 bytes of storage !this is a PDP· 1 lism that
has survived to the VAX.)

tQccasionally. the Pascal system will be in an inconsistent stale when this occurs. e.g. when an interrupt ter
minates a procedure or function entry or exit. In this case. the backtrace will only contain the current line.
A reverse call order list of procedures will not be given.

2-186 Berkeley Pascal User's Manual

4. Input/output

This section describes features of the Pascal input/output environment, with special con
sideration of the features peculiar to an interactive implementation.

4.1. Introduction

Our first sample programs. in section 2. used the file output. We gave examples there of
redirecting the output to a file and to the line printer using the shell. Similarly, we can read the
input from a file or another program. Consider the following Pascal program which is similar to
the program cat (1).

% pix -1 kat.p <primes
Berkeley Pascal PI - Version 2.0 (Sat Oct 18 21:01:54 1980)

Tue Oct 14 21:38 1980 kat.p

1 program kat(input. output);
2 var
3 ch: char;
4 begin
5 while not eof do begin
6 while not eoln do begin
7 read(ch);
8 write(ch)
9 end;

10 readln;
11 writeln
12 end
13 end (kat }.

Execution begins ...
2 3 5 7 11 13 17 19

31 37 41 43 47 53 59 61
73 79 83 89 97 101 103 107

127 131 137 139 149 15i 157 163
179 181 191 193 197 199 211 223

Execution terminated.

925 statements executed in 0.15 seconds cpu time.
%

23 29
67 71

109 113
167 173
227 229

Here we have used the shell's syntax to redirect the program input from a file in primes in
which we had placed the output of our prime number program of section 2.6. It is also possible
to 'pipe' input to this program much as we piped input to the line printer daemon /pr (1 l
before. Thus, the same output as above would be produced by

% cat primes I pix -I kat.p

All of these examples use the shell to control the input and output from files. One very
simple way to associate Pascal files with named UNIXt files is to place the file name in the pro
gram statement. For example, suppose we have previously created the file data. We then use
it as input to another version of a listing program.

tUNIX is a Trademark of Bell Laboralories.

% cat data
line one.
line two.
line three is the end.
% pix -I copydata.p

Berkeley Pascal User's Manual 2-187

Berkeley Pascal Pl - Version 2.0 (Sat Oct 18 21:01:54 1980)

Tue Oct 14 21:37 1980 copydata.p

1 program copydata(data. output);
2 var
3 ch: char:
4 data: text:
5 begin
6 reset(data);
7 while not eof(data) do begin
8 while not eoln(data) do begin
9 read(data. ch>:

10 write(ch)
11 end:
12 readln (data):
13 writeln
14 end
15 end I copydata } .

Execution begins ...
line one.
line two.
line three is the end.
Execution terminated.

134 statements executed in 0.08 seconds cpu time.
%

By mentioning the file data in the program statement. we have indicated that we wish it to
correspond to the UNIX file data. Then. when we 'reset(data)', the Pascal system opens our file
'data' for reading. More sophisticated, but less portable. examples of using UNIX files will be
given in sections 4.5 and 4.6. There is a portability problem even with this simple ex.ample.
Some Pascal systems attach meaning to the ordering of the file in the program statement file
list. Berkeley Pascal does. not do so.

4.2. Eof and eoln

An extremely common problem encountered by new users of Pascal. especially in the
interactive environment offered by UNIX. relates to the definitions of eof and eo/11. These func
tions are supposed to be defined at the beginning of execution of a Pascal program, indicating
whether the input device is at the end of a line or the end of a file. Setting eof or eo/11 actually
corresponds to an implicit read in which the input is inspected. but no input is .. used up". In
fact. there is no way the system can know whether the input is at the end-of-file or the end-of
line unless it attempts to read a line from it. If the input is from a previously created file. then
this reading can take place without run-time action by the user. However. if the input is from a
terminal. then the input is what the user types. t If the system were to do an initial read
automatically at the beginning of program execution. and if the input were a terminal. the user
would have to type some input before execution could begin. This would make it impossible

tit is not possible to determine whether the input is a terminal. as the input may appear to be a file but actu
ally be a pipe. the output of a proaram which is reading from the terminal.

2-188 Berkeley Pascal User's Manual

for the program to begin by prompting for input or printing a herald.

Berkeley Pascal has been designed so that an initial read is not necessary. At any given
time. the Pascal system may or may not know whether the end-of-file or end-of-line conditions
are true. Thus. internally, these functions can have three values - true. false. and .. I don"t
know yet; if you ask me I'll have to find out". All files remain in this last, indeterminate state
until the Pascal program requires a value for eof or eo/11 either explicitly or implicitly. e.g. in a
call to read. The important point to note here is that if you force the Pascal system to deter
mine whether the input is at the end-of-file or the end-of-line. it will be necessary for it to
attempt to read from the input.

Thus consider the following example code

while not eof do begin
writefnumber. please? ');
read(i);
writeln('that was a·, i: 2)

end

At first glance, this may be appear to be a correct program for requesting. reading and echoing
numbers. Notice. however, that the while loop asks whether eof is true before the request is
printed. This will force the Pascal system to decide whether the input is at the end-of-file. The
Pascal system will give no messages; it will simply wait for the user to type a line. By produc
ing the desired prompting before testing eof. the following code avoids this problem:

write('number, please ?');
while not eof do begin

read(i);
writelnrthat was a ·, i:2);
write('number. please ?')

end

The user must still type a line before the while test is completed, but the prompt will ask for it.
This example, however, is still not correct. To understand why, it is first necessary to know. as
we will discuss below, that there is a blank character at the end of each line in a Pascal text file.
The read procedure. when reading integers or real numbers. is defined so that. if there are only
blanks left in the file, it will return a zero value and set the end-of -file condition. If, however.
there is a number remaining in the file, the end-of-file condition will not be set even if it is the
last number, as read never reads the blanks after the number. and there is always at least one
blank. Thus the modified code will still put out a spurious

that was a 0

at the end of a session with it when the end-of-file is reached. The simplest way to correct the
problem in this example is to use the procedure readln instead of read here. In general. unless
we test the end-of-file condition both before and after calls to read or read/11, there will be
inputs for which our program will attempt to read past end-of-file.

4.3. More about eoln

To have a good understanding of when eoln will be true it is necessary to know that in any
file there is a special character indicating end-of-line. and that, in effect, the Pascal system
always reads one character ahead of the Pascal read commands. t For instance, in response to
'read (ch)', the system sets ch to the current input character and gets the next input character.
If the current input character is the last character of the line. then the next input character
from the file is the new-line character, the normal UNIX line separator. When the read routine
gets the new-line character, it replaces that character by a blank (causing every line to end with

tin Pascal terms. 'readlchl' corresponds to 'ch :•input·; get(input)'

Berkeley Pascal User's Manual 2-189

a blank) and sets eoln to true. Eoln will be true as soon as we read the last character of the line
and before we read the blank character corresponding to the end of line. Thus it is almosl
always a mistake to write a program which deals with input in the following way:

read(ch);
if eoln then

Done with line
else

Normal processing

as this will almost surely have the effect of ignoring the last character in the line. The
'read(ch)' belongs as part of the normal processing.

Given this framework. it is not hard to explain the function of a readln call, which is
defined as:

while not eoln do
get(input);

get(input);

This advances the file until the blank corresponding to the end-of-line is the current input sym
bol and then discards this blank. The next character available from read will therefore be the
first character of the next line. if one exists.

4.4. Output buffering

A final point about Pascal input-output must be noted here. This concerns the buffering
of the file output. It is extremely inefficient for the Pascal system to send each character to the
user's terminal as the program generates it for output; even less efficient if the output is the
input of another program such as the line printer daemon /pr (1). To gain efficiency, the Pascal
system "buffers" the output characters (i.e. it saves them in memory until the buffer is full and
then emits the entire buffer in one system interaction.) However, to allow interactive prompt
ing to work as in the example given above. this prompt must be printed before the Pascal sys
tem waits for a response. For this reason, Pascal normally prints all the output which has been
generated for the file output whenever

1) A writeln occurs. or

2) The program reads from the terminal. or

3) The procedure message or flush is called.

Thus. in the code sequence

for i :- I to S do begin
write(i: 2);
Compute a lot with no output

end;
writeln

the output integers will not print until the writeln occurs. The delay can be somewhat discon
certing. and you should be aware that it will occur. By setting the b option to 0 before the pro
gram statement by inserting a comment of the form

(•SbO•)

we can cause output to be completely unbuffered. with a corresponding horrendous degradation
in program efficiency. Option control in comments is discussed in section 5.

2-190 Berkeley Pascal User's Manual

4.5. Files, reset, and rewrite

It is possible to use extended forms of the built-in functions reser and re"·rire to get more
general associations of UNIX file names with Pascal file variables. When a file other than 111pur
or output is to be read or written. then the reading or writing must be preceded by a reser or
rewri1e call. In general, if the Pascal file variable has never been used before. there will be no
UNIX filename associated with it. As we saw in section 2.9. by mentioning the file in the pro
gram statement, we could cause a UNIX file with the same name as the Pascal variable to be
associated with it. If we do not mention a file in the program statement and use it for the first
time with the statement

reset<O

or

rewrite(O

then the Pascal system will generate a temporary name of the form 'tmp.x' for some character
'x', and associate this UNIX file name name with the Pascal file. The first such generated name
will be 'tmp. l' and the names continue by incrementing their last character through the ASCII
set. The advantage of using such temporary files is that they are automatically removed by the
Pascal system as soon as they become inaccessible. They are not removed. however. if a run
time error causes termination while they are in scope.

To cause a particular UNIX pathname to be associated with a Pascal file variable we can
give that name in the reset or rewrite call, e.g. we could pave associated the Pascal file da1a with
the file 'primes' in our example in section 3.1 by doing:

reset(data. 'primes')

insteatl of a simple

reset (data)

In this case it is not essential to mention 'data' in the program statement. but it is still a good
idea because is serves as an aid to program documentation. The second parameter to reset and
re"·rite may be any string value, including a variable. Thus the names of UNIX files to be associ
ated with Pascal file variables can be read in at run time. Full details on file name/file variable
associations are given in section A.3.

4.6. Argc and argv

Each UNIX process receives a variable length sequence of arguments each of which is a
variable length character string. The built-in function argc and the built-in procedure argv can
be used to access and process these arguments. The value of the function argc is the ru.imber
of arguments to the process. By convention. the arguments are treated as an array. and
indexed from 0 to argc-1, with the zeroth argument being the name of the program being exe
cuted. The rest of the arguments are those passed to the command on the command line.
Thus. the command

% obj /etc/motd /usr/dict/words hello

will invoke the program in the file obj with argc having a value of 4. The zeroth element
accessed by argv will be 'obj', the first '/etc/motd', etc.

Pascal does not provide variable size arrays. nor does it allow character strings of varying
length. For this reason, argv is a procedure and has the syntax

argv(i. a)

where i is an integer and a is a string variable. This procedure call assigns the (possibly trun
cated or blank padded) i'th argument of the current process to the string variable a. The file
manipulation routines reset and rewrite will strip trailing blanks from their optional second

Berkeley Pascal User's Manual 2-191

arguments so that this blank padding is not a problem in the usual case where the arguments
are file names.

We are now ready to give a Berkeley Pascal program 'kat'. based on that given in section
3.1 above. which can be used with the same syntax as the UNIX system program cat (1).

% cat kat.p
program kat(input. output);
var

ch: char;
i: integer;
name: packed array [1..100) of char;

begin
i :- 1;
repeat

if i < argc then begin
argv(i. name);
reset (input. name);
i :-i + 1

end~
while not eof do begin

while not eoln do begin
read(ch);
write(ch)

end;
readln;
writeln

end
until i >- argc

end I kat }.
%

Note that the reset call to the file input here. which is necessary for a clear program. may be
disallowed on other systems. As this program deals mostly with argc and argv and UNIX system
dependent considerations. portability is of little concern.

If this program is in the file 'kat.p', then we can do

% pi kat.p
% mv obj kat
% kat primes

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

930 statements executed in 0.18 seconds cpu time.
% kat
This is a line of text.
This is a line of text.
The next line contains only an end-of-file (an invisible control-d!)
The next line contains only an end-of-file (an invisible control-d!)

287 statements executed in 0.03 seconds cpu time.
%

2-192 Berkeley Pascal User's Manual

Thus we see that. if it is given arguments. 'kat' will. like cat, copy each one in tum. If no
arguments are given. it copies from the standard input. Thus it will work as it did before_ with

% kat < primes

now equivalent to

% kat primes

although the mechanisms are quite different in the two cases. Note that if 'kat' is given a bad
file name, for example:

% kat xxxxqqq

Could not open xxxxqqq: No such file or directory

Error in "kat"+5 near line 11.

4 statements executed in 0.02 seconds cpu time.
%

it will give a diagnostic and a post-mortem control flow backtrace for debugging. If we were
going to use 'kat'. we might want to translate it differently, e.g.:

o/o pi -pb kat.p
o/o mv obj kat

Here we have disabled the post-mortem statistics printing. so as not to get the statistics or the
full traceback on error. The b option will cause the system to block buffer the input/output so
that the program will run more efficiently on large files. We could have also specified the t
option to tum off runtime tests if that was felt to be a speed hindrance to the program. Thus
we can try the last examples again:

% kat xxxxqqq

Could not open xxxxqqq: No such file or directory

Error in "kat"
% kat primes

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

o/o

The interested reader may wish to try writing a program which accepts command line
arguments like pi does. using argc and argv to process them.

\
'

Berkeley Pascal User's Manual 2-193

5. Details on the components of the system

5.1. Options

The programs pi, pc. and pxp take a number of options.t There is a standard L'NIXt con
vention for passing options to programs on the command line, and this convention is followed
by the Berkeley Pascal system programs. As we saw in the examples above. option related
arguments consisted of the character ' - ' followed by a single character option name.

Except for the b option which takes a single digit value, each option may be set on
(enabled) or off (disabled.) When an on/off valued option appears on the command line of pi
or it inverts the default setting of that option. Thus

% pi -I foo.p

enables the listing option I. since it defaults off. while

% pi -t foo.p

disables the run time tests option t, since it defaults on.

In additon to inverting the default settings of pi options on the command line. it is also
possible to control the pi options within the body of the program by using comments of a spe
cial form illustrated by

ISi-)

Here we see that the opening comment delimiter (which could also be a '(•') is immedi
ately followed by the character '$'. After this '$', which signals the start of the option list. we
can place a sequence of letters and option controls, separated by '.' characters;. The most basic
actions for options are to set them. thus

{SI+ Enable listing}

or to clear them

{St-,p- No run-time tests, no post mortem analysis)

Notice that '+' always enables an option and • - ' always disables it. no matter what the default
is. Thus ' - ' has a different meaning in an option comment than it has on the command line.
As shown in the examples. normal comment text may follow the option list.

5;2. Options common to Pi, Pc. and Pix
The following options are common to both the compiler and the interpreter. With each

option we give its default setting, the setting it would have if it appeared on the command line.
and a sample command using the option. Most options are on/off valued. with the b option
taking a single digit value.

tAs pix uses pi to translale Pascal programs. il takes Lhe options of pi also. We refer to them here. however.
as p1 options.
tUNIX is a Trademark of Bell Laboratories.
iThis format was chosen because it is used by Pascal 6000-3.4. In general the options common to both im
plementalions are controlled in the same way so that commenL control in options is mostly portable. It is
recommended. however. Lhal only one control be pul per commenl for maximum portability. dS the Pasc;il
6000-3.4 implementalion win ignore controls after the firsl one which it does not recognize.

2-194 Berkeley Pascal User's Manual

Buffering of the file output - b

The b option controls the buffering of the file output. The default is line buffering. with
flushing at each reference to the file input and under certain other circumstances detailed in sec
tion S below. Mentioning b on the command line. e.g.

% pi -b assembler.p

causes standard output to be block buffered. where a block is some system-defined number of
characters. The b option may also be controlled in comments. It. unique among the Berkeley
Pascal options. takes a single digit value rather 'than an on or off setting. A value of 0. e.g.

ISbOI
causes the file output to be unbuffered. Any value 2 or greater causes block buffering and is
equivalent to the flag on the command line. The option control comment setting b must pre
cede the program statement.

Include file listing - i

The i option takes the name of an include file. procedure or function name and causes it
to be listed while translatingt. Typical uses would be

% pix -i scanner.i compiler.p

to make a listing of the routines in the file scanner.i. and

% pix -i scanner compiler.p

to make a listing of only the routine scanner. This option is especially useful for conservation
minded programmers making partial program listings.

Make a listing - I

The I option enables a listing of the program. The I option def au Its off. When specified
on the command line. it causes a header line identifying the version of the translator in use and
a line giving the modification time of the file being translated to appear before the actual pro
gram listing. The I option is pushed and popped by the i option at appropriate points in the
program.

Standard Pascal only - s

The s option causes many of the features of the UNIX implementation which are not
found in standard Pascal to be diagnosed as •s' warning errors. This option defaults off and is
enabled when mentioned on the command line. Some of the features which are diagnosed are:
non-standard procedures and functions. extensions to the procedure write. and the padding of
constant strings with blanks. In addition. all letters are mapped to lower case except in strings
and characters so that the case of keywords and identifiers is effectively ignored. The s option
is most useful when a program is to be transported. thus

% pi -s isitstd.p

will produce warnings unless the program meets the standard.

Runtime tests - t and C

These options control the generation of tests that subrange variable values are within
bounds at run time. pi defaults to generating tests and uses the option t to disable them. pc
defaults to not generating tests, and uses the option C to enable them. Disabling runtime tests
also causes assert statements to be treated as comments.:i:

tlnclude files are discussed in section 5.9.
iSee section A. I for a description of assert statements.

Berkeley Pascal User's Manual 2-195

Suppress warning diagnostics - w

The w option. which defaults on. aJlows the translator to print a number of warnings
about inconsistencies it finds in the input program. Turning this option off with a comment of
the form

ISw-}

or on the command line

% pi -w tryme. p

suppresses these usually useful diagnostics.

Generate counters for a pxp execution profile - z

The z option. which defaults off. enables the production of execution profiles. By specify
ing z on the command line. i.e.

% pi -z foo.p

or by enabling it in a comment before the program statement causes pi and pc to insert opera
tions in the interpreter code to count the number of times each statement was executed. An
example of using pxp was given in section 2.6; its options are described in section 5.6. Note
that the z option cannot be used on separately compiled programs.

5.J. Options available in Pl

Post-mortem dump - p

The p option defaults on. and causes the runtime system to initiate a post-mortem back
trace when an error occurs. It also cause px to count statements in the executing program,
enforcing a statement limit to prevent infinite loops. Specifying p on the command line dis
ables these checks and the ability to give this post-mortem analysis. It does make smaller and
faster programs. however. It is also possible to control the p option in comments. To prevent
the post-mortem backtrace on error, p must be off at the end of the program statement. Thus.
the Pascal cross-reference program was translated with

% pi -pbt pxref.p

5.4. Options available in Px

The first argument to px is the name of the file containing the program to be interpreted.
If no arguments are given. then the file obj is executed. If more arguments are given. they are
available to the Pascal program by using the built-ins argc and argv as described in section 4.6.

Px may also be invoked automatically. In this case. whenever a Pascal object file name is
given as a command. the command will be executed with px prepended to it; that is

% obj primes

will be converted to read

% px obj primes

5.5. Options available in Pc

Generate assembly language - S
The program is compiled and the assembly language output is left in file appended .s.

Thus

% pc -S foo.p

2-196 Berkeley Pascal User's Manual

creates a file foo.s. No executable file is created.

Symbolic Debugger Information - g

The g option causes the compiler to generate information needed by sdb(J) the symbolic
debugger. For a complete description of sdb see Volume 2c of the u~1x Reference Manual.

Redirect the output file - o

The name argument after the -o is used as the name of the output file instead of a.ou1. Its
typical use is to name the compiled program using the root of the file name. Thus:

% pc -o myprog myprog.p

causes the compiled program to be called myprog.

Generate counters for a pro/execution profile - p

The compiler produces code which counts the number of times each routine is called.
The profiling is based on a periodic sample taken by the system rather than by inline counters
used by pxp. This results in less degradation in execution. at somewhat of a loss in accuracy.
See proj(.1) for a more complete description.

Run the object code optimizer - 0

The output of the compiler is run through the object code optimizer. This provides an
increase in compile time in exchange for a decrease in compiled code size and execution time.

S.6. Options available in Pxp

Pxp takes. on its command line. a list of options followed by the program file name. which
must end in '.p' as it must for pi. pc. and pix. Pxp will produce an execution profile if any of
the z. t or c options is specified on the command line. If none of these options is specified.
then pxp functions as a program reformatter.

It is important to note that only the z and w options of pxp. which are common to pi. pc.
and pxp can be controlled in comments. All other options must be specified on the command
line to have any effect.

The following options are relevant to profiling with pxfJ".

Include the bodies of all routines in the profile - a

Pxp normally suppresses printing the bodies of routines which were never executed. to
make the profile more·compact. This option forces all routine bodies to be printed.

Suppress declaration parts from a profile - d

Normally a profile includes declaration parts. Specifying d on the command line
suppresses declaration parts.

Eliminate include directives - e

Normally. pxp preserves include directives to the output when reformatting a program. as
though they were comments. Specifying -e causes the contents of the specified files to be
reformatted into the output stream instead. This is an easy way to eliminate include directives.
e.g. before transporting a program.

Fully parenthesize expressions - f

Normally pxp prints expressions with the minimal parenthesization necessary to preserve
the structure of the input. This option causes pxp to fully parenthesize expressions. Thus the
statement which prints as

Berkeley Pascal User's Manual 2-197

d :- a + b mod c I e

with minimal parenthesization. the default, will print as

d :- a + ((b mod c) I e)

with the f option specified on the command line.

Left justify all procedures and functions - j

Normally, each procedure and function body is indented to reflect its static nesting depth.
This option prevents this nesting and can be used if the indented output would be too wide.

Print a table summarizing procedure and function calls - t

The t option causes pxp to print a table summarizing the number of calls to each pro
cedure and function in the program. It may be specified in combination with the z option. or
separately.

Enable and control the profile - z

The z profile option is very similar to the i listing control option of pi. If z is specified on
the command line. then all arguments up to the source file argument which ends in '.p' are
taken to be the names of procedures and functions or include files which are to be profiled. If
this list is null, then the whole file is to be profiled. A typical command for extracting a profile
of part of a large program would be

% pxp -z test parser.i compiler.p

This specifies that profiles of the routines in the file parser.i and the routine test are to be made.

5. 7. Formatting programs using pxp

The program pxp can be used to reformat programs, by using a command of the form

% pxp dirty.p > clean.p

Note that since the shell creates the output file 'clean.p' before pxp executes. so ·ctean.p' and
'dirty.p' must not be the same file.

Pxp automaticaJly paragraphs the program. performing housekeeping chores such as com
ment alignment, and treating blank lines, lines containing exactly one blank and lines contain
ing only a form-feed character as though they were comments, preserving their vertical spacing
etf ect in the output. Pxp distinguishes between four kinds of comments:

1) Left marginal comments, which begin in the first column of the input line and are
placed in the first column of an output line.

2) Aligned comments, which are preceded by no input tokens on the input line. These
are aligned in the output with the running program text.

3) Trailing comments, which are preceded in the input line by a token with no more
than two spaces separating the token from the comment.

4) Right marginal comments, which are preceded in the input line by a token from
which they are separated by at least three spaces or a tab. These are aligned down
the right margin of the output, currently to the first tab stop after the 40th column
from the current "left margin".

Consider the following program.

% cat comments.p
I This is a left marginal comment. J
program hello(output);
var i : integer; !This is a trailing comment}
j : integer; !This is a right marginal comment!

2-198 Berkeley Pascal User's Manual

k: array [1..10) of array [l..10) of integer; !Marginal. but past the margin}
I
I

An aligned. multi-line comment
which explains what this program is
all about

l
begin
i :- I; {Trailing i comment}
IA left marginal comment}
!An aligned comment}

j :- I; {Right marginal comment}
k[l] :- I;
writeln(i. j. k[l])
end.

When formatted by pxp the following output is produced.

% pxp c:omments.p
I This is a left marginal comment. l

program hello(output);
var

l

l

i: integer. (This is a trailing comment}
j: integer;
k: array [l..10) of array [1..10) of integer;

An aligned. multi-line comment
which explains what this program is
all about

begin
i :- 1; {Trailing i comment}

IA left marginal comment)
!An aligned comment)
j :- 1;
k[l] :- 1;
writeln(i. j. k[I])

end.
%

lThis is a right marginal comment!
!Marginal. but past the marginl

!Right marginal comment}

The following formatting related options are currently available in pxp. The options f and j
described in the previous section may also be of interest.

Strip comments -s

The s option causes pxp to remove ail comments from the input text.

Underline keywords - _

A command line argument of the form - _ as in

% pxp -- dirty.p

can be used to cause pxp to underline all keywords in the output for enhanced readability.

Berkeley Pascal User's Manual 2-199

Specify indenting unit - 1234567891
The normal unit which pxp uses to indent a structure statement level is 4 spaces. By giv

ing an argument of the form -d with d a digit. 2 ~ d ~ 9 you can specify that d spaces are to
be used per level instead.

5.8. Pxref
The cross-reference program pxrefmay be used to make cross-referenced listings of Pascal

programs. To produce a cross-reference of the program in the file 'foo.p' one can execute the
command:

% pxref foo. p

The cross-reference is. unfortunately, not block structured. Full details on pxrefare given in its
manual section pxref (1).

5.9. Multi-file programs
A text inclusion facility is available with Berkeley Pascal. This facility allows the interpo

lation of source text from other files into the source stream of the translator. It can be used to
divide large programs into more manageable pieces for ease in editing, listing. and maintenance.

The include facility is based on that of the UNIX C compiler. To trigger it you can place
the character '#' in the first portion of a line and then. after an arbitrary number of blanks or
tabs. the word •include' followed by a filename enclosed in single ••• or double '"' quotation
marks. The file name may be followed by a semicolon ';' if you wish to treat this as a pseudo
Pascal statement. The filenames of included files must end in '.i'. An example of the use of
included files in a main program would be:

program compiler(input. output. obj);

#include "globals.i"
#include "scanner.i"
#include "parser.i"
#include "semantics.i"

begin
I main program }

end.

At the point the include pseudo-statement is encountered in the input, the lines from the
included file are interpolated into the input stream. For the purposes of translation and runtime
diagnostics and statement numbers in the listings and post-mortem backtraces. the lines in the
included file are numbered from 1. Nested includes are possible up to 10 deep.

See the descriptions of the i option of pi in section 5.2 above; this can be used to control
listing when include files are present.

When a non-trivial line is encountered in the source text after an include finishes. the
·popped' filename is printed. in the same manner as above.

For the purposes of error diagnostics when not making a listing. the filename will be
printed before each diagnostic if the current filename has changed since the last filename was
printed.

5.10. Separate Compilation with Pc
A separate compilation facility is provided with the Berkeley Pascal compiler. pc. This

facility allows programs to be divided into a number of files and the pieces to be compiled indi
vidually. to be linked together at some later time. This is especially useful for large programs.
where small changes would otherwise require time-consuming re-compilation of the entire

2-200 Berkeley Pascal User's Manual

program.

Normally. pc expects to be given entire Pascal programs. However. if given the -c
option on the command line. it will accept a sequence of definitions and declarations. and com
pile them into a .o file. to be linked with a Pascal program at a later time. In order that pro
cedures and functions be available across separately compiled files. they must be declared with
the directive external. This directive is similar to the directive forward in that it must precede
the resolution of the function or procedure. and formal parameters and function result types
must be specified at the external declaration and may not be specified at the resolution.

Type checking is performed across separately compiled files. Since Pascal type defintions
define unique types. any types which are shared between separately compiled files must be the
same definition. This seemingly impossible problem is solved using a facility similar to the
include facility discussed above. Definitions may be placed in files with the extension .h and
the files included by separately compiled files. Each definition from a .h file defines a unique
type. and all uses of a definition from the same .h file de.fine the same type. Similarly. the
facility is extended to allow the definition of consts and the declaration of labels. vars. and
external functions and procedures. Thus procedures and functions which are used between
separately compiled files must be declared external. and must be so declared in a .h file
included by any file which calls or resolves the function or procedure. Conversely. functions
and procedures declared external may only be so declared in .h files. These files may be
included only at the outermost level. and ihus define or declare global objects. Note that since
only external function and procedure declarations (and not resolutions) are allowed in .h files.
statically nested functions and procedures can not. be declared external.

An example of tile use of included .h files in a program would be:

program compiler(input, output, obj);

#include •globals.h"
#include "scanner.h"
#include "parser.h"
#include "semantics.h•

begin
I main program }

end.

This might include in the main program the definitions and declarations of all the global
labels, consts. types vars from the file globals.h, and the external function and procedure
declarations for each of the separately compiled files for the scanner. parser and semantics. The
header file sca1111er.h would contain declarations of the form:

type
token - record

I token fields }
end;

function scan (var inputfile: text): token;
external;

Berkeley Pascal User's Manual 2-201

Then the scanner might be in a separately compiled file containing:

#include "globaJs.h"
#include "scanner.h"

function scan;
begin

I scanner code }
end;

which includes the same global definitions and declarations and resolves the scanner functions
and procedures declared external in the file scanner.h.

2-202 Berkeley Pascal User's Manual

A. Appendix to Wirth's Pascal Report

This section is an appendix to the definition of the Pascal language in Niklaus Wirth·s
Pascal Report and, with that Report, precisely defines the Berkeley implementation. This
appendix includes a summary of extensions to the language. gives the ways in which the
undefined specifications were resolved, gives limitations and restrictions of the current imple
qientation, and lists the added functions and procedures available. It concludes with a list of
differences with the commonly available Pascal 6000-3.4 implementation, and some comments
on standard and portable Pascal.

A.1. Extensions to the language Pascal

This section defines non-standard language constructs available in Berkeley Pascal. The s
standard Pascal option of the translators pi and pc can be used to detect these extensions in pro
grams which. are to be transported.

String padding

Berkeley Pascal will pad constant strings with blanks in expressions and as value parame-
ters to make them as long as is required. The following is a legal Berkeley Pascal program:

program x(output);
var z : packed array [1 .. 13] of char;
begin

z :- 'red';
writeln(z)

end~

The padded blanks are added on the right. Thus the assignment above is equivalent to:

z :- 'red

which is standard Pascal.

Octal constants, octal and hexadecimal write

Octal constants may be given as a sequence of octal digits followed by the character 'b. or
'B'. The forms

write(a:n oct)

and

write(a:n hex)

cause the internal representation of expression a, which must be Boolean, character. integer.
pointer, or a user-defined enumerated type, to be written in octal or hexadecimal respectively.

Assert statement

An assert statement causes a Boolean expression to be evaluated each time the statement
is executed. A runtime error results if any of the expressions evaluates to be false. The assert
statement is treated as a comment if run-time tests are disabled. The syntax for assert is:

assert < expr >

\

/

Berkeley Pascal User's Manual 2-203

Enumerated type input-output

Enumerated types may be read and written. On output the string name associated with
the enumerated value is output. If the value is out of range. a runtime error occurs. On input
an identifier is read and looked up in a table of names associated with the type of the variable.
and the appropriate internal value is assigned to the variable being read. If the name is not
found in the table a runtime error occurs.

Structure returning functions

An extension has been added which allows functions to return arbitrary sized structures
rather than just scalars as in the standard.

Separate compilation

The compiler pc has been extended to allow separate compilation of programs. Pro
cedures and functions declared at the global level may be compiled separately. Type checking
of calls to separately compiled routines is performed at load time to insure that the program as
a whole is consistent. See section 5.10 for details.

A.l. Resolution of the undefined specifications

File name - file variable associations

Each Pascal tile variable is associated with a named UNIXt tile. Except for input and out
put, which are exceptions to some of the rules. a name can become associated with a tile in any
of three ways:

1) If a global Pascal tile variable appears in the program statement then it is associated
with UNIX file of the same name.

2) If a file was reset or rewritten using the extended two-argument form of reset or
rewrite then the given name is associated.

3) If a tile which has never had UNIX name associated is reset or rewritten without
specifying a name via the second argument. then a temporary name of the form
'tmp.x' is associated with the file. Temporary names start with 'tmp.1' and continue
by incrementing the last character in the USASCII ordering. Temporary tiles are
removed automatically when their scope is exited.

The program statement

The syntax of the program statement is:

program <id> (<file id> I . <file id > }) ;

The file identifiers (other than input and output) must be declared as variables of file type in the
global declaration part.

The flies input and output

The formal parameters input and output are associated with the UNIX standard input and
output and have a somewhat special status. The following rules must be noted:

1) The program heading must contains the formal parameter output. If input is used.
explicitly or implicitly, then it must also be declared here.

2) Unlike all other files, the Pascal files input and owpur must not be defined in a
declaration. as their declaration is automatically:

var input. output: text

tUNIX is a Trademark of Bell Laboratories.

2-204 Berkeley Pascal User's Manual

3) The procedure reset may be used on input. If no UNIX file name has ever been asso
ciated with input, and no file name is given. then an attempt will be made to 'rewind'
input. If this fails, a run time error will occur. Rewrite calls to output act as for any
other file. except that output initially has no associated file. This means that a simple

rewrite<output)

associates a temporary name with output.

Details for files
If a file other than input is to be read, then reading must be initiated by a call to the pro

cedure reset which causes the Pascal system to attempt to open the associated UNIX file for read
ing. If this fails, then a runtime error occurs. Writing of a file other than output must be ini
tiated by a rewrite call, which causes the Pascal system to create the associated UNIX file and to
then open the file for writing only.

Buffering
The buffering for output is determined by the value of the b option at the end of the pro-

1ram statement. If it has its default value 1. then output is buffered in blocks of up to 512
characters, flushed whenever a writeln occurs and at each reference to the file input. If it has
the value 0, output is unbuffered. Any value of 2 or more gives block buffering without line or
input reference flushing. All other output files are always buffered in blocks of 512 characters.
All output buffers are flushed when the files are closed at scope exit, whenever the procedure
message is called, and can be flushed using the built-in procedure flush.

An important point for an interactive implementation is the definition of 'inputl'. If inpw
is a teletype, and the Pascal system reads a character at the beginning of execution to define
•inputf', then no prompt could be printed by the program before the user is required to type
some input. For this reason. •inputf' is not ~efined by the system until its definition is needed.
reading from a file occurring only when necessary.

The character set
Seven bit USASCII is the character set used on UNIX. The standard Pascal symbols 'and'.

'or', 'not', '<-'. '>-', '< > ·. and the uparrow 'T' (for pointer qualification) are recognized. t
Less portable are the synonyms tilde ••• for not, '&' for and, and ·r for or.

Upper and lower case are considered to be distinct. Keywords and built-in procedure and
function names are composed of all lower case letters. Thus the identifiers GOTO and GOto
are distinct both from each other and from the keyword goto. The standard type 'boolean' is
also available as •Boolean'.

Character strings and constants may be delimited by the character •·• or by the character
•#'; the latter is sometimes convenient when programs are to be transported. Note that the '#'
character has special meaning when it is the first character on a line - see Multi-file programs
below.

The standard types
The standard type integer is conceptually defined as

type integer - minint .. maxint;

/111eger is implemented with 32 bit twos complement arithmetic. ·Predefined constants of type
i11teger are:

tOn many terminals and printers. the up arrow is represented as a cin:umtlex ·••. These are not distinct
characters. but rather different graphic representations of the same internal codes.
The proposed standard for Pascal considers them to be the same.

(

I

\

Berkeley Pascal User's Manual 2-205

const maxint - 2147483647; minint - -2147483648:

The standard type char is conceptually defined as

type char - minchar .. maxchar:

Built-in character constants are 'minchar' and 'maxchar', 'bell' and 'tab': ord(minchar) - 0.
ord(maxchar) - 127.

The type real is implemented using 64 bit floating point arithmetic. The floating point
arithmetic is done in 'rounded' mode, and provides approximately 17 digits of precision with
numbers as small as 10 to the negative 38th power and as large as 10 to the 38th power.

Comments

Comments can be delimited by either 'I' and '}' or by • (•' and '• > '. If the character 'I'
appears in a comment delimited by 'I' and'}', a warning diagnostic is printed. A similar warn
ing will be printed if the sequence '(•' appears in a comment delimited by '(•' and '•>'. The
restriction implied by this warning is not part of standard Pascal. but detects many otherwise
subtle errors.

Option control

Options of the translators may be controlled in two distinct ways. A number of options
may appear on the command line invoking the translator. These options are given as one or
more strings of letters preceded by the character ' - ' and cause the default setting of each given
option to be changed. This method of communication of options is expected to predominate
for UNIX. Thus the command

% pi -I -s foo.p

translates the file foo.p with the listing option enabled (as it normally is off), and with only
standard Pascal features available.

If more control over the portions of the program where options are enabled is required.
then option control in comments can and should be used. The format for option control in
comments is identical to that used in Pascal 6000-3.4. One places the character'$' as the first
character of the comment and follows it by a comma separated list of directives. Thus an
equivalent to the command line example given above would be:

ISI+.s+ listing on, standard Pascal)

as the first line of the program. The 'I' option is more appropriately specified on the command
line, since it is extremely unlikely in an interactive environment that one wants a listing of the
program each time it is translated.

Directives consist of a letter designating the option, followed either by a '+' to turn the
option on, or by a ' - ' to turn the option off. The b option takes a single digit instead of a '+ ·
or·-·.

Notes on the listings

The first page of a listing includes a banner line indicating the version and date of genera
tion of pi or pc. It also includes the UNIX path name supplied for the source file and the date of
last modification of that file.

Within the body of the listing, lines are numbered consecutively and correspond to the
line numbers for the editor. Currently, two special kinds of lines may be used to format the
listing: a line consisting of a form-feed character. control-I, which causes a page eject in the list
ing, and a line with no characters which causes the line number to be suppressed in the listing.
creating a truly blank line. These lines thus correspond to 'eject' and 'space' macros found in
many assemblers. Non-printing characters are printed as the character '?' in the listing. t

tThe character generated by a control-i indents to the next 'tab stop'. Tab stops are set every 8 columns in
UNIX. Tabs thus provide a quick way of indenting in the program.

2-206 Berkeley Pascal User's Manual

The standard procedure write
If no minimum field length parameter is specified for a write, the following default values

are assumed:

integer
real
Boolean
char
string
oct
hex

10
22

length of 'true' or 'false'
1

length of the string
11
8

The end of each line in a text file should be explicitly indicated by 'writeln<O'. where
•wnteln(output)' may be written simply as •wnteln'. For UNIX, the built-in function 'page(f)'
puts a single ASCII form-feed character on the output file. For programs which are to be tran
sported the filter pee can be used to interpret carriage control, as UNIX does not normally do so.

A.3. Restrictions and limitations

Files
Files cannot be members of files or members of dynamically allocated structures.

Arrays, sets and strings
The calculations involving array subscripts and set elements are done with 16 bit arith

metic. This restricts the types over which arrays and sets may be defined. The lower bound of
such a range must be greater than or equal to -32768. and the upper bound less than 32768.
In particular. strings may have any length from 1 to 65535 characters. and sets may contain no
more than 65535 elements.

Line and symbol length
There is no intrinsic limit on the length of identifiers. Identifiers are considered to be dis

tinct if they differ in any single position over their entire length. There is a limit. however. on
the maximum input line length. This limit is quite generous however. currently exceeding 160
characters.

Procedure and function nesting and program size
At most 20 levels of procedure and function nesting are allowed. There is no fundamen

tal. translator defined limit on the size of the program which can be translated. The ultimate
limit. is supplied by the hardware and thus. on the PDP-11. by the 16 bit address space. If one
runs up against the 'ran out of memory' diagnostic the program may yet translate if smaller
procedures are used. as a lot of space is freed by the translator at the completion of each pro
cedure or function in the current implementation.

On the VAX-11. there is an implementation defined limit of 65536 bytes per variable.
There is no limit on the number of variables.

Overftow
There is currently no checking for overflow on arithmetic operations at run-time on the

PDP-11. Overflow checking is performed on the v AX-11 by the hardware.

Berkeley Pascal User's Manual 2-207

A.4. Added types, operators, procedures and functions

Additional predefined types

The type a/fa is predefined as:

type alfa - packed array [1..10 1 of char

The type intset is predefined as:

type intset • set of 0 .. 127

In most cases the context of an expression involving a constant set allows the translator to
determine the type of the set. even though the constant set itself may not uniquely determine
this type. In the cases where it is not possible to determine the type of the set from local con
text, the expression type defaults to a set over the entire base type unless the base type is
integert. In the latter case the type defaults to the current binding of i11tser. which must be
.. type set of (a subrange of) integer .. at that point.

Note that if intset is redefined via:

type intset - set of 0 .. 58;

then the default integer set is the implicit intset of Pasc:aJ 6000-3.4

Additional predefined operators

The re!ationals • <' and • >' of proper set inclusion are available. With a and b sets. note
that

(not (a< b)) <> (a>• b)

As an example consider the sets a - [0.2) and b - [1}. The only relation true between these
sets is•<>'.

Non-standard procedures

argv(i.a)

date(a)

Oush<O

halt

linelimi t (f .x);

message(x)

where i is an integer and a is a string variable assigns the (possibly
truncated or blank padded) i'th argument of the invocation of the
current UNIX process to the variable a. The range of valid ; is 0 to
argc-1.
assigns the current date to the alfa variable a in the format 'dd
mmm yy ', where 'mmm' is the first three characters of the month.
i.e. •Apr'.

writes the output buffered for Pascal file f into the associated L':"llX
file.

terminates the execution of the program with a control flow back
trace.

with fa textfile and x an integer expression causes the program to
be abnormally terminated if more than x lines are written on file .t:
If xis less than 0 then no limit is imposed.

causes the parameters. which have the format of those to the built
in procedure write, to. be written unbuffered on the diagnostic unit
2. almost always the user's terminal.

tThe current transla1or makes a sllCCial ase of the construct 'if ... in (... l' and enforces only the more lax
restriction on 16 bit arithmetic given above in this case.
;currently ignored by ?d11· I l px.

2-208 Berkeley Pascal User's Manual

null

remove(a)

reset ff.a)

rewrite(f.a)

stlimit(i)

time(a)

Non-standard functions
argc

card(x)

clock

expo(x)

random(x)

seed(i)

sysclock

undefined(x)

wall clock

a procedure of no arguments which does absolutely nothing. It is
useful as a place holder. and is generated by pxp in place of the
invisible empty statement.

where a is a string causes the UNIX file whose name is a. with trail
ing blanks eliminated. to be removed.

where a is a string causes the file whose name is a (with blanks
trimmed) to be associated with fin addition to the normal function
of reset.
is analogous to 'reset' above.

where i is an integer sets the statement limit to be i statements.
Specifying the p option to pc disables statement limit counting.

causes the current time in the form ' hh:mm:ss ' to be assigned to
the alf a variable a.

returns the count of arguments when the Pascal program was
invoked. Argc is always at least 1.

returns the cardinality of the set x. i.e. the number of elements con
tained in the set.

returns an integer which is the number of central processor mil
liseconds of user time used by this process.

yields the integer valued exponent of the floating-point representa
tion of x, expo(x) - entier(log2(abs(x))).

where x is a real parameter. evaluated but otherwise ignored.
invokes a linear congruential random number generator. Successive
seeds are generated as (seed•a + c) mod m and the new random
number is a normalization of the seed to the range 0.0 to 1.0; a is
62605. c is 113218009. and m is 536870912. The initial seed is
7774755.

where i is an integer sets the random number generator seed to /
and returns the previous seed. Thus seed(seed(i)) has no effect
except to yield value i.

an integer function of no arguments returns the number of central
processor milliseconds of system time used by this process.

a Boolean function. Its argument is a real number and it always
returns false.

an integer function of no arguments returns the time in seconds
since 00:00:00 GMT January 1. 1970.

A.S. Remarks on standard and portable Pascal
It is occasionally desirable to prepare Pascal programs which will be acceptable at other

Pascal installations. While certain system dependencies are bound to creep in. judicious design
and programming practice can usually eliminate most of the non-portable usages. Wirth's Pas
cal Report concludes with a standard for implementation and program exchange.

In particular. the following differences may cause trouble when attempting to transport
programs between this implementation and Pascal 6000-3.4. Using the s translator option may
serve to indicate many problem areas. t

tThe s option does not. however. check that identifiers differ in the first 8 characters. Pi and pc also do not
check the semantics of packed.

---- ·--- ---·--

Berkeley Pascal User's Manual 2-209

Features not available in Berkeley Pascal
Segmented files and associated functions and procedures.

The function trum: with two arguments.

Arrays whose indices exceed the capacity of 16 bit arithmetic.

Features available in Berkeley Pascal but not in Pascal 6000-3.4

The procedures reser and rewrite with file names.

The functions argc, seed, sysclock. and wallclock.
The procedures argv, flush, and remove.
Message with arguments other than character strings.

Write with keyword hex.

The assert statement.

Reading and writing of enumerated types.

Allowing functions to return structures.

Separate compilation of programs.

Comparison of records.

Other problem areas

Sets and strings are more general in Berkeley Pascal; see the restrictions given in the
Jensen-Wirth User Manual for details on the 6000-3.4 restrictions.

The character set differences may cause problems, especially the use of the function chr.
characters as arguments to ord, and comparisons of characters. since the character set ordering
differs between the two machines.

The Pascal 6000-3.4 compiler uses a less strict notion of type equivalence. In Berkeley
Pascal, types are considered identical only if they are represented by the same type identifier.
Thus, in particular, unnamed types are unique to the variables/fields declared with them.

Pascal 6000-3.4 doesn't recognize our option flags, so it is wise to put the control of
Berkeley Pascal options to the end of option lists or, better yet. restrict the option list length to
one.

For Pascal 6000-3.4 the ordering of files in the program statement has significance. It is
desirable to place input and output as the first two files in the program statement.

Franz Lisp Manual 2-211

CHAPTER 1

FRANZ LISP

1.1. FRANZ LISPt was created as a tool to further research in symbolic and algebraic mani
pulation, artificial intelligence, and programming languages at the University of Califor
nia at Berkeley. Its roots are in a PDP-11 Lisp system which originally came from Har
vard. As it grew it adopted features of Maclisp and Lisp Machine Lisp which enables our
work to be shared with colleagues at the Laboratory for Computer Science at M.l.T.
Substantial compatibility with other Lisp dialects (Interlisp, UCILisp, CMULisp) is
achieved by means of support packages and compiler switches. The heart of FRANZ LISP
is written almost entirely in the programming language C. Of course, it has been greatly
extended by additions written in Lisp. A small part is written in the assembly language
for the current host machines, V AXen and a couple of flavors of 68000. Because FRANZ
LISP is written in C, it is relatively portable and easy to comprehend.

FRANZ LISP is capable of running large lisp programs in a timesharing environment,
has facilities for arrays and user defined structures, has a user controlled reader with
character and word macro capabilities, and can interact directly with compiled Lisp, C,
Fortran, and Pascal code.

This document is a reference manual for the FRANZ LISP system. It is not a Lisp
primer or introduction to the language. Some parts will be of interest only to those
maintaining FRANZ LISP at their computer site. This document is divided into four
Movements. In the first one we will attempt to describe the language of FRANZ LISP
precisely and completely as it now stands (Opus 38.69, June 1983). In the second Move
ment we will look at the reader, function types, arrays and exception handling. In the
third Movement we will look at several large support packages written to help the FRANZ
LISP user, namely the trace package, compiler, fixit and stepping package. Finally the
fourth movement contains an index into the other movements. In the rest of this
chapter we shall examine the data types of FRANZ LISP. The conventions used in the
description of the FRANZ LISP functions will be given in §1.3 -- it is very important that
these conventions are understood.

1.2. Data Types FRANZ LISP has fourteen data types. In this section we shall look in
detail at each type and if a type is divisible we shall look inside it. There is a Lisp func
tion type which will return the type name of a lisp object. This is the official FRANZ LISP
name for that type and we will use this name and this name only in the manual to avoid
confusing the reader. The types are listed in terms of importance rather than alphabeti
cally.

'It is rumored that this name has something to do with Franz Liszt [Frants List] 0811-1886) a Hungarian com
poser and keyboard virtuoso. These allegations have never been proven.

2-212 Franz Lisp Manual

1.2.0. lispval This is the name we use to describe any lisp object. The function type
will never return 'lispval'.

1.2.1. symbol This object corresponds to a variable in most other programming
languages. It may have a value or may be •unbound'. A symbol may be lambda
bound meaning that its current value is stored away somewhere and the symbol is
given a new value for the duration of a certain context. When the Lisp processor
leaves that context, the symbol's current value is thrown away and its old value is
restored.

A symbol may also have a function binding. This function binding is static; it cannot
be lambda bound. Whenever the symbol is used in the functional position of a Lisp
expression the function binding of the symbol is examined (see Chapter 4 for more
details on evaluation).

A symbol may also have a property list, another static data structure. The property list
consists of a list of an even number of elements, considered to be grouped as pairs.
The first element of the pair is the indicator the second the value of that indicator.

Each symbol has a print name (pname) which is how this symbol is accessed from
input and ref erred to on (printed) output.

A symbol also has a hashlink used to link symbols together in the oblist -- this field is
inaccessible to the lisp user.

Symbols are created by the reader and by the functions con cat, maknam and their
derivatives. Most symbols live on FRANZ LISP'S sole oblist, and therefore two sym
bols with the same print name are usually the exact same object (they are eq). Sym
bols which are not on the ob list are said to be uninterned. The function maknam
creates unintemed symbols while concat creates interned ones.

Subpart name Get value Set value Type

value eval set lispval
setq

property plist setplist list or nil
list get putprop

def prop
function getd putd array, binary, list
binding def or nil

print name get _pname string
hash link

1.2.2. list A list cell has two parts, called the car and cdr. List cells are created by the
function cons.

----------- ---------

Franz Lisp Manual 2-213

Subpart name Get value Set value Type

car car rplaca lisp val
cdr cdr rplacd lispval

1.2.3. binary This type acts as a function header for machine coded functions. It has
two parts, a pointer to the start of the function and a symbol whose print name
describes the argument discipline. The discipline (if lambda, macro or nlambda) deter
mines whether the arguments to this function will be evaluated by the caller before
this function is called. If the discipline is a string (specifically "subroutine', "functiori',
"integer-functiorl', "real-function", "c-functiori', "double-c-functiori', or "vector-c-functiori')
then this function is a foreign subroutine or function (see §8.5 for more details on
this). Although the type of the entry field of a binary type object is usually string or
other, the object pointed to is actually a sequence of machine instructions.
Objects of type binary are created by mfunction, cfasl, and getaddress.

Subpart name Get value Set value Type

entry getentry string or fixnum
discipline getdisc putdisc symbol or fixnum

1.2.4. fixnum A fixnum is an integer constant in the range -231 to 231-1. Small
fixnums (-1024 to 1023) are stored in a special table so they needn't be allocated each
time one is needed.

1.2.5. flonum A flonum is a double precision real number in the range ±2.9x 10-37 to
± 1. 7 x 1038. There are approximately sixteen decimal digits of precision.

1.2.6. bignum A bignum is an integer of potentially unbounded size. When integer
arithmetic exceeds the limits of fixnums mentioned above, the calculation is automat
ically done with bignums. Should calculation with bignums give a result which can be
represented as a fixnum, then the fixnum representation will be usedt. This contrac
tion is known as integer normalization. Many Lisp functions assume that integers are
normalized. Bignums are composed of a sequence of list cells and a cell known as an
sdot. The user should consider a bignum structure indivisible and use functions such
as haipart, and bignum-leftshift to extract parts of it.

trhe current algorithms for integer arithmetic operations will return (in certain cases) a result between ±230 and
231 as a bignum although this could be represented as a fixnum.

2-214 Franz Lisp Manual

1.2.7. string A string is a null terminated sequence of characters. Most functions of
symbols which operate on the symbol's print name will also work on strings. The
default reader syntax is set so that a sequence of characters surrounded by double
quotes is a string.

1.2.8. port A port is a structure which the system 1/0 routines can reference to
transfer data between the Lisp system and external media. Unlike other Lisp objects
there are a very limited number of ports (20). Ports are allocated by irifile and ouifile
and deallocated by close and resetio. The print function prints a port as a percent sign
followed by the name of the file it is connected to (if the port was opened by fileopen,
iflfile, or ouifile). During initialization, FRANZ LISP binds the symbol piport to a port
attached to the standard input stream. This port prints as %$stdin. There are ports
connected to the standard output and error streams, which print as %$stdout and
%$stderr. This is discussed in more detail at the beginning of Chapter 5.

1.2.9. vector Vectors are indexed sequences of data·. They can be used to implement a
notion of user-defined types, via their associated property list. They make hunks
(see below) logically unnecessary, although hunks are very efficiently garbage col
lected. There is a second kind of vector, called an immediate-vector, which stores
binary data. The name that the function type returns for immediate-vectors is vectori.
Immediate-vectors could be used to implement strings and block-flonum arrays, for
example. Vectors are discussed in chapter 9. The functions new-vector, and vector,
can be used to create vectors.

Subpart name Get value Set value Type

daturn.J!! vref vset lisp val
property vprop vsetprop lisp val

vputprop
size vsize - fixnum

1.2.10. array Arrays are rather complicated types and are fully described in Chapter 9.
An array consists of a block of contiguous data, a function to access that data and
auxiliary fields for use by the accessing function. Since an array's accessing function
is created by the user, an array can have any form the user chooses (e.g. n
dimensional, triangular, or hash table).
Arrays are created by the function marray.

Franz Lisp Manual 2-215

Subpart name Get value Set value Type

access function getaccess putaccess binary, list
or symbol

auxiliary getaux putaux lispval
data arrayref replace block of contiguous

set lisp val
length getlength putlength fixnum
delta getdelta putdelta fixnum

1.2.11. value A value cell contains a pointer to a lispval. This type is used mainly by
arrays of general lisp objects. Value cells are created with the ptr function. A value
cell containing a pointer to the symbol 'foo' is printed as '(ptr to)foo'

1.2.12. hunk A hunk is a vector of from 1 to 128 lispvals. Once a hunk is created (by
hunk or makhunk) it cannot grow or shrink. The access time for an element of a
hunk is slower than a list cell element but faster than an array. Hunks are really only
allocated in sizes which are powers of two, but can appear to the user to be any size
in the 1 to 128 range. Users of hunks must realize that (not (atom 'lispva/)) will
return true if lispval is a hunk. Most lisp systems do not have a direct test for a list
cell and instead use the above test and assume that a true result means lispval is a list
cell. In FRANZ LISP you can use dtpr to check for a list cell. Although hunks are not
list cells, you can still access the first two hunk elements with cdr and car and you can
access any hunk element with crrt. You can set the value of the first two elements of
a hunk with rplacd and rplaca and you can set the value of any element of the hunk
with rplacx. A hunk is printed by printing its contents surrounded by (and } . How
ever a hunk cannot be read in in this way in the standard lisp system. It is easy to
write a reader macro to do this if desired.

1.2.13. other Occasionally, you can obtain a pointer to storage not allocated by the lisp
system. One example of this is the entry field of those FRANZ LISP functions written
in C. Such objects are classified as of type other. Foreign functions which call malloc
to allocate their own space, may also inadvertantly create such objects. The garbage
collector is supposed to ignore such objects.

1.3. Documentation The conventions used in the following chapters were designed to give
a great deal of information in a brief space. The first line of a function description con
tains the function name in bold face and then lists the arguments, if any. The arguments
all have names which begin with a letter or letters and an underscore. The letter(s)
gives the allowable type(s) for that argument according to this table.

tin a hunk, the function cdr references the first element and car the second.

2-216 Franz Lisp Manual

Letter Allowable type(s)

g any type
s symbol (although nil may not be allowed)
t string
l list (although nil may be allowed)
n number (fixnum, flonum, bignum)
i integer (fixnum, bignum)
x fixnum
b bignum
f flonum
u function type (either binary or lambda body)
y binary
v vector
v vectori
a array
e value
p port (or nil)
h hunk

In the first line of a function description, those arguments preceded by a quote mark are
evaluated (usually before the function is called). The quoting convention is used so that
we can give a natne to the result of evaluating the argument and we can describe the
allowable types. If an argument is not quoted it does not mean that that argument will
not be evaluated, but rather that if it is evaluated, the time at which it is evaluated will
be specificaliy mentioned in the function description. Optional arguments are sur
rounded by square brackets. An ellipsis (...) means zero or more occurrences of an
argument of the directly preceding type.

Franz Lisp Manual 2-217

CHAPTER 2

Data Structure Access

The following functions allow one to create and manipulate the various types of lisp data
structures. Refer to §1.2 for details of the data structures known to FRANZ LISP.

2.1. Lists

The following functions exist for the creation and manipulating of lists. Lists are
composed of a linked list of objects called either 'list cells', 'cons cells' or 'dtpr cells'.
Lists are normally terminated with the special symbol nil. nil is both a symbol and a
representation for the empty list ().

2.1.1. list creation

(cons 'g_argl 'g_arg2)

RETURNS: a new list cell whose car is g_argl and whose cdr is g_arg2.

<xcons 'g_argl 'g_arg2)

EQUIVALENT TO: (cons 'g_arg2 'g_argl)

,.<neons 'g_arg)
EQUIVALENT TO: (cons 'g_arg nil)

(list ['g_argl ...])

RETURNS: a list whose elements are the g_argi.

(append 'l_argl 'l_arg2)

RETURNS: a list containing the elements of l_argl followed by l_arg2.

NOTE: To generate the result, the top level list cells of l_argl are duplicated and the cdr of
the last list cell is set to point to l_arg2. Thus this is an expensive operation if
l_argl is large. See the descriptions of nconc and tconc for cheaper ways of doing
the append if the list l_argl can be altered.

2-218 Franz Lisp Manual

(appendl 'l_argl 'g_arg2)

RETURNS: a list like l_argl with g_arg2 as the last element.
NOTE: this is equivalent to (append 'l_argl (list 'g_arg2)).

; A common mistake is using append to add one element to the end of a list
- > (append '(a b c d) 'e)
(ab c d. e)
; The user intended to say:
- > (append '(a b c d) '(e))
(ab c de)
; better is append}
-> (append} '(ab c d) 'e)
(ab c de)

(quote! [g_qformi] ... [! 'g_eform11 ... [!! 'l_formi] .. .>
RETURNS: The list resulting from the splicing and insertion process described below.
NOTE: quote! is the complement of the list function. list forms a list by evaluating each for

in the argument list; evaluation is suppressed if the form is quoteed. In quote!,
each form is implicitly quoteed. To be evaluated, a form must be preceded by one
of the evaluate operations ! and !!. ! g_eform evaluates g_form and the value is
inserted in the place of the call; !! l_form evaluates l_form and the value is spliced
into the place of the call.

'Splicing in' means that the parentheses surrounding the list are removed as the
example below shows. Use of the evaluate operators can occur at any level in a
form argument.

Another way to get the effect of the quote! function is to use the backquote charac
ter macro (see§ 8.3.3).

(quote! cons ! (cons J 2) 3) == (cons (J • 2) 3)
(quote! J !! (/ist 2 3 4) 5) - (J 2 3 4 5)
(setq quoted 'evaled)(quote! ! ((1 am ! quoted))) - ((1 am evaled))
(quote! try ! '(this ! one)) .. (try (this ! one))

Franz Lisp Manual 2-219

(bignum-to-list 'b_arg)

RETURNS: A list of the fixnums which are used to represent the bignum.

NOTE: the inverse of this function is list-to-bignum.

Oist-to-bignum 'l_ints)

WHERE: l_ints is a list of fixnums.

RETURNS: a bignum constructed of the given fixnums.

NOTE: the inverse of this function is bignum-to-list.

2.1.2. list predicates

(dtpr 'g_arg)

RETURNS: t ift' g_arg is a list cell.

NOTE: that (dtpr '()) is nil.

Oistp 'g_arg)

RETURNS: t iff g_arg is a list object or nil.

(tailp 'l_x 'l_y)

RETURNS: l_x, if a list cell eq to l_x is found by cdring down l_y zero or more times, nil
otherwise.

- > (setq x '(a b c d) y fcddr x))
(c d)
- > (and (dtpr x) (/istp x)) ; x and y are dtprs and lists
t
- > (dtpr '()) ; () is the same as nil and is not a dtpr
nil
/- > Oistp '()) ; however it is a list
t
- > (tailp y x)
(c d)

(length 'l_arg)

RETURNS: the number of elements in the top level of list l_arg.

2.1.3. list accessing

2-220 Franz Lisp Manual

(car 'I arg)
(cdr 'Carg)

RETURNS: cons cell. (car (cons x y)) is always x, (cdr (cons x y)) is always y. In FRANZ

LISP, the cdr portion is located first in memory. This is hardly noticeable, and
seems to bother few.

(c •• r 'lh_arg)
WHERE: the .. represents any positive number of a's and d's.
RETURNS: the result of accessing the list structure in the way determined by the function

name. Thea's and d's are read from right to left, ad directing the access down
the cdr part of the list cell and an a down the car part.

NOTE: lh arg may also be nil, and it is guaranteed that the car and cdr of nil is nil. If
lh=arg is a hunk, then (car 'lh_arg) is the same as (cxr 1 'lh_arg) and (cdr '/h_arg)
is the same as (cxr 0 'lh_arg).
It is generally hard to read and understand the context of functions with large
strings of a's and d's, but these functions are supported by rapid accessing and
open-compiling (see Chapter 12).

(nth 'x_index 'l_list)
RETURNS: the nth element of l_list, assuming zero-based index. Thus (nth 0 l_list) is the

same as (car I list). nth is both a function, and a compiler macro, so that more
efficient code might be generated than for nthelem (described below).

NOTE: If x_argl is non-positive or greater than the length of the list, nil is returned.

(nthcdr 'x_index 'l_list)

RETURNS: the result of cdring down the list l_list x_index times.
NOTE: If x_index is less than 0, then (cons nil '/_list) is returned.

(nthelem 'x_argl 'l_arg2)

RETURNS: The x_argl 'st element of the list l_arg2.
NOTE: This function comes from the PDP-11 lisp system.

(last 'l_arg)

RETURNS: the last list cell in the list l_arg.
EXAMPLE: last does NOT return the last element of a list!

(last '(a b)) - (b)

Odiff 'l_x 'l_y)
RETURNS: a list of all elements in l_x but not in l_y , i.e., the list difference of l_x and

l_y.
NOTE: l_y must be a tail of l_x, i.e., eq to the result of applying some number of cdr's to

l_x. Note that the value of ldiff is always new list structure unless l_y is nil,
in which case {/diff l_x nil) is l_x itself. If l_y is not a tail of l_x, /diff generates
an error.

EXAMPLE: (/diff 'l_x (member 'gJoo 'l_x)) gives all elements in l_x up to the first g_foo.

~,

l

Franz Lisp Manual 2-221

2.1.4. list manipulation

(rplaca 'lh_argl 'g_arg2)

RETURNS: the modified lh_argl.

SIDE EFFECT: the car of lh_argl is set to g_arg2. If lh_argl is a hunk then the second
element of the hunk is set to g_arg2.

(rplacd 'lh_argl 'g_arg2)

RETURNS: the modified lh_argl.

SIDE EFFECT: the cdr of lh_arg2 is set to g_arg2. If lh_argl is a hunk then the first ele
ment of the hunk is set to g_arg2.

(attach 'g_x 'l_l)

RETURNS: l_l whose car is now g_x, whose cadr is the original (car I_/), and whose cddr is
the original (cdr I_/).

NOTE: what happens is that g_x is added to the beginning of list l_l yet maintaining the
same list cell at the beginning of the list.

(delete 'g_ val 'l_list ['x_countD

RETURNS: the result of splicing g_val from the top level of l_list no more than x_count
times.

NOTE: x_count defaults to a very large number, thus if x_count is not given, all
occurrences of g val are removed from the top level of I list. g_ val is compared
with successive car's of l_list using the function equal. -

SIDE EFFECT: l_list is modified using rplacd, no new list cells are used.

(delq 'g_ val 'l_list ['x_countD
(dremove 'g_ val 'l_list ['x_count])

RETURNS: the result of splicing g_ val from the top level of l_list no more than x_count
times.

NOTE: delq (and dremove) are the same as delete except that eq is used for comparison
instead of equal.

: note that you should use the value returned by delete or delq
; and not assume that g_ val will always show the deletions.
; For example

- > (setq test '(a b c a de))
(ab cad e)
- > (delete 'a test)
(b c d e) : the value returned is what we would expect
-> test
(ab c de) ; but test still has the first a in the list!

2-222 Franz Lisp Manual

(remq 'g_x '1_1 ['x_count])
(remove 'g_x 'l_l)

RETURNS: a copy of 1_l with all top level elements equal to g_x removed. remq uses eq
instead of equal for comparisons.

NOTE: remove does not modify its arguments like delete, and de/q do.

(insert 'g_object 'l_list 'u_comparefn 'g_nodups)

RETURNS: a list consisting of l list with g object destructively inserted in a place deter
mined by the ordering function u_comparefn.

NOTE: (comparefn 'g_x 'gy) should return something non-nil if g_x can precede g_y in
sorted order, nil if g_y must precede g_x. If u_comparefn is nil, alphabetical order
will be used. If g_nodups is non-nil, an element will not be inserted if an equal ele
ment is already in the list. insert does binary search to determine where to insert
the new element.

(merge 'l_datal 'l_data2 'u_comparefn)

RETURNS: the merged list of the two input sorted lists l datal and l datal using binary
comparison function u comparer n. - -

NOTE: (comparefn 'g_x 'gy) should return something non-nil if g_x can precede g_y in
sorted order, nil if g_y must precede g_x. If u_comparefn is nil, alphabetical order
will be used. u_comparefn should be thought of as "less than or equal". merge
changes both of its data arguments.

(subst 'g_x 'g_y 'l_s)
(dsubst 'g_x 'g_y 'l_s)

RETURNS: the result of substituting g_x for all equal occurrences of g_y at all levels in l_s.

NOTE: If g_y is a symbol, eq will be used for comparisons. The function subst does not
modify l s but the function dsubst (destructive substitution) does.

Osubst 'l_x 'g_y 'l_s)

RETURNS: a copy of l_s with l_x spliced in for every occurrence of of g_y at all levels.
Splicing in means that the parentheses surrounding the list l_x are removed as
the example below shows.

- > (subst '(a b c) x '(x y z (x y z) (x y z)))
((a b c) y z ((a b c) y z) ((a b c) y z)}
- > (/subst '(a b c) x '(x y z (x y z) (x y z)))
(a b c y z (a b c y z) (a b c y z)}

' /

Franz Lisp Manual 2-223

(subpair 'l_old 'l_new 'l_expr)

WHERE: there are the same number of elements in l_old as I_ new.

RETURNS: the list l_expr with all occurrences of a object in l_old replaced by the
corresponding one in l_new. When a substitution is made, a copy of the value
to substitute in is not made.

EXAMPLE: (subpair '(a c)' (x y) '(a b c d)) == (x by d)

(nconc 'l_argl 'l_arg2 ['I_arg3 ...])

RETURNS: A list consisting of the elements of l_argl followed by the elements of l_arg2
followed by l _ arg3 and so on.

NOTE: The cdr of the last list cell of l_argi is changed to point to l_argi+ I.

; nconc is faster than append because it doesn't allocate new list cells.
- > (setq /isl '(a b c))
(ab c)
- > (setq /is2 '(def})
(def)
- > (append /isl lis2)
(abcdeO
- > /isl
(ab c) ; note that lisl has not been changed by append
- > (nconc /isl lis2)
(a b c d e f) ; nconc returns the same value as append
-> /isl
(a b c d e f) ; but in doing so alters tis I

(reverse 'l_arg)
(nreverse 'l_arg)

RETURNS: the list l_arg with the elements at the top level in reverse order.

NOTE: The function nreverse does the reversal in place, that is the list structure is
modified.

(nreconc 'l_arg 'g_arg)

EQUIVALENT TO: (nconc (nreverse 'l_arg) 'g_arg)

2.2. Predicates

The following functions test for properties of data objects. When the result of the
test is either 'false' or 'true', then nil will be returned for 'false' and something other
than nil (often t) will be returned for 'true'.

2-224 Franz Lisp Manual

(arrayp 'g_arg)

RETURNS: tiff g_arg is of type array.

(atom 'g_ arg)

RETURNS: tiff g_arg is not a list or hunk object.

NOTE: (atom '()) returns t.

(bcdp 'g_arg)

RETURNS: tiff g_arg is a data object of type binary.

NOTE: the name of this function is a throwback to the PDP-11 Lisp system.

(blgp 'g_ arg)

RETURNS: t iff g_arg is a bignum.

(dtpr 'g_ arg)

RETU~NS: t iff g_arg is a list cell.

NOTE: that (dtpr '()) is nil.

(hunkp 'g_arg)

RETURNS: t iff g_arg is a hunk.

(listp 'g_arg)

RETURNS: t iff g_arg is a list object or nil.

(stringp 'g_arg)

RETURNS: t iff g_ arg is a string.

(symbolp 'g_arg)

RETURNS: t iff g_arg is a symbol.

(valuep 'g_arg)

RETURNS: tiff g_arg is a value cell

(vectorp 'v _vector)

RETURNS: t iff the argument is a vector.

(vectorip 'v _vector)

RETURNS: tiff the argument is an immediate-vector.

\

(type 'g_arg)
(typep 'g_arg)

RETURNS: a symbol whose pname describes the type of g_arg.

(signp s_test 'g_val)

Franz Lisp Manual 2-225

RETURNS: t iff g_ val is a number and the given test s_test on g_ val returns true.

NOTE: The fact that signp simply returns nil if g_ val is not a number is probably the most
important reason that signp is used. The permitted values for s_test and what they
mean are given in this table.

s_test tested

1 gval<O
le gval~O
e g_val - 0
n g_val ¢ 0
ge g_val ;:ii 0
g gval>O

(eq 'g_argl 'g_arg2)

RETURNS: t if g_argl and g_arg2 are the exact same lisp object.
NOTE: Eq simply tests if g_argl and g_arg2 are located in the exact same place in memory.

Lisp objects which print the same are not necessarily eq. The only objects
guaranteed to be eq are interned symbols with the same print name. [Unless a
symbol is created in a special way (such as with uconcat or maknam) it will be
interned.]

(neq 'g_x 'g_y)

RETURNS: t if g_x is not eq to g_y, otherwise nil.

(equal 'g_argl 'g_arg2)
(eqstr 'g_argl 'g_arg2)

RETURNS: tiff g_argl and g_arg2 have the same structure as described below.
NOTE: g_arg and g_arg2 are equal if
(1) they are eq.
(2) they are both fixnums with the same value
(3) they are both flonums with the same value

(4) they are both bignums with the same value

(5) they are both strings and are identical.

(6) they are both lists and their cars and cdrs are equal

2-226 Franz Lisp Manual

; eq is much faster than equal, especially in compiled code,
; however you cannot use eq to test for equality of numbers outside
; of the range -1024 to 1023. equal will always work.
- > (eq 1023 1023)
t
- > (eq 1024 1024)
nil
- > (equal 1024 1024)
t

(not 'g_arg)
(null 'g_arg)

RETURNS: tiff g_arg is nil.

(member 'g_argl 'l_arg2)
(memq 'g_argl 'l_arg2)

RETURNS: that part of the l_arg2 beginning with the first occurrence of g_argl. If g_argl is
not in the top level of l_arg2, nil is returned.

NOTE: member tests for equality with equa~ memq tests for equality with eq.

2.3. Symbols and Strings

In many of the following functions the distinction between symbols and strings is
somewhat blurred. To remind ourselves of the difference, a string is a null terminated
sequence of characters, stored as compactly as possible. Strings are used as constants in
FRANZ LISP. They eval to themselves. A symbol has additional structure: a value, pro
perty list, function binding, as well as its external representation (or print-name). If a
symbol is given to one of the string manipulation functions below, its print name will be
used.

Another popular way to represent strings in Lisp is as a list of fixnums which
represent characters. The suffix 'n' to a string manipulation function indicates that it
returns a string in this form.

2.3.1. symbol and string creation

Franz Lisp Manual 2-227

(concat ['stn_argl ...])
(uconcat ['stn argl ...])

RETURNS: a symbol whose print name is the result of concatenating the print names, string
characters or numerical r~presentations of the sn_argi.

NOTE: If no arguments are given, a symbol with a null pname is returned. concat places
the symbol created on the ob list, the function uconcat does the same thing but does
not place the new symbol on the oblist.

EXAMPLE: (concat 'abc (add 3 4) "def) - abc7def

(concatl 'l_arg)
EQUIVALENT TO: (apply 'concat 'l_arg}

(implode 'l_arg)
(maknam 'l_arg)

WHERE: l_arg is a list of symbols, strings and small fixnullis.

RETURNS: The symbol whose print name is the result of concatenating the first characters
of the print names of the symbols and strings in the list. Any fixnums are con
verted to the equivalent ascii character. In order to concatenate entire strings or
print names, use the function concat.

NOTE: implode interns the symbol it creates, maknam does not.

(gensym ['s_Ieader])

RETURNS: a new uninterned atom beginning with the first character of s_leader's pname,
or beginning with g if s_leader is not given.

NOTE: The symbol looks like xOnnnnn where x is s_leader's first character and nnnnn is
the number of times you have called gensym.

(copysymbol 's_arg 'g_pred)

RETURNS: an uninterned symbol with the same print name as s_arg. If g_pred is non nil,
then the value, function binding and property list of the new symbol are made
eq to those of s_arg.

(ascii 'x_charnum)

WHERE: x_charnum is between 0 and 255.
RETURNS: a symbol whose print name is the single character whose fixnum representation

is x_charnum.

2-228 Franz Lisp Manual

(intern 's_arg)

RETURNS: s_arg
SIDE EFFECT: s_arg is put on the oblist if it is not already there.

Cremob 's_symbol)
RETURNS: s_symbol

SIDE EFFECT: s_symbol is removed from the oblist.

Crematom 's_arg)

RETURNS: t if s_arg is indeed an atom.

SIDE EFFECT: s_arg is put on the free atoms list, effectively reclaiming an atom cell.

NOTE: This function does not check to see if s_arg is on the oblist or is referenced any
where. Thus calling rematom on an atom in the oblist may result in disaster when
that atom cell is reused!

2.3.2. string and symbol predicates

(boundp 's_name)

RETURNS: nil if s_name is unbound, that is it has never be given a value. If x_name has
the value g_ val, then (nil . g_ val) is returned.

(alphalessp 'st_argl 'st_arg2)

RETURNS: t itf the 'name' of st_argl is alphabetically less than the name of st_arg2. If
st_arg is a symbol then its 'name' is its print name. If st_arg is a string, then its
'name' is the string itself.

2.3.3. symbol and string accessing

(symeval 's_arg)

RETURNS: the value of symbol s_arg.
NOTE: It is illegal to ask for the value of an unbound symbol. This function has the same

effect as eval, but compiles into much more efficient code.

(get_pname 's_arg)

RETURNS: the string which is the print name of s_arg.

F:ranz Lisp Manual 2-229

(plist 's_arg)

RETURNS: the property list of s_arg.

(getd 's_arg)

RETURNS: the function definition of s_arg or nil if there is no function definition.
NOTE: the function definition may turn out to be an array header.

(getcbar 's_arg 'x_index)
(nthcbar 's arg 'x index)
<1etcham 's arg 'x index) - -

RETURNS: the x_indexth character of the print name of s_arg or nil if x_index is less than
1 or greater than the length of s_arg's print name.

NOTE: getchar and nthchar return a symbol with a single character print name, getcharn
returns the fixnum representation of the character.

(substring 'st_string 'x_index ['x_length])
(substringn 'st_string 'x_index C'x_length])

RETURNS: a string of length at most x_length starting at x_indexth character in the string.
NOTE: If x_length is not given, all of the characters for x_index to the end of the string

are returned. If x_index is negative the string begins at the x_indexth character
from the end. If x_index is out of bounds, nil is returned.

NOTE: substring returns a list of symbols, substringn returns a list of fixnums. If substringn
is given a 0 x_length argument then a single fixnum which is the x_indexth charac
ter is returned.

2.3.4. symbol and string manipulation

(set 's_argl 'g_arg2)

RETURNS: g_arg2.
SIDE EFFECT: the value of s_argl is set to g_arg2.

(setq s_atml 'g_vall [s_atm2 'g_val2])

WHERE: the arguments are pairs of atom names and expressions.
RETURNS: the last g_ vali.

SIDE EFFECT: each s_atmi is set to have the value g_ vali.
NOTE: set evaluate~ all of its arguments, setq does not evaluate the s_atmi.

2-230 Franz Lisp Manual

(desetq sl_patternl 'g_expl [.])

RETURNS: g_expn

SIDE EFFECT: This acts just like setq if all the sl_patterni are symbols. If sl_patterni is a
list then it is a template which should have the same structure as g_expi
The symbols in sl_pattern are assigned to the corresponding parts of g_exp.

EXAMPLE: (desetq (a b (c . d)) '(J 2 (3 4 5)))
sets a to 1, b to 2, c to 3, and d to (4 5).

(setplist 's_atm 'l_plist)

RETURNS: l_plist.

SIDE EFFECT: the property list of s_atm is set to l_plist.

(makunbound 's_arg)

RETURNS: s_arg

SIDE EFFECT: the value of s_arg is made 'unbound'. If the interpreter attempts to evalu
ate s_arg before it is again given a value, an unbound variable error will
occur.

(aexplode 's_arg)
(explode 'g_arg)
(aexplodec 's_arg)
(explodec 'g_arg)
(aexploden 's_arg)
(exploden 'g_arg)

RETURNS: a list of the characters used to print out s_arg or g_arg.

NOTE: The functions beginning with 'a' are internal functions which are limited to symbol
arguments. The functions a explode and explode return a list of characters which print
would use to print the argument. These characters include all necessary escape
characters. Functions aexplodec and explodec return a list of characters which patom
would use to print the argument (i.e. no escape characters). Functions aexploden
and exploden are similar to aexplodec and explodec except that a list of fixnum
equivalents of characters are returned.

- > (setq x lquote this~ ok .:V
l<!uote this~ ok?I
- > (explode x)
<q u o t e ~\I I It h i s ~\I I I~~ M ~ ~ 11 o k ?>
; note that ~\I just means the single character: backslash.
; and M just means the single character: vertical bar
; and 11 means the single character: space

- > (exp/odec x)
<q u o t e 11 t h is 11N11 o k ?)
- > (exploden x)
(113 117 111 116 101 32 116 104 105 115 32 124 32 lll 107 63)

Franz Lisp Manual 2-231

2.4. Vectors
See Chapter 9 for a discussion of vectors. They are intermediate in efficiency

between arrays and hunks.

2.4.1. vector creation

(new-vector 'x_size ['g_fill ['g_prop]])

RETURNS: A vector of length x_size. Each data entry is initialized to g_fill, or to nil, if the
argument g_fill is not present. The vector's property is set to g_prop, or to nil,
by default.

(new-vectori-byte 'x_size ['g_fill ['g_prop]])
(new-vectori-word 'x_size ['g_fill ['g_prop]])
(new-vectori-long 'x_size ['g_fill ['g_prop]])

RETURNS: A vectori with x size elements in it. The actual memory requirement is two
long words + x_size* (n bytes), where n is 1 for new-vector-byte, 2 for new
vector-word, or 4 for new-vectori-long. Each data entry is initialized to g_fill, or
to zero, if the argument g_fill is not present. The vector's property is set to
g_prop, or nil, by default.

Vectors may be created by specifying multiple initial values:

(vector ['g_ valO 'g_ vall ...])

RETURNS: a vector, with as many data elements as there are arguments. It is quite possi
ble to have a vector with no data elements. The vector's property will be null.

(vectori-byte ['x valO 'x val2 ...])
(vectori-word ['x valO 'x val2 ...])
(vectori-long ['xyalO 'x~val2 ...])

RETURNS: a vectori, with as many data elements as there are arguments. The arguments
are required to be fixnums. Only the low order byte or word is used in the case
of vectori-byte and vectori-word. The vector's property will be null.

2.4.2. vector reference

(vref 'v vect 'x index)
(vrefl-byte 'V vect 'x bindex)
(vrefl-word 'V vect 'x windex)
(vrefl-long 'V ~vect 'x]index)

RETURNS: the desired data element from a vector. The indices must be fixnums. Index
ing is zero-based. The vrefi functions sign extend the data.

2-232 Franz Lisp Manual

(vprop 'Vv_vect)

RETURNS: The Lisp property associated with a vector.

(vget 'Vv _ vect)

RETURNS: The value stored under g_ind if the Lisp property associated with 'Vv _ vect is a
disembodied property list.

(vsize 'Vv vect)
(vsize-byte 'V _ vect)
(vsize-word 'V _ vect)

RETURNS: the number of data elements in the vector. For immediate-vectors, the func
tions vsize-byte and vsize-word return the number of data elements, if one
thinks of the binary data as being comprised of bytes or words.

2.4.3. vector modfication

(vset 'v_vect 'x_index 'g_val)
(vseti-byte 'V vect 'x bindex 'x val)
(vsetl-word 'V-_v~ct 'x_windex 'x_val)
(vseti-long 'V_vect 'x_lindex 'x_val)

RETURNS: the datum.

SIDE EFFECT: The indexed element of the vector is set to the value. As noted above, for
vseti-word and vseti-byte, the index is construed as the number of the data
element within the vector. It is not a byte address. Also, for those two
functions, the low order byte or word of x_ val is what is stored.

(vsetprop 'Vv _ vect 'g_ value)

RETURNS: g_ value. This should be either a symbol or a disembodied property list whose
car is a symbol identifying the type of the vector.

SIDE EFFECT: the property list of Vv _ vect is set to g_ value.

(vputprop 'Vv_vect 'g_value 'g_ind)

RETURNS: g_ value.

SIDE EFFECT: If the vector property of Vv _ vect is a disembodied property list, then
vputprop adds the value g_ value under the indicator g_ind. Otherwise, the
old vector property is made the first element of the list.

2.5. Arrays

See Chapter 9 for a complete description of arrays. Some of these functions are
part of a Maclisp array compatibility package, which represents only one simple way of
using the array structure of FRANZ LISP.

2.5.1. array creation

Franz Lisp Manual 2-233

(marray 'g_data 's_access 'g_aux 'x_length 'x_delta)

RETURNS: an array type with the fields set up from the above arguments in the obvious
way (see§ 1.2.10).

(*array 's_name 's_type 'x_diml ... 'x_dimn)
(array s_name s_type x_diml ... x_dimn)

WHERE: s_type may be one oft, nil, fixnum, flonum, fixnum-block and flonum-block.

RETURNS: an array of type s_type with n dimensions of extents given by the x_dimi.

SIDE EFFECT: If s_name is non nil, the function definition of s_name is set to the array
structure returned.

NOTE: These functions create a Maclisp compatible array. In FRANZ LISP arrays of type t,
nil, fixnum and flonum are equivalent and the elements of these arrays can be any
type of lisp object. Fixnum-block and flonum-block arrays are restricted to fixnums
and flonums respectively and are used mainly to communicate with foreign f unc
tions (see §8.5).

NOTE: "array evaluates its arguments, array does not.

· 2.5.2. array predicate

(arrayp 'g_ arg)

RETURNS: t iff g_arg is of type array.

2.5.3. array accessors

(getaccess 'a array)
(getaux 'a_array)
(getdelta 'a_array)
(getdata 'a_array)
(getlength 'a_array)

RETURNS: the field of the array object a_array given by the function name.

(arrayref 'a_name 'x_ind)

RETURNS: the x_indth element of the array object a_ name. x_ind of zero accesses the first
element.

NOTE: arrayrefuses the data, length and delta fields of a_name to determine which object
to return.

2-234 Franz Lisp Manual

(arraycall s_type 'as_array 'x_indl ...)

RETURNS: the element selected by the indicies from the array a_array of type s_type.

NOTE: If as_array is a symbol then the function binding of this symbol should contain an
array object.
s_type is ignored by arraycall but is included for compatibility with Maclisp.

(arraydims 's_name)

RETURNS: a list of the type and bounds of the array s_name.

(listarray 'sa_array ['x_elements])

RETURNS: a list of all of the elements in array sa array. If x_elements is given, then only
the first x_elements are returned. -

; We will create a 3 by 4 array of general lisp objects
- > (array ernie t 3 4)
array[l2]

; the array header is stored in the function definition slot of the
; symbol ernie
- > (arrayp (getd 'ernie))
t
- > (arraydims (getd 'ernie))
(t 3 4)

; store in ernie[2][2) the list (test list)
- > (store (ernie 2 2) '(test list))
(test list)

; check to see if it is there
- > (ernie 2 2)
(test list)

; now use the low level function arrayref to find the same element
; arrays are 0 based and row-major (the last subscript varies the fastest)
; thus element [2)(2) is the 10th element, (starting at 0).
- > (arrayref (getd 'ernie) 10)
(ptr to){test list) ; the result is a value cell (thus the (ptr to))

2.5.4. array manipulation

(putaccess 'a_array 'su_func)
(putaux 'a_array 'g_aux)
(putdata 'a_array 'g_arg)
(putdelta 'a_array 'x_delta)
(putlength 'a_array 'x_length)

RETURNS: the second argument to the function.

Franz Lisp Manual 2-235

SIDE EFFECT: The field of the array object given by the function name is replaced by the
second argument to the function.

(store 'l_arexp 'g_ val)

WHERE: l_arexp is an expression which references an array element.

RETURNS: g_ val

SIDE EFFECT: the array location which contains the element which l_arexp references is
changed to contain g_ val.

(fillarray 's_array 'l_itms)

RETURNS: s_array

SIDE EFFECT: the array s array is filled with elements from 1 itms. If there are not
enough elements in l_itms to fill the entire array, then the last element of
l_itms is used to fill the remaining parts of the array.

2.6. Hunks
Hunks are vector-like objects whose size can range from 1 to 128 elements. Inter

nally hunks are allocated in sizes which are powers of 2. In order to create hunks of a
given size, a hunk with at least that many elements is allocated and a distinguished sym
bol EMPTY is placed in those elements not requested. Most hunk functions respect those
distinguished symbols, but there are two ("'makhunk and "'rplacx) which will overwrite the
distinguished symbol.

2.6.1. hunk creation

(hunk 'g_vall ['g_val2 ... 'g_valn])

RETURNS: a hunk of length n whose elements are initialized to the g_ vali.

NOTE: the maximum size of a hunk is 128.

EXAMPLE: (hunk 4 'sharp 'keys) - {4 sharp keys}

2-236 Franz Lisp Manual

(makhunk 'xl_arg)

RETURNS: a hunk of length xl_arg initialized to all nils if xl_arg is a fixnum. If xl_arg is a
list, then we return a hunk of size (length 'xi arg) initialized to the elements in
xl_arg.

NOTE: (makhunk '(ab c)) is equivalent to (hunk 'a 'b 'c).

EXAMPLE: (makhunk 4) - {nil nil nil ni4

(*makhunk 'x_arg)

RETURNS: a hunk of size 2x_arg initialized to EMPTY.

NOTE: Thjs is only to be used by such functions as hunk and makhunk which create and
initialize hunks for users.

2.6.2. hunk accessor

(cxr 'x_ind 'h_hunk)

RETURNS: element x_ind (starting at 0) of hunk h_hunk.

(hunk-to-list 'h_hunk)

RETURNS: a list consisting of the elements of h_hunk.

2.6.3. hunk manipulators

(rplacx 'x_ind 'h_hunk 'g_ val)
(*rplacx 'x_ind 'h_hunk 'g_val)

RETURNS: h_hunk

SIDE EFFECT: Element x_ind (starting at 0) of h_hunk is set to g_ val.

NOTE: rplacx will not modify one of the distinguished (EMPTY) elements whereas "'rplacx
will.

hunksize 'h_arg)

RETURNS: the size of the hunk h_arg.
EXAMPLE: (hunksize (hunk 1 2 3)) - 3

2. 7. Beds
A bed object contains a pointer to compiled code and to the type of function object

the compiled code represents.

(getdisc 'y _bcd)
(getentry 'y_bcd)

Franz Lisp Manual 2-237

RETURNS: the field of the bed object given by the function name.

(putdisc 'y _func 's_discipline)

RETURNS: s_discipline

SIDE EFFECT: Sets the discipline field of y_func to s_discipline.

2.8. Structures

There are three common structures constructed out of list cells: the assoc list, the
property list and the tconc list. The functions below manipulate these structures.

2.8.1. assoc list

An 'assoc list' (or alist) is a common lisp data structure. It has the form
((keyl . valuel) (key2 . value2) (key3 . value3) ... (keyn . valuen))

(assoc 'g_argl 'l_arg2)
(assq 'g_argl 'l_arg2)

RETURNS: the first top level element of l_arg2 whose car is equal (with assoc) or eq (with
assq) to g_argl.

NOTE: Usually l_arg4 has an a-list structure and g_argl acts as key.

(sassoc 'g_argl 'l_arg2 'sl_func)

RETURNS: the result of (cond ((assoc 'g_arg 'l_arg2) (apply 'sfJunc nil)))

NOTE: sassoc is written as a macro.

(sassq 'g_argl 'l_arg2 'sl_func)

RETURNS: the result of (cond ((assq 'g_arg 'l_arg2) (apply 'sl_fanc ni/)))

NOTE: sassq is written as a macro.

2-238 Franz Lisp Manual

; assoc or assq is given a key and an assoc list and returns
; the key and value item if it exists, they differ only in how they test
; for equality of the keys.

- > (setq alist '((alpha . a) ((complex key) . b) (junk. x)))
((alpha. a) ((complex key) . b) (junk. x))

; we should use assq when the key is an atom
- > (assq 'alpha alist)
(alpha. a)

: but it may not work when the key is a list
- > (assq '(complex key) alist)
nil

: however assoc will always work
- > (assoc '(complex key) alist)
((complex key) . b)

(sublls 'l_alst 'l_exp)

WHERE: l_alst is an a-list.

- ----- -- --------- -- ------

RETURNS: the list l_exp with every occurrence of keyi replaced by vali.

NOTE: new list structure is returned to prevent modification of 1 exp. When a substitution
is made, a copy of the value to substitute in is not made. -

2.8.2. property list

A property list consists of an alternating sequence of keys and values. Normally
a property list is stored on a symbol. A list is a 'disembodied' property' list if it con
tains an odd number of elements, the first of which is ignored.

(plist 's_name)

RETURNS: the property list of s_name.

(setplist 's_atm 'l_plist)

RETURNS: l_plist.

SIDE EFFECT: the property list of s_atm is set to l_plist.

c

Franz Lisp Manual 2-239

(get 'ls_name 'g_ind)

RETURNS: the value under indicator g_ind in ls_name's property list if ls_name is a sym
bol.

NOTE: If there is no indicator g_ind in ls_name's property list nil is returned. If ls_name
is a list of an odd number of elements then it is a disembodied property list. get
searches a disembodied property list by starting at its cdr, and comparing every
other element with g_ind, using eq.

(getl 'ls_name '!_indicators)

RETURNS: the property list ls_name beginning at the first indicator which is a member of
the list I indicators, or nil if none of the indicators in I indicators are on
ls name's-property list. -

NOTE: If ls_name is a list, then it is assumed to be a disembodied property list.

(putprop 'ls_name 'g_ val 'g_ind)
(defprop ls_name g_ val g_ind)

RETURNS: g_ val.

SIDE EFFECT: Adds to the property list of ls name the value g val under the indicator
g_ind. - -

NOTE: putprop evaluates it arguments, de/prop does not. ls_name may be a disembodied
property list, see get.

Cremprop 'ls_name 'g_ind)

RETURNS: the portion of ls_name's property list beginning with the property under the
indicator g_ind. If there is no g_ind indicator in ls_name's plist, nil is returned.

SIDE EFFECT: the value under indicator g_ind and g_ind itself is removed from the pro
perty list of ls_name.

NOTE: ls_name may be a disembodied property list, see get.

- > (putprop)date 'a 'alpha)
a
- > (putprop 'x/ate 'b 'beta)
b
- > (plist 'xlate)
(alpha a beta b)
- > (get 'xlate 'alpha)
a
; use of a disembodied property list:
- > (get '(ni/fateman tjf sklower klsfoderarojkf) 'sklower)
kls

2-240 Franz Lisp Manual

2.8.3. tconc structure
A tconc structure is a special type of list designed to make it easy to add objects

to the end. It consists of a list cell whose car points to a list of the elements added
with tconc or /cone and whose cdr points to the last list cell of the list pointed to by
the car.

<tconc 'l_ptr 'g_x)

WHERE: l_ptr is a tconc structure.

RETURNS: l_ptr with g_x added to the end.

(lconc 'l_ptr 'l_x)
WHERE: l_ptr is a tconc structure.

RETURNS: l_ptr with the list l_x spliced in at the end.

; A tconc structure can be initialized in two ways.
; nil can be given to tconc in which case tconc will generate
; a tconc structure.

- > (setq Joo (tconc nil 1))
((1) l)

; Since tconc destructively adds to
; the list, you can now add to foo without using setq again.

- > (tconc foo 2)
((I 2) 2)
->Joo
((I 2) 2)

; Another way to create a null tconc structure
; is to use (neons nil}.

~ > (setq foo (neons nil))
(nil)
- > (tconc Joo I)
((I) I)

; now see what /cone can do
- > (/cone Joo nil)
((I) l) ; no change
- > (/cone foo '(2 3 4))
((I 2 3 4) 4)

2.8.4. fclosures
An f closure is a functional object which admits some data manipulations. They

are discussed in §8.4. Internally, they are constructed from vectors.

Franz Lisp Manual 2-241

(fclosure 'l_ vars 'g_funobj)

WHERE: l_ vars is a list of variables, g_funobj is any object that can be funcalled (includ
ing, f closures).

RETURNS: A vector which is the fclosure.

(fclosure-alist 'v _f closure)

RETURNS: An association list representing the variables in the fclosure. This is a snapshot
of the current state of the f closure. If the bindings in the f closure are changed,
any previously calculated results of fc/osure-alist will not change.

(fclosure-function 'v _f closure)

RETURNS: the functional object part of the f closure.

(fclosurep 'v _f closure)

RETURNS: t iff the argument is an f closure.

(symeval-in-fclosure 'v _f closure 's_symbol)

RETURNS: the current binding of a particular symbol in an f closure.

(set-in-fclosure 'v _[closure 's_symbol 'g_newvalue)

RETURNS: g_newvalue.

SIDE EFFECT: The variable s_symbol is bound in the fclosure to g_newvalue.

2.9. Random functions

The following functions don't fall into any of the classifications above.

(bcdad 's_funcname)

RETURNS: a fixnum which is the address in memory where the function s funcname
begins. If s_funcname is not a machine coded function (binary) then bcdad
returns nil.

(copy 'g_arg)

RETURNS: A structure equal to g_arg but with new list cells.

(copyint* 'x_arg)

RETURNS: a fixnum with the same value as x_arg but in a freshly allocated cell.

(cpyl 'xvt_arg)

RETURNS: a new cell of the same type as xvt_arg with the same value as xvt_arg.

2-242 Franz Lisp Manual

(getaddress 's_entryl 's_binderl 'st_disciplinel [.])

RETURNS: the binary object which s_binderl 's function field is set to.
NOTE: This looks in the running lisp's symbol table for a symbol with the same name as

s_entryi. It then creates a binary object whose entry field points to s_entryi and
whose discipline is st_disciplinei. This binary object is stored in the function field
of s_binderi. If st_disciplinei is nil, then "subroutine" is used by default. This is
especially useful for cfasl users.

(macroexpand 'g_form)

RETURNS: g_form after all macros in it are expanded.
NOTE: This function will only macroexpand expressions which could be evaluated and it

does not know about the special nlambdas such as cond and do, thus it misses many
macro expansions.

(ptr 'g_arg)

RETURNS: a value cell initialized to point to g_arg.

(quote g_arg)

RETURNS: g_arg.
NOTE: the reader allows you to abbreviate (quote foo) as 'foo.

(kwote 'g_arg)

RETURNS: (/ist (quote quote) g_arg).

(replace 'g_argl 'g_arg2)

WHERE: g_argl and g_arg2 must be the same type of lispval and not symbols or hunks.

RETURNS: g_arg2.
SIDE EFFECT: The effect of replace is dependent on the type of the g_argi although one

will notice a similarity in the effects. To understand what replace does to
fixnum and flonum arguments, you must first understand that such
numbers are 'boxed' in FRANZ LISP. What this means is that if the symbol
x has a value 32412, then in memory the value element of x's symbol
structure contains the address of another word of memory (called a box)
with 32412 in it.

Thus, there are two ways of changing the value of x: the first is to change
the value element of x's symbol structure to point to a word of memory
with a different value. The second way is to change the value in the box
which x points to. The former method is used almost all of the time, the
latter is used very rarely and has the potential to cause great confusion.
The function replace allows you to do the latter, i.e., to actually change the
value in the box.

You should watch out for these situations. If you do (setq y x), then both x
and y will point to the same box. If you now (replace x 12345), then y will
also have the value 12345. And, in fact, there may be many other pointers
to that box.

Another problem with replacing fixnums is that some boxes are read-only.
The fixnums between -1024 and 1023 are stored in a read-only area and
attempts to replace them will result in an "Illegal memory reference" error

Franz Lisp Manual 2-243

(see the description of copyint• for a way around this problem).

For the other valid types, the effect of replace is easy to understand. The
fields of g_ vall 's structure are made eq to the corresponding fields of
g_ val2's structure. For example, if x and y have lists as values then the
effect of (replace x y) is the same as (rplaca x (car y)) and (rplacd x (cdr y)).

(scons 'x_arg 'bs_rest)

WHERE: bs_rest is a bignum or nil.

RETURNS: a bignum whose first bigit is x_arg and whose higher order bigits are bs_rest.

(setf g_refexpr 'g_ value)

NOTE: seif is a generalization of setq. Information may be stored by binding variables,
replacing entries of arrays, and vectors, or being put on property lists, among oth
ers. Setf will allow the user to store data into some location, by mentioning the
operation used to refer to the location. Thus, the first argument may be partially
evaluated, but only to the extent needed to calculate a reference. seif returns
g_value.

(setf x 3) - (setq x 3)
(setf (car x) 3) - (rplaca x 3)
(setf (get foo 'bar) 3) - (putprop foo 3 'bar)
(self (vref vector index) value) - (vset vector index value)

(sort 'l_data 'u_comparefn)

RETURNS: a list of the elements of l_data ordered by the comparison function u_comparefn
SIDE EFFECT: the list l_data is modified rather than allocate new storage.
NOTE: (comparefn g_x gy) should return something non-nil if g-x can precede g_y in

sorted order; nil if g_y must precede g_x. If u_comparefn is nil, alphabetical order
will be used.

(sortcar 'l_list 'u_comparefn)

RETURNS: a list of the elements of l_list with the car's ordered by the sort function
u_comparefn.

SIDE EFFECT: the list l_list is modified rather than allocating new storage.

NOTE: Like sort, if u_comparefn is nil, alphabetical order will be used.

2-244 Franz Lisp Manual

CHAPTER 3

Arithmetic Functions

This chapter describes FRANZ LISP's functions for doing arithmetic. Often the same func
tion is known by many names, such as add which is also plus, sum, and +. This is due to our
desire to be compatible with other Lisps. The FRANZ LISP user is advised to avoid using f unc
tions with names such as + and • unless their arguments are fixnums. The Lisp compiler takes
advantage of the fact that their arguments are fixnums.

An attempt to divide or to generate a floating point result outside of the range of floating
point numbers will cause a floating exception signal from the UNIX operating system. The user
can catch and process this interrupt if desired (see the description of the signal function).

3.1. simple arithmetic functions

(add ['n argl ...])
(plus l'n_argl ...])
(sum ['n_argl ...])
(+ ['x_argl ...])

RETURNS: the sum of the arguments. If no arguments are given, 0 is returned.

NOTE: if the size of the partial sum exceeds the limit of a fixnum, the partial sum will be
converted to a bignum. If any of the arguments are flonums, the partial sum will
be converted to a flonum when that argument is processed and the result will thus
be a flonum. Currently, if in the process of doing the addition a bignum must be
converted into a flonum an error message will result.

(addl 'n_arg)
(1+ 'x_arg)

RETURNS: its argument plus 1.

(diff ['n_argl ...])
(difference ['n_argl ...])
(- ['x_argl ...])

RETURNS: the result of subtracting from n_argl all subsequent arguments. If no arguments
are given, 0 is returned.

NOTE: See the description of add for details on data type conversions and restrictions.

(subl 'n_arg)
(1- 'x_arg)

RETURNS: its argument minus 1.

(minus 'n_arg)

RETURNS: zero minus n_arg.

(product ['n_argl ...])
(times ['n_argl ...])
(• ['x_argl ...])

Franz Lisp Manual 2-245

RETURNS: the product of all of its arguments. It returns 1 if there are no arguments.

NOTE: See the description of the function add for details and restrictions to the automatic
data type coercion.

(quotient ['n_argl ...])
(/ rx_argl ...])

RETURNS: the result of dividing the first argument by succeeding ones.
NOTE: If there are no arguments, 1 is returned. See the description of the function add

for details and restrictions of data type coercion. A divide by zero will cause a
floating exception interrupt -- see the description of the signal function.

(•quo 'i_x 'i_y)

RETURNS: the integer part of i_x I i_y.

(Divide 'i_dividend 'i_divisor)

RETURNS: a list whose car is the quotient and whose cadr is the remainder of the division
of i_dividend by i_divisor.

NOTE: this is restricted to integer division.

(Emuldiv 'x_factl 'x_fact2 'x_addn 'x_divisor)

RETURNS: a list of the quotient and remainder of this operation:
((x_factl • x_fact2) + (sign extended) x_addn) I x_divisor.

NOTE: this is useful for creating a bignum arithmetic package in Lisp.

3.2. predicates

(numberp 'g_arg)

2-246 Franz Lisp Manual

(numbp 'g_arg)
RETURNS: t iff g_arg is a number (fixnum, tlonum or bignum).

(ftxp 'g_arg)

RETURNS: t iff g_arg is a fixnum or bignum.

(ftoatp 'g_arg)

RETURNS: t iff g_arg is a tlonum.

(evenp 'x_arg)

RETURNS: tiff x_arg is even.

(oddp 'x_arg)

RETURNS: t iff x_arg is odd.

(zerop 'g_arg)

RETURNS: t iff g_arg is a number equal to 0.

<onep 'g_arg)
RETURNS: t iff g_arg is a number equal to 1.

(plusp 'n_arg)

RETURNS: tiff n_arg is greater than zero.

(mlnusp 'g_arg)

RETURNS: tiff g_arg is a negative number.

(greaterp l'n_argl ...])
(> 'fx_argl 'fx_arg2)
(>&: 'x_argl 'x_arg2)

RETURNS: t iff the arguments are in a strictly decreasing order.
NOTE: In functions greaterp and > the function difference is used to compare adjacent

values. If any of the arguments are non-numbers, the error message will come
from the difference function. The arguments to > must be fixnums or both
tlonums. The arguments to > & must both be fixnums.

Oessp l'n_argl ...])
(< 'fx_argl 'fx_arg2)
(<&: 'x_argl 'x_arg2)

RETURNS: tiff the arguments are in a strictly increasing order.

NOTE: In functions lessp and < the function difference is used to compare adjacent values.
If any of the arguments are non numbers, the error message will come from the
difference function. The arguments to < may be either fixnums or tlonums but
must be the same type. The arguments to < & must be fixnums.

Franz Lisp Manual 2-247

<- 'fx_argl 'fx_arg2)

(-&: 'x_argl 'x_arg2)

RETURNS: t iff the arguments have the same value. The arguments to - must be the
either both fixnums or both flonums. The arguments to -& must be fixnums.

3.3. trlgnometric functions

(cos 'fx_angle)

RETURNS: the {flonum) cosine of fx_angle {which is assumed to be in radians).

(sin 'fx_angle)

RETURNS: the sine of fx_angle (which is assumed to be in radians).

(acos 'fx_arg)

RETURNS: the (flonum) arc cosine of fx_arg in the range 0 to.,,..

(asin 'fx_arg)

RETURNS: the (flonum) arc sine of fx_arg in the range -.,,./2 to .,,.12.

Catan 'fx_argl 'fx_arg2)

RETURNS: the {flonum) arc tangent of fx_argl/fx_arg2 in the range • .,,. to.,,.,

3.4. bi1num functions

(haipart bx_number x_bits)

RETURNS: a fixnum (or bignum) which contains the x_bits high bits of (abs bx_ number) if
x_bits is positive, otherwise it returns the (abs x_bits) low bits of
(abs bx_number).

(haulon1 bx_number)

RETURNS: the number of significant bits in bx_number.

NOTE: the result is equal to the least integer greater to or equal to the base two logarithm
of one plus the absolute value of bx_number.

Cbignum-leftshift bx_arg x_amount)

RETURNS: bx_arg shifted left by x_amount. If x_amount is negative, bx_arg will be shifted
right by the magnitude of x_amount.

NOTE: If bx_arg is shifted right, it will be rounded to the nearest even number.

2-248 Franz Lisp Manual

(sticky-bignum-leftshift 'bx_arg 'x_amount)

RETURNS: bx_arg shifted left by x_amount. If x_amouttt is negative, bx_arg will be shifted
right by the rllagnitude of x_amount and rounded.

NOTE: sticky rounding is done this way: after shifting, the low order bit is changed to 1 if
any l's were shifted off to the right.

3.S. bit manipulation

Cboole 'x_key 'x.._vl 'x_v2 .J
RETURNS: the result of the bitwise boolean operation as described in the following table.

NOTE: If there are more than 3 arguments, then evaluation proceeds left to right with each
partial result becoming the new value of x_vl. That is,

(boole 'key 'vl 'v2 'v3) = (boo/e 'key (boole 'key 'vl 'v2) 'v3).
In the following table, • represents bitwise and, + represents bitwise or, EB
represents bitwise xor and represents bitwise negation and is the highest pre
cedence operator.

(boole 'key 'x 'y)

key 0 1 2 3 4 s 6 7
result 0 x•y ... x. y y x y x xEBy x+y

common
names and bitclear xor or

key 8 9 10 11 12 13 14 IS
result .., (x + y) -.(x EB y) ... x ... x +y -.y x +-.y -.x + -.y -1

common
names nor equiv implies nand

Osh 'x_ val 'x_amt)

RETURNS: x_ val shifted left by x_amt if x_amt is positive. If x_amt is negative, then /sh
returns x_ val shifted right by the magnitude if x_amt.

NOTE: This always returns a fixnum even for those numbers whose magnitude is so large
that they would normally be represented as a bignum, i.e. shifter bits are lost. For
more general bit shifters, see bignum-lejtshift and sticky-bignum-leftshift.

<rot 'x_ val 'x_amt)

RETURNS: x_val rotated left by x_amt if x_amt is positive. If x_amt is negative, then x_val
is rotated right by the magnitude of x_amt.

3.6. other functions

(abs 'n arg)
(absvaf 'n _arg)

RETURNS: the absolute value of n_arg.

(exp 'fx_arg)

RETURNS: e raised to the fx_arg power (flonum) .

(e:xpt 'n_base 'n_power)

RETURNS: n_base raised to the n_power power.

Franz Lisp Manual 2-249

NOTE: if either of the arguments are flonums, the calculation will be done using log and
exp.

(fact 'x_arg)

RETURNS: x_arg factorial. (fixnum or bignum)

(fix 'n_arg)

RETURNS: a fixnum as close as we can get to n_arg.

NOTE: fix will round down. Currently, if n_arg is a flonum larger than the size of a
fixnum, this will fail.

(ft.oat 'n_arg)

RETURNS: a flonum as close as we can get to n_arg.

NOTE: if n_arg is a bignum larger than the maximum size of a flonum, then a floating
exception will occur.

(log 'fx_arg)

RETURNS: the natural logarithm of fx_arg.

(mu 'n_argl ...)

RETURNS: the maximum value in the list of arguments.

(min 'n_argl ...)

RETURNS: the minimum value in the list of arguments.

(mod 'i dividend 'i divisor)
(remainder 'i_dividend 'i_divisor)

RETURNS: the remainder when i_dividend is divided by i_divisor.

NOTE: The sign of the result will have the same sign as i_dividend.

2-250 Franz Lisp Manual

(*mod 'x_dividend 'x_divisor)

RETURNS: the balanced representation of x_dividend modulo x_divisor.

NOTE: the range of the balanced representation is abs(x divisor)/2 to (abs(x divisor)/2)
- x_divisor + 1. - -

(random ['x_limit])

RETURNS: a fixnum between 0 and x_limit - 1 if x_limit is given. If x_limit is not given,
any fixnum, positive or negative, might be returned.

(sqrt 'fx_arg)

RETURNS: the square root of fx_arg.

\

,.Franz Lisp Manual 2-251

CHAPTER 4

Special Functions

(and [g_argl ...])

RETURNS: the value of the last argument if all arguments evaluate to a non-nil value, oth
erwise and returns nil. It returns t if there are no arguments.

NOTE: the arguments are evaluated left to right and evaluation will cease with the first nil
encountered

(apply 'u_func 'l_args)

RETURNS: the result of applying function u_func to the arguments in the list l_args.

NOTE: If u_func is a lambda, then the (length l_args) should equal the number of formal
parameters for the u_func. If u_func is a nlambda or macro, then l_args is bound
to the single formal parameter.

; add/ is a lambda of 1 argument
- > (apply 'add/ '(1))
4

; we will define plus/ as a macro which will be equivalent to add/
- > (def plus/ (macro (arg) Oist 'add/ (cadr arg))))
plusl
-> (plus/ 1)
4

; now if we apply a macro we obtain the form it changes to.
- > (apply 'plus] '(plusl 1))
(addl 3)

; if we funcall a macro however, the result of the macro is eva"d
; before it is returned.
- > (/Uncall 'plus/ '(plus/ 1))
4

; for this particular macro, the car of the arg is not checked
; so that this too will work
- > (apply 'plusl '(foo 1))
(addl 3)

2-252 Franz Lisp Manual.,

(aq l'x_numb])

RETURNS: if x_numb is specified then the x_numb' th argument to the enclosing lexpr If
x_numb is not specified then this returns the number of arguments to the
enclosing lexpr.

NOTE: it is an error to the interpreter if x_numb is given and out of range.

(break [g_message ['g_pred]])

WHERE: if g_message is not given it is assumed to be the null string, and if g_pred is not
given it is assumed to be t.

RETURNS: the value of (•break 'g_pred 'g_message)

(*break 'g_pred 'g_message)

RETURNS: nil immediately if g_pred is nil, else the value of the next (return 'value)
expression typed in at top level.

SIDE EFFECT: If the predicate, g_pred, evaluates to non-null, the lisp system stops and
prints out 'Break ' followed by g_message. It then enters a break loop
which allows one to interactively debug a program. To continue execution
from a break you can use the return function. to re tum to top level or
another break level, you can use retbrk or reset

(caseq 'g_key-f orm l_clausel .. .)

WHERE: l_clausei is a list of the form (g_comparator ['g_formi ...]). The comparators
may be symbols, small fixnums, a list of small fixnums or symbols.

NOTE: The way caseq works is that it evaluates g key-form, yielding a value we will call
the selector. Each clause is examined until the selector is found consistent with the
comparator. For a symbol, or a fixnum, this means the two must be eq. For a list,
this means that the selector must be eq to some element of the list.

The symbol t has special semantics: it matches anything, and consequently, should
be the last comparator. Then, having chosen a clause, caseq evaluates each form
within that clause and

RETURNS: the value of the last form. If no comparators are matched, caseq returns nil.

Here are two ways of defining the same function:
- > (defun fate (personna)

fate

(caseq personna
(cow 'Qumped over the moon))
(cat '(played nero))
((dish spoon) '(ran away together))
(t '(lived happily ever after))))

- > (defun fate (personna)
(cond

fate

((eq personna 'cow) '(jumped over the moon))
((eq personna 'cat) '(played nero))
((memq personna '(dish spoon)) '(ran away together))
(t '(lived happily ever qfter))))

(catch g_exp [ls_tag])

WHERE: if ls_ tag is not given, it is assumed to be nil.
RETURNS: the result of (•catch 'ls_tag g_exp)

NOTE: catch is defined as a macro.

(*catch 'ls_tag g_exp)

WHERE: ls_ tag is either a symbol or a list of symbols.

Franz Lisp Manual 2-253

RETURNS: the result of evaluating g_exp or the value thrown during the evaluation of
g_exp.

SIDE EFFECT: this first sets up a 'catch frame' on the lisp runtime stack. Then it begins
to evaluate g_exp. If g_exp evaluates normally, its value is returned. If,
however, a value is thrown during the evaluation of g_exp then this •catch
will return with that value if one of these cases is true:

(1) the tag thrown to is ls_ tag

(2) ls_ tag is a list and the tag thrown to is a member of this list

(3) ls_tag is nil.

NOTE: Errors are implemented as a special kind of throw. A catch with no tag will not
catch an error but a catch whose tag is the error type will catch that type of error.
See Chapter 10 for more information.

(comment (g_arg ...))

RETURNS: the symbol comment.

NOTE: This does absolutely nothing.

(cond [l_clausel ...])

RETURNS: the last value evaluated in the first clause satisfied. If no clauses are satisfied
then nil is returned.

NOTE: This is the basic conditional 'statement' in lisp. The clauses are processed from left
to right. The first element of a clause is evaluated. If it evaluated to a non-null
value then that clause is satisfied and all following elements of that clause are
evaluated. The last value computed is returned as the value of the cond. If there
is just one element in the clause then its value is returned. If the first element of a
clause evaluates to nil, then the other elements of that clause are not evaluated and
the system moves to the next clause.

(cvttointllsp)

SIDE EFFECT: The reader is modified to conform with the Interlisp syntax. The character
% is made the escape character and special meanings for comma, backquote
and backslash are removed. Also the reader is told to convert upper case to
lower case.

2-254 Franz Lisp Manual

(cvttofranzlisp)

SIDE EFFECT: The reader is modified to conform with franz's default syntax. One would
run this function after having run cvttomaclisp, only. Backslash is made
the escape character, and super-brackets are reinstated. The reader is rem
inded to distinguish between upper and lower case.

(cvttomaclisp)

SIDE EFFECT: The reader is modified to conform with Maclisp syntax. The character I is
made the escape character and the special meanings for backslash, left and
right bracket are removed. The reader is made case-insensitive.

(cvttoucillsp)

SIDE EFFECT: The reader is modified to conform with UCI Lisp syntax. The character I
is made the escape character, tilde is made the comment character, excla
mation point takes on the unquote function normally held by comma, and
backslash, comma, semicolon become normal characters. Here too, the
reader is made case-insensitive.

(debug s _ msg)

SIDE EFFECT: Enter the Fixit package described in Chapter 15. This package allows you
to examine the evaluation stack in detail. To leave the Fixit package type
'ok'.

(debuggin1 'g_arg)

SIDE EFFECT: If g_arg is non-null, Franz unlinks the transfer tables, does a (•rset t) to
tum on evaluation monitoring and sets the all-error catcher (ER%all) to be
debug-err-handler. If g_arg is nil, all of the above changes are undone.

(declare [g_arg ...])

RETURNS: nil

NOTE: this is a no-op to the evaluator. It has special meaning to the compiler (see
Chapter 12).

(def s_name (s_type l_argl g_expl ...))

WHERE: s_type is one of lambda, nlambda, macro or lexpr.

RETURNS: s_name

SIDE EFFECT: This defines the function s name to the lisp system. If s type is nlambda
or macro then the argument list l_argl must contain exactly one non-nil
symbol.

(defmacro s_name l_arg g_expl .. .>
(defcmacro s_name l_arg g_expl .. .)

RETURNS: s_name

SIDE EFFECT: This defines the macro s_name. de/macro makes it easy to write macros
since it makes the syntax just like dejim. Further information on de/macro
is in §8.3.2. defcmacro defines compiler-only macros, or cmacros. A cmacro
is stored on the property list of a symbol under the indicator cmacro. Thus
a function can have a normal definition and a cmacro definition. For an
example of the use of cmacros, see the definitions of nthcdr and nth in
/usr /lib/lisp/common2.l

(

(defun s name [s mtype] ls argl g expl ...) - - - -
WHERE: s_mtype is one of fexpr, expr, args or macro.

RETURNS: s_name
SIDE EFFECT: This defines the function s_name.

Franz Lisp Manual 2-255

NOTE: this exists for Maclisp compatibility, it is just a macro which changes the defun
form to the def form. An s_mtype of fexpr is converted to nlambda and of expr to
lambda. Macro remains the same. If ls_argl is a non-nil symbol, then the type is
assumed to be lexpr and ls_argl is the symbol which is bound to the number of
args when the function is entered.
For compatability with the Lisp Machine lisp, there are three types of optional
parameters that can occur in ls_argl: &optional declares that the following symbols
are optional, and may or may not appear in the argument list to the function, &rest
symbol declares that all forms in the function call that are not accounted for by pre
vious lambda bindings are to be assigned to symbo~ and &aux forml . .. formn
declares that the formi are either symbols, in which case they are lambda bound to
nil, or lists, in which case the first element of the list is lambda bound to the
second, evaluated element.

; defand de.fun here are used to define identical functions
; you can decide for yourself which is easier to use.
- > (def append} (lambda (/is extra) (append lis (/ist extra})))
append I

-> (de.fun append} (/is extra) (append /is (/ist extra)))
append I

; Using the & forms ...
- > (de.fun test (a b &optional c &aux (retval 0) &rest z)

(if c them (msg "Optional arg presenf N
"c is" c N))

(msg "rest is" z N
"retval is " retval N))

test
- > (test 1 2 J 4)
Optional arg present
c is 3
rest is (4)
retval is 0

(defvar s_variable ['g_init])
RETURNS: s_ variable.
NOTE: This form is put at the top level in files, like de.fan.

SIDE EFFECT: This declares s_variable to be special. If g_init is present, and s_variable is
unbound when the file is read in, s variable will be set to the value of
g_init. An advantage of '(defvar foo)' over '(declare (special foo))' is that
if a file containing defvars is loaded (or fasl'ed) in during compilation, the
variables mentioned in the defvar's will be declared special. The only way
to have that effect with '(declare (special foo))' is to include the file.

2-256 Franz Lisp Manual

(do l_vrbs l_test g_expl .. .)

RETURNS: the last form in the cdr of I_ test evaluated, or a value explicitly given by a
return evaluated within the do body.

NOTE: This is the basic iteration form for FRANZ LISP. l vrbs is a list of zero or more
var-init-repeat forms. A var-init-repeat form looks like:

(s_name (g_init (g_repeat)])
There are tltree cases depending on what is present in the form. If just s_name is
present, this means that when the do is entered, s_name is lambda-bound to nil
and is never moQified by the system (though the program is certainly free to
modify its value). If the form is (s_name 'g_init) then the only difference is that
s_name is lambda-bound to the value of g_init instead of nil. If g_repeat is also
present then s_name is lambda-bound to g_init when the loop is entered and after
each pass through the do body s_name is bound to the value of g_repeat.
l_test is either nil or has the form of a cond clause. If it is nil then the do body
will be evaluated only once and the do will return nil. Otherwise, before the do
body is evalu~ted the car of l test is evaluated and if the result is non-null, this sig
nals an enq to the looping. Then the rest of the forms in l_test are evaluated and
the value of the last one is returned as the value of the do. If the cdr of l test is
nil, then nil i$ retumed -- thus this is not exactly like a cond clause. -
g_expl and those forms which follow constitute the do body. A do body is like a
prog body and th~ may have labels and one may use the functions go and return.
The sequence of evaluations is this: ·

(1) the init forms are evaluated left to right and stored in temporary locations.

(2) Simultaneously all do variables are lambda bound to the value of their init forms or
nil.

(3) If l_test is non-null, then the car is evaluated and if it is non-null, the rest of the
forms in l_test are evaluated and the last value is returned as the value of the do.

(4) The forms in the do body are evaluated left to right.

(5) If l_test is nil the do function returns with the value nil.

(6) The repeat forms are evaluated and saved in temporary locations.

(7) The variables with repeat forms are simultaneously bound to the values of those
forms.

(8) (Jo to step 3.

NOTE: there is an alternate form of do which can be used when there is only one do vari
able;,. It is described next.

(

; this is a simple function which numbers the elements of a list.
; It uses a do function with two local variables.
- > (dejiln printem (/is)

printem

(do ((xx /is (cdr xx))
(i 1 (l+ i)))

((null xx) (patom "all done') (terpr))
(print i)
(patom": ")
(print (car xx))
(terpr)))

- > (printem '(a b c d))
I: a
2:b
3:c
4:d
all done
nil
->

(do s_name g_init g_repeat g_test g_expl .. .)

Franz Lisp Manual 2-257

NOTE: this is another, less general, form of do. It is evaluated by:
(1) evaluating g_init

(2) lambda binding s_name to value of g_init

(3) g_test is evaluated and if it is not nil the do function returns with nil.
(4) the do body is evaluated beginning at g_expl.

(5) the repeat form is evaluated and stored in s_name.
(6) go to step 3.

RETURNS: nil

(environment ll whenl I whatl I when2 l what2 ...])
(envlronment-maclisp [(whenl [whatl (when2 l_what2 ...])
(environment-lmllsp [l_whenl l_whatl l_when2 l_what2 ...])

WHERE: the when's are a subset of (eval compile load), and the symbols have the same
meaning as they do in 'eval-when'.

The what's may be
(files fi.lel fi.le2 ... fi.leN),

which insure that the named files are loaded. To see if fi.lei is loaded, it looks
for a 'version' property under ti.tels property list. Thus to prevent multiple
loading, you should put

(putprop 'myfi.le t 'version),
at the end of myfi.le.1.

Another acceptible form for a what is
(syntax type)
Where type is either maclisp, intlisp, ucilisp, franzlisp. This sets the syntax
correctly.

2-258 Franz Lisp Manual

environment-mac/isp sets the environment to that which 'liszt -m' would gen
erate. environment-lmlisp sets up the lisp machine environment. This is like
maclisp but it has additional macros. For these specialized environments, only
the ftles clauses are useful. (environment-maclisp (compile eval) (files
foo bar))

(err rs_ value [nil]])

RETURNS: nothing (it never returns).

SIDE EFFECT: This causes an error and if this error is caught by an errset then that errset
will return s_value instead of nil. If the second arg is given, then it must
be nil (MAClisp compatibility).

(error ['s_messagel rs_message2]])

RETURNS: nothing (it never returns).
SIDE EFFECT: s_messagel and s_message2 are patomed if they are given and then err is

called (with no arguments), which causes an error.

(errset g_expr [s_flag])

RETURNS: a list of one element, which is the value resulting from evaluating g_expr. If an
error occurs during the evaluation of g_expr, then the locus of control will
return to the errset which will then return nil (unless the error was caused by a
call to err, with a non-null argument).

SIDE EFFECT: S_flag is evaluated before g_expr is evaluated. If s_flag is not given, then it
is assumed to be t. If an error occurs during the evaluation of g_expr, and
s_flag evaluated to a non-null value, then the error message associated with
the error is printed before control returns to the errset.

(eval 'g_ val ['x_bind-pointer])

RETURNS: the result of evaluating g_ val.

NOTE: The evaluator evaluates g_ val in this way:
If g_ val is a symbol, then the evaluator returns its value. If g_ val had never been
assigned a value, then this causes an 'Unbound Variable' error. If x_bind-pointer
is given, then the variable is evaluated with respect to that pointer (see evalframe
for details on bind-pointers).

If g_ val is of type value, then its value is returned. If g_ val is of any other type
than list, g_ val is returned.

If g_ val is a list object then g_ val is either a function call or array reference. Let
g_car be the first element of g_ val. We continually evaluate g_car until we end up
with a symbol with a non-null function binding or a non-symbol. Call what we end
up with: g_func.

G_func must be one of three types: list, binary or array. If it is a list then the first
element of the list, which we shall call g_functype, must be either lambda,
nlambda, macro or lexpr. If g_func is a binary, then its discipline, which we shall
call g_functype, is either lambda, nlambda, macro or a string. If g_func is an array
then this form is evaluated specially, see Chapter 9 on arrays. If g_func is a list or
binary. then g_f unctype will determine how the arguments to this function, the cdr
of g_ val, are processed. If g_f unctype is a string, then this is a foreign function call
(see §8.5 for more details).

;f
I,

"\

Franz Lisp Manual 2-259

If g_functype is lambda or lexpr, the arguments are evaluated (by calling eval recur
sively) and stacked. If g_functype is nlambda then the argument list is stacked. If
g_functype is macro then the entire form, g_ val is stacked.

Next, the formal variables are lambda bound. The formal variables are the cadr of
g_func. If g_functype is nlambda, lexpr or macro, there should only be one formal
variable. The values on the stack are lambda bound to the formal variables except
in the case of a lexpr, where the number of actual arguments is bound to the for
mal variable.

After the binding is done, the function is invoked, either by jumping to the entry
point in the case of a binary or by evaluating the list of forms beginning at cddr
g_func. The result of this function invocation is returned as the value of the call to
eval.

(evalframe 'x_pdlpointer)

RETURNS: an evalframe descriptor for the evaluation frame just before x_pdlpointer. If
x_pdlpointer is nil, it returns the evaluation frame of the frame just before the
current call to evalframe.

NOTE: An evalf rame descriptor describes a call to eva~ apply or .fimca/L The form of the
descriptor is
(type pd/-pointer expression bind-pointer np-index /bot-index)
where type is 'eval' if this describes a call to eval or 'apply' if this is a call to apply
or junca/L pdl-pointer is a number which describes this context. It can be passed
to evalframe to obtain the next descriptor and can be passed to .freturn to cause a
return from this context. bind-pointer is the size of variable binding stack when
this evaluation began. The bind-pointer can be given as a second argument to eval
to order to evaluate variables in the same context as this evaluation. If type is
'eval' then expression will have the form (/Unction-name argl .. .). If type is 'apply'
then expression will have the form (/Unction-name (argl .. .)). np-index and lbot
index are pointers into the argument stack (also known as the namestack array) at
the time of call. lbot-index points to the first argument, np-index. points one
beyond the last argument.
In order for there to be enough information for evalframe to return, you must call
(•rset t).

EXAMPLE: (progn (evalframe ni/))
returns (eva/ 2147478600 (progn (evalframe nil)) 1 8 7)

(evalhook 'g_form 'su,..evalfunc ['su_funca!lfunc])
RETURNS: the result of evaluating g_form after lambda binding 'evalhook' to su_evalfunc

and, if it is given, lambda binding 'funcallhook' to su_funcallhook.
NOTE: As explained in §14.4, the function eval may pass the job of evaluating a form to a

user 'hook' function when various switches are set. The hook function normally
prints the form to be evaluated on the terminal and then evaluates it by calling
evalhook. Eva/hook does the lambda binding mentioned above and then calls eval
to evaluate the form after setting an internal switch to tell eva/ not to call the user's
hook function just this one time. This allows the evaluation process to advance
one step and yet insure that further calls to eval will cause traps to the hook func
tion (if su evalfunc is non-null).
In order for evalhook to work, (•rset t) and (sstatus eva/hook t) must have been
done previously.

2-260 Franz Lisp Manual

(exec s_argl .. .)

RETURNS: the result of forking and executing the command named by concatenating the
s_argi together with spaces in between.

(exece 's f name ['l args ['l envirlJ) - - -
RETURNS: the error code from the system if it was unable to execute the command

s_fname with arguments l_args and with the environment set up as specified in
l_envir. If this function is successful, it will not return, instead the lisp system
will be overlaid by the new command.

(fretum 'x_pdl-pointer 'g_retval)

RETURNS: g_retval from the context given by x_pdl-pointer.

NOTE: A pdl-pointer denotes a certain expression currently being evaluated. The pdl
pointer for a given expression can be obtained from evalframe.

Cfrexp 'f _arg)

RETURNS: a list cell (exponent. mantissa) which represents the given flonum

NOTE: The exponent will be a fixnum, the mantissa a 56 bit bignum. If you think of the
the binary point occurring right after the high order bit of mantissa, then
f_arg - 2exponent. mantissa.

(funcall 'u_func ['g_argl ...])

RETURNS: the value of applying function u_func to the arguments g_argi and then evaluat
ing that result if u_func is a macro.

NOTE: If u_func is a macro or nlambda then there should be only one g_arg. fimcallis the
function which the evaluator uses to evaluate lists. If Joo is a lambda or lexpr or
array, then (/Uncall 'foo 'a 'b 'c) is equivalent to (Joo 'a 'b 'c). If Joo is a nlambda
then (/Unca/I 'foo '(ab c)) is equivalent to (Joo a b c). Finally, if Joo is a macro
then (/Uncall 'foo '(Joo ab c)) is equivalent to (Joo ab c).

(funcallbook 'l_form 'su_funcallfunc ['su_evalfunc])

RETURNS: the result of funcal!ng the (car Uorm) on the already evaluated arguments in
the (cdr Uorm) after lambda binding 'funcallhook' to su_funcallfunc and, if it is
given, lambda binding 'evalhook' to su_evalhook.

NOTE: This function is designed to continue the evaluation process with as little work as
possible after a funcallhook trap has occurred. It is for this reason that the form of
1 form is unorthodox: its car is the name of the function to call and its cdr are a list
Of arguments to stack (without evaluating again) before calling the given function.
After stacking the arguments but before calling funcall an internal switch is set to
prevent funca// from passing the job of funcalling to su_funcallfunc. If funca// is
called recursively in funcalling l_form and if su_funcallfunc is non-null, then the
arguments to funcal/ will actually be given to su_funcallfunc (a lexpr) to be fun
called.
In order for evalhook to work, (•rset t) and (sstatus evalhook t) must have been
done previously. A more detailed description of evalhook and funcallhook is given
in Chapter 14.

(

(
_

c

/

Franz Lisp Manual 2-261

(function u_func)

RETURNS: the function binding of u_func if it is an symbol with a function binding other
wise u_func is returned.

(get disc 'y _f unc)

RETURNS: the discipline of the machine coded function (either lambda, nlambda or
macro).

(go g_labexp)

WHERE: g_labexp is either a symbol or an expression.

SIDE EFFECT: If g_labexp is an expression, that expression is evaluated and should result
in a symbol. The locus of control moves to just following the symbol
g_labexp in the current prog or do body.

NOTE: this is only valid in the context of a prog or do body. The interpreter and compiler
will allow non-local go's although the compiler won't allow a go to leave a function
body. The compiler will not allow g_labexp to be an expression.

(if 'g_a 'g_b)
(if 'g_a 'g_b 'g_c .. .)
(if 'g_a then 'g_b [. . .] [elseif 'g_c then 'g_d .. .] [else 'g_e [...])
(if 'g_a then 'g_b [.. .] [elseif 'g_c thenret1 [else 'g_d [...])

NOTE: The various forms of if are intended to be a more readable conditional statement,
to be used in place of cond There are two varieties of i/, with keywords, and
without. The keyword-less variety is inherited from common Maclisp usage. A
keyword-less, two argument ifis equivalent to a one-clause cond, i.e. (cond (a b)).
Any other keyword-less ifmust have at least three arguments. The first two argu
ments are the first clause of the equivalent cond, and all remaining arguments are
shoved into a second clause beginning with t. Thus, the second form of if is
equivalent to

(cond (ab) (t c .. .)).

The keyword variety has the following grouping of arguments: a predicate, a then
clause, and optional else-clause. The predicate is evaluated, and if the result is
non-nil, the then-clause will be performed, in the sense described below. Other
wise, (i.e. the result of the predicate evaluation was precisely nil), the else-clause
will be performed.

Then-clauses will either consist entirely of the single keyword thenret, or will start
with the keyword then, and be followed by at least one general expression. (These
general expressions must not be one of the keywords.) To actuate a thenret means
to cease further evaluation of the i/, and to return the value of the predicate just
calculated. The performance of the longer clause means to evaluate each general
expression in tum, and then return the last value calculated.

The else-clause may begin with the keyword else and be followed by at least one
general expression. The rendition of this clause is just li~e that of a then-clause.
An else-clause may begin alternatively with the keyword elseif, and be followed
(recursively) by a predicate, then-clause, and optional else-clause. Evaluation of
this clause, is just evaluation of an {f fonn, with the same predicate, then- and
else-clauses.

-·- ·-·---··-·--------~-·--· ·----

2-262 Franz Lisp Manual

{I-throw-err 'l_token)

WHERE: l_token is the cdr of the value returned from a •catch with the tag ER%unwind-
protect.

RETURNS: nothing (never returns in the current context)

SIDE EFFECT: The error or throw denoted by l_token is continued.
NOTE: This function is used to implement unwind-protect which allows the processing of a

transfer of control though a certain context to be interrupted, a user function to be
executed and than the transfer of control to continue. The form of 1 token is
either -
(t tag value) for a throw or
(nil type message valret contuab uniqueid [arg ..•])for an error.
This function is not to be used for implementing throws or errors and is only docu
mented here for completeness.

(let l_args g_expl ... g_expm)

RETURNS: the result of evaluating g_expm within the bindings given by l_args.

NOTE: l_args is either nil (in which case let is just like progn) or it is a list of binding
objeclt. A binding object is a list (symbol expression). When a let is entered all of
the expressions are evaluated and then simultaneously lambda bound to the
corresponding symbols. In effect, a let expression is just like a lambda expression
except the symbols and their initial values are next to each other which makes the
expression easier to understand. There are some added features to the let expres
sion: A binding object can just be a symbol, in which case the expression
corresponding to that symbol is 'nil'. If a binding object is a list and the first ele
ment of that list is another list, then that list is assumed to be a binding template
and let will do a desetq on it.

Clet• l_args g_expl ... g_expn)

RETURNS: the result of evaluating g_expm within the bindings given by l_args.

NOTE: This is identical to let except the expressions in the binding list l_args are evaluated
and bound sequentially instead of in parallel.

Clexpr-funcall 'g_function ['g_argl ...] 'l_argn)

NOTE: This is a cross between funcall and apply. The last argument, must be a list (possi
bly empty). The element of list arg are stack and then the function is funcalled.

EXAMPLE: Oexpr-funcall 'list 'a '(b c d)) is the same as
(funcall 'list 'a 'b 'c 'd)

(listify 'x count)

RETURNS: a list of x_count of the arguments to the current function (which must be a
lexpr).

NOTE: normally arguments 1 through x_count are returned. If x_count is negative then a
list of last abs(x_count) arguments are returned.

/

(

(map 'u_func 'l_argl .. .)

RETURNS: l_argl

Franz Lisp Manual 2-263

NOTE: The function u_func is applied to successive sublists of the l_argi. All sublists
should have the same length.

(mapc 'u_func 'l_argl .. .)

RETURNS: l_argl.

NOTE: The function u_func is applied to successive elements of the argument lists. All of
the lists should have the same length.

(mapcan 'u_func 'l_argl .. .)

RETURNS: nconc applied to the results of the functional evaluations.

NOTE: The function u_func is applied to successive elements of the argument lists. All
sublists should have the same length.

(mapcar 'u_func 'l_argl .. .)

RETURNS: a list of the values returned from the functional application.

NOTE: the function u_func is applied to successive elements of the argument lists. All
sublists should have the same length.

(mapcon 'u_func 'l_argl .. .)

RETURNS: nconc applied to the results of the functional evaluation.

NOTE: the function u_func is applied to successive sublists of the argument lists. All sub
lists should have the same length.

(maplist 'u_func 'l_argl .. .)

RETURNS: a list of the results of the functional evaluations.

NOTE: the function u_func is applied to successive sublists of the arguments lists. All
sublists should have the same length.

Readers may find the following summary table useful in remembering the differences
between the six mapping functions:

Value returned is

Argument to func- l_argl list of results nconc of results
tional is -

elements of list ma pc mapcar mapcan

sublists map map list ma peon

2-264 Franz Lisp Manual

(mfunction t_entry 's_disc)
RETURNS: a lisp object of type binary composed of t_entry and s_disc.
NOTE: t_entry is a pointer to the machine code for a function, and s_disc is the discipline

(e.g. lambda).

Cob list)
RETURNS: a list of all symbols on the oblist.

Cor (g_argl ...])

RETURNS: the value of the first non-null argument or nil if all arguments evaluate to nil.
NOTE: Evaluation proceeds left to right and stops as soon as one of the arguments evalu

ates to a non-nu[\ value.

(pr«>1 l_ vrbls g_expl .. .)

RETURNS: the value explicitly given in a return form or else nil if no return is done by the
time the last g_expi is evaluated.

NOTE: the local variables are lambda bound to nil then the g_exp are evaluated from left
to right. This is a prog body (obviously) and this means than any symbols seen are
not evaluated, insteaq they are treated as labels. This also means that return's and
go's are allowed.

(pfOll 'g_expl ['g_exp2 ...])

RETURNS: g_expl

(pr«>12 'g_expl 'g_exp2 ['g_exp3 ...])

RETURNS: g_exp2

NOTE: the forms are evaluated from left to right and the value of g_exp2 is returned.

(pr«>1n 'g_expl ['g_exp2 ...])

RETURNS: th~ last g_expi.

(progv 'l_locv 'l_initv g_ exp 1 .. .)

WHERE: l_locv is a list of symbols and l_initv is a list of expressions.

RETURNS: the value of the last g_expi evaluated.

NOTE: The expressions in l initv are evaluated from left to right and then lambda-bound
to the symbols in l_locv. If there are too few expressions in l_initv then the miss
ing values are assumed to be nil. If there are too many expressions in l_initv then
the extra ones are ignored (although they are evaluated). Then the g_expi are
evaluated left to right. The body of a progv is like the body of a progn, it is not a
prog body. (C.f. let)

Franz Lisp Manual 2-265

(purcopy 'g_exp)

RETURNS: a copy of g_exp with new pure cells allocated wherever possible.

NOTE: pure space is never swept up by the garbage collector, so this should only be done
on expressions which are not likely to become garbage in the future. In certain
cases, data objects in pure space become read-only after a dumplisp and then an
attempt to modify the object will result in an illegal memory reference.

(purep 'g_exp)

RETURNS: tiff the object g_exp is in pure space.

(putd 's_name 'u_func)

RETURNS: u_func

SIDE EFFECT: this sets the function binding of symbol s_name to u_func.

(return ['g_ val])

RETURNS: g_val (or nil if g_val is not present) from the enclosing prog or do body.

NOTE: this form is only valid in the context of a prog or do body.

(selectq 'g_key-form [l_clausel .. .])

NOTE: This function is just like caseq (see above), except that the symbol otherwise has
the same semantics as the symbol t, when used as a comparator.

(setaq 'x_argnum 'g_ val)

WHERE: x_argnum is greater than zero and less than or equal to the number of argu-
ments to the lexpr.

RETURNS: g_ val

SIDE EFFECT: the lexpr's x_argnum'th argument is set tog-val.

NOTE: this can only be used within the body of a lexpr.

(throw 'g val [s tag]) - -
WHERE: if s_tag is not given, it is assumed to be nil.

RETURNS: the value of (•throw 's_tag 'g_val).

(*throw 's_tag 'g_val)

RETURNS: g_val from the first enclosing catch with the tag s_tag or with no tag at all.

NOTE: this is used in conjunction with •catch to cause a clean jump to an enclosing con
text.

(unwind-protect g_protected [g_cleanupl ...])

RETURNS: the result of evaluating g_protected.

NOTE: Normally g_protected is evaluated and its value remembered, then the g_cleanupi
are evaluated and finally the saved value of g_protected is returned. If something
should happen when evaluating g_protected which causes control to pass through
g_protected and thus through the call to the unwind-protect, then the g_cleanupi
will still be evaluated. This is useful if g_protected does something sensitive which
must be cleaned up whether or not g_protected completes.

2-266 Franz Lisp Manual

CHAPTERS

Input/Output

The following functions are used to read from and write to external devices (e.g. files)
and programs (through pipes). All 1/0 goes through the lisp data type called the port. A port
may be open for either reading or writing, but usually not both simultaneously (see fileopen) .
There are only a limited number of ports (20) and they will not be reclaimed unless they are
closed. All ports are reclaimed by a resetio call, but this drastic step won't be necessary if the
program closes what it uses.

If a port argument is not supplied to a function which requires one or if a bad port argu
ment (such as nil) is given, then FRANZ LISP will use the default port according to this scheme:
If input is being done then the default port is the value of the symbol piport and if output is
being done then the default port is the value of the symbol poport. Furthermore, if the value
of piport or poport is not a valid port, then the standard input or standard output will be used,
respectively.

The standard input and standard output are usually the keyboard and terminal display
unless your job is running in the background and its input or output is connected to a pipe. All
output which goes to the standard output will also go to the port ptport if it is a valid port.
Output destined for the standard output will not reach the standard output if the symbol "w is
non nil (although it will still go to ptport if ptport is a valid port).

Some of the functions listed below reference files directly. FRANZ LISP has borrowed a
convenient shorthand notation from /bin/csh, concerning naming files. If a file name begins
with - (tilde), and the symbol tilde-expansion

is bound to something other than nil, then FRANZ LISP expands the file name. It takes the
string of characters between the leading tilde, and the first slash as a user-name. Then, that ini
tial segment of the filename is replaced by the home directory of the user. The null username
is taken to be the current user.

Having gone to the effort of searching the password file, FRANZ LISP remembers the user
directory, in case it gets asked to do so again. Tilde-expansion is performed in the following
functions: efasl, chdir, fas/, ffasl, fileopen, ilffile, load, ou(file, probe/, sys:access, sys:unlink.

(cfasl 'st_file 'st_entry 'st_funcname ['st_disc ['st_library]])

RETURNS:t

SIDE EFFECT: This is used to load in a foreign function (see §8.4). The object file st_file
is loaded into the lisp system. St_entry should be an entry point in the file
just loaded. The function binding of the symbol s_funcname will be set to
point to st_entry, so that when the lisp function s_funcname is called,
st_entry will be run. st_disc is the discipline to be given to s_funcname.
st_disc defaults to "subroutine" if it is not given or if it is given as nil. If
st_library is non-null, then after st_file is loaded, the libraries given in
st_library will be searched to resolve external references. The form of
st_library should be something like "-IS -lm". The C library (" -le ") is
always searched so when loading in a C file you probably won't need to
specify a library. For Fortran files, you should specify "-1F77" and if you
are doing any 1/0, the library entry should be "-1177 -1F77". For Pascal files
"-lpc" is required.

Franz Lisp Manual 2-267

NOTE: This function may be used to load the output of the assembler, C compiler, Fortran
compiler, and Pascal compiler but NOT the lisp compiler (use fas/ for that). If a
file has more than one entry point, then use getaddress to locate and setup other
foreign functions.
It is an error to load in a file which has a global entry point of the same name as a
global entry point in the running lisp. As soon as you load in a file with cjas~ its
global entry points become part of the lisp's entry points. Thus you cannot cfasl in
the same file twice unless you use removeaddress to change certain global entry
points to local entry points.

(dose 'p_port)

RETURNS:t

SIDE EFFECT: the specified port is drained and closed, releasing the port.

NOTE: The standard defaults are not used in this case since you probably never want to
close the standard output or standard input.

(cprlntf 'st_format 'xfst_ val ['p_port])

RETURNS: xf st_ val

SIDE EFFECT: The UNIX formatted output function printf is called with arguments
st_format and xfst_ val. If xfst_ val is a symbol then its print name is passed
to printf. The format string may contain characters which are just printed
literally and it may contain special formatting commands preceded by a per
cent sign. The complete set of formatting characters is described in the
UNIX manual. Some useful ones are %d for printing a fixnum in decimal,
%f or %e for printing a flonum, and %s for printing a character string (or
print name of a symbol).

EXAMPLE: (cprinif" Pi equals %/ 3.14159) prints 'Pi equals 3.14159'

(drain ['p_port]}

RETURNS: nil

SIDE EFFECT: If this is an output port then the characters in the output buff er are all sent
to the device. If this is an input port then all pending characters are
flushed. The default port for this function is the def a ult output port.

(ex [s filename])
(vi [s -filename])
(exl CS filename])
(vii [sJilename])

RETURNS:

SIDE EFFECT: The lisp system starts up an editor on the file named as the argument. It
will try appending .1 to the file if it can't find it. The functions ex/ and vii
will load the file after you finish editing it. These functions will also
remember the name of the file so that on subsequent invocations, you
don't need to provide the argument.

NOTE: These functions do not evaluate their argument.

2-268 Franz Lisp Manual

(fasl 'st_name C'st_mapf ['g_ warn]])

WHERE: st_mapf and g_warn default to nil.

RETURNS: t if the function succeeded, nil otherwise.

SIDE EFFECT: this function is designed to load in an object file generated by the lisp com
piler Liszt. File names for object files usually end in '.o', so fas/ will
append '.o' to st_name (if it is not already present). If st_mapf is non nil,
then it is the name of the map file to create. Fas/ writes in the map file the
names and addresses of the functions it loads and defines. Normally the
map file is created (i.e. truncated if it exists), but if (sstatus appendmap t) is
done then the map file will be appended. If g_ warn is non nil and if a func
tion is loaded from the file which is already defined, then a warning mes
sage will be printed.

NOTE: fas/ only looks in the current directory for the file to load. The function load looks
through a user-supplied search path and will call fas/ if it finds a file with the same
root name and a '.o' extension. In most cases the user would be better off using
the function load rather than calling fas/ directly.

(ffasl 'st_file 'st_entry 'st_funcname C'st_discipline C'st_library]])

RETURNS: the binary object created.

SIDE EFFECT: the Fortran object file st_file is loaded into the lisp system. St_entry should
be an entry point in the file just loaded. A binary object will be created and
its entry field will be set to point to st_entry. The discipline field of the
binary will be set to st_discipline or "subroutine" by default. If st_library is
present and non-null, then after st_file is loaded, the libraries given in
st_library will be searched to resolve external references. The form of
st_library should be something like "-IS -!termcap". In any case, the stan
dard Fortran libraries will be searched also to resolve external references.

NOTE: in F77 on Unix, the entry point for the fortran function foo is named '_foo_'.

(ftlepos 'p_port C'x_pos])

RETURNS: the current position in the file if x_pos is not given or else x_pos if x_pos is
given.

SIDE EFFECT: If x_pos is given, the next byte to be read or written to the port will be at
position x_pos.

(ftlestat 'st_filename)

RETURNS: a vector containing various numbers which the UNIX operating system assigns
to files. if the file doesn't exist, an error is invoked. Use probe/to determine if
the file exists.

NOTE: The individual entries can be accesed by mnemonic functions of the form
filestat1ie~ where field may be any of atime, ctime, dev, gid, ino, mode,mtime,
nlink, rdev, size, type, uid. See the UNIX programmers manual for a more
detailed description of these quantities.

Franz Lisp Manual 2-269

(ftatc 'g_form ['x_max])

RETURNS: the number of characters required to print g_form using patom. If x_max is
given, and if .ftatc determines that it will return a value greater than x_max,
then it gives up and returns the current value it has computed. This is useful if
you just want to see if an expression is larger than a certain size.

(ftatsize 'g_form ['x_max])

RETURNS: the number of characters required to print g_form using print The meaning of
x_max is the same as for flatc.

NOTE: Currently this just exp/ode's g_form and checks its length.

(fileopen 'st_filename 'st_mode)
RETURNS: a port for reading or writing (depe.nding on st_ mode) the file st_name.

SIDE EFFECT: the given file is opened (or created if opened for writing and it doesn't yet
exist).

NOTE: this function call provides a direct interface to the operating system's fopen func
tion. The mode may be more than just "r" for read, "w" for write or "a" for append.
The modes "r+", "w+" and "a+" permit both reading and writing on a port pro
vided that fseek is done between changes in direction. See the UNIX manual
description of fopen for more details. This routine does not look through a search
path for a given file.

(fseek 'p_port 'x_offset 'x_flag)

RETURNS: the position in the file after the function is performed.

SIDE EFFECT: this function positions the read/write pointer before a certain byte in the
file. If x_flag is 0 then the pointer is set to x_offset bytes from the begin
ning of the file. If x_flag is 1 then the pointer is set to x_offset bytes from
the current location in the file. If x_flag is 2 then the pointer is set to
x_offset bytes from the end of the file.

(infile 's_filename)

RETURNS: a port ready to read s_ftlename.

SIDE EFFECT: this tries to open s_filename and if it cannot or if there are no ports avail
able it gives an error message.

NOTE: to allow your program to continue on a file-not-found error, you can use something
like:
(cond ((null (setq myport (car (errset {iflfile name) nil))))

(patom .. couldn't open the file")))
which will set myport to the port to read from if the file exists or will print a mes
sage if it couldn't open it and also set myport to nil. To simply determine if a file
exists, there is a function named probe/.

2-270 Franz Lisp Manual

Ooad 's filename ['st map ['g warn]]) - - -
RETUR.NS:t

NOTE: The function of load has changed since previous releases of FRANZ LISP and the
following description should be read carefully.

SIDE EFFECT: load now serves the function of both fas/ and the old load Load will search
a user defined search path for a lisp source or object file with the filename
s filename (with the extension .1 or .o added as appropriate). The search
path which load uses is the value of (status load-search-path}. The default is
<I.I /usr/lib/lisp) which means look in the current directory first and then
/usr/lib/lisp. The file which load looks for depends on the last two charac
ters of s_filename. If s_filename ends with ".1" then load will only look for
a file name s filename and will assume that this is a FRANZ LISP source file.
If s_filename ends with ".o" then load will only look for a file named
s_filename and will assume that this is a FRANZ LISP object file to be fasled
in. Otherwise, load will first look for s_filename.o, then s_filename.l and
finally s_filename itself. If it finds s_filename.o it will assume that this is an
object file, otherwise it will assume that it is a source file. An object file is
loaded using fas/ and a source file is loaded by reading and evaluating each
form in the file. The optional arguments st_map and g_warn are passed to
fas/ should fas/ be called.

NOTE: load requires a port to open the file s filename. It then lambda binds the symbol
piport to this port and reads and evaluates the forms.

(makereadtable ['s_tlag])

WHER.E: if s_tlag is not present it is assumed to be nil.

R.ETURNS: a readtable equal to the original readtable if s_flag is non-null, or else equal to
the current readtable. See chapter 7 for a description of readtables and their
uses.

(ms1 [l_option .. .] ['g_msg ...])

NOTE: This function is intended for printing short messages. Any of the arguments or
optio~ presented can be used any number of times, in any order. The messages
themselves (g_msg) are evaluated, and then they are transmitted to patom. Typi
cally, they are strings, which evaluate to themselves. The options are interpreted
specially:

Franz Lisp Manual 2-271

msg Option Summary

(Pp .J10rtname) causes subsequent output to go to the port p_JX>rtname
(port should be opened previously)

B

(8 'n_b)

N

(N 'n_nJ

D

(nwritn ['p_port))

print a single blank.

evaluate n_b and print that many blanks.

print a single by calling terpr.

evaluate n_n and transmit
that many newlines to the stream.

drain the current port.

RETURNS: the number of characters in the buff er of the given port but not yet written out
to the file or device. The buff er is flushed automatically when filled, or when
terpr is called.

(outfile 's_filename l'st_type))

RETURNS: a port or nil

SIDE EFFECT: this opens a port to write s_filename. If st_ type is given and if it is a sym
bol or string whose name begins with 'a', then the file will be opened in
append mode, that is the current contents will not be lost and the next data
will be written at the end of the file. Otherwise, the file opened is trun
cated by outfi/e if it existed beforehand. If there are no free ports, outfi.le
returns nil. If one cannot write on s_filename, an error is signalled.

(patom 'g_exp ['p_port))

RETURNS: g_exp

SIDE EFFECT: g_exp is printed to the given port or the default port. If g_exp is a symbol
or string, the print name is printed without any escape characters around
special characters in the print name. If g_exp is a list then patom has the
same effect as print

(pntlen 'xfs_arg)

RETURNS: the number of characters needed to print xfs_arg.

2-272 Franz Lisp Manual

(portp 'g_arg)

RETURNS: t iff g_arg is a port.

(pp [l_option] s_namel .. .)

RETURNS:t

SIDE EFFECT: If s namei has a function binding, it is pretty-printed, otherwise if s namei
has -a value then that is pretty-printed. Normally the output of the pretty
printer goes to the standard output port poport. The options allow you to
redirect it.

PP Option Summary

(F s_Jilename)

(Pp _JJOrtname)

(E g_expressionJ

direct future printing to s_filename

causes output to go to the port p __portname
(port should be opened previously)

evaluate g_expression and don't print

(princ 'g_arg ['p_port])

EQUIVALENT TO: patom.

(print 'g_arg ['p_port])

RETURNS: nil

SIDE EFFECT: prints g_arg on the port p_port or the default port.

(probef 'st_fi.le)

RETURNS: t iff the file st_fi.le exists.

NOTE: Just because it exists doesn't mean you can read it.

(pp-form 'g_form ['p_port])

RETURNS:t

SIDE EFFECT: g_form is pretty-printed to the port p_port (or poport if p_port is not
given). This is the function which pp uses. pp-form does not look for func
tion definitions or values of variables, it just prints out the form it is given.

NOTE: This is useful as a top-level-printer, c.f. top-level in Chapter 6.

Franz Lisp Manual 2-273

(ratom ['p_port ['g_eof]])

RETURNS: the next atom read from the given or default port. On end of file, g_eof
(default nil) is returned.

(read [' p _port [' g_ eof]])

RETURNS: the next lisp expression read from the given or default port. On end of file,
g_eof (default nil) is returned.

NOTE: An error will occur if the reader is given an ill formed expression. The most com
mon error is too many right parentheses (note that this is not considered an error
in Maclisp).

(readc ['p_port ['g_eof]])

RETURNS: the next character read from the given or default port. On end of file, g_eof
(default nil) is returned.

(readllst 'l_arg)

RETURNS: the lisp expression read from the list of characters in l_arg.

(removeaddress 's_namel ['s_name2 .. .])

RETURNS: nil

SIDE EFFECT: the entries for the s namei in the Lisp symbol table are removed. This is
useful if you wish to-<;fasl or jfasl in a file twice, since it is illegal for a sym
bol in the file you are loading to already exist in the lisp symbol table.

(resetio)

RETURNS: nil

SIDE EFFECT: all ports except the standard input, output and error are closed.

(setsyntax 's_symbol 's_synclass ['ts_func])

RETURNS:t

SIDE EFFECT: this sets the code for s symbol to sx code in the current readtable. If
s_synclass is macro or splicing then ls_func is the associated function. See
Chapter 7 on the reader for more details.

(sload 's_file)

SIDE EFFECT: the file s_file (in the current directory) is opened for reading and each form
is read, printed and evaluated. If the form is recognizable as a function
definition, only its name will be printed, otherwise the whole form is
printed.

NOTE: This function is useful when a file ref uses to load because of a syntax error and you
would like to narrow down where the error is.

2-274 Franz Lisp Manual

(tab 'x_col ['p_port])

SIDE EFFECT: enough spaces are printed to put the cursor on column x_col. If the cursor
is beyond x_col to start with, a terpr is done first.

(terpr ['p _port])

RETURNS: nil

SIDE EFFECT: a terminate line character sequence is sent to the given port or the default
port. This will also drain the port.

(terpri ['p_port])

EQUIVALENT TO: terpr.

(tilde-expand 'st_filename)

RETURNS: a symbol whose pname is the tilde-expansion of the argument, (as discussed at
the beginning of this chapter). If the argument does not begin with a tilde, the
argument itself is returned.

(tyi ['p _port])

RETURNS: the fixnum representation of the next character read. On end of file, -1 is
returned.

(tyipeek ['p _port])

RETURNS: the fixnum representation of the next character to be read.
NOTE: This does not actually read the character, it just peeks at it.

(tyo 'x_char ['p_port])

RETURNS: x_char.
SIDE EFFECT: the character whose fixnum representation is x_code, is printed as a on the

given output port or the default output port.

(untyi 'x_char ['p_port])

SIDE EFFECT: x_char is put back in the input buffer so a subsequent tyi or read will read it
first.

NOTE: a maximum of one character may be put back.

(usemame-to-dir 'st_name)

RETURNS: the home directory of the given user. The result is stored, to avoid unneces
sarily searching the password file.

(zap line)

RETURNS: nil

SIDE EFFECT: all characters up to and including the line termination character are read
and discarded from the last port used for input.

NOTE: this is used as the macro function for the semicolon character when it acts as a
comment character.

CHAPTER 6 Franz Lisp Manual 2-275

System Functions

This chapter describes the functions used to interact with internal components of the Lisp
system and operating system.

(allocate 's_type 'x_pages)

WHERE: s_type is one of the FRANZ LISP data types described in §1.3.

RETURNS: x_pages.

SIDE EFFECT: FRANZ LISP attempts to allocate x_pages of type s_type. If there aren't
x_pages of memory left, no space will be allocated and an error will occur.
The storage that is allocated is not given to the caller, instead it is added to
the free storage list of s_type. The functions segment and small-segment
allocate blocks of storage and return it to the caller.

(aqv 'x_argnumb)

RETURNS: a symbol whose pname is the x_argnumbth argument (starting at 0) on the
command line which invoked the current lisp.

NOTE: if x_argnumb is less than zero, a fixnum whose value is the number of arguments
on the command line is returned. (argv 0) returns the name of the lisp you are
running.

(baktrace)

RETURNS: nil

SIDE EFFECT: the lisp runtime stack is examined and the name of (most) of the functions
currently in execution are printed, most active first.

NOTE: this will occasionally miss the names of compiled lisp functions due to incomplete
information on the stack. If you are tracing compiled code, then baktrace won't be
able to interpret the stack unless (sstatus trans/ink nil) was done. See the function
showstack for another way of printing the lisp runtime stack.

Cboundp 's_name)

RETURNS: nil if s_name is unbound, that is it has never be given a value. If x_name has
the value g_ val, then (nil . g_ val) is returned.

2-276 Franz Lisp Manual

(chdir 's_path)

RETURNS: t iff the system call succeeds.

SIDE EFFECT: the current directory set to s_path. Among other things, this will affect the
default location where the input/output functions look for and create files.

NOTE: chdir follows the standard UNIX conventions, if s_path does not begin with a slash,
the default path is changed to the current path with s_path appended. Chdir
employs tilde-expansion (discussed in Chapter 5).

(command-llne-args)

RETURNS: a list of the arguments typed on the command line, either to the lisp interpreter,
or saved lisp dump, or application compiled with the autorun option (liszt -r>.

(deref 'x_addr)

RETURNS: The contents of x_addr, when thought of as a longword memory location.

NOTE: This may be useful in constructing arguments to C functions out of 'dangerous'
areas of memory.

(dumplisp s_name)

RETURNS: nil

SIDE EFFECT: the current lisp is dumped to the named file. When s_name is executed,
you will be in a lisp in the same state as when the dumplisp was done.

NOTE: dumplisp will fail if one tries to write over the current running file. UNIX does not
allow you to modify the file you are running.

(eval-when l_time g_expl .. .)

SIDE EFFECT: l_time may contain any combination of the symbols load, eva~ and compile.

(exit ['x_code])

The effects of load and compile is discussed in §12.3.2.1 compiler. If eval
is present however, this simply means that the expressions g_expl and so
on are evaluated from left to right. If eval is not present, the forms are not
evaluated.

RETURNS: nothing (it never returns).

SIDE EFFECT: the lisp system dies with exit code x_code or 0 if x_code is not specified.

(fake 'x_addr)

RETURNS: the lisp object at address x_addr.

NOTE: This is intended to be used by people debugging the lisp system.

Franz Lisp Manual 2-277

(fork)

(gc)

RETURNS: nil to the child process a:hd the pr0cess number of the child to the parent.
SIDE EFFECT: A copy of the current lisp system is made in memory and both lisp systems

now begin to run. This function can be used interactively to temporarily
save the state of Lisp (as shown below), but you must be careful that only
one of the lisp's interacts with the terminal after the fork. The wait func
tion is useful for this.

-> (setqJoo 'bar)
bar
- > (cond ((for/c)(wait)))
nil
->Joo
bar
- > (setq Joo 'baz)
baz
->Joo
baz
-> (exit)
(5274. 0)
->Joo
bar

RETURNS: nil

;; set a variable

;; duplicate the lisp system and
;; make the parent wait
;; check the value of the variable

;; give it a new value

;; make sure it worked

;; exit the child
;; the wait function returns this
;; we check to make sure parent was
;; not modified.

SIDE EFFECT: this causes a garbage collection.
NOTE: The function gcafter is not called automatically after this function finishes. Nor

mally the user doesn't have to call gc since garbage collection occurs automatically
whenever internal free lists are exhausted.

(gcafter s_type)

WHERE: s type is one of the FRANZ LISP data types listed in §1.3.
NOTE: this function is called by the garbage collector after a garbage collection which was

caused by running out of data type s type. This function should determine if more
space need be allocated and if so should allocate it. There is a default gcafter f unc
tion but users who want control over space allocation can define their own -- but
note that it must be an nlambda.

(getenv 's_name)

RETURNS: a symbol whose pname is the value of s name in the current UNIX environ
ment. If s_name doesn't exist in the current environment, a symbol with a null
pname is returned.

2-278 Franz Lisp Manual

(hashtabstat)
RETURNS: a list of fixnums representing the number of symbols in each bucket of the

oblist.

NOTE: the oblist is stored a hash table of buckets. Ideally there would be the same
number of symbols in each bucket.

(help [sx_arg])

SIDE EFFECT: If sx_arg is a symbol then the portion of this manual beginning with the
description of sx_arg is printed on the terminal. If sx_arg is a fixnum or
the name of one of the appendicies, that chapter or appendix is printed on
the terminal. If no argument is provided, help prints the options that it
r~c gnizes. The program 'more' is used to print the manual on the termi
n , it will stop after each page and will continue after the space key is
p essed.

(include s_file~
RETURNS: nil

SIDE EFFECT: The given filename is loaded into the lisp.

NOTE: this is similar to load except the argument is not evaluated. Include means some
thing special to the compiler.

(include-if 'g_predicate s_filename)

RETURNS: nil

SIDE EFFECT: This has the same effect as include, but is only actuated if the predicate is
non-nil.

Cincludef 's_filename)

RETURNS: nil

SIDE EFFECT: this is the same as include except the argument is evaluated.

Cincludef-lf 'g_predicate s_filename)

RETURNS: nil
SIDE EFFECT: This has the same effect as includef, but is only actuated if the predicate is

non-nil.

(maknum 'g_arg)

RETURNS: the address of its argument converted into a fixnum.

(monitor ['xs_maxaddr])

RETURNS:t

SIDE EFFECT: If xs_maxaddr is t then profiling of the entire lisp system is begun. If
xs_maxaddr is a fixnum then profiling is done only up to address
xs_maxaddr. If xs_maxaddr is not given, then profiling is stopped and the
data obtained is written to the file 'moo.out' where it can be analyzed with
the UNIX 'prof' program.

NOTE: this function only works if the lisp system has been compiled in a special way, oth
erwise, an error is invoked.

Franz Lisp Manual 2-279

(opval 's_arg ['g_newval])
RETURNS: the value associated with s_arg before the call.
SIDE EFFECT: If g_newval is specified, the value associated with s_arg is changed to

g_newval.
NOTE: opval keeps track of storage allocation. If s_arg is one of the data types then opval

will return a list of three fixnums representing the number of items of that type in
use, the number of pages allocated and the number of items of that type per page.
You should never try to change the value opva/ associates with a data type using
opvaL
If s_arg is pagelimit then opval will return (and set if g_newval is given) the max
imum amount of lisp data pages it will allocate. This limit should r~main small
unless you know your program requires lots of space as this limit will catch pro
grams in infinite loops which gobble up memory.

(*process 'st_command ['g_readp ['g_writep]])

RETURNS: either a fixnum if one argument is given, or a list of two ports and a fixnum if
two or three arguments are given.

NOTE: •process starts another process by passing st_command to the shell (it first tries
/bin/csh, then it tries /bin/sh if /bin/csh doesn't exist). If only one argument is
given to •process, •process waits for the new process to die and then returns the exit
code of the new process. If more two or three arguments are given, •process starts
the process and then returns a list which, depending on the value of g_readp and
g_writep, may contaip i/o ports for communcating with the new process. If
g_ writep is non-null, then a port will be created which the lisp program can use to
send characters to the new process. If g_readp is non-null, then a port will be
created which the lisp program can use to read characters from the new process.
The value returned by •process is (readport writeport pid) where readport and wri
teport are either nil O[a port based on the value of g_readp and g_writep. Pid is
the process id of the new process. Since it is hard to remember the order of
g_readp and g_ writep, the functions •process-send and •process-receive were written
to perform the common functions.

(*process-receive 'st_command)
RETURNS: a port which can be read.
SIDE EFFECT: The command st_command is given to the shell and it is started running in

the background. The output of that command is available for reading via
the port returned. The input of the command process is set to /dev/null.

(*process-send 'st_command)
RETURNS: a port which can be written to.
SIDE EFFECT: The command st_command is given to the shell and it is started runing in

the background. The lisp program can provide input for that command by
sending characters to the port returned by this function. The output of the
command process is set to /dev/null.

2-280 Franz Lisp Manual

(process s_pgrm [s_frompipe s_topipe])

RETURNS: if the optional argumentS are not present a fixnum which is the exit code when
s_prgm dies. If the optional arguments are present, it returns a fixnum which is
the process id of the child.

NOTE: This command is obsolete. New program8 should use one of the •process com
mands given above.

SIDE EFFECT: If s trompipe and s topipe are given, they are bound to ports which are
pipeS which direct ciiatacters from FRANZ LISP to the new process and to
FRANZ LISP from the new process respectively. Process forks a process
named s_prgm and waits for it to die iff there are no pipe arguments given.

(ptime)

RETURNS: a list of two elements, the first is the amount of processor time used by the lisp
system so far, the second is the amount of time used by the garbage collector so
far.

NOTE: the time is measured in those units used by the times(2) system call, usually 60ths
of a second. The first number includes the second number. The amount of time
used by garbage collection is not recorded until the first call to ptime. This is done
to prevent overhead when the user is not interested in garbage collection times.

(reset)

SIDE EFFECT: the lisp runtime stack is cleared and the system restarts at the top level by
executin& a (/ilncall top-level niO

(restorelisp 's_name)

SIDE EFFECT: this reads in file s_name (which was created by savelisp) and then does a
(reSl!t).

NOTE: This is only used on vMs systems where dumplisp cannot be used.

(retbrk ['x_Ievel])

WHERE: x_level is a smatl integer of either sign.

SIDE EFFECT: The default error handler keeps a notion of the current level of the error
caught. If x_level is negative, control is thrown to this default error
handler whose level is that many less than the present, or to top-level if
there aren't enough. If x level is non-negative, control is passed to the
handler at that level. If i_level is not present, the value -1 is taken by
default.

(•rset 'g_flag)

RETURNS: g_flag

SIDE EFFECT: If g_tlag is non nil then the lisp system will maintain extra information
about calls to eva/ and jimca/L This record keeping slows down the evalua
tion but this is required for the functions evalhook, fancallhook, and eval
frame to work. To debug compiled lisp code the transfer tables should be
unlinked: (sstatus trans/ink ni/)

(savellsp 's_name)

RETURNS:t

Franz Lisp Manual 2-281

SIDE EFFECT: the state of the Lisp system is saved in the file s_name. It can be read in
by restorelisp.

NOTE: This is only used on VMS systems where dumplisp cannot be used.

(segment 's_type 'x_size)

WHERE: s_type is one of the data types given in §1.3

RETURNS: a segment of contiguous lispvals of type s_type.

NOTE: In reality, segment returns a new data cell of type s_type and allocates space for
x_size - 1 more s_type's beyond the one returned. Segment always allocates new
space and does so in 512 byte chunks. If you ask for 2 fi.xnums, segment will actu
ally allocate 128 of them thus wasting 126 fi.xnums. The function small-segment is a
smarter space allocator and should be used whenever possible.

(shell)

RETURNS: the exit code of the shell when it dies.

SIDE EFFECT: this forks a new shell and returns when the shell dies.

(showstack)

RETURNS: nil

SIDE EFFECT: all forms currently in evaluation are printed, beginning with the most
recent. For compiled code the most that showstack will show is the f unc
tion name and it may miss some functions.

(signal 'x_signum 's_name)

RETURNS: nil if no previous call to signal has been made, or the previously installed
s_name.

SIDE EFFECT: this declares that the function named s_name will handle the signal number
x_signum. If s_name is nil, the signal is ignored. Presently only four
UNIX signals are caught, they and their numbers are: lnterrupt(2), Floating
exception(8), Alarm(14), and Hang-up(l).

(sizeof 'g_arg)

RETURNS: the number of bytes required to store one object of type g_arg, encoded as a
fi.xnum.

(small-segment 's_type 'x_cells)

WHERE: s_type is one of fi.xnum, flonum and value.

RETURNS: a segment of x_cells data objects of type s_type.

SIDE EFFECT: This may call segment to allocate new space or it may be able to fill the
request on a page already allocated. The value returned by small-segment is
usually stored in the data subpart of an array object.

\2-282 Franz Lisp Manual

(sstatus g_ type g_ val)

RETURNS: g_ val

SIDE EFFECT: If g_type is not one of the special sstatus codes described in the next few
pages this simply sets g_ val as the value of status type g_ type in the system
status property list.

(sstatus appendmap g_ val)

RETURNS: g_ val

SIDE EFFECT: If g_ val is non-null when fas/ is told to create a load map, it will append to
the file name given in the fas/ command, rather than creating a new map
file. The initial value is nil.

(sstatus automatic-reset g_ val)

RETURNS: g_ val

SIDE EFFECT: If g val is non-null when an error occurs which no one wants to handle, a
reset will be done instead of entering a primitive internal break loop. The
initial value is t.

(sstatus chainatom g_ val)

RETURNS: g_ val

SIDE EFFECT: If g_ val is non nil and a car or cdr of a symbol is done, then nil will be
returned instead of an error being signaled. This only affects the inter
preter, not the compiler. The initial value is nil.

(sstatus dumpcore g_ val)

RETURNS: g_ val

SIDE EFFECT: If g_ val is nil, FRANZ LISP tells UNIX that a segmentation violation or bus
error should cause a core dump. If g_ val is non nil then FRANZ LISP will
catch those errors and print a message advising the user to reset.

NOTE: The initial value for this flag is nil, and only those knowledgeable of the innards of
the lisp system should ever set this flag non nil.

(sstatus dumpmode x_ val)

RETURNS: x_val

SIDE EFFECT: All subsequent dumplisps will be done in mode x_ val. x_ val may be either
413 or 410 (decimal).

NOTE: the advantage of mode 413 is that the dumped Lisp can be demand paged in when
first started, which will make it start faster and disrupt other users less. The initial
value is 413.

(sstatus evalhook L val)

RETURNS: g_ val

Franz Lisp Manual 2-283

SIDE EFFECT: When g_ val is non nil, this enables the evalhook and funcallhook traps in
the evaluator. See §14.4 for more details.

(sstatus feature g_ val)

RETURNS: g_ val

SIDE EFFECT: &_val is added to the (status features) list,

(sstatus gcstrlngs g_ val)

RETURNS: g_ val

SIDE EFFECT: if g_ val is non-null, and if string garbage collection was enabled when the
lisp system was compiled, string space will be garbage collected.

NOTE: the default value for this is nil since in most applications garbage collecting strings
is a waste of time.

(sstatus ignoreeof g_ val)

RETURNS: g_ val

SIDE EFFECT: If g_val is non-null when an end of file (CNTL-D on UNIX) is typed to the
standard top-level interpreter, it will be ignored rather then cause the lisp
system to exit. If the the standard input is a file or pipe then this has no
effect, an EOF will always cause lisp to exit. The initial value is nil.

(sstatus nofeature g_ val)

RETURNS: g_ val

SIDE EFFECT: g_ val is removed from the status features list if it was present.

(sstatus translink g_ val)

RETURNS: g_ val

SIDE EFFECT: If g_ val is nil then all transfer tables are cleared and further calls through
the transfer table will not cause the fast links to be set up. If g_ val is the
symbol on then all possible transfer table entries will be linked and the flag
will be set to cause fast links to be set up dynamically. Otherwise all that is
done is to set the flag to cause fast links to be set up dynamically. The ini
tial value is nil.

NOTE: For a discussion of transfer tables, see §12.8.

(sstatu'S uctolc g_ val)

RETURNS: g_ val

SIDE EFFECT: If g_ val is not nil then all unescaped capital letters in symbols read by the
reader will be converted to lower case.

NOTE: This allows FRANZ LISP to be compatible with single case lisp systems (e.g.
Maclisp, Interlisp and UCILisp).

2-284 Franz Lisp Manual

(status g_code)

RETURNS: the value associated with the status code g_code if g_code is not one of the spe
cial cases given below

(status ctlme)

RETURNS: a symbol whose print name is the current time and date.

EXAMPLE: (status clime) - ~un Jun 29 16:51:26 198~
NOTE: This has been made obsolete by time-string, described below.

(status feature g_ val)

RETURNS: t ift' g_ val is in the status features list.

(status features)

RETURNS: the value of the features code, which is a list of features which are present in
this system. You add to this list with (sstatusfeature 'g_va/) and test if feature
g_f eat is present with (status feature 'gJeat}.

(status isatty)

RETURNS: t ift' the standard input is a terminal.

(status localtlme)

RETURNS: a list of fixnums representing the current time.

EXAMPLE: (status localtime) - (3 51 13 31 6 81 5 211 1)
means 3rd second, 5lst minute, 13th hour (1 p.m), 31st day, month 6
(0 - January), year 81 (0 - 1900), day of the week 5 (0 - Sunday), 2llth
day of the year and daylight savings time is in eft'ect.

(status syntax s_char)

NOTE: This function should not be used. See the description of getsyntax (in Chapter 7)
for a replacement.

(status undeffunc)

RETURNS: a list of all functions which transfer table entries point to but which are not
defined at this point.

NOTE: Some of the undefined functions listed could be arrays which have yet to be
created.

(status version)

RETURNS: a string which is the current lisp version name.

EXAMPLE: (status version) - "Franz Lisp, Opus 38.61"

Franz Lisp Manual 2-285

(syscall 'x_index ['xst_argl ...])

RETURNS: the result of issuing the UNIX system call number x_index with arguments
xst_argi.

NOTE: The UNIX system calls are described in section 2 of the UNIX Programmer's
manual. If xst_argi is a fixnum, then its value is passed as an argument, if it is a
symbol then its pname is passed and finally if it is a string then the string itself is
passed as an argument. Some useful syscalls are:
(sysca/120) returns process id.
(sysca/113) returns the number of seconds since Jan l, 1970.
(sysca/110 'foo) will unlink (delete) the file foo.

(sys:access 'st_filename 'x_mode)
(sys:chmod 'st_filename 'x_mode)
(sys:aethostname)
(sys :1etpid)
(sys:getpwnam 'st_username)
(sys:link 'st_oldfilename 'st_newfilename)
(sys:time)
(sys:unlink 'st_filename)

NOTE: We have been warned that the actual system call numbers may vary among
different UNIX systems. Users concerned about portability may wish to use this
group of functions. Another advantage is that tilde-expansion is performed on all
filename arguments. These functions do what is described in the system call sec
tion of your UNIX manual.

sys:getpwname returns a vector of four entries from the password file, being the
user name, user id, group id, and home directory.

(time-string ['x_seconds])
RETURNS: an ascii string, giving the time and date which was x_seconds after UNIX's idea

of creation (Midnight, Jan 1, 1970 GMT). If no argument is given, time-string
returns the current date. This supplants (status ctime), and may be used to
make the results of filestat more intelligible.

(top-level)

RETURNS: nothing (it never returns)

NOTE: This function is the top-level read-eval-print loop. It never returns any value. Its
main utility is that if you redefine it, and do a (reset) then the redefined (top-level)
is then invoked. The default top-level for Franz, allow one to specify his own
printer or reader, by binding the symbols top-level-printer and top-level-reader.
One can let the default top-level do most of the drudgery in catching resets, and
reading in .lisprc files, by binding the symbol user-top-level, to a routine that con
cerns itself only with the read-eval-print loop.

-·-·-----· ---

2-286 Franz Lisp Manual

(wait)

RETURNS: a dotted pair (processid . status) when the next child process dies.

i

'""

(

Franz Lisp Manual 2-287

CHAPTER 7

The Lisp Reader

7 .1. Introduction
The read function is responsible for converting a stream of characters into a Lisp

expression. Read is table driven and the table it uses is called a readtab/e. The print
function does the inverse of read, it converts a Lisp expression into a stream of charac
ters. Typically the conversion is done in such a way that if that stream of characters
were read by read, the result would be an expression equal to the one print was given.
Print must also ref er to the readtable in order to determine how to format its output.
The explode function, which returns a list of characters rather than printing them, must
also ref er to the readtable.

A readtable is created with the makereadtable function, modified with the setsyntax
function and interrogated with the getsyntax function. The structure of a readtable is
hidden from the user - a read table should only be manipulated with the three functions
mentioned above.

There is one distinguished readtable called the current readtable whose value deter
mines what read, print and explode do. The current readtable is the value of the symbol
readtable. Thus it is possible to rapidly change the current syntax by lambda binding a
different readtable to the symbol readtable. When the binding is undone, the syntax
reverts to its old form.

7 .2. Syntax Classes
The readtable describes how each of the 128 ascii characters should be treated by

the reader and printer. Each character belongs to a syntax class which has three proper
ties:

character class -
Tells what the reader should Jo when it sees this character. There are a large
number of character classes. They are described below.

separator -
Most types of tokens the reader constructs are one character long. Four token
types have an arbitrary length: number (1234), symbol print name (franz), escaped
symbol print name ~r~, and string ("franz"). The reader can easily determine
when it has come to the end of one of the last two types: it just looks for the
matching delimiter q or "). When the reader is reading a number or symbol print
name, it stops reading when it comes to a character with the separator property.
The separator character is pushed back into the input stream and will be the first
character read when the reader is called again.

escape -
Tells the printer when to put escapes in front of, or around, a symbol whose print
name contains this character. There are three possibilities: always escape a symbol
with this character in it, only escape a symbol if this is the only character in the

2-288 Franz Lisp Manual

symbol, and only escape a symbol if this is the first character in the symbol. [note:
The printer will always escape a symbol which, if printed out, would look like a
valid number.] ·

When the Lisp system is built, Lisp code is added to a C-coded kernel and the
result becomes the standard lisp system. The readtable present in the C-coded kernel,
called the raw readtable, contains the bare necessities for reading in Lisp code. During
the construction of the c9mplete Lisp system, a copy is made of the raw readtable and
then the copy is modified by adding macro characters. The result is what is called the
standard readtable. When a new readtable is created with makereadtable, a copy is made
of either the raw readtable or the current readtable (which is likely to be the standard
readtable).

7.3. Reader operations
The reader has a very simple algorithm. It is either scanning for a token, collecting

a token, or processing a token. Scanning involves reading characters and throwing away
those which don't start tokens (such as blanks and tabs). Collecting means gathering the
characters which make up a token into a buffer. Processing may involve creating sym
bols, strings, lists, fixnums, bignums or flonums or calling a user written function called
a character macro.

The components of the syntax class determine when the reader switches between
the scanning, collecting and processing states. The reader will continue scanning as long
as the character class of the characters it reads is cseparator. When it reads a character
whose character class is not cseparator it stores that character in its buffer and begins the
collecting phase.

If the character class of that first character is ccharacter, cnumber, cperiod, or csign.
then it will continue collecting until it runs into a character whose syntax class has the
separator property. (That last character will be pushed back into the input buffer and will
be the first character read next time.) Now the reader goes into the processing phase,
checking to see if the token it read is a number or symbol. It is important to note that
after the first character is collected the component of the syntax class which tells the
reader to stop collecting is the separator property, not the character class.

If the character class of the character which stopped the scanning is not ccharacter,
cnumber, cperiod, or csign. then the reader processes that character immediately. The
character classes csingle-macro, csingle-sp/icing-macro, and csingle-ilffix-macro will act like
ccharacter if the following token is not a separator. The processing which is done for a
given character class is described in detail in the next section.

7 .4. Character classes

ccharacter

A normal character.

raw readtable:A-Z a-z "H !#$%&*,/:;<->?@"_'0-
standard readtable:A-Z a-z "H !$%&*/:;<->?@"_{}-

cnumber raw readtable:0-9
standard readtable:0-9

This type is a digit. The syntax for an integer (fixnum or bignum) is a string of cnumber
characters optionally followed by a cperiod. If the digits are not followed by a cperiod,

Franz Lisp Manual 2-289

then they are interpreted in base ibase which must be eight or ten. The syntax for a
floating point number is either zero or more cnumbers followed by a cperiod and then
followed by one or more cnumbers. A floating point number may also be an integer or
floating point number followed by 'e' or 'd', an optional '+' or ' - ' and then zero or
more cnumbers.

csign raw readtable: + -
standard readtable: + -

A leading sign for a number. No other characters should be given this class.

cleft-paren

A left parenthesis. Tells the reader to begin forming a list.

raw readtable: (
standard readtable: (

cright-paren raw readtable:)
standard readtable:)

A right parenthesis. Tells the reader that it has reached the end of a list.

cleft-bracket raw readtable: [
standard readtable: [

A left bracket. Tells the reader that it should begin forming a list. See the description
of cright-bracket for the difference between cleft-bracket and cleft-paren.

cright-bracket raw readtable:]
standard readtable:]

A right bracket. A cright-bracket finishes the formation of the current list and all enclos
ing lists until it finds one which begins wi• a cleft-bracket or until it reaches the top level
list.

cperiod raw readtable:.
standard readtable:.

The period is used to separate element of a cons cell [e.g. (a . (b . nil)) is the same as
(ab)]. cperiodis also used in numbers as described above.

cseparator raw readtable:"I-"M esc space
standard readtable:"I-"M esc space

Separates tokens. When the reader is scanning, these character are passed over. Note:
there is a difference between the cseparator character class and the separator property of a
syntax class.

csingle-quote raw readtable:·
standard readtable:'

This causes read to be called recursively and the list (quote <value read>) to be
returned.

csymbol-delimiter raw readtable~

2-290 Franz Lisp Manual

standard readtable~
This causes the reader to begin collecting characters and to stop only when another
identical csymbol-delimiter is seen. The only way to escape a csymbol-delimiter within a
symbol name is with a cescape character. The collected characters are converted into a
string which becomes the print name of a symbol. If a symbol with an identical print
name already exists, then the allocation is not done, rather the existing symbol is used.

cescape raw readtable:\
standard readtable:\

This causes the next character to read in to be treated as a vcharacter. A character
whose syntax class is vcharacter has a character class ccharacter and does not have the
separator property so it will not separate symbols.

cstring-delimiter raw readtable:•
standard readtable:•

This is the same as csymbol-delimiter except the result is returned as a string instead of a
symbol.

csingle-character-symbol raw readtable:none
standard readtable:none

This returns a symbol whose print name is the the single character which has been col
lected.

cmacro raw readtable:none
standard readtable:',

The reader calls the macro function associated with this character and the current readt
able, passing it no arguments. The result of the macro is added to the structure the
reader is building, just as if that form were directly read by the reader. More details on
macros are provided below.

esp/icing-macro raw readtable:none
standard readtable:#;

A esp/icing-macro differs from a cmacro in the way the result is incorporated in the struc
ture the reader is building. A esp/icing-macro must return a list of forms (possibly
empty). The reader acts as if it read each element of the list itself without the surround
ing parenthesis.

csingle-macro raw readtable:none
standard readtable:none

This causes to reader to check the next character. If it is a cseparator then this acts like a
cmacro. Otherwise, it acts like a ccharacter.

csingle-splicing-macro raw readtable:none
standard readtable:none

This is triggered like a csingle-macro however the result is spliced in like a esp/icing-macro.

cilffix-macro raw readtable:none

Franz Lisp Manual 2-291

standard readtable:none
This is differs from a cmacro in that the macro function is passed a form representing
what the reader has read so far. The result of the macro replaces what the reader had
read so far.

csingle-irr/ix-macro raw readtable:none
standard readtable:none

This differs from the cirrfix-macro in that the macro will only be triggered if the character
following the csingle-irrfix-macro character is a cseparator.

cillegal raw readtable:"@-"G"N-"Z"\-" rubout
standard readtable:"@-"G"N-"Z"\-.. - rubout

The characters cause the reader to signal an error if read. -

7 .S. Syntax classes

The readtable maps each character into a syntax class. The syntax class contains
three pieces of information: the character class, whether this is a separator, and the
escape properties. The first two properties are used by the reader, the last by the printer
(and explode). The initial lisp system has the following syntax classes defined. The user
may add syntax classes with add-syntax-class. For each syntax class, we list the properties
of the class and which characters have this syntax class by default. More information
about each syntax class can be found under the description of the syntax class's character
class.

vcharacter
ccharacter

vnumber
cnumber

vsi1n
csign

vleft-paren
cleft-paren
escape-a/ways
separator

vri1ht-paren
cright-paren
escape-always
separator

vleft-bracket
cleft-bracket

raw readtable;A-Z a-z "H !#$%&* ,/:; < - > ?@" '{}
standard readtable:A-Z a-z "H !$%&* /:; < - > ?@;; o-

raw readtable:0-9
standard readtable:0-9

raw readtable: +
standard readtable: +-

raw readtable: (
standard readtable: (

raw readtable:)
standard readtable:)

raw readtable: [
standard readtable: [

2-292 Franz Lisp Manual

escape-a/ways
separator

vright-bracket
cright-bracket
escape-always
separator

vperiod
cperiod
escape-when-unique

vseparator
cseparator
escape-always
separator

vsingle-quote
csingle-quote
escape-always
separator

vsymbol-delimiter
csing/e-delimiter
escape-always

vescape
cescape
escape-a/ways

vstring-delimiter
cstring-delimiter
escape-always

vsingle-character-symbol
csingle-character-symbol
separator

vmacro
cmacro
escape-always
separator

vsplicing-macro
esp/icing-macro
escape-always
separator

vsingle-macro
csingle-macro

raw readtable:]
standard readtable:]

raw readtable:.
standard readtable:.

raw readtable:AI-AM esc space
standard readtable:AI-AM esc space

raw readtable:'
standard readtable:'

raw readtable~
standard readtable~

raw readtable:\
standard readtable:\

raw readtable:"
standard readtable:~

raw readtable:none
standard readtable:none

raw readtable:none
standard readtable:',

raw readtable:none
standard readtable:#;

raw readtable:none
standard readtable:none

escape-when-unique

vsingle-splicing-macro
csingle-splicing-macro
escape-when-unique

vinftx-macro
citifix-macro
escape-always
separator

vsingle-inftx-macro
csingle-itifix-macro
escape-when-unique

villegal
ci/legal
escape-always
separator

7 .6. Character Macros

Franz Lisp Manual 2-293

raw readtable:none
standard readtable:none

raw readtable:none
standard readtable:none

raw readtable:none
standard readtable:none

raw readtable:"@-"G"N-"Z"\-" rubout
standard readtable:"@-"G"N-"Z"\-":rubout

Character macros are user written functions which are executed during the reading
process. The value returned by a character macro may or may not be used by the reader,
depending on the type of macro and the value returned. Character macros are always
attached to a single character with the setsyntax function.

7 .6.1. Types There are three types of character macros: noflllal, splicing and infix.
These types differ in the arguments they are given or in what is done with the result
they return.

7.6.1.1. Normal

A normal macro is passed no arguments. The value returned by a normal
macro is simply used by the reader as if it had read the value itself. Here is an
example of a macro which returns the abbreviation for a given state.

2-294 Franz Lisp Manual

- >(de.fun stateabbrev nil
(cdr (assq (read) '((california. ca) (pennsylvania. pa)))))

stateabbrev
- > (setsyntax \! 'vmacro 'stateabbrev)
t
- > '(! california ! wyoming ! pennsylvania)
(ca nil pa)

Notice what happened to
! wyoming. Since it wasn't in the table, the macro probably didn't want to return anything at

all, but it had to return something, and whatever it returned was put in the list. The splicing
macro, described next, allows a character macro function to return a value that is ignored.

7 .6.1.2. Splicin1
The value returned from a splicing macro must be a list or nil. If the value

is nil, then the value is ignored, otherwise the reader acts as if it read each object
in the list. Usually the list only contains one element. If the reader is reading at
the top level (i.e. not collecting elements of list), then it is illegal for a splicing
macro to return more then one element in the list. The major advantage of a
splicing macro over a normal macro is the ability of the splicing macro to return
nothing. The comment character (usually ;) is a splicing macro bound to a func
tion which reads to the end of the line and always returns nil. Here is the previ
ous example written as a splicing macro

- > (de.fun stateabbrev nil
((lambda (value)

(cond (value (/ist value))
(t niOJ)

(cdr (assq (read) '((california. ca) (pennsylvania. pa))))))
- > (setsyntax '! 'vsplicing-macro 'stateabbrev)
- > '(/pennsylvania I foo !california)
(pa ca)
- > '!foo !bar !pennsylvania
pa
->

7 .6.1.3. Inftx

Infix macros are passed a cone structure representing what has been read so
far. Briefly, a tconc structure is a single list cell whose car points to a list and
whose cdr points to the last list cell in that list. The interpretation by the reader
of the value returned by an infix macro depends on whether the macro is called
while the reader is constructing a list or whether it is called at the top level of the

1
,'

Franz Lisp Manual 2-295

reader. If the macro is called while a list is being constructed, then the value
returned should be a tconc structure. The car of that structure replaces the list of
elements that the reader has been collecting. If the macro is called at top level,
then it will be passed the value nil, and the value it returns should either be nil or
a tconc structure. If the macro returns nil, then the value is ignored and the
reader continues to read. If the macro returns a tconc structure of one element
(i.e. whose car is a list of one element), then that single element is returned as
the value of read. If the macro returns a tconc structure of more than one ele
ment, then that list of elements is returned as the value of read.

- > (defan plusop (x)
(cond ((null x) (tconc nil \ +))

(t (/cone nil (/ist 'plus (caar x) (read))))))

plusop
- > (setsyntax \ + 'vi'lfix-macro 'plusop)
t
-> '(a+ b)
(plus ab)
-> ·+
l+I
->

7 .6.2. Invocations
There are three different circumstances in which you would like a macro func

tion to be triggered.
A/ways-

Whenever the macro character is seen, the macro should be invoked. This is
accomplished by using the character classes cmacro, esp/icing-macro, or cirifix
macro, and by using the separator property. The syntax classes vmacro,
vsplicing-macro, and vsin1le-macro are defined this way.

Whenfirst-
The macro should only be triggered when the macro character is the first char
acter found after the scanning process. A syntax class for a when first macro
would be defined using cmacro, esp/icing-macro, or cirifix-macro and not including
the separator property.

When unique -
The macro should only be triggered when the macro character is the only char
acter collected in the token collection phase of the reader, i.e the macro charac
ter is preceeded by zero or more cseparators and followed by a separator. A syn
tax class for a when unique macro would be defined using csingle-macro, csing/e
splicing-macro, or csingle-irifix-macro and not including the separator property.
The syntax classes so defined are vsingle-macro, vsingle-splicin1-macro, and
vsingle-inftx-macro.

2-296 Franz Lisp Manual

7. 7. Functions

(setsyntax 's_symbol 's_synclass ['Is_func])
WHERE: ls_func is the name of a function or a lambda body.
RETURNS:t
SIDE EFFECT: S_symbol should be a symbol whose print name is only one character. The

syntax class for that character is set to s synclass in the current readtable.
If s_synclass is a class that requires a character macro, then ls_func must be
supplied.

NOTE: The symbolic syntax codes are new to Opus 38. For compatibility, s_synclass can
be one of the ftxnum syntax codes which appeared in older versions of the FRANZ
LISP Manual. This compatibility is only temporary: existing code which uses the
ftxnum syntax codes should be converted.

(getsyntax 's_symbol)
RETURNS: the syntax class of the first character of s_symbol's print name. s_symbol's

print name must be exactly one character long.
NOTE: This function is new to Opus 38. It supercedes (status syntax} which no longer

exists.

(add-syntax-class 's_synclass '!_properties)
RETURNS: s_synclass
SIDE EFFECT: Defines the syntax class s_synclass to have properties }_properties. The list

!_properties should contain a character classes mentioned above.
!_properties may contain one of the escape properties: escape-always,
escape-when-unique, or escape-when-first. !_properties may contain the
separator property. After a syntax cla8s has been defined with add-syntax
class, the setsyntax function can be used to give characters that syntax class.

; Define a non-separating macro character.
; This type of macro character is used in UCl-Lisp, and
; it corresponds to a FIRST MACRO in Interlisp
- > (add-syntax-class 'vuci-macro '(cmacro escape-when-first))
vuci-macro
->

(

Franz Lisp Manual 2-297

CHAPTER 8

Functions, Fclosures, and Macros

8.1. valid function objects
There are many different objects which can occupy the function field of a symbol

object. Table 8.1, on the following page, shows all of the possibilities, how to recognize
them, and where to look for documentation.

8.2. functions
The basic Lisp function is the lambda function. When a lambda function is called,

the actual arguments are evaluated from left to right and are lambda-bound to the formal
parameters of the lambda function.

An nlambda function is usually used for functions which are invoked by the user at
top level. Some built-in functions which evaluate their arguments in special ways are
also nlambdas (e.g cond, do, or). When an nlambda function is called, the list of
unevaluated arguments is lambda bound to the single formal parameter of the nlambda
function.

Some programmers will use an nlambda function when they are not sure how many
arguments will be passed. Then, the first thing the nlambda function does is map eval
over the list of unevaluated arguments it has been passed. This is usually the wrong
thing to do, as it will not work compiled if any of the arguments are local variables. The
solution is to use a lexpr. When a lexpr function is called, the arguments are evaluated
and a fixnum whose value is the number of arguments is lambda-bound to the single for
mal parameter of the lexpr function. The lexpr can then access the arguments using the
arg function.

When a function is compiled, special declarations may be needed to preserve its
behavior. An argument is not lambda-bound to the name of the corresponding formal
parameter unless that formal parameter has been declared special (see §12.3.2.2).

Lambda and lexpr functions both compile into a binary object with a discipline of
lambda. However, a compiled lexpr still acts like an interpreted lexpr.

8.3. macros

An important feature of Lisp is its ability to manipulate programs as data.· As a
result of this, most Lisp implementations have very powerful macro facilities. The Lisp
language's macro facility can be used to incorporate popular features of the other
languages into Lisp. For example, there are macro packages which allow one to create
records (ala Pascal) and ref er to elements of those records by the field names. The struct
package imported from Maclisp does this. Another popular use for macros is to create
more readable control structures which expand into cond, or and and. One such example
is the If macro. It allows you to write

2-298 Franz Lisp Manual

informal name obj_ect ~
interpreted list with car

lambda function eqto lambda
interpreted list with car

nlambda function eq to nlambda
interpreted list with car

lexpr function eq to lexpr
interpreted list with car

macro eqto macro
fclosure vector with vprop

eq to f closure
compiled binary with discipline

lambda or lexpr eqto lambda
function
compiled binary with discipline

nlambda function eq to nlambda
compiled binary with discipline

macro eq to macro
foreign binary with discipline

subroutine of "subroutine"f
foreign binary with discipline

function of "function"t
foreign binary with discipline

integer function of "integer-function"t
foreign binary with discipline

real function of "real-function"t
foreign binaTy with discipline

C function of "c-function"t
foreign binary with discipline

double function of "double-c-function"t
foreign binary with discipline

structure function of "vector-c-function "t
array array object

Table 8.1

((/'(equal numb 0) then (print 'zero) (terpr)
elseif (equal numb 1) then (print 'one) (terpr)
else (print 11 give uAJ)

which expands to

(cond
((equal numb 0) (print 'zero) (terpr))
((equal numb 1) (print 'one) (terpr))
(t (print 11 give uAJ))

documentation
TI

8.2

8.2

8.3

8.4

8.2

8.2

8.3

8.5

8.5

8.5

8.5

8.5

8.5

8.5

9

t0n1y the first character of the string is significant (i.e "s" is ok for "subroutine")

Franz Lisp Manual 2-299

8.3.1. macro forms
A macro is a function which accepts a Lisp expression as input and returns

another Lisp expression. The action the macro takes is called macro expansion. Here
is a simple example:

- > (def first (macro (x) (cons 'car (cdr x))))
first
- > (first '(a b c))
a
- > (apply 'first '(first '(a b c)))
(car '(a b c))

The first input line defines a macro called first Notice that the macro has one formal
parameter, x. On the second input line, we ask the interpreter to evaluate
(first '(a b c)). Eva/ sees that first has a function definition of type macro, so it evalu
ates firsf s definition, passing to first, as an argument, the form eval itself was trying
to evaluate: (first '(a b c)). The first macro chops off the car of the argument with
cdr, cons' a car at the beginning of the list and returns (car '(ab c)), which eval
evaluates. The value a is returned as the value of (first '(ab c)). Thus whenever
eval tries to evaluate a list whose car has a macro definition it ends up doing (at least)
two operations, the first of which is a call to the macro to let it macro expand the
form, and the other is the evaluation of the result of the macro. The result of the
macro may be yet another call to a macro, so eval may have to do even more evalua
tions until it can finally determine the value of an expression. One way to see how a
macro will expand is to use apply as shown on the third input line above.

8.3.2. defmacro
The macro dejmacro makes it easier to define macros because it allows you to

name the arguments to the macro call. For example, suppose we find ourselves often
writing code like (setq stack (cons newe/t stack). We could define a macro named push
to do this for us. One way to define it is:

-> (de/push
(macro (x) (/ist 'setq (caddr x) (/ist 'cons (cadr x) (caddr x)))))

push

then (push newelt stack} will expand to the form mentioned above. The same macro
written using defmacro would be:

- > (de/macro push (value stack)
(/ist 'setq ,stack (/ist 'cons, value ,stack)))

push

Defmacro allows you to name the arguments of the macro call, and makes the macro
definition look more like a function definition.

8.3.3. the backquote character macro

The default syntax for FRANZ LISP has four characters with associated character
macros. One is semicolon for comments. Two others are the backquote and comma
which are used by the backquote character macro. The fourth is the sharp sign macro

2-300 Franz Lisp Manual

described in the next section.
The backquote macro is used to create lists where many of the elements are

fixed (quoted). This makes it very useful for creating macro definitions. In the sim
plest case, a backquote acts just like a single quote:

->'(ab cde)
(ab c de)

If a comma precedes an element of a backquoted list then that element is evaluated
and its value is put in the list.

- > (setq d '(x y z))
(x y z)
- > '(a b c ,d e)
(a b c (x y z) e)

If a comma fallowed by an at sign precedes an element in a backquoted list, then that
element is evaluated and spliced into the list with append

->'(ab c ,@de)
(ab c x y z e)

Once a list begins with a backquote, the commas may appear anywhere in the list as
this example shows:

->'(ab (c d ,(cdr d)) (ef(g h ,@(cddr d) ,@d)))
(ab (c d (y z)) (e f (g h z x y z)))

It is also possible and sometimes even useful to use the backquote macro within
itself. As a final demonstration of the backquote macro, we shall define the first and
push macros using all the power at our disposal: defmacro and the backquote macro.

- >(de/macro first (/ist) '(car ,list))
first
- > (de/macro push (value stack) '(setq ,stack (cons , value ,stack)))
stack

8.3.4. sharp sign character macro
The sharp sign macro can perform a number of different functions at read

time. The character directly following the sharp sign determines which function will
be done, and following Lisp s-expressions may serve as arguments.

8.3.4.1. conditional inclusion
If you plan to run one source file in more than one environment then you may
want to some pieces of code to be included or not included depending on the
environment. The C language uses "#ifder• and "#ifnder' for this purpose, and
Lisp uses "# +" and "#-". The environment that the sharp sign macro checks
is the (status features) list which is initialized when the Lisp system .is built and
which may be altered by (sstatusfeaturefoo) and (sstatus nofeature bar) The form
of conditional inclusion is

/

Franz Lisp Manual 2-301

#+when what
where when is either a symbol or an expression involving symbols and the f unc
tions and, or, and not The meaning is that what will only be read in if when is
true. A symbol in when is true only if it appears in the (status features) list.

; suppose we want to write a program which references a file
; and which can run at ucb, ucsd and emu where the file naming conventions
; are different. .
- > (de.fan howold (name)

(terpr)

The form

(load# + (or ucb ucsd) • /usrllibllisp/ages. r
+emu" /usr/lisp/doclages.f)

(patom name)
(patom • is •)
(print (cdr (assoc name agefile)))
{patom "years old')
(terpr))

#-when what
is equivalent to

#+(not when) what

8.3.4.2. ft:xnum character equivalents
When working with fixnum equivalents of characters, it is often hard to remember
the number corresponding to a character. The form

#le
is equivalent to the fixnum representation of character c.

; a function which returns t if the user types y else it returns nil.

' - > (de.fan yesorno nil
(progn (ans)

(setq ans (tyi))
(cond ((equal ans #/y) t)

(t nil))))

8.3.4.3. read time evaluation
Occasionally you want to express a constant as a Lisp expression, yet you don't
want to pay the penalty of evaluating this expression each time it is referenced.
The form

#.expression

2-302 Franz Lisp Manual

evaluates the expression at read time and returns its value.

; a function to test if any of bits 1 3 or 12 are set in a fixnum.

:_ > (defun testit (num)
(cond ((zerop (boole 1 num #. (+ (lsh 1 1) (/sh 1 J) (lsh 1 11))))

nil)
(t t)))

8.4. fclosures

Fclosures are a type of functional object. The purpose is to remember the values
of some variables between invocations of the functional object and to protect this data
from being inadvertently overwritten by other Lisp functions. Fortran programs usually
exhibit this behavior for their variables. (In fact, some versions of Fortran would
require the variables to be in COMMON). Thus it is easy to write a linear congruent
random number generator in Fortran, merely by keeping the seed as a variable in the
function. It is much more risky to do so in Lisp, since any special variable you picked,
might be used by some other function. Fclosures are an attempt to provide most of the
same functionality as closures in Lisp Machine Lisp, to users of FRANZ LISP. Fclosures
are related to closures in this way:
(fclosure '(a b) 'foo) < - - >

(let ((a a) (b b)) (closure '(a b) 'f oo))

8.4.1. an example

% lisp
Franz Lisp, Opus 38.60
- > (defun code (me count)

(print Oist 'in x))
(setq x (+ l x))
(cond «areaterp count l) (funcail me me (subl count))))
(print (list 'out x)))

code
- > (defun tester (object count)

(funcall object object count) (terpri))
tester
->(setq x 0)
0
- > (setq z (fclosure '(x) 'code))
fclosure[8)
- >- (tester z 3)
(in O)(in I) (in 2)(out J)(out J)(out 3)
nil
->x
0

\

I
\

Franz Lisp Manual 2-303

The function /closure creates a new object that we will call an f closure, (although
it is actually a vector). The fclosure contains a functional object, and a set of symbols
and values for the symbols. In the above example, the f closure functional object is
the function code. The set of symbols and values just contains the symbol 'x' and
zero, the value of 'x' when the fclosure was created.

When an fclosure is funcall'ed:
1) The Lisp system lambda binds the symbols in the f closure to their values in the

fclosure.
2) It continues the funcall on the functional object of the f closure.
3) Finally, it· un-lambda binds the symbols in the fclosure and at the same tune

stores the current values of the symbols in the f closure.

Notice that the fclosure is saving the value of the symbol 'x'. Each time a f clo
sure is created, new space is allocated for saving the values of the symbols. Thus if
we execute f closure again, over the same function, we can have two independent
counters:

-> (setq zz (fdosure 'b:) 'mde))
fclosure[l]
- > (tester zz 2)
(in 0) (in 1) (out 2)(out 2)
- > (tester zz 2)
(in 2) (in 3)(out 4)(out 4)
- > (tester z 3)
(in 3)(in 4)(in S)(out 6)(out 6)(out 6)

8.4.2. useful functions
Here are some quick some summaries of functions dealing with closures. They

are more formally defined in §2.8.4. To recap, fclosures are made by (!closure 'lvars
'g_funcobj). l_ vars is a list of symbols (not containing nil), g_funcobj is any object
that can be funcalled. (Objects which can be funcalled, include compiled Lisp func
tions, lambda expressions, symbols, foreign functions, etc.) In general, if you want a
compiled function to be closed over a variable, you must declare the variable to be
special within the function. Another example would be:

(fclosure '(ab) #'(lambda (x) (plus x a)))

Here, the #' construction will make the compiler compile the lambda expression.
There are times when you want to share variables between f closures. This can

be done if the f closures are created at the same time using fclosure-list. The function
fclosure-alist returns an assoc list giving the symbols and values in the fclosure. The
predicate fclosurep returns t iff its argument is a f closure. Other functions imported
from Lisp Machine Lisp are symeval-in-fclosure, let-fc/osed, and set-in-fclosure. Lastly,
the function fclosure-jilnction returns the function argument.

2-304 Franz Lisp Manual

8.4.3. intemal structure
Currently, closures are imt>iemented as vectors, with property being the symbol

fclosure. The functional object is the first entry. The remaining entries are struc
tures which point to the symbols and values for the closure, (with a reference count
to determine if a recursive closure is active).

8.S. forei1n subroutines and functions
FRANZ LISP has the ability to dynamically load object files produced by other com

pilers and to call functions defined in those files. These functions are called foreign func
tions.• There are seven types of foreign functions. They are characterized by the type of
result they return, and by differences in the interpretation of their arguments. They
come from two families: a group suited for languages which pass arguments by reference
(e.g. Fortran), and a group suited for languages which pass arguments by value (e.g. C).

There are four types in the first group:

subroutine
This does not return anything. The Lisp system always returns t after calling a sub
routine.

function
This returns whatever the function returns. This must be a valid Lisp object or it
may cause the Lisp system to fail.

inteKer-function
This returns an integer which the Lisp system makes into a fixnum and ·returns.

real-function
This returns a double precision real number which the Lisp system makes into a
flonum and returns.

There are three types in the second group:

c-function
This is like an integer function, except for its different interpretation of arguments.

double-c-function
This is like a real-function.

vector-c-function
This is for C functions which return a structure. The first argument to such func
tions must be a vector (of type vectori), into which the result is stored. The
second Lisp argument becomes the first argument to the C function, and so on

A foreign function is accessed through a binary object just like a compiled Lisp function.
The difference is that the discipline field of a binary object for a foreign function is a
string whose first character is given in the following table:

"This topic is also discussed in Report PAM-124 of the Center for Pure and Applied Mathematics, UCB, entitled
"Parlez-Vous Franz? An Informal Introduction to Interfacing Foreign Functions to Franz LISP", by James R. Larus

Franz Lisp Manual 2-305

letter ~
s subroutine
f function
i integer-function
r real-function.
c c-function
v vector-c-function
d double-c-function

Two functions are provided for setting-up foreign functions. Cfasl loads an object file
into the Lisp system and sets up one foreign function binary object. If there are more
than one function in an object file, getaddress can be used to set up additional foreign
function objects.

Foreign functions are called just like other functions, e.g (/imname argl arg2).
When a function in the Fortran group is called, the arguments are evaluated and then
examined. List, hunk and symbol arguments are passed unchanged to the foreign func
tion. Fixnum and tlonum arguments are copied into a temporary location and a pointer
to the value is passed (this is because Fortran uses call by reference and it is dangerous
to modify the contents of a fixnum or tlonum which something else might point to). If
the argument is an array object, the data field of the array object is passed to the foreign
function (This is the easiest way to send large amounts of data to and receive large
amounts of data from a foreign function). If a binary object is an argument, the entry
field of that object is passed to the foreign function (the entry field is the address of a
function, so this amounts to passing a function as an argument).

When a function in the C group is called, fixnum and tlownum arguments are
passed by value. For almost all other arguments, the address is merely provided to the C
routine. The only exception arises when you want to invoke a C routine which expects a
"structure" argument. Recall that a (rarely used) feature of the C language is the ability
to pass structures by value. This copies the structure onto the stack. Since the Franz's
nearest equivalent to a C structure is a vector, we provide an escape clause to copy the
contents of an immediate-type vector by value. If the property field of a vectori argu
ment, is the symbol "value-structure-argument", then the binary data of this
immediate-type vector is copied into the argument list of the C routine.

The method a foreign function uses to access the arguments provided by Lisp is
dependent on the language of the foreign function. The following scripts demonstrate
how how Lisp can interact with three languages: C, Pascal and Fortran. C and Pascal
have pointer types and the first script shows how to use pointers to extract information
from Lisp objects. There are two functions defined for each language. The first (cfoo in
C, pfoo in Pascal) is given four arguments, a fixnum, a flonum-block array, a hunk of at
least two fixnums and a list of at least two fixnums. To demonstrate that the values were
passed, each ?foo function prints its arguments (or parts of them). The ?foo function
then modifies the second element of the tlonum-block array and returns a 3 to Lisp.
The second function (cmemq in C, pmemq in Pascal) acts just like the Lisp memq f unc
tion (except it won't work for fixnums whereas the lisp memq will work for small
fixnums). In the script, typed input is in bold, computer output is in roman and com
ments are in italic.

These are the C coded jilnctions
% cat ch8auxc.c
r demonstration of c coded foreign integer-function.,

r the following will be used to extract fixnums out of a list of fixnums • /

2-306 Franz Lisp Manual

struct listoffixnumscell
(struct listoffixnumscell *air;

int •fixnum;
};

struct listcell
(struct listcell *air;

int car;
};

cfoo(a,b,c,d)
int •a;
double b[];
int •c[J;
struct listoffixnumscell *d;
I

printf("a: %d, b[O]: %f, b[l]: %CO, •a, b[O], b[l]);
printf(" c (first): %d c (second): %d0,

•c[O], •c[I]);
printf(" (%d %d ...) •, *(d->fixnum), *(d·>alr·>fixnum));
b[l] - 3.1415926;
retum(3);

struct listcell •
cmemq(element,list)
int element;
struct listcell *list;
I

for(; list && element!- list->car; list - list·>alr);
return (list);

These are the Pascal coded fanctions
% cat ch8auxp.p
type pinteger - "integer;

realarray - array[0 .. 10) of real;
pintarray - array[0 .. 10) of pinteger;
listoffixnumscell - record

plistcell - "listcell;
listcell - record

end;

air : plistcell;
car : integer;

end;

air : "listoffixnumscell;
fixnum : pinteger;

function pfoo (var a : integer;
var b : realarray;
var c : pintarray;
var d : listoffixnumscell) : integer;

begin
writeln(' a:',a, ' b[O]:', b[O], ' b[l]:', b[l]);
writeln(' c (first):', c(O)" ,' c (second):', c[l)");
writeln(' (', d.fixnum·, d.alr".fixnum·,' .. .) ');
b[l] :- 3.1415926;
pfoo :- 3

end;

I the function pmemq looks for the Lisp pointer given as the first argument
in the list pointed to by the second argument.

I

Note that we declare " a : integer " instead of • var a : integer • since
we are interested in the pointer value instead of what it points to (which
could. be any Lisp object)

function pmemq(a : integer; list : plistcell) : plisteell;
begin
while (list < > nil) and (list·.car < > a) do list :- list•.cdr;
pmemq : - list;

end;

The files are compiled
% cc -c ch8auxc.c
l.Ou l.2s 0:15 14% 30+39k 33+20io 147pf+Ow
% pc -c ch8auxp.p
3.0u 1.7s 0:37 12% 27+32k 53+32io 143pf+Ow

%lisp
Franz Lisp, Opus 38.60

Franz Lisp Manual 2-307

First the files are loaded and we set up one foreign jilnction binary. We have two jilnctions in each file so we must choose OM

to tell efasl about. The choice is arbitrary.
-> (cfasl 'ch8auxc.o '_cfoo 'cfoo •inteser-functlon•)
/usr/lib/lisp/nld -N -A /usr/local/lisp -T 63000 eh8auxe.o -e _cfoo -o /tmp/Li7055.0 -le
#63000-"integer-function"
- > (cfasl 'ch8auxp.o '_pfoo 'pfoo •1ntecer-functlon• •-1pc•)
/usr/lib/lisp/nld -N ·A /tmp/Li7055.0 -T 63200 eh8auxp.o -e _pfoo -o /tmp/Li7055.1 -lpc -le
#63200-"integer-function"
Here we set up the other foreign jilnction binary objects
-> (1etaddress '_cmemq 'cmemq •function• '_pmemq 'pmemq •function•)
#6306c-"function"
We want to create and initialize an array to pass to the efoo jilnction. In this case we create an unnamed array and store it in
the value cell of testa". When we create an array to pass to the Pascal program we will use a named array just· to demonstrate
the different way that named and unnamed arrays are created and accessed.
- > (setq testarr (array nil ftonum-block 2))
array[2)
- > (store (funcall testarr 0) 1.234)
l.234
- > <store (funcall testarr 1) 5.678)
5.678
- > (cfoo 385 testarr (hunk 10 1113 14) '(15 16 17))
a: 385, b[O): 1.234000, b[l): 5.678000
e (first): 10 e (second): 11
(15 16 ...)
3

Note that cfoo has returned J as it should. It also had the side dfect of changing the second value of the array to J. I 415926
which check next.
- > (funcall testarr 1)
3.1415926

In preparation for calling pfoo we create an a"ay.
- > (array test ftonum-block 2)
array[2)
- > <store (test 0) 1.234)
l.234
- > (store (test 1) 5.678)
5.678
-> (pfoo 385 (1etd 'test) (hunk 10111314) '(15 16 17))
a: 385 b[OJ: 1.23400000000000E+OO b[l]: 5.67800000000000E+OO
e (first): 10 e (second): 11
(15 16 ...)

3
-> (test 1)
3.1415926

Now to test out the memq 's
-> (cmemq 'a '(b cad e f))
(ad ej)
-> (pmemq 'e '(ad f 1 ax))
nil

2-308 Franz Lisp Manual

The Fortran example will be much shorter since in Fortran you can't follow
pointers as you can in other languages. The Fortran function ffoo is given three argu
ments: a fixnum, a fixnum-block array and a flonum. These arguments are printed out
to verify that they made it and then the first value of the array is modified. The function
returns a double precision value which is converted to a tlonum by lisp and printed.
Note that the entry point corresponding to the Fortran function ffoo is _ffoo_ as opposed
to the C and Pascal convention of preceding the name with an underscore.

% cat cb8au:d.f
double precision function ffoo(a,b,c)
integer a,b(lO)
double precision c
print 2,a,b(l),b(2),c

2 format(' a-',i4,', b(l)-',iS,', b(2)-',iS,' c-',f6.4)
b(l) - 22
troo - 1.23456
re tum
end

% m •C cb8au:lf.f
ch8auxf.t:

tfoo:
0.9u l.8s 0:12 22% 20+22k S4+48io 158pf+Ow
%lisp
Franz Lisp, Opus 38.60
- > (cfasl 'cb8aus:f.o ' troo 'ffoo "real-function" "-IF77 -117r)
/usr/lib/lisp/nld -N -A 7usr/local/lisp -T 63000 ch8auxf.o -e _troo_
-o /tmp/Lil 1066.0 -IF77 -077 -le
#6307c-"real-function"

- > (anay test &mum-block 2)
array[2]
- > (store (test 0) 10)
10
- > (store (test 1) 11)
11
- > (troo 385 (aettl 'test) 5.678)
a- 385, b(l)- 10, b(2)- 11 c-S.6780

1.234559893608093
-> (testO)
22

Franz Lisp Manual 2-309

CHAPTER 9

Arrays and Vectors

Arrays and vectors are two means of expressing aggregate data objects in FRANZ LISP.
Vectors may be thought of as sequences of data. They are intended as a vehicle for user
defined data types. This use of vectors is still experimental and subject to revision. As a sim
ple data structure, they are similar to hunks and strings. Vectors are used to implement clo
sures, and are useful to communicate with foreign functions. Both of these topics were dis
cussed in Chapter 8. Later in this chapter, we describe the current implementation of vectors,
and will advise the user what is most likely to change.

Arrays in FRANZ LISP provide a programmable data structure access mechanism. One
possible use for FRANZ LISP arrays is to implement Maclisp style arrays which are simple vec
tors of fixnums, flonums or general lisp values. This is described in more detail in §9.3 but first
we will describe how array references are handled by the lisp system.

The structure of an array object is given in §1.3.10 and reproduced here for your conveni-
ence.

Subpart name Get value Set value Type

access function getaccess putaccess binary, list
or symbol

auxiliary getaux putaux lisp val
data arrayref replace block of contiguous

set lisp val
length getlength putlength fixnum
delta getdelta putdelta fixnum

9.1. general arrays Suppose the evaluator is told to evaluate (loo ab) and the function
cell of the symbol foo contains an array object (which we will call foo arr obj). First the
evaluator will evaluate and stack the values of a and b. Next it will stack the array object
foo_arr_obj. Finally it will call the access function of foo_arr_obj. The access function
should be a lexprt or a symbol whose function cell contains a lexpr. The access function
is responsible for locating and returning a value from the array. The array access f unc
tion is free to interpret the arguments as it wishes. The Maclisp compatible array access
function which is provided in the standard FRANZ LISP system interprets the arguments
as subscripts in the same way as languages like Fortran and Pascal.

The array access function will also be called upon to store elements in the array.
For example, (store (loo a b) c) will automatically expand to (foo c a b) and when the
evaluator is called to evaluate this, it will evaluate the arguments c, b and a. Then it will
stack the array object (which is stored in the function cell of foo) and call the array
access function with (now) four arguments. The array access function must be able to
tell this is a store operation, which it can do by checking the number of arguments it has

t A lexpr is a function which accepts any number of arguments which are evaluated before the function is called.

2-310 Franz Lisp Manual

been given (a lexpr can do this very easily).

9.2. subparts of an array object An array is created by allocating an array object with mar
ray and filling in the fields. Certain lisp functions interpret the values of the subparts of
the array object in special ways as described in the following text. Placing illegal values
in these subparts may cause the lisp system to fail.

9.2.1. access function The purpose of the access function has been described above.
The contents of the access function should be a lexpr, either a binary (compiled func
tion) or a list (interpreted function). It may also be a symbol whose function cell
contains a function definition. This subpart is used by eva~ jimcal~ and apply when
evaluating array references.

9.2.2. auxiliary This can be used for any purpose. If it is a list and the first element of
that list is the symbol unmarked array then the data subpart will not be marked by
the garbage collector (this is used in the Maclisp compatible array package and has
the potential for causing strange errors if used incorrectly).

I
9.2.3. data This is either nil or points to a block of data space allocated by segment or

small-segment.

9.2.4. length This is a fixnum whose 1value is the number of elements in the data
block. This is used by the garbage ·collector and by arrayref to determine if your
index is in bounds.

9.2.S. delta This is a fixnum whose value is the number of bytes in each element of
the data block. This will be four for an array of fixnums or value cells, and eight for
an array of flonums. This is used by the garbage collector and arrayrefas well.

9.3. The Maclisp compatible array package
A Maclisp style array is similar to what is known as arrays in other languages: a

block of homogeneous data elements which is indexed by one or more integers called
subscripts. The data elements can be all fixnums, flonums or general lisp objects. An
array is created by a call to the function array or •array. The only dift'erence is that
"array evaluates its argum~. This call: (array joo t 3 5) sets up an array called foo of
dimensions 3 by 5. The subscripts are zero based. The first element is (too 0 0), the
next is (too 0 1) and so on up to (too 2 4). The t indicates a general lisp object array
which means each element of f oo can be any type. Each element can be any type since
all that is stored in the array is a pointer to a lisp object, not the object itself. Array does
this by allocating an array object with marray and then allocating a segment of 15

Franz Lisp Manual 2-311

consecutive value cells with small-segment and storing a pointer to that segment in the
data subpart of the array object. The length and delta subpart of the array object are
filled in (with 15 and 4 respectively) and the access function subpart is set to point to the
appropriate array access function. In this case there is a special access function for two
dimensional value cell arrays called arrac-twoD, and this access function is used. The
auxiliary subpart is set to (t 3 5) which describes the type of array and the bounds of the
subscripts. Finally this array object is placed in the function cell of the symbol foo. Now
when (loo 1 3) is evaluated, the array access function is invoked with three arguments: l,
3 and the array object. From the auxiliary field of the array object it gets a description of
the particular array. It then determines which element (loo 1 3) refers to and uses
arrayref to extract that element. Since this is an array of value cells, what arrayref
returns is a value cell whose value is what we want, so we evaluate the value cell and
return it as the value of (loo 1 3).

In Maclisp the call (array Joo jixnum 25) returns an array whose data object is a
block of 25 memory words. When fixnums are stored in this array, the actual numbers
are stored instead of pointers to the numbers as is done in general lisp object arrays.
This is efficient under Maclisp but inefficient in FRANZ LISP since every time a value was
referenced from an array it had to be copied and a pointer to the copy returned to
prevent aliasingt. Thus t, fixnum and flonum arrays are all implemented in the same
manner. This should not affect the compatibility of Maclisp and FRANZ LISP. If there is
an application where a block of fixnums or flonums is required, then the exact same
effect of fixnum and flonum arrays in Maclisp can be achieved by using fixnum-block
and flonum-block arrays. Such arrays are required if you want to pass a large number of
arguments to a Fortran or C coded function and then get answers back.

The Maclisp compatible array package is just one example of how a general array
scheme can be implemented. Another type of array you could implement would be
hashed arrays. The subscript could be anything, not just a number. The access function
would hash the subscript and use the result to select an array element. With the general
ity of arrays also comes extra cost; if you just want a simple aggregate of (less than 128)
general lisp objects you would be wise to look into using hunks.

9.4. vectors Vectors were invented to fix two shortcommings with hunks. They can be
longer than 128 elements. They also have a tag associated with them, which is intended
to say, for example, "Think of me as an BlobiL" Thus a vector is an arbitrary sized hunk
with a property list.

Continuing the example, the lisp kernel may not know how to print out or evaluate
blobits, but this is information which will be common to all blobits. On the other hand,
for each individual blobits there are particulars which are likely to change, (height,
weight, eye-color). This is the part that would previously have been stored in the indivi
dual entries in the hunk, and are stored in the data slots of the vector. Once again we
summarize the structure of a vector in tabular form:

t Aliasing is when two variables are share the same storage location. For example if the copying mentioned
weren't done then after (setq x (Joo 2)) was done, the value of x and (foo 2) would share the same location. Then
should the value of (foo 2) change, x's value would change as well. This is considered dangerous and as a result
pointers are never returned into the data space of arrays.

2-312 Franz Lisp Manual

Subpart name Get value Set value Type

datum]l!_ vref vset lispval
property vprop vsetprop lisp val

vputprop
size vsize - fixnum

Vectors are created specifying size and optional fill value using the function (new-vector
'x_size ['g_fill ['g_prop]J), or by initial values: (vector ['g_val ...]).

9.5. anatomy of vectors There are some technical details about vectors, that the user
should know:

9.5.1. size The user is not free to alter this. It is noted when the vector is created,
and is used by the garbage collector. The garbage collector will coallesce two free
vectors, which are neighbors in the heap. Internally, this is kept as the number of
bytes of data. Thus, a vector created by (vector 'foo), has a size of 4.

9.5.2. property Currently, we expect the property to be either a symbol, or a list whose
first entry is a symbol. The symbols fclosure and structure-value-argument are
magic, and their effect is described in Chapter 8. If the property is a (non-null) sym
bol, the vector will be printed out as <symbol> [<size> J. Another case is if the
property is actually a (disembodied) property-list, which contains a value for the indi
cator print. The value is taken to be a Lisp function, which the printer will invoke
with two arguments: the vector and the current output port. Otherwise, the vector
will be printed as vector[<size>}. We have vague (as yet unimplemented) ideas
about similar mechanisms for evaluation properties. Users are cautioned against put
ting anything other than nil in the property entry of a vector.

9.5.3. internal order In memory, vectors start with a longword containing the size
(which is immediate data within the vector). The next cell contains a pointer to the
property. Any remaining cells (if any) are for data. Vectors are handled differently
from any other object in FRANZ LISP, in that a pointer to a vector is pointer to the
first data cell, i.e. a pointer to the third longword of the structure. This was done for
efficiency in compiled code and for uniformity in referencing immediate-vectors
(described below). The user should never return a pointer to any other part of a vec
tor, as this may cause the garbage collector to follow an invalid pointer.

9.6. immediate-veetors Immediate-vectors are similar to vectors. They differ, in that
binary data are stored in space direcdy within the vector. Thus the garbage collector will
preserve the vector itself (if used), and will only traverse the property cell. The data
may be referenced as longwords, shortwords, or even bytes. Shorts and bytes are
returned sign-extehded. The compiler open-codes such references, and will avoid boxing
tl\le resulting integer data, where possible. Thus, immediate vectors may be used for
efficiently processing character data. They are also useful in storing results from

Franz Lisp Manual 2-313

functions written in other languages.

Subpart name Get value Set value Type

datumliJ vreD-byte vseti-byte fixnum
vrefi-word vseti-word fixnum
vrefi-long vseti-long fixnum

property vprop vsetprop lispval
vputprop

size vsize - fixnum
vsize-byte fixnum
vsize-word fixnum

To create immediate vectors specifying size and fill data, you can use the functions new
vectori-byte, new-vectori-word, or new-vectori-long. You can also use the functions vectori
byte, vectori-word, or vectori-long. All of these functions are described in chapter 2.

2-314 Franz Lisp Manual

CHAPTER 10

Exception Handling

10.1. Errset and Error Handler Functions
FRANZ LISP allows the user to handle in a number of ways the errors which arise

during computation. One way is through the use of the errset function. If an error
occurs during the evaluation of the errsefs first argument, then the locus of control will
return to the errset which will return nil (except in special cases, such as err). The other
method of error handling is through an error handler function. When an error occurs,
the error handler is called and is given as an argument a description of the error which
just occurred. The error handler may take one of the following actions:
(1) it could take some drastic action like a reset or a throw.
(2) it could, assuming that the error is continuable, return to the function which

noticed the error. The error handler indicates that it wants to return a value from
the error by returning a list whose car is the value it wants to return.

(3) it could decide not to handle the error and return a non-list to indicate this fact.

10.2. The Anatomy of an error
Each error is described by a list of these items:

(1) error type - This is a symbol which indicates the general classification of the error.
This classification may determine which function handles this error.

(2) unique id - This is a fixnum unique to this error.
(3) continuable - If this is non-nil then this error is continuable. There are some who

feel that every error should be continuable and the reason that some (in fact most)
errors in FRANZ LISP are not continuable is due to the laziness of the programmers.

(4) message string - This is a symbol whose print name is a message describing the
error.

(5) data - There may be from zero to three lisp values which help describe this particu
lar error. For example, the unbound variable error contains -?ne datum value, the
symbol whose value is unbound. The list describing that error\might look like:

(ER%misc 0 t !Unbound Variable:! foobar)

10.3. Error handling algorithm
This is the sequence of operations which is done when an error occurs:

(1) If the symbol ERo/oall has a non nil value then this value is the name of an error
handler function. That function is called with a description of the error. If that
function returns (and of course it may choose not to) and the value is a list and
this error is continuable, then we return the car of the list to the function which

Franz Lisp Manual 2-315

called the error. Presumably the function will use this value to retry the operation.
On the other hand, if the error handler returns a non list, then it has chosen not to
handle this error, so we go on to step (2). Something special happens before we
call the ERO/oall error handler which does not happen in any of the other cases we
will describe below. To help insure that we don't get infinitely recursive errors if
ERO/oall is set to a bad value, the value of ERO/oall is set to nil before the handler is
called. Thus it is the responsibility of the ERO/oall handler to 'reenable' itself by
storing its name in ERO/oall.

(2) Next the specific error handler for the type of error which just occurred is called
(if one exists) to see if it wants to handle the error. The names of the handlers for
the specific types of errors are stored as the values of the symbols whose names are
the types. For example the handler for miscellaneous errors is stored as the value
of ER 'lemisc. Of course, if ER O/omisc has a value of nil, then there is no error
handler for this type of error. Appendix B contains list of all error types. The pro
cess of classifying the errors is not complete and thus most errors are lumped into
the ERO/omisc category. Just as in step (1), the error handler function may choose
not to handle the error by returning a non-list, and then we go to step (3).

(3) Next a check is made to see if there is an errset surrounding this error. If so the
second argument to the errset call is examined. If the second argument was not
given or is non nil then the error message associated with this error is printed.
Finally the stack is popped to the context of the errset and then the errset returns
nil. If there was no errset we go to step (4).

(4) If the symbol ER"9tpl has a value then it is the name of an error handler which is
called in a manner similar to that discussed above. If it chooses not to handle the
error, we go to step (S).

(S) At this point it has been determined that the user doesn't want to handle this error.
Thus the error message is printed out and a reset is done to send the flow of control
to the top-level.
To summarize the error handling system: When an error occurs, you have two

chances to handle it before the search for an errset is done. Then, if there is no errset,
you have one more chance to handle the error before control jumps to the top level.
Every error handler works in the same way: It is given a description of the error (as
described in the previous section). It may or may not return. If it returns, then it
returns either a list or a non-list. If it returns a list and the error is continuable, then the
car of the list is returned to the function which noticed the error. Otherwise the error
handler has decided not to handle the error and we go on to something else.

10.4. Default aids
There are two standard error handlers which will probably handle the needs of

most users. One of these is the lisp coded function break-err-handler which is the default
value of ER'letpl. Thus when all other handlers have ignored an error, break-err-handler
will take over. It will print out the error message and go into a read-eval-print loop. The
other standard error handler is debug-err-handler. This handler is designed to be con
nected to ER'lealland is useful if your program uses errset and you want to look at the
error before it is thrown up to the errset.

10.S. Autoloadin1
When eva~ apply or fancall are told to call an undefined function, an ERo/oundef

error is signaled. The default handler for this error is undef-fanc-handler. This function

2-316 Franz Lisp Manual

checks the property list of the undefined function for the indicator auto load. If present,
the value of that indicator should be the name of the file which contains the definition of
the undefined function. Undef-jUnc-handler will load the file and check if it has defined
the function which caused the error. If it has, the error handler will return and the com
putation will continue as if the error did not occur. This provides a way for the user to
tell the lisp system about the location of commonly used functions. The trace package
sets up an autoload property to point to /usr/lib/lisp/trace.

10.6. Interrupt processin1
The UNIX operating system provides one user interrupt character which defaults

to "C. t The user may select a lisp function to run when an interrupt occurs. Since this
interrupt could occur at any time, and in particular could occur at a time when the inter
nal stack pointers were in an inconsistent state, the processing of the interrupt may be
delayed until a safe time. When the first "C is typed, the lisp system sets a flag that an
interrupt has been requested. This flag is checked at safe places within the interpreter
and in the q/inker function. If the lisp system doesn't respond to the first "C, another "C
should be typed. This will cause all of the transfer tables to be cleared forcing all calls
from compiled code to go through the qlinker function where the interrupt flag will be
checked. If the lisp system still doesn't respond, a third "C will cause an immediate
interrupt. This interrupt will not necessarily be in a safe place so the user should reset
the lisp system as soon as possible.

t Actually there are two but the lisp system does not allow you to catch the QUIT interrupt.

------------·-~----"

Franz Lisp Manual 2-317

CHAPTER 11

The Joseph Lister Trace Package

The Joseph Listert Trace package is an important tool for the interactive debugging of a
Lisp program. It allows you to examine selected calls to a function or functions, and optionally
to stop execution of the Lisp program to examine the values of variables.

The trace package is a set of Lisp programs located in the Lisp program library (usually in
the file /usr/lib/lisp/trace.l). Although not normally loaded in the Lisp system, the package
will be loaded in when the first call to trace is made.

(trace [ls_argl ...])

WHERE: the fortn of the ls_arg; is described below.

RETURNS: a list of the function sucessfully modified for tracing. If no arguments are given
to tracet a list of ail functions currently being traced is returned.

SIDE EFFECT: The function definitions of the functions to trace are modified.

The ls_argi can have one of the following forms:

foo - when foo is entered and exited, the trace information will be printed.

(foo break) - when foo is entered and exited the trace information will be printed. Also,
just after the trace information for foo is printed upon enttY, you will be put in a
special break loop. The prompt is 'T >' and you tnay type any Lisp expression, and
see its value printed. The Ith argument to the function just called can be accessed
as (arg 1). To leave the trace loop, just type "D or (tracerettirn) and execution will
continue. Note that "D will work only on UNiX systems.

Cfoo If expression) - when foo is entered and the expresSion evaluates to non-nil, then the
trace information will be printed for both exit and entry. If expression evaluates to
nil, then no trace information will be printed.

(foo ifnot expression) - when foo is entered and the expressiott evaluates to nil, then the
trace information will be printed for both entry and exit. If both if and ifnot are
specified, then the if expression must evaluate to non nil ANO the ifnot expression
must evaluate to nil for the trace information to be printed out.

(foo evalin expression) - when f oo is entered and after the entry trace information is
printed, expression will be evaluated. Exit trace information will be printed when
foo exits.

tLister, Joseph lst Baron Lister of Lyme Regis, 1827-1912; English surgeon: introduced antiseptic surgery.

2-318 Franz Lisp Manual

(foo evalout expression) - when foo is entered, entry trace information will be printed.
When foo exits, and before the exit trace information is printed, expression will be
evaluated.

(foo evalinout expression) - this has the same effect as (trace (foo evalin expression
evalout expression)).

(foo lprlnt) - this tells trace to use the level printer when printing the arguments to and the
result of a call to foo. The level printer prints only the top levels of list structure.
Any structure below three levels is printed as a &. This allows you to trace func
tions with massive arguments or results.

The following trace options permit one to have greater control over each action
which takes place when a function is traced. These options are only meant to be used by
people who need special hooks into the trace package. Most people should skip reading
this section.

(foo traceenter tefunc) - this tells trace that the function to be called when foo is entered is
tefunc. tefunc should be a lambda of two arguments, the first argument will be
bound to the name of the function being traced, foo in this case. The second argu
ment will be bound to the list of arguments to which foo should be applied. The
function tefunc should print some sort of "entering foo" message. It should not
apply foo to the arguments, however. That is done later on.

(foo traceexit txfunc) - this tells trace that the function to be called when f oo is exited is
txfunc. txfunc should be a lambda of two arguments, the first argument will be
bound to the name of the function being traced, foo in this case. The second argu
ment will be bound to the result of the call to foo. The function txf unc should
print some sort of "exiting f oo" message.

(foo evfcn evfunc) - this tells trace that the form evfunc should be evaluated to get the
value of foo applied to its arguments. This option is a bit different from the other
special options since evf unc will usually be an expression, not just the name of a
function, and that expression will be specific to the evaluation of function foo. The
argument list to be applied will be available as T-arglist.

(foo printargs prfunc) - this tells trace to used prfunc to print the arguments to be applied
to the function f oo. prf unc should be a lambda of one argument. You might want
to use this option if you wanted a print function which could handle circular lists.
This option will work only if you do not specify your own traceenter function.
Specifying the option lprint is just a simple way of changing the printargs function
to the level printer.

(foo printres prfunc) - this tells trace to use prfunc to print the result of evaluating foo.
prfunc should be a lambda of one argument. This option will work only if you do
not specify your own traceexit function. Specifying the option I print changes prin
tres to the level printer.

Franz Lisp Manual 2-319

You may specify more than one option for each function traced. For example:

(trace (too if (eq 3 (arg 1)) break /print) (bar evalin (print xyzzy)))

This tells trace to trace two more functions, foo and bar. Should foo be called with the
first argument eq to 3, then the entering foo message will be printed with the level
printer. Next it will enter a trace break loop, allowing you to evaluate any lisp expres
sions. When you exit the trace break loop, f oo will be applied to its arguments and the
resulting value will be printed, again using the level printer. Bar is also traced, and each
time bar is entered, an entering bar message will be printed and then the value of xyzzy
will be printed. Next bar will be applied to its arguments and the result will be printed. If
you tell trace to trace a function which is already traced, it will first untrace it. Thus if you
want to specify more than one trace option for a function, you must do it all at once. The
following is not equivalent to the preceding call to trace for foo:

(trace (too if (eq 3 (arg 1))) (too break) (too /print))

In this example, only the last option, lprint, will be in effect.

If the symbol Stracemute is given a non nil value, printing of the function name and
arguments on entry and exit will be surpressed. This is particularly useful if the function
you are tracing fails after many calls to it. In this case you would tell trace to trace the
function, set Stracemute to t, and begin the computation. When an error occurs you can
use tracedump to print out the current trace frames.

Generally the trace package has its own internal names for the the lisp functions it
uses, so that you can feel free to trace system functions like cond and not worry about
adverse interaction with the actions of the trace package. You can trace any type of func
tion: lambda, nlambda, lexpr or macro whether compiled or interpreted and you can even
trace array references (however you should not attempt to store in an array which has
been traced).

When tracing compiled code keep in mind that many function calls are translated
directly to machine language or other equivalent function calls. A full list of open coded
functions is listed at the beginning of the liszt compiler source. Trace will do a
(sstatus trans/ink nil) to insure that the new traced definitions it defines are called instead
of the old untraced ones. You may notice that compiled code will run slower after this is
done.

(traceargs s f unc [x level]) - -
WHERE: if x_level is missing it is assumed to be 1.

RETURNS: the arguments to the x_levelth call to traced function s_func are returned.

(tracedump)

SIDE EFFECT: the currently active trace frames are printed on the terminal. returns a list
of functions untraced.

2-320 Franz Lisp M~nqaJ

(untrace [s_argl ...])

RETURNS: a list of the functions which were untraced

NOTE: if no arguments are given, all functions are untraced

SIDE EFfECT: th~ old function definitions of all traced fµnctions are restored except in the
case· w}lere it appears that the current definition of a function was not
created by trace.

Franz Lisp Manual 2-321

CHAPTER 12

Liszt - the lisp compiler

12.1. General strategy of the compiler
The purpose of the lisp compiler, Liszt, is to create an object module which when

brought into the lisp system using fas/ will have the same eft'ect as bringing in the
corresponding lisp coded source module with load with one important exception, func
tions will be defined as sequences of machine language instructions, instead of lisp S
expressions. Liszt is not a function compiler, it is a file compiler. Such a file can con
tain more than function definitions; it can contain other lisp S-expressions which are
evaluated at load time. These other S-expressions will also be stored in the object
module produced by Liszt and will be evaluated at f asl time.

As is almost universally true of Lisp compilers, the main pass of Liszt is written in
Lisp. A subsequent pass is the assembler, for which we use the standard UNIX assem
bler.

12.2. Running the complier
The compiler is normally run in this manner:

% liszt foo
will compile the file foo.I or foo (the preferred way to indicate a lisp source file is to end
the file name with '.I'). The result of the compilation will be placed in the file foo.o if
no fatal errors were detected. All messages which Liszt generates go to the standard out
put. Normally each function name is printed before it is compiled (the -q option
suppresses this).

12.3. Special forms
Liszt makes one pass over the source file. It processes each form in this way:

12.3.1. macro expansion
If the form is a macro invocation (i.e it is a list whose car is a symbol whose

function binding is a macro), then that macro invocation is expanded. This is
repeated until the top level form is not a macro invocation. When Liszt begins, there
are already some macros defined, in fact some functions (such as defun) are actually
macros. The user may define his own macros as well. For a macro to be used it
must be defined in the Lisp system in which Liszt runs.

2-322 Franz Lisp Manual

12.3.2. classification
After all macro expansion is done, the form is classified according to its car (if

the form is not a list, then it is classified as an other).

12.3.2.1. eval-when

The form of eval-when is (eval-when (time} time2 .. .) form} form2 .. .) where
the timei are one of eval, compile, or load. The compiler examines the formi in
sequence and the action taken depends on what is in the time list. If compile is in
the list then the compiler will invoke eval on each formi as it examines it. If load
is in the list then the compile will recursively call itself to compile each formi as it
examines it. Note that if compile and load are in the time list, then the compiler
will both evaluate and compile each form. This is useful if you need a function to
be defined in the compiler at both compile time (perhaps to aid macro expansion)
and at run time (after the file is fasled in).

12.3.2.2. declare

Declare is used to provide information about functions and variables tO the
compiler. It is (almost) equivalent to (eval-when (compile) .. .). You may declare
functions to be one of three types: lambda (•expr), nlambda (•fexpr), lexpr
(*lexpr). The names in parenthesis are the Maclisp names and are accepted by
the compiler as well (and not just when the compiler is in Maclisp mode). Func
tions are assumed to be lambdas until they are declared otherwise or are defined
differently. The compiler treats calls to lambdas and lexprs equivalently, so you
needn't worry about declaring lexprs either. It is important to declare nlambdas or
define them before calling them. Another attribute you can declare for a function
is localf which makes the function 'local'. A local function's name is known only
to the functions defined within the file itself. The advantage of a local function is
that is can be entered and exited very quickly and it can have the same name as a
function in another file and there will be no name conflict.

Variables may be declared special or unspecial. When a special variable is
lambda bound (either in a lambda, prog or do expression), its old value is stored
away on a stack for the duration of the lambda, prog or .do expression. This takes
time and is often not necessary. Therefore the default classification for variables
is unspecial. Space for unspecial variables is dynamically allocated on a stack. An
unspecial variable can only be accessed from within the function where it is
created by its presence in a lambda, prog or do expression variable list. It is possi
ble to declare that all variables are special as will be shown below.

You may declare any number of things in each declare statement. A sample
declaration is
(declare

(lambda funcl func2)
(*fexpr fund)
(*lexpr junc4)
(/oca(f func5)
(special var} var2 var3)
(unspecial var4))

You may also declare all variables to be special with (declare (specials t)).
You may declare that macro definitions should be compiled as well as evaluated at
compile time by (declare (macros t)). In fact, as was mentioned above, declare is

Franz Lisp Manual 2-323

much like (eval-when (compile) .. .J. Thus if the compiler sees (declare (too bar))
and foo is defined, then it will evaluate (too bar). If foo is not defined then an
undefined declare attribute warning will be issued.

12.3.2.3. (progn 'compile forml form2 ... formn)

When the compiler sees this it simply compiles forml through formn as if
they too were seen at top level. One use for this is to allow a macro at top-level
to expand into more than one function definition for the compiler to compile.

12.3.2.4. include/includef

Include and include/ cause another file to be read and compiled by the com
piler. The result is the same as if the included file were textually inserted into the
original file. The only difference between include and include/ is that include
doesn't evaluate its argument and includef does. Nested includes are allowed.

12.3.2.S. def

A def form is used to define a function. The macros de.fun and de/macro
expand to a def form. If the function being defined is a lambda, nlambda or lexpr
then the compiler converts the lisp definition to a sequence of machine language
instructions. If the function being defined is a macro, then the compiler will
evaluate the definition, thus defining the macro withing the running Lisp com
piler. Furthermore, if the variable macros is set to a non nil value, then the
macro definition will also be translated to machine language and thus will be
defined when the object file is f asled in. The variable macros is set to t by
(declare (macros t)).

When a function or macro definition is compiled, macro expansion is done
whenever possible. If the compiler can determine that a form would be evaluated
if this function were interpreted then it will macro expand it. It will not macro
expand arguments to a nlambda unless the characteristics of the nlambda is known
(as is the case with cond). The map functions (map, mapc, mapcar, and so on)
are expanded to a do statement. This allows the first argument to the map func
tion to be a lambda expression which references local variables of the function
being defined.

12.3.2.6. other forms
All other forms are simply stored in the object file and are evaluated when

the file is fasled in.

12.4. Using the compiler

The previous section describes exactly what the compiler does with its input. Gen
erally you won't have to worry about all that detail as files which work interpreted will
work compiled. Following is a list of steps you should follow to insure that a file will
compile correctly.

2-324 Franz Lisp Manual

[1) Make sure all macro definitions precede their use in functions or other macro
definitions. If you want the macros to be around when you fas/ in the object file
you should include this statement at the beginning of the file: (declare (macros t))

[2] Make sure all nlambdas are defined or declared before they are used. If the com
piler comes across a call to a function which has not been defined in the current
file, which does not currently have a function binding, and whose type has not
been declared then it will assume that the function needs its arguments evaluated
(i.e. it is a lambda or lexpr) and will generate code accordingly. This means that
you· do not have to declare nlambda functions like status since they have an
nlambda function binding.

[3) Locate all variables which are used for communicating values between functions.
These variables must be declared special at the beginning of a file. In most cases
there won't be many special declarations but if you fail to declare a variable special
that should be, the compiled code could fail in mysterious ways. Let's look at a
common problem, assume that a file contains just these three lines:

(def aaa (lambda (glob foe) (bbb foe)))
(def bbb (lambda (myloc) (add glob myloc)))
(def ccc (lambda (glob foe) (bbb foe)))

We can see that if we load in these two definitions then (aaa 3 4) is the same as
(add 3 4) and will give us 7. Suppose we compile the file containing these
definitions. When Liszt compiles aaa, it will assume that both glob and loc are
local variables and will allocate space on the temporary stack for their values when
aaa is called. Thus the values of the local variables glob and loc will not affect the
values of the symbols glob and loc in the Lisp system. Now Liszt moves on to
function bbb. Myloc is assumed to be local. When it sees the add statement, it
find a reference to a variable called glob. This variable is not a local variable to this
function and therefore glob must ref er to the value of the symbol glob. Liszt will
automatically declare glob to be special and it will print a warning to that effect.
Thus subsequent uses of glob will always ref er to the symbol glob. Next Liszt
compiles ccc and treats glob as a special and loc as a local. When the object file is
fasted in, and (ccc 3 4) is evaluated, the symbol glob will be lambda bound to 3
bbb will be called and will return 7. However (aaa 3 4) will fail since when bbb is
called, glob will be unbound. What should be done here is to put
(declare (special glob) at the beginning of the file.

[4) Make sure that all calls to arg are within the lexpr whose arguments they reference.
If Joo is a compiled lexpr and it calls bar then bar cannot use arg to get at foo's
arguments. If both Joo and bar are interpreted this will work however. The macro
listify can be used to put all of some of a lexprs arguments in a list which then can
be passed to other functions.

12.S. Compiler options
The compiler recognizes a number of options which are described below. The

options are typed anywhere on the command line preceded by a minus sign. The entire
command line is scanned and all options recorded before any action is taken. Thus (
% liszt -mx foo 1

% liszt -m -x foo
% liszt foo -mx
are all equivalent. Before scanning the command line for options, liszt looks for in the

Franz Lisp Manual 2-325

environment for the variable LISZT, and if found scans its value as if it was a string of
options. The meaning of the options are:

C The assembler language output of the compiler is commented. This is useful when
debugging the compiler and is not normally done since it slows down compilation.

I The next command line argument is taken as a filename, and loaded prior to com
pilation.

e Evaluate the next argument on the command line before starting compilation. For
example
% liszt -e '(setq foobar "foo string")' foo
will evaluate the above s-expression. Note that the shell requires that the argu
ments be surrounded by single quotes.

i Compile this program in interlisp compatibility mode. This is not implemented yet.

m Compile this program in Maclisp mode. The reader syntax will be changed to the
Maclisp syntax and a file of macro definitions will be loaded in (usually named
/usr/lib/lisp/machacks). This switch brings us sufficiently close to Maclisp to allow
us to compile Macsyma, a large Maclisp program. However Maclisp is a moving
target and we can't guarantee that this switch will allow you to compile any given
program.

o Select a different object or assembler language file name. For example
% liszt foo -o xxx.o
will compile foo and into xxx.o instead of the default foo.o, and
% liszt bar -S -o xxx.s
will compile to assembler language into xxx.s instead of bar.s.

p place profiling code at the beginning of each non-local function. If the lisp system
is also created with profiling in it, this allows function calling frequency to be deter
mined (see pro/(1))

q Run in quiet mode. The names of functions being compiled and various "Note"'s
are not printed.

Q print compilation statistics and warn of strange constructs. This is the inverse of the
q switch and is the default.

r place bootstrap code at the beginning of the object file, which when the object file
is executed will cause a lisp system to be invoked and the object file fasled in. This
is known as 'autorun' and is described below.

S Create an assembler language file only.
% liszt -S foo
will create the file assembler language file foo.s and will not attempt to assemble it.
If this option is not specified, the assembler language file will be put in the tem
porary disk area under a automatically generated name based on the lisp compiler's
process id. Then if there are no compilation errors, the assembler will be invoked
to assemble the file.

T Print the assembler language output on the standard output file. This is useful
when debugging the compiler.

u Run in UCI-Lisp mode. The character syntax is changed to that of UCI-Lisp and a
UCI-Lisp compatibility package of macros is read in.

w Suppress warning messages.

x Create an cross reference file.
% liszt -x foo
not only compiles f oo into foo.o but also generates the file foo.x . The file foo.x is
lisp readable and lists for each function all functions which that function could call.
The program lxref reads one or more of these ".x" files and produces a human

2-326 Franz Lisp Manual

readable cross reference listing.

12.6. autorun
The object file which liszt writes does not contain all the functions necessary to

run the lisp program which was compiled. In order to use the object file, a lisp system
must be started and the object file fasled in. When the -r switch is given to liszt, the
object file created will contain a small piece of bootstrap code at the beginning, and the
object file will be made executable. Now, when the name of the object file is given to
the UNIX command interpreter (shell) to run, the bootstrap code at the beginning of the
object file will cause a lisp system to be started and the first action the lisp system will
take is to fas/ in the object file which started it. In effect the object file has created an
environment in which it can run.

Autorun is an alternative to dumplisp. The advantage of autorun is that the object
file which starts the whole process is typically small, whereas the minimum dumplisped
file is very large (one half megabyte). The disadvantage of autorun is that the file must
be fasled into a lisp each time it is used whereas the file which dumplisp creates can be
run as is. liszt itself is a dumplisped file since it is used so often and is large enough that
too much time would be wasted /as!ng it in each time it was used. The lisp cross ref er
ence program, lxref, uses autorun since it is a small and rarely used program.

In order to have the program fasled in begin execution (rather than starting a lisp
top level), the value of the symbol user-top-level should be set to the name of the func
tion to get control. An example of this is shown next.

we want to replace the unix date program with one written in lisp.

% cat llspdate.l
(defun mydate nil

(patom "The date is ")
(patom (status ctime))
(terpr)
(exit O))

(setq user-top-level 'mydate)

% llszt -r llspdate
Compilation begins with Lisp Compiler S.2
source: lispdate.l, result: lispdate.o
my date
%Note: lispdate.l: Compilation complete
%Note: lispdate.l: Time: Real: 0:3, CPU: 0:0.28, GC: 0:0.00 for 0 gcs
%Note: lispdate.l: Assembly begins
%Note: lispdate.l: Assembly completed successfully
3.0u 2.0s 0:17 29%

We change the name to remove the ".o", (this isn't necessary)
% mv llspdate.o llspdate

Now we test it out
% llspdate
The date is Sat Aug I 16:58:33 1981
%

Franz Lisp Manual 2-327

12. 7. pure literals
Normally the quoted lisp objects (literals) which appear in functions are treated as

constants. Consider this function:

(de/Joo
(lambda nil (cond ((not (eq 'a (car (setq x '(a b)))))

(print 'impossible!!))
(t (rplaca x 'd)))))

At first glance it seems that the first cond clause will never be true, since the car of (a b)
should always be a. However if you run this function twice, it will print 'impossible!!'
the second time. This is because the following clause modifies the 'constant' list (ab)
with the rplaca function. Such modification of literal lisp objects can cause programs to
behave strangely as the above example shows, but more importantly it can cause garbage
collection problems if done to compiled code. When a file is fasled in, if the symbol
Spurcopylits is non nil, the literal lisp data is put in 'pure' space, that is it put in space
which needn't be looked at by the garabage collector. This reduces the woric the garbage
collector must do but it is dangerous since if the literals are modified to point to non
pure objects, the marker may not mark the non pure objects. If the symbol $purcopylits
is nil then the literal lisp data is put in impure space and the compiled code will act like
the interpreted code when literal data is modified. The default value for $purcopylits is t.

12.8. transfer tables
A transfer table is setup by fas/ when the object file is loaded in. There is one

entry in the transfer table for each function which is called in that object file. The entry
for a call to the function Joo has two parts whose contents are:
[1] function address - This will initially point to the internal function qlinker. It may

some time in the future point to the function Joo if certain conditions are satisfied
(more on this below).

[2] function name - This is a pointer to the symbol Joo. This will be used by qlinker;

When a call is made to the function Joo the call will actually be made to the address in
the transfer table entry and will end up in the qlinker function. Qlinker will determine
that Joo was the function being called by locating the function name entry in the transfer
tablet. If the function being called is not compiled then qlinker just calls fanca/I to per
form the function call. If Joo is compiled and if (status trans/ink) is non nil, then qlinker
will modify the function address part of the transfer table to point directly to the func
tioq /oo. Finally qlinker will call Joo directly. The next time a call is made to Joo the call
will go directly to Joo and not through qlinker. This will result in a substantial speedup in
compiled code to compiled code transfers. A disadvantage is that no debugging informa
tion is left on the stack, so showstack and baktrace are useless. Another disadvantage is
that if you redefine a compiled function either through loading in a new version or
interactively defining it, then the old version may still be called from compiled code if
the fast linking described above has already been done. The solution to these problems
is to use (sstatus trans/ink value). If value is
nil All transfer tables will be cleared, i.e. all function addresses will be set to point to

q/inker. This means that the next time a function is called q/inker will be called and

t Qlinker does this by tracing back the call stack until it finds the calls machine instruction which called it. The ad·
dress field of the calls contains the address of the transfer table entry.

2-328 Franz Lisp Manual

will look at the current definition. Also, no fast links will be set up since
(status trans/ink) will be nil. The end result is that showstack and baktrace will work
and the function definition at the time of call will always be used.

on This causes the lisp system to go through all transfer tables and set up fast links
wherever possible. This is normally used after you have fasled in all of your files.
Furthermore since (status trans/ink) is not nil, qlinker will make new fast links if the
situation arises (which isn't likely unless you/as/in another file).

t This o.- any other value not previously mentioned will just make (status trans/ink)
be non nil, and as a result fast links will be made by qlinker if the ~led function
is compiled.

12.9. Flxnum functions
The cornJ?iler will generate inline arithmetic code for fixnum only functions. Such

functions include+,-,•, /, \, 1+ and 1-. The code generated will be much faster
than using add, difference, etc. However it will only work if the arguments to and results
of the functions are fixnum.s. No type checking is done.

Franz Lisp Manual 2-329

CHAPTER 13

The CMU User Toplevel and the File Package

This documentation was written by Don Cohen, and the functions described below were
imported from PDP-10 CMULisp.

Non CMU users note: this is not the default top level for your Lisp system. In order to start up
this top level, you should type (load 'cmuenv).

13.1. User Command Input Top Level

The top-level is the function that reads what you type, evaluates it and prints the result.
The newlisp top-level was inspired by the CMULisp top-level (which was inspired by
interlisp) but is much simpler. The top-level is a function (of zero arguments) that can
be called by your program. If you prefer another top-level, just redefine the top-level
function and type "(reset)" to start running it. The current top-level simply calls the
functions tlread, tleval and tlprint to read, evaluate and print. These are supposed to be
replaceable by the user. The only one that would make sense to replace is tlprint, which
currently uses a function that refuses to go below a certain level and prints " ...]" when it
finds itself printing a circular list. One might want to prettyprint the results instead. The
current top-level numbers the lines that you type to it, and remembers the last n
"events" (where n can be set but is defaulted to 25). One can refer to these events in
the following "top-level commands":

TOPLEVEL COMMAND SUMMARY

?? prints events - both the input and the result. If you just type
"??"you will see all of the recorded events. "?? 3" will show
only event 3, and"?? 3 6" will show events 3 through 6.

redo pretends that you typed the same thing that was typed before. If
you type "redo 3" event number 3 is redone. "redo -3" redoes the
thing 3 events ago. "redo" is the same as "redo -1".

ed calls the editor and then does whatever the editor returns. Thus
if you want to do event S again except for some small change, you
can type "ed S", make the change and leave the editor. "ed -3"
and "ed" are analogous to redo.

Finally, you can get the value of event 7 with the function (valueof 7). The other interesting
feature of the top-level is that it makes outermost parentheses superfluous for the most part.
This works the same way as in CMULisp, so you can use the help for an explanation. If you're
not sure and don't want to risk it you can always just include the parentheses.

2-330 Franz Lisp Manual

(top-level)

SIDE EFFECT: top-level is the LISP top level function. As well as being the top level
function with which the user interacts, it can be called recursively by the
user or any function. Thus, the top level can be invoked from inside the
editor, break package, or a user function to make its commands available
to the user.

NOTE: The CMU FRANZ LISP top-level uses lineread rather than read. The dift'erence
will not usually be noticeable. The principaI thing to be careful about is that input
to the function or system being called cannot appear on the same line as the
top-level call. For example, typing (ediif foo).P' on one line will edit Joo and evaluate
P, not edit Joo and execute the p command in the editor. top-level specially recognizes
the following commands:

(valueof 'g_eventspec)

RETURNS: the value(s) of the event(s) specified by g_eventspec. If a single event is
specified, its value will be returned. If more than one event is specified, or an
event has more than one subevent (as for redo, etc), a list of vlaues will be
returned.

13.2. The File Package

Users typically define functions in lisp and then want to save them for the next session.
If you do (changes), a list of the functions that are newly defined or changed will be
printed. When you type (dskouts), the functions associated with files will be saved in the
new versions of those files. In order to associate functions with files you can either add
them to the filefns list of an existing file or create a new file to hold them. This is done
with the file function. If you type (file new) the system will create a variable called
newfns. You may add the names of the functions to go into that file to newfns. After
you do (changes), the functions which are in no other file are stored in the value of the
atom changes. To put these all in the new file, (setq newfns (append newfns changes)).
Now if you do (changes), all of the changed functions should be associated with files. In
order to save the changes on the files, do (dskouts). All of the changed files (such as
NEW) will be written. To recover the new functions the next time you run FRANZ LISP,
do (dskin new).

Franz Lisp Manual 2-331

Script started on Sat Mar 14 11:50:32 1981
$ newlisp
Welcome to newlisp ...
1. (defun square (x) (• x x)) ; define a new function
square
2. (changes)

<no-file> (square)nil
3. (file 'new)
new
4.newfns
nil
5.(setq newfns '(square))
(square)
6. (changes)

new (square) nil
7.(dskouts)
creating new
(new)
8.(dskin new)
(new)
14.Bye
$
script done on Sat Mar 14 11:51:48 1981

(changes s_tlag)

; See, this function is associated
; with no file.

; So let's declare file NEW.

; It doesn't have anything on it yet.

; Add the function associated
; with no file to file NEW.

; CHANGES magically notices this fact.

; We write the file.

; We read it in!

RETURNS: Changes computes a list containing an entry for each file which defines atoms
that have been marked changed. The entry contains the file name and the
changed atoms defined therein. There is also a special entry for changes to
atoms which are not defined in any known file. The global variable file/st con
tains the list of "known" files. If no flag is passed this result is printed in human
readable form and the value returned is t if there were any changes and nil if
not. Otherwise nothing is printed and the computer list is returned. The global
variable changes contains the atoms which are marked changed but not yet asso
ciated with any file. The changes function attempts to associate these names
with files, and any that are not found are considered to belong to no file. The
changes property is the means by which changed functions are associated with
files. When a file is read in or written out its changes property is removed.

2-332 Franz Lisp Manual

(de s_word s_id [g_descriptorl ...] <text> <esc>)

RETURNS: de defines comments. It is exceptional in that its behavior is very context
dependent. When de is executed from dskin it simply records the fact that the
comment exists. It is expected that in interactive mode comments will be found
via getdef - this allows large comments which do not take up space in your core
image. When de is executed from the terminal it expects you to type a com
ment. dskout will write out the comments that you define and also copy the
comments on the old version of the file, so that the new version will keep the
old comments even though they were never actually brought into core. The
optional id is a mechanism for distinguishing among several comments associ
ated with the same word. It defaults to nil. However if you define two com
ments with the same id, the second is considered to be a replacement for the
first. The behavior of de is determined by the value of the global variable de/
comment. def-comment contains the name of a function that is run. Its argu
ments are the word, id and attribute list. def-comment is initially de-define. Other
functions rebind it to de-help, dc-userhelp, and the value of dskin-comment. The
comment property of an atom is a list of entries, each representing one com
ment. Atomic entries are assumed to be identifiers of comments on a file but
not in core. In-core comments are represented by a list of the id, the attribute
list and the comment text. The comment text is an unintemed atom. Com
ments may be deleted or reordered by editing the comment property.

(dskln l_filenames)

SIDE EFFECT: READ-EV AL-PRINTs the contents of the given files. This is the function
to use to read files created by dskout. dskin also declares the files that it
reads (if a file-fns list is defined and the file is otherwise declarable by file) ,
so that changes to it can be recorded.

(dskout s_filel .. .>
SIDE EFFECT: For each file specified, dskout assumes the list named filenameFNS (i.e.,

the file name, excluding extension, concatenated with fns) contains a
list of function names, etc., to be loaded Any previous version of the file
will be renamed to have extension ".back".

(dskouts s_filel .. .)

SIDE EFFECT: applies dskout to and prints the name of each s filei (with no addi
tional arguments, assuming filenameFNS to bi a list to be loaded) for
which s_filei is either not in file/st (meaning it is a new file not previously
declared by file or given as an argument to dskin, dskouts, or dskouts) or is
in file/st and has some recorded changes to definitions of atoms in
filenameFNS, as recorded by mark/changed and noted by changes. If filit.
is not specified, file/st will be used. This is the most common way of
using dskouts. Typing (dskouts) will save every file reported by
(changes) to have changed definitions.

Franz Lisp Manual 2-333

(dv s_atom g_ value)
EQUIVALENT TO: (setq atom 'value). dv calls mark/changed.

(file 's_file)

SIDE EFFECT: declares its argument to be a file to be used for reporting and saving
changes to functions by adding the file name to a list of files, file/st. file is
called for each file argument of dskin, dskout, and dskouts.

(ftle-fns 's_file)

RETURNS: the name of the fileFNS list for its file argument s_file.

(getdef 's_file rs_il ...])
SIDE EFFECT: selectively executes definitions for atoms s_il ... from the specified file.

Any of the words to be defined which end with "@" will be treated as pat
terns in which the @ matchs any suffix (just like the editor). getdef is
driven by getdeftable (and thus may be programmed). It looks for lines in
the file that start with a word in the table. The first character must be a "("
or "[" followed by the word, followed by a space, return or something else
that will not be considered as Part of the identifier by read, e.g.,"(" is unac
ceptable. When one is found the next word is read. If it matches one of
the identifiers in the call to getdef then the table entry is executed. The
table entry is a function of the expression sUU-ting in this line. Output from
dskout is in acceptable format for getdef. getdef

RETURNS: a list of the words which match the ones it looked for, for which it found (but,
depending on the table, perhaps did not execute) in the file.

NOTE: getdeftable is the table that drives getdef. It is in the form of an association list.
Each element is a dotted pair consisting of the name of a function for which getdef
searches and a function of one argument to be executed when it is found.

(mark!changed 's_O
SIDE EFFECT: records the fact that the definition of s f has been changed. It is automati

cally called by def, defan, de, qr. defprop, dm, dv, and the editor when a
definition is altered.

2-334 Franz Lisp Manual

14.1. Simple Use Of Stepping

(step s_argl...)

CHAPTER 14

The LISP Stepper

NOTE: The LISP "stepping" package is intended to give the LISP programmer a facility
analogous to the Instruction Step mode of running a machine language program.
The user interface is through the function (fexpr) step, which sets switches to put
the LISP interpreter in and out of "stepping" mode. The most common step invoca
tions follow. These invocations are usually typed at the top-level, and will take
effect immediately (i.e. the next S-expression typed in will be evaluated in stepping
mode).

(step t) ; Turn on stepping mode.
(step nil) ; Turn off stepping mode;

SIDE EFFECT: In stepping mode, the LISP evaluator will print out each S-exp to be
evaluated before evaluation, and the returned value after evaluation, calling
itself recursively to display the stepped evaluation of each argument, if the
S-exp is a function call. In stepping mode, the evaluator will wait after
displaying each S-exp before evaluation for a command character from the
console.

Franz Lisp Manual 2-335

STEP COMMAND SUMMARY

<return> Continue stepping recursively.

c

e

g

Show returned value from this level
only, and continue stepping upward.

Only step interpreted code.

Turn off stepping mode. (but continue
evaluation without stepping).

n <number> Step through <number> evaluations without
stopping

p Redisplay current form in full
(i.e. rebind prinlevel and prinlength to nil)

b Get breakpoint

q Quit

d Call debug

14.2. Advanced Features

14.2.1. Selectively Turning On Stepping.

If
(step fool foo2 .. .)

is typed at top level, stepping will not commence immediately, but rather when the
evaluator first encounters an S-expression whose car is one of fool, foo2, etc. This
form will then display at the console, and the evaluator will be in stepping mode wait
ing for a command character.

Normally the stepper intercepts calls to fanca// and evaL When fancall is inter
cepted, the arguments to the function have already been evaluated but when eval is
intercepted, the arguments have not been evaluated. To differentiate the two cases,
when printing the form in evaluation, the stepper preceded intercepted calls to fancal/
with "f:". Calls to fanca// are normally caused by compiled lisp code calling other
functions, whereas calls to eval usually occur when lisp code is interpreted. To step
only calls to eval use: (step e)

2-336 Franz Lisp Manual

14.l.2. Stepping With Breakpoints.

For the moment, step is turned off inside of error breaks, but not by the break
function. Upon exiting the error, step is reenabled. However, executing (step niO
inside a ertor loop will turn off stepping globally, i.e. within the error loop, and after
return has be made from the loop.

14.3. Overhead of Stepping.

If stepping mode has been turned off by (step nil), the execution overhead of hav·
ing the stepping packing in your LISP is identically nil. If one stops stepping by typing
"g", every call to eval incurs a small overhead--several machine instructions, correspond
ing to the compiled code for a simple cond and one function pushdown. Running with
(step fool foo2 ...)can be more expensive, since a member of the car of the current form
into the list (fool foo2 ...) is required at each call to eval.

14.4. Evalhook and Funcallhook

There are hooks in the FRANZ LISP interpreter to permit a user written function to
gain control of the evaluation process. These hooks are used by the Step package just
described. There are two hooks and they have been strategically placed in the two key
functions in the interpreter: eval (which all interpreted code goes through) and juncall
(which all compiled code goes through if (sstatus trans/ink nil) has been done). The hook
in eval is compatible with Maclisp, but there is no Maclisp equivalent of the hook in fun
ca/L

To arm the hooks two forms must be evaluated: (•rset t) and (sstatus evalhook t).
Once that is done, eval and juncall do a special check when they enter.

If eval is given a form to evaluate, say (loo bar), and the symbol 'evalhook' is non
nil, say its value is 'ehook', then eval will lambda bind the symbols 'evalhook' and 'fun
callhook' to nil and will call ehook passing (loo bar) as the argument. It is ehook's
responsibility to evaluate (loo bar) and return its value. Typically ehook will call the
function 'evalhook' to evaluate (loo bar). Note that 'evalhook' is a symbol whose func
tion binding is a system function described in Chapter 4, and whose value binding, if
non nil, is the name of a user written function (or a lambda expression, or a binary
object) which will gain control whenever eval is called. 'evalhook' is also the name of
the status tag which must be set for all of this to work.

If juncall is given a function, say foo, and a set of already evaluated arguments, say
barv and bazv, and if the symbol 'funcallhook' has a non nil value, say 'fbook', then
juncall will lambda bind 'evalhook' and 'funcallhook' to nil and will call fbook with argu
ments barv, bazv and f oo. Thus fbook must be a lexpr since it may be given any
number of arguments. The function to call, foo in this case, will be the last of the argu
ments given to fbook. It is fbooks responsibility to do the function call and return the
value. Typically fbook will call the function junca/lhook to do the funcall. This is an
example of a f uncallhook function which just prints the arguments on each entry to fun
call and the return value.

-> (de.fun jhook n Oet ((form (cons (arg n) Oistify 0- n))))

fbook

(rerval))
(patom "calling ")(printformJ(terpr)
(setq retval (fimcallhook form 'jhoo/c))
(patom •returns•)(print retvalHterpr)
retva/))

-> (•rset t) (sstatus evalhook t) (sstatus trans/ink nil)
-> (setq funcallhook 'jhook)
calling (print fbook) ;; now all compiled code is traced
fbookreturns nil
calling (terpr)

returns nil
calling (patom "-> ")
-> returns"-> •
calling (read nil 000000)
(array foo t 10) ;; to test it, we see what happens when
returns (array foo t 10) ;; we make an array
calling (eval (array foo t 10))
calling (append (10) nil)
returns (10)
calling Oessp l 1)
returns nil
calling (apply times (10))
returns 10
calling (small-segment value 10)
calling (boole 4 137 127)
returns 128
... there is plenty more ...

Franz Lisp Manual 2-337

2-338 Franz Lisp Manual CHAPTER 15

The FIXIT Debugger

15.1. Introduction FIXIT is a debugging environment for FRANZ LISP users doing pro
gram development. This documentation and FIXIT were written by David S. Touretzky
of Carnegie-Mellon University for MACLisp, and adapted to FRANZ LISP by Mitch
Marcus of Bell Labs. One of FIXIT's goals is to get the program running again as
quickly as possible. The user is assisted in making changes to his functions "on the fly",
i.e. in the midst of execution, and then computation is resumed.

To enter the debugger type (debug). The debugger goes into its own read-eval
print loop. Like the top-level, the debugger understands certain special commands. One
of these is help, which prints a list of the available commands. The basic idea is that you
are somewhere in a stack of calls to eval. The command "bka" is probably the most
appropriate for looking at the stack. There are commands to move up and down. If you
want to know the value of "x" as of some place in the stack, move to that place and type
"x" (or (cdr x) or anything else that you might want to evaluate). All evaluation is done
as of the current stack position. You can fix the problem by changing the values of vari
ables, editing functions or expressions in the stack etc. Then you can continue from the
current stack position (or anywhere else) with the "redo" command. Or you can simply
return the right answer with the "return" command.

When it is not immediately obvious why an error has occurred or how the program
got itself into its current state, FIXIT comes to the rescue by providing a powerful
debugging loop in which the user can:

- examine the stack

- evaluate expressions in context

- enter stepping mode

- restart the computation at any point

The result is that program errors can be located and fixed extremely rapidly, and with a
minimum of frustration.

The debugger can only work etf ectively when extra information is kept about forms
in evaluation by the lisp system. Evaluating (*rset t) tells the lisp system to maintain this
information. If you are debugging compiled code you should also be sure that the com
piled code to compiled code linkage tables are unlinked, i.e do (sstatus trans/ink nil).

Franz Lisp Manual 2-339

(debug [s_msg])

NOTE: Within a program, you may enter a debug loop directly by putting in a call to debug
where you would normally put a call to break. Also, within a break loop you may
enter FIXIT by typing debug. If an argument is given to DEBUG, it is treated as a
message to be P.rinted before the debug loop is entered. Thus you can put (debug
J;ust before loofV into a program to indicate what part of the program is being
debugged.

FIXIT Command Summary

TOP go to top of stack (latest expression)
BOT go to bottom of stack (first expression)
P show current expression (with ellipsis)
PP show current expression in full
WHERE give current stack position
HELP types the abbreviated command summary found

in /usr/lisp/doc/fixit.help. Hand ? work too.
U go up one stack frame
U n go up n stack frames
U f go up to the next occurrence of function f
U n f go up n occurrences of function f
UP go up to the next user-written function
UP n go up n user-written functions
... the ON and DNFN commands are similar, but go down
.. .instead of up.

OK resume processing; continue after an error or debug loop
REDO restart the computation with the current stack frame.

The OK command is equivalent to TOP followed by REDO.
REDO f restart the computation with the last call to function f.

(The stack is searched downward from the current position.)
STEP restart the computation at the current stack frame,

but first tum on stepping mode. (Assumes Rich stepper is loaded.)
RETURN e return from the current position in the computation

with the value of expression e.
BK.. print a backtrace. There are many backtrace commands,

formed by adding suffixes to the BK command. "BK" gives
a backtrace showing only user-written functions, and uses
ellipsis. The BK command may be suffixed by one or more
of the following modifiers:

.. F.. show function names instead of expressions

.. A.. show all functions/expressions, not just user-written ones

.. V.. show variable bindings as well as functions/expressions

.. E.. show everything in the expression, i.e. don't use ellipsis

.. C.. go no further than the current position on the stack
Some of the more useful combinations are BKFV, BKFA,
and BKFAV.

BK .. n show only n levels of the stack (starting at the top).
(BK n counts only user functions; BKA n counts all functions.)

BK .. f show stack down to first call of function f
BK .. n f show stack down to nth call of function f

2-340 Franz Lisp Manual

15.2. Interaction with trace FIXIT knows about the standard Franz trace package, and
tries to make tracing invisible while in the debug loop. However, because of the way
trace works, it may sometimes be the case that the functions on the stack are really unin
terned atoms that have the same name as a traced function. (This only happens when a
function is traced WHEREIN another one.) FIXIT will call attention to trace's hackery
by printing an appropriate tag next to these stack entries.

15.3. Interaction with step The step function may be invoked from within FIXIT via the
STEP command. FIXIT initially turns off stepping when the debug loop is entered. If
you step through a function and get an error, FIXIT will still be invoked normally. At
any time during stepping, you may explicitly enter FIXIT via the "D" (debug) command.

15.4. Multiple error levels FIXIT will evaluate arbitrary LISP expressions in its debug
loop. The evaluation is not done within an errset, so, if an error occurs, another invoca
tion of the debugger can be made. When there are multiple errors on the stack, FIXIT
displays a barrier symbol between each level that looks something like <--------
---UDF-->. The UDF in this case stands for UnDefined Function. Thus, the upper
level debug loop was invoked by an undefined function error that occurred while in the
lower loop.

Franz Lisp Manual 2-341

CHAPTER 16

The LISP Editor

16.1. The Editon

It is quite possible to use VI, Emacs or other standard editors to edit your lisp programs,
and many people do just that. However there is a lisp structure editor which is particu
larly good for the editing of lisp programs, and operates in a rather different fashion,
namely within a lisp environment. application. It is handy to know how to use it for
fixing problems without exiting frQm the lisp system (e.g. from the debugger so you can
continue to execute rather than having to start over.) The editor is not quite like the
top-level and debugger, in that it expects you to type editor commands to it. It will not
evaluate whatever you happen to type. (There is an editor command to evaluate things,
though.)

The editor is available (assuming your system is set up correctly with a lisp library) by
typing (load 'cmufncs) and (load 'cmuedit).

The most frequent use of the editor is to change function definitions by starting the
editor with one of the comtnan<;ls described in section 16.14. (see edit}), values (editv),
properties (editp), and expressions (edite). The beginner is advised to start with the
following (very basic) commands: ok, undo, p, #, under which are explained two
different basic commands which start with numbers, and f.

This documentation, and the editor, were imported from PDP-10 CMULisp by Don
Cohen. PDP-10 CMULisp is based on UCILisp, and the editor itself was derived from
an early version of Interlisp. Lars Ericson, the author of this section, has provided this
very concise summary. Tutorial examples and implementation details may be found in
the Interlisp Reference Manual, where a similar editor is described.

16.l. Scope of Attention

Attention-changing commands allow you to look at a different part of a Lisp expression
you are editing. The sub-structure upon which the editor's attention is centered is called
"the current expression". Changing the current expression means shifting attention and
not actually modifying any structure.

2-342 Franz Lisp Manual

SCOPE OF ATTENTION COMMAND SUMMARY

n (n> 0) . Makes the nth element of the current expression be the new current expression.

-n (n> 0). Makes the nth element from the end of the current expression be the new current expression.

0. Makes the next higher expression be the new correct expression. If the intention is to go back to the next
higher left parenthesis, use the command !O.

up . If a p command would cause the editor to type ... before typing the current expression, (the current expression is
a tail of the next higher expression) then has no effect; else, up makes the old current expression the first element in
the new current expression.

!O • Goes back to the next higher left parenthesis.

~ . Makes the top level expression be the current expression.

nx . Makes the current expression be the next expression.

(nx n) equivalent ton nx commands.

!nx . Makes current expression be the next expression at a higher level. Goes through any number of right
parentheses to get to the next expression.

bk . Makes the current expression be the previous expression in the next higher expression.

(nth n) n> 0. Makes the list starting with the nth element of the current expression be the current expression.

(nth$) - generalized nth command. nth locates $, and then backs up to the current level, where the new current expres
sion is the tail whose first element contains, however deeply, the expression that was the terminus of the location
operation.

:: . (pattern :: . $) e.g., (cond :: return). finds a cond that contains a return, at any depth.

(below com x) . The below command is useful for locating a substructure by specifying something it contains. (below
cond) will cause the cond clause containing the current expression to become the new current expression. Suppose
you are editing a list of lists, -and want to find a sublist that contains a foo (at any depth). Then simply executes f foo
(below).

(nex x) . same as (below x) followed by nx. For example, if you are deep inside of a selectq clause, you can advance to
the next clause with (nex sekctq).

nex. The atomic form of nex is useful if you will be performing repeated executions of (nex xJ. By simply mark
ing the chain corresPonding to x, you can use nex to step through the sublists.

16.3. Pattern Matching Commands

Many editor commands that search take patterns. A pattern pat matches with x if:

Franz Lisp Manual 2-343

PATTERN SPECIFICATION SUMMARY

- pat is eq to x.

- pat is&.

- pat is a number and equal to x.

- if (car pat) is the atom •any•, (C<ir pat) is a list of patterns, and pat matches x if and only if one of the patterns on
(C<ir pat) matches x.

- if pat is a literal atom or string, and (nthchar pat -0 is @, then pat matches with any literal atom or string which has
the same initial characters as pat, e.g. ver@ matches with verylongatom, as well as "verylongstring".

- if (car pat) is the atom--, pat matches x if (a) (cdr pat)-nil, i.e. pat-(--), e.g., (a--) matches (a) (ab c) and (a. b)
in other words, -- can match any tail of a list. (b) (C<ir pat) matches with some tail of x, e.g. (a -- (&)) will match with
(a b c (d)), but not (a b c d), or (ab c (d) e). however, note that (a -- (&) --) will match with (ab c (d) e). in other
words, -- will match any interior segment of a list.

- if (car pat) is the atom - - • pat matches x if and only if (cdr pat) is eq to x. (this pattern is for use by programs that
call the editor as a subroutine, since any non-atomic expression in a command typed in by the user obviously cannot be
eq to existing structure.) - otherwise if x is a list, pat matches x if (car pat) matches (car x), and (C<ir pat) matches (cdr
x).

- when searching, the pattern matching routine is called only to match with elements in the structure, unless the pat
tern begins with :::, in which case C<ir of the pattern is matched against tails in the structure. (in this case, the tail does
not have to be a proper tail, e.g. (::: a--) will match with the element (ab c) as well as with C<ir of (x ab c), since (a
b c) is a tail of (a b c).)

16.3.1. Commands That Search

SEARCH COMMAND SUMMARY

f pattern . f informs the editor that the next command is to be interpreted as a pattern. If no pattern is given on the
same line as the f then the last pattern is used. f pattern means find the next instance of pattern.

(f pattern n). Finds the next instance of pattern.

(f pattern t). similar to f pattern, except, for example, if the current expression is (cond . .) , f cond will look for the
next cond, but (f cond t) will 'stay here'.

(f pattern n) n> 0. Finds the nth place that pattern matches. If the current expression is (foo I foo2 foo3), (f fOO@ 3)
will find foo3.

(f pattern) or (f pattern ni/J. only matches with elements at the top level of the current expression. If the current
expression is (prog nil (setq x (cond & &JJ (cond &J ...) f (cond --) will find the cond inside the setq, whereas (f (cond
--)) will find the top level cond, i.e., the second one.

(second . $) . same as (le . $) followed by another (le . $) except that if the first succeeds and second fails, no change
is made to the edit chain.

(third . $) . Similar to second.

(fs pattern/ ... patternn) . equivalent to f patternl followed by f pattern2 ... followed by f pattern n, so that if f pattern
m fails, edit chain is left at place pattern m-1 matched.

2-344 Franz Lisp Manual

(!- expression x) . Searches tor a structure eq to expression.

(orf patternl ..• patternnJ. Searches for an expression that is matched by either patternl or ... patternn.

bf pattern . backwards find. If the current expression is (prog nil (setq x (setq y (list z))) (cond ((setq w -) --)) -) f list
followed by bf setq will leave the current expression as (setq y (list z)), as will f cond followed by bf setq

(bf pattern t). backwards find. Search always includes current expression, i.e., Starts at end of current expression and
works backward, then ascends and backs up, etc.

16.3.i.t. Location Specifications Many editor comDl.ands use a method of specify
ing position called a location specification. The meta-symbol S is used to denote a
lo'cation specification. $ is a list of commands interpreted as described above. S
can also be atomic, in which case it is interpreted as (list $). a location
specit\cation is a list of edit commands that are executed in the normal fashion
with two exceptions. first, all commands not recognized by the editor are inter
preted as though they had been preceded by f. The location specification (cond 2
3) specifies the 3rd element in the first clause of the next cond.

the if command and the ## function provide a way of using in location
specifications arbitrary predicates applied to elements in the current expression.

In insert, delete, replace and change, if$ is nil (empty), the corresponding opera
tion is performed on the current edit chain, i.e. (replace with (car x)) is
equivalent to (:(car x)). for added readability, here is also permitted, e.g., (insert
(print x) before here) will insert (print x) before the current expression (but not
change the edit chain). It is perfectly legal to ascend to insert, replace, or delete.
for example (insert (return) after "' prog -1} will go to the top, find the first prog,
and insert a (return) at its end, and not change the current edit chain.

The a, b, and: commands all make special checks in el thru em for expressions
of the form (## . coms). In this case, the expression used for inserting or
replacing is a copy of the current expression after executing coms, a list of edit
commands. (insert (## f cond -1 .1) after3) Will make a copy of the last form
in the last clause of the next cond, and insert it after the third element of the
current expression.

$. In descriptions of the editor, the meta-symbol $ is used to denote a location
specification. S is a list of commands interpreted as described above. S can also
be atomic.

LOCATION COMMAND SUMMARY

(le . $) . Provides a way of explicitly invoking the location operation. (le cond 2 3) will perform search.

(/cl . $) . Same as le except search is confined to current expression. To find a cond containing a return, one might use
the location specification (cond (let return)) where the would reverse the effects of the lei command, and make the
final current expression be the cond.

Franz Lisp Manual 2-345

16.3.2. The Edit Chain The edit-chain is a list of which the first element is the the
one you are now editing ("current expression"), the next element is what would
become the current expression if you were to do a 0, etc., until the last element
which is the expression that was passed to the editor.

EDIT CHAIN COMMAND SUMMARY

mark . Adds the current edit chain to the front of the list marklst.

. Makes the new edit chain be (car marklst).

(_ pattern) . Ascends the edit chain looking for a link which matches pattern. for example:

. Similar to _ but also erases the mark.

\ . Makes the edit chain be the value of unfind. unfind is set to the current edit chain by each command that makes a
"big jump", i.e., a command that usually performs more than a single ascent or descent, namely ·, _, _, !nx, all com
mands that involve a search, e.g., f, le, .. , below, et al and and themselves.
if the user types f cond, and then f car, would take him back to the cond. another would take him back to the car,
etc.

\p . Restores the edit chain to its state as of the last print operation. If the edit chain has not changed since the last
printing, \p restores it to its state as of the printing before that one. If the user types p followed by 3 2 1 p, \p will
return to the first p, i.e., would be equivalent to 0 0 0. Another \p would then take him back to the second p.

16.4. Printing Commands

PRINTING COMMAND SUMMARY

p Prints current expression in abbreviated form. (p m) prints mth element of current expression in abbreviated form.
(p m n) prints mth element of current expression as though printlev were given a depth of n. (p 0 n) prints current
expression as though printlev were given a depth of n. (p cond 3) will work.

? . prints the current expression as though printlev were given a depth of 100.

pp . pretty-prints the current expression.

pp._ is like pp, but forces comments to be shown.

16.S. Structure Modification Commands

All structure modification commands are undoable. See undo.

2-346 Franz Lisp Manual

STRUCTURE MODIFICATION COMMAND SUMMARY

[editor commands] (n) n > 1 deletes the corresponding element from the current expression.

(n el ... em) n,m> 1 replaces the nth element in the current expression with el ... em.

(-n el ... em) n,m> 1 inserts el ... em before then element in the current expression.

(n el ... em) (the letter "n" for "next" or "nconc", not a number) m> 1 attaches el ... em at the end of the current
expression.

(a el ... em). inserts el ... em after the current expression (or after its first element if it is a tail).

(b el ... em) . inserts el ... em before the current expression. to insert foo before the last element in the current
expression, perform -1 and then (b foo).

(:el ... em). replaces the current expression by el ... em. If the current expression is a tail then replace its first ele
ment.

delete or (:) . deletes the current expression, or if the current expression is a tail, deletes its first element.

(delete . $). does a (le . $) followed by delete. current edit chain is not changed.

(insert el ... em before. $). similar to (le. $) followed by (b el ... em).

(insert el ... em qfter. $). similar to insert before except uses a instead of b.

(insert el ... em/or. $). similar to insert before except uses : for b.

(replace$ with el ... em) . here $is the segment of the command between replace and with.

(change$ to el." .. em). same as replace with.

16.6. Extraction and Embeddln1 Commands

EXTRACTION AND EMBEDDING COMMAND SUMMARY

fxtr. $). replaces the original current expression with the expression that is current after performing (lei. $).

(mbd x) . x is a list, substitutes the current expression for all instances of the atom • in x, and replaces the current
expression with the result of that substitution. (mbd x) : x atomic, same as (mbd (x •)).

(extract $1 from $2) . extract is an editor command which replaces the current expression with one of its subexpres
sions (from any depth). ($1 is the segment between extract and from.) example: if the current expression is (print
(cond ((null x) y) (t z))) then following (extract y from cond), the current expression will be (print y). (extract 2 -1
from cond), (extract y from 2), (extract 2 -1 from 2) will all produce the same result.

(embed $ in . x) . embed replaces the current expression with a new expression which contains it as a subexpression.
($is the segment between embed and in.) example: (embed print in setq x), (embed 3 2 in return), (embed cond 3 1
in (or • (null x))).

Franz Lisp Manual 2-347

16.7. Move and Copy Commands

MOVE AND COPY COMMAND SUMMARY

(move $1 to com . $2) . ($1 is the segment between move and to.) where com is before, after, or the name of a list
command, e.g., :, n, etc. If $2 is nil, or (here), the current position specifies where the operation is to take place. If $1
is nil, the move command allows the user to specify some place the current expression is to be moved to. if the
current expression is (ab d c), (move 2 to after 4) will make the new current expression be (a c db).

(mv com • $) . is the same as (move here to com . $).

(copy $1 to com . $2) is like move except that the source expression is not deleted.

(cp com . $). is like mv except that the source expression is not deleted.

16.8. Parentheses Moving Commands The commands presented in this section permit
modification of the list structure itself, as opposed to modifying components thereof.
their effect can be described as inserting or removing a single left or right parenthesis, or
pair of left and right parentheses.

PARENTHESES MOVING COMMAND SUMMARY

(bi n m) . both in. inserts parentheses before the nth element and after the mth element in the current expression.
example: if the current expression is (ab (c d e) f g), then (bi 2 4) will modify it to 'ie (a (b (c d e) f) g). (bi n) :
same as (bi n n). example: if the current expression is (a b (c d e) f g), then (bi -2) will modify it to be (a b (c d e)
(f) g).

(bo n) . both out. removes both parentheses from the nth element. example: if the current expression is (a b (c d e)
f g), then (bod) will modify it to be (ab c def g).

(I; n) . left in. inserts a left parenthesis before the nth element (and a matching right parenthesis at the end of the
current expression). example: if the current expression is (a b (c de) f g), then (Ii 2) will modify it to be (a (b (c de)
f g)).

(lo n) . left out. removes a left parenthesis from the nth element. all elements following the nth element are
deleted. example: if the current expression is (ab (c de) f g), then (lo 3) will modify it to be (ab c de).

(r; n m) . right in. move the right parenthesis at the end of the nth element in to after the mth element. inserts a
right parenthesis after the mth element of the nth element. The rest of the nth element is brought up to the level of
the current expression. example: if the current expression is (a (b c de) f g), (ri 2 2) will modify it to be (a (b c) de
f g).

(ro n) . right out. move the right parenthesis at the end of the nth element out to the end of the current expression.
removes the right parenthesis from the nth element, moving it to the end of the current expression. all elements fol
lowing the nth element are moved inside of the nth element. example: if the current expression is (a b (c d e) f
g), (ro 3) will modify it to be (ab (c def g)).

(r x y) replaces all instances of x by y in the current expression, e.g., (r caadr cadar). x can be the s-expression (or
atom) to be substituted for, or can be a pattern which specifies thats-expression (or atom).

(sw n m) switches the nth and mth elements of the current expression. for example, if the current expression is (list
(cons (car x) (car y)) (cons (cdr y))), (sw 2 3) will modify it to be (list (cons (cdr x) (cdr y)) (cons (car x) (car
y))). (sw car cdr) would produce the same result.

2-348 Franz Lisp Manual

16.8.1. Using to and thru

to, thru, extract, embed, delete, replace, and move can be made to operate on several
contiguous elements, i.e., a segment of a list, by using the to or thru command in
their respective location specifications. thru and to are intended to be used in con
junction with extract, embed, delete, replace, and move. to and thru can also be
used directly with xtr (which takes after a location specification), as in (xtr (2 thru
4)) (from the current expression).

TO AND THRU COMMAND SUMMARY

($1 to $2) . same as thru except last element not included.

($1 to). same as ($1 thru -1)

($1 thru $2) . If the current expression is (a (b (c d) (e) (f g h) i) j k), following (c thru g). the current expression
will be ((c d) (e) (f g h)). If both SI and $2 are numbers, and $2 is greater than $1, then $2 counts from the begin
ning of the current expression, the same as $1. in other words, if the current expression is (a b c de f g), (3 thru 4)
means (c thru d), not (c thru 0. in this case, the correspanding bi command is (bi 1 $2-$1+1).

($1 thru). same as ($1 thru -0.

16.9. Undoing Commands each command that causes structure modification automatically
adds an entry to the front of undolst containing the information required to restore all
pointers that were changed by the command. The undo command undoes the last, i.e.,
most recent such command.

UNDO COMMAND SUMMARY

undo . the undo command undoes most recent, structure modification command that has not yet been undone, and
prints the name of that command, e.g., mbd undone. The edit chain is then exactly what it was before the 'undone'
command had been performed.

!undo . undoes all modifications performed during this editing session, i.e., this call to the editor.

unblock . removes an undo-block. If executed at a non-blocked state, i.e., if undo or !undo could operate, types not
blocked.

test. adds an undo-block at the front of undolst. note that test together with !undo provide a 'tentative' mode
for editing, i.e., the user can perform a number of changes, and then undo all of them with a single !undo command.

undo/st (valuel each editor command that causes structure modification automatically adds an entry to the front of
undolst containing the information required to restore all painters that were changed by the command.

? ? prints the entries on undolst. The entries are listed most recent entry first.

Franz Lisp Manual 2-349

16.10. Commands that Evaluate

EVALUATION COMMAND SUMMARY

e . only when typed in, (i.e., (insert d before e) will treat e as a pattern) causes the editor to call the lisp inter
preter giving it the next input as argument.

(e x) evaluates x, and prints the result. (e x t) same as (e x) but does not print.

(; c xi ... xn) same as (c y I ... yn) where yi- (eval xi). example: (i 3 (cdr foo)) will replace the 3rd element of the
current expression with the cdr of the value of foo. (i n foo (car fie)) will attach the value of foo and car of the value
of fie to the end of the current expression. (i f- foo t) will search for an expression eq to the value of foo. If c is not
an atom, it is evaluated as well.

(coms xl ... xn) . each xi is evaluated and its value executed as a command. The i command is not very convenient
for computing an entire edit command for execution, since it computes the command name and its arguments
separately. also, the i command cannot be used to compute an atomic command. The coms and comsq commands
provide more general ways of computing commands. (corns (cond (x (list I x)))) will replace the first element of the
current expression with the value of x if non-nil, otherwise do nothing. (nil as a command is a nop.)

(comsq coml ... comn) . executes coml ... comn. comsq is mainly useful in conjunction with the corns command.
for example, suppose the user wishes to compute an entire list of commands for evaluation, as opposed to computing
each command one at a time as does the coms command. he would then write (corns (cons (quote comsq) x)) where
x computed the list of commands, e.g., (corns (cons (quote comsq) (get foo (quote commands))))

16.11. Commands that Test

TESTING COMMAND SUMMARY

(if x) generates an error unless the value of (eval x) is non-nil, i.e., if (eval x) causes an error or (eval x) -nil, if will
cause an error. (if x comsl coms2) if (eval x) is non-nil, execute comsl; if (eval x) causes an error or is equal to nil,
execute coms2. (if x comsl) if (eval x) is non-nil, execute comsl; otherwise generate an error.

(Ip • coms) . repeatedly executes corns, a list of commands, until an error occurs. (Ip f print (n t)) will attach
a t at the end of every print expression. (Ip f print (if (## 3) nil ((n t)))) will attach a t at the end of each print
expression which does not already have a second argument. (i.e. the form (## 3) will cause an error if the edit com
mand 3 causes an error, thereby selecting ((n t)) as the list of commands to be executed. The if could also be written
as (if (cddr (##)) nil ((n t))).).

(lpq . coms) same as Ip but does not print n occurrences.

(o" comsl ... comsn) . orr begins by executing comsl, a list of commands. If no error occurs, orr is finished. other
wise, orr restores the edit chain to its original value, and continues by executing coms2, etc. If none of the com
mand lists execute without errors, i.e., the orr "drops off the end", orr generates an error. otherwise, the edit chain is
left as of the completion of the first command list which executes without error.

2-350 Franz Lisp Manual

16.12. Editor Macros

Many of the more sophisticated branching commands in the editor, such as orr, if, etc.,
are most often used in conjunction with edit macros. The macro feature permits the
user to define new commands and thereby expand the editor's repertoire. (however, built
in commands always take precedence over macros, i.e., the editor's repertoire can be
expanded, but not modified.) macros are defined by using the m command.

(m c . coms) for c an atom, m defines c as an atomic command. (if a macro is
redefined, its new definition replaces its old.) executing c is then the same as executing
the list of commands corns. macros can also define list commands, i.e., commands
that take arguments. (m (c) (arg[l] ... arg[n]) . corns) can atom. m defines c as a list
command. executing (c el ... en) is then performed by substituting el for arg[l],

en for arg[n] throughout corns, and then executing corns. a list command can be
defined via a macro so as to take a fixed or indefinite number of 'arguments'. The
form given above specified a macro with a fixed number of arguments, as indicated by its
argument list. if the of arguments. (m (c) args . corns) c, args both atoms, defines
c as a list command. executing (c el ... en) is performed by substituting (el ... en),
i.e., cdr of the command, for args throughout corns, and then executing corns.

(m bp bk up p) will define bp as an atomic command which does three things, a bk,
an up, and a p. note that macros can use commands defined by macros as well as built in
commands in their definitions. for example, suppose z is defined by (m z -1 (if
(null (##)) nil (p))), i.e. z does a -1, and then if the current expression is not nil, a p.
now we can define zz by (m zz -1 z), and zzz by (m zzz -1 -1 z) or (m zzz -1 zz). we
could define a more general bp by (m (bp) (n) (bk n) up p). (bp 3) would perform
(bk 3), followed by an up, followed by a p. The command second can be defined as
a macro by (m (2nd) x (orr ((le . x) (le . x)))).

Note that for all editor commands, 'built in' commands as well as commands defined
by macros, atomic definitions and list definitions are completely independent. in
other words, the existence of an atomic definition for c in no way affects the treatment
of c when it appears as car of a list command, and the existence of a list definition for c
in no way affects the treatment of c when it appears as an atom. in particular, c can be
used as the name of either an atomic command, or a list command, or both. in the latter
case, two entirely different definitions can be used. note also that once c is defined
as an atomic command via a macro definition, it will not be searched for when used in a
location specification, unless c is preceded by an f. (insert -- before bp) would not
search for bp, but instead perform a bk, an up, and a p, and then do the insertion. The
corresponding also holds true for list commands.

(bind . coms) bind is an edit command which is useful mainly in macros. it binds
three dummy variables #1, #2, #3, (initialized to nil), and then executes the edit
commands corns. note that these bindings are only in effect while the commands are
being executed, and that bind can be used recursively; it will rebind #1, #2, and #3
each time it is invoked.

usermacros [value]. this variable contains the users editing macros . if you want to
save your macros then you should save usermacros. you should probably also save
editcomsl.

editcomsl [value]. editcomsl is the list of "list commands" recognized by the editor.
(these are the ones of the form (command argl arg2 .. .).)

Franz Lisp Manual 2-351

16.13. Miscellaneous Editor Commands

MISCELLANEOUS EDITOR COMMAND SUMMARY

ok . Exits from the editor.

nil. Unless preceded by for bf, is always a null operation.

tty: . Calls the editor recursively. The user can then type in commands, and have them executed. The tty: com
mand is completed when the user exits from the lower editor (with ok or stop). the tty: command is extremely
useful. it enables the user to set up a complex operation, and perform interactive attention-changing commands
part way through it. for example the command (move 3 to after cond 3 p tty:) allows the user to interact, in effect,
within the move command. he can verify for himself that the correct location has been found, or complete the
specification "by hand". in effect, tty: says "I'll tell you what you should do when you get there."

stop . exits from the editor with an error. mainly for use in conjunction with tty: commands that the user wants to
abort. since all of the commands in the editor are errset protected, the user must exit from the editor via a command.
stop provides a way of distinguishing between a successful and unsuccessful (from the user's standpoint) editing ses
sion.

ti . ti calls (top-level). to return to the editor just use the return top-level command.

repack. permits the 'editing' of an atom or string.

(repack$) does (le. $) followed by repack, e.g. (repack this@).

(makefn form args nm). makes (car form) an expr with the nth through mth elements of the current expression
with each occurrence of an element of (cdr form) replaced by the corresponding element of args. The nth through
mth elements are replaced by form.

(makefnform args n). same as (makefn form args n n).

(s var . $) . sets var (using setq) to the current expression after performing (le . $). (s foo) will set foo to the
current expression, (s foo -1 1) will set foo to the first element in the last element of the current expression,

16.14. Editor Functions

(edltf s_xl .. .)

SIDE EFFECT: edits a function. s xl is the name of the function, any additional arguments
are an optional list of commands.

RETURNS: s_xl.
NOTE: if s_xl is not an editable function, editf generates an fn not editable error.

2-352 Franz Lisp Manual

(edlte 1 expr 1 corns s atm))
edits an-expreS"sion. itS value is the last element of (editl (list l_expr) l_corns s_atm nil nil).

(edlt?acefn s com)
is available to help the user debug complex edit macros, or subroutine calls to the editor. edi
tracefn is to be defined by the user. whenever the value of editracefn is non-nil, the editor
calls the function editracef n before executing each command (at any level), giving it that
command as its argument. editracefn is initially equal to nil, and undefined.

(editv s_ var [g_coml ...])
SIDE EFFECT: similar to editf, for editing values. editv sets the variable to the value

returned.
RETURNS: the name of the variable whose value was edited.

(editp s_x)

SIDE EFFECT: similar to editf for editing property lists. used if x is nil.
RETURNS: the atom whose property list was edited.

(editl corns atm marklst mess)

SIDE EFFECT: editl is the editor. its first argument is the edit chain, and its value is an
edit chain, namely the value of I at the time editl is exited. (I is a special
variable, and so can be examined or set by edit commands. " is equivalent
to (e. (setq 1 (last 1)) t).) corns is an optional list of commands. for interac
tive editing, corns is nil. in this case, editl types edit and then waits for
input from the teletype. (if mess is not nil editl types it instead of edit. for
example, the tty: command is essentially (setq I (editl 1 nil nil nil (quote
tty:))).) exit occurs only via an ok, stop, or save command. If corns is not
nil, no message is typed, and each member of corns is treated as a com
mand and executed. If an error occurs in the execution of one of the com
mands, no error message is printed , the rest of the commands are ignored,
and editl exits with an error, i.e., the effect is the same as though a stop
command had been executed. If all commands execute successfully, editl
returns the current value of 1. marklst is the list of marks. on calls from
editf, atm is the name of the function being edited; on calls from editv, the
name of the variable, and calls from editp, the atom of which some pro
perty of its property list is being edited. The property list of atm is used by
the save command for saving the state of the edit. save will not save any
thing if atm-nil i.e., when editing arbitrary expressions via edite or editl
directly.

Franz Lisp Manual 2-353

(edltfns s_x [g_comsl ...])
f subr function, used to perform the same editing operations on several functions. editfns maps
down the list of functions, prints the name of each function, and calls the editor (via editO on
that function.

EXAMPLE: editfns f oof ns (r fie f um)) will change every fie to f um in each of the f unc
tions on foof ns.

NOTE: the call to the editor is errset protected, so that if the editing of one function
causes an error, editf ns will proceed to the next function. in the above example,
if one of the functions did not contain a fie, the r command would cause an error,
but editing would continue with the next function. The value of editf ns is nil.

(edit4e pat y)

SIDE EFFECT: is the pattern match routine.

RETURNS: t if pat matches y. see edit-match for definition of 'match'.

NOTE: before each search operation in the editor begins, the entire pattern is scanned
for atoms or strings that end in at-signs. These are replaced by patterns of the
form (cons (quote /@) (explodec atom)). from the standpoint of edit4e,
pattern type 5, atoms or strings ending in at-signs, is really "if car[pat] is the atom
@ (at-sign), pat will match with any literal atom or string whose initial char
acter codes (up to the @) are the same as those in cdr[patl." if the user wishes
to call edit4e directly, he must therefore convert any patterns which contain atoms
or strings ending in at-signs to the form recognized by edit4e. this can be
done via the function editf pat.

(editfpat pat fig)
makes a copy of pat with all patterns of type S (see edit-match) converted to the form expected
by edit4e. fig should be passed as nil (fig-tis for internal use by the editor).

(editftndp x pat fig)

NOTE: Allows a program to use the edit find command as a pure predicate from outside
the editor. x is an expression, pat a pattern. The value of editfindp is t if the com
mand f pat would succeed, nil otherwise. editfindp calls editf pat to convert pat to
the form expected by edit4e, unless fig-t. if the program is applying editfindp to
several different expressions using the same pattern, it will be more efficient to call
editfpat once, and then call editfindp with the converted pattern and fig-t.

(## g_coml .. .)

RETURNS: what the current expression would be after executing the edit commands coml
... starting from the present edit chain. generates an error if any of co mi cause
errors. The current edit chain is never changed. example: (i r (quote x) (##
(cons .. z))) replaces all x's in the current expression by the first cons containing
a z.

2-354 Franz Lisp Manual

APPENDIX A

Special Symbols

The values of these symbols have a predefined meaning. Some values are counters while
others are simply flags whose value the user can change to affect the operation of lisp system.
In all cases, only the value cell of the symbol is important, the function cell is not. The value
of some of the symbols (like ER'Aimisc) are functions - what this means is that the value cell of
those symbols either contains a lall)bda e:xpression, a binary object, or symbol with a function
binding.

The values of the special symbols are:

SgccountS - The number of garbage collections which have occurred.

Sgcprint - If bound to a non nil value, then after each garbage collection and subsequent
storage allocation a summary of storage allocation will be printed.

$1dprint - If bound to a non nil value, then during each fas/ or cfasl a diagnostic message will
be printed.

ERO/oall - The function which is the error handler for all errors (see §10)

ERO/obrk - The function which is the handler for the error signal generated by the evaluation
of the break function (see §10).

ERo/oerr - The function which is the handler for the error signal generated by the evaluation
of the err function (see §10).

ER o/omisc - The function which is the handler of the error signal generated by one of the
unclassified errors (see §10). Most errors are unclassified at this point.

ERO/otpl - The function which is the handler to be called when an error has occurred which
has not been handled (see §10).

ERo/oundef - The function which is the handler for the error signal generated when a call to an
undefined function is made.

"w - When bound to a non nil value this will prevent output to the standard output port
(poport) from reaching the standard output (usually a terminal). Note that "w is a two
character symbol and should not be confused with "W which is how we would denote
control-w. The value of .. w is checked when the standard output buffer is flushed
which occurs after a terpr, drain or when the buff er overflows. This is most useful in
conjunction with ptport described below. System error handlers rebind "w to nil when
they are invoked to assure that error messages are not lost. (This was introduced for
Maclisp compatibility).

defmacro-for-compilin1 - The has an effect during compilation. If non-nil it causes macros
defined by def macro to be compiled and included in the object file.

environment - The UNIX environment in assoc list form.

Franz Lisp Manual 2-355

errlist - When a reset is done, the value of errlist is saved away and control is thrown to the
top level. Eva/ is then mapped over the saved away value of this list.

errport - This port is initially bound to the standard error file.

evalhook - The value of this symbol, if bound, is the name of a function to handle evalhook
traps (see §14.4)

ft.oat-format - The value of this symbol is a string which is the format to be used by print to
print flonums. See the documentation on the UNIX function printf for a list of allow
able formats.

funcallhook - The value of this symbol, if bound, is the name of a function to handle fun
callhook traps (see §14.4).

gcdisable - If non nil, then garbage collections will not be done automatically when a collect
able data type runs out.

ibase - This is the input radix used by the lisp reader. It may be either eight or ten. Numbers
followed by a decimal point are assumed to be decimal regardless of what ibase is.

linel - The line length used by the pretty printer, pp. This should be used by print but it is
not at this time.

nil - This symbol represents the null list and thus can be written (). Its value is always nil.
Any attempt to change the value will result in an error.

piport - Initially bound to the standard input (usually the keyboard). A read with no argu
ments reads from piport.

poport - Initially bound to the standard output (usually the terminal console). A print with no
second argument writes to poport. See also: "w and ptport.

prinlength - If this is a positive fixnum, then the print function will print no more than prin
length elements of a list or hunk and further elements abbreviated as ' ... '. The initial
value of prinlength is nil.

prinlevel - If this is a positive fixnum, then the print function will print only prinlevel levels of
nested lists or hunks. Lists below this level will be abbreviated by ' & ' and hunks below
this level 'Yill be abbreviated by a '%'. The initial value of prinlevel is nil.

ptport - Initially bound to nil. If bound to a port, then all output sent to the standard output
will also be sent to this port as long as this port is not also the standard output (as this
would cause a loop). Note that ptport will not get a copy of whatever is sent to poport
if poport is not bound to the standard output.

readtable - The value of this is the current readtable. It is an array but you should NOT try to
change the value of the elements of the array using the array functions. This is
because the read table is an array of bytes and the smallest unit the array functions work
with is a full word (4 bytes). You can use setsyntax to change the values and (status
syntax .. .) to read the values.

t - This symbol always has the value t. It is possible to change the value of this symbol for
short periods of time but you are strongly advised against it.

2-356 Franz Lisp Manual

top-level - In a lisp system without /usr/lib/lisp/toplevel.l loaded, after a reset is done, the lisp
system will funcall the value of top-level if it is non nil. This provides a way for the
user to introduce his own top level interpreter. When /usr/lib/lisp/toplevel.l is loaded,
it sets top-level to franz-top-level and changes the reset function so that once franz
top-level starts, it cannot be replaced by changing top-level. Franz-top-level does pro
vide a way of changing the top level however, and that is through user-top-level.

user-top-level - If this is bound then after a reset, the top level function will funcall the value
of this symbol rather than go through a read eval print loop.

\

/

Franz Lisp Manual 2-357

APPENDIX B

Short Subjects.

The Garbage Collector
The garbage collector is invoked automatically whenever a collectable data type runs out.

All data types are collectable except strings and atoms are not. After a garbage collection
finishes, the collector will call the function gcafter which should be a lambda of one argument.
The argument passed to gcafter is the name of the data type which ran out and caused the gar
bage collection. It is gcafters responsibility to allocate more pages of free space. The default
gcafter makes its decision based on the percentage of space still in use after the garbage collec
tion. If there is a large percentage of space still in use, gcafter allocates a larger amount of free
space than if only a small percentage of space is still in use. The default gcafter will also print a
summary of the space in use if the variable $gcprint is non nil. The summary always includes
the state of the list and fixnum space and will include another type if it caused the garbage col
lection. The type which caused the garbage collection is preceded by an asterisk.

Debugging
There are two simple functions to help you debug your programs: baktrace and showstack.

When an error occurs (or when you type the interrupt character), you will be left at a break
level with the state of the computation frozen in the stack. At this point, calling the function
showstack will cause the contents of the lisp evaluation stack. to bE; printed in reverse chronolog
ical order (most recent first). When the programs you are running are interpreted or traced,
the output of showstack can be very verbose. The function baktrace prints a summary of what
showstack prints. That is, if showstack would print a list, baktrace would only print the first ele
ment of the list. If you are running compiled code with the (status trans/ink) non nil, then fast
links IU'e being made. In this case, there is not· enough information on the stack for showstack
and baktrace. Thus, if you are debugging compiled code you should probably do
(sstatus trans/ink niO.

If the contents of the stack don't tell you enough about your problem, the next thing you
may want to try is to run your program with certain functions traced. You can direct the trace
package to stop program execution when it enters a function, allowing you to examine the con
tents of variables or call other functions. The trace package is documented in Chapter 11.

It is also possible to single step the evaluator and to took at stack frames within lisp. The
programs which perform these actions are described in Chapters 14 and 15.

2-358 Franz Lisp Manual

The Interpreter's Top Level
The default top level interpreter for Franz, named franz-top-level is defined in

/usr/lib/lisp/toplevel.1 It is given control when the lisp system starts up because the variable
top-level is bound to the symbol franz-top-level The first action franz-top-level takes is to print
out the name of the current version of the lisp system. Then it loads the file .lisprc from the
HOME directory of the person invoking the lisp system if that file exists. The .lisprc file allows
you to set up your own defaults, read in files, set up autoloading or anything else you might
want to do to personalize the lisp system. Next, the top level goes into a prompt-read-eval
print loop. Each time around the loop, before printing the prompt it checks if the variable
user-top-level is bound. If so, then the value of user-top-level will be /uncalled. This provides
a convenient way for a user to introduce his own top level (Liszt, the lisp compiler, is an exam
ple of a program which uses this). If the user types a "'D (which is the end of file character),
and the standard input is not from a keyboard, the lisp system will exit. If the standard input
is a keyb6ard and if the value of (status ignoreeoj) is nil, the lisp system will also exit. Other
wise the end of file will be ignored. When a reset is done the current value of errlist is saved
away and control is thrown back up to the top level where eva/ is mapped over the saved value
of errlist.

Berkeley FP User's Manual 2-359

1. Background

FP stands for a Functional Programming language. Functional programs deal with fanctions
instead of values. There is no explicit representation of state, there are no assignment stat
ments, and hence, no variables. Owing to the lack of state, FP functions are free from side
eff ects; so we say the FP is applicative.

All functions take one argument and they are evaluated using the single FP operation,
application (the colon ':' is the apply operator). For example, we read +: <3 4> as "apply
the function '+' to its argument < 3 4 > ".

Functional programs express a functional-level combination of their components instead
of describing state changes using value-oriented expressions. For example, we write the f unc
tion returning the sin of the cos of its input, i.e., sin (cos (x)), as: sin@ cos. This is a fanctional
expression, consisting of the single combining form called compose('@' is the compose operator)
and its jilnctional arguments sin and cos.

All combining forms take functions as arguments and return functions as results; func
tions may either be applied, e.g., sin@ cos: 3, or used as a functional argument in another func
tional expression, e.g., tan @ sin @ cos.

As we have seen, FP's combining forms allow us to express control abstractions without
the use of variables. The apply to all functional form (&) is another case in point. The f unc
tion '&exp' exponentiates all the elements of its argument:

&:.exp: <1.0 2.0> = <2.718 7.389> (1.1)

In (1.1) there are no induction variables, nor a loop bounds specification. Moreover, the code
is useful for any size argument, so long as the sub-elements of its argument conform to the
domain of the exp function.

We must change our view of the programming process to adapt to the functional style.
Instead of writing down a set of steps that manipulate and assign values, we compose functional
expressions using the higher-level functional forms. For example, the function that adds a
scalar to all elements of a vector will be written in two steps. First, the function that distributes
the scalar amongst each element of the vector:

dist/: <3 <4 6>> = <<3 4> <3 6>> (1.2)

Next, the function that adds the pairs of elements that make up a sequence:

&:. + : < < 3 4> < 3 6> > = < 7 9> (1.3)

In a value-oriented programming language the computation would be expressed as:

&:. + : dist/ : < 3 < 4 6> >, (1.4)

which means to apply 'distl' to the input and then to apply '+' to every element of the result.
In FP we write (1.4) as:

&:+@dist/: <3 <4 6>>. (1.5)

The functional expression of (1.5) replaces the two step value expression of (1.4).
Often, functional expressions are built from the inside out, as in LISP. In the next exam

ple we derive a function that scales then shifts a vector, i.e., for scalars a, b and a vector V,
compute a + bV. This FP function will have three arguments, namely a, b and V. Of
course, FP does not use formal parameter names, so they will be designated by the function
symbols l, 2, 3. The first code segment scales V by b (defintions are delimited with curly
braces '{}'):

2-360 Berkeley FP User's Manual

{scale Vee &• @ dist/ @ {2,J]J

The code segment in (1.5) shifts the vector. The completed function is:

{changeVec &+@ dist/@ [l, scaleVeclJ

(1.6)

(1. 7)

In the derivation of the program we wrote from right to left, first doing the distfs and
then composing with the apply-to-a/I functional form. Using an imperative language, such as
Pascal, we would write the program from the outside in, writing the loop before inserting the
arithmetic operators.

Although FP encourages a recursive programming style, it provides combining forms to
avoid explicit recursion. For example, the right insert combining form (!) can be used to write
a function that adds up a list of nuIQbers:

!+: <l 2 3> = 6 (1.8)

The equivalent, recursive function is much longer:

{addNumbers (null-> 960; +@ [J, addNumbers@ ti])} (1.9)

The generality of the combining forms encourages hierarchical program development.
Unlike APL, which restricts the use of combining forms to certain builtin functions, FP allows
combining forms to take any functional expression as an argument.

--·-------·---------------

Berkeley FP User's Manual 2-361

2. System Description

2.1. Objects

The set of objects n consists of the atoms and sequences <xi. x2, ... , xk > (where the
X; E n). (Lisp users should note the similarity to the list structure syntax, just replace the
parenthesis by angle brackets and commas by blanks. There are no 'quoted' objects, i.e., 'abc).
The atoms uniquely determine the set of valid objects and consist of the numbers (of the type
found in FRANZ LISP [Fod80]), quoted ascii strings ("abed"), and unquoted alphanumeric strings
(abc3). There are three predefined atoms, T and F, that correspond to the logical values 'true'
and 'false', and the undefined atom ? , bottom. Bottom denotes the value returned as the result
of an undefined operation, e.g., division by zero. The empty sequence, < > is also an atom.
The following are examples of valid FP objects:

?
ab
<>

1.47
"CD"
T

3888888888888
<l,<2,3>>
<a,<>>

There is one restriction on object construction: no object may contain the undefined atom, such
an object is itself undefined, e.g., < 1,? > = ? . This property is the so-called "bottom
preserving property" [Ba78].

2.2. Application

This is the single FP operation and is designated by the colon (":"). For a function CT and
an object x, CT:x is an application and its meaning is the object that results from applying CT to
x (i.e., evaluating CT(x)). We say that CT is the operator and that x is the operand. The follow
ing are examples of applications:

+:<7,8>
1 :<a,b,c,d>

2.3. Functions

15 tl:<l,2,3>
a 2 :<a,b,c,d>

<2,3>
b

All functions (f) map objects into objects, moreover, they are strict:

·?-? V EF CT .. =., CT (2.1)

To formally characterize the primitive functions, we use a modification of McCarthy's condi
tional expressions [Mc60]:

P1 - e1 ; • • • ; Pn - en ; en+I (2.2)

This statement is interpreted as follows: return function e1 if the predicate 'p1' is true , ... , en
if 'Pn' is true. If none of the predicates are satisfied then default to en+I· It is assumed that
x, x;, y, Y;, z; e n.

2-362. Berkeley FP User's Manual

2.3.1. Structural

Selector Functions

For a nonzero integerµ.,

p.:x=
x-<x., x2, ... , xk>}., 0 < µ. :E;; k - x"';
x-<xi. X2 •...• xk> }.,-k:E;;µ.<O- Xk+µ+I;?

pick: <n,x> =
x-<xi. x2 •... , xk>}., 0 < n :E;; k - Xn;
x-<xi. x2 •... , xk> '}.,-k:E;;n<O- Xk+n+I;?

The user should note that the function symbols 1,2,3, ... are to be distinguished from the
atoms 1,2,3,

last:x=

x-<> - <>;
x-<xh x2 •... , xk> '}., k~l - xk;?

ftrst: x =

x-<> - <>;
x-<x1t x2 •...• xk >}., k~l - x 1; ?

Tall Functions

ti: x =
x-<x1> - <>;
x-<x1t x2 •...• xk>}. k~ 2- <x2 •...• xk>; ?

tlr:x=

x-<x1> - <>;
x-<x1t x2 •... , xk>}., k~ 2- <x1 , ••• , Xk- 1>;?

Note: There is also a function front that is equivalent to tlr.

Distribute from left and right

distl: x =
x-<y,<>> - <>;
x-<y,<z1t z2, ••• , zk>> - <<y,z1>, ... ,<y,zk>>; ?

Berkeley FP User's Manual 2-363

dlstr: x =
x-<<>,y> - <>;
x-<<Y1tY2· ... , Yk>,z> - <<y1tz>, ... ,<yttz>>;?

Identity

ld:x=x

out:x=:x
Out is similar to Id. Like id it returns its argument as the result, unlike id it prints its

result on stdout - It is the only function with a side effect. Out is intended to be used for
debugging only.

Append left and riaht

apndl: x =
x-<y,<>> - <y>;
x-<y,<z1t z2, ••• , zk > > - <y,zh z2, ••• , zk >; ?

apndr: x =

x-<<>,z> - <z>;

x-< <Y1t Y2• • • ·, Yk >,z> - <Y1t Y2. · • ·, Ytt z>; ?

Transpose

trans: x =
x-<<>, ... ,<>> - <>;
x-<x1t X2, ••• , xk> - <yi, ... ,ym>;?

where X; - <x;1 •••• ,X;m> 'AYJ - <xiJ• ... ,xkJ>,
1 <; ; <; k , 1 E;;J <; m.

reverse: x =
x-<> -;
x-<x1t x2, ••• , xk> - <xk, ... ,x1>; ?

Rotate Left and Right

rotl:x=

x-<> - <>; x-<x1> - <xi>;
x-<x1t x 2, ••• , xk> A k;;i!:2- <x2, ••• ,xktx1>; ?

rotr :x =

x-<> - <>; x-<x1> - <x1>;
x-<x1t x2, ••• , xk> A k;;il1:2 - <xtt x1, ••• ,xk_2, xk_1>; ?

2-364 Berkeley FP User's Manual

concat: x =
x-< <xu •... ,xlk>,<x21 •... ,X2n>, ... ,<xml• ... ,Xmp>>}. k, m, n, p > O
<x11 •.. • ,XJk,X21•. •. ,X2n• ... ,Xmi• • •. ,Xmp>;?

Concatenate removes all occurrences of the null sequence:

concat: <<l,3>,<>,<2,4>,<>,<S>> = <1,3,2,4,S>

palr:x=
x-<xi. x2 •... , xk>}. k>O}. k is even - <<xi.x2> •... , <xk-hxk>>;
x-<xi. x2, ... , xk>}. k>O '}. k is odd- <<xi.x2> •... , <xk>>;?

spilt: x =
x-<x1> - <<x1>,<>>;
x-<xi. x2 •... , xk>}. k>l - <<xi. ... •Xfk/2J>,<xrk/2l+1• ... ,xk>>;?

Iota :x =
x-o- <>;
x EN+ - <1,2, ... ,x>; ?

2.3.2. Predicate (Test) Functions

atom : x = x E atoms - T; x¢ ?- F; ?

eq: x = x -<y,z>}. y-z -T; x-<y,z> AY ¢ z - F; ?

(2.3)

Also less than (<), greater than (>), greater than or equal (> •), less than or equal
(< ->' not equal c·->; ·-· is a synonym for eq.

null :x = x-<> -T; x¢? -F;?

length : x = x - <xi. x2, ... , xk > - k; x-< > - O; ?

2.3.3. Arithmetic/Logical

+: x = x-<y,z>}. y,z are numbers - y+z; ?
- : x = x-<y,z> '}. y,z are numbers - y-z; ?
•: x = x-<y,z> '}. y,z are numbers - yxz; ? I: x = x-<y,z>}. y,z are numbers'}. z¢
o-y+z; ?

And, or, not, xor

and : <x,y> = x-T-y; x-F- F; ?

or: <x,y> =x-F-y;x-T-T;?

sor: <x,y> =
x-T A y-T - F; x-F A y-F - F;
x-T A y-F - T; x-F A y-T - T; ?

not : x E x-T - F; x-F - T; ?

2.3.4. Library Routines

sin : x E x is a number - sin (x); ?

asln : x = xis a number 'A lxl ~ 1 - sin-1(x); ?

cos: x Ex is a number - cos(x); ?

acos: x =xis a number'}. lxl ~ 1 - cos-1(x); ?

esp : x = x is a number - ex; ?

IOI : x E x is a positive number - In (x); ?

Berkeley FP User's Manual 2-365

mod: <x,y> Ex and y are numbers - x - yx[;J; ?

2.4. Functional Forms

Functional forms define new functions by operating on function and object parameters of
the form. The resultant expressions can be compared and contrasted to the value-oriented
expressions of traditional programming languages. The distinction lies in the domain of the
operators; functional forms manipulate functions, while traditional operators manipulate values.

One functional form is composition. For two functions "' and I/I the form "' @ I/I denotes
their composition t/J o I/I:

(t/J @ 1/1) : x E t/J:(lfl:x), V x E 0 (2.4)

The constant function takes an object parameter:

%x:y E y-? - ?; x, V x,y E 0 (2.5)

The function % ? always returns ? .
In the following description of the functional forms, we assume that ~, ~;, u, u;, ., , and

T; are functions and that x, X;, y are objects.

Composition

(u@ T):x E u:(T:x)

Construction

Note that construction is also bottom-preserving, e.g.,

2-366 Berkeley FP User's Manual

[+,/]: <3,0> - <3,? > - ?

Condition

(f -> u; T):x =
(f:x)-T - u:x;
(f:x)-F - T:x; ?

(2.6)

The reader should be aware of the distinction between functional expressions, in the variant
of McCarthy's conditional expression, and the functional form introduced here. In the former
case the result is a value, while in the latter case the result is a junction. Unlike Backus' FP, the
conditional form must be enclosed in parenthesis, e.g.,

(isNegative -> - @ (%0,id] ; id)

Constant

%x:y = y-? - ?; x, V xEO

This function returns its object parameter as its result.

Right Insert

!a :x =
x-<> - e1:x;
x-<x1> -x1;

x-<xh x2, ••• , xk>}. k>2- u:<xh !u:<x2, ••• , xk>>; ?

e.g., !+:<4,5,6>-15.

If u has a right identity element e1 , then !u:< > - e1 , e.g.,

!+: <>-0 and!•: <>-1

(2.7)

(2.8)

Currently, identity functions are defined for+ (0), - (0), • (1), I (1), also for and (T), or (F),
xor (F). All other unit functions default to bottom (?).

/

Berkeley FP User's Manual 2-367

Tree Insert

lu: x =
x-<> - e1 :x;
x-<x1> - x1;
x-<x., x2, ••• , xk>}., k>l -

tr: <lo-: <x1. · · · •Xfk121>, lo-: <XJk/21+1• .. · ,xk>>;?

e.g.,

1+:<4,5,6,7> = +:<+:<4,5>,+:<6,7> > = 15

Tree insert uses the same identity functions as right insert.

Apply to All

lcu: x =
x-<> -<>;
x-<xh X21 ••• , Xk > - <u:x1, ... , CT:Xk >; ?

While

(while f u):x =
f:x-T - (while f u):(u:x);
f:x-F-x; ?

2.S. User Defined Functions
An FP definition is entered as follows:

(fn-name Jn-form},

(2.9)

(2.10)

where Jn-name is an ascii string consisting of letters, numbers and the underline symbol, and
Jn-form is any valid functional form, including a single primitive or defined function. For
example the function

(factorial t• @ iota} (2.11)

is the non-recursive definition of the factorial function. Since FP systems are applicative
it is permissible to substitute the actual definition of a function for any reference to it in a
functional form: if f = 1@2 then f: x = 1@2: x, V x E 0.

References to undefined functions bottom out:

I :x = ?V x E O, I)!F (2.12)

2-368 Berkeley FP User's Manual

3. Getttna on and oft' the System

Startup FP from the shell by entering the command:

/usr/l0cal/fp.

The system will prompt you for input by indenting over six character positions. Exit from
FP (back to the shell) with a control/D ("D).

3.1. Comments
A user may end any line (including a command) with a comment; the comment character

is '#'. The interpreter will ignore any character after the '#' until it encounters a newline
character or end-of-file, whichever comes first.

3.2. Breaks
Breaks interrupt any work in progress causing the system to do a FRANZ reset before

returning control back to the user.

3.3. N.on-Terminltion
LISP's namestack may, on occasion, overflow. FP responds by printing "non

terminating" and returning bottom as the result of the application. It does a FRANZ reset
before returning control to the user.

4. System Commands
System commands start with a right parenthesis and they are followed by the command

name and possibly one or more arguments. All this information must be typed on a single line,
and any number of spaces or tabs may be used to separate the components.

4.1. Load
Redirect the standard input to the tile named by the command's argument. If the file

doesn't exist then FP appends '.fp' to the file-name and retries the open (error if the file
doesn't exist). This command allows the user to read in FP function definitions from a file.
The user can also read in applications, but such operation is of little utility since none of the
input is echoed at the terminal. Normally, FP returns control to the user on an end-of-file. It
will also do so whenever it does a FRANZ reset, e.g., whenever the user issues a break, or when
ever the system encounters a non-terminating application.

4.2. Save
Output the source text for all user-defined functions to the file named by the argument.

4.3. Csave and Fsave
These commands output the lisp code for all the user-defined functions, including the ori

ginal source-~ode, to the file named by the argument. Csave pretty prints the code, Fsave does
not. Unless the user wishes to examine the code, he should use 'fsave'; it is about ten times
faster than 'csave', and the resulting file will be about three times smaller.

These commands are intended to be used with the liszt compiler and the 'cload' com
mand, as explained below.

Berkeley FP User's Manual 2-369

4.4. Cload
This command loads or fasts in the file shown by the argument. First, FP appends a '.o'

to the file-name, and attempts a load. Failing that, it tries to load the file named by the argu
ment. If the user outputs his function definitions using f save or csave, and then compiles them
using liszt, then he may f asl in the compiled code and speed up the execution of his defined
functions by a factor of S to 10.

4.5. Pfn
Print the source text(s) (at the terminal) for the user-defined function(s) named by the

argument(s) (error if the function doesn't exist).

4.6. Delete
Delete the user-defined function(s) named by the argument (error if the function doesn't

exist).

4.7. Fns
List the names of all user-defined functions in alphabetical order. Traced functions are

labeled by a trailing '@' (see § 4. 7 for sample output).

4.8. Stats
The "stats" command has several options that help the user manage the collection of

dynamic statistics for functions 1 and functional forms. Option names follow the keyword
"stats", e.g., ")stats reset".

The statistic package records the frequency of usage for each function and functional
form; also the size2 of all the arguments for all functions and functional expressions. These
two measures allow the user to derive the average argument size per call. For functional forms
the package tallies the frequency of each functional argument. Construction has an additional
statistic that tells the number of functional arguments involved in the construction.

Statistics are gathered whenever the mode is on, except for applications that "bottom
out" (i.e., return bottom - ?). Statistic collection slows the system down by x2 to x4. The
foil owing printout illustrates the use of the statistic package (user input is emboldened):

I Measurement of user-defined functions is done with the aid of the trace package, discussed in § 4.9.

2 "Size" is the top-level length of the argument, for most functions. Exceptions are: apndl, dist/ (top-level length
of the second element), apndr, distr (top-level length of the first element), and transpose (top level length of each top
level element).

2-370 Berkeley FP User's Manual

)stats on

Stats collection turned on.

7

6

plus:

times:

iota:

insert:

compos:

4.8.1. On

+:<3 4>

!*@Iota :3

)stats print

times I

times2

times I

times I size

Functional Args
Name
times

times I size

Functional Args
Name
insert
iota

Enable statistics collection.

4.8.2. Off

3

Times
1

1

Times
1

1

Disable statistics collection. The user may selectively collect statistics using the on and off
commands.

4.8.3. Print
Print the dynamic statistics at the terminal, or, output them to a file. The latter option

requires an additional argument, e.g., ")stats print fooBar" prints the stats to the file "fooBar".

4.8.4. Reset
Reset the dynamic statistics counters. To prevent accidental loss of collected statistics,

the system will query the user if he tries to reset the counters without first outputting the data
(the system will also query the user if he tries to log out without outputting the data).

Berkeley FP User's Manual 2-371

4.9. Trace
Enable or disable the tracing and the dynamic measurement of the user defined functions

named by the argument(s). The first argument tells whether to turn tracing off or on and the
others give the name of the functions affected. The tracing and untracing commands are
independent of the dynamic statistics commands. This command is cumulative e.g., to
')trace on fl f2'.

FP tracer output is similar to the FRANZ tracer output: function entries and exits, call
level, the functional argument (remember that FP functions have only one argument!), and the
result, are printed at the terminal:

)pfn fact

{fact (eqO ·> %1 ; • @ [id, fact @ sl])}
)f ns

/

eqO fact sl

) trace on fact
)fns

eqO fact@

fact: 2

1 >Enter> fact [2]

~
>Enter> fact [l]

3 >Enter> fact [O]
3 <EXIT< fact 1

<EXIT< fact 1
1 <EXIT< fact 2

2

4.10. Timer

sl

FP provides a simple timing facility to time top-level applications. The command ")timer
on" puts the system in timing mode, ")timer off" turns the mode off (the mode is initially
oft'). While in timing mode, the system reports CPU time, garbage collection time, and elapsed
time, in seconds. The timing output follows the printout of the result of the application.

4.11. Script
Open or close a script file. The first argument gives the option, the second the optional

script file-name. The "open" option causes a new script-file to be opened and any currently
open script file to be closed. If the file cannot be opened, FP sends and error message and, if a
script file was already opened, it remains open. The command ")script close" closes an open
script file. The user may elect to append script output to the script-file with the append mode.

4.12. Help
Print a short summary of all the system commands:

2~372 Berkeley FP User's Manual

)help
Commands are:

load <'file>
save <file>
pfn <fnl> ...
delete <fnl > ...
fns
stats on/off/reset/print [file]
trace on/off <fnl > ...
timer on/of
script open/close/append
lisp
debug on/off
csave <file>
cload <file>
fsave <file>

4.13. Special System Functions

Redirect input from <file>
Save defined fns in <file>
Print source text of <fnl > ...
Delete <fnl> ...
List all functions
Collect and print dynamic stats
Start/Stop exec trace of <fnl > ...
Tum timer on/ off
Open or close a script-file
Exit to the lisp system (return with '"'D')
Turn debugger output on/off
Output Lisp code for all user-defined fns
Load Lisp code from a file (may be compiled)
Same as csave except without pretty-printing

There are two system functions that are not generally meant to be used by average users.

4.13.1. Lisp
This exits to the lisp system. Use ""'D" to return to FP.

4.13.2. Dl:bug
Turns the 'debug' flag on or off. The command ")debug on" turns the flag on, ")debug

off'' turns the flag off. The main purpose of the command is to print out the parse tree.

Berkeley FP User's Manual 2-373

S. Programming Examples

We will start off by developing a larger FP program, mergeSort. We measure mergeSort
using the trace package, and then we comment on the measurements. Following mergeSort we
show an actual session at the terminal.

S.1. MeraeSort
The source code for mergeSort is:

Use a divide and conquer strategy
(mergeSort I merge}

(merge atEnd @ mergeHelp @ [[], fixLists]}

Must convert atomic arguments into sequences
Atomic arguments occur at the leaves of the execution tree
(fixLists & (atom -> [id] ; id)}

Merge until one or both input lists are empty
(mergeHelp (while and@ &(not@null) @ 2

(firstlsSmaller -> takeFirst ;
takeSecond))}

Find the list with the smaller first element
(firstlsSmaller < @ [1@1@2, 1@2@2]}

Take the first element of the first list
{takeFirst [apndr@U,1@1@2], [tl@1@2, 2@2]]}

Take the first element of the second list
(takeSecond [apndr@[l,1@2@2], [1@2, tl@2@2]]}

If one list isn't null, then append it to the
end of the merged list
{atEnd (firstlsNull -> concat@[l,2@2] ;

concat@ [1, 1@2])}

(firstlsN ull null@ 1 @2}

The merge sort algorithm uses a divide and conquer strategy; it splits the input in half,
recursively sorts each half, and then mer_Jes the sorted lists. Of course, all these sub-sorts can
execute in parallel, and the tree-insert Q) functional form expresses this. concurrency. Merge
removes successively larger elements from the heads of the two lists (either takeFirst or tak
eSecond) and appends these elements to the end of the merged sequence. Merge terminates
when one sequence is empty, and then atEnd appends any remaining non-empty sequence to
the end of the merged one.

On the next page we give the trace of the function merge, which information we can use
to determine the structure of merge's execution tree. Since the tree is well-balanced, many of
the merge's could be executed in parallel. Using this trace we can also calculate the average
length of the arguments passed to merge, or a distribution of argument lengths. This informa
tion is useful for determining communication costs.

2-374 Berkeley FP User's Manual

)trace on merge

mergeSort: <0 3 -2 1 11 8 -22 -33>
3 >Enter> merge [<0 3>]
3 <EXIT< merge <0 3>
3 >Enter> merge [<-2 1 >]
3 <EXIT< merge <-2 1 >

>Enter> merge [<<0 3> <-21>>]
<EXIT< merge <-2 0 1 3>

3 >Enter> merge [<11 8>]
3 <EXIT< merge <8 11 >
3 >Enter> merge [<-22 -33>]
3 <EXIT< merge <-33 -22>

>Enter> merge [<<8 11> <-33 -22>>]
<EXIT< merge <-33 -22 8 11 >

1 >Enter> merge [<<·2 0 1 3> <-33 -22 8 11>>]
1 <EXIT< merge <-33 -22 -2 0 1 3 8 11 >

<-33 -22 -2 0 1 3 8 11 >

Berkeley FP User's Manual 2-375

5.2. FP Session

User input is emboldened, terminal output in Roman script.

f p

FP, v. 4.1 11/31/82
)load ex_man

{all le}
{sort}
{abs val}
{finci}
{ip}
{mm}
{eqO}
{fact}
{subl}
{alt fnd}
{alt fact}

-)fns

abs_ val all_le alt_fact
ip mm sort

abs_val: 3

3

abs_val : -3

3

abs_val: O

0

abs_val: <-5 0 66>

?

alt fnd
subl

&abs_val: <-S 0 66>

<S 0 66>

)pfn abs_val

eqO fact find

{abs_val ((> @ [id,%0)) ·> id; (-@ (%0,id]))}

lid,'ltOI : -3

<-3 0>

(%0,idl : -3

2-376 Berkeley FP User's Manual

<0-3>

.. 0 l~O,idl : ·3

3

all_le: <1 3 S 7>

T

all_le : <1 0 S 7>

F

)pfn all_le

(all_te ! and@&<• @ dlstl@ U,tl]}

distl 0 11,tll : <1 2 3 4>

<<12> <1 JS. <14>>

&:< • 0 dlstl • 11,tll : <l 2 3 4:>

<tTT>

! and: <FT T>

F

! and : <T T T>

T

sort : <3 1 2 4>

<1234>

sort: <1>

<l>

sort: <>

?

sort: 4

)pfn sort

(son (null @ ti·> [l] ; (all_le ·> apndl@ [l,sort@tl]; son@rotl))}

fact : 3

6

)pfn fact subl eqO

{fact (eqO -> %1 ; •@[id, fact@subl])}

{subl -@[id,%1]}

{eqO - @ [id,%0]}

&fact : < 1 2 3 4 S >

<12624 120>

eq0:3

F

eqO: <>

F

eqO:O

T

subl : 3

2

o/el : 3

1

alt_fact: 3

6

)pfn alt_fact

{alt_fact !• @ iota}

iota : 3

<123>

!*@iota: 3

6

!+: <12 3>

6

ftnd: <3 <3 4 S>>

T

ftnd: <<> <3 4 <>>>

Berkeley FP User's Manual 2-377

2-378 Berkeley FP User's Manual

T

find: <3 <4 5> >

F

)pfn find

(find (null@2 -> %F; <-@U,1@2] -> %T; find@U,t1@2]))}

(1,tl@2) : <3 <3 4 5> >

<3 <4 5>>

(1,1@2): <3 <3 4 5>>

<33>

alt_fnd : <3 <3 4 5> >

T

)pfn alt_fnd

(alt f nd ! or @ &eq @ distl }

distl: <3 <3 4 5>>

<<3 3> <3 4> <3 S>>

&:eq@ distl: <3 <3 4 5> >

<TFF>

T

F

!or: <T FT>

!or: <FF F>

)delete alt_fnd

)fns

abs_ val all_le alt fact eqO fact find
subl mm sort

alt_fnd: <3 <3 4 5> >

alt_fnd not defined

?
{g g}

ip

' \
/

{g}
1:3

non-terminating

?

[Return to top level]

FP, v. 4.0 10/8/82
l+,•J: <3 4>

<712>

I+,•: <3 4>

syntax error:

[+,•: <3 4>
A

ip : < < 3 4 5 > <5 6 7 > >

74

)pfn ip

{ip ! + @ &:• @ trans}

tnns: <<3 4 5> <5 6 7>>

<<3 S> <4 6> <S 1>>

&• @ trans : < < 3 4 5 > <5 6 7 > >

<IS 24 35>

Berkeley FP User's Manual 2-379

mm: <<<l O> <O 1>> <<3 4> <5 6>>>

<<3 4> <S 6>>

)pfn mm

{mm &:&:ip@ &:distl@ distr @U,trans@2]}

11,trans@ll: <<<1 O> <O 1>> <<3 4> <5 6>>>

<<<10> <0 1>> <<3 4> <S 6>>>

distr: <<<1 O> <O 1>> <<3 4> <5 6>>>

<<<1 O> <<3 4> <S 6>>> <<0 1> <<3 4> <S 6>>>>

&dlstl: <<<1 O> <<3 4> <5 6>>> <<O 1> <<3 4> <S 6>>>>

<<<<10> <3 4>> <<10> <S 6>>> <<<01> <3 4>> <<01> <S 6>>>>

2-380 Berkeley FP User's Manual

Alp <I &dist & dlstr <I (1,trans <I 2): <<<1 O> <O 1>> <<3 4> <S 6>>>

syntax error:

[+,*:<34> ..
&ip <I &distl & distr@ [l,trans@ 2) : < < <1 0> <0 1 > > < <3 4> <5 6> > > ..

&Ip <I &dlstl <I dlstr <I (1,trans@2]: <<<1 O> <O 1>> <<3 4> <S 6>>>

?

Berkeley FP User's Manual 2-381

6. Implementation Notes
FP was written in 3000 lines of FRANZ LISP [Fod 80). Table I breaks down the distribu

tion of the code by functionality.

Functionali!l'._ % (~tes)
compiler 34
user interface 32
dynamic stats 16
primitives 14
miscellaneous 3

Table 1

6.1. The Top Level
The top-level function runFp starts up the subsystem by calling the routine fpMain, that

takes three arguments:

(1) A boolean argument that says whether debugging output will be
enabled.

(2) A Font identifier. Currently the only one is supported 'asc
(ASCII).

(3) A boolean argument that identifies whether the interpreter was
invoked from the shell. If so then all exits from FP return the
user back to the shell.

The compiler converts the FP functions into LISP equivalents in two stages: first it forms
the parse tree, and then it does the code generation.

6.2. The Scanner

The scanner consists of a main routine, get_tkn, and a set of action functions. Th.:~e
exists one set of action functions for each character font (currently only ASCII is supported).
All the action functions are named scan $, where is the specified font, and ea.:h
is keyed on a particular character (or sometimes a particular character-type - e.g., a letter or a
number). get_tkn returns the token type, and any ancillary information, e.g., for the token
"name" the name itself will also be provided. (See Appendix C for the font-token name
correspondences). When a character has been read the scanner finds the action function by
doing a

(get 'scan$ < char>)

A syntax error message will be generated if no action exists for the particular character read.

6.3. The Parser

The main parsing function, parse, accepts a single argument, that identifies the parsing context,
or type of construct being handled. Table 2 shows the valid parsing contexts.

2-382 }\erkeley FP User's Manual

Id construct
top_lev initial call
constr$$ construction
compos$$ composition
alpha$$ apply-to-all
insert$$ insert
ti$$ tree insert
arrow$$ affirmative clause

of conditional
semi$$ negative clause

of conditional
lparen$$ parenthetic expr.
while$$ while

Table 2, Valid Parsing Contexts

For each type of token there exists a set of parse action functions, of the name p$< tkn
name>. Each parse-action function is keyed on a valid context, and it is looked up in the same
manner as scan action functions are looked up. If an action function cannot be found, then
there is a syntax error in the source code. Parsing proceeds as follows: initially parse is called
from the top-level, with the context argument set to "top_lev ". Certain tokens cause parse to
be recursively invoked using that token as a context. The result is the parse tree.

6.4. The Code Generator

The system compiles FP source into LISP source. Normally, this code is interpreted by
the FRANZ LISP system. To speed up the implementation, there is an option to compile into
machine code using the liszt compiler [Joy 79]. This feature improves performance tenfold, for
some programs.

The compiler expands all functional forms into their LISP equivalents instead of inserting
calls to functions that generate the code at run-time. Otherwise, /iszt would be ineffective in
speeding up execution since all the functional forms would be executed interpretively.
Although the amount of code generated by an expanding compiler is 3 or 4 times greater than
would be generated by a non-expanding compiler, even in interpreted mode the code runs twice
as quickly as unexpanded code. With liszt compilation this performance advantage increases to
more than tenfold.

A parse tree is either an atom or a hunk of parse trees. An atomic parse-tree identifies
either an fp built-in function or a user defined function. The hunk-type parse tree represents
functional forms, e.g., compose or construct. The first element identifies the functional form
and the other elements are its functional parameters (they may in turn be functional forms).
Table 3 shows the parse-tree formats.

-···-------·-· -·-·- -··--------------

Berkeley FP User's Manual 2-383

Form Format
user-defined <atom>
fp builtin <atom>
apply-to-all {alpha$$ <I>}
insert {insert$$ <I>}
tree insert {ti$$ <I>}
select {select$$ µ}
constant {constant$$µ}
conditional {condit $$ <1> 1 <I>} <l>3}
while {while$$ <1> 1 <1> 2
compose {compos $$ <1> 1 <1>2}

construct {constr $$ <1> 1 <1> 2 , ••• ,

Note: <I> and the <I> k are parse-trees and µ is an optionally
signed integer constant.

Table 3, Parse-Tree Formats

6.S. Function Definition and Appllcation

<I> n nil}

Once the code has been generated, then the system defines the function via putd. The
source code is placed onto a property list, 'sources, to permit later access by the system com
mands.

For an application, the indicated function is compiled and then defined, only temporarily,
as tmp$$. The single argument is read and tmp$$ is applied to it.

6.6. Function Naming Conventions
When the parser detects a named primitive function, it returns the name <name> $.fp,

where <name> is the name that was parsed (all primitive function-names end in $.fp). See
Appendix D for the symbolic (e.g., compose, +) function names.

Any name that isn't found in the list of builtin functions is assumed to represent a user
defined function; hence, it isn't possible to redefine FP primitive functions. FP protects itself
from accidental or malicious internal destruction by appending the suffix "Jp" to all user
defined function names, before they are defined.

6. 7. Measurement lmpelementation
This work was done by Dorab Patel at UCLA. Most of the measurement code is in the

file 'fpMeasures.l'. Many of the remaining changes were effected in 'primFp.1', to add calls on
the measurement package at run-time; to 'codeGen.l', to add tracing of user defined functions;
to 'utils.1', to add the new system commands; and to 'fpMain.l', to protect the user from for
getting to output statistics when he leaves FP.

6.7.1. Data Structures
All the statistics are in the property list of the global symbol Measures. Associated with

each each function (primitive or user-defined, or functional form) is an indicator; the statistics
gathered for each function are the corresponding values. The names corresponding to primi
tive functions and functional forms end in '$f p' and the names corresponding to user-defined
functions end in '_fp'. Each of the property values is an association list:

(get 'Measures 'rotl$fp) - ... > ((times . 0) (size . O))

2-384 Berkeley FP User's Manual

The car of the pair is the name of the statistic (i.e., times, size) and the cdr is the value.
There is one exception. Functional forms have a statistic called f unargtyp. Instead of being a
dotted pair, it is a list of two elements:

(get 'Measures 'compose$fp) - - >
((times. 2) (size. 4) (funargtyp ((select$fp. 2) (sub$fp. 2))))

The car is the atom 'f unargtyp' and the cdr is an alist. Each element of the alist consists
of a functional argument-frequency dotted pair.

The statistic packages uses two other global symbols. The symbol DynTraceFlg is non-nil
if dynamic statistics are being collected and is nil otherwise. The ·symbol TracedFns is a list
(initially nil) of the names of the user functions being traced.

6. 7 .2. Interpretation of Data Structures

6. 7 .2.1. Times
The number of times this function has been called. All functions and functional forms

have this statistic.

6. 7 .2.2. Size
The sum of the sizes of the arguments passed to this function. This could be divided by

the times statistic to give the average size of argument this function was passed. With few
exceptions, the size of an object is its top-level length (note: version 4.0 defined the size as the
total number of atoms in the object); the empty sequence, "< > ", has a size of 0 and all other
atoms have size of one. The exceptions are: apndl, dist/ (top-level length of the second ele
ment), apndr, distr (top-level length of the first element), and transpose (top level length of
each top level element).

This statistic is not collected for some primitive functions (mainly binary operators like
+,-,•).

6. 7 .2.3. Funargno

The number of functional arguments supplied to a functional form.

Currently this statistic is gatherered only for the construction functional form.

6. 7 .2.4. Funargtyp

How many times the named function was used as a functional parameter to the particular
functional form.

6.8. Trace Information

The level number of a call shows the number of steps required to execute the function on
an ideal machine (i.e., one with unbounded resources). The level number is calculated under
an assumption of infinite resources, and the system evaluates the condition of a conditional
before evaluating either of its clauses. The number of functions executed at each level can give
an idea of the distribution of parallelism in the given FP program.

7. Acknowledgements
Steve Muchnick proposed the initial construction of this system. Bob Ballance added

some of is own insights, and John Foderaro provided helpful hints regarding effective use of
the FRANZ LISP system [Fod80]. Dorab Patel [Pat81] wrote the dynamic trace and statistics
package and made general improvements to the user interface. Portions of this manual were

--------·-------

Berkeley FP User's Manual 2.-385

excerpted from the COMPCON-83 Digest of PaperS'.

8. References

[Bac78]
John Backus, "Can Programming Be Liberated from the von Neumann Style? A Func
tional Style and Its Algebra of Programs," CACM, Turing Award Lecture, 21, 8 (August
1978), 613-641.

[Fod80]
John K. Foderaro, "The FRANZ LISP Manual," University of California, Berkeley, Califor
nia, 1980.

[Joy79]
W.N. Joy, 0. Babaoglu, "UNIX Programmer's Manual," November 7, 1979, Computer
Science Division, University of Calif omia, Berkeley, California.

[Mc60]
J. McCarthy, "Recursive Functions of Symbolic expressions and their Computation by
Machine," Part I, CACM 3, 4 (April 1960), 184-195.

[Pat80]
Dorab Ratan Patel, "A System Organization for Applicative Programming," M.S Thesis,
University of California, Los Angeles, California, 1980.

[Pat81]
Dorab Patel, "Functional Language Interpreter User Manual," University of California,
Los Angeles, California, 1981.

3 Scott B. Baden and Dorab R. Patel, "Berkeley FP - Experiences With a Functional Programming Language",
0 1982, IEEE.

2-386 Berkeley FP User's Manual

Appendix A: Local Modifications

1. Character Set Chan1es

Backus [Ba78] used some characters that do not appear on our ASCII terminals, so we
have made the following substitutions:

constant x %x
Insert I !
apply-to-all a &
composition 0 @

arrow - ·>
empty set ti> <>
bottom ~ ?
divide + I
multiply x •

2. Syntactic Modifications

2.1. While and Conditional

While and conditional functional expressions must be enclosed in parenthesis, e.g.,

2.2. Function Definitions

(while/g)

(p->f;g)

Function definitions are enclosed by curly braces; they consist of a name-definition pair,
separated by blanks. For example:

(fact !• @ iota}

defines the function fact (the reader should recognize this as the non-recursive factorial func
tion).

2.3. Sequence Construction
It is not necessary to separate elements of a sequences with a comma; a blank will suffice:

<1,2,3> = <1 2 3>

For nested sequences, the terminating right angle bracket acts as the delimiter:

<<l,2,3>,<4,5,6>> = <<12 3><4 5 6>>

Berkeley FP User's Manual 2-387

3. User Interface

We have provided a rich set of commands that allow the user to catalog, print, and delete
functions, to load them from a file and to save them away. The user may generate script files,
dynamically trace and measure functional expression execution, generate debugging output,
and, temporarily exit to the FRANZ LISP system. A command must begin with a right
parenthesis. Consult Appendix C for a complete description of the command syntax.

Debugging in FP is difficult; all undefined results map to a single atom - bottom ("?").
To pinpoint the cause of an error the user can use the special debugging output function, out,
or the tracer.

4. Additions and Ommlsslons

Many relational functions have been added: <, >, -, ¢, ~. ;;ii; their syntax is: <,
>, -, --, <-, >-. Also added are the iota function (This is the APL iota function an n
element sequence of natural numbers) and the exclusive OR (EB) function.

Several new structural functions have been added: pair pairs up successive elements of a
sequence, spilt splits a sequence into two (roughly) equal halves, last returns the last element
of the sequence (< > if the sequence is empty), first returns the first element of the sequence
(< > if it is empty), and concat concatenates all subsequences of a sequence, squeezing out
null sequences (< >). Front is equivalent to tlr. Pick is a parameterized form of the selector
function; the first component of the argument selects a single element from the second com
ponent. Out is the only side-eft'ect function; it is equivalent to the id function but it also prints
its argument out at the terminal. This function is intended to be used only for debugging.

One new functional form has been added, tree insert. This functional form breaks up the
the argument into two roughly equal pieces applying itself recursively to the two halves. The
functional parameter is applied to the result.

The binary-to-unary functions ('bu') has been omitted.
Seven mathematical library functions have been added: sin, cos, asin (sin-1), acos

(cos-1), log, exp, and mod (the remainder function)

2-388 Berkeley FP User's Manual

I. BNF Syntax

fplnput

fnDef

application -
name

nameList -
object -
f pSequence -
atom

funForm-

simpFn

fpDefined

fpBuiltin -

selectFn -

relFn -
binaryFn-

libFn -
composition -
construction -

formList -
conditional -

constantFn -

insertion -

alpha -

while -

II. Precedences

1.
2.
3.
4.
s.

%, !,&
@
[...]
-> .. .
while

Appendix B: FP Grammar

(fnDef I application I fpCmd•)• I 'AD'
'{' name funForm '}'

funForm ':' object

letter (letter I digit I '_')•
(name)•

atom I fpSequence I'?'
'<' (E I object ((' ,' I ' ') object)•) '>'
'T' I 'F' I'<>' I'"' (ascii-char)• '"'I (letter I digit)• I number
simpFn I composition I construction \conditional I
constantFn I insertion I alpha I while '(' f unForm ')'

fpDefined I fpBuiltin

name

selectFn I 'ti' I 'id' I 'atom' I 'not' I 'eq' I relFn I 'null' I 'reverse' I
'distl' I 'distr' I 'length' I binaryFn I 'trans' I 'apndl' I 'apndr' I
'tlr' I 'rott' I 'rotr' I 'iota' I 'pair' I 'split' I 'concat' I 'last' I 'libFn'

(E I '+' I '-') unsignedlnteger

'< - ' I '<' I ' - ' I ·-- ' I '>' I '> - '
'+'I'-' I'•' I'/' I 'or' I 'and' I 'xor'
'sin' I 'cos' I 'asin' I 'acos' I 'log' I 'exp' I 'mod'
funForm '@' funForm
'[' formList ']'

E I funForm (',' funForm)•

'(' funForm '->' funForm ';' funForm ')'
'%'object

'!' funForm I 't funForm
'&' funForm
'(' 'while' funForm funForm ')'

(highest)

(least)

•Command Syntax is listed in Appendix C.

Berkeley FP User's Manual ~-389

Appendix C: Command Syntax

All commands begin with a right parenthesis (")").

)fns
)pfn <nameList>
)load <UNlX file name>
)cload <UNIX file name>
)save <UNIX file name>
)csave <UNIX file name>
)fsave <UNIX file name>
)delete <nameList>
)stats on
)stats off
)stats reset
)stats print [UNIX file name)
)trace on <nameList>
)trace oft' < nameList >
)timer on
)timer oft'
)debug on
)debug oft'
)script qpen <UNIX file name>
)script close
)script append <UNIX file name>
)qelp
)lisp

2-390 Berkeley FP User's Manual

Appendix D: Token-Name Correspondences

Token Name

T lbrackSS
rbrackSS

{ lbraceSS
} rbraceSS
(lparenSS
) rparenSS

@ composSS
! insert SS
I ti SS

&. alpha$$

'
semi$$
colon SS

'
comma SS

+ builtinSS
+ µ.a select SS

• builtinSS
I builtinSS - builtinSS . builtinSS

·> arrow$$
• µ. select SS
> builtin$$

>- builtinSS
< builtinSS

<- builtinSS -- builtinSS
%ob cQnstantSS

• µ. is an optionally signed integer constant.

b o is any FP object.

---- --------------

Berkeley FP User's Manual 2-391

Appendix E: Symbolic Primitive Function Names

The scanner assigns names to the alphabetic primitive functions by appending the string
"Sfp" to the end of the function name. The following table designates the naming assignments
to the non-alphabetic primitive function names.

Function Name
+ plusSfp
- minusSfp
• timesSfp
I divSfp ... eq$fp
> gtSf p

>- ge$fp
< ltSfp

<-= leSfp -- neSfp

M4 Macro Processor 2-393

The M4 Macro Processor

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

A macro processor is a useful way to
enhance a programming language, to make
it more palatable or more readable, or to
tailor it to a particular application. The
#define statement in C and the analogous
define in Ratfor are examples of the basic
facility provided by any macro processor -
replacement of text by other text.

The M4 macro processor is an exten
sion of a macro processor called M3 which
was written by D. M. Ritchie for the AP-3
minicomputer; M3 was in turn based on a
macro processor implemented for [I].
Readers unfamiliar with the basic ideas of
macro processing may wish to read some of
the discussion there.

M4 is a suitable front end for Ratfor
and C, and has also been used successfully
with Cobol. Besides the straightforward
replacement of one string of text by
another, it provides macros with arguments,
conditional macro expansion, arithmetic,
file manipulation, and some specialized
string processing functions.

The basic operation of M4 is to copy
its input to its output. As the input is read,
however, each alphanumeric "token" (that
is, string of letters and digits) is checked.
If it is the name of a macro, then the name
of the macro is replaced by its defining text,
and the resulting string is pushed back onto
the input to be rescanned. Macros may be
called with arguments, in which case the
arguments are collected and substituted

UNIX is a Trademark of Bell Laboratories

into the right places in the defining text
before it is rescanned.

M4 provides a collection of about
twenty built-in macros which perform vari
ous useful operations; in addition, the user
can define new macros. Built-ins and user
defined macros work exactly the same way,
except that some of the built-in macros
have side effects on the state of the process.

Usage

On UNIX, use

m4 [files]

Each argument file is processed in order; if
there are no arguments, or if an argument
is '-', the standard input is read at that
point. The processed text is written on the
standard output, which may be captured for
subsequent processing with

m4 [files] >outputfile

On GCOS, usage is identical, but the pro
gram is called ./m4.

Defining Macros

The primary built-in function of M4 is
define, which is used to define new macros.
The input

de:fi.ne(name, stuff)

causes the string name to be defined as
stuff'. All subsequent occurrences of name
will be replaced by stuff'. name must be
alphanumeric and must begin with a letter
(the underscore - counts as a letter). stuff'
is any text that contains balanced
parentheses; it may stretch over multiple

2-394 M4 Macro Processor

lines.

Thus, as a typical example,

define(N, 100)

if (i > N)

defines N to be 100, and uses this "sym
bolic constant" in a later if statement.

The left parenthesis must immediately
follow the word define, to signal that
define has arguments. If a macro or built
in name is not followed immediately by '(',
it is assumed to have no arguments. This is
the situation for N above; it is actually a
macro with no arguments, and thus when it
is used there need be no (...) following it.

You should also notice that a macro
name is only recognized as such if it
appears surrounded by non-alphanumerics.
For example, in

define(N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated
to the defined macro N, even though it con
tains a lot of N's.

Things may be defined in terms of
other things. For example,

define(N, 100)
define(M, N)

defines both M and N to be 100.

What happens if N is redefined? Or,
to say it another way, is M defined as N or
as 100? In M4, the latter is true - M is
100, so even if N subsequently changes, M
does not.

This behavior arises because M4
expands macro names into their defining
text as soon as it possibly can. Here, that
means that when the string N is seen as the
arguments of define are being collected, it
is immediately replaced by 100; it's just as
if you had said

define(M, 100)

in the first place.

If this isn't what you really want,
there are two ways out of it. The first,
which is specific to this situation, is to
interchange the order of the definitions:

define(M, N)
define(N, 100)

Now M is defined to be the string N, so
when you ask for M later, you'll always get
the value of N at that time (because the M
will be replaced by N which will be
replaced by 100).

Quoting

The more general solution is to delay
the expansion of the arguments of define
by quoting them. Any text surrounded by
the single quotes ' and ' is not expanded
immediately, but has the quotes stripped
off. If you say

define(N, 100)
define(M, 'N')

the quotes around the N are stripped off as
the argument is being collected, but they
have served their purpose, and M is defined
as the string N, not 100. The general rule
is that M4 always strips off one level of sin
gle quotes whenever it evaluates something.
This is true even outside of macros. If you
want the word define to appear in the out
put, you have to quote it in the input, as in

'define' = 1;

As another instance of the same thing,
which is a bit more surprising, consider
redefining N:

define(N, 100)

define(N, 200)

Perhaps regrettably, the N in the second
definition is evaluated as soon as it's seen;
that is, it is replaced by 100, so it's as if you
had written

define(lOO, 200)

This statement is ignored by M4, since you
can only define things that look like names,
but it obviously doesn't have the effect you
wanted. To really redefine N, you must
delay the evaluation by quoting:

define(N, 100)

define('N', 200)

In M4, it is often wise to quote the first
argument of a macro.

If ' and ' are not convenient for some
reason, the quote characters can be changed
with the built-in changequote:

changequote([,])

makes the new quote characters the left
and right brackets. You can restore the ori
ginal characters with just

changequote

There are two additional built-ins
related to define. undefi.ne removes the
definition of some macro or built-in:

undefi.ne('N')

removes the definition of N. (Why are the
quotes absolutely necessary?) Built-ins can
be removed with undefi.ne, as in

undefi.ne('defi.ne')

but once you remove one, you can never get
it back.

The built-in ifdef provides a way to
determine if a macro is currently defined.
In particular, M4 has pre-defined the names
unix and gcos on the corresponding sys
tems, so you can tell which one you're
using:

ifdef('unix', 'defi.ne(wordsize,16)')
ifdef('gcos', 'defi.ne(wordsize,36)')

makes a definition appropriate for the par
ticular machine. Don't forget the quotes!

ifdef actually permits three argu-
ments; if the name is undefined, the value
of ifdef is then the third argument, as in

ifdef('unix', on UNIX, not on UNIX)

Arguments

So far we have discussed the simplest
form of macro processing - replacing one
string by another (fixed) string. User
defined macros may also have arguments, so
different invocations can have different
results. Within the replacement text for a
macro (the second argument of its define)
any occurrence of $n will be replaced by
the nth argument when the macro is actu
ally used. Thus, the macro bump, defined
as

defi.ne(bump, $1 = $1 + 1)

generates code to increment its argument

M4 Macro Processor 2-395

by 1:

bump(x)

is

x=x+l

A macro can have as many arguments
as you want, but only the first nine are
accessible, through $1 to $9. (The macro
name itself is $0, although that is less com
monly used.) Arguments that are not sup
plied are replaced by null strings, so we can
define a macro cat which simply concaten
ates its arguments, like this:

define(cat, $1$2$3$4$5$6$7$8$9)

Thus

cat(x, y, z)

is equivalent to

xyz

$4 through $9 are null, since no
corresponding arguments were provided.

Leading unquoted blanks, tabs, or
newlines that occur during argument collec
tion are discarded. All other white space is
retained. Thus

define(a, b c)

defines a to be b c.

Arguments are separated by commas,
but parentheses are counted properly, so a
comma "protected" by parentheses does not
terminate an argument. That is, in

define(a, (b,c))

there are only two arguments; the second is
literally (b,c). And of course a bare comma
or parenthesis can be inserted by quoting it.

Arithmetic Built-ins

M4 provides two built-in functions for
doing arithmetic on integers (only). The
simplest is incr, which increments its
numeric argument by 1. Thus to handle
the common programming situation where
you want a variable to be defined as "one
more than N", write

defi.ne(N, 100)
defi.ne(Nl, 'incr(N)')

Then Nl is defined as one more than the

2-396 M4 Macro Processor

current value of N.

The more general mechanism for
arithmetic is a built-in called eval, which is
capable of arbitrary arithmetic on integers.
It provides the operators (in decreasing
order of precedence)

unary+ and -
** or~ (exponentiation)
* I % (modulus)
+ -
== != < <= > >=
! (not)
& or && (logical and)
I or II (logical or)

Parentheses may be used to group opera
tions where needed. All the operands of an
expression given to eval must ultimately
be numeric. The numeric value of a true
relation (like 1>0) is 1, and false is 0. The
precision in eval is 32 bits on UNIX and 36
bits on GCOS.

As a simple example, suppose we want
M to be 2**N + 1. Then

define(N, 3)
define(M, 'eval(2**N + 1)')

As a matter of principle, it is advisable to
quote the defining text for a macro unless it
is very simple indeed (say just a number); it
usually gives the result you want, and is a
good habit to get into.

File Manipulation

You can include a new file in the
input at any time by the built-in function
include:

include(filename)

inserts the contents of filename in place of
the include command. The contents of
the file is often a set of definitions. The
value of include (that is, its replacement
text) is the contents of the file; this can be
captured in definitions, etc.

It is a fatal error if the file named in
include cannot be accessed. To get some
control over this situation, the alternate
form sinclude can be used; sinclude
("silent include") says nothing and contin
ues if it can't access the file.

It is also possible to divert the output
of M4 to temporary files during processing,

and output the collected material upon
command. M4 maintains nine of these
diversions, numbered 1 through 9. If you
say

divert(n)

all subsequent output is put onto the end of
a temporary file referred to as n. Diverting
to this file is stopped by another divert
command; in particular, divert or
divert(O) resumes the normal output pro
cess.

Diverted text is normally output all at
once at the end of processing, with the
diversions output in numeric order. It is
possible, however, to bring back diversions
at any time, that is, to append them to the
current diversion.

undivert

brings back all diversions in numeric order,
and undivert with arguments brings back
the selected diversions in the order given.
The act of undiverting discards the diverted
stuff, as does diverting into a diversion
whose number is not between 0 and 9
inclusive.

The value of undivert is not the
diverted stuff. Furthermore, the diverted
material is not rescanned for macros.

The built-in divnum returns the
number of the currently active diversion.
This is zero during normal processing.

System Command

You can run any program in the local
operating system with the syscmd built-in.
For example,

syscmd(date)

on UNIX runs the date command. Nor
mally syscmd would be used to create a
file for a subsequent include.

To facilitate making unique file
names, the built-in maketemp is provided,
with specifications identical to the system
function mktemp: a string of XXXXX in
the argument is replaced by the process id
of the current process.

Conditionals

There is a built-in called ifelse which
enables you to perform arbitrary condi
tional testing. In the simplest form,

ifelse(a, b, c, d)

compares the two strings a and b. If these
are identical, ifelse returns the string c;
otherwise it returns d. Thus we might
define a macro called compare which com
pares two strings and returns "yes" or "no"
if they are the same or different.

define(compare, 'ifelse($1, $2, yes, no)')

Note the quotes, which prevent too-early
evaluation of if else.

If the fourth argument is missing, it is
treated as empty.

if else can actually have any number
of arguments, and thus provides a limited
form of multi-way decision capability. In
the input

ifelse(a, b, c, d, e, f, g)

if the string a matches the string b, the
result is c. Otherwise, if dis the same as e,
the result is f. Otherwise the result is g. If
the final argument is omitted, the result is
null, so

ifelse(a, b, c)

is c if a matches b, and null otherwise.

String Manipulation

The built-in len returns the length of
the string that makes up its argument.
Thus

len(abcdef)

is 6, and len((a,b)) is 5.

The built-in substr can be used to
produce substrings of strings.
substr(s, i, n) returns the substring of s
that starts at the ith position (origin zero),
and is n characters long. If n is omitted,
the rest of the string is returned, so

substr('now is the time', 1)

is

ow is the time

If i or n are out of range, various sensible
things happen.

M4 Macro Processor 2-397

index(sl, s2) returns the index
(position) in sl where the string s2 occurs,
or -1 if it doesn't occur. As with substr,
the origin for strings is 0.

The built-in translit performs char
acter transliteration.

translit(s, f, t)

modifies s by replacing any character found
in f by the corresponding character of t.
That is,

translit(s, aeiou, 12345)

replaces the vowels by the corresponding
digits. If t is shorter than f, characters
which don't have an entry in t are deleted;
as a limiting case, if t is not present at all,
characters from f are deleted from s. So

translit(s, aeiou)

deletes vowels from s.

There is also a built-in called dnl
which deletes all characters that follow it
up to and including the next newline; it is
useful mainly for throwing away empty
lines that otherwise tend to clutter up M4
output. For example, if you say

define(N, 100)
define(M, 200)
define(L, 300)

the newline at the end of each line is not
part of the definition, so it is copied into
the output, where it may not be wanted. If
you add dnl to each of these lines, the new
lines will disappear.

Another way to achieve this, due to J.
E. Weythman, is

divert(-1)
define(...)

divert

Printing

The built-in errprint writes its argu
ments out on the standard error file. Thus
you can say

errprint('fatal error')

dumpdef is a debugging aid which
dumps the current definitions of defined
terms. If there are no arguments, you get

2-398 M4 Macro Processor

everything; otherwise you get the ones you
name as arguments. Don't forget to quote
the names!

Summary of Built-ins
Each entry is preceded by the page

number where it is described.

3 changequote(L, R)
1 define(name, replacement)
4 divert(number)
4 divnum
5 dnl
5 dumpdef('name', 'name', ...)
5 errprint(s, s, ...)
4 eval(numeric expression)
3 ifdef('name', this if true, this if false)
5 ifelse(a, b, c, d)
4 include(file)
3 incr(number)
5 index(sl, s2)
5 len(string)
4 maketemp(... XXXXX ...)
4 sinclude(file)
5 substr(string, position, number)
4 syscmd(s)
5 translit(str, from, to)
3 undefine('name')
4 undivert(number,number, ...)

Acknowledgements
We are indebted to Rick Becker, John

Chambers, Doug Mcilroy, and especially
Jim Weythman, whose pioneering use of
M4 has led to several valuable improve
ments. We are also deeply grateful to
Weythman for several substantial contribu
tions to the code.

References

[1] B. W. Kernighan and P. J. Plauger,
Software Tools, Addison-Wesley, Inc.,
1976.

Introduction 3-1

PART 3: SUPPORTING TOOLS

The seven articles in this part deal with ULTRIX-32 software tools that support program
development an<f. maintenance. The articles and the tools they describe range in sophistica
tion from moderate to complex. Lint, for example, will be useful to anybody writing C pro
grams, and the article is correspondingly simple. The articles on yacc and lex, on the other
hand, assume a knowledge of the inner workings of compilers and a familiarity with compiler
terminology.

Program and Library Maintenance Tools

Large scale software development projects involve manipulation of many programs. Any
change in one file may require corresponding changes in many other files. ULTRIX-32 pro
vides two tools that can help you automate portions of this development process: awk and
make.

Awk lets you write programs to retrieve information and manipulate text in a set of files; this
is a powerful tool. The article on awk, by Aho, Weinberger, and Kernighan, explains how to
select text patterns and how to process the patterns selected. You can select patterns by:

• Literal text

• Relational expressions

• Pattern combinations

• Ranges of lines between patterns

Actions you can specify on the selected patterns include:

• Printing lines and fields from lines

• Formatting printed output

• Sending output to one or more files

• Piping output to other processes

• Determining string length

• Performing arithmetic functions

• Manipulating arrays

In addition, you can make your awk programs respond appropriately to diverse situations by
using the flow control statements if, else, while, and for.
The make utility automates many activities related to program development and maintenance,
and it saves processor time by ensuring that only required processing occurs. Make is useful
when you compile a program made of many parts. When you make changes to one or more of
the source files, you must recompile them to produce an up-to-date target file. If several peo
ple are involved in the development, keeping track of the changes could be a complex process
without help from make.

3-2 Introduction

"Make - A Program for Maintaining Computer Programs," by Feldman, tells how to use the
make utility and gives helpful examples. You supply a description file to make showing rela
tionships of source files to target files. If one of the source files has changed, make will recom
pile it, because the corresponding object file will be obsolete. If a source file has not changed,
the corresponding object file will still be valid, and make will not recompile it. Useful make
features include:

• Macros

• Command line options

• A set of implicit rules that supply dependency information

The source control code system (secs) is a file maintenance utility; it is not available in the
first ULTRIX-32 implementation. The article on secs, by Allman, tells how you can use secs
to:

• Create a library of source files

• Store multiple versions of files

• Remove a stored file for editing

• Replace a file after editing

• Get a copy of a stored file for printing or compiling

• Get old versions of a stored file for editing or copying

• Comment on each version of a file

• Maintain separate variations of a file in parallel

• Coordinate the make utility with secs to extract appropriate source files from the
library automatically

Secs protects files from conflicting access when they have been removed for editing. Only the
person who has removed the file for editing can make changes. In addition, the software lets
you coordinate groups of files according to versions, so that all files associated with a particu
lar stage of a project may be accessed as a set.

Checking and Debugging Programs
ULTRIX-32 offers two tools for program checking and debugging. Lint detects programming
errors in C programs. Adb is a versatile debugger that lets you look at programs as they run
and look at programs that have crashed.

The first article, "Lint, a C Program Checker," by Johnson, explains command line options
that allow you to specify features you want checked or ignored. Johnson also lists lint limita
tions. Lint checks for:

• Correspondence between combinations of programs

• Inefficiencies such as unused variables

• Problems that may interfere with portability

• Legal but strange constructions

Introduction 3-3

The "Tutorial Introduction to adb," by Maranzano and Bourne, gives extensive examples that
include sample C programs, corresponding adb debugging sessions, and detailed explanations.
Adb is useful for debugging all kinds of programs, but it is especially appropriate for debug
ging system programs, because it opens a window on the memory (core) image of a program.
Using adb you can:

• Set breakpoints

• Single step through the program from any point

• Examine memory at any point

• Choose the format for dumping a core image

• Use a script to produce a dump

• Convert numbers from one base to another using octal, decimal, and hexadecimal

• Change values and instructions

Compiler Writing Tools
Two articles in this part deal with compiler development tools: yacc and lex. Both articles
are addressed to sophisticated users.

Yacc is a utility that allows you to build parsing routines. The output will be a C source file;
and it may be used as part of a compiler. Yacc was used in the development of some other
utilities on the ULTRIX-32 system including lint, the portable C compiler, and troff. The
article "Yacc: Yet Another Compiler-Compiler," by Johnson, explains how to use yacc to:

• Specify grammar rules

• Specify actions to be associated with the rules

• Prepare lexical analyzers

• Detect and recover from errors

"Lex - A Lexical Analyzer Generator," by Lesk, tells how to use lex to produce lexical analyz
ing routines. The output of lex is a C program that separates an input stream of characters
into strings that match given general expressions. When the lexical analyzer recognizes a
string, it executes a sequence of instructions.

The lexical analyzer you produce with lex can be designed to cooperate with a parser pro
duced using yacc. In this case, the lexical analyzer will identify words and strings; and the
parser will identify structures built with the words and strings identified by the lexical
analyzer. When they are used together, the parser and the lexical analyzer you create with
yacc and lex can form the front end of a compiler.

Awk 3-5

Awk - A Pattern Scanning and Processing Language

(Second Edition)

Alfred V. Aho
Brian W. Kernighan
Peter J. Weinberger

Bell Laboratories
Murray Hill, New Jersey

1. Introduction
Awk is a programming language designed

to make many common information retrieval
and text manipulation tasks easy to state and to
perform.

The basic operation of awk is to scan a set
of input lines in order, searching for lines which
match any of a set of patterns which the user
has specified. For each pattern, an action can be
specified; this action will be performed on each
line that matches the pattern.

Readers familiar with the UNIXt program
grep 1 will recognize the approach, although in
awk the patterns may be more general than in
grep, and the actions allowed are more involved
than merely printing the matching line. For
example, the awk program

{print $3, $2}

prints the third and second columns of a table in
that order. The program

$2 - /AIBIC/
prints all input lines with an A, B, or C in the
second field. The program

$1 I= prev { print; prev = $1 }

prints all lines in which the first field is different
from the previous first field.

1.1. Usage

The command

awk program [files]

executes the awk commands in the string pro
gram on the set of named files, or on the stan
dard input if there are no files. The statements
can also be placed in a file pfile, and executed

t UNIX is a trademark of Bell Laboratories.

by the command

awk -f pfile [files]

1.2. Program Structure

An awk program is a sequence of state
ments of the form:

pattern
pattern

action
action

Each line of input is matched against each of the
patterns in turn. For each pattern that matches,
the associated action is executed. When all the
patterns have been tested, the next line is
fetched and the matching starts over.

Either the pattern or the action may be
left out, but not both. If there is no action for a
pattern, the matching line is simply copied to
the output. (Thus a line which matches several
patterns can be printed several times.) If there is
no pattern for an action, then the action is per
formed for every input line. A line which
matches no pattern is ignored.

Since patterns and actions are both
optional, actions must be enclosed in braces to
distinguish them from patterns.

1.3. Records and Fields

Awk input is divided into "records" ter
minated by a record separator. The default
record separator is a newline, so by default awk
processes its input a line at a time. The number
of the current record is available in a variable
named NR.

Each input record is considered to be
divided into "fields." Fields are normally
separated by white space - blanks or tabs -
but the input field separator may be changed, as

3-6 Awk

described below. Fields are referred to as $1,
$2, and so forth, where $1 is the first field, and
$0 is the whole input record itself. Fields may
be assigned to. The number of fields in the
current record is available in a variable named
NF.

The variables FS and RS refer to the
input field and record separators; they may be
changed at any time to any single character.
The optional command-line argument -Fe may
also be used to set FS to the character c.

If the record separator is empty, an empty
input line is taken as the record separator, and
blanks, tabs and newlines are treated as field
separators.

The variable FILENAME contains the
name of the current input file.

1.4. Printing

An action may have no pattern, in which
case the action is executed for all lines. The
simplest action is to print some or all of a
record; this is accomplished by the awk com
mand print. The awk program

{ print }

prints each record, thus copying the input to the
output intact. More useful is to print a field or
fields from each record. For instance,

print $2, $1

prints the first two fields in reverse order. Items
separated by a comma in the print statement
will be separated by the current output field
separator when output. Items not separated by
commas will be concatenated, so

print $1 $2

runs the first and second fields together.

The predefined variables NF and NR can
be used; for example

{ print NR, NF, $0 }

prints each record preceded by the record
number and the number of fields.

Output may be diverted to multiple files;
the program

{ print $1 >"fool"; print $2 >"foo2" }

writes the first field, $1, on the file fool, and
the second field on file foo2. The >> notation
can also be used:

print $1 >>"foo"

appends the output to the file foo. (In each
case, the output files are created if necessary.)
The file name can be a variable or a field as well

as a constant; for example,

print $1 >$2

uses the contents of field 2 as a file name.

Naturally there is a limit on the number
of output files; currently it is 10.

Similarly, output can be piped into
another process (on UNIX only); for instance,

print I "mail bwk"

mails the output to bwk.

The variables OFS and ORS may be used
to change the current output field separator and
output record separator. The output record
separator is appended to the output of the print
statement.

Awk also provides the printf statement
for output formatting:

printf format expr, expr, ...

formats the expressions in the list according to
the specification in format and prints them.
For example,

printf "%8.2f %10ld.>n", $1, $2

prints $1 as a floating point number 8 digits
wide, with two after the decimal point, and $2
as a 10-digit long decimal number, followed by a
newline. No output separators are produced
automatically; you must add them yourself, as in
this example. The version of printf is identical
to that used with C. 2

2. Patterns

A pattern in front of an action acts as a
selector that determines whether the action is to
be executed. A variety of expressions may be
used as patterns: regular expressions, arithmetic
relational expressions, string-valued expressions,
and arbitrary boolean combinations of these.

2.1. BEGIN and END

The special pattern BEGIN matches the
beginning of the input, before the first record is
read. The pattern END matches the end of the
input, after the last record has been processed.
BEGIN and END thus provide a way to gain
control before and after processing, for initializa
tion and wrapup.

As an example, the field separator can be
set to a colon by

BEGIN { FS = ":" }
... rest of program ...

Or the input lines may be counted by

END { print NR }

If BEGIN is present, it must be the first pat
tern; END must be the last if used.

2.2. Regular Expressions

The simplest regular expression is a literal
string of characters enclosed in slashes, like

/smith/

This is actually a complete awk program which
will print all lines which contain any occurrence
of the name "smith". If a line contains "smith"
as part of a larger word, it will also be printed,
as in

blacksmithing

Awk regular expressions include the regu
lar expression forms found in the UNIX text edi
tor ed 1 and grep (without back-referencing). In
addition, awk allows parentheses for grouping, I
for alternatives, + for "one or more", and ? for
"zero or one", all as in lex. Character classes
may be abbreviated: [a-zA-Z0-9] is the set of
all letters and digits. As an example, the awk
program

/[Aa]ho I [W w]einberger I [Kk]ernighan/

will print all lines which contain any of the
names "Aho," "Weinberger" or "Kernighan,"
whether capitalized or not.

Regular expressions (with the extensions
listed above) must be enclosed in slashes, just as
in ed and sed. Within a regular expression,
blanks and the regular expression metacharac
ters are significant. To turn of the magic mean
ing of one of the regular expression characters,
precede it with a backslash. An example is the
pattern

1\1. *\II
which matches any string of characters enclosed
in slashes.

One can also specify that any field or vari
able matches a regular expression (or does not
match it) with the operators - and ?-. The
program

$1 - /(jJ]ohn/

prints all lines where the first field matches
"john" or "John." Notice that this will also
match "Johnson", "St. Johnsbury", and so on.
To restrict it to exactly (jJ]ohn, use

$1 - r[jJ]ohn$/

The caret A refers to the beginning of a line or
field; the dollar sign $ refers to the end.

Awk 3-7

2.3. Relational Expressions

An awk pattern can be a relational expres
sion involving the usual relational operators <,
<=, ==, !=,>=,and>. An example is

$2 > $i + 100

which selects lines where the second field is at
least 100 greater than the first field. Similarly,

NF% 2 == 0

prints lines with an even number of fields.

In relational tests, if neither operand is
numeric, a string comparison is made; otherwise
it is numeric. Thus,

$1 >= "s"

selects lines that begin with an s, t, u, etc. In
the absence of any other information, fields are
treated as strings, so the program

$1 > $2

will perform a string comparison.

2.4. Combinations of Patterns

A pattern can be any boolean combination
of patterns, using the operators 11 (or), &&
(and), and ! (not). For example,

$1 >= "s" && $1 < "t" && $1 != "smith"

selects lines where the first field begins with "s",
but is not "smith". && and 11 guarantee that
their operands will be evaluated from left to
right; evaluation stops as soon as the truth or
falsehood is determined.

2.5. Pattern Ranges

The "pattern" that selects an action may
also consist of two patterns separated by a
comma, as in

patl, pat2 { ... }

In this case, the action is performed for each line
between an occurrence of patl and the next
occurrence of pat2 (inclusive). For example,

/start/, /stop/

prints all lines between start and stop, while

NR = = 100, NR == 200 { ••• }

does the action for lines 100 through 200 of the
input.

3. Actions

An awk action is a sequence of action
statements terminated by newlines or semi
colons. These action statements can be used to
do a variety of bookkeeping and string manipu-

3-8 Awk

lating tasks.

3.1. Built-in Functions

Awk provides a "length" function to com
pute the length of a string of characters. This
program prints each record, preceded by its
length:

{print length, $0}

length by itself is a "pseudo-variable" which
yields the length of the current record;
length(argument) is a function which yields
the length of its argument, as in the equivalent

{print length($0), $0}

The argument may be any expression.

Awk also provides the arithmetic func
tions sqrt, log, exp, and int, for square root,
base e logarithm, exponential, and integer part
of their respective arguments.

The name of one of these built-in func
tions, without argument or parentheses, stands
for the value of the function on the whole
record. The program

length < 10 I I length > 20

prints lines whose length is less than 10 or
greater than 20.

The function substr(s, m, n) produces
the substring of s that begins at position m (ori
gin 1) and is at most n characters long. If n is
omitted, the substring goes to the end of s. The
function index(sl, s2) returns the position
where the string s2 occurs in sl, or zero if it
does not.

The function sprintf(f, el, e2, •••) pro
duces the value of the expressions el, e2, etc.,
in the printf format specified by f. Thus, for
example,

x = sprintf("%8.2f % lOld", $1, $2)

sets x to the string produced by formatting the
values of $1 and $2.

3.2. Variables, Expressions, and Assign
ments

Awk variables take on numeric (floating
point) or string values according to context. For
example, in

x = 1

x is clearly a number, while in

x = "smith"

it is clearly a string. Strings are converted to
numbers and vice versa whenever context
demands it. For instance,

x = "3" + "4"

assigns 7 to x. Strings which cannot be inter
preted as numbers in a numerical context will
generally have numeric value zero, but it is
unwise to count on this behavior.

By default, variables (other than built-ins)
are initialized to the null string, which has
numerical value zero; this eliminates the need
for most BEGIN sections. For example, the
sums of the first two fields can be computed by

{ sl += $1; s2 += $2 }
END { print sl, s2 }

Arithmetic is done internally in floating
point. The arit.hmetic operators are +, -, •, I,
and % (mod). The C increment ++ and decre
ment -- operators are also available, and so are
the assignment operators +=, -=, *=, I=, and
%=. These operators may all be used in expres
sions.

3.3. Field Variables

Fields in awk share essentially all of the
properties of variables - they may be used in
arithmetic or string operations, and may be
assigned to. Thus one can replace the first field
with a sequence number like thts:

{ $1 = NR; print }

or accumulate two fields into a third, like this:

{ $1 = $2 + $3; print $0 }

or assign a string to a field:

{ if ($3 > 1000)
$3 = "too big"

print

which replaces the third field by "too big" when
it is, and in any case prints the record.

Field references may be numerical expres
sions, as in

{ print $i, $(i+l), $(i+n) }

Whether a field is deemed numeric or string
depends on context; in ambiguous cases like

if ($1 == $2) •••

fields are treated as strings.

Each input line is split into fields
automatically as necessary. It is also possible to
split any variable or string into fields:

n = split(s, array, sep)

splits the the string s into array[l], ... ,
array(n]. The number of elements found is

returned. If the sep argument is provided, it is
used as the field separator; otherwise FS is used
as the separator.

3.4. String Concatenation

Strings may be concatenated. For exam-
ple

length($! $2 $3)

returns the length of the first three fields. Or in
a print statement,

print $1 " is " $2

prints the two fields separated by " is ". Vari
ables and numeric expressions may also appear
in concatenations.

3.5. Arrays

Array elements are not declared; they
spring into existence by being mentioned. Sub
scripts may have any non-null value, including
non-numeric strings. As an example of a con
ventional numeric subscript, the statement

x[NR] = $0

assigns the current input record to the NR-th
element of the array x. In fact, it is possible in
principle (though perhaps slow) to process the
entire input in a random order with the awk
program

{ x[NR] = $0 }
END { ... program ...

The first action merely records each input line in
the array x.

Array elements may be named by non
numeric values, which gives awk a capability
rather like the associative memory of Snobol
tables. Suppose the input contains fields with
values like apple, orange, etc. Then the pro
gram

/apple/ { x["apple"]++ }
/orange/ { x["orange"]++ }
END { print x["apple"], x["orange"]

increments counts for the named array elements,
and prints them at the end of the input.

3.6. Flow-of-Control Statements

Awk provides the basic flow-of-control
statements if-else, while, for, and statement
grouping with braces, as in C. We showed the if
statement in section 3.3 without describing it.
The condition in parentheses is evaluated; if it is
true, the statement following the if is done. The
else part is optional.

Awk a-9

The while statement is exactly like that
of C. For example, to print all input fields one
per line,

C:

i = 1
while (i <= NF)

print $i
++i

The for statement is also exactly that of

for (i = l; i <= NF; i++)
print $i

does the same job as the while statement
above.

There is an alternate form of the for
statement which is suited for accessing the ele
ments of an associative array:

for (i in array)
statement

does statement with i set in turn to each ele
ment of array. The elements are accessed in
an apparently random order. Chaos will ensue if
i is altered, or if any new elements are accessed
during the loop.

The expression in the condition part of an
if, while or for can include relational operators
like <, <=, >, >=, == ("is equal to"), and !=
("not equal to"); regular expression matches
with the match operators - and !-; the logical
operators 11 , &&, and !; and of course
parentheses for grouping.

The break statement causes an immedi
ate exit from an enclosing while or for; the
continue statement causes the next iteration to
begin.

The statement next causes awk to skip
immediately to the next record and begin scan
ning the patterns from the top. The statement
exit causes the program to behave as if the end
of the input had occurred.

} Comments may be placed in awk pro
grams: they begin with the character # and end
with the end of the line, as in

print x, y # this is a comment

4. Design

The UNIX system already provides several
programs that operate by passing input through
a selection mechanism. Grep, the first and sim
plest, merely prints all lines which match a sin
gle specified pattern. Egrep provides more gen
eral patterns, i.e., regular expressions in full gen
erality; fgrep searches for a set of keywords with

3-10 Awk

a particularly fast algorithm. Sed 1 provides
most of the editing facilities of the editor ed,
applied to a stream of input. None of these pro
grams provides numeric capabilities, logical rela
tions, or variables.

Lex 3 provides general regular expression
recognition capabilities, and, by serving as a C
program generator, is essentially open-ended in
its capabilities. The use of lex, however,
requires a knowledge of C programming, and a
lex program must be compiled and loaded
before use, which discourages its use for one-shot
applications.

Awk is an attempt to fill in another part
of the matrix of possibilities. It provides general
regular expression capabilities and an implicit
input/output loop. But it also provides con
venient numeric processing, variables, more gen
eral selection, and control flow in the actions. It
does not require compilation or a knowledge of
C. Finally, awk provides a convenient way to
access fields within lines; it is unique in this
respect.

Awk also tries to integrate strings and
numbers completely, by treating all quantities as
both string and numeric, deciding which
representation is appropriate as late as possible.
In most cases the user can simply ignore the
differences.

Most of the effort in developing awk went
into deciding what awk should or should not do
(for instance, it doesn't do string substitution)
and what the syntax should be (no explicit
operator for concatenation) rather than on writ
ing or debugging the code. We have tried to
make the syntax powerful but easy to use and
well adapted to scanning files. For example, the
absence of declarations and implicit initializa
tions, while probably a bad idea for a general
purpose programming language, is desirable in a
language that is meant to be used for tiny pro
grams that may even be composed on the com
mand line.

In practice, awk usage seems to fall into
two broad categories. One is what might be
called "report generation" - processing an
input to extract counts, sums, sub-totals, etc.
This also includes the writing of trivial data vali
dation programs; such as verifying that a field
contains only numeric information or that cer
tain delimiters are properly balanced. The com
bination of textual and numeric processing is
invaluable here.

A second area of use is as a data
transformer, converting data from the form pro
duced by one program into that expected by
another. The simplest examples merely select
fields, perhaps with rearrangements.

5. Implementation

The actual implementation of awk uses
the language development tools available on the
UNIX operating system. The grammar is
specified with yacc ;4 the lexical analysis is done
by lex ; the regular expression recognizers are
deterministic finite automata constructed
directly from the expressions. An awk program
is translated into a parse tree which is then
directly executed by a simple interpreter.

Awk was designed for ease of use rather
than processing speed; the delayed evaluation of
variable types and the necessity to break input
into fields makes high speed difficult to achieve
in any case. Nonetheless, the program has not
proven to be unworkably slow.

Table I below shows the execution (user +
system) time on a PDP-11/70 of the UNIX pro
grams wc, grep, egrep, fgrep, sed, lex, and awk
on the following simple tasks:

1. count the number of lines.

2. print all lines containing "doug".

3. print all lines containing "doug", "ken" or
"dmr".

4. print the third field of each line.

5. print the third and second fields of each
line, in that order.

6. append all lines containing "doug", "ken",
and "dmr" to files "jdoug", "jken", and
"jdmr", respectively.

7. print each line prefixed by "line
n umber:".

8. sum the fourth column of a table.

The program wc merely counts words, lines and
characters in its input; we have already men
tioned the others. In all cases the input was a
file containing 10,000 lines as created by the
command ls -l; each line has the form

-rw-rw-rw- 1 ava 123 Oct 15 17:05 xxx

The total length of this input is 452,960 charac-
ters. Times for lex do not include compile or
load.

As might be expected, awk is not as fast
as the specialized tools wc , sed, or the programs
in the grep family, but is faster than the more
general tool lex . In all cases, the tasks were
about as easy to express as awk programs as
programs in these other languages; tasks involv
ing fields were considerably easier to express as
awk programs. Some of the test programs are
shown in awk, sed and lex.

Awk 3-11

References

1. K. Thompson and D. M. Ritchie, UNIX
Programmer's Manual, Bell Laboratories,
May 1975. Sixth Edition

2. B. W. Kernighan and D. M. Ritchie, The
C Programming Language, Prentice-Hall,
Englewood Cliffs, New Jersey, 1978.

3. M. E. Lesk, "Lex - A Lexical Analyzer
Generator," Comp. Sci. Tech. Rep. No. 39,
Bell Laboratories, Murray Hill, New Jer
sey, October 1975.

4. S. C. Johnson, "Yacc - Yet Another
Compiler-Compiler," Comp. Sci. Tech.
Rep. No. 32, Bell Laboratories, Murray
Hill, New Jersey, July 1975.

3-12 Awk

Task
Program 1 2 3 4 5 6 7 8

WC 8.6
grep 11.7 13.1
egrep 6.2 11.5 11.6
fgrep 7.7 13.8 16.1
sed 10.2 11.6 15.8 29.0 30.5
lex 65.1 150.1 144.2 67.7 70.3 81.7 92.8

Table I. Execution Times of Programs. (Times are in sec.)

The programs for some of these jobs are LEX:
shown below. The lex programs are generally
too long to show.

AWK:

1. END {print NR}

2. /doug/

3. /kenldougldmr/

4. {print $3}

5. {print $3, $2}

6. /ken/ {print >"jken"}
/doug/ {print >"jdoug"}
/dmr/ {print >"jdmr"}

7. {print NR ": " $0}

8. {sum = sum + $4}
END {print sum}

SED:

1. $=

2. /doug/p

3. /doug/p
/doug/d
/ken/p
/ken/d
/dmr/p
/dmr/d

4. tr J* c J*r J* c 1*\<r J*\> .*ts11\11p

5. tr]* []*\(["]*\) []*\(["]*\) .*/s//\2 \lip

6. /ken/w jken
/doug/w jdoug
/dmr/w jdmr

1. %{
int i;
%}
%%
\n i++;

%%
yywrap() {

printf("%d\n", i);
}

2. %%
A.*doug.*$

\n

printf("%s\n", yytext);

Make 3-13

Make - A Program for Maintaining Computer Programs

Introduction

S. I. Feldman

Bell Laboratories
Murray Hill, New Jersey 07974

It is common practice to divide large programs into smaller, more manageable pieces.
The pieces may require quite different treatments: some may need to be run through a macro
processor, some may need to be processed by a sophisticated program generator (e.g., Yacc[l]
or Lex[2]). The outputs of these generators may then have to be compiled with special
options and with certain definitions and declarations. The code resulting from these transfor
mations may then need to be loaded together with certain libraries under the control of spe
cial options. Related maintenance activities involve running complicated test scripts and
installing validated modules. Unfortunately, it is very easy for a programmer to forget which
files depend on which others, which files have been modified recently, and the exact sequence
of operations needed to make or exercise a new version of the program. After a long editing
session, one may easily lose track of which files have been changed and which object modules
are still valid, since a change to a declaration can obsolete a dozen other files. Forgetting to
compile a routine that has been changed or that uses changed declarations will result in a pro
gram that will not work, and a bug that can be very hard to track down. On the other hand,
recompiling everything in sight just to be safe is very wasteful.

The program described in this report mechanizes many of the activities of program
development and maintenance. If the information on inter-file dependences and command
sequences is stored in a file, the simple command

make

is frequently sufficient to update the interesting files, regardless of the number that have been
edited since the last "make". In most cases, the description file is easy to write and changes
infrequently. It is usually easier to type the make command than to issue even one of the
needed operations, so the typical cycle of program development operations becomes

think - edit - make - test ...

Make is most useful for medium-sized programming projects; it does not solve the prob
lems of maintaining multiple source versions or of describing huge programs. Make was
designed for use on Unix, but a version runs on GCOS.

Basic Features
The basic operation of make is to update a target file by ensuring that all of the files on

which it depends exist and are up to date, then creating the target if it has not been modified
since its dependents were. Make does a depth-first search of the graph of dependences. The
operation of the command depends on the ability to find the date and time that a file was last
modified.

To illustrate, let us consider a simple ex~ple: A program named prog is made by com
piling and loading three C-language files x.c, y.c, and z.c with the lS library. By convention,
the output of the C compilations will be found in files named x.o, y.o, and z.o. Assume that

3-14 Make

the files x.c and y.c share some declarations in a file named defs, but that z.c does not. That
is, x.c and y.c have the line

#include "defs"

The following text describes the relationships and operations:

prog : x.o y.o z.o
cc x.o y.o z.o -18 -o prog

x.o y.o: defs

If this information were stored in a file named makefile, the command

make

would perform the operations needed to recreate prog after any changes had been made to
any of the four source files x.c, y.c, z.c, or defs.

Make operates using three sources of information: a user-supplied description file (as
above), file names and "last-modified" times from the file system, and built-in rules to bridge
some of the gaps. In our example, the first line says that prog depends on three ".o" files.
Once these object files are current, the second line describes how to load them to create prog.
The third line says that x.o and y.o depend on the file defs. From the file system, make dis
covers that there are three ".c" files corresponding to the needed ".o" files, and uses built-in
information on how to generate an object from a source file (i.e., issue a "cc -c" command).

The following long-winded description file is equivalent to the one above, but takes no
advantage of make's innate knowledge:

prog: x.o y.o z.o
cc x.o y.o z.o -18 -o prog

x.o : x.c defs
cc -c x.c

y.o: y.c defs
cc -c y.c

z.o : z.c
cc -c z.c

If none of the source or object files had changed since the last time prog was made, all of
the files would be current, and the command

make

would just announce this fact and stop. If, however, the defs file had been edited, x.c and y.c
(but not z.c) would be recompiled, and then prog would be created from the new ".o" files. If
only the file y.c had changed, only it would be recompiled, but it would still be necessary to
reload prog.

If no target name is given on the make command line, the first target mentioned in the
description is created; otherwise the specified targets are made. The command

make x.o

would recompile x.o if x.c or defs had changed.

If the file exists after the commands are executed, its time of last modification is used in
further decisions; otherwise the current time is used. It is often quite useful to include rules
with mnemonic names and commands that do not actually produce a file with that name.
These entries can take advantage of make's ability to generate files and substitute macros.
Thus, an entry "save" might be included to copy a certain set of files, or an entry "cleanup"
might be used to throw away unneeded intermediate files. In other cases one may maintain a
zero-length file purely to keep track of the time at which certain actions were performed.

Make 3-15

This technique is useful for maintaining remote archives and listings.

Make has a simple macro mechanism for substituting in dependency lines and command
strings. Macros are defined by command arguments or description file lines with embedded
equal signs. A macro is invoked by preceding the name by a dollar sign; macro names longer
than one character must be parenthesized. The name of the macro is either the single charac
ter after the dollar sign or a name inside parentheses. The following are valid macro invoca
tions:

$(CFLAGS)
$2
$(xy)
$Z
$(Z)

The last two invocations are identical. $$ is a dollar sign. All of these macros are assigned
values during input, as shown below. Four special macros change values during the execution
of the command: $*, $@, $?, and $<. They will be discussed later. The following fragment
shows the use:

OBJECTS = x.o y.o z.o
LIBES =-IS
prog: $(OBJECTS)

cc $(OBJECTS) $(LIBES) -o prog

The command

make

loads the three object files with the lS library. The command

make "LIBES= -II -18"

loads them with both the Lex ("-II") and the Standard ("-IS") libraries, since macro
definitions on the command line override definitions in the description. (It is necessary to
quote arguments with embedded blanks in UNIX.t commands.)

The following sections detail the form of description files and the command line, and
discuss options and built-in rules in more detail.

Description Files and Substitutions
A description :file contains three types of information: macro definitions, dependency

information, and executable commands. There is also a comment convention: all characters
after a sharp (#) are ignored, as is the sharp itself. Blank lines and lines beginning with a
sharp are totally ignored. If a non-comment line is too long, it can be continued using a
backslash. If the last character of a line is a backslash, the backslash, newline, and following
blanks and tabs are replaced by a single blank.

A macro definition is a line containing an equal sign not preceded by a colon or a tab.
The name (string of letters and digits) to the left of the equal sign (trailing blanks and tabs
are stripped) is assigned the string of characters following the equal sign (leading blanks and
tabs are stripped.) The following are valid macro definitions:

2 = xyz
abc = -II -ly -IS
LIBES =

The last definition assigns LIBES the null string. A macro that is never explicitly defined has

t UNIX is a trademark of Bell Laboratories.

3-16 Make

the null string as value. Macro definitions may also appear on the make command line (see
below).

Other lines give information about target files. The general form of an entry is:

target! [target2 ...] :[:] [dependent! ...] [; commands] [# ...]
[(tab) commands] [# ...]

Items inside brackets may be omitted. Targets and dependents are strings of letters, digits,
periods, and slashes. (Shell metacharacters "*" and "?" are expanded.) A command is any
string of characters not including a sharp (except in quotes) or newline. Commands may
appear either after a semicolon on a dependency line or on lines beginning with a tab immedi
ately following a dependency line.

A dependency line may have either a single or a double colon. A target name may
appear on more than one dependency line, but all of those lines must be of the same (single or
double colon) type.

1. For the usual single-colon case, at most one of these dependency lines may have a com
mand sequence associated with it. If the target is out of date with any of the depen
dents on any of the lines, and a command sequence is specified (even a null one follow
ing a semicolon or tab), it is executed; otherwise a default creation rule may be invoked.

2. In the double-colon case, a command sequence may be associated with each dependency
line; if the target is out of date with any of the files on a particular line, the associated
commands are executed. A built-in rule may also be executed. This detailed form is of
particular value in updating archive-type files.

If a target must be created, the sequence of commands is executed. Normally, each com
mand line is printed and then passed to a separate invocation of the Shell after substituting
for macros. (The printing is suppressed in silent mode or if the command line begins with an
@ sign). Make normally stops if any command signals an error by returning a non-zero error
code. (Errors are ignored if the "-i" flags has been specified on the make command line, if
the fake target name ".IGNORE" appears in the description file, or if the command string in
the description file begins with a hyphen. Some UNIX commands return meaningless status).
Because each command line is passed to a separate invocation of the Shell, care must be taken
with certain commands (e.g., cd and Shell control commands) that have meaning only within a
single Shell process; the results are forgotten before the next line is executed.

Before issuing any command, certain macros are set. $@ is set to the name of the file to
be "made". $? is set to the string of names that were found to be younger than the target. If
the command was generated by an implicit rule (see below), $<is the name of the related file
that caused the action, and $* is the prefix shared by the current and the dependent file
names.

If a file must be made but there are no explicit commands or relevant built-in rules, the
commands associated with the name ".DEFAULT" are used. If there is no such name, make
prints a message and stops.

Command Usage
The make command takes four kinds of arguments: macro definitions, flags, description

file names, and target file names.

make [flags] [macro definitions] [targets]

The following summary of the operation of the command explains how these arguments are
interpreted.

First, all macro definition arguments (arguments with embedded equal signs) are
analyzed and the assignments made. Command-line macros override corresponding definitions
found in the description files.

Make 3-17

Next, the flag arguments are examined. The permissible flags are

-i Ignore error codes returned by invoked commands. This mode is entered if the fake tar
get name ".IGNORE" appears in the description file.

-s Silent mode. Do not print command lines before executing. This mode is also entered if
the fake target name ".SILENT" appears in the description file.

-r Do not use the built-in rules.

-n No execute mode. Print commands, but do not execute them. Even lines beginning
with an "@" sign are printed.

-t Touch the target files ('Causing them to be up to date) rather than issue the usual com
mands.

-q Question. The make command returns a zero or non-zero status code depending on
whether the target file is or is not up to date.

-p Print out the complete set of macro definitions and target descriptions

-d Debug mode. Print out detailed information on files and times examined.

-f Description file name. The next argument is assumed to be the name of a description
file. A file name of "-" denotes the standard input. If there are no "-f" arguments,
the file named makefile or Makefile in the current directory is read. The contents of the
description files override the built-in rules if they are present).

Finally, the remaining arguments are assumed to be the names of targets to be made;
they are done in left to right order. If there are no such arguments, the first name in the
description files that does not begin with a period is "made".

Implicit Rules
The make program uses a table of interesting suffixes and a set of transformation rules

to supply default dependency information and implied commands. (The Appendix describes
these tables and means of overriding them.) The default suffix list is:

.0 Object file

.c C source file

.e Efl source file

.r Ratfor source file

.f Fortran source file

.s Assembler source file

.y Y acc-C source grammar

.yr Yacc-Ratfor source grammar

.ye Yacc-Efl source grammar

.l Lex source grammar

The following diagram Sllmmarizes the default transformation paths. If there are two paths
connecting a pair of suffixes, the longer one is used only if the intermediate file exists or is
named in the description.

~\~ .c .r .e .f .s .y .yr .ye .l .d

.J l 1

3-18 Make

If the file x.o were needed and there were an x.c in the description or directory, it would
be compiled. If there were also an x.l, that grammar would be run through Lex before compil
iµg the result. However, if there were no x.c but there were an x.l, make would discard the
intermediate C-language file and use the direct link in the graph above.

It is possible to change the names of some of the compilers used in the default, or the
flag arguments with which they are invoked by knowing the macr() names used. The compiler
pames are the macros AS, CC, RC, EC, YACC, YACCR, YACCE, and LEX. The command

make CC=newcc

will cause the "newcc" command to be used instead of the usual C compiler. The macros
CFLAGS, RFLAGS, EFLAGS, YFLAGS, and LFLAGS may be set to caus~ these commands
to be issued with optional flags. Thus,

make "CFLAGS= -0"

causes the optimizing C compiler to be used.

Example
As an example of the use of make, we will present the description file used to maintain

the make command itself. The code for make is spread over a number of C source files and a
Yacc grammar. The description file contains:

Make 3-19

Description file for the Make command

P = und -31 opr -r2 # send to GCOS to be printed
FILES = Makefile version.c defs main.c doname.c misc.c files.c dosys.c gram.y lex.c gcos.c
OBJECTS = version.o main.o doname.o misc.o files.o dosys.o gram.o
LIBES= -IS
LINT= lint -p
CFLAGS = -0

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) -o make
size make

$(OBJECTS): defs
gram.o: lex.c

cleanup:
-rm *.o gram.c
-du

install:
@size make /usr/bin/make
cp make /usr/bin/make; rm make

print: $(FILES) # print recently changed files

test:

pr$? I $P
touch print

make -dp I grep -v TIME > lzap
/usr/bin/make -dp I grep -v TIME >2zap
diff lzap 2zap
rm lzap 2zap

lint : dosys.c doname.c files.c main.c misc.c version.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c
rm gram.c

arch:
ar uv /sys/source/s2/make.a $(FILES)

Make usually prints out each command before issuing it. The following output results from
typing the simple command

make

in a directory containing only the source and description file:

cc -c version.c
cc -c main.c
cc -c doname.c
cc -c misc.c
cc -c files.c
cc -c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc -c gram.c
cc version.o main.o doname.o misc.o files.o dosys.o gram.o -18 -o make
13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by name in the description file,
make found them using its suffix rules and issued the needed commands. The string of digits
results from the "size make" command; the printing of the command line itself was

3-20 Make

suppressed by an @ sign. The @ sign on the size command in the description file suppressed
the printing of the command, so only the sizes are written.

The last few entries in the description file are useful maintenance sequences. The
"print" entry prints only the files that have been changed since the last "make print" com
mand. A zero-length file print is maintained to keep track of the time of the printing; the $?
macro in the command line then picks up only the names of the files changed since print was
touched. The printed output can be sent to a different printer or to a file by changing the
definition of the P macro:

make print "P = opr -sp"
or

make print "P= cat >zap"

Suggestions and Warnings

The most common difficulties arise from make's specific meaning of dependency. If file
x.c has a "#include "defs"" line, then the object file x.o depends on defs; the source file x.c
does not. (If defs is changed, it is not necessary to do anything to the file x.c, while it is
necessary to recreate x.o.)

To discover what make would do, the "-n" option is very useful. The command

make -n

orders make to print out the commands it would issue without actually taking the time to
execute them. If a change to a file is absolutely certain to be benign (e.g., adding a new
definition to an include file), the "-t" (touch) option can save a lot of time: instead of issuing
a large number of superfluous recompilations, make updates the modification times on the
affected file. Thus, the command

make -ts

("touch silently") causes the relevant files to appear up to date. Obvious care is necessary,
since this mode of operation subverts the intention of make and destroys all memory of the
previous relationships.

The debugging flag ("-d") causes make to print out a very detailed description of what
it is doing, including the file times. The output is verbose, and recommended only as a last
resort.

Acknowledgments

I would like to thank S. C. Johnson for suggesting this approach to program mainte
nance control. I would like to thank S. C. Johnson and H. Gajewska for being the prime
guinea pigs during development of make.

References

1. S. C. Johnson, "Yacc - Yet Another Compiler-Compiler", Bell Laboratories Computing
Science Technical Report #32, July 1978.

2. M. E. Lesk, "Lex - A Lexical Analyzer Generator", Computing Science Technical
Report #39, October 1975.

Make 3-21

Appendix. Suffixes and Transformation Rules

The make program itself does not know what file name suffixes are interesting or how to
transform a file with one suffix into a file with another suffix. This information is stored in an
internal table that has the form of a description file. If the "-r" flag is used, this table is not
used.

The list of suffixes is actually the dependency list for the name ".SUFFIXES"; make
looks for a file with any of the suffixes on the list. If such a file exists, and if there is a
transformation rule for that combination, make acts as described earlier. The transformation
rule names are the concatenation of the two suffixes. The name of the rule to transform a ".r"
file to a ".o" file is thus ".r.o". If the rule is present and no explicit command sequence has
been given in the user's description files, the command sequence for the rule ".r.o" is used. If
a command is generated by using one of these suffixing rules, the macro $* is given the value
of the stem (everything but the suffix) of the name of the file to be made, and the macro$< is
the name of the dependent that caused the action.

The order of the suffix list is significant, since it is scanned from left to right, and the
first name that is formed that has both a file and a rule associated with it is used. If new
names are to be appended, the user can just add an entry for ''.SUFFIXES" in his own
description file; the dependents will be added to the usual list. A ''.SUFFIXES" line without
any dependents deletes the current list. (It is necessary to clear the current list if the order of
names is to be changed).

The following is an excerpt from the default rules file:

.SUFFIXES : .o .c .e .r .f .y .yr .ye .1 .s
YACC=yacc
Y ACCR=yacc -r
YACCE=yacc -e
YFLAGS=
LEX=lex
LFLAGS=
CC=cc
AS=as -
CFLAGS=
RC=ec
RFLAGS=
EC=ec
EFLAGS=
FFLAGS=
.c.o:

$(CC) $(CFLAGS) -c $<
.e.o .r.o .f.o :

.s.o:

.y.o:

.y.c:

$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) -c $<

$(AS) -o $@ $<

$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
rm y.tab.c
mv y.tab.o $@

$(YACC) $(YFLAGS) $<
mv y.tab.c $@

An Introduction to the
Source Code Control System

Eric Allman
Project Ingres

University of California at Berkeley

This document gives a quick introduction to using the Source Code Control System
(SCCS). The presentation is geared to programmers who are more concerned with what to do
to get a task done rather than how it works; for this reason some of the examples are not well
explained. For details of what the magic options do, see the section on "Further Informa
tion".

This is a working document. Please send any comments or suggestions to
csvax:eric.

1. Introduction

SCCS is a source management system. Such a system maintains a record of versions of a
system; a record is kept with each set of changes of what the changes are, why they were
made, and who made them and when. Old versions can be recovered, and different versions
can be maintained simultaneously. In projects with more than one person, SCCS will insure
that two people are not editing the same file at the same time.

All versions of your program, plus the log and other information, is kept in a file called
the "s-file". There are three major operations that can be performed on the s-file:

(1) Get a file for compilation (not for editing). This operation retrieves a version of the file
from the s-file. By default, the latest version is retrieved. This file is intended for com
pilation, printing, or whatever; it is specifically NOT intended to be edited or changed in
any way; any changes made to a file retrieved in this way will probably be lost.

(2) Get a file for editing. This operation also retrieves a version of the file from the s-file,
but this file is intended to be edited and then incorporated back into the s-file. Only one
person may be editing a file at one time.

(3) Merge a file back into the s-file. This is the companion operation to (2). A new version
number is assigned, and comments are saved explaining why this change was made.

2. Learning the Lingo

There are a number of terms that are worth learning before we go any farther.

2.1. S-file

The s-file is a single file that holds all the different versions of your file. The s-file is
stored in differential format; i.e., only the differences between versions are stored, rather than
the entire text of the new version. This saves disk space and allows selective changes to be
removed later. Also included in the s-file is some header information for each version, includ
ing the comments given by the person who created the version explaining why the changes
were made.

An Introduction to SCCS 3-23

3-24 An Introduction to SCCS

2.2. Deltas

Each set of changes to the s-file (which is approximately [but not exactly!] equivalent to
a version of the file) is called a delta. Although technically a delta only includes the changes
made, in practice it is usual for each delta to be made with respect to all the deltas that have
occurred before1• However, it is possible to get a version of the file that has selected deltas
removed out of the middle of the list of changes - equivalent to removing your changes later.

2.3. SID's (or, version numbers)

A SID (SCCS Id) is a number that represents a delta. This is normally a two-part
number consisting of a "release" number and a "level" number. Normally the release number
stays the same, however, it ·is possible to move into a new release if some major change is
being made.

Since all past deltas are normally applied, the SID of the final delta applied can be used
to represent a version number of the file as a whole.

2.4. Id keywords

When you get a version of a file with intent to compile and install it (i.e., something
other than edit it), some special keywords are expanded inline by SCCS. These Id Keywords
can be used to include the current version number or other information into the file. All id
keywords are of the form %x%, where xis an upper case letter. For example, %1% is the SID
of the latest delta applied, % Wo/o includes the module name, SID, and a mark that makes it
findable by a program, and %G% is the date of the latest delta applied. There are many oth-

·--~
ers, most of which are of dubious usef~nes_s,..

... ---- •-'-• • >~ ·~~··~- ·~··~-· ~---n--•·~-~-- -.-...--
When you get a file for editing, the id keywords are not expanded; this is so that after

you put them back irr'to the s-file, they will be expanded automatically on each new version.
But notice: if you wer'e'to get them expanded accidently, then your file would appear to be the
same version forever more, which would of course defeat the purpose. Also, if you should
install a version of the program without expanding the id keywords, it will be impossible to
tell what version it is (since all it will have is"% W%" or whatever).

3. Creating SCCS Files

To put source files into SCCS format, run the following shell script from csh:

mkdir SCCS save
foreach i (*.[ch])

end

SCCS admin -i$i $i
mv $i save/$i

This will put the named files into s-files in the subdirectory "SCCS" The files will be removed
from the current directory and hidden away in the directory "save", so the next thing you will
probably want to do is to get all the files (described below). When you are convinced that
SCCS has correctly created the s-files, you should remove the directory "save".

If you want to have id keywords in the files, it is best to put them in before you create
the s-files. If you do not, admin will print "No Id Keywords (cm7)'', which is a warning mes
sage only.

1This matches normal usage, where the previous changes are not saved at all, so all changes are automatically
based on all other changes that have happened through history.

4. Getting Files for Compilation

To get a copy of the latest version of a file, run

sccs get prog.c

SCCS will respond:

1.1
87 lines

An Introduction to SCCS 3-25

meaning that version 1.1 was retrieved2 and that it has 87 lines. The file prog.c will be
created in the current directory. The file will be read-only to remind you that you are not
supposed to change it.

This copy of the file should not be changed, since SCCS is unable to merge the changes
back into the s-file. If you do make changes, they will be lost the next time someone does a
get.

5. Changing Files (or, Creating Deltas)

5.1. Getting a copy to edit

To edit a source file, you must first get it, requesting permission to edit it3:

sccs edit prog.c

The response will be the same as with get except that it will also say:

New delta 1.2

You then edit it, using a standard text editor:

vi prog.c

5.2. Merging the changes back into the s-file

When the desired changes are made, you can put your changes into the SCCS file using
the delta command:

sccs delta prog.c

Delta will prompt you for "comments?" before it merges the changes in. At this prompt
you should type a one-line description of what the changes mean (more lines can be entered
by ending each line except the last with a backslash4). Delta will then type:

1.2
5 inserted
3 deleted
84 unchanged

saying that delta 1.2 was created, and it inserted five lines, removed three lines, and left 84
lines unchanged5• The prog.c file will be removed; it can be retrieved using get.

2Actually, the SID of the final delta applied was 1.1.

3The "edit" command is equivalent to using the -e flag to get, as:

sccs get -e prog.c

Keep this in mind when reading other documentation.

'Yes, this is a stupid default.
5Changes to a line are counted as a line deleted and a line inserted.

3-26 An IJJ,troduction to SCCS

5.3. When to make deltas

It is probably unwise to make a delta before every recompilation or test; otherwise, you
tend to get a lot of deltas with comments like "fixed compilation problem in previous delta"
or "fixed botch in 1.3". However, it is very important to delta everything before installing a
module for general use. A good technique is to edit the files you need, make all necessary
changes and tests, compiling and editing as often as necessary without making deltas. When
you are satisfied that you have a working version, delta everything being edited, re-get them,
and recompile everything.

5.4. What's going on: the info command

To find out what files where being edited, you can use:

SCCS info

to print out all the files being edited and other information such as the name of the user who
did the edit. Also, the command:

secs check

is nearly equivalent to the info command, except that it is silent if nothing is being edited,
and returns non-zero exit status if anything is being edited; it can be used in an "install"
entry in a makefile to abort the install if anything has not been properly deltaed.

If you know that everything being edited should be deltaed, you can use:

secs delta 'secs tell'

The tell command is similar to info except that only the names of files being edited are out
put, one per line.

All of these commands take a -b flag to ignore "branches" (alternate versions, described
later) and the -u flag to only give files being edited by you. The -u flag takes an optional
user argument, giving only files being edited by that user. For example,

secs info -ujohn

gives a listing of files being edited by john.

5.5. ID keywords

Id keywords can be inserted into your file that will be expanded automatically by get.
For example, a line such as:

static char Sccsid[] = "% W%\t%G%";

will be replaced with something like':

static char Sccsid[] = "@(#)prog.c 1.2 08/29/80";

This tells you the name and version of the source file and the time the delta was created. The
string"@(#)" is a special string which signals the beginning of an SCCS Id keyword.

5.5.1. The what command

To find out what version of a program is being run, use:

secs what prog.c /usr/bin/prog

which will print all strings it finds that begin with "@(#)". This works on all types of files,
including binaries and libraries. For example, the above command will output something like:

prog.c:
prog.c 1.2

/usr/bin/prog:
prog.c 1.1

An Introduction to SCCS 3-27

08/29/80

02/05/79

From this I can see that the source that I have in prog.c will not compile into the same ver
sion as the binary in /usr/bin/prog.

5.5.2. Where to put id keywords

ID keywords can be inserted anywhere, including in comments, but Id Keywords that are
compiled into the object module are especially useful, since it lets you find out what version of
the object is being run, as well as the source. However, there is a cost: data space is used up
to store the keywords, and on small address space machines this may be prohibitive.

When you put id keywords into header files, it is important that you assign them to
different variables. For example, you might use:

static char AccessSid[] = "3 W 3 3 G 3 ";

in the file access.h and:

static char OpsysSid[] = "3 W 3 3 G 3 ";

in the file opsys.h. Otherwise, you will get compilation errors because "Sccsid" is redefined.
The problem with this is that if the header file is included by many modules that are loaded
together, the version number of that header file is included in the object module many times;
you may find it more to your taste to put id keywords in header files in comments.

5.6. Keeping SID's consistent across files

With some care, it is possible to keep the SID's consistent in multi-file systems. The
trick here is to always edit all files at once. The changes can then be made to whatever files
are necessary and then all files (even those not changed) are redeltaed. This can be done
fairly easily by just specifying the name of the directory that the SCCS files are in:

secs edit SCCS

which will edit all files in that directory. To make the delta, use:

secs delta secs
You will be prompted for comments only once.

5.7. Creating new releases

When you want to create a new release of a program, you can specify the release number
you want to create on the edit command. For example:

secs edit -r2 prog.c

will cause the next delta to be in release two (that is, it will be numbered 2.1). Future deltas
will automatically be in release two. To change the release number of an entire system, use:

secs edit -r2 SCCS

6. Restoring Old Versions

6.1. Reverting to old versions

Suppose that after delta 1.2 was stable you made and released a delta 1.3. But this
introduced a bug, so you made a delta 1.4 to corre~t it. But 1.4 was still buggy, and you
decided you wanted to go back to the old version. You could revert to delta 1.2 by choosing
the SID in a get:

3-28 An Introduction to SCCS

sccs get -rl.2 prog.c

This will produce a version of prog.c that is delta 1.2 that can be reinstalled so that work can
proceed.

In some cases you don't know what the SID of the delta you want is. However, you can
revert to the version of the program that was running as of a certain date by using the -c
(cutoff) flag. For example,

sccs get -c800722120000 prog.c

will retrieve whatever version was current as of July 22, 1980 at 12:00 noon. Trailing com
ponents can be stripped off (defaulting to their highest legal value), and punctuation can be
inserted in the obvious places; for example, the above line could be equivalently stated:

sccs get -c"80/07 /22 12:00:00" prog.c

6.2. Selectively deleting old deltas

Suppose that you later decided that you liked the changes in delta 1.4, but that delta 1.3
should be removed. You could do this by excluding delta 1.3:

sccs edit -xl.3 prog.c

When delta 1.5 is made, it will include the changes made in delta 1.4, but will exclude the
changes made in delta 1.3. You can exclude a· range of deltas using a dash. For example, if
you want to get rid of 1.3 and 1.4 you can use:

sccs edit -xl.3-1.4 prog.c

which will exclude all deltas from 1.3 to 1.4. Alternatively,

sccs edit -xl.3-1 prog.c

will exclude a range of deltas from 1.3 to the current highest delta in release 1.

In certain cases when using -x (or -i; see below) there will be conflicts between ver
sions; for example, it may be necessary to both include and delete a particular line. If this
happens, secs always prints out a message telling the range of lines effected; these lines
should then be examined very carefully to see if the version SCCS got is ok.

Since each delta (in the sense of "a set of changes") can be excluded at will, that this
makes it most useful to put each semantically distinct change into its own delta.

7. Auditing Changes

7.1. The prt command

When you created a delta, you presumably gave a reason for the delta to the "com
ments?" prqmpt. To print out these comments later, use:

·sccs prt prog.c

This will produce a report for each delta of the SID, time and date of creation, user who
created the delta, number of lines inserted, deleted, and unchanged, and the comments associ
ated with the delta. For example~ ·the output of the above command might be:

D 1.2 80/08/29 12:35:31 bill 2 1 00005/00003/00084
removed "-q" option

D 1.1 79/02/05 00:19:31 eric 1 0
date and time created 80/06/10 00:19:31 by eric

00087/00000/00000

An Introduction to SCCS 3-29

7.2. Finding why lines were inserted

To find out why you inserted lines, you can get a copy of the file with each line preceded
by the SID that created it:

sccs get -m prog.c

You can then find out what this delta did by printing the comments using prt.

To find out what lines are associated with a particular delta (e.g., 1.3), use:

sccs get -m -p prog.c c grep Ml.3'

The -p flag causes SCCS to output the generated source to the standard output rather than to
a file.

7.3. Finding what changes you have made

When you are editing a file, you can find out what changes you have made using:

sccs diffs prog.c

Most of the "diff'' flags can be used. To pass the -c flag, use -C.

To compare two versions that are in deltas, use:

sccs sccsdiff -rl.3 -rl.6 prog.c

to see the differences between delta 1.3 and delta 1.6.

8. Shorthand Notations

There are several sequences of commands that get executed frequently. Secs tries to
make it easy to do these.

8.1. Delget

A frequent requirement is to make a delta of some file and then get that file. This can
be done by using:

sccs delget prog.c

which is entirely equivalent to using:

sccs delta prog.c
sccs get prog.c

The "deledit" command is equivalent to "delget" except that the "edit" command is used
instead of the "get" command.

8.2. Fix

Frequently, there are small bugs in deltas, e.g., compilation errors, for which there is no
reason to maintain an audit trail. To replace a delta, use:

sccs fix -rl.4 prog.c

This will get a copy of delta 1.4 of prog.c for you to edit and then delete delta 1.4 from the
SCCS file. When you do a delta of prog.c, it will be delta 1.4 again. The -r flag must be
specified, and the delta that is specified must be a leaf delta, i.e., no other deltas may have
been made subsequent to the creation of that delta.

8.3. Unedit

If you found you edited a file that you did not want to edit, you can back out by using:

sccs unedit prog.c

3-30 An Introduction to SCCS

8.4. The -d ftag

If you are working on a project where the SCCS code is in a directory somewhere, you
may be able to simplify things by using a shell alias. For example, the alias:

alias syssccs secs -d/usr/src

will allow you to issue commands such as:

syssccs edit cmd/who.c

which will look for the file "/usr/src/cmd/SCCS/who.c". The file "who.c" will always be
created in your current directory regardless of the value of the -d flag.

9. Using SCCS on a Project

Working on a project with several people has its own set of special problems. The main
problem occurs when two people modify a file at the same time. SCCS prevents this by lock
ing ans-file while it is being edited.

As a result, files should not be reserved for editing unless they are actually being edited
at the time, since this will prevent other people on the project from making necessary changes.
For example, a good scenario for working might be:

secs edit a.c g.c t.c
vi a.c g.c t.c
do testing of the (experimental) version
secs delget a.c g.c t.c
SCCS info
should respond "Nothing being edited"
make install

As a general rule, all source files should be deltaed before installing the program for gen
eral use. This will insure that it is possible to restore any version in use at any time.

10. Saving Yourself

10.1. Recovering a munged edit file

Sometimes you may find that you have destroyed or trashed a file that you were trying
to edit6• Unfortunately, you can't just remove it and re-edit it; SCCS keeps track of the fact
that someone is trying to edit it, so it won't let you do it again. Neither can you just get it
using get, since that would expand the Id keywords. Instead, you can say:

secs get -k prog.c

This will not expand the Id keywords, so it is safe to do a delta with it.

Alternately, you can unedit and edit the file.

10.2. Restoring the s-file

In particularly bad circumstances, the SCCS file itself may get munged. The most com
mon way this happens is that it gets edited. Since SCCS keeps a checksum, you will get errors
every time you read the file. To fix this checksum, use:

sccs admin -z prog.c

60r given up and decided to start over.

An Introduction to SCCS 3-31

11. Using the Admin Command

There are a number of parameters that can be set using the admin command. The most
interesting of these are flags. Flags can be added by using the -f flag. For example:

secs admin -fdl prog.c

sets the "d" flag to the value "l". This flag can be deleted by using:

secs admin -dd prog.c

The most useful flags are:

b Allow branches to be made using the -b flag to edit.

dSID Default SID to be used on a get or edit. If this is just a release number it constrains
the version to a particular release only.

Give a fatal error if there are no Id Keywords in a file. This is useful to guarantee
that a version of the file does not get merged into the s-:file that has the Id Keywords
inserted as constants instead of internal forms.

y The "type" of the module. Actually, the value of this flag is unused by SCCS except
that it replaces the % Y% keyword.

The -tfile flag can be used to store descriptive text from file. This descriptive text
might be the documentation or a design and implementation document. Using the -t flag
insures that if the SCCS file is sent, the documentation will be sent also. If file is omitted, the
descriptive text is deleted. To see the descriptive text, use "prt -t".

The admin command can be used safely any number of times on files. A file need not be
gotten for admin to work.

12. Maintaining Di:trerent Versions (Branches)

Sometimes it is convenient to maintain an experimental version of a program for an
extended period while normal maintenance continues on the version in production. This can
be done using a "branch." Normally deltas continue in a straight line, each depending on the
delta before. Creating a branch "forks off'' a version of the program.

The ability to create branches must be enabled in advance using:

secs admin -fb prog.c

The -fb flag can be specified when the SCCS file is first created.

12.1. Creating a branch

To create a branch, use:

secs edit -b prog.c

This will create a branch with (for example) SID 1.5.1.1. The deltas for this version will be
numbered 1.5.1.n.

12.2. Getting from a branch

Deltas in a branch are normally not included when you do a get. To get these versions,
you will have to say:

secs get -rl.5.1 prog.c

12.3. Merging a branch back into the main trunk

At some point you will have :finished the experiment, and if it was successful you will
want to incorporate it into the release version. But in the meantime someone may have
created a delta 1.6 that you don't want to lose. The commands:

3-32 An Introduction to SCCS

secs edit -il.5.1.1-1.5.1 prog.c
secs delta prog.c

will merge all of your changes into the release system. If some of the changes conflict, get will
print an error; the generated result should be carefully examined before the delta is made.

12.4. A more detailed example

The following technique might be used to maintain a different version of a program.
First, create a directory to contain the new version:

mkdir . ./newxyz
cd . ./newxyz

Edit a copy of the program on a branch:

secs -d . ./xyz edit prog.c

When using the old version, be sure to use the -b flag to info, check, tell, and clean to avoid
confusion. For example, use:

SCCS info -b

when in the directory "xyz".

If you want to save a copy of the program (still on the branch) back in the s-file, you can
use:

secs -d . ./xyz deledit prog.c

which will do a delta on the branch and reedit it for you.

When the experiment is complete, merge it back into the s-file using delta:

secs -d . ./xyz delta prog.c

At this point you must decide whether this version should be merged back into the trunk (i.e.
the default version), which may have undergone changes. If so, it can be merged using the -i
flag to edit as described above.

12.5. A warning

Branches should be kept to a minimum. After the first branch from the trunk, SID's are
assigned rather haphazardly, and the structure gets complex fast.

13. Using SCCS with Make

SCCS and make can be made to work together with a little care. A few sample makefiles
for common applications are shown.

There are a few basic entrir;s that every makefile ought to have. These are:

a.out (or whatever the makefile generates.) This entry regenerates whatever this
makefile is supposed to regenerate. If the makefile regenerates many things,
this should be called "all" and should in turn have dependencies on everything
the makefile can generate.

install Moves the objects to the final resting place, doing any special chmod's or
ranlib's as appropriate.

sources Creates all the source files from SCCS files.

clean

print

Removes all cruft from the directory.

Prints the contents of the directory.

The examples shown below are only partial examples, and may omit some of these entries
when they are deemed to be obvious.

An Introduction to SCCS 3-33

The clean entry should not remove files that can be regenerated from the SCCS files. It
is sufficiently important to have the source files around at all times that the only time they
should be removed is when the directory is being mothballed. To do this, the command:

SCCS clean

can be used. This will remove all files for which an s-file exists, but which is not being edited.

13.1. To maintain single programs

Frequently there are directories with several largely unrelated programs (such as simple
commands). These can be put into a single makefile:

LDFLAGS= -i -s

prog: prog.o
$(CC) $(LDFLAGS) -o prog prog.o

prog.o: prog.c prog.h

example: example.o
$(CC) $(LDFLAGS) -o example example.o

example.o: example.c

.DEFAULT:
SCCS get$<

The trick here is that the .DEFAULT rule is called every time something is needed that does
not exist, and no other rule exists to make it. The explicit dependency of the .o file on the .c
file is important. Another way of doing the same thing is:

SRCS= prog.c prog.h example.c

LDFLAGS= -i -s

prog: prog.o
$(CC) $(LDFLAGS) -o prog prog.o

prog.o: prog.h

example: example.o
$(CC) $(LDFLAGS) -o example example.o

sources: $(SRCS)
$(SRCS):

SCCS get$@

There are a couple of advantages to this approach: (1) the explicit dependencies of the .o on
the .c files are not needed, (2) there is an entry called "sources" so if you want to get all the
sources you can just say "make sources", and (3) the makefile is less likely to do confusing
things since it won't try to get things that do not exist.

13.2. To maintain a library

Libraries that are largely static are best updated using explicit commands, since make
doesn't know about updating them properly. However, libraries that are in the process of
being developed can be handled quite adequately. The problem is that the .o files have to be
kept out of the library as well as in the library.

3-34 An Introduction to SCCS

configuration information
OBJS= a.o b.o c.o d.o
SRCS= a.c b.c c.c d.s x.h y.h z.h
T ARG= /ust/lib

#programs
GET= secs get
REL=
AR= •ar
RANLIB= ranlib

lib.a: $(0BJS)
$(AR) rvu lib.a $(0BJS)
$(RANLIB) lib.a

install: lib.a
secs check
cp lib.a $(TARG)/lib.a
$(RANLIB) $(TARG)/lib.a

sources: $(SRCS)
$(SRCS):

$(GET) $(REL) $@

print: sources
pr *.h *.[cs]

clean:
rm -f *.o
rm -f core a.out $(LIB)

The "$(REL)" in the get can be used to get old versions easily; for example:

make b.o REL=-rl.3

The install entry includes the line "secs check" before anything else. This guarantees
that all the s-files are up to date (i.e., nothing is being edited), and will abort the make if this
condition is not met.

13.3. To maintain a large program

OBJS= a.o b.o c.o d.o
SRCS= a.c b.c c.y d.s x.h y.h z.h

GET= secs get
REL=

a.out: $(0BJS)
$(CC) $(LDFLAGS) $(0BJS) $(LIBS)

sources: $(SRCS)
$(SRCS):

$(GET) $(REL) $@

(The print and clean entries are identical to the previous case.) This makefile requires copies
of the source and object files to be kept during development. It is probably also wise to
include lines of the form:

a.o: x.h y.h
b.o: z.h
c.o: x.h y.h z.h
z.h: x.h

An Introduction to SCCS 3-35

so that modules will be recompiled if header files change.

Since make does not do transitive closure on dependencies, you may find in some
makefiles lines like:

z.h: x.h
touch z.h

This would be used in cases where file z.h has a line:

#include "x.h"

in order to bring the mod date of z.h in line with the mod date of x.h. When you have a
makefile such as above, the touch command can be removed completely; the equivalent effect
will be achieved by doing an automatic get on z.h.

14. Further Information

The SCCS/PWB User's Manual gives a deeper description of how to use SCCS. Of par
ticular interest are the numbering of branches, the I-file, which gives a description of what del
tas were used on a get, and certain other SCCS commands.

The SCCS manual pages are a good last resort. These should be read by software
managers and by people who want to know everything about everything.

Both of these documents were written without the sccs front end in mind, so most of the
examples are slightly different from those in this document.

3-36 An Introduction to SCCS

Quick Reference

1. Commands

The following commands should all be preceded with "secs". This list is not exhaustive;
for more options see Further Information.

get Gets files for compilation (not for editing). Id keywords are expanded.

-rSID Version to get.

-p Send to standard output rather than to the actual file.

-k Don't expand id keywords.

-ilist List of deltas to include.

-xlist List of deltas to exclude.

-m Precede each line with SID of creating delta.

-cdate Don't apply any deltas created after date.

edit Gets files for editing. Id keywords are not expanded. Should be matched with a
delta command.

-rSID Same as get. If SID specifies a release that does not yet exist, the highest
numbered delta is retrieved and the new delta is numbered with SID.

-b Create a branch.

-ilist Same as get.

-xlist Same as get.

delta Merge a file gotten using edit back into the s-file. Collect comments about why this
delta was made.

unedit Remove a file that has been edited previously without merging the changes into the
s-file.

prt Produce a report of changes.

-t Print the descriptive text.

-e Print (nearly) everything.

info Give a list of all files being edited.

-b Ignore branches.

-u[user]
Ignore files not being edited by user.

check Same as info, except that nothing is printed if nothing is being edited and exit
status is returned.

tell Same as info, except that one line is produced per file being edited containing only
the file name.

clean Remove all files that can be regenerated from the s-file.

what Find and print id keywords.

admin Create or set parameters on s-files.

-ifile Create, using file as the initial contents.

-z Rebuild the checksum in case the file has been trashed.

An Introduction to SCCS 3-37

-fflag Turn on the flag.

-dflag Turn off (delete) the flag.

-tfile Replace the descriptive text in the s-file with the contents of file. If file is
omitted, the text is deleted. Useful for storing documentation or "design &
implementation" documents to insure they get distributed with the s-file.

Useful flags are:

b Allow branches to be made using the -b flag to edit.

dSJD Default SID to be used on a get or edit.

Cause "No Id Keywords" error message to be a fatal error rather than a
warning.

t The module "type"; the value of this flag replaces the % Y% keyword.

fix Remove a delta and reedit it.

delget Do a delta followed by a get.

deledit Do a delta followed by an edit.

2. Id Keywords

%Z% Expands to"@(#)" for the what command to find.

3M%
The current module name, e.g., "prog.c".

% I% The highest SID applied.

%W%
A shorthand for "%Z% 3M% <tab> %1%".

% G % The date of the delta corresponding to the "%I%" keyword.

%R% The current release number, i.e., the first component of the "%1%" keyword.

% Y% Replaced by the value of the t flag (set by admin).

Introduction and Usa1e

Lint, a C Program Checker

S. C. Johnson

Bell Laboratories
Murray Hill, New Jersey 0797 4

Lint 3-39

Suppose there are two Cl source files, filel.c and file2.c. which are ordinarily compiled and
loaded together. Then the command

lint filel.c file2.c

produces messages describing inconsistencies and inefficiencies in the programs. The program
enforces the typing rules of C more strictly than the C compilers (for both historical and practi·
cal reasons) enforce them. The command

lint -p filel.c ftle2.c

will produce, in addition to the above messages, additional messages which relate to the porta
bility of the programs to other operating systems and machines. Replacing the - p by - h will
produce messages about various error-prone or wasteful constructions which, strictly speaking,
are not bugs. Saying -hp gets the whole works.

The next several sections describe the major messages; the document closes with sections
discussing the implementation -and giving suggestions for writing portable C. An appendix
gives a summary of the lint options.

A Word About Philosop~y

Many of the facts which lint needs may be impossible to discover. For example, whether
a given function in a program ever gets called may depend on the input data. Deciding whether
exit is ever called is equivalent to solving the famous "halting probiem." knc-•.vt• to be recur
sively undecidable.

Thus, most of the lint algorithms are a compromise. If a function is never mentioned, it
can never be called. If a function is mentioned, lint assumes it can be called; this is not neces
sarily so, but in practice is quite reasonable.

Lint tries to give information with a high degree of relevance. Messages of the form •• xxx
might be a bug" are easy to generate, but are acceptable only in proportion to the fraction of
real bugs they uncover. If this fraction of real bugs is too small, the messages lose their credi
bility and serve merely to clutter up the output, obscuring the more important messages.

Keeping these issues in mind. we now consider in more detail the classes of messages
which lint produces.

Unused Variables and Functions

As sets of progr.1ms evolve and develop, previously used variables and arguments to func
tions may become unused; it is not uncommon for external variables, or even entire functions,
to become unnecessary. and yet not be removed from the source. These .. errors of commis
sion" rarely cause working programs to fail, but they are a source of inefficiency. and make
programs harder to understand and change. Moreover. information about such unused vari
ables and functions can occasionally serve to discover bugs~ if a function does a necessary job.
and is never called. something is wrong!

3-40 Lint

Lint complains about variables and functions which arc defined but not otherwise men
tioned. An exception is variables which are declared through explicit extern statements but are
never referenced: thus the statement

extern float sinO;

will evoke no comment if sin is never used. Note that this agrees with the semantics of the C
compiler. In some cases. these unused external declarations might be of some interest; they
can be discovered by adding the -x ftag to the lint invocation.

Cenain styles of programming require many functions to be written with similar inter
faces: frequently, some of the arguments may be unused in many of the calls. The -v option
is available to suppress the printing of complaints about unused arguments. When -v is in
etrect. no messages arc produced about unused arguments except for tHose arguments which
arc unused and also declared as register arguments; this can be considered an active (and
preventable) waste of the register resources of the machine.

There is one case where information about unused, or undefined, variables is more dis
tracting than helpful. This is when lint is applied to some, but not all, files out of a collection
which are to be loaded together. In this case, many of the functions and variables defined may
not be used, and, conversely, many functions and variables defined elsewhere may be used.
The -u ftag may be used to suppress the spurious messages which might otherwise appear.

Set/Used Information
Lint attempts to detect cases where a variable is used before it is set. This is very difficult

to 'do well: many algorithms take a good deal of time and space, and still produce messages
about pcrf ectly valid programs. Lint detects local variables (automatic and register storage
classes) whose first use appears physically earlier in the input file than the first assignment to
the variable. It assumes that taking the address of a variable constitutes a "use," since the
actual use may occur at any later time, in a data dependent fashion.

The restriction to the physical appearance of variables in the file makes the algorithm very
simple and quick to implement, since the true ftow of control need not be discovered. It does
mean that lint can complain about some programs which are legal, but these programs would
probably be considered bad on stylistic grounds (e.g. might contain at least two 1oto's).
Because static and external variables are initialized to 0, no meaningful information can be
discovered about their uses. The algorithm deals correctly, however, with initialized automatic
variables, and variables which are used in the expression which first sets them.

The set/used information also permits recognition of those local variables which are set
and never used; these form a frequent source of inefficiencies, and may also be symptomatic: of
bugs.

Flow of Control

Lint attempts to detect unreachable ponions of the programs which it processes. It will
complain about unlabeled statements immediately following goto, break,·conti~ue, or return
statements. An attempt is made to detect loops which can never be left at the bottom, detect
ing the special cases while(1) and for(;;) as infinite loops. Lint also complains about loops
which cannot be entered at the top; some valid programs may have such loops, but at best they
are bad style, at worst bugs.

Lint has an imponant area of blindness in the flow of control algorithm: it has no way of
detecting functions which are called and never return. Thus, a call to exit may cause unreach
able code which lint does not detect: the most serious etfects of this are in the determination of
returned function values (see the next section).

One form of unreachable statement is not usually complained about by lint; a break state·
ment that cannot be reached causes no message. Programs generated by yacc, 2 and especially
/ex. l may have literally hundreds of unreachable break statements. The -0 ftag in the C

- -- -- ------------

Lint 3-41

compiler will often eliminate the resulting object code inefficiency. Thus. these unreached
Statements are of little imponance, there is typically nothing the user cnn do about them. and
the resulting messages would clutter up the lint output. If these messages are desired. lint can
be invoked with the -b option.

Function Values
Sometimes functions return values which are never used: sometimes programs incorrectly

use function ''values" which have never been returned. Um addresses this problem in a
number of ways.

and

Locally, within a function definition, the appearance of both

return (e:xpr);

return:

statements is cause for alarm: lint will give the message

function name contains return {e) and return

The most serious dLfficulty with this is detecting when a function return is implied by flow of
control reaching the end of the function. This can be seen with a simple example:

f (a) (
if (a) return (3);
I 0;
J

Notice that, if a testS false, /will call g and then return with no defined return v-J.lue: this will
trigger a complaint from lint. If g, like exit. never returns, the message will still be produced
when in fact nothing is wrong.

In practice, some potentially serious bug:s have been discovered by this feature; it also
accounts for a substantial fraction of the "noise" messages produced by lint.

On a global sc:ale, lJnt detects cases where a function returns a v-.llue, but this value is
sometimes, or always. unused. When the v-J.lue is alw-.1ys unused, it may constitute an
inefficiency in the function definition. When the value is sometimes unused, it may represent
bad style (e.g., not testing for error conditions).

The dual problem, using a function value when the function does not return one. is also
detected. This is a serious problem. Amazingly. this bug has been observed on a. couple of
occasions in "working" programs: the desired function value just happened to have been com
puted in the (unction return register!

Type Checkioc

Lint enforces the type checking rules of C more strictly than the compilers do. The addi
tional checking is in four major areas: aaoss certain binary operators and implied assignments.
at the structure selection operators, between the definition and uses of functions, and in the use
of enumerations.

There are a number of operators which have an implied balancing between types of the
operands. The assignment. conditional (·? :) , and relational operators have this property: ~he
argument of a return statement. and expressions used in initialization also suffer similar
conversions. [n these operations. cb:ir, 'iliort, il\t, ll)n~. unsigned. ftoa!. '.!..'ld·•fo!Jb!e tyi:i~ ~ay
be freely intermixed. The types of po:~ters must agree exactly, except that arrays of x's can. of
course. be intermixed with pointers to :ts.

The type checking rules also require that. in structure references. the left operand oi the
- > be a pointer to structure. the left operand oi the . be a. structure. and tne right operand oi

3-42 Lint

these operators be a member of the structure implied by the left operand. Similar checking is
done for references to unions.

Strict rules apply to function argument and return value matching. The types ftoat and
double may be freely matched, as may the types char, short, int, and unsigned. Also. pointers
can be matched with the associated arrays. Aside from this, all actual arguments must agree in
type with their declared counterparts.

With enumerations, checks are made that enumeration variables or members are not
mixed with other types, or other enumerations, and that the only operations applied are - , ini·
tialization, - -. !-, and function arguments and return values.

Type Casts
The type cast feature in C was introduced largely as an aid to producing more ponable

programs. Consider the assignment

p - 1;

where pis a character pointer. Lint will quite rightly complain. Now, consider the assignment

p - (char •H;
in which a cast has been used to cortven the integer to a character pointer. The programmer
obviously had a strong motivation for doing this, and has clearly signaled his intentions. It
seems harsh for lint to continue to complain about this. On the other hand, if this code is
moved to another machine, such code should be looked at carefully. The -c flag controls the
printing of comments about casts. When -c is in effect, casts are treated as though they were
assignments subject to complaint; otherwise, all legal casts are passed without comment, no
matter bow strange the type mixing seems to be.

Nonportable Character Use

On the PDP-11, characters are signed quantities, with a range from -128 to 127. On
most of the other C implementations, characters take on only positive values. Thus, lint will
flag certain comparisons and assignments as being illegal or nonponable. For example, the
fragment

char c;

if(Cc - getchar()) < 0)

works on the PDP-11, but will fail on machines where characters always take on posmve
values. The real solution is to declare c an integer, since getchar is actually returning integer
values. 1n any case, lint will say "nonportable character comparison".

A similar issue arises with bitfields; when assignments. of constant values are made to
bitfields, the field may be too small to hold the value. This is especially true because on some
machines bitfields are considered as signed quantities. While it may seem unintuitive to con
sider that a two bit field declared of type int cannot hold the value 3, the problem disappears if
the bitfield is declared to have type unsigned.

Assicnments of longs to ints
Bugs may arise from the assignment of long to an int, which loses accuracy. This may

happen in programs which have been incompletely converted to use typedefs. When a typedef
variable is changed from int to long, the program can stop working because some intermediate
results may be assigned to ints, losing accuracy. Since there are a number of legitimate reasons
for assigning loncs to ints, the detection of these assignments is enabled by the -a flag.

Lint 3-43

Str:tn&e Constructions

Severa! perfectly legal. but somewhat strange. constructions are llagged by lint: the mes
sages hopefully encourage better code quality, clearer style. and may even point out bugs. The
- h flag is used to enable these checks. For example, in the statement

the •does nothing; this provokes the message .. null effect" from /inL The progr.un rragment

unsigned x;
if(x < 0) •••

is clearly somewhat strange; the test will never su~d. Similarly, the test

if(x > 0) .••

is equivalent to

ii(x !- 0)

which may not be the intended action. Lint will say .. degenerate unsigned comparison" in
these cases. If one says

if(1 !- 0)

lint will report .. constant in conditional context", since the comparison of 1 with 0 gives a con
stant result.

Another consuuction detected by line involves operator precedence. Bugs which arise
from misunderstandings about the precedence of operators can be accentuated oy spacing and
formatting, making such bugs extremely hard to find. For example, the statements

if (x&.077 - - 0) •••

or

x<<2 + 40
probably do not do what was intended. The best solution is to parenthesize such expressions.
and lint encourages this by an appropriate message.

Finally. when the -b flag is in force lint complains about variables which are redeclared in
inner blocks in a way that conflicts with their use in outer blocks. This is legal. but is con
sidered by many (inc;luding the author) to be bad style, usually unnecessary, and frequently a
bug.

Ancient History

There are several forms of older syntaX which are being officially discouraged. These rall
into two classes, assignment operators and initialization.

The older forms of assignment operators (e.g., - +, - - , ...) could cause ambiguous
expressions. sud:l as

a --1;

which could be taken as either

a -- l;

or

a - -1;

The situation is especially perplexing if this kind of ambiguity arises as the result oi ;i macro
substitution. The newer. and preferred operators (T-, - -. etc.) have no such :imbiguitics.
To spur the abandonment of the older forms. linl complains about these old fashioned

3-44 Lint

operators.
A similar issue arises with initialization. The older language allowed

int x 1 ;

to initialize x to 1. This also caused syntactic difficulties: for example,

int x (-1);

looks somewhat like the beginning of a function declaration:

int x (y)(...

and the compiler must read a fair ways past x in order to sure what the declaration really is ..
Again, the problem is even more perplexing when the initializer involves a macro. The current
syntax places an equals sign between the variable and the irutiaJ.izer:

int x - -1;

This is free of any possible syntactic ambiguity.

Pointer Allpment
Certain pointer assignments may be reasonable on some machines, and illegal on others,

due entirely to alignment restrictions. For example, on the PDP-11, it is reasonable to assign
integer pointers to double pointers, since double precision values may begin on any integer
boundary. On the Honeywell 6000, double precision values must begin on even word boun
dafies; thus, not all such assignments make sense. Unt tries to detect cases where pointers are
assigned to other pointers, and such alignment problems might arise. The message .. possible
pointer alignment problem" results from this situation whenever either the -p or -h flags are
in effect.

Multiple Uses and Side Effects
In complicated expressions, the best order in which to evaluate subexpressions may be

highly machine dependent. For example, on machines (like the·PDP-11) in which the stack
runs backwards, function arguments will probably be best evaluated from right-to-left; on
machines with a stack running forward, left-to-right seems most attractive. Function calls
embedded as arguments of other functions may or may not be treated similarly to ordinary
arguments. Similar issues arise with other operators which have side effects, such as the assign
ment operators and the increment and decrement operators.

In order that the efficiency of C on a particular machine not be unduly compromised, the
C language leaves the order of evaluation of complicated expressions up to the local compiler,
and, in f ac:t, the various C compilers have considerable differences in the order in which they
will evaluate complicated expressions. In particular, if any variable is changed by a side effect,
and also used elsewhere in the same expression, the result is explicitly undefined.

Lint checks for the important special case where a simple scalar variable is- affected. For
example, the statement

a{i] - b{i++];

will draw the complaint:

warning: i evaluation order undefined

Implementation
Unt consists of two programs and a driver. The first program is a version of the Portable

C Compiler4• S which is the basis of the IBM 370, Honeywell 6000, and Interdata 8/32 C com
pilers. This compiler does lexical and syntax analysis on the input text, constructs and main
tains symbol tables, and builds trees for expressions. Instead of writing an intermediate file

Lint 3-45

which is passed to a code generator. as the other compilers do. lint produces an intermediate file
which consists of lines of ascii text. Each line contains an e:ctemal variable name. an encoding
of the context in which it was se:n (use. definition. declaration. etc:.), a type specifier, and a
source file name and line number. The information about variables loc:U to a function or tile is
collected by accessing the symbol table. and examining the e:cpression trees.

Comments about local problems are produced as detected. The information about e:cter·
nal names is collected onto an intermediate tile. .AJ'ter all the source tiles and library descrip·
tions have been collec:ted. the intermediate file is sorted to bring all information collected about
a given external name together. The second. rather small, program then reads the lines from
the intermediate file and compares all of the definitions. declarations. and uses for consistency.

The driver controls this process, and is also responsible for making the options available
to both passes of lint

Portability

C on the Honeywell and IBM systems is used, in part. to write system code for the host
operating system. This mems that the implementation of C tends to follow local conventions
rather than adhere strictly to UNtxt system conventions. Despite these differences, many C
programs have be:n successfully moved to GCOS and the various lBM installations with little
eff'ort. This section desc:ribes some of the diff'erenc:s between the implementations, and
discusses the lint features which encourage portability.

Uninitialized extcmal variables are treated differently in different implementations of C.
Suppose two tiles both contain a declaration without initialization. such as

int a;

outside of any function. The UNIX loader will resolve these declarations, and cause only a sin·
gle word of storage to be set aside for a. Under the GCOS and IBM implementations, this is
aot feasible (for various stupid reasons!) so each such dedaration causes a word of storage to
be set aside and called a. When loading or library editing takes place, this causes fatal conflicts
wh.ic:b prevent the proper operation of the progr:im. If lirrr is invoked with the -p flag, it will
detect such multiple definitions.

A related difficulty comes from the amount of information retained about e::c:temal names
during the loading process. On the UNL"< system. externally known names have seven
significant characters, with the upper/lower case distinction kept. On the IBM systems, there
are eight significant characters. but the case distinction is lost. On GCOS, there are only six
characters, of a single c::ise. This leads to situations where programs run on the UNIX system,
but encounter loader problems on the IBM or GCOS systems. Linc - p causes all external sym·
bots to be mapped to one c::ise and truncated to six characters, providing a worst-c-d.Se analysis.

A number of differences arise in the area of char.1.cte:- handling: characters in the L'~tx
system are eight bit asc:ii, while they are eight bit ebcdic on the IBM. and nine bit ascii on
GCQS_ Moreover, char.tcter strings go from high to low bit positions (''left :o right'.) on
GCOS a.nd IBM, and low to high ("right to left") on the PDP-11. This me-.ms that code
attempting to construct strings out of char'"J.cter constants, or attempting to use characters as
indices into arrays, must be looked at with great suspicion. Lint is of little help her:. except to
flag muiti~haracter char.icter constants.

Of course, the word sizes are different! This causes less trouble than might be expec~ed.
at least when moving from the UNIX system (16 bit words) to the IBM (32 bits) or GCOS (36
bits). The main oroblems are likely tn arise in shiftin~ or ma~king. C now c11ppnm :J bit-t1~1d
facility. which c:m be used to write much of this code in a reasonably portable way. Frequently,
portability of such code c-.in be enhanced by slight rearrangements in coding style. :vtany or t!le
incompatibilities se:m to have the flavor of writing

~UNIX is .1 Trademark of Bell uboratories.

3-46 Lint

x &- 0177700;

to clear the low order six bits of x. This suffices on the PDP-11, but fails badly on GCOS and
IBM. If the bit field feature cannot be used, the same effect can be obtained by writing

x &- - 077;

which will work on all these machines.

The right shift operator is arithmetic shift on the PDP-11, and logical shift on most other
machines. To obtain a logical shift on all machines, the left operand can be typed unsigned.
Characters are considered signed integers on the PDP-11, and unsigned on the other machines.
This persistence of the sign bit may be reasonably considered a bug in the PDP-11 hardware
which has infiltrated itself into the C language. If there were a good way to discover the pro
grams which would be affected, C could be changed; in any case, lint is no help here.

The above discussion may have made the problem of portability seem bigger than it in
fact is. The issues involved here are rarely subtle or mysterious, at least to the implementor of
the program, although they can involve some work to straighten out. The most serious bar to
the portability of UNIX system utilities bas been the inability to mimic essential UNIX system
functions on the other systems. The inability to seek to a random character position in a text
file, or to establish a pipe between processes, has involved far more rewriting and debugging
than any of the differences in C compilers. On the other hand, linr has been very helpful in
moving the UNIX operating system and associated utility programs to other machines.

Shuttin1 Lint Up
There are occasions when the programmer is smarter than lint There may be valid rea

son., for "illegal" type casts, functions with a variable number of arguments, etc. Moreover, as
specified above, the flow of control information produced by lint often has blind sp0ts, causing
occasional spurious messages about perfectly reasonable programs. Thus, some way of com·
municating with lint., typically to shut it up, is desirable.

The form which this mechanism should take is not at all clear. New keywords would
require current and old compilers to recognize these keywords, if only to ignore them. This has
both philosophical and practical problems. New preprocessor syntax suffers from similar prob·
le ms.

What was finally done was to cause a number of words to be recognized by lint when they
were embedded in comments. This required minimal preprocessor changes; the preprocessor
just had to agree to pass comments through to its output, instead of deleting them as had been
previously done. Thus, lint directives are invisible to the compilers, and the effect on systems
with the older preprocessors is merely that the lint directives don't work.

The first directive is concerned with flow of control information; if a particular place in
the program cannot be reached, but this is not apparent to lint., this can be asserted by the
directive

r NOTREACHED •t
at the appropriate spot in the program. Similarly, if it is desired to tum off strict type checking
for the next expression, the directive

t• NOSTRICT •t
can be used; the situation reverts to the previous default after the next expression. The -v
Oag can be turned on for one function by the directive

t• ARGSUSED •t
Complaints about variable number of arguments in calls to a function can be turned off by the
directive

Lint 3-47

1• VARAR.GS ·1

preceding the function definition. In some c:-.ises. it is desir.ible to check the first several argu
ments. and leave the later arguments unchecked. This can be done by following the
VARARGS keyword immediately with :.1 digit giving the number of arguments which should be
checked; thus.

r V ARARGS2. • /

Will cause the first two arzuments to be checked. the othe:s unchecked. Finally, the directive

r LINTUBRARY •t

at the had of a file identities this file as a library declar.i.tion file~ this topic is worth a section by
itself.

Libr:ary Decl:uation Files

Linc accepts certain library directives. such as

-ly

and tests the source files for compatibility with these libraries. This is done by accessing library
description files whose names ate constructed from the library direetives. These files all begin
with the directive

/• LINTLIBRAR Y •1

which is followed by a series of dummy function definitions. The critiol parts of these
definitions are the dec:lar..ttion of the function return type. whether the dummy function returns
a value. and the number and types of arguments to the function. The V ARARGS and
ARGSUSED directives an be used to specify features of the libr.i.ry functions.

Linc library files ;&re processed almost exactly like ordinary sourc:: files. The only
difference is that functions which are defined on a libr.uy file. but are not used on a source file.
draw no complaints. Lint does not simulate a full library search :11gorithm, and complains if the
source files contain a redefinition of a library routine (this is a f e:uure!).

By default. lint checks the programs it is given against a standard libr.uy file. which con
tains descriptions of the progr.ims which are normally loaded when a C program is run. When
the ·P tlag is in eft'ec:t. another tile is checked containing descriptions of the standard [/0 library
routines which are expected to be portable across various machines. The ·n flag c::in be used to
suppress ail library checking.

Bugs. ecc.
Linc was a difficult program to write~ partially because it i.s closely connected with matters

of programming style. and panially because users usually don't notice bugs which cause lint to
miss errors which it should have c:iught. (By contrast. if lint incorrectly compliains .ibout some·
thing that is correct. the programmer reports that immediately!}

A number of areas remain to be further developed. The checking of structures and arrays
is rather inadequate: size incompatibilities go unchecked. and no attempt is made to match up
structure and union declarations across files. Some stricter checking of the use of the typedef is
clearly desirable. but wb:n cbeclcing is appropriate. and how to carry it out, is still to be deter·
mined.

LJnr shares the preprocessor with the C compiler. At some point it may be ;i.ppropriate for
a special version of the preprocessor to be construtled whic:h checks fer thin~ such us unused
macro dednitions. macro arguments which have side etfectS which are not expanded at ;.ill, or
are expanded more than once, etc.

The central problem with lint is the packaging of the information which it collects. There
are many options which serve only to tum off. or slightly modify. ce~:un ieatures. There .ire

3-48 Lint

pressures to add even more of these options.
In conclusion. it appears that the general notion of having two programs is a good one.

The compiler concentrates on quickly and accurately turning the program text into bits which
can be run; lint concentrates on issues of portability, style, and efficiency. Lint can afford to be
wrong, since -incorrectness and over-conservatism are merely annoying, not fatal. The compiler
can be fast since it knows that lint will cover its flanks. Finally. the programmer can concen
trate at one stage of the programming process solely on the algorithms, data structures, and
correctness of the program, and then later retrofit, with the aid of lint, the desirable properties
of universality and portability.

Lint 3-49

ReferenCH

1. B. W. Kernighan and D. M. !Utchie. The C Programming Language. Prentice-Hall. Engle·
wood Ci.Ifs. New Jersey Cl 978).

2. S. C. Johnson. "Yacc - Yet Another Compiler-Compiler.'' Comp. Sci. Tech. Rep. No.
32. Bell Laboratories. Murray Hill. New Jersey (July 1975).

3. M. E. Lesk. "Lex - A Lexic:aJ Analyzer Generator ... Comp. Sci. Tech. Rep. No. 39.
Bell Laboratories, Murray Hill, New Jersey (October 1975).

4. S. C. Johnson and D. M. !Utchie. "UNIX Time·Sharing System: Portability of C Programs
and the UNIX System.'' Bell Sys. T«lr. J. 57(6) pp. 2021·2048 (1978).

S. S. C. Johnson. 06 A Portable Compiler: Theory and Practice.•• Proc. Srh ACM S,vmp. on
Prindp/a of Programminr languages. (January 1978).

3-50 Lint

Appendix: Current Lint OptioQs
The command currently has the form

lint [-options) files ••. library-descriptors .•.

The options are

h Perform heuristic checks
p Perform portability checks
Y Don't report unused arguments
u Don't report unused or undefined externals
b Report unreachable break statements.
x Report unused external declarations
a Report assignments of 1001 to int or shorter.
c Complain about questionable casts

n No library checking is done
s Same ash Cf'or historical reasons)

A Tutorial Introduction to ADB 3-51

A Tutorial Introduction to ADB

J. F. iVaran:ano

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction
ADB is a new debugging program that is available on UNIX. It provides capabilities to

look at ••core" files resulting from aborted programs, print output in a variety of formacs, patch
files, and run programs with embedded breakpoints. This document provides examples of the
more useful features of ADB. The reader is expected to be familiar with the basic commands
on UNlxt with the C language, and with References 1, 2 and 3.

2. A Quick Survey

2.1. Invocation
ADB is inv,pked as:

adb objftle corefile

where objfile is an executable UNIX file and carefile is a core image file. Many times this will
look like:

adh a.out core

or more simply:

adh

where the defaults are a.out and core respectively. The filename minus (-) means ignore- this
argument as in:

adb - core

ADB has requests for examining loc:itions in either file. The ? request examines the
contents of obj.file, the I request examines the core.file. The general forn\ of these requests is:

address ? format

or

address I format

2.2. Current Address
ADB maintains a current address. called dot. similar in function to the current pointer in

the UNIX editor. When an address is entered, the current address is set to that location, so
that:

0126'!1

tUNIX is a Tr:idemark of Bell Laboratories.

3-52 A Tutorial Introduction to ADB

sets dot to octal 126 and prints the instruction at that address. The request:

•• 10/d

prints 10 decimal numbers starting at dot. Dot ends up referring to the address of the last item
printed. When used with the ? or I requests, the current address can be advanced by typing
newline; it can be decremented by typing .

Addresses are represented by expressions. Expressions are made up from decimal, octal,
and hexadecimal integers, and symbols from the program under test. These may be combined
with the operators +, - , •. % (integer division), & (bitwise and), I (bitwise inclusive or). #
(round up to the next multiple), and - (not). (All arithmetic within ADS is 32 bits.) When
typing a symbolic address for a C program, the user can type name or _name; ADB will recog
nize both forms.

2.3. Formats
To print data. a user specifies a collection of letters and characters that describe the format

of the printout. Formats are "remembered" in the sense that typing a request without one will
cause the new printout to appear in the previous format. The following are the most commonly
used format letters.

b one byte in octal
c one byte as a character
o one word in octal
d one word In decimal
f two words in Boating point

PDP 11 instruction
s a null terminated character string
a the value of dot
u one word as unsigned integer
n print a newline
r print a blank space

backup dot

(Format letters are also available for "long" values. for example, •n• for long decimal. and 'F'
for double floating point.) For other formats see the ADB manual.

2.4. General Request Meanings

The general form of a request is:

address,count command modifier

which sets 0 dot' to address and executes the command count times.

The following table illustrates some general ADB command meanings:

Command Meaning
? Print contents from a.out file
I Print contents from core ftle
• Print value of "dot"

Breakpoint control
$ Miscellaneous requests

Request separator
Escape to shell

ADB catches signals. so a user cannot use a quit signal to exit from A.DB. The request Sq
or SQ (or cntl-D) must be used to exit from ADB.

A Tutorial Introduction to ADB 3-53

J. Debugging C Programs

J.1. Debugging A Core Image

Consider the C program in Figure 1. The program is used to illustrate a common error
made by C programmers. The object of the program is to change the lower case "t" to upper
c:ise in the string pointed to by charp and then write the character string to the file indicated by
argument 1. The bug shown is that the character 1 is stored in the pointer charp instead of
the string pointed to by charp. Executing the program produces a core file because of an out of
bounds memory reference.

AOB is invoked by:

adb a.out core

The first debugging request:

Sc

is used to give a C backtrace through the subroutines called. As shown in Figure 2 only one
function (main) was called and the arguments argc and argv have octal values 02 and 0177762
respectively. Both of these values look reasonable; 02 - two arguments. 0177762 - address
on stack of parameter vector.
The next request:

SC

is used to give a C backtrace plus an interpretation of all the local variables in each function
and their values in octal. The value of the variable cc looks incorrect since cc was declared as a
character.

The next request:

Sr

prints out the registers including the program counter and an interpretation of the instruction at
that location.

The request:

Se

prints out the values of all external variables.

A map exists for each file handled by AOB. The map for the a.our file is referenced by ?
whereas the map for core file is referenced by /. Furthermore. a good rule of thumb is to use ?
for instructions and I for data when looking at programs. To print out information about the
maps type:

Sm

This produces a report of the contents of the maps. More about these maps later.

In our example. it is useful to see the contents of the string pointed to by charp. This is
done by:

•charp/s

which says use charp as a pointer in the core file and print the information as a character string.
This printout clearly shows that the character buffer was incorrectly overwriuen and helps iden
tify the error. Printing the locations around charp shows that the buffer is unchanged but that
the pointer is destroyed. Using ADS similarly, we ·could print information about the arguments
to a function. The request:

main.argc/d

prints the decimal core image value of the argument argc in the function main.

3-54 A Tutorial Introduction to ADB

The request:

•main.arsv ,3/ o

prints the octal values of the three consecutive cells pointed to by argv in the function main.
Note that these values are the addresses of the arguments to main. Therefore:

0177770/s

prints the ASCII value of the first argument. Another way to print this value would have been ... ,s
The " means ditto which remembers the last address typed. in this case main.argc ; the
instructs ADB to use the address field of the core file as a pointer.

The request:

.-o
prints the current address (not its contents) in octal which has been set to the address of the
first argument. The current address. dot. is used by ADB to "remember" its current location.
It allows the user to reference locations relative to the current address. for example:

.-10/d

3.2. Multiple Functions

Consider the C program illustrated in Figure 3. This program calls functions J. g. and h
until the stack is exhausted and a core image is produced.

Again you can enter the debugger via:

adb

which assumes the names a.out and core for the executable file and core image file respectively.
The request:

Sc
will fill a page of backtrace references to .f. g. and h. Figure 4 shows an abbreviated list (typing
DEL will terminate the output and bring you back to ADB request level).

The request:

,SSC

prints the five most recent activations.

Notice that each function V,g.h) has a counter of the number of times it was called.

The request:

fcnt/d

prints the decimal value of the counter for the function ./. Similarly gent and hcnt could be
printed. To print the value of an automatic variable. for example the decimal value of :c in the
last call of the function h. type:

h.x/d

It is currently not possible in the exported version to print stack frames other than the most
recent activation of a function. Therefore. a user can print everything with SC or the
occurrence of a variable in the most recent call of a function. It is possible with the SC request.
however, to print the stack frame starting at some address as addressSC. (

A Tutorial Introduction to ADB 3-55

3.J. Setting Bre:ikpoints

Consider the C program in Figure 5. This program. which changes tabs into blanks. is
adapted from S~ftware Tools by Kernighan and Plauger. pp. 18-27.

We will run this program under the control of ADS (see Figure 6a) by:

adb a.out -

Breakpoints are set in the program as:

The requests:

address:b lrequestl

settab + 4:b
fopen+4:b
getc:+4:b
tabpos+4:b

set breakpoints at the start of these functions. C does not generate statement labels. The ref ore
it is currently not possible to plant breakpoints at locations other than function entry points
without a knowledge of the code generated by the C compiler. The above addresses are
entered as symbol+4 so that they will appear in any C backtrace since the first instruction of
each function is a call to the C save routine (csv). Note. that some of the functions are from
the C library.

To print the location of breakpoints one types:.

Sb

The display indicates a count field. A breakp0int is bypassed count - I times before causing a
stop. The command field indicates the ADB requests to be executed each time the breakpoint is
encountered. In our example no command fields are p!'esent.

By displaying the original instructions at the function settab we see that the breakpoint is
set after the jsr to the C save routine. We can display the instructions using the ADS request:

settab,S?ia

This request displays five instructions starting at settab with the addresses of each location
displayed. Another variation is:

settab,S?i

which displays the instructions with only the starting address.

Notice that we accessed the addresses from the a.out file with the ? command. In general
when asking for a printout of multiple items. AOB will advance the current address the number
of bytes necessary to satisfy the request; in the above example five instructions were displayed
and the current address was advanced 18 (detimal) bytes.

To run the program one simply types:

:r

To delete a breakpoint. for instance the entry to the function settab. one types:

settab+4:d

To continue execution of the program from the breakpoint type:

:c

Once the program has stopped (in this case at the breakpoint for fope11). ADB requests can
be used to display the contents of memory. For example:

SC

3-56 A Tutorial Introduction to ADB

to display a stack trace. or:

tabs,3/8o

to print three lines of 8 locations each from the array called tabs. By this time (at location
fopen) in the C program, settab has been called and should have set a one in every eighth loca
tion of tabs.

3.4. Advanced Breakpoint Usage

We continue execution of the program with:

:c

See Figure 6b. Getc is called three times and the contents of the variable c in the function
main are displayed each time. The single character on the left hand edge is the output from the
C program. On the third occurrence of getc the program stops. We can look at the full buffer
of characters by typing:

ibuf+6/20c

When we continue the program with:

:c

we hit our first breakpoint at tabpos since there is a tab fallowing the "This• word of the data.

Several breakpoints of tabpos will occur until the program has changed the tab into
equivalent blanks. Since we feel that tabpos is working, we can remove the breakpoint at that
location by:

tabpos+4:d

If the program is continued with:

:c

it resumes normal execution after ADB prints the message

a.out:runnlnc

The UNIX quit and interrupt signals act on ADB itself rather than on the program being
debugged. If such a signal occurs then the program being debugged is stopped and control is
returned to ADB. The signal is saved by ADB and is passed on to the test program if:

:c

is typed. This can be useful when testing interrupt handling routines. The signal is not passed
on to the test program if:

:c 0

is typed.

Now let us reset the breakpoint at sertab and display the instructions located there when
we reach the breakpoint. This is accomplished by:

settab+4:b settab,S?la •

It is also possible to execute the ADB requests for each occurrence of the breakpoint but only

• Owin& 10 a bus in early versions or AOB (includin1 the version distributed in Generic 3 UNIX) these state·
ments must be wriuen u:

settalt+4:1t settalt~?la:O

1etc+4.J:b maln.c?C;O
settalt+ 4:1t settalt.S?la: ptali/o:O

Noce chat ;O will sec dot 10 zero and stop at the breakpoint.

stop after the third occurrence by typing:

getc+4,J:b main.c?C

A Tutorial Introduction to ADB 3-57

This request will print the local variable c in the function main al e:ich occurrence of the break
point. The semicolon is used to separate multiple ADB requests on a single line.

Warning: setting a breakpoint causes the value of dot to be changed: executing the pro
gram under ADB does not change dot. Therefore:

settab+4:b .,S?ia
fopen+4:b

will print the last thing dot was set to (in the example fopen +4) not the current location (set
rab +4) at which the program is executing.

A breakpoint can be overwritten without first deleting the old bre:ikpoint. For example:

settab+4:b settab.S?ia; ptab/o

could be entered after typing the above requests.

Now the display of breakpoints:

Sb

shows the above request for the settab breakpoint. When the breakpoint at settab is encoun
tered the ADB requests are executed. Note that the location at serrab+4 has been changed to
plant the breakpoint: all the other locations match their original value.

Using the functions. f. !land h shown in Figure J. we can follow the execution of each
function by planting non-stopping breakpoints. We call ADB with the executable program of
Figure J as follows:

adb exJ -

Suppose we enter the following breakpoints:

h + 4:b hcnt/d: h.hi/; h.hr/
1+4:b 1cnt/d; 1.11/; g.gr/
f+4:b fcnt/d; f,ft/; f.fr/
:r

Each request line indicates that the variables are printed in decimal (by the specification d).
Since the format is not changed, the d can be left off all but the first request.

The output in Figure 7 illustrates two points. First, the ADB requestS in the breakpoint
line are not examined until the program under test is run. That means any errors in those
ADB requests is not detected until run time. At the location of the error ADB stops running
the program.

The second point is the way AOB handles register variables. AOB uses the symbol table
to address variables. Register variables. like .!.fr above, have pointers to uninitialized places on
the stack. Therefore the message "symbol not found".

as:
Another way of getting at the data in this example is to print the variables used in the call

f+4:b
1+4:b
:c

fcnt/d: f.a/; f.b/; r.ft/
gcnt/d; 1.p/; g,q/; g.gi/

The operator I was used instead of ? to read values from the core file. The output for each
function. as shown in Figure 7, has the same format. For the function /. for e:ocample, it shows
the name and value of the e.-cternal variable fcnr. It also shows the address on the stack and
value of the variables a. b and .fi.

3-58 A T11torial Introduction to ADB

Notice that the addresses on the stack will continue to decrease until no address space is
left for program execution ~t which time (;tfter ·many pages of output) the program under test
aborts. A displiay with names would be produced b~ requests 1.ike the f oUowing: .

f+4:b fcnt/d; r.al"a-·d: f.bl"b-·d; r.ft/'fi•"d

In this format the quoted string is printed literally and the d produces a decimal display of the
varJables. The resul~ are shown ir1 figure 7.

3.!. Other Breakpoint Faclllties

• Arguments and chanJe of standard input and output are passed to a program as:

:r argl 1112 ••• < infth~ > outftle

This request kills any e:l(isting pro$ram under test and starts the a.out afresh.

• The program being debugged can be single stepped by:

:s
If necessary, this request will start up the program being debugged and stop .ifter executing
the first instruction.

• ADB allows a program to be entered at a specific address by typing:

address:r

• Toe count field can be used to skip the first n breakpoints as:

,n:r

The request:

,n:c

may also be used for skipping the first n breakpoints when continuing a program.

• A program can be continued at an address diff eren~ from the breakpoint by:

address:c

• The program being debugged runs as a separate process and can be killed by:

:k

4. Maps

UNIX supports several e"ecutable file formats. These are used to tell the loader how to
load the program file. File tYPe 407 is the most common and is generated by a C compiler
invocation such as cc pgm.c. A 41Q file is produced by a C ccnnpiler command of the form cc
-n pcm.c. whereas a 411 file is produced by cc -i pgm.c. AOB interprets these different file for·
mats and provides access ~g the differc:nt segments ~hrough a set of maps (see Figure 8). To
print the maps type:

Sm

In 407 file~, both text (instructions) and data are intermixed. This makes it impossible
for ADB to differentiate data from instructions and some of the printed symbolic addresses look
incorrect: for example. printing data addresses as offsets from routines.

In 410 files (shared text), the instructions are separated from data and ?• accesses the
data part of the a.out file. The ?• request tells ADB to use the second part of the map in the
a.out file. Accessing data in the core file shows the data after it was modified by the execution

A Tutorial Introduction to ADB 3-59

of the program. Notice also that the data segment may have grown during program execution.

In 411 files {separated I & 0 space). the instructions and data are also separated. How
ever, in this case. since data is mapped through a separate set of segmentation registers. the
base of the data segment is also relative to address zero. In this case since the addresses over
lap it is necessary to use the ?* operator to access the data space of the a.0111 file. In both 410
and 411 files the corresponding core file does not contain the program text.

Figure 9 shows the display of three maps for the same program linked as a 407, 410. 411
respectively. The b. e. and f fields are used by AOB to map addresses into file addresses. The
•rt• field is the length of the header at the beginning of the file (020 bytes for an a.out file and
02000 bytes for a core file). The "f2" field is the displacement from the beginning of the file to
the data. For a 407 file with mixed text and data this is the same as the length of the header;
for 410 and 411 files this is the length of the header plus the size of the text portion.

The •b" and •e• fields are the starting and ending locations for a segment. Given an
address. A, the location in the file (either a.out or core) is calculated as:

bl< A< el -c> file address • (A-bl)+ fl
b2<A<e2 -c> tile address • CA-b2) +fl

A user an access locations by using the ADB defined variables. The Sv request prin:s the vari
ables initialized by ADB:

b base address of data segment
d len1th of the data segment
s length of the sJack
t len1th of tbe text
m execution type (407,.n0,411)

In Figure 9 those variables not present are zero. Use can be made of these variables by
e:tpressions such as:

<b

in the address field. Similarly the value of the variable can be changed by an assignment
request such as:

02000>b

that sets b to octal 2000. These variables are useful to know if the tile under examination is an
executable or core image tile.

AOB reads the header of the core image file to find the values for these variables. [f the
second file specified does not seem to be a core file, or if it is missing then the header of the
executable file is used instead.

S. Advanced Usage

It is possible with AOB to combine formatting requests to provide elaborate displays.
Below are several examples.

S.1. Formatted dump

The line:

< b. -114o4. 8Cn

prints 4 octal words fallowed by their ASCII interpretation from the data space of the core
image file. Broken down. the various request pieces mean:

<b The base address of the data segment.

3-60 A Tutorial Introduction to ADB

< b. -1 Print from the ba~ address lo the end of file. A negative count is
used here and elsewhere to loop indefinitely or until some error con
dition (like end of file) is detected.

The format 4o4*8Cn is broken down as follows:

~ Print 4 octal locations.

4 • Backup the current address 4 locations (to the original start of the
field).

SC Print 8 consecutive characters using an escape convention; each
character in the range 0 to 037 is printed as @ followed by the
corresponding character in the range 0140 to 0177. An @ is printed
as@@.

n Print a newline.

The request:

< b, <di 4o4. 8Cn

could have been used instead to allow the printing to stop at the end of the data segment (<d
provides the data segment size in bytes).

The formatting requests can be combined with ADB•s ability to read in a script to produce
a core image dump script. ADB is invoked as:

adb a.out core < dump

to read in a script file, dump. of requests. An example of such a script is:

120$w
4095$s
$Y
•Jn
Sm
• Jn•c Stack Backtrace•
SC
•Jn•c External Variables"
Se
•Jn• Registers"
Sr
OSs
•Jn•Data Segment"
<b,-1/Sona

The request 120Sw sets the width of the output to 120 characters (normally, the width is
80 characters>. ADB attempts to print addresses as:

symbol + offset

The request 4095Ss increases the maximum permissible off set to the nearest symbolic address
from 255 (default> to 4095. The request • can be used to print literal strings. Thus. headings
are provided in this dump program with requests of the form:

•Jn"C Stack Backtrace•

that spaces three lines and prints the literal string. The request Sv prints all non-zero ADB
variables (see Figure 8). The request OSs sets the maximum off set for symbol matches to zero

------ ----------.----------

A Tutorial Introduction to ADB 3-61

thus suppressing the printing of symbolic labels in f:ivor of octal values. Note that this is only
done ior the printing of the data segment. The request:

<b.-1/Sona

prints a dump from the base of the data segment to the end oi file with an octal address ne!d
and eight octal numbers per line.

Figure 11 shows the results of some formatting requests on the C program of Figure 10.

5.2. Directory Dump
As another illustration (Figure 12) consider a set of requests to dump the contents of a

directory (which is made up of an integer i11umber followed by a 14 character name):

adb d·lr -
•n8rinum"8t"Name"
0, -1? u8t1-k:n

In this example. the u prints the itrumber as an unsigned decimal integer. the St means that
AOB will space to the next multiple of 8 on the output line. and the 14c prints the 14 character
file name.

S.J. Ilist Dump
Similarly the contents of the ·ilisr of a file system. (e.g. /dev/src. on UNIX systems distri

buted by the UNIX Support Group; see UNIX Programmer's Manual Section V) could be
dumped with the following set of requests:

adb /dev/src -
02000>b
?m <b
< b.-1 ·r11ags"8ton"llnks.uid,gid'"8tJbn• ,size•8tbrdn"addr"St8un"times" 8t2Y2na

In this example the value of the b-.&Se for the map was changed to 02000 (by saying ?m<b)
since that is the start of an i/isr within a file system. An artifice (brd above) was used to print
the 24 bit size field as a byte. a space. and a decimal integer. The last access time and last
modify time are printed with the 2.Y oper•tor. Figure 12 shows portions of these requests as
applied to " directory and file system.

5.4. Convertin1 values
ADB may be used to convert values from one representation to another. For example:

071 • odx

will print

071 58 #Ja

which is the octal, decimal and hexadecimal representations of 072 (octal). The format is
remembered so that typing subsequent numbers will print them in the given formats. Charac
ter values may be converted similarly. for example:

'a' • c:o

prints

a 0141

It may also be used to evaluate expressions but be warned that all binary operators have the
same precedence which is lower than that for unary operators.

3-62 A Tutorial Introduction to ADB

6. Patching

Patching files with ADB is accomplished with the write, w or W. request (which is not like
the ed editor write command). This is often used in· conjunction with the locate. l or L request.
In general. the request syntax for I and w are similar as follows:

?I value

The request I is used to match on two bytes. L is used for four bytes. The request w is used to
write two bytes. whereas W writes four bytes. The value field in either locate or write requests
is an expression. Therefore. decimal and octal numbers. or character strings are supported.

In order to modify a file, ADB must be called as:

adb -w ftlel file.?

When called with this option, file I and .file 2 are created if necessary and opened for both read·
ing and writing.

For example, consider the C program shown in Figure 10. We can change the word
"This• to "The • in the executable file for this program, e:c7. by using the following requests:

adb -w ex7 -
?I 'Tb'
?W 'The'

The request ?I starts at dot and stops at the first match of "Th• having set dot to the address of
the location found. Note the use of ? to write to the a.our file. The form ?*would have been
used for a 411 file.

More frequently the request will be typed as:

?I 'Tb'; ?s

and locates the first occurrence of "Th• and print the entire string. Execution of this ADB
request will set dot to the address of the "Th" characters.

As another example of the utility of the patching facility. consider a C program that has
an internal logic flag. The Oag could be set by the user through ADB and the program run.
For example:

adb a.out -
:s •I'll arg2
fta1/w 1
:c

The :s request is normally used to single step through a process or start a process in single step
mode. In this case it starts a.out as a subprocess with arguments argl and arg2. If there is a
subprocess running ADB writes to it rather than to the file so the w request causes .flag to be
changed in the memory of the subprocess.

7. Anomalies

Below is a list of some strange things that users should be aware of.

1. Function calls and arguments are put on the stack by the C save routine. Putting break
points at the entry point to routines means that the function appears not to have been
called when the breakpoint occurs.

2. When printing addresses. ADB uses either text or data symbols from the a.out file. This
sometimes causes unexpected symbol names to be printed with data (e.g. sa11r5+021).
This does not happen if ? is used for text (instructions) i.-nd I for data.

A Tutorial fntroduction to ADB 3-63

3. AOB cannot handle C register variables in the most recently activated function.

8. Acknowledaements
The ai,ithors are 1rareful for the thoughtful comments on how to organize this document

from R. 8. Brandi. E. N. Pinson and B. A. Ta1ue. D. M. Ritchie made the system changes
necessary to accommodate rra,cina within AOB. He also participated in discussions during the
writina of AOB. His earlier work with OB and COB led to many of the features found in ADB.

t. References

l. D. M. Ritchie ancl K. Thompson. .. The UNIX Time-Sharing System.•• CACM. July,
1974.

2. B. W. Kemiahan and D. M. Ritchie. T~ C Programming langoJage, Prentice-Hall. 1978.
3. K. Thompson and D. M. Ritchie. UNIX Programmer's Manual· 7th Edition. 1978.
4. 8. W. Kerni1haa and P. I. Ptau.er. Software Tools. Addison-Wesley, 1976.

3-64 A Tutorial Introduction to ADB

Figure 1: C program with pointer' bug

struct buf (
int tildes:
int nlefl:
char •nextp;
char buft1Sl2):
)bb;

srruct buf •obuf:

char •c:harp "this is a sentence.":

main(argc,argv)
int argc;
c:har ••argv:

char c:c:

if(arcc: < 2) {
printf("lnput file missing\n"):
exil(8);

if((fc:rear(argv[l) ,obuO> < O){
printf("%s: not found\n", argv(I));
exit(8);

charp • T;
printf("debuc I 'Mls\n",charp);

while(cc• •charp+ +)
putc(cc:,obuO;

fflush(obuO;

Figure ?: ADB output for C program or Figure 1

adb a.out core
Se
·main(02.0 l 77i62>
SC
·main<02.0l 77762J

arsc: 02
argv: 0177762
cc: 02124

Sr
ps 0170010
pc 02().4 ·main+-0152
SP 0177740
r5 0177752
r4 01
r3 0
r2 0
rl 0
rO 0124
·main+Ol52: mov _obuf.Csp)
Se
savr5: 0
_obuf: 0
_charp: 0124
_errno: 0
_rout: 0
Sm
text mup ·e:cl •
bl - 0
b2 - 0
data map '1:orc: 1 •

el - 02360
el • 02360

A Tutorial Introduction to ADB 3-65

n - 020
f'2 - 020

bl • 0 el • 03500 fl • 02000
b2 - 0115400 e2 • 0200000 f'l • 05500
*charp/~
0124: l l I l I l l I I I l l I l I I I Tlx

charp/~
_c:harp: T

_c:hurp+02: this is a sentence.

_charp+026: input lite mis.'ling
main.aqc/d
0177756: 2
•maia.arwv /Jo
0177762: 0177770 017777 6 0177777
017'7770/s
0177770: a.OUl
•maia.arav /Jo
0177762: 0177770 017777 6 0177777
-is
0177770: a.our
•••

0177770
.-10/d

0177756: 2
Sq

3-66 A Tutorial Introduction to ADB

Ficure 3: Multiple function C proeram for stack trace illustration

int rcnt.gcnc.hcnc:
h(x.y)
{

g(p.q)
{

rca.b)
{

main()
{

I

int hi: register inc hr.
hi - x+l:
hr• x-y+l:
hcnc++:
hj:
((hr.hi):

int gi: resister int gr:
gi - q-p:
gr ... q-p+l:
sent++:
Ii:
h(gr.10:

int ft: resister int rr:
fl • a+2•b:
rr - a+b:
rent++ :
lj:
&Ur.ft):

ro.n:

A Tutorial Introduction to ADB 3-67

Figure .&: A DB output for C program of Figure J

1db
Sc
"h(04-'52.04451)
·g(04453.0 l l 1241
"f(02.04451)
.h (04450.044•'7>
·g(044S 1.011120)
·r<o2.04447>
11(04446.04445)
·g(0.$447.011114)
"fl02.0444))
.h(04444.0444J)
HIT DEL KEY
adb
.!SC
.h(04452.044S 1 I

ic: 04452
r. 04451
hi: ?

"gC04453.0l 11241
p: 04453
q: 01! 124
9i; 04451
gr: ?

·rco2.044s 1 >
a: 02
b: 04451
ft: 011124
fr: 04453

·h(044S0.04447)
ic: 04450
v· .. 04447
hi: 04451
hr: 02

•gf04451.01l1201
p: 04451
q: 011120
gi: 04447
gr: 04450

rmt/d
_fcnt: 1173
1cnt/d
_gent: 1173
hcnt/d
hcnt: 1172

h.:c/d
022004: 23~
Sq

3-68 A Tutorial Introduction to ADB

Figure S: C program to decode tabs

#define MAXLINE 80
#define YES I
#define NO 0
#define T ABSP 8

char input() •daca•:
char ibuf(Sl8]:
int tabs(MAXLINEI;

main()
(

int col. •pcab;
char c;

ptab - cabs:
senab(pcab): rset initial tab stops •1
col - l;
if(fopen(input.ibuO < 0) (

I

printf("%s : not found\n•.inpul):
exit(8):

while((c - getc(ibuO> !• -1) (
switch(c) (

case '\t': /• TAB • /
while(tabpos(col) !- YES) (

I
break:

putchar(' '): r put BLANK•/
col++:

case '\n':rNEWLINE • /
putchar('\n'):
col - I:

default:
break:

putchar(c):
col++:

1• Tabpos return YES if col is a tab stop • t
tabpos(col)
int col:
(

if(col > MAXLINE)
return(YES):

else
retum(tabs(coll>:

1• Settab • Set initial tab stops • /
senab(tabp)
int •tabp:
(

inti:

ror(i - O: i<- MAXLINE: i++)
(i%TABSP) ? (tabs[i) • NO) : (tabs[iJ - YES):

Ficure 6a: ADB output ror C program of Figure 5

adb a.out -
settab+4:b
fopen+4:b
aetc:+4:b
tabpos + 4:b
Sb
breakpoints
count bkpt
1 •tabpos+04
l _getc+04
1 ropen+04
l =seuab+04
sectab.S?la
·seuab: jsr
·seuab+04: !St
·seuab+06: cir
·seuab+Ol2: c:mp
·senab+020: bit
·senab+022:
settab.5?1
·seuab: jsr

tst
cir
cmp
bit

:r
a.out: runnina

command

rS.csv
-(sp)
0177770(rS)
S0120.0l 77770(rS)
·seuab+076

rS.csv
-(sp)
0 t 77770(rS)
SOt20.0t77770(rS)
·seuab+076

breakpoint ·seuab+04: tst -(sp)
sertab+4:d
:c:
a.out: runnina

A Tutorial Introduction to ADB 3-69

breakpoint _fopen+04: mov 04(rS) .nulstr+O 12
SC
_fopen(02302.02472)
·main(Ol ,0177770)

col: 01
c: 0
ptab: 03500

tabs.J/80
03500: Ot 0 0 0 0 0 0 0

01 0 0 0 0 0 0 0
Ot 0 0 0 0 0 0 0

3-70 A Tutorial Introduction to ADB

Figure 6b: ADB output for C program of Figure 5

:c
a.out: running
breakpoint _sctc+04: mov 04(r5).rl
ibuf+6/20c
_cleanu+0202: This is a test of
:c
a.out: running
breakpoint •tabpos+04: cmp
tabpos+4:d
settab+4:b settab,S?ia
settab+4:b settab,S?la; 0
1etc+4,3:b maln.c?C; 0
settab+4:b settab,5?1a; ptab/o; 0
Sb
breakpoints
count bkpt
I •tabpos+04
3 _setc+04
I _fopen+04

command

main.c?C:O

S0120.04CrS>

I ·settab+04
·seuab:
·seuab+04:
·settab+06:
·settab+O 12:
·seuab+020:
·settab+022:
0177766:
0177744:

jsr
bpt
cir
cmp
bit

settab.S? ia;ptab? o~O
rS.csv

T0177744:
h0177744:
i0177744:
s0177744:

0177770
@'
T
h

s

Ol 77770(r5)
SO 120.0 l 77770(r5)
·settab+076

A Tutorial Introduction to ADB 3-71

Fiaure 7: ADB output for C prqram with breakpoints
1dbn3-
ll+ -':b llcn1/d: h.hi/: h.hr/
1+4:b 11cn1/d: 11.ai/: a.ar/
r+-':b lcnl/d: 1.8/: t.rr/
:r
1ll3: runnin11
_rcne: 0
0177732: 21-'
symbol noe round
l+-':b rcn1/d: f.al; f.b/: r.11
1+4:1t aau/d: 1.p/: a.qi: .. all
la+4:1t llcat/d; la.&/: 11.y/: la.hi/
:c
ell3: runniq
_rcnc: 0
01777"6: I
01ms0: 1
0177732: 214
_acne: O
0177726: 2
01mJ0: 3
01m12: 214

hcnc: O
0177706: 2
0177710: l
0177672: 214

rcnc: l
0177666: 2
0177670: 3
0177652: 214
_acne: I
0177646: s
0177650: I
0177632: 214
HIT DEL
t+4:tt fcatld: r.ara • ·11: r.vi. • ·•: r.ar11 • ·•
1+.a:it 1cn1/d: .. ,r, • ·•: 1.qrq • "d: 1.li/"li • ·•
la+4:1t hcat/d: h.s/'x • "4: h.7/'la • "d: h.hll'hl • "d
:r
exl: runnin1

rcnc: o
0177746: a • I
01ms0: 1s - 1
0177732: ft - 214
.JCftC: 0
0177726: p - 2
0177730: q - J
0177712: Ii - 214

Ilene: 0
0177706: x - 2
0177710: 1 - 1
0177672: hi - 214

rcnc: I
0177666: I • 2
0177610: b - 3
0177652: ft - 214
HIT DEL
Sil

3-72 A Tutorial Introduction to ADB

F11ure 8: ADB address maps

401 files

a.out hdr text+data

0 0

core hdr text+data stack

0 0 s

410 files (shared text)

a.out hdr text data

0 T B

core hdr data stack
..... J I

B 0 s E

411 files (separated 1 and D space)

a.out hdr text data

0 T 0

core hdr data stack
..... J I

0 0 s E

The following adb variables are set.

407 410 411

b base of data 0 B 0
d length of data 0 0-B 0
s length of stack s s s

length of text 0 T T

F11ure 9: ADB output for maps

adb map407 core407
Sm
text map
bl - 0
b2 - 0
data map
bl - 0

map401·
el
e2

core407.

b2 - 0175400
SY

el
e2

variables
d - 0300
m - 0407
s - 02400
$q

adb map410 core410
Sm
text map 'map410•
bl - 0 el
b2 - 0200QO el
data map 'core410'
bl - 020000 el
b2 - 0175400 e2
SY
variables
b - 020000
d - 0200
m - 0410
s - 02400
t - 0200
$q

adb map411 c:ore411
Sm
text map

bl - 0
b2 - 0
data map
bl - 0

'map41 l'
el
e2

'core411.

b2 - 0175400
SY

el
e2

variables
d - 0200
m - 0411
s - 02400
t - 0200
Sq

- 0256
- 0256

- 0300
- 0200000

A Tutorial Introduction to ADB 3-73

fl - 020
f2 - 020

fl - 02000
f2 - 02300

- 0200 n - 020
- 020116 f2 - 0220

- 020200 n - 02000
• 0200QOO f2 • 02200

- 0200
- 0116

- 0200
- 0200000

n - 020
f2 - 0220

n - 02000
f2 - 02200

3-74 A Tutorial Introduction to ADB

Ficure 10: Simple C procram for illustrating formattln.c and patching

char
in'
in'
Iona
float
char
main()
I

strl (] "This is a character suing";
Orie 1;
number 4S6;
lnum 1234:
rpt 1.2S;
str2(] "This is the second character strina•:

one - 2:

A Tutorial Introduction to ADB 3-75

Figure 11: ADB output illustr:iting fancy form:its
adb map410 c:ore4 t 0
<b.-1/Sona
020000: 0 064124 071551 064440 020163 020141

_strl +016: 061S41 062564 020162 072163 064562 063556

_number:
_number: 0710 0 02322040240 0 064124 071551 064440

_str2+06: 020163 064164 020145 062563 067543 062156

_str2+026: 060562 072143 071145 071440 071164 067151

savr5+02: 0 0 0 0 0 0 0 0

< b,Z0/4ooi.8Cn
020000: 0 064124 011551 064440 @ @ihis i

020163 020141 0641.i.3 071141 s a char
061541 062564 020162 072163 ac:ter st
064562 063556 0 02 ring@'@'@b@

_number: 0710 0 02322040240 H@a@'@"R@d @@
0 064124 011551 064440 @'@'This i
020163 064164 020145 062563 s these
067543 062156 061440 060550 cond cha
060562 072143 071145 071440 racter s
071164 067151 0147 0 tring@'@'@'
0 0 0 0 @'@"@'@'@'@'@'@•
0 0 0 0 @'@'@'@"@'@'@'@'

data address not round
< b.Z0/ 4o4. 8t8cna
020000: 0 064124 011551 064440
_strl +06: 020163 020141 064143 071141
_strl +016: 061541 062.564 020162 072163
_strl +026: 064562 063556. 0 02 ring

number:
:number: 0710 0 02322040240 HR
Jpt+02: 0 064124 071551 064440
_str2+06: 020163 064164 020145 062563
_str2+016: 061543 062156 061440 060550
_str2+026: 060562 072143 071145 071440
_str2+036: 071164 067151 0147 0 tring
savr5+02: 0 0 0 0
savrS+012: 0 0 0 0
data address not round
< b,10/2b8t•2cn
020000: 0 0

_strl: 0124 0150 Th
0151 0163 is
040 0151 i
0163 040 s
0141 040 a
0143 0150 ch
0141 0162 ar
0141 0143 ac
0164 0145 1e

SQ

This i

This i
s a char
acter st

s these
c:ond cha
racter s

064t.t3 071141

0 02

061440 0605SO

0147 0

3-76 A Tutorial Introduction to ADB

Figure 12: Directory and inode dumps

adb dir -
• nt" Inode"f Name"
0,-1 ?utl4cn

I node Name
0: 652 .

82
5971 cap.c
5323 cap
0 pp

adb /dev/src -
02000>b
?m<b
new map
bl - 02000
b2 - 0
Sv
variables
b - 02000

'/dev/src·
el
e2

- 0100000000 n - o
-o f2-0

< b,-1 ·r flags" 8ton" lin ks,uid,i:id" 8t3bn" size" 8tbrdn" addr' 8t8un" times" 8t2 Y2na
02000: flags 073145

links.uid,gid 0163 0164 0141
size 0162 10356
addr 28770 8236 25956 27766 25455 8236 25956 25206
timesl976 Feb S 08:34:56 1975 Dec 28 10:55:15

02040: flags 024555
links.uid,gid 012 0163 0164
size 0162 25461
addr 8308 30050 8294 25130 15216 26890 29806 10784
timesl976 Aug 17 12:16:511976 Aug 17 12:16:51

02100: flags 05173
links.uid.gid 011 0162 0145
size 0147 29545
addr 25972 8306 28265 8308 25642 15216 2314 25970
timesl977 Apr 2 08:58:01 1977 Feb 5 10:21:44

A Tutorial Introduction to ADB 3-77

ADB Summary

Command Summary
a). formatted printing

? format print from a.out file according to
format

I format print from core file according to
format

• format print the value of dor

?w expr write expression into a.our file
/w expr write expression into core file

?I expr locate expression in a.our file
b) breakpoint and program control

:b set breakpoint at dot
:c continue running program
:d delete breakpoint
:k kill the program being debugged
:r run a.out file under AOB control
:s single step
c) miscellaneous printing

Sb print current breakpoints
Sc C stack trace
Se external variables
sr floating registers
Sm print ADB segment maps
Sq exit from ADB
Sr general registers
Ss set offset for symbol match
SY print ADB variables
Sw set output line width
d) calling the shell

call shell to read rest of line
e) assignment to variables

> name assign dot to variable or register name

Format Summary
a the value: of dot
b one byte in octal
c one byte as a character
d one word in decimal
f two words in floating point
i PDP 11 instruction
o one word in octal
n print a newline
r print a blank space
s a null terminated character string
nt move to next ir space tab
a one word as unsigned integer
x hexadecimal
Y date
... backup dot
• • print string

Expression Summary
a) expression components

decimal Integer e.g. 256
octal inteaer e.g. 0277
hexadecimal e.g. #ff
symbols e.g. flag _main main.argc
variables e.g. < b
registers e.g. <pc < rO
(expression) expression grouping
b) dyadic operators

+ add
subtract

• multiply
'It integer division
&: bitwise and
I bitwise or
round up to the next multiple
c) monadic operators

not
• contents of location

integer negate

0: Introduction

Y ace - Yet Another Compiler Compiler 3-79

Y ace: Yet Another Compiler-Compiler

Stephen C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

Yacc provides a general tool for imposing structure on the input to a computer program.
The Y ace user prepares a specification of the input process; this includes rules describing the
input structure, code to be invoked when these rules are recognized, and a low-level routine to
do the basic input. Y ace then generates a function to control the input process. This func
tion, called a parser, calls the user-supplied low-level input routine (the lexical analyzer) to
pick up the basic items (called tokens) from the input stream. These tokens are organized
according to the input structure rules, called grammar rules ; when one of these rules has been
recognized, then user code supplied for this rule, an action, is invoked; actions have the abil
ity to return values and make use of the values of other actions.

Y ace is written in a portable dialect of C1 and the actions, and output subroutine, are in
Caswell. Moreover, many of the syntactic conventions of Yacc follow C.

The heart of the input specification is a collection of grammar rules. Each rule describes
an allowable structure and gives it a name. For example, one grammar rule might be

date : month_name day ',' year ;

Here, date, month_name, day, and year represent structures of interest in the input process;
presumably, month_name, day, and year are defined elsewhere. The comma"," is enclosed
in single quotes; this implies that the comma is to appear literally in the input. The colon and
semicolon merely serve as punctuation in the rule, and have no significance in controlling the
input. Thus, with proper definitions, the input

July 4, 1776

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This user
routine reads the input stream, recognizing the lower level structures, and communicates these
tokens to the parser. For historical reasons, a structure recognized by the lexical analyzer is
called a terminal symbol, while the structure recognized by the parser is called a nonterminal
symbol. To avoid confusion, terminal symbols will usually be referred to as tokens.

There is considerable leeway in deciding whether to recognize structures using the lexical
analyzer or grammar rules. For example, the rules

1 B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Englewood Cliffs,
New Jersey, 1978.

3-80 Yacc - Yet Another Compiler Compiler

month_name 'J' 'a' 'n'
month_name 'F' 'e' 'b'

month-name : 'D' 'e' 'c' ;

might be used in the above example. The lexical analyzer would only need to recognize indivi
dual letters, and month_name would be a nonterminal symbol. Such low-level rules tend to
waste time and space, and may complicate the specification beyond Yacc's ability to deal with
it. Usually, the lexical analyzer would recognize the month names, and return an indication
that a month_name was seen; in this case, month_name would be a token.

Literal characters such as "," must also be passed through the lexical analyzer, and are
also considered tokens.

Specification files are very flexible. It is realively easy to add to the above example the
rule

date : month '/' day '/' year ;

allowing

7 I 4 I 1776

as a synonym for

July4, 1776

In most cases, this new rule could be "slipped in" to a working system with minimal effort,
and little danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors are
detected as early as is theoretically possible with a left-to-right scan; thus, not only is the
chance of reading and computing with bad input data substantially reduced, but the bad data
can usually be quickly found. Error handling, provided as part of the input specifications,
permits the reentry of bad data, or the continuation of the input process after skipping over
the bad data.

In some cases, Yacc fails to produce a parser when given a set of specifications. For
example, the specifications may be self contradictory, or they may require a more powerful
recognition mechanism than that available to Yacc. The former cases represent design errors;
the latter cases can often be corrected by making the lexical analyzer more powerful, or by
rewriting some of the grammar rules. While Y ace cannot handle all possible specifications, its
power compares favorably with similar systems; moreover, the constructions which are difficult
for Y ace to handle are also frequently difficult for human beings to handle. Some users have
reported that the discipline of formulating valid Y ace specifications for their input revealed
errors of conception or design early in the program development.

The theory underlying Yacc has been described elsewhere.2•3•4 Yacc has been extensively
used in numerous practical applications, including lint ,5 the Portable C Compiler,6 and a sys
tem for typesetting mathematics. 7

2 A. V. Aho and S. C. Johnson, "LR Parsing," Comp. Surveys, vol. 6, no. 2, pp. 99-124, June 1974.
3 A. V. Aho, S. C. Johnson, and J. D. Ullman, "Deterministic Parsing of Ambiguous Grammars," Comm.

Assoc. Comp. Mach., vol. 18, no. 8, pp. 441-452, August 1975.
4 A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-Wesley, Reading, Mass., 1977.
5 S. C. Johnson, "Lint, a C Program Checker," Comp. Sci. Tech. Rep. No. 65, 1978. updated version TM

78-1273-3
6 S. C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on Principles of

Programming Languages, pp. 97-104, January 1978.
7 B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm. Assoc. Comp.

Yacc - Yet Another Compiler Compiler 3-81

The next several sections describe the basic process of preparing a Y ace specification;
Section 1 describes the preparation of grammar rules, Section 2 the preparation of the user
supplied actions associated with these rules, and Section 3 the preparation of lexical analyzers.
Section 4 describes the operation of the parser. Section 5 discusses various reasons why Yacc
may be unable to produce a parser from a specification, and what to do about it. Section 6
describes a simple mechanism for handling operator precedences in arithmetic expressions.
Section 7 discusses error detection and recovery. Section 8 discusses the operating environ
ment and special features of the parsers Yacc produces. Section 9 gives some suggestions
which should improve the style and efficiency of the specifications. Section 10 discusses some
advanced topics, and Section 11 gives acknowledgements. Appendix A has a brief example,
and Appendix B gives a summary of the Yacc input syntax. Appendix C gives an example
using some of the more advanced features of Yacc, and, finally, Appendix D describes mechan
isms and syntax no longer actively supported, but provided for historical continuity with older
versions of Yacc.

1: Basic Specifications

Names refer to either tokens or nonterminal symbols. Yacc requires token names to be
declared as such. In addition, for reasons discussed in Section 3, it is often desirable to
include the lexical analyzer as part of the specification file; it may be useful to include other
programs as well. Thus, every specification file consists of three sections: the declarations,
(grammar) rules, and programs. The sections are separated by double percent "3 3" marks.
(The percent "3" is generally used in Yacc specifications as an escape character.)

In other words, a full specification file looks like

declarations
33
rules
33
programs

The declaration section may be empty. Moreover, if the programs section is omitted, the
second 3 3 mark may be omitted also; thus, the smallest legal Yacc specification is

33
rules

Blanks, tabs, and newlines are ignored except that they may not appear in names or
multi-character reserved symbols. Comments may appear wherever a name is legal; they are
enclosed in /* ... * /, as in C and PL/I.

The rules section is made up of one or more grammar rules. A grammar rule has the
form:

A: BODY;

A represents a nonterminal name, and BODY represents a sequence of zero or more names
and literals. The colon and the semicolon are Y ace punctuation.

Names may be of arbitrary length, and may be made up of letters, dot ".", underscore
"-!', and non-initial digits. Upper and lower case letters are distinct. The names used in the
body of a grammar rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes "'". As in C, the backslash "'('
is an escape character within literals, and all the C escapes are recognized. Thus

Mach., vol. 18, pp. 151-157, Bell Laboratories, Murray Hill, New Jersey, March 1975.

3-82 Yacc - Yet Another Compiler Compiler

'\n' newline
'\r' return
'\" single quote "'"
'\\ backslash "\"
'\t' tab
'\b' backspace
'\f' form feed
\xxx'"xxx" in octal

For a number of technical reasons, the NUL character (\t)' or O) should never be used in gram
mar rules.

If there are several grammar rules with the same left hand side, the vertical bar "I " can
be used to avoid rewriting the left qand side. In addition, the semicolon at the end of a rule
can be dropped before a vertical bar. Thus the grammar rules

A BCD
A E F
A G ;

can be given to Yacc as

A BCD
E F
G

It is not necessary that all grammar rules with the same left side appear together in the gram
mar rules section, although it makes the input much more readable, and easier to change.

If a nonterminal symbol matches the empty string, thi~ can be indicated in the obvious
way:

empty: ;

Names representing tokens must be declared; this is most simply done by writing

% token namel name2 ...

in the declarations section. (See Sections 3 , 5, and 6 for much more discussion). Every name
not defined in the declarations section is assumed to represent a nonterminal symbol. Every
nonterminal symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particular importance.
The parser is designed to recognize the start symbol; thus, this symbol represents the largest,
most general structure described by the grammar rules. By default, the start symbol is taken
to be the left hand side of the fl.rst grammar rule in the rules section. It is possible, and in
fact desirable, to decl1ue the start symbol explicitly in the declarations section using the
% start keyword:

% start symbol

The end of the input to the parser is signaled by a special token, ca.lled the endmarker.
If the tokens up to, but not including, the endmarker form a structure which matches the
start symbol, the parser function returns to its caller after the endmarker is seen; it accepts
the input. If the endmark~r is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the endmarker when
appropriate; see section 3, below. Usually the endmarker represents some reasonably obvious
1/0 status, such as "end-of-file" or "end-of-record".

Yacc - Yet Another Compiler Compiler 3-83

2: Actions

With each grammar rule, the user may associate actions to be performed each time the
rule is recognized in the input process. These actions may return values, and may obtain the
values returned by previous actions. Moreover, the lexical analyzer can return values for
tokens, if desired.

An action is an arbitrary C statement, and as such can do input and output, call subpro
grams, and alter external vectors and variables. An action is specified by one or more state
ments, enclosed in curly braces"{" and"}". For example,

and

A '(' B ')'

xxx

{ hello(1, "abc"); }

yyy zzz
{ printf("a message\n");

flag= 25; }

are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the action state
ments are altered slightly. The symbol "dollar sign" "$" is used as a signal to Yacc in this
context.

To return a value, the action normally sets the pseudo-variable "$$" to some value. For
example, an action that does nothing but return the value 1 is

{ $$ = 1; }

To obtain the values returned by previous actions and the lexical analyzer, the action
may use the pseudo-variables $1, $2, . . ., which refer to the values returned by the com
ponents of the right side of a rule, reading from left to right. Thus, if the rule is

A BCD ;

for example, then $2 has the value returned by C, and $3 the value returned by D.

As a more concrete example, consider the rule

expr: '(' expr ')' ;

The value returned by this rule is usually the value of the expr in parentheses. This can be
indicated by

expr: '(' expr ')' { $$ = $2; }

By default, the value of a rule is the value of the first element in it ($1). Thus, grammar
rules of the form

A B
frequently need not have an explicit action.

In the examples above, all the actions came at the end of their rules. Sometimes, it is
desirable to get control before a rule is fully parsed. Yacc permits an action to be written in
the middle of a rule as well as at the end. This rule is assumed to return a value, accessible
through the usual mechanism by the actions to the right of it. In turn, it may access the
values returned by the symbols to its left. Thus, in the rule

3-84 Yacc - Yet Another Compiler Compiler

A B
{ $$ = 1; }

c
{ x = $2; y = $3; }

the effect is to set x to 1, and y to the value returned by C.

Actions that do not terminate a rule are actually handled by Yacc by manufacturing a
new nonterminal symbol name, and a new rule matching this name to the empty string. The
interior action is the action triggered off by recognizing this added rule. Y ace actually treats
the above example as if it had been written:

$ACT /* empty *I
{ $$ = 1; }

A B $ACT C
{ x = $2; y = $3; }

In many applications, output is not done directly by the actions; rather, a data structure,
such as a. parse tree, is constructed in memory, and transformations are applied to it before
output is generated. Parse trees are particularly easy to construct, given routines to build and
maintain the tree structure desired. For example, suppose there is a C function node, written
so that the call

node(L, nl, n2)

creates a node with label L, and descendants nl and n2, and returns the index of the newly
created node. Then parse tree can be built by supplying actions such as:

expr: expr '+' expr
{ $$ = node('+', $1, $3); }

in the specification.

The user may define other variables to be used by the actions. Declarations and
definitions can appear in the declarations section, enclosed in the mar ks " % {" and " % } ".
These declarations and definitions have global scope, so they are known to the action state
ments and the lexical analyzer. For example,

% { int variable = O; % }

could be placed in the declarations section, making variable accessible to all of the actions.
The Yacc parser uses only names beginning in "yy"; the user should avoid such names.

In these examples, all the values are integers: a discussion of values of other types will be
found in Section 10.

3: Lexical Analysis
The user must supply a lexical analyzer to read the input stream and communicate

tokens (with values, if desired) to the parser. The lexical analyzer is an integer-valued func
tion called yylex. The function returns an integer, the token number, representing the kind
of token read. If there is a value associated with that token, it should be assigned to the
external variable yylval.

The parser and the lexical analyzer must agree on these token numbers in order for com
munication between them to take place. The numbers may be chosen by Y ace, or chosen by
the user. In either case, the "# define" mechanism of C is used to allow the lexical analyzer
to return these numbers symbolically. For example, suppose that the token name DIGIT has

Yacc - Yet Another Compiler Compiler 3-85

been defined in the declarations section of the Y ace specification file. The relevant portion of
the lexical analyzer might look like:

yylex(H
extern int yylval;
int c;

c = getchar();

switch(c) {

case 'O':
case '1':

case '9':
yylval = c-'O';
return(DIGIT);

}

The intent is to return a token number of DIGIT, and a value equal to the numerical
value of the digit. Provided that the lexical analyzer code is placed in the programs section of
the specification file, the identifier DIGIT will be defined as the token number associated with
the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall is the
need to avoid using any token names in the grammar that are reserved or significant in C or
the parser; for example, the use of token names if or while will almost certainly cause severe
difficulties when the lexical analyzer is compiled. The token name error is reserved for error
handling, and should not be used naively (see Section 7).

As mentioned above, the token numbers may be chosen by Yacc or by the user. In the
default situation, the numbers are chosen by Yacc. The default token number for a literal
character is the numerical value of the character in the local character set. Other names are
assigned token numbers starting at 257.

To assign a token number to a token (including literals), the first appearance of the
token name or literal in the declarations section can be immediately followed by a nonnega
tive integer. This integer is taken to be the token number of the name or literal. Names and
literals not defined by this mechanism retain their default definition. It is important that all
token numbers be distinct.

For historical reasons, the endmarker must have token number 0 or negative. This
token number cannot be redefined by the user; thus, all lexical analyzers should be prepared
to return 0 or negative as a token number upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the Lex program developed by
Mike Lesk.8 These lexical analyzers are designed to work in close harmony with Yacc parsers.
The specifications for these lexical analyzers use regular expressions instead of grammar rules.
Lex can be easily used to produce quite complicated lexical analyzers, but there remain some
languages (such as FORTRAN) which do not fit any theoretical framework, and whose lexical
analyzers must be crafted by hand.

8 M. E. Lesk, "Lex - A Lexical Analyzer Generator," Comp. Sci. Tech. Rep. No. 39, Bell Laboratories,
Murray Hill, New Jersey, October 1975.

3-86 Yacc - Yet Another Compiler Compiler

4: How the Parser Works

Y ace turns the specification file into a C program, which parses the input according to
the specification given. The algorithm used to go from the specification to the parser is com
plex, and will not be discussed here (see the references for more information). The parser
itself, however, is relatively simple, and understanding how it works, while not strictly neces
sary, will nevertheless make treatment of error recovery and ambiguities much more
comprehensible.

The parser produced by Yacc consists of a finite state machine with a stack. The parser
is also capable of reading and remembering the next input token (called the lookahead token).
The current state is always the one on the top of the stack. The states of the finite state
machine are given small integer labels; initially, the machine is in state 0, the stack contains
only state 0, and no lookahead token has been read.

The machine has only four actions available to it, called shift, reduce, accept, and error.
A move of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a lookahead token to
decide what action should be done; if it needs one, and does not have one, it calls yylex
to obtain the next token.

2. Using the current state, and the lookahead token if needed, the parser decides on its
next action, and carries it out. This may result in states being pushed onto the stack, or
popped off of the stack, and in the lookahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift action is
taken, there is always a lookahead token. For example, in state 56 there may be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is pushed down on
the stack, and state 34 becomes the current state (on the top of the stack). The lookahead
token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions are
appropriate when the parser has seen the right hand side of a grammar rule, and is prepared
to announce that it has seen an instance of the rule, replacing the right hand side by the left
hand side. It may be necessary to consult the lookahead token to decide whether to reduce,
but usually it is not; in fact, the default action (represented by a".") is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar rules are also
given small integer numbers, leading to some confusion. The action

reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

Suppose the rule being reduced is

A x y z

The reduce action depends on the left hand symbol (A in this case), and the number of sym
bols on the right hand side (three in this case). To reduce, first pop off the top three states
from the stack (In general, the number of states popped equals the number of symbols on the
right side of the rule). In effect, these states were the ones put on the stack while recognizing
x , y, and z, and no longer serve any useful purpose. After popping these states, a state is
uncovered which was the state the parser was in before beginning to process the rule. Using
this uncovered state, and the symbol on the left side of the rule, perform what is in effect a
shift of A. A new state is obtained, pushed onto the stack, and parsing continues. There are
significant differences between the processing of the left hand symbol and an ordinary shift of

Yacc - Yet Another Compiler Compiler 3-87

a token, however, so this action is called a goto action. In particul&r, the lookahead token is
cleared by a shift, and is not affected by a goto. In any case, the uncovered st&te contains an
entry such as:

A goto 20

causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action "turns back the clock" in the parse, popping the states off
the stack to go back to the state where the right hand side of the rule was first seen. The
parser then behaves as if it had seen the left side at that time. If the right hand side of the
rule is empty, no states are popped off of the stack: the uncovered state is in fact the current
state.

The reduce action is also important in the treatment of user-supplied actions and val4es.
When a rule is reduced, the code supplied with the rule is executed before the stack is
adjusted. In addition to the stack holding the states, another stac~, ru:qp.ing in parallel with
it, holds the values returned from the lexical analyzer and the actions. When a shift takes
place, the external variable yylval is copied onto the value stack. After the return from the
user code, the reduction is carried out. When the goto action is done, the external variable
yyvpl is copied onto the value stack. The pseudo-variables $1, $2, etc., refer to the valµe
stack.

The other two parser actions are conceptually much simpler. The accept action indi
cates that the entire input has been seen and that it matches the specification. This actioq
appears only when the lookahead token is the endmarker, and indicates that the parser has
successfully done its job. The error action, on the other hand, represents a place where the
parser can no longer continue parsing according to the specification. The input tokens it has
seen, together with the lookahead token, cannot be followed by anything that would result in
a legal input. The parser reports an error, and attempts to recover the situation and resume
parsing: the error recovery (as opposed to the detection of error) will be covered in Section 7.

It is time for an example! Consider the specification

% token DING DONG DELL
%%
rhyme sound place

' sound DING DONG

place: DELL

When Yacc is invoked with the -v option, a file called y.ou,tput is produced, with a
human-readable description of the parser. The y.output file corresponding to the above
grammar (with some statistics stripped off the end) is:

3-88 Yacc - Yet Another Compiler Compiler

state 0
$accept : _rhyme $end

DING shift 3
. error

rhyme goto 1
sound goto 2

state 1
$accept : rhyme_$end

$end accept
. error

state 2
rhyme : sound _place

DELL shift 5
. error

place goto 4

state 3
sound : DING_DONG

DONG shift 6
. error

state 4
rhyme : sound place_

reduce 1

state 5
place : DELL_ (3)

reduce 3

(1)

state 6
sound DING DONG_ (2)

. reduce 2

Notice that, in addition to the actions for each state, there is a description of the parsing rules
being processed in each state. The _character is used to indicate what has been seen, and
what is yet to come, in each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

Initially, the current state is state 0. The parser needs to. refer to the input in order to
decide between the actions available in state 0, so the first token, DING, is read, becoming
the lookahead token. The action in state 0 on DING is is "shift 3", so state 3 is pushed onto
the stack, and the lookahead token is cleared. State 3 becomes the current state. The next

Yacc - Yet Another Compiler Compiler 3-89

token, DONG, is read, becoming the lookahead token. The action in state 3 on the token
DONG is "shift 6", so state 6 is pushed onto the stack, and the lookahead is cleared. The
stack now contains 0, 3, and 6. In state 6, without even consulting the lookahead, the parser
reduces by rule 2.

sound : DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are popped off of the
stack, uncovering state 0. Consulting the description of state 0, looking for a goto on sound,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is "shift 5'', so state 5 is
pushed onto the stack, which now has 0, 2, and 5 on it, and the lookahead token is cleared. In
state 5, the only action is to reduce by rule 3. This has one symbol on the right hand side, so
one state, 5, is popped off, and state 2 is uncovered. The goto in state 2 on place, the left side
of rule 3, is state 4. Now, the stack contains 0, 2, and 4. In state 4, the only action is to
reduce by rule 1. There are two symbols on the right, so the top two states are popped off,
uncovering state 0 again. In state 0, there is a goto on rhyme causing the parser to enter state
1. In state 1, the input is read; the endmarker is obtained, indicated by "$end" in the
y.output file. The action in state 1 when the endmarker is seen is to accept, successfully end
ing the parse.

The reader is urged to consider how the parser works when confronted with such
incorrect strings as DING DONG DONG, DING DONG, DING DONG DELL DELL, etc. A
few minutes spend with this and other simple examples will probably be repaid when prob
lems arise in more complicated contexts.

5: Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string that can be structured
in two or more different ways. For example, the grammar rule

expr: expr '-' expr

is a natural way of expressing the fact that one way of forming an arithmetic expression is to
put two other expressions together with a minus sign between them. Unfortunately, this
grammar rule does not completely specify the way that all complex inputs should be struc
tured. For example, if the input is

expr - expr - expr

the rule allows this input to be structured as either

(expr - expr) - expr

or as

expr - (expr - expr)

(The first is called left association, the second right association).

Yacc detects such ambiguities when it is attempting to build the parser. It is instructive
to consider the problem that confronts the parser when it is given an input such as

expr - expr - expr

When the parser has read the second expr, the input that it has seen:

expr - expr

matches the right side of the grammar rule above. The parser could reduce the input by
applying this rule; after applying the rule; the input is reduced to ex pr (the left side of the
rule). The parser would then read the final part of the input:

3-90 Yacc - Yet Another Compiler Compiler

- expr

and again reduce. The effect of this is to take the left associative interpretation.

Alternatively, when the parser has seen

expr - expr

it could defer the immediate application of the rule, and continue reading the input until it
had seen

expr - expr - expr

It could then apply the rule to the rightmost three symbols, reducing them to expr and leav
ing

expr - expr

Now the rule can be reduced once more; the effect is to take the right associative interpreta
tion. Thus, having read

expr - expr

the parser can do two legal things, a shift or a reduction, and has no way of deciding between
them. This is called a shift I reduce conflict. It may also happen that the parser has a choice
of two legal reductions; this is called a reduce I reduce conflict. Note that there are never any
"Shift/shift" conflicts.

When there are shift/reduce or reduce/reduce copflicts, Yacc still produces a parser. It
does this "by selecting one of the valid steps wherever it has a choice. A rule describing which
choice to malce in a given situ&tion is c&lled a disambiguating rule.

Yacc invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, th~ default is to reduce by the earlier grammar rule (in the
input sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in favor of shifts.
Rule 2 gives the user rather crude control over the behavior of the parser in this situation, but
reduce/reduce conflicts should be avoided whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the grammar rules,
while consistent, require a more complex parser than Yacc can construct. The use of actions
within rules can also cause conflicts, if the action must be done before the parser can be sure
which rule is being recognized. In these cases, the application of disambiguating rules is in&p
propriate, and leads to an incorrect parser. For this reason, Yacc always reports the number
of shift/reduce and reduce/reduce conflicts resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a correct
parser, it is also possible to rewrite the grammar rules so that the same inputs are read but
there are no conflicts. For this reason, most previous parser generators have considered
conflicts to be fatal errors. Our experience has suggested that this rewriting is somewhat
unnatural, and produces slower parsers; thus, Yacc will produce parsers even in the presence
of conflicts.

As an example of the power of disambiguating rules, consider a fragment from a pro
gramming language involving an "if-then-else" construction:

stat IF '(' cond ')' stat
IF '(' cond ')' stat ELSE stat

In these rules, IF and ELSE are tokens, conq is a nonterminal symbol describing conditional
(logical) expressions, and stat is a nonterminal symbol describing statements. The first rule

Yacc - Yet Another Compiler Compiler 3-91

will be called the simple-if rule, and the second the if-else rule.

These two rules form an ambiguous construction, since input of the form

IF (Cl) IF (C2) Sl ELSE S2

can be structured according to these rules in two ways:

or

IF (Cl) {
IF (C2) Sl
}

ELSE S2

IF (Cl) {
IF (C2) Sl
ELSE S2
}

The second interpretation is the one given in most programming languages having this con
struct. Each ELSE is associated with the last preceding "un-ELSE'd" IF. In this example,
consider the situation where the parser has seen

IF (Cl) IF (C2) Sl

and is looking at the ELSE. It can immediately reduce by the simple-if rule to get

IF (Cl) stat

and then read the remaining input,

ELSE S2

and reduce

IF (Cl) stat ELSE S2

by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, S2 read, and then the right hand portion
of

IF (Cl) IF (C2) Sl ELSE S2

can be reduced by the if-else rule to get

IF (Cl) stat

which can be reduced by the simple-if rule. This leads to the second of the above groupings
of the input, which is usually desired.

Once again the parser can do two valid things - there is a shift/reduce conflict. The
application of disambiguating rule 1 tells the parser to shift in this case, which leads to the
desired grouping.

This shift/reduce conflict arises only when there is a particular current input symbol,
ELSE, and particular inputs already seen, such as

IF (Cl) IF (C2) Sl

In general, there may be many conflicts, and each one will be associated with an input symbol
and a set of previously read inputs. The previously read inputs are characterized by the state
of the parser.

The conflict messages of Yacc are best understood by examining the verbose (-v) option
output file. For example, the output corresponding to the above conflict state might be:

3-92 Yacc - Yet Another Compiler Compiler

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat IF
stat IF

cond
cond

ELSE shift 45
reduce 18

stat_ (18)
stat_ELSE stat

The first line describes the conflict, giving the state and the input symbol. The ordinary state
description follows, giving the grammar rules active in the state, and the parser actions.
Recall that the underline marks the portion of the grammar rules which has been seen. Thus
in the example, in state 23 the parser has seen input corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time. The parser can do two possible
things. If the input symbol is ELSE, it is possible to shift into state 45. State 45 will have, as
part of its description, the line

stat : IF (cond) stat ELSE~tat

since the ELSE will have been shifted in this state. Back in state 23, the alternative action,
described by ".", is to be done if the input symbol is not mentioned explicitly in the above
actions; thus, in this case, if the input symbol is not ELSE, the parser reduces by grammar
rule 18:

stat : IF '(' cond ')' stat

Once again, notice that the numbers following "shift" commands refer to other states, while
the numbers following "reduce" commands refer to grammar rule numbers. In the y.output
file, the rule numbers are printed after those rules which can be reduced. In most one states,
there will be at most reduce action possible in the state, and this will be the default command.
The user who encounters unexpected shift/reduce conflicts will probably want to look at the
verbose output to decide whether the default actions are appropriate. In really tough cases,
the user might need to know more about the behavior and construction of the parser than can
be covered here. In this case, one of the theoretical references9, 10, 11 might be consulted; the
services of a local guru might also be appropriate.

6: Precedence

There is one common situation where the rules given above for resolving conflicts are not
sufficient; this is in the parsing of arithmetic expressions. Most of the commonly used con
structions for arithmetic expressions can be naturally described by the notion of precedence
levels for operators, together with information about left or right associativity. It turns out
that ambiguous grammars with appropriate disambiguating rules can be used to create parsers
that are faster and easier to write than parsers constructed from unambiguous grammars. The
basic notion is to write grammar rules of the form

expr : expr OP expr

and

9 A. V. Aho and S. C. Johnson, "LR Parsing," Comp. Surveys, vol. 6, no. 2, pp. 99-124, June 1974.
10 A. V. Aho, S. C. Johnson, and J. D. Ullman, "Deterministic Parsing of Ambiguous Grammars," Comm.

Assoc. Comp. Mach., vol. 18, no. 8, pp. 441-452, August 1975.
11 A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-Wesley, Reading, Mass., 1977.

Yacc - Yet Another Compiler Compiler 3-93

expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous grammar, with
many parsing conflicts. As disambiguating rules, the user specifies the precedence, or binding
strength, of all the operators, and the associativity of the binary operators. This information
is sufficient to allow Y ace to resolve the parsing conflicts in accordance with these rules, and
construct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations section.
This is done by a series of lines beginning with a Y ace keyword: % left, % right, or % nonassoc,
followed by a list of tokens. All of the tokens on the same line are assumed to have the same
precedence level and associativity; the lines are listed in order of increasing precedence or
binding strength. Thus,

%left '+' '-'
% left '*' '/'

describes the precedence and associativity of the four arithmetic operators. Plus and minus
are left associative, and have lower precedence than star and slash, which are also left associa
tive. The keyword % right is used to describe right associative operators, and the keyword
%nonassoc is used to describe operators, like the operator .LT. in Fortran, that may not asso
ciate with themselves; thus,

A .LT. B .LT. C

is illegal in Fortran, and such an operator would be described with the keyword % nonassoc in
Yacc. As an example of the behavior of these declarations, the description

%right '='
%left '+' '-'
% left '*' '/'

33

' ' expr: expr = expr
I expr '+' ex pr
I expr ex pr
I expr '*' expr
I ex pr '/' ex pr
I NAME

might be used to structure the input

a = b = c*d - e - f*g

as follows:

a = (b = (((c*d)-e) - (f*g)))

When this mechanism is used, unary operators must, in general, be given a precedence. Some
times a unary operator and a binary operator have the same symbolic representation, but
different precedences. An example is unary and binary '-'; unary minus may be given the
same strength as multiplication, or even higher, while binary minus has a lower strength than
multiplication. The keyword, % prec, changes the precedence level associated with a particu
lar grammar rule. % prec appears immediately after the body of the grammar rule, before the
action or closing semicolon, and is followed by a token name or literal. It causes the pre
cedence of the grammar rule to become that of the following token name or literal. For exam
ple, to make unary minus have the same precedence as multiplication the rules might resem
ble:

3-94 Yacc - Yet Another Compiler Compiler

%left '+' '-'
% left '*' '/'

33

expr:
I
I
I
I
I

expr '+' expr
expr '-' expr
expr '*' expr
expr '/' expr
'-' expr % prec '*'
NAME

A token declared by % left, % right, and % nonassoc need not be, but may be, declared
by % token as well.

The precedences and associativities are used by Y ace to resolve parsing conflicts; they
give rise to disambiguating rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for those tokens and literals that have
them.

2. A precedence and associativity is associated with each grammar rule; it is the precedence
and associativity of the last token or literal in the body of the rule. If the % prec con
struction is used, it overrides this default. Some grammar rules may have no precedence
and associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either the
input symbol or the grammar rule has no precedence and associativity, then the two
disambiguating rules given at the beginning of the section are used, and the conflicts are
reported.

4. If there is a shift/reduce conflict, and both the grammar rule and the input character
have precedence and associativity associated with them, then the conflict is resolved in
favor of the action (shift or reduce) associated with the higher precedence. If the pre
cedences are the same, then the associativity is used; left associative implies reduce, right
associative implies shift, and nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce and
reduce/reduce conflicts reported by Yacc. This means that mistakes in the specification of
precedences may disguise errors in the input grammar; it is a good idea to be sparing with
precedences, and use them in an essentially "cookbook" fashion, until some experience has
been gained. They.output file is very useful in deciding whether the parser is actually doing
what was intended.

7: Error Handling

Error handling is an extremely difficult area, and many of the problems are semantic
ones. When an error is found, for example, it may be necessary to reclaim parse tree storage,
delete or alter symbol table entries, and, typically, set switches to avoid generating any further
output.

It is seldom acceptable to stop all processing when an error is found; it is more useful to
continue scanning the input to find further syntax errors. This leads to the problem of getting
the parser "restarted" after an error. A general class of algorithms to do this involves discard
ing a number of tokens from the input string, and attempting to adjust the parser so that
input can continue.

To allow the user some control over this process, Y ace provides a simple, but reasonably
general, feature. The token name "error" is reserved for error handling. This name can be
used in grammar rules; in effect, it suggests places where errors are expected, and recovery

- ----------

Yacc - Yet Another Compiler Compiler 3-95

might take place. The parser pops its stack until it enters a state where the token "er:ror" is
legal. It then behaves as if the token "error" were the current lookahead token, and performs
the action encountered. The lookahead token is then reset to the token that caused the error.
If no special error rules have been specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an error,
remains in error state until three tokens have been successfully read and shifted. If an error
is detected when the parser is already in error state, no mes!;age is given, and the input token
is quietly deleted.

As an example, a rule of the form

stat : error

would, in effect, mean that on a syntax error the parser would attempt to skip over the state
ment in which the error was seen. More precisely, the parser will scan ahead, looking for
three tokens that might legally follow a statement, and start processing at the first of these; if
the beginnings of statements are not sufficiently distinctive, it may make a false start in the
middle of a statement, and end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt to rein
itialize tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control. Somewhat easier
are rules such as

stat : error ';'

Here, when there is an error, the parser attempts to skip over the statement, but will do so by
skipping to the next ';'. All tokens after the error and before the next ';' cannot be shifted,
and are discarded. When the ';' is seen, this rule will be reduced, and any "cleanup" action
associated with it performed.

Another form of error rule arises in interactive applications, where it may be desirable to
permit a line to be reentered after an error. A possible error rule might be

input: error '\n' { printf("Reenter last line: "); } input
{ $$ = $4; }

There is one potential difficulty with this approach; the parser must correctly process three
input tokens before it admits that it has correctly resynchronized after the error. If the reen
tered line contains an error in the first two tokens, the parser deletes the offending tokens,
and gives no message; this is clearly unacceptable. For this reason, there is a mechanism that
can be used to force the parset to believe that an error has been fully recovered from. The
statement

yyerrok;

in an action resets the parser to its normal mode. The last example is better written

input: error '\n'
{ yyerrok;

printf("Reenter last line: "); }
input

{ $$ = $4; }

As mentioned above, the token seen immediately after the "error" symbol is the input
token at which the error was discovered. Sometimes, this is inappropriate; for example, an
error recovery action might take upon itself the job· of finding the correct place to resume
input. In this case, the previous lookahead token must be cleared. The statement

3-96 Yacc - Yet Another Compiler Compiler

yyclearin;

in an action will have this effect. For example, suppose the action after error were to call
some sophisticated resynchronization routine, supplied by the user, that attempted to advance
the input to the beginning of the next valid statement. After this routine was called, the next
token returned by yylex would presumably be the first token in a legal statement; the old, ille
gal token must be discarded, and the error state reset. This could be done by a rule like

stat : error
{ resynch();

yyerrok;
yyclearin ; }

These mechanisms are admittedly crude, but do allow for a simple, fairly effective
recovery of the parser from many errors; moreover, the user can get control to deal with the
error actions required by other portions of the program.

8: The Y ace Environment

When the user inputs a specification to Y ace, the output is a file of C programs, called
y.tab.c on most systems (due to local file system conventions, the names may differ from
installation to installation). The function produced by Yacc is called yyparse ; it is an integer
valued function. When it is called, it in turn repeatedly calls yylex, the lexical analyzer sup
plied by the user (see Section 3) to obtain input tokens. Eventually, either an error is
detected, in which case (if no error recovery is possible) yyparse returns the value 1, or the
lexical analyzer returns the endmarker token and the parser accepts. In this case, yyparse
returns the value 0.

The user must provide a certain amount of environment for this parser in order to
obtain a working program. For example, as with every C program, a program called main
must be defined, that eventually calls yyparse. In addition, a routine called yyerror prints a
message when a syntax error is detected.

These two routines must be supplied in one form or another by the user. To ease the
initial effort of using Yacc, a library has been provided with default versions of main and
yyerror. The name of this library is system dependent; on many systems the library is
accessed by a -ly argument to the loader. To show the triviality of these default programs,
the source is given below:

main(){
return(yyparse());
}

and

include <stdio.h>

yyerror(s) char *s; {
fprintf(stderr, "%s\n", s);
}

The argument to yyerror is a string containing an error message, usually the string "syntax
error". The average application will want to do better than this. Ordinarily, the program
should keep track of the input line number, and print it along with the message when a syntax
error is detected. The external integer variable yychar contains the lookahead token number
at the time the error was detected; this may be of some interest in giving better diagnostics.
Since the main program is probably supplied by the user (to read arguments, etc.) the Yacc
library is useful only in small projects, or in the earliest stages of larger ones.

Yacc - Yet Another Compiler Compiler 3-97

The external integer variable yydebug is normally set to 0. If it is set to a nonzero
value, the parser will output a verbose description of its actions, including a discussion of
which input symbols have been read, and what the parser actions are. Depending on the
operating environment, it may be possible to set this variable by using a debugging system.

9: Hints for Preparing Specifications

This section contains miscellaneous hints on preparing efficient, easy to change, and
clear specifications. The individual subsections are more or less independent.

Input Style

It is difficult to provide rules with substantial actions and still have a readable
specification file. The following style hints owe much to Brian Kernighan.

a. Use all capital letters for token names, all lower case letters for nonterminal names.
This rule comes under the heading of "knowing who to blame when things go wrong."

b. Put grammar rules and actions on separate lines. This allows either to be changed
without an automatic need to change the other.

c. Put all rules with the same left hand side together. Put the left hand side in only once,
and let all following rules begin with a vertical bar.

d. Put a semicolon only after the last rule with a given left hand side, and put the semi
colon on a separate line. This allows new rules to be easily added.

e. Indent rule bodies by two tab stops, and action bodies by three tab stops.

The example in Appendix A is written following this style, as are the examples in the
text of this paper (where space permits). The user must make up his own mind about these
stylistic questions; the central problem, however, is to make the rules visible through the
morass of action code.

Left Recursion

The algorithm used by the Yacc parser encourages so called "left recursive" grammar
rules: rules of the form

name: name rest of rule ;

These rules frequently arise when writing specifications of sequences and lists:

list item
list ',' item

and

seq item
seq item

In each of these cases, the first rule will be reduced for the first item only, and the second rule
will be reduced for the second and all succeeding items.

With right recursive rules, such as

seq item
item seq

the parser would be a bit bigger, and the items would be seen, and reduced, from right to left.
More seriously, an internal stack in the parser would be in danger of overflowing if a very long
sequence were read. Thus, the user should use left recursion wherever reasonable.

3-98 Yacc - Yet Another Compiler Compiler

It is worth considering whether a sequence with zero elements has any meaning, and if
so, consider writing the sequence specification with an empty rule:

seq /* empty *I
seq item

Once again, the first rule would always be reduced exactly once, before the first item was read,
and then the second rule would be reduced once for each item read. Permitting empty
sequences often leads to increased generality. However, conflicts might arise if Yacc is asked
to decide which empty sequence it has seen, when it hasn't seen enough to know!

Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical analyzer might want
to delete blanks normally, but not within quoted strings. Or names might be entered into a
symbol table in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by the lexi
cal analyzer, and set by actions. For example, suppose a program consists of 0 or more
declarations, followed by 0 or more statements. Consider:

3{
int dflag;

3}
other declarations ...

33

prog: decls stats

decls: /*empty*/
{ dflag = 1; }

decls declaration

stats : /*empty*/
{ dflag = O; }

stats statement

. .. other rules ...

The flag dfiag is now 0 when reading statements, and 1 when reading declarations, except for
the first token in the first statement. This token must be seen by the parser before it can tell
that the declaration section has ended and the statements have begun. In many cases, this
single token exception does not affect the lexical scan.

This kind of "backdoor" approach can be elaborated to a noxious degree. Nevertheless,
it represents a way of doing some things that are difficult, if not impossible, to do otherwise.

Reserved Words

Some programming languages permit the user to use words like "if'', which are normally
reserved, as label or variable names, provided that such use does not conflict with the legal use
of these names in the programming language. This is extremely hard to do in the framework
of Y ace; it is difficult to pass information to the lexical analyzer telling it "this instance of 'if'
is a keyword, and that instance is a variable". The user can make a stab at it, using the
mechanism described in the last subsection, but it is difficult.

- - - -- -- -- - . ---------- --- ~---~~------- --··------·· -

Yacc - Yet Another Compiler Compiler 3-99

A number of ways of making this easier are under advisement. Until then, it is better
that the keywords be reserved ; that is, be forbidden for use as variable names. There are
powerful stylistic reasons for preferring this, anyway.

10: Advanced Topics

This section discusses a number of advanced features of Yacc.

Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of macros
YY ACCEPT and YYERROR. YYACCEPT causes yyparse to return the value O; YYERROR
causes the parser to behave as if the current input symbol had been a syntax error; yyerror is
called, and error recovery takes place. These mechanisms can be used to simulate parsers
with multiple endmarkers or context-sensitive syntax checking.

Accessing Values in Enclosing Rules.

An action may refer to values returned by actions to the left of the current rule. The
mechanism is simply the same as with ordinary actions, a dollar sign followed by a digit, but
in this case the digit may be 0 or negative. Consider

sent adj noun verb adj noun

adj

noun:

{ look at the sentence . . . }

THE {
YOUNG {

$$=THE; }
$$=YOUNG; }

DOG
{

CRONE
{

$$=DOG; }

if($0 ==YOUNG){
printf("what?\n");
}

$$=CRONE;
}

In the action following the word CRONE, a check is made that the preceding token shifted
was not YOUNG. Obviously, this is only possible when a great deal is known about what
might precede the symbol noun in the input. There is also a distinctly unstructured flavor
about this. Nevertheless, at times this mechanism will save a great deal of trouble, especially
when a few combinations are to be excluded from an otherwise regular structure.

Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are integers. Y ace
can also support values of other types, including structures. In addition, Y ace keeps track of
the types, and inserts appropriate union member names so that the resulting parser will be
strictly type checked. The Y ace value stack (see Section 4) is declared to be a union of the
various types of values desired. The user declares the union, and associates union member
names to each token and nonterminal symbol having a value. When the value is referenced
through a $$ or $n construction, Y ace will automatically insert the appropriate union name, so
that no unwanted conversions will take place. In addition, type checking commands such as
Lint 12 will be far more silent.

12 S. C. Johnson, "Lint, a C Program Checker," Comp. Sci. Tech. Rep. No. 65, 1978. updated version
TM 78-1273-3

3-100 Yacc - Yet Another Compiler Compiler

There are three mechanisms used to provide for this typing. First, there is a way of
defining the union; this must be done by the user since other programs, notably the lexical
analyzer, must know about the union member names. Second, there is a way of associating a
union member name with tokens and nonterminals. Finally, there is a mechanism for describ
ing the type of those few values where Y ace can not easily determine the type.

To declare the union, the user includes in the declaration section:

%union {
body of union ...
}

This declares the Y ace value stack, and the external variables yylval and yyval, to have type
equal to this union. If Y ace was invoked with the -d option, the union declaration is copied
onto the y.tab.h file. Alternatively, the union may be declared in a header file, and a typedef
used to define the variable YYSTYPE to represent this union. Thus, the header file might
also have said:

typedef union {
body of union ...
} YYSTYPE;

The header file must be included in the declarations section, by use of% {and % }.

Once YYSTYPE is defined, the union member names must be associated with the vari
ous terminal and nonterminal names. The construction

<name>

is used to indicate a union member name. If this follows one of the keywords % token, % left,
% right, and % nonassoc, the union member name is associated with the tokens listed. Thus,
saying

% left <optype> '+' '-'
will cause any reference to values returned by these two tokens to be tagged with the union
member name optype. Another keyword, % type, is used similarly to associate union member
names with nonterminals. Thus, one might say

% type <nodetype> expr stat

There remain a couple of cases where these mechanisms are insufficient. If there is an
action within a rule, the value returned by this action has no a priori type. Similarly, refer
ence to left context values (such as $0 - see the previous subsection) leaves Yacc with no
easy way of knowing the type. In this case, a type can be imposed on the reference by insert
ing a union member name, between < and >, immediately after the first $. An example of
this usage is

rule aaa { $<intval>$ = 3; } bbb
{ fun($<intval>2, $<other>O); }

This syntax has little to recommend it, but the situation arises rarely.

A sample specification is given in Appendix C. The facilities in this subsection are not
triggered until they are used: in particular, the use of % type will turn on these mechanisms.
When they are used, there is a fairly strict level of checking. For example, use of $n or $$ to
refer to something with no defined type is diagnosed. If these facilities are not triggered, the
Yacc value stack is used to hold int's, as was true historically.

Yacc - Yet Another Compiler Compiler 3-101

11: Acknowledgements

Y ace owes much to a most stimulating collection of users, who have goaded me beyond
my inclination, and frequently beyond my ability, in their endless search for "one more
feature". Their irritating unwillingness to learn how to do things my way has usually led to
my doing things their way; most of the time, they have been right. B. W. Kernighan, P. J.
Plauger, S. I. Feldman, C. Imagna, M. E. Lesk, and A. Snyder will recognize some of their
ideas in the current version of Yacc. C. B. Haley contributed to the error recovery algorithm.
D. M. Ritchie, B. W. Kernighan, and M. 0. Harris helped translate this document into
English. Al Aho also deserves special credit for bringing the mountain to Mohammed, and
other favors.

3-102 Yacc - Yet Another Compiler Compiler

Appendix A: A Simple Example

This example gives the complete Y ace specification for a small desk calculator; the desk
calculator has 26 registers, labeled "a" through "z'', and accepts arithmetic expressions made
up of the operators +, -, *, /, % (mod operator), & (bitwise and), I (bitwise or), and assign
ment. If an expression at the top level is an assignment, the value is not printed; otherwise it
is. As in C, an integer that begins with 0 (zero) is assumed to be octal; otherwise, it is
assumed to be decimal.

As an example of a Y ace specification, the desk calculator does a reasonable job of show
ing how precedences and ambiguities are used, and demonstrating simple error recovery. The
major oversimplifications are that the lexical analysis phase is much simpler than for most
applications, and the output is produced immediately, line by line. Note the way that decimal
and octal integers are read in by the grammar rules; This job is probably better done by the
lexical analyzer.

%{
include <stdio.h>
include <ctype.h>

int regs[26];
int base;

%}

%start list

%token DIGIT LETTER

%left , I '
%left '&'
%left '+'

, ,

%left '*' '/' '%'
%left UMINUS /* supplies precedence for unary minus *I

% % /* beginning of rules section *I

list /* empty *I
list stat '\n'
list error '\n'

{

stat ex pr
{

LETTER
, ,

{

ex pr '(' expr ')'
{

ex pr '+' ex pr
{ , ,

ex pr ex pr
{

yyerrok; }

printf("%d\n", $1);
ex pr
regs[$1] = $3; }

$$ = $2; }

$$ = $1 + $3; }

$$ = $1 $3; }

}

number:

Yacc - Yet Another Compiler Compiler 3-103

expr '*' expr
{ $$ = $1 * $3; }

expr '/' expr
{ $$ = $1 I $3; }

expr '%' expr
{ $$ = $1 % $3; }

expr '&' expr
{

expr ' I' expr
{

'-' expr
{

LETTER
{

number

DIGIT

$$ = $1 & $3; }

$$ = $1 I $3; }
% prec UMINUS

$$ = - $2; }

$$ = regs[$1]; }

{ $$ = $1; base = ($1==0) ? 8 10; }
number DIGIT

{ $$ = base * $1 + $2; }

% % /* start of programs *I

yylex() { /* lexical analysis routine *I
/* returns LETTER for a lower case letter, yylval = 0 through 25 *I
/* return DIGIT for a digit, yylval = 0 through 9 *I
/* all other characters are returned immediately *I

int c;

while((c=getchar()) == '') {/* skip blanks */ }

/* c is now non blank *I

if(islower(c)) {
yylval = c - a ;
return (LETTER);
}

if(isdigit(c)) {
yylval = c - 'O';
return(DIGIT);
}

return(c);
}

3-104 Yacc - Yet Another Compiler Compiler

Appendix B: Y ace Input Syntax

This Appendix has a description of the Yacc input syntax, as a Yacc specification. Con
text dependencies, etc., are not considered. Ironically, the Yacc input specification language is
most naturally specified as an LR(2) grammar; the sticky part comes when an identifier is
seen in a rule, immediately following an action. If this identifier is followed by a colon, it is
the start of the next rule; otherwise it is a continuation of the current rule, which just happens
to have an action embedded in it. As implemented, the lexical analyzer looks ahead after see
ing an identifier, and decide whether the next token (skipping blanks, newlines, comments,
etc.) is a colon. If so, it returns the token G....IDENTIFIER. Otherwise, it returns IDENTIF
IER. Literals (quoted strings) are also returned as IDENTIFIERS, but never as part of
G_IDENTIFIERs.

%token
%token
%token

/* grammar for the input to Y ace *I

/* basic entities
IDENTIFIER
Q_IDENTIFIER
NUMBER

*/
/* includes identifiers and literals *I
/* identifier (but not literal) followed

/* [0-9]+ */
by colon

/* reserved words: %type => TYPE, %left => LEFT, etc. */

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

% token MARK /* the % % mark *I
%token LCURL /* the % { mark */
%token RCtlRL /* the % } mark */

/* ascii character literals stand for themselves *I

%start spec

%%

spec

tail

defs

def

rword

defs MARK rules tail

MARK { In this action, eat up the rest of the file }
/* empty: the second MARK is optional *I

/* empty */
defs def

START IDENTIFIER
UNION { Copy union definition to output }
LCURL { Copy C code to output file } RCURL
ndefs rword tag nlist

TOKEN
LEFT
RIGHT

*/

tag

nlist

nmno

rules

rule

rbody

act

prec

Yacc - Yet Another Compiler Compiler 3-105

NON ASSOC
TYPE

/* empty: union tag is optional *I
'<' IDENTIFIER '>'

nmno
nlist nmno
nlist ',' nmno

IDENTIFIER
IDENTIFIER NUMBER

/* rules section *I

/* NOTE: literal illegal with 3 type *I
/* NOTE: illegal with 3 type *I

C_IDENTIFIER rbody prec
rules rule

C_IDENTIFIER rbody prec
'I' rbody prec

/* empty */
rbody IDENTIFIER
rbody act

'{' { Copy action, translate $$, etc. } '}'

/* empty */
PREC IDENTIFIER
PREC IDENTIFIER act
prec ';'

3-106 Yacc - Yet Another Compiler Compiler

Appendix C: An Advanced Example

This Appendix gives an example of a grammar using some of the advanced features dis
cussed in Section 10. The desk calculator example in Appendix A is modified to provide a
desk calculator that does floating point interval arithmetic. The calculator understands float
ing point constants, the arithmetic operations +, -, *, /, unary -, and = (assignment), and
has 26 floating point variables, "a" through "z". Moreover, it also understands intervals, writ
ten

(x,y)

where x is less than or equal to y. There are 26 interval valued variables "A" through "Z"
that may also be used. The usage is similar to that in Appendix A; assignments return no
value, and print nothing, while expressions print the (floating or interval) value.

This example explores a number of interesting features of Y ace and C. Intervals are
represented by a structure, consisting of the left and right endpoint values, stored as double 's.
This structure is given a type name, INTERVAL, by using typedef. The Yacc value stack can
also contain floating point scalars, and integers (used to index into the arrays holding the vari
able values). Notice that this entire strategy depends strongly on being able to assign struc
tures and unions in C. In fact, many of the actions call functions that return structures as
well.

It is also worth noting the use of YYERROR to handle error conditions: division by an
interval containing 0, and an interval presented in the wrong order. In effect, the error
recovery mechanism of Y ace is used to throw away the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also demonstrates an
interesting use of syntax to keep track of the type (e.g. scalar or interval) of intermediate
expressions. Note that a scalar can be automatically promoted to an interval if the context
demands an interval value. This causes a large number of conflicts when the grammar is run
through Y ace: 18 Shift/Reduce and 26 Reduce/Reduce. The problem can be seen by looking
at the two input lines:

2.5 + (3.5 - 4.)

and

2.5 + (3.5 , 4.)

Notice that the 2.5 is to be used in an interval valued expression in the second example, but
this fact is not known until the"," is read; by this time, 2.5 is finished, and the parser cannot
go back and change its mind. More generally, it might be necessary to look ahead an arbi
trary number of tokens to decide whether to convert a scalar to an interval. This problem is
evaded by having two rules for each binary interval valued operator: one when the left
operand is a scalar, and one when the left operand is an interval. In the second case, the right
operand must be an interval, so the conversion will be applied automatically. Despite this
evasion, there are still many cases where the conversion may be applied or not, leading to the
above conflicts. They are resolved by listing the rules that yield scalars first in the
specification file; in this way, the conflicts will be resolved in the direction of keeping scalar
valued expressions scalar valued until they are forced to become intervals.

This way of handling multiple types is very instructive, but not very general. If there
were many kinds of expression types, instead of just two, the number of rules needed would
increase dramatically, and the conflicts even more dramatically. Thus, while this example is
instructive, it is better practice in a more normal programming language environment to keep
the type information as part of the value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treatment of
floating point constants. The C library routine atof is used to do the actual conversion from a
character string to a double precision value. If the lexical analyzer detects an error, it
responds by returning a token that is illegal in the grammar, provoking a syntax error in the
parser, and thence error recovery.

%{

include <stdio.h>
include <ctype.h>

typedef struct interval {
double lo, hi;
} INTERVAL;

INTERVAL vmul(), vdiv();

double atof();

double dreg[26];
INTERVAL vreg[26];

%}

% start lines

%union {
int ival;
double dval;
INTERVAL vval;
}

Yacc - Yet Another Compiler Compiler 3-107

% token <ival> DREG VREG /* indices into dreg, vreg arrays *I

% token <dval> CONST /* floating point constant *I

% type <dval> dexp /* expression *I

% type <vval> vexp /* interval expression *I

/* precedence information about the operators *I

%left
%left
%left

%%

lines :

line

I

'+' ,_,
'*' , /'

UMINUS

/* empty */
lines line

dexp '\n'

/* precedence for unary minus *I

{ printf("% 15.Sf\n", $1); }
vexp '\n'

{ printf("(% 15.Sf , % 15.8f)\n", $1.lo, $1.hi); }
DREG '=' dexp '\n'

{ dreg[$1] = $3; }
VREG '=' vexp '\n'

3-108 Yacc - Yet Another Compiler Compiler

{ vreg[$1] = $3; }
error ~\n'

{ yyerrok; }

dexp: CONST

I DREG
{ $$ = dreg[$1]; }

dexp '+' dexp
{ $$ = $1 + $3; }

dexp '-' dexp
{ $$ = $1 - $3; }

dexp '*' dexp
{ $$ = $1 * $3; }

dexp '/' dexp
{ $$ = $1 I $3; }

'-' dexp % prec UMINUS
{ $$ - $2; }

'(' dexp ')'
{ $$ = $2; }

vexp: dexp
{ $$.hi = $$.lo = $1; }

'(' dexp ',' dexp ')'
{
$$.lo = $2;
$$.hi = $4;
if($$.lo > $$.hi) {

}
VREG

printf("interval out of order\n");
YYERROR;
}

{ $$ = vreg[$1]; }
vexp '+' vexp

{ $$.hi = $1.hi + $3.hi;
$$.lo = $1.lo + $3.lo; }

dexp '+' vexp
{ $$.hi = $1 + $3.hi;

$$.lo = $1 + $3.lo; }
vexp '-' vexp

{ $$.hi = $1.hi - $3.lo;
$$.lo = $1.lo - $3.hi; }

dexp '-' vexp
{ $$.hi = $1 - $3.lo;

$$.lo = $1 - $3.hi; }
vexp '*' vexp

{ $$ = vmul($1.lo, $1.hi, $3); }
dexp '*' vexp

{ $$ = vmul($1, $1, $3); }
vexp '/' vexp

{ if(dcheck($3)) YYERROR;
$$ = vdiv($1.lo, $1.hi, $3); }

dexp '/' vexp

{

, ,
vexp

{
'(' vexp

{

%%

Yacc - Yet Another Compiler Compiler 3-109

if(dcheck($3)) YYERROR;
$$ = vdiv($1, $1, $3); }
% prec UMINUS
$$.hi = -$2.lo; $$.lo = -$2.hi; }

')'
$$ = $2; }

define BSZ 50 /* buffer size for floating point numbers *I

/* lexical analysis *I

yylex(){
register c;

while((c=getchar()) == ''){ /* skip over blanks */ }

if(is upper(c)) {
yylval.ival = c - 'A';
return(VREG);
}

if(islower(c)) {
yylval.ival = c - 'a';
return(DREG);
}

if(isdigit(c) ! I c=='.'){
/* gobble up digits, points, exponents *I

char buf[BSZ+l], *cp = buf;
int dot = 0, exp = O;

for(; (cp-buf)<BSZ ; ++cp,c=getchar()){

*cp = c;
if(isdigit(c)) continue;
if(c == '.'){

if(dot++ 11 exp) return(
continue;
}

if(c == 'e'){

); /* will cause syntax error *I

if(exp++) return('e'); /* will cause syntax error *I
continue;
}

/* end of number *I
break;
}

*cp = '\O';
if((cp-buf) >= BSZ) printf("constant too long: truncated\n");
else ungetc(c, stdin); /* push back last char read *I
yylval.dval = atof(buf);

3-110 Yacc - Yet Another Compiler Compiler

return(CONST);
}

return(c);
}

INTERVAL hilo(a, b, c, d) double a, b, c, d; {
/* returns the smallest interval containing a, b, c, and d *I
/* used by *, I routines *I
INTERVAL v;

if(a>b) { v.hi = a; v.lo = b; }
else { v.hi = b; v.lo = a; }

if(c>d) {
if(c>v.hi) v.hi = c;
if(d<v.lo) v.lo = d;
}

else {
if(d>v.hi) v.hi = d;
if(c<v.lo) v.lo = c;
}

return(v);
}

INTERVAL vmul(a, b, v) double a, b; INTERVAL v; {
return(hilo(a*v.hi, a*v.lo, b*v.hi, b*v.lo));
}

dcheck(v) INTERVAL v; {
if(v.hi >= 0. && v.lo <= 0.){

printf("divisor interval contains O.\n");
return(1);
}

return(0);
}

INTERVAL vdiv(a, b, v) double a, b; INTERVAL v; {
return(hilo(a/v.hi, a/v.lo, b/v.hi, b/v.lo));
}

Yacc - Yet Another Compiler Compiler 3-111

Appendix D: Old Features Supported but not Encouraged
This Appendix mentions synonyms and features which are supported for historical con

tinuity, but, for various reasons, are not encouraged.

1. Literals may also be delimited by double quotes""".

2. Literals may be more than one character long. If all the characters are alphabetic,
numeric, or_, the type number of the literal is defined, just as if the literal did not have
the quotes around it. Otherwise, it is difficult to find the va.lue for such literals.

The use of multi-character literals is likely to mislead those unfamiliar with Yacc, since
it suggests that Yacc is doing a job which must be actually done by the lexical analyzer.

3. Most places where 3 is legal, backslash "~' may be used. In particular, \\is the same as
3 3, \left the same as % left, etc.

4. There are a number of other synonyms:

3 < is the same as % left
3 > is the same as 3 right
3 binary and 3 2 are the same as 3 nonassoc
3 0 and 3 term are the same as 3 token
3 = is the same as 3 prec

5. Actions may also have the form

={ ... }

and the curly braces can be dropped if the action is a single C statement.

6. C code between % { and % } used to be permitted at the head of the rules section, as
well as in the declaration section.

1 Introduction.

Lex - A Lexical Analyzer Generator

M. E. Lesk and E. Schmidt
Bell Laboratories

Murray Hill, New Jersey 07974

Lex helps write programs whose control flow is directed by instances of regular expressions in the in
put stream. It is well suited for editor-script type transformations and for segmenting input in prepara·
tion for a parsing routine.

Lex source is a table of regular expressions and corresponding program fragments. The table is
translated to a program which reads an input stream, copying it to an output stream and partitioning the
input into strings which match the given expressions. As each such string is recognized the correspond·
ing program fragment is executed. The recognition of the expressions is performed by a deterministic
finite automaton generated by Lex. The program fragments written by the user are executed in the ord·
er in which the corresponding regular expressions occur in the input stream.

The lexical analysis programs written with Lex accept ambiguous specifications and choose the longest
match possible at each input point. If necessary, substantial lookahead is performed on the input, but
the input stream will be backed up to the end of the current partition, so that the user has general free
dom to manipulate it.

Lex can be used to generate analyzers in either C or Ratfor, a language which can be translated au
tomatically to ponable Fortran. It is available on the PDP·ll UNIX, Honeywell GCOS, and IBM OS
systems. Lex is designed to simplify interfacing with Yacc, for those with access to this compiler·
compiler system.

Table of Contents

1. Introduction. 1
2. Lex Source. 3
3. Lex Regular Expressions. 3
4. Lex Actions. 5
S. Ambiguous Source Rules. 7
6. Lex Source Definitions. 8
7. Usage. 8
8. Lex and Yacc. 9
9. Examples. 10

10. Left Context Sensitivity. 11
11. Character Set. 12
12. Summary of Source Format. 12
13. Caveats and Bugs. 13
14. Acknowledgments. 13
15. References. 13

Lex 3-113

Lex is a program generator designed for lexical process
ing of character input streams. It accepts a high-level,
problem oriented specification for character string match·
ing, and produces a program in a general purpose
language which recognizes regular expressions. The regu
lar expressions are specified by the user in the source
specifications given to Lex. The Lex written code recog
nizes these expressions in an input stream and partitions
the input stream into strings matching the expressions.
At the boundaries betweel". strings . program sections pro
vided by the user are executed. The Lex source file asso-

ciates the regular expressions and the program fragments.
As each expression appears in the input to the program
written by Lex, the corresponding fragment is executed.

The user supplies the additional code beyond expres
sion matching needed to complete his tasks, possibly in
cluding code written by other generators. The program
that recognizes the expressions is generated in the general
purpose programming language employed for the user's
program fragments. Thus, a high level expression
language is provided to write the string expressions. to be
matched while the user's freedom to write actions is
unimpaired. This avoids forcing the user who wishes to
use a string manipulation language for input analysis to

3-114 Lex

Source - Lex -yylex

Input - I yylex I - Output

An overview of Lex

Figure I

write processing programs in the same and often inap
propriate string handling language.

Lex is not a complete language, but rather a generator
representing a new language feature which can be added
to different programming languages. called .. host
laqguages." Just as general purpose languages can pro
duce code to run on different computer hardware, Lex
can write code in different host hmguages. The host
language is used for the output code generated by Lex
and also for the program fragments added by the user.
Compatible run-time libraries for the different host
languages are also provided. This makes Lex adaptable to
di!ferent environments and different users. Each applica·
tiqn may b" directed to the combination of hardware and
hqst language appropriate to the task, the user's back·
ground, and the properties qf local implementations. At
present th.ere are only two host languages, C[l] and For·
tran {in the form of the Ratfor language{2]). Lex itself
exists on UNIX, GCOS, an.d OS/370; but the code gen·
erated by Lex may be taken anywhere the appropriate
compilers exist.

Lex turns the user's expressions and actions (called
source in this memo) .into the host general-purpose
language; the generated program is named yylex. The
yylex program will recog"ize expressions in a stream
(called input in this memo) and perform the specified ac
tions for each expression as it is detected. See Figure 1.

For a trivial example, consider a program to delete
from the input all blanks or tabs at the ends of lines.

%%
[\t) +$

is all that is required. The program contains a %% delim·
iter to mark the beginning of the rules, and one rule.

lexical
rules

1
Lex

This rule contains a regular expression which matche:
one or more instances of the characters blank or tat
(written \t for visibility, in accordance with the C
language convention) just prior to the end of a line. The
brackets indicate the character class made of blank anc
tab; the + indicates "one or more ... "'; and the S indi
cates "end of line," as in QED. No action is specified. sc
the program generated by Lex (yylex) will ignore these
characters. Everything else will be copied. To change ani
remaining string of blanks or tabs to a single blank, adc
another rule: ·

%%
[\ti+$
{ \t) + printW ");

The finite automaton generated for th.is source will scar
for both rules at once. observing at the termination of tht
string of blanks or tabs whether or not there is a newlint
character, and executing the desired rule action. The firs
rule matches all strings of blanks or tabs at the end o
lines, and the second rule all remaining strings of blank:
or tabs.

Lex can be used alone for simple transformations. 01
for analysis and statistics gathering on a lexical level. lei
can also be used with a parser generator to perform the
lexical analysis phase; it is particularly easy to interface
Lex and Yacc (3). Lex programs recognize only regula1
expressions; Yacc writes parsers that accept a large clas:
of context free grammars, but require a lower !eve
analyzer to recognize input tokens. Thus. a combinatior
of lex and Yacc is often appropriate. When used as ;
preprocessor for a later parser generator. lex is used t<
partition the input stream, and the parser generator as
signs structure to the resulting pieces. The flow of con
trol in 5µch a case (which might be the first half of ;
compiler, for example) is shown in Figure 2. Additiona
programs. written by other generators or by hand, can bt
added easily to programs written by lex. Yacc users wil
realize th.at the name yylex is what Yacc expects its lexica
analyzer to be named, so that the use of this name b~
Lex simplifies interfacing. ·

lex gi:nerates a deterministic finite automaton from th1
regular expressions in the source (4). The automaton i:
interpreted, rather th.an compiled, in order to save space
The result is still a fast analyzer. In particular, the tim1

grammar
rules

l
Yacc

Input - yylex I - I yyparse j - Parsed input

Lex with Yacc

Figure 2

taken by a Lex program to recognize and partition an in
put stream is proportional to the length of the input. The
number of Lex rules or the complexity of the rules is not
important in determining speed, unless rules which in
clude forward context require a significant amount of re
scanning. What does increase with the number and com
plexity of rules is the size of the finite automaton, and
therefore the size of the program generated by Lex.

In the program written by Lex, the user's fragments
(representing the actions to be performed as each regular
expression is found) are gathered as cases of a switch (in
C) or branches of a computed GOTO (in Ratfor). The
automaton interpreter directs the control Row. Opportun
ity is provided for the user to insert either declarations or
additional statements in the routine containing the ac
tions, or to add subroutines outside this action routine.

Lex is not limited to source which can be interpreted
on the basis of one character lookahead. For example, if
there are two rules, one looking for ab and another for
abcdefg, and the input stream is abcdejh, Lex will recog
nize ab and leave the input pointer just before ed. . .
Such backup is more costly than the processing of simpler
languages.

2 Lex Source.

The general format of Lex source is:

{definitions}
%%
{rules}
%%
{user subroutines}

where the definitions and the user subroutines are often
omitted. The second '"' is optional, but the first is re·
quired to mark the beginning of the rules. The absolute
minimum Lex program is thus

%%

(no definitions, no rules) which translates into a program
which copies the input to the output unchanged.

In the outline of Lex programs shown above, the rula
represent the user's control decisions; they are a table, in
which the left column contains regular apres1ion1 (see
section 3) and the right column contains actionr, program
fragments to be executed when the expressions are recog
nized. Thus an individual rule might appear

integer printf(•found keyword INT");

to look for the string integer in the input stream and print
the message "found keyword INT" whenever it appears.
In this example the host procedural language is C and the
C library function print/ is used to print the string. The
end of the expression is indicated by the first blank or tab
,character. If the action is merely a single C expression, it
'can just be given on the right side of the line; if it is com-
pound, or takes more than a line, it should be enclosed in

Lex 3-115

braces. As a slightly more useful example, suppose it is
desired to change a number of words from British to
American spelling. Lex rules such as

colour
mechanise
petrol

printf("color");
prin tf ("mechanize");
printf("gas");

would be a start. These rules are not quite enough, since
the word petrolftlltl would become gareum. a way of deal·
ing with this will be described later.

3 Lex llesular Expressions.

The definitions of regular expressions are very similar
to th95e in QED (5). A regular expression specifies a set
of strings to be matched. It contains text characters
(which match the corresponding characters in the strings
being compared) and operator characters (which specify
repetitions, choices, and other features). The letters of
the alphabet and the digits are always text characters; thus
the regular expression

integer

matches the string integer wherever it appears and the ex
pression

a57D

looks for the string aS7D.
Operators. The operator characters are

"\lr-?.•+IOS/{}%< >

and if they are to be used as text characters, an escape
should be used. The quotation mark operator (") indi
cates that whatever is contained between a pair of quotes
is to be taken as text characters. Thus

xyz•++·

matches the string .xyz+ + when it appears. Note that a
part of a string may be quoted. It is harmless but un
necessary to quote an ordinary text character; the expres
sion

"xyz+ +·

is the same as the one above. Thus by quoting every
non-alphanumeric character being used as a text charac
ter, the user can avoid remembering the list above of
current operator characters, and is safe should further ex
tensions to Lex lengthen the list.

An operator character may also be turned into a text
character by preceding it with \ as in

xyz\ +\ +

which is another, less readable, equivalent of the above

3-116 Lex

expressions. Another use of the quoting mechanism is to
get a blank into an expression; normally, as explained
above, blanks or tabs end a rule. Any blank character not
contained within (] (see below) must be quoted. Several
normal C escapes with \ are recognized: \n is newline, \t
is tab, and \b is backspace. To enter \ itself, use \ \.
Since newline is illegal in an expression, \n must be used;
it is not required to escape tab and backspace. Every
character but blank, tab, newline and the list above is al
ways a text character.

Character claus. Classes of characters can be
specified using the operator pair (]. The construction
{ab/ matches a single character. which may be a, b, or c.
Within square brackets, most operator meanings are ig
nored. Only three characters are special: these are \ -
and •. The - character indicates ranges. For example,

lll-z0-9<> J

indicates the character class containing all the lower case
letters, the digits, the angle brackets, and underline.
Ranges may be given in either order. Using - between
any pair of characters which are not both upper case
letters, both lower case letters, or both digits is imple
mentation dependent and will get a warning message.
(E.g., (0-z) in ASCII is many more characters than it is in
EBCDIC). If it is desired to include the character - in a
character class, it should be first or last; thus

[-+0-9]

matches all the digits and the two signs.
In character classes, the • operator must appear as the

first character after the left bracket; it indicates that the
resulting string is to be complemented with respect to the
computer character set. Thus

["abc]

matches all characters except a, b, or c, including all spe
cial or control characters; or

ra-zA-Z]

is any character which is not a letter. The \ character pro
vides the usual escapes within character class brackets.

Arbitrary character. To match almost any character,
the operator character

is the class of all characters except newline. Escaping into
octal is possible although non-portable:

l\40-\ 176)

matches all printable characters in the ASCII character
set, from octal 40 (blank) to octal 176 (tilde).

Optional expressions. The operator ? indicates an op
tional element of an expression. Thus

matches either ac or abc.
Repeated expressions. Repetitions of classes are indicat

ed by the operators •and +.

is any number of consecutive a characters, including zero;
while

a+

is one or more instances of a. For example,

[a-z) +

is all strings of lower case letters. And

[A-Za-z] [A-Za-z0-9)•

indicates all alphanumeric strings with a leading alphabetic
character. This is a typical expression for recognizing
identifiers in computer languages.

Alternation and Grouping. The operator I indicates
alternation:

(ab led)

matches either ab or ed. Note that parentheses are used
for grouping, although they are not necessary on the out
side level;

ab led

would have sufficed. Parentheses can be used for more
complex expressions:

(ab led+)? (ef)•

matches such strings as abefef, efefef, cdef, or cddd; but
not abc, abed, or abcdet

Context sensitivity. Lex will recognize a small amount
of surrounding context. The two simplest operators for
this are • and $. If the first character of an expression is
•• the expression will only be matched at the beginning of
a line (after a newline character, or at the beginning of
the input stream). This can never conflict with the other
meaning of ·, complementation of character classes, since
that only applies within the [] operators. If the very last
character is $, the expression will only be matched at the
end of a line (when immediately followed by newline).
The latter operator is a special case of the I operator char
acter, which indicates trailing context. The expression

ab/cd

matches the string ab, but only if followed by ed. Thus

/

abS

is the same as

ab/\n

Left context is handled in Lex by start conditions as ex
plained in section 10. If a rule is only to be executed
when the Lex automaton interpreter is in start condition
x, the rule should be prefixed by

<x>

using the angle bracket operator characters. If we con
sidered "being at the beginning of a line" to be start con
dition ONE. then the ·operator would be equivalent to

<ONE>

Stan conditions are explained more fully later.
Repetitions and Definitions. The operators II specify ei

ther repetitions (if they enclose numbers) or definition
expansion (if they enclose a name). For example

{digit)

looks for a predefined string named digit and inserts it at
that point in the expression. The definitions are given in
the first part of the Lex input, before the rules. In con
trast,

a{l,5)

looks for 1 to 5 occurrences of a.
Finally, initial % is special, being the separator for Lex

source segments.

4 Lex Actions.

When an expression written as above is matched, Lex
executes the corresponding action. This section describes
some features of Lex which aid in writing actions. Note
that there is a default action, which consists of copying
the input to the output. This is performed on all strings
not otherwise matched. Thus the Lex user who wishes to
absorb the entire input, without producing any output,
must provide rules to match everything. When Lex is be
ing used with Yacc, this is the normal situation. One may
consider that actions are what is done instead of copying
the input to the output; thus, in general, a rule which
merely copies can be omitted. Also, a character combina
tion which is omitted from the rules and which appears as
input is likely to be printed on the output, thus calling at
tention to the gap in the rules.

One of the simplest things that can be done is to ignore
the input. Specifying a C null statement, ; as an action
causes this result. A frequent rule is

[\t\nl

Lex 3-117

which causes the three spacing characters (blank, tab, and
newline) to be ignored.

Another easy way to avoid writing actions is the action
character L which indicates that the action for this rule is
the action for the next rule. The previous example could
also have been written

"\t"
"\n"

with the same result, although in different style. The
quotes around \n and \t are not required.

In more complex actions, the user will often want to
know the actual text that matched some expression like
{a-z}+. Lex leaves this text in an external character ar·
ray named yytt!JCI. Thus, to print the name found, a rule
like

[a-zl + printf("%s", yytext);

will print the string in yytt!JCI. The C function print/ ac
cepts a format argument and data to be printed; in this
case, the format is "print string" (% indicating data
conversion, and s indicating string type), and the data are
the characters in yytext. So this just places the matched
string on the output. This action is so common that it
may be written as ECHO:

[a-z] + ECHO;

is the same as the above. Since the default action is just
to print the characters found, one might ask why give a
rule, like this one, which merely specifies the default ac
tion·~ Such rules are often required to avoid matching
some other rule which is not desired. For example, if
there is a rule which matches read it will normally match
the instances of read contained in bread or reaqjust., to
avoid this, a rule of the form {a-z}+ is needed. This is
explained further below.

Sometimes it is more convenient to know the end of
what has been found; hence Lex also provides a count
yyleng of the number of characters matched. To count
both the number of words and the number of characters
in words in the input, the user might write

[a-zA·ZI + (words++; chars + - yyleng;)

which accumulates in chars the number of characters in
the words recognized. The last character in the string
matched can be accessed by

yytext [yyleng-11

in C or

yytext (yyleng)

in Ratfor.

3-118 Lex

Occasionally, a Lex action may decide that a rule has
not recognized the correct span of characters. Two rou
tines are provided to aid with this situation. First,
yymoreO can be called to indicate that the next input ex
pression recognized is to be tacked on to the end of this
input. Normally, the next input string would overwrite
the current entry in yytext. Second, yyless (n) may be
called to indicate that not all the characters matched by
the currently successful expression are wanted right now.
The argument n indicates the number of characters in
yytext to be retained. Further characters previously
matched are returned to the input. This provides the
same sort of lookahead off'ered by the I operator, but in a
different form.

Example: Consider a language which defines a string as
a set of characters between quotation (•) marks, and pro
vides that to include a • in a string it must be preceded by
a \. The regular expression which matches that is some
what confusing, so that it might be preferable to write

\•r·J· I
if (yytext (yyleng-1] - - \ \ ')

yymoreO;
else.

... normal user processing

which will, when faced with a string such as •alJCl..•dej"'
first match the five characters • a/JCI.. ; then the call to
yymore() will cause the next part of the string, •def, to be
tacked on the end. Note that the final quote terminating
the string should be picked up in the code labeled "nor
mal processing".

The function yyless() might be used to reprocess text in
various circumstances. Consider the C problem of distin
guishing the ambiguity of "--a". Suppose it is desired
to treat this as " -- a" but print a message. A rule
might be

--[a-zA-Z) I
printf("Operator (--) ambiguous\n");
yyless(yyleng-1);
... action for -- ...
I

which prints a message, returns the letter after the opera·
tor to the input stream, and treats the operator as "--".
Alternatively it might be desired to treat this as .. _ -a".
To do this, just return the minus sign as well as the letter
to the input:

--[a-zA-Z) I
printf("Operator (--) ambiguous\n");
yyless(yyleng-2);
... action for - ...
l

will perform the other interpretation. Note that the ex·
pressions for the two cases might more easily be written

--1 [A-Za-z I

in the first case and

=/-[A-Za-z)

in the second; no backup would be required in the rule
action. It is not necessary to recognize the whole
identifier to observe the ambiguity. The possibility of
"--3", however, makes

--1r \t\nl

a still better rule.
In addition to these routines, Lex also permits access to

the UO routines it uses. They are:

1) input{) which returns the next input character;

2) output(c) which writes the character c on the out
put; and

3) unput(c) pushes the character c back onto the in-
put stream to be read later by input(}.

By default these routines are provided as macro
definitions, but the user can override them and supply
private versions. There is another important routine in
Ratfor, named lexshf. which is described below under
"Character Set". These routines define the relationship
between external files and internal characters, and must
all be retained or modified consistently. They may be
redefined, to cause input or output to be transmitted to or
from strange places, including other programs or internal
memory; but the character set used must be consistent in
all routines; a value of zero returned by input must mean
end of file; and the relationship between unput and inpu1
must be retained or the Lex lookahead will not work.
Lex does not look ahead at all if it does not have to, but
every rule ending in + • ? or $ or containing I implies
lookahead. Lookahead is also necessary to match an ex
pression that is a prefix of another expression. See below
for a discussion of the character set used by Lex. The
standard Lex library imposes a 100 character limit on
backup .

Another Lex library routine that the user will some
times want to redefine is yywrap() which is called when
ever Lex reaches an end-of-file. If yywrap returns a l,
'Lex continues with the normal wrapup on end of input.
Sometimes, however, it is convenient to arrange for more
input to arrive from a new source. In this case, the user
should provide a yywrap which arranges for new input
and returns 0. This instructs Lex to continue processing.
The default yywrap always returns l.

This routine is also a convenient place to print tables,
summaries, etc. at the end of a program. Note that it is
not possible to write a normal rule which recognizes end
of-file; the only access to this condition is through
yywrap. In fact, unless a private version of input(} is sup
plied a file containing nulls cannot be handled, since a(
value of 0 returned by input is taken to be end-of-file.

In Ratfor all of the standard l/O library routines, input,

outpllt, unput, yywrap, and le:ahf, are defined as integer
functions. This requires input and yywrap to be called
with arguments. One dummy argument is supplied and
ignored.

5 Ambiguous Source Rules.

Lex can handle ambiguous specifications. When more
than one expression can match the current input, Lex
chooses as follows:

1) The longest match is preferred.

2) Among rules which matched the same number of
characters, the rule given first is preferred.

Thus, suppose the rules

integer
[a-z] +

keyword action ... ;
identifier action ... ;

to be given in that order. If the input is integers. it is tak
en as an identifier, because {a-z) + matches 8 characters
while integer matches only 7. If the input is integer, both
rules match 7 characters, and the keyword rule is selected
because it was given first. Anything shorter (e.g. int) will
not match the expression integer and so the identifier in
terpretation is used.

The principle of preferring the longest match makes
rules containing expressions like .• dangerous. For exam
ple,

might seem a good way of recognizing a string in single
quotes. But it is an invitation for the program to read far
ahead, looking for a distant single quote. Presented with
the input

'first' quoted string here, 'second' here

the above expression will match

'first' quoted string here, 'second'

which is probably not what was wanted. A better rule is
of the form

'["\nl•'

which, on the above input, will stop after './int~ The
consequences of errors like this are mitigated by the fact
that the . operator will not match newline. Thus expres
sions like .• stop on the current line. Don't try to defeat
this with expressions like l\n) + or equivalents; the Lex
generated program will try to read the entire input file,
causing internal buffer overflows.

Note that Lex is normally partitioning the input stream,
not searching for all possible matches of each expression.

.. This means that each character is accounted for once and
) only once. For example, suppose it is desired to count

occurrences of both &he and he in an input text. Some

Lex 3-119

Lex rules to do this might be

she s+ +;
he h++;
\n I

where the last two rules ignore everything besides he and
&he. Remember that . does not include newline. Since
she includes he, Lex will normally not recognize the in
stances of he included in she, since once it has passed a
she those characters are gone.

Sometimes the user would like to override this choice.
The action REJECT means "go do the next alternative."
It causes whatever rule was second choice after the
current rule to be executed. The position of the input
pointer is adjusted accordingly. Suppose the user really
wants to count the included instances of hr.

she (s+ +; REJECT;)
he {h++; REJECT;)
\n I

these rules are one way of changing the previous example
to do just that. After counting each expression, it is re·
jected; whenever appropriate, the other expression will
then be counted. In this example, of course, the user
could note that she includes he but not vice versa, and
omit the REJECT action on he, in other cases, however,
it would not be possible a priori to tell which input char
acters were in both classes.

Consider the two rules

a[bc]+
a[cd)+

{ ... ; REJECT; I
{ ... ; REJECT;)

If the input is ab, only the first rule matches, and on ad
only the second matches. The input string accb matches
the first rule for four characters and then the second rule
for three characters. In contrast, the input aced agrees
with the second rule for four characters and then the first
rule for three.

In general, REJECT is useful whenever the purpose of
Lex is not to partition the input stream but to detect all
examples of some items in the input, and the instances of
these items may overlap or include each other. Suppose a
digram table of the input is desired; normally the digrams
overlap, that is the word the is considered to contain both
th and he. Assuming a two-dimensional array named di·
gram to be incremented, the appropriate source is

%%
[a-zlla-z) {digram(yytext[O]] [yytext[lll + +; REJECT;)
\n

where the REJECT is necessary to pick up a letter pair
beginning at every character, rather than at every other
character.

3-120 Lex

6 Lex Source Definitions.

Remember the format of the Lex source:

{definitions)
%%
{rules I
%%
{user routines!

So far only the rules have been described. The user
needs additional options, though, to define variables for
use in his program and for use by Lex. These can go ei·
ther in the definitions section or in the rules section.

Remember that Lex is tumins the rules into a program.
Any source not intercepted by Lex is copied into the gen·
erated program. There are three classes of such things.

1) Any line which is not part of a Lex rule or action
which begins with a blank or tab is copied into the
Lex generated program. Such source input prior
to the first %% delimiter will be external to any
function in the code; if it appears immediately
after the first %%, it appears in an appropriate
place for declarations in the function written by
Lex which contains the actions. This material
must look like program fragments, and should
precede the first Lex rule.

As a side effect of the above, lines which begin
with a blank or tab, and which contain a com
ment, are passed through to the generated pro
gram. This can be used to include comments in
either the Lex source or the generated code. The
comments should follow the host language con
vention.

2) Anything included between lines containing only
%(and %} is copied out as above. The delimiters
are discarded. This format permits entering text
like preprocessor statemertts that must begin in
column 1, or copying lines that do not look like
programs.

3) Anything after the third %% delimiter, regardless
of formats, etc., is copied out after the Lex out
put.

Definitions intended for Lex are given before the first
%% delimiter. Any line in this section not contained
between %(and %), and begining in column l, is as
sumed to define Lex substitution strings. The format of
such lines is

name translation

and it causes the string given as a translation to be associ·
ated with the name. The name and translation must be
separated by at least one blank or tab, and the name must
begin with a letter. The translation can then be called out
by the {namel syntax in a rule. Using {Dl for the digits
and {El for an exponent field, for example, might abbre
viate rules to recognize numbers:

D
E
%%
{DI+
{DI +"."(Dj.({EI)'!
{Dl*'."(Dj +({El)'!
{Dl+(Ej

[0-9)
[TEdeH-+)'?{Dl +

printf("integer");
I
I

Note the first two rules for real numbers; both require a
decimal point and contain an optional exponent field, but
the first requires at least one digit before the decimal
point and the second requires at least one digit after the
decimal point. To correctly handle the problem posed by
a Fortran expression such as 15.EQ./, which does not
contain a real number, a context-sensitive rule such as

(0-9) +/"."EQ printf("integer");

could be used in addition to the normal rule for integers.
The definitions ~ection may also contain other com

mands, including the selection of a host language, a char
acter set table, a list of start conditions, or adjustments to
the default size of arrays within Lex itself for larger
source programs. These possibilities are discussed below
under "Summary of Source Format," section 12.

7 Usage.

There are two steps in compiling a Lex source program.
First, the Lex source must be turned into a generated
program in the host general purpose language. Then this
program must be compiled and loaded, usually with a li
brary of Lex subroutines. The generated program is on a
file named lex.yy.c for a C host language source and
lex.yy.r for a Ratfor host environment. There are two
UO libraries, one for C defined in terms of the C stan
dard library [6), and the other defined in terms of Ratfor.
To indicate that a Lex source file is intended to be used
with the Ratfor host language, make the first line of the
file %R. .

The C programs generated by Lex are slightly different
on OS/370, because the OS compiler is less powerful than
the UNIX or GCOS compilers, and does less at compile
time. C programs generated on GCOS and UNIX are the
same. The C host language is default, but may be expli
citly requested by making the first line of the source file
%C.

The Ratfor generated by Lex is the same on all sys
tems, but can not be compiled directly on TSO. See
below for instructions. The Ratfor l/O library, however,
varies slightly because the different Fortrans disagree on
the method of indicating end-of-input and the name of
the library routine for logical AND. The Ratfor 1/0. Ii·
brary, dependent on Fortran character 1/0, is quite slow.
In particular it reads all input lines as 80A I format; this
will truncate any longer line, discarding your data, and
pads any shorter line with blanks. The library version o~
input removes the padding (including any trailing blanks
from the original input) before processing. Each source

file using a Ratfor host should begin with the "%R .. com
mand.

UNIX. The libraries are accessed by the loader flags
-Ile for C and -llr for Ratfor; the C name may be abbrevi
ated to -IL So an appropriate set of commands is

C Host Ratfor Host

lex source lex source
cc lex.yy .c -U -IS re -2 lex.yy.r -llr

The resulting program is placed on the usual file a.out for
later execution. To use Lex with Yacc see below.
Although the default Lex 1/0 routines use the C standard
library, the Lex automata themselves do not do so; if
private versions of input, outpUt and unput are given, the
library can be avoided. Note the "-2 .. option in the Rat
for compile command; this requests the larger version of
the compiler, a useful precaution.

GCOS. The Lex commands on GCOS are stored in the
" ... library. The appropriate command sequences are:

C Host Ratfor Host

./lex source ./lex source

./cc lex.yy .c ./lexclib h - ./re a- lex.yy.r ./lexrlib h-

The resulting program is placed on the usual file .prorram
for later execution (as indicated by the "h - .. option); it
may be copied to a permanent file if desired. Note the
"a-.. option in the Ratfor compile command; this indi
cates that the Fortran compiler is to run in ASCII mode.

TSO. Lex is just barely available on TSO. Restrictions
imposed by the compilers which must be used with its
output make it rather inconvenient. To use the C ver
sion, type

exec 'dot.lex.clistOex)' 'sourcename'
exec 'dot.lex.clist(cload)' 1ibraryname membemame'

The first command analyzes the source file and writes a C
program on file la.yy. tat. The second command runs
this file through the C compiler and links it with the Lex
C library (stored on 'hr289.lcl.load') placing the object
program in your file libraryname.LOAD(membemame) as
a completely linked load module. The compiling com
mand uses a special version of the C compiler command
on TSO which provides an unusually large intermediate
assembler file to compensate for the unusual bulk of C
compiled Lex programs on the OS system. Even so, al
most any Lex source program is too big to compile, and
must be split.

The same Lex command will compile Ratfor Lex pro
grams, leaving a file la.yy.rat instead of la.yy.tat in
your directory. The Ratfor program must be edited, how
ever, to compensate for peculiarities of IBM Ratfor. A
command sequence to do this, and then compile and
load, is available. The full commands are:

exec 'dot.lex.clistOex)' 'sourcename'

Lex 3-121

exec 'dot.lex.clist{rload)' 1ibraryname membemame'

with the same overall effect as the C language commands.
However, the Ratfor commands will run in a 150K byte
partition, while the C commands require 250K bytes to
operate.

The steps involved in processing the generated Ratfor
program are:

a. Edit the Ratfor program.

1. Remove all tabs.

2. Change all lower case letters to upper case letters.

3. Convert the file to an 80-column card image file.

b. Process the Ratfor through the Ratfor preproces
sor to get Fortran code.

c. Compile the Fortran.

d. Load with the libraries 'hr289.lrl.load' and
'sys l.fortlib'.

The final load module will only read input in SO-character
fixed length records. Warning: Work is in progress on
the IBM C compiler, and Lex and its availability on the
IBM 370 are subject to change without notice.

8 Lex and Yacc •

If you want to use Lex with Yacc, note that what Lex
writes is a program named yylaO. the name required by
Yacc for its analyzer. Normally, the default main pro·
gram on the Lex library calls this routine, but if Yacc is
loaded, and its main program is used, Yacc will call
yyla(). In this case each Lex rule should end with

return (token);

where the appropriate token value is returned. An easy
way to get access to Yacc's names for tokens is to compile
the Lex output file as part of the Yacc output file by plac·
ing the line

#include iex.yy.c"

in the last section of Yacc input. Supposing the grammar
to be named "good" and the lexical rules to be named
"better .. the UNIX command sequence can just be:

yacc good
lex better
cc y.tab.c -ly -II -IS

The Yacc library (-ly) should be loaded before the Lex li
brary, to obtain a main program which invokes the Yacc
parser. The generations of Lex and Yacc programs can be
done in either order.

9 Examples.

As a trivial problem, consider copying an input file
while adding 3 to every positive number divisible by 7.
Here is a suitable Lex source program

3-122 Lex

%%
int k;

l0-91 + I
scanf(· l, yytext, "%d-, &k);
if (k%7 -- 0)

printf("%d", k+3);
else

printf("%d" ,k);

to do just that. The rule (0-9) + recognizes strings of di·
gits; scan/ converts the digits to binary and stores the
result in le. The operator % (remainder) is used to check
whether k is divisible by 7; if it is, it is incremented by 3
as it is written out. It may be objected that this program
will alter such input items as 49. 6J or X7. Furthermore,
it increments the absolute value of all negative numbers
divisible by 7. To avoid this, just add a few more rules
after the active one, as here:

%%

-?(0-9) +

-?(0.9.)+

int k;
{
scanf(·l, yytext, "%d", &k);
printf("%d", k%7 ""'- 0 '? k+3: k);
I
ECHO;

[A·Za-z] [A·Za-z0.9) + ECHO;

Numerical strings containing a "."or preceded by a letter
will be picked up by one of tbe last two rules, and not
changed. The if-else has been replaced by a C conditional
expression to save space; the form a ?b:c means "if a
then b else c".

For an example of statistics gathering, here is a pro·
gram which histograms the lengths of words, where a
word is defined as a string of letters.

%%
[a-z] +

\n
%%
yywrap()
(
inti;

int lengs[lOO);

lengs(yyleng] ++;
I

printf("Length No. words\n");
for(i-0; i<lOO; i++)

if (lengslil > 0)
printf ("% Sd% 1 Od\n" ,i,lengs (i]);

retum(l);
I

This program accumulates the histogram, while producing
no output. At the end of the input it prints the table.
The final statement return(!); indicates that Lex is to per
form wrapup. If yywrap returns zero (false) it implies
that further input is available and the program is to con
tinue reading and processing. To provide a yywrap that

never returns true causes an infinite loop.
As a larger example, here are some parts of a program

written by N. L. Schryer to convert double precision For
tran to single precision Fortran. Because Fortran does
not distinguish upper and lower case letters. this routine
begins by defining a set of classes including both cases of
each letter:

a [aA)
b [bB)
c [cC)

z [zZ)

An additional class recognizes white space:

w [\t]•

The first rule changes "double precision" to "real", or
"DOUBLE PRECISION" to "REAL".

{dllollullbllll (el (Wllp}{rllel lcHil lsllil lollnl I
printf(yytext[O]- -'d''! "real" : "REAL");
I

Care is taken throughout this program to preserve the
case (upper or lower) of the original program. The condi
tional operator is used to select the proper form of the
keyword. The next rJJle copies continuation card indica·
lions to avoid confusing them with constants:

.. "[" 0) ECHO;

In the regular expression, the quotes surround the blanks.
It is interpreted as "beginning of line, then five blanks,
then anything but blank or zero." Note the two different
meanings of •. There follow some rules to change double
precision constants to ordinary floating constants.

(0-9] + (W}{dl!W}[+-l'!{W}[0-9] + I
(0.9] + {W}"."(W}{dl{W}[+-] '!{W)[0-9] + I
"."(W}[0.9] +{W}{d}(W)[+-]'?(W}[0-9] + (

I• convert constants •/
for(p-yytext; •p !- O; p++)

I
if < •p - - 'd' I •p - - 'D'>

•p- + 'e'· 'd';
ECHO;
J

After the floating point constant is recognized, it is
scanned by the for loop to find the letter d or D. The
program than adds 'e'-'d', which converts it to the next
letter of the alphabet. The modified constant. now
single-precision, is written out again. There follow a
series of names which must be respelled to remove their
initial d. By using the array yytext the same action
suffices for all the names (only a sample of a rather long
list is given here).

{dllsllillnl
{dl{c}(ollsl
(d} (sl (q} (rl (ti
(dllalltllallnl

(dl{fl{l}{o}{a}{tl printf("%s" ,yytext + l);

Another list of names must have initial d changed to ini
tial a:

{d){l){o}{g}
{d}{l}{o}{g} 10
{d){m}{i){n}l
{d}(m}(a}{x}l

I
I
I
{
yytext[O] - + 'a' - 'd';
ECHO;
}

And one routine must have initial d changed to initial r.

{d} 1 {m}(a}{c}(h} {yytext[O] - + 'r' - 'd';

To avoid such names as "3/nx being detected as instances
of dsin, some final rules pick up longer words as
identifiers and copy some surviving characters:

[A-l.a-z] [A-Za-z0-9]•
(0-9)+
\n

I
I
I
ECHO;

Note that this program is not complete; it does not deal
with the spacing problems in Fortran or with the use of
keywords as identifiers.

10 Left Context Sensitivity.

Sometimes it is desirable to have several sets of lexical
rules to be applied at different times in the input. For ex
ample, a compiler preprocessor might distinguish prepro
cessor statements and analyze them differently from ordi
nary statements. This requires sensitivity to prior con
text, and there are several ways of handling such prob
lems. The • operator, for example, is a prior context
operator, recognizing immediately preceding left context
just as $ recognizes immediately following right context.
Adjacent left context could be extended, to produce a fa
cility similar to that for adjacent right context, but it is
unlikely to be as useful, since often the relevant left con
text appeared some time earlier, such as at the beginning
of a line.

This section describes three means of dealing with
different environments: a simple use of flags, when only a
few rules change from one environment to another, the
use of start conditions on rules, and the possibility of
making multiple lexical analyzers all run together. In
each case, there are rules which recognize the need to
change the environment in which the following input text

Lex 3-123

is analyzed, and set some parameter to reflect the change.
This may be a flag explicitly tested by the user's action
code; such a flag is the simplest way of dealing with the:
problem, since Lex is not involved at all. It may be more
convenient, however, to have Lex remember the flags as
initial conditions on the rules. Any rule may be associat
ed with a start condition. It will only be recognized when
Lex is in that start condition. The current start condition
may be changed at any time. Finally, if the sets of rules
for the different environments are very dissimilar, clarity
may be best achieved by writing several distinct lexical
analyzers, and switching from one to another as desired.

Consider the following problem: copy the input to the
output, changing the word magic to first on every line
which began with the letter a, changing magic to second
on every line which began with the letter b, and changing
magic to third on every line which began with the letter c.
All other words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this
job is with a flag:

int flag;
%%
·a (flag - 'a'; ECHO;}
"b (flag - 'b'; ECHO;}
·c {flag - 'c'; ECHO;}
\n {flag - 0 ; ECHO;}
magic I

switch (flag)
I
case 'a': printf("first"); break;
case 'b': printf("second"); break;
case 'c': printf("third"); break;
default: ECHO; break;
l
l

should be adequate.
To handle the same problem with start conditions, each

start condition must be introduced to Lex in the
definitions section with a line reading

%Start name 1 name2 ...

where the conditions may be named in any order. The
word Start may be abbreviated to s or S. The conditions
may be referenced at the head of a rule with the < >
brackets:

<name l >expression

is a rule which is only recognized when Lex is in the start
condition namel. To enter a start condition, execute the
action statement

BEG IN name l;

which changes the start condition to namel. To resume
the normal state,

3-124 Lex

BEGIN O;

resets the initial condition of the Lex automaton inter
preter. A rule may be active in several start conditions:

<name l ,name2,name3 >

is a legal prefix. Any rule not beginning with the < >
prefix operator is always active.

The same example as before can be written:

%START AA BB CC
%%
·a
.b
·c
\n
<AA> magic
<BB>magic
<CC> magic

{ECHO; BEGIN AA;}
{ECHO; BEGIN BB; I
{ECHO; BEGIN· CC;}
{ECHO; BEGIN O;}
printf("first");
printf(" second");
printf("third");

where the logic is exactly the same as ir. the previous
method of handling the problem, but Lex does the work
rather than the user's code.

11 Character Set.

The programs generated by Lex handle character 1/0
only through the routines Input, output, and unput. Thus
the character representation provided in these routines is
accepted by Lex and employed to return values in yytext.
For internal use a character is represented as a small in
teger which, if the standard library is used, has a value
equal to the integer value of the bit pattern representing
the character on the host computer. In C, the 1/0 rou
tines are assumed to deal directly in this representation.
In Ratfor, it is anticipated that many users will prefer
left-adjusted rather than right-adjusted characters; thus
the routine lexshf is called to change the representation
delivered by input into a right-adjusted integer. If the
user changes the 1/0 library, the routine lexshf should
also be changed to a compatible version. The Ratfor Ii·
brary 1/0 system is arranged to represent the letter a as
in the Fortran value JHa while in C the letter a is
represented as the character constant 'a'. If this interpre
tation is changed, by providing 1/0 routines which
translate the characters, Lex must be told about it, by giv
ing a translation table. This table must be in the
definitions section, and must be bracketed by lines con
taining only "'%T". The table contains lines of the form

{integer} {character string}

which indicate the value associated with each character.
Thus the next example maps the lower and upper case
letters together into the integers l through 26, newline
into 27, + and - into 28 and 29, and the digits into 30
through 39. Note the escape for newline. If a table is
supplied, every character that is to appear either in the

%T
1 Aa
2 Bb

26 Zz
27 \n
28 +
29
30 0
31 1

39 9
%T

Sample character table.

rules or in any valid input must be included in the table.
No character may be assigned the number 0, and no char
acter may be assigned a bigger number than the size of
the hardware character set.

It is not likely that C users will wish to use the charac
ter table feature; but for Fortran portability it may be
essential.

Although the contents of the Lex Ratfor library rou
tines for input and output run almost unmodified on
UNIX, GCOS, and OS/370, they are not really machine
independent, and would not work with CDC or Bur
roughs Fortran compilers. The user is of course welcome
to replace input, output, unput and lexshf but to replace
them by completely portable Fortran routines is likely to
cause a substantial decrease in the speed of Lex Ratfor
programs. A simple way to produce portable routines
would be to leave input and output as routines that read
with 80A l format, but replace lexshf by a table lookup
routine.

12 Summary of Source Format.

The general form of a Lex source file is:

{definitions)
%%
{rules I
%%
{user subroutines)

The definitions section contains a combination of

1) Definitions, in the form "name space transla
tion".

2) Included code, in the form "space code".

3) Included code, in the form

%{
code
%}

4) Start conditions, given in the form

%5 namel name2 ...

5) Character set tables, in the form

%T
number space character-string

%T

6) A language specifier, which must also precede any
rules or included code, in the form "%C"' for C
or "%R" for Ratfor.

7) Changes to internal array sizes, in the form

%x nnn

where nnn is a decimal integer representing an ar
ray size and x selects the parameter as follows:

Letter
p
n
e
a
k

Parameter
positions
states
tree nodes
transitions
packed character classes

o output array size

Lines in the rules section have the form "expression ac
tion" where the action may be continued on succeeding
lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

x
"x"
\x
bey]
bc-z)
!"xi

·x
<y>x
xS
x'!
x•
x+
xlY
(x}
x/y
{xx)
x{m,nl

the character "x"
an "x", even if x is an operator.
an "x", even if xis an operator.
the character x or y.
the characters x, y or z.
any character but x.
any character but newline.
an x at the beginning of a line.
an x when Lex is in start condition y.
an x at the end of a line.
an optional x.
0,1,2, ... instances of x.
1,2,3, ... instances of x.
an x or a y.
an x.
an x but only if followed by y.
the translation of xx from the definitions section.
m through n occurrences of x

Lex 3-125

13 Caveats and Bugs.

There are pathological expressions which produce ex
ponential growth of the tables when converted to deter
ministic machines; fortunately. they are rare.

REJECT does not rescan the input; instead it
remembers the results of the previous scan. This means
that if a rule with trailing context is found. and REJECT
executed, the user must not have used unput to change
the characters forthcoming from the input stream. This is
the only restriction on the user's ability to manipulate the
not-yet-processed input.

TSO Lex is an older version. Among the non
supported features are REJECT, start conditions, or vari
able length tr~iling context, And any significant Lex
source is too big for the IBM C compiler when translated.

14 Acknowledgments.

As should be obvious from the above, the outside of
Lex is patterned on Yacc and the inside on Aho's string
matching routines. Therefore, both S. C. Johnson and A.
V. Aho are really originators of much of Lex. as well as
debuggers of it. Many thanks are due to both.

The code of the current version of Lex was designed,
written, and debugged by Eric Schmidt.

15 References.

1. B. W. Kernighan and D. M. Ritchie, The C Pro
gramming Language, Prentice-Hall, N. J. (1978).

2. B. W. Kernighan, Ratfor: A Preprocessor for a
Rational Fortran, Software - Practice and Experi
ence, 5, pp. 395-496 (1975).

3. S. C. Johnson, Yacc: Yet Another Compiler Com
piler, Computing Science Technical Report No.
32, 1975, Bell Laboratories, Murray Hill, NJ
07974.

4. A. V. Aho and M. J. Corasick, Efficient String
Matching: An Aid to Bibliographic Search, Comm.
ACM 18, 333-340 (1975).

5. B. W. Kernighan, D. M. Ritchie and K. L.
Thompson, QED Text Editor, Computing Science
Technical Report No. 5, 1972, Bell Laboratories,
Murray Hill, NJ 07974.

6. D. M. Ritchie, private communication. See also
M. E. Lesk, The Portable C Library, Computing
Science Technical Report No. 31, Bell Labora
tories, Murray Hill, NJ 07974.

Introduction 4-1

PART 4: SYSTEM PROGRAMMING

The six articles in this part provide a background for understanding the operation of the
ULTRIX-32 system. While these articles are conceptually valid, some details are obsolete.
The file system description in particular does not reflect the current implementation.

Fundamentals
"UNIX Implementation," by Thompson, summarizes the inner workings of the ULTRIX-32
system: what parts make up the software and how they cooperate to make the system func
tion. Topics include features of the kernel code, process control, the 1/0 system, and the file
system.

Users are prohibited from changing the kernel code, but they can write utilities that use the
kernel as a tool.

The description of process control provides explanations of:

• User and system processes

• Use of read-only segments of user processes

• Use of primary and secondary memory

• User address space

• User and system data segments

• Process tables

• Exec'ing a file

• Use of forks

• Swapping files

• Process synchronization

• Possible race conditions

• Process priorities

The 1/0 system supports two kinds of input/output processing: structured and unstructured.
Structured 1/0 handles data in 512-byte blocks, while unstructured (character) 1/0 handles
data in all other formats.

"UNIX Implementation" serves a!j a primer for the remaining articles in this part, and it
should be read first.

ULTRIX-32 Virtual Machine
The environment in which a user process runs on the ULTRIX-32 system is called the
ULTRIX-32 virtual machine. The "4.2BSD System Manual" defines this environment. It
tells what the computer looks like to user processes and it identifies the kernel and system
facilities available to user processes. The article defines the commands and calls related to

4-2 Introduction

many of the concepts and generalities presented in the first article in this part, "UNIX Imple
mentation."

Available kernel facilities include:

• Processes and protection

• Memory management

• Signals

• Timers

• Descriptors

• Resource controls

• Mounting and unmounting devices

• Accounting

Available system facilities include:

• Read, write, and 1/0 control calls

• File control

• Management of disk quotas

• Interprocess and interprocessor communication

• Terminal control

The "4.2BSD System Manual" is the best general reference article for kernel and system calls
on the ULTRIX-32 system; it supplements all the other system programming articles in this
part.

Assembly Language

The assembly language for the ULTRIX-32 system is called as. The C compiler produces as
code, making the assembly language an intermediate stage in the process of translating high
level language programs into executable code. As includes the VAX-11 instruction set.

The "Berkeley VAX/UNIX Assembler Reference Manual," by Reiser and Henry, specifies the
rules and conventions of as. Explanations are terse and to the point. The article is written
for compiler writers (at least one stage of every compiler must include as code) and for people
who maintain the as assembler.

Device Drivers

The ULTRIX-32 software simplifies the process of writing device drivers. If your computer
system includes a peripheral device that is not supported by the standard software, you will
need to write your own device driver to control the operation of the device and the flow of
data to and from it. The ULTRIX-32 system includes a set of routines that handle 1/0 for
character and block devices. The article entitled "The UNIX 1/0 System," by Ritchie,
explains how to use those routines to build a device driver. However, many of the details in
this article refer to previous implementations.

Introduction 4-3

Screen Manipulation
The ULTRIX-32 system provides a library of screen updating and cursor control routines (not
all are foolproof) that serve as building blocks for any program that controls terminal screen
displays at a basic level. The article entitled "Screen Updating and Cursor Movement Optim
ization: A Library Package," by Arnold, describes this set of routines and explains how to use
them. There are output, input, initializing, and miscellaneous routines. An appendix provides
two sample screen manipulation programs.

Suitable applications for this screen control library include text editors, terminal drivers, and
video games.

Spooler
The ULTRIX-32 system provides a line printer spooler utility that supports standard printer
devices and multiple spooling queues. The "4.2BSD Line Printer Spooler Manual," by Camp
bell, describes the installation, components, and functions of the spooler. The article should
be particularly useful to users who want to modify the ULTRIX-32 system to accommodate a
nonstandard printer. It tells how to alter the printer data base (the printcap file) for devices
that do not conform to the default printer description. In addition, the article:

• Tells how to use the spooler with output filters

• Defines commands you can make to the line printer daemon and the line printer
administration program

• Lists spooler error messages with explanations

UNIX Implementation 4-5

UNIX Implementation

K. Thompson

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION
The UNIXt kernel consists of about 10,000 lines of C code and about 1,000 lines of

assembly code. The assembly code can be further broken down into 200 lines included for the
sake of efficiency (they could have been written in C) and 800 lines to perform hardware func
tions not possible in C.

This code represents 5 to 10 percent of what has been lumped into the broad expression
"the UNIX operating system." The kernel is the only UNIX code that cannot be substituted by
a user to his own liking. For this reason, the kernel should make as few real decisions as pos
sible. This does not mean to allow the user a million options to do the same thing. Rather, it
means to allow only one way to do one thing, but have that way be the least-common divisor
of all the options that might have been provided.

What is or is not implemented in the kernel represents both a great responsibility and a
great power. It is a soap-box platform on "the way things should be done." Even so, if "the
way" is too radical, no one will follow it. Every important decision was weighed carefully.
Throughout, simplicity has been substituted for efficiency. Complex algorithms are used only
if their complexity can be localized.

2. PROCESS CONTROL
In the UNIX system, a user executes programs in an environment called a user process.

When a system function is required, the user process calls the system as a subroutine. At
some point in this call, there is a distinct switch of environments. After this, the process is
said to be a system process. In the normal definition of processes, the user and system
processes are different phases of the same process (they never execute simultaneously). For
protection, each system process has its own stack.

The user process may execute from a read-only text segment, which is shared by all
processes executing the same code. There is no functional benefit from shared-text segments.
An efficiency benefit comes from the fact that there is no need to swap read-only segments
out because the original copy on secondary memory is still current. This is a great benefit to
interactive programs that tend to be swapped while waiting for terminal input. Furthermore,
if two processes are executing simultaneously from the same copy of a read-only segment, only
one copy needs to reside in primary memory. This is a secondary effect, because simultaneous
execution of a program is not common. It is ironic that this effect, which reduces the use of
primary memory, only comes into play when there is an overabundance of primary memory,
that is, when there is enough memory to keep waiting processes loaded.

All current read-only text segments in the system are maintained from the text table. A
text table entry holds the location of the text segment on secondary memory. If the segment
is loaded, that table also holds the primary memory location and the count of the number of

t UNIX is a trademark of Bell Laboratories.

4-6 UNIX Implementation

processes sharing this entry. When this count is reduced to zero, the entry is freed along with
any primary and secondary memory holding the segment. When a process first executes a
shared-text segment, a text table entry is allocated and the segment is loaded onto secondary
memory. If a second process executes a text segment that is already allocated, the entry refer
ence count is simply incremented.

A user process has some strictly private read-write data contained in its data segment.
As far as possible, the system does not use the user's data segment to hold system data. In
particular, there are no I/0 buffers in the user address space.

The user data segment has two growing boundaries. One, increased automatically by the
system as a result of memory faults, is used for a stack. The second boundary is only grown
(or shrunk) by explicit requests. The contents of newly allocated primary memory is initial
ized to zero.

Also associated and swapped with a process is a small fixed-size system data segment.
This segment contains all the data about the process that the system needs only when the
process is active. Examples of the kind of data contained in the system data segment are:
saved central processor registers, open file descriptors, accounting information, scratch data
area, and the stack for the system phase of the process. The system data segment is not
addressable from the user process and is therefore protected.

Last, there is a process table with one entry per process. This entry contains all the data
needed by the system when the process is not active. Examples are the process's name, the
location of the other segments, and scheduling information. The process table entry is allo
cated when the process is created, and freed when the process terminates. This process entry
is always directly addressable by the kernel.

Figure 1 shows the relationships between the various process control data. In a sense,
the process table is the definition of all processes, because all the data associated with a pro
cess may be accessed starting from the process table entry.

PROCESS 11---------1~
TA81.E
ENTRY

PROCESS TABl.E

Ll
USEA
AO CRESS
SPACE

TEXT TA8LE

SYSTEM
0"'T"'
SEGMENT

USER
CATA
SEGMENT

TEXT
TA8LE
ENTRY

,.....----.
USER
TEXT
SEGMENT

Fig. 1 Process control data structure.

2.1. Process creation and program execution

fllEStOENT

t
SWAPPABLE

Processes are created by the system primitive fork. The newly created process (child) is
a copy of the original process (parent). There is no detectable sharing of primary memory
between the two processes. (Of course, if the parent process was executing from a read-only
text segment, the child will share the text segment.) Copies of all writable data segments are
made for the child process. Files that were open before the fork are truly shared after the
fork. The processes are informed as to their part in the relationship to allow them to select
their own (usually non-identical) destiny. The parent may wait for the termination of any of

UNIX Implementation 4-7

its children.

A process may exec a file. This consists of exchanging the current text and data seg
ments of the process for new text and data segments specified in the file. The old segments
are lost. Doing an exec does not change processes; the process that did the exec persists,
but after the exec it is executing a different program. Files that were open before the exec
remain open after the exec.

If a program, say the first pass of a compiler, wishes to overlay itself with another pro
gram, say the second pass, then it simply execs the second program. This is analogous to a
"goto." If a program wishes to regain control after execing a second program, it should fork
a child process, have the child exec the second program, and have the parent wait for the
child. This is analogous to a "call." Breaking up the call into a binding followed by a transfer
is similar to the subroutine linkage in SL-5.1

2.2. Swapping

The major data associated with a process (the user data segment, the system data seg
ment, and the text segment) are swapped to and from secondary memory, as needed. The
user data segment and the system data segment are kept in contiguous primary memory to
reduce swapping latency. (When low-latency devices, such as bubbles, CCDs, or scatter/gather
devices, are used, this decision will have to be reconsidered.) Allocation of both primary and
secondary memory is performed by the same simple first-fit algorithm. When a process grows,
a new piece of primary memory is allocated. The contents of the old memory is copied to the
new memory. The old memory is freed and the tables are updated. If there is not enough
primary memory, secondary memory is allocated instead. The process is swapped out onto
the secondary memory, ready to be swapped in with its new size.

One separate process in the kernel, the swapping process, simply swaps the other
processes in and out of primary memory. It examines the process table looking for a process
that is swapped out and is ready to run. It allocates primary memory for that process and
reads its segments into primary memory, where that process competes for the central proces
sor with other loaded processes. If no primary memory is available, the swapping process
makes memory available by examining the process table for processes that can be swapped
out. It selects a process to swap out, writes it to secondary memory, frees the primary
memory, and then goes back to look for a process to swap in.

Thus there are two specific algorithms to the swapping process. Which of the possibly
many processes that are swapped out is to be swapped in? This is decided by secondary
storage residence time. The one with the longest time out is swapped in first. There is a
slight penalty for larger processes. Which of the possibly many processes that are loaded is to
be swapped out? Processes that are waiting for slow events (i.e., not currently running or
waiting for disk I/0) are picked first, by age in primary memory, again with size penalties.
The other processes are examined by the same age algorithm, but are not taken out unless
they are at least of some age. This adds hysteresis to the swapping and prevents total thrash
ing.

These swapping algorithms are the most suspect in the system. With limited primary
memory, these algorithms cause total swapping. This is not bad in itself, because the swap
ping does not impact the execution of the resident processes. However, if the swapping device
must also be used for file storage, the swapping traffic severely impacts the file system traffic.
It is exactly these small systems that tend to double usage of limited disk resources.

2.3. Synchronization and scheduling

Process synchronization is accomplished by having processes wait for events. Events are
represented by arbitrary integers. By convention, events are chosen to be addresses of tables
associated with those events. For example, a process that is waiting for any of its children to
terminate will wait for an event that is the address of its own process table entry. When a
process terminates, it signals the event represented by its parent's process table entry.

4-8 UNIX Implementation

Signaling an event on which no process is waiting has no effect. Similarly, signaling an event
on which many processes are waiting will wake all of them up. This differs considerably from
Dijkstra's P and V synchronization operations,2 in that no memory is associated with events.
Thus there need be no allocation of events prior to their use. Events exist simply by being
used.

On the negative side, because there is no memory associated with events, no notion of
"how much" can be signaled via the event mechanism. For example, processes that want
memory might wait on an event associated with memory allocation. When any amount of
memory becomes available, the event would be signaled. All the competing processes would
then wake up to fight over the new memory. (In reality, the swapping process is the only pro
cess that waits for primary memory to become available.)

If an event occurs between the time a process decides to wait for that event and the time
that process enters the wait state, then the process will wait on an event that has already hap-
pened (and may never happen again). This race condition happens because there is no
memory associated with the event to indicate that the event has occurred; the only action of
an event is to change a set of processes from wait state to run state. This problem is relieved
largely by the fact that process switching can only occur in the kernel by explicit calls to the
event-wait mechanism. If the event in question is signaled by another process, then there is
no problem. But if the event is signaled by a hardware interrupt, then special care must be
taken. These synchronization races pose the biggest problem when UNIX is adapted to
multiple-processor configurations. 3

The event-wait code in the kernel is like a co-routine linkage. At any time, all but one
of the processes has called event-wait. The remaining process is the one currently executing.
When it calls event-wait, a process whose event has been signaled is selected and that process
returns from its call to event-wait.

Which of the runable processes is to run next? Associated with each process is a prior
ity. The priority of a system process is assigned by the code issuing the wait on an event.
This is roughly equivalent to the response that one would expect on such an event. Disk
events have high priority, teletype events are low, and time-of-day events are very low. (From
observation, the difference in system process priorities has little or no performance impact.)
All user-process priorities are lower than the lowest system priority. User-process priorities
are assigned by an algorithm based on the recent ratio of the amount of compute time to real
time consumed by the process. A process that has used a lot of compute time in the last
real-time unit is assigned a low user priority. Because interactive processes are characterized
by low ratios of compute to real time, interactive response is maintained without any special
arrangements.

The scheduling algorithm simply picks the process with the highest priority, thus picking
all system processes first and user processes second. The compute-to-real-time ratio is
updated every second. Thus, all other things being equal, looping user processes will be
scheduled round-robin with a 1-second quantum. A high-priority process waking up will
preempt a running, low-priority process. The scheduling algorithm has a very desirable nega
tive feedback character. If a process uses its high priority to hog the computer, its priority
will drop. At the same time, if a low-priority process is ignored for a long time, its priority
will rise.

3. 1/0 SYSTEM
The 1/0 system is broken into two completely separate systems: the block 1/0 system

and the character 1/0 system. In retrospect, the names should have been "structured 1/0"
and "unstructured 1/0," respectively; while the term "block 1/0" has some meaning, "charac
ter 1/0" is a complete misnomer.

Devices are characterized by a major device number, a minor device number, and a class
(block or character). For each class, there is an array of entry points into the device drivers.
The major device number is used to index the array when calling the code for a particular

UNIX Implementation 4-9

device driver. The minor device number is passed to the device driver as an argument. The
minor number has no significance other than that attributed to it by the driver. Usually, the
driver uses the minor number to access one of several identical physical devices.

The use of the array of entry points (configuration table) as the only connection between
the system code and the device drivers is very important. Early versions of the system had a
much less formal . connection with the drivers, so that it was extremely hard to handcraft
differently configured systems. Now it is possible to create new device drivers in an average of
a few hours. The configuration table in most cases is created automatically by a program that
reads the system's parts list.

3.1. Block 1/0 system

The model block 1/0 device consists of randomly addressed, secondary memory blocks of
512 bytes each. The blocks are uniformly addressed 0, 1, ... up to the size of the device. The
block device driver has the job of emulating this model on a physical device.

The block 1/0 devices are accessed through a layer of buffering software. The system
maintains a list of buffers (typically between 10 and 70) each assigned a device name and a
device address. This buffer pool constitutes a data cache for the block devices. On a read
request, the cache is searched for the desired block. If the block is found, the data are made
available to the requester without any physical 1/0. If the block is not in the cache, the least
recently used block in the cache is renamed, the correct device driver is called to fill up the
renamed buffer, and then the data are made available. Write requests are handled in an
analogous manner. The correct buffer is found and relabeled if necessary. The write is per
formed simply by marking the buffer as "dirty." The physical 1/0 is then deferred until the
buffer is renamed.

The benefits in reduction of physical 1/0 of this scheme are substantial, especially con
sidering the file system implementation. There are, however, some drawbacks. The asynchro
nous nature of the algorithm makes error reporting and meaningful user error handling almost
impossible. The cavalier approach to 1/0 error handling in the UNIX system is partly due to
the asynchronous nature of the block 1/0 system. A second problem is in the delayed writes.
If the system stops unexpectedly, it is almost certain that there is a lot of logically complete,
but physically incomplete, 1/0 in the buffers. There is a system primitive to flush all out
standing 1/0 activity from the buffers. Periodic use of this primitive helps, but does not solve,
the problem. Finally, the associativity in the buffers can alter the physical 1/0 sequence from
that of the logical 1/0 sequence. This means that there are times when data structures on
disk are inconsistent, even though the software is careful to perform 1/0 in the correct order.
On non-random devices, notably magnetic tape, the inversions of writes can be disastrous.
The problem with magnetic tapes is "cured" by allowing only one outstanding write request
per drive.

3.2. Character 1/0 system

The character 1/0 system consists of all devices that do not fall into the block 1/0
model. This includes the "classical" character devices such as communications lines, paper
tape, and line printers. It also includes magnetic tape and disks when they are not used in a
stereotyped way, for example, 80-byte physical records on tape and track-at-a-time disk
copies. In short, the character 1/0 interface mearis "everything other than block." 1/0
requests from the user are sent to the device driver essentially unaltered. The implementa
tion of these requests is, of course, up to the device driver. There are guidelines and conven
tions to help the implementation of certain types of device drivers.

3.2.1. Disk drivers

Disk drivers are implemented with a queue of transaction records. Each record holds a
read/write flag, a primary memory address, a secondary memory address, and a transfer byte
count. Swapping is accomplished by passing such a record to the swapping device driver.

4-10 UNIX Implementation

The block 1/0 interface is implemented by passing such records with requests to fill and
empty system buffers. The character 1/0 interface to the disk drivers create a transaction
record that points directly into the user area. The routine that creates this record also insures
that the user is not swapped during this 1/0 transaction. Thus by implementing the general
disk driver, it is possible to use the disk as a block device, a character device, and a swap
device. The only really disk-specific code in normal disk drivers is the pre-sort of transactions
to minimize latency for a particular device, and the actual issuing of the 1/0 request.

3.2.2. Character lists

Real character-oriented devices may be implemented using the common code to handle
character lists. A character list is a queue of characters. One routine puts a character on a
queue. Another gets a character from a queue. It is also possible to ask how many characters
are currently on a queue. Storage for all queues in the system comes from a single common
pool. Putting a character on a queue will allocate space from the common pool and link the
character onto the data structure defining the queue. Getting a character from a queue
returns the corresponding space to the pool.

A typical character-output device (paper tape punch, for example) is implemented by
passing characters from the user onto a character queue until some maximum number of char
acters is on the queue. The 1/0 is prodded to start as soon as there is anything on the queue
and, once started, it is sustained by hardware completion interrupts. Each time there is a
completion interrupt, the driver gets the next character from the queue and sends it to the
hardware. The number of characters on the queue is checked and, as the count falls through
some intermediate level, an event (the queue address) is signaled. The process that is passing
characters from the user to the queue can be waiting on the event, and refill the queue to its
maximum when the event occurs.

A typical character input device (for example, a paper tape reader) is handled in a very
similar manner.

Another class of character devices is the terminals. A terminal is represented by .three
character queues. There are two input queues (raw and canonical) and an output queue.
Characters going to the output of a terminal are handled by common code exactly as
described above. The main difference is that there is also code to interpret the output stream
as ASCII characters and to perform some translations, e.g., escapes for deficient terminals.
Another common aspect of terminals is code to insert real-time delay after certain control
characters.

Input on terminals is a little different. Characters are collected from the terminal and
placed on a raw input queue. Some device-dependent code conversion and escape interpreta
tion is handled here. When a line is complete in the raw queue, an event is signaled. The
code catching this signal then copies a line from the raw queue to a canonical queue perform
ing the character erase and line kill editing. User read requests on terminals can be directed
at either the raw or canonical queues.

3.2.3. Other character devices

Finally, there are devices that fit no general category. These devices are set up as char
acter 1/0 drivers. An example is a driver that reads and writes unmapped primary memory as
an 1/0 device. Some devices are too fast to be treated a character at time, but do not fit the
disk 1/0 mold. Examples are fast communications lines and fast line printers. These devices
either have their own buffers or "borrow" block 1/0 buffers for a while and then give them
back.

4. THE FILE SYSTEM
In the UNIX system, a file is a (one-dimensional) array of bytes. No other structure of

files is implied by the system. Files are attached anywhere (and possibly multiply) onto a
hierarchy of directories. Directories are simply files that users cannot write. For a further

UNIX Implementation 4-11

discussion of the external view of files and directories, see Ref. 4.

The UNIX file system is a disk data structure accessed completely through the block 1/0
system. As stated before, the canonical view of a "disk" is a randomly addressable array of
512-byte blocks. A file system breaks the disk into four self-identifying regions. The first
block (address 0) is unused by the file system. It is left aside for booting procedures. The
second block (address 1) contains the so-called "super-block." This block, among other things,
contains the size of the disk and the boundaries of the other regions. Next comes the i-list, a
list of file definitions. Each file definition is a 64-byte structure, called an i-node. The offset
of a particular i-node within the i-list is called its i-number. The combination of device name
(major and minor numbers) and i-number serves to uniquely name a particular file. After the
i-list, and to the end of the disk, come free storage blocks that are available for the contents of
files.

The free space on a disk is maintained by a linked list of available disk blocks. Every
block in this chain contains a disk address of the next block in the chain. The remaining
space contains the address of up to 50 disk blocks that are also free. Thus with one 1/0
operation, the system obtains 50 free blocks and a pointer where to find more. The disk allo
cation algorithms are very straightforward. Since all allocation is in fixed-size blocks and
there is strict accounting of space, there is no need to compact or garbage collect. However, as
disk space becomes dispersed, latency gradually increases. Some installations choose to occa
sionally compact disk space to reduce latency.

An i-node contains 13 disk addresses. The first 10 of these addresses point directly at
the first 10 blocks of a file. If a file is larger than 10 blocks (5,120 bytes), then the eleventh
address points at a block that contains the addresses of the next 128 blocks of the file. If the
file is still larger than this (70,656 bytes), then the twelfth block points at up to 128 blocks,
each pointing to 128 blocks of the file. Files yet larger (8,459,264 bytes) use the thirteenth
address for a "triple indirect" address. The algorithm ends here with the maximum file size of
1,082,201,087 bytes.

A logical directory hierarchy is added to this flat physical structure simply by adding a
new type of file, the directory. A directory is accessed exactly as an ordinary file. It contains
16-byte entries consisting of a 14-byte name and an i-number. The root of the hierarchy is at
a known i-number (viz., 2). The file system structure allows an arbitrary, directed graph of
directories with regular files linked in at arbitrary places in this graph. In fact, very early
UNIX systems used such a structure. Administration of such a structure became so chaotic
that later systems were restricted to a directory tree. Even now, with regular files linked mul
tiply into arbitrary places in the tree, accounting for space has become a problem. It may
become necessary to restrict the entire structure to a tree, and allow a new form of linking
that is subservient to the tree structure.

The file system allows easy creation, easy removal, easy random accessing, and very easy
space allocation. With most physical addresses confined to a small contiguous section of disk,
it is also easy to dump, restore, and check the consistency of the file system. Large files suffer
from indirect addressing, but the cache prevents most of the implied physical 1/0 without
adding much execution. The space overhead properties of this scheme are quite good. For
example, on one particular file system, there are 25,000 files containing 130M bytes of data-file
content. The overhead Ci-node, indirect blocks, and last block breakage) is about 11.5M bytes.
The directory structure to support these files has about 1,500 directories containing 0.6M
bytes of directory content and about 0.5M bytes of overhead in accessing the directories.
Added up any way, this comes out to less than a 10 percent overhead for actual stored data.
Most systems have this much overhead in padded trailing blanks alone.

4.1. File system implementation

Because the i-node defines a file, the implementation of the file system centers around
access to the i-node. The system maintains a table of all active i-nodes. As a new file is
accessed, the system locates the corresponding i-node, allocates an i-node table entry, and

4-12 UNIX Implementation

reads the i-node into primary memory. As in the buffet cache, the table entry is considered to
be the current version of the i-node. Modifications to the i-node are made to the table entry.
When the last access to the i-node goes away, the table entry is copied back to the secondary
store i-list and the table entry is freed.

All 1/0 operations on files are carried out with the aid of the corresponding i-node table
entry. The accessing of a file is a straightforward implementation of the algorithms men
tioned previously. The user is not aware of i-nodes and i-numbers. References to the file sys
tem are made in terms of path names of the directory tree. Converting a path name into an
i-node table entry is also straightforward. Starting at some known i-node (the root or the
current directory of some process), the next component of the path name is searched by read
ing the directory. This gives an i-number and an implied device (that of the directory). Thus
the next i-node table entry can be accessed. If that was the last component of the path name,
then this i-node is the result. If not, this i-node is the directory needed to look up the next
comportent of the path name, and the algorithm is repeated.

The user process accesses the file system with certain primitives. The most common of
these are open, create, read, write, seek, and close. The data structures maintained are
shown in Fig. 2.

OPEN PILE
TAIL!

PIR·USIR OPEN
lllUTAILI

ACTIVE l·NOCE
TAILE

Fig. 2 File system data structure.

)
SWAPPED
PER/USER

)
RESIDENT
PER1SYSTEM

SECONOARY
STORAGE
PER/
FILE SYSTEM

In the system data segment associated with a user, there is room for some (usually between 10
and 50) open files. This open file table consists of pointers that can be used to access
corresponding i-node tab1e entries. Associated with each of these open files is a current 1/0
pointer. This is a byte offset of the next read/write operation on the file. The system treats
each read/write request as random with an implied seek to the 1/0 pointer. The user usually
thinks of the file as sequential with the 1/0 pointer automatically counting the number of
bytes that have been read/written from the file. The user may, of course, perform random 1/0
by setting the 1/0 pointer before reads/writes.

With file sharing, it is necessary to allow related processes to share a common 1/0
pointer and yet have separate 1/0 pointers for independent processes that access the same file.
With these two conditions, the 1/0 pointer cannot reside in the i-node table nor can it reside
in the list of open files for the process. A new table (the open file table) was invented for the
sole purpose of holding the 1/0 pointer. Processes that share the same open file (the result of
forks) share a common open file table entry. A separate open of the same file will only share

UNIX Implementation 4-13

the i-node table entry, but will have distinct open file table entries.

The main file system primitives are implemented as follows. open converts a file system
path name into an i-node table entry. A pointer to the i-node table entry is placed in a newly
created open file table entry. A pointer to the file table entry is placed in the system data
segment for the process. create first creates a new i-node entry, writes the i-number into a
directory, and then builds the same structure as for an open. read and write just access
the i-node entry as described above. seek simply manipulates the 1/0 pointer. No physical
seeking is done. close just frees the structures built by open and create. Reference counts
are kept on the open file table entries and the i-node table entries to free these structures
after the last reference goes away. unlink simply decrements the count of the number of
directories pointing at the given i-node. When the last reference to an i-node table entry goes
away, if the i-node has no directories pointing to it, then the file is removed and the i-node is
freed. This delayed removal of files prevents problems arising from removing active files. A
file may be removed while still open. The resulting unnamed file vanishes when the file is
closed. This is a method of obtaining temporary files.

There is a type of unnamed FIFO file called a pipe. Implementation of pipes consists of
implied seeks before each read or write in order to implement first-in-first-out. There are
also checks and synchronization to prevent the writer from grossly outproducing the reader
and to prevent the reader from overtaking the writer.

4.2. Mounted file systems

The file system of a UNIX system starts with some designated block device formatted as
described above to contain a hierarchy. The root of this structure is the root of the UNIX file
system. A second formatted block device may be mounted at any leaf of the current hierar
chy. This logically extends the current hierarchy. The implementation of mounting is trivial.
A mount table is maintained containing pairs of designated leaf i-nodes and block devices.
When converting a path name into an i-node, a check is made to see if the new i-node is a
designated leaf. If it is, the i-node of the root of the block device replaces it.

Allocation of space for a file is taken from the free pool on the device on which the file
lives. Thus a file system consisting of many mounted devices does not have a common pool of
free secondary storage space. This separation of space on different devices is necessary to
allow easy unmounting of a device.

4.3. Other system functions

There are some other things that the system does for the user-a little accounting, a lit
tle tracing/debugging, and a little access protection. Most of these things are not very well
developed because our use of the system in computing science research does not need them.
There are some features that are missed in some applications, for example, better inter
process communication.

The UNIX kernel is an 1/0 multiplexer more than a complete operating system. This is
as it should be. Because of this outlook, many features are found in most other operating sys
tems that are missing from the UNIX kernel. For example, the UNIX kernel does not support
file access methods, file disposition, file formats, file maximum size, spooling, command
language, logical records, physical records, assignment of logical file names, logical file names,
more than one character set, an operator's console, an operator, log-in, or log-out. Many of
these things are symptoms rather than features. Many of these things are implemented in
user software using the kernel as a tool. A good example of this is the command language.4

Each user may have his own command language. Maintenance of such code is as easy as
maintaining user code. The idea of implementing "system" code with general user primitives
comes directly from MULTICS. 5

4-14 UNIX Implementation

References

1. R. E. Griswold and D.R. Hanson, "An Overview of SL5," SIGPLAN Notices, vol. 12, no.
4, pp. 40-50, April 1977.

2. E. W. Dijkstra, "Cooperating Sequential Processes," in Programming Languages, ed. F.
Genuys, pp. 43-112, Academic Press, New York, 1968.

3. J. A. Hawley and W. B. Meyer, "MUNIX, A Multiprocessing Version of UNIX," M.S.
Thesis, Naval Postgraduate School, Monterey, Cal., 1975.

4. This issue, D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System," Bell
Sys. Tech. J., vol. 57, no. 6, pp. 1905-1929, 1978.

5. E. I. Organick, The MULTICS System, M.I.T. Press, Cambridge, Mass., 1972.

4.2BSD System Manual 4-15

4.2BSD System Manual
Revised July, 1983

William Joy, Eric Cooper, Robert Fabry,

Samuel Le{ff,er, Kirk McKusick and David Mosher

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

(415) 642-7780

o. Notation and types
The notation used to describe system calls is a variant of a C language call, consisting of

a prototype call followed by declaration of parameters and results. An additional keyword
result, not part of the normal C language, is used to indicate which of the declared entities
receive results. As an example, consider the read call, as described in section 2.1:

cc = read(fd, buf, nbytes);
result int cc; int fd; result char *buf; int nbytes;

The first line shows how the read routine is called, with three parameters. As shown on the
second line cc is an integer and read also returns information in the parameter buf.

Description of all error conditions arising from each system call is not provided here;
they appear in the programmer's manual. In particular, when accessed from the C language,
many calls return a characteristic -1 value when an error occurs, returning the error code in
the global variable errno. Other languages may present errors in different ways.

A number of system standard types are defined in the include file <sys/types.h> and
used in the specifications here and in many C programs. These include caddrJ giving a
memory address (typically as a character pointer), oft_t giving a file offset (typically as a long
integer), and a set of unsigned types u char, u short, u int and u long, shorthand names for
unsigned char, unsigned short, etZ - - -

UNIX is a trademark of Bell Laboratories

4-16 4.2BSD System Manual

1. Kernel primitives

The facilities available to a UNIX user process are logically divided into two parts: ker
nel facilities directly implemented by UNIX code running in the operating system, and system
facilities implemented either by the system, or in cooperation with a server process. These
kernel facilities are described in this section 1.

The facilities implemented in the kernel are those which define the UNIX virtual
machine which each process runs in. Like many real machines, this virtual machine has
memory management hardware, an interrupt facility, timers and counters. The UNIX virtual
machine also allows access to files and other objects through a set of descriptors. Each
descriptor resembles a device controller, and supports a set of operations. Like devices on real
machines, some of which are internal to the machine and some of which are external, parts of
the descriptor machinery are built-in to the operating system, while other parts are often
implemented in server processes on other machines. The facilities provided through the
descriptor machinery are described in section 2.

4.2BSD System Manual 4-17

1.1. Processes and protection

1.1.1. Host and process identifiers

Each UNIX host has associated with it a 32-bit host id, and a host name of up to 255
characters. These are set (by a privileged user) and returned by the calls:

sethostid(hostid)
long hostid;

hostid = gethostid();
result long hostid;

sethostname(name, len)
char *name; int len;

len = gethostname(buf, buflen)
result int len; result char *buf; int buflen;

On each host runs a set of processes. Each process is largely independent of other processes,
having its own protection domain, address space, timers, and an independent set of references
to system or user implemented objects.

Each process in a host is named by an integer called the process id. This number is in
the range 1-30000 and is returned by the getpid routine:

pid = getp~d();
result int pid;

On each UNIX host this identifier is guaranteed to be unique; in a multi-host environment,
the (hostid, process id) pairs are guaranteed unique.

1.1.2. Process creation and termination

A new process is created by making a logical duplicate of an existing process:

pid =fork();
result int pid;

The fotk call returns twice, once in the parent process, where pid is the process identifier of
the child, and once in the child process where pid is 0. The parent-child relationship induces
a hierarchical structure on the set of processes in the system.

A process may terminate by executing an exit call:

exit(status)
int status;

returning 8 bits of exit status to its parent.

When a child process exits or terminates abnormally, the pa:rent process receives infor
mation about any event which caused termination of the child process. A second call provides
a non-blocking interface and may also be used to retrieve information about resources con
sumed by the process during its lifetime.

4-18 4.2BSD System Manual

#include <sys/wait.h>

pid = wait(astatus);
result int pid; result union wait *astatus;

pid = wait3(astatus, options, arusage);
result int pid; result union waitstatus *astatus;
int options; result struct rusage *arusage;

A process can overlay itself with the memory image of another process, passing the newly
created process a set of parameters, using the call:

execve(name, argv, envp)
char *name, **argv, **envp;

The specified name must be a file which is in a format recognized by the system, either a
binary executable file or a file which causes the execution of a specified interpreter program to
process its contents.

1.1.3. User and group ids

Each process in the system has associated with it two user-id's: a real user id and a
effective user id, both non-negative 16 bit integers. Each process has an real accounting
group id and an effective accounting group id and a set of access group id's. The group id's
are non-negative 16 bit integers. Each process may be in several different access groups, with
the maximum concurrent number of access groups a system compilation parameter, the con
stant NGROUPS in the file <sys/param.h>, guaranteed to be at least 8.

The real and effective user ids associated with a process are returned by:

ruid = getuid();
result int ruid;

euid = geteuid();
result int euid;

the real and effective accounting group ids by:

rgid = getgid();
result int rgid;

egid = getegid();
result int egid;

and the access group id set is returned by a getgroups call:

ngroups = getgroups(gidsetsize, gidset);
result int ngroups; int gidsetsize; result int gidset[gidsetsize];

The user and group id's are assigned at login time using the setreuid, setregid, and set
groups calls:

setreuid(ruid, euid);
int ruid, euid;

setregid(rgid, egid);
int rgid, egid;

setgroups(gidsetsize, gidset)
int gidsetsize; int gidset[gidsetsize];

4.2BSD System Manual 4-19

The setreuid call sets both the real and effective user-id's, while the setregid call sets both the
real and effective accounting group id's. Unless the caller is the super-user, ruid must be
equal to either the current real or effective user-id, and rgid equal to either the current real or
effective accounting group id. The setgroups call is restricted to the super-user.

1.1.4. Process groups

Each process in the system is also normally associated with a process group. The group
of processes in a process group is sometimes referred to as a job and manipulated by high
level system software (such as the shell). The current process group of a process is returned
by the getpgrp call:

pgrp = getpgrp(pid);
result int pgrp; int pid;

When a process is in a specific process group it may receive software interrupts affecting the
group, causing the group to suspend or resume execution or to be interrupted or terminated.
In particular, a system terminal has a process group and only processes which are in the pro
cess group of the terminal may read from the terminal, allowing arbitration of terminals
among several different jobs.

The process group associated with a process may be changed by the setpgrp call:

setpgrp(pid, pgrp);
int pid, pgrp;

Newly created processes are assigned process id's distinct from all processes and process
groups, and the same process group as their parent. A normal (unprivileged) process may set
its process group equal to its process id. A privileged process may set the process group of
any process to any value.

4-20 4.2BSD System Manual

1.2. Memory managementt

1.2.1. Text, data and stack

Each process begins execution with three logical areas of memory called text, data and
stack. The text area is read-only and shared, while the data and stack areas are private to the
process. Both the data and stack areas may be extended and contracted on program request.
The call

addr = sbrk(incr);
result caddi:_t addr; int incr;

changes the size of the data area by incr bytes and returns the new end of the data area, while

addr = sstk(incr);
result caddt..t addr; int incr;

changes the size of the stack area. The stack area is also automatically extended as needed.
On the VAX the text and data areas are adjacent in the PO region, while the stack section is
in the Pl region, and grows downward.

1.2.2. Mapping pages

The system supports sharing of data between processes by allowing pages to be mapped
into memory. These mapped pages may be shared with other processes or private to the pro
cess. Protection and sharing options are defined in <mman.h> as:

/* protections are chosen from these bits, or-ed together *I
#define PROT READ Ox4 /* pages can be read *I
#define PROTWRITE Ox2 /*pages ca~ be written*/
#define PROT_EXEC Oxl /* pages can be executed *I

/* sharing types; choose either SHARED or PRIVATE *I
#define MA~HARED 1 /* share changes *I
#define MAP_PRIV ATE 2 /* changes are 'private *I

The cpu-dependent size of a page is returned by the getpagesize system call:

pagesize = getp11gesize();
result int pagesize;

The call:

mmap(addr, len, prot, share, fd, pos);
caddr._t addr; int len, prot, share, fd; off t_pos;

causes the pages starting at addr and continuing for len bytes to be mapped from the object
represented by descriptor fd, at absolute position pos. The parameter share specifies whether
modifications made to this mapped copy of the page, are to be kept private, or are to be
shared with other references. The parameter prot specifies the accessibility of the mapped
pages. The addr, len, and pos parameters must all be multiples of the pagesize.

A process can move pages within its own memory by using the mremap call:

mremap(addr, len, prot, share, fromaddr);
caddtJ; addr; int len, prot, share; caddt,j; fromaddr;

This call maps the pages starting at fromaddr to the address specified by addr.

t This section represents the interface planned for later releases of the system. Of the calls described in
this section, only sbrk and getpagesize are included in 4.2BSD.

A mapping can be removed by the call

munmap(addr, len);
cadd:r_t addr; int len;

4.2BSD System Manual 4-21

This causes further references to these pages to refer to private pages initialized to zero.

1.2.3. Page protection control
A process can control the protection of pages using the call

mprotect(addr, len, prot);
caddi:,t addr; int len, prot;

This call changes the specified pages to have protection prot.

1.2.4. Giving and getting advice
A process that has knowledge of its memory behavior may use the madvise call:

madvise(addr, len, behav);
cadd~t addr; int len, behav;

Behav describes expected behavior, as given in <mman.h>:

#define MADV_NORMAL 0 /*no further special treatment*/
#define MADV_RANDOM 1 /*expect random page references*/
#define MAD~SEQUENTIAL 2 /* ·expect sequential references *I
#define MADV_WILLNEED 3 /* will need these pages *I
#define MADV DONTNEED 4 /* don't need these pages *I

Finally, a process may obtain information about whether pages are core resident by using the
call

mincore(addr, len, vec)
caddi:_t addr; int len; result char *vec;

Here the current core residency of the pages is returned in the character array vec, with a
value of 1 meaning that the page is in-core.

4-22 4.2BSD System Manual

1.3. Signals

1.3.1. Overview

The system defines a set of signals that may be delivered to a process. Signal delivery
resembles the occurrence of a hardware interrupt: the signal is blocked from further
occurrence, the current process context is saved, and a new one is built. A process may
specify the handler to which a signal is delivered, or specify that the signal is to be blocked or
ignored. A process may also specify that a default action is to be taken when signals occur.

Some signals will cause a process to exit when they are not caught. This may be accom
panied by creation of a core image file, containing the current memory image of the process
for use in post-mortem debugging. A process may choose to have signals delivered on a spe
cial stack, so that sophisticated software stack manipulations are possible.

All signals have the same priority. If multiple signals are pending simultaneously, the
order in which they are delivered to a process is implementation specific. Signal routines exe
cute with the signal that caused their invocation blocked, but other signals may yet occur.
Mechanisms are provided whereby critical sections of code may protect themselves against the
occurrence of specified signals.

1.3.2. Signal types

The signals defined by the system fall into one of five classes: hardware conditions,
software conditions, input/output notification, process control, or resource control. The set of
signals is defined in the file <signal.h>.

Hardware signals are derived from exceptional conditions which may occur during execu
tion. Such signals include SIGFPE representing floating point and other arithmetic excep
tions, SIGILL for illegal instruction execution, SIGSEGV for addresses outside the currently
assigned area of memory, and SIGBUS for accesses that violate memory protection con
straints. Other, more cpu-specific hardware signals exist, such as those for the various
customer-reserved instructions on the VAX (SIGIOT, SIGEMT, and SIGTRAP).

Software signals reflect interrupts generated by user request: SIGINT for the normal
interrupt signal; SIGQUIT for the more powerful quit signal, that normally causes a core
image to be generated; SIGHUP and SIGTERM that cause graceful process termination,
either because a user has "hung up", or by user or program request; and SIGKILL, a more
powerful termination signal which a process cannot catch or ignore. Other software signals
(SIGALRM, SIGVTALRM, SIGPROF) indicate the expiration of interval timers.

A process can request notification via a SIGIO signal when input or output is possible on
a descriptor, or when a non-blocking operation completes. A process may request to receive a
SIGURG signal when an urgent condition arises.

A process may be stopped by a signal sent to it or the members of its process group.
The SIGSTOP signal is a powerful stop signal, because it cannot be caught. Other stop sig
nals SIGTSTP, SIGTTIN, and SIGTTOU are used when a user request, input request, or out
put request respectively is the reason the process is being stopped. A SIGCONT signal is sent
to a process when it is continued from a stopped state. Processes may receive notification
with a SIGCHLD signal when a child process changes state, either by stopping or by terminat
ing.

Exceeding resource limits may cause signals to be generated. SIGXCPU occurs when a
process nears its CPU time limit and SIGXFSZ warns that the limit on file size creation has
been reached.

4.2BSD System Manual 4-23

1.3.3. Signal handlers

A process has a handler associated with each signal that controls the way the signal is
delivered. The call

#include <signal.h>

struct sigvec {
int
int
int

};

(*s~handler)();

sv_mask;
sv_onstack;

sigvec(signo, sv, osv)
int signo; struct sigvec *sv; result struct sigvec *osv;

assigns interrupt handler address SIJ...handler to signal signo. Each handler address specifies
either an interrupt routine for the signal, that the signal is to be ignored, or that a default
action (usually process termination) is to occur if the signal occurs. The constants SIGJGN
and SIG_DEF used as values for SIL.handler cause ignoring or defaulting of a condition. The
sv mask and sv onstack values specify the signal mask to be used when the handler is invoked
and whether the handler should operate on the normal run-time stack or a special signal stack
(see below). If osv is non-zero, the previous signal vector is returned.

When a signal condition arises for a process, the signal is added to a set of signals pend
ing for the process. If the signal is not currently blocked by the process then it will be
delivered. The process of signal delivery adds the signal to be delivered and those signals
specified in the associated signal handler's S1Lmask to a set of those masked for the process,
saves the current process context, and places the process in the context of the signal handling
routine. The call is arranged so that if the signal handling routine exits normally the signal
mask will be restored and the process will resume execution in the original context. If the
process wishes to resume in a different context, then it must arrange to restore the signal
mask itself.

The mask of blocked signals is independent of handlers for signals. It prevents signals
from being delivered much as a raised hardware interrupt priority level prevents hardware
interrupts. Preventing an interrupt from occurring by changing the handler is analogous to
disabling a device from further interrupts.

The signal handling routine sv handler is called by a C call of the form

(*s~handler)(signo, code, scp);
int signo; long code; struct sigcontext *scp;

The signo gives the number of the signal that occurred, and the code, a word of information
supplied by the hardware. The scp parameter is a pointer to a machine-dependent structure
containing the information for restoring the context before the signal.

1.3.4. Sending signals

A process can send a signal to another process or group of processes with the calls:

kill(pid, signo)
int pid, signo;

killpgrp(pgrp, signo)
int pgrp, signo;

Unless the process sending the signal is privileged, it and the process receiving the signal must
have the same effective user id.

4-24 4.2BSD System Manual

Signals are also sent implicitly from a terminal device to the process group associated
with the terminal when certain input characters are typed.

1.3.5. Protecting critical sections

To block a section of code against one or more signals, a sigblock call may be used to
add a set of signals to the existing mask, returning the old mask:

oldmask = sigblock(mask);
result long oldmask; long mask;

The old mask can then be restored later with sigsetmask,

oldmask = sigsetmask(mask);
result long oldmask; long mask;

The sigblock call can be used to read the current mask by specifying an empty mask.

It is possible to check conditions with some signals blocked, and then to pause waiting
for a signal and restoring the mask, by using:

sigpause(mask);
long mask;

1.3.6. Signal stacks

Applications that maintain complex or fixed size stacks can use the call

struct sigstack {
caddr_t
int

};

sigstack(ss, oss)

ss21p;
SLonstack;

struct sigstack *ss; result struct sigstack *oss;

to provide the system with a stack based at ss sp for delivery of signals. The value ss onstack
indicates whether the process is currently on the signal stack, a notion maintained in software
by the system.

When a signal is to be delivered, the system checks whether the process is on a signal
stack. If not, then the process is switched to the signal stack for delivery, with the return
from the signal arranged to restore the previous stack.

If the process wishes to take a non-local exit from the signal routine, or run code from
the signal stack that uses a different stack, a sigstack call should be used to reset the signal
stack.

4.2BSD Sysiem Manual 4-25

1.4. Timers

1.4.1. Real time

The system's notion of the current Greenwich time and the current time zone is set and
returned by the call by the calls:

#include <sys/time.h>

settimeofday(tvp, tzp);
struct timeval *tp;
struct timezone *tzp;

gettimeofday(tp, tzp);
result struct timeval *tp;
result struct timezone *tzp;

where the structures are defined in <sys/time.h> as:

struct timeval {
long
long

};

struct timezone {
int
int

};

tv_sec;
tv_usec;

t7!_ minuteswest;
t2L,_dsttime;

/* seconds since Jan 1, 1970 *I
/* and microseconds *I

/* of Greenwich *I
/* type of dst correction to apply *I

Earlier versions of UNIX contained only a 1-second resolution version of this call, which
remains as a library routine:

time(tvsec)
result long *tvsec;

returning only the tv sec field from the gettimeofday call.

1.4.2. Interval time

The system provides each process with three interval timers, defined in <sys/time.h>:

#define ITIMER_REAL 0 /* real time intervals *I
#define ITIMEil,_YIRTUAL 1 /* virtual time intervals *I
#define ITIMERJ>ROF 2 /* user and system virtual time *I

The !TIMER REAL timer decrements in real time. It could be used by a library routine to
maintain a wakeup service queue. A SIGALRM signal is delivered when this timer expires.

The ITIMER_yIRTUAL timer decrements in process virtual time. It runs only when
the process is executing. A SIGVTALRM signal is delivered when it expires.

The ITIMERJ>ROF timer decrements both in process virtual time and when the system
is running on behalf of the process. It is designed to be used by processes to statistically
profile their execution. A SIGPROF signal is delivered when it expires.

A timer value is defined by the itimerval structure:

struct itimerval {
struct
struct

};

timeval it interval; /* timer interval *I ..,.
timeval it_yalue; /* current value *I

and a timer is set or read by the call:

4-26 4.2BSD System Manual

getitimer(which, value);
int which; result struct itimerval *value;

setitimer(which, value, ovalue);
int which; struct itimerval *value; result struct itimerval *ovalue;

The third argument to setitimer specifies an optional structure to receive the previous con
tents of the interval timer. A timer can be disabled by specifying a timer value of 0.

The system rounds argument timer intervals to be not less than the resolution of its
clock. This clock resolution can be determined by loading a very small value into a timer and
reading the timer back to see what value resulted.

The alarm system call of earlier versions of UNIX is provided as a library routine using
the ITIMER_REAL timer. The process profiling facilities of earlier versions of UNIX remain
because it is not always possible to guarantee the automatic restart of system calls after
receipt of a signal.

profil(buf, bufsize, offset, scale);
result char *buf; int bufsize, offset, scale;

4.2BSD System Manual 4-27

1.5. Descriptors

1.5.1. The reference table
Each process has access to resources through descriptors. Each descriptor is a handle

allowing the process to reference objects such as files, devices and communications links.

Rather than allowing processes direct access to descriptors, the system introduces a level
of indirection, so that descriptors may be shared between processes. Each process has a
descriptor reference table, containing pointers to the actual descriptors. The descriptors
themselves thus have multiple references, and are reference counted by the system.

Each process has a fixed size descriptor reference table, where the size is returned by the
getdtablesize call:

nds = getdtablesize();
result int nds;

and guaranteed to be at least 20. The entries in the descriptor reference table are referred to
by small integers; for example if there are 20 slots they are numbered 0 to 19.

1.5.2. Descriptor properties
Each descriptor. has a logical set of properties maintained by the system and defined by

its type. Each type supports a set of operations; some operations, such as reading and writing,
are common to several abstractions, while others are unique. The generic operations applying
to many of these types are described in section 2.1. Naming contexts, files and directories are
described in section 2.2. Section 2.3 describes communications domains and sockets. Termi
nals and (structured and unstructured) devices are described in section 2.4.

1.5.3. Managing descriptor references
A duplicate of a descriptor reference may be made by doing

new = dup(old);
result int new; int old;

returning a copy of descriptor reference old indistinguishable from the original. The new
chosen by the system will be the smallest unused descriptor reference slot. A copy of a
descriptor reference may be made in a specific slot by doing

dup2(old, new);
int old, new;

The dup2 call causes the system to deallocate the descriptor reference current occupying slot
new, if any, replacing it with a reference to the same descriptor as old. This deallocation is
also performed by:

close(old);
int old;

1.5.4. Multiplexing requests

The system provides a standard way to do synchronous and asynchronous multiplexing
of operations.

Synchronous multiplexing is performed by using the select call:

nds = select(nd, in, out, except, tvp);
result int nds; int nd; result *in, *out, *except;
struct timeval *tvp;

The select call examines the descriptors specified by the sets in, out and except, replacing the

4-28 4.2BSD System Manual

specified bit masks by the subsets that select for input, output, and exceptional conditions
respectively (nd indicates tlie size, in bytes, of the bit masks). If any descriptors meet the fol
lowing criteria, then the number of such descriptors is returned in nds and the bit masks are
updated.

• A descriptor selects for input if an input oriented operation such as read or receive is
possible, or if a connection request may be accepted (see section 2.3.1.4).

• A descriptor selects for output if an output oriented operation such as write or send is
possible, or if an operation that was "in progress", such as connection establishment, has
completed (see section 2.1.3).

• A descriptor selects for an exceptional condition if a condition that would cause a
SIGURG signal to be generated exists (see section 1.3.2).

If none of the specified conditions is true, the operation blocks for at most the amount of time
specified by tvp, or waits for one of the conditions to arise if tvp is given as 0.

Options affecting i/o on a descriptor may be read and set by the call:

dopt = fcntl(d, cmd, arg)
result int dopt; int d, cmd, arg;

/* interesting values for cmd *I
#define F_SETFL 3
#define F_GETFL 4
#define F_SETOWN 5
#define F_GETOWN 6

/* set descriptor options *I
/* get descriptor options *I
/*set descriptor owner (pid/pgrp) */
/*get descriptor owner (pid/pgrp) */

The F SETFL cmd may be used to set a descriptor in non-blocking i/o mode and/o:r enable
signaIBng when i/o is pm1sible. F_SETOWN :may be used to specify a process or process group
to be signalled when qsing the latter mode of operation.

Operations on non-blocking descriptors will either complete immediately, note an error
EWOULDBLOCK, partially complete an input or output operation returning a partial count,
or return an error EINPROGRESS noting that the requested operation is in progress. A
descriptor which has signlllling enabled will cause the specified process and/or process group
be signaled, with a SIGIO for input, output, or in-progress operation complete, or a SIGURG
for exceptional conditions.

For example, when writing to a terminal using non-blocking output, the system will
accept only as much data as there is buffer space for and return; when making a connection
on a socket, the operation may return indicllting that the connection establishment is "in pro
gress". The select facility can be used to determine when further output is possible on the
terminal, or when the connection establishment attempt is complete.

1.5.5. Descriptor wrapping.t

A user process may build descriptors of a specified type by wrapping a communications
channel with a system supplied protocol translator:

new= wrap(old, proto)
result int new; int old; struct dprop *proto;

Operations on the descriptor old are then translated by the system provided protocol transla
tor into requests on the underyling object old in a way define!f by the protocol. The protocols
supported by the kernel may vary from system to system and are described in the program
mers manual.

t The facilities described in this section are not included in 4.2BSD.

4.2BSD System Manual 4-29

Protocols may be based on communications multiplexing or a rights-passing style of han
dling multiple requests made on the same object. For instance, a protocol for implementing a
file abstraction may or may not include locally generated "read-ahead" requests. A protocol
that provides for read-ahead may provide higher performance but have a more difficult imple
mentation.

Another example is the terminal driving facilities. Nornially a terminal is associated
with a communications line and the terminal type and standard terminal access protocol is
wrapped around a synchronous communications line and given to the user. If a virtual termi
nal is required, the terminal driver can be wrapped around a communications link, the other
end of which is held by a virtual terminal protocol interpreter.

4-30 4.2BSD System Manual

1.6. Resource controls

1.6.1. Process priorities
The system gives CPU scheduling priority to processes that have not used CPU time

recently. This tends to favor interactive processes and processes that execute only for short
periods. It is possible to determine the priority currently assigned to a process, process group,
or the processes of a specified user, or to alter this priority using the calls:

#define PRIO_PROCESS
#define PRIO_J>GRP
#define PRIO_USER

prio = getpriority(which, who);
result int prio; int which, who;

setpriority(which, who, prio);
int which, who, prio;

0
1
2

/* process *I
/* process group *I
/*user id*/

The value prio is in the range -20 to 20. The default priority is O; lower priorities cause more
favorable execution. The getpriority call returns the highest priority (lowest numerical value)
enjoyed by any of the specified processes. The setpriority call sets the priorities of all of the
specified processes to the specified value. Only the super-user may lower priorities.

1.6.2. Resource utilization
The resources used by a process are returned by a getrusage call, returning information

in a structure defined in <sys/resource.h>:

#define RUSAGE SELF 0
#define RUSAGECHILDREN -1

getrusage(who, rusage)
int who; result struct rusage *rusage;

struct rusage {
struct timeval ru_utime;
struct timeval ru_stime;
int ru_JD.axrss;
int rujxrss;
int rqjdrss;
int rtLisrss;
int ru_minflt;
int ru_majflt;
int ru_nswap;
int rujnblock;
int ru_oublock;
int ru_msgsnd;
int l'UJilSgrcv;
int ruJlsignals;
int ru_nvcsw;
int nuiivcsw;

};

/* usage by this process *I
/* usage by all children *I

/* user time used *I
/* system time used *I
/* maximum core resident set size: kbytes *I
/* integral shared memory size (kbytes*sec) *I
/* unshared data " *I
/* unshared stack " *I
/* page-reclaims *I
/* page faults *I
/*swaps*/
/* block input operations *I
/* block output " *I
/* messages sent *I
/* messages received *I
/* signals received *I
/* voluntary context switches *I
/* involuntary " *I

The who parameter specifies whose resource usage is to be returned. The resources used by
the current process, or by all the terminated children of the current process may be requested.

4.2BSD System Manual 4-31

1.6.3. Resource limits

The resources of a process for which limits are controlled by the kernel are defined in
<sys/resource.h>, and controlled by the getrlimit and setrlimit calls:

#define RLIMIT_CPU
#define RLIMIT_FSIZE
#define RLIMITJ)ATA
#define RLIMIT_STACK
#define RLIMIT_CORE
#define RLIMIT_RSS

#define RLIM_NLIMITS

#define RLIM_INFINITY

struct rlimit {
int
int

};

rlim_sur;
rlim_max;

getrlimit(resource, rlp)

0
1
2
3
4
5

6

/* cpu time in milliseconds *I
/* maximum file size *I
/* maximum data segment size *I
/* maximum stack segment size *I
/* maximum core file size *I
/* maximum resident set size *I

Ox7fffffff

/* current (soft) limit *I
/* hard limit *I

int resource; result struct rlimit *rlp;

setrlimit(resource, rlp)
int resource; struct rlimit *rlp;

Only the super-user can raise the maximum limits. Other users may only alter rli"l_cur
within the range from 0 to rli"!_max or (irreversibly) lower rlim_max.

4-32 4.2BSD System Manual

1.7. System operation support

Unless noted otherwise, the calls in this section are permitted only to a privileged user.

1.7.1. Bootstrap operations

The call

mount(blkdev, dir, ronly);
char *blkdev, *dir; int ronly;

extends the UNIX name space. The mount call specifies a block device blkdev containing a
UNIX file system to be made available starting at dir. If ronly is set then the file system is
read-only; writes to the file system will not be permitted and access times will not be updated
when files are referenced. Dir is normally a name in the root directory.

The call

swapon(blkdev, size);
char *blkdev; int size;

specifies a device to be made available for paging and swapping.

1.7.2. Shutdown operations

The call

unmount(dir);
char *dir;

unmounts the file system mounted on dir. This call will succeed only if the file system is not
currently being used.

The call

sync();

schedules input/output to clean all system buffer caches. (This call does not require
priveleged status.)

The call

reboot(how)
int how;

causes a machine halt or reboot. The call may request a reboot by specifying how as
RB AUTOBOOT, or that the machine be halted with RB_HALT. These constants are defined
in <sys/reboot.h>.

1.7.3. Accounting

The system optionally keeps an accounting record in a file for each process that exits on
the system. The format of this record is beyond the scope of this document. The accounting
may be enabled to a file name by doing

acct(path);
char *path;

If path is null, then accounting is disabled. Otherwise, the named file becomes the accounting
file.

4.2BSD System Manual 4-33

2. System facilities

This section discusses the system facilities that are not considered part of the kernel.

The system abstractions described are:

Directory contexts

Files

A directory context is a position in the UNIX file system name space. Operations on
files and other named objects in a file system are always specified relative to such a con
text.

Files are used to store uninterpreted sequence of bytes on which random access reads
and writes may occur. Pages from files may also be mapped into process address space.
A directory may be read as a filet.

Communications domains
A communications domain represents an interprocess communications environment, such
as the communications facilities of the UNIX system, communications in the INTER
NET, or the resource sharing protocols and access rights of a resource sharing system on
a local network.

Sockets
A socket is an endpoint of communication and the focal point for IPC in a communica
tions domain. Sockets may be created in pairs, or given names and used to rendezvous
with other sockets in a communications domain, accepting connections from these sock
ets or exchanging messages with them. These operations model a labeled or unlabeled
communications graph, and can be used in a wide variety of communications domains.
Sockets can have different types to provide different semantics of communication,
increasing the flexibility of the model.

Terminals and other devices
Devices include terminals, providing input editing and interrupt generation and output
flow control and editing, magnetic tapes, disks and other peripherals. They often sup
port the generic read and write operations as well as a number of ioctls.

Processes
Process descriptors provide facilities for control and debugging of other processes.

t Support for mapping files is not included in the 4.2 release.

4-34 4.2BSD System Manual

2.1. Generic operations

Many system abstractions support the operations read, write and ioctl. We describe the
basics of these common primitives here. Similarly, the mechanisms whereby normally syn
chronous operations may occur in a non-blocking or asynchronous fashion are common to all
system-defined abstractions and are described here.

2.1.1. Read and write

The read and write system calls can be applied to communications channels, files, termi
nals and devices. They have the form:

cc = read(fd, buf, nbytes);
result int cc; int fd; result caddt..t buf; int nbytes;

cc = write(fd, buf, nbytes);
result int cc; int fd; caddLt buf; int nbytes;

The read call transfers as much data as possible from the object defined by fd to the buffer at
address buf of size nbytes. The number of bytes transferred is returned in cc, which is -1 if a
return occurred before any data was transferred because of an error or use of non-blocking
operations.

The write call transfers data from the buffer to the object defined by fd. Depending on
the type of fd, it is possible that the write call will accept some portion of the provided bytes;
the user should resubmit the other bytes in a later request in this case. Error returns because
of interrupted or otherwise incomplete operations are possible.

Scattering of data on input or gathering of data for output is also possible using an array
of input/output vector descriptors. The type for the descriptors is defined in <sys/uio.h> as:

struct iovec {
cadd~_t
int

};

iov msg;
iov len;

The calls using an array of descriptors are:

cc = readv(fd, iov, iovlen);

/* base of a component *I
/* length of a component *I

result int cc; int fd; struct iovec *iov; int iovlen;

cc = writev(fd, iov, iovlen);
result int cc; int fd; struct iovec *iov; int iovlen;

Here iovlen is the count of elements in the iov array.

2.1.2. Input/output control

Control operations on an object are performed by the ioctl operation:

ioctl(fd, request, buffer);
int fd, request; caddt_t buffer;

This operation causes the specified request to be performed on the object fd. The request
parameter specifies whether the argument buffer is to be read, written, read and written, or is
not needed, and also the size of the buffer, as well as the request. Different descriptor types
and subtypes within descriptor types may use distinct ioctl requests. For example, operations
on terminals control flushing of input and output queues and setting of terminal parameters;
operations on disks cause formatting operations to occur; operations on tapes control tape
positioning.

4.2BSD System Manual 4-35

The names for basic control operations are defined in <sys/ioctl.h>.

2.1.3. Non-blocking and asynchronous operations

A process that wishes to do non-blocking operations on one of its descriptors sets the
descriptor in non-blocking mode as described in section 1.5.4. Thereafter the read call will
return a specific EWOULDBLOCK error indication if there is no data to be read. The pro
cess may dselect the associated descriptor to determine when a read is possible.

Output attempted when a descriptor can accept less than is requested will either accept
some of the provided data, returning a shorter than normal length, or return an error indicat
ing that the operation would block. More output can be performed as soon as a select call
indicates the object is writeable.

Operations other than data input or output may be performed on a descriptor in a non
blocking fashion. These operations will return with a characteristic error indicating that they
are in progress if they cannot return immediately. The descriptor may then be selected for
write to find out when the operation can be retried. When select indicates the descriptor is
writeable, a respecification of the original operation will return the result of the operation.

4-36 4.2BSD System Manual

2.2. File system

2.2.1. Overview

The file system abstraction provides access to a hierarchical file system structure. The
file system contains directories (each of which may contain other sub-directories) as well as
files and references to other objects such as devices and inter-process communications sockets.

Each file is organized as a linear array of bytes. No record boundaries or system related
information is preserlt in a file. Files may be read and written in a random-access fashion.
The user may read the data in a directory as though it were an ordinary file to determine the
names of the contained files, but only the system may write into the directories. The file sys
tem stores only a small amount of ownership, protection and usage information with a file.

2.2.2. Naming

The file system calls take path name arguments. These consist of a zero or more com
ponent file names separated by"/'' characters, where each file name is up to 255 ASCII char
acters excluding null and"/".

Each process always has two naming contexts: one for the root directory of the file sys
tem and one for the current working directory. These are used by the system in the filename
translation process. If a path name begins with a"/", it is called a full path name and inter
preted relative to the root directory context. If the path name does not begin with a "/" it is
called a relative path nanie and interpreted relative to the currerit directory context.

The systerti limits the total length of a path name to 1024 characters.

The file name " .. " in each directory refers to the parent directory of that directory. The
parent directory of a file system is always the systems root directory.

The calls

chdir(path);
char *path;

chroot(path)
char *path;

change the current working directory and root directory context of a process. Only the super
user can change the root directory context of a process.

2.2.3. Creation and removal

The file system allows directories, files, special devices, and "portals" to be created and
removed from the file system.

2.2.3.1. Directory creation and removal

A directory is created with the mkdir system call:

mkdir(path, mode);
char *path; int mode;

and removed with the rmdir system call:

rmdir(path);
char *path;

A directory must be empty if it is to be deleted.

2.2.3.2. File creation

Files are created with the open system call,

fd = open(path, oflag, mode);
result int fd; char *path; int oflag, mode;

4.2BSD System Manual 4-37

The path parameter specifies the name of the file to be created. The oftag parameter must
include O....CREAT from below to cause the file to be created. The protection for the new file
is specified in mode. Bits for oftag are defined in <sys/file.h>:

#define O_RDONL Y 000 /* open for reading *I
#define O_WRONL Y 001 /* open for writing *I
#define O_RDWR 002 /* open for read & write *I
#define O_NDELA Y 004 /* non-blocking open *I
#define O_APPEND 010 /* append on each write *I
#define O_CREAT 01000 /*open with file create*/
#define o_TRUNC 02000 /* open with truncation *I
#define O_EXCL 04000 /* error on create if file exists *I

One of O_RDONLY, O_WRONLY and O_RDWR should be specified, indicating what
types of operations are desired to be performed on the open file. The operations will be
checked against the user's access rights to the file before allowing the open to succeed. Speci
fying O_APPEND causes writes to automatically append to the file. The flag O_CREAT
causes the file to be created if it does not exist, with the specified mode, owned by the current
user and the group of the containing directory.

If the open specifies to create the file with Q_EXCL and the file already exists, then the
open will fail without affecting the file in any way. This provides a simple exclusive access
facility.

2.2.3.3. Creating references to devices

The file system allows entries which reference peripheral devices. Peripherals are dis
tinguished as block or character devices according by their ability to support block-oriented
operations. Devices are identified by their "major" and "minor" device numbers. The major
device number determines the kind of peripheral it is, while the minor device number indi
cates one of possibly many peripherals of that kind. Structured devices have all operations
performed internally in "block" quantities while unstructured devices often have a number of
special ioctl operations, and may have input and output performed in large units. The mknod
call creates special entries:

mknod(path, mode, dev);
char *path; int mode, dev;

where mode is formed from the object type and access permissions. The parameter dev is a
configuration dependent parameter used to identify specific character or block i/o devices.

2.2.3.4. Portal creationt

The call

fd = portal(name, server, param, dtype, protocol, domain, socktype)
result int fd; char *name, *server, *param; int dtype, protocol;
int domain, socktype;

places a name in the file system name space that causes connection to a server process when
the name is used. The portal call returns an active portal in fd as though an access had
occurred to activate an inactive portal, as now described.

t The portal call is not implemented in 4.2BSD.

4-38 4.2BSD System Manual

When an inactive portal is accesseed, the system sets up a socket of the specified sock
type in the specified communications domain (see section 2.3), and creates the server process,
giving it the specified param as argument to help it identify the portal, and also giving it the
newly created socket as descriptor number 0. The accessor of the portal will create a socket in
the same domain and connect to the server. The user will then wrap the socket in the
specified protocol to create an object of the required descriptor type dtype and proceed with
the operation which was in progress before the portal was encountered.

While the server process holds the socket (which it received as fd from the portal call on
descriptor 0 at activation) further references will result in connections being made to the same
socket.

2.2.3.5. File, device, and portal removal

A reference to a file, special device or portal may he removed with the unlink call,

unlink(path);
char *path;

The caller must have write access to the directory in which the file is located for this call to he
successful.

2.2.4. Reading and modifying file attributes

Detailed information about the attributes of a file may he obtained with the calls:

#include <sys/stat.h>

stat(path, sth);
char *path; result struct stat *sth;

fstat(fd, sth);
int fd; result struct stat *sth;

The stat structure includes the file type, protection, ownership, access times, size, and a count
of hard links. If the file is a symbolic link, then the status of the link itself (rather than the
file the link references) may be found using the lstat call:

lstat(path, sth);
char *path; result struct stat *sth;

Newly created files are assigned the user id of the process that created it and the group
id of the directory in which it was created. The ownership of a file may be changed by either
of the calls

chown(path, owner, group);
char *path; int owner, group;

fchown(fd, owner, group);
int fd, owner, group;

In addition to ownership, each file has three levels of access protection associated with it.
These levels are owner relative, group relative, and global (all users and groups). Each level of
access has separate indicators for read permission, write permission, and execute permission.
The protection hits associated with a file may he set by either of the calls:

chmod(path, mode);
char *path; int mode;

fchmod(fd, mode);
int fd, mode;

4.2BSD System Manual 4-39

where mode is a value indicating the new protection of the file. The file mode is a three digit
octal number. Each digit encodes read access as 4, write access as 2 and execute access as 1,
or'ed together. The 0700 bits describe owner access, the 070 bits describe the access rights for
processes in the same group as the file, and the 07 bits describe the access rights for other
processes.

Finally, the access and modify times on a file may be set by the call:

utimes(path, tvp)
char *path; struct timeval *tvp[2];

This is particularly useful when moving files between media, to preserve relationships between
the times the file was modified.

2.2.5. Links and renaming

Links allow multiple names for a file to exist. Links exist independently of the file
linked to.

Two types of links exist, hard links and symbolic links. A hard link is a reference count
ing mechanism that allows a file to have multiple names within the same file system. Sym
bolic links cause string substitution during the pathname interpretation process.

Hard· links and symbolic links have different properties. A hard link insures the target
file will always be accessible, even after its original directory entry is removed; no such
guarantee exists for a symbolic link. Symbolic links can span file systems boundaries.

The following calls create a new link, named path2, to pathl:

link(pathl, path2);
char *pathl, *path2;

symlink(pathl, path2);
char *pathl, *path2;

The unlink primitive may be used to remove either type of link.

If a file is a symbolic link, the "value" of the link may be read with the readlink call,

len = readlink(path, buf, bufsize);
result int len; result char *path, *buf; int bufsize;

This call returns, in buf, the null-terminated string substituted into pathnames passing
through path.

Atomic renaming of file system resident objects is possible with the rename call:

rename(oldname, newname);
char *oldname, *newname;

where both oldname and newname must be in the same file system. If newname exists and is
a directory, then it must be empty.

2.2.6. Extension and truncation

Files are created with zero length and may be extended simply by writing or appending
to them. While a file is open the system maintains a pointer into the file indicating the
current location in the file associated with the descriptor. This pointer may be moved about

4-40 4.2BSD System Manual

in the file in a random access fashion. To set the current offset into a file, the lseek call may
be used,

oldoffset = lseek(fd, offset, type);
result ofl.t oldoffset; int fd; ofl.t offset; int type;

where type is given in <sys/file.h> as one of,

#define L_SET
#define LJNCR
#define L_XTND

0
1
2

/* set absolute file offset *I
/* set file offset relative to current position *I
/* set offset relative to end-of-file *I

The call "lseek(fd, 0, IJNCR)" returns the current offset into the file.

Files may have "holes" in them. Holes are void areas in the linear extent of the file
where data has never been written. These may be created by seeking to a location in a file
p~st the current end-of-file and writing. Holes are treated by the system as zero valued bytes.

A file may be truncated with either of the calls:

truncate(path, length);
char *path; int length;

ftruncate(fd, length);
int fd, length;

reducing the size of the specified file to length bytes.

2.2. 7. Checking accessibility

A process running with different real and effective user ids may interrogate the accessi
bility of a file to the real user by using the access call:

accessible = access(path, how);
result int accessible; char *path; int how;

Here how is constructed by or'ing the following bits, defined in <sys/file.h>:

#define E._OK 0 /* file exists *I
#define X_OK 1 /* file is executable *I
#define W_OK 2 /* file is writable *I
#define R..PK 4 /* file is readable *I

The presence or absence of advisory locks does not affect the result of access.

2.2.8. Locking

The file system provides basic facilities that allow cooperating processes to synchronize
their access to shared files. A process may place an advisory read or write lock on a file, so
that other cooperating processes may avoid interfering with the process' access. This simple
mechanism provides locking with file granularity. More granular locking can be built using
the IPC facilities to provide a lock manager. The system does not force processes to obey the
locks; they are of an advisory nature only.

Locking is performed after an open call by applying the fiock primitive,

flock(fd, how);
int fd, how;

where the how parameter is formed from bits defined in <sys/file.h>:

#define LOCK_SH
#define LOCK_EX
#define LOCK_ l\J'B
#define LOCK_UN

1
2
4
8

·- -- --~-------

4.2BSD System Manual 4-41

/* shared lock *I
/* exclusive lock *I
/* don't block when locking *I
/*unlock*/

Successive lock calls may be used to increase or decrease the level of locking. If an object is
currently locked by another process when a fiock call is made, the caller will be blocked until
the current lock owner releases the lock; this may be avoided by including LOCK_NB in the
how parameter. Specifying LOCK_UN removes all locks associated with the descriptor.
Advisory locks held by a process are automatically deleted when the process terminates.

2.2.9. Disk quotas

As an optional facility, each file system may be requested to impose limits on a user's
disk usage. Two quantities are limited: the total amount of disk space which a user may allo
cate in a file system and the total number of files a user may create in a file system. Quotas
are expressed as hard limits and soft limits. A hard limit is always imposed; if a user would
exceed a hard limit, the operation which caused the resource request will fail. A soft limit
results in the user receiving a warning message, but with allocation succeeding. Facilities are
provided to turn soft limits into hard limits if a user has exceeded a soft limit for an unrea
sonable period of time.

To enable disk quotas on a file system the setquota call is used:

setquota(special, file)
char *special, *file;

where special refers to a structured device file where a mounted file system exists, and file
refers to a disk quota file (residing on the file system associated with special) from which user
quotas should be obtained. The format of the disk quota file is implementation dependent.

To manipulate disk quotas the quota call is provided:

#include <sys/quota.h>

quota(cmd, uid, arg, addr)
int cmd, uid, arg; caddLt addr;

The indicated cmd is applied to the user ID uid. The parameters arg and addr are command
specific. The file <sys/quota.h> contains definitions pertinent to the use of this call.

4-42 4.2BSD System Manual

2.3. Interprocess communications

2.3.1. Interprocess communication primitives

2.3.1.1. Communication domains

The system provides access to an extensible set of communication domains. A commun
ication domain is identified by a manifest constant defined in the file <sys/socket.h>. Impor
tant standard domains supported by the system are the "unix" domain, A~UNIX, for com
munication within the system, and the "internet" domain for communication in the DARPA
internet, A~INET. Other domains can be added to the system.

2.3.1.2. Socket types and protocols

Within a domain, communication takes place between communication endpoints known
as sockets. Each socket has the potential to exchange information with other sockets within
the domain.

Each socket has an associated abstract type, which describes the semantics of communi
cation using that socket. Properties such as reliability, ordering, and prevention of duplica
tion of messages are determined by the type. The basic set of socket types is defined in
<sys/socket.h>:

/* Standard socket types *I
#define SOCK_DGRAM 1
#define SOCK_STREAM 2
#define SOCK_RAW 3
#define SOCK_RDM 4
#define SOCK_SEQPACKET 5

/* datagram *I
/* virtual circuit *I
/* raw socket *I
/* reliably-delivered message *I
/*sequenced packets*/

The SOCK_DGRAM type models the semantics of datagrams in network communication: mes
sages may be lost or duplicated and may arrive out-of-order. The SOCK_RDM type models
the semantics of reliable datagrams: messages arrive unduplicated and in-order, the sender is
notified if messages are lost. The send and receive operations (described below) generate
reliable/unreliable datagrams. The SOCK,_STREAM type models connection-based virtual
circuits: two-way byte streams with no record boundaries. The SOCl\._SEQP AC KET type
models a connection-based, full-duplex, reliable, sequenced packet exchange; the sender is
notified if messages are lost, and messages are never duplicated or presented out-of-order.
Users of the last two abstractions may use the facilities for out-of-band transmission to send
out-of-band data.

SOCK_RAW is used for unprocessed access to internal network layers and interfaces; it
has no specific semantics.

Other socket types can be defined. t
Each socket may have a concrete protocol associated with it. This protocol is used

within the domain to provide the semantics required by the socket type. For example, within
the "internet" domain, the SOCK_DGRAM type may be implemented by the UDP user
datagram protocol, and the SOCK_STREAM type may be implemented by the TCP transmis
sion control protocol, while no standard protocols to provide SOCK_RDM or
SOCK_SEQPACKET sockets exist.

2.3.1.3. Socket creation, naming and service establishment

Sockets may be connected or unconnected. An unconnected socket descriptor is
obtained by the socket call:

t 4.2BSD does not support the SOCK RDM and SOCK SEQPACKET types.

s = socket(domain, type, protocol);
result int s; int domain, type, protocol;

4.2BSD System Manual 4-43

An unconnected socket descriptor may yield a connected socket descriptor in one of two
ways: either by actively connecting to another socket, or by becoming associated with a name
in the communications domain and accepting a connection from another socket.

To accept connections, a socket must first have a binding to a name within the commun
ications domain. Such a binding is established by a bind call:

bind(s, name, namelen);
int s; char *name; int namelen;

A socket's bound name may be retrieved with a getsockname call:

getsockname(s, name, namelen);
int s; result caddrj name; result int *namelen;

while the peer's name can be retrieved with getpeername:

getpeername(s, name, namelen);
int s; result caddrj name; result int *namelen;

Domains may support sockets with several names.

2.3.1.4. Accepting connections

Once a binding is made, it is possible to listen for connections:

listen(s, backlog);
int s, backlog;

The backlog specifies the maximum count of connections that can be simultaneously queued
awaiting acceptance.

An accept call:

t = accept(s, name, anamelen);
result int t; int s; result cadd:t,.t name; result int *anamelen;

returns a descriptor for a new, connected, socket from the queue of pending connections on s.

2.3.1.5. Making connections
An active connection to a named socket is made by the connect call:

connect(s, name, namelen);
int s; caddt.J name; int namelen;

It is also possible to create connected pairs of sockets without using the domain's name
space to rendezvous; this is done with the socketpair callt:

socketpair(d, type, protocol, sv);
int d, type, protocol; result int sv[2];

Here the returned sv descriptors correspond to those obtained with accept and connect.

The call

pipe(pv)
result int pv[2];

creates a pair of SOCK_STREAM sockets in the UNIX domain, with pv[O] only writeable and

t 4.2BSD supports socketpair creation only in the "unix" communication domain.

4-44 4.2BSD System Manual

pv[l] only readable.

2.3.1.6. Sending and receiving data

Messages may be sent from a socket by:

cc = sendto(s, buf, len, flags, to, tolen);
result int cc; int s; cadd1:_t buf; int len, flags; caddr_t to; int tolen;

if the socket is not connected or:

cc = send(s, buf, len, flags);
result int cc; int s; caddt._t buf; int len, flags;

if the socket is connected. The corresponding receive primitives are:

msglen = recvfrom(s, buf, len, flags, from, fromlenaddr);
result int msglen; int s; result caddr_t buf; int len, flags;
result caddt.t from; result int *fromlenaddr;

and

msglen = recv(s, buf, len, flags);
result int msglen; int s; result cadd~t buf; int len, flags;

In the unconnected case, the parameters to and tolen specify the destination or source of
the message, while the from parameter stores the source of the message, and *fromlenaddr
initially gives the size of the from buffer and is updated to reflect the true length of the from
address.

All calls cause the message to be received in or sent from the message buffer of length
len bytes, starting at address buf. The flags specify peeking at a message without reading it
or sending or receiving high-priority out-of-band messages, as follows:

#define MSG_PEEK
#define MSG_OOB

Oxl
Ox2

/* peek at incoming message *I
/* process out-of-band data*/

2.3.1.7. Scatter/gather and exchailging access rights

It is possible scatter and gather data and to exchange access rights with messages. When
either Of these operations is involved, the number of parameters to the call becomes large.
Thus the system defines a message header structure, in <sys/socket.h>, which can be used to
conveniently contain the parameters to the calls:

struct msghdr {
caddLt

};

int
struct
int
caddr_t
int

msg_t1ame;
msg_nameleh;
iov *msgjov;
msg_iovlen;
msg accrights;
msi!i,ccrightslen;

/* optional address *I
/* size of address *I
/* scatter/gather array *I
/* # elements in msgjov *I
/* access rights sent/received *I
/* size of msuccrights *I

Here msg_name and msg_riamelen specify the source or destination address if the socket is
unconnected; msg_name may be given as a null pointer if no names are desired or required.
The msgjov and msgjovlen describe the scatter/gather locations, as described in section 2.1.3.
Access rights to be sent along with the message are specified in msg_gccrights, which has
length msg_accrightslen. In the "unix" domain these are an array of integer descriptors, taken
from the sending process and duplicated in the receiver.

This structure is used in the operations sendmsg and recvmsg:

4.2BSD System Manual 4-45

sendmsg(s, msg, flags);
int s; struct msghdr *msg; int flags;

msglen = recvmsg(s, msg, flags);
result int msglen; int s; result struct msghdr *msg; int flags;

2.3.1.8. Using read and write with sockets

The normal UNIX read and write calls may be applied to connected sockets and
translated into send and receive calls from or to a single area of memory and discarding any
rights received. A process may operate on a virtual circuit socket, a terminal or a file with
blocking or non-blocking input/output operations without distinguishing the descriptor type.

2.3.1.9. Shutting down halves of full-duplex connections

A process that has a full-duplex socket such as a virtual circuit and no longer wishes to
read from or write to this socket can give the call:

shutdown(s, direction);
int s, direction;

where direction is 0 to not read further, 1 to not write further, or 2 to completely shut the
connection down.

2.3.1.10. Socket and protocol options

Sockets, and their underlying communication protocols, may support options. These
options may be used to manipulate implementation specific or non-standard facilities. The
getsockopt and setsockopt calls are used to control options:

getsockopt(s, level, optname, optval, optlen)
int s, level, optname; result caddt.J; optval; result int *optlen;

setsockopt(s, level, optname, optval, optlen)
int s, level, optname; caddr_t optval; int optlen;

The option optname is interpreted at the indicated protocol level for socket s. If a value is
specified with optval and optlen, it is interpreted by the software operating at the specified
level. The level SOL.._SOCKET is reserved to indicate options maintained by the socket facili
ties. Other level values indicate a particular protocol which is to act on the option request;
these values are normally interpreted as a "protocol number".

2.3.2. UNIX domain

This section describes briefly the properties of the UNIX communications domain.

2.3.2.1. Types of sockets

In the UNIX domain, the SOCK_STREAM abstraction provides pipe-like facilities,
while SOCK_DGRAM provides (usually) reliable message~style communications.

2.3.2.2. Naming

Socket names are strings and may appear in the UNIX file system name space through
portalst.

t The 4.2BSD implementation of the UNIX domain embeds bound sockets in the UNIX file system name
space; this is a side effect of the implementation.

4-46 4.2BSD System Manual

2.3.2.3. Access rights transmission

The ability to pass UNIX descriptors with messages in this domain allows migration of
service within the system and allows user processes to be used in building system facilities.

2.3.3. INTERNET domain

This section describes briefly how the INTERNET domain is mapped to the model
described in this section. More information will be found in the document describing the net
work implementation in 4.2BSD.

2.3.3.1. Socket types and protocols

SOCK_STREAM is supported by the INTERNET TCP protocol; SOCKJ)GRAM by the
UDP protocol. The SOCK_SEQPACKET has no direct INTERNET family analogue; a proto
col based on one from the XEROX NS family and layered on top of IP could be implemented
to fill this gap.

2.3.3.2. Socket naming

Sockets in the INTERNET domain have names composed of the 32 bit internet address,
and a 16 bit port number. Options may be used to provide source routing for the address,
security options, or additional address for subnets of INTERNET for which the basic 32 bit
addresses are insufficient.

2.3.3.3. Access rights transmission

No access rights transmission facilities are provided in the INTERNET domain.

2.3.3.4. Raw access

The INTERNET domain allows the super-user access to the raw facilities of the various
network interfaces and the various internal layers of the protocol implementation. This allows
administrative and debugging functions to occur. These interfaces are modeled as
SOCK_RAW sockets.

4.2BSD System Manual 4-47

2.4. Terminals and Devices

2.4.1. Terminals

Terminals support read and write i/o operations, as well as a collection of terminal
specific ioctl operations, to control input character editing, and output delays.

2.4.1.1. Terminal input

Terminals are handled according to the underlying communication characteristics such
as baud rate and required delays, and a set of software parameters.

2.4.1.1.1. Input modes

A terminal is in one of three possible modes: raw, cbreak, or cooked. In raw mode all
input is passed through to the reading process immediately and without interpretation. In
cbreak mode, the handler interprets input only by looking for characters that cause interrupts
or output flow control; all other characters are made available as in raw mode. In cooked
mode, input is processed to provide standard line-oriented local editing functions, and input is
presented on a line-by-line basis.

2.4.1.1.2. Interrupt characters

Interrupt characters are interpreted by the terminal· handler only in cbreak and cooked
modes, and cause a software interrupt to be sent to all processes in the process group associ
ated with the terminal. Interrupt characters exist to send SIGINT and SIGQUIT signals, and
to stop a process group with the SIGTSTP signal either immediately, or when all input up to
the stop character has been read.

2.4.1.1.3. Line editing

When the terminal is in cooked mode, editing of an input line is performed. Editing
facilities allow deletion of the previous character or word, or deletion of the current input line.
In addition, a special character may be used to reprint the current input line after some
number of editing operations have been applied.

Certain other characters are interpreted specially when a process is in cooked mode.
The end of line character determines the end of an input record. The end of file character
simulates an end of file occurrence on terminal input. Flow control is provided by stop out
put and start output control characters. Output may be flushed with the fiush output charac
ter; and a literal character may be used to force literal input of the immediately following
character in the input line.

2.4.1.2. Terminal output

On output, the terminal handler provides some simple formatting services. These
include converting the carriage return character to the two character return-linefeed sequence,
displaying non-graphic ASCII characters as "Acharacter", inserting delays after certain stan
dard control characters, expanding tabs, and providing translations for upper-case only termi
nals.

2.4.1.3. Terminal control operations

When a terminal is first opened it is initialized to a standard state and configured with a
set of standard control, editing, and interrupt characters. A process may alter this
configuration with certain control operations, specifying parameters in a standard structure:

4-48 4.2BSD System Manual

struct ttymode {
short
int
short
int

};

tt.ispeed;
tLiflags;
tt_ospeed;
tt_oflags;

/* input speed *I
/* input flags *I
/* output speed *I
/* output flags *I

and "special characters" are specified with the ttychars structure,

struct ttychars {
char
char
char
char
char
char
char
char
char
char
char
char
char
char

};

t<;,_erasec;
tc_killc;
t(jjntrc;
~quite;
tc_startc;
tc_stopc;
tc_eofc;
t~rkc;
tc_suspc;
tc_dsuspc;
tc_rprntc;
tc_flushc;
tc_werasc;
tc_Inextc;

2.4.1.4. Terminal hardware support

/* erase char *I
/* erase line *I
/* interrupt *I
/*quit*/
/* start output *I
/* stop output *I
/* end-of-file *I
/* input delimiter (like nl) *I
/* stop process signal *I
/* delayed stop process signal *I
/* reprint line *I
/*flush output (toggles) */
/* word erase *I
/* literal next character *I

The terminal handler allows a user to access basic hardware related functions; e.g. line
speed, modem control, parity, and stop bits. A special signal, SIGHUP, is automatically sent
to processes in a terminal's process group when a carrier transition is detected. This is nor
mally associated with a user hanging up on a modem controlled terminal line.

2.4.2. Structured devices

Structures devices are typified by disks and magnetic tapes, but may represent any
random-access device. The system performs read-modify-write type buffering actions on block
devices to allow them to be read and written in a totally random access fashion like ordinary
files. File systems are normally created in block devices.

2.4.3. Unstructured devices

Unstructured devices are those devices which do not support block structure. Familiar
unstructured devices are raw communications lines (with no terminal handler), raster plotters,
magnetic tape and disks unfettered by buffering and permitting large block input/output and
positioning and formatting commands.

4.2BSD System Manual 4-49

2.5. Process b.lid kernel descriptors

The status of the facilities in this section is still under discussion. The pt race facility of
4.lBSD is provided ih 4.2BSD. Planned enhancements would allow a descriptor based process
control facility.

4-50 4.2BSD System Manual

I. Summary of facilities

1. Kernel primitives

1.1. Process naming and protection

sethostid
gethostid
sethostname
gethostname
getpid
fork
exit
execve
getuid
geteuid
setreuid
getgid
getegid
getgroups
setregid
setgroups
getpgrp
setpgrp

1.2 Memory management

<mman.h>
sbrk
sstkt
getpagesize
mmapt
mremapt
munmapt
mprotectt
madviset
mincoret

1.3 Signals

<signal.h>
sigvec
kill
killpgrp
sigblock
sigsetmask
sigpause
sigstack

1.4 Timing and statistics

<sys/time.h>
gettimeofday
settimeofday
getitimer
setitimer

t Not supported in 4.2BSD.

set UNIX host id
get UNIX host id
set UNIX host name
get UNIX host name
get process id
create new process
terminate a process
execute a different process
get user id
get effective user id
set real and effective user id's
get accounting group id
get effective accounting group id
get access group set
set real and effective group id's
set access group set
get process group
set process group

memory management definitions
change data section size
change stack section size
get memory page size
map pages of memory
remap pages in memory
unmap memory
change protection of pages
give memory management advice
determine core residency of pages

signal definitions
set handler for signal
send signal to process
send signal to process group
block set of signals
restore set of blocked signals
wait for signals
set software stack for signals

time-related definitions
get current time and timezone
set current time and timezone
read an interval timer
get and set an interval timer

profil

1.5 Descriptors

getdtablesize
dup
dup2
close
select
fcntl
wrapt

1.6 Resource controls

<sys/resource.h>
getpriority
setpriority
getrusage
getrlimit
setrlimit

1.7 System operation support

mount
swapon
umount
sync
reboot
acct

2. System facilities

2.1 Generic operations

read
write
<sys/uio.h>
readv
writev
<sys/ioctl.h>
ioctl

2.2 File system

4.2BSD System Manual 4-51

profile process

descriptor reference table size
duplicate descriptor
duplicate to specified index
close descriptor
multiplex input/output
control descriptor options
wrap descriptor with protocol

resource-related definitions
get process priority
set process priority
get resource usage
get resource limitations
set resource limitations

mount a device file system
add a swap device
umount a file system
flush system caches
reboot a machine
specify accounting file

read data
write data
scatter-gather related definitions
scattered data input
gathered data output
standard control operations
device control operation

Operations marked with a * exist in two forms: as shown, operating on a file name, and
operating on a file descriptor, when the name is preceded with a "f''.

<sys/file.h>
chdir
chroot
mkdir
rmdir
open
mknod
portalt
unlink
stat*

t Not supported in 4.2BSD.

file system definitions
change directory
change root directory
make a directory
remove a directory
open a new or existing file
make a special file
make a portal entry
remove a link
return status for a file

4-52 4.2BSD SysteDJ. Ma:f1u~l

lstat
chown*
chmod*
utimes
link
symlink
readlink
rename
lseek
truncate*
access
flock

~.3 Communications

returned status of link
change owner
chaQge mode
change access/modify t(mes
make a hard link
make a symbolic link
read contents of symbolic link
change name of file
reposition within file
truncate file
determine accessibility
lock a file ··

<sys/socket.h> standard definitions
socket create socket
bind bind socket to name
getsockname get socket name
listen allow queueing of connections
accept accept a connection
connect connect to peer socket
socketpair create pair of conne<:te4 sockets
sendto send data to named socket
send send data to connected soc~et
recvfrom receive data on unconnected socket
recv receive data on connected socket
sendmsg send gathered data and/or rights
recvmsg receive scattered data an<l/or ri,hts
shutdown partially close full-duplex connection
getsockopt get socket option
setaockopt set socket option

2.5 Terminals, bloc~ and c~aracter devices

2.4 Processes and kt'~nel hQo~s

1. Introduction

Berkeley Assembler Reference Manual 4-53

Berkeley VAX/UNIX Assembler Reference Manual

John F. Reiser
Bell Laboratories,

Holmdel, NJ

and

Robert R. Henry1

Electronics Research Laboratory
University of California

Berkeley, CA 94 720

November S, 1979

Revised
February 9, 1983

This document describes the usage and input syntax of the UNIX VAX-11 assembler as.
As is designed for assembling the code produced by the "C" compiler; certain concessions
have been made to handle code written directly by people, but in general little sympathy has
been extended. This document is intended only for the writer of a compiler or a maintainer of
the assembler.

1.1. Assembler Revisions since November 5, 1979

'There has been one major change to as since the last release. As has been updated to
assemble the new instructions and data formats for "G" and "H" floating point numbers, as
well as the new queue instructions.

1.2. Features Supported, but No Longer Encouraged as of February 9, 1983

These feature(s) in as are supported, but no longer encouraged.

The colon operator for field initialization is likely to disappear.

2. Usage

As is invoked with these command arguments:
as [-LVWJR] [-dn] [-DTS] [-t directory] [-o output] [name 1] • • • [namen]

The - L flag instructs the assembler to save labels beginning with a "L" in the symbol
table portion of the output file. Labels are not saved by default, as the default action of the
link editor Id is to discard them anyway.

The -V flag tells the assembler to place its interpass temporary file into virtual memory.
In normal circumstances, the system manager will decide where the temporary file should lie.
Our experiments with very large temporary files show that placing the temporary file into vir
tual memory will save about 13% of the assembly time, where the size of the temporary file is
about 3SOK bytes. Most assembler sources will not be this long.

The -W turns of all warning error reporting.

The -J flag forces UNIX style pseudo-branch instructions with destinations further
away than a byte displacement to be turned into jump instructions with 4 byte off sets. The

1Preparation of this paper supported in part by the National Science Foundation under grant MCS #78-07291.

4-54 Berkeley Assembler Reference Manual

-J flag buys you nothing if -d2 is set. (See §8.4, and future work described in §11)
The - R flag effectively turns ".data n" directives into ".text n" directives. This obvi

ates the need to run editor scripts on assembler source to "read-only" fix initialized data seg
ments. Uninitialized data (via .lcomm and .comm directives) is still assembled into the data
or bss segments.

The -d flag specifies the number of bytes which the assembler should allow for a dis
placement when the value of the displacement expression is undefined in the first pass. The
possible values of n are l, 2, or 4; the assembler uses 4 bytes if -d is not specified. See §8.2.

Provided the -V flag is not set, the -t flag causes the assembler to place its single tem
porary file in the directory instead of in ltmp.

The -o flag causes the output to be placed on the file output. By default, the output of
the assembler is placed in the file a.out in the current directory.

The input to the assembler is normally taken from the standard input. If file arguments
occur, then the input is taken sequentially from the files namei. name2 • • • name11 This is not
to say that the files are assembled separately; name 1 is effectively concatenated to name2, so
multiple definitions cannot occur amongst the input sources.

The -D (debug), -T (token trace), and the -S (symbol table) flags enable assembler
trace information, provided that the assembler has been compiled with the debugging code
enabled. The information printed is long and boring, but useful when debugging the assem
bler.

3. Lexical conventions
Assembler tokens include identifiers (alternatively, "symbols" or "names"), constants,

and operators.

3.1. Identifiers
An identifier consists of a sequence of alphanumeric characters (including period " . ",

underscore "_ ", and dollar "$"). The first character may not be numeric. Identifiers may
be (practically) arbitrary long; all characters are significant.

3.2. Constants

3.2.1. Scalar constants
All scalar (non floating point) constants are (potentially) 128 bits wide. Such con

stants are interpreted as two's complement numbers. Note that 64 bit (quad words) and 128
bit (octal word) integers are only partially supported by the v AX hardware. In addition, 128
bit integers are only supported by the extended v AX architecture. As supports 64 and 128
bit integers only so they can be used as immediate constants or to fill initialized data space.
As ca~ not perform arithmetic on constants larger than 32 bits.

Scalar constants are initially evaluated to a full 128 bits, but are pared down by discard
ing high order copies of the sign bit and categorizing the number as a· long, quad or octal
integer. Numbers with less precision than 32 bits are treated as 32 bit quantities.

The digits are "0123456789abcdef ABCDEF" with the obvious values.
An octal constant consists of a sequence of digits with a leading zero.
A decimal constant consists of a sequence of digits without a leading zero.
A hexadecimal constant consists of the characters "Ox" (or "OX") followed by a

sequence of digits.
A single-character constant consists of a single quote " ' " followed by an ASCII charac

ter, including ASCII newline. The constant's value is the code for the given character.

Berkeley Assembler Reference Manual 4-55

3.2.2. Floating Point Constants
Floating point constants are internally represented in the v AX floating point format that

is specified by the lexical form of the constant. Using the meta notation that [dee] is a
decimal digit ("0123456789"), [expt] is a type specification character ("fFdDhHgG"),
[expe] is a exponent delimiter and type specification character ("eEfFdDhHgG"), x' means
0 or more occurences of x, x+ means 1 or more occurences of x, then the general lexical
form of a floating point number is:

O[expe] ([+-])[dee]+(.) ([deer> ([expt] ([+-])(dee]+))
The standard semantic interpretation is used for the signed integer, fraction and signed
power of 10 exponent. If the exponent delimiter is specified, it must be either an "e" or
"E", or must agree with the initial type specification character that is used. The type
specification character specifies the type and representation of the constructed number, as
follows:

type character
f, F
d, D
g, G
h, H

floating representation
F format floating
D format floating
G format floating
H format floating

size (bits)
32
64
64

128

Note that "G" and "H" format floating point numbers are not supported by all implemen
tations of the v AX architecture. As does not require the augmented architecture in order to
run.

The assembler uses the library routine atof() to convert "F" and "D" numbers, and
uses its own conversion routine (derived from atof, and believed to be numerically accurate)
to convert "G" and "H" floating point numbers.

Collectively, all floating point numbers, together with quad and octal scalars are called
Bignums. When as requires a Bignum, a 32 bit scalar quantity may also be used.

3.2.3. String Constants
A string constant is defined using the same syntax and semantics as the "C" language

uses. Strings begin and end with a """ (double quote). The DEC MACR0-32 assembler con
ventions for flexible string quoting is not implemented. All "C" backslash conventions are
observed; the backslash conventions peculiar to the PDP-I I assembler are not observed.
Strings are known by their value and their length; the assembler does not implicitly end
strings with a null byte.

3.3. Operators
There are several single-character operators; see §6.1.

3.4. Blanks
Blank and tab characters may be interspersed freely between tokens, but may not be

used within tokens (except character constants). A blank or tab is required to separate adja
cent identifiers or constants not otherwise separated.

3.S. Scratch Mark Comments
The character "#" introduces a comment, which extends through the end of the line

on which it appears. Comments starting in column l, having the format "#
expression string", are interpreted as an indication that the assembler is now assembling file
string at line expression. Thus, one can use the "C" preprocessor on an assembly language
source file, and use the #include and #define preprocessor directives. (Note that there may
not be an assembler comment starting in column 1 if the assembler source is given to the
"C" preprocessor, as it will be interpreted by the preprocessor in a way not intended.)

4-56 Berkeley Assembler Reference Manual

Comments are otherwise ignored by the assembler.

3.6. "C" Style Comments
The assembler will recognize "C" style comments, introduced with the prologue /* and

ending with the epilogue •/. "C" style comments may extend across multiple lines, and are
the preferred comment style to use if one chooses to use the "C" preprocessor.

4. Segments and Location Counters
Assembled code and data fall into three segments: the text segment, the data segment,

and the bss segment. The UNIX operating system makes some assumptions about the content
of these segments; the assembler does not. Within the text and data segments there are a
number of sub-segments, distinguished by number ("text O", "text l ", · · · "data O",
"data l ", · · ·). Currently there are four subsegments each in text and data. The subseg
ments are for programming convenience only.

Before writing the output file, the assembler zero-pads each text subsegment to a multi
ple of four bytes and then concatenates the subsegments in order to form the text segment; an
analogous operation is done for the data segment. Requesting that the loader define symbols
and storage regions is the only action allowed by the assembler with respect to the bss seg
ment. Assembly begins in "text O".

Associated with each (sub)segment is an implicit location counter which begins at zero
and is incremented by 1 for each byte assembled into the (sub)segment. There is no way to
explicitly reference a location counter. Note that the location counters of subsegments other
than "text O" and "data O" behave peculiarly due to the concatenation used to form the text
and data segments.

S. Statements
A source program is composed of a sequence of statements. Statements are separated

either by new-lines or by semicolons. There are two kinds of statements: null statements and
keyword statements. Either kind of statement may be preceded by one or more labels.

S.1. Named Global Labels
A global label consists of a name followed by a colon. The effect of a name label is to

assign the current value and type of the location counter to the name. An error is indicated
in pass 1 if the name is already defined; an error is indicated in pass 2 if the value assigned
changes the definition of the label.

A global label is referenced by its name.
Global labels beginning with a "L" are discarded unless the - L option is in effect.

S.2. Numeric Local Labels
A numeric label consists of a digit 0 to 9 followed by a colon. Such a label serves to

define temporary symbols of the form "nb" and "nr', where n is the digit of the label. As
in the case of name labels, a numeric label assigns the current value and type of the location
counter to the temporary symbol. However, several numeric labels with the same digit may
be used within the same assembly. References to symbols of the form "nb" refer to the
first numeric label "n :" /.qckwards from the reference; "nr' symbols refer to the first
numeric label "n :"forwards from the reference. Such numeric labels conserve the inventive
powers of the human programmer.

For various reasons, as turns local labels into labels of the form Ln .Sm. Although
unlikely, these generated labels may conflict with programmer defined labels.

Berkeley Assembler Reference Manual 4-57

5.3. Null statements
A null statement is an empty statement ignored by the assembler. A null statement

may be labeled, however.

5.4. Keyword statements
A keyword statement begins with one of the many predefined keywords known to as;

the syntax of the remainder of the statement depends on the keyword. All instruction
opcodes are keywords. The remaining keywords are assembler pseudo-operations, also called
directives. The pseudo-operations are listed in §8, together with the syntax they require.

6. Expressions
An expression is a sequence of symbols representing a value. Its constituents are

identifiers, constants, operators, and parentheses. Each expression has a type.

All operators in expressions are fundamentally binary in nature. Arithmetic is two's
complement and has 32 bits of precision. As can not do arithmetic on floating point numbers,
quad or octal precision scalar numbers. There are four levels of precedence, listed here from
lowest precedence level to highest:

precedence
binary
binary
binary
unary

operators
+,-
1. &, A,!
", /, %,

All operators of the same precedence are evaluated strictly left to right, except for the
evaluation order enforced by parenthesis.

6.1. Expression Operators
The operators are:

operator
+

"
I
%

&

!

>
>>
<

<<

meaning
addition
(binary) subtraction
multiplication
division
modulo
(unary) 2's complement
bitwise and
bitwise or
bitwise exclusive or
bitwise or not
bitwise 1 's complement
logical right shift
logical right shift
logical left shift
logical left shift

Expressions may be grouped by use of parentheses, "(" and")".

6.2. Data Types
The assembler manipulates several different types of expressions. The types likely to be

met explicitly are:

4-58 Berkeley Assembler Reference Manual

undefined Upon first encounter, each symbol is undefined. It may become undefined if it is
assigned an undefined expression. It is an error to attempt to assemble an
undefined expression in pass 2; in pass l, it is not (except that certain keywords
require operands which are not undefined).

undefined external
A symbol which is declared .globl but not defined in the current assembly is an
undefined external. If such a symbol is declared, the link editor Id must be used
to load the assembler's output with another routine that defines the undefined
reference.

absolute An absolute symbol is defined ultimately from a constant. Its value is unaffected
by any possible future applications of the link-editor to the output file.

text The value of a text symbol is measured with respect to the beginning of the text
segment of the program. If the assembler output is link-edited, its text symbols
may change in value since the program need not be the first in the link editor's
output. Most text symbols are defined by appearing as labels. At the start of an
assembly, the value of " • " is "text O".

data The value of a data symbol is measured with respect to the origin of the data seg
ment of a program. Like text symbols, the value of a data symbol may change
during a subsequent link-editor run since previously loaded programs may have
data segments. After the first .data statement, the value of " . " is "data O".

bss The value of a bss symbol is measured from the beginning of the bss segment of
a program. Like text and data symbols, the value of a bss symbol may change
during a subsequent link-editor run, since previously loaded programs may have
bss segments.

external absolute, text, data, or bss
Symbols declared .globl but defined within an assembly as absolute, text, data, or
bss symbols may be used exactly as if they were not declared .globl; however,
their value and type are available to the link editor so that the program may be
loaded with others that reference these symbols.

register The symbols

other types

rO rt r2 r3 r4 r5 r6 r7 r8 r9 rlO rll rll r13 r14 r15 ap fp sp pc

are predefined as register symbols. In addition, the "%" operator converts the
foil owing absolute expression whose value is between 0 and 15 into a register
reference.

Each keyword known to the assembler has a type which is used to select the rou
tine which processes the associated keyword statement. The behavior of such
symbols when not used as keywords is the same as if they were absolute.

6.3. Type Propagation in Expressions
When operands are combined by expression operators, the result has a type which

depends on the types of the operands and on the operator. The rules involved are complex
to state but were intended to be sensible and predictable. For purposes of expression evalua
tion the important types are

The combination rules are then

Berkeley Assembler Reference Manual 4-59

undefined
absolute
text
data
bss
undefined external
other

(1) If one of the operands is undefined, the result is undefined.

(2) If both operands are absolute, the result is absolute.

(3) If an absolute is combined with one of the "other types" mentioned above, the result
has the other type. An "other type" combined with an explicitly discussed type other
than absolute it acts like an absolute.

Further rules applying to particular operators are:

+ If one operand is text-, data-, or bss-segment relocatable, or is an undefined external,
the result has the postulated type and the other operand must be absolute.

If the first operand is a relocatable text-, data-, or bss-segment symbol, the second
operand may be absolute (in which case the result has the type of the first operand)~ or
the second operand may have the same type as the first (in which case the result is
absolute). If the first operand is external undefined, the second must be absolute. All
other combinations are illegal.

others
It is illegal to apply these operators to any but absolute symbols.

7. Pseudo-operations (Directives)

The keywords listed below introduce directives or instructions, and influence the later
behavior of the assembler for this statement. The metanotation

[stuff]
means that 0 or more instances of the given "stuff" may appear.

Boldface tokens must appear literally~ words in italic words are substitutable.

The pseudo-operations listed below are grouped into functional categories.

7 .1. Interface to a Previous Pass

.ABORT

As soon as the assembler sees this directive, it ignores all further input (but it does
read to the end of file), and aborts the assembly. No files are created. It is anticipated that
this would be used in a pipe interconnected version of a compiler, where the first major syn
tax error would cause the compiler to issue this directive, saving unnecessary work in assem
bling code that would have to be discarded anyway .

. file string

This directive causes the assembler to think it is in file string, so error messages reflect
the proper source file .

• line expression

This directive causes the assembler to think it is on line expression so error messages
reflect the proper source file.

4-60 Berkeley Assembler Reference Manual

The only effect of assembling multiple files specified in the command string is to insert
the file and line directives, with the appropriate values, at the beginning of the source from
each file.

expression string
expression

This is the only instance where a comment is meaningful to the assembler. The "#"
must be in the first column. This meta comment causes the assembler to believe it is on line
expression. The second argument, if included, causes the assembler to believe it is in file
string, otherwise the current file name does not change.

7 .2. Location Counter Control

.data [expression]

.text [expression]

These two pseudo-operations cause the assembler to begin assembling into the indicated
text or data subsegment. If specified, the expression must be defined and absolute; an omit
ted expression is treated as zero. The effect of a .data directive is treated as a .text directive
if the - R assembly flag is set. Assembly starts in the .text 0 subsegment.

The directives .align and .org also control the placement of the location counter.

7 .3. Filled Data

.align align _expr [, fill _expr]

The location counter is adjusted so that the expression lowest bits of the location counter
become zero. This is done by assembling from 0 to 2align _expr bytes, taken from the low
order byte of fill _expr. If present, fill _expr must be absolute; otherwise it defaults to 0.
Thus ".align 2" pads by null pytes to make the location counter evenly divisible by 4. The
align_expr must be defined, absolute, nonnegative, and less than 16.

Warning: the subsegment concatenation convention and the current loader conventions
may not preserve attempts at aligning to more than 2 low-order zero bits .

• org org _expr [, fill _expr]

The location counter is set equal to the value of org _expr, which must be defined and
absolute. The value of the org _expr must be greater than the current value of the location
counter. Space between the current value of the location counter and the desired value are
filled with bytes taken from the low order byte of fill _expr, which must be absolute and
defaults to 0 .

• space space _expr [, fill _expr 1

The location counter is advanced by space _expr bytes. Space _expr must be defined
and absolute. The space is filled in with bytes taken from the low order byte of fill _expr,
which must be defined and absolute. Fill _expr defaults to 0. The .fill directive is a more
general way to accomplish the .space directive .

• fill rep _expr, size _expr, fill _expr

All three expressions must be absolute. jill_expr, treated as an expression of size
size_expr bytes, is assembled and replicated rep_expr times. The effect is to advance the
current location counter rep_ expr • size_ expr bytes. size_ expr must be between 1 and 8.

Berkeley Assembler Reference Manual 4-61

7 .4. Symbol Definitions

7 .5. Initialized Data

• byte expr [, expr]
• word expr [, expr 1
.Int expr [, expr 1
.long expr [, expr]

The expressions in the comma-separated list are truncated to the size indicated by the
key word:

keyword
.byte
.word
.int

.long

length (bits)
8

16
32
32

and assembled in successive locations. The expressions must be absolute.

Each expression may optionally be of the form:

expression 1 : expression 2

In this case, the value of expression2 is truncated to expression1 bits, and assembled in the
next expression 1 bit field which fits in the natural data size being assembled. Bits which are
skipped because a field does not fit are filled with zeros. Thus, ".byte 123" is equivalent to
".byte 8:123", and ".byte 3:1,2:1,5:1" assembles two bytes, containing the values 9 and 1.

NB: Bit field initialization with the colon operator is likely to disappear in future
releases of the assembler.

.quad

.octa

.float

.double

.flloat

.dfloat

.gfloat

.hfloat

number [, number]
number [, number]
number [, number]
number [, number]
number [, number]
number [, number]
number [, number]
number [, number]

These initialize Bignums (see §3.2.2) in successive locations whose size is a function on
the key word. The type of the Bignums (determined by the exponent field, or lack thereof)
may not agree with type implied by the key word. The following table shows the key words,
their size, and the data types for the Bignums they expect.

keyword format length (bits) valid number (s)
.quad quad scalar 64 scalar
.octa octal scalar 128 scalar
.float F float 32 F, D and scalar

.flloat F float 32 F, D and scalar
.double D float 64 F, D and scalar
.dfloat D float 64 F, D and scalar
.gfloat G float 64 G scalar
.hfloat H float 128 H scalar

As will correctly perform other floating point conversions while initializing, but issues a
warning message. As performs all floating point initializations and conversions using only the

4-62 Berkeley Assembler Reference Manual

facilities defined in the original (native) architecture.

.ascll

.asciz
string [, string]
string [, string]

Each string in the list is assembled into successive locations, with the first letter in the
string being placed into the first location, etc. The .ascii directive will not null pad the
string; the .asclz directive will null pad the string. (Recall that strings are known by their
length, and need not be terminated with a null, and that the "C" conventions for escaping
are understood.) The .ascll directive is identical to:
.byte string0 , string1 , · · ·

.comm name, expression

Provided the name is not defined elsewhere, its type is made "undefined external", and
its value is expression. In fact the name behaves in the current assembly just like an
undefined external. However, the link editor Id has been special-cased so that all external
symbols which are not otherwise defined, and which have a non-zero value, are defined to lie
in the bss segment, and enough space is left after the symbol to hold expression bytes .

• lcomm name, expression

expression bytes will be allocated in the bss segment and name assigned the location of
the first byte, but the name is not declared as global and hence will be unknown to the link
editor .

• globl name

This statement makes the name external. If it is otherwise defined (by .set or by
appearance as a label) it acts within the assembly exactly as if the .globl statement were not
given; however, the link editor may be used to combine this object module with other
modules ref erring to this symbol.

Conversely, if the given symbol is not defined within the current assembly, the link edi
tor can combine the output of this assembly with that of others which define the symbol.
The assembler makes all otherwise undefined symbols external.

.set name, expression

The (name, expression) pair is entered into the symbol table. Multiple .set statements
with the same name are legal; the most recent value replaces all previous values .

• lsym name, expression

A unique and otherwise unreferencable instance of the (name, expression) pair 1s
created in the symbol table. The Fortran 77 compiler uses this mechanism to pass local sym
bol definitions to the link editor and debugger .

• stabs
.stabn
.stabd

string, exprh expr2, expr3, expr4
exprh expr2, expr3, expr4
exprh expr2, expr3

The stab directives place symbols in the symbol table for the symbolic debugger, sdl:l-.
A "stab" is a symbol table entry. The .stabs is a string stab, the .stabn is a stab not having
a string, and the .stabd is a "dot" stab that implicitly references "dot", the current location

2Katseft', H.P. Sdb: A Symbol Debugger. Bell Laboratories, Holmdel, NJ. April 12, 1979.
Katseft', H.P. Symbol Table Format/or Sdb, File 39394, Bell Laboratories, Holmdel, NJ. March 14, 1979.

Berkeley Assembler Reference Manual 4-63

counter.
The string in the .stabs directive is the name of a symbol. If the symbol name is zero,

the .stabn directive may be used instead.
The other expressions are stored in the name list structure of the symbol table and

preserved by the loader for reference by sdb:, the value of the expressions are peculiar to for
mats required by sdb.

expr1 is used as a symbol table tag (nlist field n_type).

expr2 seems to always be zero (nlist field n_other).

expr3 is used for either the source line number, or for a nesting level (nlist field n_desc).

expr 4 is used as tag specific information (nlist field n _value). In the case of the .stabd direc-
tive, this expression is nonexistent, and is taken to be the value of the location counter
at the following instruction. Since there is no associated name for a .stabd directive, it
can only be used in circumstances where the name is zero. The effect of a .stabd
directive can be achieved by one of the other .stabx directives in the following
manner:
.stabn expr1, expr2, expr3, LLn
LLn:

The .stabd directive is pref erred, because it does not clog the symbol table with labels
used only for the stab symbol entries.

8. Machine instructions
The syntax of machine instruction statements accepted by as is generally similar to the

syntax of DEC MACR0-32. There are differences, however.

8.1. Character set
As uses the character "$" instead of "#" for immediate constants, and the character

"*" instead of "@" for indirection. Opcodes and register names are spelled with lower-case
rather than upper-case letters.

8.2. Specifying Displacement Lengths
Under certain circumstances, the following constructs are (optionally) recognized by as

to indicate the number of bytes to allocate for the displacement used when constructing dis
placement and displacement def erred addressing modes:

primary
B'
w·
L'

alternate
B"
W"
L"

length
byte (1 byte)
word (2 bytes)
long word (4 bytes)

One can also use lower case b, w or I instead of the upper case letters. There must be
no space between the size specifier letter and the """ or "'". The constructs S" and G" are
not recognized by as, as they are by the DEC MACR0-32 assembler. It is preferred to use the
""'displacement so that the """ is not misinterpreted as the xor operator.

Literal values (including floating-point literals used where the hardware expects a
floating-point operand) are assembled as short literals if possible, hence not needing the S"
DEC MACR0-32 directive.

If the displacement length modifier is present, then the displacement is always assem
bled with that displacement, even if it will fit into a smaller field, or if significance is lost. If
the length modifier is not present, and if the value of the displacement is known exactly in
as's first pass, then as determines the length automatically, assembling it in the shortest pos
sible way, Otherwise, as will use the value specified by the -d argument, which defaults to 4

4-64 Berkeley Assembler Reference Manual

bytes.

8.3. casex Instructions
As considers the instructions caseb, easel, casew to have three operands. The displace

ments must be explicitly computed by as, using one or more . word statements.

8.4. Extended branch Instructions
These opcodes (formed in general by substituting a "j" for the initial "b" of the stan

dard opcodes) take as branch destinations the name of a label in the current subsegment. It
is an error if the destination is known to be in a different subsegment, and it is a warning if
the destination is not defined within the object module being assembled.

If the branch destination is close enough, then the corresponding short branch "b"
instruction is assembled. Otherwise the assembler choses a sequence of one or more instruc
tions which together have the same effect as if the "b" instruction had a larger span. In gen
eral, as chooses the inverse branch followed by a brw, but a brw is sometimes pooled among
several "j" instructions with the same destination.

As is unable to perform the same long/short branch generation for other instructions
with a fixed byte displacement, such as the sob, aob families, or for the acbx family of
instructions which has a fixed word displacement. This would be desirable, but is prohibitive
because of the complexity of these instructions.

If the -J assembler option is given, a jmp instruction is used instead of a brw instruc
tion for ALL "j" instructions with distant destinations. This makes assembly of large
(>32K bytes) programs (inefficiently) possible. As does not try to use clever combinations
of brb, brw and jmp instructions. The jmp instructions use PC relative addressing, with the
length of the offset given by the -d assembler option.

These are the extended branch instructions as recognizes:

Jeql jeqlu jneq
Jgeq Jgequ jgtr
Jleq jlequ jlss
Jbcc Jbsc jbcs

Jibe jibs
Jee jcs
Jvc Jvs
Jbc Jbs
jbr

Note that Jbr turns into brb if its target is close enough; otherwise a brw is used.

9. Diagnostics
Diagnostics are intended to be self explanatory and appear on the standard output. Diag

nostics either report an error or a warning. Error diagnostics complain about lexical, syntactic
and some semantic errors, and abort the assembly.

The majority of the warnings complain about the use of v AX features not supported by
all implementations of the architecture. As will warn if new opcodes are used, if "G" or "H"
floating point numbers are used and will complain about mixed floating conversions.

10. Limits

limit
Arbitrary3

BUFSIZ
Arbitrary
Arbitrary
Arbitrary
4
4

11. Annoyances and Future Work

Berkeley Assembler Reference Manual 4-65

what
Files to assemble
Significant characters per name
Characters per input line
Characters per string
Symbols
Text segments
Data segments

Most of the annoyances deal with restrictions on the extended branch instructions.
As only uses a two level algorithm for resolving extended branch instructions into short

or long displacements. What is really needed is a general mechanism to turn a short condi
tional jump into a reverse conditional jump over one of two possible unconditional branches,
either a brw or a jmp instruction. Currently, the -J forces the jmp instruction to always be
used, instead of the shorter brw instruction when needed.

The assembler should also recognize extended branch instructions for sob, aob, and acbx
instructions. Sob instructions will be easy, aob will be harder because the synthesized instruc
tion uses the index operand twice, so one must be careful of side effects, and the acbx family
will be much harder (in the general case) because the comparison depends on the sign of the
addend operand, and two operands are used more than once. Augmenting as with these
extended loop instructions will allow the peephole optimizer to produce much better loop
optimizations, since it currently assumes the worst case about the size of the loop body.

The string temporary file is not put in memory when the -V flag is set. The string table
in the generated a.out contains some strings and names that are never referenced from the
symbol table; the loader removes these unreferenced strings, however.

3Although the number of characters available to the argv line is restricted by UNIX to 10240.

The UNIX 1/0 System

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

The UNIX 1/0 System 4-67

This paper gives an overview of the workings of the UNIXt 1/0 system. It was written
with an eye toward providing guidance to writers of device driver routines, and is oriented
more toward describing the environment and nature of device drivers than the implementa
tion of that part of the file system which deals with ordinary files.

It is assumed that the reader has a good knowledge of the overall structure of the file
system as discussed in the paper "The UNIX Time-sharing System." A more detailed discus
sion appears in "UNIX Implementation;" the current document restates parts of that one, but
is still more detailed. It is most useful in conjunction with a copy of the system code, since it
is basically an exegesis of that code.

Device Classes

There are two classes of device: block and character. The block interface is suitable for
devices like disks, tapes, and DECtape which work, or can work, with addressible 512-byte
blocks. Ordinary magnetic tape just barely fits in this category, since by use of forward and
backward spacing any block can be read, even though blocks can be written only at the end of
the tape. Block devices can at least potentially contain a mounted file system. The interface
to block devices is very highly structured; the drivers for these devices share a great many
routines as well as a pool of buffers.

Character-type devices have a much more straightforward interface, although more work
must be done by the driver itself.

Devices of both types are named by a major and a minor device number. These
numbers are generally stored as an integer with the minor device number in the low-order 8
bits and the major device number in the next-higher 8 bits; macros major and minor are
available to access these numbers. The major device number selects which driver will deal
with the device; the minor device number is not used by the rest of the system but is passed
to the driver at appropriate times. Typically the minor number selects a subdevice attached
to a given controller, or one of several similar hardware interfaces.

The major device numbers for block and character devices are used as indices in
separate tables; they both start at 0 and therefore overlap.

Overview of 1/0

The purpose of the open and creat system calls is to set up entries in three separate sys
tem tables. The first of these is the tLofile table, which is stored in the system's per-process
data area u. This table is indexed by the file descriptor returned by the open or creat, and is
accessed during a read, write, or other operation on the open file. An entry contains only a
pointer to the corresponding entry of the file table, which is a per-system data base. There is
one entry in the file table for each instance of open or creat. This table is per-system because
the same instance of an open file must be shared among the several processes which can result

tUNIX is a Trademark of Bell Laboratories.

4-68 The UNIX 1/0 System

from forks after the file is opened. A file table entry contains flags which indicate whether
the file was open for reading or writing or is a pipe, and a count which is used to decide when
all processes using the entry have terminated or closed the file (so the entry can be aban
doned). There is also a 32-bit file offset which is used to indicate where in the file the next
read or write will take place. Finally, there is a pointer to the entry for the file in the inode
table, which contains a copy of the file's i-node.

Certain open files can be designated "multiplexed" files, and several other flags apply to
such channels. In such a case, instead of an offset, there is a pointer to an associated multi
plex channel table. Multiplex channels will not be discussed here.

An entry in the file table corresponds precisely to an instance of open or creat; if the
same file is opened several times, it will have several entries in this table. However, there is at
most one entry in the inode table for a given file. Also, a file may enter the inode table not
only because it is open, but also because it is the current directory of some process or because
it is a special file containing a currently-mounted file system.

An entry in the inode table differs somewhat from the corresponding i-node as stored on
the disk; the modified and accessed times are not stored, and the entry is augmented by a flag
word containing information about the entry, a count used to determine when it may be
allowed to disappear, and the device and i-number whence the entry came. Also, the several
block numbers that give addressing information for the file are expanded from the 3-byte,
compressed format used on the disk to full long quantities.

During the processing of an open or creat call for a special file, the system always calls
the device's open routine to allow for any special processing required (rewinding a tape, turn
ing on the data-terminal-ready lead of a modem, etc.). However, the close routine is called
only when the last process closes a file, that is, when the i-node table entry is being deallo
cated. Thus it is not feasible for a device to maintain, or depend on, a count of its users,
although it is quite possible to implement an exclusive-use device which cannot be reopened
until it has been closed.

When a read or write takes place, the user's arguments and the file table entry are used
to set up the variables u.u_base, u.zu:ount, and u.u_offset which respectively contain the
(user) address of the 1/0 target area, the byte-count for the transfer, and the current location
in the file. If the file referred to is a character-type special file, the appropriate read or write
routine is called; it is responsible for transferring data and updating the count and current
location appropriately as discussed below. Otherwise, the current location is used to calculate
a logical block number in the file. If the file is an ordinary file the logical block number must
be mapped (possibly using indirect blocks) to a physical block number; a block-type special
file need not be mapped. This mapping is performed by the bmap routine. In any event, the
resulting physical block number is used, as discussed below, to read or write the appropriate
device.

Character Device Drivers

The cdevsw table specifies the interface routines present for character devices. Each
device provides five routines: open, close, read, write, and special-function (to implement the
ioctl system call). Any of these may be missing. If a call on the routine should be ignored,
(e.g. open on non-exclusive devices that require no setup) the cdevsw entry can be given as
nulldev; if it should be considered an error, (e.g. write on read-only devices) nodev is used.
For terminals, the cdevsw structure also contains a pointer to the tty structure associated
with the terminal.

The open routine is called each time the file is opened with the full device number as
argument. The second argument is a flag which is non-zero only if the device is to be written
upon.

The close routine is called only when the file is closed for the last time, that is when the
very last process in which the file is open closes it. This means it is not possible for the driver

The UNIX 1/0 System 4-69

to maintain its own count of its users. The first argument is the device number; the second is
a flag which is non-zero if the file was open for writing in the process which performs the final
close.

When write is called, it is supplied the device as argument. The per-user variable
u.u _count has been set to the number of characters indicated by the user; for character dev
ices, this number may be 0 initially. u.u._base is the address supplied by the user from which
to start taking characters. The system may call the routine internally, so the flag u.lf_segflg is
supplied that indicates, if on, that u.u.__base refers to the system address space instead of the
user's.

The write routine should copy up to u.u_count characters from the user's buffer to the
device, decrementing u.u_count for each character passed. For most drivers, which work one
character at a time, the routine cpass() is used to pick up characters from the user's buffer.
Successive calls on it return the characters to be written until u.u_count goes to 0 or an error
occurs, when it returns -1. Cpass takes care of interrogating U.u..Jiegflg and updating
u.u_count.

Write routines which want to transfer a probably large number of characters into an
internal buffer may also use the routine iomove(buffer, offset, count, flag) which is faster
when many characters must be moved. Iomove transfers up to count characters into the
buffer starting offset bytes from the start of the buffer; flag should be B_WRITE (which is O)
in the write case. Caution: the caller is responsible for making sure the count is not too large
and is non-zero. As an efficiency note, iomove is much slower if any of buffer+offset, count or
u.u_base is odd.

The device's read routine is called under conditions similar to write, except that
U.1£.count is guaranteed to be non-zero. To return characters to the user, the routine passc(c)
is available; it takes care of housekeeping like cpass and returns ...J.. as the last character
specified by u.u._count is returned to the user; before that time, 0 is returned. Iomove is also
usable as with write; the flag should be B_READ but the same cautions apply.

The "special-functions" routine is invoked by the stty and gtty system calls as follows:
(*p) (dev, v) where p is a pointer to the device's routine, dev is the device number, and v is a
vector. In the gtty case, the device is supposed to place up to 3 words of status information
into the vector; this will be returned to the caller. In the stty case, v is O; the device should
take up to 3 words of control information from the array u.u arg[0 ... 2].

Finally, each device should have appropriate interrupt-time routines. When an interrupt
occurs, it is turned into a C-compatible call on the devices's interrupt routine. The interrupt
catching mechanism makes the low-order four bits of the "new PS" word in the trap vector
for the interrupt available to the interrupt handler. This is conventionally used by drivers
which deal with multiple similar devices to encode the minor device number. After the inter
rupt has been processed, a return from the interrupt handler will return from the interrupt
itself.

A number of subroutines are available which are useful to character device drivers. Most
of these handlers, for example, need a place to buffer characters in the internal interface
between their "top half" (read/write) and "bottom half'' (interrupt) routines. For relatively
low data-rate devices, the best mechanism is the character queue maintained by the routines
getc and putc. A queue header has the structure

struct {
int
char
char

} queue;

c_cc; /* character count *I
c_sf;/ first character*/
c_j:!l; / last character *I

A character is placed on the end of a queue by putc(c, &queue) where c is the character and
queue is the queue header. The routine returns -1 if there is no space to put the character, 0
otherwise. The first character on the queue may be retrieved by getc(&queue) which returns

4-70 The UNIX I/O System

either the (non-negative) character or -1 if the queue is empty.

Notice that the space for characters in queues is shared among all devices in the system
and in the standard system there are only some 600 character slots available. Thus device
handlers, especially write routines, must take care to avoid gobbling up excessive numbers of
characters.

The other major help available to device handlers is the sleep-wakeup mechanism. The
call sleep(event, priority) causes the process to wait (allowing other processes to run) until
the event occurs; at that time, the process is marked ready-to-run and the call will return
when there is no process with higher priority.

The call wakeup(event) indicates that the event has happened, that is, causes processes
sleeping on the event to be awakened. The event is an arbitrary quantity agreed upon by the
sleeper and the waker-up. By convention, it is the address of some data area used by the
driver, which guarantees that events are unique.

Processes sleeping on an event should not assume that the event has really happened;
they should check that the conditions which caused them to sleep no longer hold.

Priorities can range from 0 to 127; a higher numerical value indicates a less-favored
scheduling situation. A distinction is made between processes sleeping at priority less than
the parameter PZERO and those at numerically larger priorities. The former cannot be inter
rupted by signals, although it is conceivable that it may be swapped out. Thus it is a bad idea
to sleep with priority less than PZERO on an event which might never occur. On the other
hand, calls to sleep with larger priority may never return if the process .is terminated by some
signal in the meantime. Incidentally, it is a gross error to call sleep in a routine called at
interrupt time, since the process which is running is almost certainly not the process which
should go to sleep. Likewise, none of the variables in the user area "u." should be touched, let
alone changed, by an interrupt routine.

If a device driver wishes to wait for some event for which it is inconvenient or impossible
to supply a wakeup, (for example, a device going on-line, which does not generally cause an
interrupt), the call sleep(&lbolt, priority) may be given. Lbolt is an external cell whose
address is awakened once every 4 seconds by the clock interrupt routine.

The routines spl4(), spl5(), spl6(), spl7() are available to set the processor priority
level as indicated to avoid inconvenient interrupts from the device.

If a device needs to know about real-time intervals, then timeout(func, arg, interval)
will be useful. This routine arranges that after interval sixtieths of a second, the func will be
called with arg as argument, in the style (*func)(arg). Timeouts are used, for example, to pro
vide real-time delays after function characters like new-line and tab in typewriter output, and
to terminate an attempt to read the 201 Dataphone dp if there is no response within a
specified number of seconds. Notice that the number of sixtieths of a second is limited to
32767, since it must appear to be positive, and that only a bounded number of timeouts can
be going on at once. Also, the specified func is called at clock-interrupt time, so it should
conform to the requirements of interrupt routines in general.

The Block-device Interface

Handling of block devices is mediated by a collection of routines that manage a set of
buffers containing the images of blocks of data on the various devices. The most important
purpose of these routines is to assure that several processes that access the same block of the
same device in multiprogrammed fashion maintain a consistent view of the data in the block.
A secondary but still important purpose is to increase the efficiency of the system by keeping
in-core copies of blocks that are being accessed frequently. The main data base for this
mechanism is the table of buffers buf. Each buffer header contains a pair of pointers (bJorw,
b_back) which maintain a doubly-linked list of the buffers associated with a particular block
device, and a pair of pointers (aQ.forw, av_back) which generally maintain a doubly-linked list
of blocks which are "free," that is, eligible to be reallocated for another transaction. Buffers

The UNIX 1/0 System 4-71

that have 1/0 in progress or are busy for other purposes do not appear in this list. The buffer
header also contains the device and block number to which the buffer refers, and a pointer to
the actual storage associated with the buffer. There is a word count which is the negative of
the number of words to be transferred to or from the buffer; there is also an error byte and a
residual word count used to communicate information from an 1/0 routine to its caller.
Finally, there is a flag word with bits indicating the status of the buffer. These flags will be
discussed below.

Seven routines constitute the most important part of the interface with the rest of the
system. Given a device and block number, both bread and getblk return a pointer to a buffer
header for the block; the difference is that bread is guaranteed to return a buffer actually con
taining the current data for the block, while getblk returns a buffer which contains the data in
the block only if it is already in core (whether it is or not is indicated by the B DONE bit; see
below). In either case the buffer, and the corresponding device block, is made "busy," so that
other processes referring to it are obliged to wait until it becomes free. Getblk is used, for
example, when a block is about to be totally rewritten, so that its previous contents are not
useful; still, no other process can be allowed to refer to the block until the new data is placed
into it.

The breada routine is used to implement read-ahead. it is logically similar to bread, but
takes as an additional argument the number of a block (on the same device) to be read asyn
chronously after the specifically requested block is available.

Given a pointer to a buffer, the brelse routine makes the buffer again available to other
processes. It is called, for example, after data has been extracted following a bread. There are
three subtly-different write routines, all of which take a buffer pointer as argument, and all of
which logically release the buffer for use by others and place it on the free list. Bwrite puts
the buffer on the appropriate device queue, waits for the write to be done, and sets the user's
error flag if required. Bawrite places the buffer on the device's queue, but does not wait for
completion, so that errors cannot be reflected directly to the user. Bdwrite does not start any
1/0 operation at all, but merely marks the buffer so that if it happens to be grabbed from the
free list to contain data from some other block, the data in it will first be written out.

Bwrite is used when one wants to be sure that 1/0 takes place correctly, and that errors
are reflected to the proper user; it is used, for example, when updating i-nodes. Bawrite is
useful when more overlap is desired (because no wait is required for I/O to finish) but when it
is reasonably certain that the write is really required. Bdwrite is used when there is doubt
that the write is needed at the moment. For example, bdwrite is called when the last byte of
a write system call falls short of the end of a block, on the assumption that another write will
be given soon which will re-use the same block. On the other hand, as the end of a block is
passed, bawrite is called, since probably the block will not be accessed again soon and one
might as well start the writing process as soon as possible.

In any event, notice that the routines getblk and bread dedicate the given block
exclusively to the use of the caller, and make others wait, while one of brelse, bwrite, bawrite,
or bdwrite must eventually be called to free the block for use by others.

As mentioned, each buffer header contains a flag word which indicates the status of the
buffer. Since they provide one important channel for information between the drivers and the
block 1/0 system, it is important to understand these flags. The following names are manifest
constants which select the associated flag bits.

B_READ This bit is set when the buffer is handed to the device strategy routine (see below)
to indicate a read operation. The symbol B WRITE is defined as 0 and does not
define a flag; it is provided as a mnemonic convenience to callers of routines like
swap which have a separate argument which indicates read or write.

B_DONE This bit is set to 0 when a block is handed to the the device strategy routine and is
turned on when the operation completes, whether normally as the result of an
error. It is also used as part of the return argument of getblk to indicate if 1 that

4-72 The UNIX 1/0 System

the returned buffer actually contains the data in the requested block.

B_ERROR This bit may be set to 1 when B_DONE is set to indicate that an I/0 or other error
occurred. If it is set the b_.srror byte of the buffer header may contain an error
code if it is non-zero. If b_error is 0 the nature of the error is not specified. Actu
ally no driver at present sets bJrror; the latter is provided for a future improve
ment whereby a more detailed error-reporting scheme may be implemented.

B_ BUSY This bit indicates that the buffer header is not on the free list, i.e. is dedicated to
someone's exclusive use. The buffer still remains attached to the list of blocks
associated with its device, however. When getblk (or bread, which calls it)
searches the buffer list for a given device and finds the requested block with this
bit on, it sleeps until the bit clears.

B_PHYS This bit is set for raw 1/0 transactions that need to allocate the Unibus map on an
11/70.

B_MAP This bit is set on buffers that have the Unibus map allocated, so that the iodone
routine knows to deallocate the map.

B_WANTED
This flag is used in conjunction with the B_BUSY bit. Before sleeping as described
just above, getblk sets this flag. Conversely, when the block is freed and the busy
bit goes down (in brelse) a wakeup is given for the block header whenever
B_ WANTED is on. This strategem avoids the overhead of having to call wakeup
every time a buffer is freed on the chance that someone might want it.

B_AGE This bit may be set on buffers just before releasing them; if it is on, the buffer is
placed at the head of the free list, rather than at the tail. It is a performance
heuristic used when the caller judges that the same block will not soon be used
again.

B_ASYNC This bit is set by bawrite to indicate to the appropriate device driver that the
buffer should be released when the write has been finished, usually at interrupt
time. The difference between bwrite and bawrite is that the former starts 1/0,
waits until it is done, and frees the buffer. The latter merely sets this bit and
starts I/0. The bit indicates that relse should be called for the buffer on comple
tion.

B_DELWRIThis bit is set by bdwrite before releasing the buffer. When getblk, while search
ing for a free block, discovers the bit is 1 in a buffer it would otherwise grab, it
causes the block to be written out before reusing it.

Block Device Drivers

The bdevsw table contains the names of the interface routines and that of a table for
each block device.

Just as for character devices, block device drivers may supply an open and a close rou
tine called respectively on each open and on the final close of the device. Instead of separate
read and write routines, each block device driver has a strategy routine which is called with a
pointer to a buffer header as argument. As discussed, the buffer header contains a read/write
flag, the core address, the block number, a (negative) word count, and the major and minor
device number. The role of the strategy routine is to carry out the operation as requested by
the information in the buffer header. When the transaction is complete the JLDONE (and
possibly the Ii.ERROR) bits should be set. Then if the B...ASYNC bit is set, brelse should be
called; otherwise, wakeup. In cases where the device is capable, under error-free operation, of
transferring fewer words than requested, the device's word-count register should be placed in
the residual count slot of the buffer header; otherwise, the residual count should be set to 0.
This particular mechanism is really for the benefit of the magtape driver; when reading this
device records shorter than requested are quite normal, and the user should be told the actual
length of the record.

The UNIX 1/0 System 4-73

Although the most usual argument to the strategy routines is a genuine buffer header
allocated as discussed above, all that is actually required is that the argument be a pointer to
a place containing the appropriate information. For example the swap routine, which
manages movement of core images to and from the swapping device, uses the strategy routine
for this device. Care has to be taken that no extraneous bits get turned on in the flag word.

The device's table specified by bdevsw has a byte to contain an active flag and an error
count, a pair of links which constitute the head of the chain of buffers for the device (li..forw,
b._back), and a first and last pointer for a device queue. Of these things, all are used solely by
the device driver itself except for the buffer-chain pointers. Typically the flag encodes the
state of the device, and is used at a minimum to indicate that the device is currently engaged
in transferring information and no new command should be issued. The error count is useful
for counting retries when errors occur. The device queue is used to remember stacked
requests; in the simplest case it may be maintained as a first-in first-out list. Since buffers
which have been handed over to the strategy routines are never on the list of free buffers, the
pointers in the buffer which maintain the free list (a11..forw, afLback) are also used to contain
the pointers which maintain the device queues.

A couple of routines are provided which are useful to block device drivers. iodone(bp)
arranges that the buffer to which bp points be released or awakened, as appropriate, when the
strategy module has finished with the buffer, either normally or after an error. (In the latter
case the JLERROR bit has presumably been set.)

The routine geterror(bp) can be used to examine the error bit in a buffer header and
arrange that any error indication found therein is reflected to the user. It may be called only
in the non-interrupt part of a driver when 1/0 has completed (B_j)ONE has been set).

Raw Block-device 1/0

A scheme has been set up whereby block device drivers may provide the ability to
transfer information directly between the user's core image and the device without the use of
buffers and in blocks as large as the caller requests. The method involves setting up a
character-type special file corresponding to the raw device and providing read and write rou
tines which set up what is usually a private, non-shared buffer header with the appropriate
information and call the device's strategy routine. If desired, separate open and close rou
tines may be provided but this is usually unnecessary. A special-function routine might come
in handy, especially for magtape.

A great deal of work has to be done to generate the "apptopriate ififormation" to put in
the argument buffer for the strategy module; the worst part is to map relocated user addresses
to physical addresses. Most of this work is done by physio(strat, bp, dev, rw) whose argu
ments are the name of the strategy routine strat, the buffer pointer bp, the device number
dev, and a read-write flag rw whose value is either B_READ or B_WRITE. Physio makes sure
that the user's base address and count are even (because most devices work in words) and that
the core area affected is contiguous in physical space; it delays until the buffer is not busy,
and makes it busy while the operation is in progress; and it sets up user error return informa
tion.

Screen Updating and Cursor Optimization 4-75

Screen Updating and Cursor Movement Optimization:
A Library Package

Kenneth C. R. C. Arnold

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

1. Overview

In making available the generalized terminal descriptions in /etc/termcap, much infor
mation was made available to the programmer, but little work was taken out of one's hands.
The purpose of this package is to allow the C programmer to do the most common type of ter
minal dependent functions, those of movement optimization and optimal screen updating,
without doing any of the dirty work, and (hopefully) with nearly as much ease as is necessary
to simply print or read things.

The package is split into three parts: (1) Screen updating; (2) Screen updating with user
input; and (3) Cursor motion optimization.

It is possible to use the motion optimization without using either of the other two, and
screen updating and input can be done without any programmer knowledge of the motion op
timization, or indeed the database itself.

1.1. Terminology (or, Words You Can Say to Sound Brilliant)

In this document, the following terminology is kept to with reasonable consistency:

window: An internal representation containing an image of what a section of the terminal
screen may look like at some point in time. This subsection can either encompass the
entire terminal screen, or any smaller portion down to a single character within that
screen.

terminal: Sometimes called terminal screen. The package's idea of what the terminal's screen
currently looks like, i.e., what the user sees now. This is a special screen:

screen: This is a subset of windows which are as large as the terminal screen, i.e., they start at
the upper left hand corner and encompass the lower right hand corner. One of these,
stdscr, is automatically provided for the programmer.,

1.2. Compiling Things

In order to use the library, it is necessary to have certain types and variables defined.
Therefore, the programmer must have a line:

#include <curses.h>

4-76 Screen Updating and Cursor Optimization

at the top of the program source. The header file <curses.h> needs to include <sgtty.h>,
so the one should not do so oneself1• Also, compilations should have the following form:

cc [fiags] file ... - lcurses -ltermlib

1.3. Screen Updating

In order to update the screen optimally, it is necessary for the routines to know what the
screen currently looks like and what the programmer wants it to look like next. For this pur
pose; a data type (structure) named WINDOW is defined which describes a window image to
the routines, including its starting position on the screen (the (y, x) co-ordinates of the upper
left hand corner) and its size. One of these (called curscr for current screen) is a screen image
of what the terminal currently looks like. Another screen (called stdscr, for standard screen)
is provided by default to make changes on.

A window is a purely internal representation. It is used to build and store a potential
image of a portion of the terminal. It doesn't bear any necessary relation to what is really on
the terminal screen. It is more like an array of characters on which to make changes.

When one has a window which describes what some part the terminal should look like,
the routine refresh() (or wrefresh() if the window is not stdscr) is called. refresh() makes the
terminal, in the area covered by the window, look like that window. Note, therefore, that
changing something on a window does not change the terminal. Actual updates to the termi
nal screen are made only by calling refresh() or wrefresh(). This allows the programmer to
maintain several different ideas of what a portion of the terminal screen should look like.
Also, changes can be made to windows in any order, without regard to motion efficiency.
Then, at will, the programmer can effectively say "make it look like this," and let the package
worry about the best way to do this.

1.4. Naming Conventions

As hinted above, the routines can use several windows, but two are automatically given:
curscr, which knows what the terminal looks like, and stdscr, which is what the programmer
wants the terminal to look like next. The user should never really access curscr directly.
Changes should be made to the appropriate screen, and then the routine refresh() (or
wrefresh()) should be called.

Many functions are set up to deal with stdscr as a default screen. For example, to add a
character to stdscr, one calls addch() with the desired character. If a different window is to
be used, the routine waddch() (for window-specific addch()) is provided2• This convention of
prepending function names with a "w" when they are to be applied to specific windows is
consistent. The only routines which do not do this are those to which a window must always
be specified.

In order to move the current (y, x) co-ordinates from one point to another, the routines
move() and wmove() are provided. However, it is often desirable to first move and then per
form some 1/0 operation. In order to avoid clumsyness, most 1/0 routines can be preceded by
the prefix "mv" and the desired (y, x) co-ordinates then can be added to the arguments to the
function. For example, the calls

move(y, x);
addch(ch);

can be replaced by

1 The screen package also uses the Standard 1/0 library, so <curses.h> includes <stdio.h>. It is redundant
(but harmless) for the programmer to do it, too.

2 Actually, addch() is really a "#define" macro with arguments, as are most of the "functions" which deal with
stdscr as a default.

and

mvaddch(y, x, ch);

wmove(win, y, x);
waddch(win, ch);

can be replaced by

mvwaddch(win, y, x, ch);

Screen Updating and Cursor Optimization 4-77

Note that the window description pointer (win) comes before the added (y, x) co-ordinates. If
such pointers are need, they are always the first parameters passed.

2. Variables

Many variables which are used to describe the terminal environment are available to the
programmer. They are:

type name
WINDOW * curscr
WINDOW* stdscr
char * Def_term
bool My _J;erm

char*
int
int
int
int

ttytype
LINES
COLS
ERR
OK

description
current version of the screen (terminal screen).
standard screen. Most updates are usually done here.
default terminal type if type cannot be determined
use the terminal specification in Def term as terminal,
irrelevant of real terminal type -
full name of the current terminal.
number of lines on the terminal
number of columns on the terminal
error flag returned by routines on a fail.
error flag returned by routines when things go right.

There are also several "#define" constants and types which are of general usefulness:

reg
bool
TRUE
FALSE

3. Usage

storage class "register" (e.g., reg int i;)
boolean type, actually a "char" (e.g., bool doneit;)
boolean "true" flag (1).
boolean "false" flag (0).

This is a description of how to actually use the screen package. In it, we assume all up
dating, reading, etc. is applied to stdscr. All instructions will work on any window, with
changing the function name and parameters as mentioned above.

3.1. Starting up

In order to use the screen package, the routines must know about terminal characteris
tics, and the space for curscr and stdscr must be allocated. These functions are performed by
initscr(). Since it must allocate space for the windows, it can overflow core when attempting
to do so. On this rather rare occasion, initscr() returns ERR. initscr() must always be called
before any of the routines which affect windows are used. If it is not, the program will core
dump as soon as either curscr or stdscr are referenced. However, it is usually best to wait to
call it until after you are sure you will need it, like after checking for startup errors. Terminal
status changing routines like nl() and crmode() should be called after initscr().

Now that the screen windows have been allocated, you can set them up for the run. If
you want to, say, allow the window to scroll, use scrollok(). If you want the cursor to be left
after the last change, use leaveok(). If this isn't done, refresh() will move the cursor to the
window's current (y, x) co-ordinates after updating it. New windows of your own can be
created, too, by using the functions newwin() and subwin(). delwfo() will allow you to get rid

4-78 Screen Updating and Cursor Optimization

of old windows. If you wish to change the official size of the terminal by hand, just set the
variables LINES and COLS to be what you want, and then call initscr(). This is best done
before, but can be done either before or after, the first call to initscr(), as it will always delete
any existing stdscr and/or curscr before creating new ones.

3.2. The Nitty-Gritty

3.2.1. Output

Now that we have set things up, we will want to actually update the terminal. The basic
functions used to change what will go on a window are addch() and move(). addch() adds a
character at the current (y, x) co-ordinates, returning ERR if it would cause the window to
illegally scroll, i.e., printing a character in the lower right-hand corner of a terminal which au
tomatically scrolls if scrolling is not allowed. move() changes the current (y, x) co-ordinates to
whatever you want them to be. It returns ERR if you try to move off the window when scrol
ling is not allowed. As mentioned above, you can combine the two into mvaddch() to do both
things in one fell swoop.

The other output functions, such as addstr() and printw(), all call addch() to add char
acters to the window.

After you have put on the window what you want there, when you want the portion of
the terminal covered by the window to be made to look like it, you must call refresh(). In
order to optimize finding changes, refresh() assumes that any part of the window not changed
since the last refresh() of that window has not been changed on the terminal, i.e., that you
have not refreshed a portion of the terminal with an overlapping window. If this is not the
case, the routine touchwin() is provided to make it look like the entire window has been
changed, thus making refresh() check the whole subsection of the terminal for changes.

If you call wrefresh() with curscr, it will make the screen look like curscr thinks it looks
like. This is useful for implementing a command which would redraw the screen in case it get
messed up.

3.2.2. Input

Input is essentially a mirror image of output. The complementary function to addch() is
getch() which, if echo is set, will call addch() to echo the character. Since the screen package
needs to know what is on the terminal at all times, if characters are to be echoed, the tty must
be in raw or cbreak mode. If it is not, getch() sets it to be cbreak, and then reads in the char
acter.

3.2.3. Miscellaneous

All sorts of fun functions exists for maintaining and changing information about the win
dows. For the most part, the descriptions in section 5.4. should suffice.

3.3. Finishing up

In order to do certain optimizations, and, on some terminals, to work at all, some things
must be done before the screen routines start up. These functions are performed in
getttmode() and setterm(), which are called by initscr(). In order to clean up after the rou
tines, the routine endwin() is provided. It restores tty modes to what they were when in
itscr() was first called. Thus, anytime after the call to initscr, endwin() should be called be
fore exiting.

4. Cursor Motion Optimization: Standing Alone

It is possible to use the cursor optimization functions of this screen package without the
overhead and additional size of the screen updating functions. The screen updating functions

Screen Updating and Cursor Optimization 4-79

are designed for uses where parts of the screen are changed, but the overall image remains the
same. This includes such programs as eye and vi3• Certain other programs will find it
difficult to use these functions in this manner without considerable unnecessary program over-
head. For such applications, such as some "crt hacks "4 and optimizing cat(l)-type programs,
all that is needed is the motion optimizations. This, therefore, is a description of what some
of what goes on at the lower levels of this screen package. The descriptions assume a certain
amount of familiarity with programming problems and some finer points of C. None of it is
terribly difficult, but you should be forewarned.

4.1. Terminal Information

In order to use a terminal's features to the best of a program's abilities, it must first
know what they are5• The /etc/termcap datab~se describes these, but a certain amount of
decoding is necessary, and there are, of course, both efficient and inefficient ways of reading
them in. The algorithm that the uses is taken from vi and is hideously efficient. It reads
them in a tight loop into a set of variables whose names are two uppercase letters with some
mnemonic value. For example, HO is a string which moves the cursor to the "home" position6•

As there are two types of variables involving ttys, there are two routines. The first,
gettmode(), sets some variables based upon the tty modes accessed by gtty(2) and stty(2)
The second, setterm(), a larger task by reading in the descriptions from the /etc/termcap
database. This is the way these routines are used by initscr():

if (isatty(O)) {
gettmode();

}
else

if (sp=getenv("TERM"))
setterm(sp);

setterm(Def term);
puts(TI); -

=puts(VS);

isatty() checks to see if file descriptor 0 is a terminal7• If it is, gettmode() sets the ter
minal description modes from a gtty(2) getenv() is then called to get the name of the termi
nal, and that value (if there is one) is passed to setterm(), which reads in the variables from
/etc/termcap associated with that terminal. (getenv() returns a pointer to a string contain
ing the name of the terminal, which we save in the character pointer sp.) If isatty() returns
false, the default terminal Def term is used. The TI and VS sequences initialize the terminal
(puts() is a macro which uses tputs() (see termcap(3)) to put out a string). It is these
things which endwin() undoes.

3 Eye actually uses these functions, vi does not.

4 Graphics programs designed to run on character-oriented terminals. I could name many, but they come and
go, so the list would be quickly out of date. Recently, there have been programs such as rocket and gun.

5 If this comes as any surprise tp you, there's this tower in Paris they're thinking of junking that I can let you
have for a song.

6 These names are identical to those variables used in the /etc/termcap database to describe each capability.
See Appendix A for a complete list of those read, and termcap(5) for a full description.

7 isatty() is defined in the default C library function routines. It does a gtty(2) on the descriptor and checks
the return value.

4-80 Screen Updating and Cursor Optimization

4.2. Movement Optimizations, or, Getting Over Yonder

Now that we have all this useful information, it would be nice to do something with it8•

The most difficult thing to do properly is motion optimization. When you consider how many
different features various terminals have (tabs, backtabs, non-destructive space, home se
quences, absolute tabs,) you can see that deciding how to get from here to there can be a
decidedly non-trivial task. The editor vi uses many of these features, and the routines it uses
to do this take up many pages of code. Fortunately, I was able to liberate them with the
author's permission, and use them here.

After using gettmode() and setterm() to get the terminal descriptions, the function
mvcur() deals with this task. It usage is simple: you simply tell it where you are now and
where you want to go. For example

mvcur(O, 0, LINES/2, COLS/2)

would move the cursor from the home position (0, O) to the middle of the screen. If you wish
to force absolute addressing, you can use the function tgoto() from the termlib(7) routines, or
you can tell mvcur() that you are impossibly far away, like Cleveland. For example, to abso
lutely address the lower left hand corner of the screen from anywhere just claim that you are
in the upper right hand corner:

mvcur(O, COLS-1, LINES-1, O)

5. The Functions

In the following definitions, "t" means that the "function" is really a "#define" macro
with arguments. This means that it will not show up in stack traces in the debugger, or, in
the case of such functions as addch(), it will show up as it's "w" counterpart. The arguments
are given to show the order and type of each. Their names are not mandatory, just suggestive.

5.1. Output Functions

addch(ch) t
char ch;

waddch(win, ch)
WINDOW *win;
char ch;

Add the character ch on the window at the current (y, x) co-ordinates. If the character
is a newline ('\n') the line will be cleared to the end, and the current (y, x) co-ordinates
will be changed to the beginning off the next line if newline mapping is on, or to the
next line at the same x co-ordinate if it is off. A return 1('\r') will move to the beginning
of the line on the window. Tabs (\t') will be expanded into spaces in the normal tabstop
positions of every eight characters. This returns ERR if it would cause the screen to
scroll illegally.

addstr(str) t
char *str;

8 Actually, it can be emotionally fulfilling just to get the information. This is usually only true, however, if you

waddstr(win, str)
WINDOW *win;
char *str;

Screen Updating and Cu:rsor Optimization 4-81

Add the string pointed to by str on the window at the current (y, x) co-ordinates. This
returns ERR if it would cause the screen to scroll illegally. In this case, it will put on as
much as it can.

box(win, vert, hor)
WINDOW *win;
char vert, hor;

Draws a box around the window using vert as the character for drawing the vertical
sides, and hor for drawing the horizontal lines. If scrolling is not allowed, and the win
dow encompasses the lower right-hand corner of the terminal, the corners are left blank
to avoid a scroll.

clear() t

wclear(win)
WINDOW *win;

Resets the entire window to blanks. If win is a screen, this sets the clear flag, which will
cause a clear-screen sequence to be sent on the next refresh() call. This also moves the
current (y, x) co-ordinates to (0, 0).

clearok(scr, boolf) t
WINDOW *scr,·
bool boolf;

Sets the clear flag for the screen scr. If boolf is TRUE, this will force a clear-screen to
be printed on the next refresh(), or stop it from doing so if boolf is FALSE. This only
works on screens, and, unlike clear(), does not alter the contents of the screen. If scr is
curscr, the next refresh() call will cause a clear-screen, even if the window passed to re
fresh() is not a screen.

clrtobot() t

wclrtobot(win)
WINDOW *win;

Wipes the window clear from the current (y, x) co-ordinates to the bottom. This does
not force a clear-screen sequence on the next refresh under any circumstances. This has
no associated "mv" command.

clrtoeol() t

have the social life of a kumquat.

4-82 Screen Updating and Cursor Optimization

wclrtoeol(win)
WINDOW *win;

Wipes the window clear from the current (y, x) co-ordinates to the end of the line. This
has no associated "m v" command.

delch()

wdelch(win)
WINDOW *win;

Delete the character at the current (y, x) co-ordinates. Each character after it on the
line shifts to the left, and the last character becomes blank.

deleteln()

wdeleteln(win)
WINDOW *win;

Delete the current line. Every line below the current one will move up, and the bottom
line will become blank. The current (y, x) co-ordinates will remain unchanged.

erase() t

werase(win)
WINDOW *win;

Erases the window to blanks without setting the clear flag. This is analagous to clear(),
except that it never causes a clear-screen sequence to be generated on a refresh(). This
has no associated "mv" command.

insch(c)
char c·

'

winsch(win, c)
WINDOW *win;
char c;

Insert c at the current (y, x) co-ordinates Each character after it shifts to the right, and
the last character disappears. This returns ERR if it would cause the screen to scroll
illegally.

insertln()

winsertln(win)
WINDOW *win;

Screen Updating and Cursor Optimization 4-83

Insert a line above the current one. Every line below the current line will be shifted
down, and the bottom line will disappear. The current line will become blank, and the
current (y, x) co-ordinates will remain unchanged. This returns ERR if it would cause
the screen to scroll illegally.

move(y, x) t
int y, x;

wmove(win, y, x)
WINDOW *win;
int y, x;

Change the current (y, x) co-ordinates of the window to (y, x). This returns ERR if it
would cause the screen to scroll illegally.

overlay(winl, win2)
WINDOW *winl, *win2;

Overlay winl on win2. The contents of winl, insofar as they fit, are placed on win2 at
their starting (y, x) co-ordinates. This is done non-destructively, i.e., blanks on winl
leave the contents of the space on win2 untouched.

overwrite(winl, win2)
WINDOW *winl, *win2;

Overwrite winl on win2. The contents of winl, insofar as they fit, are placed on win2 at
their starting (y, x) co-ordinates. This is done destructively, i.e., blanks on winl become
blank on win2.

printw(fmt, argl, arg2, ...)
char *fmt;

wprintw(win, fmt, argl, arg2, ...)
WINDOW *win;
char *fmt;

Performs a print{() on the window starting at the current (y, x) co-ordinates. It uses
addstr() to add the string on the window. It is often advisable to use the field width op
tions of print{() to avoid leaving things on the window from earlier calls. This returns
ERR if it would cause the screen to scroll illegally.

refresh() t

wrefresh(win)
WINDOW *win;

Synchronize the terminal screen with the desired window. If the window is not a screen,
only that part covered by it is updated. This returns ERR if it would cause the screen

4-84 Screen Updating and Cursor Optimization

to scroll illegally. In this case, it will update whatever it can without causing the scroll.

standout() t

wstando-g.t(win)
WINDOW *win;

standend() t

wstandend(win)
WINDOW *win;

Start and stop putting characters onto win in standout mode. standout() causes any
characters added to the window to be put in standout mode on the terminal (if it has
that capability). standend() stops this. The sequences SO and SE (or US and UE if
they are not defined) are used (see Appendix A),

5.2. Input Functions

crmode() t

nocrmode() t

Set or unset the terminal to/from cbreak mode.

eclio() t

noecho() t
Sets the terminal to echo or not echo characters.

getch() t

wgetch(win)
WINDOW *win;

Gets a character from the terminal and (if necessary) echos it on the window. This re
turns ERR if it would cause the screen to scroll illegally. Otherwise, the character gotten
is returned. If noecho has bee~ set, then the window is left unaltered. In order to retain
control of the terminal, it is necessary to have one of noecho, cbreak, or rawmode set. If
you do not set one, whatever routine you call to read characters will set cbreak for you,
and then reset to the original mode when finished.

getstr(str) t
char *str;

wgetstr(win; str)
WINDOW *win;
char *str;

Screen Updating and Cursor Optimization 4-85

Get a string through the window and put it in the location pointed to by str, which is as
sumed to be large enough to handle it. It sets tty modes if necessary, and then calls
getch() (or wgetch(win)) to get the characters needed to fill in the string until a newline
or EOF is encountered. The newline stripped off the string. This returns ERR if it
would cause the screen to scroll illegally.

raw() t

noraw() t

Set or unset the terminal to/from raw mode. On version 7 UNIX9 this also turns of new
line mapping (see nl()).

scanw(fmt, argl, arg2, ...)
char *fmt;

wscanw(win, fmt, argl, arg2, .••)
WINDOW *win;
char *fmt;

Perform a scan{() through the window using fmt. It does this using consecutive getch()'s
(or wgetch(win)'s). This returns ERR if it would cause the screen to scroll illegally.

5.3. Miscellaneous Functions

delwin(win)
WINDOW *win;

Deletes the window from existence. All resources are freed for future use by calloc(3).
If a window has a subwin() allocated window inside of it, deleting the outer window the
subwindow is not affected, even though this does invalidate it. Therefore, subwindows
should be deleted before their outer windows are.

end win()

Finish up window routines before exit. This restores the terminal to the state it was be
fore initscr() (or gettmode() and setterm()) was called. It should always be called before
exiting. It does not exit. This is especially useful for resetting tty stats when trapping
rubouts via signal(2).

getyx(win, y, x) t
WINDOW *win;
int y, x;

9 UNIX is a trademark of Bell Laboratories.

4-86 Screen Updating and Cursor Optimization

Puts the current (y, x) co-ordinates of win in the variables y and x. Since it is a macro,
not a function, you do not pass the address of y and x.

inch() t

winch(win) t
WINDOW *win;

Returns the character at the current (y, x) co-ordinates on the given window. This does
not make any changes to the window. This has no associated "mv" command.

initscr()

Initialize the screen routines. This must be called before any of the screen routines are
used. It initializes the terminal-type data and such, and without it, none of the routines
can operate. If standard input is not a tty, it sets the specifications to the terminal
whose name is pointed to by Def term (initialy "dumb"). If the boolean My term is true,
Def _!erm is always used. - -

leaveok(win, boolf) t
WINDOW *win;
bool boolf;

Sets the boolean flag for leaving the cursor after the last change. If boolf is TRUE, the
cursor will be left after the last update on the terminal, and the current (y, x) co
ordinates for win will be changed accordingly. If it is FALSE, it will be moved to the
current (y, x) co-ordinates. This flag (initialy FALSE) retains its value until changed by
the user.

longname(termbuf, name)
char *termbuf, *name;

Fills in name with the long (full) name of the terminal described by the termcap entry in
termbuf. It is generally of little use, but is nice for telling the user in a readable format
what terminal we think he has. This is available in the global variable ttytype. Term
buf is usually set via the termlib routine tgetent().

mvwin(win, y, :x:)
WINDOW *win;
int y, x;

Move the home position of the window win from its current starting coordinates to
(y, x). If that would put part or all of the window off the edge of the terminal screen,
mvwin() returns ERR and does not change anything.

WINDOW*
newwin(lines, cols, begin y, begin :x:)
int lines, cols, begin], begin_:T

Screen Updating and Cursor Optimization 4-87

Create a new window with lines lines and cols columns starting at position
(begin y, begin x). If either lines or cols is 0 (zero), that dimension will be set to
(LINES - begTn y) or (COLS - begin x) respectively. Thus, to get a new window of di
mensions LINESX COLS, use newwin?O, 0, 0, O).

nl() t

nonl() t

Set or unset the terminal to/from nl mode, i.e., start/stop the system from mapping
<RETURN> to <LINE-FEED>. If the mapping is not done, refresh() can do more
optimization, so it is recommended, but not required, to turn it off.

scrollok(win, boolf) t
WINDOW *win;
bool boolf;

Set the scroll flag for the given window. If boolf is FALSE, scrolling is not allowed.
This is its default setting.

touch win(win)
WINDOW *win;

Make it appear that the every location on the window has been changed. This is usually
only needed for refreshes with overlapping windows.

WINDOW*
subwin(win, lines, cols, begin y, begin :x)
WINDOW *win; - -
int lines, cols, begin y, begin 3;

Create a new window with lines lines and cols columns starting at position
(begin y, begin x) in the middle of the window win. This means that any change made
to either window in the area covered by the subwindow will be made on both windows.
begin y, begin x are specified relative to the overall screen, not the relative (0, O) of win.
If either lines or cols is 0 (zero), that dimension will be set to (LINES - begin y) or
(COLS - begin_:) respectively. -

unctrl(ch) t
char ch;

This is actually a debug function for the library, but it is of general usefulness. It re
turns a string which is a representation of ch. Control characters become their upper
case equivalents preceded by a"~". Other letters stay just as they are. To use unctrl(),
you must have #include <unctrl.h> in your file.

5.4. Details

4-88 Screen Updating and Cursor Optimization

gettmode()

Get the tty stats. This is normally called by initscr().

mvcur(lasty, lastx, newy, newx)
int lasty, lastx, newy, newx;

Moves the terminal's cursor from (lasty, lastx) to (newy, newx) in an approximation of
optimal fashion. This routine uses the functions borrowed from ex version 2.6. It is pos
sible to use this optimization without the benefit of the screen routines. With the screen
routines, this should not be called by the user. move() and refresh() should be used to
move the cursor position, so that the routines know what's going on.

scroll(win)
WINDOW *win;

Scroll the window upward one line. This is normally not used by the user.

savetty() t

resetty() t

savetty() saves the current tty characteristic flags. resetty() restores them to what
savetty() stored. These functions are performed automatically by initscr() and
endwin().

setterm(name)
char *name;

Set the terminal characteristics to be those of the terminal named name. This is nor
mally called by initscr().

tstp()

If the new tty(4) driver is in use, this function will save the current tty state and then
put the process to sleep. When the process gets restarted, it restores the tty state and
then calls wrefresh(curscr) to redraw the screen. initscr() sets the signal SIGTSTP to
trap to this routine.

Screen Updating and Cursor Optimization 4-89

1. Capabilities from termcap

1.1. Disclaimer

The description of terminals is a difficult business, and we only attempt to summarize
the capabilities here: for a full description see the paper describing termcap.

1.2. Overview

Capabilities from termcap are of three kinds: string valued options, numeric valued op
tions, and boolean options. The string valued options are the most complicated, since they
may include padding information, which we describe now.

Intelligent terminals often require padding on intelligent operations at high (and some
times even low) speed. This is specified by a number before the string in the capability, and
has meaning for the capabilities which have a P at the front of their comment. This normally
is a number of milliseconds to pad the operation. In the current system which has no true
programmable delays, we do this by sending a sequence of pad characters (normally nulls, but
can be changed (specified by PC)). In some cases, the pad is better computed as some
number of milliseconds times the number of affected lines (to the bottom of the screen usual
ly, except when terminals have insert modes which will shift several lines.) This is specified as,
e.g., 12*. before the capability, to say 12 milliseconds per affected whatever (currently always
line). Capabilities where this makes sense say P*.

1.3. Variables Set By setterm()

Type Name
char* AL
bool AM
char* BC
bool BS
char* BT
bool CA
char* CD
char* CE
char* CL
char* CM
char* DC
char* DL
char* DM
char* DO
char* ED
bool EO
char* EI
char* HO
bool HZ
char* IC
bool IN
char* IM
char* IP
char* LL
char* MA

variables set by setterm()

Pad Description
P* Add new blank Line

Automatic Margins
Back Cursor movement
BackSpace works

P Back Tab
Cursor Addressable

P* Clear to end of Display
P Clear to End of line
P* CLear screen
P Cursor Motion
P* Delete Character
P* Delete Line sequence

Delete Mode (enter)
DOwn line sequence
End Delete mode
can Erase Overstrikes with ' '
End Insert mode
HOme cursor
HaZeltine - braindamage

P Insert Character
Insert-Null blessing
enter Insert Mode (IC usually set, too)

P* Pad after char Inserted using IM+IE
quick to Last Line, column 0
ctrl character MAp for cmd mode

4-90 Screen Updating and Cursor Optimization

variables set by setterm()

~pe Name Ead Description
bool MI can Move in Insert mode
bool NC No Cr: \r sends \r \n then eats \n
char* ND Non-Destructive space
bool OS OverStrike works
char PC Pad Character
char* SE Standout End (may leave space)
char* SF p Scroll Forwards
char* so Stand Out begin (may leave space)
char* SR p Scroll in Reverse
char* TA p TAb (not AI or with padding)
char* TE Terminal address enable Ending sequence
char* TI Terminal address enable Initialization
char* UC Underline a single Character
char* UE Underline Ending sequence
bool UL UnderLining works even though !OS
char* UP UP line
char* us Underline Starting sequence10

char* VB Visible Bell
char* VE Visual End sequence
char* vs Visual Start sequence
bool XN a Newline gets eaten after wrap

Names starting with X are reserved for severely nauseous glitches

1.4. Variables Set By gettmode()

variables set by gettmode()

type
bool
bool
bool

name
NONL
GT
UPPERCASE

description
Term can't hack linefeeds doing a CR
Gtty indicates Tabs
Terminal generates only uppercase letters

10 US and UE, if they do not exist in the termcap entry, are copied from SO and SE in setterm()

Screen Updating and Cursor Optimization 4-91

1.
The WINDOW structure

The WINDOW structure is defined as follows:

define WINDOW struct win st

struct win st {
- Short

};

#define
#define
#define
#define
#define

short
short
short
bool
bool
bool
char
short
short

_cury, ~urx;
maxy, maxx;

""begy, 'Eegx;
-flags; -
-clear;
leave;
scroll;
**y;
* firstch;
*lastch;

SUB WIN
~ND LINE
li'ULLWIN
SCROLL WIN
"'STANDOUT

01
02
04
010
0200

cury and curx are the current (y, x) co-ordinates for the window. New characters ad
ded to the screen are added at this point. maxy and maxx are the maximum values allowed
for (cury, curx). begy and begx are the starting (y;-x) co-ordinates on the terminal for the
window, i.i., the Window's home. cury, curx, maxy, and maxx are measured relative to
<_!Jegy, _begx), not the terminal's home. - - -

clear tells if a dear-screen sequence is to be generated on the next refresh() call. This
is oniY meaningful for screens. The initial clear-screen for the first refresh() call is generated
by initially setting clear to be TRUE for curscr, which always generates a clear-screen if set,
irrelevant of the dimensions of the window involved. leave is TRUE if the current (y, x) co
ordinates and the cursor are to be left after the last character changed on the terminal, or not
moved if there is no change. _scroll is TRUE if scrolling is allowed .

.)' is a pointer to an array of lines which describe the terminal. Thus:

_y[i]

is a pointer to the ith line, and

_J[i] [j]

is the jth character on the ith line.

flags can have one or more values or'd into it. SUBWIN means that the window is a
subwmdow, which indicates to delwin() that the space for the lines is not to be freed. END
LINE says that the end of the line for this window is also the end of a screen. FULLWIN
says that this window is a screen. SCROLLWIN indicates that the last character of this
screen is at the lower right-hand corner of the terminal; i.e., if a character was put there, the
terminal would scroll. ST ANDO UT says that all characters added to the screen are in
standout mode. -

11 All variables not normally accessed directly by the user are named with an initial " " to avoid conflicts with
the user's variables. -

4-92 Screen Updating and Cursor Optimization

1. Examples
Here we present a few examples of how to use the package. They attempt to be

representative, though not comprehensive.

2. Sc:reen Updating
The following examples are intended to demonstrate the basic structure of a program us

ing the screen updating sections of the package. Several of the programs require calculational
sections which are irrelevant of to the example, and are therefore usually not included. It is
hoped that the data structure definitions give enough of an idea to allow understanding of
what the relevant portions do. The rest is left as an exercise to the reader, and will not be on
the final. ·

2.1. Twinkle
This is a moderately simple program which prints pretty patterns on the screen that

might even hold your interest for 30 seconds or more. It switches between patterns of aster
isks, putting them on one by one in random order, an<f then taking them off in the same
fashion. It is more efficient to write this using only the motion optimization, as is demon
strated below.

#include
#include

/*

<cUrses.h>
<signal.h>

* the idea for this program was a product of the imagination of
*Kurt Schoens. Not responsible for minds lost or stolen.
*/

#define
#define
#define

NCOLS 80
NLINES 24
MAXPATTERNS 4

struct locs {
char y, x;

};

typedef struct locs LOCS;

LOCS

int

main() {

Layout[NCOLS * NLINES];

Pattern,
Numstars;

char
int

srand(getpid());

initscr();
signal(SIGINT, die);
noecho();
nonl();

*getenv();
die();

/* current board layout */

/* current pattern number */
/* number of stars in pattern */

/* initialize random sequence */

Screen Updating and Cursor Optimization 4-93

leaveok(stdscr, TRUE);
scrollok(stdscr, FALSE);

for(;;) {

}

make board();
puton('*');
puton(' ');

/* make the board setup */
/*put on '*'s */
/* cover up with' 's */

}

/*
*On program exit, move the cursor to the lower left corner by
* direct addressing, since current location is not guaranteed.
* We lie and say we used to be at the upper right corner to guarantee
* absolute addressing.
*/

die() {

signal(SIGINT, SIG IGN);
mvcur(O, COLS..J., LINES..J., O);
end win();
exit(O);

}

/*
* Make the current board setup. It picks a random pattern and
* calls ison() to determine if the character is on that pattern
*or not.
*/

makeboard() {

}

/*

reg int
reg LOCS

y, x;
*Ip;

Pattern= rand() 3 MAXPATTERNS;
Ip= Layout;
for (y = O; y < NLINES; y++)

for (x = O; x < NCOLS; x++)
if (ison(y, x)) {

}
Numstars = Ip -Layout;

lp...>y = y;
lp++...;::.x = x;

*Return TRUE if (y, x) is on the current pattern.
*/

ison(y, x)
reg int y, x; {

switch (Pattern) {

4-94 Screen Updating and Cursor Optimization

}

puton(ch)
reg char

}

2.2. Life

case 0: /* alternating lines */
return !(y & 01);

case 1: /*box */
if (x >= LINES && y >= NCOLS)

return FALSE;
if (y < 31 y >= NLINES -3)

return TRUE;
return (x < 3 I x >= NCOLS - 3);

case 2: /* holy pattern! */
return ((x + y) & 01);

case 3: /* bar across center */
return (y >= 9 && y <= 15);

}
/* NOTREACHED */

reg LOCS
reg int
reg LOCS
LOCS

ch; {

*Ip;
r;
*end;
temp;

end= &Layout[Numstars];
for (Ip = Layout; Ip < end; Ip++) {

r = rand() % Numstars;
temp= *Ip;

}

*lp = Layout[r];
Layout[r] = temp;

for (Ip = Layout; Ip < end; lp++) {
mvaddch(lp->y, Ip->x, ch);
refresh();

}

This program plays the famous computer pattern game of life (Scientific American, May,
1974). The calcuiational routines create a linked list of structures defining where each piece
is. Nothing here claims to be optimal, merely demonstrative. This program, however, is a
very good place to use the screen updating routines, as it allows them to worry about what the
last position looked like, so you don't have to. It also demonstrates some of the input rou
tines.

#include
#include

/*

<curses.h>
<signal.h>

* Run a life game. This is a demonstration program for
* the Screen Updating section of the -lcurses cursor package.
*/

Screen Updating and Cursor Optimization 4-95

struct 1st st {
-int y, x;

/* linked list element */

struct 1st st
};

*next, *last;
/* (y, x) position of piece */
/* doubly linked */

typedef struct 1st _st

LIST *Head;

main(ac, av)
int ac;
char *av[]; {

}

/*

int die();

evalargs(ac, av);

initscr();
signal(SIGINT, die);
crmode();
noecho();
nonl();

getstart();
for(;;) {

}

pr board();
update();

LIST;

/*head of linked list */

/*evaluate arguments */

/* initialize screen package */
/*set to restore tty stats */
/* set for char-by-ehar */
/*input */
/*for optimization */

/* get starting position */

/* print out current board */
/*update board position */

* This is the routine which is called when rubout is hit.
* It resets the tty stats to their original values. This
* is the normal way of leaving the program.
*/

die() {

}

signal(SIGINT, SIG IGN);
mvcur(O, COLS-1, LlNES-1, O);
end win();
exit(O);

/*ignore rubouts'*/
/* go to bottom of screen */
/* set terminal to initial state */

/*
* Get the starting position from the user. They keys u, i, o, j, l,
* m, ,, and . are used for moving their relative directions from the
* k key. Thus, u move diagonally up to the left,, moves directly down,
* etc. x places a piece at the current position, "' "' takes it away.
* The input can also be from a file. The list is built after the
* board setup is ready.
*/

getstart() {

4-96 Screen Updating and Cursor Optimization

}

reg char
reg int

c;
x, y;

box(stdscr, t,' ');
move(l, 1); -

/* box in the screen */
/* move to upper left corner */

do {
refresh(); /* print current position */

}

if ((c=getch()) == 'q')
break;

switch (c) {

}

case 'u':
case 'i':
case 'o':
case 'j':
case 1':
case 'm':
case',':
case'.':

case 'f':

case 'x':

case'':

adjustyx(c);
break;

mvaddstr(O, 0, "File name:");
getstr(buf);
readfile(buf);
break;

addch('X');
break;

addch(' ');
break;

if (Head != NULL)
dellist(Head);

Head = malloc(sizeof (LIST));

/*

/* start new list */

*loop through the screen looking for 'x's, and add a list
* element for each one
*/

for (y = 1; y <LINES -1; y++)
for (x = 1; x < COLS-1; x++) {

move(y, x);

}

if (inch() == 'x')
addlist(y, x);

Screen Updating and Cursor Optimization 4-97

/*
* Print out the current board position from the linked list
*/

prboard() {

}

reg LIST

erase();
box(stdscr, '/',' ');

/*

*hp;

/*clear out last position */
/* box in the screen */

* go through the list adding each piece to the newly
* blank board
*/

for (hp= Head; hp; hp= hp->next)
mvaddch(hp->y, hp-->x, 'X');

refresh();

3. Motion optimization

The following example shows how motion optimization is written on its own. Programs
which flit from one place to another without regard for what is already there usually do not
need the overhead of both space and time associated with screen updating. They should in
stead use motion optimization.

3.1. Twinkle

The twinkle program is a good candidate for simple motion optimization. Here is how
it could he written (only the routines that have been changed are shown):

main() {

reg char
char
int

srand(getpid());

if (isatty(O)) {
gettmode();

*sp;
*getenv();
yutchar(), die();

if (sp=getenv("TERM"))
setterm(sp);

signal(SIGINT, die);
}
else {

/* initialize random sequence */

printf("Need a terminal on %d\n", tty ch);

}
puts(TI);

J>uts(VS);

noecho();
nonl();

exit(l); - -

4-98 Screen Updating and Cursor Optimization

}

/*

tputs(CL, NLINES, putchar);
for(;;) { -

}

make board();
puton('*');
puton(' ');

/*make the board setup */
/*put on '*'s */
/*cover up with' 's */

* putchar defined for tputs() (and puts())
*F -
putchar(c)

reg char c; {

putchar(c);
}

puton(ch)
char ch; {

}

static int
reg LOCS
reg int
reg LOCS
LOCS

lasty, lastx;
*lp;
r;
*end;
temp;

end= &Layout[Numstars];
for (Ip = Layout; lp < end; lp++) {

r = rand() % Numstars;
temp= *lp;

}

*lp = Layout[r];
Layout[r] = temp;

for (Ip = Layout; lp < end; lp++)
/* prevent scrolling */

if (!AM I (lp->y < NLINES -1 I lp->x < NCOLS -1)) {
mvcur(lasty, lastx, lp->y, lp->x);
putchar(ch);

}

lasty = lp->y;
if ((lastx = lp->x + 1) >= NCOLS)

if (AM) {

}
else

lastx = O;
lasty++;

lastx = NCOLS - 1;

Line Printer Spooler Manual 4-99

4.2BSD Line Printer Spooler Manual

Revised July 27, 1983

Ralph Campbell

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

(415) 642-7780

1. Overview

The line printer system supports:

• multiple printers,

• multiple spooling queues,

• both local and remote printers, and

• printers attached via serial lines which require line initialization such as the baud rate.

Raster output devices such as a Varian or Versatec, and laser printers such as an Imagen, are
also supported by the line printer system.

The line printer system consists mainly of the following files and commands:

/etc/printcap
/usr/lib/lpd
/usr/ucb/lpr
/usr/ucb/lpq
/usr/ucb/lprm
/etc/lpc
/dev/printer

printer configuration and capability data base
line printer daemon, does all the real work
program to enter a job in a printer queue
spooling queue examination program
program to delete jobs from a queue
program to administer printers and spooling queues
socket on which lpd listens

The file /etc/printcap is a master data base describing line printers directly attached to a
machine and, also, printers accessible across a network. The manual page entry printcap(5)
provides the ultimate definition of the format of this data base, as well as indicating default
values for important items such as the directory in which spooling is performed. This docu
ment highlights the important information which may be placed printcap.

2. Commands

2.1. lpd - line printer dameon

The program lpd(B), usually invoked at boot time from the /etc/re file, acts as a master
server for coordinating and controlling the spooling queues configured in the printcap file.
When lpd is started it makes a single pass through the printcap database restarting any
printers which have jobs. In normal operation lpd listens for service requests on multiple

UNIX is a trademark of Bell Laboratories.

4-100 Line Printer Spooler Manual

sockets, one in the UNIX domain (named "/dev/printer") for local requests, and one in the
Internet domain (under the "printer" service specification) for requests for printer access from
off machine; see socket (2) and services (5) for more information on sockets and service
specifications, respectively. Lpd spawns a copy of itself to process the request; the master
daemon continues to listen for new requests.

Clients communicate with lpd using a simple transaction oriented protocol. Authentica
tion of remote clients is done based on the "privilege port" scheme employed by rshd (SC) and
rcmd (3X). The following table shows the requests understood by lpd. In each request the
first byte indicates the "meaning" of the request, followed by the name of the printer to which
it should be applied. Additional qualifiers may follow, depending on the request.

Request
A A printer\ n
ABprinter \ n
ACprinter [users ...] [jobs ...] \n
ADprinter [users ...] [jobs ...] \n
AEprinter person [users ...] [jobs ...] \ n

Interpretation
check the queue for jobs and print any found
receive and queue a job from another machine
return short list of current queue state
return long list of current queue state
remove jobs from a queue

The lpr (1) command is used by users to enter a print job in a local queue and to notify
the local lpd that there are new jobs in the spooling area. Lpd either schedules the job to be
printed locally, or in the case of remote printing, attempts to forward the job to the appropri
ate machine. If the printer cannot be opened or the destination machine is unreachable, the
job will remain queued until it is possible to complete the work.

2.2. lpq - show line printer queue

The lpq (1) program works recursively backwards displaying the queue of the machine
with the printer and then the queue(s) of the machine(s) that lead to it. Lpq has two forms
of output: in the default, short, format it gives a single line of output per queued job; in the
long format it shows the list of files, and their sizes, which comprise a job.

2.3. lprm - remove jobs from a queue

The lprm (1) command deletes jobs from a spooling queue. If necessary, lprm will first
kill off a running daemon which is servicing the queue, restarting it after the required files are
removed. When removing jobs destined for a remote printer, lprm acts similarly to lpq except
it first checks locally for jobs to remove and then tries to remove files in queues off-machine.

2.4. lpc - line printer control program

The lpc(B) program is used by the system administrator to control the operation of the
line printer system. For each line printer configured in /etc/printcap, lpc may be used to:

• disable or enable a printer,

• disable or enable a printer's spooling queue,

• rearrange the order of jobs in a spooling queue,

• find the status of printers, and their associated spooling queues and printer dameons.

3. Access control

The printer system maintains protected spooling areas so that users cannot circumvent
printer accounting or remove files other than their own. The strategy used to maintain pro
tected spooling areas is as follows:

• The spooling area is writable only by a daemon user and spooling group.

• The lpr program runs setuid root and setgid spooling. The root access is used to read any
file required, verifying accessibility with an access (2) call. The group ID is used in setting

Line Printer Spooler Manual 4-101

up proper ownership of files in the spooling area for lprm.

• Control files in a spooling area are made with daemon ownership and group ownership
spooling. Their mode is 0660. This insures control files are not modified by a user and
that no user can remove files except through lprm.

• The spooling programs, lpd, lpq, and lprm run setuid root and setgid spooling to access
spool files and printers.

• The printer server, lpd, uses the same verification procedures as rshd (SC) in authenticat
ing remote clients. The host on which a client resides must be present in the file
/etc/hosts.equiv, used to create clusters of machines under a single administration.

In practice, none of lpd, lpq, or lprm would have to run as user root if remote spooling
were not supported. In previous incarnations of the printer system lpd ran setuid daemon,
setgid spooling, and lpq and lprm ran setgid spooling.

4. Setting up

The 4.2BSD release comes with the necessary programs installed and with the default
line printer queue created. If the system must be modified, the makefile in the directory
/usr/src/usr.lib/lpr should be used in recompiling and reinstalling the necessary programs.

The real work in setting up is to create the printcap file and any printer filters for
printers not supported in the distribution system.

4.1. Creating a printcap file

The printcap database contains one or more entries per printer. A printer should have
a separate spooling directory; otherwise, jobs will be printed on different printers depending
on which printer daemon starts first. This section describes how to create entries for printers
which do not conform to the default printer description (an LP-11 style interface to a stan
dard, band printer).

4.1.1. Printers on serial lines

When a printer is connected via a serial communication line it must have the proper
baud rate and terminal modes set. The following example is for a DecWriter III printer con
nected locally via a 1200 baud serial line.

lplr,A-180 DecWriter III:\
:lp=/dev/lp:br#l200:fs#06320: \
:tr=\f:of=/usr/lib/lpf:lf=/usr/adm/lpd-errs:

The Ip entry specifies the file name to open for output. In this case it could be left out since
"/dev/lp" is the default. The hr entry sets the baud rate for the tty line and the fs entry sets
CRMOD, no parity, and XTABS (see tty(4)). The tr entry indicates a form-feed should be
printed when the queue empties so the paper can be torn off without turning the printer off
line and pressing form feed. The of entry specifies the filter program lpf should be used for
printing the files; more will be said about filters later. The last entry causes errors to be writ
ten to the file "/usr/adm/lpd-errs" instead of the console.

4.1.2. Remote printers

Printers which reside on remote hosts should have an empty Ip entry. For example, the
following printcap entry would send output to the printer named "lp" on the machine
"ucbvax".

lpkiefault line printer: \
:lp=:rm=ucbvax:rp=lp:sd=/usr/spool/vaxlpd:

The rm entry is the name of the remote machine to connect to; this name must appear in the
/etc/hosts database, see hosts (5). The rp capability indicates the name of the printer on the

4-102 Line Printer Spooler Manual

remote machine is "lp"; in this case it could be left out since this is the default value. The sd
entry specifies "/usr/spool/vaxlpd" as the spooling directory instead of the default value of
"/usr/spool/lpd".

4.2. Output filters

Filters are used to handle device dependencies and to perform accounting functions.
The output filter of is used to filter text data to the printer device when accounting is not
used or when all text data must be passed through a filter. It is not intended to perform
accounting since it is started only once, all text files are filtered through it, and no provision is
made for passing owners' login name, identifying the begining and ending of jobs, etc. The
other filters (if specified) are started for each file printed and perform accounting if there is an
af entry. If entries for both of and one of the other filters are specified, the output filter is
used only to print the banner page; it is then stopped to allow other filters access to the
printer. An example of a printer which requires output filters is the Benson-Varian.

valvarianlBenson-Varian: \
:lp= /dev/vaO:sd = /usr/spool/vad:of= /usr/lib/vpf: \
:tf= /usr/lib/rvcat:mx#2000:pl#58:tr=\f:

The tf entry specifies "/usr/lib/rvcat" as the filter to be used in printing troff(l) output. This
filter is needed to set the device into print mode for text, and plot mode for printing troff files
and raster images (see va (4V)). Note that the page length is set to 58 lines by the pl entry
for 8.5" by 11" fan-fold paper. To enable accounting, the varian entry would be augmented
with an af filter as shown below.

valvarianlBenson-Varian: \
:lp= /dev /vaO:sd = /usr/spool/vad:of = /usr/lib/vpf: \
:if= /usr /lib/vpf:tf = /usr /lib/rvcat:af = /usr I adm/vaacct: \
:mx#2000:pl#58:tr=\f:

5. Output filter specifications

The filters supplied with 4.2BSD handle printing and accounting for most common line
printers, the Benson-Varian, the wide (36") and narrow (11") Versatec printer/plotters. For
other devices or accounting methods, it may be necessary to create a new filter.

Filters are spawned by lpd with their standard input the data to be printed, and stan
dard output the printer. The standard error is attached to the If file for logging errors. A
filter must return a 0 exit code if there were no errors, 1 if the job should be reprinted, and 2
if the job should be thrown away. When lprm sends a kill signal to the lpd process controlling
printing, it sends a SIGINT signal to all filters and descendents of filters. This signal can be
trapped by filters which need to perform cleanup operations such as deleting temporary files.

Arguments passed to a filter depend on its type. The of filter is called with the follow
ing arguments.

ofi,ler -wwidth -llength

The width and length values come from the pw and pl entries in the printcap database. The
if filter is passed the following parameters.

filter [-c] -wwidth -llength -iindent -n login -h host accounting file

The -c flag is optional, and only supplied when control characters are to be passed uninter
preted to the printer (when the -1 option of lpr is used to print the file). The -w and -1
parameters are the same as for the of filter. The -n and -h parameters specify the login
name and host name of the job owner. The last argument is the name of the accounting file
from printcap.

Line Printer Spooler Manual 4-103

All other filters are called with the following arguments:

filter -xwidth -ylength -n login -h host accounting file

The -x and -y options specify the horizontal and vertical page size in pixels (from the px
and py entries in the printcap file). The rest of the arguments are the same as for the if
filter.

6. Line printer Administration
The lpc program provides local control over line printer activity. The major commands

and their intended use will be described. The command format and remaining commands are
described in lpc(8).

abort and start
Abort terminates an active spooling daemon on the local host immediately and then dis
ables printing (preventing new daemons from being started by lpr). This is normally
used to forciblly restart a hung line printer daemon (i.e., lpq reports that there is a dae
mon present but nothing is happening). It does not remove any jobs from the queue
(use the lprm command instead). Start enables printing and requests lpd to start print
ing jobs.

enable and disable
Enable and disable allow spooling in the local queue to be turned on/off. This will
allow/prevent lpr from putting new jobs in the spool queue. It is frequently convenient
to turn spooling off while testing new line printer filters since the root user can still use
lpr to put jobs in the queue but no one else can. The other main use is to prevent users
from putting jobs in the queue when the printer is expected to be unavailable for a long
time.

restart

stop

topq

Restart allows ordinary users to restart printer daemons when lpq reports that there is
no daemon present.

Stop is used to halt a spooling daemon after the current job completes; this also disables
printing. This is a clean way to shutdown a printer in order to perform maintenence,
etc. Note that users can still enter jobs in a spool queue while a printer is stopped.

Topq places jobs at the top of a printer queue. This can be used to reorder high priority
jobs since lpr only only provides first-come-first-serve ordering of jobs.

7. Troubleshooting
There are a number of messages which may be generated by the the line printer system.

This section categorizes the most common and explains the cause for their generation. Where
the message indicates a failure, directions are given to remedy the problem.

In the examples below, the name printer is the name of the printer. This would be one
of the names from the printcap database.

7.1. LPR

lpr: printer: unknown printer
The printer was not found in the printcap database. Usually this is a typing mistake;
however, it may indicate a missing or incorrect entry in the /etc/printcap file.

4-104 Line Printer Spooler Manual

lpr: printer: jobs queued, but cannot start daemon.

The connection to lpd on the local machine failed. This usually means the printer server
started at boot time has died or is hung. Check the local socket /dev/printer to be sure
it still exists (if it does not exist, there is no lpd process running). Use

% ps ax I fgrep lpd

to get a list of process identifiers of running lpd's. The lpd to kill is the one which is not
listed in any of the "lock" files (the lock file is contained in the spool directory of each
printer). Kill the master daemon using the following command.

% kill pid

Then remove /dev/printer and restart the daemon (and printer) with the following com
mands.

% rm /dev/printer
% /usr/lib/lpd

Another possibility is that the lpr program is not setuid root, setgid spooling. This can
be checked with

% ls -lg /usr/ucb/lpr

lpr: printer: printer queue is disabled

This means the queue was turned off with

% lpc disable printer

to prevent lpr from putting files in the queue. This is normally done by the system
manager when a printer is going to be down for a long time. The printer can be turned
back on by a super-user with lpc.

7.2. LPQ

waiting for printer to become ready (olBine ?)

The printer device could not be opened by the daemon. This can happen for a number
of reasons, the most common being that the printer is turned off-line. This message can
also be generated if the printer is out of paper, the paper is jammed, etc. The actual
reason is dependent on the meaning of error codes returned by system device driver. Not
all printers supply sufficient information to distinguish when a printer is off-line or hav
ing trouble (e.g. a printer connected through a serial line). Another possible cause of this
message is some other process, such as an output filter, has an exclusive open on the
device. Your only recourse here is to kill off the offending program(s) and restart the
printer with lpc.

printer is ready and printing

The lpq program checks to see if a daemon process exists for printer and prints the file
status. If the daemon is hung, a super user can use lpc to abort the current daemon and
start a new one.

waiting for host to come up
This indicates there is a daemon trying to connect to the remote machine named host in
order to send the files in the local queue. If the remote machine is up, lpd on the remote
machine is probably dead or hung and should be restarted as mentioned for lpr.

Line Printer Spooler Manual 4-105

sending to host

The files should be in the process of being transferred to the remote host. If not, the
local daemon should be aborted and started with lpc.

Warning: printer is down

The printer has been marked as being unavailable with lpc.

Warning: no daemon present

The lpd process overseeing the spooling queue, as indicated in the "lock" file in that
directory, does not exist. This normally occurs only when the daemon has unexpectedly
died. The error log file for the printer should be checked for a diagnostic from the
deceased process. To restart an lpd, use

% lpc restart printer

7.3. LPRM

lprm: printer: cannot restart printer daemon

This case is the same as when lpr prints that the daemon cannot be started.

7.4. LPD
The lpd program can write many different messages to the error log file (the file

specified in the If entry in print cap). Most of these messages are about files which can not be
opened and usually indicate the printcap file or the protection modes of the files are not
correct. Files may also be inaccessible if people manually manipulate the line printer system
(i.e. they bypass the lpr program).

In addition to messages generated by lpd, any of the filters that lpd spawns may also log
messages to this file.

7.5. LPC

could't,start printer

This case is the same as when lpr reports that the daemon cannot be started.

cannot examine spool directory

Error messages beginning with "cannot ... " are usually due to incorrect ownership and/or
protection mode of the lock file, spooling directory or the lpc program.

Index- i

UNIX MASTER INDEX

The UNIX Master Index is a cumulative index; it brings together the indexes
of all the UNIX volumes. The Master Index appears at the end of each
volume.

Each entry is followed by one or more shortened volume titles, indicating the
volumes in which the topic is discussed and the pages containing the informa
tion. The volumes and their shortened titles are shown in the following table:

Shortened

General use

Programming

System manager

Volume Title

GEN

PGM

SYS

If a topic is discussed in two or more volumes, the shortened volume names
are presented in alphabetical order. For example, an entry in the Master
Index might appear in the following way:

ed line editor

description, GEN 4-8 to 4-9, SYS 4-6

ed_.hup file

saving text, GEN 2-6

This entry indicates that a description of the ed line editor can be found on
pages 4-8 through 4-9 of the GEN volume and page 4-6 of the SYS volume.
The eL.hup file is discussed on page 3-43 of the G.EN volume.

ACRONYMS AND MNEMONICS

The acronym (or mnemonic) is the preferred entry. The acronym is cross
referred from the complete form.

DEFINITIONS

Defined terms and glossary terms are indexed.

HOMONYMS

Things of the same name but different meaning are followed by a descriptive
word or by an abbreviation in parentheses.

KEYS FOR EXAMPLES, FIGURES, TABLES, AND FOOTNOTES

Page references for example, figure, and table index entries are keyed. Exam
ple:

Example

Figure

Table

Footnote

4-13E

4-13F

4-13T

4-13n

ii-Index

NONALPHABETIC CHARACT~RS

E!ntries containing leading nonalphabetic characters (symbols, numbers, and
punctuation) are placed at the beginning of the index. Nonalphabetic charac
ters within index entries are sorted before alphabetic characters.

Nonalphabetic characters that serve as terms are indexed in a spelled-out
form whenever possible.

INDEX

! command (DC)
descripton, GEN 2-58

! command (ed)
escaping to use UNIX command,

GEN 3-51E
! command (ex)

description, GEN 3-95
! command (Mail)

marking commands for the shell,
GEN 2-28

! escape (Mail)
description, GEN 2-25

$character (ed)
printing last line, GEN 3-28

% command (DC)
descripton, GEN 2-57

% prompt
defined, GEN 3-5

& command (ex)
description, GEN 3-96

+ command (DC)
descripton, GEN 2-57

- command (DC)
descripton, GEN 2-57

- command (Mail)
printing previous message, GEN

2-28
.• tile

defined, GEN 4-63
/etc/passwd tile

defined, GEN 4-66

I etc/re command tile
starting network servers, SYS 5-49

/sys directory
contents, SYS 5-36T

/sys/sys directory
file prefixes, SYS 5-36T

/usr/spooVmail directory
system mailbox and, GEN 2-17

0 command
defined, GEN 5-88

0 command (troff)
right-justifying digits, GEN 5-87

0 macro (me)
specifying section titles for

contents, GEN 5-41
1822 interface

See imp network interface driver
le command (me)

defined, GEN 5-43
returning one-column format,

GEN 5-35
1 C command (ms)

returning one-column format,
GEN 5-6

2c command (me)
defined, GEN 5-43
specifying two-column format,

GEN 5-35
2C command (ms)

specifying two-column format,
GEN 5-6

Index-1

3Com Ethernet controller
See ec network interface driver

4.2BSD file system
file set, SYS 5-32T

4.2BSD Interprocess Communication
Primer

See also Interprocess
communication

4.2BSD Interprocess Communication
Primer, SYS 3-5 to 3-28

4.2BSD Line Printer Spooler
Manual, PGM 4-99 to 4-105

See also Line printer spooling
system (4.2BSD)

4.2BSD system
4.lBSD files and, SYS 5-32 to

5-34
4.lBSD language processors and,

SYS 5-34
adding device drivers, SYS 5-88
adding users, SYS 5-43
bug fixes and changes, SYS 1-3 to

1-21
changes to the kernel, SYS 5-3 to

5-15
configuring for networking support,

SYS 5-47 to 5-51
configuring multiple networks,

SYS 5-48
creating boot floppy, SYS 5-35
disk space and, SYS 5-18
distribution format, SYS 5-18
hardware supported, SYS 5-17
installing on VAXNMS, SYS

5-17 to 5-71
making boot cassette, SYS 5-35
setting up, SYS 5-35 to 5-46
source directory organization, SYS

5-89T
system manual, PGM 4-15 to 4-52
tailoring to your site, SYS 5-43
upgrading, SYS 5-32 to 5-34

4.2BSD System Manual, PGM 4-15
to 4-52

: command (DC)
description, GEN 2-63

: escape (Mail)
description, GEN 2-25

; command (DC)
description, GEN 2-63

<symbol
meaning, GEN 2-10

= command (sed)
defined, GEN 3-114

Index-2

>symbol
meaning, GEN 2-10

? escape (Mail)
description, GEN 2-26

[...]
pattern-matching and, GEN 2-8

\ * command (troff)
entering comments in macros,

GEN 5-89
_exit function

description, PGM 1-8

A

a command (ed)
defined, GEN 3-34
using, GEN 3-25 to 3-26

a command (edit)
entering, GEN 3-6E

a command (ex)
description, GEN 3-88

A command (me)
defined, GEN 5-46

a command (sed)
See also i command (sed)
defined, GEN 3-108

A command (vi)
defined, GEN 3-78

a command (vi)
defined, GEN 3-80

a option (hunt)
defined, GEN 5-148

a option (inv)
defined, GEN 5-147

a option (troff)
defined, GEN 5-50

a.out file
as assembler and, GEN 6-53
defined, GEN 4-63

aardvark game
4.2BSD and, SYS 1-17

ab command (ex)
See also una command (ex)
description, GEN 3-87

AB command (me)
defined, GEN 5-46

AB command (ms)
entering abstract in text, GEN

5-5
ab command (nroff/troff)

message output, GEN 5-81
abbreviate command (ex)

See ab command (ex)

abort command (lpc)
description, PGM 4-103

Absolute pathname
See also Relative pathname
defined, GEN 4-63
description, GEN 4-33

Abstract
entering with -ms, GEN 5-5

ac command (me)
defined, GEN 5-46

ACC LH/DH IMP interface
See ace network driver

ace network driver
4.2BSD improvement, SYS 1-15

Accent
creating with troff, GEN 5-88E
entering with -ms, GEN 5-9
new in -ms, GEN 5-19

access system call
4.2BSD improvement, SYS 1-10

ACM (Association for Computing
Machinery)

formatting papers for, GEN 5-46
acommute routine

operators and, PGM 2-67 to 2-68
Action statement (awk)

description, PGM 3-7 to 3-9
Active system

defined, SYS 5-123
Acute accent

See Metacharacters
ad command (nroff/troff)

defined, GEN 5-61
j register and, GEN 5-81

ad driver
4.2BSD improvement, SYS 1-15

ad.c device driver
4.2BSD improvement, SYS 5-12

ADB debugging program
4.2BSD improvement, SYS 1-5
C and, GEN 2-15
description, PGM 3-51 to 3-77

addbib utility
See also refer
description, SYS 1-5

addch routine
defined, PGM 4-80

Addition
DC and, GEN 2-60

Additive operator
description, GEN 2-53

Address (edit)
defined for buffer line, GEN 3-18

Address (sed)
description, GEN 3-107 to 3-108

Address Resolution Protocol
See arp driver

addstr routine
defined, PGM 4-81

Advisory lock
compared to hard lock, SYS 1-33

AE command (ms)
TL command and, GEN 5-6

af command (nroff/troff)
defined, GEN 5-66

Aho, A. V ., & others
awk programming language, PGM

3-5 to 3-12
AI command (ms)

formatting author's institution
name, GEN 5-5

Alias
defined, GEN 2-21, 2-38, 4-63
removing from shell, GEN 4-52
specifying, GEN 2-21

alias command (C shell)
See also unalias command (C

shell)
displaying aliases, GEN 4-50E

alias command (Mail)
See also alternates command

(Mail)
See also metoo option
defining an alias, GEN 2-21
description, GEN 2-29
restriction, GEN 2-21

alias facility
shell command files and, GEN

4-43
startup and, GEN 4-44
uses for, GEN 4-43 to 4-44

aliens game
distribution and, SYS 1-17

Allman, E.
-Me Reference Manual, GEN 5-39

to 5-48
introduction to SCCS, PGM 3-23

to 3-37
sendmail, SYS 3-59 to 3-71
Sendmail Installation and

Operation Guide, SYS 2-27 to
2-60

writing papers with nroff using
-me, GEN 5-21 to 5-38

Allocator
description, GEN 2-59 to 2-60
design rationale, GEN 2-63

Index-3

ALT key
See ESCAPE key

alternates command (Mail)
description, GEN 2-29

am command (nroff/troff)
defined, GEN 5-64

AM macro
diacritical marks and, GEN 5-19

Ampersand character (C shell)
background jobs and, GEN 4-45
routing output, GEN 4-44

Ampersand character (ed)
meaning, GEN 3-42
printing, GEN 3-42
s command and, GEN 3-33 to

3-34
turning off, GEN 3-34
uses, GEN 3-42

Ampersand character (edit)
repeatings command, GEN 3-20

Ampersand character (shell)
multitasking and, GEN 1-29

ANAME operator (C compiler)
defined, PGM 2-65

ANSI Standard X3.9 1978
exceptions to, PGM 2-88
extensions, PGM 2-82 to 2-83

append command (ed)
See a command (ed)

append command (edit)
See a command (edit)

append command (ex)
See a command (ex)

Append mode
See Input mode

append option (Mail)
defined, GEN 2-34

Appendix
specifying page numbers, GEN

5-46
apply program

description, SYS 1-5
ar

4.2BSD improvement, SYS 1-5
ar command (me)

defined, GEN 5-44
Arabic number

setting page number, GEN 5-44
arff program

4.2BSD improvement, SYS 1-18
args command (ex)

description, GEN 3-88
Argument (C shell)

defined, GEN 4-63

Index-4

Argument (C shell) (Cont.)
expanding, GEN 4-60 to 4-61

Argument (nroff)
defined, GEN 5-21

argv variable (C shell)
defined, GEN 4-63
script files and, GEN 4-53

Arithmetic expression (troff)
entering, GEN 5-92

Arithmetic language
See BC language

Arnold, K.C.R.C.
Screen package, PGM 4-75 to

4-98
Arnold, K.C.R.C., & Toy, M.C.

guide to the dungeons of doom,
GEN 6-17 to 6-25

arp driver
4.2BSD improvement, SYS 1-15

ARPA File Transfer Protocol
ftp program and, SYS 1-6

ARPA Telnet protocol
See telnet program

ARPANET
sending mail to, GEN 2-26
UUCP network and, GEN 2-26

Array (awk)
description, PGM 3-9

Array element
defined, GEN 2-51

Array identifier
description, GEN 2-50

as assembler
command line format, GEN 6-53E
defined, GEN 6-53
errors, GEN 6-64
reference manual, GEN 6-53 to

6-64, PGM 4-53 to 4-65
segment types, GEN 6-54

as command (nroff/troff)
defined, GEN 5-64

ask option (Mail)
defined, GEN 2-34
prompting for subject header,

GEN 2-20
setting, GEN 2-20

askcc option (Mail)
defined, GEN 2-34

asm.sed file
4.2BSD improvement, SYS 5-13

Assembler
replacing, SYS 5-118

Assignment operator
description, GEN 2-53

Assignment statement (as)
defined, GEN 6-56

Assignment statement (BC)
value and, GEN 2-48

Association for Computing
Machinery

See ACM
Asterisk character

dot character and, GEN 3-40
ed and, GEN 3-33
printing multiple files, GEN 2-8
shell and, GEN 4-33
turning off, GEN 2-8
uses, GEN 3-40 to 3-41
zero and, GEN 3-41

Asymmetric protocol
defined, SYS 3-17

At sign
See also CTRL-H
See also u command (edit)
deleting a line, GEN 3-8E
entering in text, GEN 2-4
erasing characters on input line,

GEN2-4
printing, GEN 3-39

AU command (ms)
formatting author's name in text,

GEN 5-5
Author institution

formatting in text, GEN 5-5
Author name

formatting in text, GEN 5-5
Auto array

specifying, GEN 2-54
auto statement (BC)

forming, GEN 2-55
autoconf .c file

4.2BSD improvement, SYS 5-13
Autoconfiguration

building systems with config, SYS
5-73 to 5-105

hardware devices and, SYS 5-75
requirements for VAX/VMS, SYS

5-95
autoindent option (ex)

description, GEN 3-97
autoindent option (vi)

enabling, GEN 3-67
lisp and, GEN 3-68
using, GEN 3-73

autoprint option (ex)
description, GEN 3-98

autoprint option (Mail)
defined, GEN 2-34

autowrite option (ex)
description, GEN 3-98

awk programming language
command line format, PGM 3-5
compared with grep, PGM 3-5
defined, GEN 2-13, PGM 3-5
description, PGM 3-5 to 3-12
design, PGM 3-9 to 3-10
execution time compared, PGM

3-12T
fields, PGM 3-5
implementation, PGM 3-10
printing output, PGM 3-6
program structure, PGM 3-5
records, PGM 3-5
uses, PGM 3-10
variables, PGM 3-8

B

B command (me)
defined, GEN 5-46
specifying bibliographic section,

GEN 5-33
b command (me)

See also rh command (me)
defined, GEN 5-42, 5-44
entering, GEN 5-26
specifying bold font, GEN 5-36
specifying fill mode, GEN 5-26

B command (ms)
specifying boldface, GEN 5-8

b command (sed)
defined, GEN 3-114

b command (troff)
creating large brackets, GEN

5-88E
B command (vi)

defined, GEN 3-78
b command (vi)

defined, GEN 3-80
B flag (tar)

reading block records, SYS 1-9
writing block records, SYS 1-9

b option (troff)
defined, GEN 5-50

B_CALL flag
4.2BSD improvement, SYS 5-6

ba command (me)
defined, GEN 5-45

backgammon game
See also teachgammon program
4.2BSD improvement, SYS 1-17

Index-5

Background command (C shell)
defined, GEN 4-63

Background job
description, GEN 4-45 to 4-48
reading input from terminal, GEN

4-47E
suspending, GEN 4-46

Backslash character
erasing, GEN 2-4

Backslash character (ed)
context search and, GEN 3-43
restriction, GEN 3-33
searching for, GEN 3-39E
special characters and, GEN 3-39

Backslash character (troff)
translating for typesetter, GEN

5-86
Backus Functional Programming

Language
See FP programming language

Bad block forwarding
support, SYS 1-18

badl44 program
4.2BSD improvement, SYS 1-18

Baden, S.
Berkeley FP User Manual, PGM

2-359 to 2-391
badsect program

See also fsck program
4.2BSD improvement, SYS 1-18

Base (BC)
$ee also ibase; obase
description, GEN 2-44 to 2-45

be command (me)
defined, GEN 5-43
starting a column, GEN 5-35

BC language
C language and, GEN 2-43
defined, GEN 2-43
description, GEN 2-43 to 2-55
displaying library of math

functions, GEN 2-49
output bases and, GEN 2-45
restriction, GEN 2-43
simple computations and, GEN

2-43 to 2-44
subscript restriction, GEN 2-46

BC program
exiting, GEN 2-49

hemp library routine
4.2BSD improvement, SYS 1-14

bcopy library routine
4.2BSD improvement, SYS 1-14

lndex-6

bd command (troff)
defined, GEN 5-59

BDATA operator (C compiler)
defined, PGM 2-64

beautify option (ex)
description, GEN 3-98

BEGIN/END pattern
description, PGM 3-6

Bell character
printing, GEN 3-37

Benson-Varian printer
output filters and, PGM 4-102

Berkeley font catalogue, GEN 6-27
to 6-51

Berkeley FP User's Manual, PGM
2-359 to 2-391

See also FP programming
language

Berkeley network
See Berknet

Berkeley Pascal programming
language

user's manual, PGM 2-159 to
2-209

Berkeley Pascal User Manual
See also Pascal programming

language
Berkeley Pascal User Manual, PGM

2-159 to 2-209
Berkeley system

See UNIX Operating System
Berkeley VAX/UNIX Assembler

Reference Manual, PGM 4-53 to
4-65

See also as assembler
Berknet

sending mail to, GEN 2-27
bg command (C shell)

continuing background jobs, GEN
4-46E

defined, GEN 4-64
running suspended job in

background, GEN 4-47
bi command (me)

defined, GEN 5-44
Bibliographic citations

formatting, GEN 2-13, 5-18, 5-33
specifying, GEN 5-34F

Bibliographic databases
See roffbib program, SYS 1-8

Bibliography
See Bibliographic citations

bin directory
defined, GEN 4-64

Binary date
Mail program and, GEN 2-37

Binary operator (C compiler)
description, PGM 2-66

Binary option (Mail)
See Option (Mail)

bind system call
assigning socket name, SYS 3-7E
binding names to sockets, SYS

1-10
specifying association, SYS 3-25

Bit mask
creating, SYS 3-11

bl command (me)
defined, GEN 5-44

Blau, R., & Joyce, J.
Edit tutorial, GEN 3-3 to 3-23

Block device
description, SYS 5-20

Block map
layout of blocks and fragments,

SYS 1-27F
Block of text

footnotes and, GEN 5-36
indenting from left and right,

GEN 5-86E
index entries and, GEN 5-36
keeping together in text, GEN

5-26
Block size

selecting, SYS 5-41
Boldface

entering, GEN 5-8
Bootstrap monitor

loading, SYS 5-65 to 5-68
Bootstrap procedure

booting from tape, SYS 5-22
description, SYS 5-22 to 5-31
details, SYS 5-59 to 5-64
messages about console bootstrap

cassette, SYS 5-71
messages about the distributed

console media, SYS 5-69
messages about the distributed

system, SYS 5-70
Bootstrap program

4.2BSD improvement, SYS 5-15
loading, SYS 5-25

Bourne shell
background command, GEN 4-3E
changing prompt, GEN 4-6
command execution, GEN 4-23 to

4-24
command grammar, GEN 4-26

Bourne shell (Cont.)
command substitution and, GEN

4-18 to 4-20
command syntax, GEN 4-3
defined, GEN 4-3
description, GEN 4-3 to 4-27
error handling, GEN 4-21
error signals, GEN 4-21F
fault handling, GEN 4-21
group set and, SYS 1-8
invoking, GEN 4-24
prompt, GEN 4-6
redirecting input, GEN 4-4
redirecting output, GEN 4-3

Bourne, S.R.
introducing the UNIX shell, GEN

4-3 to 4-27
Bourne, S.R., & Maranzano, J.F.

ADB debugging program, PGM
3-51 to 3-77

Box (nroff/troff)
creating smallest, GEN 5-68

box routine
defined, PGM 4-81

Boxing
description, GEN 5-69
entering, GEN 5-8 to 5-9

bp command (me)
See also pa command (me)
specifying blank column, GEN

5-35
specifying page break, GEN 5-23

hp command (nroff/troff)
See also ns command (nroff/troff)
defined, GEN 5-59

hr command (me)
starting a line, GEN 5-24

hr command (nroff/troff)
defined, GEN 5-60

Braces
argument expansion and, GEN

4-60E
Braces (EQN)

typesetting in proper size, GEN
5-lOOE

Brackets (Bourne shell)
matching any single character,

GEN 4-34
Brackets (DC)

placing character string on stack,
GEN 2-58

Brackets (ed)
appearing in character class, GEN

3-41

lndex-7

Brackets (ed) (Cont.)
deleting line numbers, GEN 3-41,

3-41E
Brackets (EQN)

typesetting in proper size, GEN
5-lOOE

Brackets (Mail)
beginning a line with, GEN 2-26

Brackets (nroff/troff)
creating, GEN 5-88E
creating large, GEN 5-68

BRANCH operator (C compiler)
defined, PGM 2-65

Break
defined, GEN 5-22
space and, GEN 5-23
specifying, GEN 5-24

break command (C shell)
See also breaksw command (C

shell)
csh script and, GEN 4-58
defined, GEN 4-64

break statement (awk)
defined, PGM 3-9

break statement (BC)
forming, GEN 2-54

breaksw command (C shell)
defined, GEN 4-64
exiting from switch statement,

GEN 4-58
Broadcast message

sending, SYS 3-27E
Broadcast packet

See also Broadcast message
datagram sockets and, SYS 3-27

Broken bar
shell and, GEN 2-27

BSS operator (C compiler)
defined, PGM 2-64

bss segment (as)
See also Assignment statement

(as)
See also Location counter (as)
description, GEN 6-54

bss statement
defined, GEN 6-59

bstring library
4.2BSD improvement, SYS 1-14

btlgammon game
See backgammon game

buf.h file
4.2BSD improvement, SYS 5-6

Buffer
defined, GEN 3-4

Index-8

Buffer (Cont.)
ed and, GEN 3-25

_ writing part of, GEN 3-22
Buffer (nroff/troff)

flushing output buffer, GEN 5-73
Buffer (vi)

description, GEN 3-54
system commands and, GEN 3-68
types of, GEN 3-62

BUFSIZ
defined, PGM 1-21

bugfiler p:rogram
4.2BSD improvement, SYS 1-19

Built-in (M4)
See Command (M4)

built-in command (C shell)
defined, GEN 4-64

bx command (me)
boxing words, GEN 5-37
defined, GEN 5-44

byte statement (as)
defined, GEN 6-59

bzero library routine
4.2BSD improvement, SYS 1-14

c
C argument (nroff)

specifying, GEN 5-27
c command (DC)

descripton, GEN 2-58
c command (ed)

defined, GEN 3-34
using, GEN 3-31 to 3-32

c command (edit)
description, GEN 3-18

c command (ex)
description, GEN 3-88

C command (me)
defined, GEN 5-46

c command (me)
centering blocks of text, GEN

5-27
defined, GEN 5-43, 5-46
specifying a chapter without

number, GEN 5-33
specifying chapters, GEN 5-33

c command (sed)
defined, GEN 3-109

C command (vi)
defined, GEN 3-78

C compiler
description, PGM 2-63 to 2-77
as programming tool, GEN 2-15

·""'·
/

C compiler (Cont.)
replacing, SYS 5-118

c escape (Mail)
description, GEN 2-25

C flag (lint)
creating libraries from C source

code, SYS 1-7
c flag (mkey)

specifying file of common words,
GEN 5-147

C library
reinstalling, SYS 5-56E

c macro (me)
defined, GEN 5-46

c number register (nroff/troff)
defined, GEN 5-81

c operator (vi)
defined, GEN 3-80

C option (hunt)
defined, GEN 5-148

C option (tar)
forcing chdir operations in an

operation, SYS 1-9
c option (uucp)

defined, SYS 5-132
C preprocessor

if statements and, SYS 1-5
line numbers and, SYS 1-5

C program
debugging, PGM 3-53 to 3-58

C programming language
See also M4 macro processor
CAI script for, GEN 6-7
command line format, PGM 1-3
computers supporting, GEN 2-15
programming in, GEN 2-14 to

2-15
reference manual, PGM 2-5 to

2-35
supporting programs, GEN 2-15

C Programming Language Reference
Manual, The, PGM 2-5 to 2-35

See also C programming language
C shell

4.2BSD improvement, SYS 1-5
built-in commands, GEN 4-50 to

4-52
compared to other command

interpreters, GEN 4-30
defined, GEN 4-29
details for terminal users, GEN

4-39 to 4-52
history list and, GEN 4-41
interrupts and, GEN 4-36

C shell (Cont.)
introduction, GEN 4-29 to 4-74
logging in, GEN 4-39
metacharacters and, GEN 4-32
overwriting files and, GEN 4-41
purpose of, GEN 4-29
using from the terminal, GEN

4-30 to 4-38
C shell variables

description, GEN 4-40 to 4-41
set command and, GEN 4-40E

c2 command (nroff/troff)
defined, GEN 5-67

CAI script, GEN 6-9E to 6-llE
description, GEN 6-6 to 6-7
prerequisites, GEN 6-6
prerequisites for the writer, GEN

6-8
types of, GEN 6-7

Campbell, R.
line printer spooling system

(4.2BSD), PGM 4-99 to 4-105
CANBSIZ parameter

description, SYS 5-121
canfield game

See also cfscores program
4.2BSD improvement, SYS 1-17

Carbon copy
See CC: list

Caret
See Circumflex character (ed)

case branch
description, GEN 4-8 to 4-9
form of, GEN 4-8E

case command (C shell)
defined, GEN 4-64

cat command (C shell)
collecting files, PGM 1-5E
combining files, GEN 3-48, 3-48E
defined, GEN 4-64
listing system users, GEN 4-35E
printing files, GEN 2-7
printing merged files, GEN 2-11
printing pipeline information,

GEN 2-11
terminating, GEN 4-36

cat program
See cat command (C shell)

CBRANCH operator (C compiler)
defined, PGM 2-66

cc
dbx and, SYS 1-5

cc command (nroff/troff)
defined, GEN 5-67

Index-9

CC: list
See also askcc option
adding people to, GEN 2-25

cctab table
defined, PGM 2-68

cd command (C shell)
See also pushd command (C shell)
changing working directory, GEN

2-10
defined, GEN 4-64
description, GEN 2-29
working directory and, GEN 4-48

ce command (me)
entering, GEN 5-24

ce command (nroff/troff)
defined, GEN 5-61

Cedilla
See Metacharacters

Centering
blocks of text, GEN 5-27, 5-61
specifying, GEN 5-24

ch command (nroff/troff)
defined, GEN 5-65

Change bars (nroff/troff)
specifying, GEN 5-72

change command (ed)
See c command (ed)

change command (edit)
See c command (edit)

change command (ex)
See c command (ex)

change directory command
See cd command (C shell)

Changequote command (M4)
description, PGM 2-395E

Chapter
formatting, GEN 5-33
inserting in table of contents

automatically, GEN 5-46
specifying page numbers, GEN

5-46
specifying without number, GEN

5-33
Chapter-oriented document

formatting, GEN 5-34F
Character class

circumflex within, GEN 3-42
defined, GEN 3-41
forming, GEN 3-33E
lowercase letters and, GEN 3-41
number ranges and, GEN 3-41
special characters and, GEN 3-41
specifying exceptions, GEN 3-42
uppercase letters and, GEN 3-41

lndex-10

chase game
obsolete, SYS 1-17

chdir command (C shell)
See cd command (C shell)

Cherry, L., & Morris, R.
BC and, GEN 2-43 to 2-55
DC and, GEN 2-57 to 2-64

Cherry, L.L., & Kernighan, B.W.
typesetting mathematics, GEN

5-97 to 5-104
Typesetting Mathematics - User's

Guide, GEN 5-105 to 5-114
Cherry, L.L., & Vesterman, W.

style and diction programs, GEN
5-163 to 5-177

chfn
4.2BSD improvement, SYS 1-5

chgrp
4.2BSD improvement, SYS 1-5

ching game
4.2BSD improvement, SYS 1-17

chmod command (Bourne shell)
making a file executable, GEN

4-7E
marking executable files, GEN

2-12
chsh command (C shell)

defined, GEN 4-64
CHSHR file

incoming mail and, GEN 2-17
chshrc file

putting into effect before next
login, GEN 4-51

Circle
See Metacharacters

Circumflex (edit)
searching and, GEN 3-20

Circumflex character (ed)
at beginning of line and, GEN

3-40
meaning, GEN 3-33
uses, GEN 3-40

Circumflex character (me)
See Metacharacters

clear routine
defined, PGM 4-81

clearok routine
defined, PGM 4-81

Client process
See also Server process
description, SYS 3-19

Clist segment
setting number, SYS 5-122

close function
description, PGM 1-11

clrtoeol routine
defined, PGM 4-81

cmp program
defined, GEN 4-64

co command (edit)
description, GEN 3-15

co command (ex)
description, GEN 3-88

Code generation (C compiler)
description, PGM 2-68 to 2-76
matching table entries against

trees, PGM 2-69
Column

specifying, GEN 5-43
specifying headers for continuing

pages, GEN 5-42
specifying headers for continuing

pages with a macro, GEN
5-75E

specifying in text file, GEN 5-6
starting, GEN 5-35
text formatting commands for

double columns, GEN 5-15E,
5-35

Comma character (ed)
compared with semicolon, GEN

3-45
COMMA operator (C compiler)

defined, PGM 2-66
Command (Bourne shell)

See also specific commands
grammar, GEN 4-26
grouping, GEN 4-14

Command (C shell)
See also Program
See also specific commands
defined, GEN 4-64
reference list, GEN 4-63 to 4-7 4
regenerating, SYS 5-118
repeating, GEN 4-41 to 4-43,

4-51E
substituting output for, GEN

4-61E
suspending temporarily, GEN

4-36
terminating, GEN 4-35 to 4-38
typing, GEN 2-4
within quotation marks, GEN

4-60
Command (DC)

See also specific commands
for human use

Command (DC)
for human use (Cont.)

reference list, GEN 2-57 to 2-59
how they work, GEN 2-57

Command (ed)
See also specific commands
description, GEN 3-25
reference list, GEN 3-34

Command (ex)
See also specific commands
addressing primitives, GEN 3-87
combining addressing primitives,

GEN 3-87
exceeding thresholds, GEN 3-86
reference list, GEN 3-87 to 3-96
structure of, GEN 3-86
syntax, GEN 3-87E

Command (M4)
See also specific commands
reference list, PGM 2-398

Command (Mail)
See also specific commands
reference list, GEN 2-28 to 2-33,

2-39T
Command (make)

defined, PGM 3-16
Command (nroff)

description, GEN 5-22 to 5-25
Command (nroff/troff)

See also specific commands
reference list, GEN 5-51

Command (vi)
See also specific commands
case and, GEN 3-59
ex 3.5 changes and, GEN 3-103
for file manipulation, GEN 3-71T
preceding counts and, GEN 3-70

Command file
description, GEN 1-29

Command line
running two programs with one,

GEN 2-11
Command line ftag (Mail)

See Flag (Mail)
Command mode (ex)

defined, GEN 3-85
Command name

defined, GEN 4-64
Command procedure

See Shell procedure
Command substitution

See also Modifier (C shell)
defined, GEN 4-65

Index-11

Command-list
defined, GEN 4-8
grouping commands, GEN 4-14

Comment (awk)
defined, PGM 3-9

Comment (BC)
convention, GEN 2-49, 2-50

Comment (ex)
description, GEN 3-86

Comment (nroff/troff)
specifying, GEN 5-67

Communication domain
defined, SYS 3-6

Component
defined,-GEN 4-65

Compound statement (BC)
forming, GEN 2-54

Computer-aided instruction
See CAI scripts

comsat program
4.2BSD improvement, SYS 1-19

CON operator (C compiler)
defined, PGM 2-66

Conditional
See if/endif commands

conf.c file
4.2BSD improvement, SYS 5-14
installing device driver and, SYS

5-119
conf.h file

4.2BSD improvement, SYS 5-6
config program

4.2BSD improvement, SYS 1-19
adding nonstandard system

facilities, SYS 5-96
defined, SYS 5-73
description, SYS 5-73 to 5-105
device defaults, SYS 5-99 to 5-100
files generated by, SYS 5-76
modifying system code, SYS 5-88
modifying system configuration,

SYS 5-76
prerequisite information, SYS

5-74
profiled systems and, SYS 5-78
specifying options items, SYS

5-75
Configuration clause

description, SYS 5-80
Configuration file

contents, SYS 5-76
creating, SYS 5-76
grammar, SYS 5-97 to 5-98
specifying devices, SYS 5-81

Index-12

Configuration file (Cont.)
specifying multiple bootable

images, SYS 5-80
syntax, SYS 5-79 to 5-83
VAX-11/780 sample, SYS 5-84 to

5-87
connect system call

datagram sockets and, SYS 3-10
errors, SYS 3-8
establishing connection between

sockets, SYS 1-10
initiating connection, SYS 3-8E

Connect time accounting
summarizing, SYS 5-56

Connection
accepting, SYS 3-9E
receiving, SYS 3-8 to 3-9

Constant (BC)
defined, GEN 2-50

Context search (ed)
backslash character and, GEN

3-43
defined, GEN 3-35
methods, GEN 3-30 to 3-31
question mark character and,

GEN 3-43
repeating a search, GEN 3-31
reverse order and, GEN 3-31
slashes and, GEN 3-39

Context search (edit)
d command and, GEN 3-16
delete command and, GEN 3-16C
move command and, GEN 3-15
repeating, GEN 3-20E
reversing, GEN 3-20
s command and, GEN 3-20

continue command (C shell)
defined, GEN 4-65

continue statement (awk)
defined, PGM 3-9

Control character (C shell)
defined, GEN 4-65

Control character (nroff/troff)
changing, GEN 5-67
commands and, GEN 5-56

Control character (vi)
in text file, GEN 3-61

Control statement (BC), GEN
2-47E

description, GEN 2-47 to 2-48
Cooper, E., & others

4.2BSD System Manual, PGM
4-15 to 4-52

(

copy command (C shell)
See cp command (C shell)

copy command (edit)
See co command (edit)

copy command (ex)
See co command (ex)

copy command (Mail)
See also save command (Mail)
description, GEN 2-29
using, GEN 2-23E

copy program
loading, SYS 5-24E
mini-root file system and, SYS

5-24
Core dump file

defined, GEN 4-65
program faults and, GEN 1-31
terminating a program and, GEN

4-37
Cover sheet

entering in text file, GEN 5-5
formatting commands, GEN 5-5E

cp command (C shell)
4.2BSD improvement, SYS 1-5
copying a file, GEN 2-7E, 3-47
defined, GEN 4-65
saving a file, GEN 3-47E

cpu type parameter (config)
defined, SYS 5-79

CR key
See RETURN key

Crash
recovering files after, GEN 3-22

creat function
description, PGM 1-10

creat system call
obsolete in 4.2BSD, SYS 1-10

cref program
defined, GEN 2-13

crmode routine
defined, PGM 4-84

crt option (Mail)
paging mail, GEN 2-20
type command and, GEN2-32

crtO.ex file
4.2BSD improvement, SYS 5-13

cs command (troff)
defined, GEN 5-58

csh program
See C shell

cshrc file
defined, GEN 4-65
logging in and, GEN 4-39

CSPACE operator (C compiler)
defined, PGM 2-64

css network driver
4.2BSD improvement, SYS 1-15

ctags
4.2BSD improvement, SYS 1-5

ctime library
4.2BSD improvement, SYS 1-14

CTRL-B
defined, GEN 3-75
description, GEN 3-56

CTRL-C
ULTRIX-32 and, GEN 2-l

CTRL-D
See also CTRL-U
defined, GEN 3-75
description, GEN 3-56

CTRL-E
defined, GEN 3-75
description, GEN 3-56

CTRL-F
defined, GEN 3-75
description, GEN 3-56

CTRL-G
defined, GEN 3-75
vi and, GEN 3-57

CTRL-H
See also At sign
See also u command (edit)
defiped, GEN 3-75
deleting characters, GEN 3-7

CTRL-J
defined, GEN 3-75

CTRL-L
defined, GEN 3-75

CTRL-M
defined, GEN 3-75

CTRL-N
defined, GEN 3-75

CTRL-P
defined, GEN 3-76

CTRL-R
defined, GEN 3-76

CTRL-U
See also CTRL-D
defined, GEN 3-76
description, GEN 3-56
ULTRIX-32 and, GEN 2-1

CTRL-Y
defined, GEN 3-76
description, GEN 3-56

CTRL-Z
defined, GEN 3-76

Index-13

cu command (nroff)
defined, GEN 5-67

cu program
See tip program

Current line
printing, GEN 3-llE

curses library
4.2BSD improvement, SYS 1-14

Cursor motion optimization
stand alone, PGM 4-78 to 4-80

Cursor positioning key
terminals and, GEN 3-55

Cut mark
specifying for troff, GEN 5-74E

Cutting and pasting
See cp command (ed)
See m command (ed)
See mv program (ed)
with ed, GEN 3-49 to 3-51
with UNIX commands, GEN 3-47

to 3-49
cwd variable (C shell)

defined, GEN 4-65
working directory and, GEN 4-41

Cylinder group
description, SYS 1-26, 2-8

Czech
See Metacharacters

D

d command (DC)
descripton, GEN 2-58

d command (ed)
defined, GEN 3-34
using, GEN 3-29

d command (edit)
context search and, GEN 3-16
description, GEN 3-15

d command (ex)
description, GEN 3-88

d command (me)
defined, GEN 5-43

d command (sed)
defined, GEN 3-108

D command (vi)
defined, GEN 3-78

d escape (Mail)
description, GEN 2-24

d flag (Mail)
See also debug option
debugging information and, GEN

2-36

Index-14

d flag (make)
defined, PGM 3-17

d operator (vi)
defined, GEN 3-80

d option (inv)
defined, GEN 5-147

d option (uucico)
defined, SYS 5-135

d option (uuclean)
defined, SYS 5-137

d option (uucp)
defined, SYS 5-131

DA command (ms)
specifying date on text page, GEN

5-9
da command (nroff/troff)

defined, GEN 5-65
Daisy wheel printer

setting for 12-pitch, GEN 5-39
DARPA File Transfer Protocol

server program
See ftpd program

DARPA Internet
network architecture support, SYS

1-:15
DARPA Internet protocol

support, SYS 5-47
DARPA Request For Comments

#833
sendmail and, SYS 1-4

DARPA Simple Mail Transfer
Protocol

sendmail and, SYS 1-4
DARPA TELNET protocol

See telnetd server program
DARPA Trivial File Transfer

Protocol
See tftpd server program

Dash
specifying em dash, GEN 5-47

Data block
kinds of, SYS 2-12

Data file
defined, SYS 5-131

DATA operator (C compiler)
defined, PGM 2-64

Data segment (as)
description, GEN 6-54

data statement
defined, GEN 6-59

Data Translation AID converter
See ad driver

Datagram socket
See also Raw socket

Datagram socket (Cont.)
creating for on-machine use, SYS

3-7E
defined, SYS 3-6
description, SYS 3-10
sending broadcast packets on

networks, SYS 3-27
Date

specifying with -me, GEN 5-47
specifying with -ms, GEN 5-9

date command (C shell)
defined, GEN 4-65
using, GEN 2-4

dbx symbolic debugger
description, SYS 1-4
Pascal compiler pc and, SYS 1-8

DC program
See also BC language
defined, GEN 2-57
description, GEN 2-57 to 2-64
internal arithmetic and, GEN

2-60
programming, GEN 2-62

de command (nroff/troff)
See also ig command (nroff/troff)
defined, GEN 5-64
defining macros, GEN 5-89E

Dead.letter file, GEN 2-24
canceling mail and, GEN 2-18

debug option (Mail)
See also -d flag
defined, GEN 2-34

Debugging
defined, GEN 4-65

DecWriter III printer
setting for serial lines, PGM

4-lOlE
Default

defined, GEN 4-65
define command (M4)

description, PGM 2-393 to 2-395
define keyword (BC), GEN 2-46E
define program (EQN)

description, GEN 5-100
define statement (BC)

forming, GEN 2-55
delay routine

description, PGM 2-76
Delayed text

defined, GEN 5-28
delch routine

defined, PG M 4-82
delete command (ed)

Seed command (ed)

delete command (edit)
Seed command (edit)

delete command (ex)
See d command (ex)

delete command (Mail)
See also autoprint option (Mail)
See also dt command (Mail)
See also undelete command

(Mail)
abbreviating, GEN 2-20
description, GEN 2-29
keeping message from mbox, GEN

2-20E
DELETE key

defined, GEN 4-65
description, GEN 3-55
ULTRIX-32 and, GEN 2-1

deleteln routine
defined, PGM 4-82

delivermail program
See sendmail program

delwin routine
defined, PGM 4-85

DES encryption algorithm
chips and, SYS 4-11

Description file (make), PGM 3-14E
See also -f flag (make)
description, PGM 3-15 to 3-16

Detached command
defined, GEN 4-65

Device driver
converting local to 4.2BSD, SYS

5-4
CSR value list, SYS 5-61
1/0 system and, PGM 4-67 to

4-73
installing new, SYS 5-119
prerquisites, SYS 5-89

Device name
convention, SYS 5-19

devices. vax file
4.2BSD improvement, SYS 5-11

df
reporting disk space in kilobytes,

SYS 1-5
dh.c device driver

4.2BSD improvement, SYS 5-12
di command (nroff/troff)

defined, GEN 5-64
diverting output to a macro, GEN

5-94
Diacritical marks

available
reference list, GEN 5-19

Index-15

Diacritical marks (Cont.)
entering with EQN, GEN 5-100

Diagnostic
defined, GEN 4-65

Diagnostic output
redirecting, GEN 4-44E

Dial-up network
description, SYS 5-123 to 5-129
operation, SYS 5-124
processing, SYS 5-125 to 5-126
protocol and, SYS 5-124, 5-126
security, SYS 5-125
starting your network, SYS 5-128
transmission speed, SYS 5-127
uses, SYS 5-126

Diction program
See also Style program
description, GEN 5-163 to 5-177

ditT utility
comparing files, GEN 2-13

dir
4.2BSD improvement, SYS 1-16

dir.h file
4.2BSD improvement, SYS 5-6

directories command
See dirs command (C shell)

Directory
See also Home directory
See also Root directory
See also Working directory
allocating, SYS 1-33
alternate name for, GEN 2-10
changing, GEN 2-10
changing working directory, GEN

2-10
creating, GEN 2-10
defined, GEN 4-66, PGM 4-10
description, GEN 1-21, 2-9
determining, GEN 2-10
listing basic, GEN 2-9
moving up one level, GEN 2-lOE
organization changes for 4.2BSD,

SYS 5-4
project-related, GEN 4-48
removing, GEN 2-lOE
security of, SYS 4-4

Directory data block
defined, SYS 2-12

directory library
4.2BSD improvement, SYS 1-14

directory option (ex)
description, GEN 3-98

Directory stack
defined, GEN 4-66

Index-16

dirs command (C shell)
See also pwd command (C shell)
compared with pwd, GEN 4-49
defined, GEN 4-66
saving name of previous directory,

GEN 4-49
Disk

balancing load, SYS 5-39
configuring load, SYS 5-37 to 5-43
defined, GEN 3-4
dividing into partitions, SYS 5-38
formatting, SYS 5-22 to 5-24
reporting space in kilobytes, SYS

1-5
reporting usage in kilobytes, SYS

1-5
space limits, SYS 4-3
space per device, SYS 5-38, 5-39T

Disk bandwith
4.2BSD improvement, SYS 1-3

Dis~ driver
UNIX implementation and, PGM

4-9
Disk partition

description, SYS 5-19
sizes, SYS 5-38

Disk quota
4.2BSD improvement, SYS 1-18
disabling, SYS 2-4
enabling, SYS 2-4
enforcing, SYS 5-57
per filesystem, SYS 1-4
per user, SYS 1-4
recovering from over quota

condition, SYS 2-3
restricting, SYS 1-35
setting, SYS 2-4
types of, SYS 2-3

Disk quota system
configuration requirement, SYS

5-57
description, SYS 2-3 to 2-5
establishing, SYS 2-4
history, SYS 2-5
including, SYS 2-4E
programs, SYS 5-57

diskpart program
4.2BSD improvement, SYS 1-19

disktab file
4.2BSD improvement, SYS 1-16

Display (nroff)
defined, GEN 5-25, 5-42
description, GEN 5-25 to 5-27
specifying in fill mode, GEN 5-26

Display (nroff) (Cont.)
text formatting commands for,

GEN 5-15E
distrib routine

description, PGM 2-68
Distribution tape

constructing, SYS 5-59 to 5-61
contents, SYS 5-59T

Diversion (troff)
description, GEN 5-94

divert command (M4)
description, PGM 2-396

Division
DC and, GEN 2-61

divnum command (M4)
description, PGM 2-396

DL-llW
See kg driver

dmc network interface driver
4.2BSD improvement, SYS 1-15

DMC-11/DMR-11 point-to-point
communications device

See dmc network interface driver
dmf.c device driver

4.2BSD improvement, SYS 5-12
dnl command (M4)

description, PGM 2-397
Document preparation

description, GEN 2-12 to 2-14
hints, GEN 2-13 to 2-14
reading list, GEN 2-16

DOD Standard TCP/IP network
communication protocols

support for, SYS 1-3
Dollar sign character (ed)

end of line and, GEN 3-39
meaning, GEN 3-33, 3-40
p command and, GEN 3-28
printing value, GEN 3-35

Dollar sign character (edit)
equal sign and, GEN 3-17
printing last buffer line, GEN

3-17
searching and, GEN 3-20

domain.h file
4.2BSD improvement, SYS 5-5

don't command (sed)
defined, GEN 3-113

Dot character (C shell)
at beginning of file, GEN 4-34
defined, GEN 4-63
separating filename components,

GEN 4-33

Dot character (ed)
determining value, GEN 3-29E
equal sign and, GEN 3-35
line number defaults and, GEN

3-44 to 3-45
meaning, GEN 3-38, 3-39
meaning for context searching,

GEN 3-33
p command and, GEN 3-28
printing, GEN 3-39
s command and, GEN 3-29
setting with semicolon, GEN 3-45

to 3-46
using, GEN 3-28, 3-33

Dot character (edit)
equal sign and, GEN 3-17
uses, GEN 3-17

Dot character (nrotT/troff)
See Control character (nroff/troff)
specifying lines of, GEN 5-88

dot option (Mail)
See also ignoreof option
defined, GEN 2-34

Doubles pacing
specifying, GEN 5-23

drtest program
4.2BSD improvement, SYS 1-19

DS command (ms)
specifying line breaks, GEN 5-8

ds command (nrotT/troff)
defined, GEN 5-64
defining strings, GEN 5-89

DSTFLAG parameter
description, SYS 5-122

dt command (Mail)
description, GEN 2-29

dt command (nrotT/troff)
defined, GEN 5-65

du command (C shell)
defined, GEN 4-66
reporting disk usage in kilobytes,

SYS 1-5
du program

See du command (C shell)
dump program

See also rdump program
4.2BSD improvement, SYS 1-16,

1-19
using, SYS 5-53

dumpdef command (M4)
description, PGM 2-397

dumpfs program
4.2BSD improvement, SYS 1-19

Index-17

Dungeons of doom
See Rogue game

Dynamic string storage allocator
See Allocator

E

e command (ed)
defined, GEN 3-34
using, GEN 3-27, 3-49E

e command (edit)
copying a file, GEN 3-14
r option and, GEN 3-23
u command and, GEN 3-16

e command (ex)
description, GEN 3-88

E command (vi)
defined, GEN 3-79

e command (vi)
defined, GEN 3-80

e escape (Mail)
description, GEN 2-24

e flag (sed)
defined, GEN 3-106

e modifier (C shell)
extracting filename extension,

GEN 4-57E
e option (nroff)

defined, GEN 5-50
ec command (nroff/troff)

defined, GEN 5-66
ec network interface driver

4.2BSD improvement, SYS 1-15
echo command (C shell)

defined, GEN 4-66
echo routine

defined, PGM 4-84
ed line editor

See also edit line editor
See also ex line editor
accessing, GEN 3-25
adding text, GEN 3-25
addressing lines, GEN 3-43 to

3-46
advanced editing, GEN 3-37 to

3-52
backslash character and, GEN

3-33
breaking lines, GEN 3-42
CAI script for, GEN 6-7
changing text, GEN 3-31 to 3-32
command summary, GEN 3-34
context searching, GEN 3-30 to

3-31

lndex-18

ed line editor (Cont.)
copying lines, GEN 3-51
creating text, GEN 3-25
deleting text, GEN 3-29
description, GEN 2-6
escaping to use UNIX command,

GEN 3-51
global commands, GEN 3-32
inserting text, GEN 3-31 to 3-32
interrupting, GEN 3-46
introduction, GEN 3-25 to 3-35
joining lines, GEN 3-42
line number defaults, GEN 3-44

to 3-45
marking a line, GEN 3-50
moving text, GEN 3-32, 3-50
printing a file, GEN 2-7
printing lines, GEN 3-27
reading a file, GEN 3-27
rearranging a line, GEN 3-43
repeating searches, GEN 3-44
searching for first occurrence of

text string, GEN 3-46
sed and, GEN 3-105
setting dot, GEN 3-45 to 3-46
specifying lines with text patterns,

GEN 3-46 to 3-47
specifying the second occurrence

of text string, GEN 3-46
substituting text, GEN 3-29
supporting tools, GEN 3-51 to

3-52
using special characters, GEN

3-33
writing a file, GEN 3-26

ed.hup file
saving text, GEN 2-6

edcompatible option (ex)
description, GEN 3-98

edit command (ed)
See e command (ed)

edit command (edit)
See e command

edit command (ex)
See e command (ex)

edit command (Mail)
See also visual command (Mail)
description, GEN 2-29

edit line editor
See also ed line editor
See also ex line editor
accessing, GEN 3-5 to 3-6
adding text, GEN 3-9
correcting text, GEN 3-9

edit line editor (Cont.)
current line and, GEN 3-11
defined, GEN 3-3
entering text, GEN 3-6
ex editor and, GEN 3-23
finding a line, GEN 3-llE
issuing UNIX command from,

GEN 3-21
messages, GEN 3-6
moving around in the buffer, GEN

3-17
opening a file, GEN 3-9E, 3-14E
prerequisites, GEN 3-3
printing current line number,

GEN 3-11
printing nonprinting characters,

GEN 3-10
quitting, GEN 3-8
reversing last command, GEN

3-16
saving modified text, GEN 3-13
searching for characters, GEN

3-10, 3-lOE
tutorial, GEN 3-3 to 3-23

Editing
hints for, GEN 2-13

Editor
See ed editor
See edit editor
See ex editor
See Screen editor
See sed stream editor
See vi screen editor

EDITOR option (Mail)
defined, GEN 2-33
setting, GEN 2-33
specifying an editor, GEN 2-24

edquota prograin
4.2BSD improvement, SYS 1-19

ef coJn.Inand (Ille)
defined, GEN 5-41

efftab table
defined, PGM 2-68

EFL prograinining language
description, PGM 2-123 to 2-157

eh coJn.Inand (Ille)
defined, GEN 5-41

el coJn.Inand (nroff/troff)
defined, GEN 5-71

else coJn.Inand (C shell)
See also if/endif commands (C

shell)
See also then command (C shell)
defined, GEN 4-66

else coJn.Inand (Mail)
See also if/endif commands (Mail)
description, GEN 2-30

else stateinent (awk)
defined, PGM 3-9

Elz, R.
disk quota system, SYS 2-3 to 2-5

em
defined, GEN 5-86

em command (nroff/troff)
defined, GEN 5-65

Em dash
in nroff/troff output, GEN 5-19

Emphasis
See Boldface
See Italic
See Overstriking
See Underlining

en network interface driver
4.2BSD improvement, SYS 1-16

enable/disable coininand (lpc)
description, PGM 4-103

endif command (C shell)
See if/endif commands (C shell)

endif command (Mail)
See if/endif commands (Mail)

endif statement (as)
See if/endif statement (as)

endwin routine
defined, PGM 4-85

Entry file
defined, GEN 5-145

Environment (C shell)
displaying, GEN 4-51E

Environinent (nroff/troff)
description, GEN 5-71, 5-94

eo coininand (nroff/troff)
defined, GEN 5-66

EOF (End of File)
defined, GEN 2-5, 4-66

EOF operator (C coinpiler)
defined, PGM 2-64

EOF value
defined, PGM 1-21
description, PGM 1-4

ep coininand (me)
defined, GEN 5-42

EQ coinmand (EQN)
specifying continuation, GEN 5-35
specifying equations, GEN 5-34
supplementing with troff

commands, GEN 5-101
EQ coinmand (me)

defined, GEN 5-45

Index-19

EQ command (ms)
specifying equations, GEN 5-10

EQN program
See also NEQN program
CAI script for, GEN 6-7
connecting output to troff, GEN

5-101
deficiencies, GEN 5-102
defined, GEN 5-105
description, GEN 5-33, 5-97 to

5-104
forcing extra white space, GEN

5-99
formatting mathematics, GEN

2-13
grammar, GEN 5-101
language design, GEN 5-98
language theory, GEN 5-101
quoting an input string, GEN

5-100
Equal sign (ed)

dot character and, GEN 3-35
Equation

continuing, GEN 5-35E
formatting, GEN 5-33
numbering, GEN 5-34
setting with -ms, GEN 5-10
text formatting commands for,

GEN 5-16E
Erase character

See also Backspace character
default, GEN 4-30

erase routine
defined, PGM 4-82

errno cell
description, PGM 1-12

errno.h file
4.2BSD improvement, SYS 5-5

error
troff messages and, SYS 1-5

error bells option (ex)
description, GEN 3-98

Error condition (fsck)
conventions, SYS 2-14

Error log file
examining, SYS 5-53

Error message (ed)
description, GEN 3-26

errprint command (M4)
description, PGM 2-397

Escape character (Mail)
changing, GEN 2-26

Escape character (nroff/troff)
description, GEN 5-66

Index-20

Escape character(C shell)
defined, GEN 4-66

escape command
See ! command (ed)

ESCAPE key
description, GEN 3-55

escape option (Mail)
changing escape character, GEN

2-26
defined, GEN 2-34

Escape sequence (nroff/troff)
reference list, GEN 5-54

ev command (nroff/troff)
changing environment, GEN 5-94
description, GEN 5-72

eval command (M4)
description, PGM 2-396

Evans and Sutherland Picture
System 2

See ps.c device driver
EVEN operator (C compiler)

defined, PGM 2-64
even statement (as)

defined, GEN 6-59
ex command (ex)

See e command (ex)
ex command (nroff/troff)

defined, GEN 5-72
ex line editor

See also ed line editor
See also edit line editor
See also sed stream editor
See also vi screen editor
3.5 chang_es, GEN 3-102
command line format, GEN 3-83
editing modes, GEN 3-85
encryption code and, GEN 3-102
entering multiple commands on a

line, GEN 3-86
errors and, GEN 3-85
file manipulation, GEN 3-84 to

3-85
limitations, GEN 3-101
printing current line number,

GEN 3-95
printing version number, GEN

3-94
recovering from crash, GEN 3-85
recovering work, GEN 3-85E
reference manual, GEN 3-83 to

3-104
starting, GEN 3-83
vi and, GEN 3-73

Ex Reference Manual, GEN 3-83 to
3-104

See also ex line editor
Examples

entering with troff, GEN 5-89
Exception word list (nroff/troff)

specifying, GEN 5-69
Exclamation mark (C shell)

using in command arguments,
GEN 4-35

Exclamation mark character (ed)
shell command and, GEN 3-35

Exclamation mark character (edit)
shell command and, GEN 3-21

Exclusive lock
process and, SYS 1-3

execl function
See also execv
See also fork function
description, PGM 1-13

Execute file
defined, SYS 5-133 to 5-134

execv routin
description, PGM 1-13

exit command (C shell)
defined, GEN 4-66

exit command (Mail)
description, GEN 2-30

exit function
error handling and, PG M 1-8

exit statement (awk)
defined, PGM 3-9

exit status
defined, GEN 4-66

exp function (awk)
defined, PG M 3-8

Expansion
defined, GEN 4-67

Exponentiation
DC and, GEN 2-61

Exponentiation operator
description, GEN 2-52

EXPR operator (C compiler)
defined, PGM 2-65

Expression
defined, GEN 4-67

Expression (as)
defined, GEN 6-56
types of

reference list, GEN 6-57
Expression (BC)

See also Primitive expression
defined, GEN 2-50 to 2-53
length, GEN 2-51

Expression (C shell)
evaluating, GEN 4-55

Expres,sion operator (as)
reference list, GEN 6-57

Expression statement (as)
defined, GEN 6-55

Expression statement (BC)
description, GEN 2-54

Extended Fortran Language
See EFL programming language

Extension
defined, GEN 4-67

External security code
password security and, SYS 4-12

eyacc
4.2BSD improvement, SYS 1-5

F

F argument (nroff)
specifying fill mode, GEN 5-26

f command (ed)
defined, GEN 3-34
determining the filename, GEN

3-49
renaming a file, GEN 3-49E

f command (edit)
description, GEN 3-21

f command (ex)
description, GEN 3-89

f command (me)
defined, GEN 5-43
entering, GEN 5-28

f command (troff)
mixing fonts within a line, GEN

5-86
mixing fonts within a word, GEN

5-86
F command (vi)

defined, GEN 3-79
using, GEN 3-61

f command (vi)
defined, GEN 3-80
using, GEN 3-61

f flag (Mail)
defined, GEN 2-36
reading mail from specified file,

GEN 2-21
f flag (make)

defined, PGM 3-17
f flag (mkey)

reading file list, GEN 5-147
f flag (sed)

defined, GEN 3-106

Index-21

f nag (su)
fast su and, SYS 1-9

f macro (me)
defined, GEN 5-42

F option (hunt)
defined, GEN 5-148

f option (troff)
defined, GEN 5-50

f17 1/0 library
4.2BSD improvement, SYS 1-6
description, PGM 2-79 to 2-88
error messages, PGM 2-85 to 2-87
exceptions to ANSI standard,

PGM 2-88
Fabry, R., & others

4.2BSD System Manual, PGM
4-15 to 4-52

Fabry, R.S., & others
4.2BSD Interprocess

Communication Primer, SYS
3-5 to 3-28

fast file system, SYS 1-23 to 1-38
networking implementation notes,

SYS 3-29 to 3-57
factor program

4.2BSD improvement, SYS 1-17
fastboot script

See also fasthalt script
4.2BSD improvement, SYS 1-19C

fasthalt script
See also fastboot script
4.2BSD improvement, SYS 1-19

fc command (nroff/troff)
defined, GEN 5-66

fchmod system call
4.2BSD improvement fchmod,

SYS 1-10
fchown system call

4.2BSD improvement, SYS 1-10
fclose function

description, PGM 1-7
fcntl system call

4.2BSD improvement, SYS 1-10
FCON operator (C compiler)

defined, PGM 2-66
fed font editor

value of, SYS 1-6
Feldman, S.I.

EFL programming language, PGM
2-123 to 2-157

Make program, PGM 3-13 to 3-21
Feldman, S.I., & Weinberger, P.J.

Fortran 77 compiler, PGM 2-89 to
2-109

Index-22

feof macro
breakpoints and, PGM 1-21

ferror macro
breakpoints and, PGM 1-21

fftush function
description, PGM 1-8

fg command (C shell)
defined, GEN 4-67
running background job in

foreground, GEN 4-47E
running suspended job in

foreground, GEN 4-47
fgets function

description, PGM 1-8
fgrep

hunt program and, GEN 5-148
fi command (nroff/troff)

defined, GEN 5-61
Field (awk)

description, PGM 3-8
Field (nroff/troff)

defined, GEN 5-66
Figure

specifying blank page for, GEN
5-44

specifying ruling for, GEN 5-45
specifying space for, GEN 5-44

FILE
defined, PGM 1-21

File
See also File system
See also specific files
advisory locking and, SYS 1-3
appending, GEN 3-48
appending contents to mail, GEN

2-24
arranging, GEN 2-10
CAI script for, GEN 6-7
combining, GEN 2-10, 3-48, 3-49
comparing, GEN 2-13
copying, GEN 2-7E, 3-47
copying from other directories,

GEN 2-9
creating, GEN 2-6
defined, GEN 2-6, 3-3, PGM 4-10
description, GEN 1-20
displaying, GEN 2-10
handling multiple, GEN 2-8
1/0 device and, GEN 1-21
marking executable, GEN 2-12
merging multiple, GEN 2-14E
open limit, PGM 1-11
opening with edit, GEN 3-14
optimal size, SYS 1-28

File (Cont.)
paging, GEN 2-7
printing, GEN 2-7
printing from other directories,

GEN 2-9
printing merged, GEN 2-11
printing multiple, GEN 2-7, 2-8,

2-11
printing on high-speed printer,

GEN 2-7
programs executed by the shell

and, GEN 1-27
protection information, SYS 4-3
recovering with edit, GEN 3-22
removing, GEN 3-48
removing multiple from directory,

GEN2-10E
renaming, GEN 2-7
replacing the terminal, GEN 2-10
sending to several people, GEN

2-11
size of, GEN 1-23, 2-13
splitting, GEN 2-13
truncating to specific length, SYS

1-4
viewing in other directories, GEN

2-9
writing part of, GEN 3-49
writing to disk, GEN 3-8

File (C shell)
See also specific files
accessing from other directories,

GEN 4-34
directing input from, GEN 4-32E

to 4-33E
inputting to, GEN 4-31
maintaining related, GEN 4-53
outputting from, GEN 4-31
redirecting terminal output to,

GEN 4-31E
terminating a command, GEN

4-36E
File (line printer system)

reference list, PG M 4-99
File (M4)

manipulating, PGM 2-396
File (vi)

quitting, GEN 3-63
recovering, GEN 3-66
writing, GEN 3-63

file command
symbolic links and, SYS 1-6

file command (edit)
See f command (edit)

file command (ex)
See f command (ex)

file command (Mail)
See folder command (Mail)

File descriptor
changing assignments, GEN 1-28
description, PGM 1-8

File locking
description, SYS 1-33

File pointer
defined, PGM 1-5

File system
accessing directories on old and

new systems, SYS 1-33
block size, SYS 2-8
checking structural integrity, SYS

2-10
data structure, PGM 4-12F
defined, PGM 4-10 to 4-13
description, GEN 1-20 to 1-24
fixing corrupted, SYS 2-10 to 2-13
fragmentation of, SYS 2-9
implementation, PGM 4-11
implementing, GEN 1-24 to 1-26
overview, SYS 2-8 to 2-9
protecting, GEN 1-22
removable volume and, GEN 1-22
updating, SYS 2-9

File system (4.2BSD)
See also File system (Bell)
allocating data blocks, SYS 1-30
allocating directories, SYS 1-30
allocating new blocks, SYS 1-29
allocation strategy, SYS 1-30
block size, SYS 1-26
block size and wasted space, SYS

1-27T
compared to previous file system,

SYS 1-23 to 1-38
creating file versions, SYS 1-35
fragments and, SYS 1-27
free blocks and, SYS 1-28
hardware parameters and, SYS

1-28 to 1-29
implementing layout, SYS 5-42
layout policies, SYS 1-29 to 1-30
locking files, SYS 1-33
moving, SYS 5-54
optimizing storage, SYS 1-26
organization, SYS 1-26 to 1-30
performance, SYS 1-31 to 1-32
quotas and, SYS 2-4
reading rates, SYS 1-31T
restricting quota, SYS 1-35

Index-23

File system (4.2BSD) (Cont.)
selecting parameters, SYS 5-40 to

5-41
software engineering, SYS 1-36
space overhead, SYS 1-28
writing rates, SYS 1-31 T

File system (Bell)
description, SYS 1-25

File System Check Program
See fsck program

file.h file
4.2BSD improvement, SYS 5-6

Filelist file
creating, GEN 2-10

Filename
4.2BSD changes, SYS 5-4
arbitrary length and, SYS 1-3
changing, GEN 3-47, 3-47W

restriction, GEN 3-47
conventions for, GEN 2-8
description, GEN 1-21
edit editor and, GEN 3-21
folder name and, GEN 2-23
maximum length, SYS 1-33
renaming in same file system,

SYS 1-4
specifying, GEN 3-8
suggestions, GEN 2-7

Filename (C shell)
base part and, GEN 4-63
characters in, GEN 4-33
defined, GEN 4-67

Filename expansion
defined, GEN 4-67

FILENAME variable (awk)
determining current input file,

PGM 3-6
files file

4.2BSD improvement, SYS 5-11
adding device driver and, SYS

5-89
files. vax file

4.2BSD improvement, SYS 5-11
Fill mode

specifying, GEN 5-26
Filling (nroff/troff)

description, GEN 5-60 to 5-61
filsys.h file

See fs.h file
Filter

calling, PGM 4-103E
creating for printers, PGM 4-102
defined, GEN 4-4
description, GEN 1-28

Index-24

find
finding symbolic links, SYS 1-6

Find key
defined, GEN 5-144

First page
entering in text file, GEN 5-5

ft command (nroff/troff)
defined, GEN 5-73

Flag (C shell)
purpose of, GEN 4-31

Flag (ex)
description, GEN 3-86

Flag (Mail)
reference list, GEN 2-41T

Flag option (C shell)
defined, GEN 4-67

Flag option (Mail)
defined, GEN 2-38

nags field (config
description, SYS 5-82

Floating keep, GEN 5-26F
defined, GEN 5-26

flock system call
4.2BSD improvement, SYS 1-10

fmt command
formatting outgoing mail, GEN

2-26
fo command (me)

defined, GEN 5-41
entering, GEN 5-23

Foderaro, J.K., & others
Franz Lisp Manual, The, PGM

2-211 to 2-358
Folder

specifying for file, GEN 2-23
folder command (Mail)

See also folders command (Mail)
description, GEN 2-30
directing Mail to a folder, GEN

2-23
Folder directory

specifying, GEN 2-23
Folder facility

description, GEN 2-23
folder option (Mail)

defined, GEN 2-34
Folders

maintaining, GEN 2-23
folders command (Mail)

See also folder command (Mail)
description, GEN 2-30
listing folder set, GEN 2-23

Font
changing, GEN 5-58, 5-86

Font (Cont.)
command list, GEN 5-51
default, GEN 5-58
defined, GEN 5-36
description, GEN 5-36 to 5-37
mixing within a line, GEN 5-86
mixing within a word, GEN 5-37,

5-86
setting, GEN 5-39
specifying, GEN 5-44, 5-85
specifying for a word, GEN 5-36E
specifying for more than one word,

GEN 5-36
style examples, GEN 5-78T
switching, GEN 5-36

Font library
installing, SYS 5-31

Footer
See also Header
formatting, GEN 5-41 to 5-42
specifying, GEN 5-23

Footnote
See also Delayed text
entering, GEN 5-8, 5-28, 5-43
entering with a macro, GEN

5-76E
numbered automatically, GEN

5-17
resetting the numbering, GEN

5-46
separating footnotes, GEN 5-43
specifying point size, GEN 5-8
text formatting commands for,

GEN 5-15E
fopen function

See also fclose function
See also open function
calling, PGM 1-5E
description, PGM 1-5

for loop
description, GEN 4-7
form, GEN 4-8E

for statement (awk)
defined, PGM 3-9

for statement (BC)
forming, GEN 2-54
process, GEN 2-47
writing, GEN 2-47

For system call
description, GEN 1-26

foreach command (C shell), GEN
4-56E

defined, GEN 4-67
exiting loop, GEN 4-58

foreach command (C shell) (Cont.)
performing similar commands,

GEN 4-60E
Foreground

defined, GEN 4-67
Foreground job

continuing, GEN 4-46
description, GEN 4-45 to 4-48
suspending, GEN 4-46

fork function
description, PGM 1-14

Form feed character
printing, GEN 3-37

Form letter
using with nroff/troff, GEN 5-72

format program
4.2BSD improvement, SYS 1-18,

1-19, 5-15
formatting disks, SYS 5-22 to

5-24
loading, SYS 5-23

Fortran
See f77 1/0 library
See Fortran 77
See Ratfor language

Fortran 77
C and, GEN 2-15
running old programs, PG M 2-83

Fortran 77 compiler
4.2BSD improvement, SYS 1-4
description, PGM 2-89 to 2-109

Fortran 1/0
See also f77 1/0 library
constraints, PGM 2-80 to 2-82
execution, PGM 2-80
forms of, PGM 2-79 to 2-80
general concepts, PGM 2-79 to

2-80
logical units and, PGM 2-80
unit numbers and, PGM 2-80

fortune game
4.2BSD improvement, SYS 1-17

Forward slash
searching for, GEN 3-39

fp command
specifying fonts on the typesetter,

GEN 5-86
fp compiler/interpreter

Functional Programming language
and, SYS 1-6

FP programming language
description, PGM 2-359 to 2-391

fpr program
printing Fortran files, SYS 1-6

lndex-25

fprintf function
description, PGM 1-7

Fraction
setting with troff, GEN 5-86E
specifying with EQN, GEN 5-99

Fragment size
selecting, SYS 5-41

frame.h file
4.2BSD improvement, SYS 5-13

Franz Lisp Manual, The, PGM
2-211 to 2-358

See also Franz Lisp system
Franz Lisp system

user manual, PGM 2-211 to 2-358
from command (Mail)

description, GEN 2-30
message lists and, GEN 2-28

from keyword (EQN), GEN 5-lOOE
Front matter

specifying, GEN 5-33
fs

4.2BSD improvement, SYS 1-16
FS command (ms)

specifying footnotes, GEN 5-8
FS variable (awk)

defined, PGM 3-6
fs.h file

4.2BSD improvement, SYS 5-5
fscanf function

See also sscanf function
description, PGM 1-8

fsck program
See also badsect program
4.2BSD improvement, SYS 1-19
checking connectivity, SYS 2-12
checking directory data blocks,

SYS 2-12
checking free blocks, SYS 2-10
checking inode block count, SYS

2-12
checking inode links, SYS 2-11
checking inode state, SYS 2-11
checking super-block, SYS 2-10
description, SYS 2-7 to 2-25
error conditions, SYS 2-14 to 2-25
rebuilding block allocation maps,

SYS 2-11
fsplit program

splitting multi-function Fortran
files, SYS 1-6

fstab library
4.2BSD improvement, SYS 1-15

fstat system call
4.2BSD improvement, SYS 1-11

Index-26

fsync system call
4.2BSD improvement, SYS 1-11

ft command (troff)
defined, GEN 5-59
specifying fonts, GEN 5-86

FTP server
description, SYS 5-50

ftp server program
ARPA file transfer protocol and,

SYS 1-6
ftpd server program

4.2BSD improvement, SYS 1-19
ftpusers file

description, SYS 5-50
ftruncate system call

4.2BSD improvement, SYS 1-11
Function (BC)

description, GEN 2-45 to 2-46
number permitted, GEN 2-45

Function call
defined, GEN 2-51

Function identifier
description, GEN 2-50

fz command (nroff/troff)
specifying font size, GEN 5-81

G

g command (ed)
defined, GEN 3-34
process, GEN 3-46
s command and, GEN 3-46E
s command restriction and, GEN

3-47
specifying line numbers, GEN

3-47
specifying lines with text patterns,

GEN 3-46 to 3-4 7
specifying more than one

command, GEN 3-47
using, GEN 3-32

g command (edit)
description, GEN 3-19
p command and, GEN 3-19
substitute command and, GEN

3-19
uppercase letters and, GEN 3-19
using, GEN 3-19E

g command (ex)
description, GEN 3-89

G command (sed)
defined, GEN 3-113

g command (sed)
defined, GEN 3-113

G command (vi)
defined, GEN 3-79
finding text lines, GEN 3-57

g flag (sed)
defined, GEN 3-110

g option (hunt)
defined, GEN 5-148

g option (troff)
defined, GEN 5-50

g option (uucp)
defined, SYS 5-132

gcore program
creating a core dump of running

process, SYS 1-6
genassym.c tile

4.2BSD improvement, SYS 5-14
getc macro

defined, PGM 1-6
getch routine

defined, PGM 4-84
getchar macro

input and, PGM 1-4
getdtablesize system call

4.2BSD improvement, SYS 1-11
getgroups system call

4.2BSD improvement, SYS 1-11
gethostbynameandnet routine, SYS

3-13E
gethostid system call

4.2BSD improvement, SYS 1-11
gethostname system call

4.2BSD improvement, SYS 1-11
getitimer system call

4.2BSD improvement, SYS 1-11
getpagesize system call

4.2BSD improvement, SYS 1-11
getpass library

4.2BSD improvement, SYS 1-14
getpriority system call

4.2BSD improvement, SYS 1-11
getrlimit system call

4.2BSD improvement, SYS 1-11
getservbyname routine

specifying a protocl, SYS 3-14
getsockopt system call

4.2BSD improvement, SYS 1-11
getstr routine

defined, PGM 4-84
gettable program

4.2BSD improvement, SYS 1-19
retrieving NIC host data base,

SYS 5-48
gettimeofday system call

4.2BSD improvement, SYS 1-11

gettimeofday system call (Cont.)
specifying value, SYS 5-74

gettmode routine
defined, PGM 4-88
variables set by, PGM 4-90T

getty program
See also gettytab file
4.2BSD improvement, SYS 1-18,

1-19
gettytab file

4.2BSD improvement, SYS 1-16
getwd library

4.2BSD improvement, SYS 1-15
getyx routine

defined, PGM 4-85
GID

description, SYS 4-4
global command (ed)

See g command (ed)
See v command (ed)

global command (edit)
See g command (edit)

global command (ex)
See g command (ex)

globl statement (as)
defined

go flag
accessing sdb symbol information,

SYS 1-5
goto command (C shell)

defined, GEN 4-67
form of, GEN 4-58E

gprof command
profiled systems and, SYS 5-78

gprof program
See also gprof.h file
displaying execution time, SYS

1-6
gprof.h file

4.2BSD improvement, SYS 5-5
Graham, S.L., & others

Berkeley Pascal User Manual,
PGM 2-159 to 2-209

Grave accent
See Metacharacters

Greek letters
setting with -ms, GEN 5-10
setting with troff, GEN 5-86E
troff command list, GEN 5-96

grep command (C sl_tell)
. defined, GEN 4-67
grep program

finding lines with combinations of
text patterns, GEN 3-51

Index-27

grep program (Cont.)
finding lines without specified text,

GEN 3-51E
finding specified text in a set of

files, GEN 3-51, 3-51E
nonalphabetic characters and,

GEN 3-51
spell and, GEN 2-13
using, GEN 2-13E

Grep program
searching for text patterns, GEN

2-13
Group Identification Number

See GID
Group set

description, SYS 1-3
grouping command (sed)

defined, GEN 3-113
groups program

display access list for user's group,
SYS 1-6

H

H command (sed)
defined, GEN 3-113

h command (sed)
defined, GEN 3-113

h command (troff)
moving text backwards on a line,

GEN 5-87
specifying horizontal motion, GEN

5-68
H command (vi)

defined, GEN 3-79
h escape (Mail)

description, GEN 2-25
h flag (Mail)

defined, GEN 2-36
H macro (me)

specifying column heads on
continuing pages, GEN 5-42

h macro (me)
defined, GEN 5-42

h option (inv)
defined, GEN 5-147

h option (nroff)
defined, GEN 5-81

Haley, C.B., & others
Berkeley Pascal User Manual,

PGM 2-159 to 2-209
hangman game

4.2BSD improvement, SYS 1-17

Index-28

Hard limit
defined, SYS 2-3

Hard lock
compared to advisory lock, SYS

1-33
Hardcopy terminal

vi and, GEN 3-73
hardtabs option (ex)

description, GEN 3-98
Hash character

See Sharp character
Hat

See Circumflex character (ed)
he command (nroff/troff)

defined, GEN 5-69
he command (me)

defined, GEN 5-41
entering, GEN 5-23

head command (C shell)
defined, GEN 4-68

Header
See also Footer
formatting, GEN 5-41 to 5-42
specifying, GEN 5-23
suppressing, GEN 2-36

Header field
defined, GEN 2-38

headers command (Mail)
See also ignore command (Mail)
abbreviating, GEN 2-30
description, GEN 2-30

help command (Mail)
description, GEN 2-30
restriction, GEN 2-30
using, GEN 2-22

Henry, R.R., & Reiser, J.F.
Berkeley VAX/UNIX Assembler

Reference Manual, PGM 4-53
to 4-65

Here document
description, GEN 4-9 to 4-10

Hexadecimal notation
BC language and, GEN 2-44

hi er
4.2BSD improvement, SYS 1-17

history command (C shell)
defined, GEN 4-68
repeating previous commands,

GEN 4-43
History list

description, GEN 4-41 to 4-43
using, GEN 4-42E

hi command (me)
defined, GEN 5-45

hi command (me) (Cont.)
figures and, GEN 5-26

hold command (Mail)
See also preserve command (Mail)
description, GEN 2-31

hold option (Mail)
defined, GEN 2-34
storing mail, GEN 2-20

llome directory
defined, GEN 4-68
returning to, GEN 4-49

llOME variable (Bourne shell)
description, GEN 4-11

home variable (C shell)
displaying your home directory,

GEN 4-41
llorizonal line

See Ruling
llorton, M., & Joy, W.

editing with vi, GEN 3-53 to 3-82
Ex Reference Manual, GEN 3-83

to 3-104
llost name

represented by hostent structure,
SYS 3-12E

llostent structure
getting for host, SYS 3-13E

hostid program
displaying system unique

identifier, SYS 1-6
hostname program

setting host name, SYS 1-6
hosts database

4.2BSD improvement, SYS 1-16
hosts.equiv file

description, SYS 5-49
hp.c device driver

4.2BSD improvement, SYS 5-14
htable program

converting NIC host data base,
SYS 5-48

hunt program
defined, GEN 5-146
description, GEN 5-148
fgrep and, GEN 5-148
options list, GEN 5-148
timing, GEN 5-149

hw command (nroff/troff)
defined, GEN 5-69

hx command (me)
defined, GEN 5-41

hy command (nroff/troff)
defined, GEN 5-69

hy network interface driver
4.2BSD improvement, SYS 1-16

llyphen
entering with text, GEN 5-22

llyphenation (nroff/troff)
automatic, GEN 5-69
command list, GEN 5-52

llyphenation indicator character
specifying, GEN 5-69

llZ parameter
description, SYS 5-122

I

i command (DC)
changing the base of input

numbers, GEN 2-62
description, GEN 2-59

i command (ed)
defined, GEN 3-34
using, GEN 3-31 to 3-32

i command (ex)
description, GEN 3-89

i command (me)
defined, GEN 5-44
specifying italic font, GEN 5-36

I command (ms)
specifying italic, GEN 5-8

i command (sed)
See also a command (sed)
defined, GEN 3-109

I command (vi)
defined, GEN 3-79

i command (vi)
defined, GEN 3-81
description, GEN 3-58

i flag (Mail)
See also ignore option
defined, GEN 2-36

i flag (make)
defined, PGM 3-17

i flag (mkey)
igqoring lines, GEN 5-147

1 hption
changed to -i, SYS 1-6

I optiOn
specifying directory search paths,

SYS 1-6
i option (hunt)

defined, GEN 5-148
i option (inv)

defined, GEN 5-148
i option (nroff/troff)

defined, GEN 5-49

Index-29

i-list
description, GEN 1-24

i-node
defined, PGM 4-10
file description and, GEN 1-24

i-number
defined, GEN 1-24

1/0
essentials of, GEN 1-23 to 1-24

1/0 request
multiplexing among sockets and

files, SYS 3-11
1/0 system

description, PGM 4-8 to 4-10
overview, PG M 4-67 to 4-73

ibase
defined, GEN 2-44, 2-51

icheck program
4.2BSD improvement, SYS 1-19

ident parameter (config)
defined, SYS 5-79

Identifier
defined, GEN 2-51
kinds of, GEN 2-50

Identifier (as)
defined, GEN 6-53

ie command (nroff/troff)
defined, GEN 5-71

if command (Bourne shell)
description, GEN 4-13 to 4-14

if command (C shell)
See if/endif cbmmands (C shell)

if command (Mail)
See if/endif commands (Mail)

if command (nroff/troff)
defined, GEN 5-71

if/endif commands (C shell)
See also else command (C shell)
See also then command (C shell)
defined, GEN 4-66, 4-68
forms of, GEN 4-56 to 4-57

if/endif commands (Mail)
description, GEN 2-31
restriction, GEN 2-31

if/endif commands (nroff/troff)
description, GEN 5-93 to 5-94
reference list, GEN 5-52

if/endif statement (as)
defined, GEN 6-59

if statement (as)
See if/endif statement (as)

if statement (awk)
defined, PGM 3-9

Index-30

if statement (BC)
forming, GEN 2-54
restriction, GEN 2-47
writing, GEN 2-47

ifdef command (M4)
description, PGM 2-395

ifelse command (M4)
description, PGM 2-397

IFS variable
defined, GEN 4-12

ig command (nroff/troff)
defined, GEN 5-73

ignore command (Mail)
description, GEN 2-31

ignore option (Mail)
See also i flag (Mail)
defined, GEN 2-34

ignorecase option (ex)
description, GEN 3-98

ignoreeof variable (C shell)
defined, GEN 4-68
setting, GEN 4-41E

ignoreof option (Mail)
See also dot option
defined, GEN 2-34

ik driver
4.2BSD improvement, SYS 1-16

ik.c device driver
4.2BSD improvement, SYS 5-12

Ikonas frame buffer graphics device
interface

See ik driver
Ikonas frame buffer graphics

interface
See ik.c device driver

ii network interface driver
4.2BSD improvement, SYS 1-16

Image
defined, GEN 1-26

imp network interface driver
4.2BSD improvement, SYS 1-16

IMP-llA LH/DH IMP interface
See css network driver

in command (me)
See also ix command (me)
entering, GEN 5-24

in command (nroff/troff)
defined, GEN 5-62

in._cksum.c file
4.2BSD improvement, SYS 5-13

include command (M4)
description, PGM 2-396

incr command (M4)
description, PGM 2-395

indent program
formatting C program source, SYS

1-6
Indention

command list, GEN 5-51
resetting base, GEN 5-45
specifying, GEN 5-24
specifyng with nroff/troff, GEN

5-62
Index

See Table of contents
index command (M4)

description, PGM 2-397
Index entry

specifying, GEN 5-43
Indexing

description, GEN 5-143 to 5-155
Indirect block

inode and, SYS 2-8
init program

4.2BSD improvement, SYS 1-19
description, GEN 1-30

iniLm.ain.c file
contents, SYS 5-8

init_sysent.c file
contents, SYS 5-8

initscr routine
defined, PGM 4-86

in ode
allocations states, SYS 2-11
defined, SYS 2-8
disk space and, SYS 2-8
types of, SYS 2-11

Inode table
setting size, SYS 5-121

inode.h file
4.2BSD improvement, SYS 5-6

input
defined, GEN 4-68

Input base
DC and, GEN 2-62

Input mode
description, GEN 3-7

Input/output
See I/0

insch routine
defined, PG M 4-82

Insert command (ed)
See i command (ed)

insert command (ex)
See i command (ex)

insert command (vi)
See i command (vi)

insertln routine
defined, PG M 4-82

install command, SYS 5-55E
install script

installing software, SYS 1-6
int function (awk)

defined, PGM 3-8
Interlan Ethernet interface

See il network interface driver
Intermediate language (C compiler)

description, PGM 2-63 to 2-66
Internet address

binding, SYS 3-24 to 3-26
binding in Internet domain, SYS

3-8E
binding with wildcard address,

SYS 3-25E
Internet port

printing, SYS 3-16E
Interprocess communication

description, SYS 3-5 to 3-28
transferring data, SYS 3-9E

Interprocess communication
facilities

4.2BSD improvement, SYS 1-3
Interrupt message

description, GEN 3-9
Interrupt signal

See also oninvr command (C
shell)

See also stty command (C shell)
creating, GEN 1-31
defined, GEN 4-68
ignoring, .GEN 2-36
scripts and, GEN 4-59

intro system call
4.2BSD improvement, SYS 1-10

inv program
defined, GEN 5-146
description, GEN 5-147
options list, GEN 5-147

Inverted indexes
See Indexing

1/0 library
restriction, GEN 2-15

ioctl system call
4.2BSD improvement, SYS 1-11

ioctl.h file
4.2BSD improvement, SYS 5-6

iostat
reporting kilobytes per second

transferred for each disk, SYS
1-6

Index-31

ip command (me)
See also np command
defined, GEN 5-40
specifying with label, GEN 5-30

IP command (ms)
indenting paragraphs, GEN 5-7
references and, GEN 5-7E

isprint library
4.2BSD improvement, SYS 1-14

it command (nroff/troff)
defined, GEN 5-65

Italic
See also Underlining
holding, GEN 5-44
specifying, GEN 5-8
troff and, GEN 5-66

ix command (me)
defined, GEN 5-44

J

j command (ed)
joining lines, GEN 3-42, 3-43E

j command (ex)
descripti.on, GEN 3-90

J command (vi)
defined, GEN 3-79

j number register (nroff/troff)
defined, GEN 5-81

Job
defined, GEN 4-45, 4-69
determining current job, GEN
' 4-46

suspending; GEN 4-46
Job control command

See also bg command (C shell)
See also fg command (C shell)
~ee also kill command (C-shell)
See also stop command (C shell)
defined, GEN 4-69

Job name
beginning character, GEN 4-46

Job number
defined, GEN 4-69
description, GEN 4-45

jobs command (C shell)
defined, GEN 4-69
displaying jobs, GEN 4-47E

Johnson, S.C.
Lint command, PGM 3-39 to 3-50
tour through portable C compiler,

PGM 2-37 to 2-61
Yacc, PGM 3-79 to 3-111

Index-32

join command (ex)
See j command (ex)

Joy, W.
C shell introduction, GEN 4-29 to

4-74
Joy, W., & Horton, M.

editing with vi, GEN 3-53 to 3-82
Ex Reference Manual, GEN 3-83

to 3-104
Joy, W., & Leftler, S.J.

4.2BSD on VAX/VMS, SYS 5-17
to 5-71

Joy, W., & others
4. 2BSD Interprocess

Communication Primer, SYS
3-5 to 3-28

4.2BSD System Manual, PGM
4-15 to 4-52

Berkeley Pascal User Manual,
PGM 2-159 to 2-209

fast file system, SYS 1-23 to 1-38
networking implementation notes,

SYS 3-29 to 3-57
Joyce, J., & Blau, R.

Edit tutorial, GEN 3-3 to 3-23
Justifying (nroff/troff)

command list, GEN 5-51
description, GEN 5-60 to 5-61

K

k command (DC)
description, GEN 2-59
scale value and, GEN 2-60

k command (ed)
marking a line, GEN 3-50E

k command (ex)
See also mark command (ex)
description, GEN 3-90

k escape sequence (nroff/troff)
description, GEN 5-68

k flag (mkey)
specifying number of keys, GEN

5-147
k number register (nroff/troff)

defined, GEN 5-81
Keep

See also Floating keep
defined, GEN 5-26
footnotes and, GEN 5-35 to 5-36
index entries and, GEN 5-35 to

5-36
text formatting commands for,

GEN 5-15E

keep option (Mail)
defined, GEN 2-34

keepsave option (Mail)
See also nosave option
defined, GEN 2-35

kerJL_acct.c file
contents, SYS 5-8

kerJL_clock.c file
4.2BSD improvement. SYS 5-8

kerJL_descrip.c file
contents, SYS 5-8

ke~exec.c file
contents, SYS 5-8

ke~exit.c file
contents, SYS 5-8

kern_fork.c file
contents, SYS 5-8

kern_mman.c file
contents, SYS 5-8

kerJL_proc.c file
contents, SYS 5-8

kerJL_prot.c file
contents, SYS 5-8

ker~esource.c file
contents, SYS 5-8

kerJL_sign.c file
contents, SYS 5-8

kerJL_subr .c file
contents, SYS 5-8

kerJL_synch.c file
contents, SYS 5-8

kerJL_time.c file
contents, SYS 5-8

kerlJ__Xxx.c file
contents, SYS 5-8

Kernel
4.2BSD improvement, SYS 5-3 to

5-15
configuration, SYS 5-36 to 5-37
implementation, PGM 4-5 to 4-8
implementing devices, SYS 5-37

kernel.h file
4.2BSD improvement, SYS 5-5

Kernighan, B.W.
advanced editing withed, GEN

3-37 to 3-52
introduction to ed, GEN 3-25 to

3-35
Ratfor language, PGM 2-111 to

2-122
troff tutorial, GEN 5-83 to 5-96
UNIX for beginners, GEN 2-3 to

2-16

Kernighan, B.W., & Cherry, L.L.
typesetting mathematics, GEN

5-97 to 5-104
Typesetting Mathematics - User's

Guide, GEN 5-105 to 5-114
Kernighan, B. W., & Lesk, M.E.

computer-naided instruction for
UNIX, GEN 6-3 to 6-16

Kernighan, B.W., & others
awk programming language, PGM

3-5 to 3-12
Kernighan, B.W., & Ritchie, D.M.

M4 macro processor, PGM 2-393
to 2-398

programming UNIX, PGM 1-3 to
1-24

Kessler, P.B., & others
Berkeley Pascal User Manual,

PGM 2-159 to 2-209
Key

defined, GEN 5-147
selected by program, GEN 5-145

Key file
defined, GEN 5-145

Key letters
reference list, GEN 5-152

Key-making program
format used, GEN 5-145

Keyword
supplementing, GEN 5-150

Keyword (BC)
teserved

reference list, GEN 2-50
Keyword parameter

de&cription, GEN 4-17 to 4-25
Key~ord statement (as)

defined, GEN 6-56
reference list, GEN 6-59 to 6-60

KF command (ms)
moving blocks of text, GEN 5-9

kg driver
4.2BSD improvement, SYS 1-16

kgclock.c device driver
4.2BSD improvement, SYS 5-12

kgmon program
See also gmon.out file
4.2BSD improvement, SYS 1-19

Kill character
default, GEN 4-30

kill command (C shell)
background commands and, GEN

4-37
background jobs and, GEN 4-47E
defined, GEN 4-69

lndex-33

kill command (C shell) (Cont.)
killing processes, GEN 2-11
suspended jobs and, GEN 4-47

killpg library routine
See killpg system call

killpg system call
4.2BSD improvement, SYS 1-11

KL-11
See kg driver

Kowalski, T .J., & McKusick, M.K.
fsck, SYS 2-7 to 2-25

KS command (ms)

L

keeping text blocks together, GEN
5-9, 5-94E

L argument (nroff)
centering and, GEN 5-27
specifying, GEN 5-27

1 command (DC)
programming DC, GEN 2-62

1 command (ed)
backspaces and, GEN 3-37
description, GEN 3-37
long lines and, GEN 3-37
p command and, GEN 3-37
tabs and, GEN 3-37

1 command (me)
centering list elements, GEN 5-27
defined, GEN 5-42
entering, GEN 5-25
specifying fill mode, GEN 5-26
specifying left justification, GEN

5-27
L command (vi)

defined, GEN 3-79
1 flag (mkey)

specifying items to be ignored,
GEN 5-147

L number register (nroff/troff)
defined, GEN 5-81

1 option (C shell)
description, GEN 2-6

1 option (hunt)
defined, GEN 5-148

L-devices file
defined, SYS 5-139

L-dialcodes file
defined, SYS 5-139

L.sys file
contents, SYS 5-135
defined, SYS 5-141
ownership of, SYS 5-138

Index-34

Label (as)
See Name label; Numeric label

label command (sed)
defined, GEN 3-114

LABEL operator (C compiler)
defined, PGM 2-65

last
displaying remote host, SYS 1-6

lastcomm
indicating program activity, SYS

1-7
Layer, K., & others

Franz Lisp Manual, The, PGM
2-211 to 2-358

le command (nroff/troff)
defined, GEN 5-66

LCK file
description, SYS 5-143

Leader character (nroff/troff)
setting, GEN 5-66
uninterpreted, GEN 5-66

Leadering
specifying with troff, GEN 5-88

Leading
See Vertical spacing

LEARN driver program
defined, GEN 6-3
description, GEN 2-6
directory structure, GEN 6-8
experience with students, GEN

6-8
introduction to UNIX, GEN 6-3

to 6-16
sequence of events, GEN 6-9
vi and, SYS 1-7

leaveok routine
defined, PGM 4-86

Leffler, S.J.
building 4.2BSD systems with

config, SYS 5-73 to 5-105
improvements in 4.2BSD, SYS

1-3 to 1-21
kernel and 4.2BSD, SYS 5-3 to

5-15
Leffler, S.J., & Joy, W.N.

4.2BSD on VAXNMS, SYS 5-17
to 5-71

Leffler, S.J., & others
4.2BSD Interprocess

Communication Primer, SYS
3-5 to 3-28

4.2BSD System Manual, PGM
4-15 to 4-52

fast file system, SYS 1-23 to 1-38

Leffler, S.J., & others (Cont.)
networking implementation notes,

SYS 3-29 to 3-57
left keyword (EQN), GEN 5-lOOE
len command (M4)

description, PGM 2-397
length function (awk)

defined, PGM 3-8
Leres, C., & Shoens, K.

Mail Reference Manual, GEN
2-17 to 2-41

Lesk, M.E.
formatting tables, GEN 5-115 to

5-131
inverted indexes, GEN 5-143 to

5-155
preparing documents with -ms,

GEN 5-13 to 5-16
updating publication lists, GEN

5-155 to 5-162
using -ms macros with troff and

nroff, GEN 5-5 to 5-12
Lesk, M.E., & Kernighan, B.W.

computer-aided instruction for
UNIX, GEN 6-3 to 6-16

Lesk, M.E., & Nowitz, D.A.
a dial-up network of UNIX

systems, SYS 5-123 to 5-129
Lesk, M.E., & Schmidt, E.

Lex program generator, PGM
3-113 to 3-125

Lex program generator
description, PGM 3-113 to 3-125

LG command (ms)
increasing type size, GEN 5-8

lg command (troff)
defined, GEN 5-66

libc.a library
remaking, SYS 5-120

libl77 .a library
See f77 VO library

Life game
program for, PGM 4-94E

Ligature (troff)
types available, GEN 5-66

limit command (C shell)
displaying current limitations,

GEN 4-51E
setting limits, GEN 4-51E

Line
See Line drawing (nroff/troff)

Line dot
See Dot character (ed)

Line drawing (nroff/troff)
description, GEN 5-68

Line length (nroff/troff)
specifying, GEN 5-62, 5-86

Line printer
setting for serial lines, PGM 4-101
setting remote, PGM 4-101

Line printer control program
See lpc program

Line Printer Dameon
See lpd program

Line Printer Queue program
See lpq program

Line printer spooling system
devices supported, PGM 4-99,

SYS 5-44
file list, SYS 5-44
setting up, SYS 5-44

Line printer spooling system
(4.2BSD)

See also lpc program; pac program
4.2BSD improvement, SYS 1-4,

1-7, 1-18
controlling access, PGM 4-100 to

4-101
error messages, PGM 4-103 to

4-105
filters and, PGM 4-102
setting up, PGM 4-101 to 4-102
user manual, PGM 4-99 to 4-105

Line spacing
See Vertical spacing

Linking
description, GEN 1-21

Lint command
checking C programs, PGM 3-39

to 3-50
lint command

C and, GEN 2-15
creating libraries from C source

code, SYS 1-7
LINT configuration file

using, SYS 5-88E
LINT file

4.2BSD improvement, SYS 5-11
LINTRUP request

See fcntl system call
lisp option (ex)

description, GEN 3-99
lisp option (vi)

setting, GEN 3-68
Lisp program

See also vlp program
4.2BSD improvement, SYS 1-7

lndex-35

Lisp program (Cont.)
editing with vi, GEN 3-68

List
defined, GEN 5-25
specifying in text, GEN 5-25
text formatting commands for,

GEN 5-15E
text formatting commands for

nested, GEN 5-15E
list command

See ls command (C shell)
List command (ed)

See l command (ed)
list command (ex)

description, GEN 3-90
list command (Mail)

description, GEN 2-31
list files command

See ls command (C shell)
list option (ex)

description, GEN 3-99
listen system call

4.2BSD improvement, SYS 1-11
incoming requests and, SYS 3-9E

ll command (me)
See also xl command (me)
defined, GEN 5-45

ll command (nroff/troff)
defined, GEN 5-62
resetting line length, GEN 5-86E

In
creating symbolic links, SYS 1-7

lo command (me)
defined, GEN 5-45

lo network interface
4.2BSD improvement, SYS 1-16

load command (DC)
See l command (DC)

local command (Mail)
description, GEN 2-31

Local motion
defined, GEN 5-67

Location counter (as)
See also bss segment
defined, GEN 6-55

Locore.c file
4.2BSD improvement, SYS 5-13

locore.s file
4.2BSD improvement, SYS 5-14
installing device drive and, SYS

5-119
LOG file

description, SYS 5-142

lndex-36

log function (awk)
defined, PGM 3-8

Logging in
description, GEN 2-3 to 2-4
prerequisites, GEN 2-3
procedure, GEN 3-5
recording attempts, SYS 4-12

Logging out, GEN 3-8E
description, GEN 2-5

Login directory
startup file and, GEN 2-12

login file
See also logout file
background jobs and, GEN 4-48E
defined, GEN 4-69
logging in and, GEN 4-39, 4-39E
rlogin server and, SYS 1-7
telnetd server program and, SYS

1-7
Login shell

See also Script file
defined, GEN 4-69
logging in and, GEN 4-39

logout command
exiting from UNIX, GEN 3-8

logout command (C shell)
defined, GEN 4-69

logout file
See also login file
C shell and, GEN 4-39
defined, GEN 4-69

London, T.B., & Reiser, J.F.
regenerating system software, SYS

5-117 to 5-122
setting up UNIX/32V Vl.O, SYS

5-107 to 5-115
longjmp library

old semantics and, SYS 1-15
longjump library

4.2BSD improvement, SYS 1-15
longname routine

defined, PGM 4-86
lookbib command

checking the data base, GEN
5-150

Loop
variables and, GEN 4-60

Low-level 1/0
description, PGM 1-8 to 1-12

Ip command (me)
defined, GEN 5-40
entering, GEN 5-29

LP command (ms)
specifying block paragraphs, GEN

5-5
lp.c device driver

4.2BSD improvement, SYS 5-12
lpc program

4.2BSD improvement, SYS 1-4,
1-18, 1-19

description, PGM 4-100
lpd program

description, PGM 4-99
requests understood

reference list, PGM 4-100
lpd server program

4.2BSD improvement, SYS 1-20
lpq program

4.2BSD improvement, SYS 1-7
description, PGM 4-100

lpr command (C shell)
defined, GEN 4-69

lpr program
lpd and, PGM 4-100

lprm program
4.2BSD improvement
description, PGM 4-100

lq command (me)
specifying quotation marks, GEN

5-38
ls command (C shell)

4.2 BSD improvement, SYS 1-7
defined, GEN 4-69
description, GEN 2-6
listing files in three columns,

GEN 2-11
specifying numeric sort, GEN

4-32E
ls command (Mail)

displaying files on your terminal,
GEN 2-10

ls command (me)
entering, GEN 5-23

ls command (nroff/troff)
defined, GEN 5-61

lseek system call
4.2BSD improvement, SYS 1-11
description, PGM 1-11

It command (nroff/troff)
defined, GEN 5-70

M

m command (e)
reversing two adjacent lines, GEN

3-50E

m command (ed)
caution, GEN 3-50
defined, GEN 3-34
moving text, GEN 3-50E
using, GEN 3-32

m command (edit)
context search and, GEN 3-15
moving text, GEN 3-14

m command (ex)
description, GEN 3-90

M command (vi)
defined, GEN 3-79

m command (vi)
defined, GEN 3-81

m escape (Mail)
description, GEN 2-25

m option (nroff/troff)
defined, GEN 5-49

m option (uuclean)
defined, SYS 5-137

m option (uucp)
defined, SYS 5-132

ml command (me)
defined, GEN 5-41

m2 command (me)
defined, GEN 5-41

m3 command (me)
defined, GEN 5-42

m4 command (me)
defined, GEN 5-42

M4 macro processor
arguments, PGM 2-395
arithmetic built-ins, PGM 2-395
command line format, PGM 2-393
conditionals, PGM 2-397
defining macros, PGM 2-393 to

2-395
description, PGM 2-393 to 2-398
manipulating files, PGM 2-396
manipulating strings, PGM 2-397
operation, PGM 2-393
printing, PGM 2-397

m4 macro processor
4.2BSD improvement, SYS 1-7

machdep.c file
4.2BSD improvement, SYS 5-14

machine file
4.2BSD improvement, SYS 5-4

Machine instruction statement (as)
syntax, GEN 6-60 to 6-63

machine type parameter (config)
defined, SYS 5-79

Macro (M4)
defining, PGM 2-393 to 2-395

Index-37

Macro (nroff)
defined, GEN 5-35
defining, GEN 5-35E
naming, GEN 5-35
using, GEN 5-35E

Macro (nroff/troff)
arguments, GEN 5-63
defined, GEN 5-62
description, GEN 5-62 to 5-65
diversions, GEN 5-63
printing, GEN 5-73
traps, GEN 5-64

Macro (troff)
arguments and, GEN 5-92 to 5-93
arguments and blanks, GEN 5-93
arguments and trailing

punctuation, GEN 5-92
Macro (vi)

See also Word abbreviation
types of, GEN 3-68

Macro definition (make), PGM
3-15E

defined, PGM 3-15
Macro-invocation trap (nroff/troff)

description, GEN 5-64
magic option (ex)

description, GEN 3-96
magic option (ex)

description, GEN 3-99
Magnetic tape

FORTRAN-77 and, PGM 2-84
Mail

adding to mail list, GEN 2-25
answering, GEN 2-19 to 2-20
C shell watching for, GEN 4-39E
canceling, GEN 2-18
changing the subject line, GEN

2-25
commands to be executed by the

shell, GEN 2-28
defined, GEN 2-38
deleting, GEN 2-20
description, GEN 2-5
filing, GEN 2-24
format, GEN 2-37
forwarding, GEN 2-25
holding in system mailbox, GEN

2-31
including in other mail, GEN 2-25
indicating indirect recipients,

GEN 2-25
keeping, GEN 2-35
keeping outgoing, GEN 2-35
length restricted, GEN 2-37

Index-38

Mail (Cont.)
line width, GEN 2-37
maintaining groups of mail, GEN

2-23
message lists and user names,

GEN 2-28
notification of, GEN 2-17
paging, GEN 2-20
process, GEN 2-17
protecting, GEN 2-34E
reading, GEN 2-18 to 2-19
reading in home directory, GEN

2-21
reading next, GEN 2-19
reading other people's, GEN 2-36
recovering deleted, GEN 2-30
saving related in a file, GEN 2-32
searching for subjects, GEN 2-28
sending, GEN 2-18
sending multiple messages, GEN

2-28
sending remote, SYS 5-126
sending source program text, GEN

2-33
sending to file, GEN 2-27
sending to folder, GEN 2-27
sending to list, GEN 2-21
sending to multiple users, GEN

2-18
sending to other machines, GEN

2-26 to 2-27
sending to programs, GEN 2-27
sending to user name, GEN 2-27
specifying mailbox, GEN 2-36
terms defined, GEN 2-38
writing to others online, GEN 2-5

mail command
abbreviating, GEN 2-20
description, GEN 2-31
uses of, GEN 2-18

Mail list
editing, GEN 2-25

Mail program
setting up, SYS 5-44

mail program
4.2BSD improvement, SYS 1-7
defined, GEN 4-69
escaping temporarily to command

mode, GEN 2-26
escaping temporarily to shell,

GEN 2-25
reading folders, GEN 2-23
reference manual, GEN 2-17 to

2-41

mail program (Cont.)
sen ting source program text, GEN

2-33
shell and, GEN 2-32
suspending, GEN 4-37E
using, GEN 2-17 to 2-41

Mail Reference Manual
See also Mail program

Mail routing facility
See sendmail

mail system
See also sendmail

MAIL variable
description, GEN 4-11

mailaddr
4.2BSD improvement, SYS 1-17

Mailbox
defined, GEN 2-38

mailrc file, GEN 2-21E
defined, GEN 2-21
specifying folder directory, GEN

2-23
make command

command line format, PGM 3-16
operation, PGM 3-16 to 3-17

make depend command
system source code and, SYS 5-77

make directory command
See mkdir command (C shell)

make program
See also makefile
4.2BSD improvement, SYS 1-7
C and, GEN 2-15
defined, GEN 4-69
description, PGM 3-13 to 3-21
description file for, PGM 3-18 to

3-20
maintaining related files, GEN

4-53
operation, PGM 3-13 to 3-15
suffix list, PGM 3-17
transformation paths

summary, PGM 3-17
warnings, PGM 3-20

MAKEDEV script
See also MAKEDEV.local file
4.2BSD improvement, SYS 1-20

makefile
See also make program
defined, GEN 4-69
description, GEN 4-53
modifying for uucp, SYS 5-139

makefile. vax file
contents, SYS 5-11

makelinks command
source modules and, SYS 5-78

maketemp command (M4)
description, PGM 2-396

man command (Bourne shell)
printing the UNIX manual, GEN

4-15
printing UNIX manual, GEN

4-16F
man command (C shell)

accessing online programmer's
manual, GEN 4-63E, 4-69E

using, GEN 2-6
Manual

defined, GEN 4-69
map command (ex)

See also unmap command (ex)
description, GEN 3-90

Maranzano, J.F., & Bourne, S.R.
ADB debugging program, PGM

3-51 to 3-77
Margin number

setting, GEN 5-44
mark command (ex)

See also k command (ex)
description, GEN 3-90

Mass storage
UNIX interfaces, SYS 1-36

MASSBUS
description, SYS 5-18
specifying, SYS 5-19

MASTER mode
description, SYS 5-135

Mathematics
text formatting commands for,

GEN 5-14E
typesetting, GEN 5-97 to 5-104,

5-105 to 5-114
MAXMEM parameter

description, SYS 5-121
MAXUMEM parameter

See also MAXMEM parameter
description, SYS 5-121

MAXUPRC parameter
description, SYS 5-121

maxusers parameter (config)
defined, SYS 5-79

mba.c device driver
4.2BSD improvement, SYS 5-14

mbox command (Mail)
abbreviating, GEN 2-22
description, GEN 2-31
saving unread mail, GEN 2-22

Index-39

mbox file
mail and, GEN 2-20
system mailbox and, GEN 2-20

mbuf.h file
4.2BSD improvement, SYS 5-5

me command (nroff/troff)
defined, GEN 5-72

McKusick, M.K., & Kowalski, T.J.
fsck, SYS 2-7 to 2-25

McKusick, M.K., & others
4.2BSD System Manual, PGM

4-15 to 4-52
Berkeley Pascal User Manual,

PGM 2-159 to 2-209
fast file system, SYS 1-23 to 1-38

McMahon, L.E.
sed stream editor and, GEN 3-105

to 3-114
me macro package

initializing, GEN 5-40
naming convention, GEN 5-39
predefined strings, GEN 5-47
reference manual, GEN 5-39 to

5-48
Me Reference Manual, GEN 5-39

See also me macro package
mem.c file

4.2BSD improvement, SYS 5-14
Memorandum

text formatting commarlds for,
GEN 5-14E

mesg option (ex)
description, GEN 3-99

Message
See also Mail
defined, GEN 2-38

Message list
defined, GEN 2-28, 2-38

Metacharacters (Bourne shell)
defined, GEN 4-5
quoting, GEN 4-5
quoting a string, GEN 4-5E
quoting mechanisms, GEN 4-20F
reference list, GEN 4-27

Metacharacters (C shell)
defined, GEN 4-69
description, GEN 4-32
reference list, GEN 4-62
using with command arguments,

GEN 4-35
Metacharacters (ed)

character classes and, GEN 3-41
deleting, GEN 3-38

lndex-40

Metacharacters (ed) (Cont.)
delimiting text for s command,

GEN 3-39
editing with, GEN 3-37 to 3-43
entering, GEN 3-33
reference list, GEN 3-33
searching for, GEN 3-39, 3-41

Metacharacters (ed) (ed)
combining, GEN 3-40
description, GEN 3-38 to 3-42

Metacharacters (ex)
X and, GEN 3-96

Metacharacters (me)
reference list, GEN 5-4 7

Metacharacters (nroff/troff)
specifying, GEN 5-79

Metacharacters (troff)
automatically translated, GEN

5-86
command list, GEN 5-96
entering, GEN 5-86

metoo option (Mail)
defined, GEN 2-35

MFLAGS macro
supplying flags to make, SYS 1-7

mille game
4.2BSD improvement, SYS 1-17

Mini-root file system
booting from, SYS 5-25
copying, SYS 5-24

Minus sign
translating for troff, GEN 5-86

mk command (nroff/troff)
See also rt command (nroff/troff);

sp command (nroff/troff)
defined, GEN 5-60

mkdir command
4.2BSD improvement, SYS 1-7
creating directories, GEN 2-10

mkdir command (C shell)
creating a directory, GEN 4-48
defined, GEN 4-70

mkdir system call
4.2BSD improvement, SYS 1-11

mkey program
defined, GEN 5-146
description, GEN 5-147

mkfs program
See newfs program
4.2BSD improvement, SYS 1-20

mman.h file
future plans and, SYS 5-5

Modifier (C shell)
See also Command substitution

Modifier (C shell) (Cont.)
defined, GEN 4-70
description, GEN 4-57
restriction, GEN 4-57n

more program
defined, GEN 4-70
paging mail, GEN 2-20
terminal screen and, GEN 4-37

Morris, R., & Cherry, L.
BC and, GEN 2-43 to 2-55
DC and, GEN 2-57 to 2-64

Morris, R., & Thompson, K.
password system, SYS 4-7 to 4-12

mos
old version of -ms, GEN 5-17

Mosher, D., & others
4.2BSD System Manual, PGM

4-15 to 4-52
mount command

unprivileged users and, SYS 4-5
mount program

4.2BSD improvement, SYS 1-20
mount.h file

4.2BSD improvement, SYS 5-6
Move command (ed)

Seem command (ed)
move command (edit)

See m command
move command (ex)

See m command (ex)
move routine

defined, PGM 4-83
mpx system call

See socket system call and related
system calls

ms macro package
See also -mos
4.2BSD improvement, SYS 1-18
CAI script for, GEN 6-7
command reference list, GEN

5-11
default settings, GEN 5-9
entering cover sheet, GEN 5-5
entering first page, GEN 5-5
entering page footer, GEN 5-6
entering page heading, GEN 5-6
entering paragraphs, GEN 5-5
entering section heads, GEN 5-6
keeping text blocks together, GEN

5-9
order for input commands, GEN

5-12F
preparing documents, GEN 5-13

to 5-16

ms macro package (Cont.)
printing files on the terminal,

GEN 5-9E
register name reference list, GEN

5-11
revised version, GEN 5-17 to 5-19
specifying column format, GEN

5-6
using with troff and nroff, GEN

5-5 to 5-12
ms package

description, GEN 2-12
formatting a document with nroff,

GEN 2-13
formatting a document with troff,

GEN 2-12
MSGBUFS parameter

description, SYS 5-122
mt

showing state of tape drive, SYS
1-7

mtab
4.2BSD improvement, SYS 1-16

Multiplication
DC and, GEN 2-61

Multiplicative operator
description, GEN 2-52

Multitasking
description, GEN 1-29

MV command
renaming a file, GEN 2-7

mv program
4.2BSD improvement, SYS 1-7

mv program (ed)
renaming a file, GEN 3-47

mvcur routine
defined, PGM 4-88

mvwin routine
defined, PGM 4-86

N

n command (ex)
description, GEN 3-90

n command (sed)
defined, GEN 3-108

N command (vi)
See also n command (vi)
defined, GEN 3-79

n command (vi)
See also N command (vi)
defined, GEN 3-81

N flag (Mail)
See also noheader option

Index-41

N flag (Mail) (Cont.)
defined, GEN 2-36

n flag (Mail)
defined, GEN 2-36

n flag (make)
defined, PGM 3-17

n flag (mkey)
ignoring words, GEN 5-147

n flag (sed) ·
defined, GEN 3-106

n option
specifying numeric sort, GEN 4-32

n option (inv)
defined, GEN 5-148

n option (nroff/troff)
defined, GEN 5-49

n option (uuclean)
defined, SYS 5-137

nl command (me)
defined, GEN 5-44

n2 command (me)
defined, GEN 5-44

Name label (as)
defined, GEN 6-55

NAME operator (C compiler)
defined, PGM 2-66

Named expression
defined, GEN 2-51

nami routine
See also nami.h file

nami.h tile
4.2BSD improvement, SYS 5-5

NBUF parameter
description, SYS 5-121

NCALL parameter
description, SYS 5-122

NCARGS parameter
description, SYS 5-122

NCLIST parameter
description, SYS 5-122

ND command (ms)
cover sheet and, GEN 5-9

ne command (nroff/troff)
defined, GEN 5-59

NEQN program
See also EQN program
description, GEN 5-33
formatting mathematics, GEN

2-13
net library

4.2BSD improvement, SYS 1-15
net program

UNIX distribution and, SYS 1-7

lndex-42

netstat program
displaying network statistics, SYS

1-7, 5-51E
displaying routing table contents,

SYS 5-51E
Network

See Dial-up network
See uucp system
troubleshooting, SYS 5-57

Network data base
files list, SYS 5-48

Network library routines
description, SYS 3-12 to 3-16

Network name
represented by netent structure,

SYS 3-13E
Network server program

included with system, SYS 5-50T
started up automatically at boot

time, SYS 5-49T
network server program

reference list, SYS 5-49
Network Systems Hyperchannel

Adapter
See hy network interface driver

Networking
implementation, SYS 3-29 to 3-57

networks database
4.2BSD improvement, SYS 1-16

newfs program
See also mkfs program
4.2BSD improvement, SYS 1-18,

1-20
newgrp command

See Group set
newwin routine

defined, PGM 4-86
next command (ex)

See n command (ex)
next command (Mail)

abbreviating, GEN 2-31
description, GEN 2-31

next statement (awk)
defined, PG M 3-9

NF variable (awk)
determining number of fields,

PGM 3-6
NFILE parameter

description, SYS 5-121
NH command (ms)

entering section heads, GEN 5-6E
specifying numbered section heads,

GEN 5-6

nh command (nroff/troff)
defined, GEN 5-69

NIC host data base
retrieving, SYS 5-48E

NINODE parameter
description, SYS 5-121

nl routine
defined, PG M 4-87

NLABEL operator (C compiler)
defined, PGM 2-64

nm command (nroff/troff)
defined, GEN 5-70

NMOUNT parameter
description, SYS 5-121

nn command (nroff/troff)
defined, GEN 5-70

Nobreak control character
changing, GEN 5-67

noclobber variable (C shell)
defined, GEN 4-70
protecting files and, GEN 4-41

NOFILE parameter
description, SYS 5-121

noglob variable (C shell), GEN
4-56E

defined, GEN 4-70
noheader option (Mail)

See also -N flag
See also quiet option
defined, GEN 2-35

nosave option (Mail)
See also keepsave option
defined, GEN 2-35

notify command (C shell)
See also notify variable
defined, GEN 4-70
reporting job complete, GEN 4-47

notify variable (C shell)
See also notify command (C shell)
background jobs and, GEN 4-45

Nowitz, D.A.
implementing uucp, SYS 5-131 to

5-144
Nowitz, D.A., & Lesk, M.E.

a dial-up network of UNIX
systems, SYS 5-123 to 5-129

np command (me)
defined, GEN 5-40
numbering paragraphs

automatically, GEN 5-31E
NPROC parameter

description, SYS 5-121
nr command (me)

indenting sections, GEN 5-32E

nr command (me) (Cont.)
specifying with Ii, GEN 5-30

nr command (nroff/troff)
defined, GEN 5-65

NR variable (awk)
determining current record

number, PGM 3-5
nroff text processor

See also nroff/troff text processor
See also troff text processor
calling, GEN 5-21E
defined, GEN 2-12
device resolution and, GEN 5-56
entering text, GEN 5-22
formatting a document with -ms,

GEN 2-13
function, GEN 5-22
invoking, GEN 5-49
stopping printer to change paper,

GEN 5-49
writing papers using -me, GEN

5-21 to 5-38
nroff/troff text processor

See also -ms macros
See also nroff text processor
See also troff text processor
-ms macros and, GEN 5-5 to 5-12
boxing words, GEN 5-69
breaking a line, GEN 5-60
character set, GEN 5-57
character translation, GEN 5-66
concealed newlines and, GEN

5-67
contol characters beginning lines,

GEN 5-60
defined, GEN 5-49
description, GEN 2-12
error messages, GEN 5-73
input, GEN 5-56
justifying text, GEN 5-61
marking horizontal space, GEN

5-68
numbering output lines, GEN

5-70
numerical expressions, GEN 5-57
numerical parameters, GEN 5-56
post processors and, GEN 5-50
preprocessors and, GEN 5-50
specifying conditional input, GEN

5-71
specifying indention, GEN 5-62
specifying line length, GEN 5-62
specifying page margins, GEN

5-74E

Index-43

nroff/troff text processor (Cont.)
specifying vertical spacing, GEN

5-61
switching environment, GEN 5-71
transparent throughput, GEN

5-67
transposing characters, GEN 5-67
underlining words, GEN 5-69
user's manual, GEN 5-49 to 5-81
writing paragraph macros, GEN

5-75E
Nroff/Troff User's Manual

update, GEN 5-81
Nroff/Troff User's Manual, GEN

5-49 to 5-81
See also nroff/troff text processor

ns command (nroff/troff)
defined, GEN 5-62

NTEXT parameter
description, SYS 5-122

nu command (edit)
printing text with line numbers,

GEN 3-11
nu command (ex)

description, GEN 3-91
NULL

defined, PGM 1-21
NULL operator (C compiler)

defined, PGM 2-66
Null statement (as)

defined, GEN 6-55
Number

internal representation in DC,
GEN 2-59

right justifying with troff, GEN
5-87

number command (DC)
descripton, GEN 2-57

number command (edit)
See nu command (edit)

number command (ex)
See nu command (ex)

number option (ex)
description, GEN 3-99

Number register (nroff/troff)
See also nr command (nroff/troff)
See also specific registers
command list, GEN 5-52, 5-55
description, GEN 5-65 to 5-66

Number register (troff)
description, GEN 5-91 to 5-92
predefined, GEN 5-91

Numeric label (as)
defined, GEN 6-55

Index-44

nx command (nroff/troff)
defined, GEN 5-72

0

o command (DC)
changing the output base, GEN

2-62
description, GEN 2-59

o command (ex)
See also open option
description, GEN 3-91
line editing and, GEN 3-85

o command (nroff/troff)
description, GEN 5-68

0 command (Rogue)
using, GEN 6-23

0 command (vi)
See also o command (vi)
See also slowopen option
defined, GEN 3-79

o command (vi)
See also 0 command (vi)
defined, GEN 3-81

o option (hunt)
defined, GEN 5-148

o option (nroff/troff)
defined, GEN 5-49

obase
defined, GEN 2-44, 2-51

Octal
converting to decimal, GEN 2-44

od
4.2BSD improvement, SYS 1-7

of command (me)
defined, GEN 5-41

of filter
calling, PGM 4-102E
printers and, PGM 4-102

OF macro
specifying page footers, GEN 5-19

OFS variable
defined, PGM 3-6

oh command (me)
defined, GEN 5-41

OH macro
specifying page headings, GEN

5-19
oldcsh

4.2BSD and, SYS 1-7
onintr command (C shell)

See also Interrupt signal
defined, GEN 4-70

open command (ex)
See o command ex)

open function
See also open function
description, PGM 1-10

open option (ex)
description, GEN 3-99

open system call
4.2BSD improvement, SYS 1-11

Operators
available, GEN 2-43

optim routine (C compiler)
description, PGM 2-66 to 2-67

optim routine (C shell)
See also unoptim routine (C shell)

optimize option (ex)
description, GEN 3-99

Option (C shell)
combining, GEN 2-6

Option (ex)
See also specific options
reference list, GEN 3-97 to 3-101

Option (Mail)
See also specific options
defined, GEN 2-38
reference list, GEN 2-33 to 2-36,

2-40T
setting, GEN 2-32, 2-32E

Option (nroff/troff)
invoking, GEN 5-50
reference list, GEN 5-49 to 5-50

Option (vi)
See also specific options
listing values, GEN 3-65
reference list, GEN 3-65
setting, GEN 3-65
setting automatically, GEN 3-65

options parameter (config)
defined, SYS 5-79

ORS variable
defined, PGM 3-6

os command (nroff/troff)
defined, GEN 5-62

Ossanna, J .F.
Nroff/Troff User's Manual, GEN

5-49 to 5-81
Out of band data

description, SYS 3-23
flushing I/O on receipt, SYS

3-23F
Output

defined, GEN 4-70
Output base

DC and, GEN 2-62

over keyword (EQN)
specifying fractions, GEN 5-99E

overlay routine
defined, PG M 4-83

Overstrike command (nroff/troff)
See o command (nroff/troff)

Overstriking
creating with troff, GEN 5-88

overwrite routine
defined, PGM 4-83

p

p command (DC)
descripton, GEN 2-58

p command (ed)
defined, GEN 3-34
printing a line, GEN 3-28
printing all lines, GEN 3-28
printing last line, GEN 3-28
printing lines, GEN 3-27
stopping, GEN 3-28
using, GEN 3-27 to 3-28

p command (edit)
printing buffer contents, GEN

3-10
u command and, GEN 3-16

p command (ex)
description, GEN 3-91

P command (me)
defined, GEN 5-46
specifying front matter, GEN 5-33

p command (sed)
defined, GEN 3-111

P command (vi)
See also p coµimand (vi)
defined, GEN 3-79

p command (vi)
See also P command (vi)
defined, GEN 3-81

p escape (Mail)
description, GEN 2-24

p ftag (make)
defined, PGM 3-17

p nag (sed)
defin~d, GEN 3-110

p macro (me)
defined, GEN 5-41

P number register (nroff/troff)
defined, GEN 5-81

p option (hunt)
defined, GEN 5-149

p option (inv)
defined, GEN 5-148

Index-45

p option (troff)
defined, GEN 5-50

p option (uuclean)
defined, SYS 5-137

pa command (me)
defined, GEN 5-44

pac program
4.2BSD improvement, SYS 1-18,

1-20
Page

command list, GEN 5-51
formatting the last page with a

macro, GEN 5-77E
printing specific, GEN 5-49
setting margins with nroff/troff,

GEN 5-74E
specifying blank, GEN 5-44
specifying new, GEN 5-23

Page commands
description, GEN 5-59

Page footer
entering in text file, GEN 5-6
specifying, GEN 5-70
specifying for multiple columns

with a macro, GEN 5-75E
specifying with troff, GEN 5-91
varying on alternate pages, GEN

5-19
Page header

entering in text file, GEN 5-6
specifying for multiple columns

with a macro, GEN 5-75E
specifying formats for alternating,

GEN 5-71
specifying with troff, GEN 5-90

Page heading
specifying, GEN 5-70
varying on alternate pages, GEN

5-19
Page layout

specifying, GEN 5-23
Page number

setting arabic, GEN 5-44
setting roman, GEN 5-44
specifying, GEN 5-59, 5-91
specifying for appendix, GEN 5-46
specifying for chapter, GEN 5-46

Page offset (nroff/troff)
specifying, GEN 5-59

Page trap (nroff/troff)
description, GEN 5-64

pagesize program
printing system page size, SYS

1-7 .

Index-46

Paging
defined, GEN 3-13
versus scrolling, GEN 3-56

Paper
formatting, GEN 5-34F

Paragraph, GEN 5-40
-me restrictions, GEN 5-40
creating decorative initial capital

with troff, GEN 5-86
editing with vi, GEN 3-61
entering in text file, GEN 5-5
indenting, GEN 5-7 to 5-8
numbering automatically, GEN

5-31
specifying, GEN 5-22
specifying block format, GEN

5-29
specifying hanging indent format,

GEN 5-29
specifying hanging indent format

with a macro, GEN 5-75E
specifying indention, GEN 5-30
specifying indention amount,

GEN 5-39E
vi definition, GEN 3-61
writing a macro for, GEN 5-75E

paragraph option (ex)
description, GEN 3-99

param.c file
contents, SYS 5-11, 5-103

param.h file
See also kernel.h file
4.2BSD improvement, SYS 5-6,

5-13
Parentheses (BC)

primitive expression and, GEN
2-51

Parentheses (EQN)
typesetting in proper size, GEN

5-lOOE
Pascal programming language

See Berkeley Pascal programming
language

Passive system
defined, SYS 5-123

passwd
concurrent updates to password

file and, SYS 1-8
Password

entering, GEN 3-5
Password entry program

predictable passwords and, SYS
4-10

random numbers and, SYS 4-11
(

\

Password file
restricting users, GEN 1-31
security and, SYS 4-8

Password system
history, SYS 4-7 to 4-12

Pasting and cutting
See m command (ed)

PATH variable (Bourne shell)
description, GEN 4-11 to 4-12

path variable (C shell)
See also rehash command (C

shell)
default value, GEN 4-40
defined, GEN 4-40, 4-70

Pathname
See also Absolute pathname
defined, GEN 2-9, 4-71
description, GEN 4-33

Pattern (awk)
description, PGM 3-6 to 3-7

Pattern space
defined, GEN 3-106

pc
4.2BSD improvement, SYS 1-8

pc command (nroff/troff)
defined, GEN 5-70

pc/pi
4.2BSD improvement, SYS 1-8

pcb.h file
4.2BSD improvement, SYS 5-14

pcl network interface driver
4.2BSD improvement, SYS 1-16

pd command (me)
defined, GEN 5-43

pdx debugger
pi and, SYS 1-8

Period
See Dot character (ed)

perror function
description, PGM 1-12

perror library
4.2BSD improvement, SYS 1-15

pg flag
collecting information for gprof,

SYS 1-5
pg option

creating images for gprof, SYS 1-6
phones database

See also tip program
4.2BSD improvement, SYS 1-17

Phototypesetter
defined, GEN 5-98
stopping automatically to reload,

GEN 5-49

Phototypesetting
See nroff/troff text processor

PHYSPAGES parameter
description, SYS 5-121

pi command (nroff)
defined, GEN 5-72

Picture System 2 graphics device
See ps driver

piles program (EQN)
description, GEN 5-100

Pipe
defined, GEN 1-26, 2-11, PGM

1-14
description, GEN 2-11, PGM 1-14

to 1-17
optimal size, SYS 1-28
programs and, GEN 2-11

pipe system call
description, PGM 1-15 to 1-17

Pipeline, GEN 4-4E
combining command input/output,

GEN 4-32
defined, GEN 2-11, 4-4, 4-71
description, GEN 4-32 to 4-33
elements in, GEN 2-11
files read from terminal and, GEN

2-11
pl command (nroff/troff)

defined, GEN 5-59
Plain data block

defined, SYS 2-12
pm command (nroff/troff)

defined, GEN 5-73
pn command (nroff/troff)

defined, GEN 5-59
po command (nroff/troff)

defined, GEN 5-59
setting left margin, GEN 5-86E

Point size
changing, GEN 5-38, 5-58
defaults, GEN 5-38
setting, GEN 5-84

pop directory command
See popd command (C shell)

popd command (C shell)
See also pushd command (C shell)
defined, GEN 4-71
without argument, GEN 4-49

Port
defined, GEN 4-71

Port number
algorithm for selecting, SYS 3-26
overriding selection algorithm,

SYS 3-26E

lndex-47

Portable C Compiler
description, PGM 2-37 to 2-61

Posting file
defined, GEN 5-145

Pound sign
See Sharp character

pp command (me)
See also ip commi:tqd (me)
See also lp command (me)
defined, GEN 5-40
description, GEN 5-22
meaning of, GEN 2-12

pr command (C s~ell)
defined, GEN 4-71
printing files, GEN 2-7
printing files in three columns,

GEN 2-11
pre command (edit)

recovering files, GEN 3-22
Preface

formatting, GEN 5-34F
Preliminary text

See Front matter
preserve command (edit)

See pre command (edit)
preserve command (ex)

description, GEN 3-91
preserve command (Mail)

See also hold command (Mail)
abbreviating, GEN 2-22
description, GEN 2-31
keeping mail in your system

mailbox, GJ!;N 2-21
primes program

4.2BSD improvement, SYS 1-17
Primitive expression

description, GEN 2-51
Print command

See p command
print command (awk)

description, PGM 3-6
print command (edit)

See p command (edit)
print command (ex)

Seep command (ex)
print command (Mail)

See also ignore command (Mail)
description, GEN 2-29
ignored fields and, GEN 2-31

Print file
UNIX and, PGM 2-83

print working directory command
See pwd command (C shell)

lndex-48

printcap file
4.2BSD improvement, SYS 1-17
creating, PGM 4-101

printenv command (C shell)
See also setepv command (C

shell)
defined, GEN 4-71

printf function
See also fprintf function
output and, PGM 1-4

printf statement (awk)
formatting output, PGM 3-6

printw routine
· defined, PGM 4-83
proc.h file

4.2BSD improvement, SYS 5-7
Process

See also ps command (C shell)
See also System process
See also User process
defined, GEN 1-26, 4-71
maximum active, SYS 5-121
maximum per user, SYS 5-121
setting maximum files for, SYS

5-121
space for, SYS 5-121
stopping, GEN 2-11
syncronizing, GEN 1-27
terminating, GEN 1-27

Process control
data structure, PGM 4-6F
description, PGM 4-5 to 4-6

Process number
defined, GEN 2-11
determining, GEN 2-11

Process stack
setting growth increment, SYS

5-121
setting initial size, SYS 5-121

Process time accounting
summarizing, SYS 5-56

PROFIL operator (C compiler)
defined, PGM 2-65

profil system call
4.2BSD improvement, SYS 1-12

profile file
login and, GEN 4-6
shell and, GEN 2-12

Profiled system
description, SYS 5-78

PROG operator (C compiler)
defined, PGM 2-64

Program
See also Command (C shell)

Program (Cont.)
defined, GEN 3-3, 4-71
editing with vi, GEN 3-67
executing, GEN 1-26
executing from another, PGM

1-12
maintaining with make, PGM

3-13 to 3-21
running simultaneously, GEN

2-11
running two with one command

line, GEN 2-11
saving output, GEN 2-11
setting maximum executing, SYS

5-122
stopping, GEN 2-4, 2-11

Programmer's manual
See Manual

Programming
reading list, GEN 2-16
tools for, GEN 2-14 to 2-15
translating a language, GEN 2-15

Prompt
defined, GEN 4-71

Prompt character
defined, GEN 2-4

prompt option (ex)
description, GEN 3-99

Protection mode
description, PGM 1-10

Proteon proNET ring network
controller

See vv network interface driver
Protocol name

represented by protoent structure,
SYS 3-13, 3-14E

protocol switch table
See also protosw.h file

protocols database
4.2BSD improvement, SYS 1-17

protosw .h file
4.2BSD improvement, SYS 5-5

ps command (C shell)
See also Process
4.2BSD improvement, SYS 1-8
defined, GEN 4-72
determining the process number,

GEN 2-11
displaying all programs running,

GEN 2-11
displaying unstarted background

jobs, GEN 4-48
ps command (troff)

defined, GEN 5-58

ps command (troff) (Cont.)
setting point size, GEN 5-84

ps driver
4.2BSD improvement, SYS 1-16

ps.c device driver
4.2BSD improvement, SYS 5-12

PSI variable
defined, GEN 4-12

PS2 variable
defined, GEN 4-12

Pseudo device
specifying, SYS 5-82

Pseudo terminal
creating, SYS 5-48E
description, SYS 3-24
remote login sessions and, SYS

3-24
Pseudo-font

description, GEN 5-37
restriction, GEN 5-37

psignal library
4.2BSD improvement, SYS 1-15

pstat program
4.2BSD improvement, SYS 1-20

ptx program
defined, GEN 2-13

pty driver
4.2BSD improvement, SYS 1-16

pu command (ex)
description, GEN 3-91

Publication list
indexing, GEN 5-143 to 5-155
updating, GEN 5-155 to 5-162

pup_cksum.c file
4.2BSD improvement, SYS 5-13

purchar function
output and, PGM 1-4

push directory command
See pushd command (C shell)

push directory command (C shell)
See pushd command

pushd command (C shell)
See also cd command (C shell)
See also popd command (C shell)
defined, GEN 4-70
saving name of previous directory,

GEN 4-49
without argument, GEN 4-49

put command (ex)
See pu command (ex)

putc macro
See also fflush function
defined, PG M 1-6

Index-49

pwd command (C shell)
See also dirs command (C shell)
4.2BSD improvement, SYS 1-8 .
defined, GEN 4-72
print your directory name, GEN

2-9
working directory pathname and,

GEN 4-48E
PX macro

description, GEN 5-18

Q

Q command
quitting ed, GEN 2-6

q command (DC)
descripton, GEN 2-58

q command (ed)
defined, GEN 3-34
using, GEN 3-26

q command (edit)
exiting without saving edits, GEN

3-13
using, GEN 3-8

q command (ex)
See also wq command (ex)
description, GEN 3-91

q command (me)
defined, GEN 5-42, 5-44
entering, GEN 5-25
specifying quoted text, GEN 5-38

q command (sed)
defined, GEN 3-114

Q command (vi)
defined, GEN 3-79

q flag (make)
defined, PGM 3-17

q option (nroff/troff)
defined, GEN 5-49

qsort library
4.2BSD improvement, SYS 1-15

Question mark character (C shell)
description, GEN 4-34

Question mark character (DC)
description, GEN 2-59
pattern matching and, GEN 2-8

Question mark character (ed)
context search and, GEN 3-43

quiet option (Mail)
See also noheader option
defined, GEN 2-35

Quit command (ed)
See q command (ed)

Index-50

quit command (edit)
See q command (edit)

quit command (ex)
See q command (ex)

quit command (Mail)
abbreviating, GEN 2-22
description, GEN 2-31
saving typed mail, GEN 2-22

Quit signal
defined, GEN 4-72
terminating a program, GEN 4-37

quit statement (BC)
description, GEN 2-55

quot program
4.2BSD improvement, SYS 1-20

Quota
exceeding, GEN 3-22

Quota file
comparing with allocated disk

space, SYS 2-4
description, SYS 2-5

Quota system
See Disk quota system

quota system call
4.2BSD improvement, SYS 1-12

quota.h file
4.2BSD improvement, SYS 5-5

quot&-kern.c file
contents, SYS 5-9

quota_subr .c file
contents, SYS 5-9

quota_sys.c file
contents, SYS 5-9

quota_ufs.c file
contents, SYS 5-9

quotacheck program
4.2BSD improvement, SYS 1-20

quotaon program
See also quotaoff
4.2BSD improvement, SYS 1-20

Quotation
defined, GEN 4-72
setting apart, GEN 5-25

Quotation marks (C shell)
using metacharacters in command

arguments, GEN 4-35
Quotation marks (me)

making compatible for printers
and typesetters, GEN 5-38

translating for typesetter, GEN
5-38

Quotation marks (ms)
translating for typesetter, GEN

5-19

Quotation marks (nroff)
specifying font, GEN 5-36

Quotation marks (troff)
translating, GEN 5-86

Quoted string statement (BC)
forming, GEN 2-54

R

r command (ed)
defined, GEN 3-34
using, GEN 3-27
without line address, GEN 3-49

r command (edit)
description, GEN 3-22

r command (ex)
description, GEN 3-91

r command (me)
defined, GEN 5-44
specifying roman font, GEN 5-36

R command (ms)
restoring regular font, GEN 5-8

r command (sed), GEN 3-112E
defined, GEN 3-112

R command (vi)
See also r command (vi)
defined, GEN 3-79

r command (vi)
See also R command (vi)
defind, GEN 3-81

r escape (Mail)
des~ription, GEN 2-24

r flag (cp)
file system tree and, SYS 1-5

r flag (Mail)
defined, GEN 2-36

r flag (make)
defined, PG M 3-17

r modifier (C shell)
extracting filename root, GEN

4-57E
r option (edit)

recovering files, GEN 3-23
r option (nroff/troff)

defined, GEN 5-49
r option (uucp)

defined, SYS 5-132
r option (uux)

description, SYS 5-133
RAGO disk drive

See uda driver
RASO disk drive

See uda driver

RA8l disk drive
See uda driver

Rand MH system
mail program and, SYS 1-7

random library
4.2BSD improvement, SYS 1-15

Ratfor language
See also EFL programming

language
See also M4 macro processor
C and, GEN 2-15
description, PGM 2-111 to 2-122

Raw device
description, SYS 5-20

raw routine
defined, PGM 4-85

Raw socket
See also Datagram socket
defined, SYS 3-6

rb command (me)
defined, GEN 5-44

RC command (me)
defined, GEN 5-46

re program
4.2BSD improvement, SYS 1-20

rcexpr routine
arguments, PGM 2-68

rep program
cp support and, SYS 1-8

rd command (nroff/troff)
defined, GEN 5-72

raump program
See also rmt program
4.2BSD improvement, SYS 1-18,

1-20
re command (me)

defined, GEN 5-45
Read command (ed)

See r command (ed)
read command (edit)

Seer command (edit)
read command (ex)

See r command (ex)
read function

description, PGM 1-9
Read only mode (ex)

description, GEN 3-85
read system call

4.2BSD improvement, SYS 1-12
Read-ahead

description, GEN 2-4
reacHink system call

4.2BSD improvement, SYS 1-12

Index-51

readv system call
4.2BSD improvement, SYS 1-12

record option (Mail)
defined, GEN 2-35

recover command (edit)
description, GEN 3-22

recover command (ex)
description, GEN 3-92

recv system call
4.2BSD improvement, SYS 1-12
previewing data, SYS 3-10
transferring data, SYS 3-9E

recvfrom system call
4.2BSD improvement, SYS 1-12
receiving data, SYS 3-lOE

recvmsg system call
See also sendmsg system call
4.2BSD improvement, SYS 1-12

Redirection
defined, GEN 4-72

redraw option (ex)
description, GEN 3-99

refer program
See also Refer system.if ref
output, GEN 5-152E
placing a reference in a paper,

GEN 5-150
Refer system

See also addbib utility
See also Indexing
4.2BSD improvement, SYS 1-8
description, GEN 5-133 to 5-142
formatting bibliographic citations,

GEN 2-13
Reference

formatting, GEN 5-151
overriding numbering, GEN 5-155
private file of, GEN 5-155

Reference file
defined, GEN 5-151

refresh routine
defined, PGM 4-83

Register
changing for text formatting, GEN

5-16
used by -ms

reference list, GEN 5-11
regtab table

defined, PG M 2-68
Regular expression (ex)

defined, GEN 3-96
description, GEN 3-96 to 3-97
reference list, GEN 3-96

Index-52

rehash command (C shell)
See also path variable
adding commands to directory

and, GEN 4-40
defined, GEN 4-72
required for current path, GEN

4-51
Reiser, J.F., & Henry. R.R.

Berkeley VAX/UNIX Assembler
Reference Manual, PGM 4-53
to 4-65

Reiser, J.F., & London, T.B.
regenerating system software, SYS

5-117 to 5-122
setting up UNIX/32V Vl.O, SYS

5-107 to 5-115
Relational operator

description, GEN 2-53
form, GEN 2-47

Relative pathname
See also Absolute pathname
defined, GEN 4-72

Reliably delivered message socket
(unsupported)

defined, SYS 3-6
Remainder

DC and, GEN 2-61
remap option (ex)

description, GEN 3-99
remote database

See also tip program
4.2BSD improvement, SYS 1-17

Remote login program, SYS 3-15F
Remote login server program

main loop, SYS 3-18F
pseudo terminals and, SYS 3-24

Remote system
calling, SYS 5-125

rename system call
4.2BSD improvement, SYS 1-12
description, SYS 1-35

renice program
4.2BSD improvement, SYS 1-20

reorder routine
description, PGM 2-76 to 2-77

repeat command (C shell)
defined, GEN 4-72
repeating a command, GEN 4-51

Reply command (Mail)
See also reply command (Mail)
abbreviating, GEN 2-20
answering mail, GEN 2-19
answering the sender only, GEN

2-20

Reply command (Mail) (Cont.)
definition, GEN 2-29

reply command (Mail)
See also Reply command (Mail)
description, GEN 2-32

report option (ex)
description, GEN 3-100

repquota program
4.2BSD improvement, SYS 1-20

Request (nroff)
See Command (nroff)

Reserved word
reference list, GEN 4-27

reset command
include file and, SYS 1-8

resource.h file
4.2BSD improvement, SYS 5-5

restart command (lpc)
description, PGM 4-103

restor program
See restore program

restore program
See also rrestore
4.2BSD improvement, SYS 1-18

restore server program
See also tar program

RETRN operator (C compiler)
defined, PGM 2-65

RETURN key
commands and, GEN 2-4
description, GEN 3-55
moving the cursor in vi, GEN

3-57
return statement (BC)

form of, GEN 2-46
forming, GEN 2-55

rew command (ex)
description, GEN 3-92

rewind command (ex)
See rew command (ex)

rexecd server program
4.2BSD improvement, SYS 1-20

rhosts file
description, SYS 5-49

Ritchie, D.M.
C Programming Language

Reference Manual, The, PGM
2-5 to 2-35

VO system, PGM 4-67 to 4-73
standard VO library, PGM 1-21 to

1-24
system security, SYS 4-3 to 4-5
tour through C compiler, PGM

2-63 to 2-77

Ritchie, D.M. (Cont.)
UNIX Assembler Reference

Manual, GEN 6-53 to 6-64
Ritchie, D.M., & Kernighan, B.W.

M4 macro processor, PGM 2-393
to 2-398

programming UNIX, PGM 1-3 to
1-24

Ritchie, D.M., & Thompson, K.
implementation of file system and

user command interface, GEN
1-19 to 1-34

rk.c device driver
4.2BSD improvement, SYS 5-12

RK07 disk
See va driver

rl option (uucico)
defined, SYS 5-135

rl.c device driver
4.2BSD improvement, SYS 5-12

RLll controller
See rl.c device driver

RLABEL operator (C compiler)
defined, PGM 2-65

rlogin server program
.login file and, SYS 1-7
cu program and, SYS 1-8
description, SYS 1-8

rlogind server program
4.2BSD improvement, SYS 1-20

rm command (nroff/troff)
defined, GEN 5-64

rm command (shell)
deleting files, GEN 2-7
recover command (edit) and, GEN

3-22
removing a file, GEN 3-48E

rmdir command
4.2BSD improvement, SYS 1-8

rmdir system c~ll
4.2BSD improvement, SYS 1-12

rmt program
4.2BSD improvement, SYS 1-20

rn comqiand (nroff/troff)
defined, GEN 5-64

RNAME operator (C compiler)
defined, PGM 2-65

ro command (me)
defined, GEN 5-44

roftbib program
bibliographic databases and, SYS

1-8
rogue game

4.2BSD improvement, SYS 1-17

Index-53

rogue game (Cont.)
command reference list, GEN

6-19 to 6-21
displaying top players, GEN 6-25
fighting, GEN 6-21
objects you can find, GEN 6-21
option reference list, GEN 6-24
playing, GEN 6-17 to 6-25
rooms, GEN 6-21
sample screen, GEN 6-18F
scoring, GEN 6-24
screen layout, GEN 6-18 to 6-19
screen symbol reference list, GEN

6-19
setting options, GEN 6-23

ROGUEOPTS variable
using, GEN 6-23

Roman number
setting page number, GEN 5-44
specifying for front matter, GEN

5-33
Root directory

defined
description, GEN 1-21

Root file system
block size, SYS 5-40
dump and, SYS 5-54
rebuilding, SYS 5-32
restoring, SYS 5-26

route program
4.2BSD improvement, SYS 1-20
description, SYS 5-51

routed server program
4.2BSD improvement, SYS 1-20
description, SYS 5-51

RP command (ms)
specifying cover sheet, GEN 5-5

RP06 disk
bad block forwarding support,

SYS 1-18
rr command (nroff/troff)

defined, GEN 5-66
rrestore program

See also rmt program
4.2BSD improvement, SYS 1-20

RS command (ms)
specifying indention level, GEN

5-7
rs command (nroff/troff)

defined, GEN 5-62
RS variable (awk)

defined, PGM 3-6
rsh command

See also rshd server program

Index-54

rsh server program
executing remote commands, SYS

1-8
rshd server program

4.2BSD improvement, SYS 1-20
rsp.h file

4.2BSD improvement, SYS 5-13
rt command (nroff/troff)

See also mk command
(nroff/troff); sp command
(nroff/troff)

defined, GEN 5-60
RUBOUT character

ignoring while sending mail, GEN
2-34

RUBOUT key
See DELETE key

Ruling
specifying, GEN 5-88
specifying for figure, GEN 5-45
specifying in text, GEN 5-26
with tab character, GEN 5-87E

Ruling (nroff/troff)
outside text margin, GEN 5-72

Running foot
See Page footer

Running head
See Page header

Runtime routine (C)
handling network addresses and

values, SYS 3-15T
ruptime program

See also rwhod server program
displaying status for cluster, SYS

1-8
output, SYS 3-20E

rwho program
See also rwhod server program
displaying users on clusters, SYS

1-8
rwho server program

description, SYS 3-20 to 3-22
simplified form, SYS 3-21F

rwhod server program
4.2BSD improvement, SYS 1-21

rx driver
4.2BSD improvement, SYS 1-16

rx.c device driver
4.2BSD improvement, SYS 5-12

RX02 floppy disk unit
See rx driver

rxl flag (me)
setting 12 pitch, GEN 5-39

RX211 floppy disk controller
See rx.c device driver

rxformat program
4.2BSD improvement, SYS 1-21

s
s command (DC)

affecting register content, GEN
2-62

descripton, GEN 2-58
destructive, GEN 2-63
programming DC, GEN 2-62

s command (ed)
ampersand character and, GEN

3-34
breaking lines, GEN 3-42
changing all occurrences, GEN

3-30
changing every occurrence, GEN

3-38E
defined, GEN 3-34
deleting text, GEN 3-30
delimiters, GEN 3-30
description, GEN 3-37 to 3-38
g command and, GEN 3-46E
g command restriction and, GEN

3-47
rearranging a line, GEN 3-43
undoing the last substitution,

GEN 3-38
using, GEN 3-29

s command (edit)
replacing text, GEN 3-11
uppercase letters and, GEN 3-19

s command (ex)
See also & command (ex)
description, GEN 3-92

S command (vi)
defined, GEN 3-79

s command (vi)
defined, GEN 3-81

s escape (Mail)
description, GEN 2-25

s flag (In)
creating symbolic links, SYS 1-7

s flag (Mail)
defined, GEN 2-36

s flag (make)
defined, PGM 3-17

s flag (mkey)
ignoring labels, GEN 5-147

s macro (me)
defined, GEN 5-43

s option (nroff/troff)
defined, GEN 5-49

s option (uucico)
defined, SYS 5-135

s option (uucp)
defined, SYS 5-132

s option (uulog)
defined, SYS 5-137

sail game
4.2BSD improvement, SYS 1-17

save command (Mail)
See also write command (Mail)
abbreviating, GEN 2-32
system mailbox and, GEN 2-23

SAVE operator (C compiler)
defined, PG M 2-65

savehist variable
saving history across terminal

sessions, SYS 1-5
savetty routine

defined, PG M 4-88
sc command (me)

defined, GEN 5-47
Scale

defined, GEN 2-45, 2-51
increasing value, GEN 2-45E
limits, GEN 2-45
printing current value, GEN

2-45E
rules for, GEN 2-45

Scale factor
defined, GEN 2-59

Scale indicator
attaching to numbers for troff,

GEN 5-92
Scale register

description, GEN 2-60
Scaling

BC language and, GEN 2-45
scanf function

See also fscanf function
input and, PGM 1-4

scanw routine
defined, PGM 4-85

secs
introduction, PGM 3-23 to 3-37

Schmidt, E., & Lesk, M.E.
Lex program generator, PGM

3-113 to 3-125
Scratch character

creating a scratch file, GEN 4-31
Scratch file

creating, GEN 4-31
defined, GEN 4-72

Index-55

Scratch file (Cont.)
Fortran a.nd, PGM 2-83

Screen (Screen package)
defined, PGM 4-75
updating, PGM 4-92E
updating, PGM 4-76 to 4-77

Screen (vi)
breaking lines at right margin,

GEN 3-67
controlling window size, GEN

3-65
refreshing, GEN 3-64

Screen editor
invoking from Mail, GEN 2-24

screen option (Mail)
defined, GEN 2-35

Screen package
description, PGM 4-75 to 4-98
input functions, PGM 4-78

reference list, PGM 4-84 to 4-85
miscellaneous functions

reference list, PGM 4-85 to 4-88
output functions, PGM 4-78

reference list, PGM 4-80 to 4-84
prerequisites, PGM 4-75
starting, PGM 4-77
terminal information and, PGM

4-79
Script

See also Script file
script

4.2BSD improvement, SYS 1-8
Script file, GEN 4-55E

See also Login shell
See also make command (C shell)
break statement and, GEN 4-58
commands useful to writers of,

GEN 4-53
comments in, GEN 4-59
creating, GEN 2-10, 3-52E
defined, GEN 3-51, 4-53, 4-72
interrupts and, GEN 4-59
invoking, GEN 4-53
making executable, GEN 4-53
preventing variable substitution

by the shell, GEN 4-59
shell input and, GEN 4-58

Script.out file
creating, GEN 2-11

scroll routine
defined, PG M 4-88

Scrolling
versus paging, GEN 3-56

lndex-56

sc:rollok routine
defined, PGM 4-87

sdb symbolic debugger
See also dbx symbolic debugger
accessing symbol information,

SYS 1-5
locating, SYS 1-8
support, SYS 1-6

search command (edit)
See Context search (edit)

Search path
See PATH variable

Section
editing with vi, GEN 3-61
indenting, GEN 5-32E
vi definition, GEN 3-62

Section head
coordinating numbers with

chapter numbers, GEN 5-41
entering in text file, GEN 5-6
indenting, GEN 5-7E
numbering automatically, GEN

5-31 to 5-32, 5-40 to 5-41
numbering automatically with a

macro, GEN 5-75E
specifying beginning number,

GEN 5-32E
specifying unnumbered, GEN

5-32E
text formatting commands for,

GEN 5-14E
sections option (ex)

description, GEN 3-100
Security

dial-up network and, SYS 5-125
UNIX and, SYS 4-3 to 4-5
uucp system and, SYS 5-138

sed stream editor
address types, GEN 3-107 to

3-108
command line format, GEN

3-105E
defined, GEN 2-13, 3-52
description, GEN 3-105 to 3-114
ed and, GEN 3-105
functions, GEN 3-108 to 3-114
operation, GEN 3-1051 to 3-106
taking commands from a file,

GEN 3-52E
uses, GEN 3-105

seek function
See also lseek
description, PGM 1-12

select system call
4.2BSD improvement, SYS 1-12
multiplexing I/0 requests, SYS

3-llE
Semicolon character (ed)

compared with comma, GEN 3-45
setting dot, GEN 3-45 to 3-46

send system call
4.2BSD improvement, SYS 1-12
transferring data, SYS 3-9E

sendbug program
See also bugfiler program
submitting 4.2BSD bug reports,

SYS 1-8
sendmail

installation and operation guide,
SYS 2-27 to 2-60

Sendmail Installation and Operation
Guide, SYS 2-27 to 2-60

See also sendmail
sendmail option (Mail)

defined, GEN 2-35
sendmail program

See also mailaddr
See also sendmail option
See also syslog server program
4.2BSD improvement, SYS 1-4,

1-21
implementing aliases, GEN 2-21

sendmsg system call
See also recvmsg system call
4.2BSD improvement, SYS 1-12

sendto primitive
sending data, SYS 3-lOE

sendto system call
4.2BSD improvement, SYS 1-12

Sentence
editing with vi, GEN 3-61
vi definition, GEN 3-61

Sequenced packet socket
(unsupported)

defined, SYS 3-6
Server process

See also Client process
description, SYS 3-17

Service name
represented by the servent

structure, SYS 3-14
Service process

See also Service server
Service server

See also Xerox Courier protocol
description, SYS 3-17

services database
4.2BSD improvement, SYS 1-17

set command (C shell)
C shell variables and, GEN 4-40E
defined, GEN 4-72

set command (ex)
description, GEN 3-92

set command (Mail)
See also unset command (Mail)
forms of, GEN 2-20
options and, GEN 2-32
restriction, GEN 2-21

Set terminal options command
See stty command (C shell)

Set-GID bit
description, SYS 4-4
security and, SYS 4-5

Set-UID bit
description, SYS 4-4
security and, SYS 4-5

setbuf library routine
See also setbuffer library routine

setbuffer library routine
See also setbuf library routine
4.2BSD improvement, SYS 1-14

setenv command (C shell)
See also printenv command (C

shell)
defined, GEN 4-73
setting variables in environment,

GEN 4-51E
setgid system call

See setregid system call
Sethi-Ullman algorithm

C compiler and, PGM 2-69 to
2-70

setifaddr program
4.2BSD improvement, SYS 1-21

setlinebuf library routine
4.2BSD improvement, SYS 1-14

setquota system call
4.2BSD improvement, SYS 1-12

SETREG operator (C compiler)
defined, PGM 2-65

setregid system call
4.2BSD improvement, SYS 1-12

setreuid system call
4.2BSD improvement, SYS 1-12

setterm routine
defined, PGM 4-88

setuid system call
See setreuid system call

SFCON operator (C compiler)
defined, PGM 2-66

lndex-57

SG command (ms)
specifying signature line, GEN 5-9

sh command (ex)
description, GEN 3-92

sh command (me)
See also uh command (me)
defined, GEN 5-40
numbering section heads, GEN

5-31 to 5-32
SH command (ms)

specifying unnumbered section
head, GEN 5-6

sh program
See Bourne shell

Shared lock
multiple processes and, SYS 1-3

Sharp character
printing, GEN 3-39

Sharp character (#)
entering in text, GEN 2-4
erasing last character typed, GEN

2-4
shell comments and, GEN 4-57

Shell
See also C shell
See Bourne shell
defined, GEN 4-73
description, GEN 1-27 to 1-31
implementing, GEN 1-29

shell command (ex)
See sh command (ex)

shell command (Mail)
See also SHELL option
description, GEN 2-32
executing Shell command from

Mail, GEN 2-22
shell option (ex)

description, GEN 3-100
SHELL option· (Mail)

defined, GEN 2-33
setting, GEN 2-32
specifying, GEN 2-20

Shell procedure
debugging, GEN 4-15
defined, GEN 4-7
description, GEN 4-7 to 4-16

Shell program
definition, GEN 2-11
description, GEN 2-11 to 2-12
escaping to from Mail, GEN 2-25
profile file and, GEN 2-12
programming aids, GEN 2-14
as programming language, GEN

2-14

Index-58

Shell program (Cont.)
reading a file for commands, GEN

2-12
specifying for Mail, GEN 2-20

Shell script
See Script file

shiftwidth option (ex)
description, GEN 3-100

Shoens, K., & Leres, C.
Mail Reference Manual, GEN

2-17 to 2-41
showmatch option (ex)

description, GEN 3-100
showmatch option (vi)

lisp and, GEN 3-68
shutdown system call

4.2BSD improvement, SYS 1-12
data pending and, SYS 3-lOE

sigblock system call
4.2BSD improvement, SYS 1-12

SIGCHLD signal
constructing server processes, SYS

3-27
reaping child processes, SYS

3-28E
SIGIO signal

4.2BSD improvement, SYS 1-13,
5-7

interrupt-drive I/0 and, SYS 3-27
Signal

defined, GEN 4-73
description, PGM 1-17 to 1-20
handling methods, GEN 4-22

Signal facilities
4.2BSD improvement, SYS 1-3

signal function
descripton, PGM 1-17 to 1-20

signal.h file
4.2BSD improvement, SYS 5-7
signals and, PGM 1-17

Signataure line
specifying, GEN 5-9

sigpause system call
4.2BSD improvement, SYS 1-12

SIGPROF signal
4.2BSD improvem~nt, SYS 1-13,

5-7
sigsetmask system ¢all

4.2BSD improvement, SYS 1-12
sigstack system call

4.2BSD improvement, SYS 1-12
sigsys system call

See signal facilities

SIGTINT signal
See SIGIO signal

SIGURG signal
4.2BSD improvement, SYS 1-13,

5-7
out of band data and, SYS 3-27

sigvec system call
4.2BSD improvement, SYS 1-13

SIGVTALRM signal
4.2BSD improvement, SYS 1-13,

5-7
sinclude command (M4)

description, PGM 2-396
SINCR parameter

description, SYS 5-121
Singlespacing

specifying, GEN 5-23
size keyword (EQN)

changing point size, GEN 5-100
sk command (me)

defined, GEN 5-44
Sklower, K.L., & others

Franz Lisp Manual, The, PGM
2-211 to 2-358

Slash
See Backslash

Slow terminal
editing on, GEN 3-64
vi and, GEN 3-74

slowopen option (ex)
description, GEN 3-100

SM command (ms)
decreasing type size, GEN 5-8

SMAPSIZ parameter
description, SYS 5-122

SMTP
See DARPA Simple Mail Transfer

Protocol
SNAME operator (C compiler)

defined, PG M 2-65
so command (ex)

See so command (ex)
description, GEN 3-92

so command (nroff/troff)
defined, GEN 5-72
interpolating file name, GEN 5-81

SO_DEBUG option
network and, SYS 5-57

Socket
binding, SYS 3-7
creating, SYS 3-7
description, SYS 3-6 to 3-11
discarding, SYS 3-10, 3-lOE
naming, SYS 3-6

Socket (Cont.)
optimal size, SYS 1-28
process group and, SYS 3-23
types of, SYS 3-6

Socket name
binding to UNIX domain socket,

SYS 3-8E
description, SYS 3-7

Socket system call
creating a socket, SYS 3-7E

socket system call
4.2BSD improvement, SYS 1-13
failure, SYS 3-7

socket.h file
4.2BSD improvement, SYS 5-5

socketpair system call
4.2BSD improvement, SYS 1-13

socketvar .h file
4.2BSD improvement, SYS 5-5

Soft limit
defined, SYS 2-3

Software maintenance
using network for, SYS 5-127

SOH
See Leader character (nroff/troff)

sort program
defined, GEN 2-13, 4-73
specifying numeric sort, GEN

4-32E
sortbib command

sorting bibliographic databases
and, SYS 1-9

Source Code Control System
See SCCS

source command
description, GEN 2-32

source command (C shell)
defined, GEN 4-73
effecting changes to .chshrc

immediately, GEN 4-51
Source file

locating
reference list, SYS 5-117

Source management system
defined, PGM 3-23

sp command (me)
See also bl command (me)
entering, GEN 5-23

sp command (nroff/troff)
defined, GEN 5-62
setting, GEN 5-84

Space character
edit and, GEN 3-7

Index-59

Special character
See Metacharacters
searching, GEN 3-21

Spell
defined, GEN 2-13
detecting spelling errors, GEN

2-13
sprintf function

See also fprintf function
description, PGM 1-8

sprintf function (awk)
defined, PGM 3-8

sptab table
defined, PGM 2-68

SQ FILE
description, SYS 5-142

sqrt function (awk)
defined, PGM 3-8

sqrt keyword, GEN 2-44E
defined, GEN 2-51

sqrt operator (EQN)
creating square roots, GEN 5-100

Square root
creating with EQN, GEN 5-100
DC and, GEN 2-61

Square root (BC), GEN 2-44
ss command (troff)

defined, GEN 5-58
sscanf function

description, PGM 1-8
SSIZE parameter

description, SYS 5-121
SSPACE operator (C compiler)

defined, PGM 2-64
Stack command (DC)

description, GEN 2-62
Standalone 1/0 library

4.2BSD improvement, SYS 5-15
Standard error output tile

description, PGM 1-6
Standard 1/0 library

call formats, PGM 1-21 to 1-24
defined, PGM 1-5
description, PGM 1-5 to 1-8, 1-21

to 1-24
Standard input

See Input
typing form letters or text with

nroff/troff, GEN 5-72
Standard input file

description, PGM 1-6
Standard output

See Output

Index-60

Standard output file
description, PGM 1-6

standout routine
defined, PGM 4-84

Star
See Asterisk character

start command (lpc)
description, PGM 4-103

Startup file
running, GEN 2-12

stat system call
4.2BSD improvement, SYS 1-13

stat.h file
4.2BSD improvement, SYS 5-7

Statement (as)
description, GEN 6-55 to 6-56

Statement (BC)
See also specific statements
description, GEN 2-54 to 2-55
typing several on one line, GEN

2-48
Status

defined, GEN 4-73
status command (mt)

showing state of tape drive, SYS
1-7

stderr file pointer
description, PGM 1-6
error handling and, PGM 1-7

stdin file pointer
description, PGM 1-6

stdio library
4.2BSD improvement, SYS 1-14

stdout file pointer
description, PGM 1-6

stop command (C shell)
background jobs and, GEN 4-46E
defined, GEN 4-73

stop command (ex)
Berkeley TIY driver and, GEN

3-102
description, GEN 3-93

stop command (lpc)
description, PGM 4-103

Stopped message
suspending jobs and, GEN 4-46

Storage class
description, GEN 2-53

store command (DC)
Sees command (DC)

Stream socket
See also Datagram socket
creating in Internet domain, SYS

3-7E

Stream socket (Cont.)
defined, SYS 3-6

String (C shell)
defined, GEN 4-73

String (nroff/troff)
defined, GEN 5-62
description, GEN 5-62 to 5-65

String statement (as)
defined, GEN 6-56

strip
4.2BSD improvement, SYS 1-9

STST file
description, SYS 5-143

stterm routine
variables set by, PGM 4-89T to

4-90T
stty command

DEC standard values and, SYS
1-9

stty command (C shell)
background jobs and, GEN 4-48
defined, GEN 4-73

Style program
See also Diction program
description, GEN 5-163 to 5-177

SU
4.2BSD improvement and, SYS

1-9
sub keyword (EQN)

specifying subscripts, GEN 5-99
subr_mcount.c file

contents, SYS 5-9
subr_prf.c file

contents, SYS 5-9
subr_rmap.c file

contents, SYS 5-9
subr_xxx.c tile

contents, SYS 5-9
Subscript

specifying, GEN 5-47
Subscript (EQN)

specifying, GEN 5-99
Subscript (nroft/troff)

specifying, GEN 5-68
Subscript (troff)

specifying, GEN 5-87E
Subscripted variable

defined, GEN 2-46 to 2-4 7
Substitute command

See s command
substitute command (edit)

Sees command (edit)
substitute command (ex)

See s command (ex)

substitute command (sed), GEN
3-lllE

description, GEN 3-110 to 3-111
special characters and, GEN

3-110
Substitution

See also Expansion
defined, GEN 4-73

substr command (M4)
description, PGM 2-397

substr function (awk)
defined, PG M 3-8

Subtraction
DC and, GEN 2-60

subwin routine
defined, PGM 4-87

Suffix list (make), PGM 3-17
description, PGM 3-21

Summary information
contents, SYS 2-8

sup keyword (EQN)
specifying superscripts, GEN 5-99

Super user
security and, SYS 4-4

Super-block
description, SYS 2-8

Superscript
specifying, GEN 5-47

Superscript (EQN)
specifying, GEN 5-99

Superscript (nroff/troff)
specifying, GEN 5-68

Superscript (troff)
specifying, GEN 5-87E

Suspended job
defined., GEN 4-73
description, GEN 4-36

sv command (me)
specifying blank lines, GEN 5-44

sv command (nroff/troff)
defined, GEN 5-62

Swap space configuration
4.2BSD improvement, SYS 1-4

swapgeneric.c file
4.2BSD improvement, SYS 5-14

swapon system call
4.2BSD improvement, SYS 1-13

SWIT operator (C compiler)
defined, PGM 2-65

switch command (C shell)
defined, GEN 4-73
exiting from, GEN 4-58
forms of, GEN 4-58

Index-61

sx command (me)
defined, GEN 5-41

Symbolic link
description, SYS 1-3, 1-34

Symbolic link data block
defined, SYS 2-12

SYMDEF operator (C compiler)
defined, PGM 2-64

symlink system call
4.2BSD improvement, SYS 1-13

SymmetriC protocol
defined, SYS 3-17

sys directory
file prefixes, SYS 5-8T

sys_errno
printing, PGM 1-12

sys_generic.c file
contents, SYS 5-9

sys_inode.c file
contents, SYS 5-9

sys_machdep.c' file
4.2BSD improvement, SYS 5-13

sys_process.c file
contents, SYS 5-9

sys_socket.c file
contents, SYS 5-9

syscmd command (M4)
description, PGM 2-396

sysline program
maintaining terminal status, SYS

1-9
syslog server program

4.2BSD improvement, SYS 1-21
System function

description, PGM 1-12
System identifier

defined, SYS 5-74
System mailbox file

commands for folders and, GEN
2-23

hold option and, GEN 2-32
incoming mail and, GEN 2-17
mbox and, GEN 2-20
storing mail, GEN 2-20, 2-21

System management
best reference, SYS

System proeess
defined, PGM 4-5

System time
4.2BSD improvement, SYS 1-4

System-wide file
defined, GEN 2-21

Systems Industries 9700 tape drive
See ut.c device driver

Index-62

systm.h file
See also kernel.h file
4.2BSD improvement, SYS 5-7

sz command (me)
changing point size, GEN 5-38W
defined, GEN 5-44

T

t command (ed)
compared with m command, GEN

3-51
creating a series of variable lines,

GEN 3-51
t command (ex)

See copy command (ex)
t command (sed)

defined, GEN 3-114
T command (vi)

defined, GEN 3-79
t command (vi)

defined, GEN 3-81
t escape (Mail)

description, GEN 2-25
T nag (Mail)

defined, GEN 2-36
t nag (make)

defined, PGM 3-17
T option (hunt)

defined, GEN 5-149
t option (hunt)

defined, GEN 5-149
T option (nroff)

defined, GEN 5-50
t option (troff)

defined, GEN 5-50
ta command (nroff/troff)

defined, GEN 5-66
Tab

resetting, GEN 5-45
setting multiple, GEN 5-87

Tab character
printing, GEN 3-37
terminals without, GEN 2:..4

Tab character (nroff/troff)
setting, GEN 5-66
uninterpreted, GEN 5-66

Tab replacement character
See tc command (troff), GEN

5-87
Tab stop

setting, GEN 3-61n
vi and, GEN 3-61

Table
breaking across pages, GEN 5-10
continuing, GEN 5-35
entering with -ms, GEN 5-8
floating, GEN 5-45
formatting, GEN 2-13, 5-33
keeping on one page, GEN 5-42
text formatting commands for,

GEN 5-16E
Table of contents

entering, GEN 5-28
formatting, GEN 5-34F
producing, GEN 5-18, 5-18E
specifying multiple, GEN 5-29
specifying section titles for, GEN

5-41
specifying without leadering, GEN

5-29
Tables

formatting, GEN 5-115 to 5-131
tabstop option (ex)

description, GEN 3-100
Tag

defined, GEN 5-145
tag command (ex)

description, GEN 3-93
Tag file

defined, GEN 5-145
taglength option (ex)

description, GEN 3-100
tags option (ex)

3.5 changes, GEN 3-103
description, GEN 3-100

tail
4.2BSD improvement, SYS I-9

talk program
description, SYS 1-9

tar program
4.2BSD ilmprovement, SYS 1-9,

1-17
tbl program

description, GEN 5-33, 5-115 to
5-131

formatting tables, GEN 2-13
tc command (nroff/troff)

defined, GEN 5-66
tc ~ommand (troff)

replacing tab character, GEN 5-87
TCP program

See trpt program
teachgammon program

4.2BSD improvement, SYS 1-17

Technical memorandum
text formatting commands for,

GEN 5-13E
Tektronix 4025 terminal

command character for, GEN 3-76
Tektronix 4027 terminal

command character for, GEN 3-76
telnet program

ARPA Telnet protocol and, SYS
1-9

telnetd server program
.login file and, SYS 1-7
4.2BSD improvement, SYS 1-21

terni option (ex)
description, GEN 3-101

Terminal
See also Hardcopy terminal
See also Pseudo terminal
See also Screen (Screen package)
See also Screen package
See also Slow terminal
See also Uppercase terminal
configuring, SYS 5-42
programs changing mode of, GEN

4-48
replacing with a file, GEN 2-10
specifying output type with nroff,

GEN 5-50
specifying standard output with

troff, GEN 5-50
specifying type, GEN 3-54E
strange behavior, GEN 2-4
supported

reference list, GEN 2-3
switch settings, GEN 2-3
type codes, GEN 3-53T
without tabs, GEN 2-4

Terminal screen
defined, PGM 4-75

Termination
defined, GEN 4-73

terse option (ex)
description, GEN 3-101

test command
Bourne shell and, GEN 4-12

Text editor
See ed editor
defined, GEN 3-3, 3-25
See also Edit editor, GEN 3-3

Text Formatting
See also nroff/troff text processor

Text input mode (ex)
defined, GEN 3-85

Index-63

Text segment (as)
description, GEN 6-54

text statement
defined, GEN 6-59

tftpd server program
4.2BSD improvement, SYS 1-21

TH command (me)
continuing a table, GEN 5-35E

th command (me)
defined, GEN 5-45
formatting a thesis, GEN 5-33

then command (C shell)
See also else command (C shell)
See also if/endif commands (C

shell)
defined, GEN 4-73

Thesis
formatting, GEN 5"-18, 5-33, 5-45
text formatting commands for,

GEN 5-13E
Thompson, K.

UNIX implementation, PGM 4-5
to 4-14

Thompson, K., & Morris, R.
password system, SYS 4-7 to 4-12

Thompson, K., & Ritclile, D.M.
implementatibn bf file system and

user command interface, GEN
1-19 to 1-34

ti command (:ni.e)
entering, GEN 5-24

ti command (nroff/troff)
defined, GEN 5-62
ems and, GEN 5-86

Tilde character (C shell)
accessing files from other

directories, GEN 4-:14
Tilde character (me)

See Metacharacters
Tilde escape (Mail)

defined, GEN 2-24
description, GEN 2-24 to 2-26
lines beginning with, GEN 2-26
printing summary of, GEN 2-26
reference list, GEN 2-40T

time command (C shell}
defined, GEN 4-7 4 .
tiniing a command, dEN 4-52E

time.h file
4.2BSD improvement, SYS 5-7

timeout option (ex)
description, GEN 3-102

TIMEZONE parameter
description, SYS 5-122

Index-64

timezone pkrameter (conflg)
defined, SYS 5-79

tip program
cu program as front end, SYS 1-5
description, SYS 1-4, 1-9

Title page
formatting informal, GEN 5-46
specifying, GEN 5-32, 5-45

TL command (ms)
AE command and, GEN 5-6

ti command (nroff/troff)
defined, GEN 5-70

ti command (troff)
printing page numbers, GEN

5-91E
tm command (nroff/troff)

d.~fined, GEN 5-73
TM file

description, SYS 5-142
TM niacro

description, QEN 5-18
tm.c device driver

4.2BSD imprdvement, SYS 5-12
to keyword (EQN), GEN 5-lOOE
Token

defined, GSN ~-'-50
top command (Mail)

See also toplines option
abbreviating, GEN 2-32
description, GEN 2-32

toplines option (Mail)
defined, GEN 2-35
setting, GEN 2-32E

topq command (lpc)
description, PGM 4-103

touchwin routine
defined, PGM 4-87

Toy, M.C., & Arnold, K.C.R.C.
guide to the dungeons of doom,

GEN 6-17 to 6-25
tp command (me)

defined, GEN 5-45
specifying a title page, GEN 5-32
specifying title page, GEN 5-33E

tr conimand (nroff/troff)
defined, GEN 2-13, 5-67
using, GEN 2-13E

transfer command·
See t command (ed)

translit command (M4)
description, PGM 2-397

Transparent thtoughput (nroff/troff)
specifying, GEN 5-67

Trap
description, GEN 1-31

trap command (Bourne shell)
fault handling, GEN 4-21 to 4-23

trap.c file
4.2BSD improvement, SYS 5-14

trek game
4.2BSD improvement, SYS 1-17

troff text processor
See also EQN program
See also ms macro package
See also nroff text processor
See also nroff/troff text processor
See also tbl program
defined, GEN 2-12, 5-83
defining macros, GEN 5-89 to

5-90
defining strings, GEN 5-88, 5-89
device resolution and, GEN 5-56
drawing horizontal and vertical

lines of characters, GEN 5-88
entering arithmetic expressions,

GEN 5-92
entering commands, GEN 5-83
environments, GEN 5-94
formatting a document with -ms,

GEN 2-12
indenting lines, GEN 5-86
invoking, GEN 5-49
moving characters up and down,

GEN 5-87
moving text backwards on a line,

GEN 5-87
setting point sizes, GEN 5-84
setting tabs, GEN 5-86
setting vertical spacing, GEN 5-84
specifying cut mark, GEN 5-74E
specifying fonts, GEN 5-85
specifying fonts on the typesetter,

GEN 5-86
specifying metacharacters, GEN

5-86
specifying page heading, GEN

5-90
specifying unpaddable characters,

GEN 5-88
stopping phototypesetter to reload,

GEN 5-49
tutorial, GEN 5-83 to 5-96

trpt program
4.2BSD improvement, SYS 1-21

truncate system call
4.2BSD improvement, SYS 1-13

TS command (me)
continuing tables, GEN 5-35
defined, GEN 5-45
formatting tables, GEN 5-35

ts driver
4.2BSD improvement, SYS 1-16

ts.c device driver
4.2BSD improvement, SYS 5-13

tset command (C shell)
defined, GEN 4-7 4
using, GEN 4-30E

tstp routine
defined, PGM 4-88

tty
See also ttydev .h file
handling, SYS 5-6

tty character
See also ttychars.h file
handling, SYS 5-5

tty command (C shell)
defined, GEN 4-74

tty.c file
4.2BSD improvement, SYS 5-9

tty.h file
4.2BSD improvement, SYS 5-7

tty_bk.c file
obsolete, SYS 5-9

tty_conf.c file
contents, SYS 5-9

tty_pty.c file
4.2BSD improvement, SYS 5-9

tty_subr.c file
contents, SYS 5-9

tty_tb.c file
contents, SYS 5-9

tty_tty.c file
contents, SYS 5-9

ttychars.h file
4.2BSD improvement, SYS 5-5

ttydev .h file
4.2BSD improvement, SYS 5-6

tu driver
4.2BSD improvement, SYS 1-16

tu.c file
4.2BSD improvement, SYS 5-14

TU58 cartridge tape cassette
See uu driver
See uu.c device driver

TU80 tape drive
See ts driver

tunefs program
4.2BSD improvement, SYS 1-21

lndex-65

Tuthill, B.
-ms revised version, GEN 5-17 to

5-19
using refer, GEN 5-133 to 5-142

Twinkle program
description, PGM 4-92E
motion optimization and, PGM

4-97E
Two-column output

See Column
type command (Mail)

See print command (Mail)
abbreviating, GEN 2-18
description, GEN 2-32
reading mail and, GEN 2-18 to

2-19
Type-number (refer)

reference list, GEN 5-152
Typesetting Mathematics - User's

Guide, GEN 5-105 to 5-114
Typing

correcting mistakes, GEN 2-4
Typo

defined, GEN 2-13
detecting spelling errors, GEN

2-13

u
u command (ed)

using, GEN 3-38
u command (edit)

See also At sign
See also CTRL-H
description, GEN 3-16
recovering files, GEN 3-23

u command (ex)
description, GEN 3-93

u command (me)
defined, GEN 5-44

u command (troff)
specifying superscripts and

subscripts, GEN 5-87
U command (vi)

defined, GEN 3-79
u command (vi)

defined, GEN 3-81
u ftag (Mail)

defined, GEN 2-36
u option (uulog)

defined, SYS 5-137
uba.c device driver

4.2BSD improvement, SYS 5-13

lndex-66

uba_ctrl structure
description, SYS 5-93

uba_device structure
description, SYS 5-94

uba_driver structure
description, SYS 5-90

ud_addr routine
description, SYS 5-93

ud_attach routine
description, SYS 5-92

uLdgo routine
description, SYS 5-93

uLdinfo routine
description, SYS 5-93

uLdname routine
description, SYS 5-93

uLminfo routine
description, SYS 5-93

uLmname routine
description, SYS 5-93

uLprobe routine
description, SYS 5-91

uLslave routine
description, SYS 5-91

uL.xclu routine
description, SYS 5-93

uda driver
4.2BSD improvement, SYS 1-16

uda.c device driver
4.2BSD improvement, SYS 5-13

uf command (nroff/troff)
defined, GEN 5-67

ufs_alloc.c tile
contents, SYS 5-9

ufs_bio.c tile
contents, SYS 5-10

ufs_bmap.c tile
contents, SYS 5-10

ufs_dsort.c tile
contents, SYS 5-10

ufs_fio.c tile
contents, SYS 5-10

ufs_inode.c tile
contents, SYS 5-10

ufs___machdep.c tile
4.2BSD improvement, SYS 5-13

ufs___mount.c tile
contents, SYS 5-10

ufs__nami.c tile
contents, SYS 5-10

ufs_subr .c tile
contents, SYS 5-10

ufs_syscalls.c tile
contents, SYS 5-10

ufs_tables.c tile
contents, SYS 5-10

ufs_xxx.c tile
contents, SYS 5-10

uh command (me)
defined, GEN 5-41
specifying unnumbered section

heads, GEN 5-32E
uLaddr routine

description, SYS 5-95
uLalive routine

description, SYS 5-95
uLctlr routine

description, SYS 5-94
uLdk routine

description, SYS 5-95
uLdriver routine

description, SYS 5-94
uL..flags routine

description, SYS 5-95
uLhd routine

description, SYS 5-95
uLintr routine

description, SYS 5-95
uLmi routine

description, SYS 5-95
uLphysaddr routine

description, SYS 5-95
uLslave routine

description, SYS 5-94
uLtype routine

d~scription, SYS 5-95
uLubanum routine

description, SYS 5-94
uLunit routine

description, SYS 5-94
UID

description, GEN 1-22, SYS 4-4
uio.h tile

4.2BSD improvement, SYS 5-6
uipc_domain.c tile

contents, SYS 5-10
uipc_mbuf .c file

contents, SYS 5-10
uipc_pipe.c tile

contents, SYS 5-10
uipc_proto.c file

contents, SYS 5-10
uipc_socket.c file

contents, SYS 5-10
uipc_socket2.c tile

contents, SYS 5-10
uipc_syscalls.~ file

contents, SYS 5~10

uipc_usrreq.c file
contents, SYS 5-10

ul command
4.2BSD improvement, SYS 1-9

ul command (me)
See also u command (me)
entering, GEN 5-25
troff and, GEN 5-36

UL command (ms)
underlining a word, GEN 5-8

ul command (nroff/troff)
defined, GEN 5-67

ul command (troff)
specifying italic lines, GEN 5-86

ULTRIX-32
See also UNIX

ULTRIX-32 Operating System
getting started, GEN 2-1 to 2-64

UJJL_cmd routine
description, SYS 5-94

~ctrl routine
description, SYS 5-94

UJJL_driver routine
description, SYS 5-94
u~d routine

description, SYS 5-94
u~ntr routine

description, SYS 5-94
UJJL_tab routine

description, SYS 5-94
UJJL_ubinfo routine

description, SYS 5-94
Umlat

See Metacharacters
un network interface driver

4.2BSD improvement, SYS 1-16
un.h file

4.2BSD improvement, SYS 5-6
una command (ex)

See also abcommand (ex)
description, GEN 3-93

unabbreviate command (ex)
See una command (ex)

unalias command (C shell)
See also alias command (C shell)
defined, GEN 4-7 4

Unary operator
defined, GEN 2-52

Unary operator (C compiler)
description, PGM 2-66

unctrl routine
defined, PG M 4-87

undelete command (Mail)
See also delete command (Mail)

Index-67

undelete command (Mail) (Cont.)
abbreviating, GEN 2-33
description, GEN 2-33

Underlining
See also Italic
nroff and, GEN 5-66
on the typesetter, GEN 5-8
specifying, GEN 5-8, 5-25
technique for, GEN 3-42

Undo command
See u command

undo command (edit)
See u command (edit)

undo command (ex)
See u command (ex)

Ungermann-Bass network interface
unit

See un network interface driver
ungetc function

description, PGM 1-8
UNIBUS

device naming, SYS 5-20
UNIBUS device driver

support routines, SYS 5-95
univec.c file

installing device driver and, SYS
5-119

UNIX Assembler Reference Manual,
GEN 6-53 to 6-64

See also as assembler
UNIX Operating System

See also 4.2BSD
See also ULTRIX-32
See also VAX UNIX system
bootstrapping and 4.2BSD, SYS

5-15
building process, SYS 5-76 to

5-78
building with config, SYS 5-73 to

5-105
changes in 4.2BSD, SYS 1-3 to

1-21
computer-aided instruction for,

GEN 6-3 to 6-16
crashing, SYS 4-3
defined, GEN 3-3
design considerations, GEN 1-31
device naming, SYS 5-19
distinguishing block and raw

devices, SYS 5-20
for beginners, GEN 2-3 to 2-16
getting started, GEN 6-15 to 6-16
hardware environment, GEN 1-20
implementation, PGM 4-5 to 4-14

Index-68

UNIX Operating System (Cont.)
introduction, GEN 1-19 to 1-20
managing

See SYS
other operating systems and,

PGM 4-13
programming, PGM 1-3 to 1-24
reading list, GEN 2-15
software environment, GEN 1-20

UNIX Programmer's Manual
accessing on line, GEN 2-5

UNIX/32V Operating System
hardware requirements, GEN 1-4
highlights, GEN 1-3 to 1-18
recreating, SYS 5-119
regenerating system software, SYS

5-117 to 5-122
setting up Vl.O, SYS 5-107 to

5-115
tuning, SYS 5-121 to 5-122

UNIX/32V Programmer's Manual
online, GEN 1-11

unlink function
description, PGM 1-11

unlink system call
See mkdir command

unmap command (ex)
See also map command (ex)
description, GEN 3-93

unoptim routine (C shell)
See also optim routine (C shell)
description, PGM 2-67 to 2-68

Unpaddable space character
(nroff/troff)

defined, GEN 5-60, 5-88
specifying for digits, GEN 5-88
specifying for spaces, GEN 5-88

unpcb.h file
4.2BSD improvement, SYS 5-6

unset command (C shell)
defined, GEN 4-74

unset command (Mail)
See also set command (Mail)
description, GEN 2-33

until statement (C shell)
See also while statement (C shell)
description, GEN 4-13

up driver
4.2BSD improvement, SYS 1-16

up.c device driver
4.2BSD improvement, SYS 5-13

Uppercase terminal
vi and

User ID
See UID

User Identification Number
See um

User identification number
See um

User process
defined, PGM 4-5

user.h file
4.2BSD improvement, SYS 5-7

USERFILE
defined, SYS 5-140

USR directory
block size, SYS 5-40
description, GEN 2-9
rebuilding, SYS 5-32
setting up, SYS 5-28

ut.c device driver
4.2BSD improvement, SYS 5-12

utime system call
See utimes system call

utimes system call
4.2BSD improvement, SYS 1-13

utmp file
See also wtmp file
4.2BSD improvement, SYS 1-17

uu driver
4.2BSD improvement, SYS 1-16

uu.c device driver
4.2BSD improvement, SYS 5-12

uucico program
defined, SYS 5-131
description, SYS 5-124, 5-134 to

5-137
functions, SYS 5-125
starting, SYS 5-125, 5-134
starting with shell file, SYS 5-143

uuclean program
defined, SYS 5-131
description, SYS 5-137

uucp command
command line format, SYS 5-131
defined, SYS 5-125
description, SYS 5-131 to 5-133
transferring files between

machines, SYS 5-132E
UUCP network

ARPANET and, GEN 2-26
uucp program

defined, SYS 5-131
uucp system

4.2BSD improvement, SYS 1-4,
1-9, 5-45

uucp system (Cont.)
administration, SYS 5-142 to

5-144
defined, SYS 5-131
directory list, SYS 5-45
file list, SYS 5-45 to 5-46
implementing, SYS 5-131 to 5-144
installing, SYS 5-138 to 5-142
login entry and, SYS 5-144
security and, SYS 5-138
setting up, SYS 5-45 to 5-46

uucp.h file
modifying for uucp, SYS 5-138

uulog program
defined, SYS 5-131
description, SYS 5-137

uusnap program
description, SYS 1-9

uux command
command line format, SYS 5-133
defined, SYS 5-125
description, SYS 5-133 to 5-134
providing remote output, SYS

5-127
uux program

defined, SYS 5-131
uuxqt program

defined, SYS 5-131
description, SYS 5-137

v
v command (DC)

descripton, GEN 2-58
v command (ed)

defined, GEN 3-34
specifying line numbers, GEN

3-47
specifying lines without text

patterns, GEN 3-46 to 3-47
using, GEN 3-33

v command (troff)
creating decorative initial capital,

GEN 5-87E
moving characters up and down,

GEN 5-87
specifying vertical motion, GEN

5-68
v escape (Mail)

description, GEN 2-24
v flag (Mail)

See also verbose option
defined, GEN 2-36

Index-69

v option (inv)
defined, GEN 5-148

va driver
4.2BSD improvement, SYS 1-16

va.c tile
4.2BSD improvement, SYS 5-13

Valued option (Mail)
See also Option (Mail)
defined, GEN 2-20

Variable (BC)
declaring automatic, GEN 2-46
number permitted, GEN 2-45

Variable (Bourne shell)
description, GEN 4-10 to 4-12
reference list, GEN 4-11

Variable (C shell)
accessing components, GEN 4-54
checking for assigned value, GEN

4-53
defined, GEN 4-74
removing definition from shell,

GEN 4-52
removing from environment, GEN

4-52
Variable (Screen package)

reference list, PG M 4-77
Variable expansion

See Expansion
See Variable

Variable substitution
description, GEN 4-53

VAX UNIX system
accounting, SYS 5-56
booting, SYS 5-52
booting for single user, SYS 5-52
changing from single user to

multiuser status, SYS 5-52
changing to multiuser from single

user status, SYS 5-52
checking file system, SYS 5-53
file maintenance list, SYS 5-57
monitoring system performance,

SYS 5-54
operating procedures, SYS 5-52
regenerating, SYS 5-55
resource control, SYS 5-56
tracking changes, SYS 5-56

VAX-11/750
configuration file, SYS 5-85

V AX-11/750 console cassette
interface

See tu driver
VAX-11/780

configuration file, SYS 5-84

Index-70

VAX/VMS Operating System
autoconfiguration, SYS 5-89 to

5-95
data structure sizing rules, SYS

5-103 to 5-105
VAX/VMS system sources

directory list, SYS 5-4
ve command (ex)

description, GEN 3-94
verbose option (Mail)

See also -v flag
defined, GEN 2-35

verbose variable (C shell)
defined, GEN 4-74

Version
suppressing for Mail, GEN 2-35

version command (ex)
See ve command ex)

Vertical bar (EQN)
typesetting in proper size, GEN

5-lOOE
Vertical spacing

setting with troff, GEN 5-84
Vesterman, W., & Cherry, L.L.

style and diction programs, GEN
5-163 to 5-177

vfontinfo program
font information and, SYS 1-9

vfork system call
future plans, SYS 1-13

vgrind
4.2BSD improvement, SYS 1-9

vgrindefs tile
4.2BSD improvement, SYS 1-17

vi command (ex)
See also open option
3.5 changes, GEN 3-102
description, GEN 3-94
screen editing and, GE,N 3-85

vi screen editor
4.2BSD improvement, SYS 1-9
changing words, GEN 3-60
character editing, GEN 3-59
character editing, low level, GEN

3-61
character functions, GEN 3-75T
characters for making corrections

in input mode, GEN 3-72T
commands for file manipulation,

GEN 3-71T
deleting lines, GEN 3-60
deleting words, GEN 3-59
description, GEN 3-53 to 3-82

(

vi screen editor (Cont.)
determining state of file, GEN

3-57
editing programs, GEN 3-67
ending a session, GEN 3-55
ex 3.5 changes and, GEN 3-103 to

3-104
ex and, GEN 3-73
executing shell command from,

GEN 3-63
ignoring case, GEN 3-72
inserting text, 'GEN 3-58
invoking, GEN 3-54E
line editing, GEN 3-60
manipulating files, GEN 3-70
marking return points, GEN 3-64
moving blocks of text, GEN 3-62
moving in the file, GEN 3-56 to

3-58
moving on the screen, GEN 3-57
moving to previous position, GEN

3-57
moving within a line, GEN 3-57
option list, GEN 3-65
presenting lines, GEN 3-69
recovering lost files, GEN 3-66
recovering lost lines, GEN 3-66
reversing your changes, GEN 3-60
saving changes automatically,

GEN 3-63
searching for strings in text, GEN

3-56, 3-71
sentences and, GEN 3-61

view command (ex)
description, GEN 3-102

view command (vi)
reading a file, GEN 3-58

vipw program
4.2BSD improvement, SYS 1-21

vipw script
See vipw program

visual command (ex)
See vi command (ex)

visual command (Mail)
See also edit command (Mail)
description, GEN 2-33

VISUAL option (Mail)
defined, GEN 2-33
setting, GEN 2-33
specifying an editor, GEN 2-24

vlimit system call
See getrlimit system call

vlp program
printing lisp programs, SYS 1-9

vm_machdep.c file
4.2BSD improvement, SYS 5-13

vm_mem.c file
contents, SYS 5-11

vm_mon.c file
contents, SYS 5-11

vm_page.c file
4.2BSD improvement, SYS 5-11

vm_proc.c file
contents, SYS 5-11

vm_pt.c file
contents, SYS 5-11

vm_sched.c file
contents, SYS 5-11

vm_subr .c file
contents, SYS 5-11

vm_sw .c file
contents, SYS 5-11

vm_swap.c file
contents, SYS 5-11

vm_swp.c file
contents, SYS 5-11

vm_text.c file
contents, SYS 5-11

vmmac.h file
4.2BSD improvement, SYS 5-7

vmparam.h file
4.2BSD improvement, SYS 5-7,

5-13
vmstat program

4.2BSD improvement, SYS 1-9
monitoring system activity, SYS

5-54
vmsystm.h file

4.2BSD improvement, SYS 5-7
vpr program

shell scripts and, SYS 1-10
vread system call

obsolete, SYS 1-13
vs command (nroff/troff)

defined, GEN 5-61
setting, GEN 5-84

vswapon system call
See swapon system call

vtimes system call
See getrusage system call

vv network interface driver
4.2BSD improvement, SYS 1-16

vwidth program
troff width tables and, SYS 1-10

vwrite system call
obsolete, SYS 1-13

Index-71

w

w command (ed)
defined, GEN 3-34
e command and, GEN 3-27
entering text into a file, GEN 2-6
saving lines for input, GEN 3-50
using, GEN 3-26

w command (edit)
description, GEN 3-22
u command and, GEN 3-16
using, GEN 3-8

w command (ex)
See also wq command (ex)
description, GEN 3-94

w command (nroff/troff)
description, GEN 5-68

w command (sed)
defined, GEN 3-111

W command (vi)
defined, GEN 3-80

w command (vi)
defined, GEN 3-81

w escape (Mail)
description, GEN 2-24

w flag (mkey)
specifying a file, GEN 5-147

w flag (sed)
defined, GEN 3-110

w option (troff)
defined, GEN 5-50

wait function
description, PGM 1-14

wait system call
See also wait.h file
4.2BSD improvement, SYS 1-14

wait.h file
4.2BSD improvement, SYS 5-6

wait3 system call
See also wait.h file
4.2BSD improvement, SYS 1-14

warn option (ex)
description, GEN 3-101

Wasley, D.L.
introduction to f77 1/0 library,

PG M 2-79 to 2-88
we command (C shell)

4.2 BSD improvements, SYS 1-10
defined, GEN 2-13, 4-74
printing a list of files and, GEN

2-11
WDATA operator (C compiler)

defined, PGM 2-64

lndex-72

Weinberger, P.J., & Feldman, S.I.
Fortran 77 compiler, PGM 2-89 to

2-109
Weinberger, P .J., & others

awk programming language, PGM
3-5 to 3-12

wh command (nroff/troff)
defined, GEN 5-65

whereis
4.2BSD improvement, SYS 1-10

which
4.2BSD improvement, SYS 1-10

while statement (awk)
defined, PGM 3-9

while statement (BC), GEN 2-47
forming, GEN 2-54
writing, GEN 2-.:\7

while statement (C shell)
See also until statement (C shell)
defined, GEN 4-74
description, GEN 4-12 to 4-13
exiting, GEN 4-58
form of, GEN 4-12E
forms of, GEN 4-58

who command
4.2BSD improvement, SYS 1-10
printing list of people logged on,

GEN 2-llE
using, GEN 2-4

Width command (nroff/troff)
See w command (nroff/troff)

winch routine
defined, PGM 4-"$6

Window
defined, PGM 4-75
description, PGM 4-76
moving, GEN 2-33

window option (ex)
description, GEN 3-101

window option (Mail)
headers command and, GEN 2-30

WINDOW structure
defined, PGM 4-91E
description, PGM 4-76

Word (C shell)
defined, GEN 4-74

Word (nroff/troff)
defined, GEN 5-60

Word abbreviation
See also Macro (vi)
description, GEN 3-69

Word list
specifying for hyphenation, GEN

5-69

/

Work file
defined, SYS 5-132

Working directory
changing, GEN 4-48
changing background job to

foreground job and, GEN 4-50
changing with programs, GEN

4-50
defined, GEN 4-7 4
description, GEN 4-48 to 4-50

wq command (ex)
See also xit command (ex)
description, GEN 3-94

wrapmargin option (ex)
3.5 changes, GEN 3-102
description, GEN 3-101

wrapscan option (ex)
description, GEN 3-101

write command (C shell)
defined, GEN 4-74

write command (ed)
See w command (ed)

write command (edit)
See w command (edit)

write command (ex)
See w command (ex)

write command (Mail)
See also save command (Mail)
description, GEN 2-33

write function
description, PGM 1-9

write system call
4.2BSD improvement, SYS 1-14

writeany option (ex)
description, GEN 3-101

writev system call
4.2BSD improvement, SYS 1-14

wtmp file
See also utmp file
4.2BSD improvement, SYS 1-17

x
x command (Mail)

exiting Mail, GEN 2-22
x command (me)

defined, GEN 5-43
entering, GEN 5-29

X command (sed)
defined, GEN 3-113

X command (vi)
defined, GEN 3-80

x command (vi)
defined, GEN 3-81

x option (uucico)
defined, SYS 5-135

x option (uuclean)
defined, SYS 5-138

x option (uucp)
defined, SYS 5-132

x option (uux)
description, SYS 5-133

Xerox Courier protocol
description, SYS 3-17

Xerox experimental Ethernet
controller

See en network interface driver
Xerox NS Sequenced Packet

protocol
sequenced packet socket and, SYS

3-6
Xerox Routing Information Protocol

See routed program
xit command (ex)

See also wq command (ex)
description, GEN 3-94

xi command (me)
defined, GEN 5-45

xp command (me)
defined, GEN 5-43

XP macro
description, GEN 5-18

XS macro
description, GEN 5-18

xtr script file
running, SYS 5-26E

y

Y command (vi)
defined, GEN 3-80
using, GEN 3-62

y operator
See also Y command (vi)
moving blocks of text, GEN 3-62

ya command (ex)
description, GEN 3-95

Yacc
See also Lex program generator
description, PGM 3-79 to 3-111

yank command (ex)
See ya command (ex)

z
z command (DC)

description, GEN 2-59

Index-73

z command (edit)
printing a screen of text, GEN

3-12, 3-13E
z command (ex)

description, GEN 3-95
z command (Mail)

description, GEN 2-33
. z command (me)

defined, GEN 5-42
entering, GEN 5-26
specifying fill mode, GEN 5-26

z command (nroff/troff)
creating overstruck characters,

GEN 5-88

Index-74

z command (nroff/troff) (Cont.)
description, GEN 5-68

z command (vi)
defined, GEN 3-81
positioning screen text, GEN 3-64

z option (nroff/troff)
defined, GEN 5-81

Zero
as legal line number, GEN 3-46

ZZ command (vi)
defined, GEN 3-80
description, GEN 3-55

Notes:

Notes:

Notes:

Notes:

