
ULTRIX

Reference Pages
Section 4: Special Files

Order Number: AA-L Y17B-TE

Reference Pages Section 4: Special Files

Order Number: AA-L Y17B-TE

June 1990

Product Version: UL TRIX Version 4.0 or higher

ULTRIX

This manual describes special files, related device driver functions, databases, and network
support for both RISe and VAX platforms.

digital equipment corporation
maynard, massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of DF ARS 252.227-7013.

© Digital Equipment Corporation 1984, 1986, 1988, 1990
All rights reserved.

Portions of the information herein are derived from copyrighted material as permitted under license agreements with
AT&T and the Regents of the University of California. © AT&T 1979, 1984. All Rights Reserved.

Portions of the information herein are derived from copyrighted material as permitted under a license agreement with
Sun MicroSystems, Inc. © Sun MicroSystems, Inc, 1985. All Rights Reserved.

Portions of this document © Massachusetts Institute of Technology, Cambridge, Massachusetts, 1984, 1985, 1986,
1988.

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

IJDmDDma
CDA
DDIF
DDIS
DEC
DECnet
DEC station

DECUS
DEC windows
DTIF
MASSBUS
MicroVAX
Q-bus
ULTRIX
UL TRIX Mail Connection

UL TRIX Worksystem Software
UNIBUS
VAX
VAXstation
VMS
VMS/UL TRIX Connection
VT
XUI

Ethernet is a registered trademark of Xerox Corporation.

POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers.

System V is a registered trademark of AT&T.

Tektronix is a trademark of Tektronix, Inc.

Teletype is a registered trademark of AT&T in the USA and other countries.

UNIX is a registered trademark of AT&T in the USA and other countries.

About Reference Pages

The ULTRIX Reference Pages describe commands, system calls, routines, file
formats, and special files for RISe and V AX platforms.

Sections
The reference pages are divided into eight sections according to topic. Within each
section, the reference pages are organized alphabetically by title, except Section 3,
which is divided into subsections. Each section and most subsections have an
introductory reference page called intra that describes the organization and
anything unique to that section.

Some reference pages carry a one- to three-letter suffix after the section number, for
example, scan(lmh). The suffix indicates that there is a "family" of reference
pages for that utility or feature. The Section 3 subsections all use suffixes and other
sections may also have suffixes.

Following are the sections that make up the ULTRIX Reference Pages.

Section 1: Commands
This section describes commands that are available to all ULTRIX users. Section 1 is
split between two binders. The first binder contains reference pages for titles that fall
between A and L. The second binder contains reference pages for titles that fall
between M and Z.

Section 2: System Calls
This section defines system calls (entries into the UL TRIX kernel) that are used by
all programmers. The introduction to Section 2, intra(2), lists error numbers with
brief descriptions of their meanings. The introduction also defines many of the terms
used in this section.

Section 3: Routines
This section describes the routines available in UL TRIX libraries. Routines are
sometimes referred to as subroutines or functions.

Section 4: Special Files
This section describes special files, related device driver functions, databases, and
network support.

Section 5: File Formats

This section describes the format of system files and how the files are used. The files
described include assembler and link editor output, system accounting, and file
system formats.

Section 6: Games

The reference pages in this section describe the games that are available in the
unsupported software subset. The reference pages for games are in the document
Reference Pages for Unsupported Software.

Section 7: Macro Packages and Conventions

This section contains miscellaneous information, including ASCII character codes,
mail addressing formats, text formatting macros, and a description of the root file
system.

Section 8: Maintenance

This section describes commands for system operation and maintenance.

Platform Labels
The ULTRIX Reference Pages contain entries for both RISC and V AX platforms.
Pages that have no platform label beside the title apply to both platforms. Reference
pages that apply only to RISC platforms have a "RISC" label beside the title and the
VAX-only reference pages that apply only to VAX platforms are likewise labeled
with ' 'VAX." If each platform has the same command, system call, routine, file
format, or special file, but functions differently on the different platforms, both
reference pages are included, with the RISC page first.

Reference Page Format
Each reference page follows the same general format. Common to all reference pages
is a title consisting of the name of a command or a descriptive title, followed by a
section number; for example, da t e(1). This title is used throughout the
documentation set.

The headings in each reference page provide specific information. The standard
headings are:

Name

Syntax

Description

Options

Restrictions

Examples

iv About Reference Pages

Provides the name of the entry and gives a short description.

Describes the command syntax or the routine definition. Section 5
reference pages do not use the Syntax heading.

Provides a detailed description of the entry's features, usage, and
syntax variations.

Describes the command-line options.

Describes limitations or restrictions on the use of a command or
routine.

Provides examples of how a command or routine is used.

Return Values

Diagnostics

Files

Environment

See Also

Conventions

Describes the values returned by a system call or routine. Used in
Sections 2 and 3 only.

Describes diagnostic and error messages that can appear.

Lists related files that are either a part of the command or used
during execution.

Describes the operation of the system call or routine when
compiled in the POSIX and SYSTEM V environments. If the
environment has no effect on the operation, this heading is not
used. Used in Sections 2 and 3 only.

Lists related reference pages and documents in the UL TRIX
documentation set.

The following documentation conventions are used in the reference pages.

%

user input

The default user prompt is your system name followed by a right
angle bracket. In this manual, a percent sign (%) is used to
represent this prompt.

A number sign is the default superuser prompt.

This bold typeface is used in interactive examples to indicate
typed user input.

system output This typeface is used in text to indicate the exact name of a
command, routine, partition, pathname, directory, or file. This
typeface is also used in interactive examples to indicate system
output and in code examples and other screen displays.

UPPERCASE
lowercase

rlogin

filename

[]

{ I }

The ULTRIX system differentiates between lowercase and
uppercase characters. Literal strings that appear in text,
examples, syntax descriptions, and function definitions must be
typed exactly as shown.

This typeface is used for command names in the Syntax portion
of the reference page to indicate that the command is entered
exactly as shown. Options for commands are shown in bold
wherever they appear.

In examples, syntax descriptions, and routine definitions, italics
are used to indicate variable values. In text, italics are used to
give references to other documents.

In syntax descriptions and routine definitions, brackets indicate
items that are optional.

In syntax descriptions and routine definitions, braces enclose lists
from which one item \must be chosen. Vertical bars are used to
separate items.

About Reference Pages v

cat(1)

In syntax descriptions and routine definitions, a horizontal ellipsis
indicates that the preceding item can be repeated one or more
times.

A vertical ellipsis indicates that a portion of an example that
would normally be present is not shown.

Cross-references to the ULTRIX Reference Pages include the
appropriate section number in parentheses. For example, a
reference to cat(l) indicates that you can find the material on the
cat command in Section 1 of the reference pages.

Online Reference Pages
The UL TRIX reference pages are available online if installed by your system
administrator. The man command is used to display the reference pages as follows:

To display the Is(1) reference page:

% man Is

To display the passwd(1) reference page:

% man passwd

To display the passwd(5) reference page:

% man 5 passwd

To display the Name lines of all reference pages that contain the word "passwd":

% man -k passwd

To display the introductory reference page for the family of 3xti reference pages:

% man 3xti intro

Users on ULTRIX workstations can display the reference pages using the
unsupported xman utility if installed. See the xman(lX) reference page for details.

Reference Pages for Unsupported Software
The reference pages for the optionally installed, unsupported UL TRIX software are in
the document Reference Pages for Unsupported Software.

vi About Reference Pages

intro (4)

Name
intro - introduction to special files

Description

Files

Section 4 describes the special files, related driver functions, and networking support
available in the system. In this part of the manual, the Syntax heading of each
configurable device gives a sample specification for use in constructing a system
description for the config(8) program. The Diagnostics heading lists messages that
may appear on the console and in the system error log file
/usr / adm/ syserr / syserr. <hostname> due to errors in device operation.

This section contains descriptions of both configurable devices, 4 entries, and
network-related device information, 4n, 4p, and 4f entries. The networking support is
introduced in intro(4n). Software support for these devices comes in two forms.
A hardware device may be supported with a character or block "device driver", or it
may be used within the networking subsystem and have a "network interface
driver" .

There are some devices that have fixed input/output space CSR addresses and
interrupt vector addresses. There are no address switches or jumpers that need to be
set up by the customer or Field Service.

/dev/*

See Also
intro(4n), MAKEDEV(8)

Special Files 4-1

intro (4n)

Name

Syntax

networking - introduction to networking facilities

#include <sys/socket.h>
#include <net/route.h>
#include <net/if.h>

Description
This section briefly describes the networking facilities available in the system.
Documentation in this part of Section 4 is broken up into three areas: protocol
families, protocols, and "network interfaces". Entries describing a protocol family
are marked "4 f", while entries describing protocol use are marked "4p". Hard ware
support for network interfaces is found among the standard "4" entries.

All network protocols are associated with a specific protocol family. A protocol
family provides basic services to the protocol implementation to allow it to function
within a specific network environment. These services can include packet
fragmentation and reassembly, routing, addressing, and basic transport. A protocol
family can support multiple methods of addressing, though the current protocol
implementations do not. A protocol family normally comprises a number of
protocols, one per socket type. It is not required that a protocol family support all
socket types. A protocol family can contain multiple protocols supporting the same
socket abstraction.

A protocol supports one of the socket abstractions detailed in socket(2). A specific
protocol can be accessed either by creating a socket of the appropriate type and
protocol family or by requesting the protocol explicitly when creating a socket.
Protocols normally accept only one type of address format, usually determined by the
addressing structure inherent in the design of the protocol family/network
architecture. Certain semantics of the basic socket abstractions are protocol-specific.
All protocols are expected to support the basic model for their particular socket type,
but may, in addition, provide nonstandard facilities or extensions to a mechanism.
For example, a protocol supporting the SOCK_STREAM abstraction may allow more
than one byte of out-of-band data to be transmitted per out-of-band message.

A network interface is similar to a device interface. Network interfaces make up the
lowest layer of the networking subsystem, interacting with the actual transport
hardware. An interface may support one or more protocol families or address formats.
The SYNTAX section of each network interface entry gives a sample specification of
the related drivers for use in providing a system description to config(8.) The
DIAGNOSTICS section lists messages that may appear on the console and in the
system error log file /usr / adm/ syserr / syserr. <hostnarne> due to errors in
device operation.

Addressing
Associated with each protocol family is an address format. The following address
formats are used by the system:

#define AF UNIX 1
#define AF INET 2
#define AF IMPLINK 3

4-2 Special Files

/* local to host (pipes, portals) */
/* internetwork: UDP, TCP, etc. */
/* arpanet imp addresses */

intro (4n)

Routing
The network facilities provide limited packet routing. A simple set of data structures
make up a "routing table" used in selecting the appropriate network interface when
transmitting packets. This table contains a single entry for each route to a specific
network or host. A user process, the routing daemon, maintains this data base with
the aid of two socket-specific ioctl(2) commands, SIOCADDRT and
SIOCDELRT. The commands allow the addition and deletion of a single routing
table entry. Routing table manipulations can only be carried out by superuser.

A routing table entry has the following form, as defined in <net/route.h>:

struct rtentry {

} ;

u_long rt_hash;
struct sockaddr rt_dst;
struct
short
short
u_long
struct
struct

sockaddr rt_gateway;
rt_flagsi
rt_refcnt;
rt_usei
rtentry *rt_next;
ifnet *rt_ifp;

/* route usable */

with rtJags defined from,

#define RTF_UP Oxl
#define RTF_GATEWAY Ox2
#define RTF_HOST Ox4

/* destination is a gateway */
/* host entry (net otherwise) */

Routing table entries come in three types: for a specific host, for all hosts on a
specific network, and for any destination not matched by entries of the first two types
(a wildcard route). When the system is booted, each network interface autoconfigured
installs a routing table entry when it wishes to have packets sent through it.
Normally, the interface specifies the route through it is a "direct" connection to the
destination host or network. If the route is direct, the transport layer of a protocol
family usually requests the packet be sent to the same host specified in the packet.
Otherwise, the interface may be requested to address the packet to an entity different
from the eventual recipient (that is, the packet is forwarded).

Routing table entries installed by a user process cannot specify the hash, reference
count, use, or interface fields; these are filled in by the routing routines. If a route is
in use when it is deleted (rt_refcnt is nonzero), the resources associated with it are
not reclaimed until further references to it are released.

The routing code returns EEXIST if requested to duplicate an existing entry, ESRCH
if requested to delete a nonexistent entry, or ENOBUFS if insufficient resources were
a vailable to install a new route.

User processes read the routing tables through the / dev / kmem device.

The rt _use field contains the number of packets sent along the route. This value is
used to select among multiple routes to the same destination. When multiple routes
to the same destination exist, the least used route is selected.

A wildcard routing entry is specified with a zero destination address value. Wildcard
routes are used only when the system fails to find a route to the destination host and
network. The combination of wildcard routes and routing redirects can provide an
economical mechanism for routing traffic.

Special Files 4-3

intro(4n)

Interfaces
Each network interface in a system corresponds to a path through which messages
can be sent and received. A network interface usually has a hardware device
associated with it, though certain interfaces such as the loopback interface, 10, do
not.

At boot time, each interface that has underlying hardware support makes itself known
to the system during the autoconfiguration process. Once the interface has acquired
its address, it is expected to install a routing table entry so that messages can be
routed through it. Most interfaces require some part of their address specified with
an SIOCSIFADDR ioctl before they allow traffic to flow through them. On
interfaces where the network-link layer address mapping is static, only the network
number is taken from the ioct1; the remainder is found in a hardware-specific manner.
On interfaces that provide dynamic network-link layer address mapping facilities (for
example, 10Mb/s Ethemets), the entire address specified in the ioctl is used.

The following ioctl calls may be used to manipulate network interfaces. Unless
specified otherwise, the request takes an ifrequest structure as its parameter. This
structure has the form:

struct ifreq {
char ifr_name[16]; /* name of interface (e.g. "ecO") */
union

struct
struct
short

ifr ifrui

sockaddr ifru_addri
sockaddr ifru_dstaddri
ifru_flags;

#define ifr_addr ifr_ifru.ifru_addr /* address */
#define ifr dstaddr ifr ifru.ifru dstaddr /* end of p-to-p link */
#define ifr=flags ifr=ifru.ifru=flags /* flags */
} ;

SIOCSIFADDR
Set interface address. Following the address assignment, the
, 'initialization" routine for the interface is called.

SIOCGIFADDR
Get interface address.

SIOCSIFDSTADDR
Set point-to-point address for interface.

SIOCGIFDSTADDR
Get point-to-point address for interface.

SIOCSTATE
Read or set ownership and state of a device.

SIOCSIFFLAGS
Set interface flags field. If the interface is marked down, any processes
currently routing packets through the interface are notified.

SIOCGIFFLAGS
Get interface flags.

SIOCGIFCONF

4-4 Special Files

Get interface configuration list. This request takes an ifconf structure (see
SIOCSIFBRDADDR) as a value-result parameter. The ifc _len field

intro{4n)

should be initially set to the size of the buffer pointed to by ifc _but. On
return it will contain the length, in bytes, of the configuration list.

SIOCGIFNETMASK
Get network address mask.

SIOCSIFNETMASK
Set network address mask.

SIOCGIFBRDADDR
Get broadcast address associated with network interface.

SIOCSIFBRDADDR

See Also

Set broadcast address associated with network interface.

/*
* Structure used in SIOCGIFCONF request.
* Used to retrieve interface configuration
* for machine (useful for programs which
* must know all networks accessible).
*/

struct ifconf {
int ifc len; /* size of associated buffer */
union

caddr t ifcu_buf;
struct ifreq *ifcu_req;

} ifc_ifcu;
#define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */
#define ifc_req ifc_ifcu.ifcu_req /* array of structures */
} ;

The following is the structure used in an SIOCST ATE request to set
device state and ownership.

struct ifstate {
char ifr_name[IFNAMSIZ); /*
u_short
u short
u short

} ;

if_family;
if_next_family;
if_mode: 3,
if_ustate:l,
if_nomuxhdr:l,
if_dstate:4,
if_xferctl:l,
if_rdstate:l,
if_wrstate:l
if_reserved: 4;

/*
/*
/*
/*
/*
/*
/*
/*
/*

if name, e.g. "dmvO" */
current family ownership */
next family ownership */
mode of device */
user requested state */
if set, omit mux header */
current state of device */
xfer control to nxt family */
read current state */
set current state */

socket(2), ioct1(2), intro(4), config(8), routed(8c)

Special Files 4-5

arp (4p)

Name
arp - Address Resolution Protocol

Syntax
pseudo-device ether

Description
The ARP protocol is used to map dynamically between DARPA Internet and lOMb/s
Ethernet addresses. It is used by all the lOMb/s Ethernet interface drivers.

The ARP protocol caches Internet-Ethernet address mappings. When an interface
requests a mapping for an address not in the cache, ARP queues the message which
requires the mapping and broadcasts a message on the associated network requesting
the address mapping. If a response is provided, the new mapping is cached and any
pending messages are transmitted. The ARP protocol queues only the most recently
"transmitted" packet while waiting for a mapping request to be responded to.

To enable communications with systems which do not use ARP, ioctls are provided
to enter and delete entries in the Internet-to-Ethernet tables. The usage is:

#include <sys/ioctl.h>
#include <sys/socket.h>
#include <net/if.h>
struct arpreq arpreq;

ioctl (s, SIOCSARP, (caddr_t) &arpreq) ;
ioctl (s, SIOCGARP, (caddr_t) &arpreq) ;
ioctl (s, SIOCDARP, (caddr_t) &arpreq);

Each ioctl takes the same structure as an argument. SIOCSARP sets an ARP entry,
SIOCGARP gets an ARP entry, and SIOCDARP deletes an ARP entry. These ioctls
may be applied to any socket descriptor s, but only by the superuser. The arpreq
structure contains:

/*
* ARP ioctl request
*/

struct arpreq {
struct sockaddr
struct sockaddr
int

} ;

arpya;
arp_ha;
arp_flags;

/* protocol address */
/* hardware address */
/* flags */

/* arp flags field values */
#define-ATF_COM 2 /* completed entry (arp_ha valid) */
#define ATF_PERM 4 /* permanent entry */
#define ATF_PUBL 8 /* publish (respond for other host) */

The address family for the arp ya sockaddr must be AF _INET; for the arp _ ha
sockaddr, it must be AF _UNSPEC. The only flag bits that can be written are
A TF _PERM and A TF _PUBL. A TF _PERM causes the entry to be permanent if the
ioctl call succeeds. The ioctl may fail if more than four permanent Internet host
addresses hash to the same slot. A TF _PUBL specifies that the ARP code should
respond to ARP requests for the indicated host coming from other machines. This
lets a SUN act as an ARP server, which can be used to make an ARP-only machine
talk to a non-ARP machine.

4-6 Special Files

arp(4p)

The ARP protocol watches passively for a host that responds to an ARP mapping
request for the local host's address.

Restrictions
ARP packets on the Ethernet use only 42 bytes of data. The smallest legal Ethernet
packet is 60 bytes, however, not including CRC. Some systems may not enforce the
minimum packet size.

Diagnostics
duplicate IP address!! sent from Ethernet address: %x:%x:%x:%x:%x:%x
ARP has discovered another host on the local network that responds to mapping
requests for its own Internet address.

See Also
inet(40, arp(8c), ifconfig(8c)

Special Files 4-7

audit(4)

Name
audit - audit log interface

Description
This is a special character device that provides an interface for the audit daemon
process, /etc/sec/auditd, to the kernel audit buffers.

Restrictions

Files

This device should be readable and writable only by root, to protect access by
nonsystem processes. The major number assigned to this device must correlate with
the corresponding major number designation in the system kernel.

/dev/audit

See Also
MAKEDEV(8)

4-8 Special Files

autoconf (4)

Name
autoconf - diagnostics from the autoconfiguration code

Description
When UL TRIX bootstraps, it probes the machine it is running on and locates
controllers, drives, and other devices, printing out what it finds on the console. This
procedure is driven by a system configuration table, which is processed by
config(8) and compiled into each kernel.

Diagnostics
cpu%d (version %f, implementation %d
A cpu is present.

fpu%d (version %f, implementation %d
An fpu is present.

pm%d at ibus%d
A monochrome or color graphics device is present.

cfb%d at ibus%d
A color graphic device is present.

dc%d at ibus%d
A serial line controller is present.

sii%d at ibus%d
An SCSI sii controller is present.

asc%d at ibus%d
An SCSI asc controller is present.

rz%d at sii%d/asc%d slave %d (
An SCSI disk device is present.

tz%d at sii%d/asc%d slave %d (
An SCSI tape device is present.

In%d at ibus%d
An Ethernet interface is present.

See Also
intro(4), config(8)

Special Files 4-9

Rise

Rise cfb(4)

Name
cfb - color bitmap graphics

Syntax
device ctbO at ibus? vector ctbvint

Description

Files

The . video subsystem provides a half page or full page, user-accessible bitmap display
for graphics. The subsystem consists of a 1 Mbyte (color) block of dual port RAM, a
mouse or tablet, a keyboard, and a video monitor.

The subsystem device driver supports a hybrid terminal with three minor devices.
The first minor device emulates. a glass tty with a screen that appears as an 80-
column by 56-row page that scrolls from the bottom. This device is capable of being
configured as the. system console.

The second minor device is reserved for the mouse. This device is a source of mouse
state changes. (A state change is defined as an XJY axis mouse movement or button
change.) When opened, the driver couples movements of the mouse with the cursor.
Mouse position changes are filtered and translated into cursor position changes in an
exponential manner. Rapid movements result in large cursor position changes. All
cursor positions are range-checked to ensure that the cursor remains on the display.

The third minor device provides an access path for console output that does not
disturb the graphics display. The caller can open the device / dev / xcons. When
this device is open, the graphics driver redirects console device output to the input
buffer of this device. This mechanism disables console output on the screen and
saves the output for later display. This action preserves the graphic display integrity.

Input and output on the first and third minor devices are processed by the standard
line disciplines.

The Hold Screen key is supported. The graphics driver treats this key as if CTRL/S
or CTRL/Q has been entered. Pressing the Hold Screen key suspends the output (if it
is not already suspended). To resume the output, press the Hold Screen key again.

/ dev / console Console terminal or graphics device

/ dev /mouse Mouse or tablet graphics device

/dev/xcons Console message window for workstation

See Also
console(4), devio(4), tty(4), ttys(5), MAKEDEV(8)

4-10 Special Files

cfl (4) VAX

Name
cfl - RXO 1 console interface

Description
This is a simple interface to the RXO 1 floppy disk unit, which is part of the console
LSI-II subsystem for the VAX-l1/780 (VAX-l1/785). Access is given to the entire
floppy, consisting of 77 tracks of 26 sectors of 128 bytes.

All I/O is raw; the seek addresses in raw transfers should be a multiple of 128 bytes
and a multiple of 128 bytes should be transferred, as in other "raw" disk interfaces.

Restrictions
Multiple console floppies are not supported.

If a write is given with a count not a mUltiple of 128 bytes, the trailing portion of the
last sector will be zeroed.

Files
/dev/floppy

See Also
MAKEDEV(8)

Special Files 4-11

Rise console (4)

console - console interface

Description

Files

Return to the monitor by halting the machine from the operating system or pressing
the HALT button on the rear panel. Type help at the prompt to receive a
description of valid console commands. For example:

»help

The I dev I console device is valid for all operating system accesses to the
character tty device.

Idev/console

See Also
tty(4), MAKEDEV(8)

4-12 Special Files

console (4)

Name
console - console interface

Description
On all but the busless small VAX processors, the console is available to the
processor through the console registers. It acts like a normal terminal, except that,
when the local functions are not disabled, CTRL/P puts the console in local console
mode (where the prompt is "»>"). This is true for all processors except the
MicroVAX line and busless small VAX processors (see the information that follows).
The operation of the console in this mode varies slightly for each processor.

On a VAX-11/780 or VAX-l1/785, if you press the BREAK key on the console, the
console goes into ODT (console debugger mode). Press P (uppercase letter p) to
return from this mode.

On a VAX-11/750 or a VAX-ll/730 (11/725), the processor is halted whenever the
console is not in conversational mode. Press C (uppercase letter c) to return to
conversational mode. When in console mode on a VAX- 11/750 that has a remote
diagnosis module, a CTRL/D will put you in remote diagnosis mode, where the
prompt will be "RDM>". The command ret will return from remote diagnosis
mode to local console mode.

On any Micro V AX, halt the processor by pressing the HALT button on the front
panel. Pressing CTRL/p has no effect on either the Micro V AX -I or the Micro V AX
II. Press c (lowercase letter c) on the console tenninal to return to the running
system after the HALT button is released.

On the busless small VAX processor, halt the processor by pressing the HALT button
on the rear panel (located next to the printer port connector). If the diagnostic
console terminal is attached, halt the processor by pressing the BREAK key. For
further information, see s s (4). Typing CTRL/p has no effect on the busless small
VAX processor. Press c (lowercase letter c) on the console terminal to return to the
running system.

On an V AX 8800 (8700, 8500, 8550), you can return to conversational mode using
the command sett (set terminal program) if the processor is still running, or
continue if it is halted. The continue command can be abbreviated to c. Halt
the processor by pressing CTRL/P. Restart the processor by pressing c (lowercase
letter c).

On a V AX 8600 (8650), halt the processor by pressing CTRL/p when the terminal
control switch on the front panel is in the LOCAL or REMOTE position. When this
switch is in the LOCAL position, pressing CTRL/p at the console terminal is the
only way to halt the processor. When the switch is in the REMOTE position, both
the console terminal and the remote terminal (if present) can halt the processor.
When the terminal control switch is in either LOCAL position, only the console
terminal will operate as any other ULTRIX terminal. When the terminal control
switch is in either REMOTE position, both the console terminal and the remote
terminal will operate as any other UL TRIX terminal.

On a VAX 8100 (8200, 8300), halt the processor by pressing CTRL/p when the
console is ENABLED. Press c (lowercase letter c) to return to the running system.

SpeCial Files 4-13

VAX

VAX console (4)

Restrictions

Files

On all but the busless small V AX processors, the console serial line should be used
at a relatively low baud rate (2400 BPS or less) as it generally interrupts the CPU for
each character received or transmitted. Higher baud rates are permitted but generally
impede system performance so much as to warrant using a lower baud rate. On the
small V AX, the console operates at 9600 BPS for a terminal or 4800 BPS for a
graphics device. For further infonnation, see ss(4).

/dev/console

See Also
cty(4), ss(4), tty(4), MAKEDEV(8)

4-14 Special Files

crl (4)

Name
crl - RL02 console interface

Description
This is a simple interface to the RL02 disk unit, which is part of the console
subsystem for the V AX 8600 (8650). Access is given to the entire RL02 consisting
of 512 cylinders of two tracks of 20 sectors of 256 bytes. The RL02 sectors are
accessed as logical 512-byte disk blocks.

All I/O is raw; the seek addresses in raw transfers should be a multiple of 512 and a
multiple of 512 bytes should be transferred, as in other "raw" disk interfaces.

Restrictions
Only one "open" is allowed to the console RL02 device at any given time.

If a write is given with a count not a multiple of 512 bytes, the trailing portion of the
last logical block will be zeroed.

The primary purpose of this driver is to apply updates to the console system disk. A
"block" interface is not provided.

Diagnostics

Files

crl: hard error sn%d crlcs=Ox%b, crlds=Ox%b
The console subsystem has reported a hard error while performing the requested
I/O. The crlcs contains standard RLV211 control and status information and
clrds contains standard drive status information. Bit expansion in ASCII is also
provided.

crl: hndshk error
An error in communications between the console subsystem software and the
UL TRIX operating system has occurred.

/dev/crl

See Also
MAKEDEV(8)

Special Files 4-15

VAX

VAX cs(4)

Name
cs - RX50 console interface

Description

Files

This is a simple interface to the RX50 disk unit, which is part of the console
subsystem for the VAX 8200 (8200, 8300, 8500, 8550, 8700, 8800). Access is given
to the entire. RX50 consisting of 80 cylinders of one track of 10 sectors of 512 bytes.
The RX50 sectors are accessed as logical 512-byte disk blocks.

The seek addresses in raw transfers should be a multiple of 512 and a mUltiple of 512
bytes should be transferred, as in other "raw" disk interfaces.

/dev/cs??
/dev/rcs??

See Also
MAKEDEV(8)

4-16 Special Files

ctu (4)

Name
ctu - TU58 console interface

Syntax
options MRSP (for VAX-11/750's with an MRSP prom)

Description
Prior to Version 2.0, this device was referenced using t u (4) .

The ctu interface provides access to the VAX-11/730 (11/725) and VAX-11/750
TU58 console cassette drive.

The interface supports only block I/O to the TU58 cassettes. The devices are
normally manipulated with the arff(8v) program, using the f and m options.

The device driver is automatically included when a system is configured to run on a
VAX-11/730 (11/725) or VAX-11/750.

The TU58 on a VAX-11/750 uses the Radial Serial Protocol (RSP) to communicate
with the CPU over a serial line. This protocol is inherently unreliable as it has no
flow control measures built in. On a V AX-11/730 (11/725), the Modified Radial
Serial Protocol is used. This protocol incorporates flow control measures that ensure
reliable data transfer between the CPU and the device. Certain VAX-11/750s have
been modified to use the MRSP prom used in the V AX-11/730 (11/725). To reliably
use the console TU 58 on an V AX -11/7 50 under UL TRIX, the MRSP prom is
required. For those V AX-11/750s without an MRSP prom, an unreliable but often
usable interface has been developed. This interface uses an assembly language
"pseudo-dma" routine to minimize the receiver interrupt service latency. To include
this code in the system, the configuration must not specify the system will run on a
V AX -11/730 (11/725) or use an MRSP prom. This unfortunately makes it
impossible to configure a single system that will properly handle TU58s on both a
VAX-11/750 and an VAX-11/730 (11/725) (unless both machines have MRSP
proms).

Restrictions
Frequent data overruns can occur if the VAX-11/750 TU58 is used while in multiuser
mode. The interface continues to function and errors are handled, but transfer times
may be lengthened considerably.

Diagnostics
to % d: no bp, active % d
A transmission complete interrupt was received with no outstanding I/O request.
This indicates a hardware problem.

to % d protocol error, state= % s, op= % x, cnt= % d, block= % d
The driver entered an illegal state. The information printed indicates the illegal state,
operation currently being executed, the I/O count, and the block number on the
cassette.

to%d receive state error, state=%s, byte=%x
The driver entered an illegal state in the receiver finite state machine. The state is
shown along with the control byte of the received packet.

Special Files 4-17

VAX

VAX ctu (4)

Files

tu%d: read stalled
A timer watching the controller detected no interrupt for an extended period while an
operation was outstanding. This usually indicates that one or more receiver interrupts
were lost and the transfer is restarted (VAX -11/7 50 only).

tu%d: hard error bn%d, pk_mod %0
The device returned a status code indicating a hard error. The actual error code is
shown in octal. No retries are attempted by the driver.

/dev/tuO

/dev/tul (only on a VAX-l1/730 01/725»

See Also
MAKEDEV(8)

4-18 Special Files

cty(4)

Name
cty - extra serial line interface

Description
The extra serial lines are available to the processor through the console registers.
These lines are available on the VAX 8100, 8200, 8300, 8500, 8550, 8600, 8650,
8700, and 8800 machines and number three all total. They act like normal terminal
lines, except for the VAX 8600 (8650), where the first line can also act as a remote
console port and the other two lines are currently unused. Entries for these lines
should be placed in / etc / tty s, if they are used.

There are also certain workstation configurations that may use the console serial
interface. For MicroVAX workstation configurations, calling MAKEDEV(8) with the
argument ttycp will create the device special file needed to utilize the console
interface. Before using the serial line interface, it is important to consider the setting
of the halt enable switch on a Micro V AX workstation.

Restrictions

Files

In general, the lines are low-performance devices. They can be used as terminal
ports, but, for each character sent or received, the CPU is interrupted. Thus, it is
recommended that the extra serial lines be used at low baud rates (2400 baud or less),
so that console input and output do not severely impact system performance.

/dev/ttyc?

See Also
console(4), tty(4), MAKEDEV(8)

Special Files 4-19

VAX

cxa(4)

Name
cxa - CXA 16 communications interface

Syntax
device dhuO at ubaO csr 0160440 flags Oxffff vector dhurint dhuxint

Description
A CXA16 provides 16 data-leads-only communication lines with no modem control.
The CXA16 confonns to RS423A. The device behaves and looks just like a DHV11
(with the exception of modem control and number of lines) and is specified in the
configuration line the same as a DHV11 device. Each line attached to the CXA16
communications multiplexer behaves as described in tty(4) and can be set to run at
any of 16 speeds; see t t y(4) for the encoding.

A flags field of Oxffff must be used to specify that all lines are to operate as
hardwired. This is done to prevent the line from being treated as a modem control
line.

The dhu driver nonnally interrupts on each input character.

NOTE

The cxa, cxb, cxy, dhv, and dhq devices operate under the control of
the dh u driver.

Diagnostics

Files

dhu % d: receive fifo overflow
The character input fifo overflowed before it could be serviced. This can happen if a
hard error occurs when the CPU is running with elevated priority, as the system then
prints a message on the console with interrupts disabled. This can cause a few input
characters to be lost to users. It is not serious.

dhu%d:%d DMA ERROR
A DMA transfer error has occurred. The cxa unit number and line number are
printed. This means that the channel indicated has failed to transfer DMA data
within 10.7 microseconds of the bus request being acknowledged or that there is a
memory parity error. This may cause a few output characters to be lost.

dhu%d: DIAG. FAILURE
This indicates that the cxa internal diagnostics have detected an error.

dhu%d: DHU HARDWARE ERROR. TX.DMA.START failed
The cxa failed to clear the start bit. Nonnally, this is cleared to signal that a DMA
transfer has completed.

/dev/tty??

4-20 Special Files

cxa(4)

See Also
tty(4), MAKEDEV(8)

Special Files 4-21

VAX cxb(4)

Name
cxb - CXB 16 communications interface

Syntax
device dhuO at ubaO csr 0160440 flags Oxffff vector dhurint dhuxint

Description
A CXB16 provides 16 data leads-only communication lines with no modem control.
The CXB16 conforms to RS422A. The device behaves and looks just like a DHV11
(with the exception of modem control and number of lines) and is specified in the
configuration line the same as a DHV11 device. Each line attached to the CXB16
communications interface behaves as described in tty(4) and can be set to run at
any of 16 speeds. See t t y(4) for the encoding.

A flags field of Oxffff must be used to specify that all lines are to operate as
hardwired. This is done to prevent the line from being treated as a modem control
line.

The dhu driver normally interrupts on each input character.

NOTE

The cxa, cxb, cxy, dhv, and dhq devices operate under the control of
the dhu driver.

Diagnostics

Files

dhu%d: receive fifo overflow
The character input fifo overflowed before it could be serviced. This can happen if a
hard error occurs when the CPU is running with elevated priority, as the system then
prints a message on the console with interrupts disabled. This can cause a few input
characters to be lost to users. It is not serious.

dhu%d:%d DMA ERROR
A DMA transfer error has occurred. The cxb unit number and line number are
printed. This means that the channel indicated has failed to transfer DMA data
within 10.7 microseconds of the bus request being acknowledged or that there is a
memory parity error. This may cause a few output characters to be lost.

dhu%d: DIAG. FAILURE
This indicates that the cxb internal diagnostics have detected an error.

dhu%d: DHU HARDWARE ERROR. TX.DMA.START failed
The cxb failed to clear the start bit. Normally, this is cleared to signal that a DMA
transfer has completed.

/dev/tty??

4-22 Special Files

cxb(4) VAX

See Also
tty(4), MAKEDEV(8)

Special Files 4-23

cxy(4)

Name
cxy - CXY08 communications interface

Syntax
device dhuO at ubaO csr 0160440 flags Ox?? vector dhurint dhuxint

Description
A CXY08 provides eight communication lines with modem control adequate for
UNIX dialup use. The device behaves and looks just like a DHV11 and is specified
in the configuration line the same as a DHV11 device. Each line attached to the
CXY08 communications interface behaves as described in tty(4) and can be set to
run at any of 16 speeds. See t t y(4) for the encoding.

Bit i of flags can be specified for a cxy device to say that a line is not properly
connected and that the line should be treated as hardwired with carrier always
present. Thus, specifying flags Ox04 in the specification of dh u a would cause line
tty02 to be treated in this way.

The dhu driver normally interrupts on each input character.

NOTE

The cxa, cxb, cxy, dhv, and dhq devices operate under the control of
the dhu driver.

Diagnostics

Files

dhu%d: receive fifo overflow
The character input fifo overflowed before it could be serviced. This can happen if a
hard error occurs when the CPU is running with elevated priority, as the system then
prints a message on the console with interrupts disabled. This can cause a few input
characters to be lost to users. It is not serious.

dhu%d:%d DMA ERROR
A DMA transfer error has occurred. The cxy unit number and line number are
printed. This means that the channel indicated has failed to transfer DMA data
within 10.7 microseconds of the bus request being acknowledged or that there is a
memory parity error. This may cause a few output characters to be lost.

dhu%d: DIAG. FAILURE
This indicates that the cxy internal diagnostics have detected an error.

dhu%d: DHU HARDWARE ERROR. TX.DMA.START failed
The cxy failed to clear the start bit. Normally, this is cleared to signal that a DMA
transfer has completed.

/dev/tty??

/ dev / t t yd ? Dialups

4-24 Special Files

cxy(4)

See Also
tty(4), MAKEDEV(8)

Special Files 4-25

Rise dc(4)

Name
dc - serial line/mouse/keyboard

Syntax
device dcO at ibus? vector dcintr

Description
The serial line controller provides four ports, with modem control on two of the
ports. The DEC station 3100 and DEC station 2100 only provide partial modem
control. The DEC station 5000 provides full modem control. The ports are used as
follows:

Port Usage
o Graphics device keyboard at 4800 BPS
1 Mouse or tablet at 4800 BPS
2 Communications port 1 (w/modem control)/local tenninal
3 Communications port 2 (w/modem control)/local tenninal

Each communication port from the serial line controller behaves as described in
tty(4) and can be set to run at any of 16 speeds. For the encoding, see tty(4).

When a graphics device is not being used as the system console, communications
port 2 becomes the system console. In this configuration, the port can only be used
at 9600 BPS and no modem control is supported.

The serial line driver operates in interrupt-per-character mode (all pending characters
are flushed from the silo on each interrupt).

Restrictions

Files

Speed must be set to 9600 BPS on the console port and 4800 BPS on ports used by
graphics devices. The serial line driver enforces this restriction; that is, changing
speeds with the stty command may not always work on these ports.

/dev/console

/dev/ttyOO

/dev/ttyOl

console tenninal

local tenninal

local tenninal

See Also
console(4), devio(4), tty(4), ttys(5), MAKEDEV(8)

4-26 Special Files

de(4) VAX

Name
de - DEUNA/DELUA Ethernet interface

Syntax
device deO at ubaO csr 0174510 vector deintr

Description
The de interface provides access to a 10 Mb/s Ethernet netwQrk through a
DEUNA/DELUA controller.

The host's Internet address is specified at boot time with an SIOCSIFADDR ioct!.
The de interface employs the address resolution protocol described in arp(4p) to
dynamically map between Internet and Ethernet addresses on the IQcal network.

The interface normally tries to use a "trailer" encapsulation to minimize copying
data on input and output. This can be disabled for an interface by setting the
IFF _NOTRAILERS flag with an SIOCSIFFLAGS ioct!. Trailers are only used for
packets destined for Internet hosts.

The SIOCSPHYSADDR ioctl can be used to change and SIOCRPHYSADDR can be
used to read the physical address of the board.

SIOCADDMULTI and SIOCDELMULTlcan be used to add or delete multicast
addresses. The board recognizes, at most, 10 multicast addresses. The argument to
these ioctls is a pointer to an ifreq structure found in <net / if . h>.

SIOCRDCTRS and SIOCRDZCTRS ioctls can be used to read or "read and clear"
the board counters. The argument to these two ioctls is a pointer toa counter
structure "ctrreq" found in <net/if.h>.

The ioctls SIOCENABLBACK and SIOCDISABLBACK can be used to enable and
disable the interface loopback mode.

Restrictions
The PUP protocol family is not supported.

Diagnostics
de%d: command failed, csrO=%b csrl=%b
Here, command is one of reset, pcbb, rdphyad, wtring, or wtmode. This message
is printed if there is an error on device initialization. The following command
failures can occur during ioctl requests:

wtpbyadd
An attempt to change the physical address fail~d.

rdpbyadd
An attempt to read the physical address failed.

wtmulti
An attempt to add a new multicast address failed.

mtmulti failed, multicast list full
An attempt to add a new multicast address failed because the maximum number of
multicast addresses has been reached.

Special Files 4-27

VAX de(4)

rdcnts
An attempt to read the board counters failed.

The following messages occur while transmitting or receiving packets:

de%d: buffer unavailable
Packets are being received by the interface faster than they can be serviced by the
driver.

de%d: can't handle af%d
The interface was handed a message with addresses formatted in an unsuitable
address family; the packet was dropped.

See Also
arp(4p), inet(4f), intro(4n)

4-28 Special Files

Name

Syntax

devio - device information interface

#include <sys/ioctI.h>
#include <sys/devio.h>

devio(4)

Description
The devio interface obtains status, device attributes, and other information by
polling the controlling device driver. There are two ioctl requests associated with
this interface: DEVIOCGET and DEVGETGEOM.

The file <sys/ devio. h> contains the needed structure and definitions to use the
DEVIOCGET and DEVGETGEOM ioctl requests.

The DEVIOCGET ioctl request is used to obtain generic device information by
polling the underlying device driver. The following example shows the basic
structure used by this request:

/* Structure for DEVIOCGET ioctl - device get status command */

struct devget

} ;

short category; /*
short bus; /*
char interface[DEV_SIZE); /*
char device[DEV_SIZE); /*
short adpt_num; /*
short
short
short

nexus_num;
bus num;
ctlr_num;

short slave num;
char dev_name[DEV_SIZE);
short unit num;
unsigned soft count;
unsigned hard_count;
long stat;
long category_stat;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Category
Bus

*/
*/

Interface (string) */
Device (string) */
Adapter number */
Nexus or node on adapter # */
Bus number *1
Controller number
Plug or line number
ULTRIX device mnemonic
ULTRIX device unit number
Driver soft error count
Driver hard error count
Generic status mask
Category specific mask

*/
*1
*1
*1
*1
*1
*/
*/

The DEVGETGEOM ioctl request is used to obtain disk geometry and attributes by
polling the underlying device driver. This ioctl request is only supported on MSCP
and SCSI disk drivers. The ioctl fails on other types of drivers which do not support
DEVGETGEOM. The ioctl may fail if the device driver is unable to obtain geometry
information. This could happen if the disk media is removable and there is no media
loaded in the drive.

Special Files 4-29

devio(4}

The following example shows the basic structure used by this request:

/* Structure for DEVGETGEOM ioctl - disk geometry information */

typedef union devgeom {
struct {

unsigned long dev size;
unsigned short ntracks;
unsigned short nsectors;
unsigned short ncylinders;
unsigned long attributes;
geom_info;

unsigned char pad[124];
DEVGEOMST;

/* number of blocks in user area
/* number of tracks per cylinder
/* number of sectors per track

/* total number of cylinders
/* Device attributes

/* Allocate space for expansion

*/
*/
*/
*/
*/

*/

The following is a description of the fields of the DEVGEOMST data structure.
Many of the fields correspond to attributes that are often specified in the disk
description file / etc/ disktab. This ioctl is used by the creatdiskbyname
subroutine to dynamically generate disktab entries.

dev_size

ntracks

nsectors

ncylinders

attributes

pad

Restrictions

This field contains the number of user accessable blocks on the disk.
The corresponding disktab field is pc, which describes the size of the
"c" partition.

This field contains the number of tracks per cylinder and corresponds
to the n t field of a disktab entry.

This field contains the number of sectors per track and corresponds to
the n s field of a disktab entry.

This field contains the number of cylinders on the disk and
corresponds to the n c field of a disktab entry.

This field represents disk attributes.

This field is not used to store disk information. The pad element of
the DEVGEOMST is used to provide room for future expansion of the
information fields.

The DEVGETGEOM ioctl request is only supported on MSCP and SCSI disk
drivers.

See Also
creatediskbyname(3x), ra(4), rz(4), disktab(5)

4-30 Special Files

dfa(4)

Name
dfa - DFAO 1 communications interface

Syntax
device dzO at ubaO csr 0160100 flags OxO vector dzrint dzxint

Description
The DFAOI contains two DF224-compatible modems with a DZQll-compatible
interface. Each line attached to the DFAOI behaves as described in tty(4). See
tty(4) for the encoding. Lines may operate at 300, 1200, or 2400 baud.

Caution
The DZQ 11 interface is capable of baud rates up to 9600 baud, but,
because the modem is restricted to speeds of 300, 1200, and 2400 baud,
all other baud rates are considered illegal and pass meaningless data.

A flags field of OxO must be specified to indicate that the lines are to be treated as
modems.

An acucap(5) entry of dfaO 1 should be used to describe the 2400 baud autodial
attributes used by such programs as tip(1c), cu and uucp(1c). For pulse tone
dialing at 2400 baud, an acucap(5) entry of dfaOl-p should be used. To dial at
1200 baud, the dfaOl-1200 or dfaOl-1200p (pulse dial) should be used. To
use the DFAOI autodialer, the terminal line must be set to no parity.

Any entry in the remote(5) file that specifies an ACU type of dfaOl must specify
no parity. The following example shows how a correct entry in the remote(5) file
may look:

dia1240012400 Baud attributes:\
:dv=/dev/ttydO:br#2400:at=dfaOl:du:pa=none:

The df a driver normally uses its input silos and polls for input at each clock tick (10
milliseconds) rather than taking an interrupt on each input character.

MAKEDEV(8) will produce four terminal lines for the DZQl1 interface. The second
and fourth lines are the actual modem lines. The first and third lines pass status
information when the modem is on line.

Diagnostics

Files

dz%d: receive' fifo overflow.
The character input fifo overflowed before it could be serviced. This can happen if
other devices heavily utilize the bus and CPU, preventing interrupts from the DFAOI
from being serviced. This may cause a few input characters to be lost to users. It is
not serious.

Idev/tty??

I dev Itt yd ? Dialups

Special Files 4-31

VAX

VAX dfa(4)

See Also
tty(4), acucap(5), MAKEDEV(8)

4-32 Special Files

Name

Syntax

dhb - DHB32 communications multiplexer

device dmbO at vaxbi? node? flags Ox????
vector dmbsint dmbaint dmblint

dhb(4)

Description
A DHB32 device provides 16 asynchronous communication lines with full modem
control. The DHB32 and the DMB32 share a common software device driver. For
this reason, the configuration line is the same for both the DHB32 and DMB32.

Each line attached to a DHB32 serial line port behaves as described in t t y(4). Input
and output for each line can independently be set to run at any of 16 speeds. See
t t y(4) for the encoding.

Bit i of flags may be specified for a dhb to say that a line should be treated as a
hardwired connection with carrier always present. If bit i of flags is not set, the line
will operate under full modem control. Modem lines will operate in accordance to
the CD (carrier detect), DSR (data set ready) and CTS (clear to send) leads. Thus,
specifying "flags Ox0004" in the specification of drnbO would cause line 2 on the
DHB32 to be treated as hardwired with carrier always present. In this example, the
remainder of the lines will be modem control lines.

Diagnostics
dmbinit: async lines unavailable
This message is produced at system boot time if the DHB32 fails its internal self test
indicating that the asynchronous lines have failed to configure.

dmb%d: fifo overflow
The character input fifo overflowed before it could be serviced. This can happen if
the CPU is running with elevated priority for too long a period of time. Overflow
errors may indicate that configuration constraints have been reached.

dmb%d: DMA Error. tbuf = Ox%x
A DMA output transfer failed. This problem can result from a memory error or an
invalid pte (page table entry). For a description of the error code in the' 'tbuf' ,
register. See the DHB32 documentation.

dmb%d: DMB Hardware Error. TX.DMA.START failed
The dhb failed to clear the start bit. Normally, this is cleared to signal that a DMA
transfer has completed.

dmb%d: Modem Error. tbuf = Ox%x
Indicates a problem with a modem or its cable. For a description of the error code in
the "tbuf" register. See the DHB32 documentation.

dmb%d: Internal Error. tbuf = Ox%x
Indicates that the DHB32 detected an internal error. For a description of the error
code in the "tbuf" register. See the DHB32 User Guide.

Special Files 4-33

dhb(4)

Files

/dev/tty??

/dev/ttyd? (modem lines only)

See Also
tty(4), MAKEDEV(8), dmbsp(4)

4-34 Special Files

dhq(4)

Name
dhq - DHQll communications interface

Syntax
device dhuO at uba? csr 0160440 flags Ox?? vector dhurint dhuxint

Description
A DHQll provides eight communication lines with modem control.

Each line attached to the DHQ 11 communications multiplexer behaves as described
in tty(4). Input and output for each line can be set independently to run at any of
16 speeds. See t t y(4) for the coding.

Bit i of flags can be specified for a DHQ 11 to say that a line is not properly
connected and that the line should be treated as hardwired with carrier always
present. Thus, specifying "flags Ox04" in the specification of dhuO would cause the
third line to be treated in this way.

NOTE

The dhq driver operates under the control of the dhu driver.

Diagnostics

Files

dhu%d %d: DMA ERROR
The indicated channel failed to transfer DMA data within 21.3 microseconds of the
bus request being acknowledged or there was a memory parity error.

dhu%d: DIAG. FAILURE
The DHQl1 failed the diagnostics that run at initialization time.

dhu %d: recv. fifo overflow
The character input fifo overflowed before it could be serviced. This can happen if a
hard error occurs when the CPU is running with elevated priority. Interrupts are
disabled, and the system then prints. a message on the console.

dhu%d: DHU HARDWARE ERROR. TX.DMA.START failed
The dhq failed to clear the start bit. Normally, this is cleared to signal that a DMA
transfer has completed.

/dev/tty??

/dev/ttyd? Dialups

See Also
tty(4), MAKEDEV(8)

Special Files 4-35

VAX dhu(4)

Name
dhu - DHUll communications interface

Syntax
device dhuO at uba? csr 0160440 flags Ox???? vector dhurint dhuxint

Description
A DHUll provides 16 communication lines with modem control.

Each line attached to the DHUll communications multiplexer behaves as described
in tty(4). Input and output for each line can be set independently to run at any of
16 speeds. See tty(4) for the coding.

Bit i of flags can be specified for a DHUll to say that a line is not properly
connected and that the line should be treated as hard-wired with carrier always
present. Thus, specifying "flags Ox0004" in the specification of dhuO would cause
the third line tty02 to be treated in this way.

Diagnostics

Files

dhu%d %d: DMA ERROR
The indicated channel failed to transfer DMA data within 21.3 microseconds of the
bus request being acknowledged or there was a memory parity error. This is often
followed by a UNIBUS adapter error, which occurs most frequently when the
UNIBUS is heavily loaded and when devices such as rk07s, which monopolize the
bus, are present.

dhu%d: DHU HARDWARE ERROR. TX.DMA.START failed
The dhu failed to clear the start bit. Normally, this is cleared to signal that a DMA
transfer has completed.

dhu%d: DIAG. FAILURE
The DHU11 failed the diagnostics that run at initialization time.

dhu%d: recv. fifo overflow The character input fifo overflowed before it could be
serviced. This can happen if a hard error occurs when the cpu is running with
elevated priority. Interrupts are disabled, and the system then prints a message on the
console.

/dev/tty??

/dev/ttyd? (modem lines only)

See Also
tty(4), MAKEDEV(8)

4-36 Special Files

dhv(4)

Name
dhv - DHVII communications interface

Syntax
device dhuO at ubaO csr 0160440 flags Ox?? vector dhurint dhuxint

Description
A DHVII provides eight communication lines with partial modem control, adequate
for UNIX dialup use. Each line attached to the DHVII communications interface
behaves as described in tty(4) and can be set to run at any of 16 speeds. See
t t y(4) for the encoding.

Bit i of flags may be specified for a DHV to say that a line is not properly connected
and that the line should be treated as hardwired, with carrier always present. Thus,
specifying' 'flags Ox04" in the specification of dhuO would cause line tty02 to be
treated in this way.

The dhv driver normally interrupts on each input character.

NOTE

The cxa, cxb, cxy, dhv, and dhq devices operate under the control of
the dhu driver.

Diagnostics

Files

dhu%d: receive fifo overflow
The character input fifo overflowed before it could be serviced. This can happen if a
hard error occurs when the CPU is running with elevated priority, as the system will
then print a message on the console with interrupts disabled. This can cause a few
input characters to be lost to users. It is not serious.

dhu%d:%d DMA ERROR
A DMA transfer error has occurred. The dh v unit number and line number are
printed. This means that the channel indicated has failed to transfer DMA data
within 10.7 microseconds of the bus request being acknowledged or that there is a
memory parity error. This may cause a few output characters to be lost.

dhu%d: DIAG. FAILURE
This indicates that the dhv internal diagnostics have detected an error.

dhu%d: DHU HARDWARE ERROR. TX.DMA.START failed
The dhv failed to clear the start bit. Normally, this is cleared to signal that a DMA
transfer has completed.

/dev/tty??

/dev/ttyd? Dialups

Special Files 4-37

dhv(4)

See Also
tty(4), MAKEDEV(8)

4-38 Special Files

Name

Syntax

dkio - disk interface

#include <sys/fs.h>
#include <sys/ioctl.h>

dkio(4)

Description
This section describes the ioctl (input/output controller) codes for all disk drivers.
The basic ioctl (input/output controller) format is:

#include <sys/fs.h>
#include <sys/ioctl.h>
ioctl(fildes, code, arg)
struct pt *arg;

The applicable codes are:

DIOCGETPT

DIOCSETPT

DIOCDGTPT

DKIOCGET

DKIOCACC

Indicates to the driver to store the information in the current
partition table in the address pointed to by arg. The file
descriptor must be opened on the raw partitions, a or c.

DIOCGETPT does not change the partition table, but it does
provide access to the partition table information.

Indicates to the driver to modify the current partition table with
the information pointed to by arg.

The file descriptor must be opened on the raw partitions, a or c.

If the a or c partition is not mounted, only the partition table in
the driver is modified. This temporarily modifies the partition
table of the disk. The modifications are overwritten with the
default table when the disk is turned off and on.

If the a or c partition is mounted, both the partition table in the
driver and the partition table in the primary superblock are
modified. This permanently modifies the partition table of the
disk. This is not recommended. To change a partition table
permanently, use the chpt(8) command.

Indicates to the driver to store the default information of the
current partition table in the address pointed to by arg. The file
descriptor must be opened on the raw partitions a or c.

DIOCGETPT does not change the partition table, but it does
provide access to the partition table information.

Allows the user to receive generic disk information as defined in
<sys / devio . h> structdevget.

This code is defined in <sys/bbr. h>. It is currently unused.

Special Files 4-39

Rise

Rise dkio(4)

Restrictions
These restrictions apply when using the DIOCSETPT ioctl code:

• You must have superuser privileges.

• You cannot shrink or change the offset of a partition with a file system mounted
on it or with an open file descriptor on the entire partition.

• You cannot change the offset of the a partition.

Examples

Files

This example shows how to use the DIOGETPT ioctl code to print the length and
offset of the a partition of an RZ23 disk:

#include <sys/types.h>
#include <sys/param.h>
#include <sys/fs.h>
#include <sys/ioctl.h>

main ()
{

struct pt arg;
int fd, i;

/* Open the "a" partition of the disk you want to see */

if (fd = open ("/dev/rzOa",O)) < °) {
printf("Unable to open device\n");
exit(2) ;

/* Get the partition information */

if (ioctl(fd,DIOCGETPT,&arg) < °)
printf("Error in ioctl\n");

printf("Length\t\tOffset\n");

for (i = 0; i <= 7; i++) {
printf("%d\t\t%d\n",arg.pt_part[i] .pi_nblocks,

arg.pt-part[i] .pi_blkoff);

/dev/{r}rz???

See Also
rz(4), disktab(5), fstab(5), chpt(8), diskpart(8), fsck(8), MAKEDEV(8), mkfs(8),
tunefs(8)

4-40 Special Files

Name

Syntax

dIdo - disk interface

#include <sys/fs.h>
#include <sys/ioctl.h>

dkio(4)

Description
This section describes the ioctl (input/output controller) codes for all disk drivers.
The basic ioctl (input/output controller) format is:

#include <sys/fs.h>
#include <sys/ioctl.h>
ioctl(fildes, code, arg)
struct pt *arg;

The applicable codes are:

DIOCGETPT

DIOCSETPT

DIOCDGTPT

DKIOCGET

DKIOCACC

Indicates to the driver to store the information in the current
partition table in the address pointed to by arg. The file
descriptor must be opened on the raw partitions, a or c.

DIOCGETPT does not change the partition table, but it does
provide access to the partition table information.

Indicates to the driver to modify the current partition table with
the information pointed to by arg.

The file descriptor must be opened on the raw partitions, a or c.

If the a or c partition is not mounted, only the partition table in
the driver is modified. This temporarily modifies the partition
table of the disk. The modifications are overwritten with the
default table when the disk is turned off and on.

If the a or c partition is mounted, both the partition table in the
driver and the partition table in the primary superblock are
modified. This permanently modifies the partition table of the
disk. This is not recommended. To change a partition table
permanently, use the chpt(8) command.

Indicates to the driver to store the default information of the
current partition table in the address pointed to by arg. The file
descriptor must be opened on the raw partitions, a or c.

DIOCGETPT does not change the partition table, but it does
provide access to the partition table information.

Allows the user to receive generic disk information as defined in
<sys/devio. h> struct devget.

This code is defined in < s y s / bb r . h>. For an MSCP class
disk, the driver performs one of the following functions:

ACC REVEC

Special Files 4-41

VAX

VAX dkio(4)

DKIOCEXCL

ACC_SCAN

Forces revector of a specified disk block.

Scans an area of the disk reporting any forced
errors found and revectoring any bad blocks
found.

This command is used to set and clear the exclusive access
attribute on controllers that provide multihost support. In this
case arg.is an integer pointer. If the value of arg is 0 the
exclusive access attribute will be cleared. If the value of arg is
nonzero the exclusive access attribute will be set. The exclusive
access attribute is set on a per-drive basis and can not be used
selectively on individual partitions.

Attempts to clear the exclusive attribute will fail if the drive is
not currently set exclusive access to the issuing host or the
underlying controller or driver does not support multihost
exclusive access. Attempts to set the exclusive attribute will fail
if the drive is already exclusively associated with another host or
the underlying controller or driver does not support multihost
exclusive access.

Examples
This example shows how to use the DIOGETPT ioctl code to print the length and
offset of the a partition of an RA81 disk:

finclude <sys/types.h>
finclude <sys/param.h>
finclude <sys/fs.h>
finclude <sys/ioctl.h>

maine)
{

4-42 Special Files

struct pt arg;
int fd, i;

/* Open the "a" partition of the disk you want to see */

if (fd = Open("/dev/rraOa",O)) < 0) (
printf("Unable to open device\n");
exit(2);

/* Get the partition information */

if (ioctl(fd,DIOCGETPT,&arg) < 0)
printf("Error in ioctl\n");

printf("Length\t\tOffset\n");

for i == 0; i <= 7; i ++) {
printf("%d\t\t%d\n",arg.ptyart[i] .pi_nblocks,

arg.ptyart[i] .pi_blkoff);

dkio(4) VAX

Restrictions

Files

These restrictions apply when using the DIOCSETPT ioctl code:

• You must have superuser privileges.

• You cannot shrink or change the offset of a partition with a file system mounted
on it or with an open file descriptor on the entire partition.

• You cannot change the offset of the a partition.

• The exclusive access ioctl DKIOCEXCL is only supported on HSC version
V5.00 or later.

/dev/{r}ra???
/dev/{r}hp???
/dev/{r}rb???
/dev/{r}rd???
/dev/{r}rk???
/dev/{r}rl???
/dev/{r}rx???

See Also
hp(4), ra(4), rb(4), rd(4), rk(4), rl(4), rx(4), disktab(5), fstab(5), chpt(8), diskpart(8),
fsck(8), MAKEDEV(8), mkfs(8), tunefs(8)

Special Files 4-43

dmb(4)

Name

Syntax

dmb - DMB32 communications multiplexor

device dmbO at vaxbi? node? flags Ox????
vector dmbsint dmbaint dmblint

Description
A DMB32 device provides eight asynchronous communication lines with modem
control. The device driver also supports a connection to a line printer through the
line printer port of the DMB32.

Each line attached to a DMB32 serial line port behaves as described in tty(4).
Input and output for each line may independently be set to run at any of 16 speeds.
See t t y(4) for the encoding.

Bit i of flags can be specified for a d.rnb to say that a line should be treated as a
hardwired connection, with carrier always present. If bit i of flags is not set, the line
operates under full modem control. Modem lines will operate in accordance to the
CD (carrier detect), DSR (data set ready) and CTS (clear to send) leads. Thus,
specifying "flags Ox0004" in the specification of dmbO would cause line 2 on the
DMB32 to be treated as hardwired, with carrier always present. In this example, the
remainder of the lines will be modem control lines.

Restrictions
The DMB32 provides a synchronous port, but this is not supported by the driver.

Diagnostics
dmbinit: async lines unavailable
This message is produced at system boot time, if the DMB32 fails its internal self
test, indicating that the asynchronous lines have failed to configure.

dmbinit: printer port unavailable
This message is produced at system boot time, if the DMB32 fails its internal self
test, indicating that the printer port failed to configure.

dmb%d: fifo overflow
The character input fifo overflowed before it could be serviced. This can happen if
the CPU is running with elevated priority for too long a period of time. Overflow
errors can indicate that configuration constraints have been reached.

dmb%d: DMA Error. tbuf = Ox%x
A DMA output transfer failed. This can be caused by a memory error or an invalid
pte (page table entry). For a description of the error code in the' 'tbuf" register, see
the DMB32 documentation.

dmb%d: DMB Hardware Error. TX.DMA.START failed
The dmb failed to clear the start bit. Normally, this is cleared to signal that a DMA
transfer has completed.

4-44 Special Files

Files

dmb(4)

dmb%d: Modem Error. tbur = Ox%x
Indicates a problem with a modem or its cable. For a description of the error code in
the "tbur' register, see the DMB32 documentation.

dmb%d: Internal Error. tbur = Ox%x
Indicates that the DMB32 detected an internal error. For a description of the error
code in the "tbur' register, see the DMB32 documentation.

hffidmb%d: uio move error
An error occurred when copying a printer buffer from user space to system space.

dmbsint
The unsupported synchronous port of the DMB32 interrupted because of a problem.
Check your interrupt vectors for a conflict with another device.

/dev/tty??

/ dev /ttyd? (modem lines only)

See Also
tty(4), MAKEDEV(8), dmbsp(4)

Special Files 4-45

VAX dmbsp(4)

Name

Syntax

dmbsp - DMB32 serial printer interface

device dmbO at vaxbi? node? flags Ox????
vector dmbsint dmbaint dmblint

Description
A DMB32 supports a connection to a line printer through the line printer port of the
DMB32.

Bits 8-15 of the flags longword specify the number of columns per line on the line
printer. If 0 is specified, 132 columns are used. Bits 16-23 specify the number of
lines per page. If 0 is specified, 66 are used.

Diagnostics

Files

dmb%d: Line Printer Disconnected.
This message occurs if an open is performed on the printer port when the DMB32
detects that there is no printer cable connected.

dmb%d: Printer DMA Error
A DMA output transfer to the printer failed. This can be caused by a memory error
or an invalid pte (page table entry).

/dev/lp?

See Also
dmb(4), MAKEDEV(8)

4-46 Special Files

dmc(4)

Name
dmc - DMCll/DMRll communications interface

Syntax
device dmcO at ubaO csr 0167600 flags Ox???? vector dmcrint dmcxint

Description
The dIne interface provides access to a point-to-point communications device that
runs at either 1 Mb/s or 56 Kb/s. DMClls communicate using the DDCMP link
layer protocol.

The dIne interface driver also supports a DMRII providing point-to-point
communication running at data rates from 2.4 Kb/s to 1 Mb/s. DMRlls are a more
recent design and are preferred over DMClls.

The host address must be specified with an SIOCSIFADDR ioctl before the interface
will transmit or receive any packets.

Several protocols can be multiplexed over a drne link simultaneously. Conversely, a
dIne can be set up such that only one protocol family can use that device. If the
latter approach is taken, an SIOCST A TE ioctl must be issued by the protocol family
requesting device ownership. The family address must appear in the "if_family"
structure member, and "if_nomuxhdr" must be set. Before requesting ownership,
make sure that access to the device for all other protocol families is disabled.

The first byte of the flags word can be set up to indicate what mode the device should
use. The supported modes are 0 for full duplex, 1 for maintenance mode, and 2 for
half duplex. In addition, if the device is a dInr, the number of outstanding transmit
buffers can be increased from a default of 7 to a maximum of 24 buffers by
specifying a hexadecimal value in the second byte of the flags word. For example, if
the flags word is set to Ox1800, 24 transmit buffers will be allocated on a device set
up to run full duplex.

Restrictions
Note that maintenance mode should be used only to diagnose data link problems. It
is not intended to be used for normal data link traffic.

Diagnostics
dmcprobe: can't start device
The dIne could not be started at boot time.

dmcinit: DMC not running
The dIne unexpectedly stopped running.

dmc%d: done unalloc rbuf
The drne returned a receive or transmit buffer that was not allocated to it.

dmc%d: bad control 0/00

A bad parameter was passed to the dmcload routine.

dmc%d: unknown address type %d
An input packet was received that contained a type of address unknown to the driver.

Special Files 4-47

VAX

VAX dmc(4)

dmc%d: bad packet address Ox%x
The device returned a buffer with an unexpected buffer address.

dmc%d: can't handle af%d
The interface was handed a message that has addresses formatted in an unsuitable
address family. Formerly reported as dmc%d: af%d not supported.

dmc%d: internal loop back enable requested
The device is being put in internalloopback at a user's request.

dmc%d: internal loop back disable requested
The device is being taken out of internalloopback at a user's request.

DMC FATAL ERROR 0%0

DMC SOFT ERROR 0%0

See Also
inet(4f), intro(4n)

4-48 Special Files

dmf(4)

Name
dmf - DMF32 communications interface

Syntax
device dmfO at uba? csr 0160340 flags Ox????

vector dmfsrint dmfsxint dmfdaint dmfdbint dmfrint dmfxint dmflint

Description
The dmf device provides eight lines of asynchronous serial line support with full
modem control on two lines only. The device driver also supports a connection to a
line printer through the line printer port of the DMF32.

Each line attached to a DMF32 serial line port behaves as described in t t y(4). Input
and output for each line can be set independently to run at any of 16 speeds. See
t t y(4) for the encoding.

Bit i of flags can be specified for a dmf to say that a line is not properly
connected, and that the line should be treated as hardwired, with carrier always
present. Thus, specifying "flags OxOOf6" in the specification of dmfO would cause
lines 0 and 1 on the DMF32 to be treated as modem lines, while lines 2 through 7
are direct connect no-modem lines. It is important to specify lines 2 through 7 as
direct connect, because the device does not support modem control on these lines.

The dmf driver normally uses input silos and polls for input at each clock tick (10
milliseconds).

Caution

The DMF32 will discard incoming characters on the lines with full
modem control, if carrier is not present.

Restrictions
The DMF32 provides other services, but these are not supported by the driver.

Diagnostics
dmf%d: NXM line %d
No response from UNIBUS on a dma transfer within a timeout period. This is often
followed by a UNIBUS adapter error. This occurs most frequently when the
UNIBUS is heavily loaded and when devices that monopolize the bus, such as
RK07s, are present. It is not serious.

dmf% d: silo overflow
The character input silo overflowed before it could be serviced. This can happen if a
hard error occurs when the CPU is running with elevated priority, as the system then
prints a message on the console with interrupts disabled.

dmfsrint
dmfsxint
dmfdaint
dmfdbint
One of the unsupported ports of the DMF32 interrupted because of a problem.
Check your interrupt vectors for a conflict with another device.

Special Files 4-49

VAX

VAX dmf(4)

Files

Idev/tty??

I dev It tyd? (modem lines only)

See Also
dmfsp(4), tty(4), MAKEDEV(8)

4-50 Special Files

dmfsp(4) VAX

Name
dmfsp - DMF32 serial printer

syntax
device dmfO at uba? csr 0160340 flags Ox????

vector dmfsrint dmfsxint dmfdaint dmfdbint dmfrint dmfxint dmflint

Description
The dmf supports a connection to a line printer through the line printer port of the
DMF32.

Bits 8-15 of the flags longword are used to specify the number of columns per line
on the line printer. If 0 is specified, 132 columns are used. Bits 16-23 are used to
specify the number of lines per page. If 0 is specified, 66 lines are used.

Diagnostics

Files

dmf% d: Line Printer Disconnected
This message occurs if an open is performed on the printer port when the DMF32
detects that there is no printer cable connected.

dmf%d: Printer DMA Error
A DMA output transfer to the printer failed. This could be caused by a memory
error or an invalid pte (page table entry).

/dev/lp?

See Also
dmf(4), MAKEDEV(8)

Special Files 4-51

dmv(4)

Name
dmv - DMVll communications interface

Syntax
device dmvO at ubaO csr 0167600 flags Ox???? vector dmvrint dmvxint

Description
The dmv interface provides access to point-to-point communications that runs at
speeds from 2.4 Kb/s to 56 Kb/s. DMVlls communicate using the DDCMP link
layer protocol.

Several protocols can be multiplexed over a dmv link simultaneously. Conversely, a
dmv can be set up so that only one protocol family can use that device. If the latter
approach is taken, an SIOCST ATE ioctl must be issued by the protocol family
requesting device ownership. The family's address must appear in the "if_family"
structure member, and "if_nomuxhdr" must be set. Before requesting ownership, be
sure to disable access to the device for all other protocol families.

The first byte of the flag s word can be set up to indicate what mode the device
should use. If bit 0 is clear, the device operates in point-to-point DDCMP mode;
otherwise, it operates in maintenance mode. If bit 1 is clear, the device operates in
full duplex mode; otherwise, it operates in half duplex. If bit 2 is clear, the device
operates in dme compatibility mode; otherwise, it operates using version 4.0 of the
DDCMP protocol. The number of outstanding transmit buffers can be increased from
a default of 7 to a maximum of 24 buffers by specifying a hexadecimal value in the
second byte of the flags word. For example, if flags is set to Oxl800, 24
transmit buffers will be allocated on a device set up to run full duplex in dme
compatibility mode.

Restrictions
Note that maintenance mode should only be used to diagnose data link problems. It
is not intended to be used for normal data link traffic.

If specifying maintenance mode, do not set bit 2 of the flags word.

Diagnostics
dmvprobe: can't start device
The dmv could not be started at boot time.

dmvprobe: device failed diagnostics, octal failure code = %0
The dmv failed diagnostics at boot time.

dmvinit: can't place dmv%d into internalloopback
Unable to place the dmv into intemalloopback requested by user.

dmv%d: done unalloc rbuf
The device returned a receive or transmit buffer that was not allocated to it.

dmv%d: unknown address type %d
An input packet was received that contained a type of address uknown'to the driver.

4-52 Special Files

dmv(4)

dmv%d bad packet address Ox%x
The device returned a buffer with an unexpected buffer address.

dmv%d: unsolicited information response: ctl = %x, data = %x
The device interrupted the driver with an infonnation response when none was
requested.

dmvd % d: bad control % 0

A bad parameter was passed to the dmvload routine.

dmv%d: modem disconnect
The modem disconnected, or there was a loss of carrier while a packet was being
received.

dmv%d: buffer too small
The remote node sent a packet that was too large to fit in the allocated receive buffer.

dmv%d: receive threshold reported
The dmv reported a receive threshold error.

dmv%d: transmit threshold reached
The dmv reported a transmit threshold error.

dmv%d: select threshold reached
The dmv reported a select threshold error.

dmv%d: babbling tributary reported
The dmv reported a babbling tributary error.

dmv%d: streaming tributary reported
The dmv reported a streaming tributary error.

dmv%d: MOP mode entered while DDCMP was running
dmv%d: MOP mode entered while device was halted
The dmv has entered MOP mode.

dmv%d: non existent memory reported
The dmv accessed non-existent memory.

dmv%d: device queue overflow reported
The dmv reported a queue overflow.

dmv%d: invalid counter pointer
The dmv is reporting the contents of a counter when no request was made to do so.

dmv%d: can't handle af%d
Thedmv was handed a transmit message that has addresses fonnatted in an
unsuitable address family.

dmv%d: internal loop back enable requested
The device is being put in internalloopback at a user's request.

dmv%d: internalloopback disable requested
The device is being taken out of internalloopback at a user's request.

dmvwatch: dmv%d hung, bselO=%b, bsell = %b, bse12=%b
The device has not responded after a long period of time.

Special Files 4-53

VAX dmz(4)

Name
dmz - DMZ32 communications interface

Syntax
device drnzO at uba? csr 0160500 flags Ox????

vector drnzrinta drnzxinta drnzrintb drnzxintb drnzrintc drnzxintc

Description
The drnz device provides 24 lines of asynchronous serial line support with full
modem control on all lines.

Each line attached to a DMZ32 serial line port behaves as described in t t y(4).
Input and output for each line can be set independently to run at any of 16 speeds.
See tty(4) for the encoding.

You can specify bit i of flags for a drnz to say that a line is not properly connected
and that the line should be treated as hardwired, with the carrier always present. For
example, specifying "flags Ox000004" in the specification of dmzO would cause line
2 to be treated in this way.

Diagnostics

Files

drnz%d: NXM line %d
No response within a timeout period from UNIBUS on a DMA transfer. This is
often followed by a UNIBUS adapter error. This occurs most frequently when the
UNIBUS is heavily loaded and when devices, such as RK07s, which monopolize the
bus, are present. It is not serious.

drnz%d: silo overflow
The character input silo overflowed before it could be serviced. This can happen if a
hard error occurs when the CPU is running with elevated priority, as the system then
prints a message on the console with interrupts disabled.

/dev/tty??

/dev/ttyd? (modem lines only)

See Also
tty(4), MAKEDEV(8)

4-54 Special. Files

dpv(4)

Name
dpv - dpv data communications interface

Syntax
device dpvO at ubaO csr 0170000

Description

Files

The dpv data communications interface is used only with the 2780/3780 Terminal
Emulator. It has no programmable user interface.

When a system is generated for 2780/3780 emulation on Q-bus host machines, the
dpv data communications must be specified in the configuration file as dpvO.

To boot a Q-bus device having 2780/3780 emulation, the dpv must be specified in
r c . 10 cal. This interface is specified by removing the comment sign from the
command line already placed in the rc. local file:

#/etc/bscconfig dpvO bsc 1

The dpv data communications interface is used with the DF126 modem.

/etc/rc.local
/etc/bscconfig

See Also
2780e(1), 3780e(1), 2780d(8)

''\
\

Special Files 4-55

drum(4)

Name
drum - paging device

Description
This file refers to the paging device in use by the system. This may actually be a
subdevice of one of the disk drivers, but, in a system with paging interleaved across
multiple disk drives, it provides an indirect driver for the multiple drives.

Restrictions

Files

Reads from the drum are not allowed across the interleaving boundaries. Because
these occur only every .5Mbytes or so, and because the system never allocates blocks
across the boundary, this is usually not a problem.

Idev/drum

See Also
MAKEDEV(8)

4-56 Special Files

dup(4)

Name
dup - BISYNC data communications interface

Syntax
device dupO at ubaO csr 0170000 flags OxOf vector duprint dupxint

Description

Files

The dup data communications device is used only with the 2780/3780 Terminal
Emulator. It has no programmable user interface.

When a system is generated for 2780/3780 emulation on UNIBUS host machines, the
dup data communications device must be specified in the configuration file as dupO.

To boot a UNIBUS device having 2780/3780 emulation, the dup must be specified
in the rc .local file. This device is specified by removing the comment sign from
the command line already placed in the rc . local file:

#/etc/bscconfig dupO bsc 1

The dup data communications device is used with the DF126 modem.

/etc/rc.local
/etc/bscconfig

See Also
2780e(1), 3780e(1), 2780d(8)

\

Special Files 4-57

VAX

VAX dz(4)

Name

Syntax

dz - DZ11/DZ32 communications interface

device dzO at ubaO csr 0160100 flags Ox????
vector dzrint dzxint

Description
A DZ11/DZ32 interface provides eight communication lines with partial modem
control, adequate for dialup use. Each line attached to the DZ11/DZ32
communications interface behaves as described in tty(4) and can be set to run at
any of 16 speeds. See t t y(4) for the encoding.

Bit i of flags cwcanmay be specified for a dz to say that a line is not properly
connected, and that the line should be treated as hardwired, with carrier always
present. Thus, specifying' 'flags Ox04" in the specification of dz 0 would cause line
2 to be treated in this way.

The dz driver normally uses its input silos and polls for input at each clock tick (10
milliseconds), rather than taking an interrupt on each input character.

Diagnostics

Files

dz % d: silo overflow
The 64-character input silo overflowed before it could be serviced. This can happen
if a hard error occurs when the CPU is running with elevated priority, as the .system
then prints a message on the console, with interrupts disabled.

/dev/tty??

/ dev /ttyd? (modem lines only)

See Also
tty(4), MAKEDEV(8)

4-58 Special Files

Name

Syntax

dzq - DZQ 11 communications interface

device dzO at ubaO csr 0160100 flags Ox????
vector dzrint dzxint

dzq(4) VAX

Description
A DZQ 11 provides four communication lines with partial modem control, adequate
for dialup use. Each line attached to the DZQll communications interface behaves
as described in tty(4) and can be set to run at any of 16 speeds. See tty(4) for the
encoding.

Bit i of flags can be specified for a dzq to say that a line is not properly
connected, and that the line should be treated as hardwired, with carrier always
present. Thus, specifying "flags Ox04" in the specification of dzqO would cause
line 2 to be treated in this way.

The dzq driver normally uses its input silos and polls for input at each clock tick (10
milliseconds), rather than taking an interrupt on each input character.

Diagnostics

Files

dz%d: silo overflow
The 64-character input silo overflowed before it could be serviced. This can happen
if a hard error occurs when the· CPU is running with elevated priority, as the system
then prints a message on the console with interrupts disabled.

/dev/tty??

/ dev / t t yd? (modem lines only)

See Also
tty(4), MAKEDEV(8)

Special Files 4-59

VAX dzv(4)

Name

Syntax

dzv - DZV 11 communications interface

device dzO at ubaO csr 0160100 flags Ox????
vector dzrint dzxint

Description
A DZVll provides four communication lines with partial modem control, adequate
for dialup use. Each line attached to the DZVll communications interface behaves
as described in tty(4) and can be set to run at any of 16 speeds. See tty(4) for the
encoding.

Bit i of flags canbe specified for a dzv to say that a line is not properly
connected, and that the line should be treated as hardwired, with carrier always
present. Thus, specifying "flags Ox04" in the specification of dzvO would cause
line 2 to be treated in this way.

The dzv driver normally uses its input silos and polls for input at each clock tick (10
milliseconds), rather than taking an interrupt on each input character.

Diagnostics

Files

dz%d: silo overflow
The 64-character input silo overflowed before it could be serviced. This can happen
if a hard error occurs when the CPU is running with elevated priority, as the system
then prints a mess~ge on the console with interrupts disabled.

/dev/tty??

/dev/ttyd? (modem lines only)

See Also
tty(4), MAKEDEV(8)

4-60 Special Files

errlog(4)

Name
errlog - error logging interface

Description
This is a special character device that provides an interface to the error logging
daemon process, / et c / e 1 c s d . This device is also accessed by other system
utilities, such as the error log administration utility, / etc/ eli.

Restrictions

Files

This device should be readable and writable by root only, to protect access by
nonsystem processes. The major number assigned to this device must correlate with
the corresponding major number designation in the system kernel.

/dev/errlog

See Also
MAKEDEV(8)

Special Files 4-61

VAX fc(4}

Name
fc - V AXstation serial line interface

Syntax
device fcO at ibus? flags OxOf vector fcxrint

Description
This serial line interface is similar to the DZQll four-line communications
multiplexer. An f c interface provides four communication ports with partial modem
control on port 2, adequate for dialup use. Only port 2 supports modem control
(dialup access), all other ports must be operated as local lines. Each line attached to
the serial line controller behaves as described in t t y(4) and may be set to run at any
of 16 speeds. For the encoding, see tty(4). However, configuration requirements
dictate fixed speed operation of ports connected to the console terminal and graphics
devices.

The f c ports are configured as follows:

Port Usage
o Graphics device keyboard at 9600 BPS
I Mouse or tablet at 4800 BPS
2 Communications (with modem control)/local terminal
3 Serial printer port at 9600 BPS

A diagnostic console terminal may be connected to port 3. When the diagnostic
console is in use, the processor may be halted by pressing the BREAK key. The
selection of which port to use for the console is made during the processor's power
on sequence and cannot be changed after power on. If the Low End Graphics
Subsystem (LEGSS) console is present, it will be used; otherwise the device
connected to port 3 will be the console.

For the f c device, the flags should always be specified as "flags OxOf" (all 4 lines
hardwired). The state of port 2 may be established by specifying either modem or
nomodem as part of the / etc / tty s file entry for tty02; see tty s (5). The default
state of port 2 may be controlled by flags bit 2. Set' 'flags OxOf" for a hardwired
line, "flags OxOb" for dialup operation (wait for carrier).

The f c driver operates in interrupt-per-character mode (all pending characters are
flushed from the silo on each interrupt). Silo alarm mode is used by the DZQ11
driver at times of high input character traffic. This mode is not used by the f c
driver, due to the need to track mouse or tablet position changes in real time.

Restrictions
Speed must be set to 9600 BPS on the console port, 9600 BPS on the keyboard port,
and 4800 BPS on the mouse port. The fc driver enforces this restriction; that is,
changing speeds with the stty command may not always work on these ports.

Diagnostics
fcO: input silo overflow
The 64-character input silo overflowed before it could be serviced. This can happen
if a hard error occurs when the CPU is running with elevated priority, as the system

4-62 Special Files

Files

will then print a message on the console with interrupts disabled.

/dev/console
/dev/ttyOO
/dev/ttyOl
/dev/tty02
/dev/tty03
/dev/mouse
/dev /fcscreen

console terminal or graphics device
not used
local terminal - multiuser configuration only
dialup or local terminal
printer port or local terminal
mouse or tablet - workstation configuration only
console message window for workstations

See Also
console(4), devio(4), tty(4), ttys(5), MAKEDEV(8)

fc(4) VAX

Special Files 4-63

VAX fg(4)

Name
fg - VCB03 - Midrange VAX color video subsystem

Syntax
device fgO at ibus? flags OxOf vector fgvint

Description

Files

The VCB03 is a high-performance, full-page, double-buffered video subsystem
capable of Z-buffering. The device consists of a 2048 bits wide x 2048 bits long x 8
or 24 plane frame buffer, a set of proprietary video chips for bitmap modification and
video output, onboard VAX CPU and floating point accelerator, a 3D Transformation
Engine, 1280 wide x 1024 long 19-inch color video monitor, keyboard, and a mouse
or tablet.

The subsystem device driver supports a hybrid terminal with three minor devices.
The first device emulates a glass tty with a screen that appears as a 80-column by
60-row page that scrolls from the bottom. This device is capable of being configured
as the system console.

The second minor device number is reserved for the pointer. This device is a source
of pointer state changes. (A state change is defined as an XIY axis pointer movement
or button change.) When opened, the driver couples movements of the pointer with
the cursor. Pointer position changes are filtered and translated into cursor position
changes in an exponential manner. Rapid movements result in large cursor position
changes. All cursor positions are range checked to ensure that the cursor remains on
the display.

The third minor device is opened in the raw mode by default. Opening the third
device makes the driver function like a pseudo-tty in that the output destined for the
first minor device is channeled to the third instead.

The Hold Screen key is supported. The driver treats this key as if CTRL/S or
CTRL/Q is typed. Pressing the Hold Screen key suspends the output if it is not
already suspended. The output will be resumed by pressing this key again (if the
output was suspended).

/dev/console
/dev/fgO
/dev /fgscreen

See Also
fc(4), ttys(5), MAKEDEV(8)

4-64 Special Files

hp(4) VAX

Name
hp - MASSBUS disk interface

Syntax
disk bpO at mbaO drive 0

Description
Files with minor device numbers 0 through 7 refer to various portions of drive 0;
minor devices 8 through 15 refer to drive 1, and so forth. The standard device names
begin with 'hp' followed by the drive number and then a letter a-h for partitions 0-7
respectively. The character? stands here for a drive number in the range 0-7.

The block files access the disk with the system's normal buffering mechanism and
may be read and written without regard to physical disk records. There is also a
"raw" interface that provides for direct transmission between the disk and the user's
read or write buffer. A single read or write call results in exactly one I/O operation
and, therefore, raw I/O is considerably more efficient when many words are
transmitted. The names of the raw files conventionally begin with an extra 'r'.

In raw I/O, counts should be a multiple of 512 bytes (a disk sector). Similarly, seek
calls should specify a multiple of 512 bytes.

Standard DIGITAL drive types are recognized according to the MASSBUS drive
type register. The origin and size (in sectors) of the partitions on each drive are as
follows:

RM03 partitions
disk start
hp?a 0
hp?b 16000
hp?c 0
hp?d 49600
hp?e 65440
hp?f 121440
hp?g 49600

RM05 partitions
disk start
hp?a 0
hp?b 32832
hp?c 0
hp?d 341696
hp?e 358112
hp?f 414048
hp?g 341696
hp?h 99712

RP06 partitions
disk
hp?a
hp?b
hp?c
hp?d

start
o
15884
o
49324

length cyls
15884 0-99
33440 100-308
131680 0-822
15884 309-408
55936 409-758
10144 759-822
82144 309-822

length cyls
32768 0-53
66880 54-163
500384 0-822
15884 562-588
55936 589-680
86240 681-822
158592 562-822
241984 164-561

length cyls
15884 0-37
33440 38-117
3406700-814
15884 118-155

Special Files 4-65

VAX hp(4)

hp?e 65208 55936 156-289
hp?f 121220 219384290-814
hp?g 49324 291280 118-814

RM80 partitions
disk start length cyls
hp?a 0 15884 0-36
hp?b 16058 33440 37-114
hp?c 0 242606 0-558
hp?d 49910 15884 115-151
hp?e 68096 55936 152-280
hp?f 125888 120559 281-558
hp?g 49910 192603 115-558

RPOS partitions
disk start length cyls
hp?a 0 15884 0-37
hp?b 15884 33440 38-117
hp?c 0 1717980-410
hp?d 2242 15884 118-155
hp?e 65208 55936 156-289
hp?f 121220 50512 290-410
hp?g 2242 122408 118-410

RP07 partitions
disk start length cyls
hp?a 0 15884 0-9
hp?b 16000 66880 10-51
hp?c 0 10080000-629
hp?d 376000 15884 235-244
hp?e 392000 307200 245-436
hp?f 699200 308650437-629
hp?g 376000 631850 235-629
hp?h 83200 291346 52-234

It is unwise for all of these files to be present in one installation, because there is
overlap in addresses and protection becomes difficult. The hp?a partition is normally
used for the root file system, the hp?b partition as a paging area, and the hp?c
partition for pack-to-pack copying (it maps the entire disk). On disks larger than
about 205 Megabytes, the hp?h partition is inserted prior to the hp?d or hp?g
partition; the hp?g partition then maps the remainder of the pack. All disk partition
tables are calculated using the diskpart(8) program.

Restrictions
In raw I/O, read(2) and wr i te(2) truncate file offsets to 512-byte block boundaries,
and wri te scribbles on the tail of incomplete blocks. Thus, in programs that are
likely to access raw devices, read, wr i te, and 1 seek(2) should always deal in
512-byte multiples.

4-66 Special Files

hp(4)

Diagnostics

Files

The following messages are printed at the console and noted in the error log file:

hp%d%c: hard error sn%d
An unrecoverable error occurred during transfer of the specified sector of the named
disk partition. Either the error was unrecoverable, or a large number of retry attempts
(including offset positioning and drive recalibration) could not recover the error.
Additional register information may be gathered from the system error log file,
/usr/adm/syserr/syserr.<hostname>.

hp%d: write locked
The write protect switch was set on the drive when a write was attempted. The write
operation is not recoverable.

hp%d: not ready
The drive was spun down or off line when it was accessed. The I/O operation is not
recoverable.

During autoconfiguration, one of the following messages may appear on the console
indicating the appropriate drive type was recognized. The last message indicates the
drive is of an unknown type.

The following message is written to the system error log file only:

hp%d%c: soft ecc sn%d
A recoverable ECC error occurred on the specified sector of the named disk partition.
This happens normally a few times a week. If it happens more frequently than this,
the sectors where the errors are occurring should be checked to see if certain
cylinders on the pack or spots on the carriage of the drive or heads are indicated.

/dev/hp???
/dev/rhp???

See Also
dkio(4), nbuf(4), MAKEDEV(8), uerf(8)

Special Files 4-67

VAX

inet(4f)

Name

Syntax

inet - Internet protocol family

#include <sys/types.h>
#include <netinet/in.h>

Description
The Internet protocol family is a collection of protocols layered atop the Internet
Protocol (IP) transport layer and utilizing the Internet address fonnat. The Internet
family provides protocol support for the SOCK_STREAM, SOCK_DGRAM, and
socket types. The SOCK_RAW interface provides access to the IP protocol.

Addressing
Internet addresses are 4-byte quantities, stored in network standard fonnat (on this
system, these are word- and byte-reversed). The include file <netinet/in.h defines this
address as a discriminated union.

Sockets bound to the Internet protocol family utilize the following addressing
structure:

struct sockaddr_in {
short sin_family;

} ;

u_short sin-port;
struct in_addr sin_addri
char sin_zero[8];

Sockets may be created with the address INADDR __ ANY to effect "wildcard"
matching on incoming messages.

Protocols
The Internet protocol family comprises the IP transport protocol, Internet Control
Message Protocol (ICMP), Transmission Control Protocol (TCP), and User Datagram
Protocol (UDP). TCP is used to support the SOCK_STREAM abstraction, while
UDP is used to support the SOCK_DGRAM abstraction. A raw interface to IP is
available by creating an Internet socket of type SOCK_RAW. The ICMP message
protocol is not directly accessible.

See Also
tcp(4p), udp(4p), ip(4p)

4-68 Special Files

Name

Syntax

ip - Internet Protocol

#include <sys/socket.h>
#include <netinet/in.h>

s = socket(AF_INET, SOCK_RAW, 0);

ip(4p)

Description
The IP is the transport layer protocol used by the Internet protocol family. It can be
accessed through a "raw socket" when developing new protocols or special purpose
applications. IP sockets are connectionless and are normally used with the sendto
and recvfrom calls, though the connect(2) call can also be used to fix the
destination for future packets, in which case the read(2) or recv(2) and write(2)
or send(2) system calls can be used.

Outgoing packets automatically have an IP header prepended to them, based on the
destination address and the protocol number the socket is created with. Likewise,
incoming packets have their IP header stripped before being sent to the user.

Diagnostics
A socket operation fails with any of the following errors is returned:

[EISCONN] Tries to establish a connection on a socket which already has one,
or tries to send a datagram with the destination address specified
when the socket is already connected.

[ENOTCONN] Tries to send a datagram, but no destination address is specified
and the socket has not been connected.

[ENOBUFS] The system runs out of memory for an internal data structure.

[EADDRNOTAVAIL]

See Also

Makes an attempt to create a socket with a network address for
which no network interface exists.

send(2), recv(2), inet(4f), intro(4n)

Special Files 4-69

kmem(4)

Name
kmem - virtual main memory image

Description
The kmem special file is an image of the virtual main memory of the computer. It
may be used, for example, to examine (and even to patch) the running system.

Byte addresses in kmem are interpreted as virtual memory addresses. For VAXs, the
per-process data for the current process is at virtual address 7ffffOOO(16).

Restrictions
The kmem memory file is accessed one byte at a time.

Files
/dev/kmem

See Also
MAKEDEV(8)

4-70 SpeCial Files

kUmem(4) VAX

Name
kUmem - UNIBUS/Q-bus virtual memory interface

Description
The kUmem character special file is an image of the UNIBUS/Q-bus virtual memory
of the computer. It can be used, for example, to examine or patch virtual addresses
mapped to UNIBUS physical space.

Byte addresses in kUmem are interpreted as virtual memory addresses. References to
nonexistent locations cause errors to be returned.

Restrictions
The kUmem memory file is accessed one byte at a time.

Files
/dev/kUmem

See Also
MAKEDEV(8)

Special Files 4-71

In (4)

Name
In - Lance Ethernet interface

Syntax
device InO at ibus? vector Inintr

Description
The In interface provides access to a 10 Mb/s Ethernet network through the Lance
controller.

The host's Internet address is specified at boot time with an SIOCSIFADDR ioctl.
The In interface employs the address resolution protocol described in arp(4p) to
map dynamically between Internet and Ethernet addresses on the local network.

The interface normally tries to use a trailer encapsulation to minimize copying data
on input and output. This can be disabled for an interface by setting the
IFF _NOTRAILERS flag with an SIOCSIFFLAGS ioctl. Trailers are only used for
packets destined for Internet hosts.

The SIOCSPHYSADDR ioctl can be used to change the physical address of the
Lance. The SIOCRPHYSADDR ioctl can be used to read the physical address of the
Lance.

The SIOCADDMUL TI and SIOCDELMULTI ioctls can be used to add or delete
multicast addresses. The Lance recognizes a maximum of 12 multicast addresses.

The SIOCRDCTRS and SIOCRDZCTRS ioctls can be used to read or "read and
clear" the Ethernet driver counters. The argument to these two ioctls is a pointer to
a counter structure, ctrreq, found in <net/ if. h>.

The SIOCENABLBACK and SIOCDISABLBACK ioctls can be used to enable and
disable the interface loopback mode respectively.

Diagnostics
The diagnostic error messages contain relevant information provided by the Lance.

In%d: can't handle af%d
The interface was handed a message with addresses formated in an unsuitable address
family, and the packet was dropped.

In%d: memory error (MERR)
A memory parity error has occurred.

In%d: Inalloc: cannot alloc memory ..•
The In driver was unable to allocate memory for internal data structures.

In % d: initialization error
The In driver was unable to initialize the network interface.

In%d: SIOCADDMULTI fail, multicast list full
Too many multicast requests have been made.

4-72 Special Files

In (4)

See Also
arp(4p), inet(4f), intro(4n)

Special Files 4-73

10(4)

Name
10 - loop network interface

Syntax
pseudo-device loop

Description
The loop interface is a software loopback mechanism that can be used for
performance analysis, software testing, and/or local communication. By default, the
loopback interface is accessible at address 127.0.0.1 (nonstandard); this address may
be changed with the SIOCSIFADDR ioctl.

Diagnostics
lo%d: can't handle af%d
The interface was handed a message with addresses formatted in an unsuitable
address family; the packet was dropped.

See Also
intro(4n), inet(4t)

4-74 Special Files

Ip(4) VAX

Name
lp - LPll line printer interface

Syntax
device IpO at ubaO csr 0177514 flags Ox???? vector Ipintr

Description

Files

The Ip provides the interface to any of the standard DIGITAL line printers on an
LPll parallel interface. When it is opened or closed, a suitable number of page
ejects is generated. Bytes written are printed.

The unit number of the printer is specified by the minor device after removing the
low 3 bits, which act as per-device parameters. Only the lowest of the low three bits
is interpreted: if it is set, the device is treated as having a 64-character set, rather
than a full 96-character set. In the resulting half-ASCII mode, lowercase letters are
turned into uppercase and certain characters are approximated according to the
following table:

Character Printer Approximation

-t

t

+

The driver correctly interprets carriage returns, backspaces, tabs, and fonn feeds.
Lines longer than the maximum page width are truncated. The default page width is
132 columns. This can be overridden by specifying, for example, "flags Oxff" .

/dev/lp?

See Also
MAKEDEV(8)

Special Files 4-75

Ipv(4)

Name
lpv - LPV11 parallel line printer

Syntax
device IpO at ubaO csr 0177514 flags Ox???? vector Ipintr

Description

Files

The Ip provides the interface to any of the standard DEC line printers on an LPV11
parallel interface. When it is 'opened or closed, a suitable number of page ejects is
generated. Bytes written are printed.

The unit number of the printer is specified by the minor device after removing the
low 3 bits, which act as per-device parameters. Only the lowest of the low three bits
is interpreted: if it is set, the device is treated as having a 64-character set, rather
than a full 96-character set. In the resulting half-ASCII mode, lower case letters are
turned into upper case and certain characters are approximated according to the
following table:

Character Printer Approximation

of

T

+

The driver correctly interprets carriage returns, backspaces, tabs, and form feeds.
Lines longer than the maximum page width are truncated. The default page width is
132 columns. This can be overridden by specifying, for example, "flags Oxff" .

/dev/lp?

See Also
MAKEDEV(8)

4-76 Special Files

Name

Syntax

lqf - general purpose letter quality filter

/usr/lib/lpdfilters/lqf [-c] [-nlogin] [-hhost] [-wwidth] [-Inurn] [-iindent]
[accounting file]

Iqf(4)

Description
The lqf filter is used to filter text data destined for a letter quality printer,
specifically the Iqp02, but will work with any impact printer: LP25, LP26, LP27,
LA50, LA 75, LAlOO, LA120, LA210, and LGOI. The filter allows escape characters
and control sequences to pass through to the printer. The filter handles the device
dependencies of the printers and performs accounting functions. Accounting records
are written to the file specified by the af field in /etc/printcap at the time of
completion for each job.

The filter can handle plain ASCII files and files that have been preprocessed by
nroff. However, it ignores escape sequences requesting superscripting and
sUbscripting.

The lqf filter can be the specified filter in both the of and the if fields in the
/ etc / p r in t cap file. For further information, see printcap 5. When both fields
are specified, the of filter is used only to print the banner page. It is then stopped to
allow the if filter access to the printer. The if filter maintains accounting information.

If the of field is the only one specified, the filter is used to print the banner page. It
is then stopped and restarted. This allows the of filter to be used to maintain
accounting information.

If the if field is the only one specified, the banner page will be sent directly to the
printer. This is not a problem for most impact printers. For a more detailed
discussion on filters see the "Line Printer Spooler Manual" in The Supplementary
Documents.

Options
The arguments passed to the filter depend on its use. The of filter is called with the
following arguments:

Iqf -wwidth -Ilength
The width and length values come from the pw and pi fields in the
/ etc / p r i n t cap database. The if (or restarted of) filter is passed the
following arguments:

Iqf -c -ologin -hhost -wwidth -Inurn -iindent accounting file

The -c flag is optional, and supplied only when control characters are to be printed,
that is, when the -I option of lpr(1) is used to print the file. The -wand -I
arguments are the same as for the of filter. However, they may have different values
if the -w or -z options of p r(1) were used to print the file. The -0 and -h
arguments specify the login name and host name of the job owner. These arguments
are used to record accounting information. The -i option specifies the amount of
indentation to be used. The last argument is the name of the accounting file specified
from the af field in the / etc/printcap database.

Special Files 4-77

Iqf (4)

Diagnostics

Files

The If field (default "/dev/null") in the / etc/printcap database specifies error
logging file name.

/etc/printcap

/dev/lp?

Printer Capabilities Database

See Also
lpr(l), pr(l), printcap(5), lpd(8), MAKEDEV(8), pac(8)
Line Printer Spooler Manual

4-78 Special Files

Name

Syntax

Ita - Ita pseudoterminal interface

options LAT
pseudo-device lat
pseudo-device Ita[n]

Ita (4)

Description
The 1 t a pseudoterminal interface provides support for local area transport (LA T)
service. LA T service allows users to access remote nodes through the Ethernet.

To configure the LA T service for your machine, you must:

• Edit the system configuration file.

• Edit the / etc/ rc . local file.

• Create LA T special files.

• Edit the /etc/ttys file.

Instructions for performing these tasks are further documented in the Guide to
Ethernet Communications Servers.

Edit the Configuration File
Edit the configuration file to include the LAT option and the lat and 1 ta pseudo
devices. The configuration file to edit is located in
/sys/conf/vax/HOSTNAME or /sys/conf/mips/HOSTNAME (depending
on your processor), where HOSTNAME is the name of your host processor, in
uppercase.

The optional value for the 1 t a pseudo-device entry defines the number of LA T lines
to configure, a number between 1 and 256. If you do not specify a value, the default
is 16 lines. For example, if you want to configure 32 LA T devices into your system,
the entry for the LAT lines is:

pseudo-device lta32

To use the system as a load host for remote note maintenance functions such as
loading and controlling terminal servers, you must also include an options entry for
DLI and a pseudo-device entry for dli in the configuration file.

Edit the /etc/rc.local File
Edit the / etc/ rc .local file to restart LAT service automatically when the system
reboots. Add the following entry after the commands for local daemon startup:

if [-f /etc/lcp]; then
/etc/lcp -s > /dev/console & echo -n ' lat' >/dev/console

fi

Special Files 4-79

Ita (4)

Files

Create LAT Special Files
Create the LAT special files by running the MAKEDEV program from the / dev
directory and specifying the 1 t a option. You create one LA T special file for each
LAT device. For example, the following MAKEDEV commands create 32 device
special files for LAT devices:

:it cd /dev
:it MAKEDEV ItaO
:it MAKEDEV Ital

The option range is 1 to 7. The maximum number of LA T special files is 256.

Edit the letc/ttys File

Edit the / et c / tty s file to include entries for all the LA T special files you created
using the MAKEDEV command. For more information on how to add these entries,
see ttys(5).

/dev/tty??

/dev/ttyd?

Contains terminal devices defined to the machine.

Contains terminal devices defined to the machine (modem lines
only).

See Also
ttys(5), MAKEDEV(8)
Guide to Ethernet Communications Servers

4-80 Special Files

mem(4)

Name
mem - physical main memory image

Description
The mem is a character special file that is an image of the physical main memory of
the computer. It can be used, for example, to examine (and even to patch) the
running system.

Byte addresses in mem are interpreted as physical memory addresses. References to
nonexistent locations cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected results when
read-only or write-only bits are present.

Restrictions
The mem memory file is accessed one byte at a time. This may be inappropriate for
some device registers.

Files
/dev/mem

See Also
MAKEDEV(8)

Special Files 4-81

mtio(4)

Name
mtio - magnetic tape interface

Description
The / dev directory special files "rmtO{l,m,h}, ... , rmt31 {l,m,h"} refer to the mass
storage tape drives, that may exist on several different buses depending on the
bus/formatter/controller. On the BI, the TMSCP controllers, tms(4), are available.
On the DSSI bus the TMSCP controller tms(4) is available. On the Q-bus the
TMSCP controllers, tms(4), and the TSV05 controller, ts(4), are available. On the
MASSBUS, there are the TM03, tu(4), and TM78 formatters, mu(4). On the
UNIBUS, TS11 formatters, the TSU05 controller, ts(4), and the TMSCP controllers,
tms(4), are available. On VAXstation 2000s and MicroVAX 2000s, the TZK50
cartridge tape subsystem, stc(4), is available. On the SCSI bus, the SCSI tapes (see
t z (4)) are available. The following description applies to any mass storage tape
drive.

For both the "rewind" and norewind special files, described later, the unit number
represents a symbolic count that has no connection with the actual "plug" or
controller number of a particular tape drive. As each tape unit special file is created,
the number counts up from 0 to 31 for a total of 32 tape drives.

The special files "rmtOl, ... , rmt31l" are low density, "rmtOm, ... , rmt31m" are
medium density (when a drive is "triple density"), and "rmtOh, ... , rmt31h" are high
density. All these special files cause a loaded and on-line tape to automatically
rewind to the beginning-of-tape (BOT) when closed. Low, medium, and high density
are relative to the densities supported on a particular tape drive, for example, the
TS11(fSU05(TSV05 supports only 1600 bpi so its rewind namespace is "rmtOh, ... ,
rmt31h".

The special files "nrmtO{l,m,h}, ... , nrmt31 {l,m,h}" do not cause a rewind when
closed, regardless of density. When closed, the tape is positioned between two
tapemarks. The norewind namespace for the TS 11(TSU05(fSV05 example given
above is "nrmtOh, ... , nrmt31h".

The rmt and nrmt special files are available to all ULTRIX utilities that can perform
I/O to tape. A number of magnetic tape ioctl operations are available. The
operations come under two ioctl request groups. The MTIOCTOP ioctl is used to
issue tape operation commands. The MTIOCGET ioctl is used for getting status.

The mtop data structure defined in <sys/mtio. h> is passed as a parameter to the
MTIOCTOP ioctl. The mtop structure is:

struct mtop {
short mt_op;
daddr_t mt_count;

The mt_op field is used to specify the specific tape command to be performed. The
mt_count field is used to specify the number of times the command is to be
performed (where applicable).

4-82 Special Files

mtio(4)

The following are tape operations supported in the MTIOCTOP ioctl. These
commands are specified in the mt_op field of the mtop structure.

MTWEOF Writes an end-of-file to the tape. Physically, an end of file consists
of a tape mark.

MTFSF Repositions forward the number of files specified in the mt_count
field. This command repositions the tape forward the specified
number of tape marks. (Tape marks delimit files.) Upon
successful completion of this command, the tape is physically
positioned at the end of the specified number of tape marks.

MTBSF Repositions backward the number of files specified in the rot_count
field. This command repositions the tape backward the specified
number of tape marks. (Tape marks delimit files.) Upon
successful completion of the command, the tape is physically
positioned at the beginning of the specified number of tape marks.
Note that, due to the difference in the side of a tape mark that a
reposition command leaves the tape positioned, the MTFSF and
MTBSF commands are not strictly reciprocal operations. For
example, if a tape is initially positioned at the bottom of tape
(BOT) and the command MTFSF 1 is issued followed by the
command MTBSF 1, the tape does not return to the BOT position.
Instead, the tape is positioned on the BOT side of the first tape
mark.

MTFSR Repositions forward the number of records specified in the
mt_count field. This command returns a failure if a tape mark is
encountered. This error condition indicates that there were not as
many records remaining in the file as specified by the mt_count
parameter.

MTBSR Repositions backward the number of records specified in the
mt_count field. This command returns a failure if a tape mark is
encountered. This error condition indicates that there were not as
many records between the present position and the beginning of
the file as specified in the mt_count parameter.

MTREW Rewinds the tape. This command repositions to the beginning of
the tape.

MTOFFL Rewinds and unloads the tape.

MTNOP Does not perform any tape operation. Always returns success from
a tape file.

MTCACHE
Enables the use of controller-based write-back caching. Some tape
controllers support caching as a performance enhancement.
Caching can speed up tape transfer operations by keeping the unit
streaming more effectively. When using cached mode of
operation, the MTFLUSH command should be used to flush
cached data to media. See the description of MTFLUSH for more
details.

MTNOCACHE
Disables use of the controller's write-back cache. This mode of

Special Files 4-83

mtio(4)

MTCSE

operation can result in perfonnance degradation over cached mode.

Clears serious exception. Certain operations cause the tape unit to
go into a serious exception state. An example of this is when the
physical end-of-media foil is encountered. Typically, when a tape
is in serious exception state, all data transfer operations fail. In
order to acknowledge this exception condition and to allow further
operations to proceed, this command is provided.

MTFLUSH Flushes the controller's write-back cache. This command is
intended to be used in conjunction with the MTCACHE command.
When caching has been enabled using the MTCACHE command,
writes to the tape will receive completion status when the data has
been transferred to the controller's write-back cache. In the
unlikely event of controller error, it is possible that the data will
not be transferred to the physical media. To insure data integrity,
th~ MTFLUSH command is provided to force a flush of the cache
to physical media. Failure of this command with errno set to
ENXIO means that the drive does not support the flush command.
Failure with errno set to EIO indicates that the cache flush has
failed. In this case, the application should retry writing records
that have been written since the last successful MTFLUSH
command.

The global variable errno is set to ENXIO if the command specified in mt_op is not
recognized or not supported by the respective tape driver.

Each read or wr i te system call reads or writes the next record on the tape. In the
case of wr i te, the record has the same length as the buffer given. During a read,
the record size is passed back as the number of bytes read, provided it is no greater
than the buffer size. If the record is long, an error is returned. Seeks are ignored.
Positioning is done with a tape ioctl call. When n-buffered I/O is not being used (see
nbuf(4», a zero byte count is returned when a tape mark is read, but another read
fetches the first record of the next tape file. When n-buffered I/O is being used (see
nbuf(4», a zero byte count is returned when a tape mark is read, but another read
will not fetch the first record of the next tape file. In this situation, all outstanding
read requests return a status of 0. In order to allow reading to proceed to the next
file, the MTCSE command must be issued. When a file open for writing is closed,
two end-of-files (EOF) are written. If a tape reaches the end-of-tape (EOT) marker,
the ENOSPC errno value is set.

Each read or wr i te system call causes the file offset associated with the device
special file to be incremented. This file offset is reset to ° when the file is closed. If
a program does an unusually large number or reads and writes to the tape, it is
possible to cause the file offset to be incremented beyond the maximum allowable
value. When this happens, any further read or wri te system calls fail with an
error number of EINV AL. This situation can only occur if the tape is read or written
to several times over, using repositioning commands such as MTREW to reposition
backwards on the tape. It is recommended that any application which expects to
make numerous passes over the tape use the lseek system call to reset the file offset
to zero, for example, Iseek(fd,O,O)

4-84 Special Files

mtio(4)

Restrictions

Files

For SCSI tapes on VAX systems, the maximum tape record length is limited to 16K
bytes (K = 1024).

For SCSI tapes on both V AX and RISC systems, the MTCACHE, MTNOCACHE,
and MTFLUSH ioctls are not supported.

/dev/rmt???
/dev/nrmt???

See Also
Iseek(2), mu(4), scsi(4), stc(4), tms(4), ts(4), tu(4), tz(4), MAKEDEV(8)

Special Files 4-85

VAX mu(4)

Name

Syntax

mu - TM78!fU78/9 magnetic tape interface

master mtO at mba? drive?
tape muO at mtO slave 0

Description
Prior to Version 2.0, this device was referenced by mt(4).

The TM78!fU78/9 combination provides a standard tape drive interface as described
in mtio(4). Only 1600 and 6250 bpi are supported; the TU78/9 runs at 125 ips and
autoloads tapes.

Restrictions
Only the raw tape is supported.

Diagnostics

Files

mu%d: no write ring.
An attempt was made to write on the tape drive when no write ring was present.

mu%d: not on line.
An attempt was made to access the tape while it was off line.

mu%d: hard error bn%d.
A tape error occurred at block hn. When possible, the driver will have retried the
operation that failed several times before reporting the error. Additional register
information may be gathered from the system error log file,
/usr/adm/syserr/syserr.<hostname>.

mu%d: blank tape.
An attempt was made to read a blank tape (a tape without even end-of-file marks).

mu%d: off line.
During an I/O operation, the device was set off line.

/dev/rmt???
/dev/nrmt???

See Also
mtio(4), nbuf(4), MAKEDEV(8), uerf(8)

4-86 Special Files

Name

Syntax

nbuf - select multiple-buffer operation to a raw device

#include <sys/ioctl.h>

ioctl(d, FIONBUF, count)
int d;
int *count;

status=ioctl(d, FIONBDONE, buffer)
int d, status;
char **buffer;

nbuf(4)

Description
The I/O operations to raw devices are usually performed through a single buffer. This
means that the issuing process must wait for a buffer to complete before the process
can do anything else. An N-buffered I/O operation allows a process to begin an I/O
operation and continue doing something else until the operation has finished. Once
N-buffered operation is enabled, read(2) and wri te(2) acts as before except that
buffer completion is not guaranteed when the call returns. If the operation starts
without errors, read(2) and wri te(2) return as if the operation were successful.
That is, the number of requested bytes have transferred and file pointers are updated.
On read operations, the process must not use the contents of the started buffer until
the buffer actually completes. On write operations, the process must not reuse the
buffer until the operation actually completes. A second ioct 1 is used to check the
status of previously issued N-buffered read/write requests to determine when the
operation has really completed.

N-buffered I/O is used through a set of ioctl calls. Setting the request argument in
an ioctl call to FIONBUF enables count buffers to be used with the raw device
associated with the file descriptor d. If count is zero, the N -buffered operation is
terminated and any pending buffers are completed. A count less than zero is invalid.
Any started I/O buffer's status is checked by the ioctl call with the request
argument set to FIONBDONE, with the address of the buffer used as an argument.
The status field returns the actual byte count transferred or any error encountered on
the I/O operation. The FIONBDONE ioctl must be called before re-using a buffer.
FIONBDONE blocks the process until the given buffer completes (unless FNDELA Y
has been specified with fcntl(2), at which point EWOULDBLOCK is returned). In
addition, a signal can be generated whenever a buffer completes, if FIOASYNC has
been specified with fcntl(2).

The select(2) call is also useful in checking on the status of pending buffers. The
select(2) call returns immediately if less than count operations have been started
on an N-buffered channel. Otherwise, select blocks the specified amount of time
for a buffer to become done. At this point, FIONBDONE must be used to return
actual status of the pending buffer.

Special Files 4-87

nbuf(4)

Diagnostics
The ioctl call fails if one or more of the following are true:

[EBADF]

[ENOTIY]

[ENOTIY]

[EINVAL]

See Also

The d argument is not a valid descriptor.

The d argument is not associated with a character special device.

The specified request does not apply to the kind of object which
the descriptor d references.

The request or argp argument is not valid. Returned for
FIONBDONE, if requested buffer was never started. Also returned
for FIONBUF, if this device does not support N-buffered I/O.

fcnt1(2), ioct1(2), select(2)

4-88 Special Files

ni (4)

Name
ni - BVP DEBNT/NI interface

Syntax
controller aie? at vaxbi? node?
device bvpniO at aie? vector bvpniintr

Description
The ni driver provides access to a 10 Mb/s Ethernet network through the NI port of
the DEBNT controller. The DEBNT also has a tape port that shares the controller
structure with the NI port.

The host's Internet address is specified at boot time with an SIOCSIFADDR ioctl.
The ni driver employs the Address Resolution Protocol described in arp(4p) to
dynamically map addresses on the local network between Internet and Ethernet.

The driver normally tries to use a "trailer" encapsulation to minimize copying data
on input and output. This can be disabled for an interface by setting the
IFF _NOTRAILERS flag with an SIOCSIFFLAGS ioctl. Trailers are only used for
packets destined for Internet hosts.

The SIOCSPHYSADDR ioctI can be used to change and SIOCRPHYSADDR can be
used to read the physical address of the NI. SIOCADDMUL TI and
SIOCDELMUL TI can be used to add or delete multicast addresses. The NI supports
a maximum of 32 multicast addresses. The argument to the latter ioctls is a pointer to
an ifreq structure found in <net/if.h>.

SIOCCRDCTRS and SIOCRDZCTRS ioctIs can be used to "read" or "read and
clear" network counters. The argument to the latter two ioctls is a pointer to a
counter structure "ctrreq found in <net/if.h>.

The ioctls SIOCENABLBACK and SIOCDISABLBACK can be used to enable and
disable the interface loopback mode respectively.

Restrictions
The PUP protocol family is not supported.

Diagnostics
ni % d in wrong state
DEBNT is unable to be attached during autoconfiguration time, because it is not in
the undefined state.

ni % d cannot initialize
DEBNT failed to become initialized after a request to become initialized.

nid % d cannot enable
DEBNT failed to become enabled after a request to become enabled.

reset ni%d %x %x %x %x
DEBNT has requested a software reset. Values of port control, port status, port error,
and port data are given to help identify what caused the reset request.

Special Files 4-89

VAX

VAX ni (4)

ni %d SUME error detected %x %x %x %x
Some error has been detected. Values of port error, port data, port status, and port
control are given to help identify the cause of the error.

ni%d cant handle af%d
A packet with an undefined protocol type has been sent to DEBNT.

ni % d multi failed, multicast list full
Too many multicast requests have been made.

See Also
arp(4p), inet(4f), intro(4n)

4-90 Special Files

Name
null - data sink

Description

Files

Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

/dev/null

See Also
MAKEDEV(8)

nulI(4)

Special Files 4-91

packetfilter (4)

Name

Syntax

packet filter, ip - Ethernet packet filter

options P ACKETFIL TER
pseudo-device packetfilter

Description
The packet filter pseudo-device driver provides a raw interface to Ethernets and
similar network data link layers. Packets received that are not used by the kernel (for
example, to support the IP and DEe net protocol families) are available through this
mechanism. The packet filter driver is kernel-resident code provided by the ULTRIX
operating system. The driver appears to applications as a set of character special
files, one for each open packet filter application. (Throughout this reference page, the
word file refers to such a character special file.)

You create the minor device files with the MAKEDEV(8) script using these
commands:

cd /dev
MAKEDEV pfilt

A single call to MAKEDEV with an argument of p f i 1 t creates 64 character special
files in /dev/pf, which are named pfiltnnn, where nnn is the unit number.
Successive calls to MAKEDEV with arguments ofpfiltl, pfilt2, and pfilt3
make additional sets of 64 sequentially numbered packet filters to a maximum of
256. The maximum number of packet filter special files files is limited to 256, which
is the maximum number of minor device numbers allowed for each major device
number. (See MAKEDEV(8) for more information on making system special files.)

For opening these special files, the UL TRIX operating system provides the
pfopen(3) library routine.

Associated with each open instance of a packet filter special file is a user-settable
packet filter "program" that is used to select which incoming packets are delivered
by that packet filter special file. Whenever a packet is received from the net, the
packet filter driver successively applies the filter programs of each of the open packet
filter files to the packet, until one filter program "accepts" the packet. When a filter'
accepts the packet, it is placed on the packet input queue of the associated special
file. If no filters accept the packet, it is discarded. The format of a packet filter is
described later.

Reads from these files return the next packet from a queue of packets that have
matched the filter. If the read operation specifies insufficient buffer space to store the
entire packet, the packet is truncated and the trailing contents lost. Writes to these
files transmit packets on the network, with each write operation generating exactly
one packet.

4-92 Special Files

packetfilter (4)

The packet filter supports a variety of different Ethernet data-link levels:

10Mb Ethernet
Packets consist of fourteen or more bytes, with the first six bytes
specifying the destination Ethernet address, the next six bytes the source
Ethernet address, and the next two bytes specifying the packet type. (This
is the Standard Ethernet.)

3Mb Ethernet
Packets consist of four or more bytes, with the first byte specifying the
source Ethernet address, the second byte specifying the destination
Ethernet address, and the next two bytes specifying the packet type. (On
the network, the source and destination addresses are in the opposite
order.)

Byte-swapping 3Mb Ethernet
Packets consist of four or more bytes, with the first byte specifying the
source Ethernet address, the second byte specifying the destination
Ethernet address, and the next two bytes specifying the packet type. Each
short word (pair of bytes) is swapped from the network byte order. This
device type is provided only for backwards-compatibility.

The remaining words are interpreted according to the packet type. Note that 16-bit
and 32-bit quantities may have to be byte swapped (and possibly short-swapped) to be
intelligible on an UL TRIX system.

The packet filters treat the entire packet, including headers, as uninterpreted data.
The user must supply the headers for transmitted packets (although the system makes
sure that the source address is correct) and the headers of received packets are
delivered to the user. The packet filter mechanism does not know anything about the
data portion of the packets it sends and receives.

In addition to the FIONREAD ioctl request (described in the tty(4) reference
page), the application can apply several special ioctl requests to an open packet
filter file. The calls are divided into five categories: packet-filter specifying, packet
handling, device configuration, administrative, and miscellaneous.

Packet-filter Specification ioctl Request

The EIOCSETF ioctl is central to the operation of the packet filter interface,
because it specifies which packets the application wishes to receive. It is used to set
the packet filter "program" for an open packet filter file, and is of the form:

ioctl (fildes, EIOCSETF, filter)
struct enfil ter *filter

The enfil ter stsructure is defined in <net/pfil t . h> as:

struct enfilter
{

} ;

u_char enf_Priority;
u char enf_FilterLen;
u_short enf_Filter[ENMAXFILTERS];

A packet filter consists of a priority, the filter command list length (in shortwords),
and the filter command list itself. Each filter command list specifies a sequence of
actions that operate on an internal stack. Each shortword of the command list
specifies an action and a binary operator.

Special Files 4-93

packetfilter (4)

Command List Actions

The action can be one of the following:

ENF PUSHLIT
Pushes the next shortword of the command list on the stack.

ENF _PUSHWORD+N
Pushes shortword N of the incoming packet on the stack.

ENF PUSHZERO
Pushes a zero. Is slightly faster than ENF _PUSHLIT with an explicit
literal.

ENF PUSHONE
Pushes a one. Is slightly faster than ENF _PUSHLIT with an explicit
literal.

ENF PUSHFFFF
Pushes OxFFFF. Is slightly faster than ENF _PUSHLIT with an explicit
literal.

ENF PUSHOOFF
- Pushes OxOOFF. Is slightly faster than ENF _PUSHLIT with an explicit

literal.

ENF PUSHFFOO
- Pushes OxFFOO. Is slightly faster than ENF _PUSHLIT with an explicit

literal.

ENF NOPUSH
Defined as zero.

Binary Operators

When both an action and an operator are specified in the same shortword, the action
is performed, followed by the operation. You can combine an action with an
operator using bitwise OR; for example,

((ENF_PUSHWORD+3) I ENF_EQ)

The binary operator, which can be one of the following, operates on the top two
elements of the stack and replaces them with its result:

ENF _EQ Returns true if the result is equal.

ENF_NEQ

ENF LT

ENF LE

ENF GT

ENF GE

ENF AND

ENF OR

4-94 Special Files

Returns true if the result is not equal.

Returns true if the result is less than.

Returns true if the result is less than or equal.

Returns true if the result is greater than.

Returns true if the result is greater than or equal.

Returns the result of the binary AND operation.

Returns the result of the binary OR operation.

packetfi Iter (4)

ENF XOR Returns the result of the binary XOR operation.

ENF NOP Defined as zero.

ENF CAND Returns false immediately if the result is false, and continues
execution of the filter otherwise. (Short-circuit operator)

ENF COR Returns true immediately if the result is true, and continues
execution of the filter otherwise. (Short-circuit operator)

ENF CNAND Returns true immediately if the result is false, and continues
execution of the filter otherwise. (Short-circuit operator)

ENF CNOR Returns false immediately if the result is true, and continues
execution of the filter otherwise. (Short-circuit operator)

The short-circuit operators are so called because they terminate the execution of the
filter immediately if the condition they are checking for is found, and continue
otherwise. All the short -circuit operators pop two elements from the stack and
compare them for equality. Unlike the other binary operators, these four operators do
not leave a result on the stack, even if they continue.

Use the short-circuit operators whenever possible, to reduce the amount of time spent
evaluating filters. When you use them, you should also arrange the order of the tests
so that the filter will succeed or fail as soon as possible. For example, checking a
word in an address field of an Ethernet packet is more likely to indicate failure than
the Ethernet type field.

The special action ENF _NOPUSH and the special operator ENF _NOP can be used
only to perform the binary operation or only to push a value on the stack. Because
both are defined to be zero, specifying only an action actually specifies the action
followed by ENF _NOP, and specifying only an operation actually specifies
ENF _NOPUSH followed by the operation.

After executing the filter command list, a nonzero value (true) left on top of the stack
(or an empty stack) causes the incoming packet to be accepted for the corresponding
packet filter file and a zero value (false) causes the packet to be passed through the
next packet filter. If the filter exits as the result of a short-circuit operator, the top
of-stack value is ignored. Specifying an undefined operation or action in the
command list or performing an illegal operation or action (such as pushing a
shortword offset past the end of the packet or executing a binary operator with fewer
than two shortwords on the stack) causes a filter to reject the packet.

To resolve problems with overlapping or conflicting packet filters, the filters for each
open packet filter file are ordered by the driver according to their priority (lowest
priority is 0, highest is 255). When processing incoming packets, filters are applied
according to their priority (from highest to lowest) and for identical priority values
according to their relative' 'busyness" (the filter that has previously matched the
most packets is checked first), until one or more filters accept the packet or all filters
reject it and it is discarded.

Normally once a packet is delivered to a filter, it is not presented to any other filters.
However, if the packet is accepted by a filter in nonexclusive mode (ENNONEXCL
set using EIOCMBIS, described in the following section), the packet is passed along
to lower-priority filters and may be delivered more than once. The use of
nonexclusive filters imposes an additional cost on the system, because it increases the
average number of filters applied to each packet.

Special Files 4-95

packetfi Iter (4)

The packet filter for a packet filter file is initialized with length 0 at priority 0 by
open(2), and hence, by default, accepts all packets in which no higher-priority filter
is interested.

Priorities should be assigned so that, in general, the more packets a filter is expected
to match, the higher its priority. This prevents a lot of checking of packets against
filters that are unlikely to match them.

The filter in this example accepts incoming RARP (Reverse Address Resolution
Protocol) broadcast packets.

The filter first checks the Ethernet type of the packet. If it is not a RARP (Reverse
ARP) . packet, it is discarded. Then, the RARP type field is checked for a reverse
request (type 3), followed by a check for a broadcast destination address. Note that
the packet type field is checked before the destination address, because the total
number of broadcast packets on the network is larger than the number of RARP
packets. Thus, the filter is ordered with a minimum amount of processing overhead.

struct enfilter f =
{

36, 0, /* priority and length */
ENF PUSHWORO + 6,
ENF_PUSHLIT, Ox3580,
ENF_CANO, /* Ethernet type == Ox8035 (RARP) */
ENF PUSHWORO + 10,
ENF_PUSHLIT, Ox0300,
ENF_CANO, /* reverse request type = 0003 */
ENF PUSHWORO + 0,
ENF_PUSHLIT, OxFFFF,
ENF_CANO, /* dest addr = FF-FF */
ENF PUSHWORO + 1,
ENF_PUSHLIT, OxFFFF,
ENF_CANO, /* dest addr = FF-FF */
ENF PUSHWORO + 2,
ENF_PUSHLIT, OxFFFF,
ENF_EQ /* dest addr = FF-FF */

} ;

Note that shortwords, such as the packet type field, are in network byte-order. The
literals you compare them to may have to be byte-swapped on machines like the
VAX.

4-96 Special Files

packetfilter (4)

By taking advantage of the ability to specify both an action and operation in each
word of the command list, you could abbreviate the filter to the following:

struct enfilter f =
{

36, 0, /* priority and length */
ENF_PUSHWORD + 6,
ENF_PUSHLIT I ENF_CAND,
Ox3580, /* Ethernet type == Ox8035 (RARP) */
ENF_PUSHWORD + 10,
ENF PUSHLIT I ENF_CAND,
Ox0300, /* reverse request type = 0003 */
ENF_PUSHWORD + 0,
ENF_PUSHFFFF I ENF_CAND, /* dest addr FF-FF */
ENF_PUSHWORD + 1,
ENF PUSHFFFF ENF_CAND, /* dest addr FF-FF */
ENF PUSHWORD + 2,
ENF PUSHFFFF ENF_EQ /* dest addr FF-FF */

} ;

Packet-Handling ioctl Requests
These ioctl requests control how the packet filter processes input packets and
returns them to the application process. The most useful of these requests set and
clear so-called "mode bits" for the file and are of this form:

i 0 c t 1 <fildes, code, bits)
u_short *bits;

In these calls, bits is a bitmask specifying which bits to set or clear. The applicable
codes are:

EIOCMBIS
Sets the specified mode bits.

EIOCMBIC
Clears the specified mode bits.

The bits are:

ENTSTAMP
If set, a received packet is preceded by a header structure (see the
description of ens t amp following) that includes a time stamp and other
information.

ENBATCH
If clear, each read(2) system call returns at most one packet. If set, a
read call might return more than one packet, each of which is preceded
by an enstamp header.

ENPROMISC
If set, this filter will be applied to promiscuously-received packets. This
puts the interface into "promiscuous mode" only if this has been allowed
by the superuser using the EIOCMAXBACKLOG ioctl call (described
later).

Special Files 4-97

packetfilter (4)

ENNONEXCL
If set, packets accepted by this filter will be available to any lower-priority
filters. If clear, no lower-priority filter will see packets accepted by this
filter.

ENHOLDSIG
If clear, means that the driver should disable the effect of EIOCENBS
(described later) once it has delivered a signal. If set (the default), the
effect of EIOCENBS persists.

The enstarnp structure contains useful information about the packet that
immediately follows it; in ENBA TCH mode, it also allows the reader to separate the
packets in a batch. It is defined in <net/pfilt .h> as:

struct enstamp {
u short ens_stamplen;

ens_flags;
ens_count;
ens_dropped;
ens_ifoverflows;
timevalens_tstamp;

} ;

u_short
u short
u_short
u_long
struct

The fields are:

ens _stamplen

ens_flags

ens count

The length of enstamp structure in bytes. The packet data follows
immediately.

Indicates how the packet was received. The bits are:

ENSF PROMISC
Received promiscuously (unicast to some other host).

ENSF BROADCAST
Received as a broadcast.

ENSF_MULTICAST
Received as a multicast.

ENSF TRAILER
Received in a trailer encapsulation. The packet has been rearranged
into header format.

The length of the packet in bytes (does not include the enstamp header).

ens_dropped
The number of packets accepted by this filter but dropped because the
input queue was full; this is a cumulative count since the previous
enstamp was read from this packet filter file. This count may be
completely wrong if the ENNONEXCL mode bit is set for this filter.

ens ifoverflows
- The total number of input overflows reported by the network interface

since the system was booted.

4-98 Special Files

packetfilter (4)

ens tstamp
- The approximate time the packet was received.

If the buffer returned by a batched read(2) contains more than one packet, the offset
from the beginning of the buffer at which each enstamp structure begins is an
integer multiple of the word-size of the processor. For example, on a V AX, each
ens t amp is aligned on a longword boundary (provided that the buffer address
passed to the read(2) system call is aligned). The alignment (in units of bytes) is
given by the constant ENALIGNMENT, defined in <net/pfil t. h>. If you have
an integer x, you can use the macro ENALIGN (x) to get the least integer that is a
multiple of ENAL I GNMENT and not less than x. For example, this code fragment
reads and processes one batch:

char *buffer = &(BigBuffer[O]);
int buflen;
int pktlen, stamplen;
struct enstamp *stamp;

buflen = read(f, buffer, sizeof(BigBuffer));
while (buflen > 0) {

stamp = (struct enstamp *)buffer;
pktlen = stamp->ens_count;
stamplen = stamp->ens_stamplen;
ProcessPacket(&(buffer[stamplen]), pktlen)i /* your code here */
if (buflen == (pktlen + stamplen))

breaki /* last packet in batch */
pktlen = ENALIGN(pktlen)i /* account for alignment padding */
buflen (pktlen + stamplen);
buffer += (pktlen + stamplen)i /* move to next stamp */

If a buffer filled by a batched read contains more than one packet, the final packet is
never truncated. If, however, the entire buffer is not big enough to contain a single
packet, the packet will be truncated; this is also true for unbatched reads. Therefore,
the buffer passed to the read(2) system call should always be big enough to hold the
largest possible packet plus an enstamp structure. (See the EIOCDEVP ioctl
request later in this reference page for information on how to determine the
maximum packet size. See also the EIOCTRUNCATE ioctl request for an example
that delivers only the desired number of bytes of a packet.)

Normally, a packet filter application blocks in the read system call until a received
packet is available for reading. There are several ways to avoid blocking indefinitely:
an application can use the select(2) system call, it can set a "timeout" for the
packet filter file, or it can request the delivery of a signal (see sigvec(2)) when a
packet matches the filter.

EIOCSETW
The packet filter interface limits the number of packets that can be queued
fo~ delivery for a specific packet filter file. Application programs can vary
this "backlog", if necessary, using the following call:

ioctl (fildes, EIOCSETW, maxwaitingp)
u_int *maxwaitingpi

The pointer maxwaitingp points to an integer containing the input queue
size to be set. If this is greater than the maximum allowable size (see
EIOCMAXBACKLOG later), it is set to the maximum. If it is zero, it is
set to a default value.

Special Files 4-99

packetfilter (4)

EIOCFLUSH
After changing the packet filter program, the input queue may contain
packets that were accepted under the old filter. To flush the queue of
incoming packets, use the following:

ioctl (fildes, EIOCFLUSH, 0)

EIOCTRUNCA TE
An application, such as a network load monitor, that does not want to see
the entire packet can ask the packet filter to truncate received packets at a
specified length. This action may improve performance by reducing data
movement.

To specify truncation, use:

ioctl (fildes, EIOCTRUNCATE, truncationp)
u _ in t * truncationp ;

The pointer truncationp points to an integer specifying the truncation
length, in bytes. Packets shorter than this length are passed intact.

This example, a revision of the previous example, illustrates the use of
EIOCTRUNCATE, which causes the packet filter to deliver only the first n bytes of a
packet, not the entire packet.

char *buffer = &(BigBuffer[O]);
int buflen;
int pktlen, stamplen;
struct enstamp *stampi
int truncation = SIZE_OF_INTERESTING PART OF PACKET;

if (ioctl(f, EIOCTRUNCATE, &truncation) < 0)
exit(1);

while (1) {
buflen = read(f, buffer, sizeof(BigBuffer»;
while (buflen > 0) {

stamp = (struct enstamp *)buffer;
pktlen = stamp->ens_count; /* ens count is untruncated length */
stamplen = stamp->ens_stamplen;

ProcessPacket(&(buffer[stamplen]), pktlen); /* your code here */

if (pktlen > truncation) /* truncated portion not in buffer */
pktlen = truncation;

if (buflen == (pktlen + stamplen»
break;

pktlen = ENALIGN(pktlen);
buflen (pktlen + stamplen);
buffer += (pktlen + stamplen);

/* last packet in batch */
/* account for alignment padding */

/* move to next stamp */

Two calls control the timeout mechanism; they are of the following fonn:

#include <net/time.h>

ioct 1 (fildes, code, tvp)

struct timeval *tvp;

4-100 Special Files

packetfilter (4)

The tvp argument is the address of a struct timeval containing the timeout
interval (this is a relative value, not an absolute time). The codes are:

EIOCGRTIMEOUT
Returns the current timeout value.

EIOCSRTIMEOUT
Sets the timeout value. When the value is positive, a read(2) call returns
a 0 if no packet arrives during the period. When the timeout value is zero,
reads block indefinitely (this is the default). When the value is negative, a
read(2) call returns a 0 immediately if there are no queued packets. Note
that the largest legal timeout value is a few million seconds.

Two calls control the signal-on-reception mechanism; they are of the following form:

ioctl (jildes, code, signp)
u_int *signp;

The signp argument is a pointer to an integer containing the number of the signal to
be sent when an input packet arrives. The applicable codes are:

EIOCENBS
Enables the specified signal when an input packet is received for this file.
If the ENHOLDSIG flag (see EIOCMBIS later) is not set, further signals
are automatically disabled whenever a signal is sent to prevent nesting,
and hence must be explicitly re-enabled after processing. When the signal
number is 0, this call is equivalent to EIOCINHS.

EIOCINHS
Disables signaling on packet reception. The pointer signp is ignored.
This is the default when the file is first opened.

Device Configuration ioctl Requests

EIOCIFNAME
Each packet filter file is associated with a specific network interface. To
find out the name of the interface underlying the packet filter file, use the
following:

#include <net/socket.h>
#include <net/if.h>

ioctl (jildes, EIOCIFNAME, ifr)
struct ifreq *ifr;

The interface name (for example, "deO") is returned in ifr->ifr _name;
other fields of the struct ifreq are not set.

EIOCSETIF
To set the interface associated with a packet filter file, use the following:

ioctl (jildes, EIOCSETIF, ifr)
struct ifreq *ifr;

The interface name should be passed ifr->ifr _name; other fields of the
struct ifreq are ignored. The name provided may be one of the actual
interface names, such as "deO'*U or qel", or it may be a pseudo-interface
name of the form "pfn", used to specify the nth interface attached to the
system. For example, "pfO" specifies the first interface. This is useful

Special Files 4-101

packetfilter (4)

for applications that do not know the names of specific interfaces.
Pseudo-interface names are never returned by EIOCIFNAME.

EIOCDEVP
To get device parameters of the network interface underlying the packet
filter file, use the following:

ioctl (fildes, EIOCDEVP, param)
struct endevp *param;

The endevp structure is defined in <net /pf i 1 t . h> as:

struct endevp {
u_char end_dev_type;
u char end_addr_len;
u_short end_hdr_len;
u_short end_MTU;
u char end_addr[EN_MAX_ADDR_LEN];
u_char end_broadaddr[EN_MAX_ADDR_LEN];

} ;

The fields are:

end _ dey _type

end addr len - -

end hdr len

end MTU

end addr

end broadaddr

Specifies the device type: ENDT _3MB,
ENDT_BS3MB, or ENDT_10MB.

Specifies the address length in bytes (for example,
1 or 6).

Specifies the total header length in bytes (for
example, 4 or 14).

Specifies the maximum packet size, including
header, in bytes.

The address of this interface; aligned so that the
low order byte of the address is in end _ addr{O J .

The hardware destination address for broadcasts
on this network.

Administrative ioetl Requests

EIOCMAXBACKLOG
The maximum queue length that can be set using EIOCSETW depends on
whether the process is running as the superuser or not. If so, the
maximum is a kernel constant; otherwise, the maximum is a value that can
be set, by the superuser, for each interface. To set the maximum non
superuser backlog for an interface, use EIOCSETIF to bind to the
interface, and then use the following:

ioctl (fildes, EIOCMAXBACKLOG, maxbacklogp)
int *maxbacklogp;

The pointer maxbacklogp points to an integer containing the maximum
value. (If maxbacklogp points to an integer containing a negative value, it
is replaced with the current backlog value, and no action is taken.)

EIOCALLOWPROMISC

4-102 Special Files

Certain kinds of network-monitoring applications need to place the
interface in "promiscuous mode" , where it receives all packets on the

packetfilter (4)

network. Promiscuous mode can be set by the superuser with the
letclifconfig command, or the superuser can configure an interface to go
into promiscuous mode automatically if any packet filter applications have
the ENPROMISC mode bit set. To do so, use EIOCSETIF to bind to the
interface, and then use the following:

ioctl (fildes, EIOCALLOWPROMISC, allowp)
int *allowp;

The pointer allowp points to an integer containing a Boolean value
(nonzero means promiscuous mode is set automatically). (If allowp points
to an integer containing a negative value, it is replaced with the current
Boolean value, and no action is taken.)

EIOCMFREE
To find out how many packet filter files remain for opening, use this
ioctl, which places the number in the integer pointed to by mfree :

ioctl (fildes, EIOCMFREE, mfree)
int *mfree;

Miscellaneous ioctl Requests
Two calls are provided for backwards compatibility and should not be used in new
code. These calls are used to set and fetch parameters of a packet filter file (not the
underlying device; see EIOCDEVP). The forms for these call are:

#include <sys/types.h>
#include <net/pfilt.h>

ioctl (fildes, code, param)

struct eniocb *param;

The structure eniocb is defined in <net /pf i 1 t . h> as:

struct eniocb
{

} ;

u char
u char
u char
u char
long

en_addr;
en_maxfilters;
en_maxwaiting;
en_maxpriority;
en_rtout;

The applicable codes are:

EIOCGETP
Fetch the parameters for this file.

EIOCSETP
Set the parameters for this file.

All the fields, which are described later, except en_rtout, are read-only.

en_addr No longer maintained; use EIOCDEVP.

en maxfilters The maximum length of a filter command list; see
EIOCSETF.

Special Files 4-103

packetfilter (4)

en _ maxpriority

en rtout

The maximum number of packets that can be
queued for reading on the packet filter file; use
EIOCMAXBACKLOG.

The highest allowable filter priority; see
EIOCSETF.

The number of clock ticks to wait before timing
out on a read request and returning a zero length.
If zero, reads block indefinitely until a packet
arrives. If negative, read requests return a zero
length immediately if there are no packets in the
input queue. Initialized to zero by open(2),
indicating no timeout. (Use EIOCSRTIMEOUT
and EIOCGRTIMEOUT.)

Restrictions

Files

Because the packet filter include file <net / p f i 1 t . h> was originally named
<sys/ enet. h>, some filter applications may need to be updated.

A previous restriction against accessing data words past approximately the first
hundred bytes in a packet has been removed. However, it becomes slightly more
costly to examine words that are not near the beginning of the packet.

Because packets are streams of bytes, yet the filters operate on short words, and
standard network byte order is usually opposite from VAX byte order, the relational
operators ENF _LT, ENF _LE, ENF _GT, and ENF _GE are not particularly useful. If
this becomes a severe problem, a byte-swapping operator could be added.

/ dev /pf /pfil tnnn Packet filter special files

See Also
pfopen(3), de(4), In(4), ni(4), qe(4), xna(4), ifconfig(8), MAKEDEV(8), pfconfig(8c),
pfstat(8)
The Packet Filter: An Efficient Mechanism/or User-Level Network Code

4-104 Special Files

pm(4)

Name
pm - monochrome/color bitmap graphics

Syntax
device pmO at ibus? vector pmvint

Description

Files

The video subsystem provides a half page or full page, user-accessible bitmap display
for graphics. The subsystem consists of a 256 Kbytes (monochrome) or a 1 Mbyte
(color) block of dual port RAM, a mouse or tablet, a keyboard, and. a video monitor.

The subsystem device driver supports a hybrid terminal with three minor devices.
The first minor device emulates a glass tty with a screen that appears as an 80-
column by 56-row page that scrolls from the bottom. This device is capable of being
configured as the system console.

The second minor device is reserved for the mouse. This device is a source of mouse
state changes. (A state change is defined as an XIY axis mouse movement or button
change.) When opened, the driver couples movements of the mouse with the cursor.
Mouse position changes are filtered and translated into cursor position changes in an
exponential manner. Rapid movements result in large cursor position changes. All
cursor positions are range checked to ensure that the cursor remains on the display.

The third minor device provides an access path for console output that does not
disturb the graphics display. The caller can open the device / dev / xcons. When
this device is open, the graphics driver redirects console device output to the input
buffer of this device. This mechanism disables console output on the screen and
saves the output for later display. This preserves the graphic display integrity.

Input and output on the first and third minor devices are processed by the standard
line disciplines.

The Hold Screen key is supported. The graphics driver treats this key as if CTRL/S
or CTRL/Q had been pressed. Pressing the Hold Screen key suspends the output (if it
is not already suspended). To resume the output, press the Hold Screen key again.

/ dev / console Console terminal or graphics device

/ dev / mou s e Mouse or tablet graphics device

/dev/xcons Console message window for workstation

See Also
console(4), devio(4), tty(4), ttys(5), MAKEDEV(8)

Special Files 4-105

Rise

pty(4)

Name
pty - pseudoterminal driver

Syntax
pseudo-device pty[n]

Description
The pty driver provides support for a device-pair termed a pseudoterminal. A
pseudoterminal is a pair of character devices, a master device and a slave device.
The slave device provides processes with an interface identical to that described in
t t y(4). However, whereas all other devices that provide the interface described in
tty(4) have a hardware device of some sort behind them, the slave device has,
instead, another process manipulating it through the master half of the
pseudoterminal. That is, anything written on the master device is given to the slave
device as input and anything written on the slave device is presented as input on the
master device. The slave device can be opened multiple times, while the master half
can be opened only once.

If no optional n value is given defining the number of pseudoterminal pairs to be
configured, 16 pseudoterminal pairs are configured. All pseudoterminal lines should
have a corresponding entry in the /etc/ttys file. This must be done to insure that
logins that use pseudoterminals will be tracked in the utmp and wtmp files.

The following ioctl calls apply only to pseudoterminals:

TIOCSTOP
Stops output to a terminal (for example, like typing CTRL/S). Takes no
parameter.

TIOCSTART

TIOCPKT

4-106 Special Files

Restarts output (stopped by TIOCSTOP or by typing CTRL/S). Takes no
parameter.

Enable/disable packet mode. Packet mode is enabled by specifying (by
reference) a nonzero parameter and disabled by specifying (by reference) a
zero parameter. When applied to the master side of a pseudoterminal,
each subsequent read from the terminal will return data written on the
slave part of the pseudoterminal preceded by a zero byte (symbolically
defined as TIOCPKT _DA T A), or a single byte reflecting control status
information. In the latter case, the byte is an inclusive-or of zero or more
of the bits:

TIOCPKT _FLUSHREAD
whenever the read queue for the terminal is flushed.

TIOCPKT _FLUSHWRITE
whenever the write queue for the terminal is flushed.

TIOCPKT_STOP
whenever output to the terminal is stopped by typing CTRL/S.

TIOCPKT_START
whenever output to the terminal is restarted.

Files

pty(4)

TIOCPKT_DOSTOP
whenever the stop character is CTRL/S and the start character is
CTRL/Q.

TIOCPKT_NOSTOP
whenever the start and stop characters are not CTRL/S and/or
CTRL/Q.

This mode is used by rlogin(1c) and rlogind(8c) to implement a
remote-echoed, locally flow-controlled (using CTRL/S or CTRL/Q, or
both) remote login with proper back-flushing of output. It can be used by
other similar programs.

TIOCREMOTE
A mode for the master half of a pseudoterminal, independent of
TIOCPKT. This mode causes input to the pseudoterminal to be flow
controlled and not input edited (regardless of the terminal mode). Each
write to the control terminal produces a record boundary for the process
reading the terminal. In normal usage, a write of data is like the data
typed as a line on the terminal; a write of 0 bytes is like typing an end-of
file character. TIOCREMOTE can be used when doing remote line editing
in a window manager, or whenever flow-controlled input is required.

TIOCMASTER
Allows the master to have complete control over the pseudoterminal and
causes the slave side to sleep until the master relinquishes control. This is
useful in preventing changes on the pseudoterminal from going undetected
and being reset by the master.

/ dev / pt y? ? (master pseudoterminals)

/ dev /tty?? (slave pseudoterminals)

See Also
tty(4), MAKEDEV(8)

Special Files 4-107

VAX qd(4)

Name
qd - VCB02 (QDSS) video subsystem

Syntax
device qdO at ubaO csr 0177400 flags OxOf vector qddint qdaint qdiint

Description

Files

A VCB02 provides a half-page or full-page user-accessible bit map display for
graphics applications. The device consists of a 256kb Q22 bus memory array, a 15-
inch or 19-inch video monitor, and a VX10X-EA mouse.

The subsystem device driver supports a hybrid terminal with three minor devices.
The first device emulates a glass tty with a screen that appears as a 120-column by
80-row page that scrolls from the bottom. This device is capable of being configured
as the system console.

The second minor device is opened in the raw mode by default. Opening the second
device makes the driver function like a pseudoterminal in that the output destined for
the first minor device is channeled to the second instead .. Input and output on the
first two minor device numbers are processed by the standard line disciplines.

The third minor device number is reserved for the mouse. This device is a source of
mouse state changes. (A state change is defined as an X/Y axis mouse movement or
button change.) When opened, the driver couples movements of the mouse with the
cursor. Mouse position changes are filtered and translated into cursor position
changes in an exponential manner. Rapid movements result in large cursor position
changes. All cursor positions are range checked to ensure that the cursor remains on
the display.

If there is a VCB02 module at the standard address, the system will use it as the
system console. All input/output destined for / dev / console will use the VCB02
instead. (This is done by overwriting the device switch tables.) There is a second set
of device switch entries configured for the console that can be used as an additional
terminal or printer port by making a special device file using major number 38 and
minor number 0 and making the appropriate entry in / etc/t tys .

/dev/qd?
/dev/qconsole

See Also
tty(4), ttys(5), MAKEDEV(8)

4-108 Special Files

qe(4)

Name
qe - DEQNA/DELQA Ethernet interface

Syntax
device qeO at ubaO csr 0174440 vector qeintr

Description
The qe interface provides access to a 10 Mb/s Ethernet network through a
DEQNAlDELQA controller.

The host's Internet address is specified at boot time with an SIOCSIFADDR ioctl.
The qe interface employs the address resolution protocol described in arp(4p) to
dynamically map between Internet and Ethernet addresses on the local network.

The interface normally tries to use a "trailer" encapsulation to minimize copying
data on input and output. This can be disabled for an interface by setting the
IFF _NOTRAILERS flag with an SIOCSIFFLAGS ioctl. Trailers are only used for
packets destined for Internet hosts.

The SIOCSPHYSADDR ioctl can be used to change and SIOCRPHYSADDR can be
used to read the physical address of the board. SIOCADDMULTI and
SIOCDELMULTI can be used to add or delete multicast addresses. The board
recognizes at most 10 multicast addresses. The argument to the latter ioctls is a
pointer to an ifreq structure found in <net/if.h>.

SIOCRDCTRS and SIOCRDZCTRS ioctls can be used to read or "read and clear"
the board counters. The argument to the latter two ioctls is a pointer to a counter
structure "ctrreq" found in <net/ if. h>.

The ioctls SIOCENABLBACK and SIOCDISABLBACK can be used to enable and
disable the interface loopback mode.

Restrictions
The PUP protocol family is not supported.

Diagnostics
Various error messages can occur while transmitting or receiving packets. For
example,

qe%d: can't handle af%d
The interface was handed a message with addresses formatted in an unsuitable
address family; the packet was dropped.

See Also
arp(4p), inet(4f), intro(4n)

Special Files 4-109

VAX qv(4)

Name
qv - VCBOI (QVSS) video subsystem

Syntax
device qvO at ubaO csr 0177200 flags OxOf vector qvkint qvvint

Description
A VCBOI provides a half-page or full-page, user-accessible bitmap display for
graphics applications. The device consists of a 256 kbyte Q22 bus memory array, a
IS-inch or 19-inch video monitor, and a VXIOX-EA mouse.

The subsystem device driver supports a hybrid terminal with three minor devices.
The first device emulates a glass tty with a screen that appears as a I20-column by
80-row page that scrolls from the bottom. This device is capable of being configured
as the system console.

The second minor device is opened in the raw mode by default. Opening the second
device makes the driver function like a pseudoterminal in that the output destined for
the first minor device is channeled to the second instead. Input and output on the
first two minor device numbers are processed by the standard line disciplines.

The third minor device number is reserved for the mouse. This device is a source of
mouse state changes. (A state change is defined as an X/Y axis mouse movement or
button change.) When opened, the driver couples movements of the mouse with the
cursor. Mouse position changes are filtered and translated into cursor position
changes in an exponential manner. Rapid movements result in large cursor position
changes. All cursor positions are range checked to ensure that the cursor remains on
the display.

If there is a VCBOI module at the standard address, the system will use it as the
system console. All input/output destined for / dev / console will use the VCBOI
instead. This is done by overwriting the device switch tables. There is a second set
of device switch entries configured for the console that can be used as an additional
terminal or printer port by making a special device file using major number 38 and
minor number 0 and making the appropriate entry in / et c / tty s .

Restrictions

Files

The use of the bitmap as source or destination of I/O operations is not supported.
Minor devices 1 and 2 are read only and are the only ones supported by the
MAKEDEV script. Shared access by multiple processes is not constrained or
supported. The system only supports one VCBOI. The mouse device buffers the last
50 events (state changes). If the console port has been enabled as an additional
terminal it must be disabled before removing the VCBOI to avoid two login
processes on the same device.

/dev/qvscreen
/dev/mouse

4-110 Special Files

qv(4) VAX

See Also
tty(4), ttys(5), MAKEDEV(8)

Special Files 4-111

ra(4)

Name

Syntax

ra - MSCP disk interface

For UNIBUS, Q-bus:
controller udaO at uba?
controller uqO at udaO csr 0172150 vector uqintr
disk raO at uqO drive 0

For VAX BI:
controller kdbO at vaxbiO node 4
controller uqO at kdbO vector uqintr
disk raO at uqO drive 0
controller bvpsspO at aiol vector bvpsspintr
disk raO at bvpsspO drive 0

For MSI Bus:
adapter msiO at nexus?
controller dsscO at msiO msinode 0
disk raO at dsscO drive 3

For VAX CI/HSC:
adapter ciO at nexus?
adapter ciO at vaxbi? node?
controller hscO at ciO cinode 6
disk raO at hscO drive 3

Description
Prior to Version 2.0, this device was referenced by uda(4).

This is a driver for all DIGITAL MSCP disk controllers. All controllers
communicate with the host through a packet-oriented protocol termed the Mass
Storage Control Protocol (MSCP).

The following rules are used to determine the major and minor numbers that are
associated with an r a type disk. There is a range of major numbers used to represent
ra disks. Each major number represents 32 disks. For this reason, the first major
number associated with r a disks represents logical unit number 0 through logical
unit number 31. Similarly the second major number represents logical unit number
32 through logical unit number 63. The minor number is used to represent both the
logical unit number and partition. A disk partition refers to a designated portion of
the physical disk. To accomplish this, the 8-bit minor number is broken up into two
parts. The low three bits of the minor number specify a disk partition. These three
bits allow for the naming of eight partitions. The partitions are named a,b,c,d,e,f,g
and h. The upper five bits of the minor number specify the logical unit number
within a group of 32 disks.

The device special file names associated with r a disks are based on the following
conventions, which are closely associated with the minor number assigned to the
disk. The standard device names begin with r a for the block special file and r r a for
the raw (character) special file. Following the ra is the logical unit number and then
a letter, a through h, to represent the partition. Throughout this reference page, the
question mark (?) character represents the logical unit number in the name of the

4-112 Special Files

ra(4)

device special file. For example ra?b could represent raOb, ra1b, and so on.

The following examples illustrate how the logical unit number is calculated given the
major and minor number of an ra disk. For the device special file rra6a, the major
number is 60 and the minor number is 48. The partition is represented by the low 3
bits of the number 48. The low 3 bits will be 0 which specifies the "a" partition.
The upper 5 bits of 48 specifies the number 6. The major number is 60. Because 60
is the base major number, it represents the first group of 32 disks. For this reason,
there is no need to adjust the unit number for a high order grouping. Putting all these
pieces together reveals that the major/minor pair 60/48 refers to the "a" partition of
logical unit 6. As another example, the following computation determines the logical
unit number corresponding to the major/minor pair 62,49. The low 3 bits of the
minor number gives the number 1, which is the "b" partition. The upper 5 bits of
the minor number gives the number 6. The major number is 62. Subtracting 62
from the base major number of 60 gives a value of 2. This means that 2 groups of
32 disks preceed the unit in question. For this reason, the logical unit number is as
follows: (2 * 32) + 6 = 70. The figure 6 is from the minor number. Therefore, the
major/minor pair 62,49 refers to the "b" partition of logical unit number 70, or
rra70b.

The disk can be accessed through either the block special file or the character special
file. The block special file accesses the disk using the file system's normal buffering
mechanism. Reads and writes to the block special file can specify any size. This
avoids the need to limit data transfers to the size of physical disk records and to
calculate offsets within disk records. The file system may break up large read and
write requests into smaller fixed size transfers to the disk.

The character special file provides a raw interface which allows for direct
transmission between the disk and the user's read or write buffer. In contrast to the
block special file, reads and writes to the raw interface must be done on full sectors
only. For this reason, in raw I/O, counts should be multiples of 512 bytes (a disk
sector). In the same way, seek calls should specify a multiple of 512 bytes. A
single read or write to the raw interface results in exactly one I/O operation,
consequently raw I/O may be considerably more efficient for large transfers.
Multiply buffered I/O operations are possible to any raw MSCP device. (See
nbuf(4) for more information.)

Disk Support
This driver handles all disk drives that may be connected to an MSCP-based
controller. Consult the ULTRIX Software Product Description to determine which
controllers are supported for which CPU types and hardware configurations.

The starting location and length (in 512-byte sectors) of the disk partitions of each
drive are shown in the following table. Partition sizes can be changed by chpt(8).
For further information, see dkio(4).

RA60 partitions
disk start length

ra?a
ra?b
ra?c
ra?d
ra?e

o
32768
o
24298
295344

32768
50160
400176
52416
52416

Special Files 4-113

ra(4)

ra?f 347760 52415
ra?g 82928 160000
ra?h 24928 157247

RA 70 partitions
disk start length

ra?a 0 32768
ra?b 32768 66690
ra?c 0 547042
ra?d 0 99458
ra?e 0 281805
ra?f 99458 447583
ra?g 99458 182347
ra?h 281805 265236

RA80 partitions
disk start length

ra?a 0 32768
ra?b 32768 50160
ra?c 0 237212
ra?d 82928 51428
ra?e 134356 51428
ra?f 185784 51428
ra?g 82928 154284
ra?h 0 0

RA81 partitions
disk start length

ra?a 0 32768
ra?b 32768 66690
ra?c 0 891072
ra?d 323840 210538
ra?e 46996 210538
ra?f 680534 210538
ra?g 99458 160000
ra?h 259458 631614

RA82 partitions
disk start length

ra?a 0 32768
ra?b 32768 66690
ra?c 0 1216665
ra?d 99458 220U96
ra?e 319554 219735
ra?f 539289 437760
ra?g 99458 877591
ra?h 977049 239616

4-114 Special Files

ra(4)

RA90 partitions
disk start length

ra?a 0 32768
ra?b 32768 127072
ra?c 0 2409680
ra?d 159840. 420197
ra?e 580037 420197
ra?f 1000234 840393
ra?g 159840 1680787
ra?h 1840627 535526

RA92 partitions
disk start length
ra?a 0 32768
ra?b 32768 127072
ra?c 0 2940951
ra?d 159840 420197
ra?e 580037 420197
ra?f 1000234 840393
ra?g 159840 1680787
ra?h 1840627 1100324

RD31 partitions
disk start length

ra?a 0 15884
ra?b 15884 10024
ra?c 0 41560
ra?d 0 0
ra?e 0 0
ra?f 0 0
ra?g 25908 15652
ra?h 0 0

RD32 partitions
disk start length

ra?a 0 15884
ra?b 15884 15625
ra?c 0 83236
ra?d 31509 25863
ra?e 57372 25864
ra?f 0 0
ra?g 31509 51727
ra?h 0 0

Special Files 4-115

ra(4)

RD51 partitions
disk start length

ra?a 0 15884
ra?b 15884 5716
ra?c 0 21600
ra?d 0 0
ra?e 0 0
ra?f 0 0
ra?g 0 0
ra?h 0 0

RD52 partitions
disk start length

ra?a 0 15884
ra?b 15884 9766
ra?c 0 60480
ra?d 0 0
ra?e 0 50714
ra?f 50714 9766
ra?g 25650 34830
ra?h 15884 44596

RD53 partitions
disk start length

ra?a 0 32768
ra?b 32768 50160
ra?c 0 138672
ra?d 0 0
ra?e 0 0
ra?f 0 0
ra?g 82928 55744
ra?h 32768 105904

RD54 partitions
disk start length

ra?a 0 32768
ra?b 32768 50160
ra?c 0 311200
ra?d 82928 130938
ra?e 213866 97334
ra?f 0 0
ra?g 82928 228272
ra?h 0 0

4-116 Special Files

ra(4)

RF30 partitions
disk start length

ra?a 0 32768
ra?b 32768 50160
ra?c 0 293040
ra?d 82928 130938
ra?e 213866 79173
ra?f 0 0
ra?g 82928 210111
ra?h 0 0

RF31 partitions
disk start length

ra?a 0 32768
ra?b 32768 66690
ra?c 0 744400
ra?d 0 99458
ra?e 0 281805
ra?f 99458 644942
ra?g 99458 182347
ra?h 281805 462595

RF71 partitions
disk start length

ra?a 0 32768
ra?b 32768 66690
ra?c 0 781440
ra?d 0 99458
ra?e 0 281805
ra?f 99458 681982
ra?g 99458 182347
ra?h 281805 499635

RRD40 (read only) partitions
disk start length

ra?a 0 0
ra?b 0 0
ra?c 0 1171875
ra?d 0 0
ra?e 0 0
ra?f 0 0
ra?g 0 0
ra?h 0 0

Special Files 4-117

ra(4)

RRD50 (read only) partitions
disk start length

ra?a 0 15884
ra?b 15884 33440
ra?c 0 1171875
ra?d 131404 122993
ra?e 254397 122993
ra?f 377390 794485
ra?g 49324 82080
ra?h 131404 1040471

RX33 partitions
disk start length

ra?a 0 2400
ra?b 0 0
ra?c 0 2400
ra?d 0 0
ra?e 0 0
ra?f 0 0
ra?g 0 0
ra?h 0 0

RX50 partitions
disk start length

ra?a 0 800
ra?b 0 0
ra?c 0 800
ra?d 0 0
ra?e 0 0
ra?f 0 0
ra?g 0 0
ra?h 0 0

ESE20 partitions
disk start length

ra?a 0 15884
ra?b 15884 33440
ra?c 0 245760
ra?d 49324 130938
ra?e 180262 65498
ra?f 0 0
ra?g 49324 196436
ra?h 0 0

Usually the ra?a partition is used for the root file system, the ra?b partition as a
paging area. The ra?c partition for pack to pack copying because it ma,ps the entire
disk.

4-118 Special Files

Files
/dev/ra???
/dev/rra???

See Also
nbuf(4), dkio(4), chpt(8), MAKEDEV(8), uerf(8)

ra(4)

Special Files 4-119

VAX rb(4)

Name

Syntax

rb - IDC/RL02 disk interface

controller idcO at uba? csr 0175606 vector idcintr
disk rbO at idcO drive 0

Description
Files with minor device numbers 0 through 7 refer to various portions of drive 0;
minor devices 8 through 15 refer to drive 1, and so forth. The standard device names
begin with rb followed by the drive number and then a letter, a through h, for
partitions 0 through 7. The question mark (?) character stands here for a drive
number in the range 0 through 7.

The block files access the disk by the system's normal buffering mechanism and can
be read and written, without regard to physical disk records. There is also a raw
interface, which provides for direct transmission between the disk and the user's read
or write buffer. A single read or write call results in exactly one I/O operation.
Therefore, raw I/O is considerably more efficient when many words are transmitted.
The names of the raw files conventionally begin with an additional letter r, for
example, rrx2c.

Although RL02 disks have 256-byte sectors, the driver emulates 512-byte sectors.
Raw I/O counts should be multiples of 512 bytes (a normal disk sector). In the same
way, seek calls should specify a multiple of 512 bytes.

The origin and size (in 512-byte sectors) of the pseudodisks on each drive are as
follows:

RL02 partitions:

disk start length cyl

rb?a 0 15884 0-397
rb?b 15884 4520 398-510
rb?c 0 20480 0-511
rb?d 15884 4520 398-510
rb?g 0 20480 0-511

Restrictions
In raw I/O, read and wri te functions truncate file offsets to 512-byte block
boundaries; write overwrites the tail of incomplete blocks. Thus, in programs that
are likely to access raw devices, read(2), wri te(2), and lseek(2) should always
deal in 512-byte multiples.

Diagnostics
The following messages can appear at the console:

rb%%d%c: hard error sn%d
An unrecoverable error occurred during transfer of the specified sector 'of the
specified disk partition. Either the error was unrecoverable, or a large number of
retry attempts (including offset positioning and drive recalibration) could not recover

4-120 Special Files

Files

rb(4)

the error. Additional register information can be gathered from the system error log
file, /usr / adm/ syserr / syserr. <hostname>.

rb % d: write protected
The write protect switch was set on the drive when a write was attempted. The write
operation is not recoverable.

idc%d: lost interrupt
A timer watching the controller detected no interrupt for an extended period while an
operation was outstanding. This indicates a hardware or software failure. The error
causes a UNIBUS reset and retry of the pending operations. If the controller
continues to lose interrupts, this error will recur a few seconds later.

/dev/rb???
/dev/rrb???

See Also
dkio(4), nbuf(4), MAKEDEV(8)

Special Files 4-121

VAX

VAX rd(4)

Name
rd - RD31, RD32, RD53, RD54 Small VAX Winchester disks

Description

Files

The rd Winchester disks, when used either by the workstation or multiuser
configurations of the busless Small VAX processor, are supported by the SOC disk
driver. The SOC driver handles RD31, RD32, R053, and R054 disks on drives 0
and 1.

I dev I rd [0-1] [a-f]
Idev/rrd [0-1] [a-f]

See Also
sdc(4)

4-122 Special Files

Name

Syntax

rk - RK711/RK07 disk interface

controller hkO at uba? csr 0177440 vector rkintr
disk rkO at hkO drive 0

rk(4)

Description
Files with minor device numbers 0 through 7 refer to various portions of drive 0;
minor devices 8 through 15 refer to drive 1, and so forth. The standard device names
begin with "bk" followed by the drive number and then a letter, a through h, for
partitions 0 through 7. The question mark (?) character stands here for a drive
number in the range 0 through 7.

The block files access the disk using the system's normal buffering mechanism and
can be read and written, without regard to physical disk records. There is also a raw
interface that provides for direct transmission between the disk and the user's read or
write buffer. A single read or write call results in exactly one I/O operation.
Therefore, raw I/O is considerably more efficient when many words are transmitted.
The names of the raw files conventionally begin with an additional letter r, for
example, rrx2c.

In raw I/O, counts should be multiples of 512 bytes (a disk sector). In the same way,
seek calls should specify a multiple of 512 bytes.

The origin and size (in sectors) of the pseudodisks on each drive are as follows:

RK07 partitions:
disk start length cyl

rk?a 0 15884 0-240
rk?b 15906 10032 241-392
rk?c 0 53790 0-814
rk?g 26004 27786 393-813

Restrictions
In raw I/O, read and wr i te functions truncate file offsets to 512-byte block
boundaries; wri te overwrites the tail of incomplete blocks. Thus, in programs that
are likely to access raw devices, read(2), wri te(2), and lseek(2) should always
deal in 512-byte multiples.

Diagnostics
The following messages are printed at the console:

rk%d%c: hard error sn%d
An unrecoverable error occurred during transfer of the specified sector of the
specified disk partition. Either the error was unrecoverable, or a large number of
retry attempts (including offset positioning and drive recalibration) could not recover
the error. Additional register information can be gathered from the system error log
file, /usr / adm/ syserr / syserr. <hostname>.

Special Files 4-123

VAX

VAX rk(4)

Files

rk%d: write locked
The write protect switch was set on the drive when a write was attempted. The write
operation is not recoverable.

rk%d: not ready
The drive was spun down or off line when it was accessed. The I/O operation is not
recoverable.

rk%d: not ready (came back!)
The drive was not ready. But, after printing this message (which takes a fraction of a
second), it was ready. The operation is recovered, if no further errors occur.

hk%d: lost interrupt
A timer watching the controller detected no interrupt for an extended period while an
operation was outstanding. . This indicates a hardware or software failure. Spinning
down drives while they are being accessed causes this error to occur. The error
causes a UNIBUS reset and retry of the pending operations. If the controller
continues to lose interrupts, this error will recur a few seconds later.

rk%d%c: soft ecc sn%d
This message is written to the system error log file only. A recoverable ECC error
occurred on the specified sector in the specified disk partition. This happens
nonnally a few times a week. If it happens more frequently than this, the sectors
where the errors are occurring should be checked to see if the same physical location
on the disk pack is causing the errOf. Errors in the same area on the disk pack
indicate the pack is going bad. Random errors can be caused by a pack going bad Of
a pending hardware problem.

/dev/rk???
/dev/rrk???

See Also
dkio(4), nbuf(4), MAKEDEV(8), uerf(8)

4-124 Special Files

Name

Syntax

rl- RL211/RL02 disk interface

controller hlO at uba? csr 0174400 vector rlintr
disk riO at hlO drive 0

rl (4)

Description
Files with minor device numbers 0 through 7 refer to various portions of drive 0;
minor devices 8 through 15 refer to drive 1, and so forth. The standard device names
begin with rl followed by the drive number and then a letter, a through h, for
partitions 0-7. The question mark (?) character stands here for a drive number in the
range 0-7.

The block files access the disk by the system's nonnal buffering mechanism and can
be read and written without regard to physical disk records. There is also a raw
interface, which provides for direct transmission between the disk and the user's read
or write buffer. A single read or write call results in exactly one I/O operation.
Therefore, raw I/O is considerably more efficient when many words are transmitted.
The names of the raw files conventionally begin with an addition letter r, for
example, rrx2c.

Although RL02 disks have 256-byte sectors, the driver emulates 512-byte sectors.
Raw I/O counts should be multiples of 512 bytes (a nonnal disk sector). In the same
way, seek calls should specify a multiple of 512 bytes.

The origin and size (in 512-byte sectors) of the pseudodisks on each drive are as
follows:

RL02 partitions:

disk start length cyl

rl?a 0 15884 0-397
rl?b 15884 4520 398-510
rl?c 0 20480 0-511
rl?d 15884 4520 398-510
rl?g 0 20480 0-511

Restrictions
In raw I/O, read and wri te functions truncate file offsets to 512-byte block
boundaries, and wr i te overwrites the tail of incomplete blocks. Thus, in programs
that are likely to access raw devices, read(2), wr i te(2), and 1 seek(2) should
always deal in 512-byte multiples.

Diagnostics
The following messages are printed at the console:

rl%d%c: hard error sn%d
An unrecoverable error occurred during transfer of the specified sector of the
specified disk partition. Either the error was unrecoverable, or a large number of
retry attempts (including offset positioning and drive recalibration) could not recover

Special Files 4-125

VAX

VAX rl(4)

Files

the error. Additional register information may be gathered from the system error log
file, /usr / adm/ syserr / syserr. <hostname>.

rl%d: write protected
The write protect switch was set on the drive when a write was attempted. The write
operation is not recoverable. .

hl%d: lost interrupt
A timer watching the controller detected no interrupt for an extended period while an
operation was outstanding. This indicates a hardware or software failure. The error
causes a UNIBUS reset and retry of the pending operations. If the controller
continues to lose interrupts, this error will recur a few seconds later.

/dev/rl???
/devlrrl???

See Also
dkio(4), nbuf(4), MAKEDEV(8), uerf(8)

4-126 Special Files

rx(4)

Name
rx - RX33/RX23 Small V AX floppy disk drive

Description
The RX33 floppy disk drive, when used by either the workstation or multiuser
configurations of the busless Small V AX processor, is supported by the SDC disk
driver. The SDC disk driver also supports the RX23 floppy disk drive in VAXstation
3100 Model 30 systems. The SDC driver handles the RX33/RX23 disk on drive 2.

The RX33 floppy disk drive reads and writes both RX33 and RX50 floppy diskettes.
The RX23 floppy disk drive reads and writes high density (18 sectors per track)
RX23 floppy diskettes and reads double density (9 sectors per track) RX23 floppy
diskettes.

Formatting RX23 Floppy Diskettes (VAXstation 3100 Model 30
Only)

The floppy diskettes used with the RX23 floppy disk drive are not always
prefonnatted. Although the ULTRIX system does not currently include support for
online fonnatting of diskettes, the V AXstation 3100 diagnostic t 70 command
allows you to fonnat diskettes.

Use the following steps to fonnat diskettes:

1. Shut down the ULTRIX Worksystem Software, and halt the processor.

jete/shutdown -h +5

2. Insert the diskette into the RX23 drive.

3. Enter the following at the prompt:

»> t 70

The t 70 command begins to prompt you for infonnation. Answer each
query as in the following example. Press the RETURN key after each response:

KA42 RDRXfmt

(1=RX33), (2=RX23) ? 2

VSfmt_QUE_RUsure (DUA2 1/0) ? 1

VSfmt STS CKRXfmt OK

VSfmt RES Suee
»>

Special Files 4-127

VAX

VAX rx(4)

Files
/dev/rx2a
/dev/rx2c
/dev/rrx2a
/dev/rrx2c

See Also
sdc(4)

4-128 Special Files

Name
rz - SCSI disk interface

Syntax
v AX NCR 5380:

adapter
controller
disk

VAX DEC SII:
adapter
controller
disk

RISC DEC SII:
adapter
controller
disk

RISC NCR ASC:
adapter
controller
disk

ubaO
scsiO
rzO

ibusO
siiO
rzO

ibusO
siiO
rzO

ibusO
ascO
rzO

at nexus?
at ubaO
at scsiO

at nexus?
at ibus?
at siiO

at nexus?
at ibus?
at siiO

at nexus?
at ibus?
at as cO

rz(4)

csr Ox200c0080 vector szintr
drive 0

vector sii intr
drive 0 -

vector sii intr
drive 0 -

vector ascintr
drive 0

Description

The r z driver is for all Digital SCSI disk drives.

The following rules are used to determine the major and minor numbers that are
associated with an rz type disk. There is one major number used to represent rz
disks. The major number represents 32 disks. The minor number is used to
represent the both the SCSI unit number and partition. A disk partition refers to a
designated portion of the physical disk. To accomplish this, the 8-bit minor number
is broken up into two parts. The low three bits of the minor number specify a disk
partition. These three bits allow for the naming of eight partitions. The partitions
have a letter, a through h, as their name. The upper five bits of the minor number
specify the SCSI unit number within a group of 32 disks.

The device special file names associated with r z disks are based on the following
conventions. These conventions are closely associated with the minor number
assigned to the disk. The standard device names begin with r z for the block special
file and rrz for the raw (character) special file. Following the rz is the logical unit
number and then a letter, a through h, to represent the partition. Throughout this
reference page, the question mark (?) character represents the logical unit number in
the name of the device special file. For example, rz?b could represent rzOb, rz 1 b, and
so on.

The following examples illustrate how the SCSI unit number is calculated given the
major and minor number of an rz disk. For the device special file ITz6a, the major
number is 56 and the minor number is 48. The partition is represented by the lower
three bits of the number 48. The lower three bits are 0, which specifies the "a"
partition. The upper five bits of 48 specify the number 6. The major number is 56.
Because 56 is the base major number, it represents the group of 32 disks. Putting all

Special Files 4-129

rz(4)

these pieces together reveals that the major/minor pair 56/48 refers to the' 'a"
partition of SCSI unit 6.

The disk can be accessed through either the block special file or the character special
file. The block special file accesses the disk using the file system's normal buffering
mechanism. Reads and writes to the block special file can specify any size. This
a voids the need to limit data transfers to the size of physical disk records and to
calculate offsets within disk records. The file system can break up large read and
write requests into smaller fixed size transfers to the disk.

The character special file provides a raw interface that allows for direct transmission
between the disk and the user's read or write buffer. In contrast to the block special
file, reads and writes to the raw interface must be done on full sectors only. For this
reason, in raw I/O, counts must be a multiple of 512 bytes (a disk sector). In the
same manner, seek calls must specify a multiple of 512 bytes. A single read or
write to the raw interface results in exactly one I/O operation. Consequently raw I/O
may be considerably more efficient for large transfers. Multiply buffered I/O
operations are possible to any raw SCSI device. (See nbuf(4) for more information.)

For systems with SCSI disks, the first boot of the UL TRIX software after the system
is powered on may take longer than expected. This delay is normal and is caused by
the software spinning up the SCSI disk drives.

Disk Support

This driver handles all disk drives that can be connected to the SCSI bus. Consult
the ULTRIX Software Product Description to determine which drives are supported
for which CPU types and hardware configurations.

The starting location and length (in 512 byte sectors) of the disk partitions of each
drive are shown in the following table. Partition sizes can be changed by chpt(8).
For further information, see dkio(4).

RZ22 partitions
disk start length

rz?a 0 32768
rz?b 32768 69664
rz?c 0 102431
rz?d 0 0
rz?e 0 0
rz?f 0 0
rz?g 0 0
rz?h 0 0

RZ23 partitions
disk start length

rz?a 0 32768
rz?b 32768 66690
rz?c 0 204864
rz?d 99458 35135
rz?e 134593 35135
rz?f 169728 35136
rz?g 99458 105406
rz?h 134593 70271

4-130 Special Files

rz(4)

RZ24 partitions
disk start length

rz?a 0 32768
rz?b 32768 131072
rz?c 0 409792
rz?d 163840 81984
rz?e 245824 81984
rz?f 327808 81984
rz?g 163840 245952
rz?h 0 0

RZ55 partitions
disk start length

rz?a 0 32768
rz?b 32768 131072
rz?c 0 649040
rz?d 163840 152446
rz?e 316286 152446
rz?f 468732 180308
rz?g 163840 485200
rz?h 0 0

RZ56 partitions
disk start length

rz?a 0 32768
rz?b 32768 131072
rz?c 0 1299174
rz?d 163840 292530
rz?e 456370 292530
rz?f 748900 550273
rz?g 163840 1135334
rz?h 731506 567668

RZ57 partitions
disk start length

rz?a 0 32768
rz?b 32768 184320
rz?c 0 2025788
rz?d 831488 299008
rz?e 1130496 299008
rz?f 1429504 596284
rz?g 217088 614400
rz?h 831488 1194300

Special Files 4-131

rz(4)

Files

RRD40 (read only) partitions
disk start length

rz?a 0 (size varies per CD)
rz?b 0 0
rz?c 0 (size varies per CD)
rz?d 0 0
rz?e 0 0
rz?f 0 0
rz?g 0 0
rz?h 0 0

RX23 partitions
disk start length

rz?a 0 2879
rz?b 0 0
rz?c 0 2879
rz?d 0 0
rz?e 0 0
rz?f 0 0
rz?g 0 0
rz?h 0 0

Usually, the rz?a partition is used for the root file system and the rz?b partition as a
paging area. The rz?c partition is used for disk-to-disk copying because it maps the
entire disk.

/dev/rz???
/dev/rrz???

See Also
nbuf(4), dkio(4), SCSI(4), chpt(8), MAKEDEV(8), uerf(8)

4-132 Special Files

scs(4)

Name
scs - Systems Communications Services network interface.

Syntax
pseudo device scsnet

Description
The s c s interface provides network access to any network device supported by the
System Communications Services subsystem (SCS). Currently, the only network
device available is the Computer Interconnect (CI).

The host's Internet address is specified at boot time with an SIOCSIFADDR ioct!.

Restrictions
Only the Internet protocol family (TCP/IP/UDP) is supported. The host numbers
must be between 1 and 15 inclusive. Zero is reserved.

See Also
inet(4f), intro(4n)

Special Files 4-133

SCSI (4)

Name
SCSI - Small Computer System Interconnect

Description
The ULTRIX system interfaces to disk and tape devices through the Small Computer
System Interconnect (SCSI). Initial ULTRIX SCSI support is limited to the Digital
supplied mass storage devices. The following devices are fully supported on the
ULTRIX system:

• Winchester disks: RZ22, RZ23, RZ24, RZ55, RZ56, RZ57, RX23

• Magnetic tapes: TZ30, TZK50, TLZ04, TSZ05

• Optical disks: RRD40

Under the UL TRIX operating system, a SCSI device is referred to by its logical
name. Logical names take the following form:

nn#

The nn argument is the two-character name; the number sign (#) represents the unit
number. The two character names for SCSI devices are:

rz - RZ22, RZ23, RZ24, RZ55, RZ56, RZ57, and RRD40 disks

tz - TZ30, TZK50, TLZ204, and TSZ05 tapes

The unit number is a combination of the SCSI bus number, either 0, 1, ... and the
device's target ID number. The unit number is eight times the bus number plus the
target ID. For example, an RZ23 disk at target ID 3 on bus 0 would be referred to as
rz3; a TZK50 tape at target ID 5 on the second SCSI bus would be referred to as 13.

The SCSI bus has eight possible target device IDs. By default, one is allocated to the
system. This allows for a maximum of seven target devices connected to a SCSI
bus.

Restrictions

The ULTRIX SCSI device driver does not operate with optical disks, other than the
Digital-supplied devices.

The SCSI driver attempts to support on a best effort basis, non-Digital-supplied
winchester disks and magnetic tapes.

The following notes apply to the driver's handling of non-Digital-supplied disks:

• These disks are assigned a device type of RZxx, instead of RZ22, RZ23,
RZ55, RZ56, or RZ57. The RZxx disks follow the same logical device
naming scheme as the Digital-supplied disks.

• During the autoconfigure phase of the system startup, the driver prints the
contents of the SCSI vendor ID, product ID, and the revision level fields of
the inquiry data return by the SCSI device.

• RZxx disks are assigned a default partition table. The default table can be
modified by editing the sz_rzxx_sizes[8] entry in the file
/usr/sys/data/scsi_data. c. The chpt utility can also be used to

4-134 SpeCial Files

SCSI(4)

modify the partition table on a RZxx disk.

• The only logical unit number (LUN) supported for each target ID is o.

See Also
rz(4), tz(4), chpt(8)

Special Files 4-135

VAX sdc(4)

Name

Syntax

sdc - RD31, RD32, RD53, RD54, RX33, RX23 Small VAX disk interface

controller sdcO at ubaO csr Ox200cOOOO vector sdintr
disk rdO at sdcO drive 0
disk rdl at sdcO drive 1
disk rx2 at sdcO drive 2

Description
This is a driver for the Digital Small VAX disk controller. This disk controller is
used by both the workstation and multiuser configurations of the busless Small VAX
processor. This controller also supports the RX23 floppy disk drive in the
VAXstation 3100 model 30 processor.

The SDC driver uses the same disk format as the RQDX3 controller. Winchester
disks formatted by the small V AX controller are compatible with RQDX3 formatted
disks, but not with RQDXl and RQDX2 formatted disks. The SDC driver
implements dynamic bad block replacement in the same manner as the RQDX3
controller.

Files with minor device numbers 0 through 7 refer to various portions of drive 0;
minor devices 8 through 15 refer to drive 1, and so forth. The standard device names
begin with rd, for Winchester disk drives 0 and 1 and rx, for the diskette drive 2
followed by the drive number and then a letter, a through h, for partitions 0 through
7.

The block files access the disk by the system's normal buffering mechanism and can
be read and written, without regard to physical disk records. There is also a raw
interface that provides for direct transmission between the disk and the user's read or
write buffer. One read or write call results in one I/O operation, so raw I/O is
considerably more efficient when many words are transmitted. The names of the raw
files conventionally begin with an additional letter r, for example, rrx@a.

In raw I/O, counts should be a multiple of 512 bytes (a disk sector). In the same
way, seek calls should specify a multiple of 512 bytes.

Disk Support
The SDC driver handles RD31, RD32, RD53, and RD54 Winchester disk drives on
drives 0 and 1 and the RX33/RX23 floppy disk drive on drive 2. The RX33 drive
reads and writes both single-density (400 Kbytes) RX50 floppy diskettes and double
density double-sided (1200 Kbytes) RX33 diskettes. The RX23 drive reads and
writes high density (18 sectors per track) RX23 floppy diskettes and reads double
density (9 sectors per track) RX23 floppy diskettes. Drive types are recognized in the
autoconfiguration process. For constructing file systems, the partition sizes are
required. Partition sizes are the same as those supported by the MSCP driver, ra(4).
Partition sizes can be queried or changed by chpt(8).

The rd?a partition is usually used for the root file system, the rd?b partition as a
paging area, and the rd?g partition for the usr file system.

4-136 Special Files

sdc(4)

Diagnostics
The following messages are printed at the console and written to the system error log
file, /usr / adm/ syserr / syserr. <hostname>.

sd%d:HARD ERR: cannot read XBN
The driver can'iiot read the format information from the disk during autoconfiguration.
The disk may not be formatted properly.

sd%d:HARD ERR: CANNOT RECOVER FROM PREVIOUS BBR
Bad block rephtcement was interrupted in the middle when the system was last
halted. The driver cannot successfully complete the bad block replacement. Try to
recover all the data from the disk and reformat it. Refer to the Guide to System
Configuration File Maintenance for additional information.

sd%d:HARD ERR: Drive select failed
The driver can'iiot select the specified drive for doing I/O. Make sure the drive is on
line.

sd%d:HARD_ERR: Invalid cylinder: %d
The driver tries I/O on a cylinder outside the valid range for the type of disk on the
drive. This is a fatal error caused by the driver and should not happen.

sd%d:HARD_ERR: Invalid head:%d
The driver tries I/O on a head outside the valid range for the type of disk on the
drive. This is a fatal error caused by the driver and should not happen.

sd%d:HARD ERR: Forced Error Modifier set LBN %d
The forced error bit is set on the specified block. The block was found to be bad and
has been replaced with a good block, but the data in the block is bad. Writing new
data into this block will clear the forced error bit. Refer to the Guide to System
Configuration File Maintenance for additional information.

sd%d:HARD_ERR: compare error
The driver received a compare error for the drive from the controller. This should be
seen only for the floppy drive. For hard disks, the bad block will get replaced.

sd%d:HARD ERR: eccerror
The driver received an ECC error for the drive from the controller.

sd%d:HARD_ERR: syncerr
The driver received a sync error for the drive from the controller. If it is the floppy
drive, reinsert the floppy and repeat the command.

sd%d:HARD ERR: bad sector
The controller detected the sector to be bad from the sector's ID field. This message
should appear only for the floppy drive. For hard disks, the bad block will get
replaced.

sd%d:HARD ERR: WRITE FAULT
This is due to an internal error in the drive, such as an improper supply voltage. This
message should appear only for hard disk drives.

The following messages are written to the system error file,
/usr / adm/ syserr / syserr. <hostname>, but not printed at the console ..

sd:SOFT _ERR: stray interrupt
An unexpected interrupt was received (for example, when no I/O was pending). The
interrupt is ignored.

Special Files 4-137

VAX

VAX sdc(4)

Files

sd:SOFT ERR: No valid buffer
An interrupt was received when the driver was notready to receive one. The interrupt
is ignored. This should rarely happen.

sd%d:SOFT_ERR: Command not yet implemented thru interrupt, command =
%c"
An interrupt was received for the command. This should not happen. The interrupt
is ignored.

sd%d:SOFT_ERR: Unknown error type, UDC_CSTAT = %0, UDC_DSTAT =
%0, DKC_STAT = %0"
The error type indicated by the controller for the last I/O is not any of the common
ones. An I/O error is generated.

/dev/rd[O-l] [a-f]
/dev/rrd[O-l] [a-f]"

/dev/rx2a"
/dev/rx2c"

/dev/rrx2a"
/dev/rrx2c"

See Also
dkio(4), nbuf(4), ra(4), rd(4), rx(4), chpt(8), uerf(8)

4-138 Special Files

sg(4)

Name
sg - Small VAX color video subsystem

Syntax
device sgO at ubaO csr Ox3cOOOOOO flags OxOf vector sgaint sgfint

Description

Files

A small VAX color video subsystem provides a half-page or full-page, user
accessible bitmap display for graphics applications. The device consists of a 12S
Kbyte block of dual port RAM, a VSXXX-AA mouse or VSXXX-AB tablet, and a
19-inch video monitor.

The subsystem device driver supports a hybrid terminal with three minor devices.
The first device emulates a glass tty with a screen that appears as a 120-column by
SO-row page that scrolls from the bottom. This device is capable of being configured
as the system console.

The second minor device number is reserved for the mouse. This device is a source
of mouse state changes. (A state change is defined as an X/Y axis mouse movement
or button change.) When opened, the driver couples movements of the mouse with
the cursor. Mouse position changes are filtered and translated into cursor position
changes in an exponential manner. Rapid movements result in large cursor position
changes. All cursor positions are range checked to ensure that the cursor remains on
the display.

The third minor device is opened in the raw mode by default. Opening the third
device makes the driver function like a pseudo-tty in that the output destined for the
first minor device is channeled to the third instead.

If there is not a special cable (BCCOS) on serial port 3 (printer port), the system will
then use the color video as the system console. All input/output destined for
/ dev / console will use the color video instead. (This is done by overwriting the
device switch tables.) There is a second set of device switch entries configured that
may be used as an additional terminal, tip/uucp (hardwire, modem, or autodialer)
connection, or user dial-up access. For further information, see ss(4).

The Hold Screen key is supported. The Small VAX color driver treats this key as if
CTRL/S or CTRL/Q is typed. Pressing the Hold Screen key suspends the output if it
is not already suspended. The output will be resumed by pressing this key again (if
the output was suspended).

/dev/console
/dev/sgO
/dev/sgscreen

See Also
ss(4), ttys(5), MAKEDEV(S)

Special Files 4-139

VAX

VAX sh(4)

Name
sh - Small VAX DHT32 serial line interface

Syntax
device shO at ubaO csr Ox38000000 flags Oxff vector shrint shxint

Description
A DHT32 provides eight asynchronous communication lines with no modem control.

Each line attached to the DHT32 communications multiplexer behaves as described
in tty(4). Input and output for each line can be set independently to run at any of
16 speeds. See tty(4) for the coding.

Because no modem control is provided, a flags field of Oxff must be specified to
ensure that all lines will be handled as data leads only.

Diagnostics

Files

sh%d: DIAG. FAILURE
A failure has been detected by internal module diagnostics.

sh % d: recv. fifo overflow
The character input fifo overflowed before it could be serviced. This can happen if a
hard error occurs when the CPU is running with elevated priority. Interrupts are
disabled, and the system then prints a message on the console.

/dev/tty??

See Also
tty(4), MAKEDEV(8)

4-140 Special Files

sm(4)

Name
sm - Small V AX monochrome video subsystem

Syntax
device smO at ubaO csr Ox200fOOOO flags OxOf vector smvint

Description
A Small V AX monochrome video subsystem provides a half-page or full-page, user
accessible bitmap display for graphics applications. The device consists of a 12S
Kbyte block of dual port RAM, a VSXXX-AA mouse or VSXXX-AB tablet, and a
19-inch video monitor.

The subsystem device driver supports a hybrid terminal with three minor devices.
The first minor device emulates a glass tty with a screen that appears as a 120-
column by SO-row page that scrolls from the bottom. This device is capable of being
configured as the system console.

The second minor device is reserved for the mouse. This device is a source of mouse
state changes. (A state change is defined as an X/Y axis mouse movement or button
change.) When opened, the driver couples movements of the mouse with the cursor.
Mouse position changes are filtered and translated into cursor position changes in an
exponential manner. Rapid movements result in large cursor position changes. All
cursor positions are range checked to ensure that the cursor remains on the display.

The third minor device provides an access path for console output that does not
disturb the graphics display. The caller can open the device / dev / sms creen .
When this device is open, the Small VAX monochrome driver redirects console
device output to the input buffer of this device. This mechanism disables console
output on the Small V AX monochrome screen and saves the output for later display.
This preserves the graphic display integrity. .
Input and output on the first and third minor devices are processed by the standard
line disciplines.

If there is not a special cable (BCCOS) on serial port 3 (printer port), and the optional
video board is not present (or failed the self-test), the system will then use the
monochrome video as the system console. All input/output destined for
/ dev / console will use the monochrome video instead. (This is done by
overwriting the device switch tables.) There is a second set of device switch entries
configured that may be used as an additional terminal, tip/uucp (hardwire,
modem, or autodialer) connection, or user dial-up access. For further information,
see ss(4}.

The Hold Screen key is supported. The Small V AX monochrome driver treats this
key as if CTRL/S or CTRL/Q is typed. Pressing the Hold Screen key suspends the
output if it is not already suspended. The output will be resumed by pressing this key
again (if the output was suspended).

SpeCial Files 4-141

VAX

VAX sm (4)

Files
/dev/console
/dev/rnouse
/dev/srnscreen

See Also
ss(4), ttys(5), MAKEDEV(8)

4-142 Special Files

sp(4)

Name
sp - Small V AX user supplied device driver interface

Syntax
device spO at ubaO csr Ox39000000 vector spintr

Description
The Micro V AX 2000 and Micro V AX 3100 system modules both have connectors
that allow for the installation of a single option module. For example, the DHT32 is
an option module (see sh(4». The ULTRIX software includes drivers for the
DHT32 and other supported options.

The sp driver is a set of routines that provides the linkages necessary to add a user
written device driver to the ULTRIX operating system. The sp files listed in the
Files Section contain comments about interfacing a new driver to the UL TRIX
operating system kernel.

Restrictions

Files

The sp driver is not a guide to writing device drivers.

This driver can only be used with the MicroVAX 2000, MicroVAX 3100,
VAXstation 2000, and the VAX station 3100 systems. The usefulness of the sp driver
on the VAX station 2000 and VAXstation 3100 is further limited by option hardware
mounting constraints on those systems.

/sys/data/sp_data.c
/sys/io/uba/spreg.h
/sys/io/uba/sp.c

See Also
sh(4)

Special Files 4-143

VAX

VAX ss(4)

Name

Syntax

ss - Small VAX serial line interface

device ssO at ubaO csr Ox200aOOOO flags OxOf
vector ssrint ssxint

Description
The Small VAX serial line controller is similar to the DZQll 4-line communications
multiplexer. An s s interface provides four communication ports with partial modem
control on port 2, adequate for dialup use. Only port 2 supports modem control
(dialup access). All other ports must be operated as local lines. Each line attached to
the serial line controller behaves as described in tty(4) and may be set to run at any
of 16 speeds. For the encoding, see tty(4). However, configuration requirements
dictate fixed speed operation of ports connected to the console terminal and graphics
devices.

The Small VAX may be configured as a workstation or a multiuser timesharing
system. For the workstation configuration, the s s ports are used as follows:

Port Usage
o Graphics device keyboard at 4800 BPS
1 Mouse or tablet at 4800 BPS
2 Communications (with modem control)/local terminal
3 Serial printer port

For the multiuser configuration, the s s port usage is:

Port Usage
o Console terminal at 9600 BPS
1 Local terminal line
2 Communications (with modem control)/local terminal
3 Local terminal or serial printer

For either configuration, a diagnostic console terminal may be connected to port 3
using a BCC08 cable. For the multiuser configuration, while the diagnostic console
is connected, no other terminal devices can be connected. When the diagnostic
console is in use, the processor may be halted by pressing the BREAK key.

The selection of which port to use for the console is made during the processor's
power-on sequence and cannot be changed after power on. If the diagnostic console
is connected, it is used; otherwise, the device connected to port 0 is the console.

For the s s device, the flags should always be specified as: flags OxOf (all 4 lines
hardwired). The state of port 2 can be established by specifying either modem or
nomodem as part of the / etc / tty s file entry for tty02; see tty s (5). The default
state of port 2 can be controlled by flags bit 2. Set 'flags OxOf' for a hardwired line,
'flags OxOb' for dialup operation (wait for carrier).

The s s driver operates in interrupt-per-character mode (all pending characters are
flushed from the silo on each interrupt). Silo alarm mode is used by the DZQ11
driver at times of high input character traffic. This mode is not used by the ss

4-144 Special Files

ss(4)

driver, due to the need to track mouse or tablet position changes in real time.

V AXstation 3100 Communications and Printer Ports

The VAXstation 3100 has two MMJ (Modified Modular Jack) connectors located at
the rear of the system box. These MMJ connectors allow connection of terminals,
printers, and modems to the V AXstation 3100 system.

The ULTRIX logical names for these connectors are /dev/tty02 (the MMJ closest
to the power connector) and /dev/tty03 (the MMJ next to the graphics
connector).

Terminals and printers can be connected to either the /dev/tty02 or
/dev/tty03 MMJ. Modems can be connected only to the /dev/tty02 MMJ.

The VAXstation 3100 hardware provides only limited modem control support. The
DTR (Data Terminal Ready) and DSR (Data Set Ready) signals are the only modem
control signals available at the /dev/tty02 MMJ. The ULTRIX device driver for
/dev/tty02 has been modified to allow modems to function with the limited
modem control provided by the V AXstation 3100. For the modem to function
properly, it must be configured to drop DSR when the carrier drops; that is, the
modem should not continuously assert DSR.

Restrictions
The speed must be set to 9600 BPS on the console port and 4800 BPS on ports used
by graphics devices. The console device must be set for 8-bit character length with
one stop bit and no parity. The s s driver enforces these restrictions; that is,
changing speeds with the stty command may not always work on these ports.

Diagnostics

Files

ssO: input silo overflow
The 64-character input silo overflowed before it could be serviced. This can happen
if a hard error occurs when the CPU is running with elevated priority, as the system
then prints a message on the console with interrupts disabled.

/dev/console

/dev/ttyOO

/dev/ttyOl

/dev/tty02

/dev/tty03

/dev/rnouse

/dev/srnscreen

/dev/sgscreen

console terminal or graphics device

not used

local terminal - multiuser configuration only

dialup or local terminal

printer port or local terminal

mouse or tablet - workstation configuration only

console message window for monochrome workstations

console message window for color workstations

Special Files 4-145

VAX

VAX ss(4)

See Also
console(4), devio(4), sm(4), tty(4), ttys(5), MAKEDEV(8)

4-146 Special Files

Name

Syntax

stc - TZK50 (V AXstation TK50) magnetic tape interface

controller stcO at ubaO csr Ox200c0080 vector stintr
tape stO at stcO drive 0

stc (4)

Description
The TZK50rrK50 combination provides a standard tape drive interface, as described
in mtio(4). The TZK50 is supported only on the VAXstation 2000 and the
MicroVAX 2000. This driver also supports n-buffered reads and writes to the raw
tape interface (used with streaming tape drives). See nbuf(4) for further details.

Diagnostics
The following messages are printed at the console:

stO: arbitration failed after %d tries
After the indicated number of tries, the system gives up trying to arbitrate for the
TK50 bus.

stO: device failed to select
The host was not able to select the TK50 device on the bus.

stO: device failed to reselect
The host was not able to res elect the TK50 device on the bus.

stO: parity error
A parity error was encountered as part of a command or status packet.

stO: bus reset
The TK50 bus has just been reset.

stO: buffer too large
A read or write was requested that exceeds the 16K maximum supported block size
of this driver.

stO: aborting transfer
An error has occurred, and the request to the driver is being aborted.

stO: request sense data: %x %x %x %x %x %x %x %x %x %x
When an error occurs, the request sense data is the last command's status sent from
the TZK50 controller.

stO: software error
The software has sent an illegal request to the drive.

stO: controller failed self test
The TZK50 controller failed power on self test. The drive is unuseable.

stO: drive failed selftest, code = Ox%x
The TZK50 tape drive failed power on selftest. The drive is unuseable. The drive
error code is reported in hexadecimal.

Special Files 4-147

VAX

VAX stc (4) ,

stO: controller firmware revision % d not supported
The indicated controller finnware revision is not supported by UL TRIX.

stO: soft error, sense key = Ox%x
A nonfatal error has occurred. The sense key is part of the request sense data
returned from the TZK50 controller.

stO: hard error, sense key = Ox%x
A fatal error has occurred. The sense key is part of the request sense data returned
from the TZK50 controller.

Restrictions

Files

The maximum block size supported by the stc driver is 16K bytes. Block sizes
greater than 16,384 bytes produce the error message stO: buffer too large.

/dev/rmt???
/dev/nrmt???

See Also
mtio(4), nbuf(4), MAKEDEV(8), uerf(8)

4-148 Special Files

Name

Syntax

tcp - Internet Transmission Control Protocol

#include <sys/socket.h>
#include <netinet/in.h>

s = socket(AF _ INET , SOCK_STREAM, 0);

tcp{4p)

Description
The TCP protocol provides reliable, flow-controlled, two-way transmission of data.
It is a byte-stream protocol used to support the SOCK_STREAM abstraction. TCP
uses the standard Internet address format and, in addition, provides a per-host
collection of "port addresses". Thus, each address is composed of an Internet
address specifying the host and network, with a specific TCP port on the host
identifying the peer entity.

Sockets utilizing the TCP protocol are either "active" or "passive". Active sockets
initiate connections to passive sockets. By default TCP sockets are created active; to
create a passive socket the listen(2) system call must be used after binding the
socket with the bind(2) system call. Only passive sockets can use the accept(2)
call to accept incoming connections. Only active sockets can use the connect(2)
call to initiate connections.

Passive sockets can "underspecify" their location to match incoming connection
requests from multiple networks. This technique, termed "wildcard addressing",
allows a single server to provide service to clients on multiple networks. To create a
socket that listens on all networks, the Internet address INADDR_ANY must be
bound. The TCP port can still be specified at this time. If the port is not specified,
the system will assign one. Once a connection has been established, the socket's
address is fixed by the peer entity's location. The address assigned the socket is the
address associated with the network interface through which packets are being
transmitted and received. Normally, this address corresponds to the peer entity's
network.

TCP supports one socket option that is set with setsockopt(2) and tested with
getsockopt(2). Under most circumstances, TCP sends data when it is presented;
when outstanding data has not yet been acknowledged, it gathers small amounts of
output to be sent in a single packet, once an acknowledgement is received. For a
small number of clients, such as window systems that send a stream of mouse events
that receive no replies, this packetization may cause significant delays. Therefore,
TCP provides a Boolean option, TCP _NODELAY (from <netinet/tcp. h>, to
defeat this algorithm. The option level for the setsockopt call is the protocol
number for TCP, available from getprotobyname(3n).

DiagnostiCS
A socket operation may fail with one of the following errors returned:

[EISCONN] Try to establish a connection on a socket which already has
one.

Special Files 4-149

tcp(4p)

[ENOBUFS] The system runs out of memory for an internal data
structure.

[ETIMEDOUT] A connection was dropped due to excessive retransmissions.

[ECONNRESET] The remote peer forces the connection to be closed.

[ECONNREFUSED] The remote peer actively refuses connection establishment
(usually because no process is listening to the port).

[EADDRINUSE] An attempt is made to create a socket with a port that has
already been allocated.

[EADDRNOTAVAIL] An attempt is made to create a socket with a network
address for which no network interface exists.

See Also
getsockopt(2), socket(2), inet(4f), intro(4n), ip(4p)

4-150 Special Files

termio(4)

Name
termio - System V terminal interface

Description

This section specificly describes the System V terminal interface. A general
description of the available terminal interfaces is provided in t t y(4).

When a terminal file is opened, it normally causes the process to wait until a
connection is established. In practice, users' programs seldom open these files; they
are opened by getty and become a user's standard input, output, and error files.
The very first terminal file opened by the process group leader of a terminal file not
already associated with a process group becomes the control terminal for that process
group. The control terminal plays a special role in handling quit and interrupt
signals, as discussed later. The control terminal is inherited by a child process during
a fork(2). A process can break this association by changing its process group using
setpgrp(2).

A terminal associated with one of these files ordinarily operates in full-duplex mode.
Characters can be typed at any time, even while output is occurring. They are only
lost when the system's character input buffers become completely full, which is rare,
or when the user has accumulated the maximum allowed number of input characters
that have not yet been read by some program. Currently, this limit is
(MAX_INPUT) characters, as defined in < 1 imi t s . h>. When the input limit is
reached, all the saved characters are thrown away without notice.

Normally, terminal input is processed in units of lines. A line is delimited by a
newline (ASCII LF) character, an end-of-file (ASCII EOT) character, or an end-of
line character. This means that a program attempting to read is suspended until an
entire line has been typed. No matter how many characters are requested in the read
call, at most one line will be returned. It is not, however, necessary to read a whole
line at once; any number of characters can be requested in a read, even one, without
losing information.

Some characters have special meaning when input. For example, during input erase
and kill, processing is normally done. The erase character erases the last character
typed, except that it will not erase beyond the beginning of a line. Typically the
erase character is the number sign (#). The kill character kills (deletes) the entire
input line, and optionally outputs a newline character. The default kill character is
the at sign (@). Both characters operate on a key-stroke basis, independently of any
backspacing or tabbing. Both the erase and kill characters can be entered literally by
preceding them with the escape character (\). In this case the escape character is not
read. The erase and kill characters can be changed.

Certain characters have special functions on input. These functions and their default
character values are summarized as follows:

INTR

QUIT

(Rubout or ASCII DEL) generates an interrupt signal that is sent to all
processes with the associated control terminal. Normally, each such
process is forced to terminate, but arrangements can be made either to
ignore the signal or to receive a trap to an agreed-upon location; see
signal(3).

(CTRL/I or ASCII FS) generates a quit signal. Its treatment is identical to

Special Files 4-151

termio(4)

the interrupt signal except that, unless a receiving process has made other
arrangements, it is not only terminated but a core image file (called core) is
created in the current working directory.

ERASE The number sign (#) erases the preceding character. It will not erase
beyond the start of a line, as delimited by an NL, EOF, or EOL character.

KILL The at sign (@) deletes the entire line, as delimited by an NL, EOF, or
EOL character.

EOF (CTRL/D or ASCII EOT) can be used to generate an end-of-file from a
terminal. When received, all the characters waiting to be read are
immediately passed to the program, without waiting for a newline, and the
EOF is discarded. Thus, if there are no characters waiting, which is to say
the EOF occurred at the beginning of a line, zero characters are passed
back, which is the standard end-of-file indication.

NL (ASCII LF) is the normal line delimiter. It can not be changed or escaped.

EOL (ASCII NUL) is an additional line deliminter, like NL. It is not normally
used.

STOP (CTRL/S or ASCII DC3) can be used to temporarily suspend output. It is
useful with CRT terminals to prevent output from disappearing before it
can be read. While output is suspended, STOP characters are ignored and
not read.

START (CTRL/Q or ASCII DCl) is used to resume output that has been suspended
by a STOP character. While output is not suspended, START characters
are ignored and not read. The START/STOP characters can not be
changed or escaped.

MIN Used to control terminalI/O when the ICANON flag is not set in the
c_Iftag. Input processing behaves as described in the MIN/TIME
Interaction section that follows.

TIME Used to control terminal I/O when the ICANON flag is not set in the
c_Iftag. Input processing behaves as described in the MIN/TIME
Interaction section that follows.

The character values for INTR, QUIT, ERASE, KILL, EOF, MIN, TIME, and EOL
can be changed to suit individual tastes. The ERASE, KILL, and EOF characters can
be escaped by a preceding backslash (\) character, in which case no special function
is performed.

When one or more characters are written, they are transmitted to the terminal as soon
as previously-written characters have finished typing. Input characters are echoed by
putting them in the output queue as they arrive. If a process produces characters
more rapidly than they can be typed, it is suspended when its output queue exceeds
some limit. When the queue has drained down to some threshold, the program is
resumed.

When the carrier signal from the data-set drops, a hang-up signal, SIGHUP, is sent to
all processes that have this terminal as the control terminal. Unless other
arrangements have been made, this signal causes the processes to terminate. If the
hang-up signal is ignored, any subsequent read returns with an end-of-file indication.
Thus, programs that read a terminal and test for end-of-file can terminate
appropriately when hung up on.

4-152 Special Files

termio(4)

Several ioctl(2) system calls apply to terminal files.
following structure, defined in <termio. h>:

The primary calls use the

struct termio {
unsigned short
unsigned short
unsigned short
unsigned short
char
unsigned char

} ;

c_iflag;
c_oflag;
c_cflag;
c_Iflag;
c_line;
c_cc[NCC];

/* input modes */
/* output modes */
/* control modes */
/* local modes */
/* line discipline */
/* control chars */

The special control characters are defined by the array c cc. The initial values for
each function are as follows: -
VINTR DEL
VQUIT FS
VERASE #
VKILL @
VEOF EOT
VEOL NUL
VMIN 6
VTIME 1

The c _iflag field describes the basic terminal input control:

IGNBRK
BRKINT
IGNPAR
PARMRK
INPCK
ISTRIP
INLCR
IGNCR
ICRNL
IUCLC
IXON
IXANY
IXOFF

Ignore break condition.
Signal interrupt on break.
Ignore characters with parity errors.
Mark parity errors.
Enable input parity check.
Strip character.
Map NL to CR on input.
Ignore CR.
Map CR to NL on input.
Map uppercase to lowercase on input.
Enable start/stop output control.
Enable any character to restart output.
Enable start/stop input control.

If IGNBRK is set, the break condition (a character framing error, with data all zeros)
is ignored, that is, not put on the input queue and therefore not read by any process.
Otherwise, if BRKINT is set, the break condition generates an interrupt signal and
flushes both the input and output queues. If IGNP AR is set, characters with other
framing and parity errors are ignored.

If P ARMRK is set, a character with a framing or parity error that is not ignored is
read as the three-character sequence: 0377, 0, X, where X is the data of the character
received in error. To avoid ambiguity in this case, if ISTRIP is not set, a valid
character of 0377 is read as 0377, 0377. If PARMRK is not set, a framing or parity
error that is not ignored is read as the character NUL (0).

If INPCK is set, input parity checking is enabled. If INPCK is not set, input parity
checking is disabled. This allows output parity generation, without input parity
errors.

Special Files 4-153

termio(4)

If ISTRIP is set, valid input characters are first stripped to seven bits. Otherwise, all
eight bits are processed.

If INLCR is set, a received NL character is translated into a CR character. If IONCR
is set, a received CR character is ignored (not read). Otherwise, if ICRNL is set, a
received CR character is translated into a NL character.

If IUCLC is set, a received uppercase letter is translated into the corresponding
lowercase letter.

If IXON is set, start/stop output control is enabled. A received STOP character
suspends output and a received START character restarts output. All start/stop
characters are ignored and not read. If IXANY is set, any input character restarts
output that has been suspended.

If IXOFF is set, the system transmits START/STOP characters when the input queue
is nearly empty/full.

The initial input control value is all-bits-clear.

The c _ oflag field specifies the system treatment of output:

OPOST
OLCUC
ONLCR
OCRNL
ONOCR
ONLRET
OFILL
OFDEL

NLDLY
NLO
NLI

CRDLY
CRO
CRI
CR2
CR3

TABDLY
TABO
TABI
TAB2
TAB3

BSDLY
BSO
BSI

VTDLY
VTO
VT1

FFDLY

4-154 Special Files

Postprocess output.
Map lower case to upper on output.
Map NL to CR -NL on output.
Map CR to NL on output.
No CR output at column O.
NL performs CR function.
Use fill characters for delay.
Fill is DEL or else NUL.

Select newline delays:
Newline delay type O.
Newline delay type 1.

Select carriage-return delays:
Carriage-return delay type O.
Carriage-return delay type 1.
Carriage-return delay type 2.
Carriage-return delay type 3.

Select horizontal-tab delays:
Horizontal-tab delay type O.
Horizontal-tab delay type 1.
Horizontal-tab delay type 2.
Expand tabs to spaces.

Select backspace delays:
Backspace delay type O.
Backspace delay type 1.

Select vertical-tab delays:
Vertical-tab delay type O.
Vertical-tab delay type 1.

Select form-feed delays:

FFO
FFl

Form-feed delay type O.
Form-feed delay type 1.

termio(4)

If OPOST is set, output characters are post-processed as indicated by the remaining
flags, otherwise characters are transmitted without change.

If OLCUC is set, a lowercase letter is transmitted as the corresponding uppercase
letter. This function is often used in conjunction with IUCLCS.

If ONLCR is set, the NL character is transmitted as the CR-NL character pair. If
OCRNL is set, the CR character is transmitted as theNL character. If ONOCR is
set, no CR character is transmitted when at column 0 (first position). If ONLRET is
set, the NL character is assumed to do the carriage-return function; the column
pointer is set to 0 and the delays specified for CR are used. Otherwise, the NL
character is assumed to do just the line-feed function; the column pointer remains
unchanged. The column pointer is also set to 0, if the CR character is actually
transmitted.

The delay bits specify how long transmission stops to allow for mechanical or other
movement when certain characters are sent to the terminal. In all cases, a value of 0
indicates no delay. If OFILL is set, fill characters is transmitted for delay instead of
a timed delay. This is useful for high baud rate terminals that need only a minimal
delay. If OFDEL is set, the fill character is DEL, otherwise it is NUL.

If a form-feed or vertical-tab delay is specified, it lasts for about two seconds.

A newline delay lasts about 0.10 seconds. If ONLRET is set, the carriage-return
delays are used instead of the newline delays. If OFILL is set, two fill characters is
transmitted.

A carriage~retum delay type 1 is dependent on the current column position. The type
2 delay is about 0.10 seconds; the type 3 delay is about 0.15 seconds. If OFILL is
set, delay type 1 transmits two fill characters; type 2 transmits four fill characters.

A horizontal-tab delay type 1 is dependent on the current column position. The type
2 delay is about 0.10 seconds. Type 3 specifies that tabs are to be expanded into
spaces. If OFILL is set, two fill characters is transmitted for any delay.

A backspace delay lasts about 0.05 seconds. If SM OFILL is set, one fill character
will be transmitted.

The actual delays depend on line speed and system load.

The initial output control value is all bits clear.

The c _cfiag field describes the hardware control of the terminal:

CBAUD
BO
B50
B75
BII0
B134
B150
B200
B300
B600
B1200
B1800

Baud rate:
Hang up
50 baud
75 baud
110 baud
134.5 baud
150 baud
200 baud
300 baud
600 baud
1200 baud
1800 baud

Special Files 4-155

termio(4)

B2400
B4800
B9600
B19200
B38400
EXTA
EXTB

CSIZE
CS5
CS6
CS7
CS8
CSTOPB
CREAD
PARENB
PAR ODD
HUPCL
CLOCAL

2400 baud
4800 baud
9600 baud
19200 baud
38400 baud
External A (Same as B19200)
External B (Same as B38400)

Character size:
5 bits
6 bits
7 bits
8 bits
Send two stop bits, otherwise one.
Enable receiver.
Parity enable.
Odd parity, otherwise even.
Hang up on last close.
Local line, otherwise dial-up.

The CBAUD bits specify the baud rate. The zero baud rate, BO, is used to hang up
the connection. If BO is specified, the data-terminal-ready signal will not be asserted.
Normally, this will discoQIlect the line. For any particular hardware, impossible
speed changes are ignored.

The CSIZE bits specify the character size in bits for both transmission and reception.
This size does not include the parity bit, if any. If CSTOPB is set, two stop bits are
used; otherwise, only one stop bit is used. For example, at 110 baud, two stops bits
are required.

If P ARENB is set, parity generation and detection is enabled and a parity bit is added
to each character~ If parity is enabled, the PAR ODD flag specifies odd parity, if set.
Otherwise, even parity is used.

If CREAD is set, the receiver is enabled. Otherwise, no characters will be received.

If HUPCL is set, the line will be disconnected when the last process with the line
open closes it or terminates. That is, the data-terminal-ready signal will not be
asserted.

If CLOCAL is set, the line is assumed to be a local, direct connection with no
modem control. Otherwise, modem control is assumed.

The initial hardware control value after open is B300, CS8, CREAD, HUPCL.

The c _/flag field of the argument structure is used by the line discipline to control·
terminal functions. The basic line discipline (0) provides the following:

ISIG Enable signals.
ICANON Canonical input (erase and kill processing).
XCASE Canonical upper!lower presentation.
ECHO Enable echo.
ECHOE Echo erase character as BS-SP-BS.
ECHOK Echo NL after kill character.
ECHONL Echo NL.
NOFLSH Disable flush after interrupt or quit.

4-156 Special Files

termio(4)

If ISIG is set, each input character is checked against the special control characters
INTR, SWTCH, and QUIT. If an input character matches one of these control
characters, the function associated with that character is performed. If ISIG is not
set, no checking is done. Thus, these special input functions are possible only if
ISIG is set. These functions can be disabled individually by changing the value of
the control character to an unlikely or impossible value (for example, 0).

If ICANON is set, canonical processing is enabled. This enables the erase and kill
edit fun~Jions, and the assembly of input characters into lines delimited by NL, EOF,
and EOL. If ICANON is not set, read requests are satisfied directly from the input
queue. A read is not satisfied until at least MIN characters have been received, or the
timeout value, TIME, has expired between characters. This allows fast bursts of
input to be read efficiently, while still allowing single character input. The MIN and
TIME values are stored in the position for the EOF and EOL characters, respectively.
The time value represents tenths of seconds.

If XCASE is set and if ICANON is set, an upper-case letter is accepted on input by
preceding it with a backslash (\), and is output preceded by a backs lash (\). In this
mode, the following escape sequences are generated on output and accepted on input:

for { }
use \' \! \A \(\)

For example, A is input as \a, \n as \\n, and \N as \\\n.

If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are possible. If ECHO and
ECHOE are set, the erase character is echoed as ASCII BS SP BS, which clears the
last character from a CRT screen. If ECHOE is set and ECHO is not set, the erase
character is echoed as ASCII SP BS. If ECHOK is set, the NL character is echoed
after the kill character to emphasize that the line is deleted. Note that an escape
character preceding the erase or kill character removes any special function. If
ECHONL is set, the NL character is echoed, even if ECHO is not set. This is useful
for terminals set to local echo (so-called half duplex). Unless escaped, the EOF
character is not echoed. Because EOT is the default EOF character, terminals that
respond to EOT are prevented from hanging up.

If NOFLSH is set, the normal flush of the input and output queues associated with
the quit, switch, and interrupt characters will not be done.

The initial line-discipline control value is all bits clear.

The c line field of the argument structure is used to specify the line discipline.
SuppOrt is provided for the basic termio line discipline only. For this reason, the
value of this field is irrelevant and should be set to zero (0) by convention.

The primary ioct 1(2) system calls have the form:

ioctl (fildes, command, arg)
struct termio *arg;

The commands using this form are:

TCGETA Get the parameters associated with the terminal and store in the
termio structure referenced by arg.

TCSETA Set the parameters associated with the terminal from the structure
referenced by arg. The change is immediate.

Special Files 4-157

termio(4)-

TCSETAW

TCSETAF

Wait for the output to drain before setting the new parameters. This
form should be used when changing parameters that will affect
output.

Wait for the output to drain, then flush the input queue and set the
new parameters.

Additional ioctl(2) calls have the form:

ioctl (fildes, command, arg)
int arg;

The commands using this form are:

TCSBRK Wait for the output to drain. If arg is 0, send a break (zero bits for
0.25 seconds).

TCXONC Start/stop control. If arg is 0, suspend output; if 1, restart suspended
output.

TCFLSH If arg is 0, flush the input queue; if 1, flush the output queue; if 2,
flush both the input and output queues.

MIN/TIME Interaction

MIN represents the minimum number of characters that should be received when the
read is satisfied (that is, the characters are returned to the user). TIME is a timer of
0.10 second granularity used to time-out bursty and short-term data transmissions.
The four possible values for MIN and TIME and their interactions follow:

1. MIN> 0, TIME> 0. In this case, TIME serves as an intercharacter timer
activated after the first character is received and reset upon receipt of each character.
MIN and TIME interact as follows:

As soon as one character is received the intercharacter timer is started.

If MIN characters are received before the intercharacter timer expires, the read is
satisfied.

If the timer expires before MIN characters are received, the characters received to that
point are returned to the user.

A read(2) operation will sleep until the MIN and TIME mechanism are activated by
the receipt of the first character; thus, at least one character must be returned.

2. MIN> 0, TIME = 0. In this case, because TIME = 0, the timer plays no role and
only MIN is significant. A read(2) operation is not satisfied until MIN characters
are received.

3. MIN = 0, TIME> 0. In this case, because MIN = 0, TIME no longer serves as
an intercharacter timer, but now serves as a read timer that is activated as soon as the
read(2) operation is processed. A read(2) operation is satisfied as soon as a single
character is received or the timer expires, in which case, the read(2) operation
would not return any characters.

4. MIN = 0, TIME = 0. In this case, return is immediate. If characters are present,
they are returned to the user.

4-158 Special Files

termios(4)

Name
termios - POSIX terminal interface

Description

Interface Characteristics
The POSIX terminal interface is provided to control asynchronous communications
ports, pseudoterminals, and the special file, / dev / tty. The UL TRIX operating
system also provides a SVID termio terminal interface as defined in termio(4) and
a Berkeley terminal interface as defined in t t y(4). The following sections describe
the general terminal interface as defined by the POSIX operating system
specification. For a general overview of the various terminal interfaces, refer to the
subsection entitled Terminal interface definitions in t t y(4).

The POSIX termios specification defines a set of terminal-related functions and
attributes that facilitate the development of portable programs. The specification
allows for local extensions to the terminal interface. Throughout this description, all
local extensions to the termios interface are noted. Programs that are written to be
highly portable should avoid the usage of local extensions.

Opening a Terminal Device File
When a terminal file is opened, it normally causes the process to wait until a
connection is established. In practice, application programs seldom open these files;
they are opened by special programs such as getty(8) and become a user's standard
input, output, and error files.

As described in open(2), opening a terminal device file with the O_NONBLOCK
flag clear causes the process to block until the terminal device is ready and available.
If CLOCAL mode is not set, blocking occurs until a connection is established. If
CLOCAL mode is set, or the O_NONBLOCK flag is specified in the open(2), the
open(2) returns a file descriptor, without waiting for a connection to be established.

Process Groups
A terminal may have a foreground process group associated with it. This foreground
process group plays a special role in handling signal-generating input characters, as
discussed in the Special Characters description.

A command interpreter that is capable of supporting job control, c s h(I) for example,
can allocate the terminal to different jobs or process groups by placing related
processes in a single process group and associating this process group with the
terminal. A terminal's foreground process group can be set or examined by a process
with sufficient privileges. The terminal interface aids in this allocation by restricting
access to the terminal by processes that are not in the foreground process group. See
the Job Access Control description for more information.

The Controlling Terminal
A terminal can belong to a process as its controlling terminal. Each process of a
session that has a controlling terminal has the same controlling terminal. A terminal
may be the controlling terminal for at most one session. If a session leader has no
controlling terminal and opens a terminal device file that is not already associated

Special Files 4-159

termios(4)

with a session, without using the O_NOCTIY open(2) flag, the terminal then
becomes the controlling terminal of the session leader. If a process that is not a
session leader opens a terminal file, or the O_NOCTIY option is used with open(2),
that terminal cannot become the controlling terminal of the calling process. When a
controlling terminal becomes associated with a session, its foreground process group
is set to the process group of the session leader.

The controlling terminal is inherited by a child process during a fork(2) function.
A process relinquishes its controlling terminal when it creates a new session with the
setsid(2) function, or when all file descriptors associated with the controlling
terminal have been closed.

When a controlling process terminates, the controlling terminal is disassociated from
the current session, allowing the terminal to be acquired as a controlling terminal by
a new session process group leader. SubsequeRt access to the terminal by other
processes in the earlier session may be denied, with attempts to access the terminal
treated as if a modem disconnect had been sensed.

Closing a Terminal Device File
When the last process that has the terminal line open closes the terminal line, the
process waits for all output to clear and any input is discarded. The wait does not
exceed four minutes, preventing the line from becoming hung if a progress is not
made in the final output. After the final output has been transmitted, any pending
input is flushed. If HUPCL is set in the control modes, and the communications port
supports a disconnect function, the terminal device performs a disconnect.

Modem Disconnect
When a modem disconnect is detected by the terminal interface for a controlling
terminal, and the CLOCAL bit is not set in the control flag, the SIGHUP signal is
sent to all the controlling processes associated with the terminal. Unless other
arrangements have been made, this signal causes the controlling processes to
terminate. If SIGHUP is ignored or caught, any subsequent read returns with an end
of-file indication. Thus, programs that read a terminal file and test for end-of-file can
terminate appropriately after a disconnect. Any subsequent wr i te(2) to the terminal
device returns -1 with errno set to [EIO], until the device is closed.

Terminal Access Control
If a process is in the foreground process group (nonzero) of its controlling terminal
(that is, if the process is a foreground process), read(2) operations are allowed as
described in the Input Processing and Reading Characters description. Any attempts
by a process in a background process group to read from its controlling terminal
causes its process group to receive a SIGTTIN signal, unless one of the following is
true:

• If the reading process is ignoring or blocking the SIGTTIN signal.

• If the process group of the reading process is orphaned, the read(2) returns -1,
with errno set to [EIO], and no signal is sent.

Attempts by a process in a background process group to write to its controlling
terminal causes the process group to receive a SIGTTOU signal, unless one of the
following is true:

• If TO STOP is not set, or if TOSTOP is set and the process is ignoring or

4-160 Special Files

termios(4)

blocking the SIGTTOU signal, the process is allowed to write to the terminal
and the SIGTTOU is not sent.

• If TO STOP is set, and the process group of the writing process is orphaned,
and the writing process is not blocking SIGTTOU,the write(2) returns -1,
with errno set to [EIO], and no signal is sent.

Certain calls that set terminal parameters are treated in the same fashion as
wr i te(2), except that TO STOP is ignored. That is, the effect is identical to that of
terminal writes when TOSTOP is set. See the Control Functions description for
more information.

Input Processing and Reading Characters
A terminal device associated with a terminal device file operates in full-duplex mode,
so that characters can arrive while output is occurring. Each terminal device file has
associated with it an input queue, in which incoming characters are stored by the
system before being read by a process. The system imposes a limit (MAX_INPUT),
on the number of bytes that can be stored in the input queue. MAX_INPUT is
limited to 256 characters. When ICANON is not set and the system's character input
buffers become full, the input buffer is flushed without notice. This causes all the
characters in the input queue to be lost. If ICANON is set and the system's character
input buffers become full, the driver discards additional characters and echos a bell
(ASCII BEL) to notify the user of the full condition.

Depending on whether or not the terminal device is in canonical mode or
noncanonical mode, two general types of input processing are available. See the
Canonical Mode Input Processing and Noncanonical Mode Input Processing
descriptions for more information. Additionally, input characters are processed
according to the c_iflag and c_Iflag fields. See the Input Modes and Local Modes
descriptions. Such processing can include echoing, which, in general, means
transmitting input characters immediately back to the terminal when they are received
from the terminal. This is useful for terminals that can operate in full-duplex mode.
The manner in which characters are provided to a process reading from a terminal
device is dependent on whether the terminal file is in canonical or noncanonical
mode.

Another dependency is whether or not the O_NONBLOCK is set by open(2) or
fcntl(2). If the O_NONBLOCK flag is clear, then the read request is blocked until
data is available or a signal has been received. If the O_NONBLOCK flag is set,
then the read request completes, without blocking, in one of the following ways:

• If there is enough data available to satisfy the entire request, the read completes
successfully and returns the number of bytes read.

• If there is not enough data available to satisfy the entire request, the read
completes successfully, having read as much data as possible and returns the
number of bytes it was able to read.

• If data is not available, the read returns a -1, with errno set to EAGAIN.

As stated previously, the availability of data is dependent on the input processing
mode. The input processing mode can be either canonical or non-canonical. The
following sections discuss these modes in detail.

Special Files 4-161

termios(4)

Canonical Mode Input Processing
In canonical mode input processing, terminal input is processed in units of lines. A
line is delimited by a new-line (\n) character (ASCII LF), an end-of-file character
(ASCII EOF), or a user-defined end-of-line character (EOL). See the description of
Special Characters for more information on EOF and EOL.

A read request cannot be satisfied until an entire line has been typed or a signal has
been received. Regardless of the number of characters requested in the read call, at
most one line is returned. However, it is not necessary to read a whole line at once;
one or more characters can be requested in a read without losing information.

MAX_CANON (256) defines the maximum number of input characters the system
can buffer in canonical mode. When this limit is exceeded, the system discards
additional input.

Erase and kill processing occur when either the ERASE or KILL character is
received. This processing affects data in the input queue that has not been delimited
by a new-line (NL), end-of-file (EOF), or end-of-line (EOL) character. The data that
is not delimited creates the current line. The ERASE character deletes the last
character in the current line, if there is any. The KILL character deletes all data in
the current line, if there is any. The ERASE and KILL characters have no effect if
there is no data in the current line. The ERASE and KILL characters themselves are
not placed in the input queue.

The reprint (RPRNT) character retypes pending input beginning on a new line.
Retyping is automatic, if characters that would normally be erased from the screen
are interspersed with program output.

Noncanonical Mode Input Processing
In noncanonical mode input processing, input characters are not assembled into lines,
and erase and kill processing do not occur. The values of the special characters MIN
and TIME are used to determine how to process the characters received. MIN and
TIME are defined by the c_cc array of special control characters.

MIN represents the minimum number of characters that should be received when the
read is satisfied (for example, the characters are returned to the user). TIME is a
timer of 0.1 second granularity that is used to time out bursty and short term data
transmissions. If MIN is greater than MAX_INPUT (256), the value of MIN is
truncated to be MAX_INPUT. The four possible values for MIN and TIME and
examples of their interactions are as follows:

1. MIN> 0, TIME> O.
In this case, TIME serves as an intercharacter timer and is activated after the first
character is received. Because it is an intercharacter timer, it is reset after a character
is received. The interaction between MIN and TIME provokes the intercharacter time
to start as soon as one character is received. If MIN characters are received before the
intercharacter timer expires, the read is satisfied.

If the timer expires before MIN characters are received, the characters received to that
point are returned to the user. If TIME expires, at least one character is returned,
because the timer would not have been enabled unless a character was received. The
read blocks until the MIN and TIME mechanisms are activated by the receipt of the
first character, or a signal is received.

4-162 Special Files

termios(4)

2. MIN> 0, TIME = 0.
In this case, the value of TIME is zero, the timer is inactive. However, MIN is
significant. A pending read is not satisfied until MIN characters or a signal are
received. That is, the pending read sleeps until MIN characters are received. A
program that uses this example to read record-based terminalI/O can indefinitely
block the read operation.

3. MIN = 0, TIME> 0.
In this case, because MIN = 0, TIME does not represent an intercharacter timer.
Instead, it serves as a read timer that is activated as soon as the read(2) function is
processed. A read is satisfied as soon as a single character is received or the read
timer expires. Note, if the timer expires, a character is not returned. If the timer
does not expire, a read is only satisfied if a character is received. For example, the
read cannot block indefinitely waiting for a character. If a character is not received
within TIME*O.l seconds after the read is initiated, the read returns a value of zero,
having read no data.

4. MIN = 0, TIME = 0.
In this case, only the minimum number of characters requested or the number of
characters currently available are returned without waiting for more characters to be
input. In this example, the return is immediate.

The following list summarizes the previous examples:

• The interactions of MIN and TIME are not symmetric. For example, when
MIN> ° and TIME = 0, TIME has no effect. However, if MIN = ° and TIME
> 0, MIN is activated by the receipt of a single character.

• When MIN> ° and TIME> 0, TIME represents an intercharacter timer; when
MIN = 0, TIME> 0, TIME represents a read timer.

The previous summary highlights the dual purpose of the MIN and TIME feature.
Cases 1 and 2 handle burst mode activity (such as file transfer programs) where a
program would like to process at least MIN characters at a time. In case 1, the
intercharacter timer is activated by a user as a safety precaution. However, in case 2,
it is turned off.

Cases 3 and 4 exist to handle single character timed transfers. These examples are
readily adaptable to screen-based applications that need to know if a character is
present in the input queue before refreshing the screen. In case 3, the read is timed.
However, in case 4, it is not.

Note that MIN is always a minimum. It does not denote a record length. That is, if
a program performs a read of 20 bytes, MIN has a value of 10, and there are 25
characters present, 20 characters are returned to the user.

Writing Characters and Output Processing
When a process writes one or more characters to a terminal device file, they are
processed according to the c_oflag (see Output Modes). The terminal interface
provides a buffering mechanism. For example, when a call to wri te(2) completes,
all of the characters written have been scheduled for transmission to the device, but
the transmission is not necessarily complete. The characters are transmitted to the
terminal as soon as previously written characters have output successfully.

Special Files 4-163

termios(4)

Signal Handling
Signals caught during a read(2), write(2), or other operation on the file descriptor
associated with the terminal file are handled appropriately, as described in
signal(3).

Special Characters
Certain characters have special functions on input or output. These functions are:

INTR Special character on input that is recognized if the ISIG flag is enabled.

QUIT

ERASE

KILL

EOF

NL

EOL

SUSP

4-164 Special Files

Generates a SIGINT signal that is sent to all processes in the
foreground process group associated with the terminal. If ISIG is set,
the INTR character is discarded when processed. The default value is
octal 0177.

Special character on input that is recognized if the ISIG flag is enabled.
Generates a SIGQUIT signal that is sent to all processes in the
foreground process group associated with the terminal. If ISIG is set,
the QUIT character is discarded when processed. The default value is
CTRL/I (ASCII FS).

Special character on input that is recognized if the ICANON flag is set.
Erases the last character in the current line. It cannot erase beyond the
start of a line, as delimited by an NL, EOF, or EOL character. If
ICANON is set, the ERASE character is discarded when processed.
The default value is the number sign (#).

Special character on input that is recognized if the ICANON flag is set.
Deletes the entire line, as delimited by an NL, EOF, or EOL character.
If ICANON is set, the KILL character is discarded when processed.
The default value is the at sign (@).

Special character on input that is recognized if the ICANON flag is set.
This character is used to generate an end of file (EOF) from the
terminal. When received, all the characters waiting to be read are
immediately passed to the program, without waiting for a newline, and
the EOF is discarded. Thus, if there are no characters waiting (that is,
if the EOF occurred at the beginning of aline), a byte count of zero is
returned from read(2), representing an end-of-file indication. If
ICANON is set, the EOF character is discarded when processed. The
default value is CTRL/D (ASCII EOT).

Special character on input that is recognized if the ICANON flag is set.
It is the assigned line delimiter (\11). It cannot be changed.

Special character on input that is recognized if the ICANON flag is set.
It is an additional line delimiter, like NL. The default value is
POSIX_ V _DISABLE, which is used to specify that this special
character is ordinarily not used.

Special character on input that is recognized if the ISIG flag is enabled.
Generates a SIGTSTP signal that is sent to all processes in the
foreground process group associated with the terminal. This signal is
used by the job control code to change from the current job to the
controlling job. If ISIG is set, the SUSP character is discarded when
processed. The default value is CTRL/Z (ASCII SUB),

termios(4)

STOP Special character on both input and output that is recognized if the
IXON (input) or IXOFF (output) flag is set. Can be used to temporarily
suspend output. It is useful with CRT terminals to prevent output from
disappearing before it can be read. While output is suspended, STOP
characters are ignored and not read. If IXON is set, the STOP character
is discarded when processed. The default value is CTRL/S (ASCII
DC3).

START Special character on both input and output that is recognized if the
IXON (input) or IXOFF (output) flag is set. Can be used to resume
output that has been suspended by a STOP character. While output is
not suspended, START characters are ignored and not read. If IXON is
set, the STOP character is discarded when processed. The default value
is CTRL/Q (ASCII DC 1).

CR Special character on input that is recognized if the ICANON flag is set.
The value is (\r) and this value is not changeable. When ICANON and
ICRNL are set and IGNCR is not set, this character is translated into an
NL, and it has the same effect as an NL character.

DSUSP Special character on input used as a delayed suspend character. DSUSP
is only recognized if the IEXTEN flag is set. Similar to the SUSP
special character, a SIGTSTP signal is issued. The process cannot
actually stop until the next character is input. If IEXTEN is set, the
DSUSP character is discarded when processed. The default value is
CTRLty (ASCII EM).

RPRNT Special character on input used to force the present input line to be re
echoed to the terminal after a newline character. RPRNT is only
recognized if the IEXTEN flag is set. If IEXTEN is set, the RPRNT
character is discarded when processed. The default value is CTRL/R
(ASCII DC2).

FLUSH Special character on input that causes output to the terminal to be
flushed until another flush character is typed or more input is received
on the terminal. FLUSH is recognized only if the IEXTEN flag is set.
If IEXTEN is set, the FLUSH character is discarded when processed.
The default value is CTRL/O (ASCII SI).

WERASE Special character on input used to erase the preceding word of the input
queue. The word erase operation erases characters up to (and not
including) a TAB, NL, space, or backs lash (\) character. Word erase
cannot erase beyond the start of a line as delimited by NL, EOF, or
EOL. WERASE is only recognized if the IEXTEN flag is set. If
IEXTEN is set, the WERASE character is discarded when processed.
The default value is CTRL/W (ASCII ETB).

LNEXT Special character on input used to disassociate any special meaning that
the next input character has. This allows for the input of characters that
would otherwise be interpreted as special characters. LNEXT is only
recognized if the IEXTEN flag is set. If IEXTEN is set, the LNEXT
character is discarded when processed. The default value is CTRLN
(ASCII SYN).

QUOTE Special character on input used to enter a literal ERASE or KILL
character. The same functionality could be achieved through the use of

Special Files 4-165

termios(4)

the LNEXT character, but QUOTE is included for backward
compatibility. The default value is a backslash (\). QUOTE is only
recognized if the IEXTEN flag is set. If IEXTEN is set, the QUOTE
character is discarded when processed.

The values for INTR, QUIT, ERASE, KILL, EOF, EOL, SUSP, START, STOP,
DSUSP, RPRNT, FLUSH WERASE, LNEXT, and QUOTE are changeable to suit
individual tastes. The following special characters are local extensions of DSUSP,
RPRNT, FLUSH, WERASE, LNEXT, and QUOTE.

Special character functions can be disabled individually by setting them to the
constant POSIX_ V _DISABLE, which is defined to be zero. The
POSIX_ V _DISABLE character is always read if received, and never causes a special
character function. With the exception of NL and EOL, the special characters cannot
be passed up to the reading process.

If two or more special characters have the same value, the function performed when
that character is received is undefined. More than one special character can be set to
POSIX_ V _DISABLE to disable the control function normally associated with the
special character.

Settable Parameters
Routines that need to control certain terminal I/O characteristics can do so by using
the termios structure as defined in the header <termios . h>. The members of this
structure include:

Member Member Description
Type Name

struct termios
tcflag_t c_iflag /* input modes */
tcflag_t c_oflag /* output modes */
tcflag_t c_cflag /* control modes */
tcflag_t c_lflag /* local modes */
cc t c cc[NCCS] /* control chars */ -
cc t c line; - /* line discipline */

The types tcflag_t and cc_t are defined in the header <termios . h>.

Input Modes

The c_iflag field describes the basic terminal input control:

Mask Name

IGNBRK
BRKINT
IGNPAR

PARMRK
INPCK
ISTRIP
INLCR
IGNCR

4-166 Special Files

Description

Ignore the break condition.
Signal interrupt on break.
Ignore characters with parity
errors.
Mark parity errors.
Enable input parity check.
Strip character.
Map NL to CR on input.
Ignore CR.

ICRNL
IXON
IXOFF

Map CR to NL on input.
Enable start/stop output control.
Enable start/stop input control.

termios(4)

A break condition is defined as a sequence of zero-valued bits that continues for more
than the time to send one byte. The entire sequence of zero-valued bits is interpreted
as a single break condition, even if it continues for a time equivalent to more than
one byte.

If IGNBRK is set, a break condition detected on input is ignored, that is, not put on
the input queue and therefore not read by any process. Otherwise, if BRKINT is set,
the break condition generates a single SIGINT signal and flushes both the input and
output queues. If neither IGNBRK or BRKINT is set, a break condition is read as a
single \0 (ASCII NUL), or, if PARMRK is set, as \377,\0,\0.

If IGNP AR is set, a byte with a framing or parity error (other than break) is ignored.

If PARMRK is set and IGNPAR is not set, a character with a framing or parity error
(other than break) that is not ignored is given to the application as the 3-character
sequence \377,\(),X, where \377, \() is a 2-character flag preceding each sequence and
X is the data of the character received in error. To avoid ambiguity in this case, if
ISTRIP is not set, a valid character of \377 is given to the application as \377, \377.
If either IGNPAR or PARMRK is set, a framing or parity error (other than break)
that is not ignored is given to the application as a single character \0.

If INPCK is set, input parity checking is enabled. If INPCK is not set, input parity
checking is disabled, allowing output parity generation without input parity errors.
Parity checking can be enabled, even if parity checking is not enabled. If parity
detection is enabled, but input parity checking is disabled, the hardware that connects
to the terminal recognizes the parity bit, but the terminal special file does not check
whether this bit is set correctly or not.

If ISTRIP is set, valid input characters are first stripped to seven bits; otherwise, all
eight bits are processed.

If INLCR is set, a received NL character is translated into a CR character. If IGNCR
is set, a received CR character is ignored (not read). If IGNCR is not set and ICRNL
is set, a received CR character is translated into a NL character.

If IXON is set, start/stop output control is enabled. A received STOP character
suspends output and a received START character restarts output. When IXON is set,
START and STOP characters are not read, but merely perform flow control
functions. When IXON is not set, the START and STOP characters are read.

If IXOFF is set, start/stop input control is enabled. The system transmits STOP
characters which cause the terminal device to stop transmitting data when the number
of characters in the input queue attempt to exceed MAX_INPUT (256). As soon as
the device can continue transmitting data without risk of an overflow, START
characters are transmitted which cause the terminal device to resume transmitting
data.

The initial input control value after open(2) is 0 (all settings oft).

Output Modes

The c_oflag field specifies the terminal interface's treatment of output. Because
OPOST is the only output flag defined by the POSIX standard, all of the other
definitions are local extensions to the standard.

Special Files 4-167

termios(4)

Mask Name

OPOST
OLCUC

ONLCR
OCRNL
ONOCR
ONLRET
OFILL
OFDEL

NLDLY
NLO
NLI

CRDLY
CRO
CRI
CR2
CR3

TABDLY
TABO
TABI
TAB2
TAB3

BSDLY
BSO
BSI

VTDLY
VTO
VTl

FFDLY
FFO
FFI

Description

Postprocess output.
Map lower case to upper on
output.
Map NL to CR-NL on output.
Map CR to NL on output.
No CR output at column O.
NL performs CR function.
Use fill characters for delay.
Fill is DEL, else NUL.

Select new-line delays:
New-line delay type O.
New-line delay type 1.

Select carriage-return delays:
Carriage-return delay type O.
Carriage-return delay type 1.
Carriage-return delay type 2.
Carriage-return delay type 3.

Select horizontal-tab delays:
Horizontal-tab delay type O.
Horizontal-tab delay type 1.
Horizontal-tab delay type 2.
Expand tabs to spaces.

Select backspace delays:
Backspace delay type O.
Backspace delay type 1.

Select vertical-tab delays:
Vertical-tab delay type O.
Vertical-tab delay type 1.

Select form-feed delays:
Form-feed delay type O.
Form-feed delay type 1.

If OPOST is set, output characters are post-processed as indicated by the remaining
flags. Otherwise, characters are transmitted without change.

If OLCUC is set, a lowercase letter is transmitted as the corresponding uppercase
letter. This function is often used in conjunction with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL character pair. If
OCRNL is set, the CR character is transmitted as the NL character. If ONOCR is
set, no CR character is transmitted when at column 0 (first position). If ONLRET is /
set, the NL character is assumed to do the carriage-return function; the column
pointer is set to 0, and the delays specified for CR are used. Otherwise the NL
character is assumed to do just the line-feed function; the column pointer remains

4-168 SpeCial Files

termios(4)

unchanged. The column pointer is also set to 0 if the CR character is actually
transmitted.

Delay bits specify transmission stops that allow mechanical or other movement when
certain characters are sent to the terminal. In all cases, a value of 0 indicates no
delay. If OFILL is set, fill characters are transmitted for delay instead of a timed
delay. This is useful for high baud rate terminals which need only a minimal delay.
If OFDEL is set, the fill character is DEL. Otherwise, it is NUL.

The delay specifications for NLDLY, CRDLY, TABDLY, BSDLY, VTDLY and
FFDL Yare meant to serve as masks for the respective delay field.

If a form-feed or vertical-tab delay is specified, either delay lasts approximately two
seconds.

New-line delay lasts about 0.10 seconds. If ONLRET is set, the carriage-return
delays are used instead of the new-line delays. If OFILL is set, two fill characters are
transmitted.

Carriage-return delay for type 1 depends on the current column position, type 2 is
approximately 0.10 seconds, and type 3 is approximately 0.15 seconds. IrOFILL is
set, delay type 1 transmits two fill characters, and type 2, four fill characters.

Horizontal-tab delay type 1 depends on the current column position. Type 2 is
approximately 0.10 seconds. Type 3 specifies that tabs are to be expanded into
spaces. If OFILL is set, two fill characters are transmitted for any delay.- .

Backspace delay lasts about 0.05 seconds. If OFILL is set, one fill character is
transmitted.

The actual delays depend on line speed and system load.

The initial output control value after open(2) is 0 (all settings oft).

Control Modes

The c_cflag field describes the hardware control of the terminal:

Mask Name

CSIZE
CS5
CS6
CS7
CS8

CSTOPB
CREAD
PARENB
PARODD
HUPCL
CLOCAL
TAUTOFLOW

Description

Character size:
5 bits
6 bits
7 bits
8 bits

Send two stop bits, else one.
Enable receiver.
Parity enable.
Odd parity, else even.
Hung up on last close.
Ignore modem status lines.
Use hardware monitored flow
control.

In addition, the input and output baud rates are also stored in the c_cflag field. The
following values are supported:

Special Files 4-169

termios(4)

Name

BO
B50
B75
B110
B134
B150
B300
B600
B1200
B1800
B2400
B4800
B9600
B19200
B38400

Description

Hang up
50 baud
75 baud
110 baud
134.5 baud
150 baud
300 baud
600 baud
1200 baud
1800 baud
2400 baud
4800 baud
9600 baud
19200 baud
38400 baud

The following interfaces are provided for getting and setting the values of the input
and output baud rates in the t e rmi 0 s structure. The effects on the tenninal device
do not become effective until the tcsetattr () function is successfully called.

speed_t cfgetospeed (termios-p)
struct termios *termios-p;

int cfsetospeed (termios-p, speed)
struct termios *termios-p;
speed_t speed;

speed_t cfgetispeed (termios-p)
struct termios *termios-p;

int cfsetispeed (termios-p, speed)
struct termios *termios-p;
speed_t speed;

The type speed_t is defined in <termio. h>.

The termios y argument is a pointer to a tennios structure that allows the c_cflag
field to be manipulated. The cfgetospeedO returns the output baud rate stored in
cflag.

Additionally, the cfsetospeedO sets the output baud rate stored in the cflag to speed.
The zero baud rate, BO, is used to tenninate the connection. If BO is specified, the
modem control line can no longer be asserted. Nonnally, this disconnects the line.
Both cfsetispeedO and cfsetospeedO return a value of zero if successful and -1 to
indicate error.

The cfgetispeedO returns the input baud rate stored in cflag.

The cfsetispeedO sets the input baud rate stored in cflag to speed. If the input baud
rate is set to zero, the input baud rate is specified by the value of the output baud
rate. For any particular hardware, unsupported baud rates are ignored. This refers to
changes and baud rates not supported by the hardware, and to changes setting the
input and output baud rates to different values if the hardware does not support this.

4-170 Special Files

termios(4)

The CSIZE bits specify the character size in bits for both transmission and reception.
This size does not include the parity bit, if any. If CSTOPB is set, two stop bits are
used, otherwise one stop bit. For example, at 110 baud, two stop bits are normally
used.

If CREAD is set, the receiver is enabled. Otherwise, no characters are received.

If P ARENB is set, parity generation and detection is enabled and a parity bit is added
to each character. If parity is enabled, PARODD specifies odd parity, if set.
Otherwise, even parity. is used.

If TAUTOFLOW is set, hardware monitored flow control is performed, if the
hardware supports this functionality. In this mode, the hardware terminal multiplexer
suspends output upon receipt of a STOP character (ASCII DC3). The hardware
resumes output after a START character (ASCII DC1) has been received. The
advantage of this mode is that it provides quick response to flow control characters
which would be useful in preventing overflow of the terminal device's input buffer.
T AUTOFLOW is a local extension to the termios specification.

If HUPCL is set, the modem control lines for the port are lowered when the last
process with the port open closes the port or the process terminates. The modem
connection is broken. If HUPCL is not set, the control lines are not altered.

If CLOCAL is set, a connection does not depend on the state of the modem status
lines. If CLOCAL is clear, the modem status lines are monitored. CLOCAL is
typically used by direct connect terminal lines.

Under normal circumstances, a call to the open(2) function waits for the modem
connection to complete. However, if the O_NONBLOCK flag is set, or, if CLOCAL
has been set, the open(2) function returns immediately without waiting for the
connection. For further information, see open(2). For those files on which the
connection has not been established, or on which a modem disconnect has occurred,
and for which CLOCAL is not set, both read(2) and wri te(2) return a zero
character count. For read(2), this is equivalent to an end-of-file condition.

The initial hardware control value after open(2) is CS8, CREAD, HUPCL, B300.

Local Modes

The c_Iflag field of the argument structure is used to control various functions.

Mask Name

ISIG
ICANON
NOFLSH
TOSTOP
ECHO
ECHOE
ECHOK
ECHONL
IEXTEN
TCTLECH
TCRTKIL
TPRTERA

Description

Enable signals
Canonical input (erase and kill processing).
Disable flush after interrupt, quit, or suspend.
Send SIGTTOU for background output.
Enable echo.
Echo ERASE as an error-correcting backspace.
Echo KILL.
Echo 0
Enable extended (implementation defined) functions.
Echo input control chars as "char, delete as "?
BS-space-BS erase entire line on kill.
Hard-copy terminal erase mode using

Special Files 4-171

termios (4)

If ISIG is set, each input character is checked against the special control characters
INTR, QUIT, and SUSP. If an input character matches one of these control
characters, the function associated with that character is performed. If ISIG is not
set, no checking is done. Thus, these special input functions are possible only if
ISIG is set.

If ICANON is set, canonical processing is enabled. This enables the erase, word
erase, reprint, and kill edit functions, and the assembly of input characters into lines
delimited by NL, EOF, and EOL, as described in Canonical Mode Input Processing.

If ICANON is not set, read(2) requests are satisfied directly from the input queue.
A read(2) is not satisfied until at least MIN characters have been received or the
timeout value TIME expired between characters. The time value represents tenths of
seconds. See the Noncanonical Mode Input Processing section for more details.

If NOFLSH is set, the normal flush of the input and output queues associated with
the INTR, QUIT, and SUSP characters is not done.

If TO STOP is set, the signal SIGTTOU is sent to the process group of a process that
tries to write to its controlling terminal, if it is not in the foreground process group
for that terminal. This signal, by default, stops the members of the process group.
Otherwise, the output generated by that process is output to the current output stream.
Processes that are holding or ignoring SIGTTOU signals are accepted and allowed to
produce output and the SIGTTOU signal is not sent.

If ECHO is set, input characters are echoed back to the terminal. If ECHO is not set,
input characters are not echoed.

The echo functions (ECHOE, ECHOK, ECHONL, TCTLECH, TCRTKIL, and
TPRTERA) are performed if ICANON is set.

If ECHOE and ICANON are set, the ERASE character causes the terminal to erase
the last character in the current line from the display, if possible.

If ECHOK and ICANON are set, the KILL character, either the terminal erases the
line from the display or echoes the \n character after the KILL character.

If ECHONL and ICANON are set, the \n character is echoed even if ECHO is not
set.

If IEXTEN is set, implementation defined functions are recognized from the input
data. In this manner the DSUSP, RPRNT, FLUSH, WERASE, LNEXT, and
QUOTE special characters in the c_cc array are only recognized if the IEXTEN flag
is set.

If TCTLECH is set, all control characters are echoed as 1\ X, where X is the character
obtained by adding the octal value of the character A (100) to the octal code for the
control character. In this context, a control character is defined to be a character
whose octal value is less than 37. The following control characters are excluded
from TCTLECH operations: ASCII NL, ASCII TAB, as well as control characters
that are defined in the c_cc array but are not returned to user programs (such as
START and STOP). TCTLECH is a local extension to the local modes.

If TCRTKIL is set, the response to a kill character is to erase the present input line
through a sequence of backspace-space-backspace. TCR TKIL is a local extension to
the local modes.

4-172 Special Files

termios(4)

If TCRTERA is set, characters that are logically erased are printed out backwards
preceded by a backslash (\) and followed by a slash (/). This mode is useful when a
hard-copy terminal is in use. TCRTERA is a local extension to the local modes.

The initial local control value after open (2) is 0 (all bits clear).

Special Control Characters

The special control characters values are defined by the array c_cc. The subscript
name and description for each element in both canonical and noncanonical modes are
as follows.

Subscript

VINTR (INTR)
VQUIT (QUIT)
VERASE (ERASE)
VKILL (KILL)
VEOF (EOF)
VEOL (EOL)
VMIN (MIN)
VTIME (TIME)
VSTART (START)
VSTOP (STOP)
VSUSP (SUSP)
VDSUSP (DSUSP)
VRPRNT (RPRNT)
VFLUSH (FLUSH)
VWERASE (WERASE)
VLNEXT (LNEXT)
VQUOTE (QUOTE)

Description

Interrupt character
Quit character
Erase character
Kill character
End-of-file character
End-of-line character
Value for noncanonical reads
Value for noncanonical reads
Start character
Stop character
Suspend character
Delayed suspend character
Reprint character
Flush character
Word erase character
Literal next character
Erase and kill quoting character

The following subscripts are local extensions to the c_cc array: VDSUSP, VRPRNT,
VFLUSH, VWERASE, VLNEXT, and VQUOTE. The constant NCCS defines the
total number of elements in the c_cc array.

Setting the value of a special character to POSIX_ V _DISABLE causes that function
to be disabled; that is, no input data will be recognized as the disabled special
character. If ICANON is not set, the value of POSIX_ V _DISABLE has no special
meaning for the VMIN and VTIME entries of the c_cc array.

Line Discipline

The c_line field of the termios data structure is used to specify the line discipline.
Support is provided for the basic termios line discipline only. For this reason, the
value of this field should be set to the value TERMIODISC (the default value) by
convention. The value of c_line is reset to TERMIODISC by the system, if attempts
are made to set c_line to other values. This field is a local extension.

Control Functions

The functions that are used to control the general terminal function are described in
this section. Unless otherwise noted for a specific command, these functions are
restricted from use by background processes. Attempts to perform these operations
cause the process group to be sent a SIGTTOU signal. If the calling process is

Special Files 4-173

termios(4)

blocking or ignoring SIGTTOU signals, the process is allowed to perfonn the
operation and the SIGTTOU signal is not sent.

In all the functions, fiides is an open file descriptor. However, the functions affect
the underlying terminal file, not just the open instance associated with the file
descriptor.

Get and Set State

Functions: tcgetattr () , tcsetattr ()

Syntax

#include <termios.h>

int tcgetattr (fildes, termios_p)
int fildes;
struct termios *termios-p;

int tcsetattr (fildes, optional_actions, termios-p)
int fildes;
int optional_actions;
struct termios *termios-p;

Description

The tcgetattr () function retrieves the parameters associated with the object
referred to by fiides and store them in the t e rmi 0 s structure referenced by
termios y . This function is allowed from a background process; however, the
information can be subsequently changed by a foreground process.

The t c set at t r () function sets the parameters associated with the tenninal from
the termios structure referenced by termiosy as follows:

• If optional_actions is TCSANOW, the change occurs immediately.

• If optional_actions is TCSADRAIN, the change occurs after all output written
to fildes has been transmitted. This function should be used when changing
parameters that affect output.

• If optional_actions is TCSADFLUSH, the change occurs after all output
written to the object referred to by fildes has been transmitted, and all input
that has been received but not read is discarded before the change is made.

Returns

Upon successful completion, a value of zero is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Errors

If any of the following conditions occur, the tcgetat tr () function returns -1 and
sets errno to the corresponding value:

[EBADF] The fiides argument is not a valid file descriptor.

[EINVAL] The device does not support the tcgetattr () function.

[ENOTTY] The file associated with fiides is not a tenninal.

If any of the following conditions occur, the tcsetat tr () function returns -1 and
sets errno to the corresponding value:

[EBADF] The fiides argument is not a valid file descriptor.

4-174 Special Files

termios(4)

[EINVAL] The device does not support the tcsetatr () function, or the
optional_actions argument is not a proper value.

[ENOTTY] The file associated withfildes is not a tenninal.

Line Control Functions

Functions: tcsendbreak (), tcdrain (), tcflush () , tcflow ()

Syntax

#include <termios.h>

int tcsendbreak (fildes, duration)
int fildes;
int duration;

int tcdrain (fildes)
int fildes;

int tcflush (fildes,
int fildes;
int queue_ selector;

int tcflow (fildes,
int fildes;
int action;

Description

queue_selector)

action)

The tcsendbreak () function sends a "break" that is a continuous stream of
zero-valued bits for a specific duration. If duration is zero, it sends zero-valued bits
for 0.25 seconds. If duration is greater than zero, it sends zero-valued bits for
duration*O.l seconds. If the object referred to by fildes no break sequence is
generated.

The tcdrain () function waits until all output written to the object referred to by
fildes has been transmitted.

The tcflush () function discards data written to the object referred to by fildes but
not transmitted, or data received but not read, depending on the value of
queue_selector:

• If queue _selector is TCIFLUSH, it flushes data received but not read.

• If queue _selector is TCOFLUSH, it flushes data written but not transmitted.

• If queue selector is TCIOFLUSH, it flushes both data received but not read,
and data-written but not transmitted.

The t c flow () function suspends transmission or reception of data on the object
referred to by fildes, depending on the value of action:

• If action is TCOOFF, it suspends output.

• If action is TCOON, it restarts suspended output.

• If action is TCIOFF, the system transmits a STOP character, which is intended
to cause the tenninal device to stop transmitting data to the system.

• If action is TCION, the system transmits a START character, which is
intended to cause the tenninal device to resume transmitting data to the system.

• The default on open of a tenninal file is that neither its input nor its output is
suspended.

Special Files 4-175

termios(4)

Returns

Upon successful completion, a value of zero is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Errors

If any of the following conditions occur, the tcsendbreak () function returns -1
and sets errno to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL]

[ENOTTY]

The device does not support the tcsendbreak () function.

The file associated with fildes is not a terminal.

If any of the following conditions occur, the tcdrain () function returns -1 and
sets errno to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The device does not support the tcdrain () function.

[ENOTTY] The file associated withfildes is not a terminal.

[EINTR] A signal interrupted the t cdr a i n () function.

If any of the following conditions occur, the tcflush () function returns -1 and
sets errno to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.

[EINV AL] The device does not support the t c flus h () function, or the
queue _selector argument is not a proper value.

[EN OTTY] The file associated with fildes is not a terminal.

If any of the following conditions occur, the tcflow () function returns -1 and sets
errno to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The device does not support the tcflow () function, or the action
argument is not a proper value.

[ENOTTY] The file associated withfildes is not a terminal.

Get Foreground Process Group Id

Function: tcgetpgrp ()

Synopsis

#include <sys/types.h>
#include <termios.h>

pid_t tcgetpgrp (fildes)
int fildes;

Description

The tcgetpgrp () function returns the value of the process group ID of the
foreground process group associated with the terminal.

4-176 Special Files

termios(4)

The tcgetpgrp () function is allowed from a background process; however, the
infonnation can be subsequently changed by a foreground process.

Returns

Upon successful completion, tcgetpgrp () retuns the process group ID of the
foreground process group associated with the tenninal. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Errors

If any of the following conditions occur, the tcgetpgrp () function returns -1 and
sets errno to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] This function is not allowed for the device associated with the fildes
argument.

[ENOTTY] The calling process does not have a controlling tenninal or the file is
not the controlling tenninal.

Set Foreground Process Group ID

Function: tcsetpgrp ()

Synopsis

#include <sys/types.h>
#include <termios.h>

int tcsetpgrp (fildes, pgrp_id)
int fildes;
pid_t pgrp_idi

Description

If the process has a controlling tenninal, the tcsetpgrp () function sets the
foreground process group ID associated with the tenninal to pgrp _id. The file
associated with fildes must be the controlling tenninal of the calling process, and the
controlling tenninal must be currently associated with the session of the calling
process. The value of pgrp _id must match a process group ID of a process in the
same session as the calling process.

Returns

Upon successful completion, tcsetpgrp () returns a value of zero. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

Errors

If any of the following conditions occur, the tcsetpgrp () function returns -1 and
sets errno to the corresponding value:

[EBADF]

[EINVAL]

[ENOTTY]

The fildes argument is not a valid file descriptor.

This function is not allowed for the device associated with the fildes
argument or the value of pgrp _id argument is less than or equal to
zero, or exceeds {PID _MAX} .

The calling process does not have a controlling tenninal or the file is
not the controlling tenninal, or the controlling tenninal is no longer
associated with the session of the calling process.

SpeCial Files 4-177

termios(4)

[EPERM]

See Also

The value of the pgrp id argument does not match the process group
ID of a process in the same session as the calling process.

csh(1), stty(1), tset(1), ioct1(2), sigvec(2), setsid(2), tennio(4), getty(8)

4-178 Special Files

Name

Syntax

tms - TMSCP magnetic tape interface

For UNIBUS, Q-bus:
controller kIesiuO at ubaO
controller uqO at klesiuO csr 0174500 vector uqintr
tape tmsO at uqO drive 0

For MSI Bus:
adapter msiO at nexus?
controller dsscO at msiO msinode 0
tape tmsO at dsscO drive 3

For VAXBI:
controller kIesibO at vaxbiO node 0
controller uqOat kIesibO vector uqintr
tape tmsO at uqO drive 0

controller aieO at vaxbi? node?
controller bvpsspO at aieO vector bvpsspintr
tape tmsO at bvpsspO drive 0

For MSI Bus:
adapter msiO at nexus?
controller dsscO at msiO msinode 0
tape tmsO at dsscO drive 0

For VAX CIIHSC:
adapter ciO at nexus?
adapter ciO at vaxbi? node?
controller hscO at ciO cinode 6
tape tmsO at hscO drive 3

tms(4)

Description
Prior to Version 2.0, this device was referenced by tmscp(4).

The TMSCP driver provides a standard tape drive interface, as described in mt i 0(4).
This is a driver for any controller that adheres to the Tape Mass Storage Control
Protocol (TMSCP). The TMSCP controllers communicate with the host through a
packet-oriented protocol termed the Tape Mass Storage Control Protocol. This driver
also supports n-buffered reads and writes to the raw tape interface (used with
streaming tape drives). See nbuf(4) for further details.

Tape Support
TK50, TK70, TF70, TU81, TU81e, TA78, TA79, TA81, RV20, TA90, TA90E

Diagnostics

All diagnostic messages are sent to the error logger subsystem.

Special Files 4-179

tms(4)

Files
/dev/rmt???
/dev/nrmt???

See Also
mtio(4), nbuf(4), MAKEDEV(8), uerf(8), tapex(8)
Guide to the Error Logger System

4-180 Special Files

trace (4)

Name
trace - system call tracing interface

Syntax
options SYS_TRACE pseudo-device sys_trace

Description
This is a special character device that provides an interface for the system call tracing
facility.

Files
/dev/trace

See Also
MAKEDEV(8)

Special Files 4-181

VAX ts(4)

Name

Syntax

ts - TS II{fS05ffU80 magnetic tape interface

controller zsO at uba? csr 0172520 vector tsintr
tape tsO at zsO drive 0

Description
The TS 11 combination provides a standard tape drive interface as described in
mtio(4). The TSl1 operates only at 1600 bpi, and only one transport is possible per
controller.

Diagnostics

Files

ts%d: no write ring
An attempt was made to write on the tape drive when no write ring was present.
This message is written on the tenninal of the user who tried to access the tape.

ts % d: not online
An attempt was made to access the tape while it was off line. This message is
written on the tenninal of the user who tried to access the tape.

ts%d: hard error bn%d
A hard error occurred on the tape at block hn. Additional register infonnation may
be gathered from the system error log file,
/usr/adm/syserr/syserr.<hostname>.

/dev/rmt???
/dev/nrmt???

See Also
mtio(4), nbuf(4), MAKEDEV(8), uerf(8)

4-182 Special Files

tty(4)

Name
tty - general terminal interface

Description

Terminal Subsystem

The terminal subsystem is the part of the operating system that allows users to read
and write characters over asynchronous terminal lines. An important aspect of this
subsystem is to provide a means for the user to set and receive terminal attributes.
Terminal attributes involve such things as line speed (baud rate), character length,
parity, flow control, modem control, as well as numerous character-processing
capabilities.

The ULTRIX terminal interface allows the user to specify terminal attributes in
different ways. Several different terminal interfaces exist to provide standard
compliant terminal control.

Terminal Interface Definitions

The t t y(4) special file describes the standard Berkeley terminal interface. This
interface is backward compatible with earlier versions of the UL TRIX operating
system.

The t e rrni 0(4) special file describes the terminal interface as defined by the System
V Interface Definition.

The t e rrni 0 S (4) special file describes the termios termio interface as defined by the
IEEE PI 003 POSIX specification.

Functionally, the three terminal interfaces are quite similar. Major differences lie in
how terminal attributes are specified. This includes the use of different data structures
to represent terminal attributes, as well as the means of setting and receiving
attributes.

It is possible to use combinations of the three terminal interface definitions. Under
these circumstances, the attributes of one interface are mapped into the corresponding
attributes of the other interfaces. Combining aspects of different interfaces is
discouraged, because it prevents the development of portable programs. For
example, a program intended for use with the System V termio terminal interface
fails to be a standard compliant program if it sets terminal attributes that are specific
to either of the other two terminal interfaces.

Combinations of the different terminal interfaces should be used with extreme caution
to avoid unwanted side-effects. For example, a program may have initially set up its
terminal environment using the System V termio interface, terrnio(4). Suppose
that the initial line settings are seven bits even parity with input and output
processing performed. If this same program were to set the line to RAW mode as
specified in t t y(4), the line would be set to eight bits no parity, with no input or
output processing. These settings would be reflected in the parameters as specified in
termio(4). This simple example is meant to illustrate the subtle side effects that
can result from the use of combinations of terminal interfaces.

Special Files 4-183

tty(4}

Using combinations of terminal interfaces can also cause problems if attributes that
are not common to all interfaces are used. For example, the Berkeley terminal
interface allows the user to set the value of the start and stop characters. The System
V termio interface defines that the start and stop characters shall be Control-Q and
Control-So As a result, if a terminal changes the start and stop characters using the
Berkeley terminal interface, those characters are reset if the terminal parameters are
set using the System V termio interface.

Terminal Interface Usage

The three interfaces have been developed to provide standard compliant terminal
behavior. The interface type should be specified at the time of program compilation.
As described in cc(l}, to compile a System V-compliant program, the -Y option (or
setting PROG_ENV equal to SYSTEM_FIVE) should be used. Similarly, the
-YPOSIX option should be used to compile a POSIX-compliant program. Without
the -Y or -YPOSIX compile option, the program intends to use the Berkeley terminal
interface. Refer to intro(2} for specific details on compatibility modes.

Berkeley Terminal Interface

Line Disciplines.

The system provides different line disciplines for controlling communications lines.
In this version of the system, there are several disciplines available:

old The old (Version 7) terminal driver. This is sometimes used when using
the standard shell s h(I} and for compatibility with other standard Version
7 UNIX systems.

new The standard terminal driver, with features for job control. This must be
used when using csh(1}.

net A line discipline used for networking and loading data into the system over
communications lines. It allows high speed input at low overhead and is
described in bk(4}.

termio This line discipline is intended for use by System V programs that use the
termio interface, as described in termio(4}. The termio line discipline is
also used by programs that require a POSIX IEEE PI003 termios interface
as described in termios(4}.

Line discipline switching is accomplished with the TIOCSETD ioctl:

int Idisc = LDISC; ioctl(filedes, TIOCSETD, &Idisc};

LDISC is OTTYDISC for the standard tty driver, NTTYDISC for the new driver,
NETLDISC for the networking discipline, and TERMIODISC for System V termio
and POSIX termios. The standard tty driver is discipline 0 by convention. Other
disciplines may exist for special purposes. The current line discipline can be
obtained with the TIOCGETD ioctl. Pending input is discarded when the line
discipline is changed.

All of the low-speed asynchronous communications ports can use any of the available
line disciplines, no matter what hardware is involved. The remainder of this section
discusses the old and new disciplines.

4-184 Special Files

tty (4)

The Control Terminal

When a terminal file is opened, it causes the process to wait until a connection is
established. In practice, user programs seldom open these files; they are opened by
getty(8) or rlogind(8c) and become a user's standard input and output file.

If a process that has no control terminal opens a terminal file, then that terminal file
becomes the control terminal for that process. The control terminal is thereafter
inherited by a child process during a fork(2), even if the control terminal is closed.

The file / dev / tty is, in each process, a synonym for a control terminal associated
with that process. It is useful for programs that want to be sure of writing messages
on the terminal, no matter how output has been redirected. It can also be used for
programs that demand a file name for output, when typed output is desired and it is
tiresome to find out which terminal is currently in use.

A process can remove the association it has with its controlling terminal by opening
the file / dev / tty and issuing:

ioctl(flldes, TIOCNOTTY, 0)

This is often desirable in server processes.

Process Groups

Command processors such as c s h(1) can arbitrate the terminal between different jobs
by placing related jobs in a single process group and associating this process group
with the terminal. A terminal's associated process group may be set using the
TIOCSPGRP ioctl(2):

ioctl(flldes, TIOCSPGRP, &pgrp)

The process group can be examined using using TIOCGPGRP, rather than
TIOCSPGRP, returning the current process group in pgrp. The new terminal driver
aids in this arbitration by restricting access to the terminal by processes that are not
in the current process group; see Job Access Control.

Modes

The terminal drivers have three major modes, characterized by the amount of
processing on the input and output characters:

cooked The normal mode. In this mode, lines of input are collected and input
editing is done. The edited line is made available when it is completed
by a newline or when the t_brkc character (normally undefined) or t_eofc
character (normally an EaT, CTRL/D) is entered. A carriage return is
usually made synonymous with newline in this mode and replaced with a
newline whenever it is typed. All driver functions (input editing,
interrupt generation, output processing such as delay generation and tab
expansion, and so forth) are available in this mode.

CBREAK This mode eliminates the character, word, and line editing input

RAW

facilities, making the input character available to the user program as it is
typed. Flow control, literal-next, and interrupt processing are still done
in this mode. Output processing is done.

This mode eliminates all input processing and makes all input characters
available as they are typed; no output processing is done either.

Special Files 4-185

tty (4)

The style of input processing can also be different when the terminal is put in
nonblocking I/O mode. For further information, see the FNDELA Y flag described in
fcntl(2). In this case, a read(2) from the control terminal never blocks. Rather,
it returns an error indication (EWOULDBLOCK), if there is no input available.

A process may also request a SIGIO signal be sent it whenever input is present and
also whenever output queues fall below the low-water mark. To enable this mode,
the FASYNC flag should be set using fcntl(2).

Input Editing

An ULTRIX terminal ordinarily operates in full-duplex mode. Characters may be
typed at any time, even while output is occurring, and are only lost when the
system's character input buffers become completely choked, which is rare, or when
the user has accumulated the maximum allowed number of input characters that have
not yet been read by some program. This limit is 256 characters. In RAW mode, the
terminal driver throws away all input and output without notice when the limit is
reached. In CBREAK mode or cooked mode, it refuses to accept any further input
and, if in the new line discipline, rings the terminal bell.

Input characters are normally accepted in either even or odd parity, with the parity bit
being stripped off before the character is given to the program. By clearing either the
EVEN or ODD bit in the flags word, it is possible to have input characters with that
parity discarded (see the Summary).

In all of the line disciplines, it is possible to simulate terminal input using the
TIOCSTI ioctl, which takes, as its third argument, the address of a character. The
system pretends that this character was typed on the argument terminal, which must
be the control terminal, except for the superuser. (This call is not in standard Version
7 UNIX.)

Input characters are normally echoed by putting them in an output queue as they
arrive. This may be disabled by clearing the ECHO bit in the flags word using the
stty(3) call or the TIOCSETN or TIOCSETP ioctl (see the Summary).

In cooked mode, terminal input is processed in units of lines. A program attempting
to read is normally suspended until an entire line has been received (but, see the
description of SIGTTIN in Job Access Control and FIONREAD in Summary of
modes.) No matter how many characters are requested in the read call, at most one
line is returned. It is not, however, necessary to read a whole line at once; any
number of characters can be requested in a read, even one, without losing
information.

During input, line editing is normally done, with the erase character sg_erase (by
default, the number sign (#)) logically erasing the last character typed and the sg_ kill
character (by default, the at sign (@)) logically erasing the entire current input line.
These are often reset on CRTs, with CTRL/H replacing the number sign (#), and
CTRL/U replacing the at sign (@). These characters never erase beyond the
beginning of the current input line or an EOF. These characters may be entered
literally, by preceding them with a backslash (\). In the old Teletype driver, both the
backslash (\) and the character entered literally appear on the screen; in the new
driver, the (\) normally disappears.

The drivers normally treat either a carriage return or a newline character as
terminating an input line, replacing the return with a newline and echoing a return
and a line feed. If the CRMOD bit is cleared in the local mode word, then the
processing for carriage return is disabled, and it is simply echoed as a return and does

4-186 Special Files

tty (4)

not tenninate cooked mode input.

In the new driver, there is a literal-next character (nonnally CTRLN), which can be
typed in both cooked and CBREAK mode preceding any character to prevent its
special meaning to the terminal handler. This is to be preferred to the use of the
backslash (\) escaping erase and kill characters, but the backs lash (\) is retained with
its old function in the new driver for historical reasons.

The new tenninal driver also provides two other editing characters in nonnal mode.
The word-erase character, normally CTRL/W, erases the preceding word, but not any
spaces before it. For the purposes of CTRL/W, a word is defined as a sequence of
nonblank characters, with tabs counted as blanks. Finally, the reprint character,
normally CTRL/R, retypes the pending input beginning on a new line. Retyping
occurs automatically in cooked mode, if characters that would normally be erased
from the screen are fouled by program output.

Input Echoing and Redisplay

In the old tenninal driver, the erase character is simply echoed. When a kill character
is typed, it is echoed, followed by a newline (even if the character is not killing the
line, because it was preceded by a backslash (\).)

The new tenninal driver has several modes for handling the echoing of terminal
input, controlled by bits in a local mode word.

Hardcopy terminals. When a hardcopy terminal is in use, the LPRTERA bit is
normally set in the local mode word. Characters that are logically erased are then
printed out backwards, preceded by a backslash (\) and followed by a slash (/) in this
mode.

CRT terminals When a CRT terminal is in use, the LCRTBS bit is normally set in
the local mode word. The terminal driver echoes the proper number of erase
characters when input is erased. In the normal case, where the erase character is a
CTRL/H, this causes the cursor of the tenninal to back up to where it was before the
logically erased character was typed. If the input has become fouled due to
interspersed asynchronous output, the input is automatically retyped.

Erasing characters from a CRT When a CRT terminal is in use, the LCRTERA bit
can be set to cause input to be erased from the screen with a "backspace-space
backspace" sequence when character- or word-deleting sequences are used.
LCRTERA must be used with LCRTBS for this functionality. A LCRTKIL bit can
be set as well, causing the input to be erased in this manner on line kill sequences as
well.

Echoing of control characters If the LCTLECH bit is set in the local state word, then
nonprinting (control) characters are normally echoed as AX (where x is the character
used in combination with the CTRL key), rather than being echoed unmodified;
delete is echoed as A?

The nonnal modes for using the new terminal driver on CRT terminals are speed
dependent. At speeds less than 1200 baud, the LCRTERA and LCRTKILL
processing is slow, so stty(l) normally just sets LCRTBS and LCTLECH; at
speeds of 1200 baud or greater, all of these bits are normally set. The stty
command summarizes these option settings and the use of the new terminal driver as
"newcrt" .

Special Files 4-187

tty (4)

Output Processing

When one or more characters are written, they are actually transmitted to the terminal
as soon as previously written characters have finished typing. (As noted above, input
characters are normally echoed by putting thetp in the output queue as they arrive.)
When a process produces characters more rapidly than they can be typed, it is
suspended when its output queue exceeds some limit. When the queue has drained
down to some threshold, the program is resumed. Even parity is normally generated
on output. The EOT character is not transmitted in cooked mode, to prevent
terminals that respond to it from hanging up; programs using RAW or CBREAK
mode should be careful.

The terminal drivers provide riecessary processing for cooked and CBREAK mode
output including delay generation for certain special characters and parity generation.
Delays are available after backspaces (CTRL/H), form feeds (CTRL/L), carriage
returns (CTRL/M), tabs (CTRL/I), and newlines (CTRL/J). The driver also
optionally expands tabs into spaces, where the tab stops are assumed to be set every
eight columns. These functions are controlled by bits in the tty flags word. (See
Summary.)

The terminal drivers provide for mapping between uppercase and lowercase on
terminals lacking lowercase, and for other special processing on deficient terminals.

Finally, in the new terminal driver, there is an output flush character, normally
CTRL/O, which sets the LFLUSHO bit in the local mode word, causing subsequent
output to be flushed until it is cleared by a program or more input is typed. This
character has effect in both cooked and CBREAK modes and causes pending input to
be retyped if there is any pending input. An ioctl to flush the characters in the input
and output queues, TIOCFLUSH, is also available.

Uppercase Terminals and Hazeltines

If the LCASE bit is set in the tty flags, then all uppercase letters are mapped into the
corresponding lowercase letter. The uppercase letter may be generated by preceding
it by a backs lash (\). If the new terminal driver is being used, then uppercase letters
are preceded by a a backs lash (\) when output. In addition, the following escape
sequences can be generated on output and accepted on input:

fur { }
use \' \! \A \(\)

To deal with Hazeltine terminals, which do not recognize the tilde (,...) as an ASCII
character, the LTILDE bit may be set in the local mode word when using the new
terminal driver; in this case, the tilde (,...) will be replaced with the grave accent (') on
output.

Flow Control

There are two characters (the stop character, nonnally CTRL/S, and the start
character, normally CTRL/Q), that cause output to be suspended and resumed
respectively. Extra stop characters typed when output is already stopped have no
effect, unless the start and stop characters are made the same, in which case output
resumes.

A bit in the flags word may be set to put the tenninal into TANDEM mode. In this
mode, the system produces a stop character (default CTRL/S) when the input queue
is in danger of overflowing, and a start character (default CTRL/Q) when the input
has drained sufficiently. This mode is useful when the tenninal is actually another

4-188 Special Files

tty(4)

machine that obeys the conventions.

A bit in the local mode word may be set to put the terminal into AUTOFLOW mode.
In this mode, flow control characters are responded to at the hardware level. Upon
receipt of a stop character, the hardware suspends output. This allows for quick
response to the stop character, which prevents buffer overflow (in printers for
example). AUTOFLOW functionality is only provided if the start character is
CTRL/Q and the stop character is CTRL/S. The AUTOFLOW bit is cleared if the
start or stop characters are not standard values, or if the RAW bit is not set.

Line Control and Breaks

There are several ioctl calls available to control the state of the terminal line. The
TIOCSBRK ioctl sets the break bit in the hardware interface, causing a break
condition to exist. This can be cleared by TIOCCBRK, usually after a delay with
sleep(3). Break conditions in the input are reflected as a null character in RAW
mode or as the interrupt character in cooked or CBREAK mode. The TIOCCDTR
ioctl clears the data terminal ready condition. It can be set again by TIOCSDTR.

When the carrier signal from the dataset drops (usually because the user has hung up
his terminal), a SIGHUP hangup signal is sent to the processes in the distinguished
process group of the terminal. This usually causes them to terminate (the SIGHUP
can be suppressed by setting the LNOHANG bit in the local state word of the driver.)
Access to the terminal by other processes is then normally revoked, so any further
reads fail, and programs that read a terminal and test for end-of-file on their input
terminate appropriately.

When using an ACU, it is possible to ask that the pho!e line be hung up on the last
close with the TIOCHPCL ioctl. This is normally done on the outgoing line.

Interrupt Characters

There are several characters that generate interrupts in cooked and CBREAK mode.
All are sent the processes in the control group of the terminal, as if a TIOCGPGRP
ioctl were done to get the process group and then a killpg(2) system call were
done, except that these characters also flush pending input and output when typed at a
terminal (for example, TIOCFLUSH). The characters shown here are the defaults.
The field names in the structures are also shown. The characters may be changed,
although this is not often done.

A? t_intrc (Delete) generates a SIGINT signal. This is the normal way to
stop a process that is no longer interesting or to regain control in an
interactive program.

A\ t_quitc (FS) generates a SIGQUIT signal. This is used to cause a
program to terminate and. produce a core image, if possible, in the file core
in the current directory.

t_suspc (EM) generates a SIGTSTP signal that is used to suspend the
current process group.

t _ dsuspc (SUB) generates a SIGTSTP signal as CTRL/Z does, but the
signal is sent when a program attempts to read the CTRL/Y, rather than
when it is typed.

Special Files 4-189

•

•

tty (4)

Job Access Control

When using the new tenninal driver, if a process that is not in the distinguished
process group of its control tenninal attempts to read from that tenninal, its process
group is sent a SIGTTIN signal. This signal nonnally causes the members of that
process group to stop. If, however, the process is ignoring SIGTTIN, has SIGTTIN
blocked, is an orphan process, or is in the middle of process creation using
vfork(2), it is returned an end-of-file instead. (An orphan process is a process
whose parent has exited and that has been inherited by the ini t(8) process.) Under
older UNIX systems these processes would typically have had their input files reset
to / dev / n u 11, so this is a compatible change.

When using the new tenninal driver with the LTOSTOP bit set in the local modes, a
process is prohibited from writing on its control tenninal, if it is not in the
distinguished process group for that tenninal. Processes that are holding or ignoring
SIGTTOU signals, that are orphans, or that are in the middle of a vfork2 are
excepted and allowed to produce output.

Modem Control

Ioctls have been added to provide more flexible modem control on tty lines. The new
commands are summarized below.

TIOCMODEM Indicate to the system that this tty line has a modem attached to it
and should not ignore modem signals. The argument to this ioctl is
the address of a word that contains either zero or a nonzero value.
zeo indicates that the effect of the ioctl is temporary, and the line
is reset to its condition prior to the ioctl, when the tty line is
closed. Nonzero indicates that the effect of the ioctl should be
pennanent. Root privilege is required to effect a penn anent
change.

TIOCNMODEM
Indicate to the system that modem transmissions should be ignored
on this line. This is useful for connections that do not implement
the full RS-232 standard (most direct connections to tenninals).
The argument to this ioctl is the address of a word that contains
either zero or a nonzero value. Zero indicates that the effect of
ioctl is temporary, and the line is reset to its condition prior to the
ioctl, when the tty line is closed. Nonzero indicates that the effect
of the ioctl should be penn anent. Root privilege is required to
effect a penn anent change.

TIOCNCAR Ignore soft carrier when doing reads or writes. If carrier is not
present on a modem line, then reads or writes nonnally fail. This
ioctl allows reads and writes to succeed, regardless of the state of
this line. This is useful for dealing with automatic call units that
send status messages before carrier is present on the line. The
alternative would be to use the TIOCNMODEM ioctl and ignore
all modem signals and force soft carrier to be present. The latter
alternative is not desirable, if full modem control is required.

TIOCCAR The opposite effect of TIOCNCAR. If carrier is not present on
modem lines, then reads and writes fail.

TIOCWONLINE This ioctl blocks the process until carrier is detected.

4-190 Special Files

The following example demonstrates how one might deal with a modem:

1* open the line and don't wait for carrier *1
fd = open(dcname, O_RDWRIO_NDELAY);
1* we are attached to a modem so don't ignore modem signals *1
ioctl(fd, TIOCMODEM, &temp);

tty(4)

ioctl(fd, TIOCNCAR); 1* ignore soft carr while dialing number *1
1*
* dial phone number and negotiate with auto call unit.
*1

ioctl(fd, TIOCCAR); /* don't ignore carrier anymore */
alarm(40);
ioctl(fd, TIOCWONLINE); 1* wait for carrier *1
alarm(O) ;

Shared tty Lines

The following ioctls are used by getty(8), tip(1), and uucp(1) to implement
shared terminal lines: TIOCSINUSE/FIOSINUSE, TIOCCINUSE/FIOCINUSE.
Shared terminal lines can be used for both incoming and outgoing connections. For
further information, see the Guide to System Environment Setup. These ioctls can be
used by any user process on any file type, but they do not work on a socket.

TIOCSINUSE TIOCSINUSE is defined to FIOSINUSE. This command checks
to see if the file is marked "in use". If the file is not "in use", it
is marked "in use" by the current process and the ioctl succeeds.
If the file is already "in use" by some other process, the ioctl fails
and ermo is set to EALREADY. For further information, see
open(2).

TIOCCINUSE TIOCCINUSE is defined to FIOCINUSE. This command clears
the "in use" flag on a file, if the current process was the one that
set the "in use" flag. Any process that is blocked and waiting for
the "in use" flag to clear will be resumed. For further information,
see open(2).

Summary of Modes

Unfortunately, due to the evolution of the terminal driver, there are four different
structures that contain various portions of the driver data. The first of these (sgttyb)
contains that part of the information largely common between Version 6 and Version
7 UNIX systems. The second contains additional control characters added in Version
7. The third is a word of local state peculiar to the new terminal driver, and the
fourth is another structure of special characters added for the new driver.

Basic modes: sgtty - There are two versions of the sgttyb structure: one for BSD
(default) and one for SYSTEM_FIVE. The basic ioctls use the structure defined in
<sgtty. h>:

You get this version of sgttyb if you include <sgtty. h>, into your .c source, and
then compile with 'cc - YBSD ' or 'setenv PROG_ENV BSD' or by default to
BSD if PROG_ENV is not defined, or '-Y' is not specified.

struct sgttyb {
char
char

sg_ispeed;
sg_ospeed;

char sg_erase;
char sg_kill;

Special Files 4-191

tty(4)

short sg_flags;
} ;

You get this version of sgttyb if you include <sgtty. h> in your .c source, and then
compile using the '-Y' or '-YSYSTEM_FIVE' option of CC, or set PROG_ENV
environment to 'SYSTEM_FIVE'.

struct sgttyb
char sg_ispeed;
char sg_ospeed;
char sg_ erase;
char sg_ kill;
int sg_flags;

} ;

The sg_ispeed and sg_ospeed fields describe the input and output speeds of the
device according to the following table, which corresponds to the speeds offered on
most Digital terminal multiplexers. If other hardware is used, impossible speed
changes are ignored. Symbolic values in the table are as defined in <sgtty. h>.

BO 0 (hang up dataphone)
B50 1 50 baud
B75 2 75 baud
B 110 3 110 baud
B134 4 134.5 baud
B150 5 150 baud
B200 6 200 baud
B300 7 300 baud
B600 8 600 baud
B1200 9 1200 baud
B1800 10 1800 baud
B2400 11 2400 baud
B4800 12 4800 baud
B9600 13 9600 baud
EXTA 14 External A (19200 baud)
EXTB 15 External B (38400 baud)

Code conversion and line control required for IBM 2741s (134.5 baud) must be
implemented by the user's program. The half-duplex line discipline required for the
202 dataset (1200 baud) is not supplied; full-duplex 212 datasets work fine.

The sg_erase and sg_ kill fields of the argument structure specify the erase and kill
characters respectively. (Defaults are the number sign (#) and the at sign (@).)

The sgJlags field of the argument structure contains several bits that determine the
system's treatment of the terminal:

ALLDELA Y 0177400 Delay algorithm selection

BSDELA Y 0100000 Select backspace delays (not implemented):
BSO 0
BSI 0100000

VTDELA Y 0040000 Select form-feed and vertical-tab delays:
FFO 0
FFI 0100000

4-192 Special Files

CRDELAY
CRO
CR1
CR2
CR3

TBDELAY
TABO
TAB1
TAB2
XTABS

NLDELAY
NLO
NL1
NL2
NL3

EVENP
ODDP
RAW
CRMOD
ECHO
LCASE
CBREAK
TANDEM

0030000 Select carriage-return delays:
o
0010000
0020000
0030000

0006000 Select tab delays:
o
0002000
0004000
0006000

0001400 Select new-line delays:
o
0000400
0001000
0001400

0000200 Even parity allowed on input (most terminals)
0000100 Odd parity allowed on input
0000040 Raw mode: wake up on all characters, 8-bit interface
0000020 Map CR into LF; echo LF or CR as CR -LF
0000010 Echo (full duplex)
0000004 Map uppercase to lowercase on input
0000002 Return each character as soon as typed
0000001 Automatic flow control

tty(4)

The delay bits specify how long transmission stops to allow for mechanical or other
movement, when certain characters are sent to the terminal. In all cases, a value of 0
indicates no delay.

Backspace delays are ignored but might be used for Terminet 300s.

If a form-feed/vertical tab delay is specified, it lasts for about two seconds.

Carriage-return delay type 1 lasts about .08 seconds and is suitable for the Terminet
300. Delay type 2 lasts about .16 seconds and is suitable for the VT05 and the TI
700. Delay type 3 is suitable for the Concept-IOO and pads lines to be at least nine
characters at 9600 baud.

New-line delay type 1 is dependent on the current column and is tuned for Teletype
Model 37s. Type 2 is useful for the VT05 and is about .10 seconds. Type 3 is is 0
and is unimplemented.

Tab delay type 1 is dependent on the amount of movement and is tuned to the
Teletype Model 37. Type 3, called XTABS, is not a delay at all but causes tabs to
be replaced by the appropriate number of spaces on output.

The flags for even and odd parity control parity checking on input and generation on
output· in cooked and CBREAK mode. Even parity is generated on output unless
ODDP is set and EVENP is clear, in which case odd parity is generated. For no
parity, set both ODDP and EVENP flags. Input characters with the wrong parity, as
determined by EVENP and ODDP, are ignored in cooked and CBREAK mode.

Special Files 4-193

tty (4)

RAW disables all processing save output flushing with LFLUSHO; full eight bits of
input are given as soon as it is available; all eight bits are passed on output. A break
condition in the input is reported as a null character. If the input queue overflows in
raw mode, it is discarded; this applies to both new and old drivers.

CRMOD causes input carriage returns to be turned into new lines; input of either CR
or LF causes LF-CR both to be echoed (for terminals with a newline function).

CBREAK is a sort of half-cooked mode. Programs can read each character as soon
as typed, instead of waiting for a full line; all processing is done, except the input
editing: character and word erase and line kill, input reprint, and the special
treatment of the backslash (\) or EOT are disabled.

TANDEM mode causes the system to produce a stop character (default, CTRL/S),
whenever the input queue is in danger of overflowing, and a start character (default
CTRL/Q), when the input queue has drained sufficiently. It is useful for flow control
when the "terminal" is really another computer that understands the conventions.

Basic ioctls - In addition to the TIOCSETD and TIOCGETD disciplines discussed in
Line disciplines, a large number of other ioctl(2) calls apply to terminals and
have the general form:

#include <sgtty.h>

ioctl(fildes, code, arg)
struct sgttyb *arg;

The applicable codes are:

TIOCGETP Fetch the basic parameters associated with the terminal and store in
the pointed-to sgttyb structure.

TIOCSETP

TIOCSETN

Set the parameters according to the pointed-to sgttyb structure.
The interface delays until output is quiescent, and then throws
away any unread characters, before changing the modes.

Set the parameters like TIOCSETP but do not delay or flush input.
Input is not preserved, however, when changing to or from RAW.

With the following codes the arg is ignored.

TIOCEXCL

TIOCNXCL

TIOCHPCL

Set "exclusive-use" mode: all open calls to this line have been
closed. This setting does not prevent superuser opens of the
terminal line.

Tum off "exclusive-use" mode.

When the file is closed for the last time, hang up the terminal.
This is useful when the line is associated with an ACU used to
place outgoing calls.

Setting the pointed-to integer parameter to the following values determines how
TIOCFLUSH functions.

TIOCFLUSH FREAD flushes input queues. FWRITE flushes output queues.
Zero (0) flushes both. FREAD and FWRITE are defined in
<sys/ file. h>.

In cases where arguments are required, they are described; arg should otherwise be
given as zero (0).

4-194 Special Files

TIOCSTI

TIOCSBRK

TIOCCBRK

TIOCSDTR

TIOCCDTR

TIOCSTOP

TIOCSTART

TIOCGPGRP

TIOCSPGRP

FIONREAD

tty (4)

The argument is the address of a character that the system pretends
was typed on the terminal.

The break bit is set in the terminal.

The break bit is cleared.

Data terminal ready is set.

Data terminal ready is cleared.

Output is stopped, as if the "stop" character had been typed.

Output is restarted, as if the' 'start" character had been typed.

arg is the address of a word into which is placed the process group
number of the control terminal.

arg is a word (typically a process ID) that becomes the process
group for the control terminal.

Returns in the long integer whose address is arg, the number of
immediately readable characters from the argument unit.

Tchars - The second structure associated with each terminal specifies characters that
are special in both the old and new terminal interfaces. The following structure is
defined in <sys/ ioctl. h>, which is automatically included in <sgtty. h>:

struct tchars
char t intrc; /* interrupt */
char t_quitc; /* quit */
char t - startc; /* start output */
char t_stopc; /* stop output */
char t eofc; /* end-of-file */
char t _brkc; /* input delimiter (like nl) */

} ;

The default values for these characters are CTRL/?, CTRLj\, CTRL/Q, CTRL/S,
CTRL/D, and -1. A character value of -1 eliminates the effect of that character. The
t_brkc character, by default -1, acts like a newline in that it terminates a "line", is
echoed, and is passed to the program. The "stop" and start characters may be the
same, to produce a toggle effect. It is probably counterproductive to make other
special characters (including erase and kill) identical. The applicable ioctl calls are:

TIOCGETC Get the special characters and put them in the specified structure.

TIOCSETC Set the special characters to those given in the structure.

Local mode - The third structure associated with each terminal is a local mode word.
The bits of the local mode word are:

LCRTBS Ox0001 Backspace on erase, rather than echoing erase
LPRTERA Ox0002 Printing terminal erase mode
LCRTERA Ox0004 Erase character echoes as backspace-space-backspace
LTILDE Ox0008 Convert -- to ' on output (for Hazeltine terminals)
LLITOUT Ox0020 Suppress output translations
L TO STOP Ox0040 Send SIGTTOU for background output
LFLUSHO Ox0080 Output is being flushed
LNOHANG Ox0100 Do not send hangup when carrier drops
LAUTOFLOW Ox0200 Hardware responds to flow control characters. (See Flow control.)
LCRTKIL Ox0400 BS-space-BS erase entire line on line kill

Special Files 4-195

tty(4)

LPASS8
LCTLECH
LPENDIN
LDECCTQ
LNOFLSH

Ox0800 Allow 8-bit characters in input and output
OxlOOO Echo input control chars as AX, delete as A?
Ox2000 Retype pending input at next read or input character
Ox4000 Only CTRL/Q restarts output after CTRL/S
Ox8000 Do not flush output on receipt of suspend or interrupt character

The applicable ioctl functions are:

TIOCLBIS

TIOCLBIC

TIOCLSET

TIOCLGET

arg is the address of a mask of bits to be set in the local mode
word.

arg is the address of a mask of bits to be cleared in the local mode
word.

arg is the address of a mask to be placed in the local mode word.

arg is ~he address of a word into which the current mask is placed.

Window Size - The fourth structure associated with terminals is the win s i z e
structure that defines the size of the terminal window. The win s i z e structure is
defined as follows:

struct winsize {

} ;

unsigned short ws_row, ws_col;
unsigned short ws_xpixel, ws_ypixel;

The ws row and ws col elements define the window size in terms of the number of
characters per row and column respectively. The ws_xpixel and wsypixel define the
window size in terms of pixels. The default value is to initialize each of the elements
to zero.

The applicable ioctl functions are:

TIOCSWINSZ arg is the address of a winsize structure, which defines the new
window sizes. This will send a SIGWINCH signal to notify all
members of process group that the window size has changed.

TIOCGWINSZ arg is the address of a winsi ze structure into which is placed the
current window size settings.

Local special characters - The final structure associated with each terminal is the
1 tchars structure that defines interrupt characters for the new terminal driver. Its
structure is:

struct ltchars
char t _suspc; 1* stop process signal *1
char t_dsuspc; 1* delayed stop process signal *1
char t _rprntc; 1* reprint line *1
char t - flushc; 1* flush output (toggles) *1
char t werasc; 1* word erase *1 -
char t lnextc; 1* literal next character *1 -

} ;

The default values for these characters are CTRL/Z, CTRL/Y, CTRL/R, CTRL/O,
CTRL/W, and CTRLN. A value of -1 disables the character.

The applicable iocd functions are:

TIOCSL TC args is the address of an It char s structure, which defines the new
local special characters.

4-196 Special Files

tty (4)

TIOCGLTC args is the address of an Itchars structure, into which is placed the
current set of local special characters.

Restrictions

Files

Half-duplex terminals are not supported.

/dev/tty
/dev/tty*
/dev/console

See Also
csh(l), stty(l), tset(l), ioct1(2), sigvec(2), stty(3), termio(4), termios(4), getty(8),
MAKEDEV(8)

Special Files 4-197

VAX tu(4)

Name

Syntax

tu - TM03/TEI6!TU45!TU77 magnetic tape interface

master htO at mba? drive?
tape tuO at htO slave 0

Description
Prior to Version 2.0, this device was referenced by ht(4).

The TM03/transport combination provides a standard tape drive interface, as
described in rntio(4). All drives provide both 800 and 1600 bpi. The TE16 runs at
45 ips, the TU45 at 75 ips, and the TU77 runs at 125 ips and autoloads tapes.

Diagnostics

Files

tu%d: no write ring
An attempt was made to write on the tape drive when no write ring was present.
This message is written on the terminal of the user who tried to access the tape.

tu%d: not on line
An attempt was made to access the tape while it was off line. This message is
written on the terminal of the user who tried to access the tape.

tu%d: can't switch density in mid-tape
An attempt was made to write on a tape at a different density than is already recorded
on the tape. This message is written on the terminal of the user who tried to switch
the density.

tu%d: hard error bn%d
A tape error occurred at block hn. Any error is fatal on nonraw tape. When
possible, the driver will have retried the operation and failed several times before
reporting the error. Additional register information can be gathered from the system
error log file, /usr / adrn/ syserr / syserr. <hostname>.

/dev/rrnt???
/dev/nrrnt???

See Also
mtio(4), nbuf(4), MAKEDEV(8), uerf(8)

4-198 Special Files

Name

Syntax

tz - SCSI magnetic tape interface

V AX NCR 5380:
adapter
controller
tape

VAX DEC SII:
adapter
controller
tape

RISC DEC SII:
adapter
controller
tape

RISC NCR ASC:
adapter
controller
tape

ubaO
scsiO
tzO

ibusO
siiO
tzO

ibusO
siiO
tzO

ibusO
ascO
tzO

at nexus?
at ubaO
at scsiO

at nexus?
at ibus?
at siiO

at nexus?
at ibus?
at siiO

at nexus?
at ibus?
at ascO

tz(4)

csr Ox200c0080 vector szintr
drive 0

vector sii intr
drive 0 -

vector sii intr
drive 0 -

vector ascintr
drive 0

Description
The SCSI tape driver provides a standard tape drive interface as described in
mtio(4). This is a driver for any Digital SCSI tape device. This driver also
supports n-buffered reads and writes to the raw tape interface (used with streaming
tape drives). See nbuf(4) for further details.

Tape Support
TZ30, TZK50, TLZ04, TSZ05

Diagnostics

Files

All diagnostic messages are sent to the error logger subsystem.

/dev/rmt???
/dev/nrmt???

See Also
mtio(4), nbuf(4), SCSI(4), MAKEDEV(8), uerf(8), tapex(8)
Guide to the Error Logger System

Special Files 4-199

udp(4p)

Name

Syntax

udp - Internet User Datagram Protocol

#include <sys/socket.h>
#include <netinet/in.h>

s = socket(AF _INET, SOCK_DGRAM, 0);

Description
UDP is a simple, unreliable datagram protocol that is used to support the
SOCK_DGRAM abstraction for the Internet protocol family. UDP sockets are
connectionless and are nonnally used with the sendto and recvfrom calls,
though the connect(2) call can also be used to fix the destination for future packets
(in which case the recv(2) or read(2) and send(2) or wr i te(2) system calls may
be used).

UDP address fonnats are identical to those used by TCP. In particular, UDP provides
a port identifier in addition to the normal Internet address format. Note that the UDP
port space is separate from the TCP port space (for example, a UDP port may not be
"connected" to a TCP port). In addition broadcast packets can be sent (assuming
the underlying network supports this) by using a reserved "broadcast address"; this
address is network interface dependent. The SO _BROADCAST option must be set
on the socket for broadcasting to succeed.

Diagnostics
A socket operation may fail with one of the following errors returned:

[EISCONN] Try to establish a connection on a socket which already has one, or
when trying to send a datagram with the destination address
specified and the socket already connected.

[ENOTCONN] Try to send a datagram, but no destination address is specified, and
the socket has not been connected.

[ENOBUFS] The system runs out of memory for an internal data structure.

[EADDRINUSE] An attempt is made to create a socket with a port that has already
been allocated.

[EADDRNOTAVAIL]

See Also

An attempt is made to create a socket with a network address for
which no network interface exists.

getsockopt(2), send(2), socket(2) recv(2), intro(4n), inet(4f)

4-200 Special Files

Name

Syntax

xna - DEBNI and DEMNA Ethernet interfaces

device xnaO at vaxbi? node? vector xnaintr (DEBNI)
device xnaO at xmi? node? vector xnaintr (DEMNA)

xna(4)

Description
The xna driver provides access to a 10 Mbytes Ethernet network through the DEBNI
and DEMNA adapters. The DEBNI is an Ethernet to BI bus. The DEMNA is an
Ethernet to XMI adapter.

The host's Internet address is specified at boot time with an SIOCSIFADDR ioctl.
The xna driver employs the Address Resolution Protocol, as described in arp(4p),
to map dynamically between Internet and Ethernet addresses on the local network.

The xna driver normally tries to use a trailer encapsulation to minimize copying data
on input and output. This can be disabled for an interface by setting the
IFF _NOTRAILERS flag with an SIOCSIFFLAGS ioctl. Trailers are used only for
packets destined for Intemet~hosts.

The SIOCSPHYSADDR ioctl can be used to change the physical address of the
adapater and SIOCRPHYSADDR can be used to read its physical address.
SIOCADDMULTI and SIOCDELMUL TI can be used to add or delete multicast
addresses. The xna driver supports a maximum of 12 multicast addresses. The
argument to the latter ioctls is a pointer to an "ifreq" structure found in
<net/if.h>.

SIOCCRDCTRS and SIOCRDZCTRS ioctls can be used to read or read and clear
network counters. The argument to the latter two ioctls is a pointer to a counter
structure "ctrreq" found in < net / if. h>.

The ioctls SIOCENABLBACK and SIOCDISABLBACK can be used to enable and
disable the interface loop back mode.

Restrictions
The PUP protocol family is not supported.

Diagnostics

xna%d: port self· test failed:<register list>
Adapter did not pass the power-up self-test during autoconfiguration time. The port
attachment fails.

xna%d: couldn't allocate ...
The xna driver was unable to allocate memory for adapter data structures. The port
attachment fails.

xna%d: port probe faiIed:<register list>
The xna driver was unable to bring the adapter into the initialized state. The port
attachment fails.

Special Files 4-201

xna(4)

xna%d: port init failed:<register list>
The xna driver failed to prepare the adapter for runtime use.

xna%d: port state changed, resetting:<register list>
The adapter issued a port state change interupt. The port state is reset.

xna%d: port reset failed
The xna driver was unable to bring the adapter into the initialized state during a port
reset.

xna%d: command failed, error code:<error code>
The adapter port command failed. The error code gives reason for failure.

xna %d: couldn't handle af%d
A packet with an undefined protocol type has been sent to the adapter.

xna%d: addmulti failed, multicast list full
Too many multicast requests have been made.

See Also
arp(4p), inet(4f), intro(4n)

4-202 Special Files

A

Address Resolution Protocol, 4-6

See also DELQA Ethernet interface

See also DEQNA Ethernet interface

communicating with non-ARP system, 4-6

diagnostics, 4-7

restricted, 4-7

audit log interface, 4-8

autoconf keyword, 4-9

B
BISYNC data communications interface, 4-57

BVP DEBNTINI interface, 4-89

c
CBREAK mode

defined,4-185

db video subsystem, 4-10

cft keyword, 4-11

color video subsystem, 4-64, 4-139

configuration file

editing for LAT service, 4-79

configuration file (syslog), 4-9

console interface, 4-12, 4-13

See also RL02 console interface

See also RX50 console interface

console terminal

QVSS and, 4-110

cooked mode

defined,4-185

crl keyword, 4-15

cs keyword, 4-16

ctu keyword, 4-17

cty keyword, 4-19

CX16 communications interface, 4-22

CXA16 communications interface, 4-20

CXY08 communications interface, 4-24

o
data sink, 4-91

dc serial line controller, 4-26

de interface

See DELUA Ethernet interface

See DEUNA Ethernet interface

Index

DEBNI interface and DEMNA interface, 4-201

DELQA Ethernet interface, 4-109

DELUA Ethernet interface, 4-27

See also Address Resolution Protocol

DEQNA Ethernet interface, 4-109

DEUNA Ethernet interface, 4-27

See also Address Resolution Protocol

device driver

SCSI,4-134

device interface, 4-29

devio file

See device interface

dfa interface

See DFA01 communications interface

DFAOI communications interface, 4-31

acucap file entry, 4-31

. remote file entry, 4-31 e

dhb interface

See DHB32 communications interface

DHB32 communications interface, 4-33

dhq keyword

See DHQ11 communications interface

DHQll communications interface, 4-35

DHT32 serial line interface, 4-140

dhu interface

See DHQll communications interface

See DHUll communications interface

See DHVll communications interface

DHUll communications interface, 4-36

dhv keyword

See DHVll communications interface

DHVll communications interface, 4-37

disk interface

See dkio file

See also dkio file

DIOGETPT and, 4-40e, 4-42e

ioctl codes, 4-39, 4-41

restricted, 4-40, 4-43

dkio file

ioctl codes, 4-39, 4-41

dmb interface

See DMB32 communications interface

See DMB32 serial printer interface

DMB32 communications interface, 4-44

See also DMB32 serial printer interface

DMB32 serial printer interface, 4-46

dmbsp keyword

See DMB32 serial printer interface

dmc interface

See DMCll communications interface

See DMR11 communications interface

DMCll communications interface, 4-47

dmf interface

See DMF32 communications interface

See DMF32 serial printer interface

DMF32 communications interface, 4-49

See also DMF32 serial printer interface

restricted, 4-49c

DMF32 serial printer interface, 4-51

dmfsp keyword

DMF32 serial printer interface, 4-51

DMRll communications interface, 4-47

dmv interface

See DMVll communications interface

DMVll communications interface, 4-52

Index-2

dmz interface

See DMZ32 communications interface

DMZ32 communications interface, 4-54

dpv data communications interface, 4-55

drivers

sp,4-143

drum keyword, 4-56

dup interface, 4-57

dz interface

See DZll communications interface

See DZ32 communications interface

See DZQ11 communications interface

See DZVll communications interface

DZll communications interface, 4-58

DZ32 communications interface, 4-58

dzq keyword

See DZQll communications interface

DZQll communications interface,· 4-59

See also DFAOI communications interface

dzv keyword

See DZV11 communications interface

DZVll communications interface, 4-60

E
errlog interface, 4-61

error logging

interface, 4-61

Ethernet address

mapping to Internet address, 4-6, 4-89, 4-201

Ethernet interface

F

See DELQA Ethernet interface

See DELUA Ethernet interface

See DEQNA Ethernet interface

See DEUNA Ethernet interface

Lance Ethernet interface, 4-72

fc interface

See V AXstation serial line interface

fg interface

See color video subsystem

II keyword

cft keyword, 4-11

G

Graphics Subsystem

pm, 4-105

H
hk interface

See RK07 disk interface

See RK711 disk interface

hp interface

RM03 disk interface, 4-65

RM05 disk interface, 4-65

RM80 disk interface, 4-65

RP05 disk interface, 4-65

RP06 disk interface, 4-65

RP07 disk interface, 4-65

ht keyword

See TM03 magnetic tape interface

ICMP

See Internet protocol family

IDC disk interface, 4-120

ifrequest structure

form,4-4e

inet keyword, 4-68

Internet address, 4-68

mapping to Ethernet address, 4-6, 4-89, 4-201

Internet Control Message Protocol

See Internet protocol family

Internet protocol family, 4-68

See also IP transport protocol

contents, 4-68

socket addressing structure, 4-68

intro(4) keyword, 4-2

110 operation

multiple buffers and, 4-87

IP transport protocol, 4-69

K
kmem special file, 4-70

kUmem special character file, 4-71

L

Lance Ethernet interface, 4-72

LAT service

creating LA T special files, 4-80

editing configuration file for, 4-79

editing the /etc/ttys file, 4-80

restarting with /etc/rc.local file, 4-79

LA T special files

creating, 4-80

In interface

Lance Ethernet interface, 4-72

10 keyword, 4-74

loop network interface, 4-74

Ip interface

See LPll line printer interface

LPllline printer interface, 4-75

Ita pseudoterminal interface, 4-79

M

magnetic tape interface, 4-82

See also interfaces for specific devices

MASSBUS disk interface

diagnostics, 4-67

drive types recognized, 4-65

restricted, 4-66

RM03 disk interface, 4-65

RM05 disk interface, 4-65

RM80 disk interface, 4-65

RP05 disk interface, 4-65

RP06 disk interface, 4-65

RP07 disk interface, 4-65

master pseudoterminal

defined,4-106

mem memory file, 4-81

modem

controlling, 4-190

setting up, 4-191e

Index-3

monochrone video subsystem, 4-141

MSCP disk interface, 4-112 to 4-119

disk support, 4-113

partition tables, 4-113 to 4-118

mt file

See TM78 magnetic tape interface

See TU78 magnetic tape interface

mtio keyword, 4-82

mu interface

N

See TM78 magnetic tape interface

See TU78 magnetic tape interface

nbuf keyword, 4-87

network facilities

introduction, 4-2 to 4-5

network interface, 4-4 to 4-5

associated broadcast address, 4-5e

defined, 4-2

ioctl calls for manipulating, 4-4 to 4-5

network protocol

See IP transport protocol

See TCP protocol

ni interface

See BVP DEBNT/NI interface

null file, 4-91

o
orphan process

defined, 4-190

p

packetfilter, 4-92

paging device, 4-56

physical main memory image, 4-81

process group

associating with terminal, 4-185

protocol

defined, 4-2

protocol family

address format list, 4-2

Index-4

protocol family (cont.)

defined, 4-2

pseudoterminal

defined, 4-106

pseudoterminal interface, 4-106

ioctl list, 4-106

pty interface, 4-106

Q

Q-bus virtual memory image, 4-71

qd interface

See VCB03 video subsystem

QDSS

See VCB02 video subsystem

qe interface

See DELQA Ethernet interface

See DEQNA Ethernet interface

qv interface

See VCBOI video subsystem

QVSS

See VCBOI video subsystem

R

ra interface

See MSCP disk interface

Radial Serial Protocol

See RSP

RAW mode

defined, 4-185

rb interface

See IDC disk interface

See RL02 disk interface

rd keyword

See RD31 disk interface

See RD32 disk interface

See RD53 disk interface

See RD54 disk interface

RD31 disk interface, 4-136

RD32 disk interface

diagnostics, 4-137, 4-136

RD53 disk interface, 4-136

RD54 disk interface, 4-136

rk interface

See RK07 disk interface

See RK711 disk interface

RK07 disk

pseudodisk partitions, 4-123

RK07 disk interface, 4-123

RK711 disk interface, 4-123

rl interface

See RL02 disk interface

See RL211 disk interface

RL02 console interface, 4-15

RL02 disk

pseudodisk partitions, 4-125

RL02 disk interface, 4-120, 4-125

RL211 disk interface, 4-125

RM03 disk

partitions, 4-65

RM03 disk interface, 4-65

RM05 disk

partitions, 4-65

RM05 disk interface, 4-65

RM80 disk

partitions, 4-66

RM80 disk interface, 4-65

routing table

defined,4-3

entry form, 4-3e

entry types, 4-3

RP05 disk

partitions, 4-66

RP05 disk interface, 4-65

RP06 disk

partitions, 4-65

RP06 disk interface, 4-65

RP07 disk

partitions, 4-66

RP07 disk interface, 4-65

RS-232 standard

modems and, 4-190

RS422A standard, 4-22

RS423A standard, 4-20

RSP

VAX-ll/750 and, 4-17

rx keyword

See RX33 disk interface

RXOI console interface, 4-11

RX33 disk interface, 4-136

RX50 console interface, 4-16

rz interface

SCSI disk interface, 4-129

s
scs interface

See Systems Communications Services interface

SCSI device driver, 4-134

SCSI disk interface, 4-129

disk support, 4-130

partition tables, 4-130

scsi keyword

tz interface, 4-199

SCSI magnetic tape interface

nbuf keyword, 4-199

sdc interface

See RD31 disk interface

See RD32 disk interface

See RD53 disk interface

See RD54 disk interface

See RX33 disk interface

serial line controller

dc, 4-26

serial line interface

adding, 4-19

sg interface

See color video subsystem

sgttyb file, 4-191

s~flags field contents, 4-192

sh interface

See DHT32 serial line interface

slave pseudoterminal

defined, 4-106

sm interface

See monochrone video subsystem

Small Computer System Interconnect, 4-134

Small VAX serial line interface, 4-144

sp driver, 4-143

Index-5

ss interface

See Small V AX serial line interface

stc interface

See TZK50 magnetic tape interface

system call tracing interface, 4-181

Systems Communications Services interface, 4-133

T

Tape Mass Storage Control Protocol

TMSCP magnetic tape interface, 4-179

T A90 magnetic tape interface, 4-179

TCP protocol, 4-149

TE16 magnetic tape interface, 4-198

terminal

See also Hazeltine terminal

controlling job access, 4-190

controlling line, 4-189

echoing input, 4-187

editing input, 4-186

implementing shared lines, 4-191

interrupt characters, 4-189

lowercase letters and, 4-188

modes, 4-185

suspending output, 4-188

terminal interface, 4-159, 4-184

See also bk line discipline

control terminals and, 4-185

general ioctl calls, 4-194

line disciplines, 4-184

local mode word, 4-195

local special characters, 4-196

modem ioctl list, 4-190

processing output, 4-188

restricted, 4-197

TK50 magnetic tape interface, 4-147, 4-179, 4-199

See TZK50 magnetic tape interface

TK70 magnetical tape interface, 4-179

TM03 magnetic tape interface, 4-198

See also TU58 console cassette interface

tms interface

TMSCP magnetic tape interface, 4-179

tmscp keyword

tms interface, 4-179

Index-6

TMSCP magnetic tape interface

nbuf keyword, 4-179

TM78 magnetic tape interface, 4-86

trace command

See system call tracing interface

trace keyword

See system call tracing interface

Transmission Control Protocol

See tcp protocol

See TCP protocol

ts interface

See TS05 magnetic tape interface

See TS 11 magnetic tape interface

See TU80 magnetic tape interface

TS05 magnetic tape interface, 4-182

TSll magnetic tape interface, 4-182

tty keyword

See also terminal interface

tu interface

See TM03 magnetic tape interface

TE16 magnetic tape interface, 4-198

TU45 magnetic tape interface, 4-198

TU77 magnetic tape interface, 4-198

TU45 magnetic tape interface, 4-198

TU58 console interface, 4-17

TU77 magnetic tape interface, 4-198

TU78 magnetic tape interface, 4-86

TU80 magnetic tape interface, 4-182

TU81 magnetic tape interface, 4-179

TU81E magnetic tape interface, 4-179

tz interface

SCSI magnetic tape interface, 4-199

TZ30 magnetical tape interface, 4-199

u
uda interface

See MSCP disk interface

SCSI disk interface, 4-129

UDP, 4-200

See also Internet protocol family

TCP and, 4-200

UNIBUS virtual memory image, 4-71

User Datagram Protocol

See UDP

v
V AXstation serial line interface, 4-62

VCBOI video subsystem, 4-110

VCB03 video subsystem, 4-108

video subsystem

cfb,4-1O

virtual main memory image, 4-70

w
wildcard addressing

defined, 4-149

x
xna interface

DEBNI interface and DEMNA interface, 4-201

Index-7

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud modem from
anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal*

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital Subsidiary

Digital Equipment of Canada
Attn: DEC direct Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMO/E15
or
Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

* For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments ULTRIX
Reference Pages Section 4: Special Files

AA-L Y17B-TE

Please use this postage-paid fonn to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Perfonnance Report (SPR) service, submit your
comments on an SPR fonn.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor

Accuracy (software works as manual says) 0 0 0 0
Completeness (enough infonnation) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find infonnation) 0 0 0 0

What would you like to see more/less of?

What do you like best about this manual? _____________________ _

What do you like least about this manual? _____________________ _

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Namerritle ______________________ _ Dept.
Company ________________________________ Dare _________ _

Mailing Address
_______________ Email ____________ Phone ___________ __

- - - - - -. Do Not Tear - Fold Here and Tape

IJDrnallmD1M
-----------------------------rr]-rll----------:::::::::--

NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

11111111111 1111111 II III 11111111 hlnlllil 1IIIIdii II

-------. Do Not Tear - Fold Here .---

Cut
Along
Dotted
Line

