
ULTRIX
Worksystem Software

Guide to the XUI Toolkit Intrinsics:
C Language Binding

Order Number: AA-MA96A-TE

ULTRIX Worksystem Software
Guide to the XUI Toolkit Intrinsics:
C Language Binding

UL TRIX Worksystem Software, Version 2.0

Digital Equipment Corporation

Copyright © 1988 Digital Equipment Corporation
All rights reserved.

Copyright © 1984, 1985, 1986, 1988 Massachusetts Institute of Technology, Cambridge,
Massachusetts.

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

DEC ULTRIX VMS
DECnet ULTRIX-ll VT
DECUS ULTRIX-32 XUI
DECwindows VAX ULTRIX Worksystem Software
MicroVAX VAX station mamaama

UNIX is a registered trademark of AT&T in the USA and other countries.

X Window System is a trademark of MIT.

This manual is derived from MIT documentation, which contains the following permission
notice: Permission to use, copy, modify, and distribute this documentation for any purpose
and without fee is hereby granted, provided that the above copyright notice appears in all
copies and that both that copyright notice and this permission notice appear in supporting
documentation, and that the name of MIT or DIGITAL not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior permission.
MIT and DIGITAL make no representations about the suitability of the software described
herein for any purpose. It is provided" as is," without express or implied warranty.

This manual was written and produced by the ULTRIX Documentation Group in Nashua, New
Hampshire.

Contents

About This Manual

Audience .. xi

Organization .. xi

Related Documents .. xiii

Conventions ... xiv

1 Intrinsics a nd Widgets

1.1 Terminology- .. 1-2

1.2 Intrinsics .. 1-3

1.3 Widgets ... 1-5

1.3.1 Core Widgets ... 1-6

1.3.1.1 CoreClassPart Structure .. 1-6
1.3.1.2 CorePart Structure ... 1-7
1.3.1.3 CorePart Default Values ... 1-8

1.3.2 Composite Widgets .. 1-9

1.3.2.1 CompositeClassPart Structure .. 1-9
1.3.2.2 CompositePart Structure ... 1-10
1.3.2.3 CompositePart Default Values .. 1-10

1.3.3 Constraint Widgets ... 1-11

1.3.3.1 ConstraintClassPart Structure .. 1-11
1.3.3.2 ConstraintPart Structure ... 1-12

1.4 Widget Classing ... 1-12

1.4.1 Widget Naming Conventions ... 1-13
1.4.2 Widget Subclassing in Public .h Files 1-14
1.4.3 Widget Subclassing in Private .h Files 1-15
1.4.4 Widget Subclassing in .c Files .. 1-17
1.4.5 Widget Class and Superclass Lookup 1-20
1.4.6 Widget Subclass Verification .. 1-20
1.4.7 Superclass Chaining .. 1-21
1.4.8 Class Initialization: class_initialize and

class_part_initialize Procedures .. 1-22
1.4.9 Inheritance of Superclass Operations 1-24
1.4.10 Invocation of Superclass Operations 1-25

2 Widget Insta ntia tion

2.1 Initializing the XUI Toolkit 2-2

2.2 Loading the Resource Database .. 2-5

2.3 Parsing the Command Line .. 2-7

2.4 Creating Widgets ... 2-9

2.4.1 Creating and Merging Argument Lists 2-10
2.4.2 Creating a Widget Instance ... 2-11
2.4.3 Creating an Application Shell Instance 2-13
2.4.4 Widget Instance Initialization: the initialize Procedure 2-14
2.4.5 Constraint Widget Instance Initialization: the

constraint_initialize Procedure .. 2-16
2.4.6 Nonwidget Data Initialization: the initialize_hook

Procedure ... 2-16

2.5 Realizing Widgets .. 2-16

2.5.1 Widget Instance Window Creation: the realize Procedure 2-18
2.5.2 Window Creation Convenience Routine 2-19

2.6 Obtaining Window Information from a Widget 2-20

2.6.1 Unrealizing Widgets .. 2-21

2.7 Destroying Widgets ... 2-22

iv Contents

2.7.1 Adding and Removing Destroy Callbacks 2-23
2.7.2 Dynamic Data Deallocation: the destroy Procedure 2-24
2.7.3 Dynamic Constraint Data Deallocation: the constraint

destroy Procedure ... 2-25

2.8 Exiting from an Application .. 2-25

3 Composite Widgets and Their Children

3.1 Verifying the Class of a Composite Widget 3-2

3.2 Addition of Children to a Composite Widget: the insert_child
Procedure ... 3-2

3.3 Insertion Order of Children: the insert_position Procedure 3-3

3.4 Deletion of Children: the delete_child Procedure 3-4

3.5 Adding and Removing Children from the Managed Set 3-4

3.5.1 Managing Children .. 3-4
3.5.2 Unmanaging Children ... 3-6
3.5.3 Determining if a Widget Is Managed 3-7

3.6 Controlling When Widgets Get Mapped .. 3-7

3.7 Constrained Composite Widgets .. 3-8

4 Shell Widgets

4.1 Shell Widget Definitions 4-2

4.1.1 ShellClassPart Definitions .. 4-2
4.1.2 ShellPart Definition .. 4-5
4.1.3 ShellPart Default Values .. 4-7
4.1.4 Digitial's Vendor Shell Implementation 4-9

5 Pop-Up Widgets

5.1 Pop-Up Widget Types 5-1

Contents v

5.2 Creating a Pop-Up Shell .. 5-2

5.3 Creating Pop-Up Children .. 5-3

5.4 Mapping a Pop-Up Widget .. 5-3

5.5 Unmapping a Pop-Up Widget ... 5-6

6 Geometry Management

6.1 Initiating Geometry Changes

6.2 General Geometry Manager Requests

6.3 Resize Requests .. .

6.4 Potential Geometry Changes .. .

6.5 Child Geometry Management: the geometry_manager Procedure

6.6 Widget Placement and Sizing .. .

6.7 Preferred Geometry

6-1

6-2

6-5

6-5

6-6

6-8

6-9

6.8 Size Change Management: the resize Procedure 6-11

7 Event Management

7.1 Adding and Deleting Additional Event Sources 7-1

7.1.1 Adding and Removing Input Sources 7-2
7.1.2 Adding and Removing Timeouts ... 7 -3

7.2 Constraining Events to a Cascade of Widgets 7-4

7.3 Focusing Events on a Child ... 7-6

7.4 Querying Event Sources 7-7

7.5 Dispatching Events 7-9

7.6 The Application Input Loop .. 7-10

7.7 Setting and Checking the Sensitivity State of a Widget 7-10

7.8 Adding Background Work Procedures .. 7-11

vi Contents

7.9 X Event Filters .. 7-13

7.9.1 Pointer Motion Compression ... 7-13
7.9.2 EnterlLeave Compression 7-13
7.9.3 Exposure Compression .. 7-13

7.10 Widget Exposure and Visibility ;.......................... 7-14
1

7.10.1 Redisplay of a Widget: the expose Procedure 7-14
7.10.2 Widget Visibility .. 7-15

7.11 X Event Handlers .. 7-15

7.11.1 Event Handlers that Select Events 7-16
7.11.2 Event Handlers that Do Not Select Events 7-17
7.11.3 Current Event Mask .. 7-19

8 Callbacks

8.1 Using Callback Procedure and Callback List Definitions 8-1

8.2 Identifying Callback Lists 8-2

8.3 Adding Callback Procedures .. 8-2

8.4 Removing Callback Procedures .. 8-3

8.5 Executing Callback Procedures 8-4

8.6 Checking the Status of a Callback List 8-4

9 Resource Management

9.1 Resource Lists ... 9-1

9.2 Byte Offset Calculations .. 9-5

9.3 Superclass-to-Subclass Chaining of Resource Lists 9-6

9.4 Subresources .. 9-6

9.5 Obtaining Application Resources ... 9-7

9.6 Resource Conversions ... 9-8

Contents vii

9.6.1 Predefined Resource Converters .. 9-9
9.6.2 New Resource Converters .. 9-9
9.6.3 Issuing Conversion Warnings ... 9-12
9.6.4 Registering a New Resource Converter 9-12
9.6.5 Resource Converter Invocation .. 9-14

9.7 Reading and Writing Widget State .. 9-15

9.7.1 Obtaining Widget State .. 9-15

9.7.1.1 Widget Subpart Resource Data: the get_values_hook
Procedure ... 9-16

9.7.1.2 Widget Subpart State .. 9-16

9.7.2 Setting Widget State 9-17

9.7.2.1 Widget State: the set_values Procedure 9-18
9.7.2.2 Widget State: the set_values_almost Procedure 9-20
9.7.2.3 Widget State: the constraint set_values Procedure 9-21
9.7.2.4 Widget Subpart State .. 9-21
9.7.2.5 Widget Subpart Resource Data: the set_values_hook

Procedure ... 9-22

10 Translation Management

10.1 Action Tables ... 10-1

10.1.1 Action Table Registration ... 10-2
10.1.2 Action Names to Procedure Translations 10-3

10.2 Translation Tables ... 10-3

10.2.1 Event Sequences ... 10-4
10.2.2 Action Sequences .. 10-4

10.3 Translation Table Management ... 10-5

10.4 Using Accelerators .. 10-7

10.5 KeyCode-to-KeySym Conversions .. 10-9

viii Contents

11 Utility Functions

11.1 Determining the Number of Elements in an Array 11-1

11.2 Translating Strings to Widget Instances ... 11-1

11.3 Managing Memory Usage .. 11-2

11.4 Sharing Graphics Contexts .. 11-4

11.5 Managing Selections ... 11-5

11.5.1 Setting and Getting the Selection Timeout Value 11-6
11.5.2 Using Atomic Transfers ... 11-6

11.5.2.1 Atomic Transfer Procedures ... 11-7
11.5.2.2 Getting the Selection Value .. 11-9
11.5.2.3 Setting the Selection Owner .. 11-11

11.5.3 Using Incremental Transfers ... 11-12

11.5.3.1 Incremental Transfer Procedures ... 11-13
11.5.3.2 Getting the Selection Value .. 11-13
11.5.3.3 Setting the Selection Owner .. 11-19

11.6 Merging Exposure Events into a Region .. 11-20

11.7 Translating Widget Coordinates .. 11-21

11.8 Translating a Window to a Widget .. 11-21

11.9 Handling Errors .. 11-21

A Resource File Format

B Translation Table Syntax

Notation ... B-1

Syntax ... B-1

Modifier Names B-2

Event Types B-4

Canonical Representation B-6

Examples B-7

Contents ix

C Conversion Notes

o Sta nda rd Errors and Wa rnings

Error Messages .. D-l

Warning Messages ... D-3

E StringDefs.h Header File

Index

x Contents

About This Manual

The Guide to the XUI Toolkit Intrinsics: C Language Binding describes
the lower-level C functions that you can use to write XVI-based application
programs (see related documents). Note that the information provided is
specific to the C programming language.

Audience
The audience for this manual is the application programmer who will use
one or more of the widget sets built with the Intrinsics and the widget
programmers who will use the Intrinsics to build widgets for one of these
widget sets. Not all the information in this manual, however, applies to
both audiences. That is, the application programmer is likely to use only a
number of the Intrinsics functions in writing an application, but the widget
programmer is likely to use many more, if not all, of the Intrinsics
functions in building a widget. Therefore, while the application programmer
should be concerned with only sections of this manual, the widget
programmer should be concerned with the whole manual. Note that the
sections that are deemed to be of special interest to an applications
programmer are identified in the next section.

This manual does not attempt to teach how to write an XUI application,
nor does it attempt to teach C programming concepts.

Organization
The Guide to the XUI Toolkit Intrinsics contains the following:

Chapter 1 Intrinsics and Widgets

Provides a general overview of the XVI Toolkit. The
application programmer should pay special attention to
Sections 1.1, 1.2, 1.3, 1.4 and 1.4.1.

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Widget Instantiation

Describes how to initialize the XUI toolkit, load the resource
database, parse the command line, create a widget instance,
realize a widget, obtain window information from a widget,
destroy widgets, and exit an application. The application
programmer should pay special attention to Sections 2.1, 2.2,
2.3, 2.4, 2.4.1, 2.4.2, 2.4.3, 2.5, 2.6, 2.6.1, 2.7, 2.7.1 and 2.8.

Composite Widgets and Their Children

Describes composite widgets and how to add or remove
widgets from a managed set, manage or unmanage widgets,
control whan a widget gets mapped. The application
programmer should pay special attention to Sections 3.1, 3.5,
3.5.1, 3.5.2, and 3.6.

Shell Widgets

Provides an overview to shell widgets.

Pop-Up Widgets

Describes pop-up widgets and how to create pop-up shells or
widgets, and map or unmap pop-up widgets, The application
programmer should pay special attention to Sections 5.2, 5.3,
5.4, and 5.5.

Geometry Management

Describes how to manage the geometry of your widgets.

Event Management

Describes how to use the XUI Toolkit event management
mechanism. The application programmer should pay special
attention to Sections 7.1, 7.1.1, 7.1.2, 7.2, 7.3 7.4, 7.5, 7.6
7.7, and 7.8.

Callbacks

Discusses callback procedures and how to use callback list
definitions, add or remove callabacks, execute callbacks, and
check the status of a callback list. The application
programmer should pay special attention to Sections 8.1, 8.2,
8.3, and 8.4.

Resource Management

Describes to use the XUI Toolkit resource management
mechanism. The application programmer should pay special
attention to Sections 9.5, 9.6.4, 9.7, 9.7.1 and 9.7.2.

xii About This Manual

Chapter 10 Translation Management

Describes to use the XUI Toolkit translation management
mechanism. The application programmer should pay special
attention to Sections 10.1, 10.3, and 10.4.

Chapter 11 Utility Functions

Describes the XUI Toolkit utility functions that let you
determine the number of elements in an array, translate
strings to widget instances, manage memory usage, share
graphics contexts, manipulate selections, merge exposure
events into a region, translate widget coordinates, and
translate a window to a widget. The application programmer
should pay special attention to Sections 11.1, 11.2, 11.3,
11.4, 11.7, 11.8, and 11.9.

Appendix A Resource File Format

Describes the format of the X Toolkit resource file.

Appendix B Translation Table Syntax

Describes the syntax of a translation table.

Appendix C Conversion Notes

Describes the functions that are provided to provide
compatibility with earlier version of the Intrinsics.

Appendix D Standard Errors and Warnings

Lists the XUI Toolkit error and warning messages.

Appendix E StringDefs.h Header File

Lists the contents of the StringDefs.h header file.

Related Documents
XU] Sty Ie Guide

Describes the XUI user interface and, hence, the "look and feel" of
an XUI application.

Guide to the XU] Toolkit: C Language Binding

Describes the widgets (user interface abstractions) that you can use to
write your XUI-based application.

Guide to the Xlib Library: C Language Binding

Describes the low-level C functions that you can use to write your X
based application.

X Window System Protocol: X Version 11

Describes the precise semantics of the X11 protocol specification.

About This Manual xiii

Conve ntions
The following typeface conventions are used in this manual:

special In text, all function names, events, errors, constant names,
and pathnames are presented in this type.

UPPERCASE Although the ULTRIX system differentiates between
lowercase and uppercase characters, uppercase is used
intentionally in this manual where it is applicable.

boldface The primary occurrence for a given index entry is in this
type.

In addition, the following conventions are used in this manual:

• Each function is introduced by a general discussion that distinguishes
it from other functions. The function declaration itself follows, and
each argument is specifically explained. General discussion of the
function, if any is required, follows the arguments. see Section
8.12.2.

• To eliminate any ambiguity between those arguments that you pass
and those that a function returns to you, the explanations for all
arguments that you pass start with the word specifies or, in the case
of multiple arguments, the word specify. The explanations for all
arguments that are returned to you start with the word returns or, in
the case of multiple arguments, the word return. The explanations
for all arguments that you can pass and are returned start with the
words specifies and returns.

• Any pointer to a structure that is used to return a value is
designated as such by the _return suffix as part of its name. All
other pointers passed to these functions are used for reading only. A
few arguments use pointers to structures that are used for both input
and output and are indicated by the _in_out suffix.

xiv About This Manual

Intrinsics and Widgets 1

The Intrinsics and a widget set make up the XUI Toolkit. The Intrinsics
provide the base mechanisms necessary to build a wide variety of widget
sets and application environments. Because the Intrinsics mask
implementation details from the widget and application programmer, the
widgets and the application environments built with them are fully
extensible and support independently developed new or extended
components. By following a small set of conventions, widget programmers
can extend their widget sets in new ways and can have these extensions
function smoothly with the existing facilities.

The Intrinsics is a library package layered on top of Xlib. As such, the
Intrinsics provide mechanisms (functions and structures) for extending the
basic programming abstractions provided by the X Window System. By
providing mechanisms for intercomponent and intracomponent interactions,
the Intrinsics provide the next layer of functionality from which the widget
sets are built.

Figure 1-1 illustrates this extended three-tiered X programming
environment.

Appl ication

Widget
Set

Intrinsics

XI i b

A typical XUI Toolkit application is most likely to be a client of a given
widget set, a subset of the Intrinsics functions, and a smaller set of Xlib
functions. This is illustrated by a left-to-right viewing of Figure 1-1. At
the same time, a widget set is a client of both the Intrinsics and Xlib, and
the Intrinsics are a client of Xlib only. This is illustrated by a top-to
bottom viewing of Figure 1-1.

For the application programmer, the XUI Toolkit provides:

• A consistent interface (widget set) for writing applications

• A small set of Intrinsics mechanisms that also are used in writing
applications

For the widget programmer, the XUI Toolkit provides:

• A set of Intrinsics mechanisms for building widgets

• An architectural model for constructing and composing widgets

• A consistent interface (widget set) for programming

To the extent possible, the XUI Toolkit is policy free. The application
environment, not the XUI Toolkit, defines, implements, and enforces:

• Policy

• Consistency

• Style
Each individual widget implementation defines its own policy. The XUI
Toolkit design allows for the development of radically differing widget
implementations.

1.1 Terminology
In addition to the terms already defined for X programming (see the
Guide to the Xlib Library), the following terms are specific to the
Intrinsics and are used throughout this book.

Application programmer

Class

A programmer who uses the XUI Toolkit to produce an application
user interface.

The general group to which a specific object belongs.

Client

A function that uses a widget in an application or for composing other
widgets.

Instance

A specific widget object as opposed to a general widget class.

1-2 Intrinsics and Widgets

Method

The functions or procedures that a widget class implements.

Name

The name that is specific to an instance of a widget for a given
client.

Object

A software data abstraction consisting of private data and private and
public functions that operate on the private data. V sers of the
abstraction can interact with the object only through calls to the
object's public functions. In the XVI Toolkit, some of the object's
public functions are' called directly by the application, while others are
called indirectly when the application calls the common Intrinsics
functions. In general, if a function is common to all widgets, an
application uses a single Intrinsic function to invoke the function for
all types of widgets. If a function is unique to a single widget type,
the widget exports the function as another "Xt" function.

Resource

User

A named piece of data in a widget that can be set by a client, by an
application, or by user defaults.

A person interacting with a workstation.

Widget

An object providing a user-interface abstraction (for example, a
Scrollbar widget).

Widget class

The general group to which a specific widget belongs, otherwise known
as the type of the widget.

Widget programmer

A programmer who adds new widgets to the XVI Toolkit.

1.2 Intrinsics
The Intrinsics provide the base mechanisms (functions and structures) that
simplify the design of application user interfaces. In addition, it assists
widget and application programmers by providing a commonly used set of
underlying user-interface functions to manage:

• Toolkit initialization

• Widgets

Intrinsics and Widgets 1-3

• Memory

• Window, file, and timer events

• Widget geometry

• Input focus

• Selections

• Resources and resource conversion

• Translation of events

• Graphics contexts

• Pixmaps

• Errors and warnings

Although all Intrinsics mechanisms are primarily intended for use by widget
programmers, some are also intended for use by application programmers.
The architectural model for the Intrinsics lets the widget programmer
create new widgets by using the supplied mechanisms and/or by combining
existing widgets. Therefore, an application interface layers built with the
Intrinsics will provide a coordinated set of widgets and composition policies.
While some of the widgets that are built with the Intrinsics are common
across a number of application domains, others are restricted to a specific
application domain.

The Intrinsics are based on an architectural model that also is flexible
enough to accommodate a variety of different application interface layers.
In addition, the supplied set of Intrinsics mechanisms are:

• Functionally complete and policy free

• Stylistically and functionally consistent with the X Window System
primitives

• Portable across languages, computer architectures, and operating
systems

Applications that use the Intrinsics mechanisms must include the following
header files:

• < X11l1ntrinsic. h >

• < X11 IStringDefs.h >

In addition, they may also include:

• < X11 IXatoms.h >
• <X11/Shell,h>

Finally, widget implementations should include:

• <X11I1ntrinsicP.h> instead of <X11I1ntrinsic.h >

1-4 Intrinsics and Widgets

The applications should also include the additional headers for each widget
class that they are to use (for example, < X11/Label. h > or
<X11/Scroll.h ». On a UNIX-based system, the Intrinsics object library
file is named libXt.a and is usually referenced as -IXt.

1.3 Widgets

The fundamental abstraction and data type of the XUI Toolkit is the
widget, which is a combination of an X window and its associated
semantics and which is dynamically allocated and contains state
information. Logically, a widget is a rectangle with associated input/output
semantics. Some widgets display information (for example, text or
graphics), and others are merely containers for other widgets (for example,
a menu box). Some widgets are output-only and do not react to pointer
or keyboard input, and others change their display in response to input and
can invoke functions that an application has attached to them.

Every widget belongs to exactly one widget class that is statically allocated
and initialized and that contains the operations allowable on widgets of that
class. Logically, a widget class is the procedures and data that is
associated with all widgets belonging to that class. These procedures and
data can be inherited by subclasses. Physically, a widget class is a pointer
to a structure. The contents of this structure are constant for all widgets
of the widget class but will vary from class to class. (Here, constant
means the class structure is initialized at compile-time and never changed,
except for a one-time class initialization and in-place compilation of resource
lists, which takes place when the first widget of the class or subclass is
created.) For further information, see Section 2.4.

The organization of the declarations and code for a new widget class
between a public .h file, a private .h file, and the implementation .c file is
described in Section 1.4. The predefined widget classes adhere to these
conventions.

A widget instance is composed of two parts:

• A data structure that contains instance-specific values

• A class structure that contains information that is applicable to all
widgets of that class

Much of the input/output of a widget (for example, fonts, colors, sizes,
border widths, and so on) is customizable by users.

The next three sections discuss the base widget classes:

• Core widgets

• Composite widgets

• Constraint widgets

The chapter ends with a discussion of widget classing.

Intrinsics and Widgets 1-5

1.3.1 Core Widgets

The Core widget contains the definitions of fields common to all widgets.
All widgets are subclasses of Core, which is defined by the CoreClassPart
and CorePart structures.

1.3.1.1 CoreClassPart Structure
- The common fields for all widget classes are defined in the
CoreClassPart structure:

typedef struct {

WidgetClass superclass;

String class_name;

Cardinal widgeLsize;

XtProc class_initialize;

X t WidgetC lassProc class_ part_initialize;

Boolean class_inited;

XtlnitProc initialize;

XtArgsProc initialize_hook;

XtRealizeProc realize;

XtActionList actions;

Cardinal num_actions;

XtResourceList resources;

Cardinal num_resources;

XrmClass xrm_class;

Boolean compress_motion;

Boolean compress_exposure;

Boolean compress_enterleave;

Boolean visible_interest;

XtWidgetProc destroy;

XtWidgetProc resize;

XtExposeProc expose;
XtSetValuesFunc set_values;

XtArgsFunc set_values_hook;

XtAlmostProc set_values_almost;

XtArgsProc get_values_hook;

XtAcceptFocusProc accept_focus;

XtVersionType version;

_XtOffsetList callbacLprivate;

String tm_table;

XtGeometry Handler query_geometry;

1-6 Intrinsics and Widgets

See Section 1.4

See Section 1.4

See Section 2.4

See Section 1.4

See Section 1.4

See Section 1.4

See Section 2.4

See Section 2.4

See Section 2.4

See Chapter 10

See Chapter 10

See Chapter 9

See Chapter 9

Private to resource manager

See Section 7.9.1

See Section 7.9.3

See Section 7.9.2

See Section 7.10

See Section 2.7

See Chapter 6

See Section 7.10

See Section 9.7

See Section 9.7

See Section 9.7

See Section 9.7

See Section 7.3

See Section 1.4

Private to callbacks

See Chapter 10

See Chapter 6

XtStringProc display_accelerator;

caddr_t extension;

CoreClassPart;

See Chapter 10

See Section 1.4

All widget classes have the core class fields as their first component. The
prototypical WidgetClass is defined with only this set of fields. Various
routines can cast widget class pointers, as needed, to specific widget class
types, for example:

typedef struct {

CoreClassPart core_class;

} WidgetClassRec, *WidgetClass;

The predefined class record and pointer for WidgetClassRec are:

extern WidgetClassRec widgetClassRec;

extern WidgetClass widgetClass;

The opaque types Widget and WidgetClass and the opaque variable
widgetClass are defined for generic actions on widgets.

1.3.1.2 CorePart Structure
- The common fields for all widget instances are defined in the CorePart
structure:

typedef struct _CorePart

Widget self;

WidgetClass widget_class;

Widget parent;

XrmName xrm_name;

Boolean being_destroyed;

XtCallbackList destroy_callbacks;

caddr_t constraints;

Position x;

Position y;

Dimension width;

Dimension height;

Dimension border_width;

Boolean managed;

Boolean sensitive;

Boolean ancestor_sensitive;

XtEventTable event_table;

XtTMRec tm;

XtTranslations accelerators;

Pixel border_pixel;

See Section 1.4

See Section 1.4

Private to resource manager

See Section 2.7

See Section 2.7

See Section 3.7
See Chapter 6

See Chapter 6

See Chapter 6

See Chapter 6

See Chapter 6
See Chapter 3

See Section 7.7

See Section 7.7

Private to event manager
Private to translation manager

See Chapter 10

See Section 2.6

lntrinsics and Widgets 1-7

Pixmap border_pixmap;

Widget List popup_list;

Cardinal num_popups;

String name;

Screen *screen;

Colormap colormap;

Window window;

Cardinal depth;

Pixel background_pixel;

Pixmap background_pixmap;

Boolean visible;

Boolean mapped_ whe~managed;

CorePart;

See Section 2.6

See Chapter 5

See Chapter 5

See Chapter 9

See Section 2.6

See Section 2.6

See Section 2.6

See Section 2.5

See Section 2.6

See Section 2.6

See Section 7.10

See Chapter 3

All widget instances have the core fields as their first component. The
prototypical type Widget is defined with only this set of fields. Various
routines can cast widget pointers, as needed, to specific widget types; for
example:

typedef struct

CorePart core;

} WidgetRec, *Widget;

1.3.1.3 CorePart Default Values
- The default values for the core fields, which are filled in by the Core
resource list and the Core initialize procedure, are:

Field

self
widget_class

parent

being_destroyed
destroy_callbacks
constraints
x
y
width
height

1-8lntrinsics and Widgets

Default Value

Address of the widget structure (may not be changed)
widget_class argument to XtCreateWidget (may not be
changed)
parent argument to XtCreateWidget (may not be
changed)
Encoded name argument to XtCreateWidget (may not
be changed)
Parent's being_destroyed value
NULL
NULL
o
o
o
o

Field

border_width
managed
sensitive
ancestor_sensitive
event_table
tm
accelerators
border_pixel
border_p ix map
popup_list
num_popups
name

screen

colormap
window
depth
background_pixel
background_pixmap
visible
map_ when_managed

Default Value

1
False
True
Bitwise AND of parent's sensitive & ancestor_sensitive
Initialized by the event manager
Initialized by the translation manager
NULL
Xt Defa u It F 0 reg ro u nd
NULL
NULL
o
name argument to XtCreateWidget (may not be
changed)
Parent's screen, top-level widget gets it from display
specifier (may not be changed)
Default color map for the screen
NULL
Parent's depth, top-level widget gets root window depth
XtDefaultBackground
NULL
True
True

1.3.2 Composite Widgets

Composite widgets are a subclass of the Core widget (see Chapter 3) are
intended to be containers for other widgets, and are defined by the
CompositeClassPart and CompositePart structures.

1.3.2.1 CompositeClassPart Structure
- In addition to the Core widget class fields, Composite widgets have the
following class fields:

typedef struct {

XtGeometryHandler geometry_manager;

X t WidgetProc change_managed;

XtWidgetProc insert_child;
XtWidgetProc delete_child;

caddr_t extension;

} CompositeClassPart;

See Chapter 6

See Chapter 3

See Chapter 3

See Chapter 3

See Section 1.4

Intrinsics and Widgets 1-9

Composite widget classes have the composite fields immediately following
the core fields:

typedef struct {

CoreClassPart

CompositeClassPart

} CompositeClassRec, *Composite WidgetClass;

core_class;

composite_class;

The predefined class record and pointer for CompositeClassRec are:

extern CompositeClassRec compositeClassRec;

extern WidgetClass compositeWidgetClass;

The opaque types CompositeWidget and CompositeWidgetClass and the
opaque variable compositeWidgetClass are defined for generic operations on
widgets that are a subclass of CompositeWidget.

1.3.2.2 CompositePart Structure
- In addition to the CorePart fields, Composite widgets have the following
fields defined in the Composite Part structure:

typedef struct {

WidgetList children;

Cardinal num_children;

Cardinal num_slots;

XtOrderProc insert_position;

} CompositePart;

See Section 1.4

See Section 1.4

See Chapter 3

See Section 2.4

Composite widgets have the composite fields immediately following the core
fields:

typedef struct {

CorePart core;

CompositePart composite;
} CompositeRec, *CompositeWidget;

1.3.2.3 CompositePart Default Values
- The default values for the composite fields, which are filled in by the
Composite resource list and the Composite initialize procedure, are:

Field

children
num_children
num_slots

Default Value

NULL
o
o

1-10 Intrinsics and Widgets

Field Default Value

insert_position Internal function InsertAtEnd

1.3.3 Constraint Widgets

Constraint widgets are a subclass of the Composite widget (see Section 3.7)
that maintain additional state data for each child, for example, client
defined constraints on the child's geometry. They are defined by the
ConstraintClassPart and ConstraintPart structures.

1.3.3.1 ConstraintClassPart Structure
- In addition to the Composite class fields, Constraint widgets have the
following class fields:

typedef struct {

XtResourceList resources;

Cardinal num_resources;

Cardinal constraint_size;

XtInitProc initialize;
XtWidgetProc destroy;

X tSet ValuesFunc set_values;

caddr_t extension;

ConstraintClassPart;

See Section 3.7

See Section 3.7

See Section 3.7

See Section 3.7

See Section 3.7

See Section 3.7

See Section 1.4

Constraint widget classes have the constraint fields immediately following
the composite fields:

typedef struct {

CoreClassPart

CompositeClassPart

ConstraintC lassPart

C onstraintC lassRec, *Constraint WidgetC lass;

core_class;

composite_class;

constraint_class;

The predefined class record and pointer for ConstraintClassRec are:

extern ConstraintClassRec constraintClassRec;

extern WidgetClass constraintWidgetClass;

The opaque types ConstraintWidget and ConstraintWidgetClass and the
opaque variable constraintWidgetClass are defined for generic operations on
widgets that are a subclass of ConstraintWidgetClass.

Intrinsics and Widgets 1-11

1.3.3.2 ConstraintPart Structure
- In addition to the Composite Part fields, Constraint widgets have the
following fields defined in the ConstraintPart structure:

typedef struct { int empty; } ConstraintPart;

Constraint widgets have the constraint fields immediately following the
composite fields:

typedef struct {
CorePart core;
CompositePart composite;

ConstraintPart constraint;

} ConstraintRec, *ConstraintWidget;

1.4 Widget Classing
The widget_class field of a widget points to its widget class structure,
which contains information that is constant across all widgets of that class.
As a consequence, widget classes usually do not implement directly callable
procedures; rather, they implement procedures that are available through
their widget class structure. These methods are invoked by generic
procedures that envelop common actions around the procedures implemented
by the widget class. Such procedures are applicable to all widgets of that
class and also to widgets that are subclasses of that class.

All widget classes are a subclass of Core and can be subclassed further.
Subclassing reduces the amount of code and declarations you write to make
a new widget class that is similar to an existing class. For example, you
do not have to describe every resource your widget uses in an
XtResourceList. Instead, you describe only the resources your widget has
that its superclass does not. Subclasses usually inherit many of their
superclass's procedures (for example, the expose procedure or geometry
handler) .

Subclassing, however, can be taken too far. If you create a subclass that
inherits none of the procedures of its superclass, you should consider
whether or not you have chosen the most appropriate superclass.

To make good use of subclassing, widget declarations and naming
conventions are highly stylized. A widget consists of three files:

• A public . h file that is used by client widgets or applications

• A private . h file that is used by widgets that are subclasses of the
widget

• A.c file that implements the widget class

1·12 Intrinsics and Widgets

1.4.1 Widget Naming Conventions

The Intrinsics provide a vehicle by which programmers can create new
widgets and organize a collection of widgets into an application. To ensure
that applications need not deal with as many styles of capitalization and
spelling as the number of widget classes it uses, the following guidelines
should be followed when writing new widgets:

• Use the X naming conventions that are applicable. For example, a
record component name is all lowercase and uses underscores (_) for
compound words (for example, background_pixmap). Type and
procedure names start with uppercase and use capitalization for
compound words (for example, ArgList or XtSetValues).

• A resource name string is spelled identically to the field name except
that compound names use capitalization rather than underscore. To
let the compiler catch spelling errors, each resource name should have
a macro definition prefixed with XtN. For example, the
background_pixmap field has the corresponding resource name
identifier XtNbackgroundPixmap, which is defined as the string
"backgroundPixmap". Many predefined names are listed in
<X11/StringDefs.h >. Before you invent a new name, you should
make sure that your proposed name is not already defined or that
there is not already a name that you can use.

• A resource class string starts with a capital letter and uses
capitalization for compound names (for example, "BorderWidth") . Each
resource class string should have a macro definition prefixed with XtC
(for example, XtCBorderWidth).

• A resource representation string is spelled identically to the type name
(for example, "TranslationTable"). Each representation string should
have a macro definition prefixed with XtR (for example,
XtRTranslationTable) .

• New widget classes start with a capital and use uppercase for
compound words. Given a new class name AbcXyz you should derive
several names:

Partial widget instance structure name AbcXyzPart

Complete widget instance structure names AbcXyzRec and
_AbcXyzRec

Widget instance pointer type name AbcXyzWidget

Partial class structure name AbcXyzClassPart

Complete class structure names AbcXyzClassRec and
_AbcXyzClassRec

Class structure variable abcXyzClassRec

Class pointer variable abcXyzWidgetClass

Intrinsics and Widgets 1·13

• Action procedures available to translation specifications should follow
the same naming conventions as procedures. That is, they start with
a capital letter and compound names use uppercase (for example,
"Highlight" and "N otifyClient") .

1.4.2 Widget Subclassing in Public .h Files

The public .h file for a widget class is imported by clients and contains:

• A reference to the public .h files for the superclass

• The names and classes of the new resources that this widget adds to
its superclass

• The class record pointer that you use to create widget instances

• The C type that you use to declare widget instances of this class

• Entry points for new class methods

For example, the following is the public . h file for a possible
implementation of a Label widget:

#ifndef LABEL_H

#define LABEL_H

/* New resources * /
#define XtNjustify

#define XtNforeground

#define XtNlabel

#define XtNfont

#define XtNinternalWidth

#define XtNinternalHeight

/* Class record pointer */

"justify"

" foreground"

"label"

"font"

" internalWidth"
"internaIHeight"

extern WidgetClass labelWidgetClass;

/* C Widget type definition */

typedef struct _LabelRec *LabelWidget;

/* New class method entry points * /

extern void Label SetText();

/* Widget w */

/* String text */

extern String Label GetText();

/* Widget w * /

#endif LABEL_H

1-14 Intrinsics and Widgets

The conditional inclusion of the' text allows the application to include
header files for different widgets without being concerned that they already
may be included as a superclass of another widget.

To accommodate operating systems with file name length restrictions, the
name of the public .h file is the first ten characters of the widget class.
For example, the public .h file for the Constraint widget is Constraint.h.

1.4.3 Widget Subclassing in Private .h Files

The private . h file for a widget is imported by widget classes that are
subclasses of the widget and contains:

• A reference to the public . h file for the class

• A reference to the private . h file for the superclass

• The new fields that the widget instance adds to its superclass's widget
structure

• The complete widget instance structure for this widget

• The new fields that this widget class adds to its superclass's
Constraint structure if the widget is a subclass of Constraint

• The complete Constraint structure if the widget is a subclass of
Constraint

• The new fields that this widget class adds to its superclass's widget
class structure

• The complete widget class structure for this widget

• The name of a constant of the generic widget class structure

• An inherit procedure for subclasses that wish to inherit a superclass
operation for each new procedure in the widget class structure

For example, the following is the private . h file for a possible Label widget:

#ifndef LABELP_H

#define LABELP_H

#include <XIl1Label.h>

1* New fields for the Label widget record *1

typedef struct {

1* Settable resources *1
Pixel foreground;
XFontStruct *font;

String label;

XtJustify justify;

1* text to display * /

Intrinsics and Widgets 1-15

Dimension internaL width;

Dimension internaLheight;

1* Data derived from resources *1
GC normaLGC;
GC gray_GC;

Pixmap gray _pixmap;

Position labeLx;

Position labeLy;
Dimension labeL width;

Dimension labeLheight;

Cardinal labeLlen;

Boolean display_sensitive;
LabelPart;

1* Full instance record declaration *1
typedef struct _LabelRec

CorePart core;

LabelPart label;

LabelRec;

1* Types for label class methods *1
typedef void (*LabeISetTextProc) () ;

1* Widget w *1
1* String text *1

typedef String (*LabeIGetTextProc) () ;

1* Widget w *1

1* New fields for the Label widget class record *1
typedef struct {

LabelSetTextProc set_text;

LabelGetTextProc get_text;
caddr_t extension;

LabelClassPart;

1* Full class record declaration *1
typedef struct _LabelClassRec {

CoreClassPart core_class;

LabelClassPart labeL class;
LabelClassRec;

1* Class record variable *1

extern LabelClassRec labelClassRec;

1-16 Intrinsics and Widgets

1* # of pixels horizontal border *1

1* # of pixels vertical border *1

#define LabelInheritSetText((LabelSetTextProc) _Xtlnherit)
#define LabelInheritGetText((LabelGetTextProc) _XtInherit)

#endif LABELP_H

To accommodate operating systems with file name length restrictions, the
name of the private . h file is the first nine characters of the widget class
followed by a capital P. For example, the private .h file for the Constraint
widget is ConstrainP.h.

1.4.4 Widget Subclassing in .c Files

The .c file for a widget contains the structure initializer for the class
record variable, which contains the following parts:

• Class information (for example, superclass, class_name, widget_size,
class_initialize, and class_inited)

• Data constants (for example, resources and num_resources, actions
and num_actions, visible_interest, compress_motion,
compress_exposure, and version)

• Widget operations (for example, initialize, realize, destroy, resize,
expose, set_values, accept_focus, and any operations specific to the
widget)

The superclass field points to the superclass WidgetClass record. For
direct subclasses of the generic core widget, superclass should be initialized
to the address of the widgetClassRec structure. The superclass is used for
class chaining operations and for inheriting or enveloping a superclass's
operations. (See Sections 1.4.7, 1.4.9, and 1.4.10).

The class_name field contains the text name for this class (used by the
resource manager). For example, the Label widget has the string "Label".
More than one widget class can share the same text class name.

The widget_size field is the size of the corresponding widget structure (not
the size of the Class structure).

The version field indicates the toolkit version number and is used for run
time consistency checking of the XUI Toolkit and widgets in an application.
Widget writers must set it to the symbolic value XtVersion in the widget
class initialization. Those widget writers who know that their widgets are
backwards compatible with previous versions of the Intrinsics can put the
special value XtVersionDontCheck in the version field to turn off version
checking for those widgets.

The extension field is for future upwards compatibility. If you add
additional fields to class parts, all subclass structure layouts change,
requiring complete recompilation. To allow clients to avoid recompilation, an
extension field at the end of each class part can point to a record that

Intrinsics and Widgets 1-17

contains any additional class information required.

All other fields are described in their respective sections.

The following is an abbreviated version of the .c file for the Label widget.
(The resources table is described in the Chapter 9.)

1* Resources specific to Label *1

#define XtRJustify " Justify"

static XtResource resources[] = {
{XtNforeground, XtCForeground, XtRPixel, sizeof(;Pixel) ,

XtOffset(LabeIWidget, label. foreground) , XtRString, XtDefaultForeground},

{XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct *),

XtOffset(LabelWidget, label.font) ,XtRString, XtDefaultFont},

{XtNlabel, XtCLabel, XtRString, sizeof(String) ,

XtOffset(LabeIWidget, label.1abel), XtRString, NULL},

1* Forward declarations of procedures *1
static void ClassInitialize();
static void Initialize();

static void Realize();
static void SetText();

static void GetText();

1* Class record constant *1

LabelClassRec labelClassRec

1* core_class fields *1
1* superclass

1* class_name

1* widget_size

1* class_initialize

1* class_ part_initialize

1* class_inited

1* initialize

1* initialize_hook

1* realize

1* actions

1* num_actions

1* resources

1-18 Intrinsics and Widgets

*1
*1

*1
*1

*1
*1

*1
*1

*1
*/

*/

*1

(WidgetClass) &widgetClassRec,

" Label" ,

sizeof(LabelRec) ,

ClassInitialize,

NULL,

False,

Initialize,

NULL,

Realize,
NULL,

0,

resources,

1* num_resources

1* xrIILclass

1* compress_motion

1* compress_exposure

1* compress_enterleave

1* visible_interest

1* destroy

1* resize

1* expose

1* set_values

1* set_ values_hook

1* set_values_almost

1* get_values_hook

1* accept_focus

1* version

1* callbacLoffsets

1* tm_table

1* query_geometry

1* display_accelerator

1* extension
},

{

1* LabeLclass fields

1* get_text

1* set_text

1* extension

}
};

1* Class record pointer *1

*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1

*1
*1
*1
*1

XtNumber(resources),

NULLQUARK,

True,

True,
True,

False,

NULL,

Resize,

Redisplay,
SetValues,

NULL,

XtlnheritSet ValuesAlmost,

NULL,

NULL,

XtVersion,

NULL,

NULL,

XtlnheritQueryGeometry,

NULL,

NULL

GetText,

SetText,

NULL

WidgetClass labelWidgetClass = (WidgetClass) &labeIClassRec;

1* New method access routines *1
void Label SetText(w, text)

Widget w;

String text;

Label WidgetClass lwc = (Label WidgetClass) XtClass(w) ;

XtCheckSubclass(w, labelWidgetClass, NULL);

*(lwc- >labeLclass.set_text) (w, text)

1* Private procedures *1

Intrinsics and Widgets 1-19

1.4.5 Widget Class and Superclass Lookup

To obtain the class of a widget, use XtClass.

WidgetClass XtClass(w)
Widget w;

w Specifies the widget.

The XtClass function returns a pointer to the widget's class structure.

To obtain the superclass of a widget, use XtSuperclass.

WidgetClass XtSuperclass(w)
Widget w;

w Specifies the widget.

The XtSuperclass function returns a pointer to the widget's superclass class
structure.

1.4.6 Widget Subclass Verification

To check the subclass that a widget belongs to, use XtlsSubclass.

Boo lean Xt IsSubc I ass (w, widget_class)
Widget w;
Wi dgetC I ass widget_class;

w Specifies the widget.

widget_class Specifies the widget class to test against.

The XtisSubclass function returns True if the class of the specified widget
is equal to or is a subclass of the specified widget class. The specified
widget can be any number of subclasses down the chain and need not be
an immediate subclass of the specified widget class. Composite widgets
that need to restrict the class of the items they contain can use
XtlsSubclass to find out if a widget belongs to the desired class of objects.

To check the subclass that a widget belongs to and generate a debugging
error message, use XtCheckSubclass.

1-20 Intrinsics and Widgets

vo i d Xt Chee kSu be I ass (w, widget_class, message)
Widget w;
Wi dgetC I ass widget_class;
St ring message;

w Specifies the widget.

widget_class Specifies the widget class to test against.

message Specifies the message that is to be used.

The XtCheckSubclass macro determines if the class of the specified widget
is equal to or is a subclass of the specified widget class. The widget can
be any number of subclasses down the chain and need not be an
immediate subclass of the specified widget class. If the specified widget is
not a subclass, XtCheckSubclass constructs an error message from the
supplied message, the widget's actual class, and the expected class and
calls XtErrorMsg. XtCheckSubclass should be used at the entry point of
exported routines to ensure that the client has passed in a valid widget
class for the exported operation.

XtCheckSubclass is only executed when the widget has been compiled with
the compiler symbol DEBUG defined; otherwise, it is defined as the empty
string and generates no code.

1.4.7 Superclass Chaining

While most fields in a widget class structure are self-contained, some fields
are linked to their corresponding field in their superclass or subclass
structures. With a linked field, the Intrinsics access it value only after
accessing its corresponding superclass value (called downward superclass
chaining) or before accessing its corresponding superclass value (called
upward superclass chaining). The self-contained fields in a widget class
are:

• class_name

• class_initialize

• widget_size

• realize

• visible_interest

• resize

• expose

• accept30cus

• compress_motion

Intrinsics and Widgets 1-21

• compress_exposure

• compress_enterleave

• set_ values_almost

• tm_table

• version

With downward superclass chaining, the invocation of an operation first
accesses the field from the Core class structure, then the subclass
structure, and so on down the class chain to that widget's class structure.
These superclass-to-subclass fields are:

• class_part_initialize

• get_ values_hook

• initialize

• initialize_hook

• set_values

• set_ values_hook

• resources

In addition, for subclasses of Constraint, the resources field of the
ConstraintClassPart structure is chained from the Constraint class down to
the subclass.

With upward superclass chaining, the invocation of an operation first
accesses the field from the widget class structure, then the field from the
superclass structure, and so on up the class chain to the Core class
structure. The subclass-to-superclass fields are:

• destroy

• actions

1.4.8 Class Initialization: class_initialize and class_part_initialize
Procedures

Many class records can be initialized completely at compile time. In some
cases, however, a class may need to register type converters or perform
other sorts of one-time initialization.

Because the C language does not have initialization procedures that are
invoked automatically when a program starts up, a widget class can declare
a class_initialize procedure that will be automatically called exactly once by
the XUI Toolkit. A class initialization procedure pointer is of type XtProc:

typedef void (*XtProc) () ;

1-22 Intrinsics and Widgets

A widget class indicates that it has no class initialization procedure by
specifying NULL in the class_initialize field.

In addition to having class initializations done exactly once, some classes
need to perform additional initialization for fields in its part of the class
record. These are performed not just for the particular class but for
subclasses as well. This is done in the class's class part initialization
procedure, which is stored in the class_part_initialize field. The
class_part_initialize procedure pointer is of type XtWidgetClassProc:

typedef void (*XtWidgetClassProc)(WidgetClass);

During class initialization, the class part initialization procedure for the
class and all its superclasses are called in superclass-to-subclass order on
the class record. These procedures have the responsibility of doing any
dynamic initializations necessary to their class's part of the record. The
m:ost common is the resolution of any inherited methods defined in the
class. For example, if a widget class C has superclasses Core, Composite,
A, and B, the class record for C first is passed to Core's
class_part_initialize record. This resolves any inherited core methods and
compiles the textual representations of the resource list and action table
that are defined in the class record. Next, the Composite's
class_part_initialize is called to initialize the composite part of C's class
record. Finally, the class_part_initialize procedures for A, B, and C (in
order) are called. For further information, see Section 1.4.9. Classes that
do not define any new class fields or that need no extra processing for
them can specify NULL in the class_part_initialize field.

All widget classes, whether they have a class initialization procedure or not,
must start with their class_inited field False.

The first time a widget of a class is created, XtCreateWidget ensures that
the widget class and all superclasses are initialized, in superclass to
subclass order, by checking each class_inited field and if it is False, by
calling the class_initialize and the class_part_initialize procedures for the
class and all its superclasses. The Intrinsics then set the class_inited field
to True. After the one-time initialization, a class structure is constant.

The following provides the class initialization procedure for Label.

static void Classlnitialize()

XtQEleft = XrmStringToQuark(" left") ;
XtQEcenter = XrmStringToQuark(" center") ;
XtQEright = XrmStringToQuark("right");

XtAddConverter(XtRString, XtRJustify, CvtStringToJustify, NULL, 0);

Intrinsics and Widgets 1-23

A class is initialized the first time a widget of that class or any subclass
is created. If the class initialization procedure registers type converters,
these type converters are not available until this first widget is created
(see Section 9.6).

1.4.9 Inheritance of Superclass Operations

A widget class is free to use any of its superclass's self-contained
operations rather than implementing its own code. The most frequently
inherited operations are:

• expose

• realize

• insert_child

• delete_child

• geometry_manager

• set_ values_almost

To inherit an operation xyz, specify the constant XtinheritXyz in your class
record.

Every class that declares a new procedure in its widget class part must
provide for inheriting the procedure in its class_part_initialize procedure.
(The special chained operations initialize, set_values, and destroy declared
in the Core record do not have inherit procedures. Widget classes that do
nothing beyond what their superclass does specify NULL for chained
procedures in their class records.)

Inheriting works by comparing the value of the field with a known, special
value and by copying in the superclass's value for that field if a match
occurs. This special value is usually the Intrinsics internal value -><tlnherit
cast to the appropriate type. (_Xtlnherit is a procedure that issues an
error message if it is actually called.)

For example, the CompOSite class's private include file contains these
definitions:

#define XtInheritGeometryManager « XtGeometryHandler) _XtInherit)

#define XtInheritChangeManaged « XtWidgetProc) _Xtlnherit)

#define XtInheritInsertChild « XtArgsProc) _XtInherit)

#define XtInheritDeleteChild « XtWidgetProc) _XtInherit)

The Composite's class_part_initialize procedure begins as follows:

static void CompositeClassPartlnitialize(widgetClass)

WidgetClass widgetClass;

register CompositeWidgetClass wc (Composite WidgetClass) widgetClass;

1-24 Intrinsics and Widgets

Composite WidgetClass super = (Composite WidgetClass) wc- >core_class.superclass

if (wc- >composite_class.geometry_manager = = XtlnheritGeometryManager) {
wc- >composite_class.geometry_manager = super- >composite_class.geometry_manager;

if (wc- >composite_class.change_managed = = XtInheritChangeManaged) {

wc- >composite_class.change_managed = super- >composite_class.change_managed;

The inherit constants defined for Core are:

• XtlnheritRealize

• XtlnheritResize

• XtlnheritExpose

• XtlnheritSetValuesAlmost

• XtlnheritAcceptFocus

• XtlnheritDisplayAccelerator

The inherit constants defined for Composite are:

• XtlnheritGeometryManager

• XtlnheritChangeManaged

• XtlnheritlnsertChild

• XtlnheritDeleteChild

1.4.10 Invocation of Superclass Operations

A widget class sometimes explicitly needs to call a superclass operation
that usually is not chained. For example, a widget's expose procedure
might call its superclass's expose and then perform a little more work of
its own. Composite classes with fixed children can implement insert_child
by first calling their superclass's insert_child procedure and then calling
XtManageChild to add the child to the managed list.

Note that a method should call its own superclass method, not the widget's
superclass method. That is, it should use its own class pointers only, not
the widget's class pointers. This technique is referred to as enveloping the
superclass's operation.

Intrinsics and Widgets 1·25

Widget Insta ntiation 2

A collection of widget instances constitutes a widget tree. The shell widget
returned by XtAppCreateShell is the root of the widget tree instance. The
widgets with one or more children are the intermediate nodes of that tree,
and the widgets with no children of any kind are the leaves of a widget
tree. With the exception of pop-up children (see Chapter 5), this widget
tree instance defines the associated X Window tree.

Widgets can be either composite or primitive. Both kinds of widgets can
contain children, but the Intrinsics provide a set of management
mechanisms for constructing and interfacing between composite widgets,
their children, and other clients.

Composite widgets, subclasses of Composite, are containers for an arbitrary
but implementation-defined collection of children, which may be instantiated
by the composite widget itself, by other clients, or by a combination of the
two. Composite widgets also contain methods for managing the geometry
(layout) of any child widget. Under unusual circumstances, a composite
widget may have zero children, but it usually has at least one. By
contrast, primitive widgets that contain children typically instantiate specific
children of known class themselves and do not expect external clients to
do so. Primitive widgets also do not have general geometry management
methods.

In addition, the Intrinsics recursively perform many operations (for
example, realization and destruction) on composite widgets and all of their
children. Primitive widgets that have children must be prepared to
perform the recursive operations themselves on behalf of their children.

A widget tree is manipulated by several Intrinsics functions. For example,
XtRealizeWidget traverses the tree downward and recursively realizes all
pop-up widgets and children of composite widgets. XtDestroyWidget
traverses the tree downward and destroys all pop-up widgets and children
of composite widgets. The functions that fetch and modify resources
traverse the tree upward and determine the inheritance of resources from a
widget's ancestors. XtMakeGeometryRequest traverses the tree up one level
and calls the geometry manager that is responsible for a widget child's
geometry.

To facilitate up-traversal of the widget tree, each widget has a pointer to
its parent widget. The Shell widget that XtAppCreateSheli returns,
however, has a parent pointer of NULL.

To facilitate down-traversal of the widget tree, each composite widget has a
pointer to an array of children widgets, which includes all normal children
created, not just the subset of children that are managed by the composite
widget's geometry manager. Primitive widgets that instantiate children are
entirely responsible for all operations that require downward traversal below
themselves. In addition, every widget has a pointer to an array of pop-up
children widgets.

2.1 Initializing the XUI Toolkit
Before an application can call any of the Intrinsics functions, it must
initialize the XUI Toolkit by using:

• XtToolkitinitialize, which initializes the XUI Toolkit internals

• XtCreateApplicationContext, which initializes the per application state

• XtDisplaylnitialize or XtOpenDisplay, which initializes the per display
state

• XtAppCreateShell, which creates the initial widget

Multiple instances of XUI Toolkit applications may be implemented by a
single program in a single address space. Each instance needs to be able
to read input and dispatch events independently of any other instance.
Further, an application may need multiple display connections or need to
have widgets on multiple screens. To accommodate both requirements, the
Intrinsics define application contexts, each of which provides the
information needed to distinguish one application instance from another.
The major component of an application context is a list of X Display
pointers for that application. The application context type XtAppContext is
opaque to clients.

To initialize the XUI Toolkit internals, use XtToolkitinitialize.

void XtToolkitlnitialize()

The semantics of calling XtToolkitinitialize more than once are undefined.

To create an application context, use XtCreateApplicationContext.

2-2 Widget Instantiation

XtAppContext XtCreateApp I i cat i onContext ()

The XtCreateApplicationContext function returns an application context,
which is an opaque type. Every application must have at least one
application context.

To destroy an application context and close any displays in it, use
XtDestroyApplicationContext.

vo i d XtDest royApp I i cat i onContext (app_context)
XtAppContext app_context;

app_context Specifies the application context.

The XtDestroyApplicationContext function destroys the specified application
context as soon as it is safe to do so. If called from with an event
dispatch (for example, a callback procedure), XtDestroyApplicationContext
does not destroy the application context until the dispatch is complete.

To get the application context for a given widget, use
XtWidgetToApplicationContext.

XtAppContext XtW i dgetToApp I i cat i onContext (w)
Widget w;

w Specifies the widget for which you want the application
context.

The XtWidgetToApplicationContext function returns the application context
for the specified widget.

To initialize a display and add it to an application context, use
XtDisplaylnitialize.

v 0 i d X t Dis p I a yIn i t i a liz e (app_context , display, application_name,
application_class, options, num_options,
argc, argu)

XtAppContext app_context;
Dis p I a y * display;
S t r i n g applicatio n_name ;
S t r i n g application_class;
XrmOpt i onDescRec *options;
Ca r din a I num_options;
Car din a I * argc ;
S t r i n g * argu ;

Widget Instantiation 2-3

Specifies the application context. app_context

display Specifies the display. Note that a display can be in at most
one application context.

application_name
Specifies the name of the application instance.

application_class
Specifies the class name of this application, which is usually
the generic name for all instances of this application.

options Specifies how to parse the command line for any application
specific resources. The options argument is passed as a
parameter to XrmParseCommand. For further information,
see the Guide to the Xlib Library.

num_options Specifies the number of entries in the options list.

argc Specifies a pointer to the number of command line
parameters.

argu Specifies the command line parameters.

The XtDisplaylnitialize function builds the resource database, calls the Xlib
XrmParseCommand function to parse the command line, and performs other
per display initialization. After XrmParseCommand has been called, argc
and argv contain only those parameters that were not in the standard
option table or in the table specified by the options argument. If the
modified argc is not zero, most applications simply print out the modified
argv along with a message listing the allowable options. On UNIX-based
systems, the application name is usually the final component of argv[O]. If
the synchronize resource is True for the specified application,
XtDisplaylnitialize calls the Xlib XSynchronize function to put Xlib into
synchronous mode for this display connection. If the reverse Video resource
is True, the Intrinsics exchange XtDefaultForeground and
XtDefaultBackground for widgets created on this display. (See Section
9.6.1) .

To open a display, initialize it, and add it to an application context, use
XtOpenDisplay.

D i sp I ay *XtOpenD i sp I ay (app_context, display_string,
application_name, application_class,
o ptio ns, num_o ptio ns, argc , argu)

XtAppContext app_context;
S t r i n g display _string;
S t r i n g applicatio n_name ;

(continued on next page)

2-4 Widget Instantiation

S t r i n g application_class;
X rmOpt i onDes eRe e * options ;
Ca rd i na I num_options;
Car din a I argc ;
S t r i n g argv ;

app_context Specifies the application context.

display_string Specifies the display string. Note that a display can be in
at most one application context.

applicatio n_name
Specifies the name of the application instance.

application_class
Specifies the class name of this application, which is usually
the generic name for all instances of this application.

options Specifies how to parse the command line for any application
specific resources. The options argument is passed as a
parameter to XrmParseCommand. For further information,
see the Guide to the Xlib Library.

num_options Specifies the number of entries in the options list.

argc Specifies a pointer to the number of command line
parameters.

argv Specifies the command line parameters.

The XtOpenDisplay function calls XOpenDisplay the specified display name.
If display_string is NULL, XtOpenDisplay uses the current value of the
- display option specified in argv and if no display is specified in argv, uses
the user's default display (on UNIX-based systems, this is the value of the
DISPLAY environment variable).

If this succeeds, it then calls XtDisplaylnitialize and pass it the opened
display and the value of the - name option specified in argv as the
application name. If no name option is specified, it uses the application
name passed to XtOpenDisplay. If the application name is NULL, it uses
the last component of argv[O]. XtOpenDisplay returns the newly opened
display or NULL if it failed.

XtOpenDisplay is provided as a convenience to the application programmer.

To close a display and remove it from an application context, use
XtCloseDisplay.

Widget Instantiation 2·5

vo i d XtC I oseD i sp I ay (display)
Dis p I a y * display;

display Specifies the display.

The XtCloseDisplay function closes the specified display as soon as it is
safe to do so. If called from within an event dispatch (for example, a
callback procedure), XtCloseDisplay does not close the display until the
dispatch is complete. Note that applications need only call XtCloseDisplay
if they are to continue executing after closing the display; otherwise, they
should call XtDestroyApplicationContext or just exit.

2.2 Loading the Resource Database
The XtDisplaylnitialize function loads the application's resource database for
this display/host/application combination from the following sources (in
order) :

• Application-specific class resource file on the local host

• Application-specific user resource file on the local host

• Resource property on the server or user preference resource file on
the local host

• Per-host user environment resource file on the local host

• Application command line (argv)

Each resource database is kept on a per-display basis.

The application-specific class resource file name is constructed from the
class name of the application. It points to a site-specific resource file that
usually is installed by the site manager when the application is installed.
On UNIX-based systems, this file usually is lusr/lib/X111app-defaults/class,
where class is the application class name. This file is expected to be
provided by the developer of the application and may be required for the
application to function properly.

The application-specific user resource file name is constructed from the
class name of the application and points to a user-specific resource file.
This file is owned by the application and typically stores user
customizations. On UNIX-based systems, this file name is constructed
from the user's XAPPLRESDIR variable by appending class to it, where
class is the application class name. If XAPPLRESDIR is not defined, it
defaults to the user's home directory. If the resulting resource file exists,
it is merged into the resource database. This file may be provided with
the application or constructed by the user.

The server resource file is the contents of the X server's
RESOURCE_MANAGER property that was returned by XOpenDisplay. If no
such property exists for the display, the contents of the resource file in

2-6 Widget Instantiation

the user's home directory is used instead. On UNIX-based systems, the
usual name for the user preference resource file is .Xdefaults. If the
resulting resource file exists, it is merged into the resource database. The
server resource file is constructed entirely by the user and contains both
display-independent and display-specific user preferences.

If one exists, a user's environment resource file is then loaded and merged
into the resource database. This file name is user and host specific. On
UNIX-based systems, the user's environment resource file name is
constructed from the value of the user's XENVIRONMENT variable for the
full path of the file. If this environment variable does not exist,
XtDisplaylnitialize searches the user's home directory for the .Xdefaults-host
file. where host is the name of the machine on which the application is
running. If the resulting resource file exists. it is merged into the resource
database. The environment resource file is expected to contain process
specific resource specifications that are to supplement those user-preference
specifications in the server resource file.

To obtain the resource database for a particular display, use XtDatabase.

X r mD a tab a 5 eXt D a tab a 5 e (display)
Dis p I a y * display;

display Specifies the display.

The XtDatabase function returns the fully merged resource database that
was built by XtDisplaylnitialize associated with the display that was passed
in. If this display has not been initialized by XtDisplaylnitialize, the results
are not defined.

2.3 ParSing the Command Line
The XtOpenDisplay function first parses the command line for the following
options:

- display Specifies the display name for XOpenDisplay, which overrides
the display name passed to XtDisplaylnitialize.

-name Sets the resource name prefix, which overrides the
application name passed to XtDisplaylnitialize.

XtDisplaylnitialize has a table of standard command line options that are
passed to XrmParseCommand for adding resources to the resource database,
and it takes as a parameter additional application-specific resource
abbreviations. The format of this table is:

typedef enum {

XrmoptionN oArg,

XrmoptionlsArg,

1* Value is specified in OptionDescRec.value *1
1* Value is the option string itself *1

Widget Instantiation 2-7

XrmoptionSticky Arg,

XrmoptionSepArg,

XrmoptionSkipArg,

XrmoptionSkipLine

/* Value is characters immediately following option */

/* Value is next argument in argv * /

Xrm OptionKind;

typedef struct {

char *option;

/* Ignore this option and the next argument in argv */

/* Ignore this option and the rest of argv * /

/* Option name in argv * /

char *specifier;
XrmOptionKind argKind;

/* Resource name (without application name) */
/* Which style of option it is */

caddr_t value; /* Value to provide if XrmoptionNoArg */

} XrmOptionDescRec, *XrmOptionDescList;

The standard table contains the following entries:

Option String Resource Name Argument Kind Resource Va lue

- background background SepArg next argument
-bd borderColor SepArg next argument
-bg background SepArg next argument
- borderwidth borderWidth SepArg next argument
- bordercolor borderColor SepArg next argument
-bw borderWidth SepArg next argument
-display display SepArg next argument
-fg foreground SepArg next argument
-fn font SepArg next argument
-font font SepArg next argument
- foreground foreground SepArg next argument
-geometry geometry SepArg next argument
- iconic iconic NoArg true
-name name SepArg next argument
-reverse reverse Video NoArg on
-rv reverse Video NoArg on
+rv reverse Video NoArg off
- selectionTimeout selectionTimeout SepArg next argument
- synchronous synchronize NoArg on
+ synchronous synchronize NoArg off
-title title SepArg next argument
-xrm next argument ResArg next argument

Note that any unique abbreviation for an option name in the standard
table or in the application table is accepted.

2-8 Widget Instantiation

If reverse Video is set, the values of XtDefaultForeground and
XtDefaultBackground are exchanged. If synchronize is set, the Intrinsics
put Xlib into synchronous mode for all connections.

The - xrm option provides a method of setting any resource in an
application. The next argument should be a quoted string identical in
format to a line in the user resources file. For example, to give a red
background to all command buttons in an application named xmh, you can
start it up as:

xmh -xrm 'xmh*Command.background: red'

When it parses the command line, XtDisplaylnitialize merges the application
option table with the standard option table before calling the Xlib
XrmParseCommand function. An entry in the application table with the
same name as an entry in the standard table overrides the standard table
entry. If an option name is a prefix of another option name, both names
are kept in the merged table.

2.4 Creating Widgets
The creation of widget instances is a three-phase process:

1. The widgets are allocated and initialized with resources and are
optionally added to the managed subset of their parent.

2. All composite widgets are notified of their managed children in a
bottom-up traversal of the widget tree.

3. The widgets create X windows that then get mapped.

To start the first phase, the application calls XtCreateWidget for all its
widgets and adds some (usually, most or all) of its widgets to their
respective parent's managed set by calling XtManageChiid. To avoid an
o (n 2) creation process where each composite widget lays itself out each
time a widget is created and managed, parent widgets are not notified of
changes in their managed set during this phase.

After all widgets have been created, the application calls XtRealizeWidget on
the top-level widget to start the second and third phases. XtRealizeWidget
first recursively traverses the widget tree in a post-order (bottom-up)
traversal and then notifies each composite widget with one or more
managed children by means of its change_managed procedure.

Notifying a parent about its managed set involves geometry layout and
possibly geometry negotiation. A parent deals with constraints on its size
imposed from above (for example, when a user specifies the application
window size) and suggestions made from below (for example, when a
primitive child computes its preferred size). One difference between the
two can cause geometry changes to ripple in both directions through the

Widget Instantiation 2-9

widget tree. The parent may force some of its children to change size and
position and may issue geometry requests to its own parent in order to
better accommodate all its children. You cannot predict where anything
will go on the screen until this process finishes.

Consequently, in the first and second phases, no X windows are actually
created because it is likely that they will get moved around after creation.
This avoids unnecessary requests to the X server.

Finally, XtRealizeWidget starts the third phase by making a pre-order (top
down) traversal of the widget tree, allocates an X window to each widget
by means of its realize procedure, and finally maps the widgets that are
managed.

2.4.1 Creating and Merging Argument Lists

Many Intrinsics functions need to be passed pairs of resource names and
values. These are passed as an ArgList, which contains:

typedef something XtArgVal;

typedef struct {

String name;

XtArgVal value;

} Arg, * ArgList;

Where something is a type large enough to contain caddr_t, char *, long,
int *, or a pointer to a function.

If the size of the resource is less than or equal to the size of an XtArgVal,
the resource value is stored directly in value; otherwise, a pointer to it is
stored into value.

To set values in an ArgList, use XtSetArg.

X t Se tAr g (arg, name, value)

arg

name

value

Arg arg;
S t r i n g name;
XtA r gVa I value;

Specifies the name-value pair to set.

Specifies the name of the resource.

Specifies the value of the resource if it will fit in an
XtArgVal or the address.

The XtSetArg function is usually used in a highly stylized manner to
minimize the probability of making a mistake; for example:

2-10 Widget Instantiation

Arg args[20];
int n;

n = 0;
XtSetArg(args[n], XtNheight, 100);
XtSetArg(args[n], XtNwidth, 200);
XtSetValues(widget, args, n);

n+ +;
n+ +;

Alternatively, an application can statically declare the argument list and use
XtNumber:

static Args args[] = {

};

{XtNheight, (XtArgVal) 100},
{XtNwidth, (XtArgVal) 200},

XtSetValues(Widget, args, XtNumber(args»;

Note that you should not use auto-increment or auto-decrement within the
first argument to XtSetArg. XtSetArg can be implemented as a macro that
dereferences the first argument twice.

To merge two ArgList structures, use XtMergeArgLists.

ArgList XtMergeArgLists(argsl, num_argsl, args2, num_args2)
A r g Lis t argsl;

argsl

Ca rd i na I num_argsl;
A r g Lis t args2;
Ca rd i na I num_args2;

Specifies the first ArgList.

num_argsl Specifies the number of arguments

args2 Specifies the second Arg List.

num_args2 Specifies the number of arguments
list.

in the first argument list.

in the second argument

The XtMergeArgLists function allocates enough storage to hold the combined
ArgList structures and copies them into it. Note that it does not check for
duplicate entries. When it is no longer needed, free the returned storage
by using XtFree.

2.4.2 Creating a Widget Instance

To create an instance of a widget, use XtCreateWidget.

Widget Instantiation 2-11

Wi dget XtCreateWi dget (name, widget_class, parent, args,
num_args)

name

S t r i n g name;
Wid getC I ass widget_class;
Widget parent;
A r g Lis t args;
Ca rd i na I num_args;

Specifies the resource name for the created widget, which is
used for retrieving resources and, for that reason, should not
be the same as any other widget that is a child of same
parent.

widget_class Specifies the widget class pointer for the created widget.

parent Specifies the parent widget.

args Specifies the argument list to override the resource defaults.

num_args Specifies the number of arguments in the argument list.

The XtCreateWidget function performs much of the boilerplate operations of
widget creation:

• Checks to see if the class_initialize procedure has been called for this
class and for all superclasses and, if not, calls those necessary in a
superclass-to-subclass order.

• Allocates memory for the widget instance.

• If the parent is a subclass of constraintWidgetClass, it allocates
memory for the parent's constraints and stores the address of this
memory into the constraints field.

• Initializes the core nonresource data fields (for example, parent and
visible) .

• Initializes the resource fields (for example, background_pixel) by using
the resource lists specified for this class and all superclasses.

• If the parent is a subclass of constraintWidgetClass, it initializes the
resource fields of the constraints record by using the constraint
resource list specified for the parent's class and all superclasses up to
constraintWidgetClass.

• Calls the initialize procedures for the widget by starting at the Core
initialize procedure on down to the widget's initialize procedure.

• If the parent is a subclass of compositeWidgetClass, it puts the
widget into its parent's children list by calling its parent's insert_child
procedure. For further information, see Section 3.5.

• If the parent is a subclass of constraintWidgetClass, it calls the
constraint initialize procedures, starting at constraintWidgetClass on
down to the parent's constraint initialize procedure.

2-12 Widget Instantiation

Note that you can determine the number of arguments in an argument list
by using the XtNumber macro. For further information, see Section 11.1.
(See also XtCreateManagedWidget.)

2.4.3 Creating an Application Shell Instance

An application can have multiple top-level widgets, which can potentially be
on many different screens. An application uses XtAppCreateShell if it
needs to have several independent windows. The XtAppCreateSheli function
creates a top-level widget that is the root of a widget tree.

Wi dget XtAppCreateShe I I (application_name, application_class,
widget_class, display, args ,
num_args)

St ring application_name;
S t r i n g application_class;
Wi dgetC I ass widget_class;
Dis p I a y * display;
A r g Lis t args;
Ca rd ina I num_args;

application_name
Specifies the name of the application instance. If
applicatioILname is NULL, the application name passed to
XtDisplaylnitialize is used.

application_class
Specifies the class name of this application.

widget_class Specifies the widget class that the application top-level widget
should be (normally, applicationS hellWidgetC las s) .

display

args

Specifies the display from which to get the resources.

Specifies the argument list in which to set in the
WM_COMMAND property.

num_args Specifies the number of arguments in the argument list.

The XtAppCreateShell function saves the specified application name and
application class for qualifying all widget resource specifiers. The
application name and application class are used as the left-most components
in all widget resource names for this application. XtAppCreateShell should
be used to create a new logical application within a program or to create a
shell on another display. In the first case, it allows the specification of a
new root in the resource hierarchy. In the second case, it uses the
resource database associated with the other display.

Widget Instantiation 2-13

Note that the widget returned by XtAppCreateShell has the WM_COMMAND
property set for session managers (see Chapter 4).

To create multiple top-level shells within a single (logical) application, you
can use one of two methods:

• Designate one shell as the real top-level shell and create the others as
pop-up children of it by using XtCreatePopupShel1.

• Have all shells as pop-up children of an unrealized top-level shell.

The first method, which is best used when there is a clear choice for what
is the main window, leads to resource specifications like the following:

xmail.geometry: ...
xmail.read.geometry: ...
xmail.compose.geometry: ...

(the main window)
(the read window)
(the compose window)

The second method, which is best if there is no main window, leads to
resource specifications like the following:

xmail.headers.geometry: ...
xmail.read.geometry: ...
xmail.compose.geometry: ...

(the headers window)
(the read window)
(the compose window)

2.4.4 Widget Instance Initialization: the initialize Procedure

The initialize procedure pointer in a widget class is of type XtlnitProc:

typedef void (*XtInitProc)(Widget, Widget);

request

Wid get re q ue s t ;
Widget new;

Specifies the widget with resource values as requested by the
argument list, the resource database, and the widget defaults.

new Specifies a widget with the new values, both resource and
nonresource, that are actually allowed.

An initialization procedure performs the following:

• Allocates space for and copies any resources that are referenced by
address. For example, if a widget has a field that is a String it
cannot depend on the characters at that address remaining constant
but must dynamically allocate space for the string and copy it to the
new space. (Note that you should not allocate space for or copy
callback lists.)

• Computes values for unspecified resource fields. For example, if width
and height are zero, the widget should compute an appropriate width
and height based on other resources. This is the only time that a

2-14 Widget Instantiation

widget should ever directly assign its own width and height.

• Computes values for uninitialized nonresource fields that are derived
from resource fields. For example, graphics contexts (GCs) that the
widget uses are derived from resources like background, foreground,
and font.

An initialization procedure also can check certain fields for internal
consistency. For example, it makes no sense to specify a color map for a
depth that does not support that color map.

Initialization procedures are called in superclass-to-subclass order. Most of
the initialization code for a specific widget class deals with fields defined in
that class and not with fields defined in its superclasses.

If a subclass does not need an initialization procedure because it does not
need to perform any of the above operations, it can specify NULL for the
initialize field in the class record.

Sometimes a subclass may want to overwrite values filled in by its
superclass. In particular, size calculations of a superclass are often
incorrect for a subclass and in this case, the subclass must modify or
recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass display. In
this case, the width and height calculated by the superclass initialize
procedure are too small and need to be incremented by the size of the
surround. The subclass needs to know if its superclass's size was
calculated by the superclass or was specified explicitly. All widgets must
place themselves into whatever size is explicitly given, but they should
compute a reasonable size if no size is requested.

The request and new arguments provide the necessary information for how
a subclass knows the difference between a specified size and a size
computed by a superclass. The request widget is the widget as originally
requested. The new widget starts with the values in the request, but it
has been updated by all superclass initialization procedures called so far. A
subclass initialize procedure can compare these two to resolve any potential
conflicts.

In the above example, the subclass with the visual surround can see if the
width and height in the request widget are zero. If so, it adds its
surround size to the width and height fields in the new widget. If not, it
must make do with the size originally specified.

The new widget will become the actual widget instance record. Therefore,
the initialization procedure should do all its work on the new widget (the
request widget should never be modified), and if it needs to call any
routines that operate on a widget, it should specify new as the widget
instance.

Widget Instantiation 2-15

2.4.5 Constraint Widget Instance Initialization: the constraint_initialize
Procedure

The constraint_initialize procedure pointer is of type XtinitProc. The values
passed to the parent constraint initialization procedure are the same as
those passed to the child's class widget initialization procedure.

The constraint initialization procedure should compute any constraint fields
derived from constraint resources. It can make further changes to the
widget to make the widget conform to the specified constraints, for
example, changing the widget's size or position.

If a constraint class does not need a constraint initialization procedure, it
can specify NULL for the initialize field of the ConstraintClassPart in the
class record.

2.4.6 Nonwidget Data Initialization: the initialize_hook Procedure

The initialize_hook procedure pointer is of type XtArgsProc:

typedef void (*XtArgsProc)(Widget, ArgList,
Ca r din a I *);

Widget w;
A r g Lis t args;
Ca rd i na I * num_args;

w Specifies the widget.

args Specifies the argument list to override the resource defaults.

num_args Specifies the number of arguments in the argument list.

If this procedure is not NULL, it is called immediately after the
corresponding initialize procedure or in its place if the initialize procedure is
NULL.

The initialize_hook procedure allows a widget instance to initialize
nonwidget data using information from the specified argument list. For
example, the Text widget has subparts that are not widgets, yet these
subparts have resources that can be specified by means of the resource file
or an argument list. See also Section 9.4.

2.5 Rea lizing Widgets
To realize a widget instance, use XtRealizeWidget.

2-16 Widget Instantiation

void XtReal izeWidget(w)
Widget w;

w Specifies the widget.

If the widget is already realized, XtRealizeWidget simply returns. Otherwise,
it performs the following:

• Binds all action names in the widget's translation table to procedures
(see Section 10.1.2).

• Makes a post-order traversal of the widget tree rooted at the specified
widget and calls the change_managed procedure of each composite
widget that has one or more managed children.

• Constructs an XSetWindowAttributes structure filled in with information
derived from the Core widget fields and calls the realize procedure for
the widget, which adds any widget-specific attributes and creates the
X window.

• If the widget is not a subclass of compositeWidgetClass,
XtRealizeWidget returns; otherwise, it continues and performs the
following:

Descends recursively to each of the widget's managed children
and calls the realize procedures. Primitive widgets that
instantiate children are responsible for realizing those children
themselves.

Maps all of the managed children windows that have
mapped_wheILmanaged True. (If a widget is managed but
mapped_wheILmanaged is False, the widget is allocated visual
space but is not displayed. Some people seem to like this to
indicate certain states.)

If the widget is a top-level shell widget (that is, it has no parent), and
mapped_wheILmanaged is True, XtRealizeWidget maps the widget window.

XtCreateWidget, XtRealizeWidget, XtManageChildren, XtUnmanageChildren,
and XtDestroyWidget maintain the following invariants:

• If a widget is realized, then all its managed children are realized.

• If a widget is realized, then all its managed children that are also
mapped_ wheILmanaged are mapped.

All Intrinsics functions and all widget routines should work with either
realized or unrealized widgets.

To check whether or not a widget has been realized, use XtisRealized.

Widget Instantiation 2-17

Boo lean Xt I sRea I i zed (w)
Widget w;

w Specifies the widget.

The XtlsRealized function returns True if the widget has been realized, that
is, if the widget has a nonzero X window ID.

Some widget procedures (for example, set_values) might wish to operate
differently after the widget has been realized.

2.5.1 Widget Instance Window Creation: the realize Procedure

The realize procedure pointer in a widget class is of type XtRealizeProc:

typedef void (*XtRealizeProc)(Widget, XtValueMask *,
XSetWindowAttributes *);

Widget w;
Xt Va I u eMa 5 k * value_mask;
XSetWi ndowAtt r i butes *attributes;

w

value_mask

attributes

Specifies the widget.

Specifies which fields in the attributes structure to use.

Specifies the window attributes to use in the XCreateWindow
call.

The realize procedure must create the widget's window.

The generic XtRealizeWidget function fills in a mask and a corresponding
XSetWindowAttributes structure. It sets the following fields based on
information in the widget Core structure:

• The background_pixmap (or background_pixel if background_pixmap is
NULL) is filled in from the corresponding field.

• The border_pix map (or border_pixel if border_pixmap is NULL) is
filled in from the corresponding field.

• The event_mask is filled in based on the event handlers registered,
the event translations specified, whether expose is non-NULL, and
whether visible_interest is True.

• The bit_gravity is set to NorthWestGravity if the expose field is
NULL.

• The do_not_propagate_mask is set to propagate all pointer and
keyboard events up the window tree. A composite widget can
implement functionality caused by an event anywhere inside it
(including on top of children widgets) as long as children do not
specify a translation for the event.

2-18 Widget Instantiation

All other fields in attributes (and the corresponding bits in value_mask)
can be set by the realize procedure.

Note that because realize is not a chained operation, the widget class
realize procedure must update the XSetWindowAttributes structure with all
the appropriate fields from non- Core superclasses.

A widget class can inherit its realize procedure from its superclass during
class initialization. The realize procedure defined for Core calls
XtCreateWindow with the passed value_mask and attributes and with
windowClass and visual set to CopyFromParent. Both
CompositeWidgetClass and ConstraintWidgetClass inherit this realize
procedure, and most new widget subclasses can do the same (see Section
1.4.9) .

The most common noninherited realize procedures set bit_gravity in the
mask and attributes to the appropriate value and then create the window.
For example, depending on its justification, Label sets bit_gravity to
WestGravity, CenterGravity, or EastGravity. Consequently, shrinking it just
moves the bits appropriately, and no Expose event is needed for repainting.

If a composite widget's children should be realized in a particular order
(typically to control the stacking order), it should call XtRealizeWidget on
its children itself in the appropriate order from within its own realize
procedure.

Widgets that have children and that are not a subclass of
compositeWidgetClass are responsible for calling XtRealizeWidget on their
children, usually from within the realize procedure.

2.5.2 Window Creation Convenience Routine

Rather than call the Xlib XCreateWindow function explicitly, a realize
procedure should call the Intrinsics analog XtCreateWindow, which simplifies
the creation of windows for widgets.

vo i d XtCreateW i ndow(w, window_class, visual, value_mask,
attributes)

w

Widget w;
unsigned int window_class;
V i sua I *visual;
Xt Va I u eMa s k value_mask;
XSetWi ndowAtt r i butes *attributes;

Specifies the widget that is used to set the x ,y coordinates
and so on.

window_class Specifies the Xlib window class (for example, InputOutput,
InputOnly, or CopyFromParent).

Widget Instantiation 2-19

visual

value_mask

attributes

Specifies the visual type (usually CopyFromParent).

Specifies which attribute fields to use.

Specifies the window attributes to use in the XCreateWindow
call.

The XtCreateWindow function calls the Xlib XCreateWindow function with
values from the widget structure and the passed parameters. Then, it
assigns the created window to the widget's window field.

XtCreateWindow evaluates the following fields of the Core widget structure:

• depth

• screen

• parent -> core. window

• x

• y

• width

• height

• border_width

2.6 Obtaining Window Information from a Widget
The Core widget definition contains the screen and window IDs. The
window field may be NULL for a while (see Sections 2.4 and 2.5).

The display pointer, the parent widget, screen pointer, and window of a
widget are available to the widget writer by means of macros and to the
application writer by means of functions.

Display *XtDisplay(w)
Widget w;

w Specifies the widget.

XtDisplay returns the display pointer for the specified widget.

Widget XtParent(w)
Widget w;

w Specifies the widget.

XtParent returns the parent widget for the specified widget.

2-20 Widget Instantiation

Screen *XtScreen(w)
Widget w;

w Specifies the widget.

XtScreen returns the screen pointer for the specified widget.

Window XtWindow(w)
Widget w;

w Specifies the widget.

XtWindow returns the window of the specified widget.

Several window attributes are locally cached in the widget. Thus, they can
be set by the resource manager and XtSetValues as well as used by
routines that derive structures from these values (for example, depth for
deriving pixmaps, background_pixel for deriving GCs, and so on) or in the
XtCreateWindow call.

The x, y, width, height, and border_width window attributes are available
to geometry managers. These fields are maintained synchronously inside
the XUI Toolkit. When an XConfigureWindow is issued on the widget's
window (on request of its parent), these values are updated immediately
rather than sometime later when the server generates a ConfigureNotify
event. (In fact, most widgets do not have Substructure Notify turned on.)
This ensures that all geometry calculations are based on the internally
consistent toolkit world, rather than on either an inconsistent world
updated by asynchronous ConfigureNotify events or a consistent but slow
world in which geometry managers ask the server for window sizes
whenever they need to layout their managed children (see Chapter 6).

2.6.1 Unrealizing Widgets

To destroy the windows associated with a widget and its descendants, use
XtUnrealizeWidget.

void XtUnreal izeWidget(w)
Widget w;

w Specifies the widget.

The XtUnrealizeWidget function destroys the windows of an existing widget
and all of its children (recursively down the widget tree). To recreate the
windows at a later time, call XtRealizeWidget again. If the widget was
managed, it will be unmanaged automatically before its window is freed.

Widget Instantiation 2-21

2.7 Destroying Widgets
The Intrinsics provide support to:

• Destroy all the pop-up children of the widget being destroyed and
destroy all children of composite widgets

• Remove (and unmap) the widget from its parent

• Call the callback procedures that have been registered to trigger when
the widget is destroyed

• Minimize the number of things a widget has to deallocate when
destroyed

• Minimize the number of XDestroyWindow calls

To destroy a widget instance, use XtDestroyWidget.

void XtDestroyWidget(w)
Widget w;

w Specifies the widget.

The XtDestroyWidget function provides the only method of destroying a
widget, including widgets that need to destroy themselves. It can be called
at any time, including from an application callback routine of the widget
being destroyed. This requires a two-phase destroy process in order to
avoid dangling references to destroyed widgets.

In phase one, XtDestroyWidget performs the following:

• If the being_destroyed field of the widget is True, it returns
immediately.

• Recursively descends the widget tree and sets the being_destroyed
field to True for the widget and all children.

• Adds the widget to a list of widgets (the destroy list) that should be
destroyed when it is safe to do so.

Entries on the destroy list satisfy the invariant that if w2 occurs after wI
on the destroy list then w2 is not a descendent of wI. (A descendant
refers to both normal and pop-up children.)

Phase two occurs when all procedures that should execute as a result of
the current event have been called (including all procedures registered with
the event and translation managers), that is, when the current invocation
of XtDispatchEvent is about to return or immediately if not in
XtDispatc h Event.

In phase two, XtDestroyWidget performs the following on each entry in the
destroy list:

2-22 Widget Instantiation

• Calls the destroy callback procedures registered on the widget (and all
descendants) in post-order (it calls children callbacks before parent
callbacks) .

• If the widget's parent is a subclass of compositeWidgetClass and if
the parent is not being destroyed, it calls XtUnmanageChild on the
widget and then calls the widget's parent's delete_child procedure (see
Section 3.4).

• If the widget's parent is a subclass of constraintWidgetClass, it calls
the constraint destroy procedure for the parent, then the parent's
sup erclass, until finally it calls the constraint destroy procedure for
constraintWidgetClass.

• Calls the destroy methods for the widget (and all descendants) in
post-order. For each such widget, it calls the destroy procedure
declared in the widget class, then the destroy procedure declared in its
superclass, until finally it calls the destroy procedure declared in the
Core class record.

• Calls XDestroyWindow if the widget is realized (that is, has an X
window). The server recursively destroys all descendant windows.

• Recursively descends the tree and deallocates all pop-up widgets,
constraint records, callback lists and, if the widget is a subclass of
compositeWidgetClass, children.

2.7.1 Adding and Removing Destroy Callbacks

When a application needs to perform additional processing during the
destruction of a widget, it should register a destroy callback procedure for
the widget. The destroy callback procedures use the mechanism described
in Chapter 8. The destroy callback list is identified by the resource name
XtN destroyCallback.

For example, the following adds an application-supplied destroy callback
procedure ClientDestroy with client data to a widget by calling
XtAddCaliback.

XtAddCa I I back (w, XtNdest royCa I I back, ClientDestroy,
client_data)

Similarly, the following removes the application-supplied destroy callback
procedure ClientDestroy by calling XtRemoveCaliback.

Widget Instantiation 2·23

XtRemoveCallback(w, XtNdestroyCallback, ClientDestroy,
client_data)

The ClientDestroy argument is of type XtCalibackProc:

typedef void (*XtCallbackProc) (Widget, caddr_t, caddr_t);

For further information, see Section 8.1.

2.7.2 Dynamic Data Deallocation: the destroy Procedure

The destroy procedure pointer in the CoreClassPart structure is of type
XtWidgetProc:

typedef void (*XtWidgetProc)(Widget);

The destroy procedures are called in subclass-to-superclass order. Therefore,
a widget's destroy procedure only should deallocate storage that is specific
to the subclass and should not bother with the storage allocated by any of
its superclasses. The destroy procedure should only deallocate resources
that have been explicitly created by the subclass. Any resource that was
obtained from the resource database or was passed in in an argument list
was not created by the widget and, therefore, should not be destroyed by
it. If a widget does not need to deallocate any storage, the destroy
procedure entry in its widget class record can be NULL.

Deallocating storage includes but is not limited to:

• Calling XtFree on dynamic storage allocated with XtMalloc, XtCalloc,
and so on

• Calling XFreePixmap on pixmaps created with direct X calls

• Calling XtDestroyGC on GCs allocated with XtGetGC

• Calling XFreeGC on GCs allocated with direct X calls

• Calling XtRemoveEventHandler on event handlers added with
XtAddEventHandler

• Calling XtRemoveTimeOut on timers created with XtAppAddTimeOut

• Calling XtDestroyWidget for each child if the widget has children and
is not a subclass of compositeWidgetClass

2.7.3 Dynamic Constraint Data Deallocation: the constraint destroy
Procedure

The constraint destroy procedure identified in the ConstraintClassPart
structure is called for a widget whose parent is a subclass of
constraintWidgetClass. This constraint destroy procedure pointer is of type
XtWidgetProc. The constraint destroy procedures are called in subclass-to-

2-24 Widget Instantiation

superclass order, starting at the widget's parent and ending at
constraintWidgetClass. Therefore, a parent's constraint destroy procedure
only should deallocate storage that is specific to the constraint subclass and
not the storage allocated by any of its superclasses.

If a parent does not need to deallocate any constraint storage, the
constraint destroy procedure entry in its class record can be NULL.

2.8 Exiting from an Application
All XUI Toolkit applications should terminate by calling
XtDestroyApplicationContext and then exiting using the standard method for
their operating system (typically, by calling exit for UNIX-based systems).
The quickest way to make the windows disappear while exiting is to call
XtUnmapWidget on each top-level shell widget. The XUI Toolkit has no
resources beyond those in the program image, and the X server will free
its resources when its connection to the application is broken.

Widget Instantiation 2-25

Composite Widgets and Their Children 3

Composite widgets (widgets that are a subclass of compositeWidgetClass)
can have an arbitrary number of children. Consequently, they are
responsible for much more than primitive widgets. Their responsibilities
(either implemented directly by the widget class or indirectly by Intrinsics
functions) include:

• Overall management of children from creation to destruction

• Destruction of descendants when the composite widget is destroyed

• Physical arrangement (geometry management) of a displayable subset
of children (that is, the managed children)

• Mapping and unmapping of a subset of the managed children

Overall management is handled by the generic procedures XtCreateWidget
and XtDestroyWidget. XtCreateWidget adds children to their parent by
calling the parent's insert_child procedure. XtDestroyWidget removes
children from their parent by calling the parent's delete_child procedure
and ensures that all children of a destroyed composite widget also get
destroyed.

Only a subset of the total number of children is actually managed by the
geometry manager and, hence, possibly visible. For example, a multibuffer
composite editor widget might allocate one child widget for each file buffer,
but it only might display a small number of the existing buffers. Windows
that are in this displayable subset are called managed windows and enter
into geometry manager calculations. The other children are called
unmanaged windows and, by definition, are not mapped.

Children are added to and removed from the managed set by using
XtManageChild, XtManageChildren, XtUnmanageChild, and
XtUnmanageChildren, which notify the parent to recalculate the physical
layout of its children by calling the parent's change_managed procedure.
The XtCreateManagedWidget convenience function calls XtCreateWidget and
XtManageChild on the result.

Most managed children are mapped, but some widgets can be in a state
where they take up physical space but do not show anything. Managed
widgets are not mapped automatically if their map_ wheD-managed field is
False. The default is True and is changed by using
XtSetMappedWhenManaged.

Each composite widget class has a geometry manager, which is responsible
for figuring out where the managed children should appear within the
composite widget's window. Geometry management techniques fall into four
classes:

• Fixed boxes
Fixed boxes have a fixed number of children that are created by the
parent. All of these children are managed, and none ever make
geometry manager requests.

• Homogeneous boxes

Homogeneous boxes treat all children equally and apply the same
geometry constraints to each child. Many clients insert and delete
widgets freely.

• Heterogeneous boxes

Heterogeneous boxes have a specific location where each child is
placed. This location usually is not specified in pixels, because the
window may be resized, but is expressed rather in terms of the
relationship between a child and the parent or between the child and
other specific children. Heterogeneous boxes are usually subclasses of
Constraint.

• Shell boxes
Shell boxes have only one child, which is exactly the size of the shell.
The geometry manager must communicate with the window manager if
it exists, and the box must also accept ConfigureNotify events when
the window size is changed by the window manager.

3.1 Verifying the Class of a Composite Widget
To test if a given widget is a subclass of Composite, use XtisComposite.

Boolean XtIsComposite(w)
Widget w;

w Specifies the widget.

The XtlsComposite function is a convenience function that is equivalent to
XtlsSubclass with compositeWidgetClass specified.

3.2 Addition of Children to a Composite Widget: the
insert_child Procedure

To add a child to the parent's list of children, the XtCreateWidget function
calls the parent's class routine insert_child. The insert_child procedure

3-2 CompOSite Widgets and Their Children

pointer in a composite widget is of type XtWidgetProc:

typedef void (*XtWidgetProc)(Widget);

Most composite widgets inherit their superclass's operation. Composite's
insert_child routine calls the insert_position procedure and inserts the child
at the specified position.

Some composite widgets define their own insert_child routine so that they
can order their children in some convenient way, create companion
controller widgets for a new widget, or limit the number or type of their
children widgets.

If there is not enough room to insert a new child in the children array
(that is, num_children = num_slots), the insert_child procedure must first
reallocate the array and update num_slots. The insert_child procedure
then places the child wherever it wants and increments the num_children
field.

3.3 Insertion Order of Children: the insert_position
Procedure

Instances of composite widgets need to specify about the order in which
their children are kept. For example, an application may want a set of
command buttons in some logical order grouped by function, and it may
want buttons that represent file names to be kept in alphabetical order.

The insert_position procedure pointer in a composite widget instance is of
type XtOrderProc:

typedef Cardinal (*XtOrderProc)(Widget);
Widget w;

w Specifies the widget.

Composite widgets that allow clients to order their children (usually
homogeneous boxes) can call their widget instance's insert_position
procedure from the class's insert_child procedure to determine where a new
child should go in its children array. Thus, a client of a composite class
can apply different sorting criteria to widget instances of the class, passing
in a different insert_position procedure when it creates each composite
widget instance.

The return value of the insert_position procedure indicates how many
children should go before the widget. Returning zero indicates that the
widget should go before all other children, and returning num_children
indicates that it should go after all other children. The default
insert_position function returns num_children and can be overridden by a

Composite Widgets and Their Children 3-3

specific composite widget's resource list or by the argument list provided
when the composite widget is created.

3.4 Deletion of Children: the delete_child Procedure

To remove the child from the parent's children array, the XtDestroyWidget
function eventually causes a call to the composite parent's class
delete_child procedure. The delete_child procedure pointer is of type
XtWidgetProc:

typedef void (*XtWidgetProc)(Widget);

Most widgets inherit the delete_child procedure from their superclass.
Composite widgets that create companion widgets define their own
delete_child procedure to remove these companion widgets.

3.5 Adding and Removing Children from the Managed Set
The Intrinsics provide a set of generic routines to permit the addition of
widgets to or the removal of widgets from a composite widget's managed
set. These generic routines eventually call the widget's change_managed
procedure. The change_managed procedure pointer is of type XtWidgetProc.

3.5.1 Managing Children

To add a list of widgets to the geometry-managed (and, hence, displayable)
subset of its composite parent widget, the application must first create the
widgets (XtCreateWidget) and then call XtManageChildren.

typedef Widget *WidgetList;

vo i d XtManageCh i I d ren (children, num_children)
Wid get Lis t children;
Ca r din a I num_children;

children Specifies a list of child widgets.

num_children Specifies the number of children.

The XtManageChildren function performs the following:

• Issues an error if the children do not all have the same parent or if
the parent is not a subclass of compositeWidgetClass.

• Returns immediately if the common parent is being destroyed;
otherwise, for each unique child on the list, XtManageChildren ignores
the child if it already is managed or is being destroyed and marks it
if not.

3-4 Composite Widgets and Their Children

• If the parent is realized and after all children have been marked, it
makes some of the newly managed children viewable:

Calls the change_managed routine of the widgets' parent.

Calls XtRealizeWidget on each previously unmanaged child that is
unrealized.

Maps each previously unmanaged child that has
map_ wheIL...managed True.

Managing children is independent of the ordering of children and
independent of creating and deleting children. The layout routine of the
parent should consider children whose managed field is True and should
ignore all other children. Note that some composite widgets, especially
fixed boxes, call XtManageChild from their insert_child procedure.

If the parent widget is realized, its change_managed procedure is called to
notify it that its set of managed children has changed. The parent can
reposition and resize any of its children. . It moves each child as needed
by calling XtMoveWidget, which first updates the x and y fields and then
calls XMoveWindow if the widget is realized.

If the composite widget wishes to change the size or border width of any
of its children, it calls XtResizeWidget, which first updates the Core fields
and then calls the Xlib XConfigureWindow function if the widget is realized.

To add a single child to a parent widget's list of managed children, first
create the child widget (XtCreateWidget) and then use XtManageChild.

vo i d XtManageCh i I d (child)
Widget child;

child Specifies the child.

The XtManageChild function constructs a WidgetList of length one and calls
XtManageChiidren.

To create and manage a child widget in a single procedure, use
XtC reateManagedWidget.

Widget Xt C r eat eMa nagedW i dget (name, widget_class, parent,
args, num_args)

S t r i n g name;
Wi dgetC I ass widget_class;
Widget parent;
A r g Lis t args;
Ca rd i na I num_args;

CompOSite Widgets and Their Children 3·5

name Specifies the text name for the created widget.

widget_class Specifies the widget class pointer for the created widget.

parent Specifies the parent widget.

args Specifies the argument list to override the resource defaults.

num_args Specifies the number of arguments in the argument list.

The XtCreateManagedWidget function is a convenience routine that calls
XtCreateWidget and XtManageChild.

3.5.2 Unmanaging Children

To remove a list of children from a parent widget's managed list, use
XtUnmanageChildren.

vo i d X t U nrna n a geCh i I d r e n (children, num_children)
Wid get Lis t children;
Car din a I num_children;

children Specifies a list of child widgets.

num_children Specifies the number of children.

The XtUnmanageChildren function performs the following:

• Issues an error if the children do not all have the same parent or if
the parent is not a subclass of compositeWidgetClass.

• Returns immediately if the common parent is being destroyed;
otherwise, for each unique child on the list, XtUnmanageChildren
performs the following:

Ignores the child if it already is unmanaged or is being destroyed
and marks it if not.

If the child is realized, it makes it nonvisible by unmapping it.

• Calls the change_managed routine of the widgets' parent after all
children have been marked if the parent is realized.

XtUnmanageChiidren does not destroy the children widgets. Removing
widgets from a parent's managed set is often a temporary banishment, and,
some time later, you may manage the children again. To destroy widgets
entirely, see Section 2.7.

To remove a single child from its parent's managed set, use
XtUnmanageChild.

3-6 Composite Widgets and Their Children

void XtUnmanageChi Id(child)
Widget child;

child Specifies the child.

The XtUnmanageChild function constructs a widget list of length one and
calls XtUnmanageChildren.

These generic functions are low-level routines that are used by generic
composite widget building routines. In addition, composite widgets can
provide widget-specific, high-level convenience procedures to let applications
create and manage children more easily.

3.5.3 Determining if a Widget Is Managed

To determine the managed state of a given child widget, use XtlsManaged.

Boolean XtIsManaged(w)
Widget w;

w Specifies the widget.

The XtisManaged macro (for widget programmers) or function (for
application programmers) returns True if the specified child widget is
managed or False if it is not.

3.6 Controlling When Widgets Get Mapped
A widget is normally mapped if it is managed. However, this behavior can
be overridden by setting the XtNmappedWhenManaged resource for the
widget when it is created or by setting the map_ wheILmanaged field to
False.

To change the value of a given widget's map_ wheILmanaged field, use
XtSetMappedWhenManaged.

vo i d XtSetMappedWhenManaged (w, map_when_managed)
Widget w;
Boo I ea n map_when_managed;

w Specifies the widget.

map_when_managed
Specifies a Boolean value that indicates the new value of the
map_ wheILmanaged field.

If the widget is realized and managed and if the new value of
map_wheILmanaged is True, XtSetMappedWhenManaged maps the window.
If the widget is realized and managed and if the new value of

Composite Widgets and Their Children 3-7

map_whe~managed is False, it unmaps the window.
XtSetMappedWhenManaged is a convenience function that is equivalent to
(but slightly faster than) calling XtSetValues and setting the new value for
the mappedWhenManaged resource. As an alternative to using
XtSetMappedWhenManaged to control mapping, a client may set
mappe<Lwhe~managed to False and use XtMapWidget and XtUnmapWidget
explicitly.

To map a widget explicitly, use XtMapWidget.

XtMapWidget(w)
Widget w;

w Specifies the widget.

To unmap a widget explicitly, use XtUnmapWidget.

XtUnmapWidget(w)
Widget w;

w Specifies the widget.

3.7 Constrained Composite Widgets
Constraint widgets are a subclass of compositeWidgetClass. Their name is
derived from the fact that they may manage the geometry of their children
based on constraints associated with each child. These constraints can be
as simple as the maximum width and height the parent will allow the child
to occupy or can be as complicated as how other children should change if
this child is moved or ,resized. Constraint widgets let a parent define
resources that are supplied for their children. For example, if the
Constraint parent defines the maximum sizes for its children, these new
size resources are retrieved for each child as if they were resources that
were defined by the child widget. Accordingly, constraint resources may be
included in the argument list or resource file just like any other resource
for the child.

Constraint widgets have all the responsibilities of normal composite widgets
and, in addition, must process and act upon the constraint information
associated with each of their children.

To make it easy for widgets and the Intrinsics to keep track of the
constraints associated with a child, every widget has a constraints field,
which is the address of a parent-specific structure that contains constraint
information about the child. If a child's parent is not a subclass of
constraintWidgetClass, then the child's constraints field is NULL.

3-8 CompOSite Widgets and Their Children

Subclasses of a Constraint widget can add additional constraint fields to
their superclass. To allow this, widget writers should define the constraint
records in their private . h file by using the same conventions as used for
widget records. For example, a widget that needs to maintain a maximum
width and height for each child might define its constraint record as
follows:

typedef struct {

Dimension max_width, max_height;

} MaxConstraintPart;

typedef struct {

MaxConstraintPart max;

} MaxConstraintRecord, *MaxConstraint;

A subclass of this widget that also needs to maintain a minimum size
would define its constraint record as follows:

typedef struct {

Dimension mi~ width, mi~height;

} MinConstraintPart;

typedef struct {

MaxConstraintPart max;

MinConstraintPart min;

} MaxMinConstraintRecord, *MaxMinConstraint;

Constraints are allocated, initialized, deallocated, and otherwise maintained
insofar as possible by the Intrinsics. The constraint class record part has
several entries that facilitate this. All entries in ConstraintClassPart are
information and procedures that are defined and implemented by the
parent, but they are called whenever actions are performed on the parent's
children.

The XtCreateWidget function uses the constraint_size field to allocate a
constraint record when a child is created. The constraint_size field gives
the number of bytes occupied by a constraint record. XtCreateWidget also
uses the constraint resources to fill in resource fields in the constraint
record associated with a child. It then calls the constraint initialize
procedure so that the parent can compute constraint fields that are derived
from constraint resources and can possibly move or resize the child to
conform to the given constraints.

The XtGetValues and XtSetValues functions use the constraint resources to
get the values or set the values of constraints associated with a child.
XtSetValues then calls the constraint set_values procedures so that a
parent can recompute derived constraint fields and move or resize the child
as appropriate.

Composite Widgets and Their Children 3-9

The XtDestroyWidget function calls the constraint destroy procedure to
deallocate any dynamic storage associated with a constraint record. The
constraint record itself must not be deallocated by the constraint destroy
procedure; XtDestroyWidget does this automatically.

3-10 Composite Widgets and Their Children

Shell Widgets 4

Shell widgets hold an application's top-level widgets to allow them to
communicate with the window manager. Shells have been designed to be
as nearly invisible as possible. Clients have to create them, but they
should never have to worry about their sizes.

If a shell widget is resized from the outside (typically by a window
manager), the shell widget also resizes its child widget automatically.
Similarly, if the shell's child widget needs to change size, it can make a
geometry request to the shell, and the shell negotiates the size change with
the outer environment. Clients should never attempt to change the size of
their shells directly.

The four types of public shells are:

OverrideShell Used for shell windows that completely bypass the
window manager (for example, pop-up menu shells).

TransientShell

TopLevelShell

ApplicationShell

U sed for shell windows that can be manipulated by
the window manager but are not allowed to be
iconified separately (for example, Dialog boxes that
make no sense without their associated application).
They are iconified by the window manager only if
the main application shell is iconified.

Used for normal top-level windows (for example, any
additional top-level widgets an application needs).

U sed as the main top-level window for an
application. An application should only have more
than one ApplicationShel1 if it implements multiple
logical applications.

4.1 Shell Widget Definitions
Widgets negotiate their size and position with their parent widget, that is,
the widget that directly contains them. Widgets at the top of the
hierarchy do not have parent widgets. Instead, they must deal with the
outside world. To provide for this, each top-level widget is encapsulated in
a special widget, called a Shell.

Shell widgets, a subclass of the Composite widget, encapsulate other
widgets and can allow a widget to avoid the geometry clipping imposed by
the parent/child window relationship. They also can provide a layer of
communication with the window manager.

The seven different types of shells are:

Shell

OverrideShell

WMShell

VendorShell

TransientShell

TopLevelShell

ApplicationShell

Provides the base class for shell widgets and the
fields needed for all types of shells. Shell is a
direct subclass of compositeWidgetClass.

Used for shell windows that completely bypass the
window manager and is a subclass of Shell.

Contains fields needed by the common window
manager protocol and is a subclass of Shell.

Contains fields used by vendor-specific window
managers and is a subclass of WMShel1.

U sed for shell windows that can be manipulated by
the window manager but that are not allowed to be
iconified and is a subclass of VendorShel1.

U sed for normal top level windows and is a subclas
of VendorShel1.

Used for an application's top-level window and is a
subclass of TopLevelShel1.

Note that the classes Shell, WMShell, and VendorShell are internal and
should not be instantiated or subclassed. Only OverrrideShell,
TransientShell, TopLevelShell, and ApplicationShell are for public use.

4.1.1 SheliClassPart Definitions

None of the shell widget classes has any additional fields:

typedef struct { caddr_t extension; } ShellClassPart, OverrideShellClassPart,

WMShellClassPart, VendorShellClassPart, TransientS hellC las s Part ,

TopLevelShellClassPart, ApplicationShellClassPart;

4-2 Shell Widgets

Shell widget classes have the (empty) shell fields immediately following the
composite fields:

typedef struct _ShellClassRec {

CoreClassPart core_class;
CompositeClassPart composite_class;

ShellClassPart shelLclass;

ShellClassRec;

typedef struct _OverrideShellClassRec

CoreClassPart core_class;
CompositeClassPart composite_class;

ShellClassPart shelLclass;
OverrideShellClassPart override_shelLclass;

OverrideShellClassRec;

typedef struct _ WMShellClassRec

CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shelLclass;
WMShellClassPart wnLshelLclass;

WMShellClassRec;

typedef struct _ VendorShellClassRec
CoreClassPart core_class;
CompositeClassPart composite_class;

ShellClassPart shelLclass;
WMShellClassPart WID_shelL class;

VendorShellClassPart vendor_sheILclass;
VendorShellClassRec;

typedef struct _ TransientShellClassRec

CoreClassPart core_class;

CompositeClassPart composite_class;
ShellClassPart shelL class;
WMShellClassPart WID_shelL class;
VendorShellClassPart vendor_sheILclass;

TransientShellClassPart transient_shelL class;
TransientShellClassRec;

typedef struct _ TopLevelShellClassRec
CoreClassPart core_class;

CompositeClassPart composite_class;

ShellClassPart shelLclass;
WMShellClassPart WID_sheILclass;

VendorShellClassPart vendor_shelL class;
TopLevelShellClassPart top_leveLshelLclass;

Shell Widgets 4-3

} TopLevelShellClassRec;

typedef struct _ApplicationShellClassRec

CoreClassPart core_class;

CompositeClassPart composite_class;

S hellC lassPart shelL class;

WMShellClassPart wnLshelLclass;

VendorShellClassPart vendor_sheILclass;

TopLevelShellClassPart top_leveLsheILclass;

ApplicationShellClassPart applicatioILshelLclass;

ApplicationS hellC lassRec;

The predefined class records and pointers for shells are:

extern ShellClassRec shellClassRec;

extern OverrideShellClassRec overrideShellClassRec;

extern WMShellClassRec wmShellClassRec;

extern VendorShellClassRec vendorShellClassRec;

extern TransientShellClassRec transientShellClassRec;

extern TopLevelShellClassRec topLevelShellClassRec;

extern ApplicationShellClassRec applicationShellClassRec;

extern WidgetClass shellWidgetClass;

extern WidgetClass overrideShellWidgetClass;

extern WidgetClass wmShellWidgetClass;

extern WidgetClass vendorShellWidgetClass;

extern WidgetC lass transientS hellWidgetC lass;

extern WidgetClass topLevelShellWidgetClass;

extern WidgetClass applicationShellWidgetClass;

The following opaque types and opaque variables are defined for generic
operations on widgets that are a subclass of SheliWidgetClass:

Types

SheliWidget
OverrideShellWidget
WMSheliWidget
VendorSheliWidget
TransientShellWidget
Top LevelSheliWidget
ApplicationShellWidget
SheliWidgetClass
OverrideSheliWidgetC lass
WMSheliWidgetClass
VendorShellWidgetClass

4-4 Shell Widgets

Variables

sheliWidgetC lass
overrideSheliWidgetClass
wmSheliWidgetC lass
vendorShellWidgetClass
transientShellWidgetClass
topLevelShellWidgetClass
applicationShellWidgetClass

Types

TransientShellWidgetClass
TopLevelShellWidgetClass
ApplicationShellWidgetClass

4.1.2 SheliPart Definition

Variables

The various shells have the following additional fields defined in their
widget records:

typedef struct {

String geometry;

XtCreatePopupChildProc create_popup_child_proc;

XtGrabKind grab_kind;

Boolean spring_loaded;
Boolean popped_up;

Boolean allow_sheILresize;

Boolean client_specified;

Boolean save_under;

Boolean override_redirect;

XtCallbackList popup_callback;

XtCallbackList popdoWILcallback;

ShellPart;

typedef struct { int empty; } OverrideShellPart;

typedef struct

String title;

int wm_ timeout;

Boolean wait_for_ wm;

Boolean transient;

XSizeHints size_hints;

XWMHints wm_hints;

WMShellPart;

typedef struct {

int vendor_specific; .

} VendorShellPart;

typedef struct { int empty; } TransientShellPart;

typedef struct

String icofi-name;

Shell Widgets 4-5

Boolean iconic;

TopLevelShellPart;

typedef struct {

char *class;
XrmClass xrm_class;

int argc;

char * * argv;

} ApplicationShellPart;

The full definitions of the various shell widgets have shell fields following
composite fields:

typedef struct {

CorePart core;

CompositePart composite;

ShellPart shell;

ShellRec, *ShellWidget;

typedef struct {

CorePart core;

CompositePart composite;

ShellPart shell;

OverrideShellPart override;
OverrideShellRec, *OverrideShellWidget;

typedef struct {

CorePart core;

CompositePart composite;

ShellPart shell;

WMShellPart wm;

WMShellRec, *WMShellWidget;

typedef struct {

CorePart core;

CompositePart composite;
ShellPart shell;

WMShellPart wm;

VendorShellPart vendor;

VendorS hellRec, *VendorShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;

4·6 Shell Widgets

TransientShellPart transient;
} TransientS hellRec , *TransientShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;
TopLevelS hellPart topLevel;

} TopLevelShellRec, *TopLevelShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;
TopLevelShellPart topLevel;
ApplicationShellPart application;

} ApplicationS hellRec , * ApplicationShellWidget;

4.1.3 SheliPart Default Values

The default values for fields common to all classes of public shells (filled
in by the Shell resource lists and the Shell initialize procedures) are:

Field

geometry
create_popup_child_proc
grab_kind
spring_loaded
popped_up
allow _shelLresize
client_specified
save_under

overrideJedirect
popup_callback
popdo~callback

Default Value

NULL
NULL
(internal)
(internal)
(internal)
False
(internal)
True for OverrideShell and TransientShell,
False otherwise
True for OverrideShell, False otherwise
NULL
NULL

Shell Widgets 4-7

The geometry resource specifies the size and position and is usually done
only from a command line or a defaults file. For further information, see
the Guide to the Xlib Library. The create_popup_child_proc is called by
the XtPopup procedure and is usually NULL. The allow_shelLresize field
controls whether or not the widget contained by the shell is allowed to try
to resize itself. If allow_shelLresize is False, any geometry requests
always return XtGeometryNo. Setting save_under instructs the server to
attempt to save the contents of windows obscured by the shell when it is
mapped and to restore its contents automatically later. It is useful for
pop-up menus. Setting overrideJ'edirect determines whether or not the
shell window is visible to the window manager. If it is True, the window
is immediately mapped without the manager's intervention. The popup and
popdown callbacks are called during XtPopup and XtPopdown. For further
information, see the Guide to the Xlib Library.

The default values for shell fields in WMShell and its subclasses are:

Field Default Value

title Icon name, if specified, otherwise the
application's name

wm_timeout Five seconds
waitJor_wm True
transient True for TransientShell, False otherwise
m~width None
miILheight None
max_width None
max_height None
widtLinc None
height_inc None
m~aspect_x None
miILaspect_y None
max_aspect_x None
max_aspect_y None
input False
initiaLstate Normal
ic oILpix map None
icoIL window None
icoILX None
icoILY None
icoILmask None
window_group None

4-8 Shell Widgets

The title is a string to be displayed by the window manager. The
WID_timeout resource limits the amount of time a shell is to wait for
confirmation of a geometry request to the window manager. If none comes
back within that time, the shell assumes the window manager is not
functioning properly and sets wait_for_WID to be False (later events may
reset this value). The waitJor_ WID resource sets the initial state for this
flag. When the flag is False, the shell does not wait for a response but
relies on asynchronous notification. All other resources are for fields in
the window manager hints and the window manager size hints. For
further information, see the Guide to the Xlib Library.

TopLevel shells have the the following additional resources:

Field Default Value

ico~name Shell widget's name
iconic False

The ico~name field is the string to display in the shell's icon, and the
iconic field is an alternative way to set the initialState resource to indicate
that a shell should be initially displayed as an icon.

Application shells have the following additional resources:

Field Default Value

argc 0
argv NULL

The argc and argv fields are used to initialize the standard property
WM_COMMAND.

4.1.4 Digital's Vendor Shell Implementation

Digital's implementation of the VendorSheli has the the following additional
resources:

Shell Widgets 4-9

Field Type Default Value

iconify _pixmap Pixmap Unspecified
ic0 ILb0 x-'C Int Unspecified
icoILbox_y Int Unspecified
tiled Bool Unspecified
sticky Bool Unspecified
no_iconify Bool Unspecified
no_lower Bool Unspecified
no_resize Bool Unspecified
icoILbox String Unspecified
title_font Font WM specific
icoILfont Font WM specific
border_width Int WM specific
title_height Int WM specific
no ILt it le_ width Int WM specific
icoILname_ width Int WM specific
iconify _width Int WM specific
iconify _height Int WM specific
icoILstate Bool none

The iconify _pixmap is the icon pixmap to use. The icoILbox_x is the
icon x position in the icon box. The icoILbox_y is the icon y position in
the icon box. The tiled field indicated whether a tiled window manager is
supported. The sticky field indicates whether sticky input focus is
supported. The no_iconify field indicates whether it is to have an iconify
button. The no_lower field indicates whether it is to have a lower button.
The no_resize field indicates whether it is to have a resize button. The
icoILbox is the name to use for the icon box. The titleJont is read-only
and indicates the title font that is to be used. The icoILiont is read-only
and indicates the icon font that is to be used. The border_width is read
only and indicates the border width of the window manager. The
title_height is read-only and indicates the height of the title bar. The
nOILtitle_width is read-only and indicates the width of the title bar less
the title area. The icoILname_width is read-only and indicates the width
that the window manager gives to the icon name. The iconify_width is
read-only and indicates the width of the icon button. The iconify _height is
read-only and indicates the height of the icon button. The icoILstate is
read-only and indicates whether it can be iconified.

4-10 Shell Widgets

Pop-Up Widgets 5

Pop-up widgets are used to create windows that are outside of the window
hierarchy defined by the widget tree. Each pop-up child has a window that
is a descendant of the root window so that the pop-up window is not
clipped by the pop-up widget's parent window. Therefore, pop-ups are
created and attached differently to their widget parent than from normal
widget children.

A parent of a pop-up widget does not actively manage its pop-up children;
in fact, it usually never notices them or operates upon them. The
popup_list field in the CorePart structure contains the list of its pop-up
children. This pop-up list exists mainly to provide the proper place in the
widget hierarchy for the pop-up to get resources and to provide a place for
XtDestroyWidget to look for all extant children.

A Composite widget can have both normal and pop-up children. A pop-up
can be popped up from almost anywhere, not just by its parent. A child
always refers to a normal, geometry-managed child on the children list, and
a pop-up child always refers to a child on the pop-up list.

5.1 Pop-Up Widget Types
There are three kinds of pop-up widgets:

• Modeless pop-ups

A modeless pop-up (for example, a modeless dialog box) is usually
visible to the window manager and looks like any other application
from the user's point of view. (The application itself is a special
form of a modeless pop-up.)

• Modal pop-ups
A modal pop-up (for example, a modal dialog box) mayor may not
be visible to the window manager and, except for events that occur in
the dialog box, disables user-event processing by the application.

• Spring-loaded pop-ups

A spring-loaded pop-up (for example, a menu) is not visible to the
window manager and, except for events that occur in the menu,
disables user-event processing by all applications.

Modal pop-ups and spring-loaded pop-ups are very similar and should be
coded as if they are the same. In fact, the same widget (for example, a
ButtonBox or Menu) can be used both as a modal pop-up and as a
spring-loaded pop-up within the same application. The main difference is
that spring-loaded pop-ups are brought up with the pointer and, because of
the grab that the pointer button causes, require different processing by the
Intrinsics. Further, button up takes down a spring-loaded pop-up no matter
where the button up occurs.

Any kind of pop-up, in turn, can pop up other widgets. Modal and spring
loaded pop-ups can constrain user events to the most recent such pop-up
or to any of the modal/spring-loaded pop-ups currently mapped.

Regardless of their type, all pop-up widget classes are responsible for
communicating with the X window manager and, therefore, are subclasses
of Shell.

5.2 Creating a Pop-Up Shell
For a widget to pop up, it must be the child of a pop-up widget shell. A
pop-up shell is never allowed more than one child, referred to as the pop
up child. Both the shell and child taken together are referred to as the
pop-up. When you need to use a pop-up, you always should specify the
pop-up shell, not the pop-up child.

To create a pop-up shell, use XtCreatePopupShell.

Wi dge t Xt C rea t ePopu pShe I I (name, widget_class, parent,
args, num_args)

name

S t r i n g name;
Wi dgetC I ass widget_class;
Wid get parent;
A r g Lis t args;
Ca rd i na I num_args;

Specifies the text name for the created shell widget.

widget_class Specifies the widget class pointer for the created shell
widget.

parent Specifies the parent widget.

args Specifies the argument list to override the resource defaults.

num_args Specifies the number of arguments in the argument list.

The XtCreatePopupShell function ensures that the specified class is a
subclass of Shell and, rather than using insert_child to attach the widget
to the parent's children list, attaches the shell to the parent's pop-ups list
directly.

5-2 Pop-Up Widgets

A spring-loaded pop-up invoked from a translation table already must exist
at the time that the translation is invoked, so the translation manager can
find the shell by name. Pop-ups invoked in other ways can be created
"on-the-fly" when the pop-up actually is needed. This delayed creation of
the shell is particularly useful when you pop up an unspecified number of
pop-ups. You can look to see if an appropriate unused shell (that is, not
currently popped up) exists and create a new shell if needed.

5.3 Creating Pop-Up Children
Once a pop-up shell is created, the single child of the pop-up shell can be
created in one of two ways:

• Static

• Dynamic
At startup, an application can create the child of the pop-up shell, which is
appropriate for pop-up children that are composed of a fixed set of widgets.
The application can change the state of the subparts of the pop-up child as
the application state changes. For example, if an application creates a
static menu, it can call XtSetSensitive (or, in general, XtSetValues) on any
of the buttons that make up the menu. Creating the pop-up child early
means that pop-up time is minimized, especially if the application calls
XtRealizeWidget on the pop-up shell at startup. When the menu is needed,
all the widgets that make up the menu already exist and need only be
mapped. The menu should pop up as quickly as the X server can
respond.

Alternatively, an application can postpone the creation of the child until it
is needed, which minimizes application startup time and allows the pop-up
child to reconfigure itself each time it is popped up. In this case, the
pop-up child creation routine should poll the application to find out if it
should change the sensitivity of any of its subparts.

Pop-up child creation does not map the pop-up, even if you create the child
and call XtRealizeWidget on the pop-up shell.

All shells have pop-up and pop-down callbacks, which provide the
opportunity either to make last-minute changes to a pop-up child before it
is popped up or to change it after it is popped down. Note that excessive
use of pop-up callbacks can make popping up occur more slowly.

5.4 Mapping a Pop-Up Widget
Pop-ups can be popped up through several mechanisms:

• A call to XtPopup

Pop-Up Widgets 5-3

• One of the supplied callback procedures (for example, XtCalibackNone,
XtCalibackNonexclusive, or XtCalibackExclusive)

• The standard translation action MenuPopup

Some of these routines take an argument of type XtGrabKind, which is
defined as:

typedef enum {XtGrabNone, XtGrabNonexclusive, XtGrabExclusive} XtGrabKind;

To map a pop-up from within an application, use XtPopup.

vo i d XtPopup (popup_shell, grab_kind)
Widget popup_shell;
XtG rabK i nd grab_kind;

popup_shell Specifies the widget shell.

grab_kind Specifies the way in which user events should be constrained.

The XtPopup function performs the following:

• Calls XtCheckSubclass to ensure popup_shell is a subclass of Shell.

• Generates an error if the shell's popped_up field is already True.

• Calls the callback procedures on the shell's popup_callback list.

• Sets the shell popped_up field to True, the shell spring_loaded field
to False, and the shell grab_kind field from grab_kind.

• If the shell's create_pop up_child field is non-NULL, XtPopup calls it
with popup_shell as the parameter.

• If grab_kind is either XtGrabNonexclusive or XtGrabExclusive, it calls:

XtAddGrab(popup_shell, (grab_kind = = XtGrabExclusive), False)

• Calls XtRealizeWidget with popup_shell specified.

• Calls XMapWindow with popup_shell specified.

To map a pop-up from a given widget's callback list, you also can use the
XtCalibackNone, XtCalibackNonexclusive, or XtCalibackExclusive convenience
routines.

v 0 i d X tea I I b a c k Non e (W , clie nt_data, call_data)
Widget w;
cad d r _ t client_data;
cadd r _ t call_data;

5-4 Pop-Up Widgets

w

client_data

call_data

Specifies the widget.

Specifies the pop-up shell.

Specifies the callback data, which is not used by this
procedure.

v 0 i d X tea I I b a c k Non e x c Ius i ve (W , client_data, call_data)
Widget w;

w

cad d r _ t client_data;
cadd r _ t call_data;

Specifies the widget.

Specifies the pop-up shell. client_data

call_data Specifies the callback data, which is not used by this
procedure.

v 0 i d X tea I I b a ekE x c Ius i ve (w , clie nt_data, call_data)
Widget w;

w

cad d r _ t client_data;
cadd r _ t call_data;

Specifies the widget.

Specifies the pop-up shell. clie nt_data

call_data Specifies the callback data, which is not used by this
procedure.

The XtCalibackNone, XtCalibackNonexclusive, and XtCalibackExclusive
functions call XtPopup with the shell specified by the client data argument
and grab_kind set as the name specifies. XtCalibackNone,
XtCalibackNonexclusive, and XtCalibackExclusive specify XtGrabNone,
XtGrabNonexclusive, and XtGrabExclusive, respectively. Each function then
sets the widget that executed the callback list to be insensitive by using
XtSetSensitive. U sing these functions in callbacks is not required. In
particular, an application must provide customized code for callbacks that
create pop-up shells dynamically or that must do more than desensitizing
the button.

To pop up a menu when a pointer button is pressed or when the pointer
is moved into some window, use MenuPopup. From a translation writer's
point of view, the definition for this translation action is:

vo i d Men u Popu p (shell_name)
St ring shell_name;

Pop-Up Widgets 5·5

shell_name Specifies the name of the widget shell to pop up.

MenuPopup is known to the translation manager, which must perform
special actions for spring-loaded pop-ups. Calls to MenuPopup in a
translation specification are mapped into calls to a nonexported action
procedure, and the translation manager fills in parameters based on the
event specified on the left-hand side of a translation.

If MenuPopup is invoked on ButtonPress' (possibly with modifiers), the
translation manager pops up the shell with grab_kind set to
XtGrabExclusive and spring_loaded set to True. If MenuPopup is invoked
on EnterWindow (possibly with modifiers), the translation manager pops up
the shell with grab_kind set to XtGrabNonexclusive and spring_loaded set
to False. Otherwise, the translation manager generates an error. When
the widget is popped up, the following actions occur:

• Calls XtCheckSubclass to ensure popup_shell is a subclass of Shell.

• Generates an error if the shell's popped_up field is already True.

• Calls the callback procedures on the shell's popup_callback list.

• Sets the shell popped_up field to True and the shell grab_kind and
spring_loaded fields appropriately.

• If the shell's create_popup_child field is non-NULL, it is called with
popup_shell as the parameter.

• Calls:

XtAddGrab(popup_shell, (grab_kind = = XtGrabExclusive), spring_loaded)

• Calls XtRealizeWidget with popup_shell specified.

• Calls XMapWindow with popup_shell specified.

(Note that these actions are the same as those for XtPopup.) MenuPopup
tries to find the shell by searching the widget tree starting at the parent
of the widget in which it is invoked. If it finds a shell with the specified
name in the pop-up children of that parent, it pops up the shell with the
appropriate parameters. Otherwise, it moves up the parent chain as
needed. If MenuPopup gets to the application widget and cannot find a
matching shell, it generates an error.

5.5 Unmapping a Pop-Up Widget
Pop-ups can be popped down through several mechanisms:

• A call to XtPopdown

5-6 Pop-Up Widgets

• The supplied callback procedure XtCallbackPopdown

• The standard translation action MenuPopdown

To unmap a pop-up from within an application, use XtPopdown.

vo i d Xt Popdown (popup_shell)
Widget popup_shell;

popup_shell Specifies the widget shell to pop down.

The XtPopdown function performs the following:

• Calls XtCheckSubclass to ensure popup_shell is a subclass of Shell.

• Checks that popup_shell is currently popped_up; otherwise, it
generates an error.

• Unmaps popup_shell's window.

• If popup_shell's grab_kind is either XtGrabNonexclusive or
XtGrabExclusive, it calls XtRemoveGrab.

• Sets pop-up shell's popped_up field to False.

• Calls the callback procedures on the shell's popdoWILcallback list.

To pop down pop-up that have been popped up with one of the callback
routines (XtCalibackNone, XtCallbackNonexclusive, XtCallbackExclusive), use
the callback XtCallbackPopdown.

vo i d XtCa I I backPopdown (w, client_data, call_data)
Widget w;

w

cad d r _ t client_data;
cadd r _ t call_data;

Specifies the widget.

client_data

call_data

Specifies a pointer to the XtPopdownlD structure.

Specifies the callback data, which is not used by this
procedure.

The XtCalibackPopdown function casts the client data parameter to an
XtPopdownlD pointer:

typedef struct {

Widget shelL widget;

Widget enable_widget;

} XtPopdownIDRec, *XtPopdownID;

The shelLwidget is the pop-up shell to pop down, and the enable_widget is
the widget that was used to pop it up.

Pop-Up Wi<;igets 5-7

XtCalibackPopdown calls XtPopdown with the specified shelLwidget and
then calls XtSetSensitive to resensitize the enable_widget.

To pop down a spring-loaded menu when a pointer button is released or
when the pointer is moved into some window, use MenuPopdown. From a
translation writer's point of view, the defmition for this translation action
is:

vo i d MenuPopdown (shell_name)
5 t r i n g shell_name;

shell_name Specifies the name of the widget shell to pop down.

If a shell name is not given, MenuPopdown calls XtPopdown with the
widget for which the translation is specified. If a shelLname is specified
in the translation table, MenuPopdown tries to find the shell by looking up
the widget tree starting at the parent of the widget in which it is invoked.
If it finds a shell with the specified name in the pop-up children of that
parent, it pops down the shell; otherwise, it moves up the parent chain as
needed. If MenuPopdown gets to the application top-level shell widget and
cannot find a matching shell, it generates an error.

5-8 Pop-Up Widgets

Geometry Management 6

A widget does not directly control its size and location; rather, its parent
is responsible for controlling its size and location. Although the position of
children is usually left up to their parent, the widgets themselves often
have the best idea of their optimal sizes and, possibly, preferred locations.

To resolve physical layout conflicts between sibling widgets and between a
widget and its parent, the Intrinsics provide the geometry management
mechanism. Almost all Composite widgets have a geometry manager
(geometry_manager field in the widget class record) that is responsible for
the size, position, and stacking order of the widget's children. The only
exception are fixed boxes, which create their children themselves and can
ensure that their children will never make a geometry request.

6.1 Initiating Geometry Changes
Parents, children, and clients all initiate geometry changes differently.
Because a parent has absolute control of its children's geometry, it changes
the geometry directly by calling XtMoveWidget, XtResizeWidget, or
XtConfigureWidget. A child must ask its parent for a geometry change by
calling XtMakeGeometryRequest or XtMakeResizeRequest to convey its
wishes to its parent. An application or other client code initiates a
geometry change by calling XtSetValues on the appropriate geometry fields,
thereby giving the widget the opportunity to modify or reject the client
request before it gets propagated to the parent and the opportunity to
respond appropriately to the parent's reply.

When a widget that needs to change its size, position, border width, or
stacking depth asks its parent's geometry manager to make the desired
changes, the geometry manager can do one of the following:

• Allow the request

• Disallow the request

• Suggest a compromise

When the geometry manager is asked to change the geometry of a child,
the geometry manager may also rearrange and resize any or all of the
other children that it controls. The geometry manager can move children

around freely using XtMoveWidget. When it resizes a child (that is,
changes width, height, or border_width) other than the one making the
request, it should do so by calling XtResizeWidget. It can simultaneously
move and resize a child with a single call to XtConfigureWidget.

Often, geometry managers find that they can satisfy a request only if they
can reconfigure a widget that they are not in control of (in particular,
when the Composite widget wants to change its own size). In this case,
the geometry manager makes a request to its parent's geometry manager.
Geometry requests can cascade this way to arbitrary depth.

Because such cascaded arbitration of widget geometry can involve extended
negotiation, windows are not actually allocated to widgets at application
startup until all widgets are satisfied with their geometry. For further
information, see Sections 2.4 and 2.5.

Note

1. The Intrinsics treatment of stacking requests is deficient in
several areas. Stacking requests for unrealized widgets are
granted but will have no effect. In addition, there is no way to
do an XtSetValues that will generate a stacking geometry request.

2. After a successful geometry request (one that returned
XtGeometryYes), a widget does not know whether or not its
resize procedure has been called. Widgets should have resize
procedures that can be called more than once without ill effects.

6.2 General Geometry Manager Requests
To make a general geometry manager request from a widget, use
XtMakeGeometryRequest.

XtGeomet ryResu I t XtMakeGeomet ryRequest (w, request,
reply_return)

Widget w;
XtW i dgetGeomet ry *request;
XtW i dgetGeomet ry *reply_return;

w Specifies the widget that is making the request.

request Specifies the desired widget geometry (size, position, border
width, and stacking order).

reply_return Returns the allowed widget size or may be NULL if the
requesting widget is not interested in handling
XtGeometryAlmost.

6-2 Geometry Management

Depending on the condition, XtMakeGeometryRequest performs the following:

• If the widget is unmanaged or the widget's parent is not realized, it
makes the changes and returns XtGeometryYes.

• If the parent is not a subclass of compositeWidgetClass or the
parent's geometry_manager is NULL, it issues an error.

• If the widget's being_destroyed field is True, it returns XtGeometryNo.

• If the widget x, y, width, height and border_width fields are all equal
to the requested values, it returns XtGeometryYes; otherwise, it calls
the parent's geometry_manager procedure with the given parameters.

• If the parent's geometry manager returns XtGeometryYes and if
XtCWQueryOnly is not set in the request_mode and if the widget is
realized, XtMakeGeometryRequest calls the XConfigureWindow Xlib
function to reconfigure the widget's window (set its size, location, and
stacking order as appropriate).

• If the geometry manager returns XtGeometryDone, the change has
been approved and actually has been done. In this case,
XtMakeGeometryRequest does no configuring and returns
XtGeometryYes. XtMakeGeometryRequest never returns
XtGeometryDone.

Otherwise, XtMakeGeometryRequest returns the resulting value from the
parent's geometry manager.

Children of primitive widgets are always unmanaged; thus,
XtMakeGeometryRequest always returns XtGeometryYes when called by a
child of a primitive widget.

The return codes from geometry managers are:

typedef enum _XtGeometryResult

XtGeometryYes,

XtGeometryNo,

XtGeometryAlmost,
XtGeometry Done

} XtGeometryResult;

The XtWidgetGeometry structure is quite similar but not identical to the
corresponding Xlib structure:

typedef unsigned long XtGeometryMask;

typedef struct {

XtGeometry Mask request_mode;
Position x, y;

Dimension width, height;

Dimension border_width;

Geometry Management 6-3

Widget sibling;

int stacLmode;

} XtWidgetGeometry;

The request_mode definitions are from < X11/X. h >:

define CWX (1 «0)
define CWy (1 «1)
define CWWidth (1 «2)
define CWHeight (1 «3)
define CWBorderWidth (1«4)
define CWSibling (1 «5)
define CWStackMode (1 «6)

The Intrinsics also support the following value:

define XtCWQueryOnly (1 «7)

XtCWQueryOnly indicates that the corresponding geometry request is only a
query as to what would happen if this geometry request were made and
that no widgets should actually be changed.

XtMakeGeometryRequest, like the XConfigureWindow Xlib function, uses
request_mode to determine which fields in the XtWidgetGeometry structure
you want to specify.

The stacLmode definitions are from < X11/X. h >:

define Above 0
define Below 1
define Toplf 2
define Bottomlf 3
define Opposit.;e 4

The Intrinsics also support the following value:

define XtSMDontChange 5

For definition and behavior of Above, Below, Toplf, Bottom If, and Opposite,
see the Guide to the Xlib Library. XtSMDontChange indicates that the
widget wants its current stacking order preserved.

6-4 Geometry Management

6.3 Resize Requests
To make a simple resize request from a widget, you can use
XtMakeResizeRequest as an alternative to XtMakeGeometryRequest.

XtGeomet ryResu I t XtMakeRes i zeRequest (w, width, height,

Widget w;
Dimension width, height;

width_return,
height_return)

Dime n s ion * width_return, * height_return

w

width
height

width_return

Specifies the widget.

Specify the desired widget width and height.

height_return Return the allowed widget width and height.

The XtMakeResizeRequest function, a simple interface to
XtMakeGeometryRequest, creates a XtWidgetGeometry structure and specifies
that width and height should change. The geometry manager is free to
modify any of the other window attributes (position or stacking order) to
satisfy the resize request. If the return value is XtGeometryAlmost,
widtLreturn and height_return contain a compromise width and height. If
these are acceptable, the widget should immediately make an
XtMakeResizeRequest and request that the compromise width and height be
applied. If the widget is not interested in XtGeometryAlmost replies, it can
pass NULL for widtLreturn and heightj"eturn.

6.4 Potential Geometry Changes
Sometimes a geometry manager cannot respond to a geometry request from
a child without first making a geometry request to the widget's own parent
(the requestor's grandparent). If the request to the grandparent would
allow the parent to satisfy the original request, the geometry manager can
make the intermediate geometry request as if it were the originator. On
the other hand, if the geometry manager already has determined that the
original request cannot be completely satisfied (for example, if it always
denies position changes), it needs to tell the grandparent to respond to the
intermediate request without actually changing the geometry because it does
not know if the child will accept the compromise. To accomplish this, the
geometry manager uses XtCWQueryOnly in the intermediate request.

When XtCWQueryOnly is used, the geometry manager needs to cache
enough information to exactly reconstruct the intermediate request. If the
grandparent's response to the intermediate query was XtGeometryAlmost, the
geometry manager needs to cache the entire reply geometry in the event
the child accepts the parent's compromise.

Geometry Management 6-5

If the grandparent's response was XtGeometryAlmost, it may also be
necessary to cache the entire reply geometry from the grandparent when
XtCWQueryOnly is not used. If the geometry manager is still able to
satisfy the original request, it may immediately accept the grandparent's
compromise and then act on the child's request. If the grandparent's
compromise geometry is insufficient to allow the child's request and if the
geometry manager is willing to offer a different compromise to the child,
the grandparent's compromise should not be accepted until the child has
accepted the new compromise.

Note that a compromise geometry returned with XtGeometryAlmost is
guaranteed only for the next call to the same widget; therefore, a cache of
size one is sufficient.

6.5 Child Geometry Management: the geometry_manager
Procedure

The geometry_manager procedure pointer in a composite widget class is of
type XtGeometryHandler:

typedef XtGeometryResult (*XtGeometryHandler)(Widget,
XtWidgetGeometry *
XtWidgetGeometry *);

Widget w;

XtWi dgetGeomet ry * request;

XtWi dgetGeomet ry *geometry_return;

A class can inherit its superclass's geometry manager during class
initialization.

A bit set to zero in the request's mask field means that the child widget
does not care about the value of the corresponding field. Then, the
geometry manager can change it as it wishes. A bit set to 1 means that
the child wants that geometry element changed to the value in the
corresponding field.

If the geometry manager can satisfy all changes requested and if
XtCWQueryOnly is not specified, it updates the widget's x, y, width, height,
and border_width values appropriately. Then, it returns XtGeometryYes,
and the value of the geometry_return argument is undefined. The widget's
window is moved and resized automatically by XtMakeGeometryRequest.

Homogeneous composite widgets often find it convenient to treat the widget
making the request the same as any other widget, possibly reconfiguring it
as part of its layout process, unless XtCWQueryOnly is specified. If it does
this, it should return XtGeometryDone to inform XtMakeGeometryRequest
that it does not need to do the configuration itself.

6-6 Geometry Management

Although XtMakeGeometryRequest resizes the widget's window (if the
geometry manager returns XtGeometryYes), it does not call the widget
class's resize procedure. The requesting widget must perform whatever
resizing calculations are needed explicitly.

If the geometry manager chooses to disallow the request, the widget cannot
change its geometry. The value of the geometry_return parameter is
undefined, and the geometry manager returns XtGeometryNo.

Sometimes the geometry manager cannot satisfy the request exactly, but it
may be able to satisfy a similar request. That is, it could satisfy only a
subset of the requests (for example, size but not position) or a lesser
request (for example, it cannot make the child as big as the request but it
can make the child bigger than its current size). In such cases, the
geometry manager fills in geometry _return with the actual changes it is
willing to make, including an appropriate mask, and returns
XtGeometryAlmost. If a bit in geometry_return- >request_mode is zero, the
geometry manager does not change the corresponding value if the
geometry_return is used immediately in a new request. If a bit is one,
the geometry manager does change that element to the corresponding value
in geometry_return. More bits may be set in geometry_return than in the
original request if the geometry manager intends to change other fields
should the child accept the compromise.

When XtGeometryAlmost is returned, the widget must decide if the
compromise suggested in geometry_return is acceptable. If it is, the
widget must not change its geometry directly; rather, it must make another
call to XtMakeGeometryReq uest.

If the next geometry request from this child uses the geometry_return box
filled in by an XtGeometryAlmost return and if there have been no
intervening geometry requests on either its parent or any of its other
children, the geometry manager must grant the request, if possible. That
is, if the child asks immediately with the returned geometry, it should get
an answer of XtGeometryYes. However, the user's window manager may
affect the final outcome.

To return an XtGeometryYes, the geometry manager frequently rearranges
the position of other managed children by calling XtMoveWidget. However,
a few geometry managers may sometimes change the size of other managed
children by calling XtResizeWidget or XtConfigureWidget. If XtCWQueryOnly
is specified, the geometry manager must return how it would react to this
geometry request without actually moving or resizing any widgets.

Geometry managers must not assume that the request and geometry_return
arguments point to independent storage. The caller is permitted to use the
same field for both, and .the geometry manager must allocate its own
temporary storage, if necessary.

Geometry Management 6-7

6.6 Widget Placement and Sizing
To move a sibling widget of the child making the geometry request, use
XtMoveWidget.

void XtMoveWidget(w, x, y)
Widget w;
Position x;
Position y;

w Specifies the widget.

x
y Specify the new widget x and y coordinates.

The XtMoveWidget function returns immediately if the specified geometry
fields are the same as the old values. Otherwise, XtMoveWidget writes the
new x and y values into the widget and, if the widget is realized, issues
an Xlib XMoveWindow call on the widget's window.

To resize a sibling widget of the child making the geometry request, use
XtResizeWidget.

vo i d XtRes i zeW i dget (w, width, height, border_width)
Widget w;

w

width
height

Dimension width;
D i mens i on height;
D i mens i on border_width;

Specifies the widget.

border _width Specify the new widget size.

The XtResizeWidget function returns immediately if the specified geometry
fields are the same as the old values. Otherwise, XtResizeWidget writes the
new width, height, and border_width values into the widget and, if the
widget is realized, issues an XConfigureWindow call on the widget's window.

If the new width or height are different from the old values,
XtResizeWidget calls the widget's resize procedure to notify it of the size
change.

To move and resize the sibling widget of the child making the geometry
request, use XtConfigureWidget.

6-8 Geometry Management

vo i d Xt Con f i gu r eW i d get (w, x, y, width, height, border_width)
Widget w;

w

Position x;
Position y;
D i mens i on width;
Dimension height;
Dimension border_width;

Specifies the widget.

x
y Specify the new widget x and y coordinates.

width
height
border _width Specify the new widget size.

The XtConfigureWidget function returns immediately if the specified
geometry fields are the same as the old values. Otherwise,
XtConfigureWidget writes the new x, y, width, height, and border_width
values into the widget and, if the widget is realized, makes an Xlib
XConfigureWindow call on the widget's window.

If either the new width or height is different from its old value,
XtConfigureWidget calls the widget's resize procedure to notify it of the size
change; otherwise, it simply returns.

To resize a child widget that already has the new values of its width,
height, and border width fields, use XtResizeWindow.

void XtResizeWindow(w)
Widget w;

w Specifies the widget.

The XtResizeWindow function calls the XConfigureWindow Xlib function to
make the window of the specified widget match its width, height, and
border width. This request is done unconditionally because there is no way
to tell if these values match the current values. Note that the widget's
resize procedure is not called.

There are very few times to use XtResizeWindow; instead, you should use
XtResizeWidget.

6.7 Prefe rred Geometry
Some parents may be willing to adjust their layouts to accommodate the
preferred geometries of their children. They can use XtQueryGeometry

Geometry Management 6-9

to obtain the preferred geometry and, as they see fit, can use or ignore
any portion of the response.

To query a child widget's preferred geometry, use XtQueryGeometry.

XtGeomet ryResu I t XtQue ryGeomet ry (w, intended, preferred_returr
Widget w;
XtW i dgetGeomet ry * intended, *preferred_return;

w

intended

Specifies the widget.

Specifies any changes the parent plans to make to the
child's geometry or NULL.

preferred_return
Returns the child widget's preferred geometry.

To discover a child's preferred geometry, the child's parent sets any
changes that it intends to make to the child's geometry in the
corresponding fields of the intended structure, sets the corresponding bits in
intended.request_mode, and calls XtQueryGeometry.

XtQueryGeometry clears all bits in the preferred_return- >request_mode and
checks the query_geometry field of the specified widget's class record. If
query_geometry is not NULL, XtQueryGeometry calls the query_geometry
procedure and passes as arguments the specified widget, intended, and
preferred_return structures. If the intended argument is NULL,
XtQueryGeometry replaces it with a pointer to an XtWidgetGeometry
structure with request_mode = 0 before calling query_geometry.

The query_geometry procedure pointer is of type XtGeometryHandler.

typedef XtGeometryResult (*XtGeometryHandler)(Widget,
XtWidgetGeometry *
XtWidgetGeometry *);

Widget w;

XtW i dgetGeomet ry * request;
XtW i dgetGeomet ry *geometry_return;

The query_geometry procedure is expected to examine the bits set in
request- >request_mode, evaluate the preferred geometry of the widget, and
store the result in geometry_return (setting the bits in geometry _return
>request_mode corresponding to those geometry fields that it cares about).
If the proposed geometry change is acceptable without modification, the
query_geometry procedure should return XtGeometryVes. If at least one
field in geometry_return is different from the corresponding field in request
or if a bit was set in geometry_return that was not set in request, the
query_geometry procedure should return XtGeometryAlmost. If the preferred

6-10 Geometry Management

geometry is identical to the current geometry, the query_geometry
procedure should return XtGeometryNo.

Mter calling the query_geometry procedure or if the query_geometry field
is NULL, XtQueryGeometry examines all the unset bits in geometry _return
>request_mode and sets the corresponding fields in geometry_return to the
current values from the widget instance. If CWStackMode is not set, the
stacLmode field is set to XtSMDontChange. XtQueryGeometry returns the
value returned by the query_geometry procedure or XtGeometryYes if the
query_geometry field is NULL.

Therefore, the caller can interpret a return of XtGeometryYes as not
needing to evaluate the contents of reply and, more importantly, not
needing to modify its layout plans. A return of XtGeometryAlmost means
either that both the parent and the child expressed interest in at least one
common field and the child's preference does not match the parent's
intentions or that the child expressed interest in a field that the parent
might need to consider. A return value of XtGeometryNo means that both
the parent and the child expressed interest in a field and that the child
suggests that the field's current value is its preferred value. In addition,
whether or not the caller ignores the return value or the reply mask, it is
guaranteed that the reply structure contains complete geometry information
for the child.

Parents are expected to call XtQueryGeometry in their layout routine and
wherever other information is significant after change_managed has been
called. The changed_managed procedure may assume that the child's
current geometry is its preferred geometry. Thus, the child is still
responsible for storing values into its own geometry during its initialize
procedure.

6.8 Size Change Management: the resize Procedure
A child can be resized by its parent at any time. Widgets usually need to
know when they have changed size so that they can layout their displayed
data again to match the new size. When a parent resizes a child, it calls
XtResizeWidget, which updates the geometry fields in the widget, configures
the window if the widget is realized, and calls the child's resize procedure
to notify the child. The resize procedure pointer is of type XtWidgetProc.

If a class need not recalculate anything when a widget is resized, it can
specify NULL for the resize field in its class record. This is an unusual
case and should occur only for widgets with very trivial display semantics.
The resize procedure takes a widget as its only argument. The x, y,
width, height and border_width fields of the widget contain the new values.
The resize procedure should recalculate the layout of internal data as
needed. (For example, a centered Label in a window that changes size

Geometry Management 6-11

should recalculate the starting position of the text.) The widget must obey
resize as a command and must not treat it as a request. A widget must
not issue an XtMakeGeometryRequest or XtMakeResizeRequest call from its
resize procedure.

6-12 Geometry Management

Event Management 7

While X allows the reading and processing of events anywhere in an
application, widgets in the XUI Toolkit neither directly read events nor
grab the server or pointer. Widgets register procedures that are to be
called when an event or class of events occurs in that widget.

A typical application consists of startup code followed by an event loop
that reads events and dispatches them by calling the procedures that
widgets have registered. The default event loop provided by the Intrinsics
is XtAppMainLoop.

The event manager is a collection of functions to perform the following
tasks:

• Add or remove event sources other than X server events (in
particular, timer interrupts and file input).

• Query the status of event sources.

• Add or remove procedures to be called when an event occurs for a
particular widget.

• Enable and disable the dispatching of user-initiated events (keyboard
and pointer events) for a particular widget.

• Constrain the dispatching of events to a cascade of pop-up widgets.

• Call the appropriate set of procedures currently registered when an
event is read.

Most widgets do not need to call any of the event handler functions
explicitly. The normal interface to X events is through the higher-level
translation manager, which maps sequences of X events (with modifiers)
into procedure calls. Applications rarely use any of the event manager
routines besides XtAppMainLoop.

7.1 Adding and Deleting Additional Event Sources
While most applications are driven only by X events, some applications
need to incorporate other sources of input into the XUI Toolkit event
handling mechanism. The event manager provides routines to integrate
notification of timer events and file data pending into this mechanism.

The next section describes functions that provide input gathering from files.
The application registers the files with the Intrinsics read routine. When
input is pending on one of the files, the registered callback procedures are
invoked.

7.1.1 Adding and Removing Input Sources

To register a new file as an input source for a given application, use
XtAppAddlnput.

XtInputId XtAppAddInput(app_context, source, condition, proc,
clie nt_data)

XtAppContext app_context;
i nt source;
cad d r _ t co nditio n ;
X tIn put C a I I b a c k Pro c proc;
cad d r _ t client_data;

app_context Specifies the application context that identifies the
application.

source Specifies the source file descriptor on a UNIX-based system
or other operating system dependent device specification.

condition Specifies the mask that indicates a read, write, or exception
condition or some operating system dependent condition.

proc Specifies the procedure that is to be called when input is
available.

clie nt_data Specifies the argument that is to be passed to the specified
procedure when input is available.

The XtAppAddlnput function registers with the Intrinsics read routine a new
source of events, which is usually file input but can also be file output.
Note that file should be loosely interpreted to mean any sink or source of
data. XtAppAddlnput also specifies the conditions under which the source
can generate events. When input is pending on this source, the callback
procedure is called.

The legal values for the condition argument are operating-system dependent.
On a UNIX-based system, the condition is some union of XtlnputReadMask,
XtlnputWriteMask, and XtinputExceptMask.

Callback procedure pointers that are used when there are file events are of
type XtlnputCalibackProc:

typedef void (*XtInputCallbackProc)(caddr_t, int *
XtInputId *);

cad d r _ t client_data;
i n t * so urce ;
X tIn put I d * id ;

7-2 Event Management

source

id

Specifies the client data that was registered for this
procedure in XtAppAddlnput.

Specifies the source file descriptor generating the event.

Specifies the ID returned from the corresponding
XtAppAddlnput call.

To discontinue a source of input, use XtRemovelnput.

v 0 i d X t Rem 0 vel n put (id)

id

X tIn put I d id ;

Specifies the ID returned from the corresponding
XtAppAddlnput call.

The XtRemovelnput function causes the Intrinsics read routine to stop
watching for input from the input source.

7.1.2 Adding and Removing Timeouts

The timeout facility notifies the application or the widget through a
callback procedure that a specified time interval has elapsed. Timeout
values are uniquely identified by an interval ID.

To create a timeout value, use XtAppAddTimeOut.

Xt Interva lId XtAppAddT imeOut (app_context, interval, proc,
client_data)

XtAppContext app_context;
uns i gned long interval;
XtTimerCal IbackProc proc;
cad d r _ t client_data;

app_context Specifies the application context for which the timer is to be
set.

interval Specifies the time interval in milliseconds.

proc Specifies the procedure that is to be called when the time
expires.

Specifies the argument that is to be passed to the specified
procedure when it is called.

Event Management 7-3

The XtAppAddTimeOut function creates a timeout and returns an identifier
for it. The timeout value is set to interval. The callback procedure is
called when the time interval elapses, and then the timeout is removed.

Callback procedure pointer that are used when timeouts expire are of type
XtTimerCalibackProc:

typedef void (*XtTimerCallbackProc)(caddr_t,
Xtlntervalld *);

id

cad d r _ t client_data;
X tIn t e r val I d * id ;

Specifies the client data that was registered for this
procedure in XtAppAddTimeOut.

Specifies the ID returned from the corresponding
XtAppAddTimeOut call.

To· clear a timeout value, use XtRemoveTimeOut.

vo i d Xt RemoveT i meOu t (timer)
X tIn t e r val I d timer;

timer Specifies the ID for the timeout request to be destroyed.

The XtRemoveTimeOut function removes the timeout. Note that timeouts
are automatically removed once they trigger.

7.2 Constraining Events to a Cascade of Widgets
Modal widgets are widgets that, except for the input directly to them, lock
out user input to the application.

When a modal menu or modal dialog box is popped up using XtPopup, user
events (keyboard and pointer events) that occur outside the modal widget
should be delivered to the modal widget or ignored. In no case will user
events be delivered to a widget outside the modal widget.

Menus can pop up submenus and dialog boxes can pop up further dialog
boxes to create a pop-up cascade. In this case, user events may be
delivered to one of several modal widgets in the cascade.

Display-related events should be delivered outside the modal cascade so
that expose events and the like keep the application's display up to date.
Any event that occurs within the cascade is delivered as usual. The user
events that are delivered to the most recent spring-loaded shell in the
cascade when they occur outside the cascade are called remap events and
are KeyPress, KeyRelease, ButtonPress, and ButtonRelease. The user
events that are ignored when they occur outside the cascade are
MotionNotify, EnterNotify, and LeaveNotify. All other events are delivered
normally.

7-4 Event Management

XtPopup uses the XtAddGrab and XtRemoveGrab functions to constrain user
events to a modal cascade and subsequently to remove a grab when the
modal widget goes away. Usually you should have no need to call them
explicitly.

To redirect user input to a modal widget, use XtAddGrab.

va i d X tAd d G r a b (w , exclusive, spring_loaded)
Widget w;
Boo I e a n exclusive;
Boo I ean spring_loaded;

w Specifies the widget to add to the modal cascade.

exclusive Specifies whether user events should be dispatched
exclusively to this widget or also to previous widgets in the
cascade.

spring_loaded Specifies whether this widget was popped up because the
user pressed a pointer button.

The XtAddGrab function appends the widget (and associated parameters) to
the modal cascade and checks that exclusive is True if sprin~loaded is
True. If these are not True, XtAddGrab generates an error.

The modal cascade is used by XtDispatchEvent when it tries to dispatch a
user event. When at least one modal widget is in the widget cascade,
XtDispatchEvent first determines if the event should be delivered. It starts
at the most recent cascade entry and follows the cascade up to and
including the most recent cascade entry added with the exclusive parameter
True.

This subset of the modal cascade along with all descendants of these
widgets comprise the active subset. User events that occur outside the
widgets in this subset are ignored or remapped. Modal menus with
submenus generally add a submenu widget to the cascade with exclusive
False. Modal dialog boxes that need to restrict user input to the most
deeply nested dialog box add a subdialog widget to the cascade with
exclusive True. User events that occur within the active subset are
delivered to the appropriate widget, which is usually a child or further
descendant of the modal widget.

Regardless of where on the screen they occur, remap events are always
delivered to the most recent widget in the active subset of the cascade
that has spring_loaded True, if any such widget exists.

Event Management 7-5

To remove the redirection of user input to a modal widget, use
XtRemoveGrab.

void XtRemoveGrab(w)
Widget w;

w Specifies the widget to remove from the modal cascade.

The XtRemoveGrab function removes widgets from the modal cascade
starting at the most recent widget up to and including the specified widget.
It issues an error if the specified widget is not on the modal cascade.

7.3 Focusing Eve nts on a Child
To redirect keyboard input to a child of a Composite widget without calling
XSetinputFocus, use XtSetKeyboardFocus.

XtSetKeyboa rdFocus (subtree, descendant)
Wid ge t subtree, descendant;

subtree

descendant

Specifies the subtree of the hierarchy for which the keyboard
focus is to be set.

Specifies either the widget in the subtree structure which is
to receive the keyboard event, or None. Note that it is not
an error to specify None when no input focus was previously
set.

If a future KeyPress or KeyRelease event occurs within the specified
subtree, XtSetKeyboardFocus causes XtDispatchEvent to remap and send the
event to the specified descendant widget.

When there is no modal cascade, keyboard events can occur within a
widget W in one of three ways:

• W has the X input focus.

• W has the keyboard focus of one of its ancestors, and the event
occurs within the ancestor or one of the ancestor's descendants.

• No ancestor of W has a descendant within the keyboard focus, and
the pointer is within W.

When there is a modal cascade, a widget W receives keyboard events if an
ancestor of W is in the active subset of the modal cascade and one or
more of the previous conditions is True.

When subtree or one of its descendants acquires the X input focus or the
pointer moves into the subtree such that keyboard events would now be
delivered to subtree, a Focusln event is generated for the descendant if
FocusNotify events have been selected by the descendant. Similarly, when
W loses the X input focus or the keyboard focus for one of its ancestors,

7-6 Event Management

a FocusOut event is generated for descendant if FocusNotify events have
been selected by the descendant.

The acceptJocus procedure pointer is of type XtAcceptFocusProc:

typedef Boolean (*XtAcceptFocusProc)(Widget, Time);
Widget w;
Time * time ;

w Specifies the widget.

time Specifies the X time of the event causing the accept focus.

Widgets that need the input focus can call XSetinputFocus explicitly. To
allow outside agents to cause a widget to get the input focus, every widget
exports an acceptJocus procedure. The widget returns whether it actually
took the focus or not, so that the parent can give the focus to another
widget. Widgets that need to know when they lose the input focus must
use the Xlib focus notification mechanism explicitly (typically by specifying
translations for Focusln and FocusOut events). Widgets that never want
the input focus should set their acceptJocus procedure pointer to NULL.

To call a widget's accept_focus procedure, use XtCallAcceptFocus.

Boo I e a n X tea I I Ace e p t Foe u s (w , time)
Widget w;
Time * time ;

w Specifies the widget.

time Specifies the X time of the event that is causing the accept
focus.

The XtCallAcceptFocus function calls the specified widget's acceptJocus
procedure, passing it the specified widget and time, and returns what the
accept_focus procedure returns. If accept_focus is NULL,
XtCallAcceptFocus returns False.

7.4 Querying Event Sources
The event manager provides several functions to examine and read events
(including file and timer events) that are in the queue. The next three
functions handle Intrinsics equivalents of the XPending, XPeekEvent, and
XNextEvent Xlib calls.

To determine if there are any events on the input queue for a given
application, use XtAppPending.

Event Management 7·7

Xt InputMask XtAppPend i ng(app_context)
XtAppContext app_context;

app_context Specifies the application context that identifies the applicatioIl
to check.

The XtAppPending function returns a nonzero value if there are events
pending from the X server, timer pending, or other input sources pending.
The value returned is a bit mask that is the OR of XtlMXEvent, XtlMTimer,
and XtlMAlternatelnput (see XtAppProcessEvent). If there are no events
pending, XtAppPending flushes the output buffer and returns zero.

To return the value from the head of a given application's input queue
without removing input from the queue, use XtAppPeekEvent.

Boo lean XtAppPeekEvent (app_context, event_return)
XtAppContext app_context;
XEve n t * event_return;

app_context Specifies the application context that identifies the
application.

event_return Returns the event information to the specified event
structure.

If there is an event in the queue, XtAppPeekEvent fills in the event and
returns a nonzero value. If no X input is on the queue, XtAppPeekEvent
flushes the output buffer and blocks until input is available (possibly calling
some timeout callbacks in the process). If the input is an event,
XtAppPeekEvent fills in the event and returns a nonzero value. Otherwise,
the input is for an alternate input source, and XtAppPeekEvent returns
zero.

To return the value from the head of a given application's input queue, use
XtAppNextEvent.

vo i d XtAppNextEvent (app_context, event_return)
XtAppContext app_context;
XEve n t * event_return;

app_co ntext Specifies the application context that identifies the
application.

event_return Returns the event information to the specified event
structure.

If no input is on the X input queue, XtAppNextEvent flushes the X output
buffer and waits for an event while looking at the other input sources and
timeout values and calling any callback procedures triggered by them. This
wait time can be used for background processing (see Section 7.8).

7·8 Event Management

7.5 Dispatching Events
The Intrinsics provide functions that dispatch events to widgets or other
application code. Every client interested in X events on a widget uses
XtAddEventHandler to register which events it is interested in and a
procedure (event handler) that is to be called when the event happens in
that window. The translation manager automatically registers event
handlers for widgets that use translation tables (see Chapter 10).

Applications that need direct control of the processing of different types of
input should use XtAppProcessEvent.

vo i d XtAppProcessEvent (app_context, mask)
X tAp peo n t ext app_context;
X tIn put Mas k mask;

app_context Specifies the application context that identifies the application
for which to process input.

mask Specifies what types of events to process. The mask is the
bitwise inclusive OR of any combination of XtlMXEvent,
XtlMTimer, and XtiMAlternatelnput. As a convenience, the
XVI Toolkit defines the symbolic name Xtl MAli to be the
bitwise inclusive OR of all event types.

The XtAppProcessEvent function processes one timer, alternate input, or X
event. If there is nothing of the appropriate type to process,
XtAppProcessEvent blocks until there is. If there is more than one type of
thing available to process, it is undefined which will get processed.
V sually, this procedure is not called by client applications (see
XtAppMainLoop) . XtAppProcessEvent processes timer events by calling any
appropriate timer callbacks, alternate input by calling any appropriate
alternate input callbacks, and X events by calling XtDispatchEvent.

When an X event is received, it is passed to XtDispatchEvent, which calls
the appropriate event handlers and passes them the widget, the event, and
client-specific data registered with each procedure. If there are no handlers
for that event registered, the event is ignored and the dispatcher simply
returns. The order in which the handlers are called is undefined.

Event Management 7·9

Boo I e a n X t Dis pat c h Eve n t (e ve nt)
X Eve n t * eve nt ;

event Specifies a pointer to the event structure that is to be
dispatched to the appropriate event handler.

The XtDispatchEvent function sends those events to the event handler
functions that have been previously registered with the dispatch routine.
XtDispatchEvent returns True if it dispatched the event to some handler
and False if it found no handler to dispatch the event to. The most
common use of XtDispatchEvent is to dispatch events acquired with the
XtAppNextEvent procedure. However, it also can be used to dispatch user
constructed events. XtDispatchEvent also is responsible for implementing
the grab semantics for XtAddGrab.

7.6 The Application Input Loop
To process input from a given application, use XtAppMainLoop.

vo i d XtAppMa i nLoop (app_context)
X tAp peo n t ext app_context;

app_context Specifies the application context that identifies the
application.

The XtAppMainLoop function first reads the next incoming X event by
calling XtAppNextEvent and then it dispatches the event to the appropriate
registered procedure by calling XtDispatchEvent. This constitutes the main
loop of XUI Toolkit applications, and, as such, it does not return.
Applications are expected to exit in response to some user action. There
is nothing special about XtAppMainLoop; it is simply an infinite loop that
calls XtAppNextEvent and then XtDispatchEvent.

Applications can provide their own version of this loop, which tests some
global termination flag or tests that the number of top-level widgets is
larger than zero before circling back to the call to XtAppNextEvent.

7.7 Setting and Checking the Sensitivity State of a
Widget

Many widgets have a mode in which they assume a different appearance
(for example, are greyed out or stippled), do not respond to user events,
and become dormant.

When dormant, a widget is considered to be insensitive. If a widget is
insensitive, the Event Manager does not dispatch any events to the widget
with an event type of KeyPress, KeyRelease, ButtonPress, ButtonRelease,
MotionNotify, EnterNotify, LeaveNotify, Focusln, or FocusOut.

7-10 Event Management

A widget can be insensitive because its sensitive field is False or because
one of its parents is insensitive, and, thus, the widget's ancestor_sensitive
field also is False. A widget can but does not need to distinguish these
two cases visually.

To set the sensitivity state of a widget, use XtSetSensitive.

vo i d XtSetSens i t i ve (w, sensitive)
Widget w;
Boo I ea n sensitive;

w Specifies the widget.

sensitive Specifies a Boolean value that indicates whether the widget
should receive keyboard and pointer events.

The XtSetSensitive function first calls XtSetValues on the current widget
with an argument list specifying that the sensitive field should change to
the new value. It then recursively propagates the new value down the
managed children tree by calling XtSetValues on each child to set the
ancestor_sensitive to the new value if the new values for sensitive and the
child's ancestor_sensitive are not the same.

XtSetSensitive calls XtSetValues to change sensitive and ancestor_sensitive.
Therefore, when one of these changes, the widget's set_values procedure
should take whatever display actions are needed (for example, greying out
or stippling the widget).

XtSetSensitive maintains the invariant that if parent has either sensitive or
ancestor_sensitive False, then all children have ancestor_sensitive False.

To check the current sensitivity state of a given widget (which is usually
done by parents), use XtlsSensitive.

Boolean XtIsSensitive(w)
Widget w;

w Specifies the widget.

The XtlsSensitive function returns True or False to indicate whether or not
user input events are being dispatched. If both core.sensitive and
core.ancestor_sensitive are True, XtlsSensitive returns True; otherwise, it
returns False.

7.8 Adding Background Work Procedures
The Intrinsics have limited support for background processing. Because
most applications spend most of their time waiting for input, you can
register an idle-time work procedure that will be called when the toolkit
would otherwise block in XtAppNextEvent or XtAppProcessEvent. Work

Event Management 7-11

procedure pointers are of type XtWorkProc:

typedef Boolean (*XtWorkProc)(caddr_t);
cad d r _ t client_data;

client_data Client data specified when the work proc was registered.

This procedure returns True if it is done, that is, the work procedure
should be removed. Work procedures should be very judicious about how
much they do. If they run for more than a small part of a second,
response time is likely to suffer.

To register a work procedure for a given application, use
XtAppAddWorkProc.

XtWo r kP roc I d XtAppAddWo r kP roc (app_context, proc, client_data)
X tAp pCo n t ext app_context;
XtWorkProc proc;
cad d r _ t client_data;

app_context Specifies the application context that identifies the
application.

proc Specifies the procedure that is to be called when the
application is idle.

client_data Specifies the argument that is to be passed to the specified
procedure when it is called.

The XtAppAddWorkProc function adds the specified work procedure for the
application identified by app_context.

XtWorkProcld is an opaque unique identifier for this work procedure.
Multiple work procedures can be registered, and the most recently added
one is always the one that is called. However, if a work procedure adds
another work procedure, the newly added one has lower priority than the
current one.

To remove a work procedure, either return True from the procedure when
it is called or use XtRemoveWorkProc.

vo i d Xt RemoveWo r kP roc (id)
XtWorkProcId id;

id Specifies which work procedure to remove.

The XtRemoveWorkProc function explicitly removes the specified background
work procedure.

7-12 Event Management

r.9 X Event Filters
rhe event manager provides filters that can be applied to X user events.
rhe filters, which screen out events that are redundant or are temporarily
mwanted, handle the following:

Pointer motion compression

Enterlleave compression

Exposure compression

7.9.1 Pointer Motion Compression

Widgets can have a hard time keeping up with pointer motion events.
Further, they usually do not actually care about every motion event. To
throw out redundant motion events, the widget class field compress_motion
should be True. When a request for an event would return a motion
event, the Intrinsics check if there are any other motion events
immediately following the current one, and, if so, skip all but the last of
them.

7.9.2 Enter/Leave Compression

To throw out pairs of enter and leave events that have no intervening
events, as can happen when the user moves the pointer across a widget
without stopping in it, the widget class field compress_enterleave should be
True. These enter and leave events are not delivered to the client if they
are found together in the input queue.

7.9.3 Exposure Compression

Many widgets prefer to process a series of exposure events as a single
expose region rather than as individual rectangles. Widgets with complex
displays might use the expose region as a clip list in a graphics context,
and widgets with simple displays might ignore the region entirely and
redisplay their whole window or might get the bounding box from the
region and redisplay only that rectangle.

In either case, these widgets do not care about getting partial expose
events. If the compress_exposure field in the widget class structure is
True, the event manager calls the widget's expose procedure only once for
each series of exposure events. In this case, all Expose events are
accumulated into a region. When the final Expose event in a series (that
is, the one with count zero) is received, the event manager replaces the
rectangle in the event with the bounding box for the region and calls the
widget's expose procedure, passing the modified exposure event and the
region. (See the Guide to the Xlib Library.)

Event Management 7·13

If compress_exposure is False, the event manager calls the widget's expose
procedure for every exposure event, passing it the event and a region
argument of NULL.

7.10 Widget Exposure and Visibility
Every primitive widget and some composite widgets display data on the
screen by means of raw Xlib calls. Widgets cannot simply write to the
screen and forget what they have done. They must keep enough state to
redisplay the window or parts of it if a portion is obscured and then
reexposed.

7.10.1 Redisplay of a Widget: the expose Procedure

The expose procedure pointer in a widget class is of type XtExposeProc:

typedef void (*XtExposeProc)(Widget, XEvent *
Region);

w

event

Widget w;
X Eve n t * eve nt ;
Reg i on region;

Specifies the widget instance requiring redisplay.

Specifies the exposure event giving the rectangle requiring
redisplay.

region Specifies the union of all rectangles in this exposure
sequence.

The redisplay of a widget upon exposure is the responsibility of the expose
procedure in the widget's class record. If a widget has no display
semantics, it can specify NULL for the expose field. Many composite
widgets serve only as containers for their children and have no expose
procedure.

Note

If the expose procedure is NULL, XtRealizeWidget fills in a
default bit gravity of NorthWestGravity before it calls the widget's
realize procedure.

If the widget's compress_exposure class field is False (see Section 7.9.3),
region always is NULL. If the widget's compress_exposure class field is
True, the event contains the bounding box for region.

A small simple widget (for example, Label) can ignore the bounding box
information in the event and redisplay the entire window. A more
complicated widget (for example, Text) can use the bounding box

7-14 Event Management

information to mlnlID.lZe the amount of calculation and redisplay it does. A
very complex widget uses the region as a clip list in a GC and ignores the
event information. The expose procedure is responsible for exposure of all
superclass data as well as its own.

However, it often is possible to anticipate the display needs of several
levels of subclassing. For example, rather than separate display procedures
for the widgets Label, Command, and Toggle, you could write a single
display routine in Label that uses display state fields like the following:

Boolean invert
Boolean highlight
Dimension highlight_width

Label would have invert and highlight always False and highlight_width
zero. Command would dynamically set highlight and highlight_width, but it
would leave invert always False. Finally, Toggle would dynamically set all
three. In this case, the expose procedures for Command and Toggle
inherit their superclass's expose procedure. For further information, see
Section 1.4.9.

7.10.2 Widget Visibility

Some widgets may use substantial computing resources to display data.
However, this effort is wasted if the widget is not actually visible on the
screen, that is, if the widget is obscured by another application or is
iconified.

The visible field in the Core widget structure provides a hint to the widget
that it need not display data. This field is guaranteed True by the time
an Expose event is processed if the widget is visible but is usually False if
the widget is not visible.

Widgets can use or ignore the visible hint. If they ignore it, they should
have visible_interest in their widget class record set False. In such cases,
the visible field is initialized True and never changes. If visible_interest is
True, the event manager asks for VisibilityNotify events for the widget and
updates the visible field accordingly.

7.11 X Event Handlers
Event handlers are procedures that are called when specified events occur
in a widget. Most widgets need not use event handlers explicitly. Instead,
they use the Intrinsics translation manager. Event handler procedure
pointers are of the type XtEventHandler:

Event Management 7-15

typedef void (*XtEventHandler)(Widget, caddr_t,
XEvent *);

Widget w;
cad d r _ t client_data;
XEven t * event;

w Specifies the widget for which to handle events.

client_data Specifies the client specific information registered with the
event handler, which is usually NULL if the event handler is
registered by the widget itself.

event Specifies the triggering event.

7.11.1 Event Handlers that Select Events

To register an event handler procedure with the dispatch mechanism, use
XtAddEventHandler.

vo i d XtAddEventHand I er (w, event_mask, nonmaskable, proc,
client_data)

Widget w;
EventMask event_mask;
Boo I ea n nonmaskable;
XtEventHandler proc;
cad d r _ t client_data;

w Specifies the widget for which this event handler is being
registered.

event_mask Specifies the event mask for which to call this procedure.

nonmaskable Specifies a Boolean value that indicates whether this
procedure should be called on the nonmaskable events

proc

client_data

(GraphicsExpose, NoExpose, SelectionClear, SelectionRequest,
SelectionNotify, ClientMessage, and MappingNotify).

Specifies the procedure that is to be called.

Specifies additional data to be passed to the client's event
handler.

The XtAddEventHandler function registers a procedure with the dispatch
mechanism that is to be called when an event that matches the mask
occurs on the specified widget. If the procedure is already registered with
the same client_data, the specified mask is ORed into the existing mask.
If the widget is realized, XtAddEventHandler calls XSelectinput, if necessary.

To remove a previously registered event handler, use
XtRemoveEventHandler.

7-16 Event Management

vo i d Xt RemoveEven t Ha nd I e r (w, event_mask, nonmaskable, proc,
client_data)

Widget w;
Eve n t Ma s k event_mask;
Boo I ea n nonmaskable;
XtEventHandler proc;
cad d r _ t client_data;

w Specifies the widget for which this procedure is registered.

event_mask Specifies the event mask for which to unregister this
procedure.

nonmaskable Specifies a Boolean value that indicates whether this
procedure should be removed on the nonmaskable events
(GraphicsExpose, NoExpose, SelectionClear, SelectionRequest,
Selection Notify, ClientMessage, and MappingNotify).

proc Specifies the procedure that is to be removed.

client_data Specifies the client data registered.

The XtRemoveEventHandler function stops the specified procedure from
receiving the specified events. The request is ignored if client_data does
not match the value given in the call to XtAddEventHandler. If the widget
is realized, XtRemoveEventHandler calls XSelectlnput, if necessary. If the
specified procedure has not been registered or if it has been registered with
a different value of client_data, XtRemoveEventHandler returns without
reporting an error.

To stop a procedure from receiving any events, which will remove it from
the widget's event_table entirely, call XtRemoveEventHandler with an
event_mask of XtAIiEvents and with nonmaskable True.

7.11.2 Event Handlers that Do Not Select Events

On occasion, clients need to register an event handler procedure with the
dispatch mechanism without causing the server to select for that event.
To do this, use XtAddRawEventHandler.

vo i d XtAddRawEventHand I e r (w, event_mask, nonmaskable, proc,
c lie nt_data)

Widget w;
Eve n t Ma s k event_mask;
Boo I ea n nonmaskable;
XtEventHandler proc;
cad d r _ t client_data;

Event Management 7-17

w

nonmaskable

proc

client_data

Specifies the widget for which this event handler is being
registered.

Specifies the event mask for which to call this procedure.

Specifies a Boolean value that indicates whether this
procedure should be removed on the nonmaskable events
(GraphicsExpose, NoExpose, SelectionClear, SelectionRequest,
Selection Notify, ClientMessage, and MappingNotify).

Specifies the procedure that is to be registered.

Specifies additional data to be passed to the client's event
handler.

The XtAddRawEventHandler function is similar to XtAddEventHandler except
that it does not affect the widget's mask and never causes an XSelectlnput
for its events. Note that the widget might already have those mask bits
set because of other nonraw event handlers registered on it.

To remove a previously registered raw event handler, use
XtRemoveRawEventHandler.

vo i d Xt RemoveRawEve n t Ha nd Ie r (w, event_mask, nonmaskable,
proc, client_data)

Widget w;
Even t Ma s k event_mask;
Boo I e an nonmaskable;
XtEventHandler proc;
cad d r _ t client_data;

w Specifies the widget for which this procedure is registered.

event_mask Specifies the event mask for which to unregister this
procedure.

nonmaskable Specifies a Boolean value that indicates whether this
procedure should be removed on the nonmaskable events
(GraphicsExpose, NoExpose, SelectionClear, Selection Request,
Selection Notify, ClientMessage, and MappingNotify).

proc Specifies the procedure that is to be registered.

clie nt_data Specifies the client data registered.

The XtRemoveRawEventHandler function stops the specified procedure from
receiving the specified events. Because the procedure is a raw event
handler, this does not affect the widget's mask and never causes a call on
XSelectlnput.

7-18 Event Management

7.11.3 Current Event Mask

To retrieve the event mask for a given widget, use XtBuildEventMask.

EventMask XtBu i I dEventMask (w)
Widget w;

w Specifies the widget.

The XtBuildEventMask function returns the event mask representing the
logical OR of all event masks for event handlers registered on the widget
with XtAddEventHandler and all event translations, including accelerators,
installed on the widget. This is the same event mask stored into the
XSetWindowAttributes structure by XtRealizeWidget and sent to the server
when event handlers and translations are installed or removed on the
realized widget.

Event Management 7-19

Callbacks 8

Applications and other widgets (clients) often need to register a procedure
with a widget that gets called under certain conditions. For example, when
a widget is destroyed, every procedure on the widget's destroy_callbacks
list is called to notify clients of the widget's impending doom.

Every widget has a destroy_callbacks list. Widgets can define additional
callback lists as they see fit. For example, the Command widget has a
callback list to notify clients when the button has been activated.

8.1 Using Callback Procedure and Callback List
Definitions

Callback procedure fields for use in callback lists are of type
XtCalibackProc:

typedef void (*XtCallbackProc)(Widget, caddr_t,
caddr_t);

Widget w;
cad d r _ t client_data;
c a dd r _ t call_data;

w Specifies the widget for which the callback is registered.

client_data Specifies the data that the widget should pass back to the
client when the widget executes the client's callback
procedure.

call_data Specifies any callback-specific data the widget wants to pass
to the client. For example, when Scrollbar executes its
thumbChanged callback list, it passes the new position of the
thumb.

The client_data argument provides a way for the client registering the
callback also to register client-specific data (for example, a pointer to
additional information about the widget, a reason for invoking the callback,
and so on). The client_data value should be NULL if all necessary
information is in the widget. The calLdata argument is a convenience to
avoid having simple cases where the client could otherwise call XtGetValues
or a widget-specific function to retrieve data from the widget. Widgets

should generally avoid putting complex state information in calLdata. The
client can use the more general data retrieval methods, if necessary.

Whenever a client wants to pass a callback list as an argument in an
XtCreateWidget, XtSetValues, or XtGetValues call, it should specify the
address of a null-terminated array of type XtCalibackList:

typedef struct {
XtCallbackProc callback;
caddr_t closure;

} XtCallbackRec, *XtCallbackList;

For example, the callback list for procedures A and B with client data
clientDataA and clientDataB, respectively, is:

static XtCallbackRec callbacks[] = {

};

{A, (caddr_t) clientDataA},
{B, (caddr_t) clientDataB},

{(XtCallbackProc) NULL, (caddr_ t) NULL}

Although callback lists are passed by address in argument lists, the
Intrinsics know about callback lists. Your widget initialize and set_values
procedures should not allocate memory for the callback list. The Intrinsics
automatically do this for you by using a different structure for their
internal representation.

8.2 Identifying Callback Lists
Whenever a widget contains a callback list for use by clients, it also
exports in its public . h file the resource name of the callback list.
Applications and client widgets never access callback list fields directly.
Instead, they always identify the desired callback list by using the exported
resource name. All the callback manipulation functions described in this
chapter check to see that the requested callback list is indeed implemented
by the widget.

For the Intrinsics to find and correctly handle callback lists, they should be
declared with a resource type of XtRCaliback.

8.3 Adding Callback Procedures
To add a callback procedure to a given widget's callback list, use
XtAddCaliback.

8·2 Callbacks

v 0 i d X tAd d C a I I b a c k (w , callback_name, callback, clie nt_data)
Widget w;

w

S t r i n g callback_name;
X t C a I I b a c k Pro c callback;
cadd r _ t client_data;

Specifies the widget.

callback_name Specifies the callback list to which the procedure is to be
appended.

callback Specifies the callback procedure.

client_data Specifies the argument that is to be passed to the specified
procedure when it is invoked by XtCallCalibacks or NULL.

A callback will be invoked as many times as it occurs in the callback list.

To add a list of callback procedures to a given widget's callback list, use
XtAddCalibacks.

va i d XtAddCa I I backs (w, callback_name, callbacks)
Widget w;
S t r i n g callback_name;
X t C a I I b a c k Lis t callbacks;

w Specifies the widget.

callback_name Specifies the callback list to which the procedure is to be
appended.

callbacks Specifies the null-terminated list of callback procedures and
corresponding client data.

8.4 Removing Callback Procedures
To delete a callback procedure from a given widget's callback list, use
XtRemaveCaliback.

vo i d Xt RemoveCa I I bac k (w, callback_name, callback, client_data)
Widget w;
S t r i n g callback_name;
X t C a I I b a c k Pro c callback;
cad d r _ t client_data;

w Specifies the widget.

callback_name Specifies the callback list from which the procedure is to be
deleted.

Callbacks 8-3

callback Specifies the callback procedure.

client_data Specifies the client data to match on the registered callback
procedure.

The XtRemoveCaliback function removes a callback only if both the
procedure and the client data match.

To delete a list of callback procedures from a given widget's callback list,
use XtRemoveCalibacks.

vo i d XtRemoveCa I I backs(w, callback_name I callbacks)
Widget w;
S t r i n g callback_name;
X t C a I I b a c k Lis t callbacks;

w Specifies the widget.

callback_name Specifies the callback list from which the procedures are to
be deleted.

callbacks Specifies the null-terminated list of callback procedures and
corresponding client data.

To delete all callback procedures from a given widget's callback list and
free all storage associated with the callback list, use XtRemoveAIiCalibacks.

vo i d XtRemoveA I I Ca I I backs (w, callback_name)
Widget w;
S t r i n g callback_name;

w Specifies the widget.

callback_name Specifies the callback list to be removed.

8.5 Executing Callback Procedures
To execute the procedures in a given widget's callback list, use
XtCaliCalibacks.

v 0 i d X t C a I I C a I I b a c k s (w I callback_name I call_data)
Widget w;

w

S t r i n g callback_name;
cadd r _ t call_data;

Specifies the widget.

callback_name Specifies the callback list to be executed.

call_data Specifies a callback-list specific data value to pass to each of
the callback procedure in the list.

8-4 Callbacks

If no data is needed (for example, the commandActivated callback list in
Command needs only to notify its clients that the button has been
activated), the calLdata argument can be NULL. The calLdata argument
is the actual data if only one (32-bit) longword is needed or is the address
of the data if more than one word is needed.

8.6 Checking the Status of a Callback List
To find out the status of a given widget's callback list, use XtHasCalibacks.

typedef enum {XtCa I I backNoL i st, XtCa I I backHasNone, XtCa I I backHasSome} \

XtCa I I backStatus;

X tea I I b a c k S tat U 5 X t Has C a I I b a c k 5 (w , callback_name)
Widget w;
S t r i n g callback_name;

w Specifies the widget.

callback_name Specifies the callback list to be ch.ecked.

The XtHasCalibacks function first checks to see if the widget has a
callback list identified by callbacLname. If the callback list does not
exist, XtHasCalibacks returns XtCalibackNoList. If the callback list exists
but is empty, it returns XtCalibackHasNone. If the callback list exists and
has at least one callback registered, it returns XtCalibackHasSome.

Callbacks 8-5

Resource Management 9

A resource is a field in the widget record with a corresponding resource
entry in the resource list of the widget or any of its superclasses. This
means that the field is settable by XtCreateWidget (by naming the field in
the argument list), by an entry in the default resource files (by using
either the name or class), and by XtSetValues. In addition, it is readable
by XtGetValues. Not all fields in a widget record are resources. Some are
for bookkeeping use by the generic routines (like managed and
being_destroyed) . Others can be for local bookkeeping, and still others are
derived from resources (many graphics contexts and pixmaps).

Writers of widgets need to obtain a large set of resources at widget
creation time. Some of the resources come from the argument list
supplied in the call to XtCreateWidget, some from the resource database,
and some from the internal defaults specified for the widget. Resources
are obtained first from the argument list, then from the resource database
for all resources not specified in the argument list, and lastly from the
internal default, if needed.

9.1 Resource Lists
A resource entry specifies a field in the widget, the textual name and class
of the field that argument lists and external resource files use to refer to
the field and a default value that the field should get if no value is
specified. The declaration for the XtResource structure is:

typedef struct {
String resource_name;

String resource_class;

String resource_type;

Cardinal resource_size;

Cardinal resource_offset;

String default_type;

caddr_t default_address;

} XtResource, *XtResourceList;

The resource_name field contains the name used by clients to access the
field in the widget. By convention, it starts with a lowercase letter and is

spelled identically to the field name, except all underscores (_) are deleted
and the next letter is replaced by its uppercase counterpart. For example,
the resource name for background_pixel becomes backgroundPixel. Widget
header files typically contain a symbolic name for each resource name. All
resource names, classes, and types used by the Intrinsics are named in
< X11/StringDefs.h >. The Intrinsics symbolic resource names begin with
XtN and are followed by the string name (for example, XtNbackgroundPixel
for backgroundPixeD.

A resource class provides two functions:

• It isolates an application from different representations that widgets
can use for a similar resource.

• It lets you specify values for several actual resources with a single
name. A resource class should be chosen to span a group of closely
related fields.

For example, a widget can have several pixel resources: background,
foreground, border, block cursor, pointer cursor, and so on. Typically, the
background defaults to white and everything else to black. The resource
class for each of these resources in the resource list should be chosen so
that it takes the minimal number of entries in the resource database to
make background offwhite and everything else darkblue.

In this case, the background pixel should have a resource class of
Background and all the other pixel entries a resource class of Foreground.
Then, the resource file needs only two lines to change all pixels to offwhite
or darkblue:

*Background:
*Foreground:

offwhite
darkblue

Similarly, a widget may have several resource fonts (such as normal and
bold), but all fonts should have the class Font. Thus, changing all fonts
simply requires only a single line in the default resource file:

*Font: 6x13

By convention, resource classes are always spelled starting with a capital
letter. Their symbolic names are preceded with XtC (for example,
XtCBackground) .

The resource_type field is the physical representation type of the resource.
By convention, it starts with an uppercase letter and is spelled identically
to the type name of the field. The resource type is used when resources
are fetched to convert from the resource database format (usually String)
or the default resource format (almost anything, but often String) to the
desired physical representation (see Section 9.6). The Intrinsics define the
following resource types:

9-2 Resource Management

Resource Type Structure or Field Type

XtRAcceleratorTable X tAccelerators
XtRBoolean Boolean
XtRBool Bool
XtRCaliback XtCallbackList
XtRColor XColor
XtRCursor Cursor
XtRDimension Dimension
XtRDisplay Display *
XtRFile FILE*
XtRFloat float
XtRFont Font
XtRFontStruct XFontStruct *
XtRFunction (*) ()
XtRlnt int
XtRPixel Pixel
XtRPixmap Pix map
XtRPointer caddr_t
XtRPosition Position
XtRShort short
XtRString char *
XtRTranslationTable X tTranslations
XtRUnsignedChar unsigned char
XtRWidget Widget
XtRWindow Window

The resource_size field is the size of the physical representation in bytes;
you should specify it as "sizeofCtype)" so that the compiler fills in the
value. The resource_offset field is the offset in bytes of the field within
the widget. You should use the XtOffset macro to retrieve this value.
The default_type field is the representation type of the default resource
value. If default_type is different from resource_type and the default_type
is needed, the resource manager invokes a conversion procedure from
default_type to resource_type. Whenever possible, the default type should
be identical to the resource type in order to minimize widget creation time.
However, there are sometimes no values of the type . that the program can
easily specify. In this case, it should be a value that the converter is
guaranteed to work for (for example, XtDefaultForeground for a pixel
resource) . The default_address field is the address of the default resource
value. The default is used if a resource is not specified in the argument
list or in the resource database or if the conversion from the

Resource Management 9-3

representation type stored in the resource database fails, which can happen
for various reasons (for example, a misspelled entry in a resource file).

Two special representation types (XtRlmmediate and XtRCaliProc) are
usable only as default resource types. XtRlmmediate indicates that the
value in the default_address field is the actual value of the resource rather
than the address of the value. The value must be in correct representation
type for the resource. No conversion is possible since there is no source
representation type. XtRCaliProc indicates that the value in the
default_address field is a procedure variable. This procedure is
automatically invoked with the widget, resource_offset, and a pointer to the
XrmValue in which to store the result and is an XtResourceDefaultProc:

typedef void (*XtResoureeDefaultProe)(Widget, int,

w

Widget w;
i nt offset;
X rmVa I u e * value;

XrmValue *)

offset

Specifies the widget whose resource is to be obtained.

Specifies the offset of the field in the widget record.

value Specifies the resource value to fill in.

The XtResourceDefaultProc procedure should fill in the addr field of the
value with a pointer to the default data in its correct type.

Note

The default_address field in the resource structure is declared as
a caddr_t. On some machine architectures, this may be
insufficient to hold procedure variables.

To get the resource list structure for a particular class, use
XtGetResourceList:

vo i d XtGetResou reel i st (class, resources_return,
num_resources_return) ;

Wi dgetC I ass class;
XtResou reel i st *resources_return;
Ca r din a I * num_resources_return;

widget_class Specifies the widget class.

resources_return
Specifies a pointer to where to store the returned resource
list. The caller must free this storage using XtFree when
done with it.

9-4 Resource Management

num_reso urces_return
Specifies a pointer to where to store the number of entries
in the resource list.

If it is called before the widget class is initialized (that is, before the first
widget of that class has been created), XtGetResourceList returns the
resource list as specified in the widget class record. If it is called after
the widget class has been initialized, XtGetResourceList returns a merged
resource list that contains the resources for all superclasses.

The routines XtSetValues and XtGetValues also use the resource list to set
and get widget state. For further information, see Sections 9.7.1 and
9.7.2.

Here is an abbreviated version of the resource list in the Label widget:

/* Resources specific to Label */

static XtResource resources[] = {

{XtNforeground, XtCForeground, XtRPixel, sizeof{ Pixel) ,

XtOffset(LabelWidget, label.foreground), XtRString, XtDefaultForeground},

{XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct *),

XtOffset(LabelWidget, labeLfont) ,XtRString, XtDefaultFont},

{XtNlabel, XtCLabel, XtRString, sizeof(String) ,

XtOffset(LabelWidget, label.label), XtRString, NULL},

The complete resource name for a field of a widget instance is the
concatenation of the application shell name (from XtAppCreateShell), the
instance names of all the widget's parents up to the ApplicationShellWidget,
the instance name of the widget itself, and the resource name of the
specified field of the widget. Likewise, the full resource class of a field of
a widget instance is the concatenation of the application class (from
XtAppCreateShell), the widget class names of all the widget's parents up to
the ApplicationShellWidget (not the superclasses), the widget class name of
the widget itself, and the resource name of the specified field of the
widget.

9.2 Byte Offset Calculations
To determine the byte offset of a field within a structure, use XtOffset.

Resource Management 9-5

Ca rd i na I XtOf f set (pointer_type, field_name)
Type pointer_type;
Fie I d field_name;

pointer _type Specifies a type that is declared as a pointer to the
structure.

field_name Specifies the name of the field for which to calculate the
byte offset.

The XtOffset macro is usually used to determine the offset of various
resource fields from the beginning of a widget and can be used at compile
time in static initializations.

9.3 Supe rclass-to-Subclass Cha ining of Resource Lists
The XtCreateWidget function gets resources as a superclass-to-subclass
operation. That is, the resources specified in Core resource list are
fetched, then those in the subclass, and so on down to the resources
specified for this widget's class. Within a class, resources are fetched in
the order they are declared.

In general, if a widget resource field is declared in a superclass, that field
is included in the superclass's resource list and need not be included in the
subclass's resource list. For example, the Core class contains a resource
entry for background_pixel. Consequently, the implementation of Label
need not also have a resource entry for background_pixel. However, a
subclass, by specifying a resource entry for that field in its own resource
list, can override the resource entry for any field declared in a superclass.
This is most often done to override the defaults provided in the superclass
with new ones. At class initialization time, resource lists for that class are
scanned from the superclass down to the class to look for resources with
the same offset. A matching resource in a subclass will be reordered to
override the superclass entry. (A copy of the superclass resource list is
made to avoid affecting other subclasses of the superclass.)

9.4 Subresources
A widget does not do anything to get its own resources; instead,
XtCreateWidget does this automatically before calling the class initialize
procedure.

Some widgets have subparts that are not widgets but for which the widget
would like to fetch resources. For example, the Text widget fetches
resources for its source and sink. Such widgets call XtGetSubresources to
accomplish this.

9-6 Resource Management

void XtGetSubresourees(w, base, name, class, resources,
num_resources, args, num_args)

w

base

name

class

Widget w;
e add r _ t base;
S t r i n g name;
S t r i n g class;
XtResou reel i st resources;
Ca rd i na I num_resources;
A r g lis t args;
Ca rd i na I num_args;

Specifies the widget that wants resources for a subpart.

Specifies the base address of the subpart data structure
where the resources should be written.

Specifies the name of the subpart.

Specifies the class of the subpart.

resources Specifies the resource list for the subpart.

num_resourcesSpecifies the number of resources in the resource list.

args Specifies the argument list to override resources obtained
from the resource database.

num_args Specifies the number of arguments in the argument list.

The XtGetSubresources function constructs a name/class list from the
application name/class, the name/classes of all its ancestors, and the widget
itself. Then, it appends to this list the name/class pair passed in. The
resources are fetched from the argument list, the resource database, or the
default values in the resource list. Then, they are copied into the subpart
record. If args is NULL, num_args must be zero. However, if num_args
is zero, the argument list is not referenced.

9.5 Obtaining Application Resources
To retrieve resources that are not specific to a widget but apply to the
overall application, use XtGetApplicationResources.

void XtGetAppl ieat ionResourees(w, base, resources,
num_resources, args,
num_args)

Widget w;
e add r _ t base;
XtResou reel i st resources;

(continued on next page)

Resource Management 9-7

w

base

Ca rd i na I num_resources;
A r g Lis t args;
Ca rd i na I num_args;

Specifies the widget that identifies the resource database to
search. (The database is that associated with the display for
this widget.)

Specifies the base address of the subpart data structure
where the resources should be written.

resources Specifies the resource list for the subpart.

num_resourcesSpecifies the number of resources in the resource list.

args Specifies the argument list to override resources obtained
from the resource database.

num_args Specifies the number of arguments in the argument list.

The XtGetApplicationResources function first uses the passed widget, which
is usually an application shell, to construct a resource name and class list,
Then, it retrieves the resources from the argument list, the resource
database, or the resource list default values. After adding base to each
address, XtGetApplicationResources copies the resources into the address
given in the resource list. If args is NULL, num_args must be zero.
However, if num_args is zero, the argument list is not referenced. The
portable way to specify application resources is to declare them as members
of a structure and pass the address of the structure as the base argument.

9.6 Resource Conversions
The Intrinsics provide a mechanism for registering representation converters
that are automatically invoked by the resource fetching routines. The
Intrinsics additionally provide and registers several commonly used
converters. This resource conversion mechanism serves several purposes:

• It permits user and application resource files to contain ASCII
representations of nontextual values.

• It allows textual or other representations of default resource values
that are dependent on the display, screen, or color map, and thus
must be computed at run time.

• It caches all conversion source and result data. Conversions that
require much computation or space (for example, string to translation
table) or that require round trips to the server (for example, string to
font or color) are performed only once.

9-8 Resource Management

9.6.1 Predefined Resource Converters

The Intrinsics define all the representations used in the Core, Composite,
Constraint, and Shell widgets. It registers the following resource converters:

From XtRString to:

XtRAcceleratorTable, XtRBoolean, XtRBool, XtRCursor, XtRDimension,
XtRDisplay, XtRFile, XtRFloat, XtRFont, XtRFontStruct, XtRlnt, XtRPixel,
XtRPosition, XtRShort, XtRTranslationTable, and XtRUnsignedChar.

From XtRColor, to: XtRPixel.

From XRlnt, to:

XtRBoolean, XtRBool, XtRColor, XtRDimension, XtRFloat, XtRFont,
XtRPixel, XtRPixmap, XtRPosition, XtRShort, and XtRUnsignedChar.

From XtRPixel, to: XtRColor.

The string to pixel conversion has two predefined constants that are
guaranteed to work and contrast with each other (XtDefaultForeground and
XtDefaultBackground) . They evaluate the black and white pixel values of
the widget's screen, respectively. For applications that run with reverse
video, however, they evaluate the white and black pixel values of the
widget's screen, respectively. Similarly, the string to font and font
structure converters recognize the constant XtDefaultFont and evaluate this
to the font in the screen's default graphics context.

9.6.2 New Resource Converters

Type converters use pointers to XrmValue structures (defined in
<X11/Xresource.h » for input and output values.

typedef struct {

unsigned int size;

caddr_t addr;

} Xrrn Value, *Xrrn ValuePtr;

A resource converter procedure pointer is of type XtConverter:

typedef void (*XtConverter)(XrmValue * Cardinal *

args

X r m Val u e * args ;
Car din a I * num_args ;
XrmVa I ue *from;
XrmVa I ue *to;

XrmValue *, XrmValue *);

Specifies a list of additional XrmValue arguments to the
converter if additional context is needed to perform the
conversion or NULL. For example, the string-to-font
converter needs the widget's screen, or the string to pixel
converter needs the widget's screen and color map.

Resource Management 9-9

Specifies the number of additional XrmValue arguments or
zero.

from Specifies the value to convert.

to Specifies the descriptor to use to return the converted value.

Type converters should perform the following actions:

• Check to see that the number of arguments passed is correct.

• Attempt the type conversion.

• If successful, return a pointer to the data in the to parameter;
otherwise, call XtWarningMsg and return without modifying the to
argument.

Most type converters just take the data described by the specified from
argument and return data by writing into the specified to argument. A
few need other information, which is available in the specified argument
list. A type converter can invoke another type converter, which allows
differing sources that may convert into a common intermediate result to
make maximum use of the type converter cache.

Note that the address written to- >addr cannot be that of a local variable
of the converter because this is not valid after the converter returns. It
should be a pointer to a static variable, as in the following example where
screenColor is returned.

The following is an example of a converter that takes a string and
converts it to a Pixel:

static void CvtStringToPixel(args, num_args, from Val, toVal)

XrmValue *args;
Cardinal *nllIn-args;

XrmValue *fromVal;

Xrm Value *to Val;

static XColor screenColor;

XColor exactColor;
Screen

Colormap

Status
char

XrmQuark

String

Cardinal

* screen;

colormap;

status;
message[1000];

q;

params[1];

num_params

if (*num_args ! = 2)

l' ,

XtErrorMsg(" cvtStringToPixel" ,"wrongParameters" ,"XtToolkitError",

9-10 Resource Management

};

"String to pixel conversion needs screen and colormap arguments",
(String *) NULL, (Cardinal *) NULL) ;

screen = *((Screen **) args[O].addr);

colormap = *((Colormap *) args[1].addr);

LowerCase((char *) from Val- >addr, message);

q = XrmStringToQuark(message) ;

if (q XtQExtdefaultbackground) { done(&screen- >white_pixel, Pixel); return; }

if (q XtQExtdefaultforeground) { done(&screen- >blacLpixel, Pixel); return; }

if «char) fromVal->addr[O] = = 'I') { /* some color rgb definition */

status = XParseColor(DisplayOfScreen(screen), colormap, (String) fromVal- >addr,
&screenColor) ;

if (status ! = 0) status = XAllocColor(DisplayOfScreen(screen), colormap, &screenColor);

} else /* some color name * /

status = XAllocN amedColor(DisplayOfScreen(screen), co lormap , (String) from V al- >addr,

&screenColor, &exactColor);

if (status = = 0) {

} else

params[O]= (String) from Val- >addr;

XtWarningMsg("cvtStringToPixel" ,"noColormap" ,"XtToolkitError",

"Cannot allocate colormap entry for "" % s """, params, &num_params);

to Val- >addr = (caddr_t) &screenColor.pixel;

to Val- >size = sizeof{ Pixel) ;

All type converters should define some set of conversion values that they
are guaranteed to succeed on so these can be used in the resource
defaults. This issue arises only with conversions, such as fonts and colors,
where there is no string representation that all server implementations will
necessarily recognize. For resources like these, the converter should define
a symbolic constant (for example, XtDefaultForeground, XtDefaultBackground,
or XtDefaultFont).

Resource Management 9-11

9.6.3 Issuing Conve rsion Wa rnings

The XtStringConversionWarning function is a convenience routine for new
resource converters that convert from strings.

vo i d Xt St r i ngConve r s i onWa r n i ng (src, dst_type)
St ring src, dst_type;

src Specifies the string that could not be converted.

dst_type Specifies the name of the type to which the string could not
be converted.

The XtStringConversionWarning function issues a warning message with
name "conversionError", type "string", class "XtToolkitError, and the
default message string "Cannot convert "src" to type dst_type".

9.6.4 Registering a New Resource Converter

To register a new converter, use XtAppAddConverter.

void XtAppAddConverter(app_context, from_type, to_type,
converter, convert_args, num_args)

X t Ap pCo n t ext app_context;
St r i n g from_type;
S t r i n g to_type;
XtConverter converter;
XtConvertArgL i st convert_args;
Ca rd i na I num_args;

app_context

from_type

to_type

converter

Specifies the application context.

Specifies the source type.

Specifies the destination type.

Specifies the type converter procedure.

Specifies how to compute the additional arguments to the
converter or NULL.

Specifies the number of additional arguments to the
converter or zero.

If the same from_type and to_type are specified in two calls to
XtAppAddConverter, the second call overrides the first. For the few type
converters that need additional arguments, the Intrinsics conversion
mechanism provides a method of specifying how these arguments should be
computed. The enumerated type XtAdd ressMode and the structure
XtConvertArgRec specify how each argument is derived. These are defined
in < X11/Convert.h >.

9-12 Resource Management

typedef enum {

1* address mode

XtAddress,

X tB aseOffset,

XtImmediate,

X tResourceS tring,

X tResourceQuark

XtAddressMode;

typedef struct {

XtAddressMode address_mode;

caddr_ t address_ id;

Cardinal size;
XtConvertArgRec, *XtConvertArgList;

parameter representation *1
1* address * I
1* offset *1
1* constant * /

1* resource name string *1
1* resource name quark *1

The address_mode field specifies how the address_id field should be
interpreted. XtAddress causes address_id to be interpreted as the address
of the data. XtBaseOffset causes address_id to be interpreted as the offset
from the widget base. Xtlmmediate causes address_id to be interpreted as
a constant. XtResourceString causes address_id to be interpreted as the
name of a resource that is to be converted into an offset from widget
base. XtResourceQuark is an internal compiled form of an
XtResourceString. The size field specifies the length of the data in bytes.

The following provides the code that was used to register the
CvtStringToPixel routine shown earlier:

static XtConvertArgRec colorConvertArgs[] = {

{XtBaseOffset, (caddr_t) XtOffset(Widget, core.screen), sizeof(Screen *)},

{XtBaseOffset, (caddr_t) XtOffset(Widget, core.colormap) ,sizeof(Colormap)}

};

XtAddConverter(XtRString, XtRPixel, CvtStringToPixel,

colorConvertArgs, XtNumber(colorConvertArgs)) ;

The conversion argument descriptors colorConvertArgs and
screenConvertArg are predefined. The screenConvertArg descriptor puts the
widget's screen field into args[O]. The colorConvertArgs descriptor puts the
widget's screen field into args[O], and the widget's colormap field into
args[l].

Conversion routines should not just put a descriptor for the address of the
base of the widget into args[O], and use that in the routine. They should
pass in the actual values that the conversion depends on. By keeping the
dependencies of the conversion procedure specific, it is more likely that
subsequent conversions will find what they need in the conversion cache.
This way the cache is smaller and has fewer and more widely applicable
entries.

Resource Management 9-13

9.6.5 Resource Converter Invocation

All resource-fetching routines (for example, XtGetSubresources,
XtGetApplicationResources, and so on) call resource converters if the user
specifies a resource that is a different representation from the desired
representation or if the widget's default resource value representation is
different from the desired representation.

To invoke resource conversions, use XtConvert or XtDirectConvert.

v 0 i d X t Co n v e r t (w, from_type, from, to_type, to_return)
Widget w;

w

St ring from_type;
XrmValuePtr from;
St ring to_type;
XrmVa I uePt r to_return;

Specifies the widget to use for additional arguments (if any
are needed).

from_type

from

to_type

to_return

Specifies the source type.

Specifies the value to be converted.

Specifies the destination type.

Returns the converted value.

void XtDi rectConvert(converter, args, num_args, from, to_return:
XtConve rte r converter;
X r m Val u e P t r args;
Ca rd i na I num_args;
XrmValuePtr from;
XrmVa I uePt r to_return;

converter Specifies the conversion procedure that is to be called.

Specifies the argument list that contains the additional
arguments needed to perform the conversion (often NULL).

args

Specifies the number of additional arguments (often zero).

Specifies the value to be converted.

to_return Returns the converted value.

The XtConvert function looks up the type converter registered to convert
from_type to to_type, computes any additional arguments needed, and then

9-14 Resource Management

calls XtDirectConvert. The XtDirectConvert function looks in the converter
cache to see if this conversion procedure has been called with the specified
arguments. If so, it returns a descriptor for information stored in the
cache; otherwise, it calls the converter and enters the result in the cache.

Before calling the specified converter, XtDirectConvert sets the return value
size to zero and the return value address to NULL. To determine if the
conversion was successful, the client should check to_return. address for
non-NULL.

9.7 Reading and Writing Widget State
Any resource field in a widget can be read or written by a client. On a
write operation, the widget decides what changes it will actually allow and
updates all derived fields appropriately.

9.7.1 Obtaining Widget State

To retrieve the current value of a resource associated with a widget
instance, use XtGetValues.

v 0 i d X t Get Val u e 5 (W , args, num_args)
Widget w;

w

args

A r g Lis t args;
Ca rd i na I num_args;

Specifies the widget.

Specifies the argument list of name/address pairs that
contain the resource name and the address into which the
resource value is to be stored. The resource names are
widget-dependent.

num_args Specifies the number of arguments in the argument list.

The XtGetValues function starts with the resources specified for the core
widget fields and proceeds down the subclass chain to the widget. The
value field of a passed argument list should contain the address into which
to store the corresponding resource value. It is the caller's responsibility
to allocate and deallocate this storage according to the size of the resource
representation type used within the widget.

If the widget's parent is a subclass of constraintWidgetClass, XtGetValues
then fetches the values for any constraint resources requested. It starts
with the constraint resources specified for constraintWidgetClass and
proceeds down to the subclass chain to the parent's constraint resources.
If the argument list contains a resource name that is not found in any of
the resource lists searched, the value at the corresponding address is not
modified. Finally, if the get_values_hook procedures are non-NULL, they

Resource Management 9-15

are called in superclass-to-subclass order after all the resource values have
been fetched by XtGetValues. This permits a subclass to provide nonwidget
resource data to XtGetValues.

9.7.1.1 Widget Subpart Resource Data: the get_values_hook
Procedure
- Widgets that have subparts can return resource values from them for
XtGetValues by supplying a get_values_hook procedure. The
get_values_hook procedure pointer is of type XtArgsProc:

typedef void (*XtArgsProe)(Widget, Arglist,

w

args

Cardinal *);
Widget w;
A r g lis t args;
Ca rd i na I * num_args;

Specifies the widget whose nonwidget resource values are to
be retrieved.

Specifies the argument list that was passed to
XtCreateWidget.

num_args Specifies the number of arguments in the argument list.

The widget should call XtGetSubvalues and pass in its subresource list and
the arg and num_args parameters.

9.7.1.2 Widget Subpart State
- To retrieve the current value of a nonwidget resource data associated
with a widget instance, use XtGetSubvalues. For a discussion of nonwidget
subclass resources, see Section 9.4.

vo i d XtGetSubva I ues (base, resources, num_resources, args,
num_args)

base

e add r _ t base;
XtResou reel i st resources;
Ca rd ina I num_resources;
A r g lis t args;
Ca rd i na I num_args;

Specifies the base address of the subpart data structure
where the resources should be retrieved.

resources Specifies the nonwidget resources list.

num_resourcesSpecifies the number of resources in the resource list.

args Specifies the argument list of name/address pairs that
contain the resource name and the address into which the

9-16 Resource Management

resource value is to be stored. The arguments and values
passed in are dependent on the subpart. The storage for
argument values that are pointed to by the argument list
must be deallocated by the application when no longer
needed.

num_args Specifies the number of arguments in the argument list.

The XtGetSubvalues function obtains resource values from the structure
identified by base.

9.7.2 Setting Widget State

To modify the current value of a resource associated with a widget
instance, use XtSetValues.

v 0 i d X t Set Val u e s (W , args, num_args)
Widget W;

W

args

A r g Lis t args;
Ca rd i na I num_args;

Specifies the widget.

Specifies the argument list of name/value pairs that contain
the resources to be modified and their new values. The
resources and values passed are dependent on the widget
being modified.

num_args Specifies the number of arguments in the argument list.

The XtSetValues function starts with the resources specified for the Core
widget fields and proceeds down the subclass chain to the widget. At each
stage, it writes the new value (if specified by one of the arguments) or
the existing value (if no new value is specified) to a new widget data
record. XtSetValues then calls the set_values procedures for the widget in
superclass-to-subclass order. If the widget has any non-NULL
set_values_hook fields, these are called immediately after the corresponding
set_values procedure. This procedure permits subclasses to set nonwidget
data for XtSetValues.

If the widget's parent is a subclass of constraintWidgetClass, XtSetValues
also updates the widget's constraints. It starts with the constraint
resources specified for constraintWidgetClass and proceeds down the
subclass chain to the parent's class. At each stage, it writes the new
value or the existing value to a new constraint record. It then calls the
constraint set_values procedures from constraintWidgetClass down to the
parent's class. The constraint set_values procedures are called with widget
arguments, as for all set_values procedures, not just the constraint record
arguments, so that they can make adjustments to the desired values based
on full information about the widget.

Resource Management 9-17

XtSetValues determines if a geometry request is needed by comparing the
current widget to the new widget. If any geometry changes are required,
it makes the request, and the geometry manager returns XtGeometryYes,
XtGeometryAlmost, or XtGeometryNo. If XtGeometryYes, XtSetValues calls
the widget's resize procedure. If XtGeometryNo, XtSetValues resets the
geometry fields to their original values. If XtGeometryAlmost, XtSetValues
calls the set_values_almost procedure, which determines what should be
done and writes new values for the geometry fields into the new widget.
XtSetValues then repeats this process, deciding once more whether the
geometry manager should be called.

Finally, if any of the set_values procedures returned True, XtSetValues
causes the widget's expose procedure to be invoked by calling the Xlib
XClearArea function on the widget's window.

9.7.2.1 Widget State: the set_values Procedure
- The set_values procedure pointer in a widget class is of type
XtSetValuesFunc:

typedef Boolean (*XtSetValuesFunc)(Widget, Widget,
Widget) ;

current

request

new

Wid get curre nt ;
Wid get re q ues t ;
Widget new;

Specifies a copy of the widget as it was before the
XtSetValues call.

Specifies a copy of the widget with all values changed as
asked for by the XtSetValues call before any class set_values
procedures have been called.

Specifies the widget with the new values that are actually
allowed.

The set_values procedure should recompute any field derived from
resources that are changed (for example, many GCs depend on foreground
and background). If no recomputation is necessary and if none of the
resources specific to a subclass require the window to be redisplayed when
their values are changed, you can specify NULL for the set_values field in
the class record.

Like the initialize procedure, set_values mostly deals only with the fields
defined in the subclass, but it has to resolve conflicts with its superclass,
especially conflicts over width and height.

9-18 Resource Management

Sometimes a subclass may want to overwrite values filled in by its
superclass. In particular, size calculations of a superclass are often
incorrect for a subclass and in this case, the subclass must modify or
recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass display. In
this case, the width and height calculated by the superclass set_values
procedure are too small and need to be incremented by the size of the
surround. The subclass needs to know if its superclass's size was
calculated by the superclass or was specified explicitly. All widgets must
place themselves into whatever size is explicitly given, but they should
compute a reasonable size if no size is requested. How does a subclass
know the difference between a specified size and a size computed by a
superclass?

The request and new parameters provide the necessary information. The
request widget is the widget as originally requested. The new widget starts
with the values in the request, but it has been updated by all superclass
set_values procedures called so far. A subclass set_values procedure can
compare these two to resolve any potential conflicts.

In the above example, the subclass with the visual surround can see if the
width and height in the request widget are zero. If so, it adds its
surround size to the width and height fields in the new widget. If not, it
must make do with the size originally specified.

The new widget is the actual widget instance record. Therefore, the
set_values procedure should do all its work on the new widget (the request
widget should never be modified), and if it needs to call any routines that
operate on a widget, it should specify new as the widget instance.

The widget specified by new starts with the values of that specified by
request but has been modified by any superclass set_values procedures. A
widget need not refer to the request widget, unless it must resolve conflicts
between the current and new widgets. Any changes that the widget needs
to make, including geometry changes, should be made in the new widget.

Finally, the set_values procedure must return a Boolean that indicates
whether the widget needs to be redisplayed. Note that a change in the
geometry fields alone does not require the set_values procedure to return
True; the X server will eventually generate an Expose event, if necessary.
After calling all the set_values procedures, XtSetValues forces a redisplay
by calling the Xlib XClearArea function if any of the set_values procedures
returned True. Therefore, a set_values procedure should not try to do its
own redisplaying.

Set_values procedures should not do any work in response to changes in
geometry because XtSetValues eventually will perform a geometry request,
and that request might be denied. If the widget actually changes size in

Resource Management 9·19

response to a XtSetValues, its resize procedure are called. Widgets should
do any geometry-related work in their resize procedure.

Note that it is permissible to call XtSetValues before a widget is realized.
Therefore, the set_values proc must not assume that the widget is realized.

9.7.2.2 Widget State: the set_values_almost Procedure
- The set_ values_almost procedure pointer in a widget class is of type
XtAlmostProc:

typedef void (*XtAlmostProc)(Widget, Widget,
XtWidgetGeometry *
XtWidgetGeometry *);

w

Widget w;
Widget new_widget_return;
XtW i dgetGeomet ry *request;
XtW i dgetGeomet ry * reply ;

Specifies the widget on which the geometry change is
requested.

new_widget_return

request

reply

Specifies the new widget into which the geometry changes
are to be stored.

Specifies the original geometry request that was sent to the
geometry manager that returned XtGeometryAlmost.

Specifies the compromise geometry that was returned by the
geometry manager that returned XtGeometryAlmost.

Most classes inherit this operation from their superclass by specifying
XtinheritSetValuesAlmost in the class initialization. The Core
set_ values_almost procedure accepts the compromise suggested.

The set_values_almost procedure is called when a client tries to set a
widget's geometry by means of a call to XtSetValues, and the geometry
manager cannot satisfy the request but instead returns XtGeometryAlmost
and a compromise geometry. The set_values_almost procedure takes the
original geometry and the compromise geometry and determines whether
the compromise is acceptable or a different compromise might work. It
returns its results in the new_widget parameter, which is then sent back
to the geometry manager for another try.

9.7.2.3 Widget State: the constraint set_values Procedure
- The constraint set_values procedure pointer is of type XtSetValuesFunc.
The values passed to the parent's constraint set_values procedure are the
same as those passed to the child's class set_values procedure. A class

9-20 Resource Management

can specify NULL for the set_values field of the ConstraintPart if it need
not compute anything.

The constraint set_values procedure should recompute any constraint fields
derived from constraint resource that are changed. Further, it should
modify the widget fields as appropriate. For example, if a constraint for
the maximum height of a widget is changed to a value smaller than the
widget's current height, the constraint set_values procedure should reset
the height field in the widget.

9.7.2.4 Widget Subpart State
- To set the current value of a nonwidget resource associated with a
widget instance, use XtSetSubvalues. For a discussion of nonwidget
subclass resources, see Section 9.4.

vo i d XtSetSubva I ues (base, resources, num_resources, args,
num_args)

base

e add r _ t base;
Xt Resou reel i s t resources;
Ca r din a I num_resources;
A r g lis t args;
Ca rd i na I num_args;

Specifies the base address of the subpart data structure
where the resources should be written.

resources Specifies the current nonwidget resources values.

num_resourcesSpecifies the number of resources in the resource list.

args Specifies the argument list of name/value pairs that contain
the resources to be modified and their new values. The
resources and values passed are dependent on the subpart of
the widget being modified.

num_args Specifies the number of arguments in the argument list.

The XtSetSubvalues function stores resources into the structure identified
by base.

9.7.2.5 Widget Subpart Resource Data: the set_values_hook
Procedure
- Widgets that have a subpart can set the resource values by using
XtSetValues and supplying a set_values_hook procedure. The
set_values_hook procedure pointer in a widget class is of type XtArgsFunc:

Resource Management 9·21

typedef Boolean (*XtArgsFunc)(Widget, Arglist,
Cardinal *);

w

args

Widget w;
A r g Lis t args;
Ca rd i na I * num_args;

Specifies the widget whose nonwidget resource values are to
be changed.

Specifies the argument list that was passed to
XtCreateWidget.

Specifies the number of arguments in the argument list.

9-22 Resource Management

Translation Management 10

Except under unusual circumstances, widgets do not hardwire the mapping
of user events into widget behavior by using the event manager. Instead,
they provide a default mapping of events into behavior that you can
override.

The translation manager provides an interface to specify and manage the
mapping of X Event sequences into widget-supplied functionality, for
example, calling procedure Abc when the y key is pressed.

The translation manager uses two kinds of tables to perform translations:

• The action tables, which are in the widget class structure, specify the
mapping of externally available procedure name strings to the
corresponding procedure implemented by the widget class.

• A translation table, which is in the widget class structure, specifies
the mapping of event sequence to procedure name strings.

You can override the translation table in the class structure for a specific
widget instance by supplying a different translation table for the widget
instance. The resource name is XtNtranslations.

10.1 Action Tables
All widget class records contain an action table. In addition, an application
can register its own action tables with the translation manager so that the
translation tables it provides to widget instances can access application
functionality. The translation actioILproc procedure pointer is of type
XtAction Proc:

typedef void (*XtActionProc)(Widget, XEvent *, String *
Cardinal *);

w

Widget w;

XEvent *event;

S t r i n g * params ;

Ca rd ina I * num_params;

Specifies the widget that caused the action to be called.

event Specifies the event that caused the action to be called. If
the action is called after a sequence of events, then the last
event in the sequence is used.

params Specifies a pointer to the list of strings that were specified
in the translation table as arguments to the action.

num_params Specifies the number of arguments specified in the
translation table.

typedef struct _XtActionsRec {

String actioILname;

XtActionProc actioILproc;

} XtActionsRec, *XtActionList;

The actioILname field is the name that you use in translation tables to
access the procedure. The actioILproc field is a pointer to a procedure
that implements the functionality.

For example, the Command widget has procedures to take the following
actions:

• Set the command button to indicate it is activated

• Unset the button back to its normal mode

• Highlight the button borders

• U nhighlight the button borders

• Notify any callbacks that the button has been activated

The action table for the Command widget class makes these functions
available to translation tables written for Command or any subclass. The
string entry is the name used in translation tables. The procedure entry
(often spelled identically to the string) is the name of the C procedure
that implements that function:

XtActionsRec actionTable[] = {
{"Set", Set},
{"Unset", Unset},

{" Highlight" , Highlight},

{"Unhighlight", Unhighlight}

{"Notify", Notify},
};

10.1.1 Action Table Registration

To declare an action table and register it with the translation manager, use
XtAppAddActions.

10-2 Translation Management

vo i d XtAppAddAct ions (app_context, actions, num_actions)
XtAppContext app_context;
X t Act ion Lis t actio ns ;
Ca r din a I num_actions;

app_context Specifies the application context.

actions Specifies the action table to register.

num_args Specifies the number of entries in this action table.

If more than one action is registered with the same name, the most
recently registered action is used. If duplicate actions exist in an action
table, the first is used. The Intrinsics register an action table for
MenuPopup and MenuPopdown as part of XVI Toolkit initialization.

10.1.2 Action Names to Procedure Translations

The translation manager uses a simple algorithm to convert the name of a
procedure specified in a translation table into the actual procedure specified
in an action table. When the widget is realized, the translation manager
performs a search for the name in the following tables:

• The widget's class action table for the name

• The widget's superclass action table and on up the superclass chain

• The action tables registered with XtAddActions (from the most recently
added table to the oldest table)

As soon as it finds a name, the translation manager stops the search. If
it cannot find a name, the translation manager generates an error.

10.2 Translation Tables
All widget instance records contain a translation table, which is a resource
with no default value. A translation table specifies what action procedures
are invoked for an event or a sequence of events. A translation table is a
string containing a list of translations from an event sequence into one or
more action procedure calls. The translations are separated from one
another by newline characters (ASCII LF). The complete syntax of
translation tables is specified in Appendix B.

As an example, the default behavior of Command is:

• Highlight on enter window

• V nhighlight on exit window

• Invert on left button down

• Call callbacks and reinvert on left button up

Translation Management 10-3

The following illustrates the Command's default translation table:

static String defaultTranslations =

"<EnterWindow>:HighlightO "n "-

<LeaveWindow>: UnhighlightO "n "-

<BtnlDown>: SetO "n "-

<Btnl Up >: Notify() Unset()";

The tm_table field of the CoreClass record should be filled in at static
initialization time with the string containing the class's default translations.
If a class wants to inherit its superclass's translations, it can store the
special value XtlnheritTranslations into tm_table. After the class
initialization procedures have been called, the Intrinsics compile this
translation table into an efficient internal form. Then, at widget creation
time, this default translation table is used for any widgets that have not
had their core translations field set by the resource manager or the
initialize procedures.

The resource conversion mechanism automatically compiles string translation
tables that are resources. If a client uses translation tables that are not
resources, it must compile them itself using XtParseTranslationTable.

The Intrinsics use the compiled form of the translation table to register
the necessary events with the event manager. Widgets need do nothing
other than specify the action and translation tables for events to be
processed by the translation manager.

10.2.1 Event Sequences

An event sequence is a comma separated list of X event descriptions that
describes a specific sequence of X events to map to a set of program
actions. Each X event description consists of three parts:

• The X event type

• A prefix consisting of the X modifier bits

• An event specific suffix

Various abbreviations are supported to make translation tables easier to
read.

10.2.2 Action Sequences

Action sequences specify what program or widget actions to take in
response to incoming X events. An action sequence of action procedure call
specifications. Each action procedure call consists of the name of an
action procedure and a parenthesized list of string parameters to pass to
that procedure.

10-4 Translation Management

10.3 Translation Table Management
Sometimes an application needs to destructively or nondestructively add its
own translations to a widget's translation. For example, a window manager
provides functions to move a window. It usually may move the window
when any pointer button is pressed down in a title bar, but it allows the
user to specify other translations for the middle or right button down in
the title bar, and it ignores any user translations for left button down.

To accomplish this, the window manager first should create the title bar
and then should merge the two translation tables into the title bar's
translations. One translation table contains the translations that the
window manager wants only if the user has not specified a translation for
a particular event (or event sequence). The other translation table
contains the translations that the window manager wants regardless of what
the user has specified.

Three Intrinsics functions support this merging:

XtParseTranslationTable

XtAugmentTranslations

XtOverride Translations

Compiles a translation table.

N ondestructively merges a compiled
translation table into a widget's compiled
translation table.

Destructively merges a compiled translation
table into a widget's compiled translation
table.

To compile a translation table, use XtParseTranslationTable.

XtTranslations XtParseTranslationTable(tabk)
S t r i n g tabk;

tabk Specifies the translation table to compile.

The XtParseTranslationTable function compiles the translation table into the
opaque internal representation of type XtTranslations. Note that if an
empty translation table is required for any purpose, one can be obtained by
calling XtParseTranslationTable and passing an empty string.

To merge new translations into an existing translation table, use
XtAugmentTranslations.

Translation Management 10-5

vo i d XtAugmentT rans I at ions (w, translations)
Widget w;
XtTrans I at ions translations;

w Specifies the widget into which the new translations are to
be merged.

translations Specifies the compiled translation table to merge in (must
not be NULL).

The XtAugmentTranslations function nondestructively merges the new
translations into the existing widget translations. If the new translations
contain an event or event sequence that already exists in the widget's
translations, the new translation is ignored.

To overwrite existing translations with new translations, use
XtOverrideTranslations.

v 0 i d X t 0 v err ide T ran s I a t ion s (w, trans latio ns)
Widget w;
X t T ran s I a t ion s trans latio ns ;

w Specifies the widget into which the new translations are to
be merged.

translations Specifies the compiled translation table to merge in (must
not be NULL).

The XtOverrideTranslations function destructively merges the new
translations into the existing widget translations. If the new translations
contain an event or event sequence that already exists in the widget's
translations, the new translation is merged in and override the widget's
translation.

To replace a widget's translations completely, use XtSetValues on the
XtNtranslations resource and specifiy a compiled translation table as the
value.

To make it possible for users to easily modify translation tables in their
resource files, the string-to-translation-table resource type converter allows
specifying whether the table should replace, augment, or override any
existing translation table in the widget. As an option, you can specify a
number sign (#) as the first character of the table followed by "replace"
(default), "augment", or "override" to indicate whether to replace, augment,
or override any existing table.

To completely remove existing translations, use XtUninstallTranslations.

10-6 Translation Management

void XtUninstallTranslat ions(w)
Widget w;

w Specifies the widget from which the translations are to be
removed.

The XtUninstaliTranslations function causes the entire translation table for
widget to be removed.

10.4 Using Accelerators
It is often convenient to be able to bind events in one widget to actions in
another. In particular, it is often useful to be able to invoke menu actions
from the keyboard. The Intrinsics provide a facility, called accelerators,
that let you accomplish this. An accelerator is a translation table that is
bound with its actions in the context of a particular widget. The
accelerator table can then be installed on some destination widget. When
an action in the destination widget would cause an accelerator action to be
taken, rather than causing an action in the context of the destination, the
actions are executed as though triggered by an action in the accelerator
widget.

Each widget instance contains that widget's exported accelerator table.
Each class of widget exports a method that takes a displayable string
representation of the accelerators so that widgets can display their current
accelerators. The representation is the accelerator table in canonical
translation table form (see Appendix B). The display_accelerator procedure
pointer is of type XtStringProc:

typedef void (*XtStringProc)(Widget, String);
Widget w;

w

string

St ring string;

Specifies the widget that the accelerators are installed on.

Specifies the string representation of the accelerators for this
widget.

Accelerators can be specified in defaults files, and the string representation
is the same as for a translation table. However, the interpretation of the
#augment and #override directives apply to what will happen when the
accelerator is installed, that is, whether or not the accelerator translations
will override the translations in the destination widget. The default is
augment , which means that the accelerator translations have lower priority
than the destination translations. The #replace directive is ignored for
accelerator tables.

Translation Management 10-7

To parse an accelerator table, use XtParseAcceleratorTable.

XtAccelerators XtParseAcceleratorTable(wuree)
St ring source;

source Specifies the accelerator table to compile.

The XtParseAcceleratorTable function compiles the accelerator table into the
opaque internal representation.

To install accelerators from a widget on another widget, use
Xtl nstaliAccelerators.

void XtlnstaIIAccelerators(destination, source)
Wid ge t destination;
Widget source;

destination Specifies the widget on which the accelerators are to be
installed.

source Specifies the widget from which the accelerators are to come.

The XtlnstaliAccelerators function installs the accelerators from source onto
destination by augmenting the destination translations with the source
accelerators. If the source display_accelerator method is non-NULL,
XtlnstaliAccelerators calls it with the source widget and a string
representation of the accelerator table, which indicates that its accelerators
have been installed and that it should display them appropriately. The
string representation of the accelerator table is its canonical translation
table representation.

As a convenience for installing all accelerators from a widget and all its
descendants onto one destination, use XtlnstaliAIiAccelerators.

void XtlnstaIIAIIAccelerators(destination, source)
Widget destination;
Widget source;

destination Specifies the widget on which the accelerators are to be
installed.

source Specifies the root widget of the widget tree from which the
accelerators are to come.

The XtinstaliAIiAccelerators function recursively descends the widget tree
rooted at source and installs the accelerators of each widget encountered
onto destination. A common use is to call XtinstaliAIiAccelerators and pass
the application main window as the source.

10-8 Translation Management

10.5 KeyCode-to-KeySym Conversions
The translation manager provides support for automatically translating key
codes in incoming key events into KeySyms. KeyCode-to-KeySym-translator
procedure pointers are of type XtKeyProc:

typedef void (*XtKeyProc)(Display *, KeyCode,
Modifiers, Modifiers *
KeySym *);

D i sp I ay * display ;
KeyCod e keycode;
Mod i fie r s rrwdifiers;
Mod i fie r s * rrwdifiers_return;
KeySym * keysy m_re turn ;

display

keycode

rrwdifiers

Specifies the display that the KeyCode is from.

Specifies the KeyCode to translate.

Specifies the modifiers to the KeyCode.

rrw difiers_re turn
Returns a mask that indicates the subset of all modifiers
that are examined by the key translator.

keysym_returnReturns the resulting KeySym.

This procedure takes a KeyCode and modifiers and produces a KeySym.
For any given key translator function, modifiers_return will be a constant
that indicates the subset of all modifiers that are examined by the key
translator.

To register a key translator, use XtSetKeyTranslator.

vo i d XtSetKeyTrans I ator (display, proc)
Dis p I a y * display;
Xt KeyP roc proc;

display Specifies the display from which to translate the events.

proc Specifies the procedure that is to perform key translations.

The XtSetKeyTranslator function sets the specified procedure as the current
key translator. The default translator is XtTranslateKey, an XtKeyProc that
uses Shift and Lock modifiers with the interpretations defined by the core
protocol. It is provided so that new translators can call it to get default
KeyCode-to-KeySym translations and so that the default translator can be
reinstalled.

To invoke the currently registered KeyCode-to-KeySym translator, use
XtTranslateKeycode.

Translation Management 10-9

vo i d Xt T r a ns I at eKeycod e (display, keycode, modifiers,
modifiers_return, keysym_return)

D i sp I ay * display ;
KeyCod e keycode;
Mod i fie r s modifiers;
Mod i fie r s * modifiers_return;
KeySym * keysym_return;

display

keycode

modifiers

Specifies the display that the KeyCode is from.

Specifies the KeyCode to translate.

Specifies the modifiers to the KeyCode.

modifiers_return
Returns a mask that indicates the modifiers actually used to
generate the KeySym.

keysym_returnReturns the resulting KeySym.

The XtTranslateKeycode function passes the specified arguments directly to
the currently registered KeyCode to KeySym translator.

To handle capitalization of nonstandard KeySyms, the Intrinsics allow
clients to register case conversion routines. Case converter procedure
pointers are of type XtCaseProc:

typedef void (*XtCaseProc) (KeySym *, KeySym *
KeySym *);

KeySym * keysym;
KeySym * lower_return;
KeySym * upper_return;

keysym Specifies the KeySym to convert.

lower _return Specifies the lowercase equivalent for the KeySym.

upper _return Specifies the uppercase equivalent for the KeySym.

If there is no case distinction, this procedure should store the KeySym into
both return values.

To register a case converter, use XtRegisterCaseConverter.

void XtRegisterCaseConverter(display, proc, start, stop)
D i sp I ay * display ;
Xt CaseP roc proc;
KeySym start;
KeySym stop;

10-10 Translation Management

display

proc

start

stop

Specifies

Specifies

Specifies

Specifies

the display from which the key events are to come.

the XtCaseProc that is to do the conversions.

the first KeySym for which this converter is valid.

the last KeySym for which this converter is valid.

The XtRegisterCaseConverter registers the specified case converter. The
start and stop arguments provide the inclusive range of KeySyms for which
this converter is to be called. The new converter overrides any previous
converters for KeySyms in that range. No interface exists to remove
converters; you need to register an identity converter. When a new
converter is registered, the Intrinsics refreshes the keyboard state if
necessary. The default converter understands case conversion for all
KeySyms defined in the core protocol.

To determine upper and lowercase equivalents for a KeySym, use
XtConvertCase.

vo i d XtConve rtCase (display, keysym, lower_return, upper_return)
Dis p I a y * display;
KeySym keysym;
KeySym * lower_return;
KeySym * upper_return;

display

keysym

Specifies the display that the KeySym came from.

Specifies the KeySym to convert.

lower _return Returns the lowercase equivalent of the KeySym.

upper _return Returns the uppercase equivalent of the KeySym.

The XtConvertCase function calls the appropriate converter and returns the
results. A user-supplied XtKeyProc may need to use this function.

Translation Management 10-11

Utility Functions 11

The Intrinsics provide a number of utility functions that you can use to:

• Determine the number of elements in an array

• Translate strings to widget instances

• Manage memory usage

• S hare graphics contexts

• Manipulate selections

• Merge exposure events into a region

• Translate widget coordinates

• Translate a window to a widget

• Handle errors

11.1 Determining the Number of Elements in an Array
To determine the number of elements in a fixed-size array, use XtNumber.

Cardinal XtNumber(array)
A r ray Va ria b I e array;

array Specifies a fixed-size array.

The XtNumber macro returns the number of elements in the specified
argument lists, resources lists, and other counted arrays.

11.2 Translating Strings to Widget Instances
To translate a widget name to widget instance, use XtNameToWidget.

Widget Xt NameToW i dget (reference, names);

reference

names

Widget reference;
St ring names;

Specifies the widget from which the search is to start.

Specifies the fully qualified name of the desired widget.

The XtNameToWidget function looks for a widget whose name is the first
component in the specified names and that is a pop-up child of reference
(or a normal child if reference is a subclass of compositeWidgetClass). It
then uses that widget as the new reference and repeats the search after
deleting the first component from the specified names. If it cannot find
the specified widget, XtNameToWidget returns NULL.

Note that the names argument contains the name of a widget with respect
to the specified reference widget and can contain more than one widget
name (separated by periods) for widgets that are not direct children of the
specified reference widget.

If more than one child of the reference widget matches the name,
XtNameToWidget can return any of the children. The Intrinsics do not
require that all children of a widget have unique names. If the specified
names contain more than one component and if more than one child
matches the first component, XtNameToWidget can return NULL if the
single branch that it follows does not contain the named widget. That is,
XtNameToWidget does not back up and follow other matching branches of
the widget tree.

11.3 Managing Memory Usage
The Intrinsics memory management functions provide uniform checking for
null pointers and error reporting on memory allocation errors. These
functions are completely compatible with their standard C language runtime
counterparts (malloc, calloc, realloc, and free) with the following added
functionality:

• XtMalloc, XtCalloc, and XtRealloc give an error if there is not enough
memory.

• XtFree simply returns if passed a NULL pointer.

• XtRealloc simply allocates new storage if passed a NULL pointer.

See the standard . C library documentation on malloc, calloc, realloc, and
free for more information.

To allocate storage, use XtMalloc.

c h a r * X t M a I I 0 C (s ize) ;
Car din a I size;

size Specifies the number of bytes desired.

The XtMalloc functions returns a pointer to a block of storage of at least
the specified size bytes. If there is insufficient memory to allocate the
new block, XtMalloc calls XtErrorMsg.

11-2 Utility Functions

To allocate and initialize an array, use XtCalioc.

c h a r * X t C a I I 0 c (num , size);
Cardinal num;
Ca r din a I size;

num Specifies the number of array elements to allocate.

size Specifies the size of an array element in bytes.

The XtCalioc function allocates space for the specified number of array
elements of the specified size and initializes the space to zero. If there is
insufficient memory to allocate the new block, XtCalioc calls XtErrorMsg.

To change the size of an allocated block of storage, use XtRealioc.

char *XtReal loc(p~, num);
c ha r * ptr;
Cardinal num;

ptr Specifies a pointer to the old storage.

num Specifies number of bytes desired in new storage.

The XtRealioc function changes the size of a block of storage (possibly
moving it). Then, it copies the old contents (or as much as will fit) into
the new block and frees the old block. If there is insufficient memory to
allocate the new block, XtRealioc calls XtErrorMsg. If ptr is NULL,
XtRealioc allocates the new storage without copying the old contents; that
is, it simply calls XtMalioc.

To free an allocated block of storage, use XtFree.

v 0 i d X t F r e e (ptr) ;
cha r *ptr;

ptr Specifies a pointer to the block of storage that is to be
freed.

The XtFree function returns storage and allows it to be reused. If ptr is
NULL, XtFree returns immediately.

To allocate storage for a new instance of a data type, use XtNew.

Utility Functions 11-3

type * X t New (type) ;
type;

type Specifies a previously declared data type.

XtNew returns a pointer to the allocated storage. If there is insufficient
memory to allocate the new block, XtNew calls XtErrorMsg. XtNew is a
convenience macro that calls XtMalloc with the following arguments
specified:

« type *) XtMalloc((unsigned) sizeof(type»

To copy an instance of a string, use XtNewString.

S t r i n g X t NewS t r i n g (string) ;
St ring string;

string Specifies a previously declared string.

XtNewString returns a pointer to the allocated storage. If there is
insufficient memory to allocate the new block, XtNewString calls XtErrorMsg.
XtNewString is a convenience macro that calls XtMalloc with the following
arguments specified:

(strcpy(XtMalloc« unsigned) strlen(str) + 1), str»

11.4 Sharing Graphics Contexts
The Intrinsics provide a mechanism whereby cooperating clients can share a
graphics context (GC), thereby reducing both the number of GCs created
and the total number of server calls in any given application. The
mechanism is a simple caching scheme, and all GCs obtained by means of
this mechanism must be treated as read-only. If a changeable GC is
needed, the Xlib XC reateGC function should be used instead.

To obtain a read-only, sharable GC, use XtGetGC.

GC XtGetGC(w, value_mask, values)
Widget w;
XtGCMask value_mask;
XGCVa lues * values;

w Specifies the widget.

value_mask Specifies which fields of the values are specified.

values Specifies the actual values for this GC.

11-4 Utility Functions

The XtGetGC function returns a sharable, read-only GC. The parameters
to this function are the same as those for XCreateGC except that a widget
is passed instead of a display. XtGetGC shares only GCs in which all
values in the GC returned by XCreateGC are the same. In particular, it
does not use the value_mask provided to determine which fields of the GC
a widget considers relevant. The value_mask is used only to tell the
server which fields should be filled in with widget data and which it should
fill in with default values. For further information about value_mask and
values, see XCreateGC in the Guide to the Xlib Library.

To deallocate a shared GC when it is no longer needed, use XtReleaseGC.

void XtReleaseGC(w, ge)
Widget w;
GC ge;

w Specifies the widget.

ge Specifies the GC to be deallocated.

References to sharable GCs are counted and a free request is generated to
the server when the last user of a given GC destroys it.

11.5 Managing Selections
Arbitrary widgets (possibly not all in the same application) can
communicate with each other by means of the XUI Toolkit global selection
mechanism. The Intrinsics provide functions for providing and receiving
selection data in one logical piece (atomic transfers) or in smaller logical
segments (incremental transfers). Note that a physical data transfer may
not necessarily correspond to the logical view.

The incremental interface is provided for a selection owner or selection
client that cannot or prefers not to pass the selection value to and from
the XUI Toolkit in a single block of memory. For instance, either an
application that is running on a machine with limited memory may not be
able to copy the entire selection value into memory at the same time, or a
selection owner may already have the selection value available in discrete
chunks, and it would be more efficient not to have to allocate a new block
of memory to copy the pieces into it. Any owner or client that prefers to
deal with the selection value in subpieces, instead of in one chunk, can use
the incremental interfaces to do so. This interface between the
owner/client and XUI Toolkit is independent of the underlying protocol; in
the atomic interface the XUI Toolkit will break a too-large selection into
smaller pieces for transport if necessary.

Utility Functions 11-5

Note

The incremental interface is experimental and is specific to
DIGITAL; applications that use it may have portability problems
because it is not part of the official Intrinsics specification.

The next sections discuss how to:

• Set and get the selection timeout value

• Use atomic transfers

• Use incremental transfers

11.5.1 Setting and Getting the Selection Timeout Value

To set the Intrinsics selection timeout, use XtAppSetSelectionTimeout.

vo i d X tAp pSe t Se I e c t i 0 nT i meo u t (app_context, timeout)
X tAp pCo n t ext app_context;
uns i gned long timeout;

app_context Specifies the application context.

timeout Specifies the selection timeout in milliseconds.

To get the current selection timeout value, use XtAppGetSelectionTimeout.

uns i gned long XtAppGetSe I ect i onT imeout (app_context)
XtAppCont ext app_context;

app_context Specifies the application context.

The XtAppGetSelectionTimeout function returns the current selection timeout
value, in milliseconds. The selection timeout is the time within which the
two communicating applications must respond to one another. The initial
timeout value is set by the selectionTimeout application resource, or, if
selectionTimeout is not specified, it defaults to five seconds.

11.5.2 Using Atomic Transfers

The next three three sections discuss:

• Atomic transfer procedures

• Getting the selection value

• Setting the selection owner

11·6 Utility Functions

11.5.2.1 Atomic Transfer Procedures
- The following procedures are to be used with atomic transfers. The first
three are used by the selection owner, and the last one is used by the
requestor.

typedef Boolean (*XtConvertSelectionProc)(Widget, Atom *
Atom *, Atom *
caddr_t *
unsigned long *
i n t *);

Widget w;

A tom * selection;

Atom * target;
A tom * type_return;
cad d r _ t * value_return;

uns i gned long *length_return;

i n t * formaLreturn;

w Specifies the widget which currently owns this selection.

selection Specifies the atom that describes the type of selection
requested (for example, ~PRIMARY or ~SECONDARY).

target Specifies the target type of the selection that has been
requested, which indicates the desired information about the
selection (for example, File Name, Text, Window).

type_return Specifies a pointer to an atom into which the property type
of the converted value of the selection is to be stored. For
instance, either file name or text might have property type
~STRING.

value_return Specifies a pointer into which a pointer to the converted
value of the selection is to be stored. The selection owner
is responsible for allocating this storage. If the selection
owner has provided an XtSelectionDoneProc for the selection,
this storage is owned by the selection owner; otherwise, it is
owned by the Intrinsics selection mechanism, which frees it
by calling XtFree when it is done with it.

length_return Specifies a pointer into which the number of elements in
value (each of size indicated by format) is to be stored.

format_return Specifies a pointer into which the size in bits of the data
elements of the selection value is to be stored.

This procedure is called by the Intrinsics selection mechanism to get the
value of a selection as a given type from the current selection owner. It
returns True if the owner successfully converted the selection to the target
type or False otherwise. If the procedure returns False the values of the

Utility Fu net ions 11-7

return arguments are undefined. Each XtConvertSelectionProc should
respond to target value TARGETS by returning a value containing the list
of the targets they are prepared to convert their selection into.

typedef void (*XtLoseSelectionProc)(Widget, Atom *);
Widget w;
A tom * selection;

w

selection

Specifies the widget that has lost selection ownership.

Specifies the atom that describes the selection type.

This procedure is called by the Intrinsics selection mechanism to inform
the specified widgets that it has lost the given selection. Note that this
procedure does not ask the widget to lose the selection ownership.

typedef void (*XtSelectionDoneProc)(Widget, Atom *
Atom *);

w

selection

target

Widget w;
A tom * selection;
Atom *target;

Specifies the widget that owns the converted selection.

Specifies the atom that describes the selection type that was
converted.

Specifies the target type to which the conversion was done.

This procedure is called by the Intrinsics selection mechanism to inform
the selection owner when a selection requestor has successfully retrieved a
selection value. If the selection owner has registered an
XtSelectionDoneProc, it should expect it to be called once for each
conversion that it performs but after the converted value has been
successfully transferred to the requestor. If the selection owner has
registered an XtSelectionDoneProc, it also owns the storage containing the
converted selection value.

typedef void (*XtSelectionCallbackProc)(Widget, caddr_t,

Atom *, Atom *,

caddr_t,

unsigned long *

in t *);

(continued on next page)

11-8 Utility Functions

selection

type

value

length

format

Widget w;
cad d r _ t client_data;
A tom * selection;
Atom * type;
cadd r _ t value;
un 5 i g ned Ion g * length;
i n t * format;

Specifies the widget that requested the selection value.

Specifies a value passed in by the widget when it requested
the selection.

Specifies the type of selection that was requested.

Specifies the representation type of the selection value (for
example, XJLSTRING). Note that it is not the target that
was requested but the type that is used to represent the
target. The special XUI Toolkit atom XT _CONVERT _F AI L is
used to indicate that the selection conversion failed because
the selection owner did not respond within the Intrinsics's
selection timeout interval.

Specifies a pointer to the selection value. The requesting
client owns this storage and is responsible for freeing it by
calling XtFree when it is done with it.

Specifies the number of elements in value.

Specifies the size in bits of the data elements of value.

This procedure is called by the Intrinsics selection mechanism to deliver
the requested selection to the requestor.

11.5.2.2 Getting the Selection Value
- To obtain the selection value in a single, logical unit, use
XtGetSelectionValue or XtGetSelectionValues.

vo i d XtGetSe I ect i onVa I ue (w, selection, target, callback,
client_data, time)

w

Widget w;
A t om selection;
A t om target;
XtSe I ect i onCa I I backProc callback;
cad d r _ t client_data;
Time time;

Specifies the widget that is making the request.

Utility Functions 11-9

selection Specifies the particular selection desired (that is, primary or
secondary) .

target Specifies the type of the information that is needed about
the selection.

callback Specifies the callback procedure that is to be called when the
selection value has been obtained. Note that this is how the
selection value is communicated back to the client.

clie nt_data Specifies the argument that is to be passed to the specified
procedure when it is called.

time Specifies the timestamp that indicates when the selection is
desired. This should be the timestamp of the event which
triggered this request; the value CurrentTime is not
acceptable.

The XtGetSelectionValue function requests the value of the selection that
has been converted to the target type. The specified callback will be called
some time after XtGetSelectionValue is called; in fact, it may be called
before or after XtGetSelectionValue returns.

vo i d XtGetSe I ect i onVa lues (w, selection, targets, count,
callback, client_data, time)

Widget w;
A t om selection;
A tom * targets;
i nt count;
X t S e I e c t ion C a I I b a c k Pro c callback;
cad d r _ t client_data;
Time time;

w Specifies the widget that is making the request.

selection Specifies the particular selection desired (that is, primary or
secondary) .

targets Specifies the types of information that is needed about the
selection.

count Specifies the length of the targets and client_data lists.

callback Specifies the callback procedure that is to be called with
each selection value obtained. Note that this is how the
selection values are communicated back to the client.

client_data Specifies the client data (one for each target type) that is
passed to the callback procedure when it is called for that
target.

11-10 Utility Functions

time Specifies the timestamp that indicates when the selection
value is desired. This should be the timestamp of the event
which triggered this request; the value CurrentTime is not
acceptable.

The XtGetSelectionValues function is similar to XtGetSelectionValue except
that it takes a list of target types and a list of client data and obtains the
current value of the selection converted to each of the targets. The effect
is as if each target were specified in a separate call to XtGetSelectionValue.
The callback is called once with the corresponding client data for each
target. XtGetSelectionValues does guarantee that all the conversions will
use the same selection value becaues the ownership of the selection cannot
change in the middle of the list, as would be when calling
XtGetSelectionValue repeatedly.

11.5.2.3 Setting the Selection Owner
- To set the selection owner when using atomic transfers, use
XtOwnSelection.

Boolean XtOwnSelection(w, selection, time, convert_proc,
lose_selection, do ne_proc)

w

selection

time

Widget w;
A t om selection;
Time time;
XtConve rtSe I ect i onP roc convert_proc;
Xt LoseSe I ec t ion P roc lose_selection;
XtSe I ect i onDoneProc done_proc;

Specifies the widget that wishes to become the owner.

Specifies an atom that describes the type of the selection
(for example, ~PRIMARY, ~SECONDARY, or
~CLlPBOARD) .

Specifies the timestamp that indicates when the selection
ownership should commence. This should be the timestamp
of the event that triggered ownership; the value CurrentTime
is not acceptable.

co nvert_proc Specifies the procedure that is to be called whenever
someone requests the current value of the selection.

lose_selection Specifies the procedure that is to be called whenever the
widget has lost selection ownership or NULL if the owner is
not interested in being called back.

do ne_proc Specifies the procedure that is called after the requestor has
received the selection or NULL if the owner is not
interested in being called back.

Utility Functions 11-11

The XtOwnSelection function informs the Intrinsics selection mechanism
that a widget believes it owns a selection. It returns True if the widget
has successfully become the owner and False otherwise. The widget may
fail to become the owner if some other widget has asserted ownership at a
time later than this widget. Note that widgets can lose selection
ownership either because someone else asserted later ownership of the
selection or because the widget voluntarily gave up ownership of the
selection. Also note that the lose_selection procedure is not called if the
widget fails to obtain selection ownership in the first place.

Usually, the Intrinsics selection mechanism informs an application when one
of its widgets has lost ownership of the selection. However, in response to
some user actions (for example, when a user deletes the information
selected), the application should explicitly inform the Intrinsics that it's
widget no longer is to be the selection owner by using XtDisownSelection.

vo i d XtD i sownSe I ect ion (w, selection, time)

w

selection

Widget w;
A t om selection;
Time time;

Specifies the widget that wishes to relinquish ownership.

Specifies the atom that specifies which selection it is giving
up.

time Specifies the timestamp that indicates when the selection
ownership is relinquished.

The XtDisownSelection function informs the Intrinsics selection mechanism
that the specified widget is to lose ownership of the selection. If the
widget does not currently own the selection either because it lost the
selection or because it never had the selection to begin with,
XtDisownSelection does nothing.

Mter a widget has called XtDisownSelection, its convert procedure is not
called even if a request arrives later with a timestamp during the period
that this widget owned the selection. However, its done procedure will be
called if a conversion that started before the call to XtDisownSelection
finishes after the call to XtDisownSelection.

11.5.3 Using Incremental Transfers

When using the incremental interface, an owner may have to processing
more than one selection request for the same widget and selection value,
converted to the same target, at the same time. The incremental
functions take a receiver argument, which is an identifier that is
guaranteed to be unique among all incremental requests that are active
concurrently.

11-12 Utility Functions

For example, consider the following:

• Upon receiving a request for the selection value, the owner sends the
first segment.

• While waiting to be called to provide the next segment value but
before sending it, the owner receives another request from another
requestor for the same selection value.

• To distinguish between the requests, the owner uses the receiver
identifier. This allows the owner to distinguish between the first
requestor, who is asking for the second segment, and the second
requestor, who is asking for the first segment.

The next three sections discuss:

• Incremental transfer procedures

• Getting the selection value

• Setting the selection owner

11.5.3.1 Incremental Transfer Procedures
- The following procedures are to be used with incremental transfers. The
first four are used by the selection owner, and the last two are used by
the requestor.

typedef Boolean (*XtConvertSelectionIncrProc)(Widget, Atom *
Atom *, Atom *
cadd r _ t *
unsigned long *,
int *,

Widget w;

A tom * selection;
Atom * target;

A tom * type_return ;
cad d r _ t * value_return ;
i n t * length_return;

i n t * formaLreturn;
unsigned long max_len~h;
c add r _ t clienLdata;
caddr_t receiver;

unsigned long,
caddr_t, caddr_t)

Utility Functions 11-13

w Specifies the widget which currently owns this selection.

selection Specifies the atom that describes the type of selection
requested (for example, ~PRIMARY or ~SECONDARY).

target Specifies the target type of the selection that has been
requested, which indicates the sort of information about the
selection which is desired (for example, File Name, Text,
Window).

type_return Specifies a pointer to an atom into which the property type
of the converted value of the selection is to be stored. For
instance, either file name or text might have property type
~STRING.

value_return Specifies a pointer into which a pointer to the converted
value of the selection is to be stored. The selection owner
is responsible for allocating this storage.

length_return Specifies a pointer into which the number of elements in
value (each of size indicated by format) is to be stored.

format_return Specifies a pointer into which the size in bits of the data
elements of the selection value is to be stored.

max_length Specifies the network packet size.

clie nt_data Specifies the value passed in by the widget when it took
ownership of the selection.

receiver Specifies the ID of the receiving client.

This procedure is called by the Intrinsics whenever it needs to get the
next incremental chunk of data from the selection owner. It returns True
if the application has succeeded in converting the selection data or False
otherwise. This procedure is called repeatedly by the Intrinsics if the
owner has established selection ownership by using the
XtOwnSelectionlncremental function. This procedure should store the value
zero in lengtLreturn to indicate that all the selection has been delivered.

typedef void (*XtLoseSelectionlncrProc)(Widget, Atom *
caddr_ t)

Widget w;

A tom * selection;

cadd r _ t clienLdata;

w

selection

c lie nt_data

Specifies the widget that has lost the selection ownership.

Specifies the atom that identifies the selection type.

Specifies the value passed in by the widget when it took
ownership of the selection.

11-14 Utility Functions

This procedure, which is optional, is called by the Intrinsics to inform the
selection owner that it no longer owns the selection.

typedef void (*XtSelectionDoneIncrProc)(Widget, Atom *
Atom *, i nt ,
caddr_t)

w

Widget w;

A tom * selection;

At om * target;

i n t receiver;

cadd r _ t clienLdata;

selection

Specifies the widget that owns the converted selection.

Specifies the atom that describes the selection type

target

receiver

converted.

Specifies the target type to which the conversion was done.

Specifies the ID of the receiving client.

Specified the value passed in by the client when it took
ownership of the selection.

This procedure, which is optional, is called by the Intrinsics after each
completed incremental data transfer whenever it has detected that the
receiving client has retrieved the converted data. If this procedure is not
used, the Intrinsics should free the allocated memory just as it would for a
atomic transfer.

typedef void (*XtCanceIConvertSelectionProc)(Widget, Atom *
Atom *, i nt,
eli ent_data)

w

Widget w;

A tom * selection;

Atom * target;

i n t receiver;

cadd r _ t clienLdata;

selection

Specifies the widget that owns the converted selection.

Specifies the atom that describes the selection type
converted.

target

receiver

Specifies the target type to which the conversion was done.

Specifies the ID of the receiving client.

Utility Functions 11-15

client_data Specifies the value pass in by the client when it requested
the selection.

This procedure is called by the Intrinsics whenever it has determined by
means of a timeout or other mechanism that the selection owner has lost
the connection to the X server. V pon receiving this callback, the receiving
client can free the memory and any other resources that have been
allocated for the selection.

typedef void (*XtSelectionIncrCallbackProc)(Widget, caddr_t,

Atom *, Atom*,

caddr_ t *

Widget w;
caddr_t clienLdata;

A tom * selection;

Atom *type;

cadd r _ t * value ;

unsigned long *len~h;

i n t * format;

unsigned long, int)

Specifies the widget that requested the selection value.

Specifies a value passed in by the widget when it requested
the selection.

selection

type

Specifies the type of selection that was requested.

Specifies the representation type of the selection value (for
example, ~STRING). Note that it is not the target that
was requested but the type that is used to represent the
target. The special XVI Toolkit atom XT_CONVERT_FAIL is
used to indicate that the selection conversion failed because
the selection owner did not respond within the Intrinsics's
selection timeout interval.

value

length

format

Specifies a pointer to the selection value. The requesting
client owns this storage and is responsible for freeing it by
calling XtFree when it is done with it.

Specifies the number of elements in value.

Specifies the size in bits of the data elements of value.

This procedure is called by the Intrinsics to deliver the next incremental
chunk of data to the requestor. The data returned to the application is
logically appended to all of the previously received data.

11-16 Utility Functions

typedef void (*XtCanceISelectionCal IbackProc)(Widget, Atom *
caddr_t)

Widget w;

A tom * selection;

cadd r _ t clienLdata;

w Specifies the widget that owns the converted selection.

selection Specifies the atom that describes the selection type
converted.

client_data Specifies the value pass in by the client when it requested
the selection.

This procedure is called by the Intrinsics to inform the requestor that the
remainder of the selection cannot be obtained from the selection owner.
Upon receiving this callback, the receiving client must determine for itself
whether or not the partially completed data transfer is meaningful.

11.5.3.2 Getting the Selection Value
- To obtain the selection value when using incremental transfers, use
XtGetSelectionValue Incremental or XtGetSelection Val uesl nc remental.

void XtGetSelectionValueIncremental (w, selection, target,
selection_callback,
cance l_callback ,

w

Widget w;
A t om selection;
A t om target;

c lie nt_data, time)

XtSelect ionIncrCallbackProc selection_callback;
X t Can eel S e lee t ion C a I I b a c k Pro c cance l_callback ;
cad d r _ t client_data;
Time time;

Specifies the widget that is making the request.

selection Specifies the particular selection desired (that is, primary or
secondary) .

target Specifies the type of the information that is needed about
the selection.

se lectio n_callback
Specifies the callback procedure that is to be called to obtain
the next incremental chunk of data.

cancel_callbackSpecifies the callback procedure that is to be called if the
connection is lost.

Utility Functions 11-17

client_data Specifies the argument that is to be passed to the specified
procedure when it is called.

time Specifies the timestamp that indicates when the selection is
desired. This should be the timestamp of the event which
triggered this request; the value CurrentTime is not
acceptable.

The XtGetSelectionValuelncremental function is similar to
XtGetSelectionValue except that the callback procedure will be called
repeatedly each time upon delivery of the next segment of the selection
value. The end of the selection value is detected when callback is called
with a value of length zero. If the transfer of the selection is aborted in
the middle of a transfer, the canceLcallback procedure is called so that the
requestor can dispose of the partial selection value it has collected up until
that point.

void XtGetSelectionValueslncremental (w, selection, targets,

w

Widget w;

A t om selection;

A tom * targets;

i nt count;

count, selection_callback,

canceLcallback, clienLdata,

time)

XtSe I ect i on I nc rCa I I backProc selection_callback;

XtCance I Conve rtSe I ect i onProc canceLcallback;

cadd r _ t clienLdata;

Time time;

Specifies the widget that is making the request.

selection Specifies the particular selection desired (that is, primary
secondary) .

or

targets Specifies the types of information that is needed about the
selection.

count Specifies the length of the targets and client_data lists.

selection_callback
Specifies the callback procedure that is to be called with
each selection value obtained. Note that this is how the
selection values are communicated back to the client.

cancel_callbackSpecifies the callback procedure that is to be called when a
selection request aborts because a timeout expires.

11-18 Utility Functions

time

Specifies the client data (one for each target type) that is
passed to the callback procedure when it is called for that
target.

Specifies the timestamp that indicates when the selection
value is desired. This should be the timestamp of the event
which triggered this request; the value CurrentTime is not
acceptable.

The XtGetSelectionVa:ueslncremental function is similar to
XtGetSelectionValuelncremental except that it takes a list of targets and
client_data. XtGetSelectionValueslncremental is equivalent to calling
XtGetSelectionValuelncremental successively for each target/client_data pair.
XtGetSelectionValueslncremental does guarantee that all the conversions will
use the same selection value because the ownership of the selection cannot
change in the middle of the list, as would be possible when calling
XtGetSelectionValuelncremental repeatedly.

11.5.3.3 Setting the Selection Owner
- To set the selection owner when using incremental transfers, use
XtOwnSelectionlncremental.

Boolean XtOwnSelectionIncremental (w, selection, time,

converLcallback,

lose_callback,

Widget w;

A t om selection;

Time time;

done_callback,

canceLcallback, clienLdata)

XtConve rtSe I ect i on I nc rP roc converLcallback;

Xt Los eSe I ec t i on Inc r P roc lose_callback;

XtSe I ect i onDoneI nc rProc done_callback;

Xt Ca nc e I Conve r t Se lee t ion P roc canceL callback ;
cad d r _ t clie nL data;

w

selection

Specifies the widget that wishes to become the owner.

Specifies an atom that describes the type of the selection
(for example, ~PRIMARY, ~SECONDARY, or
~CLlPBOARD) .

time Specifies the timestamp that indicates when the selection
ownership should commence. This should be the timestamp
of the event that triggered ownership; the value CurrentTime
is not acceptable.

Utility Functions 11-19

convert_proc Specifies the procedure that is to be called whenever
someone requests the current value of the selection.

lose_selection Specifies the procedure that is to be called whenever the
widget has lost selection ownership or NULL if the owner is
not interested in being called back.

done_proc Specifies the procedure that is called after the requestor has
received the selection or NULL if the owner is not
interested in being called back.

cancel_callbackSpecifies the callback procedure that is to be called when a
selection request aborts because a timeout expires.

client_data Specifies the argument that is to be passed to the
appropriate procedure when one of the condition occurs.

The XtOwnSelectionlncremental informs the Intrinsics incremental selection
mechanism that the specified widget believes it owns the selection. It
returns True if the specified widget successfully becomes the selection
owner or False otherwise.

Widgets that use the incremental transfer mechanism should use
XtDisownSelection to relinquish selection ownership.

11.6 Merging Exposure Events into a Region
The Intrinsics provide the XtAddExposureToRegion utility function that
merges Expose and GraphicsExpose events into a region that clients can
process at once rather than processing individual rectangles. (For further
information about regions, see the Guide to the Xlib Library.)

To merge Expose and GraphicsExpose events into a region, use
XtAddExposureToRegion.

vo i d XtAddExpos u r eToReg i on (event, region)
XEvent *event;
Reg i on region;

event Specifies a pointer to the Expose or GraphicsExpose event.

region Specifies the region object (as defined in <X11/Xutil.h ».
The XtAddExposureToRegion function computes the union of the rectangle
defined by the exposure event and the specified region. Then, it stores
the results back in region. If the event argument is not an Expose or
GraphicsExpose event, XtAddExposureToRegion returns without an error and
without modifying region.

This function is used by the exposure compression mechanism (see Section
7.9.3).

11-20 Utility Functions

11.7 Translating Widget Coordinates
To translate an x-y coordinate pair from widget coordinates to root
coordinates, use XtTranslateCoords.

void XtTranslateCoords(w, x, y, rootx_return, roo ty_re turn)
Widget w;
Position x, y;
Pos i t ion * roo tx_re turn , *rooty_return;

w Specifies the widget.

x
y Specify the widget-relative x and y coordinates.

rootx_return
rooty _return Returns the root-relative x and y coordinates.

While XtTranslateCoords is similar to the Xlib XTranslateCoordinates
function, it does not generate a server request because all the required
information already is in the widget's data structures.

11.8 Translating a Window to a Widget
To translate a window and display pointer into a widget instance, use
XtWindowToWidget.

Widget XtW i ndowToW i dget (display, window)
Dis p I a y * display;
Window window;

display Specifies the display on which the window is defined.

window Specify the window for which you want the widget.

11.9 Handling Errors
The Intrinsics let a client register procedures that are to be called
whenever a fatal or nonfatal error occurs. These facilities are intended for
both error reporting and logging and for error correction or recovery.

Two levels of interface are provided:

• A high-level interface that takes an error name and class and looks
the error up in an error resource database

• A low-level interface that takes a simple string

Utility Functions 11-21

The high-level functions construct a string to pass to the lower-level
interface. On UNIX-based systems, the error database usually is
lusrllib/X111XtErrorDB.

Note

The application context specific error handling in not implemented
on many systems. Most implementations will have just one set
of error handlers. If they are set for different application
contexts, the one performed last will prevail.

To obtain the error database (for example, to merge with an application or
widget specific database), use XtAppGetErrorDatabase.

X rmDa t a ba se * XtAp pGet E r ro rDa t a ba se (app_context)
XtAppContext app_context;

app_context Specifies the application context.

The XtAppGetErrorDatabase function returns the address of the error
database. The Intrinsics do a lazy binding of the error database and do
not merge in the database file until the first call to
XtAppGetErrorDatbaseText.

For a complete listing of all errors and warnings that can be generated by
the Intrinsics, see Appendix D.

The high-level error and warning handler procedure pointers are of the type
XtErrorMsgHandler:

typedef void (*XtErrorMsgHandler)(String, String,
String, String,
String *,
Cardinal *);

name

type

class

S t r i n g name;
S t r i n g type;
S t r i n g c las s ;
St ring defaultp;
St ring *params;
Car din a I * num_params ;

Specifies the name that is concatenated with the specified
type to form the resource name of the error message.

Specifies the type that is concatenated with the name to
form the resource name of the error message.

Specifies the resource class of the error message.

11-22 Utility Functions

defaultp Specifies the default message to use if no error database
entry is found.

params Specifies a pointer to a list of values to be substituted in
the message.

num_params Specifies the number of values in the parameter list.

The specified name can be a general kind of error, like invalidParameters
or invalidWindow, and the specified type gives extra information. Standard
printf notation is used to substitute the parameters into the message.

An error message handler can obtain the error database text for an error
or a warning by calling XtAppGetErrorDatabaseText.

va i d XtAppGet E r ra rDa t a ba s eTex t (app_context, name, type,
class, default, buffer_return,
nbytes, database)

X tAp pea n t ext app_context;
char * name , * type , *class;
cha r * default;
c h a r * buffer_return;
i nt nbytes;
XrmDatabase database;

app_context

name

Specifies the application context.

type

class

default

buffer_return

nbytes

database

Specifies the name and type that are concatenated to form
the resource name of the error message.

Specifies the resource class of the error message.

Specifies the default message to use if an error database
entry is not found.

Specifies the buffer into which the error message is to be
returned.

Specifies the size of the buffer in bytes.

Specifies the name of the alternative database that is to be
used or NULL if the application's database is to be used.

The XtAppGetErrorDatabaseText returns the appropriate message from the
error database or returns the specified default message if one is not found
in the error database.

To register a procedure to be called on fatal error conditions, use
XtAppSetErrorMsg Hand ler.

Utility Functions 11-23

vo i d XtAppSe t E r ro rMsgHa nd Ie r (app_context, msg-.handler)
X tAp pCo n t ext app_context;
Xt E r ro rMsgHa nd I e r msg_handler;

app_context Specifies the application context.

msg_handler Specifies the new fatal error procedure, which should not
return.

The default error handler provided by the Intrinsics constructs a string
from the error resource database and calls XtError. Fatal error message
handlers should not return. If one does, subsequent XUI Toolkit behavior
is undefined.

To call the high-level error handler, use XtAppErrorMsg.

void XtAppErrorMsg(app_context, name, type, class, default,
params, num_params)

X t Ap pCo n t ext app_context;
S t r i n g name;
S t r i n g type;
S t r i n g class;
St ring default;
S t r i n g * params ;
Ca rd ina I * num_params;

app_context Specifies the application context.

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database
entry is not found.

params Specifies a pointer to a list of values to be stored in the
message.

num_params Specifies the number of values in the parameter list.

The Intrinsics internal errors all have class XtToolkitError.

To register a procedure to be called on nonfatal error conditions, use
XtAppSetWarning Msg Handler.

11-24 Utility Functions

vo i d XtAppSetWa rn i ngMsgHand Ie r (app_context, msg_handler)
X tAp pCo n t ext app_context;
XtE r ro rMsgHand I e r msg_handler;

app_context Specifies the application context.

msg_handler Specifies the new nonfatal error procedure, which usually
returns.

The default warning handler provided by the Intrinsics constructs a string
from the error resource database and calls XtWarning.

To call the installed high-level warning handler, use XtAppWarningMsg.

void XtAppWarningMsg(app_context, name, type, class, default,
params , num_params)

XtAppContext app_context;
S t r i n g name;
S t r i n g type;
S t r i n g class;
St ring default;
S t r i n g * params ;
Car din a I * num_params ;

app_context Specifies the application context.

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database
entry is not found.

params Specifies a pointer to a list of values to be stored in the
message.

num_params Specifies the nwnber of values in the parameter list.

The Intrinsics internal warninings all have class XtToolkitError.

The low-level error and warning handler procedure pointers are of type
XtErrorHand ler:

typedef void (*XtErrorHandler)(String);
St ring message;

message Specifies the error message.

The error handler should display the message string in some appropriate
fashion.

Utility Functions 11-25

To register a procedure to be called on fatal error conditions, use
XtAppSetErrorHandler.

vo i d XtAppSet E r ro rHand Ie r (app_context, handler)
XtAppContext app_context;
XtErrorHandler handler;

app_context

handler

Specifies the application context.

Specifies the new fatal error procedure, which should not
return.

The default error handler provided by the Intrinsics is ~tError. On
UNIX-based systems, it prints the message to standard error and
terminates the application. Fatal error message handlers should not return.
If one does, subsequent XUI Toolkit behavior is undefined.

To call the installed fatal error procedure, use XtAppError.

vo i d XtAppE r ro r (app_context, message)
XtAppCont ext app_context;
St ring message;

app_context Specifies the application context.

message Specifies the message that is to be reported.

Most programs should use XtAppErrorMsg, not XtAppError, to provide for
customization and internationalization of error messages.

To register a procedure to be called on nonfatal error conditions, use
XtAppSetWarningHandler.

vo i d XtAppSetWa rn i ngHand Ie r (app_context, handler)
XtAppContext app_context;
XtE r ro rHand I e r handler;

app_context

handler

Specifies the application context.

Specifies the new nonfatal error procedure, which usually
returns.

The default warning handler provided by the Intrinsics is _XtWarning. On
UNIX-based systems, it prints the message to standard error and returns
to the caller.

To call the installed nonfatal error procedure, use XtAppWarning.

11-26 Utility Functions

void XtAppWarning(app_context, message)
X tAp pCo n t ext app_context;
St ring message;

app_context Specifies the application context.

message Specifies the nonfatal error message that is to be reported.

Most programs should use XtAppWarningMsg, not XtAppWarning, to provide
for customization and internationalization of warning messages.

Utility Functions 11-27

Resource File Format A

A resource file contains text representing the default resource values for an
application or set of applications. The resource file is an ASCII text file
that consists of a number of lines with the following EBNF syntax:

resourcefile
line
comment
production
resourcename
string
name

{line "'-n"}.
(comment I production).
"!" string.
resourcename ":" string.
[" *"] name {(". " I ,,* ") name}.
{<any character not including eol>}.
{"A"-"Z" I "a"-"z" I "O"-"g"}.

If the last character on a line is a backslash (~, that line is assumed to
continue on the next line.

To include a newline character in a string, use "'-n".

Translation Table Syntax B

Notation
Syntax is specified in EBNF notation with the following conventions:

[a]
{ a }

Means either nothing or "a"
Means zero or more occurrences of "a"

All terminals are enclosed in double quotation masks (" "). Informal
descriptions are enclosed in angle brackets « ».

Syntax
The syntax of the translation table file is:

translationTable

directive

production

lhs

keyseq

keychar
event

modifier_list

modifier

count
modifier_name

event_type

detail

rhs

name

namechar

params

string
quoted_string

unquoted_string

[directive] { production }

("#replace" I "#override" I "#augment") ""n"

lhs ":" rhs ""n"

(event I keyseq) { "," (event I keyseq)

"u" keychar {keychar} """

["~,, I "$" I ",,"] <ISO Latin 1 character>
[modifier_list] "<"event_type">" ["(" count["+"] ")"] {detail}

(["!" I ":"] {modifier}) I "None"
[" ~'] modifier_name

("1" I "2" I "3" I "4" I ...)
"@" <keysym> I <see ModifierNames table below>

<see Event Types table below>

<event specific details>
{ name "(" [params] ")" }

namechar { namechar }

{ "a"-"z" I "A"-"Z" I "0"-"9" "$" I
string {" ," string}.

quoted_string I unquoteCLstring

" "" {<Latin 1 character>}
{<Latin 1 character except space, tab, newline, ")" > }

It is often convenient to include newlines in a translation table to make it
more readable. In C, indicate a newline with a ""n":

" <BtnlDown>:DoSomething() "n "
<Btn2Down >: DoS omethingElse() "

Modifier Names
The modifier field is used to specify normal X keyboard and button
modifier mask bits. Modifiers are legal on event types KeyPress,
KeyRelease, ButtonPress, ButtonRelease, MotionNotify, EnterNotify,
LeaveNotify, and their abbreviations. An error is generated when a
translation table that contains modifiers for any other events is parsed.

• If the modifier_list has no entries and is not "None", it means "don't
care" on all modifiers.

• If an exclamation point (!) is specified at the beginning of the
modifier list, it means that the listed modifiers must be in the correct
state and no other modifiers can be asserted.

• If any modifiers are specified and an exclamation point (!) is not
specified, it means that the listed modifiers must be in the correct
state and "don't care" about any other modifiers.

• If a modifier is preceded by a tilde (j, it means that that modifier
must not be asserted.

• If "None" is specified, it means no modifiers can be asserted.

• If a colon (:) is specified at the beginning of the modifier list, it
directs the Intrinsics to apply any standard modifiers in the event to
map the event keycode into a keysym. The default standard
modifiers are Shift and Lock, with the interpretation as defined in the
X Window System Protocol, X Version 11. The resulting keysym
must exactly match the specified keysym, and the nonstandard
modifiers in the event must match the modifier_list. For example,
":<Key>a" is distinct from ":<Key>A", and ":Shift<Key>A" is
distinct from ": <Key> A" .

• If a colon (:) is not specified, no standard modifiers are applied.
Then, for example, "<Key >A" and "<Key >a" are equivalent.

In key sequences, a circumflex (,..) is an abbreviation for the Control
modifier, a dollar sign ($) is an abbreviation for Meta, and a backslash
("0 can be used to quote any character, in particular a double quote ("), a
circumflex ("'), a dollar sign ($), and another backslash ("0. Briefly:

No Modifiers:
Any Modifiers:

8-2 Translation Table Syntax

N one <event> detail
<event> detail

Only these Modifiers:
These modifiers and any others:

! mod! mod2 <event> detail
mod! mod2 <event> detail

The use of "None" for a modifier_list is identical to the use of and
exclamation point with no modifers.

Modifier Abbreviation Meaning

Ctrl c Control modifier bit
Shift s Shift modifier bit
Lock 1 Lock modifier bit
Meta m Meta key modifier (see below)
Hyper h Hyper key modifier (see below)
Super su Super key modifier (see below)
Alt a Alt· key modifier (see below)
Mod! Mod! modifier bit
Mod2 Mod2 modifier bit
Mod3 Mod3 modifier bit
Mod4 Mod4 modifier bit
Mod5 Mod5 modifier bit
Button! Button! modifier bit
Button2 Button2 modifier bit
Button3 Button3 modifier bit
Button4 Button4 modifier bit
Button5 Button5 modifier bit
ANY Any combination

A key modifier is any modifier bit whose corresponding keycode contains
the corresponding left or right keysym. For example, "m" or "Meta"
means any modifier bit mapping to a keycode whose keysym list contains
XLMet~ or XLMet~. Note that this interpretation is for each
display, not global or even for each application context. The Control,
Shift, and Lock modifier names refer explicitly to the corresponding
modifier bits; there is no additional interpretation of keysyms for these
modifiers.

Because it is possible to associate arbitrary keysyms with modifiers, the set
of modifier key modifiers is extensible. The /I @ /I <keysym> syntax means
any modifier bit whose corresponding keycode contains the specified
keysym.

A modifier_list/keysym combination in a translation matches a
modifiers/keycode combination in an event in the following:

Translation Table Syntax 8-3

1. If a colon (:) is used, the Intrinsics call the display's XtKeyProc with
the keycode and modifiers. To match, (modifiers & -modifiers_return)
must equal modifier_list, and keysymJ'eturn must equal the given
keysym.

2. If (:) is not used, the Intrinsics mask off all don't-care bits from the
modifiers. This value must be equal to modifier_list. Then, for each
possible combination of don't-care modifiers in the modifier_list, the
Intrinsics call the display's XtKeyProc with the keycode and that
combination ORed with the cared-about modifier bits from the event.
Keysym_return must match the keysym in the translation.

Event Types
The EventType field describes XEvent types. The following are the
currently defined EventType values:

Type Meaning

Key KeyPress
KeyDown
KeyUp KeyRelease
BtnDown ButtonPress
BtnUp ButtonRelease
Motion MotionNotify
PtrMoved
MouseMoved
Enter EnterNotify
EnterWindow
Leave LeaveNotify
Leave Window
Focusln Focusln
FocusOut FocusOut
Keymap KeymapNotify
Expose Expose
GrExp GraphicsExpose
NoExp NoExpose
Visible VisibilityNotify
Create CreateNotify
Destroy DestroyNotify
Unmap UnmapNotify
Map MapNotify
MapReq MapRequest
Reparent ReparentNotify

8-4 Translation Table Syntax

Type

Configure
ConfigureReq
Grav
ResReq
Circ
CircReq
Prop
SelClr
SelReq
Select
Clrmap
Message
Mapping

Meaning

ConfigureNotify
ConfigureRequest
GravityNotify
ResizeRequest
CirculateNotify
CirculateRequest
PropertyNotify
SelectionC lear
Selection Request
Selection Notify
ColormapNotify
ClientMessage
MappingNotify

The supported abbreviations are:

Abbreviation

Ctrl
Meta
Shift
BtnlDown
BtnlUp
Btn2Down
Btn2Up
Btn3Down
Btn3Up
Btn4Down
Btn4Up
Btn5Down
Btn5Up
BtnMotion
BtnlMotion
Btn2Motion
Btn3Motion
Btn4Motion
Btn5Motion

Meaning

KeyPress with control modifier
KeyPress with meta modifier
KeyPress with shift modifier
ButtonPress with Btnl detail
ButtonRelease with Btnl detail
ButtonPress with Btn2 detail
ButtonRelease with Btn2 detail
ButtonPress with Btn3 detail
ButtonRelease with Btn3 detail
ButtonPress with Btn4 detail
ButtonRelease with Btn4 detail
ButtonPress with Btn5 detail
ButtonRelease with Btn5 detail
MotionNotify with any button modifier
MotionNotify with Buttonl modifier
MotionNotify with Button2 modifier
MotionNotify with Button3 modifier
Motion Notify with Button4 modifier
MotionNotify with Button5 modifier

Translation Table Syntax 8-5

The Detail field is event specific and normally corresponds to the detail
field of an X Event, for example, <Key>A. If no detail field is specified,
then ANY is assumed.

A keysym can be specified as any of the standard keysym names, a
hexadecimal number prefixed with "Ox" or "OX", an octal number prefixed
with "0" or a decimal number. A keysym expressed as a single digit is
interpreted as the corresponding Latin 1 keysym, for example, "0" is the
keysym X~O. Other single character keysyms are treated as literal
constants from Latin 1, for example, "!" is treated as Ox21. Standard
keysym names are as defined in <X11/keysymdef.h> with the "X~"
prefix removed.

Canonical Representation
Every translation table has a unique, canonical text representation. This
representation is passed to a widget's display_accelerator method to
describe the accelerators installed on that widget. The canonical
representation of a translation table file is (see also "Syntax"):

translationTable

production

lhs
event
modifier_list

modifier

count
modifier_name

event_type
detail
rhs

name

namechar
params
string
quoted_ string

{ production }

lhs ":" rhs "~"
event { "," event
[modifier_list] " <"event_type">" ["(" count["+"] ")"] {detail}

["!" I ":"] {modifier}
[" '11] modifier_name

("1" I "2" I "3" I "4" I ...)
" @" <keysym> I <see canonical modifier names below>

<see canonical event types below>
<event specific details>
{ name "(" [params] ")" }

namechar { namechar }

{ "a"-"z" I "A"-"Z" I "0"-"9" I "$" I
string {" ," string}.
quoted_string

" " " {<Latin 1 character>}

The canonical modifier names are:

Ctrl Buttonl
Shift Button2
Lock Button3
ModI Button4
Mod2 Button5
Mod3

8·6 Translation Table Syntax

Mod4
Mod5

The canonical event types are:

KeyPress
ButtonPress
MotionNotify
LeaveNotify
FocusOut
Expose
No Expose
C reate Notify
UnmapNotify
MapRequest
ConfigureNotify
GravityNotify
CirculateNotify
PropertyNotify
SelectionRequest
ColormapNotify

Examples

KeyRelease
ButtonRelease
EnterNotify
Focusln
KeymapNotify
GraphicsExpose,
VisibilityNotify
DestroyNotify
MapNotify
ReparentNotify
ConfigureRequest
ResizeRequest
CirculateRequest
SelectionClear
Selection Notify
C lientMessage

• Always put more specific events in the table before more general ones:

Shift <BtnlDown> : twas() "n "
<BtnlDown> : brillig()

• For double-click on Button 1 Up with Shift, use this specification:

Shift <BtnlUp >(2) : andO

This is equivalent to the following line with appropriate timers set
between events:

Shift<BtnlDown>,Shift<BtnlUp>,Shift<BtnlDown>,Shift<BtnlUp> : and()

• For double-click on Button 1 Down with Shift, use this specification:

Shift <BtnlDown >(2) : the()

This is equivalent to the following line with appropriate timers set
between events:

Shift <BtnlDown>,Shift <Btnl Up >,Shift <BtnlDown> : the()

Translation Table Syntax B-7

• Mouse motion is always discarded when it occurs between events in a
table where no motion event is specified:

<BtnlDown>,<BtnlUp> : slithy()

This is taken, even if the pointer moves a bit between the down and
up events. Similarly, any motion event specified in a translation
matches any number of motion events. If the motion event causes
an action procedure to be invoked, the procedure is invoked after each
motion event.

• If an event sequence consists of a sequence of events that is also a
non-initial subsequence of another translation, it is not taken if it
occurs in the context of the longer sequence. This occurs mostly in
sequences like the following:

<BtnlDown>,<BtnlUp> : tovesO "n"
<Btnl Up> did()

The second translation is taken only if the button release is not
preceded by a button press or if there are intervening events between
the press and the release. Be particularly aware of this when using
the repeat notation, above, with buttons and keys because their
expansion includes additional events, and when specifying motion
events because they are implicitly included between any two other
events. In particular, pointer motion and double-click translations
cannot coexist in the same translation table.

• For single click on Button 1 Up with Shift and Meta, use this
specification:

Shift Meta <BtnlDown>, Shift Meta<BtnlUp>: gyreO

• You can use a plus sign (+) to indicate "for any number of clicks
greater than or equal to count"; for example:

Shift <BtnlUp>(2+) : andO

• To indicate EnterNotify with any modifiers, use this specification:

<E nter > : gimble()

• To indicate EnterNotify with no modifiers, use this specification:

None <Enter> : in()

• To indicate EnterNotify with Button 1 Down and Button 2 Up and
don't care about the other modifiers, use this specification:

B uttonl "B utton2 <E nter > : the()

8-8 Translation Table Syntax

• To indicate EnterNotify with Buttonl Down and Button2 Down
exclusively, use this specification:

! Buttonl Button2 <Enter> : wabeO

You do not need to use a tilde (j with an exclamation point (!).

Translation Table Syntax 8-9

Conversion Notes C

In the X Version 10 and alpha release X Version 11 XUI Toolkit each
widget class implemented an Xt < Widget >Create (for example,
XtLabelCreate) function, in which most of the code was identical from
widget to widget. In this XUI Toolkit, a single generic XtCreateWidget
performs most of the common work and then calls the initialize procedure
implemented for the particular widget class.

Each composite widget class also implemented the procedures
Xt<Widget>Add and an Xt<Widget>Delete (for example,
XtButtonBoxAddButton and XtButtonBoxDeleteButton). In the beta release X
Version 11 XUI Toolkit, the composite generic procedures XtManageChildren
and XtUnmanageChiidren perform error-checking and screening out of
certain children. Then, they call the change_managed procedure
implemented for the widget's composite class. If the widget's parent has
not yet been realized, the call on the change_managed procedure is delayed
until realization time.

Old style calls can be implemented in the XUI Toolkit by defining one-line
procedures or macros that invoke a generic routine. For example, you
could define the macro XtCreateLabel as:

#define XtCreateLabel(name, parent, args, num_args) "-

«LabeIWidget) XtCreateWidget(name, labelWidgetClass, parent, args, num_args))

Pop-up shells no longer automatically perform an XtManageChild on their
child within their insert_child procedure. Creators of pop-up children need
to call XtManageChild themselves.

As a convenience to people converting from earlier versions of the toolkit
and for greater orthogonality, the following routines exist: Xtlnitialize,
XtMainLoop, XtNextEvent, XtProcessEvent, XtPeekEvent, XtPending,
XtAddlnput, XtAddTimeOut, XtAddWorkProc, and XtCreateApplicationShel1.

Widget Xt In i t i a I i ze (shell_name, application_class, options,
num_o ptio ns, argc , argu)

S t r i n g shell_name;
S t r i n g application_class;
X rmOpt i onDescRec options [] ;
Ca rd i na I num_options;
Car din a I * argc ;
S t r i n g argu [] ;

This parameter is ignored; therefore, you can specify NULL.

application_class
Specifies the class name of this application.

options Specifies how to parse the command line for any application
specific resources. The options argument is passed as a
parameter to XrmParseCommand. For further information,
see the Guide to the Xlib Library.

num_options Specifies the number of entries in options list.

argc Specifies a pointer to the number of command line
parameters.

argu Specifies the command line parameters.

Xtlnitialize calls XtToolkitlnitialize to initialize the toolkit internals, creates a
default application context for use by the other convenience routines, then
calls XtOpenDisplay with a display_string of NULL and an
applicatioILname of NULL, and finally calls XtAppCreateShell, with an
applicatioILname of NULL and returns the created shell. The semantics
of calling Xtlnitialize more than once are undefined. See
XtCreateApplicationContext, XtDisplaylnitialize, and XtAppCreateShell for more
information.

void XtMainLoop()

XtMainLoop first reads the next incoming file, timer, or X event by calling
XtNextEvent. Then, it dispatches this to the appropriate registered
procedure by calling XtDispatchEvent. This can be used as the main loop
of XUI Toolkit applications, and, as such, it does not return. Applications
are expected to exit in response to some user action. This routine has
been replaced by XtAppMainLoop.

There is nothing special about XtMainLoop. It is simply an infinite loop
that calls
XtNextEvent then XtDispatchEvent.

C-2 Conversion Notes

vo i d XtNextEvent (event_return)
XEvent *event_return;

event_return Returns the event information to the specified event
structure.

If no input is on the X input queue for the default application context,
XtNextEvent flushes the X output buffer and waits for an event while
looking at the other input sources and timeout values and calling any
callback procedures triggered by them. This routine has been replaced by
XtAppNextEvent. Xtlnitialize must be called before using this routine.

v 0 i d X t Pro c e ssE v e n t (mask)
Xt I nputMask mask;

mask Specifies the type of input to process.

XtProcessEvent processes one input event, timeout, or alternate input source
(depending on the value of mask), waiting if necessary. It has been
replaced by XtAppProcessEvent. Xtlnitialize must be called before using this
function.

Boo lean Xt PeekEvent (event_return)
XEve n t * event_return;

event_return Returns the event information to the specified event
structure.

If there is an event in the queue for the default application context,
XtPeekEvent fills in the event and returns a non-zero value. If no X input
is on the queue, XtPeekEvent flushes the output buffer and blocks until
input is available, possibly calling some timeout callbacks in the process.
If the input is an event, XtPeekEvent fills in the event and returns a non
zero value. Otherwise, the input is for an alternate input source, and
XtPeekEvent returns zero. This routine has been replaced by
XtApp Pee kEvent. Xtlnitialize must be called before using this routine.

Boolean XtPending()

The XtPending returns a nonzero value if there are events pending from
the X server or other input sources in the default application context. If
there are no events pending, it flushes the output buffer and returns a
zero value. It has been replaced by XtAppPending. Xtlnitialize must be
called before using this routine.

Conversion Notes C-3

Xt Input Id XtAddlnput (source, condition, proc, client_data)
i nt source;

source

cad d r _ t co nditio n ;
X tin put C a I I b a c k Pro c proc;
cad d r _ t client_data;

Specifies the source file descriptor on a UNIX-based system
or other operating system dependent device specification.

condition Specifies the mask that indicates either a read, write, or
exception condition or some operating system dependent
condition.

proc

client_data

Specifies the procedure that is called when input is available.

Specifies the parameter to be passed to proc when input is
available.

The XtAddlnput function registers with the XUI Toolkit default application
context a new source of events, which is usually file input but can also be
file output. (The word "file" should be loosely interpreted to mean any
sink or source of data.) XtAddlnput also specifies the conditions under
which the source can generate events. When input is pending on this
source in the default application context, the callback procedure is called.
This routine has been replaced by XtAppAddlnput. Xtlnitialize must be
called before using this routine.

Xtlntervalld XtAddTimeOut(interval, proc, client_data)
uns i gned long interval;
XtTimerCa II backProc proc;
cad d r _ t client_data;

interval Specifies the time interval in milliseconds.

proc Specifies the procedure to be called when time expires.
client_data Specifies the parameter to be passed to proc when it is

called.

The XtAddTimeOut function creates a timeout in the default application
context and returns an identifier for it. The timeout value is set to
interval. The callback procedure will be called after the time interval
elapses, after which the timeout is removed. This routine has been
replaced by XtAppAddTimeOut. Xtlnitialize must be called before using this
routine.

C-4 Conversion Notes

XtWorkProcId XtAddWorkProc(proc, c~su~)

XtWorkProc proc;
Opaq u e c~sure;

Procedure to call to do the work. proc

c~sure Client data to pass to proc when it is called.

This routine registers a work proc in the default application context. It has
been replaced by XtAppAddWorkProc. Xtlnitialize must be called before
using this routine.

Widget XtC reat eApp I i ca t i onShe I I (name, widget_class, args,
num_args)

S t r i n g name;
Wi dgetC I ass widget_class;
A r g Lis t args;
Ca rd i na I num_args;

name This parameter is ignored; therefore, you can specify NULL.

widget_class Specifies the widget class pointer for the created application
shell widget. This will usually be topLevelSheliWidgetClass or
a subclass thereof.

args Specifies the argument list to override the resource defaults.

num_args Specifies the number of arguments in args.

XtCreateApplicationShell calls XtAppCreateShell with an applicatiolLname of
NULL, the applicatiolLclass passed to Xtlnitialize and the default
application context created by Xtlnitialize. This routine has been replaced
by XtAppCreateShel1.

To register a new converter, use the procedure XtAddConverter.

vo i d XtAddConve rt e r (from_type, to_type, converter, convert_args,
num_args)

St ring from_type;
St ring to_type;
XtConve r t e r converter;
XtConvertArgL i st convert_args;
Ca rd i na I num_args;

{rom_type

to_type

converter

Specifies the source type.

Specifies the destination type.

Specifies the type converter procedure.

Conversion Notes C-5

convert_args Specifies how to compute the additional arguments to the
converter or NULL.

num_args Specifies the number of additional arguments to the
converter or zero.

For the few type converters that need additional arguments, the Intrinsics
conversion mechanism provides a method of specifying how these arguments
should be computed. The enumerated type XtAddressMode and the
structure XtConvertArgRec specify how each argument is derived. These
are defined in < X111Convert.h >.
typedef enum {

/* address mode

XtAddress,

XtBaseOffset,
Xtlmmediate,

XtResourceString,

XtResourceQuark

X tAddressMode;

typedef struct {

XtAddressMode address_mode;
caddr_t address_id;

Cardinal size;
XtConvertArgRec, *XtConvertArgList;

parameter representation * /
/* address */

/* offset */

/* constant * /
/* resource name string */

/* resource name quark */

The address_mode field specifies how the address_id field should be
interpreted. XtAddress causes address_id to be interpreted as the address
of the data. XtBaseOffset causes address_id to be interpreted as the offset
from the widget base. Xtlmmediate causes address_id to be interpreted as
a constant. XtResourceString causes address_id to be interpreted as the
name of a resource that is to be converted into an offset from widget
base. XtResourceQuark is an internal compiled form of an
XtResourceString. The size field specifies the length of the data in bytes.

The following provides the code that was used to register the
CvtStringToPixel routine shown earlier:

static XtConvertArgRec colorConvertArgs[] = {

};

{XtBaseOffset, (caddr_t) XtOffset(Widget, core.screen), sizeof(Screen *)},

{XtBaseOffset, (caddr_t) XtOffset(Widget, core.colormap) ,sizeof(Colormap) }

XtAddConverter(XtRString, XtRPixel, CvtStringToPixel,

colorConvertArgs, XtNumber(colorConvertArgs»;

C-6 Conversion Notes

The conversion argument descriptors colorConvertArgs and
screenConvertArg are predefined. The screenConvertArg descriptor puts the
widget's screen field into args[O]. The colorConvertArgs descriptor puts the
widget's screen field into args[O], and the widget's colormap field into
args[l].

Conversion routines should not just put a descriptor for the address of the
base of the widget into args[O], and use that in the routine. They should
pass in the actual values that the conversion depends on. By keeping the
dependencies of the conversion procedure specific, it is more likely that
subsequent conversions will find what they need in the conversion cache.
This way the cache is smaller and has fewer and more widely applicable
entries.

To deallocate a shared GC when it is no longer needed, use XtDestroyGC.

void XtDestroyGC(w, ~)
Widget w;
GC gc;

w Specifies the widget.

gc Specifies the GC to be deallocated.

References to sharable GCs are counted and a free request is generated to
the server when the last user of a given GC destroys it. Note that some
earlier versions of XtDestroyGC had only a gc argument. Therefore, this
function is not very portable, and you are encouraged to use XtReleaseGC
instead.

To declare an action table and register it with the translation manager, use
XtAddActions.

v 0 i d X tAd d Act ion s (actio ns, num_actio ns)
X t Act ion Lis t actio ns ;
Ca r din a I num_actions;

actions Specifies the action table to register.

num_args Specifies the number of entries in this action table.

If more than one action is registered with the same name, the most
recently registered action is used. If duplicate actions exist in an action
table, the first is used. The Intrinsics register an action table for
MenuPopup and MenuPopdown as part of XUI Toolkit initialization.

To set the Intrinsics selection timeout, use XtSetSelectionTimeout.

Conversion Notes C-7

v 0 i d X t Set S e I e c t ion Tim eo u t (timeo ut)
u ns i gned long timeout;

timeout Specifies the selection timeout in milliseconds.

To get the current selection timeout value, use XtGetSelectionTimeout.

unsigned long XtGetSelectionTimeout()

The selection timeout is the time within which the two communicating
applications must respond to one another. If one of them does not
respond within this interval, the Intrinsics aborts the selection request.
The default value of the selection timeout is five seconds.

To obtain the error database (for example, to merge with an application or
widget specific database), use XtGetErrorDatabase.

XrmDatabase *XtGetErrorDatabase()

The XtGetErrorDatabase function returns tha address of the error database.
The Intrinsics do a lazy binding of the error database and do not merge in
the database file until the first call to XtGetErrorDatbaseText.

For a complete listing of all errors and warnings that can be generated by
the Intrinsics, see Appendix D.

An error message handler can obtain the error database text for an error
or a warning by calling XtGetErrorDatabaseText.

void XtGetErrorDatabaseText(name, type, class, default,

name

buffer_return, nbytes)
char * name , * type , *class;
c h a r * de fa ult ;
cha r *buffer_return;
in t nbytes;

type Specifies the name and type that are concatenated to form
the resource name of the error message.

class Specifies the resource class of the error message.

default Specifies the default message to use if an error database
entry is not found.

buffer_return Specifies the buffer into which the error message is to be
returned.

C-8 Conversion Notes

nbytes Specifies the size of the buffer in bytes.

The XtGetErrorDatabaseText returns the appropriate message from the error
database or returns the specified default message if one is not found in the
error database.

To register a procedure to be called on fatal error conditions, use
XtSetErrorMsg Hand ler.

vo i d XtSetE r ro rMsgHand I e r (msg_handler)
XtE r ro rMsgHand Ie r msg_handler;

msg_handler Specifies the new fatal error procedure, which should not
return.

The default error handler provided by the Intrinsics constructs a string
from the error resource database and calls XtError. Fatal error message
handlers should not return. If one does, subsequent XUI Toolkit behavior
is undefined.

To call the high-level error handler, use XtErrorMsg.

vo i d X t Err 0 r M 5 g (name, type, class, default, params, num_params)
S t r i n g name;

name

S t r i n g type;
S t r i n g c las s ;
St ring default;
S t r i n g * params ;
Ca rd i na I * num_params;

Specifies the general kind of error.

Specifies the detailed name of the error.

Specifies the resource class.

type

class

default Specifies the default message to use if an error database
entry is not found.

params Specifies a pointer to a list of values to be stored in the
message.

num_params Specifies the number of values in the parameter list.

The Intrinsics internal errors all have class XtToolkitError.

To register a procedure to be called on nonfatal error conditions, use
XtSetWarningMsgHandler.

Conversion Notes e-g

void XtSetWarningMsgHandler(~g_handkr)
XtE r ro rMsgHand Ie r ~g_handkr;

~g_handkr Specifies the new nonfatal error procedure, which usually
returns.

The default warning handler provided by the Intrinsics constructs a string
from the error resource database and calls XtWarning.

To call the installed high-level warning handler, use XtWarningMsg.

vo i d XtWa r n i ngMsg (name, type, class, default, params,
num_params)

name

type

class

S t r i n g name;
S t r i n g type;
S t r i n g c las s ;
S t r i n g default;
S t r i n g * params ;
Ca rd i na I >:< num_params;

Specifies the general kind of error.

Specifies the detailed name of the

Specifies the resource class.

error.

default Specifies the default message to use if an error database
entry is not found.

params Specifies a pointer to a list of values to be stored in
message.

num_params Specifies the number of values in the parameter list.

The Intrinsics internal warninings all have class XtToolkitError.

To register a procedure to be called on fatal error conditions, use
XtSetErrorHandler.

v 0 i d X t Set Err 0 r Han die r (handk r)
Xt E r ro rHa nd Ie r handkr;

the

handler Specifies the new fatal error procedure, which should not
return.

The default error handler provided by the Intrinsics is -><tError. On
UNIX-based systems, it prints the message to standard error and
terminates the application. Fatal error message handlers should not return.
If one does, subsequent XUI Toolkit behavior is undefined.

C-10 Conversion Notes

To call the installed fatal error procedure, use XtError.

vo i d XtE r ro r (message)
St ring message;

message Specifies the message that is to be reported.

Most programs should use XtErrorMsg, not XtError, to provide for
customization and internationalization of error messages.

To register a procedure to be called on nonfatal error conditions, use
XtSetWarningHandler.

vo i d XtSetWa rn i ngHand Ie r (handler)
XtE r ro rHand I e r handler;

handler Specifies the new nonfatal error procedure, which usually
returns.

The default warning handler provided by the Intrinsics is _XtWarning. On
UNIX-based systems, it prints the message to standard error and returns
to the caller.

To call the installed nonfatal error procedure, use XtWarning.

vo i d XtWa rn i ng (message)
St ring message;

message Specifies the nonfatal error message that is to be reported.

Most programs should use XtWarningMsg, not XtWarning, to provide for
customization and internationalization of warning messages.

Conversion Notes C-11

Standard Errors and Warnings D

All XUI Toolkit errors and warnings have class XtToolkitError. The
following two tables summarize all of the errors and warnings that can be
generated by the XUI Toolkit.

Error Messages

Name

allocError

allocError

allocError

communicationError

internalE rror

invalidArgC0 unt

invalidArgCount

invalidClass

invalidClass

invalidClass

invalidClass

invalidClass

invalidClass

invalidDisplay

invalid Geometry Manager

Type

calloc
malloc

realloc

select

shell

xtGet Values

xtSetValues

constraintSetValue

xtAppCreateShell

xtCreatePopupShell

xtCreate Widget

xtPopdown

xtPopup

xtlnitialize

xtMakeGeometryRequest

Default Message

Cannot perform calloc

Cannot perform malloc

Cannot perform realloc

Select failed

Shell's window manager interaction

is broken
Argument count > 0 on NULL

argument list in XtGetValues

Argument count > 0 on NULL

argument list in XtSetValues
Subclass of Constraint required in

CallConstraintSet Values

XtAppCreateShell requires non

NULL widget class

XtCreatePopupShell requires non

NULL widget class

XtCreateWidget requires non-NULL

widget class

XtPopdown requires a subclass of

shellWidgetC lass
XtPopup requires a subclass of

shellWidgetC lass

Can't Open display

XtMakeGeometryRequest - parent

has no geometry manager

Name

invalidParameter

invalidParameter

invalidParameters

invalidParameters

invalidParent

invalidParent

invalidParent

invalidParent

invalidParent

invalidParent

invalidParent

invalidPopup

invalidPopup

invalidProcedure
invalidProcedure

invalidWindow

missingEvent

noAppContext

noPerDisplay

noPerDisplay

noS electionProperties

nullProc

subclassMismatch

Type

removePopupFromParent

xtAddlnput

xtMenuPopupAction

xtmenuPopdown

realize

xtCreatePopupShell

xtCreate Widget

xtMakeGeometryRequest

xtMakeGeometryRequest

xtManageChildren

xt U nmanageChildren

xtMenuPopup

xtMenuPopup

inheritanceProc

realizeProc

eventHandler

shell

widgetToApplicationContext

closeDisplay

get Per Display

freeSelectionProperty

insertChild

xtCheckSubclass

0-2 Standard Errors and Warnings

Default Message

RemovePopupFromParent requires
non-NULL popuplist

invalid condition passed to

XtAddlnput

MenuPopup wants exactly one

argument
XtMenuPopdown called with

num_params ! = 0 or 1

Application shell is not a windowed

widget?
XtCreatePopupShell requires non

NULL parent

XtCreate Widget requires non-NULL

parent

XtMakeGeometryRequest - NULL

parent. Use SetValues instead

XtMakeGeometryRequest - parent

not composite

Attempt to manage a child when

parent is not Composite
Attempt to unmanage a child when

parent is not Composite
Can't find popup in _XtMenuPopup

Can't find popup in _XtMenuPopup

Unresolved inheritance operation

No realize class procedure defined

Event with wrong window

Events are disappearing from under

Shell
Couldn't find ancestor with display

information

Couldn't find per display

information

Couldn't find per display

information

internal error: no selection property

context for display

NULL insert_child procedure

Widget class %s found when

subclass of % s expected: % s

Name

translationError

wrongParameters

wrongParameters

wrongParameters

wrongParameters

wrongParameters

Warning Messages

Name

ambigiousParent

ambigio us Parent

communic at io nE rror

conversionE rror

displayError
grabError

grabError

grabError

initializationError

invalidArgC0 unt

invalidCallbackList

Type

mergingTables WithCycles

cvtIntOrPixelToXColor

cvtStringToCursor

cvtStringToFont

cvtStringToFontStruct

cvtStringToPixel

Type

xtManageChildren

xt U nmanageChildren

windowManager

string

invalidDisplay
grabDestroyC allback

grabDestroyCallback

xtRemoveGrab

xtInitialize

getResources

xtAddCallbacks

Default Message

Trying to merge translation tables
with cycles, and can't resolve this

cycle.

Pixel to color conversion needs

screen and colormap arguments

String to cursor conversion needs
screen argument

String to font conversion needs

screen argument

String to cursor conversion needs
screen argument

String to pixel conversion needs

screen and colormap arguments

Default Message

Not all children have same parent

in XtManageChildren

Not all children have same parent
in XtUnmanageChildren

Window Manager is confused

Cannot convert string "%s" to

type "%s"

Can't find display structure
XtAddGrab requires exclusive grab

if spring_loaded is TRUE

XtAddGrab requires exclusive grab

if spring_loaded is TRUE

XtRemoveGrab asked to remove a

widget not on the grab list

Initializing Resource Lists twice

argument count > 0 on NULL

argument list
Cannot find callback list in

XtAddCallbacks

Standard Errors and Warnings 0-3

Name

invalidCallbackList

invalidCallbackList

invalidCallbackList

invalidCallbackList

invalidChild

invalidChild

invalidDepth

invalidGeometry

invalidParameters

invalidParameters

invalidParameters

invalidParent

invalidPopup

invalidPopup

invalidProcedure

invalidProcedure

invalidProcedure

invalidResourceCount

invalidResourceN arne

invalidS hell

Type

xtCallCallback

xtOverrideCallback

xtRemoveAllC allback

xtRemoveC allbacks

xtManageChildren

xt U nmanageChildren

setValues

xtMakeGeometryRequest

compileAccelerators

compileTranslations

mergeTranslations

xtCopyFromParent

unsupported Operation

unsupported Operation

deleteChild

inputHandler

getResources

computeArgs

xtTranslateCoords

0-4 Standard Errors and Warnings

Default Message

Cannot find callback list in

XtCallCallbacks

Cannot find callback list in

X tOverrideCallbacks

Cannot find callback list in

X tRemoveAllCallbacks
Cannot find callback list in

XtRemoveCallbacks

null child passed to

XtManageChildren
Null child passed to

X t U nmanageChildren

Can't change widget depth

Shell subclass did not take care of

geometry in XtSetValues

String to AcceleratorTable needs no

extra arguments

String to TranslationTable needs

no extra arguments

MergeTM to TranslationTable needs
no extra arguments

CopyFromParent must have non

NULL parent

Pop-up menu creation is only

supported on ButtonPress or

EnterNotify events.

Pop-up menu creation is only

supported on ButtonPress or

EnterNotify events.
null delete_child procedure in

XtDestroy

XtRemoveInput: Input handler not

found

set_ values_almost procedure

shouldn't be NULL

resource count > 0 on NULL

resource list

Cannot find resource name % s as

argument to conversion

Widget has no shell ancestor

Name

invalidS ize Override

invalidTypeOverride

invalidWidget

noColormap

registerWindowError

registerWindowError

translation error

translation error

translationError

translationError

translationError

translationError
translationError

translationParseError
translationParseError
typeConversionError
versionMismatch

wrongParameters

wrongParameters

wrongParameters

wrongParameters

Type

xtDependencies

xtDependencies

removePopupFromParent

cvtStringToPixel

xtRegisterWindow

xt U nregisterWindow

nullTable

nullTable

ambigiousActions

mergingN ullTable

nullTable

unboundActions
xtTranslateInitialize

parseError
parseString
noConverter
widget

cvtlntToBool

cvtIntToBoolean

cvtIntToFont

cvtIntToPixel

Default Message

Representation size %d must
match superclass's to override %s
Representation type % s must
match superclass's to override %s
RemovePopupFromParent, widget not
on parent list
Cannot allocate colormap entry for

s
Attempt to change already
registered window.
Attempt to unregister invalid
window.
Can't remove accelerators from

NULL table
Tried to remove non-existant
accelerators
Overriding earlier translation
manager actions.
Old translation table was null,
cannot modify.
Can't translate event thorugh
NULL table
Actions not found: % s
Intializing Translation manager
twice.
translation table syntax error: % s
Missing" .
No type converter registered for
Widget class % s version
mismatch:Oidget % d vs. intrinsics
%d.
Integer to Bool conversion needs
no extra arguments
Integer to Boolean conversion
needs no extra arguments
Integer to Font conversion needs
no extra arguments
Integer to Pixel conversion needs
no extra arguments

Standard Errors and Warnings 0-5

Name Type

wrongParameters cvtIntToPixmap

wrongParameters cvtIntToShort

wrongParameters cvtStringToBool

wrongParameters cvtStringToBoolean

wrongParameters cvtStringToDisplay

wrongParameters cvtStringToFile

wrongParameters cvtStringToInt

wrongParameters cvtStringToShort

wrongParameters cvtStringToUnsignedChar

wrongParameters cvtXColorToPixel

0-6 Standard Errors and Warnings

Default Message

Integer to Pixmap conversion needs

no extra arguments

Integer to Short conversion needs

no extra arguments

String to Bool conversion needs no

extra arguments
String to Boolean conversion needs

no extra arguments

String to Display conversion needs

no extra arguments
String to File conversion needs no

extra arguments

String to Integer conversion needs

no extra arguments

String to Integer conversion needs

no extra arguments
String to Integer conversion needs

no extra arguments

Color to Pixel conversion needs no

extra arguments

StringDefs.h Header File E

The StringDefs.h header file contains:

1* Resource names *1

define X tN accelerators " accelerators"

define XtN allowHoriz " allowHoriz"

define XtNallowVert " allowVert"

define XtN ancestorSensitive " ancestorSensitive"

define XtNbackground " background"

define XtNbackgroundPixmap " backgroundPixmap"

define XtNborderColor " borderColor"

define XtNborder " borderColor"

define XtNborderPixmap "borderPixmap"

define XtNborderWidth " borderWidth"

define XtNcallback " callback"

define XtNcolormap "colormap"

define XtNdepth " depth"

define X tN destroyC allback " destroyCallback"

#define XtNeditType "editType"

define XtNfont " font"

define XtNforceBars "forceBars"

define XtNforeground " foreground"

define XtNfunction " function"

define XtNheight " height"

define XtNhSpace "hSpace"

define XtNindex " index"

define XtNinnerHeight " innerHeight"

define XtNinnerWidth " innerWidth"

define XtNinnerWindow " innerWindow"

define X tN insertPosition " insertPosition"

define XtNinternalHeight " internalHeight"

define XtN internalWidth " internalWidth"

define XtNjustify " justify"

define XtNknobHeight "knobHeight"

define XtNknoblndent "knoblndent"

define XtNknobPixel "knobPixel"

define XtNknobWidth "knobWidth"
define XtNlabel "label"
define XtNlength "length"
#define X tNlowerRight "lowerRight"
define XtNmappedWhenManaged " mappedWhenManaged"
define XtN menuEntry " menuEntry"
define XtNname "name"
#define XtNnotify "notify"

define X tN orientation " orientation"
#define XtNparameter " parameter"
#define XtNpopupCallback " popupCallback"
define XtNpopdownCallback " popdownCallback"
define XtNreverse Video "reverse Video"
define XtNscreen "screen"
#define XtNscrollProc " scrollProc"
define X tN scrollDC ursor " scrollDownCursor"
define XtNscrollHCursor " scrollHorizontalCursor"
#define XtN scrollLCursor " scrollLeftCursor"
define XtN scrollRCursor " scrollRightCursor"
#define XtN scrollUCursor " scrollUpCursor"
define XtNscrollVCursor " scrollVerticalCursor"
#define XtNselection " selection"
define XtN selectionArray " selectionArray"
define X tN sensitive " sensitive"
define XtNshown "shown"
define XtNspace "space"
define XtNstring "string"
define XtNtextOptions "textOptions"
define XtNtextSink "textSink"
define XtNtextSource "textSource"
define XtNthickness " thickness"
define XtNthumb " thumb"
define XtNthumbProc "thumbProc"
define XtNtop "top"
define XtNtranslations "translations"
define XtNuseBottom "useBottom"
define XtNuseRight "useRight"
define XtNvalue "value"
define XtNvSpace "vSpace"
define XtNwidth "width"
define XtNwindow "window"
#define XtNx "x"
define XtNy "y"

E-2 StringDefs.h Header File

1* Class types *1

define XtCAccelerators " Accelerators"
define XtCBackground " Background"
define XtCBoolean " Boolean"
define XtCBorderColor " BorderColor"
define XtCBorderWidth " BorderWidth"
define XtCCallback " Callback"
define XtCColormap "Colormap"
define XtCColor " Color"
define XtCCursor " Cursor"
define XtCDepth " Depth"
define XtCEditType " EditType"
define XtCEventBindings " EventBindings"
define XtCFile " File"
define XtCFont "Font"
define XtCForeground " Foreground"
define XtCFraction " Fraction"
define XtCFunction " Function"
define XtCHeight " Height"
define XtCHSpace " HSpace"
define XtCIndex " Index"
define XtCInterval " Interval"
define XtCJustify " Justify"
define XtCKno bIndent " KnobIndent"
define XtCKnobPixel " KnobPixel"
define XtCLabel " Label"
define XtCLength " Length"
define XtC~appedWhenJdanaged " ~appedWhen~anaged"
define XtC~argin "~argin"

define XtC~enuEntry "~enuEntry"

define XtCNotify " Notify"
define XtCOrientation " Orientation"
define XtCParameter " Parameter"
define XtCPixmap "Pixmap"
define XtCPosition " Position"
define XtCScreen " Screen"
define XtCScrollProc " Scro llProc"
define XtCScrollDCursor " ScrollDownCursor"
define XtCScrollHCursor " ScrollHorizontalCursor"
define XtCScrollLCursor " ScrollLeftCursor"
define XtCScrollRCursor " ScrollRightCursor"
define XtCScrollUCursor " ScrollUpCursor"
define XtCScrollVCursor " ScrollVerticalCursor"

StringDefs.h Header File E-3

#define XtCSelection " Selection"
define XtCSensitive " Sensitive"
define XtCSelectionArray " SelectionArray"
define XtCSpace " Space"
define XtCString " String"
define XtCTextOptions " TextOptions"
#define XtCTextPosition " TextPosition"
define XtCTextSink " TextS ink"
define XtCTextSource " TextSource"
define XtCThickness " Thickness"
define XtCThumb " Thumb"
define XtCTranslations " Translations"
define XtCValue " Value"
#define XtCVSpace "VSpace"
define XtCWidth " Width"
#define XtCWindow "Window"
#define XtCX "x"
#define XtCY "Y"

/* Representation types */

#define X tRAcceleratorTable " AcceleratorTable"
define XtRBoolean " Boolean"
define XtRCallback " Callback"
#define XtRCallProc "CallProc"
define XtRColor "Color"
define XtRCursor "Cursor"
define XtRDimension " Dimension"
define XtRDisplay "Display"
define XtREditMode "EditMode"
define XtRFile "File"
define XtRFont "Font"
define XtRFontStruct "FontStruct"
define XtRFunction "Function"
define XtRGeometry "Geometry"
#define XtRImmediate " Immediate"
define XtRInt "Int"
define XtRJustify "Justify"
define XtRLongBoolean " LongBoolean"
define X tR Orientation " Orientation"
define XtRPixel "Pixel"
define XtRPixmap "Pixmap"
define XtRPointer " Pointer"
define XtRPosition "Position"

E-4 StringDefs.h Header File

define XtRShort
define XtRString

define XtRStringTable

define XtRUnsignedChar
define XtRTranslationTable

define XtRWindow

1* Boolean enumeration constants *1

define XtEoff
define XtEfalse
define XtEno
define XtEon
define XtEtrue

define XtEyes

1* Orientation enumeration constants *1

#define XtEvertical
#define XtEhorizontal

1* text edit enumeration constants *1

#define XtEtextRead
#define XtEtextAppend

#define XtEtextEdit

1* color enumeration constants *1

#define XtExtdefaultbackground
#define XtExtdefaultforeground

1* font constant *1

#define XtExtdefaultfont

" Short"
" String"
" StringTable"
"UnsignedChar"
" TranslationTable"

" Window"

" off"
" false"
"no"

" on"
" true"
"yes"

" vertical"

" horizontal"

" read"
" append"

" edit"

" xtdefaultbackground"
" xtdefaultforeground"

"xtdefaultfont"

StringDefs.h Header File E-5

I

lusr/lib/X111app-defaults/, 2-6
lusrllib/X111XtErrorDB, 11-21

A

Above, 6-4
Accelerator, 10-7
accept_focus procedure, 7-7
Action Table, 10-2
actioILproc procedure, 10-1
application context, 2-2
Application programmer, 1-2
Application, 4-9
ApplicationS hell, 4-1, 4-2
ApplicationS hellWidget , 4-4, 9-5
applicationS hellWidgetC lass , 4-4
ApplicationShellWidgetClass, 4-5
ArgList, 1-13, 2-10, 2-11

B

Background, 9-2
Below, 6-4
BottomIf, 6-4
ButtonPress, 5-6, 7-4, 7-10, B-2,
B-4, B-5, B-7
ButtonRelease, 7-4, 7-10, B-2, B-4,

B-5, B-7

C

calloc, 11-2
CenterGravity, 2-19
Chaining, 2-14, 2-16, 9-6

Subclass, 1-21

Index

superclass, 1-21
change_managed procedure, 3-4
CirculateNotify, B-4, B-7
CirculateRequest, B-4, B-7
Class Initialization, 1-22
Class, 1-2
class_initialize procedure, 1-22
class_name, 1-17
Client, 1-2
Cli{ntMessage, 7-16, 7-17, 7-18, B-
4, B-7
ColormapNotify, B-4, B-7
Composite widgets, 3-1
Composite, 1-9, 1-10, 1-11, 1-23, 1-
24, 1-25, 2-1, 3-2, 4-2, 5-1, 6-1, 6-
2, 7-6, 9-9
CompositeClassPart, 1-9
CompositeClassRec, 1-10
CompositePart, 1-9, 1-10, 1-12
CompositeWidget, 1-10
CompositeWidgetClass, 1-10
compositeWidgetClass, 1-10, 2-12,
2-17
CompositeWidgetClass, 2-19
compositeWidgetClass, 2-19, 2-23,

2-24, 3-1, 3-2, 3-4, 3-6, 3-8, 4-2, 6-
3, 11-2
compress_enterleave, 7-13
compress_expose field, 7-13
compress_motion, 7-13
Configure Window, 6-1
ConfigureNotify, 2-21, 3-2, B-4, B-7
ConfigureRequest, B-4, B-7
ConstrainP.h, 1-17
Constraint.h, 1-15
Constraint, 1-11, 1-12, 1-15, 1-17,
1-22, 3-2, 3-8, 3-9, 9-9
C onstraintC las sPart , 1-11, 1-22, 2-
16, 2-25, 3-9
ConstraintClassRec, 1-11
ConstraintPart, 1-11, 1-12, 9-21
ConstraintWidget, 1-11, 1-12
ConstraintWidgetClass, 1-11
constraintWidgetClass, 1-11
ConstraintWidgetClass, 1-12
constraintWidgetClass, 2-12
ConstraintWidgetClass, 2-19
constraintWidgetClass, 2-23, 2-25,
3-8, 9-16, 9-18
CopyFromParent, 2-19, 2-20
Core, 1-6, 1-8, 1-9, 1-12, 1-22, 1-
23, 1-24, 1-25, 2-12, 2-17, 2-18, 2-
19, 2-20, 3-5, 7-15, 9-17, 9-6, 9-9,
9-20
CoreClass, 10-4
CoreClassPart, 1-6, 2-24
CorePart, 1-6, 1-7, 1-10, 5-1
CreateNotify, B-4, B-7
CurrentTime, 11-10, 11-11, 11-18,
11-19
CWBorderWidth, 6-4
CWHeight, 6-4
CWS ibling, 6-4
CWStackMode, 6-4, 6-11
CWWidth, 6-4
CWX, 6-4

2 Index

CWY, 6-4

D

delete_child procedure, 3-4
DestroyNotify, B-4, B-7
Destroy Callbacks, 2-23, 8-1
destroy procedure, 2-24
Display, 2-2
display_accelerator procedure, 10-7,
B-6

E

EastGravity, 2-19
EnterNotify, 7-4, 7-10, B-2, B-4,
B-7, B-8, B-9
EnterWindow, 5-6
Events, 7-7
exit, 2-25
expose procedure, 7-14
Expose, 2-19, 7-13, 7-15, 9-19, 11-
20, B-4, B-7

F

False, 1-8, 1-23, 2-17, 3-1, 3-7, 3-8,
4-7, 4-8, 4-9, 5-4, 5-6, 5-7, 7-5, 7-7,
7-10, 7-11, 7-14, 7-15, 11-7, 11-12,
11-14, 11-20
FocusIn, 7-6, 7-7, 7-10, B-4, B-7
FocusNotify, 7-6, 7-7
FocusOut, 7-7, 7-10, B-4, B-7
Foreground, 9-2
free, 11-2

G

Geometry Management, 6-1
geometry_manager procedure, 6-1
get_values_hook procedure, 9-16
Grabbing Input, 7-4
GraphicsExpose, 7-16, 7-17, 7-18,
11-20, B-4, B-7

GravityNotify, B-4, B-7

H

hook, 9-16, 9-17

I

Inheritance, 1-21, 2-14, 2-16, 2-19,
9-6
Initialization, 1-22, 2-14, 2-16
initialize procedure, 2-14, 2-16
initialize_hook procedure, 2-16
Input Grabbing, 7-4
InputOnly, 2-20
Input Output , 2-20
insert_child procedure, 1-25, 3-2,
3-3, 5-2, C-1
Instance, 1-2

K

key modifier, B-3
KeymapNotify, B-4, B-7
KeyPress, 7-4, 7-6, 7-10, B-2, B-4,
B-5, B-7
KeyRelease, 7-4, 7-6, 7-10, B-2, B-
4, B-7

L

LeaveNotify, 7-4, 7-10, B-2, B-4,
B-7
libXt.a, 1-5

M

malloc, 11-2
MapNotify, B-4, B-7
MappingNotify, 7-16, 7-17, 7-18, B-
4
MapRequest, B-4, B-7
MenuPopdown, 5-7, 5-8, 10-3, C-7
MenuPopup, 5-4, 5-5, 5-6, 10-3, C-7

Method, 1-3
MotionNotify, 7-4, 7-10, B-2, B-4,
B-5, B-7

N

Name, 1-3
NoExpose, 7-16, 7-17, 7-18, B-4,
B-7
None, 7-6
NorthWestGravity, 2-18, 7-14

o

Object, 1-3
Opposite, 6-4
OverrideS hell, 4-1, 4-2, 4-7
OverrideS hellWidget , 4-4
OverrideS hellWidgetClass, 4-4
overrideS hellWidgetClas s, 4-4
OverrrideShell, 4-2

P

pop-up, 5-1
child, 5-1, 5-2
list, 5-1
shell, 5-2

printf, 11-23
PropertyNotify, B-4, B-7

Q

query_geometry procedure, 6-10

R

realize procedure, 2-19
realloc, 11-2
ReparentNotify, B-4, B-7
ResizeRequest, B-4, B-7
resize procedure, 6-11
Resource Management, 9-1

Index 3

Resource, 1·3

S

SelectionClear, 7-16, 7-17, 7-18, B-
4, B-7
SelectionNotify, 7-16, 7-17, 7-18,
B-4, B-7
SelectionRequest, 7-16, 7-17, 7-18,
B-4, B-7
selectionTimeout, 11-6
set_values procedure, 9·18, 9-21
set_values_almost procedure, 9·20
set_values_hook procedure, 9·22
Shell, 2-2, 4·1, 4-2, 4-7, 5-2, 5-4,
5-6, 5-7, 9-9
ShellPart, 4·5
ShellWidget, 4-4, 4·6
ShellWidgetClass, 4-4
shellWidgetClass, 4-4
String, 2-14
StringDefs.h, E-1
Subclass Chaining, 1·21
SubstructureNotify, 2-21
Superclass Chaining, 1·21, 2-14, 2-
16, 9-6
superclass, 1·17

T

TARGETS, 11-8
TopJf, 6-4
TopLevel, 4-9
TopLevelShell, 4-1, 4-2
TopLevelShe llWidget, 4-4
topLevelS hellWidgetClass , 4-4, C-5
TopLevelShellWidgetClass, 4-5
TransientShell, 4-1, 4-2, 4-7, 4-8
TransientS hellWidget , 4-4
transientS hellWidgetClass , 4-4
TransientShellWidgetClass, 4-5
Translation Table, 10-4, B-1
True, 1-8, 1-20, 1-23, 2-4, 2-17, 2-
18, 2-22, 3-1, 3-5, 3-7, 4-7, 4-8, 5-

4 Index

4, 5-6, 6-3, 7-5, 7-6, 7-10, 7-11, 7-
12, 7-13, 7-14, 7-15, 7-17, 9-18, 9-
19, 9-20, 11-7, 11-12, 11-14, 11-20

U

UnmapNotify, B-4, B-7
User, 1·3

v

VendorS hell, 4-2, 4-9
VendorShellWidget, 4-4
VendorShellWidgetClass, 4-4
vendorShellWidgetClass, 4-4
version, 1·17
Visibility, 7-15
Vis ibilityNotify , 7-15, B-4, B-7
Visible, 7-15

W

WestGravity, 2-19
Widget class, 1·3
Widget programmer, 1·3
Widget, 1·3, 1-7, 1-8
WidgetClas s, 1·7, 1-17
widgetClass, 1-7
widgetClassRec, 1-17
WidgetClassRec, 1-7
WidgetList, 3-5
widget_class, 1·12
widget_size, 1·17
WMShell, 4-2, 4-8
WMShellWidget, 4-4
WMShellWidgetClass, 4-4
wmShellWidgetClass, 4-4

x

X111Convert.h, 9-13, C-6
X11IIntrinsic.h, 1-4, 1-5
X111IntrinsicP.h, 1-5
Xl1/keysymdef.h, B-6

X11ILabel.h, 1-5
X111Scroll.h, 1-5
X111Shell.h, 1-4
X111StringDefs.h, 1-4, 1-13, 9-2,
E-1
X111X.h, 6-4
X111Xatoms.h, 1-4
X111Xresource.h, 9-9
X111Xutil.h, 11-20
XA_CLIPBOARD, 11-11, 11-19
X~PRIMARY, 11-7, 11-11, 11-14,
11-19
XA_SECONDARY, 11-7, 11-11,
11-14, 11-19
XA_STRING, 11-7, 11-9, 11-14,
11-16
XC lear Area, 9-18, 9-20
XConfigureWindow, 2-21, 3-5, 6-3,
6-4, 6-8, 6-9
XCreateGC, 11-4, 11-5
XCreateWindow, 2-18, 2-19, 2-20
XDestroyWindow, 2-22, 2-23
XFreeGC, 2-24
XFreePixmap, 2-24
XMapWindow, 5-4, 5-6
xmh, 2-9
XMoveWindow, 3-5, 6-8
XNextEvent, 7-7
XOpenDisplay, 2-5, 2-6, 2-7
XPeekEvent, 7-7
XPending, 7-7
XRlnt, 9-9
XrmOptionDescRec, 2·7
XrmParseCommand, 2-4, 2-5, 2-7,
2-9, C-2
Xrm Value, 9-10, 9-4, 9-9
XSelectInput, 7-16, 7-17, 7-18, 7-19
XSetInputFocus, 7-6, 7-7
XSetWindowAttributes, 2-17, 2-18,
2-19, 7-19
XSynchronize, 2-4
XtAcceptFocusProc, 7-7
XtActionList, 10-2
XtActionProc, 10·1

XtActionsRec, 10-2
XtAddActions, 10-3, C·7
XtAddCallback, 2-23, 8·2
XtAddCallbacks, 8·3
XtAddConverter, C·S
XtAddEventHandler, 2-24, 7-9, 7·
16, 7-17, 7-18, 7-19
XtAddExposureToRegion, 11·20
XtAddlnput, C-1, C·3, C-4
XtAddGrab, 7·5, 7-10
XtAddR awE ventHandler, 7·17, 7-18
XtAddress, 9-13, C-6
XtAddressMode, 9-13, C-6
XtAddTimeOut, C-1, C-4
XtAddWorkProc, C-1, C-4
XtAllEvents, 7-17
XtAlmostProc, 9·20
XtAppAddActions, 10·2
XtAppAddConverter, 9·12
XtAppAddlnput, 7·2, 7-3, C-4
XtAppAddTimeOut, 2-24, 7·3, 7-4,
C-4
XtAppAddWorkProc, 7·12, C-5
XtAppContext, 2·2
XtAppCreateShell, 2-1, 2-2, 2·13,
2-14, 9-5
XtAppError, 11·26
XtAppErrorMsg, 11·24, 11-26
XtAppGetErrorDatabase, 11·22
XtAppGetErrorDatabaseText, 11·23
XtAppGetErrorDatbaseText, 11-22
XtAppGetSelectionTimeout, 11·6
XtAppMainLoop, 7-1, 7-9, 7·10, C-2
XtAppNextEvent, 7·8, 7-10, 7-11,
C-3
XtAppPeekEvent, 7·8, C-3
XtAppPending, 7·7, 7-8, C-3
XtAppProcessEvent, 7-8, 7·9, 7-11,
C-3
XtAppSetErrorHandler, 11·26
XtAppSetErrorMsgHandler, 11·23
XtAppSetSelectionTimeout, 11·6
X tAppS et W arningHandler, 11·26
XtAppSetWarningMsgHandler, 11·24

Index 5

XtAppWarning, 11.26, 11-27
XtAppWarningMsg, 11·25, 11-27
XtArgsFunc, 9·22
XtArgsProc, 2·16, 9-16
XtArgVal, 2-10
XtAugmentTranslations, 10·5, 10-6
XtBaseOffset, 9-13, C-6
XtButtonBoxAddButton, C-1
XtButtonBoxDeleteButton, C-1
XtBuildEventMask, 7·19
XtC, 1-13, 9-2
XtCallAcceptFocus, 7·7
XtCallbackExclusive, 5-4, 5·5, 5-7
XtCallbackHasNone, 8-5
XtCallbackHasSome, 8-5
XtCallbackList, 8-1, 8·2
XtCallbackNoList, 8-5
XtCallbackNone, 5-4, 5-5, 5-7
XtCallbackNonexclusive, 5-4, 5·5,
5-7
XtCallbackPopdown, 5·7, 5-8
XtCallbackProc, 2-24, 8·1
XtCallbackRec, 8·2
XtCallCallbacks, 8-3, 8-4
XtCalloc, 2-24, 11-2, 11·3
X tC ancelConvertS electionProc, 11·15
XtCancelSelectionCallbackProc,
11·17
XtCaseProc, 10·10, 10-11
XtCheckSubclass, 1·20, 1-21, 5-4,
5-6, 5-7
XtClass, 1·20
XtCloseDisplay, 2·5, 2-6
XtConfigureWidget, 6-1, 6-2, 6-7,
6·8, 6-9
XtConvert, 9·14, 9-15
XtConvertArgRec, 9-13, C-6
XtConvertCase, 10·11
XtConverter, 9·9
XtConvertSelectionlncrProc, 11·13
XtConvertSelectionProc, 11·7, 11-8
XtCreateApplicationContext, 2·2, 2-
3, C-2
XtCreateApplicationShell, C-1, C·5

6 Index

XtCreateLabel, C-1
XtCreateManagedWidget, 2-13, 3-1,
3·5, 3-6
XtCreatePopupShell, 2-14, 5·2
XtCreateWidget, 1-8, 1-23, 2-9, 2·
11, 2-12, 2-17, 3-1, 3-2, 3-4, 3-5,
3-6, 3-9, 8-2, 9-1, 9-6, 9-16, 9-22,
C-1
XtCreateWindow, 2·19, 2-20, 2-21
XtCWQueryOnly, 6-3, 6-4, 6-5, 6-6,
6-7
XtDatabase, 2·7
XtDefaultBackground, 1-8, 2-4, 2-9,
9-9, 9-12
XtDefaultFont, 9-9, 9-12
XtDefaultForeground, 1-8, 2-4, 2-9,
9-3, 9-9, 9-12
X tDestroy ApplicationContext, 2·3,
2-6, 2-25
XtDestroyGC, 2-24, e·7
XtDestroyWidget, 2-1, 2-17, 2·22,
2-23, 2-24, 3-1, 3-4, 3-10, 5-1
XtDirectConvert, 9·14, 9-15
XtDisownSelection, 11·12, 11-20
XtDispatchEvent, 2-23, 7-5, 7-6, 7·
9, 7-10, C-2
XtDisplay, 2·20
XtDisplaylnitialize, 2-2, 2·3, 2-4, 2-
5, 2-6, 2-7, 2-9, 2-13, C-2
XtError, 11-24, C-9, e·ll
XtErrorHandler, 11·25
XtErrorMsg, 1-21, 11-2, 11-3, 11-4,
e·9, C-11
XtErrorMsgHandler, 11·22
XtEventHandler, 7·15
XtExposeProc, 7·14
XtFree, 2-11, 2-24, 9-4, 11-2, 11·3,
11-7, 11-9, 11-16
XtGeometryAlmost, 6-2, 6-5, 6-6,
6-7, 6-10, 6-11, 9-18, 9-20
XtGeometryDone, 6-3, 6-6
XtGeometryHandler, 6·6, 6-10
XtGeometryMask, 6-3
XtGeometryNo, 4-8, 6-3, 6-7, 6-11,

9-18
XtGeometryResult, 6-3
XtGeometryYes, 6-2, 6-3, 6-6, 6-7,
6-10, 6-11, 9-18
XtGetApplicationResources, 9-14, 9·
7, 9-8
XtGetErrorDatabase, e·8
XtGetErrorDatabaseText, e·8, C-9
XtGetErrorDatbaseText, C-8
XtGetGC, 2-24, 11-4, 11-5
XtGetResourceList, 9·4, 9-5
XtGetSelectionTimeout, e·8
XtGetSelectionValue, 11·9, 11-10,
11-11, 11-18
XtGetSelection Valuelncremental,
11·17, 11-18, 11-19
XtGetSelectionValues, 11-9, 11·10,
11-11
XtGetSelection Valueslncremental,
11-17, 11·18, 11-19
XtGetSubresources, 9·6, 9-7, 9-14
XtGetSubvalues, 9-16, 9-17
XtGetValues, 3-9, 8-1, 8-2, 9-1, 9-5,
9·15, 9-16
XtGrabExclusive, 5-4, 5-5, 5-6, 5-7
XtGrabKind, 5-4
XtGrabNone, 5-5
XtGrabNonexclusive, 5-4, 5-5, 5-6,
5-7
XtHasCallbacks, 8·5
XtIMAll, 7-9
XtIMAlternatelnput, 7-8, 7-9
XtImmediate, 9-13, C-6
XtIMTimer, 7-8, 7-9
XtInherit, 1-24
X tInheritAcceptF OCUS, 1-25
XtInheritChangeManaged, 1-25
XtInheritDeleteChild, 1-25
XtInheritDisplayAccelerator, 1-25
XtInheritExpose, 1-25
XtInheritGeometryManager, 1-25
XtInheritInserlChild, 1-25
XtInheritRealize, 1-25
XtlnheritResize, 1-25

XtInheritSetValuesAlmost, 1-25,
9-20
XtInheritTranslations, 10-4
XtInitialize, e.l, C-2, C-3, C-4, C-5
XtInitProc, 2·14, 2-16
XtInputCallbackProc, 7·2
XtInputExceptMask, 7-2
XtInputReadMask, 7-2
XtInputWriteMask, 7-2
XtInstallAccelerators, 10·8
XtInstallAllAccelerators, 10·8
XtIsComposite, 3·2
XtIsManaged, 3·7
XtIsRealized, 2·17, 2-18
XtIsSensitive, 7·11
XtIsSubclass, 1·20, 3-2
XtKeyProc, 10·9, 10-11, B-4
XtLabelCreate, C-1
XtLoseSelectionlncrProc, 11-14
X tLoseS electionProc, 11·8
XtMainLoop, C-1, C·2
XtMakeGeometryRequest, 2-1, 6-1,
6·2, 6-3, 6-4, 6-5, 6-6, 6-7, 6-12
XtMakeResizeRequest, 6-1, 6·5,
6-12
XtMalloc, 2-24, 11-2, 11-3, 11-4
XtManageChild, 1-25, 2-9, 3-1, 3·5,
3-6, C-1
XtManageChildren, 2-17, 3-1, 3-4,
3-5, C-1
XtMapWidget, 3·8
XtMergeArgLists, 2·11
XtMoveWidget, 3-5, 6-1, 6-2, 6-7,
6·8
XtN, 1-13, 9-2
XtNameToWidget, 11·1, 11-2
XtNew, 11·3, 11-4
XtNewString, 11-4
XtNextEvent, C-1, e·2, C-3
XtNumber, 2-11, 2-13, 11·1
XtOffset, 9-3, 9·5, 9-6
XtOpenDisplay, 2-2, 2-4, 2-5, 2-7
XtOrderProc, 3·3
XtOverrideTranslations, 10-5, 10·6

Index 7

XtOwnSelection, 11·11, 11-12
X tOwnS electionlncremental, 11-14,
11·19, 11-20
XtParent, 2·20, 2-21
XtParseAcceleratorTable, 10·8
XtParseTranslationTable, 10-4, 10·5
XtPeekEvent, C-l, C·3
XtPending, C-l, C·3
XtPopdown, 4-8, 5-6, 5·7, 5-8
XtPopdownID, 5-7
XtPopup, 4-8, 5-3, 5·4, 5-5, 5-6, 7-
4, 7-5
X tProc, 1·22
XtProcessEvent, C-l, C·3
XtQueryGeometry, 6-9, 6·10, 6-11
XtR, 1-13
XtRAcceleratorTable, 9-3, 9-9
XTranslateCoordinates, 11-21
XtReleaseGC, C-7
XtRBool, 9-3, 9-9
XtRBoolean, 9-3, 9-9
XtRCallback, 8-2, 9-3
XtRCallProc, 9-4
XtRColor, 9-3, 9-9
XtRCursor, 9-3, 9-9
XtRDimension, 9-3, 9-9
XtRDisplay, 9-3, 9-9
XtRealizeProc, 2·18
XtRealizeWidget, 2-1, 2-9, 2-10, 2·
16, 2-17, 2-18, 2-19, 2-22, 3-5, 5-3,
5-4, 5-6, 7-14, 7-19
XtRealloc, 11-2, 11·3
XtRegisterCaseConverter, 10·10,
10-11
XtReleaseGC, 11·5
XtRemoveAllCallbacks, 8-4
XtRemoveCallback, 2-24, 8·3, 8-4
XtRemoveCallbacks, 8-4
XtRemoveEventHandler, 2-24, 7·17
XtRemoveGrab, 5-7, 7-5, 7·6
XtRemovelnput, 7·3
XtRemoveRawEventHandler, 7·18,
7-19
XtRemoveTimeOut, 2-24, 7-4

8 Index

XtRemove W orkProc, 7·12
XtResizeWidget, 3-5, 6-11, 6-1, 6-2,
6-7, 6-8, 6-9
XtResizeWindow, 6·9
XtResource, 9-1
XtResourceDefaultProc, 9-4
XtResourceList, 1-12, 9-1
XtResourceQuark, 9-13, C-6
XtResourceString, 9-13, C-6
XtRFile, 9-3, 9-9
XtRFloat, 9-3, 9-9
XtRFont, 9-3, 9-9
XtRFontStruct, 9-3, 9-9
XtRFunction, 9-3
XtRlmmediate, 9-4
XtRlnt, 9-3, 9-9
XtRPixel, 9-3, 9-9
XtRPixmap, 9-3, 9-9
X tRPointer, 9-3
X tRPosition, 9-3, 9-9
XtRShort, 9-3, 9-9
XtRString, 9-3, 9-9
XtRTranslationTable, 9-3, 9-9
XtRUnsignedChar, 9-3, 9-9
XtRWidget, 9-3
XtRWindow, 9-3
XtScreen, 2·21
XtSelectionCallbackProc, 11·8
XtSelectionDonelncrProc, 11·15
XtSelectionDoneProc, 11-7, 11·8
XtSelectionlncrCallbackProc, 11·16
XtSetArg, 2·10, 2-11
XtSetErrorHandler, C·I0
XtSetErrorMsgHandler, C·9
XtSetKeyboardFocus, 7·6
XtSetKeyTranslator, 10·9
XtSetMappedWhenManaged, 3-1, 3·
7, 3-8
XtSetSelectionTimeout, C·7
XtSetSensitive, 5-3, 5-5, 5-8, 7·11
XtSetSubvalues, 9·21
XtSetValues, 1-13, 2-21, 3-8, 3-9,
5-3, 6-1, 6-2, 7-11, 8-2, 9-1, 9-5,
9·17, 9-18, 9-20, 9-22, 10-6

XtSetValuesFunc, 9·18, 9-21
XtSet W arningHandler, e·ll
XtSetWarningMsgHandler, e·9
XtSMDontChange, 6-4, 6-11
XtStringConversion Warning, 9·12
XtStringProc, 10·7
XtSuperclass, 1·20
XtTimerCallbackProc, 7-4
XtToolkitError, 11-24, 11-25, C-9,
C-10, D-1
XtToolkitInitialize, 2·2, C-2
XtTranslateCoords, 11·21
XtTranslateKey, 10-9
XtTranslateKeycode, 10·9, 10-10
XtTranslations, 10-5
XtUninstallTranslations, 10-6, 10-7
XtUnmanageChild, 2-23, 3-1, 3·6,
3-7
XtUnmanageChildren, 2-17, 3-1, 3·
6, 3-7, C-1
XtUnmapWidget, 2-25, 3-8
XtUnrealizeWidget, 2·21, 2-22
XtVersion, 1-17
XtVersionDontCheck, 1-17
XtWarning, 11-25, C-10, e·ll
XtWarningMsg, 9-10, e·l0, C-11
XtWidgetClassProc, 1·23
XtWidgetGeometry, 6-3, 6-4, 6-5,
6-10
XtWidgetProc, 2·24, 2-25, 3-3, 3-4,
6-11
XtWidgetToApplicationContext, 2·3
XtWindow, 2·21
XtWindowToWidget, 11·21
XtWorkProc, 7·12
XtWorkProcld, 7-12
XT_CONVERTJAIL, 11-9, 11-16

_XtError, 11-26, C-I0
_XtInherit, 1-24
_XtWarning, 11-26, C-l1

Index 9

HOW TO ORDER ADDITIONAL DOCUMENTATION

DIRECT TELEPHONE ORDERS

In Continental USA
and New Hampshire,
Alaska or Hawaii
call 800-DIGITAL

In Canada
call 800-267-6215

DIRECT MAIL ORDERS (U.S. and Puerto Rico·)

DIGITAL EQUIPMENT CORPORATION
P.O. Box CS2008

Nashua, New Hampshire 03061

DIRECT MAIL ORDERS (Canada)

DIGITAL EQUIPMENT OF CANADA LTD.
100 Herzberg Road

Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

I INTERNATIONAL I

DIGITAL EQUIPMENT CORPORATION
PSG Business Manager

c/o Digital's local subsidiary
or approved distributor

Internal orders should be placed through the Software Distribution Center (SOC), Digital
Equipment Corporation, Westminster, Massachusetts 01473

* Any prepaid order from Puerto Rico must be placed
with the Local Digital Subsidiary:

80~754-7575

ULTRIX
Worksystem Software

Guide to the XUI Toolkit Intrinsics:
C Language Binding

Reader's Comments
AA-MA96A-TE

Note: This form is for document comments only. DIGITAL will use comments
submitted on this form at the company's discretion. If you require a writ
ten reply and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please
make suggestions for improvement. __________________ _

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer
o Higher-level language programmer
o Occasional programmer (experienced)

o User with little programming experience

o Student programmer
o Other (please specify) _________________ _

Name Date _____________ _

Organization ______________________________ _

Street ___ __

City ______________________ State ___ Zipo~ode-----
Country

i
I
I
I
I

;;~~~;;~Id HeR aad Ta~ --------------lr---n-----------~~;~---'
II '" ,h,

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

Digital Equipment Corporation
Documentation Manager
UL TRIX Documentation Group
ZK03-3/X18
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

11111'1111.1111 •• 1111 •• 1.11.1 •• 1.1111 •• 1.1 ••• 1.11 •• 1

United States

Do Not Tear - Fold Here --

