
· ULTRIX

Guide to Preparing Software
for Distribution on ULTRIX Systems

Order Number: AA-MG62B-TE

Guide to Preparing Software for
Distribution on ULTRIX Systems

Order Number: AA-MG62B-TE

June 1990

Product Version:

digital equipment corporation
maynard, massachusetts

UL TRIX Version 4.0 or higher

ULTRIX

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013.

© Digital Equipment Corporation 1988, 1990
All rights reserved.

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

IllmaDIa
CDA
DDIF
DDIS
DEC
DECnet

DEC station
DECUS
DECwindows
DTIF
MASSBUS
MicroVAX
Q-bus

ULTRIX
UL TRIX Mail Connection
ULTRIX Worksystem Software
VAX
VAXstation
VMS
VMS/UL TRIX Connection

UNIX is a registered trademark of AT&T in the USA and other countries.

Contents

About This Manual

Audience vii

Organization vii

Related Documentation viii

Conventions viii

1 Overview

1.1 Introduction 1-1

1.2 Benefits of setld Utility Use ... 1-1

1.3

1.4

1.2.1 Installation Security ... 1-2
1.2.2 Flexibility ... 1-2
1.2.3 Uniformity .. 1-2
1.2.4 Media Support ... 1-2

Production Requirements for setld-Compatible Kits

Production Process for setld-Compatible Kits

1-3

1-3

2 How setld Utilities Work

2.1 The newinv Utility ... 2-1

2.2 The kits Utility .. 2-3

3 Files Used by setld

3.1

3.2

File Format

File Types

3.2.1 Control Files .. .
3.2.2 Inventory Files
3.2.3 Lock Files

3-1

3-1

3-2
3-2
3-4

3.2.3.1 Subset-Installed Lock Files ... 3-4

3.2.4
3.2.5

3.2.3.2 Subset-Failed Lock Files

Image Data Files .. .
Compression Data File .. .

4 Writing setld Subset Control Programs

3-4

3-5
3-6

4.1 SCP Format ... 4-1

4.2 SCP Environment ... 4-1

5 Producing setld-Compatible Kits

5.1 Generating the Master Directory Hierarchy 5-1

5.1.1 Create the Input Directory Tree ... 5-1
5.1.2 Manage the Transfer .. 5-1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Building the Data Directory

Generating the Master Inventory

Creating the key File

Building the Output Directory

Creating the SPACE File

Generating the kit Images

Building /etc!kitcap

Making the Distribution Media

5.9.1 Making Tape Media .. .
5.9.2 Making RA60 Disk Media

6 Reproducing setld-Compatible Kits

6.1

6.2

6.3

6.4

Creating a Product Output Directory .. .

Copying from Your Media

6.2.1 Copying from Tape
6.2.2 Copying from an RA60 Disk .. .

Preparing the Product Output Directory and Database

Generating Individual Pieces of Media

6.4.1 Generating RA60 Disk Media .. .
6.4.2 Generating Tape Media

ivContents

5-2

5-2

5-3

5-6

5-6

5-6

5-7

5-7

5-7
5-7

6-1

6-1

6-1
6-2

6-2

6-3

6-3
6-3

7 How setld Options Work

7.1

7.2

7.3

704

7.5

7.6

7.7

The Load Option

The Configure Option .. .

The Delete Option

The Inventory Option

The Extract Option

The Verify Option

The Update Option

A Sample make Files

7-1

7-2

7-2

7-2

7-3

7-3

7-3

A.l /ex/Makefile .. A-2

A.2 /ex/usr/Makefile

A.3

Ao4

A.5

A.6

A.7

A.S

A.9

A.I0

A.II

A.I2

A.13

A.I4

A.15

A.16

/ex/usr/lib/Makefile

/ex/usr/lib/mylib/Makefile .. .

/ex/usr/lib/mylib/compare.c .. .

/ex/usr/lib/mylib/print.c

/ex/usr/lib/mylib/reverse.c

/ex/usr/lib/mylib/rotate.c

/ex/usr/binIMakefile .. .

/ex/usr/bin/comp/Makefile .. .

/ex/usr/bin/comp/comp.c .. .

/ex/usr/bin/rev /Makefile

/ex/usr/bin/rev/rev.c

/ex/usr/bin/rot/Makefile .. .

/ex/usr/bin/rot/rot.c .. .

Output From Sample Makefiles

Figures

1-1: Sample setld-Compatible Product Environment Layout

A-I: Sample make File Directory Hierarchy

A-2

A-3

A-3

A-4

A-4

A-5

A-5

A-6

A-6

A-7

A-7

A-7

A-S

A-S

A-9

1-4

A-I

Contents v

Tables

2-1: Master Inventory File ... 2-2

2-2: kits Utility Data Files 2-3

3-1: Files Used by the setld Utility ... 3-1

3-2: Inventory File Record Contents ... 3-2

3-3: Image Data File Record Contents .. 3-5

4-1: Possible ACT Settings ... 4-1

5-1: Key File Control Section .. 5-3

5-2: Key File Data Section 5-4

v; Contents

About This Manual

This guide describes how to prepare software products for distribution on UL TRIX
systems.

Audience
This guide is intended for applications programmers who are preparing a software
product for installation on ULTRIX systems. The programmer is presumed to
understand UL TRIX and know how to program in an ULTRIX environment.
Knowledge of the C programming language is helpful, but not necessary.

Organization
This guide consists of seven chapters and one appendix.

Chapter 1 Overview

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Presents an overview of the software preparation requirements.
The chapter also lists the components you need to produce
set ld-compatible distribution kits.

How setld Utilities Work

Describes the operations that the major setld utilities perform to
produce software subsets.

Files Used by setld

Describes the files that the setld utility uses during subset
installation.

Writing setld Subset Control Programs

Describes how to write Subset Control Programs (SCP) to install
and manage software subsets.

Producing setld-Compatible Kits

Describes how to produce setld-compatible software
distribution kits.

Reproducing setld-Compatible Kits

Describes how to how to reproduce setld-compatible software
distribution kits.

How setld Options Work

Describes the operations that each setld option performs when
specified on a setld command line.

Appendix A Sample make Files

Contains sample make files for managing the transfer of a product
from source directories to the input directory from which the files
will be processed by the set 1 d utility.

Related Documentation
You should have read the relevant sections of:

• ULTRIX Reference Pages

You should read the descriptions of any commands referred to in this guide
with which you are not familiar.

Conventions

»>
CPUnn»

user input

The console subsystem prompt is two right angle brackets on
RISC systems, or three right angle brackets on V AX systems.
On a system with more than one central processing unit (CPU),
the prompt displays two numbers: the number of the CPU, and
the number of the processor slot containing the board for that
CPU.

This bold typeface is used in interactive examples to indicate
typed user input.

system output This typeface is used in interactive examples to indicate system
output and also in code examples and other screen displays. In
text, this typeface is used to indicate the exact name of a
command, option, partition, pathname, directory, or file.

UPPERCASE
lowercase

eat(l)

Mbyte

viii About This Manual

The UL TRIX system differentiates between lowercase and
uppercase characters. Literal strings that appear in text,
examples, syntax descriptions, and function definitions must be
typed exactly as shown.

A vertical ellipsis indicates that a portion of an example that
would normally be present is not shown.

Cross-references to the ULTRIX Reference Pages include the
appropriate section number in parentheses. For example, a
reference to eat(l) indicates that you can find the material on the
eat command in Section 1 of the reference pages.

Throughout the text, the abbreviation Mbyte is used for
megabyte. One megabyte equals 1,048,576 bytes.

Overview 1

This guide describes how to prepare software products for distribution on UL TRIX
systems. The guide describes UL TRIX utility programs that produce software
distribution kits compatible with the setld utility. The setld-compatible kits
contain software products that can be installed on UL TRIX systems. The guide also
describes the following:

• How to produce a software distribution kit for a product to be installed and
managed using the setld utility.

• How to reproduce a setld-compatible software distribution kit.

• The operations that setld options perform.

1.1 Introduction
The software for each product distributed for UL TRIX systems consists of a
hierarchical group of files and directories. The developer producing the software
product determines how the files and directories are grouped within the hierarchy.

The setld utility and related programs are production, distribution, and
management tools to use with ULTRIX software. You can use these tools to add,
subtract, and combine software products. The setld installation process preserves
the integrity of each product's hierarchy when it is transferred from a development
system to a customer system.

The kitting process includes grouping the component files for a software product into
subsets. The ki ts utility imposes a format compatible with the set ld utility on
the files that make up the product. The utilities also generate control information, for
example, the location of each subset on the media.

The subsets are transferred to distribution media. The control information for the
product is located in one place and governs the transfer of multiple subsets.

Extraction, validation, and configuration take place at the destination system using
the ULTRIX utilities, setld, fverify, the Remote Installation Service (ris),
and Diskless Management Services (dms). The integrity of the software product is
preserved as it is transferred to the destination system.

1.2 Benefits of setld Utility Use
Using the setld utility to install and manage software products on ULTRIX
systems ensures the following:

• Installation security

• Flexibility

• Uniformity

• Media support

1.2.1 Installation Security
When you use the setld utility to install a software product, each subset is verified
immediately after transfer. Each subset is recoverable if you want to reinstall it if it
is damaged or deleted.

1.2.2 Flexibility
The setld utility lets the user choose subsets at installation. Users can also use the
setld utility to delete subsets, then reinstall them as needed.

This means that users can customize their systems to perform specific types of
activities. For example, after installing the mandatory UL TRIX subsets, a user might
load optional subsets and products to tailor the system to serve one or more of the
following purposes:

• Communications

• Documentation

• Computer Aided Software Engineering (CASE)

• Commercial database operations

1.2.3 Uniformity
The setld utility is an integral part of the ULTRIX installation architecture.
Therefore, producing products in the form of kits that are compatible with the
set 1 d utility enhances compatibility with any future UL TRIX installation
architecture.

In addition, kits that are compatible with the set ld utility can be loaded on a
server machine for installation over the network using the r is utility and for
installing into a diskless environment using the dms utility.

1.2.4 Media Support
You can use any of the following devices to install a setld-compatible software
product from the distribution media specified:

• An arbitrary, mountable file system on any supported data disk, for example, a
file system found on an RA60 disk pack or a CDROM optical disc

• A TK50 tape on a TK50 or a TK70 tape drive

• An MT9 tape of arbitrary density

1-2 Overview

1.3 Production Requirements for setld-Compatible Kits
You need the following components to produce your own setld distribution kits:

• A master directory hierarchy containing the files that make up the product

• A key file describing product subsets in the master directory hierarchy

• An optional subset control program (SCP) for each software subset included in
the product

1.4 Production Process for setld-Compatible Kits
The following steps, performed in the order indicated, establish the
setld-compatible environment for your product. This procedure assumes that the
uncompiled files that make up your product reside in an existing directory structure,
called the source directory:

1. Generate the master directory hierarchy for your product. This might be done
by using make files to transfer files from the source directory to an input
directory.

2. Create a data directory to contain the operating environment for kitting your
product.

3. Create an inventory of the master hierarchy.

4. Create the key file.

5. Create the subdirectory scp under the data directory to contain SCP files.

6. Create the SCPs.

7. Create an output directory structure to contain output files compatible with the
setld utility.

8. Create the instctrl subdirectory under the output directory to contain
control files.

9. Run the kit s utility to transfer images into the output directory.

10. Generate individual pieces of media.

Figure 1-1 illustrates a sample directory layout for a setld-compatible product
environment. In the figure, make files are used to generate the master directory
hierarchy. Then, the kits utility transfers the images from the input directory to the
output directory.

Overview 1-3

Figure 1·1: Sample setld-Compatible Product Environment Layout

source
Directory

uncompiled

make input
Directory
compiled

data
Directory
data/scps

output
Directory

outpuVinstctrl

ZK-0165U-R

Chapter 4 describes how to write SCPs. Chapter 5 describes how to set up a
setld-compatible environment for your product and how to create a distribution kit
compatible with the setld utility.

1-4 Overview

How setld Utilities Work 2

This chapter describes the operations that the major setld-related utilities,
newinvand kits, perform to produce subsets.

2.1 The newinv Utility
This section describes how the newinv utility processes a master inventory input
file. The input file is empty if the software product is being processed for a kit for
the first time. The input file is the existing master inventory file if the kit for the
product is being updated. The file UWS400.mi is used as an example throughout this
section.

Master inventory input filenames use the following convention:

<Product_code><Version_code>.mi

For example:

UWS400.mi

The newinv command line has the following syntax:

newinv <filename.mi> <directory>

For example:

newinv UWS400.mi .. /build

The output of the newinv utility is a file containing the master inventory of a
software product.

Each record in the master inventory file contains three fields which are separated by
tabs. Each record ends with a newline.

Table 2-1 lists the fields that make up a master inventory record with a description of
each field.

Table 2-1: Master Inventory File

Field

Flags

Pathname

Subset name

Description

An unsigned integer. The low two bits can be set to
indicate the following:

p for precedence: the user's copy of the file
supercedes the developer's copy. The p bit is
usually set for files like rc , rc .local, and
etc/ttys.

v for volativity: changes to the user's copy of the
file are expected. The v bit is usually set for files
like usr / spool/mqueue/ syslog and
usr / adm/ aculog.

The values of the bit settings are: neither bit = 0, p
only = 1, v only = 2, p + v = 3.

The dot-relative (.f) pathname of the file described
by this record.

The name of the subset containing the file.

The example that follows shows a portion of uws 400 • mi, the master inventory file
for the UL TRIX W orksystem Software Version 4.0 product:

o ./usr/bin/xcons UWSXl1400
o ./usr/bin/xedit UWSXl1400
o ./usr/bin/xfd UWSXl1400
o ./usr/bin/xget ZOMBIE
o ./usr/bin/xhost UWSXl1400
o ./usr/bin/xload UWSXl1400
o ./usr/bin/xlsfonts UWSXl1400
o ./usr/bin/xmh UWSXl1400
o ./usr/bin/xrdb UWSXl1400
o ./usr/bin/xrefresh UWSXl1400
o ./usr/bin/xsend ZOMBIE
o ./usr/bin/xset UWSXl1400
o ./usr/bin/xsetroot UWSXl1400
o ./usr/bin/xterm UWSXl1400
o ./usr/bin/xwininfo UWSXl1400

The newinv utility performs the following operations when it generates a master
inventory file:

• Creates a backup file, UWS400 .mi .bkp.

• Performs a sort operation on the UWS 400 . mi file.

• Performs a find operation on <directory> to get file and directory names from
the input directory tree and directs the output to a temporary file.

• Performs a sort operation on the temporary file.

• Performs a relational j 0 i n operation that produces the following three groups
of records:

New records containing the pathname only

2-2 How satld Utilities Work

Records continuing from the previous inventory, if any

Records included in the previous inventory that represent files missing
from the input hierarchy, if any.

• Drops any group for which there are no records.

• Places the user in an editor, either the editor specified by the setting of the
environment variable EDITOR or in the default editor /usr /ucb/vi.

• Prompts the user to delete records from the group representing files missing
from the input hierarchy if they are no longer part of the subset.

• Merges with the continuing records any records remaining in the group
representing files missing from the input hierarchy after editing.

• Prompts the user to edit new records by adding the flag and subset fields.

• Merges the new records with the continuing records.

• Performs a sort operation on the edited file, which now matches the input
hierarchy, and generates a new UW S 4 0 0 . mi file.

Refer to environ(7) in the ULTRIX Reference Pages for information about
environment variables.

2.2 The kits Util ity
This section describes how the kit s utility produces subset images, inventories, and
control files from input files that have been transferred from the source directory for
the product. The kits utility generates data files that make up the media master in
the output directory.

The following example shows the kit s command line syntax with a sample
command:

kits <filename.k> .. /input .. /output
kits UWS400.k .. /input .. /output

The data files the kits utility generates and uses, the contents of each, and a
description of its purpose are listed in Table 2-2.

Table 2·2: kits Utility Data Files

File Contents Description

SPACE 10240-byte dummy file Created by user; reserved by
Digital

instctrl/* Directory Generated; contains setld
control information

INSTCTRL tar image Generated; contains setld
control information

<P-code>.image Record for each subset Generated; size and checksum
information for each subset

The kit s utility performs the following operations when it generates subset images,
inventories, and control files:

How setld Utilities Work 2-3

• Creates the output/ instctrl directory if none exists.

• Performs the following operations for each subset:

Generates the subset inventory file, which has a . inv extension, and
places it in the output/instctrl directory.

Generates the subset control file, which has a . ct r 1 extension, and
places it in the output/instctrl directory.

Generates the subset image and places it in the output directory.

Generates an empty . scp file if none exists in the . / scps directory.

Transfers the • scp file to the output/instctrl directory.

Computes the subset image size and checksum and creates a record in the
. image file.

• Creates the output/INSTCTRL file from the contents of the
output/ instctrl directory.

2-4 How setld Utilities Work

Files Used by setld 3

This chapter describes files which the set 1 d utility uses during subset installation.
Some of the files are generated by the kit s utility and some are generated by the
setld utility.

3.1 File Format
The files that the setld utility uses are variable length ASCII text files. The field
separator is a tab (CTRL/l), and the record separator is a newline (CTRL/J).

3.2 File Types
Table 3-1 shows the types of files that the setld utility uses, with the extension
and contents of each file.

Table 3·1: Files Used by the setld Utility

File Type Extension Contents

Control .ctrl Subset control information from key file,
media information, lists of dependencies,
flags, and descriptions.

Inventory .inv File attribute information, size, and
dot-relative path name of each file in
subset.

Lock .lk Marks subset as installed, lists dependent
subsets. Generated by setld only if
subset installed successfully.

Lock .dw Empty. Generated by setld only if subset
failed to install.

Image data .image Record containing size and checksum of
each subset in kit.

Compression .comp Empty. Generated only if the subset
data images for the product are compressed.

SCP .scp Subset control program.

The sections that follow contain descriptions of all but the SCP files. Subset control
programs are described in Chapter 4.

3.2.1 Control Files
The setld utility uses control files generated by the kits utility to get descriptive
information about subsets.

There is a control file fot each subset and it contains the following information from
the key file for the subset:

• Product name

• Subset description

• RA60 disk volume number

• Tape volume number and location on tape

• List of dependencies

• Subset control bit flags

The entries can be in any order, but all of them must be included in each control file.

The following example shows UWSXl1400. ctrl, the control file generated for the
UWSX 11400 subset, in the order produced by the kit s utility:

NAME='ULTRIX Worksystem Software V4.0 UWSXl1400'
DESC='Xll/DECwindows User Environment'
NVOLS=1:28
MTLOC=1:8
DEPS="ULTINET400"
FLAGS=O

3.2.2 Inventory Files
The setld utility uses inventory files generated by the kits utility to verify the
contents of subsets when they are installed.

There is an inventory file for each subset. The inventory file contains a record
describing each file included in the subset.

Each record in the inventory file contains 12 fields. Each field and its contents are
described in Table 3-2.

3-2 Files Used by setld

Table 3-2: Inventory File Record Contents

Field
Number

1

2

3

4

5

6

7

8

9

10

11

12

Name

Flags

Size

Sum

uid

gid

Mode

Date

Revision

Type

Path

Link-to

Subset name

Contents

An unsigned integer. The low two bits can be set to indicate
the following:

p for precedence: the user's copy of the file supercedes the
developer's copy. The p bit is usually set for files like rc ,
rc .local, and etc/ttys.

v for volativity: changes to the user's copy of the file are
expected. The v bit is usually set for files like
usr/spool/rnqueue/syslog and usr/adrn/aculog.

The values of the bit settings are: neither bit = 0, p only =
1, v only = 2, p + v = 3.

Number of bytes.

Checksum (mod 2"16).

User id.

Group id.

Octal representation of mode.

Last modification date.

Revision code of the product that includes the file.

A code describing the file that can be:
d - directory containing one or more files
c - character device
b - block device
p - named pipe (FIFO)
f - regular file
1- hard link
s - symbolic link

The dot-relative (./) pathname.

For file types 1 and s I the path to which the file is linked.
For types c and b, an integer representing the major and
minor numbers for the device. For all other file types, none.

The name of the subset containing the file.

The following example shows a portion of UWSXl14 0 0 . inv I the inventory file for
the UWSXl1400 subset:

Files Used by setld 3-3

0 1864 24893 0 0 100644 4/4/88 400 f
./usr/sk
el/.XtActions none UWSXl1400
0 1225 15886 0 0 100644 4/20/88 400 f
./usr/sk
el/.Xdefaults none UWSXl1400
0 512 00000 0 0 40755 5/17/88 400 d
./usr/li
b/lpdfilters none UWSX11400
ddd 28713 34313 0 0 100755 5/4/88 400 f
./usr/li
b/dwcmsg none UWSXl1400
0 7680 00000 0 10 40755 5/17/88 400 d
./usr/li
b/decwin/fonts none UWSXl1400
0 512 00000 0 10 40755 5/17/88 400 d
./usr/li
b/decwin none UWSX11400
0 3826 03999 0 0 100644 4/4/88 400 f
./usr/li
b/XErrorDB none UWSXl1400
0 3119 54414 0 0 100755 4/4/88 400 f
./usr/li
b/X11/rgb.txt none UWSX11400
0 4096 59456 0 0 100755 4/4/88 400 f
./usr/li
b/Xl1/rgb.pag none UWSXl1400
0 4096 00014 0 0 100755 4/4/88 400 f
./usr/li
b/Xll/rgb.dir none UWSX11400

3.2.3 Lock Files

There are two types of lock files that the setld utility can generate. One, with a
. 1 k extension, indicates a subset is installed. The second type of lock file, with a
. dw extension, indicates a subset failed to install.

3.2.3.1 Subset-Installed Lock Files - A subset-installed lock file, that has a .lk
extension, marks a subset as installed. It contains the names of any dependent
subsets. Subset-installed lock files exist only for subsets that are currently installed.
They appear only on the destination system.

Subset-installed lock files are removed when a subset is deleted. However, if there
are dependent subsets, their names are displayed and the user is asked to confirm that
deletion should take place.

The following example shows ULTPGMR400 .lk, the subset-installed lock file for
the ULTPGMR400 subset:

ULTINTL400
ULXF77400

3.2.3.2 Subset-Failed Lock Files - The presence of a subset-failed lock file, that has a
. dw extension, indicates that the last attempt to install a subset failed. The file is
empty.

3-4 Files Used by setld

3.2.4 Image Data Files
The setld utility uses image data files generated by the kits utility to verify kit
images for a Remote Installation Service (r is) area installation.

Image data files contain one record for each subset in the kit.

Each record in the image data file contains 3 fields. Each field and its contents are
described in Table 3-3.

Table 3-3: Image Data File Record Contents

Field

Checksum
Size
Subset name

Contents

Mod 21\16
Total kbytes in subset
Product code, subset
mnemonic, version number

The following example shows UWS 400 . image, the image data file for the
UL TRIX Worksystem Software kit:

33528 2720 ROOT
00444 6080 ULTBASE400
10570 2200 ULTBIN400
19953 910 ULTINET400
61885 320 ULTEXER400
61066 450 ULTNFS400
47131 240 ULTUMAIL400
25177 2220 ULTMH400
58658 4700 UWSXl1400
52864 890 UWSFONT400
03166 1020 UWSFONT3D400
21560 630 ULTDCMT400
58793 1520 ULTPGMR400
57868 170 ULTINTL400
07452 330 ULTSCCS400
41240 880 UWSXDEV400
13489 1430 UWSXDEV3D400
43810 420 ULTPASCAL400
60226 410 ULTVAXC400
61839 1300 ULTMAN400
04788 70 ULTACCT400
29772 270 ULTCOMM400
14187 100 ULTBSC400
13299 1170 ULTMOP400
24884 490 ULTUUCP400

Files Used by setld 3-5

3.2.5 Compression Data File
The compression data file is generated by the kits utility only if the product is
compressed when it is produced for processing by the setld utility. The file is
empty.

Compression file names have the following syntax:

<Product_code><Version_code>.comp

For example:

UWS400.comp

~ Files Used by setld

Writing setld Subset Control Programs 4

This chapter describes how to write Subset Control Programs (SCP) to install and
manage subsets.

If an SCP is not needed for a subset, the kit s utility creates an empty SCP file for
that subset.

Each SCP must be executable by the superuser. The mode set for SCPs should be
read only for the world.

You can write SCPs in any programming language. An SCP is text to be interpreted
by a command interpreter. For example:

bourne shell #!/bin/sh #!/usr/ucp/lisp
korn shell #!/bin/ksh
c shell #!/bin/csh#!/bin/make

Note

Use of the c shell, c s h, is not recommended.

SCPs run from the top level directory of the subset hierarchy. All file references must
be dot-relative (.f) to files located above the directory in which the SCP program
runs.

4.1 SCP Format
SCP names have the following format:

<product_code><subset_mnemonic><version_code>.scp

For example, the SCP for the UWSX11400 subset has the following name:

UWSXl1400.scp

4.2 SCP Environment
The setld utility executes SCPs which install and manage software as needed.
The setld utility controls SCP action according to the setting of the environment
variable, ACT.

The possible settings for the ACT variable are listed in Table 4-1.

Table 4-1: Possible ACT Settings

Setting

c

PRE_D

POST_D

PRE_L

POST_L

M

PRE_U

POST_U

V

Description

Before deleting and after adding a subset to a diskless environment.
Provides subset-specific preparation commands. The command line
includes an argument describing the requested action, for example:

INSTALL - node-specific installation configuration
DELETE - clean up node-specific configuration information on
deletion

Before deleting a subset.

After deleting a subset.

Before loading a subset.

After loading a subset.

Before presenting the subset menu.

Before updating a subset.

After updating a subset.

Verify a subset installation.

Write your SCP programs to get the ACT tag from the environment. Then, set up,
take down, or perform all generic configuring for the subset, depending on the value
of the ACT tag.

In a shell program, $ACT is a defined variable. If there is a validation suite for the
subset, place it in the SCP program so that the suite is activated when the ACT
variable is set to V.

The following example shows the SCP for the UWSXl1400 subset:

NUL=/dev/null

XCONSDATA="#xcons \"/usr/bin/xcons 10 ttyvO\" none on nomodem"

SMODATA="#ttyvO \"/usr/bin/xterm -L -sb -rv =80x24+195+275 unix:O\"
xterm on secure window=\"/usr/bin/Xsm 0\"
:0 \"/usr/bin/login -P /usr/bin/Xprompter -C /usr/bin/dxsession\" none
on secure window=\"/usr/bin/Xsm\""

QVODATA="#ttyvO \"/usr/bin/xterm -L -sb -rv =80x24+195+275 unix:O\"
xterm on secure window=\"/usr/bin/Xqvss 0\"
:0 \"/usr/bin/login -P /usr/bin/Xprompter -C /usr/bin/dxsession\" none
on secure window=\"/usr/bin/Xqvss\""

QDODATA="#ttyvO \"/usr/bin/xterm -L -sb -rv =80x24+195+275 unix:O\"
xterm on secure window=\"/usr/bin/Xqdss :0\"
:0 \"/usr/bin/login -P /usr/bin/Xprompter -C /usr/bin/dxsession\" none
on secure window=\"/usr/bin/Xqdss -bp #000080 c 70\""

QD1DATA="#ttyv1 \"/usr/bin/xterm -L -sb -rv =80x24+195+275 unix:1\"
xterm on secure window=\"/usr/bin/Xqdss :1\"
:1 \"/usr/bin/login -P /usr/bin/Xprompter -C /usr/bin/dxsession\" none
on secure window=\"/usr/bin/Xqdss -bp #000080 c 70\""

NL="

umask 022
case $ACT in
POST_[AL] }

4-2 Writing setld Subset Control Programs

flat load, hit qv.o
[-f usr/sys/BINARY.vax/qv.o] &&

echo '
qv def scrn?W 2
$q- -

C)
; ;

configure.
case "$1" in
INSTALL)

case "'pwd'" in
/) # straight install, read con fig data from dev/kmem

/dev/kmem
TYPE='echo "ws_display_type/d" I adb /vrnunix

awk 'NR == 2 {print $2}"
case "$TYPE" in
42 I 49 I 50 I 35)

UNITS='echo "ws display units/d" I
adb /vm~nix /de~/kmem I
awk 'NR == 2 {print $2}"

; ;

*) # no graphics device, bale out
exit 0

esac
; ;

*) # dot relatively.

esac

GDEV and WS_UNITS are exported by DMS
TYPE=$GDEV
case "$WS_UNITS" in
"") # not called from DMS, bale out.

exit 0

*) # read UNITS as provided by DMS
UNITS="$WS_UNITS"

esac
; ;

rip apart UNIT code to see which heads to set up.
BITO='expr $UNITS % 2'
UNITS='expr $UNITS / 2'
BIT1='expr $UNITS % 2'
case "$BITO" in
1)

set up head 0
mv dev/ttypf dev/ttyvO &
mv dev/ptypf dev/ptyvO &
egrep -v "ttyvO" etc/ttys

sed 's/Aconsole/#console/' > tmp/ttys
case "$TYPE" in
35 I QV)

echo "$QVODATA$NL$XCONSDATA" » tmp/ttys
; ;

49 I SM)
echo "$SMODATA$NL$XCONSDATA" » tmp/ttys

; ;
42 I 50 I SG I QD*)

echo "$QDODATA$NL$XCONSDATA" » tmp/ttys

esac
mv tmp/ttys etc/ttys
ln -s .. /tmp/XO dev/XO &
; ;

esac

Writing setld Subset Control Programs 4-3

DELETE)

esac

esac
; ;

esac

case "$BIT1" in
1)

esac
; ;

set up head 1 - QDSS only
wait
rnv dev/ttype dev/ttyv1 &
rnv dev/ptype dev/ptyv1 &
egrep -v "ttyv1" etc/ttys > trnp/ttys
echo "$QD1DATA" » trnp/ttys
rnv trnp/ttys etc/ttys &
In -s .. /trnp/Xl dev/Xl &
; ;

put the pty's back and clean up the ttys file.
[-f dev/ttyvO] && rnv dev/ttyvO dev/ttypf &
[-f dev/ptyvO] && rnv dev/ptyvO dev/ptypf &
[-f dev/ttyvl] && rnv dev/ttyvl dev/ttype &
[-f dev/ptyv1] && rnv dev/ptyv1 dev/ptyv1 &
egrep -v "ttyvOlttyv1" etc/ttys I

sed 's/A#console/console/' > trnp/ttys
rnv trnp/ttys etc/ttys
; ;

egrep -v "ttyvOlttyv1" etc/ttys ~

sed 's/A#console/console/' > trnp/ttys
rnv trnp/ttys etc/ttys

; ;

let everybody die off ...
wait
exit 0

4-4 Writing setld Subset Control Programs

Producing setld-Compatible Kits 5

This chapter describes how to produce a setld-compatible software distribution
kit. The uncompiled files that make up your software product are assumed to exist in
a directory structure.

The sections that follow tell you how to:

• Generate the master directory hierarchy.

• Create the data directory.

• Generate the master inventory.

• Create the key file.

• Create the SCPs.

• Create an output directory.

• Generate the kit images.

• Create the SPACE file.

• Build the / etc/ki tcap data base.

• Make the distribution media.

The UWSXl1400 subset is used as the main example throughout this chapter. The
ULTlNET400 subset is used as an example of a dependent subset.

5.1 Generating the Master Directory Hierarchy
This section describes how to generate the master directory hierarchy by transferring
files from the source directory to an input directory. The source directory contains all
of the uncompiled files and directories that make up the software product. These files
are compiled and transferred to the input directory using make files.

5.1.1 Create the Input Directory Tree
Follow this procedure to create the input directory tree:

1. Create an input directory structure that mirrors the directory structure you
require on the destination system. The top of this hierarchy is / .

2. Do not include any files in your input directory structure that match existing
ULTRIX files.

5.1.2 Manage the Transfer
One method for managing the transfer is to use make files to create file attributes
and to create directories on the input directory tree. If you use make, write the files
to compile the files in your source directory and to transfer the compiled files to the

appropriate place in the input directory hierarchy. Write your make files so that they
set owner, group, and mode permissions for each file.

Follow this procedure if you write make files:

1. Create a make file in each source directory.

2. Write each make file to process the contents of the directory in which it runs,
and to be responsible for directories immediately below the directory in which it
runs.

3. Use the install command in the make files to install each file in the source
directory to the desired place in the input directory. Refer to the ULTRIX
Reference Pages for information about the install{l) command.

4. Create a master make file at the top of the source directory hierarchy. This
make file calls the make file in each source directory below.

5. Run make to transfer files from the source directory to the input directory.

Appendix A contains a sample series of make files.

5.2 Building the Data Directory
The data directory tree contains the operating environment for kitting the subsets.

Follow these steps to build the data directory:

1. Create a directory with the name data.

2. Create a subdirectory with the name scps under the data directory.

3. Transfer your SCPs to datal scps.

5.3 Generating the Master Inventory
The master inventory file contains a record describing each file in the input hierarchy
of a software product. The file is the ouput that results when you use the newinv
utility to produce a new or updated master inventory of a software product. See
Chapter 2 for descriptions of the format of the newinv output file and of the
operations that the utility performs.

Follow this procedure to generate a master inventory file:

1. Change to the data directory.

2. If you are creating a new master inventory, use the touch command to create
an empty file. For example:

touch OWS400.mi

If you are updating the master inventory file for a product, use the existing
master inventory file as your input file.

3. Generate the master inventory using a command like the following:

newinv OWS400.mi .. /input

Informational messages appear during the processing.

4. If you are updating a master inventory and files that were included previously
are missing from the input hierarchy, a message appears. The message tells you

5-2 Producing setld-Compatible Kits

that the program will display the records representing those files for editing.
The message tells you to press the RETURN key to continue or CTRL/C to
leave the program.

5. When you press the RETURN key, the records representing missing files
appear. For example:

o ./usr/notneeded UWSXl1400

6. Delete those records that are no longer part of the product. Records that you do
not delete are merged with the updated master inventory.

7. If you are updating a master inventory and files that were not part of the product
previously are included in your hierarchy, a message appears. The message
tells you that the program will display the records representing those files for
editing. The message tells you to press the RETURN key to continue or
CTRL/C to leave the program.

8. When you press the RETURN key, the new records appear. For example:

./usr/lib/myfile

9. Assign flag values and a subset name for those records that are now part of the
subset. For example:

o ./usr/lib/myfile UWSXl1400

Records that you edit are merged with the updated master inventory. Delete
any records of files that do not belong in the updated product.

10. Do not include ULTRIX directories in any of your subsets. Retain all ULTRIX
directory records in the inventory. Use the subset name RESERVED. For
example:

o ./usr RESERVED
o ./usr/lib RESERVED

5.4 Creating the key File
The key file stores the attributes of a software product. The key file is required by
the kits procedure.

Create your key file using an editor, like vi. A common convention is to use the
3-character product code and the 3-digit version code with a . k extension for the
filename. For example, the key file for the ULTRIX Worksystem Software Version
4.0 product has the name UWS400. k.

The key file is divided into two sections, product attributes and subset descriptors.
Two percent characters (%%) separate the sections.

The product attributes section of the key file contains definitions identifying the
software product. The key file product attributes section definitions and a
description of each are listed in Table 5-1.

Producing setld-Compatible Kits 5-3

Table 5-1: Key File Control Section

Field

NAME

CODE

VERS

MI

ROOT

COMPRESS

Description

The product name, for example, UL TRIX
Worksystem Software.

The unique, 3-character, product code, for example,
UWS. The following codes are reserved:

DNP, DNU, EPI, FOR, LSP, SNA, UDC,
UDT, UDW, UDX, ULC, ULT, ULX, UWS

The 3-digit version code, for example, 400, which
setld interprets as 4.0.0.

The name of the master inventory file for the
product. This is the name used with the newinv
utility.

An optional flag that is set to 1 if you are building
the UL TRIX operating system distribution.

An optional flag that is set to 1 if you want to create
compressed subset images. Compressed subset
images use significantly less space in the output
directory and on distribution media than do
uncompressed subset images, but compressed subset
images take longer to install.

The format for entering the key file product attributes section definitions follows:

• Separate the field name and its value with an equal sign (=), for example:

CODE=ULT

• Enclose strings containing white space or shell meta characters in single quote
characters ('), for example:

'ULTRIX Worksystem Software' .

• Begin comment lines with a pound sign (#).

The subset descriptors section of the key file contains attribute descriptors for each
subset that is part of the product.

There is one record for each subset. Each record contains four fields which are
separated by tabs. Each record ends with a newline.

The fields that make up each record in the data section and a description of each are
listed in the Table 5-2.

5-4 Producing setld-Compatible Kits

Table 5·2: Key File Data Section

Field Description

Subset name A character string, up to 15 characters, composed of the following:
- The 3-character product code (for example, UWS)
- A mnemonic identifying the subset (for example, X11)
- The 3-digit version code (for example, 400)

The examples above combine to form the subset name UWSX11400.

Dependency list One of the following:
- A dot (.) indicating no dependencies
- A subset name (for example, ULTINET400)
- Subset names separated by a logical OR symbol (I)

Flags An unsigned integer.
The bottom 8 bits are used by Digital to convey information to
setld:

- Bit 0, the sticky bit, when set indicates the subset cannot be
removed;

- Bit I when set indicates the subset is optional;
- Bit 2 when set indicates the subset is updatable;
- Bits 3 through 7 are reserved.

The top 8 bits are undefined and available.

Subset description Short description of functionality delimited by single quote characters
('), for example, 'XII DEC windows User Environment'.

The example that follows shows the file UWS 400 . k, which is the key file for the
ULTRIX Worksystem Software Version 4.0 product.

Producing setld-Compatible Kits 5-5

NAME='ULTRIX Worksystem Software V4.0'
CODE=ULT
VERS=400
MI=ULTRIX.mi
ROOT=l
RXMAKE=O
COMPRESS=l
subset definitions
%%

follow

ULTBASE400
ULTBIN400
ULTINET400
ULTEXER400
ULTNFS400
ULTUMAIL400
ULTMH400
UWSXl1400
UWSFONT400
UWSFONT3D400
ULTDCMT400
ULTPGMR400
ULTINTL400
ULTSCCS400
UWSXDEV400
UWSXDEV3D400
ULTPASCAL400
ULTVAXC400
ULTMAN400
ULTACCT400
ULTCOMM400
ULTBSC400
ULTMOP400
ULTUUCP400

1
a
o
a

ULTINET400
ULTINET400
ULTUMAIL400
ULTINET400

a
2
2
2

ULTPGMR400
2

ULTPGMR400
UWSXDEV400

2
2

ULTDCMT400
2

ULTINET400
2
2

ULTCOMM400

'Base System'
'Kernel Configuration Files'
'TCP/IP Networking Utilities'
'System Exerciser Package'
a 'Network File System Utilities'
o 'Extended (Berkeley) Mailer'
a 'The RAND Mail Handler'
o 'Xll/DECwindows User Environment'
'Xll/DECwindows Fonts'
'Xll Fonts for 3D'
'Document Preparation Software'
'Software Development Utilities'
2 'Internationalization Tools'
'Source Code Control System'
2 'Worksystem Development Software'
2 'VAXstation 8000 Development'
'Pascal Development Package'
'VAX C/ULTRIX'
2 'On Line Manual Pages'
'Accounting Software'
2 'Communications Utilities'
'Bisynchronous Communications'
'Maintenance Operations Protocol'
2 'Unix-to-Unix Copy Facility'

5.5 Building the Output Directory
The output directory tree contains the setld-compatible files that are transferred to
the destination system.

To build the output directory, create a directory with the name output.

5.6 Creating the SPACE File
The SPACE file is a place holder for tape records that is reserved by Digital.

Follow these steps to create the SPACE file:

1. Use the cd command to change to the output directory.

2. Enter the following command sequence:

touch space
tar cf SPACE space

5.7 Generating the kit Images
Run the ki ts program to generate data files that produce kit images for transfer to
the output directory tree. The kit s program resides in / s y s / di st. See Chapter

5-6 Producing setld-Compatible Kits

2 for a description of the operations that the kits utility performs.

The kits command line syntax, with an example, follows:

kits <key_file> <input_directory> <output_directory>

kits UWS400.k .• /input .. /output

5.8 Building letc/kitcap
The file / etc/ki tcap contains an entry for each software product kit a node can
generate. An / etc/ki tcap file must exist on each node that can generate a kit for
that software product. You can keep the kitcap file in the data directory and link
the file /etc/kitcap to it.

The format of an / et c / kit cap entry for tape media, with an example, follows:

<kitcodeTK>:<kit_dir>:SPACE:SPACE:SPACE:INSTCTRL:<subset>[:<subset>]

UWS400TK:/sys/dist/<prod>/output:SPACE:SPACE:SPACE:INSTCTRL:UWSXRT400 \
:UWSMH400

The subsets are listed in the order in which they are named in the key file.

The format of an / etc/ki tcap entry for RA60 disk media, with an example,
follows:

<kitcodeRA>:<kit_dir>:<disk-part>:insctrl:INSTCTRL:<subset>[:<subset>]

UWS400RA: ... :a:insctrl:INSTCTRL:UWSXRT400:UWSXDEV400

The subsets are listed in the order in which they appear on the tape.

5.9 Making the Distribution Media
This section tells you how to make distribution media containing the images to be
installed using the setld utility.

5.9.1 Making Tape Media
Use the gentapes utility to make tape media. The command line syntax, with an
example, follows:

gentapes [-wv] [node:] : <kitcode> <tape_drive>

gentapes mysystem:UWS400 /dev/nrmtOh

The -w option indicates write only; the -v option indicates verify only. If neither
option is specified, the utility writes, rewinds the tape, then verifies.

If you specify a node, the gentapes utility looks for the output directory on the
node you specify. You can use the Network File System (NFS) to remotely mount
the kit on a machine with the correct drive.

5.9.2 Making RA60 Disk Media
Use the genra utility to make RA60 disk media. The command line syntax, with an
example, follows:

genra [node:] : <kit code> <directory>

genra mysystem:UWS400 /mnt

Producing setld-Compatible Kits 5-7

Reproducing setld-Compatible Kits 6

Versions 2.0 and later of ULTRIX include programs to reproduce setld­
compatible software distribution kits. This chapter describes how to reproduce these
kits for UL TRIX, ULTRIX Worksystem Software, UL TRIX Layered Products, and
third party software packages distributed for UL TRIX.

Be certain that your software developer has been granted the right to copy the
distribution kit before performing any of the procedures described in this chapter.

To reproduce copies of setld-compatible software distribution kits:

1. Create a product output directory.

2. Copy the files from your media.

3. Prepare the product output directory and database.

4. Produce individual pieces of media.

6.1 Creating a Product Output Directory
Follow these steps to create a product output directory:

1. Create a directory with enough space to contain the product you plan to copy.

2. Change to this directory using the cd command.

6.2 Copying from Your Media
Follow the instructions that apply to the type of media from which you are copying.

6.2.1 Copying from Tape
Follow this procedure to copy from tape media:

1. Mount the tape on the tape drive.

2. Issue a sequence of commands like the following:

dd if=/dev/nrmtnh of=TKSO.l bs=S12
dd if=/dev/nrmtnh of=TKSO.2 bs=lOk
dd if=/dev/nnntnh of=ROOT bs=lOk
setld -x /dev/nrmtnh

The letter n in the commands above represents the unit number of the drive you
are using.

When the commands have executed, the copy procedure is complete.

6.2.2 Copying from an RA60 Disk
Follow this procedure to copy from an RA60 disk:

1. Mount the partition containing the product you want to copy on I ron t .

2. Type a command with the following syntax:

setld -x /mnt/<product_dir>

When the command has executed, the copy procedure is complete.

6.3 Preparing the Product Output Directory and Database
This procedure modifies the directory containing the product you copied to make the
contents compatible with the setld utilities youuse to reproduce the media.

1. Use the cd command to change to the directory Is y s I di st.

2. Place the following command procedure in a file named, for example, rt c :

#!/bin/sh5

KITCAP=/tmp/kitcap
CURVOL=l

cd instctrl
I='expr *.image : ') . image' ,
echo "Your product code is $I"

tar cf .. /INSTCTRL *

echo "${I}TK:'pwd':TK50.111:TK50.211:ROOT:INSTCTRL

for S in 'awk '{print $3}' *. image ,
do

[$S = ROOT] && continue
. $S.ctrl
set -- '(IFS=:iecho $MTLOC)'
VOL=$l
LOC=$2
[$VOL -ne $CURVOL] &&
{

echo ":%%$VOL

echo ":$Sdone
echo » $KITCAP

mv /tmp/kitcap /etc

CURVOL=$VOL

3. Use the cd command to change to the output directory.

4. Execute the command procedure.

A product code appears at the end of the procedure. Retain this code which is part of
your product identification.

6-2 Reproducing setld-Compatible Kits

6.4 Generating Individual Pieces of Media
You can reproduce distribution media from the output directory. You can reproduce
tape and RA60 disk copies for distribution of the ULTRIX supported and
unsupported kits.

6.4.1 Generating RA60 Disk Media
You can use the RA60 disk pack to distribute several products simultaneously,
because each product is in a separate partition. The partition used for each product is
specified in the command procedure you execute to prepare the output directory, so
you do not need to specify it.

The genra command, which is in the / sys/ dist directory, reproduces RA60 disk
media. This command requires two arguments: a product code and a device special
file name for the disk to which you are writing. The product code appears in a
message when the command procedure used to prepare the output directory executes.
The product code ULT is used in the example that follows.

Issue a command like the following to copy the product from the output directory to
the correct partition of your RA60 disk:

/sys/dist/genra ULT /dev/ranc

Substitute the unit number of the drive on which your RA60 disk is ready and on line
for the 'n'.

6.4.2 Generating Tape Media
The gentapes command, which can be found in the /sys/dist directory,
reproduces tape media. Products with the product code UWS cannot be written to
9-track tapes.

The gentapes command requires two arguments: a product code and a device
special file name for the tape drive to which you are writing. The product code
appears in a message when the command procedure used to prepare the output
directory executes. The product code UL T is used in the example that follows.

Issue a command like the following to copy the product from the output directory to
tape:

/sys/dist/gentapes ULT /dev/rmtnl

Substitute the unit number of the drive on which your TK50 tape cartridge is ready
and on line for the ' n ' .

Reproducing setld-Compatible Kits 6-3

How setld Options Work 7

This chapter describes the operations that each setld option performs.

Except when using the -i option, you must be the superuser to run the setld
utility. Therefore, the first operation for each option is to validate your superuser
access. When a setld command line includes a pathname, the next operation for
each option is to check access to that path after validating superuser access.

The sections that follow describe the remaining operations that occur when you
execute setld commands using each of the setld options. The option
descriptions are given in the order in which a system manager would probably use
each option. Each command specifying an individual subset refers to the
UWSXl1400 subset.

When an option requires specification of a location, the location is the device
special file, mount point, or server name followed by a colon (:) from which the
subset or product is to be transferred.

7.1 The Load Option
Use the -1 option when you load a software product. The command line syntax,
with an example, follows:

setld -D [path] -1 <location> [subset]

set1d -0 /var/adm/ris -1 /dev/rmtOh

The setld utility performs the following operations:

1. Checks access to the location specified in location

2. Loads instctrl information from the location specified in location to a
temporary directory

3. Determines which subsets to load by calling SCP with the ACT variable set to
M and $1 (the first argument) set to -1. Those subsets for which SCP exits
with a 0 status, indicating that the subset is available for installation, are
divided into mandatory and optional, according to the FLAGS setting. If there
is no SCP for a subset, setld assumes an exit status of O. Optional subsets
are offered on the setld menu from which users select subsets.

4. Performs the following operations for each subset selected from the menu:
a. Checks dependencies
b. Checks size
c. Runs scp PRE L
d. Loads subset -
e. Verifies subset
f. Flags subset as verified

5. After all the subsets selected have been loaded, performs the following
operations for each subset flagged as verified:

a. Runs scp POST L

b. If no path was specified on the command line, runs scp C
INSTALL

c. Locks subset
d. Adds dependency lock records

7.2 The Configure Option
Use the - c option to call the SCP to perform node-specific, "online" configuration
operations for a subset. The command line syntax, with an example, follows:

setld -D [path] -c subset message

setld -0 /var/adm/ris -c UWSXl1400 INSTALL

The setld utility performs the following operations:

1. Validates existence of subset

2. Sets the ACT variable to C

3. Calls <subset>. scp with message as $1 (the first argument)

7.3 The Delete Option
Use the - d option to delete subsets. The command line syntax, with an example,
follows:

setld -D [path] -d subset[subset ...]

setld -0 /var/adm/ris -d UWSX11400

The setld utility performs the following operations:

1. Checks that the subset is installed

2. Checks to see if the sticky bit is set, indicating the subset cannot be deleted

3. Checks dependencies. If any dependencies exist, displays the names of the
dependent subsets and prompts the user to confirm the deletion

4. Sets ACT to scp PRE_D_ and executes SCP

5. Deletes all files in the subset

6. Sets ACT to scp POST_D and executes SCP

7. If no path was specified, sets ACT to C and executes the SCP with DELETE
as $1 (the first argument)

7.4 The Inventory Option
Use the - i option to see either a list of subsets or a list of files in a subset. The
command line syntax to list subsets with the status of each and its description, with
an example, follows:

setld -D [path] -i

setld -D /var/adm/ris -i

7-2 How satld Options Work

The command line syntax to list files in a subset, with an example, follows:

setld -D [path] -i [subset]

setld -0 /var/adm/ris -i UWSXl1400

The setld utility checks the inventory of all the subsets installed if no subset name
is given, or of individual subsets named.

7.5 The Extract Option
Use the -x option to extract files to set up a ris area. The command line syntax,
with an example, follows:

setld [-D path] -x <location>

setld -x /dev/rmtOh

The setld utility performs the following operations:

1. Checks access to the location specified in location

2. Loads instctrl information from the location specified in location to a
temporary directory

3. Determines which subsets to load by calling SCP with the ACT variable set to
M and $1 (the first argument) set to -x. Those subsets for which SCP exits
with a 0 status, indicating that the subset is available for installation, are
divided into mandatory and optional, according to the FLAGS setting. If there
is no SCP for a subset, setld assumes an exit status of o. Optional subsets
are offered on the setld menu from which users select subsets.

4. Reads instctrl information from the temporary directory to . /instctrl

5. Performs the following operations for each subset selected from the menu:
a. Extracts subset image
b. Runs s urn on subset image
c. Reports errors

7.6 The Verify Option
Use the -v option to verify a subset installation. The command line syntax, with an
example, follows:

setld -v [subset]

setld -v UWSXl1400

The setld utility runs scp V to verify the installation of the subset specified.

7.7 The Update Option
Subsets on a user's system can be updated if the developer set the update flag (bit 2)
in the data section of the key file for the subset when preparing the product for
distribution. Use the -u option to update subsets that have the update flag set that
match subsets on update distribution media.

The command line syntax, with an example, follows:

setld [-D path] -u <location>

setld -u /dev/rmtOh

How setld Options Work 7-3

The setld utility performs the following operations:

1. Checks access to the location specified in location

2. Loads instctrl information from the location specified in location to a
temporary directory

3. Performs the following operations for each subset to be updated:

• Merges the system subset inventory with the update subset inventory,
creating a a synchronization file with the extension . s yn.

• Creates a lock file with a . dw extension.

• Sets ACT to scp PRE_U and executes SCPo

• Creates the directory usr/adm/install/archive if it does not
exist.

• Determines which files the user has changed and archives those files to
the usr / adm/ install/ archi ve directory.

• Loads the replacement files from the media.

• Verifies the subset.

• Moves the contents of the lock file with a . dw extension to a lock file
with a . I k extension.

• Sets ACT to scp POST_U and executes SCPo

• Creates the directory usr / adm/ install/ reference if it does not
exist.

• Archives reference copies of all the files archived to the
usr/adm/install/archive directory to the
us r / adm/ in stall / re f e rence directory.

• Checks the p (precedence) bit on the distribution media inventory
. inv file and restores those files with the p bit set with the
corresponding files in the usr / adm/ install / archi ve directory.

• Deletes files in the user's system subset that are no longer included in
the update subset inventory. If a file that is no longer included in the
update inventory has been modified, the file is saved in its present
location, but is not attached to the subset.

• Removes old inventory information from the /usr / etc/ subsets
directory.

7-4 How setld Options Work

Sample make Files A

This appendix contains a sample series of make files for managing the transfer of a
software product from source directories to the input directory hierarchy from which
the files will be processed using the set ld utility. The appendix also contains the
output generated when the sample make files execute.

Figure A-I illustrates the directory hierarchy containing the make files.

Figure A-1: Sample make File Directory Hierarchy

lexlusrlliblmylibIMakefile
lexlusrllib/myliblcompare.c
lexlusrllib/mylib/print.c
lexlusrlliblmylib/reverse.c
lexlusrllib/myliblrotate.c

ZK-0166U-R

The contents of each make file follows, in the order in which they would run. Each
file contains a comment explaining its specific purpose.

A.1 lex/Makefile

=If

=If SCCSID %W% (MYPRODUCT) %G%
=If

=If Example Makefile, building a product, /
=If

DESTROOT=
DIRS=usr
install: $ (DIRS)

print:

-for K in $(DIRS);\
do\

mkdir $ (DESTROOT)/$$K;\
(cd $$K; make DESTROOT=$(DESTROOT) install);\

done

lpr Makefile
for K in $(DIRS);\
do\

(cd $$K;make print);\
done

A.2 lex/usr/Makefile

=If

=If SCCSID %W% (MYPRODUCT) %G%
=If

=If Example Makefile, building a product, /usr
=If

DESTROOT=
DIRS=lib bin
TARGETS=dolib dobin
install: $ (TARGETS)
dolib:

dobin:

print:

-[-f $ (DESTROOT)/usr/lib] I I mkdir $ (DESTROOT)/usr/lib
(cd lib;make DESTROOT=$(DESTROOT»

-[-f $ (DESTROOT)/usr/bin] I I mkdir $ (DESTROOT)/usr/bin
(cd bin;make DESTROOT=$(DESTROOT»

lpr Makefile
for K in $(DIRS);\
do\

(cd $$K;make print);\
done

A-2 Sample make Files

A.3 lex/usr/lib/Makefile

SCCSID %W% (MYPRODUCT) %G%

Example Makefile, building a product, /usr

DESTROOT=
DIRS=mylib
install:

for DIR in $(DIRS);\
do\

(cd $$DIR;make DESTROOT=$(DESTROOT) install);\
done

print:
lpr Makefile
for DIR in $(DIRS);\
do\

(cd $$DIR;make print);\
done

A.4 lex/usr/lib/mylib/Makefile

Makefile

example makefile for usr/lib/libmylib.a

DESTROOT=
LIBDIR=$(DESTROOT)/usr/lib
CFLAGS=-O
OBJS=compare.o print.o reverse.o rotate.o
install: libmylib.a

install -m 755 -0 root -g system libmylib.a $(LIBDIR)
ranlib $ (LIBDIR)/libmylib.a

libmylib.a: $ (OBJS)
ar cr libmylib.a $ (OBJS)

print:
lpr Makefile *.c

Sample make Files A-3

A.5 lex/usr/lib/mylib/compare.c

/* compare.c -
* example library module

*
* compare() - compare two strings

*/
#ifndef lint
static char
#endif
compare (s,t)

*sccsid

register char *s, *t;
{

while (*5
{

"%W% (MYPRODUCT) %G%";

if (*s != *t)

++s;
++t:

return (*s) ;

break;

A.6 lex/usr/lib/mylib/print.c

/* print.c
* example library routine

*
* print() - write string to stdout

*/
print(s)
char *s;
{

write(O,s,strlen(s»:

A-4 Sample make Files

A.7 lex/usr/lib/mylib/reverse.c

/* reverse.c -
* example library module

*
* reverse() - reverse a string

*/
#ifndef lint
static char *sccsid n%w% (MYPRODUCT) %G%ni
#endif
#define MAXBUF 1024
char *reverse(s)
register char *s;
{

static char buf [MAXBUF+1] ;
char *p;
int i;
if ((i strlen(s» >= MAXBUF

return ((char *) 0);
p = buf + i;
for(*p-- = '\0'; *s;

*p-- = *s++;
return(p+1);

A.a lex/usr/lib/mylib/rotate.c

/* rotate.c -
* example library module

*
* rotate() - rotate each character in a string a given number
* of places in the alphabet.

*
* ASCII only.

*/
#ifndef lint
static char *sccsid = n%w% (MYPRODUCT) %G%n;
#endif
#include <ctype.h>
char *rotate(s,i)
register char *s;
register int i;
{

char *t;
t = s;
while (*s)
{

if(

else

++s;

return(t);

isupper (* s))

*s = ((*s -
if(islower(*s)

*s = «*s -

, A' + i)
)

, a' + i)

% 26)

% 26)

+ ' A' ;

+ ' a' ;

Sample make Files A-5

A.9 lex/usr/bin/Makefile

SCCSID %W% (MYPRODUCT) %G%

Example Makefile, building a product, /usr

DESTROOT=
DIRS=$(DESTROOT)/usr/bin
PROGS=comp rev rot
install:

print:

-mkdir $(DIRS)
for K in $(PROGS);\
do\

(cd $$K;make DESTROOT=$(DESTROOT) install);\
done

lpr Makefile
for K in $(PROGS);\
do\

(cd $$K; make print);\
done

A.10 lex/usr/bin/comp/Makefile

Makefile

LIBS=$(DESTROOT)/usr/lib
CFLAGS=-O -s
install:

cc -0 comp comp.c -L$(LIBS) -lmylib
install -m 755 -0 root -g system comp $(DESTROOT)/usr/bin

print:
lpr Makefile *. [ch]

A-6 Sample make Files

A.11 lex/usr/bin/comp/comp.c

/* comp.c
* example string compare program

*/
#ifndef lint
static char *sccsid = n%w% (MYPRODUCT) %G%n;
#endif
main (argc,argv)
int argc;
char *argv[];
{

if(argc != 3)
{

}

print (nArgument Count Error\nn);
exit(l);

if(compare(argv[1],argv[2]))
print("Different\nn};

else
print("Same\n");

A.12 lex/usr/bin/rev/Makefile

Makefile

LIBS=$(DESTROOT)/usr/lib
CFLAGS=-O -s
in~tall:

cc -0 rev rev.c -L$(LIBS) -lmylib
install -m 755 -0 root -g system rev $ (DESTROOT)/usr/bin

print:
lpr Makefile *.[ch]

A.13 lex/usr/bin/rev Irev.c

/* rev.c -
* example program, reverses its argument and prints.

*/
#ifndef lint
static char *sccsid
#endif

n%w% (MYPRODUCT) %G%n;

main (argc,argv)
int argc;
char *argv[];
{

if(argc != 2)
{

print (nArgument Count Error\nn);
exit(l);

print(reverse(argv[l]»;
print("\n");
exit(O);

Sample make Files A-7

A.14 lex/usr/bin/rotlMakefile

Makefile

LIBS=$(DESTROOT)/usr/lib
CFLAGS=-O -s
install:

print:

A.15

/*
*
*

*/

cc -0 rot rot.c -L$(LIBS) -lmylib
install -m 755 -0 root -g system rot $(DESTROOT)/usr/bin

lpr Makefile *. [ch]

lex/usr/bin/rotlrot.c

rot.c -
example, rotate argv[l] by argv[2] in the ascii
collating sequence.

#ifndef lint
static char *sccsid
#endif
main (argc,argv)
int argci
char *argv[]i
{

if(argc != 3)
{

"%W% (MYPRODUCT) %G%"i

print ("Argument Count Error\n");
exit(l)i

}

print (rotate(argv[l], atoi(argv[2])));
print ("\n") i
exit(O);

A-8 Sample make Files

A.16 Output From Sample Makefiles

Script started on Wed Aug 31 15:15:19 1988
csh:1 make DESTROOT=/examp1e/root install
for K in usr; do mkdir /example/root/$K; (cd $K; make
DESTROOT=/example/root install); done
mkdir: /example/root/usr: File exists
[-f /example/root/usr/lib] I I mkdir /example/root/usr/lib
mkdir: /example/root/usr/lib: File exists
*** Error code 1 (ignored)
(cd lib;make DESTROOT=/example/root)
for DIR in mylib; do (cd $DIR;make DESTROOT=/example/root install); done
ar cr libmylib.a compare.o print.o reverse.o rotate.o
install -m 755 -0 root -g system libmylib.a /example/root/usr/lib
ranlib /example/root/usr/lib/libmylib.a
[-f /example/root/usr/bin] I I mkdir /example/root/usr/bin
mkdir: /example/root/usr/bin: File exists
*** Error code 1 (ignored)
(cd bin;make DESTROOT=/example/root)
mkdir /example/root/usr/bin
mkdir: /example/root/usr/bin: File exists
*** Error code 1 (ignored)
for K in comp rev rot; do (cd $K;make DESTROOT=/example/root install);
done
cc -0 comp comp.c -L/example/root/usr/lib -lmylib
install -m 755 -0 root -g system comp /example/root/usr/bin
cc -0 rev rev.c -L/example/root/usr/lib -lmylib
install -m 755 -0 root -g system rev /example/root/usr/bin
cc -0 rot rot.c -L/example/root/usr/lib -lmylib
install -m 755 -0 root -g system rot /example/root/usr/bin
csh:2 exit
script done on Wed Aug 31 15:23:06 1988

Sample make Files A-9

o
data directory

building, 5-2

data files

format, 2-3

distribution kit components, 1-3

distribution media

making, 5-7

E

/etclkitcap

building, 5-7

input directory tree

creating, 5-1

transferring files, 5-1

K

key file

creating, 5-3

kit images

generating, 5-6

kit reproduction

command sequence, 6-2

copying from disk, 6-2

copying from media, 6-1 to 6-2

copying from tape, 6-1

output directory creation, 6-1, 6-2

output directory preparation, 6-2

producing media, 6-3

kit reproduction components, 6-1

kits utility

data directory contents, 2-3

data files generated, 23t, 2-3

Index

files generated, 3-1, 3-1, 3-2, 3-2, 3-4, 3-5

operations, 2-3

M

master directory hierarchy

See generating

input directory tree, 5-1

make files, 5-1

transferring files, 5-1

master inventory

generating, 5-2

master inventory file

format, 22t, 2-1

N
newinv utility

operations, 2-1

syntax, 2-1

o
output directory

building, 5-6

p

product output directory

producing disk media, 6-3

producing tape media, 6-3

R
RA60 disk media

making, 5-7

s
setld

kit production process, 1-3

lkit production requirements, 1-3

kit reproduction, 6-1 to 6-3

setld benefits

flexibility, 1-2

installation security, 1-2

media support, 1-2

uniformity, 1-2

setld options

configure, 7-2

delete, 7-2

extract, 7-3

inventory, 7-2

load,7-1

operations, 7-1 to 7-4

update, 7-3

verify, 7-3

setld utilities

operations, 2-1

setld utility

compression files, 3-6

control files, 3-2

file format and, 3-1

file types and, 3-1

files used, 31 t, 3-1 to 3-6

image data files, 3-5

inventory files, 3-2

lock files, 3-4

overview, 1-1

setld-compatible product environment

layout, 1-4f

SPACE file

creating, 5-6

Index-2

T

tape media

making, 5-7

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040
before placing your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the
Electronic Store, call 800-DIGIT AL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal *

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital Subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMOjE15
or
Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

* For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments \ULTRIX
Guide to Preparing Software for
Distribution on ULTRIX Systems

AA-MG628-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor

Accuracy (software works as manual says) 0 0 0 0
Completeness (enough information) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 0 0 0

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Nameffitle ___ Dept.
Company ___ _ Date ____________ _

Mailing Address
___________________________ Email ____________________ Phone ___________________ ___

- - - - - _. Do Not Tear ~ Fold Here and Tape

1l1i11Dl1a1M -----------------------------Ill-Ill----------::::::::E----

NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

11

- - - - - - _. Do Not Tear - Fold Here

Cut
Along
Dotted
Une

