
VL TRIX W orksystem Software

Display PostScript® Client Library
Reference Manual

Order Number: AA- PAN8A- TE

Client Library
Reference Manual

Order No. AA-PAN8A-TE

ADOBE SYSTEMS
INCORPORATED

Client Library Reference Manual

Writer: Amy Davidson

October 25, 1989

Copyright© 1988, 1989 Adobe Systems Incorporated.
All rights reserved.

POSTSCRIPT and DISPLAY POSTSCRIPT are registered
trademarks of Adobe Systems Incorporated.

Macintosh is a registered trademark of Apple Computer
Incorporated. UNIX is a registered trademark of AT&T
Information Systems. X Window System is a trademark of the
Massachusetts Institute of Technology.

The infonnation in this document is furnished for infonnational use
only, is subject to change without notice, and should not be construed
as a commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or
inaccuracies that may appear in this document. The software
described in this document is furnished under license and may only be
used or copied in accordance with the tenns of such license.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any fonn or by any means, electronic,
mechanical, recording, or otherwise, without the prior written
pennission of Adobe Systems Incorporated.

This manual replaces the previous version dated October 7,
1988.

About This Manual 1

1.1 System-Specific Documentation 2
1.2 Typographical Conventions 2

2 About The Client Library 4

3 Overview of the Client Library 6

3.1 Phases of an Application 6

3.2 Header Files 7

3.3 Wrapped Procedures 8

4 Basic Client Library Facilities 10
4.1 Contexts and Context Data Structures 10
4.2 System-Specific Context Creation 11

4.3 Example of Context Creation 11

4.4 The Current Context 14
4.5 Sending Code and Data to a Context 14
4.6 Spaces 19

4.7 Interrupts 19

4.8 Destroying Contexts 20

5 Handling Output From the Context 21

5.1 Call-Back Procedures 21

5.2 Text Handlers 23

5.3 Example Text Handler 23

5.4 Error Handlers 25

5.5 Error Recovery Requirements 26
5.6 Backstop Handlers 27

6 Additional Client Library Facilities 28

6.1 Chained Contexts 28

6.2 Encoding and Translation 30

6.2.1 Encoding POSTSCRIPT Language Code 30
6.2.2 Translation 31

6.3 Buffering 31

6.4 Synchronizing Application and Context 32

6.5 Forked Contexts 33
7 Programming Tips 35

7.1 Using the Imaging Model 37

8 Example Application Program 39
8.1 Example C Code 40

8.2 Example Wrap 43

8.3 Description of the Example Application 43

iii

iv

9 The dpsc/ient.h Header File 45

9.1 dpsc/ient.h Data Structures 45

9.2 dpsc/ient.h Procedures 47
10 Single-Operator Procedures 55

10.1 Setting the Current Context 56

10.2 Types in Single-Operator Procedures 56

10.2.1 Rules of Thumb 57

10.2.2 Special Cases 59

10.3 dpsops.h Procedure Declarations 60
11 Runtime Support for Wrapped Procedures 72

11.1 More About Sending Code For Execution 72

11.2 Receiving Results 73

11 .3 Managing User Names 75

11.4 Binary Object Sequences 76
11.5 Extended Binary Object Sequences 78

11.6 dpsfriends.h Data Structures 79

11 .7 dpsfriends.h Procedures 83

A Changes Since Last Release 89
B Example Error Handler 91

B.1 Error Handler Implementation 91

B.2 Description of the Error Handler 93

B.3 Handling POSTSCRIPT Language Errors 95

C Exception Handling 97

C.1 Recovering From POSTSCRIPT Language Errors 100
C.2 Example Exception Handler 103

Index 105

Figure 1: The Client Library Link to the DISPLAY POSTSCRIPT System 4

Figure 2: Creating an Application 40

v

1 ABOUT THIS MANUAL

This manual provides the application programmer with descrip
tions of Client Library procedures and conventions; these con
stitute the programming interface to the DISPLAY POSTSCRIPT@
system. The sections of the manual are listed below:

• Section 2 introduces the Client Library and provides a
diagram of its relationship to the DISPLAY POSTSCRIPT sys
tem.

• Section 3 provides a brief overview of the Client Library;
describes the phases of an application program interacting
with the DISPLAY POSTSCRIPT system; introduces the C
header files that represent the Client Library interface; and
discusses the use of wrapped procedures.

• Section 4 describes the basic concepts an application pro
grammer needs to know before writing a simple application
for the DISPLAY POSTSCRIPT system.

• Section 5 discusses call-back procedures of various kinds,
including text and error handlers.

• Section 6 contains advanced Client Library concepts in
cluding context chaining, encoding and translation, buffer
ing, application/context synchronization, and forked con
texts.

• Section 7 provides programming tips and summarizes notes
and warnings.

• Section 8 lists and documents an application program that
illustrates how to communicate with the DISPLA Y
POSTSCRIPT system using the Client Library.

• Section 9 documents the basic Client Library data struc
tures and procedures found in dpsclient.h.

• Section 10 describes the single-operator procedures that
implement POSTSCRIPT@ operators and lists the dpsops.h
header file in which they are declared.

• Section 11 describes the dpsfriends.h header file and its
support of C-callable procedures produced by the pswrap
translator.

• Appendix A lists changes to the manual since the last revi
sion.

1 ABOUT THIS MANUAL

• Appendix B provides an example error handler for the X
Window System ™ implementation of the DISPLAY
POSTSCRIPT system.

• Appendix C describes how an application can recover from
POSTSCRIPT language errors and provides an example of an
exception handler.

For more information about the POSTSCRIPT language, see the
POSTSCRIPT Language Reference Manual and POSTSCRIPT Lan
guage Extensions for the DISPLAY POSTSCRIPT System. For more
information about using the pswrap translator to embed
POSTSCRIPT language code in C programs, see the pswrap Refer
ence Manual.

1.1 SYSTEM-SPECIFIC DOCUMENTATION

The term "system specific" is used throughout this manual. It
refers to areas of the Client Library implementation that are
necessarily customized to fit a given machine and operating
system environment. The Client Library Reference Manual
describes those aspects of the Client Library that are common to
all DISPLAY POSTSCRIPT system implementations.

You will find notes and comments in this manual alerting you to
system-specific issues. For more information about these system
specific aspects of your Client Library implementation, see the
documentation provided by your DISPLA Y POSTSCRIPT system
vendor.

1.2 TYPOGRAPHICAL CONVENTIONS

The typographical conventions used in this manual are as fol
lows:

2 Client Library Reference Manual

Item Example o/Typographical Style

file dpsclient.h

variable, typedef, code fragment 'ctxt', 'DPSContextRec', 'DPSrectstroke(ctxt, 0.0, 0.0, 10.0, 20.0)'

procedure DPSSetContext

POSTSCRIPT operator rectfill

new tenn "A wrapped procedure (wrap for short) consists of "

1 ABOUT THIS MANUAL 3

2 ABOUT THE CLIENT LIBRARY

The Client Library is the application programmer's link to the
DISPLAY POSTSCRIPT system, which makes the imaging power
of the POSTSCRIPT interpreter available for online displays as
well as for printing. An application program can display text and
images on the user's screen by calling Client Library procedures.
These procedures are written with a C language interface. They
generate POSTSCRIPT language code and send it to the
POSTSCRIPT interpreter for execution, as shown in Figure 1.

Figure 1 The Client Library Link to the DISPLA Y POSTSCRIPT System

Application

Display

I
Display

Client ./
PostScript

fLibrary "' /' System

Window System

Application programmers can customize and optimize their ap
plications by writing POSTSCRIPT language programs. The
pswrap translator, described in the pswrap Reference Manual,
produces application-defined POSTSCRIPT language programs
with C-callable interfaces.

4 Client Library Reference Manual

Note: In this manual, the terms "input" and "output" apply to
the execution context in the POSTSCRIPT interpreter, not to the
application. An application ' 'sends input" to a context and
"receives output" from a context. This usage prevents the am
biguity that would otherwise exist, since input with respect to the
context is output with respect to the application, and vice versa.

2 ABOUT THE CLIENT LIBRARY 5

3 OVERVIEW OF THE CLIENT LIBRARY

The Client Library is a collection of procedures that provide an
application program with access to the POSTSCRIPT interpreter.
The Client Library includes procedures for creating, communi
cating with, and destroying POSTSCRIPT execution contexts. A
context consists of all the information (or "state") needed by the
POSTSCRIPT interpreter to execute a POSTSCRIPT language
program. In the Client Library interface, each context is
represented by a 'DPSContextRec' data structure pointed to by a
'DPSContext' handle. POSTSCRIPT execution contexts are
described in POSTSCRIPT Language Extensions for the DISPLAY
POSTSCRIPT System.

To the application programmer, it appears that Client Library
procedures directly produce graphical output on the display. In
fact, these procedures generate POSTSCRIPT language statements
and transmit them to the POSTSCRIPT interpreter for execution;
the POSTSCRIPT interpreter then produces graphical output that is
displayed by device-specific procedures in the DISPLAY
POSTSCRIPT system. In this way, the Client Library makes the
full power of the POSTSCRIPT interpreter and imaging model
available to a C language program.

The recommended way of sending POSTSCRIPT language code to
the interpreter is to call wrapped procedures generated by the
pswrap translator; these procedures are described in Section 3.3.
For simple operations, an application program can send
POSTSCRIPT language fragments to the interpreter by calling
single-operator procedures - each one the equivalent of a
single POSTSCRIPT operator - as described in Section 10. It is
also possible for an application program to send POSTSCRIPT
language as ASCII text, as if to a laser printer with a
POSTSCRIPT interpreter; this technique can be used for develop
ment and debugging.

3.1 PHASES OF AN APPLICATION

Here is how a typical application program, written in C, uses the
Client Library in the different phases of its operation:

6 Client Library Reference Manual

Initialization. First, the application establishes communication
with the DISPLA Y POSTSCRIPT system. Then it
calls Client Library procedures to create a con
text for executing POSTSCRIPT language
programs. It also performs other window
system-specific initialization. Some higher-level
facilities, such as toolkits, do all of this in
itialization automatically.

Execution. Once an application is initialized, it displays text
and graphics by sending POSTSCRIPT language
programs to the interpreter. These programs may
be of any complexity from a single-operator pro
cedure to a program that previews a full-color
illustration. The Client Library sends the
programs to the POSTSCRIPT interpreter and
handles the results received from tlie interpreter.

Termination. When the application is ready to terminate, it
calls Client Library procedures to destroy its
contexts, free their resources, and end the com
munication session.

3.2 HEADER FILES

The Client Library procedures that an application can call are
defined in C header files, also known as include files or interface
files. There are four Client Library-defined header files and one
or more system-specific header files. The Client Library inter
face represented by these header files may be extended in a given
implementation, but the extensions are compatible with the
definitions given in this manual.

• dpsclient.h provides support for managing contexts and
sending POSTSCRIPT language programs to the interpreter.
It supports applications as well as application toolkits. Al
ways present.

• dpsfriends.h provides support for wrapped procedures
created by pswrap as well as data representations, conver
sions, and other low-level support for context structures.
Always present.

• dpsops.h provides the single-operator procedures that re
quire an explicit context parameter. Optional; at least one

3 OVERVIEW OF THE CLIENT LIBRARY 7

single-operator header file must be present; that is,
dpsops.h or psops.h or both.

• psops.h provides the single-operator procedures that im
plicitly derive their context parameter from the current con
text. Optional; see dpsops.h.

• One or more system-specific header files provide support
for context creation. These header files may also provide
system-specific extensions to the Client Library, such as
additional error codes.

3.3 WRAPPED PROCEDURES

The most efficient way for an application program to send
POSTSCRIPT language to the interpreter is to use the pswrap
translator to produce wrapped procedures - that is,
POSTSCRIPT language programs that are callable as C
procedures. A wrapped procedure (wrap for short) consists of a
C language procedure declaration enclosing a POSTSCRIPT lan
guage body. There are several advantages to using wraps:

• Complex POSTSCRIPT programs can be invoked by a single
procedure call, avoiding the overhead of a series of calls to
single-operator procedures.

• You can insert C arguments into the POSTSCRIPT language
code at runtime instead of having to push the C arguments
onto the POSTSCRIPT operand stack in separate steps.

• Wrapped procedures can efficiently produce custom graph
ical output by combining operators and other elements of
the POSTSCRIPT language in a variety of interesting ways.

• The POSTSCRIPT language code sent by a wrapped proce-
dure is interpreted faster than ASCII text.

An application developer prepares a POSTSCRIPT language
program for inclusion in the application by writing a wrap and
passing it through the pswrap translator. The output of pswrap is
a procedure written entirely in the C language. It contains the
POSTSCRIPT language body as data. This body has been com
piled into a binary object sequence (an efficient binary
encoding), with placeholders left for arguments to be inserted at
execution time. The translated wraps can then be compiled and
linked into the application program.

8 Client Library Reference Manual

When a wrapped procedure is called by the application, the
procedure's arguments are substituted for the placeholders in the
POSTSCRIPT language body of the wrap.

Example: A wrap that draws a black box could be defined as
follows:

defineps PSWBlackBox(float x, y)
gsave
o 0 0 setrgbcolor
x y 72 72 rectfill

grestore
endps

pswrap produces a procedure that can be called from a C lan
guage program as follows (the values shown are merely
examples):

PSWBlackBox(12.32, -56.78);

This procedure replaces the x and y operands of rectfillwith the
corresponding procedure arguments, producing executable
POSTSCRIPT language code:

gsave
o 0 0 setrgbcolor
12.32 -56.78 72 72 rectfill

grestore

Any wrapped procedure works the same way as the above ex
ample: the arguments of the C language procedure must cor
respond in number and type to the operands expected by the
POSTSCRIPT operator(s) in the body of the wrap. For instance, a
procedure argument declared to be of type 'float' corresponds to
a POSTSCRIPT real object; an argument of type 'char *' cor
responds to a POSTSCRIPT string object; and so on.

The normal outcome of calling a wrapped procedure is the trans
mission of POSTSCRIPT language code to the interpreter for ex
ecution, normally resulting in display output. The Client Library
may also provide means, on a system-specific basis, to divert
transmission to another destination, such as a printer or a text
file.

For more information about how wraps are defined and used, see
the pswrap Reference Manual.

3 OVERVIEW OF THE CLIENT LIBRARY 9

4 BASIC CLIENT LIBRARY FACILITIES

This section introduces the concepts needed to write a simple
application program for the DISPLAY POSTSCRIPT system, in
cluding:

• Creating a context.

• Sending code and data to a context.

• Destroying a context.

The basic facilities provided by the Client Library to application
programs are described in this section.

The Client Library procedures and data structures that are
referred to in this introduction are documented in the following
places:

Section 9.

Section 10.

Header file dpsclient.h. Provides general support
for contexts; includes procedures that send
POSTSCRIPT language programs for execution
and receive results. General applications and ap
plication support software (that is, toolkits)
make use of this header file.

Header files dpsops.h and psops.h. Declarations
for single-operator procedures.

System-specific documentation.
Support for creating context records. An ex
ample of context creation is provided in Section
4.3.

4.1 CONTEXTS AND CONTEXT DATA STRUCTURES

An application creates, manages, and destroys one or more con
texts. A typical application creates a single context in a single
private VM (space). It then sends POSTSCRIPT language code to
the context to display text, graphics, and scanned images on the
screen.

The context is represented by a record of type 'DPSContextRec';
see Section 9.1 for the type definition. A handle to this record
- a pointer of type 'DPSContext' - is passed explicitly or

1 0 Client Library Reference Manual

implicitly with every Client Library procedure call. In essence,
to the application programmer, the 'DPSContext' handle is the
context.

A context can be thought of as a destination to which
POSTSCRIPT language code is sent. The destination is set when
the context is created. In most cases, the code draws graphics in
a window or specifies how a page will be printed. Other possible
destinations include a file (for execution at a later time) or the
standard output; multiple destinations are permitted. The execu
tion by the interpreter of POSTSCRIPT language code sent to a
context may be immediate or deferred, depending on which con
text creation procedure was called and on the setting of certain
'DPSContextRec' variables.

4.2 SYSTEM-SPECIFIC CONTEXT CREATION

The system-specific interface! contains, at minimum, procedures
for creating the 'DPSContextRec' record for the given im
plementation of the Client Library. The system-specific interface
also provides support for certain extensions to the Client Library
interface, such as additional error codes.

Every context is associated with a system-specific object such as
a window or a file. The context is created by calling a procedure
in the system-specific interface. Once the context has been
created, however, a set of standard Client Library operations
may be applied to it; these operations, including context destruc
tion, are defined in the standard header file dpsclient.h.

4.3 EXAMPLE OF CONTEXT CREATION

Context creation facilities are necessarily system specific. This is
because they often need data objects that represent system
specific entities such as windows and files. However, most con
text creation facilities share a number of common attributes. In
the text that follows, procedure parameters that are common to
most systems are described in some detail, while system-specific
parameters are listed without further discussion. The procedures

lIn Adobe's sample Xll/DPS extension implementation, the system-specific
header file is dpsXclient.h.

4 BASIC CLIENT LIBRARY FACILITIES 11

described here were designed for the X Window System. They
provide an example of an actual system implementation while at
the same time demonstrating basic functions that all window
systems must provide for context creation.

The creation of a 'DPSContextRec' data structure is usually part
of application initialization. Contexts persist until they are
destroyed; see DPSDestroyContext and DPSDestroySpace in
Section 9.2.

/*.EXAMPLE CONTEXT CREATION FOR THE X WINDOW SYSTEM */
DPSContext XDPSCreateSimpleContext(dpy, drawable, gc, x, y, textProc, errorProc, space)

Display *dpy;
Drawable drawable;
GCgc;
int x, y;
DPSTextProc textProc;
DPSErrorProc errorProc;
DPSSpace space;

typedef void (*DPSTextProc)(/*
DPSContext ctxt,
char *buf,
long unsigned int count */);

typedef void (*DPSErrorProc)(/*
DPSContext ctxt,
DPSErrorCode errorCode,
long unsigned int arg1, arg2 */);

XDPSCreateSimpleContext is a system-specific procedure that
creates an execution context in the POSTSCRIPT interpreter. The
arguments 'dpy', 'gc', 'x', and 'y' have specific uses in the X
Window System; discussion of these arguments is beyond the
scope of this manual. The 'drawable' argument associates the
'DPSContextRec' data structure with a system-specific imaging
object - in this case, an X drawable object, which could be a
window or a pixmap. 'DPSTextProc' and 'DPSErrorProc' are
standard procedures types declared in dpsclient.h; their type
definitions are included here for ease of reading.

'space' identifies the private POSTSCRIPT VM in which the new
context executes. If 'space' is 'NULL', a new space is created for
the context; otherwise, it will share the specified space with COll-

12 Client Library Reference Manual

texts previously created in the space. A simple application that
creates one space and one context can pass 'N U LL' for the
'space' argument. See the POSTSCRIPT Language Reference
Manual for a definition of VM. See Section 4.6 for more infor
mation about spaces.

'textProc' and 'errorProc' point to customizable facilities for
handling text and errors sent by the interpreter. Passing 'NULL'
for these arguments is allowed but means that text and errors are
ignored. For simple applications, it is sufficient to specify the
system-specific default text procedure (DPSDefaultTextBackstop
in the X Window System implementation) and
DPSDefaultErrorProc. Use DPSGetCurrentTextBackstop to get
the current default text procedure. See Section 5 for more infor
mation on text handlers and error handlers.

XDPSCreateSimpleContext creates a context for which the
POSTSCRIPT interpreter is the destination of code and data sent to
the context. It is sometimes useful to send the code and data
elsewhere, such as to a file, to a terminal (UNIX® stdout), or to a
printer; see DPSCreateTextContext.

DPSContext DPSCreateTextContext(textProc, errorProc)
DPSTextProc textProc;
DPSErrorProc errorProc;

DPSCreateTextContext creates a context whose input is con
verted to ASCII encoding (text that is easily transmitted and
easily read by humans); see Section 6.2. The ASCII-encoded text
is passed to the 'textProc' procedure rather than to the
POSTSCRIPT interpreter. Since the application provides the im
plementation of the 'textProc' procedure, it determines where the
ASCII text goes from there. The text can be sent to a file, to a
terminal, or perhaps to a printer's communication port.

The 'errorProc' associated with a context handles errors that
arise when a wrap or Client Library procedure is called with that
context. Call the 'errorProc' to handle an error only when an
appropriate error code is defined. See the discussion of text and
error handlers in Section 5.

4 BASIC CLIENT LIBRARY FACILITIES 13

4.4 THE CURRENT CONTEXT

The current context is the one that was specified by the last call
to DPSSetContext. If the application has only one context,
DPSSetContext may be called once when the application is
initialized. If the application manages more than one context, it
must explicitly set the current context when necessary.

Many Client Library procedures do not require the application to
specify a context; they assume the current context. This is true of
all of the single-operator procedures defined in the psops.h
header file as well as any wrapped procedures that were defined
to use the current context implicitly.

An application can find out which is the current context by call
ing D P SGetCurrentC on text.

4.5 SENDING CODE AND DATA TO A CONTEXT

Once the context has been created, the application can send
POSTSCRIPT language code to it by calling procedures such as:

• Wraps (custom wrapped procedures developed for the
application) .

• Single-operator procedures defined in dpsops.h and
psops.h.

• DPSPrintj, DPSWritePostScript, and DPSWriteData -
Client Library procedures provided for writing to a context.

A wrapped procedure is a POSTSCRIPT language program en
coded as a binary object sequence; binary object sequences are
described in Section 11.4 and in POSTSCRIPT Language Exten
sions for the DISPLAY POSTSCRIPT System. The creation of
wrapped procedures is discussed in the pswrap Reference
Manual. Once the POSTSCRIPT language program has been em
bedded in the body of a wrap by using the pswrap translator, it
can be called like any other C procedure.

Example 1: Consider a wrap that draws a small colored circle
around the point where the mouse was clicked, given an RGB
color and the x,y coordinate returned by a mouse-click event.
The exact POSTSCRIPT language implementation is left as an ex-

14 Client Library Reference Manual

ercise for the reader, but the C declaration of the wrap might
look like this:

extern void PSWDrawSmaliCircle(1*
DPSContext ctxt; int x, y; float r, g, b */);

An application might call this procedure as part of the code that
handles mouse clicks. Suppose the struct 'event' contains the x,y
coordinate. To draw a bright green circle around the spot, call
the wrapped procedure with the following arguments:

PSWDrawSmaIlCircle(ctxt, event.x, event.y, 0.0, 1.0,0.0);

Example 2: If a wrap returns values, the procedure that calls it
must pass pointers to the variables into which the values will be
stored. Consider a wrap that, given a font name, tells whether the
font is in the SharedFontDirectory. Define the wrap like this:

defineps PSWFontLoaded(
DPSContext ctxt; char *fontName I boolean *found)

The corresponding C declaration is:

extern void PSWFontLoaded(1*
DPSContext ctxt; char *fontName; int *found */);

Note that booleans are of C type 'int'. Call the wrapped proce
dure by providing a pointer to a variable of type 'int':

int fontFound;

PSWFontLoaded(ctxt, "Courier", &fontFound);

Wraps are the most efficient way to specify any POSTSCRIPT lan
guage program as a C-callable procedure.

Example 3: Occasionally, a very small POSTSCRIPT language
program - on the order of one operator - is needed. This is a
case where a single-operator procedure is appropriate. For ex
ample, to get the current gray level, simply provide a pointer to a
float and call the single-operator procedure equivalent of the
POSTSCRIPT currentgray operator:

4 BASIC CLIENT LIBRARY FACILITIES 15

float gray;

DPScurrentgray(ctxt, &gray);

See Section 10.3 for a complete listing of single-operator proce
dure declarations.

Example 4: DPSPrintj is one of the Client Library facilities
provided for writing POSTSCRIPT language code directly to a
context.

DPSPrintj is similar to the Standard C Library routine print/. It
formats arguments into ASCn text and writes this text to the
context. Small POSTSCRIPT language programs or text data may
be sent in this way. Here is an example that sends formatted text
to the show operator to represent an author's byline:

struct {
int x, y; /* location on page for byline */.
char *titleString; /* title of document */
char *authorsName; /* name of author */
} byline;

DPSPrintf(ctxt, n%d %d moveto (%s by %s) show\n",
byline.x,
byline.y,
byline.titleString,
byline.authorsName) ;

The x,y coordinate is formatted in place of the two '%d' field
specifiers, the title replaces the first '%s', followed by "by" fol
lowed by the author's name in place of the second '%s'.

16 Client Library Reference Manual

Warning: When using DPSPrintf, it's important to leave some
whitespace (new line with '\n', or just a space) at the very end of
the format string if the string ends with an operator. POSTSCRIPT
language code written to a context appears as a continuous
stream. Thus, consecutive calls to DPSPrintjwill appear as if all
the text were sent at once. For example, suppose the following
calls were made:

DPSPrintf(ctxt, "gsave");
DPSPrintf(ctxt, "stroke");
DPSPrintf(ctxt, "grestore");

The context will receive a single string 'gsavestrokegrestore',
with all the operators run together. Of course, this effect may be
useful for constructing a long string that isn't a part of a
program. But when sending operators to be executed, don't for
get to put whitespace at the end of each format string; for ex
ample:

DPSPrintf(ctxt, "gsave\n");

Example 5: The DPSWritePostScript procedure is a facility
provided for writing POSTSCRIPT language of any encoding to a
context. If DPSChangeEncoding is provided by the system
specific interface, DPSWritePostScript can be used to convert a
binary-encoded POSTSCRIPT language program into another bi
nary form (for instance, binary object sequences to binary
encoded tokens) or into ASCII text. Code destined for immediate
execution by the interpreter should be sent as binary object se
quences. Code that's intended to be read by a human should be
sent as ASCII text. See Section 6.2 for a discussion of language
encodings.

4 BASIC CLIENT LIBRARY FACILITIES 17

Warning: Although POSTSCRIPT language of any encoding may
be written to a context, unexpected results can occur when inter
mixing code of different encodings. This is particularly impor
tant when ASCII encoding is mixed with binary encoding. (See
POSTSCRIPT Language Extensions for the DISPLAY POSTSCRIPT
System for a discussion of encodings.)

The following code, which looks correct, may fail with a syntax
error in the interpreter, depending on the contents of the buffer:

while (/* more buffers to send *!) {
count = GetBuffer(file, buffer);
DPSWritePostScript(ctxt, buffer, count);
MyWrap(ctxt);

GetBuffer reads a POSTSCRIPT language program in the ASCII
encoding from a file. The call to MyWrap generates a binary
object sequence. If the program in the buffer passed to
DPSWritePostScript is complete, with no partial tokens,
MyWrap works correctly. Imagine, however, that the end of the
buffer contains a partial token, 'mov', and the next buffer starts
with 'eto'. In this instance, the binary object sequence represent
ing MyWrap will be inserted immediately after the partial token,
resulting in a syntax error.

This warning applies to all procedures that send code or data to a
context, including the Client Library procedures DPSPrintf,
DPSWritePostScript, DPSWriteData, and DPSWaitContext.

Example 6: To send any type of data to a context (such as
hexadecimal image data), or to avoid the automatic conversion
behavior built into DPSWritePostScript, use DPSWriteData. See
Section 9.2 for details on DPSWritePostScript and
DPSWriteData.

The following example reads hexadecimal image data line by
line from a file and sends the data to a context:

18 Client Library Reference Manual

while (!feof(fp)) {
fgets(buf, BUFSIZE, fp);
DPSWriteData(ctxt, but, strlen(buf));

4.6 SPACES

A context is created in a space. The space is either shared with a
previously created context or is created when a new context is
created. Multiple contexts in the same space share all data; care
ful coordination is required to ensure that they don't interfere
with each other. Contexts in different spaces can operate more or
less independently and still share data by using shared VM. See
the discussion of VM and spaces in the POSTSCRIPT Language
Reference Manual.

Destroying a space automatically destroys all of the contexts
within it. DPSDestroySpace calls DPSDestroyContext for each
context in the space.

The parameters that define a space are contained in a record of
type'DPSSpaceRec'.

4.7 INTERRUPTS

An application may need to interrupt a POSTSCRIPT language
program running in the POSTSCRIPT interpreter. Call
DPSlnterruptContext for this purpose. (Note that although this
procedure returns immediately, an indeterminate amount of time
may pass before execution is actually interrupted.)

An interrupt request causes the context to execute an interrupt
error. Since the implementation of the interrupt error can be
changed by the application, the exact results of requesting an
interrupt cannot be defined here. The default behavior is that the
stop operator will execute. For a discussion of the interrupt er
ror, see the POSTSCRIPT Language Reference Manual; for a dis
cussion of error handling in the Client Library, see Section 5.4.

4 BASIC CLIENT LIBRARY FACILITIES 19

4.8 DESTROYING CONTEXTS

An application should destroy all the contexts it creates by call
ing DPSDestroyContext or DPSDestroySpace when they are no
longer needed. Destroying a context does not destroy the space it
occupies, but destroying a space destroys all of its contexts; see
Section 4.6.

If an application tenninates abnonnally, the POSTSCRIPT inter
preter detects that the application has tenninated and destroys
any spaces and contexts that the application had created.

20 Client Library Reference Manual

5 HANDLING OUTPUT FROM THE CONTEXT

Output is information returned from the POSTSCRIPT interpreter
to the application. In the DISPLAY POSTSCRIPT system, three
kinds of output are possible:

• Output parameters (results) from wrapped procedures.

• ASCn text written by the context (for example, by the
print operator).

• Errors.

Each kind of output is handled by a separate mechanism in the
Client Library. The handling of results is discussed in Section
11. The handling of text and errors is discussed in the remainder
of this section.

Note: You may not get text and error output when you expect
it.

For example, a wrap that generates text to be sent back to the
application (for instance, with the print operator) may return be
fore the application actually receives the text. Unless the appli
cation and the interpreter are synchronized (see Section 6.4), the
text may not appear until some other Client Library procedure or
wrap is called. This is due to delays in the communication chan
nel or delays in scheduling execution of the context in the
POSTSCRIPT interpreter.

These kinds of delays are a particularly important consideration
for handling errors, since the notification of the error may be
received by the application long after the code that caused the
error was sent.

Keep these issues in mind while reading the remainder of Sec
tion 5.

5.1 CALL-BACK PROCEDURES

The application programmer must specify call-back procedures
to handle text and errors. A call-back procedure is code provided
by an application and called by a system function.

5 HANDLING OUTPUT FROM THE CONTEXT 21

A text handler is a call-back procedure that handles text output
from the context. It is specified in the 'textProc' field of the
'DPSContextRec' . A system-specific default text handler may be
provided; in the DISPLAY POSTSCRIPT system extension for the
X Window System, the default text handler is
DPSDefaultTextBackstop.

An error handler is a call-back procedure that handles errors
arising when the context is passed as a parameter to any Client
Library procedure or wrap. It is specified in the 'errorProc' field
of the 'DPSContextRec'. DPSDefaultErrorProc is the default er
ror handler provided with every Client Library implementation.

Text and error handlers are associated with a given context when
the context is created, but the DPSSetTextProc and
DPSSetErrorProc procedures, described in Section 9.2, give the
application the flexibility to change these handlers at any time.

Using a call-back procedure reverses the normal flow of control,
which is as follows:

• An application that is active calls the system to provide ser
vices; for example, to get memory or open a file.

• The application then gives up control until the system has
provided the service.

• The system procedure returns control to the application,
passing it the result of the service that was requested.

In the case of call-back procedures, the application wants a cus
tom service provided at a time when it is not in control. It does
this as follows:

22 Client Library Reference Manual

• The application notifies the system, often but not neces
sarily at initialization time, of the address of the call-back
procedure to be invoked when the system recognizes a cer
tain condition, say, an error condition.

• When the error is raised, the system gets control.

• The system passes control to the error handler specified by
the application - thus "calling back" the application.

• The error handler does processing on behalf of the appli
cation.

• When the error handler completes, it returns not to the ap
plication but to the system.

In the DISPLA Y POSTSCRIPT system, the text and error handlers
in the Client Library interface are designed to be used this way.

Note: Client Library procedures and wraps should not be called
from within a call-back procedure. This restriction protects the
application against unintended recursion.

5.2 TEXT HANDLERS

A context generates text output with operators such as print,
writestring, and ==. The application handles this text output
with a text handler, which is specified in the 'textProc' field of
the' DPSContextRec'. The text handler is passed a buffer of text
and a count of the number of characters in the buffer; what is
done with this buffer is up to the application. The text handler
may be called several times to handle large amounts of text. Note
that the Client Library just gets buffers; it doesn't provide any
logical structure for the text and it doesn't indicate (or know)
where the text ends.

The text handler may be called as a side effect of calling a wrap,
a single-operator procedure, or a Client Library procedure that
takes a context. You can't predict when the text handler for a
context will be called unless the application is synchronized (see
Section 6.4).

5.3 EXAMPLE TEXT HANDLER

Consider an application that normally displays a log window to
which it appends plain text or error messages received from the
interpreter. The handlers for this window were associated with
the context when it was created. Occasionally, the application
calls a wrapped procedure that generates a block of text intended
for a file. Before calling the text-generating procedure, the appli
cation must install a temporary text handler for its output. The
temporary text handler stores the text it receives in a file instead
of in the log window. When the text-generating procedure com
pletes, the application restores the original text handler.

5 HANDLING OUTPUT FROM THE CONTEXT 23

An example of such an application, written for the X Window
System, is shown below.

/* EXAMPLE TEXT HANDLER FOR AN X WINDOW SYSTEM APPLICATION */

/* wrapped procedure that generates text */

defineps WrapThatGeneratesText(DPSContext ctxt I boolean *done)
% send a text representation of the contents of mydict
mydict {== ==} forall
% returning a value flushes output as a side-effect
true done

endps

/* normal text proc appends to a log window */

void LogTextProc(ctxt, buf, count)

{

DPSContext ctxt;
char *buf;
long unsigned int count;

/* ... code that appends text to a log window ... */
}

/* special text proc stores text to a file * /

void StoreTextProc(ctxt, buf, count)
DPSContext ctxt;
char *buf;
long unsigned int count;

{
/* ... code that appends text to a file ... * /

/* application initialization */

ctxt = XDPSCreateSimpleContext(dpy, drawable, gc, x, y,
LogTextProc, DPSDefaultErrorProc, NULL);

/* main loop for application */

while (XPending(dpy)) > 0 {
/* get an input event * /
XNextEvent(dpy, &event);
/* react to event * /
switch (event. type) {

i* any text that comes from processing EVENT _A or EVENT _B is logged */
case EVENT_A: .. .
case EVENT_B: .. .
/* but EVENT_C means store the text in a file */
case EVENT_C: {

24 Client Library Reference Manual

int done;
DPSTextProc tmp = ctxt -> textProc;

/* make sure interpreter is ready */
DPSWaitContext(ctxt);
/* temporarily install the other text proc */
DPSSetTextProc(ctxt, StoreTextProc);
/* call the wrapped procedure */
WrapThatGeneratesText(ctxt, &done);
/* since wrap returned a value, we know the interpreter is

ready when we get here; restore original textProc */
DPSSetTextProc(ctxt, tmp);
/* close file by calling textProc with count = 0 * /
StoreTextProc(ctxt, NULL, 0);
break;

/* ... */
default:;

5.4 ERROR HANDLERS

The 'errorProc' field in the 'DPSContextRec' contains the ad
dress of a call-back procedure for handling errors. The error call
back procedure is called when there is a POSTSCRIPT language
error or when an error internal to the Client Library, such as use
of an invalid context identifier, is encountered. The standard er
ror codes are listed under DPSErrorProc in Section 9.2.

When the interpreter detects a POSTSCRIPT language error, it in
vokes the standard handleerror procedure to report the error,
then forces the context to terminate. The error call-back proce
dure specified in the 'DPSContextRec' is called with the
'dps_err_ps' error code.

After a POSTSCRIPT language error, the context becomes invalid;
further use of it will cause another error. See Section 5.5 for a
discussion of error recovery issues. See Appendix B for an ex
ample of an error handler. See the Note on page 21 for a discus
sion of when error output is actually received.

5 HANDLING OUTPUT FROM THE CONTEXT 25

5.5 ERROR RECOVERY REQUIREMENTS

For many applications, error recovery may not be considered an
issue because an unanticipated POSTSCRIPT language error or
Client Library error represents a bug in the program that will be
fixed during development. However, since applications do some
times go into production with undiscovered bugs, it is prudent to
provide an error handler that allows the application to exit grace
fully.

There are a small number of applications that require error
recovery more sophisticated than simply exiting. If an applica
tion falls into one of the following categories, it is likely that
some fonn of error recovery will be needed:

• Applications that read and execute POSTSCRIPT language
programs generated by other sources (for example, a
previewer application for POSTSCRIPT language documents
generated by a word-processing program). Since the exter
nally provided POSTSCRIPT language program may have er
rors, the application must provide some sort of error
recovery.

• Applications that allow the user to enter POSTSCRIPT lan
guage programs. This category is a subset of the one
above.

• Applications that generate POSTSCRIPT language programs
dynamically in response to user requests (for example, a
graphics art program that generates an arbitrarily long path
description of a graphical object). Since there are system
specific resource limitations on the interpreter, such as
memory and disk space, the application should be able to
back away from an error caused by exhausting a resource,
and perhaps attempt to acquire new or reclaim used
resources.

Error recovery is complicated because both the Client Library
and the context can be left in unknown states. For example, the
operand stack may have unused objects on it.

In general, if an application needs to intercept and recover from
POSTSCRIPT language errors, keep it simple. For some applica
tions, the best strategy when an error occurs is either to destroy
the space and construct a new one with a new context or to res
tart the application.

26 Client Library Reference Manual

A given implementation of the Client Library may provide more
sophisticated error recovery facilities; consult your system
specific documentation. Your system may provide the general
purpose exception-handling facilities described in Appendix C,
which can be used in conjunction with DPSDefaultErrorProc.

5.6 BACKSTOP HANDLERS

Backstop handlers handle output when there is no other ap
propriate handler. The Client Library automatically installs back
stop handlers.

To get a pointer to the current backstop text handler, call
DPSGetCurrentTextBackstop. To install a new backstop text
handler, call DPSSetTextBackstop. The text backstop may be
used as a default text handler implementation. The exact defini
tion of what the default text handler does is system specific. For
instance, for UNIX systems, it writes the text to stdout.

To get a pointer to the current backstop error handler, call
DPSGetCurrentErrorBackstop. To install a new backstop error
handler, call DPSSetErrorBackstop. The backstop error handler
processes errors internal to the Client Library, such as a lost
server connection. These errors have no specific 'DPSContext'
handle associated with them and therefore have no error handler.

5 HANDLING OUTPUT FROM THE CONTEXT 27

·6 ADDITIONAL CLIENT LIBRARY FACILITIES

The Client Library includes a number of utilities and support
functions for applications. This section describes:

• Sending the same code and data to a group of contexts by
chaining them.

• Encoding and translating POSTSCRIPT language code.

• Buffering and flushing the buffer.

• Synchronizing an application with a context.

• Communicating with a forked context.

6.1 . CHAINED CONTEXTS

It is sometimes useful to send the same POSTSCRIPT language
program to several contexts. This is accomplished most con
veniently by chaining the contexts together and sending input to
one context in the chain; for example, by calling a wrap with that
context.

Two Client Library procedures are provided for managing con
text chaining:

• DPSChainContext links a context to a chain.

• DPSUnchainContext removes a child context from its
parent's chain.

One context in the chain is specified as the parent context, the
other as the child context. The child context is added to the
parent's chain. Subsequently, any input sent to the parent is sent
to its child, and the child of the child, and so on. A context can
appear on only one chain. If the context is already a child on a
chain, DPSChainContext returns a nonzero error code. However,
you can chain a child to a context that already has a child.

28 Client Library Reference Manual

Note: A parent context always passes its input to its child con
text. However, for a chain of more than two contexts, the order
in which the contexts on the chain receive the input is not
defined. Therefore an application should not rely on
DPSChainContext to create a chain whose contexts process input
in a particular order.

For chained contexts, output is handled differently from input,
and text and errors are handled differently from results. If a con
text on a chain generates text or error output, the output is
handled by that context only. Such output is not passed to its
parent or its child. When a wrap that returns results is called, all
of the contexts on the chain get the wrap code (the input), but
only the context with which the wrap was called receives the
results.

The best way to build a chain is to identify one context as the
parent. Call DPSChainContext to make each additional context
the child of that parent. For example, to chain contexts A, B, C,
and D, choose A as the parent and make the following calls to
DPSChainContext:

OPSChainContext(A,B};
OPSChainContext(A,C} ;
OPSChainContext(A, O};

Once the chain is built, send input only to the designated parent,
A.

The most common use of chained contexts is in debugging. A
log of POSTSCRIPT operators executed may be kept by a child
context whose purpose is to convert POSTSCRIPT language
programs to ASCII text and write the text to a file; this child is
chained to a parent context that sends normal application re
quests to the interpreter. The parent's calls to wrapped
procedures will then be logged in human-readable form as a
debugging audit trail.

Chained contexts may also be used for duplicate displays. An
application may want several windows, or even several different
display screens, to show the same graphics without having to
explicitly call the wrapped procedure in a loop for all of the con
texts.

6 ADDITIONAL CLIENT LIBRARY FACILITIES 29

6.2 ENCODING AND TRANSLATION

POSTSCRIPT language code may be sent to a context in three
ways:

• As a binary object sequence - typically for immediate
execution on behalf of a context.

• As binary-encoded tokens - typically for deferred execu
tion from a file.

• As ASCII text - typically for debugging, display, or
deferred execution from a file.

POSTSCRIPT Language Extensions for the DISPLAY POSTSCRIPT
System describes the encodings available in the POSTSCRIPT lan
guage.

Since the application and the POSTSCRIPT interpreter can be on
different machines, the Client Library automatically ensures that
the binary representation of numeric values, including byte order
and floating-point format, are correctly interpreted.

6.2.1 Encoding POSTSCRIPT Language Code

On a system-specific basis, the Client Library supports a variety
of conversions to and from the encodings and formats defined
for the POSTSCRIPT language:

• Binary object sequence to binary object sequence. For ex
panding user name indices back to their printable names.

• Binary object sequence to ASCII encoding. For backward
compatibility with printers, for interchange, and for debug
ging.

• Binary object sequence to binary-encoded tokens. For
long-term storage.

• Binary-encoded tokens to ASCII. For backward com-
patibility and interchange.

'DPSProgramEncoding' defines the three encodings available to
POSTSCRIPT language programs. 'DPSNameEncoding' defines
the two possible encodings for user names in POSTSCRIPT lan
guage programs. See Section 11.6 for the type definitions.

30 Client Library Reference Manual

6.2.2 Translation

Translation means the conversion of program encoding or name
encoding from one form to another.

Any code sent to the context is converted according to the setting
of the encoding fields. For a context that was created with the
system-specific routine DPSCreateTextContext, code is
automatically converted to ASCII encoding.

An application sometimes exchanges binary object sequences
with another application. Since binary object sequences have
user name indices by default, the sending application must
provide name-mapping information to the receiving application;
this information can be lengthy. Instead, some implementations
allow the application to translate name indices back into user
names by changing the 'nameEncoding' field to 'dps_strings'. In
many implementations, DPSChangeEncoding performs this
function.

6.3 BUFFERING

For optimal performance, programs and data sent to a context
may be buffered by the Client Library. For the most part, the
application programmer need not be concerned with this buffer
ing. Flushing of the buffer happens automatically as required,
such as just before waiting for input events.

However, in certain unusual situations, the application may ex
plicitly flush a buffer (see example below). DPSFlushContext al
lows the application to force any buffered code or data to be sent
to the context. Note that flushing does not guarantee that code is
executed by the context, only that any buffered code is sent to
the context. See Section 6.4 and DPSWaitContext for informa
tion on how to force code to be executed.

Unnecessary flushing is inefficient. It is unusual for the appli
cation to flush the buffer explicitly. Cases where the buffer
might need to be flushed include the following:

• Nothing to send to the interpreter for a long time (for ex
ample, "going to sleep" or doing a long computation).

6 ADDITIONAL CLIENT LIBRARY FACILITIES 31

• Nothing expected from the interpreter for a long time.
(Note that getting input automatically flushes the output
buffers.)

The application may elect to flush buffers when client and server
are separate processes and the execution of pending code is not
critical.

6.4 SYNCHRONIZING APPLICATION AND CONTEXT

The POSTSCRIPT interpreter can run as a separate operating
system process (or task) from the application; it can even run on
a separate machine. When the processes are separate, an appli
cation programmer must take into account the communication
between the application and the POSTSCRIPT interpreter. This is
important when time-critical actions must be performed based on
the current appearance of the display. Also, errors arising from
the execution of a wrapped procedure may be reported long after
the procedure returns.

The application and the context are synchronized when all code
sent to the context has been executed and it is waiting to execute
more code. When the two are not synchronized, the status of
code previously sent to the context is unknown to the applica
tion. Synchronization can be effected in two ways: as a side ef
fect of calling wraps that return values, or explicitly, by calling
the DPSWaitContext procedure.

A wrapped procedure that has no result values returns as soon as
the wrap body is sent to the context. The data buffer is not neces
sarily flushed in this case. Sometimes, however, the application's
next action depends on the completed execution of the wrap
body by the POSTSCRIPT interpreter. The following example
describes the kind of problem that can occur when the assump
tion is made that a wrap's code has been executed by the time it
returns:

Example: An application calls a wrapped procedure to draw a
large and complex picture into an offscreen buffer (such as an
XII pixmap). The wrapped procedure has no return value, so it
returns immediately, although the context may not have finished
executing the code. At this point, the application calls procedures

32 Client Library Reference Manual

to copy the screen buffer to a window for display. If the context
has not finished drawing the picture into the buffer, only part of
the image will be displayed on the screen. This is not what the
application programmer had in mind.

Wrapped procedures that return results flush any code waiting to
be sent to the context and then wait until all results have been
received. Therefore they automatically synchronize the context
with the application. The wrapped procedure will not return until
the interpreter indicates that all results have been sent.2 In this
case, the application knows that the context is ready to execute
more code as soon as the wrapped procedure returns.

The preceding discussion describes the side effect of calling a
wrap that returns a value, but it is not always convenient, or
indeed correct, to write wrapped procedures that return values.
Forcing the application to wait for a return result for every wrap
is inefficient and may degrade performance.

If an application has a few critical points where synchronization
must occur, and a wrap that returns results is not needed,
DPSWaitContext may be used to synchronize the application
with the context. DPSWaitContext flushes any buffered code,
and then waits until the context finishes executing all code that
has been sent to it so far. This forces the context to finish before
the application continues.

Like wraps that return results, DPSWaitContext should be used
only when necessary. Performance may be degraded by exces
sive synchronization.

6.S FORKED CONTEXTS

When the fork operator is executed in the POSTSCRIPT inter
preter, a new execution context is created, but the application has
no way to communicate with it. In order to communicate with a
forked context, it must create a 'DPSContextRec' for it. For ex
ample, DPSContextFromContextID is an X Window System pro
cedure that creates a 'DPSContextRec' for a forked context.

2But the wrapped procedure may return prematurely if an error occurs, depend
ing on how the error handler works; see Section 5.4.

6 ADDITIONAL CLIENT LIBRARY FACILITIES 33

DPSContext DPSContextFromContextID(ctxt, cid, textProc, errorProc)
DPSContext ctxt;
long int cid,
DPSTextProc textProc,
DPSErrorProc errorProc;

'ctxt' is the context that executed the fork operator.

'cid' is the integer value of the new context's identifier. 'NULL'
is returned if 'cid' is invalid.

If 'textProc' or 'errorProc' are 'NULL',
DPSContextFromContextID copies the corresponding procedure
pointer from 'ctxt' to the new 'DPSContext'; otherwise the new
context gets the specified 'textProc' and 'errorProc'.

All other fields of the new context are initialized with values
from 'ctxt', including the space field.

34 Client Library Reference Manual

7 PROGRAMMING TIPS

This section contains tips for avoiding mistakes commonly made
by programmers using the Client Library interface. Some of the
items listed here are brief summaries of Notes and Warnings
emphasized elsewhere in this document. Section 7.1 contains
some pointers on how to make the best use of the POSTSCRIPT
language imaging model.

• Don't guess what the arguments to a single-operator proce
dure call are - look them up in the listing. See Section
10.

• Make sure that variables passed to wrapped procedures and
single-operator procedures are of the correct C type. A
common mistake is to pass a pointer to a 'short int' (only
16 bits wide) to a procedure that returns a boolean. A
boolean is defined as an 'int', which can be 32 bits wide on
some systems.

• Make sure that POSTSCRIPT language code is properly
separated by whitespace when using DPSPrintj. Make sure
that variables passed to DPSPrintf are of the right type.
Passing type 'float' to a fonnat string of '%d' will yield
unpredictable results. See Section 4.5.

• There are two means of synchronizing the application with
the context: either call DPSWaitContext, which causes the
application to wait until the interpreter has executed all the
code sent to the execution context, or call a wrap that
returns a result, which causes synchronization as a side ef
fect. If synchronization is not required, use a wrap that
returns results only when results are needed. Unnecessary
synchronization by either method will degrade perfor
mance. See Section 6.4.

• Use of DPSFlushContext is usually not necessary. See
Section 6.3.

• Do not read from the file returned by the operator
currentfile from within a wrap. In general, do not read
directly from the context's standard input stream %stdin
from within a wrap. Since a binary object sequence is a
single token, the behavior of the code is different from
what it would be in another encoding, such as ASCII. This
will lead to unpredictable results. See the pswrap Refer-

7 PROGRAMMING TIPS 35

36 Client Library Reference Manual

ence Manual and POSTSCRIPT Language Extensions for the
DISPLAY POSTSCRIPT System.

• If the context is an execution context for a display, do not
write POSTSCRIPT language programs, particularly in
wraps, that depend on reading the end-of-file (EOF) in
dicator. Support for EOF on the communication channel is
system specific, and should not be relied upon. However,
POSTSCRIPT language programs that will be written to a
file or spooled to a printer can make use of EOF indica
tions.

• Be careful when sending intermixed encoding types to a
context. In particular, it's best to avoid mixing ASCII en
coding with binary encoding. See the warning on page 18
for an example; see also the following tip on
DPSWaitContext.

• Before calling DPSWaitContext, make sure that code that
has already been sent to the context is syntactically com
plete, such as a wrap or a correctly terminated POSTSCRIPT
operator or composite object.

• Use of the fork operator requires understanding of a given
system's support for handling errors from the forked con
text. A common error while developing multiple context
applications is to fail to handle errors arising from forked
contexts. See Section 5.4.

• To avoid unintended recursion, do not call Client Library
procedures or wraps from within a call-back procedure.

• To avoid confusion about which context on a chain will
handle output, don't send input to a context that's been
made the child of another context; send input only to the
parent. (This doesn't apply to text contexts, since they
never get output.)

• Program wraps carefully. Copying the entire prologue
from a POSTSCRIPT printer driver into a wrap without
change is probably not going to result in efficient code.

• A void the temptation to do all of your programming in the
POSTSCRIPT language. Because the POSTSCRIPT language
is interpreted, not compiled, the application can generally
do arithmetic computation and data manipulation such as
sorting more efficiently in C. Reserve the POSTSCRIPT lan
guage for what it does best - displaying text and
graphics.

7.1 USING THE IMAGING MODEL

The device-independent and resolution-independent imaging
model defined by the POSTSCRIPT language is described in the
POSTSCRIPT Language Reference Manual. For general advice on
how to use the POSTSCRIPT language efficiently and detailed ad
vice on how to write page descriptions, see POSTSCRIPT Lan
guage Program Design. Although that book is primarily con
cerned with printer applications, much of its information on the
imaging model can be applied to writing applications for the
DISPLA Y POSTSCRIPT system. A thorough understanding of the
imaging model is essential to writing efficient DISPLAY
POSTSCRIPT system applications.

The imaging model helps make your application device and
resolution independent. Device independence ensures that your
application will work and look as you intended on any display or
print media. Resolution independence lets you use the power of
the POSTSCRIPT language to do scaling, rotation, and transfor
mation of your graphical display without loss of quality. Use of
the imaging model will automatically give you the best possible
rendering for any device.

Design your application with the imaging model in mind. Con
sider issues like converting coordinate systems, representing
paths and graphics states with data structures, rendering colors
and patterns, setting text, and accessing fonts (to name just a
few).

A few specific tips are listed below:

• Coordinates sent to the POSTSCRIPT interpreter should be in
the user coordinate system (user space). Although it may
be more convenient to express coordinates in the window
coordinate system, this makes your code resolution depend
ent. Your application will run more efficiently if you com
pute the coordinate conversions to and from user space in C
code, rather than letting the interpreter do it.

o Think in terms of color. Avoid programming to the lowest
common denominator (low-resolution monochrome). The
imaging model will always give the best rendering possible
for a device, so use colors even if you expect that your
application may be run on monochrome or gray-scale

7 PROGRAMMING TIPS 37

38 Client Library Reference Manual

devices. Avoid using setgray unless you really want black,
white, or a gray level. Use setrgbcolor for all other cases.
The imaging model will use a gray level or halftone pattern
if the device does not support color, so objects of different
colors will be distinguishable from one another .

• Don't use setlinewidth with a width of zero to get thin
lines. On high-resolution devices, the lines will be prac
tically invisible. Use fractions of 1 to get lines narrower
than 1, such as 0.3 or 0.25.

8 EXAMPLE APPLICATION PROGRAM

This section provides a simple example of how to use the
DISPLA Y POSTSCRIPT system through the Client Library. The
example:

• Establishes communication with an XII server.

• Creates a window and a context.

• Draws an ochre rectangle in the window.

• Waits for a mouse-button click.

• Tenninates when the button is pressed.

To use the POSTSCRIPT imaging model, an application must
describe its graphical operations in the POSTSCRIPT language.
Therefore an application using the DISPLAY POSTSCRIPT system
is a combination of C code and POSTSCRIPT language code.

The pswrap program generates a C code file and a C header file
that defines the interface to the procedures in the code file. The
application source code and the pswrap output file are compiled
and linked together with the program libraries of the Client
Library to fonn the executable application program. Figure 2 il
lustrates the complete process.

8 EXAMPLE APPLICATION PROGRAM 39

Figure 2 Creating an Application

/*

8.1 EXAMPLE C CODE

The following code is used in conjunction with the wrap in the
next section. See the description that follows.

example.c - simple X Window System application. Uses Display Postscript
to draw an ochre box and uses X primitives to wait for a mouse click before
terminating.

*/

#include <stdio.h>
#include <string.h>
#include <X11 /X.h>
#include <X11/Xlib.h>
#include <X11/lntrinsic.h>
#include "psops.h"

/* Standard C library I/O routines * /
/* Standard C library string routines */

/* X definitions */
/* Interface to X library */
/* X toolkit definitions */

/* Interface to PostScript single-op wraps */

40 Client Library Reference Manual

#include "dpsXclient.h"
#inc!ude "examplewraps.h"

/* Interface to the DPS Client Library */
/* Interface to user-defined "wrap" procedures */

/* Window geometry definitions * /
#define XWINDOW_X_ORIGIN 100
#define XWINDOW_Y_ORIGIN 100
#define XWINDOW_WIDTH 500
#define XWINDOW_HEIGHT 500

void main(argc, argv)

{

int argc;
char *argvO;

Display *dpy; /* X display structure */
int screen; /* screen on display */
DPSContext ctxt; /* DPS drawing context */
DPSContext txtCtxt; /* DPS text context for debugging */
Window xWindow; /* window where drawing occurs */
int blackPixel, whitePixel;
int debug = { FALSE };
GCgc;
XSetWindowAttributes attributes;
unsigned long mask;
DPSSpace space;
float x, y, width, height;

/* Connect to the window server by opening the display. Most of command
line is parsed by XtOpenDisplay, leaving any options not recognized by
the X toolkit: look for local -debug switch */

XtToolkitinitializeO;
dpy = XtOpenDisplay(NULL, (String) NULL, "example", "example",

(XrmOptionDescRec *) NULL, 0, &argc, argv);
screen = DefaultScreen(dpy);
if (argc == 2)

if (strcmp(argv[1], "-debug") == 0)
debug = TRUE;

else {
printf("Usage: example [-display xx:O] [-sync] [-debug]\n");
exit(1);
}

/* Create a window to draw in: register interest in mouse button events. */

blackPixel = BlackPixel (dpy, screen);
whitePixel = WhitePixel (dpy, screen);
attributes.backgroundJ>ixel = whitePixel;
attributes.border_pixel = blackPixel;
attributes.biCgravity = SouthWestGravity;
attributes.event_mask = ButtonPressMask I ButtonReleaseMask;
mask = CWBackPixel I CWBorderPixel I CWBitGravity I CWEventMask;

8 EXAMPLE APPLICATION PROGRAM 41

xWindow = XCreateWindow(dpy, DefaultRootWindow(dpy),
XWINDOW_X_ORIGIN, XWINDOW_Y_ORIGIN, XWINDOW_WIDTH, XWINDOW_HEIGHT,
1, CopyFromParent, InputOutput, CopyFromParent, mask, &attributes);

XMapWindow(dpy, xWindow);

gc = XCreateGC(dpy, RootWindow(dpy, screen), 0, NULL);
XSetForeground(dpy, gc, blackPixel);
XSetBackground(dpy, gc, whitePixel);

/* Create a DPS context to draw in the window we just created. If the
user has asked for debugging, create a text context chained to the
'drawing' context. */

ctxt = XDPSCreateSimpleContext(dpy, xWindow, gc, 0, XWINDOW_HEIGHT,
DPSDefaultTextBackstop, DPSDefaultErrorProc, NULL);

if (ctxt == NULL) {
fprintf(stderr, "Error attempting to create DPS context\n");
exit(1);
}

DPSSetContext(ctxt);

if (debug) {
txtCtxt = DPSCreate TextContext(DPSDefaultT extBackstop, DPSDefaultErrorProc);
DPSChainContext(ctxt, txtCtxt);
}

/* Get transformed dimensions, paint an ochre rectangle in middle
of window. */

PSitransform(
(float) XWINDOW_WIDTH,
(float) -XWINDOW_HEIGHT,
&width,
&height);

x = width / 4.0;
Y = height /4.0;

PSWDrawBox(0.77, 0.58, 0.02, x, y, width /2.0, height / 2.0);

/* Wait for a mouse click on any button then terminate */

while (NextEventO != ButtonPress);
while (NextEventO != ButtonRelease);

space = DPSSpaceFromContext(ctxt);
DPSDestroySpace(space);
exit(O);

} /* main */

int NextEventO

42 Client Library Reference Manual

{

}

XEvent event;

XtNextEvent(&event) ;
return(event. type);

8.2 EXAMPLE WRAP

This wrap provides the POSTSCRIPT language routine used by the
example application. It is shown as examplewraps.psw in Figure
2 on page 40.

/* wrap for example application * /

defineps PSWDrawBox(float r, g, b, x, y, width, height)
gsave
r 9 b setrgbcolor
x y width height rectfill
grestore

endps

8.3 DESCRIPTION OF THE EXAMPLE APPLICATION

The example application demonstrates the use of Client Library
functions and custom wraps in the XII environment. The appli
cation is simple: it draws a rectangle in the middle of a window,
waits for a mouse button click in the window, and terminates.

The program starts by initializing the toolkit and connecting to
the display device. Command-line options can include all op
tions recognized by the X Intrinsics resource manager plus a lo
cal '-debug' option, which demonstrates the use of a chained
text context for debugging.

The program creates a window that will contain the drawing
produced by the POSTSCRIPT operators. The window's attributes
are set to indicate interest in mouse button events in that win
dow.

The program creates a context with 'xWindow' as its 'drawable'.
The system-specific default handlers DPSDe!aultTextBackstop

8 EXAMPLE APPLICATION PROGRAM 43

and DPSDefaultErrorProc are specified in the
XDPSCreateSimpleContext call. These handlers are adequate for
this application.

If the '-debug' option was selected, the program creates a con
text that converts binary-encoded POSTSCRIPT language
programs into readable text. The text is passed to 'PrintProc'.
This context is then chained to the drawing context. The result is
that any code sent to the drawing context will be also sent to the
text context and displayed on stdout. This is a common tech
nique for debugging wrapped procedures.

Now that the application is completely initialized, POSTSCRIPT
language code can be executed to draw a rectangle into the win
dow. This is done by using both a single-operator procedure and
a customized wrapped procedure.

The single-operator procedure PSitransform determines the
bounds of the window in terms of POSTSCRIPT user space; this
allows the program to scale the size of the rectangle ap
propriately.

The wrap procedure PSWDrawBox takes red, green, and blue
levels to specify the color of the rectangle. It also takes x,y coor
dinates for the bottom left comer of the rectangle, and it takes
the rectangle's width and height. Simple arithmetic computation
is most efficiently done in C code by the application, rather than
in POSTSCRIPT language code by the interpreter.

PSWDrawBox is called to draw a colored square. If the display
supports color, you'll see a square painted in ochre (a dark shade
of orange). The values 0.77 for red, 0.58 for green, and 0.02 for
blue approximate the color ochre. If the display supports only
gray scale or monochrome, you'll see a square painted in some
shade of gray.

The program now waits for events. Since the only events regis
tered in this window are mouse-button events, events such as
window movement and resizing are not directed to the appli
cation. When a button-press event is followed by a button
release event, the program destroys the space used by the draw
ing context. This destroys the context and its chained text con
text as well. The program then terminates normally.

44 Client Library Reference Manual

9 THE DPSCLIENT.H HEADER FILE

DPSContext

This section documents the dpsclient.h procedures that constitute
the core of the Client Library. They are system independent.

9.1 DPSCLIENT.H DATA STRUCTURES

This section documents:

• The standard context record .

• The standard error codes.

The context record, 'DPSContextRec', is shared by the appli
cation and the POSTSCRIPT interpreter. Except for its 'priv' field,
this data structure should not be altered directly. The dpsclient.h
header file provides procedures to alter it.

When calling Client Library procedures, refer to the context
record by its handle, 'DPSContext'.

/* handle for context record */

See'DPSContextRec'.

9 THE DPSCLlENT.H HEADER FILE 45

DPSContextRec typedef struct _CDPSContextRec {
char *priv;
DPSSpace space;
DPSProgramEncoding program Encoding;
DPSNameEncoding name Encoding;
DPSProcs procs;
void (*textProc)O;
void (*errorProc)O;
DPSResults resultTable;
unsigned int resultTableLength;
struct _CDPSContextRec *chainParent, *chainChild;
} DPSContextRec, *DPSContext;

defines the data structure pointed to by 'DPSContext'.

Note: This record is used by dpsclient.h procedures but is ac
tually defined in the dpsfriends.h header file.

'priv' is provided for use by application code. It is initialized to
, NULL' and is not touched thereafter by the Client Library im
plementation.

Warning: Although it is possible to read all the fields of the
'DPSContextRec' record directly, they should not be modified
directly except for 'priv'. Data structures internal to the Client
Library depend on the values in these fields and must be notified
when they change. Call the procedures provided for this pur
pose, such as DPSSetTextProc.

'space' identifies the space in which the context executes.

'programEncoding' and 'nameEncoding' describe the encoding
of the POSTSCRIPT language that is sent to the interpreter. The
values in these fields are established when the context is created.
Whether or not the encoding fields can be changed after creation
is system specific.

'procs' points to a 'struct' containing procedures that implement
the basic context operations, including writing, flushing, inter
rupting, and so on.

The Client Library implementation calls the 'textProc' and

46 Client Library Reference Manual

DPSErrorCode

'errorProc' procedures to handle interpreter-generated ASCII
text and errors.

'resultTableLength' and 'resultTable' define the number, type,
and location of results expected by a wrap. They are set up by
the wrap procedure before any values are returned; see
DPSSetResultTable in Section 11.7.

'chainParent' and 'chainChild' are used for chaining contexts.
'chainChiid' is a pointer to the context that automatically
receives code and data sent to the context represented by this
'DPSContextRec'. 'chainParent' is a pointer to the context that
automatically sends code and data to the context represented by
this' DPSContextRec'. See the discussion of chained contexts in
Section 6.1 for more information.

typedef int DPSErrorCode;

defines the type of error code used by the Client Library. Here
are the standard error codes:

• 'dps_errJ)s' identifies standard POSTSCRIPT interpreter er
rors.

• 'dps_err_nameTooLong' flags user names that are too
long. 128 characters is the maximum length for
POSTSCRIPT language names.

• 'dps_err_resultTagCheck' flags erroneous result tags, most
likely due to erroneous explicit use of the printobject
operator.

• 'dps_err_resultTypeCheck' flags incompatible result types.

• 'dps_err_invalidContext' flags an invalid 'DPSContext' ar
gument. An attempt to send POSTSCRIPT language code to
a context that has terminated is the most likely cause of this
error.

For more information, see DPSErrorProc in Section 9.2.

9.2 DPSCLIENT.H PROCEDURES

This section contains descriptions of the procedures in the Client
Library header file dpsclient.h, listed alphabetically.

9 THE DPSCLlENT.H HEADER FILE 47

DPSChainContext int DPSChainContext(parent, child);
DPSContext parent, child;

links 'child' onto the context chain of 'parent'. This is the chain
of contexts that automatically receive a copy of any code or data
sent to 'parent'. A context appears on only one such chain.

DPSChainContext returns zero if it successfully chains 'child' to
'parent'. It fails if 'child' is on another context's chain; in that
case it returns -1.

See Section 6.1 for more information.

DPSDefaultErrorProc

DPSDestroyContext

void DPSDefaultErrorProc(ctxt, errorCode, arg1, arg2);
DPSContext ctxt;
DPSErrorCode errorCode;
long unsigned int arg1 , arg2;

is a sample DPSErrorProc for handling errors from the
POSTSCRIPT interpreter. See Appendix B for a listing of the code
and a description of the procedure.

The meaning of 'arg1' and 'arg2' depend on 'errorCode'. See
DPSErrorProc.

void DPSDestroyContext(ctxt)
DPSContext ctxt;

destroys the context represented by 'ctxt'. The context is first
unchained if it is on a chain.

What happens to buffered input and output when a context is
destroyed is system specific; in the X Window System it is dis
carded.

Destroying a context does not destroy its space; see
DPSDestroySpace.

48 Client Library Reference Manual

DPSDestroySpace
void DPSDestroySpace(spc)
DPSSpace spc;

destroys the space represented by 'spc'. This is necessary for
application termination and clean-up. It also destroys all contexts
within'spc'.

9 THE DPSCLlENT.H HEADER FILE 49

DPSErrorProc typedef void (*DPSErrorProc)(/*
DPSContext ctxt;
DPSErrorCode errorCode;.,
long unsigned int arg1, arg2;*/);

handles errors caused by the context. These can be POSTSCRIPT
language errors reported by the interpreter or errors that occur
when the Client Library is called with a context. 'errorCode' is
one of the predefined codes that specify the type of error encoun
tered; see 'DPSErrorCode' in Section 9.1 for its type definition.
'errorCode' determines the interpretation of 'arg1' and 'arg2'.

The following list shows how 'arg l' and 'arg2' are handled for
each 'errorCode':

'dps_err_ps' POSTSCRIPT language etror. 'arg1' is the ad
dress of the binary object sequence sent by the
handleerror operator to report the error. The se
quence has one object, which is an array of four
objects. 'arg2' is the number of bytes in the en
tire binary object sequence.

'dps_err_nameTooLong'
Error in wrap argument. The POSTSCRIPT user
name and its length are passed as 'arg1' and
, arg2'. A name of more than 128 characters
causes an error.

'dps_err_resultTagCheck'
Error in formulation of wrap. The pointer to the
binary object sequence and its length are passed
as 'arg1' and 'arg2'. There is one object in the
sequence.

'dps_err_resultTypeCheck'
Incompatible result types. A pointer to the bi
nary object is passed as 'arg1'; 'arg2' is unused.

'dps_err_invalidContext'
Stale context handle (probably terminated).
, arg 1 ' is a context identifier; 'arg2' is unused.

50 Client Library Reference Manual

DPSFlushContext void DPSFlushContext(ctxt)
DPSContext ctxt;

forces any buffered code or data to be sent to 'ctxt'. Some Client
Library implementations use buffering to optimize performance.

DPSGetCurrentContext
DPSContext DPSGetCurrentContextO;

returns the current context.

DPSGetCurrentErrorBackStop
D PS ErrorProc D PSGetCurrentErrorBackstopO;

returns the 'errorProc' passed most recently to
DPSSetErrorBackstop, or 'NULL' if none was set.

DPSGetCurrentTextBackstop
D PST extProc D PSGetCurrentT extBackstopO;

returns the 'textProc' passed most recently to
DPSSetTextBackstop, or 'NULL' if none was set.

DPSlnterruptContext

DPSPrintf

void DPSlnterruptContext(ctxt)
DPSContext ctxt;

notifies the interpreter to interrupt the execution of the context,
resulting in the POSTSCRIPT language interrupt error. The pro
cedure returns immediately after sending the notification.

void DPSPrintf(ctxt, fmt, [, arg ...]);
DPSContext ctxt;
char *fmt;

sends string 'fmt' to 'ctxt' with the optional arguments converted,
formatted, and logically inserted into the string in a manner iden
tical to the Standard C Library routine print/. It is useful for
sending formatted data or a short POSTSCRIPT language program
to a context.

9 THE DPSCLlENT.H HEADER FILE 51

DPSResetContext void DPSResetContext(ctxt)
DPSContext ctxt;

DPSSetContext

resets the context after an error occurs. It ensures that any buf
fered I/O is discarded and that the context is ready to read and
execute more input. DPSResetContext works in conjunction with
resynchandleerror.

void DPSSetContext(ctxt)
DPSContext ctxt;

sets the current context. Call DPSSetContext before calling any
procedures defined inpsops.h.

DPSSetErrorBackstop
void DPSSetErrorBackstop(errorProc)
DPSErrorProc errorProc;

establishes 'errorProc' as a pointer to the backstop error handler.
This error handler handles errors that are not handled by any
other error handler. 'N U LL' will be passed as the 'ctxt' argument
to the backstop error handler.

DPSSetErrorProc void DPSSetErrorProc(ctxt, errorProc)
DPSContext ctxt;
DPSErrorProc errorProc;

changes the context's error handler.

DPSSetTextBackstop
void DPSSetTextBackstop(textProc)
DPSTextProc textProc;

establishes the procedure pointed to by 'textProc' as the handler
for text output for which there is no other handler. The text hand
ler acts as a backstop for text output.

DPSSetTextProc void DPSSetTextProc(ctxt, textProc)
DPSContext ctxt;
DPSTextProc textProc;

changes the context's text handler.

52 Client Library Reference Manual

DPSSpaceFromContext

DPSTextProc

DPSSpace DPSSpaceFromContext(ctxt)
DPSContext ctxt;

returns the space handle for the specified context. It returns
'NULL' if 'ctxt' does not represent a valid execution context.

typedet void (*DPSTextProc)(/*
DPSContext ctxt;
char *but;
long unsigned int count; */);

handles text emitted from the interpreter - for example, by the
== operator. 'but' is a pointer to 'count' characters.

DPSUnchainContext
void DPSUnchainContext(ctxt)
DPSContext ctxt;

removes 'ctxt' from the chain that it is on, if any. The parent and
child pointers of the unchained context are set to 'NULL'.

DPSWaitContext void DPSWaitContext(ctxt)
DPSContext ctxt;

DPSWriteData

flushes output buffers belonging to 'ctxt' and then waits until the
interpreter is ready for more input to 'ctxt'. It is not necessary to
call DPSWaitContext after calling a wrapped procedure that
returns a value.

Before calling DPSWaitContext, you must ensure that the last
code sent to the context is syntactically complete, such as a wrap
or a correctly terminated POSTSCRIPT operator or composite ob
ject.

void DPSWriteData(ctxt, but, count)
DPSContext ctxt;
char *but;
unsigned int count;

sends 'count' bytes of data from 'but' to 'ctxt'. 'ctxt' specifies
the destination context. 'buf' points to a buffer that contains
'count' bytes of data. The data will not be changed.

9 THE DPSCLlENT.H HEADER FILE 53

DPSWritePostScript
void DPSWritePostScript(ctxt, but, count);
DPSContext ctxt;
char *but;
unsigned int count;

sends POSTSCRIPT language to a context in any of the three lan
guage encodings. 'ctxt' specifies the destination context. 'buf'
points to a buffer that contains 'count' bytes of POSTSCRIPT lan
guage code. The code in the buffer will be converted according
to the context's encoding parameters as needed; refer to the
system-specific documentation for a list of supported conver
sions.

54 Client Library Reference Manual

10 SINGLE-OPERATOR PROCEDURES

For each operator defined in the POSTSCRIPT language, the
Client Library provides a procedure to invoke the most common
usage of the operator. These are called the single-operator
procedures. (See the POSTSCRIPT Language Reference Manual
and POSTSCRIPT Language Extensions for the DISPLAY
POSTSCRIPT System for complete information about how these
POSTSCRIPT operators work.) If the predefined usage is not the
one you need, it's easy to write wraps for variant forms of the
operators.

There are two Client Library header files for single-operator
procedures: dpsops.h and psops.h. The name of the Client
Library single-operator procedure is the name of the POSTSCRIPT
operator preceded by either DPS or PS3:

DPS prefix

PS prefix

Used when the context is explicitly specified; for
example, DPSgsave. The first argument must be
of type 'DPSContext'. These single-operator
procedures are defined in dpsops.h.

U sed when the context is assumed to be the cur
rent context; for example, PSgsave. These
single-operator procedures are defined in
psops.h. The procedure DPSSetContext, defined
in dpsciient.h, sets the current context.

For example, to execute the POSTSCRIPT operator translate, the
application can call

DPStranslate(ctxt, 1.23,43.56)

where 'ctxt' is a variable of type 'DPSContext', the handle that
represents a POSTSCRIPT execution context.

The DPStransiate procedure sends the binary encoding of

1.23 43.56 translate

to execute in 'ctxt'.

3Most POSTSCRIPT operator names are lowercase, but some contain uppercase
letters; for example FontDirectory. In either case, the name of the correspond
ing single-operator procedure is formed simply by prefixing PS or DPS.

10 SINGLE-OPERATOR PROCEDURES 55

10.1 SETTING THE CURRENT CONTEXT

The single-operator procedures in psops.h assume the current
context. The DPSSetContext procedure, defined in dpsclient.h,
sets the current context. When the application deals with only
one context it is convenient to use the procedures in psops.h
rather than those in dpsops .h. In this case, the application would
set the current context during its initialization phase:

DPSSetContext(ctxt);

In subsequent calls on the procedures in psops.h, 'ctxt' is used
implicitly. For example:

PStranslate(1.23,43.56);

has the same effect as

DPStranslate(ctxt, 1.23,43.56);

The explicit method is preferable for situations that require inter
mingling of calls to multiple contexts.

Note: It is important to pass the correct C types to the single
operator procedures. (See Section 10.3 for the procedure
declarations.) In general, if a POSTSCRIPT operator takes
operands of arbitrary numeric type, the corresponding single
operator procedure takes parameters of type 'float'. Coordinates
are always type 'float'. Passing an integer literal to a procedure
that expects a floating-point literal is a common error:

incorrect:

correct:

PSlineto(72, 72);

PSlineto(72.0, 72.0);

Procedures that appear to have no input arguments may actually
take their operands from the operand stack - for example,
PSdej and DPSdej.

10.2 TYPES IN SINGLE-OPERATOR PROCEDURES

When using single-operator procedures, be sure to inspect the
calling protocol (that is, order and types of fonnal parameters)
for every procedure to be called; these are listed in Section 10.3.

56 Client Library Reference Manual

Note: Throughout Section 10.2, references to single-operator
procedures with a DPS prefix are equally applicable to the equiv
alent procedures with a PS prefix.

10.2.1 Rules of Thumb

There is no completely consistent system for associating data
types with particular single-operator procedures. In general, it's
safest to look up the definition in Section 10.3 or in the header
file. However, there are a few rules of thumb that can be applied.
Note that all of these rules have exceptions.

• Coordinates are specified as type 'float'. For example, all
of the standard path construction operators (rnoveto, lineto,
curveto, and so on), take type 'float'.

• Booleans are always type 'int'o The comment '/* int *b */'
or '/* int *it * I' in the header file means that the procedure
returns a boolean.

• If the operator takes either integer or floating-point num
bers, the corresponding procedure takes type 'float'. If the
operator specifies a number type (such as rand and
vrnreclaim), then the procedure takes arguments of that
type (typically type 'int').

• Operators that return values must always be specified with
a pointer to the appropriate data type. For example,
currentgray returns the current gray value of the graphics
state. You must pass DPScurrentgray a pointer to a vari
able of type 'float'.

• If an operator takes a data type that does not have a directly
analogous C type, such as dictionaries, graphic states, and
executable arrays, the single-operator procedure takes no
arguments. It is assumed that the programmer will arrange
for the appropriate data to be on the operand stack before
calling the procedure; see DPSsendchararray and
DPSsendjloat, among others.

• If a single-operator procedure takes or returns a matrix, the
matrix is specified as 'float mO', which is an array of six
floating-point numbers.

• In general, the integer parameter 'size' is used to specify

10 SINGLE-OPERATOR PROCEDURES 57

the length of a variable-length array; see, for example,
DPSxshow. For single-operator procedures that take two
variable-length arrays as parameters, the length of the first
array is specified by the integer ' n '; the length of the
second array is specified by the integer 'I'; see, for ex
ample, DPSustroke.

The following operators are worth noting for unusual order and
types of arguments, or for other irregularities. After reading
these descriptions, inspect the declarations in the listing in this
document or in the header file:

58 Client Library Reference Manual

• DPSdefineuserobject takes no arguments. One would ex
pect it to take at least the index argument, but because of
the requirement to have the arbitrary object on the top of
the stack, it is probably better to send the index down
separately, perhaps via DPSsendint.

• DPSgetchararray, DPSgetf!oatarray, and other "get
array" operators specify the length of the array first, fol
lowed by the array. (Mnemonic: Get the array last.)

• DPSsendchararray, DPSsendjloatarray, and other "send
array" operators specify the array first, followed by the
length of the array. (Mnemonic: Send the array first.)

• DPSinjill, DPSinstroke, and DPSinujill support only the
x,y-coordinate version of the operator. The optional second
userpath argument is not supported.

• DPSinueojill, DPSinujill, DPSinustroke, DPSuappend,
DPSueojill, DPSujill, DPSustroke, and DPSustrokepath
take a userpath in the form of an encoded number string
and operator string. Note that the lengths of the strings
follow the strings themselves, as arguments. See
POSTSCRIPT Language Extensions jor the DISPLAY
POSTSCRIPT System for details.

• DPSsetdash takes an array of numbers of type 'float' for the
dash pattern.

• DPSselectfont takes type 'float' for the font scale
parameter.

• DPSsetgray takes type 'float'. ('DPSsetgray(1)' is wrong.)

• DPSxshow, DPSxyshow, DPSyshow take an array of num
bers of type 'float' for specifying the coordinates of each
character.

• DPSequals is the procedure equivalent to the = operator.

• DPSequalsequals is the procedure equivalent to the ==
operator.

• DPSversion returns the version number in a character array
'bufD' whose length is specified by 'bufsize'.

10.2.2 Special Cases

A few of the single-operator procedures have been optimized to
take user objects for arguments, since they are most commonly
used in this way. In the listing in Section 10.3, these user object
arguments are specified as type 'int', which is the correct type of
a user object.

• DPScurrentgstate takes a user object that represents the
gstate object into which the current graphics state should be
stored. The gstate object is left on the stack.

• DPSsetjont takes a user object that represents the font dic
tionary.

• DPSsetgstate takes a user object that represents the gstate
object that the current graphics state should be set to.

10 SINGLE-OPERATOR PROCEDURES 59

10.3 DPSOPS.H PROCEDURE DECLARATIONS

The procedures in dpsops.h and psops.h are identical except for
the first argument. dpsops.h procedures require the 'ctxt' argu
ment; psops.h procedures do not. The procedure name is the
lowercase POSTSCRIPT operator name preceded by "DPS" or
"PS" as appropriate. For the sake of brevity, only the dpsops.h
procedures are listed here.

Note: DPSSetContext must have been called before calling any
procedure in psops.h.

extern void DPSFontDirectory(/* DPSContext ctxt; */);

extern void DPSISOLatin1 Encoding(/* DPSContext ctxt; */);

extern void DPSSharedFontDirectory(/* DPSContext ctxt; */);

extern void DPSStandardEncoding(/* DPSContext ctxt; */);

extern void DPSUserObjects(/* DPSContext ctxt; */);

extern void DPSabs(/* DPSContext ctxt; */);

extern void DPSadd(/* DPSContext ctxt; */);

extern void DPSaload(/* DPSContext ctxt; */);

extern void DPSanchorsearch(/* DPSContext ctxt; int *truth; */);

extern void DPSand(/* DPSContext ctxt; */);

extern void DPSarc(/* DPSContext ctxt; float x, y, r, angle1, angle2; */);

extern void DPSarcn(/* DPSContext ctxt; float x, y, r, angle1, angle2; */);

extern void DPSarct(/* DPSContext ctxt; float x1, y1, x2, y2, r; */);

extern void DPSarcto(/* DPSContext ctxt; float x1, y1, x2, y2, r; float *xt1, *yt1, *xt2, *yt2; */);

extern void DPSarray(/* DPSContext ctxt; int len; */);

extern void DPSashow(/* DPSContext c;txt; float x, y; char *s; */);

extern void DPSastore(/* DPSContext ctxt; */);

extern void DPSatan(/* DPSContext ctxt; */);

extern void DPSawidthshow(/* DPSContext ctxt; float cx, cy; int c; float ax, ay; char *s; */);

extern void DPSbanddevice(/* DPSContext ctxt; */);

extern void DPSbegin(/* DPSContext ctxt; */);

60 Client Library Reference Manual

extern void DPSbind(/* DPSContext ctxt; */);

extern void DPSbitshift(/* DPSContext ctxt; int shift; */);

extern void DPSbytesavailable(/* DPSContext ctxt; int *n; */);

extern void DPScachestatus(/* DPSContext ctxt; */);

extern void DPSceiling(/* DPSContext ctxt; */);

extern void DPScharpath(/* DPSContext ctxt; char *s; int b; */);

extern void DPSclear(/* DPSContext ctxt; */);

extern void DPScieardictstack(/* DPSContext ctxt; */);

extern void DPScieartomark(1* DPSContext ctxt; */);

extern void DPSclip(/* DPSContext ctxt; */);

extern void DPSclippath(/* DPSContext ctxt; */);

extern void DPSciosefile(/* DPSContext ctxt; */);

extern void DPSciosepath(/* DPSContext ctxt; */);

extern void DPScolorimage(/* DPSContext ctxt; */);

extern void DPSconcat(/* DPSContext ctxt; float mD; */);

extern void DPSconcatmatrix(/* DPSContext ctxt; */);

extern void DPScondition(/* DPSContext ctxt; */);

extern void DPScopy(/* DPSContext ctxt; int n; */);

extern void DPScopypage(/* DPSContext ctxt; */);

extern void DPScos(/* DPSContext ctxt; */);

extern void DPScount(/* DPSContext ctxt; int *n; */);

extern void DPScountdictstack(/* DPSContext ctxt; int *n; */);

extern void DPScountexecstack(/* DPSContext ctxt; int *n; */);

extern void DPScounttomark(/* DPSContext ctxt; int *n; */);

extern void DPScurrentblackgeneration(/* DPSContext ctxt; */);

extern void DPScurrentcacheparams(/* DPSContext ctxt; */);

extern void DPScurrentcmykcolor(/* DPSContext ctxt; float *c, *m, *y, *k; */);

extern void DPScurrentcolorscreen(/* DPSContext ctxt; */);

extern void DPScurrentcolortransfer(/* DPSContext ctxt; */);

extern void DPScurrentcontext(/* DPSContext ctxt; int *cid; */);

10 SINGLE-OPERATOR PROCEDURES 61

extern void DPScurrentdash(/* DPSContext ctxt; */);

extern void DPScurrentdict(/* DPSContext ctxt; */);

extern void DPScurrentfile(/* DPSContext ctxt; */);

extern void DPScurrentflat(/* DPSContext ctxt; float *flatness; */);

extern void DPScurrentfont(/* DPSContext ctxt; */);

extern void DPScurrentgray(/* DPSContext ctxt; float *gray; */);

extern void DPScurrentgstate(/* DPSContext ctxt; int gst; */);

extern void DPScurrenthalftone(/* DPSContext ctxt; */);

extern void DPScurrenthalftonephase(/* DPSContext ctxt; float *x, *y; */);

extern void DPScurrenthsbcolor(/* DPSContext ctxt; float *h, *s, *b; */);

extern void DPScurrentlinecap(/* DPSContext ctxt; int *linecap; */);

extern void DPScurrentlinejoin(/* DPSContext ctxt; int *linejoin; */);

extern void DPScurrentlinewidth(/* DPSContext ctxt; float *width; */);

extern void DPScurrentmatrix(/* DPSContext ctxt; */);

extern void DPScurrentmiterlimit(/* DPSContext ctxt; float *limit; */);

extern void DPScurrentobjectformat(/* DPSContext ctxt; int *code; */);

extern void DPScurrentpacking(/* DPSContext ctxt; int *b; */);

extern void DPScurrentpoint(/* DPSContext ctxt; float *x, *y; */);

extern void DPScurrentrgbcolor(/* DPSContext ctxt; float *r, *g, *b; */);

extern void DPScurrentscreen(/* DPSContext ctxt; */);

extern void DPScurrentshared(/* DPSContext ctxt; int *b; */);

extern void DPScurrentstrokeadjust(/* DPSContext ctxt; int *b; *j);

extern void DPScurrenttransfer(/* DPSContext ctxt; */);

extern void DPScurrentundercolorremoval(/* DPSContext ctxt; */);

extern void DPScurveto(/* DPSContext ctxt; float x1, y1, x2, y2, x3, y3; */);

extern void DPScvi(/* DPSContext ctxt; */);

extern void DPScvlit(/* DPSContext ctxt; */);

extern void DPScvn(/* DPSContext ctxt; */);

extern void DPScvr(/* DPSContext ctxt; */);

extern void DPScvrs(/* DPSContext ctxt; */);

62 Client Library Reference Manual

extern void DPScvs(/* DPSContext ctxt; */);

extern void DPScvx(/* DPSContext ctxt; */);

extern void DPSdef(/* DPSContext ctxt; */);

extern void DPSdefaultmatrix(/* DPSContext ctxt; */);

extern void DPSdefinefont(/* DPSContext ctxt; */);

extern void DPSdefineusername(/* DPSContext ctxt; int i; char *username; */);

extern void DPSdefineuserobject(/* DPSContext ctxt; */);

extern void DPSdeletefile(/* DPSContext ctxt; char *filename; */);

extern void DPSdetach(/* DPSContext ctxt; */);

extern void DPSdeviceinfo(/* DPSContext ctxt; */);

extern void DPSdict(/* DPSContext ctxt; int len; */);

extern void DPSdictstack(/* DPSContext ctxt; */);

extern void DPSdiv(/* DPSContext ctxt; */);

extern void DPSdtransform(/* DPSContext ctxt; float x1, y1; float *x2, *y2; */);

extern void DPSdup(/* DPSContext ctxt; */);

extern void DPSecho(/* DPSContext ctxt; int b; */);

extern void DPSend(/* DPSContext ctxt; */);

extern void DPSeoclip(/* DPSContext ctxt; */);

extern void DPSeofill(/* DPSContext ctxt; */);

extern void DPSeoviewclip(/* DPSContext ctxt; */);

extern void DPSeq(/* DPSContext ctxt; */);

extern void DPSequals(/* DPSContext ctxt; */);

extern void DPSequalsequals(/* DPSContext ctxt; */);

extern void DPSerasepage(/* DPSContext ctxt; */);

extern void DPSerrordict(/* DPSContext ctxt; */);

extern void DPSexch(/* DPSContext ctxt; */);

extern void DPSexec(/* DPSContext ctxt; */);

extern void DPSexecstack(/* DPSContext ctxt; */);

extern void DPSexecuserobject(/* DPSContext ctxt; int userObjlndex; */);

extern void DPSexecuteonly(/* DPSContext ctxt; */);

10 SINGLE-OPERATOR PROCEDURES 63

extern void DPSexit(1* DPSContext ctxt; */);

extern void DPSexp(1* DPSContext ctxt; */);

extern void DPSfalse(/* DPSContext ctxt; */);

extern void DPSfile(/* DPSContext ctxt; char *name, *access; */);

extern void DPSfilenameforall(1* DPSContext ctxt; */);

extern void DPSfileposition(/* DPSContext ctxt; int *pos; */);

extern void DPSfill(1* DPSContext ctxt; */);

extern void DPSfindfont(1* DPSContext ctxt; char *name; */);

extern void DPSflattenpath(/* DPSContext ctxt; */);

extern void DPSfloor(/* DPSContext ctxt; */);

extern void DPSflush(/* DPSContext ctxt; */);

extern void DPSflushfile(/* DPSContext ctxt; */);

extern void DPSfor(/* DPSContext ctxt; */);

extern void DPSforall(/* DPSContext ctxt; */);

extern void DPSfork(/* DPSContext ctxt; */);

extern void DPSframedevice(/* DPSContext ctxt; */);

extern void DPSge(/* DPSContext ctxt; */);

extern void DPSget(1* DPSContext ctxt; */);

extern void DPSgetboolean(/* DPSContext ctxt; int *it; */);

extern void DPSgetchararray(1* DPSContext ctxt; int size; char sD; */);

extern void DPSgetfloat(/* DPSContext ctxt; float *it; */);

extern void DPSgetfloatarray(/* DPSContext ctxt; int size; float aD; */);

extern void DPSgetint(/* DPSContext ctxt; int *it; */);

extern void DPSgetintarray(/* DPSContext ctxt; int size; int aD; */);

extern void DPSgetinterval(/* DPSContext ctxt; */);

extern void DPSgetstring(/* DPSContext ctxt; char *s; */);

extern void DPSgrestore(/* DPSContext ctxt; */);

extern void DPSgrestoreall(/* DPSContext ctxt; */);

extern void DPSgsave(/* DPSContext ctxt; */);

extern void DPSgstate(/* DPSContext ctxt; */);

64 Client Library Reference Manual

extern void DPSgt(/* DPSContext ctxt; */);

extern void DPSidentmatrix(/* DPSContext ctxt; */);

extern void DPSidiv(/* DPSContext ctxt; */);

extern void DPSidtransform(/* DPSContext ctxt; float x1, y1; float *x2, *y2; */);

extern void DPSif(/* DPSContext ctxt; */);

extern void DPSifelse(/* DPSContext ctxt; */);

extern void DPSimage(/* DPSContext ctxt; */);

extern void DPSimagemask(/* DPSContext ctxt; */);

extern void DPSindex(/* DPSContext ctxt; int i; */);

extern void DPSineofill(/* DPSContext ctxt; float x, y; int *b; */);

extern void DPSinfill(/* DPSContext ctxt; float x, y; int *b; */);

extern void DPSinitclip(/* DPSContext ctxt; */);

extern void DPSinitgraphics(/* DPSContext ctxt; */);

extern void DPSinitmatrix(/* DPSContext ctxt; */);

extern void DPSinitviewclip(/* DPSContext ctxt; */);

extern void DPSinstroke(/* DPSContext ctxt; float x, y; int *b; */);

extern void DPSinueofill(/* DPSContext ctxt; float x, y; char numsO; int n; char opsO; int I; int *b; */);

extern void DPSinufill(/* DPSContext ctxt; float x, y; char numsO; int n; char opsO; int I; int *b; */);

extern void DPSinustroke(/* DPSContext ctxt; float x, y; char numsO; int n; char opsO; int I; int *b; */);

extern void DPSinvertmatrix(/* DPSContext ctxt; */);

extern void DPSitransform(/* DPSContext ctxt; float x1, y1; float *x2, *y2; */);

extern void DPSjoin(/* DPSContext ctxt; */);

extern void DPSknown(/* DPSContext ctxt; int *b; */);

extern void DPSkshow(/* DPSContext ctxt; char *s; */);

extern void DPSle(/* DPSContext ctxt; */);

extern void DPSlength(/* DPSContext ctxt; int *Ien; */);

extern void DPSlineto(/* DPSContext ctxt; float x, y; */);

extern void DPSln(/* DPSContext ctxt; */);

extern void DPSload(/* DPSContext ctxt; */);

extern void DPSlock(/* DPSContext ctxt; */);

10 SINGLE-OPERATOR PROCEDURES 65

extern void DPSlog(/* DPSContext ctxt; */);

extern void DPSloop(/* DPSContext ctxt; */);

extern void DPSlt(/* DPSContext ctxt; */);

extern void DPSmakefont(/* DPSContext ctxt; */);

extern void DPSmark(/* DPSContext ctxt; */);

extern void DPSmatrix(/* DPSContext ctxt; */);

extern void DPSmaxlength(/* DPSContext ctxt; int *Ien; */);

extern void DPSmod(/* DPSContext ctxt; */);

extern void DPSmonitor(/* DPSContext ctxt; */);

extern void DPSmoveto(/* DPSContext ctxt; float x, y; */);

extern void DPSmul(/* DPSContext ctxt; */);

extern void DPSne(/* DPSContext ctxt; */);

extern void DPSneg(/* DPSContext ctxt; */);

extern void DPSnewpath(/* DPSContext ctxt; */);

extern void DPSnoaccess(/* DPSContext ctxt; */);

extern void DPSnot(/* DPSContext ctxt; */);

extern void DPSnotify(/* DPSContext ctxt; */);

extern void DPSnull(/* DPSContext ctxt; */);

extern void DPSnulldevice(/* DPSContext ctxt; */);

extern void DPSor(/* DPSContext ctxt; */);

extern void DPSpackedarray(/* DPSContext ctxt; */);

extern void DPSpathbbox(/* DPSContext ctxt; float *lIx, *lIy, *urx, *ury; */);

extern void DPSpathforall(/* DPSContext ctxt; */);

extern void DPSpop(/* DPSContext ctxt; */);

extern void DPSprint(/* DPSContext ctxt; */);

extern void DPSprintobject(/* DPSContext ctxt; int tag; */);

extern void DPSprompt(/* DPSContext ctxt; */);

extern void DPSpstack(/* DPSContext ctxt; */);

extern void DPSput(/* DPSContext ctxt; */);

extern void DPSputinterval(/* DPSContext ctxt; */);

66 Client Library Reference Manual

extern void DPSquit(/* DPSContext ctxt; */);

extern void DPSrand(/* DPSContext ctxt; */);

extern void DPSrcheck(/* DPSContext ctxt; int *b; */);

extern void DPSrcurveto(/* DPSContext ctxt; float x1, y1, x2, y2, x3, y3; */);

extern void DPSread(/* DPSContext ctxt; int *b; */);

extern void DPSreadhexstring(/* DPSContext ctxt; int *b; */);

extern void DPSreadline(/* DPSContext ctxt; int *b; */);

extern void DPSreadonly(/* DPSContext ctxt; */);

extern void DPSreadstring(/* DPSContext ctxt; int *b; */);

extern void DPSrealtime(/* DPSContext ctxt; int *i; */);.

extern void DPSrectclip(/* DPSContext ctxt; float x, y, w, h; */);

extern void DPSrectfill(/* DPSContext ctxt; float x, y, w, h; */);

extern void DPSrectstroke(/* DPSContext ctxt; float x, y, w, h; */);

extern void DPSrectviewclip(/* DPSContext ctxt; float x, y, w, h; */);

extern void DPSrenamefile(/* DPSContext ctxt; char *old, *new; */);

extern void DPSrenderbands(/* DPSContext ctxt; */);

extern void DPSrepeat(/* DPSContext ctxt; */);

extern void DPSresetfile(/* DPSContext ctxt; */);

extern void DPSrestore(/* DPSContext ctxt; */);

extern void DPSreversepath(/* DPSContext ctxt; */);

extern void DPSrlineto(/* DPSContext ctxt; float x, y; */);

extern void DPSrmoveto(/* DPSContext ctxt; float x, y; */);

extern void DPSroll(/* DPSContext ctxt; int n, j; */);

extern void DPSrotate(/* DPSContext ctxt; float angle; */);

extern void DPSround(/* DPSContext ctxt; */);

extern void DPSrrand(/* DPSContext ctxt; */);

extern void DPSrun(/* DPSContext ctxt; char *filename; */);

extern void DPSsave(/* DPSContext ctxt; */);

extern void DPSscale(/* DPSContext ctxt; float x, y; */);

extern void DPSscalefont(/* DPSContext ctxt; float size; */);

10 SINGLE-OPERATOR PROCEDURES 67

extern void DPSscheck(/* DPSContext ctxt; int *b; */);

extern void DPSsearch(/* DPSContext ctxt; int *b; */);

extern void DPSselectfont(/* DPSContext ctxt; char *name; float scale; */);

extern void DPSsendboolean(/* DPSContext ctxt; int it; */);

extern void DPSsendchararray(/* DPSContext ctxt; char sO; int size; */);

extern void DPSsendfloat(/* DPSContext ctxt; float it; */);

extern void DPSsendfloatarray(/* DPSContext ctxt; float aD; int size; */);

extern void DPSsendint(/* DPSContext ctxt; int i!; */);

extern void DPSsendintarray(/* DPSContext ctxt; int aD; int size; */);

extern void DPSsendstring(/* DPSContext ctxt; char *s; */);

extern void DPSsetbbox(/* DPSContext ctxt; float IIx, lIy, urx, ury; */);

extern void DPSsetblackgeneration(/* DPSContext ctxt; */);

extern void DPSsetcachedevice(/* DPSContext ctxt; float WX, wy, IIx, lIy, urx, ury; */);

extern void DPSsetcachelimit(/* DPSContext ctxt; float n; */);

extern void DPSsetcacheparams(/* DPSContext ctxt; */);

extern void DPSsetcharwidth(/* DPSContext ctxt; float wx, wy; */);

extern void DPSsetcmykcolor(/* DPSContext ctxt; float c, m, y, k; */);

extern void DPSsetcolorscreen(/* DPSContext ctxt; */);

extern void DPSsetcolortransfer(/* DPSContext ctxt; */);

extern void DPSsetdash(/* DPSContext ctxt; float patD; int size; float offset; */);

extern void DPSsetfileposition(/* DPSContext ctxt; int pos; */);

extern void DPSsetflat(/* DPSContext ctxt; float flatness; */);

extern void DPSsetfont(/* DPSContext ctxt; int f; */);

extern void DPSsetgray(/* DPSContext ctxt; float gray; */);

extern void DPSsetgstate(/* DPSContext ctxt; int gst; */);

extern void DPSsethalftone(/* DPSContext ctxt; */);

extern void DPSsethalftonephase(/* DPSContext ctxt; float x, y; */);

extern void DPSsethsbcolor(/* DPSContext ctxt; float h, s, b; */);

extern void DPSsetlinecap(/* DPSContext ctxt; int linecap; */);

extern void DPSsetlinejoin(/* DPSContext ctxt; int linejoin; */);

68 Client Library Reference Manual

extern void DPSsetlinewidth(/* DPSContext ctxt; float width; *j);

extern void DPSsetmatrix(/* DPSContext ctxt; *j);

extern void DPSsetmiterlimit(/* DPSContext ctxt; float limit; *j);

extern void DPSsetobjectformat(/* DPSContext ctxt; int code; *j);

extern void DPSsetpacking(/* DPSContext ctxt; int b; *j);

extern void DPSsetrgbcolor(/* DPSContext ctxt; float r, g, b; *j);

extern void DPSsetscreen(/* DPSContext ctxt; *j);

extern void DPSsetshared(/* DPSContext ctxt; int b; *j);

extern void DPSsetstrokeadjust(/* DPSContext ctxt; int b; *j);

extern void DPSsettransfer(/* DPSContext ctxt; *j);

extern void DPSsetucacheparams(/* DPSContext ctxt; *j);

extern void DPSsetundercolorremoval(/* DPSContext ctxt; *j);

extern void DPSsetvmthreshold(/* DPSContext ctxt; int i; *j);

extern void DPSshareddict(/* DPSContext ctxt; *j);

extern void DPSshow(/* DPSContext ctxt; char *s; *j);

extern void DPSshowpage(/* DPSContext ctxt; *j);

extern void DPSsin(/* DPSContext ctxt; *j);

extern void DPSsqrt(/* DPSContext ctxt; *j);

extern void DPSsrand(/* DPSContext ctxt; *j);

extern void DPSstack(/* DPSContext ctxt; *j);

extern void DPSstart(/* DPSContext ctxt; *j);

extern void DPSstatus(/* DPSContext ctxt; int *b; *j);

extern void DPSstatusdict(/* DPSContext ctxt; *j);

extern void DPSstop(/* DPSContext ctxt; *j);

extern void DPSstopped(/* DPSContext ctxt; *j);

extern void DPSstore{ /* DPSContext ctxt; *j);

extern void DPSstring(/* DPSContext ctxt; int len; *j);

extern void DPSstringwidth(/* DPSContext ctxt; char *s; float *xp, *yp; *j);

extern void DPSstroke{ /* DPSContext ctxt; *j);

extern void DPSstrokepath(/* DPSContext ctxt; *j);

10 SINGLE·OPERATOR PROCEDURES 69

extern void DPSsub(/* DPSContext ctxt; */);

extern void DPSsystemdict(/* DPSContext ctxt; */);

extern void DPStoken(/* DPSContext ctxt; int *b; */);

extern void DPStransform(/* DPSContext ctxt; float x1, y1; float *x2, *y2; */);

extern void DPStranslate(/* DPSContext ctxt; float x, y; */);

extern void DPStrue(/* DPSContext ctxt; */);

extern void DPStruncate(/* DPSContext ctxt; */);

extern void DPStype(/* DPSContext ctxt; */);

extern void DPSuappend(/* DPSContext ctxt; char numsD; int n; char opsD; int I; */);

extern void DPSucache(/* DPSContext ctxt; */);

extern void DPSucachestatus(/* DPSContext ctxt; */);

extern void DPSueofill(/* DPSContext ctxt; char numsD; int n; char opsD; int I; */);

extern void DPSufill(/* DPSContext ctxt; char numsD; int n; char opsD; int I; */);

extern void DPSundef(/* DPSContext ctxt; char *name; */);

extern void DPSundefinefont(/* DPSContext ctxt; char *name; */);

extern void DPSundefineuserobject(/* DPSContext ctxt; int userObjlndex; */);

extern void DPSupath(/* DPSContext ctxt; int b; */);

extern void DPSuserdict(/* DPSContext ctxt; */);

extern void DPSusertime(/* DPSContext ctxt; int *milliseconds; */);

extern void DPSustroke(/* DPSContext ctxt; char numsD; int n; char opsD; int I; */);

extern void DPSustrokepath(/* DPSContext ctxt; char numsD; int n; char opsD; int I; */);

extern void DPSversion(/* DPSContext ctxt; int bufsize; char bufD; */);

extern void DPSviewclip(/* DPSContext ctxt; */);

extern void DPSviewclippath(/* DPSContext ctxt; */);

extern void DPSvmreclaim(/* DPSContext ctxt; int code; */);

extern void DPSvmstatus(/* DPSContext ctxt; int *Ievel, *used, *maximum; */);

extern void DPSwait(/* DPSContext ctxt; */);

extern void DPSwcheck(/* DPSContext ctxt; int *b; */);

extern void DPSwhere(/* DPSContext ctxt; int *b; */);

extern void DPSwidthshow(/* DPSContext ctxt; float x, y; int c; char *s; */);

70 Client Library Reference Manual

extern void DPSwrite(/* DPSContext ctxt; */);

extern void DPSwritehexstring(/* DPSContext ctxt; */);

extern void DPSwriteobject(/* DPSContext ctxt; int tag; */);

extern void DPSwritestring(/* DPSContext ctxt; */);

extern void DPSwtranslation(/* DPSContext ctxt; float *x, *y; */);

extern void DPSxcheck(/* DPSContext ctxt; int *b; */);

extern void DPSxor(/* DPSContext ctxt; */);

extern void DPSxshow(/* DPSContext ctxt; char *s; float numarrayO; int size; */);

extern void DPSxyshow(/* DPSContext ctxt; char *s; float numarrayO; int size; */);

extern void DPSyield(/* DPSContext ctxt; */);

extern void DPSyshow(/* DPSContext ctxt; char *s; float numarrayO; int size; */);

10 SINGLE-OPERATOR PROCEDURES 71

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES

This section describes the procedures in the dpsJriends.h header
file that are called by wrapped procedures - the C-callable
procedures that are output by the pswrap translator. This infor
mation is not normally required by the application programmer.

A description of the dpsJriends.h header file is provided for ap
plication or toolkit programmers who need finer control over
these areas:

• Transmission of code for execution.

• Handling of result values.

• Mapping of user names to user name indices.

This section also contains a discussion of the structure of binary
object sequences.

11.1 MORE ABOUT SENDING CODE FOR EXECUTION

One of the primary purposes of the Client Library is to provide
runtime support for the code generated by pswrap. Each wrapped
procedure builds a binary object sequence that represents the
POSTSCRIPT language code to be executed. Since a binary object
sequence is structured, the procedures for sending a binary object
sequence are designed to take advantage of this structure.

The following procedures efficiently process binary object se
quences generated by wrapped procedures:

72 Client Library Reference Manual

• DPSBinObjSeqWrite sends the beginning of a new binary
object sequence generated by a wrapped procedure. This
initial part includes, at minimum, the header and the entire
top-level sequence of objects. It can also include sub
sidiary array elements and/or string characters if those ar
rays and strings are static - that is, if their lengths are
known at compile time and there are no intervening arrays
or strings of varying length. DPSBinObjSeqWrite may
convert the binary object sequence to another encoding,
depending upon the 'DPSContextRec' encoding variables.
For a particular wrapped procedure, DPSBinObjSeqWrite is
called exactly once.

o DPSWriteTypedObjectArray sends arrays (excluding
strings) that were specified as input arguments to a
wrapped procedure. It writes POSTSCRIPT language code
specified by the context's format and encoding variables,
doing appropriate conversions as needed. For a particular
wrapped procedure, DPSWriteTypedObjectArray is called
zero or more times - once for each input array specified .

• DPSWriteStringChars sends the text of strings or names. It
appends characters to the current binary object sequence.
For a particular wrapped procedure, DPSWriteStringChars
is called zero or more times to send the text of names and
strings.

The overall length of arrays and strings sent by
DPSWriteTypedObjectArray and DPSWriteStringChars must be
consistent with the length information specified in the binary ob
ject sequence header sent by DPSBinObjSeqWrite. In particular,
don't rely on 'sizeofO' to return the correct size value of the
binary object sequence.

11.2 RECEIVING RE8UL T8

Each wrapped procedure with output arguments constructs an
array containing elements of type 'DPSResultsRec'. This array
is called the result table. The index position of each element cor
responds to the ordinal position of each output argument as
defined in the wrapped procedure: the first table entry (index 0)
corresponds to the first output argument, the second table entry
(index 1) corresponds to the second argument, and so on. Each
entry defines one of the output arguments of a wrapped proce
dure by specifying a data type, a count, and a pointer to the
storage for the value. DPSSetResultTable registers the result
table with the context.

The interpreter sends return values to the application as binary
object sequences. Wrapped procedures that have output argu
ments use the printobject operator to tag and send each return
value. (See the discussion of the printobject operator in
POSTSCRIPT Language Extensions for the DISPLAY POSTSCRIPT
System.) The tag corresponds to the index of the output argument
in the result table. After the wrapped procedure finishes sending
the POSTSCRIPT language program, it calls

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 73

DPSAwaitReturnValues to wait for all of the results to come
back.

As the Client Library receives results from the interpreter, it
places each result into the output argument specified by the
result table. The tag of each result object in the sequence is used
as an index into the result table. When the Client Library
receives a tag that is greater than the last defined tag number,
DPSAwaitReturnValues returns. This final tag is called the ter
mination tag.

Certain conventions must be followed to handle return values for
wrapped procedures properly:

• The tag associated with the return value is the ordinal of the
output parameter as listed in the definition of the wrapped
procedure, starting from 0 and counting from left to right
(see example below).

• If the 'count' field of the 'DPSResultsRec' is -1, the ex
pected result is a single element, or "scalar," and return
values with the same tag overwrite previous values. Other
wise, the 'count' indicates the number of array elements
that remain to be received. In this case, a series of return
values with the same tag are stored in successive elements
of the array. If the value of 'count' is zero, further array
elements of the same tag value are ignored.

• DPSAwaitReturnValues returns when it notices that the
'resultTable' pointer in the 'DPSContextRec' data object is
'NULL'. The code that handles return values should note
the reception of the termination tag by setting the
'resultTable' to 'NULL' to indicate that there are no more
return values to receive for this wrapped procedure.

Here is an example of a wrap with return values:

defineps Example(1 int *x, *y, *z)
102030 x Y z

endps

The code generated for this wrapped procedure is actually:

74 Client Library Reference Manual

102030
o printobject

% pop integer 30 off the operand stack,
% use tag = 0 (result table index = 0, first parameter 'x')
% write binary object sequence

1 printobject
% pop integer 20 off the operand stack,
% use tag = 1 (result table index = 1, second parameter 'y')
% write binary object sequence

2 printobject
% pop integer 10 off the operand stack,
% use tag = 2 (result table index = 2, third parameter 'z')
% write binary object sequence

o 3 printobject
% push dummy value 0 on operand stack
% pop integer 0 off operand stack,
% use tag = 3 (termination tag)
% write binary object sequence

flush
% make sure all data is sent back to the application

11.3 MANAGING USER NAMES

Name indices are the most efficient way to specify names in a
binary object sequence; refer to POSTSCRIPT Language Exten
sions for the DISPLAY POSTSCRIPT System for a full description.
The Client Library manages the mapping of user names to in
dices. Wrapped procedures map user names automatically. The
first time a wrapped procedure is called, it calls DPSMapNames
to map all user names specified in the wrapped procedure into
indices. The application may also call DPSMapNames directly to
obtain name mappings.

A name map is stored in a space. All contexts associated with
that space have the same name map. The name mapping for the
context is automatically kept up to date by the Client Library in
the following way:

• Every wrapped procedure calls DPSBinObjSeqWrite,
which, in addition to sending the binary object sequence,
checks to see if the user name map is up to date .

• DPSBinObjSeqWrite calls DPSUpdateNameMap if the
name map of the space does not agree with the Client
Library's name map. DPSUpdateNameMap may send a

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 75

series of defineusername operators to the POSTSCRIPT in
terpreter.

DPSNameFromlndex returns the text for the user name with the
given index. The string returned is owned by the Client Library;
treat it as read-only.

11.4 BINARY OBJECT SEQUENCES

Syntactically, a binary object sequence is a single token. The
structure is described in detail in POSTSCRIPT Language Exten
sions for the DISPLAY POSTSCRIPT System. The definitions in this
section correspond to the components of a binary object se
quence.

#define DPS_HEADER_SIZE 4

#define DPS_HLIEEE 128
#define DPS_LO_IEEE 129
#define DPS_HLNATIVE 130
#define DPS_LO_NATIVE 131

#ifndef DPS_DEF _ TOKENTYPE
#define DPS_DEF _ TOKENTYPE DPS_HLIEEE
#endif DPS_DEF _ TOKENTYPE

typedef struct {
unsigned char tokenType;
unsigned char nTopElements;
unsigned short length;
DPSBinObj Rec objects[1];

} DPSBinObjSeqRec, *DPSBinObjSeq;

A binary object sequence begins with a four-byte header. The
first byte indicates the token type. A binary object is defined by
one of the four token type codes listed above.
'DPS_DEF _TOKENTYPE' defines the default token type for bi
nary object sequences generated by a particular implementation
of the Client Library. 'OPS_DEF _ TOKENTYPE' must be consis
tent with the machine architecture upon which the Client Library
is implemented.

The 'nTopElements' byte indicates the number of top-level ob
jects in the sequence. A binary object sequence can have from 1
to 255 top-level objects. If more top-level objects are required,
use an extended binary object sequence (described in Section
11.5).

76 Client Library Reference Manual

The next two bytes form a nonzero 16-bit integer that is the total
byte length of the binary object sequence.

The header is followed by a sequence of objects.

#define DPS_NUll 0
#define DPS_INT 1
#define DPS_REAl 2
#define DPS_NAME 3
#define DPS_BOOl 4
#define DPS_STRING 5
#define DPS_IMMEDIATE 6
#define DPS_ARRAY 9
#define DPS_MARK 10

The first byte of an object describes its attributes and type. The
types are listed above and correspond to the POSTSCRIPT lan
guage objects that pswrap generates.

#define DPS_LlTERAl 0
#define DPS_EXEC Ox080

The high-order bit indicates whether the object has the literal (0)
or executable (l) attribute.

The next byte is the tag byte, which must be zero for objects sent
to the interpreter. Result values sent back from the interpreter
will use the tag field, as described in Section 11.2.

The next two bytes fonn a 16-bit integer that is the length of the
object. The unit value of the length field depends upon the type
of the object. For arrays, the length indicates the number of ele
ments in the array. For strings, the length indicates the number of
characters.

The last four bytes of the object form the value field. The inter
pretation of this field depends upon the type of the object.

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 77

typedef struct {
unsigned char attributedType;
unsigned char tag;
short length;
long int val;

} DPSBinObjGeneric; /* boolean, int, string, name and array */

typedef struct {
unsigned char attributedType;
unsigned char tag;
short length;
float realVal;

} DPSBinObjReal; /* float */

'DPSBinObjGeneric' and 'DPSBinObjReal' are defined for the
use of wraps. They make it easier to initialize the static portions
of the binary object sequence.

typedef struct {
unsigned char attributedType;
unsigned char tag;
short length;
union {

long int integerVal;
float realVal;
long int nameVal; /* offset or index */
long int booleanVal;
long int stringVal; /* offset */
long int arrayVal; /* offset */

} val;
} DPSBinObjRec;

'DPSBinObjRec' is a general-purpose variant record for inter
preting an object in a binary object sequence.

11.5 EXTENDED BINARY OBJECT SEQUENCES

If there are more than 255 top-level objects in the sequence, an
extended binary object sequence is required; it is represented by
'DPSExtendedBinObjSeqRec', as follows:

Byte 0

Byte 1

78 Client Library Reference Manual

Same as for a normal binary object sequence; it
represents the token type.

Set to zero; indicates that this is an extended bi
nary object sequence. (In a normal binary object
sequence, this byte represents the number of top
level objects.)

Bytes 2-3

Bytes 4-7

A 16-bit value representing the number of top
level elements.

A 32-bit value representing the overall length of
the extended binary object sequence.

The byte order in numeric fields is according to the number rep
resentation specified by the token type.

The layout of the remainder of the extended binary object se
quence is identical to that of a normal binary object sequence.

11.6 DPSFRIENDS.H DATA STRUCTURES

DPSBinObjGeneric

DPSBinObjReal

This section describes the data structures used by the pswrap
program as part of its support for wrapped procedures.

Note: The 'DPSContextRec' data structure and its handle,
'DPSContext', are part of the dpsfriends.h header file. They are
documented in Section 9.1 because they are also used by
dpsclient.h procedures.

typedef struct {
unsigned char attributedType;
unsigned char tag;
unsigned short length;
long int val;

} DPSBinObjGeneric; /* boolean, int, string, name and array */

is defined for the use of wraps. It is used to initialize the static
portions of the binary object sequence. See 'DPSBinObjReal' for
type' real'.

typedef struct {
unsigned char attributedType;
unsigned char tag;
unsigned short length;
float realVal;

} DPSBinObjReal; /* float */

is similar to 'DPSBinObjGeneric', but represents a real number.

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 79

DPSBinObjRec

DPSBinObjSeqRec

typedef struct {
unsigned char attributedType;
unsigned char tag;
unsigned short length;
union {

long int integerVal;
float realVal;
long int nameVal; /* offset or index */
long int booleanVal;
long int stringVal; /* offset */
long int arrayVal; /* offset */

} val;
} DPSBinObjRec;

is a general-purpose variant record for interpreting an object in a
binary object sequence.

typedef struct {
unsigned char tokenType;
unsigned char nTopElements;
unsigned short length;
DPSBinObjRec objects[1];

} DPSBinObjSeqRec, *DPSBinObjSeq;

This data type is provided as a convenience for accessing a bi
nary object sequence copied from an I/O buffer.

DPSDefinedType typedef enum {
dps_tBoolean,
dps_tChar, dps_tUChar,
dps_tFloat, dps_tDouble,
dps_tShort, dps_tUShort,
dps_tlnt, dps_tUlnt,
dps_tLong, dps_tULong } DPSDefinedType;

enumerates the C data types used to describe wrap arguments.

80 Client Library Reference Manual

DPSExtendedBinObjSeqRec

DPSNameEncoding

DPSProcs

typedef struct {
unsigned char tokenType;
unsigned char escape; /* zero if this is an extended sequence */
unsigned short nTopElements;
unsigned long length;
DPSBinObjRec objects[1];

} DPSExtendedBinObjSeqRec, *DPSExtendedBinObjSeq;

This data type has a purpose similar to 'DPSBinObjSeqRec', but
is used for extended binary object sequences.

typedef enum {
dps_indexed, dps_strings
} DPSNameEncoding;

defines the two possible encodings for user names in the
'dps_binObjSeq' and 'dps_encodedTokens' forms of
POSTSCRIPT language programs.

/* pointer to procedures record */

See' DPSProcsRec' .

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 81

DPSProcsRec typedef struct {
void (*BinObjSeqWrite)(/* DPSContext ctxt, char *buf, unsigned int count */);
void (*WriteTypedObjectArray)(/*

DPSContext ctxt,
DPSDefinedType type;
char * array,
unsigned int length */);

void (*WriteStringChars)(/* DPSContext ctxt; char *buf; unsigned int count; */);
void (*WriteData)(/* DPSContext ctxt, char *buf, unsigned int count */);
void (*WritePostScript)(/* DPSContext ctxt, char *buf, unsigned int count */);
void (*FlushContext)(/* DPSContext ctxt */);
void (*ResetContext)(/* DPSContext ctxt */);
void (*UpdateNameMap)(/* DPSContext ctxt */);
void (*AwaitReturnValues)(/* DPSContext ctxt */);
void (*Interrupt)(/* DPSContext ctxt */);
void (*DestroyContext)(/* DPSContext ctxt */);
void (*WaitContext)(/* DPSContext ctxt */);
} DPSProcsRec, *DPSProcs;

defines the data structure pointed to by 'DPSProcs'.

This record contains pointers to procedures that implement all of
the operations that can be performed on a context. These
procedures are analogous to the instance methods of an object in
an object-oriented language.

Note: Application developers need not be concerned with the
contents of this data structure. Do not change the 'DPSProcs'
pointer. Do not change the contents of 'DPSProcsRec'.

DPSProgramEncoding
typedef enum {

dps_ascii, dps_binObjSeq, dps_encodedTokens
} DPSProgramEncoding;

defines the three possible encodings of POSTSCRIPT language
programs: ASCII encoding, binary object sequence encoding,
and binary token encoding.

82 Client Library Reference Manual

DPSResultsRec

DPSSpace

DPSSpaceRec

typedef struct {
DPSDefinedType type;
int count;
char *value;
} DPSResultsRec, *DPSResults;

Each wrapped procedure constructs an array called the result
table, which consists of elements of type 'DPSResultsRec'. The
index position of each element corresponds to the ordinal posi
tion of each output parameter as defined in the wrapped proce
dure; for example, index a (the first table entry) corresponds to
the first output parameter, index 1 corresponds to the second out
put parameter, and so on.

'type' specifies the formal type of the return value. 'count'
specifies the number of values expected; this supports array for
mals. 'value' points to the location of the first value; the storage
beginning there must have room for 'count' values of type
'type'. If 'count' is -1, 'value' points to a scalar (single) result
argument. If 'count' is zero, any subsequent return values are
ignored.

/* handle for space record */

See'DPSSpaceRec'.

typedef struct {
DPSSpaceProcs procs;
} DPSSpaceRec, *DPSSpace;

typedef struct {
void (*DestroySpace)(/* DPSSpace space */);
} DPSSpaceProcsRec, *DPSSpaceProcs;

provides a representation of a space. See also DPSDestroySpace
in Section 9.2.

11.7 DPSFRIENDS.H PROCEDURES

The following is an alphabetical listing of the procedures in the
Client Library header file dpsfriends.h. These procedures are for
experts only; most application programmers don't need them.
The pswrap translator inserts calls to these procedures when it

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 83

creates C-callable wrapped procedures specified by the applica
tion programmer.

DPSAwaitReturnValues
void DPSAwaitReturnValues(ctxt)
DPSContext ctxt;

waits for all results described by the result table; see
'DPSResultRec'. It uses the tag of each object in the sequence to
find the corresponding entry in the result table. When
DPSAwaitReturnValues receives a tag that is greater than the last
defined tag number, there are no more return values to be
received and the procedure returns. This final tag is called the
termination tag. DPSSetResultTable must be called to set the
result table before any calls to DPSBinObjSeqWrite.

DPSAwaitReturnValues can call the context's error procedure
with 'dps_err_resultTagCheck' or 'dps_err_resultTypeCheck'. It
will return prematurely if it encounters a 'dps_err-ps' error.

DPSBinObjSeqWrite
void DPSBinObjSeqWrite(ctxt, but, count)
DPSContext ctxt;
char *but;
unsigned int count;

sends the beginning of a binary object sequence generated by a
wrap. 'but' points to a buffer containing 'count' bytes of a binary
object sequence. 'but' must point to the beginning of a sequence,
which includes at least the header and the entire top-level se
quence of objects.

DPSBinObjSeqWrite may also include subsidiary array elements
and/or strings. It writes POSTSCRIPT language as specified by the
format and encoding variables of 'ctxt', doing appropriate con
versions as needed. If the buffer does not contain the entire bi
nary object sequence, one or more calls to
DPSWriteTypedObjectArray and/or DPSWriteStringChars must
follow immediately; 'but' and its contents must remain valid un
til the entire binary object sequence has been written.
DPSBinObjSeqWrite ensures that the user name map is up to
date.

84 Client Library Reference Manual

DPSMapNames void DPSMapNames(ctxt, nNames, names, indices)
DPSContext ctxt;
unsigned int nNames;
char **names;
long int **indices;

maps all specified names into user name indices, sending new
defineusername definitions as needed. 'names' is an array of
strings whose elements are the user names. 'nNames' is the
number of elements in the array. 'indices' is an array of pointers
to '(long int *)' integers, which are the locations in which to store
the indices. DPSMapNames is normally called automatically
from within wraps. The application can also call this procedure
directly to obtain name mappings.

DPSMapNames calls the context's error procedure with
'dps_err_nameTooLong' .

Note: The caller must ensure that the string pointers remain
valid after the procedure returns. The Client Library becomes
the owner of all strings passed to it with DPSMapNames.

The same name may be used several times in a wrap. To reduce
string storage, these duplicates can be eliminated by using an
optimization recognized by DPSMapNames. If the pointer to the
string in the array 'names' is null - that is, '(char *)0' -
DPSMapNames uses the nearest non-null name that precedes the
'(char *)0' entry in the array. The first element of 'names' must
be non-null. This optimization works best if you sort the names
so that duplicate occurrences are adjacent.

Example: DPSMapNames treats the following arrays as equiv
alent, but the one on the right saves storage.

"boxes",
"drawMe",
"drawMe",
"init",
"makeAPath",
"returnAClip" ,
"returnAClip",
"returnAClip"
}

"boxes",
"drawMe",
(char *)0,
"init",
"makeAPath" ,
"returnAClip" ,
(char *)0,
(char *)0
}

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 85

DPSNameFromlndex

DPSSetResultTable

char *DPSNameFromlndex(index)
long int index;

returns the text for the user name with the given index. The
string returned must be treated as read-only. 'NULL' will be
returned if 'index' is invalid.

void DPSSetResultTable(ctxt, tbl, len)
DPSContext ctxt;
DPSResults tbl;
unsigned int len;

sets the result table and its length in 'ctxt'. This operation must
be performed before a wrap body that can return a value is sent
to the interpreter.

DPSUpdateNameMap
void DPSUpdateNameMap(ctxt)
DPSContext ctxt;

sends a series of defineusername commands to the interpreter.
This procedure is called if the name map of the context's space is
not synchronized with the Client Library name map.

DPSWriteStringChars
void DPSWriteStringChars(ctxt, buf, count);
DPSContext ctxt;
char *buf;
unsigned int count;

appends strings to the current binary object sequence. 'but' con
tains 'count' characters that form the body of one or more strings
in a binary object sequence. 'but' and its contents must remain
valid until the entire binary object sequence has been sent.

86 Client Library Reference Manual

DPSWriteTypedObjectArray
void DPSWriteTypedObjectArray(ctxt, type, array, length)
DPSContext ctxt;
DPSDefinedType type;
char *array;
unsigned int length;

writes POSTSCRIPT language code as specified by the fonnat and
encoding variables of 'ctxt', doing appropriate conversions as
needed. 'array' points to an array of 'length' elements of type
'type'. 'array' contains the element values for the body of a sub
sidiary array that was passed as an input argument to pswrap.
, array' and its contents must remain valid until the entire binary
object sequence has been sent.

11 RUNTIME SUPPORT FOR WRAPPED PROCEDURES 87

88 Client Library Reference Manual

A CHANGES SINCE LAST RELEASE

This manual has been completely reorganized and rewritten.
Changes to the Client Library Reference Manual from the docu
ment dated October 7, 1988, are noted in the paragraphs below.

The example text handler program in Section 5.3 has been
changed from a Macintosh DISPLAY POSTSCRIPT program to an
X11/DPS program. The example application program in Section
8 has been changed from a Macintosh DISPLAY POSTSCRIPT
program to an X 11/DPS program.

An example error handler program, DPSDefaultErrorProc, has
been provided in Appendix B. This is the default error handler in
the DISPLAY POSTSCRIPT extension for the X Window System.

The synchronization example in Section 6.4 has been replaced
by an X-specific example.

The specifications for dpsclient.h and dpsfriends.h procedures
are now in separate chapters.

Listings of the header files have been removed, except for
dpsops.h (representing itself and psops.h), whose procedure
declarations are not listed elsewhere in this manual.

Numerous inconsistencies in the arguments to some of the
single-operator procedures have been cleaned up.

The document has been updated to be consistent with the latest
versions of dpsfriends.h, dpsclient.h, dpsops.h, and psops.h. The
following are no longer defined by Adobe:

• DPSGetLastNamelndex

• DPSLastNamelndex

• DPSLastObjectIndex

• DPSNewUserObject

References to system-specific issues have been added throughout
the manual, including the following:

• Context creation routines.

A CHANGES SINCE LAST RELEASE 89

• Behavior of default and backstop error and text handlers.

• Automatic encoding translation (for example, binary object
sequence to tokens).

• Additional error codes.

• Exception handling and error recovery.

• Programming examples and code fragments.

A section on programming tips has been added.

The index has been enhanced.

90 Client Library Reference Manual

B EXAMPLE ERROR HANDLER

An error handler must deal with all errors defined in dpsclient.h
as well as any additional errOrs defined in system-specific header
files.

This appendix contains an example of an error handler for the X
Window System extension of the DISPLAY POSTSCRIPT system.

B.1 ERROR HANDLER IMPLEMENTATION

An example implementation of an error handler,
DPSDefaultErrorProc, follows. The code is followed by ex
planatory text.

#include "dpsclient.h"

void
DPSDefaultErrorProc(ctxt, errorCode, arg1, arg2)

DPSContext ctxt;
DPSErrorCode errorCode;
long unsigned int arg1, arg2; {

DPSTextProc textProc = DPSGetCurrentTextBackstopO;

char *prefix = "%%[Error: ";
char *suffix ="]%%\n";

char *infix = "; OffendingCommand: ";
char *nameinfix = "User name too long; Name: ";
char *contextinfix = "Invalid context: ";
char *taginfix = "Unexpected wrap result tag: ";
char *typeinfix = "Unexpected wrap result type; tag: ";

switch (errorCode) {
case dps_err-ps: {
. char *buf = (char *)arg1;
DPSBinObj ary = (DPSBinObj) (buf+DPS_HEADER_SIZE);
DPSBinObj elements;
char *error, *errorName;
integer errorCount, errorNameCount;
boolean resyncFlg;

Assert((ary->attributedType & Ox7f) == DPS_ARRAY);
Assert(ary->Iength == 4);

elements = (DPSBinObj)(((char *) ary) + ary->val.arrayVal);

B.1 ERROR HANDLER IMPLEMENTATION 91

errorName = (char *)(((char *) ary) + elements[1].vaLnameVal);
errorNameCount = elements[1].Iength;

error = (char *)(((char *) ary) + elements[2].vaLnameVal);
errorCount = elements[2].length;

resyncFlg = elements[3].vaLbooleanVal;

if (textProc != NIL) {
(*textProc)(ctxt, prefix, strlen(prefix));
(*textProc)(ctxt, errorName, errorNameCount);
(*textProc)(ctxt, infix, strlen(infix));
(*textProc)(ctxt, error, errorCount);
(*textProc)(ctxt, suffix, strlen (suffix));
}

if (resyncFlg && (ctxt != dummyCtx)) {
RAISE(dps_errJ)s, ctxt);
CantHappenO;
}

break;
}

case dps_err_nameTooLong:
if (textProc != NIL) {

char *buf = (char *)arg1;
(*textProc)(ctxt, prefix, strlen(prefix));
(*textProc)(ctxt, nameinfix, strlen(nameinfix));
(*textProc)(ctxt, buf, arg2);
(*textProc)(ctxt, suffix, strlen(suffix));
}

break;
case dps_err_invalidContext:

if (textProc != NIL) {
char m[1 00];
(void) sprintf(m, "%s%s%d%s", prefix, contextinfix, arg1, suffix);
(*textProc)(ctxt, m, strlen(m));
}

break;
case dps_err_resultTagCheck:
case dps_err_resultTypeCheck:

if (textProc != NIL) {
char m[1 00];
unsigned char tag = *((unsigned char *) arg1 + 1);
(void) sprintf(m, "%s%s%d%s", prefix, typeinfix, tag, suffix);
(*textProc)(ctxt, m, strlen(m));
}

break;
case dps_ercinvalidAccess:

if (textProc != NIL)
{
char m[1 00];

92 Client Library Reference Manual

(void) sprintf (m, U%slnvalid context access.%s", prefix, suffix);
(*textProc) (ctxt, m, strlen (m));
}
break;

case dps_err_encodingCheck:
if (textProc != NIL)

{
char m[1 00];
(void) sprintf (m, U%slnvalid name/program encoding: %d/%d.%s",

prefix, (int) arg1, (int) arg2, suffix);
(*textProc) (ctxt, m, strlen (m));
}
break;

case dps_err_closedDisplay:
if (textProc != NIL)

{
char m[1 00];
(void) sprintf (m, U%sBroken display connection %d.%S",

prefix, (int) arg 1, suffix);
(*textProc) (ctxt, m, strlen (m));
}
break;

case dps_err_deadContext:
if (textProc != NIL)

{
char m[1 00];
(void) sprintf (m, "%sDead context OxO%X.%S", prefix,

(int) arg1, suffix);
(*textProc) (ctxt, m, strlen (m));
}
break;

default:;
}

} /* DPSDefaultErrorProc */

B.2 DESCRIPTION OF THE ERROR HANDLER

DPSDefaultErrorProc handles errors that arise when a wrap or
Client Library procedure is called for the context. The error code
indicates what error occurred. Interpretation of the 'arg l' and
'arg2' values is based on the error code.

The error handler initializes itself by getting the current backstop
text handler and assigning string constants that will be used to
formulate and report a text message. The section of the program

B.2 DESCRIPTION OF THE ERROR HANDLER 93

that deals with the various error codes begins with the 'switch'
statement. Each error code can be handled differently.

If a 'textProc' was specified, the error handler calls the text
handler to formulate an error message, passing it the name of the
error, the object that caused the error, and the string constants
used to format a standard error message. For example, a
typecheck error reported by the cvn operator would be reported
as a 'dps_errJ)s' error code and printed as follows:

%%[Error: typecheck; OffendingCommand: cvn]%%

The following error codes are common to all Client Library im
plementations:

• 'dps_err_ps' represents all POSTSCRIPT language errors
reported by the interpreter; that is, the errors listed under
each operator in the POSTSCRIPT Language Reference
Manual and POSTSCRIPT Language Extensions for the
DISPLAY POSTSCRIPT System. See Section B.3 for more in
formation about this error code.

• 'dps_err_nameTooLong' arises if a binary object sequence
or encoded token has a name whose length exceeds 128
characters. 'arg1' is the POSTSCRIPT user name; 'arg2' is
its length.

• 'dps_err_invalidContext' arises if a Client Library routine
was called with an invalid context. This can happen if the
client is unaware that the execution context in the inter
preter has terminated. 'arg1' is a context identifier; 'arg2'
is unused.

• 'dps_err_resultTagCheck' occurs when an invalid tag is
received for a result value. There is one object in the se
quence. 'arg1' is a pointer to the binary object sequence;
'arg2' is the length of the binary object sequence.

• 'dps_err_resultTypeCheck' occurs when the value returned
is of a type incompatible with the output parameter (for
example, a string returned to an integer output parameter).
'arg1' is a pointer to the binary object (the result with the
wrong type); 'arg2' is unused.

The remainder of the error codes are specific to the X Window
System:

94 Client Library Reference Manual

• 'dps_err_invalidAccess' indicates that a shared context is
being used improperly. For example, result values were
erroneously sent to a sharing client other than the creator of
the context. 'arg1' and 'arg2' are unused.

• 'dps_err_encodingCheck' indicates that an undefined en
coding value has been passed to DPSChangeEncoding or
that the application is trying to change the name encoding
of a shared context. ' arg l' is the new name encoding;
'arg2' is the new program encoding.

• 'dps_err_closedDisplay' indicates that the connection to
the server has been lost. 'arg 1 ' is the index number of the
display; 'arg2' is unused.

• 'dps_err_deadContext' indicates that a context has ter
minated in the interpreter, but the resources assigned to the
context have not been freed. 'arg1' is the 'DPSContext'
handle; 'arg2' is unused.

B.3 HANDLING POSTSCRIPT LANGUAGE ERRORS

The following discussion applies only to the 'dps_errJ)s' error
code. This error code represents all possible POSTSCRIPT
operator errors. Because the interpreter provides a binary object
sequence containing detailed information about the error, more
options are available to the error handler than for other client
errors.

'arg 1 ' points to a binary object sequence that describes the error.
The binary object sequence is a four-element array consisting of
the name 'Error', the name that identifies the specific error, the
object that was executed when the error occurred, and a boolean
indicating whether the context expects to be resynchronized. For
further details of the format of the binary object sequence, see
POSTSCRIPT Language Extensions for the DISPLAY POSTSCRIPT
System.

The type and length of the array are checked with assertions. The
body of the array is pointed to by the 'elements' variable. Each
element of the array is derived and placed in a variable.

DPSDefaultErrorProc raises an exception only if the context ex
ecuted resyncstart to install resynchandleerror. The

B.3 HANDLING POSTSCRIPT LANGUAGE ERRORS 95

'resyncFlag' variable contains the value of the fourth element of
the binary object sequence array, the boolean that indicates
whether resynchronization is needed. 'resyncFlag' will be false
if the handleerror operator handled the error; it will be true if
resynchandleerror handled the error.

If 'resyncFlag' is true and the context handling the error is a
context created by the application, the error handler raises the
exception by calling RAISE. This call never returns. See Appen
dix C for a discussion of how RAISE works.

96 Client Library Reference Manual

C EXCEPTION HANDLING

This appendix describes a general-purpose exception-handling
facility. It provides help for a narrowly defined problem area -
handling POSTSCRIPT language errors that arise from the con
ditions listed on page 26. Most application programmers need
not be concerned with exception handling. These facilities can be
used in conjunction with POSTSCRIPT language code and a
sophisticated error handler such as DPSDefaultErrorProc to
provide a certain amount of error recovery capability. Consult
the system-specific documentation for alternative means of error
recovery.

An exception is an unexpected condition such as a POSTSCRIPT

language error that prevents a procedure from running to normal
completion. The procedure could simply return, but data struc
tures might be left in an inconsistent state and returned values
might be incorrect. Instead of returning, the procedure can raise
the exception, passing a code that indicates what has happened.
The exception is intercepted by some caller of the procedure that
raised the exception (any number of procedure calls deep); ex
ecution then resumes at the point of interception. As a result, the
procedure that raised the exception is terminated, as are any in
tervening procedures between it and the procedure that inter
cepted the exception, an action which is called "unwinding the
call stack. ' ,

The Client Library provides a general-purpose exception
handling mechanism in dpsexcept.h. This header file provides
facilities for placing exception handlers in application sub
routines to respond cleanly to exceptional conditions.

Note: Application programs may need to contain the following
statement:

#include "dpsexcept.h"

As an exception propagates up the call stack, each procedure en
countered can deal with the exception in one of three ways:

C EXCEPTION HANDLING 97

• It ignores the exception, in which case the exception con
tinues on to the caller of the procedure.

• It intercepts the exception and handles it, in which case all
procedure calls below the handler are unwound and dis
carded.

• It intercepts, handles, and then reraises the exception, al
lowing handlers higher in the stack to notice and react to
the exception.

The body of a procedure that intercepts exceptions is written as
follows:

DURING
statement1 ;
statement2;

HANDLER
statement3
statement4;

END_HANDLER

The statements between 'HANDLER' and 'END_HANDLER'
comprise the exception handler for exceptions occurring between
'DURING' and 'HANDLER'. The procedure body works as fol
lows:

• Normally, the statements between 'DURING' and
'HANDLER' are executed.

• If no exception occurs, the statements between 'HANDLER'
and 'END_HANDLER' are bypassed; execution resumes at
the statement after 'END_HANDLER'.

• If an exception is raised while executing the statements be
tween 'DURING' and 'HANDLER' (including any proce
dure called from those statements), execution of those
statements is aborted and control passes to the statements
between 'HANDLER' and 'END_HANDLER'.

In terms of C syntax, you must treat these macros as if they were
C code brackets, as follows:

98 Client Library Reference Manual

Macro

'DURING'

'HANDLER'

'END_HANDLER'

C Equivalent

{{

}{

}}

In general, exception-handling macros should either entirely
enclose a code block (the preferred method - see Example 1
below) or should be entirely within the block (see Example 2).

DURING
while (/* Example 1 */) {

}
HANDLER

END_HANDLER

while (/* Example 2 */) {
DURING

HANDLER

When a procedure detects an exceptional condition, it can raise
an exception by calling RAISE. RAISE takes two arguments. The
first is an error code (for example, one of the values of
'DPSErrorCode'). The second is a pointer, 'char *', which may
point to any kind of data structure, such as a string of ASCII text
or a binary object sequence.

The exception handler has two local variables, 'Exception.Code'
and 'Exception.Message', which are the values passed to the call
to RAISE. These variables have valid contents only between
'HANDLER' and 'END_HANDLER'.

If the exception handler executes 'END_HANDLER' or retums,
propagation of the exception ceases. However, if the exception
handler calls RERAISE, the exception - along with

C EXCEPTION HANDLING 99

'Exception.Code' and 'Exception.Message' - is propagated to
the next outer dynamically enclosing occurrence of 'DURING ...
HANDLER'.

A procedure may choose not to handle an exception, in which
case one of its callers must handle it. There are two common
reasons for wanting to handle exceptions:

• To deallocate dynamically allocated storage and clean up
any other local state, then allow the exception to propagate
further. In this case, the handler should perform its cleanup,
then call RERAISE.

• To recover from certain exceptions that might occur, then
continue normal execution. In this case, the handler should
compare 'Exception. Code' against the set of exceptions it
can handle. If it can handle the exception, it should per
form the recovery and execute the statement that follows
'END_HANDLER'; if not, it should call RERAISE to
propagate the exception to a higher-level handler.

Warning: It is illegal to execute a statement between 'DURING'
and 'HANDLER' that would transfer control outside of those
statements. In particular, 'return' is illegal: an unspecified error
will occur. This restriction does not apply to the statements be
tween 'HANDLER' and 'END_HANDLER'. To return from the
exception handler, call 'E_RETURN_VOIDO'; to perform
'return(x)', call 'E_RETURN(x)'.

C.1 RECOVERING FROM POSTSCRIPT LANGUAGE ERRORS

The example DPSDefaultErrorProc procedure can be used with
the POSTSCRIPT operator resyncstart to recover from
POSTSCRIPT language errors. If you use this strategy, an excep
tion can be raised by any of the Client Library procedures that
write code or data to the context: any wrap, any single-operator
procedure, DPSWritePostScript, and so on. The strategy is as
follows:

1 00 Client Library Reference Manual

• Send the operator resyncstart to the context immediately
after it is created. resyncstart is a simple read-evaluate-

print loop enclosed in a stopped clause which, on error,
executes resynchandleerror. resynchandleerror reports
POSTSCRIPT errors back to the client in the form of a binary
object sequence of a single object: an array of four ele
ments as described in POSTSCRIPT Language Extensions for
the DISPLAY POSTSCRIPT System. The fourth element of the
binary object sequence, a boolean, is set to true to indicate
that resynchandleerror is executing. The stopped clause
itself executes within an outer loop.

• When a POSTSCRIPT language error is detected,
resynchandleerror writes the binary object sequence
describing the error, flushes the output stream %stdout,
then reads and discards any data on the input stream
%stdin until EOF (an end-of-file marker) is received. This
effectively clears out any pending code and data, and
makes the context do nothing until the client handles the
error.

• The binary object sequence sent by resynchandleerror is
eventually received by the client and passed to the
context's error handler. The error handler formulates a text
message from the binary object sequence and displays it,
perhaps by calling the backstop text handler. It then in
spects the binary object sequence and notices that the
fourth element of the array, a boolean, is true. This means
that resynchandleerror is executing and is waiting for the
client to recover from the error. At this point, the error
handler may raise an exception by calling RAISE with
'dps_errJ)s' and the 'DPSContext' pointer, in order to al
low some exception handler to do specific error recovery.

• The 'dps_errJ)s' exception is caught by one of the hand
lers in the application program. This causes the C stack to
be unwound, and the handler body to be executed. To
handle the exception, the application can reset the context
that reported the error, discarding any waiting code.

• The handler body calls DPSResetContext, which resets the
context after an error occurs. This procedure guarantees
that any buffered I/O is discarded and that the context is
ready to read and execute more input. Specifically,
DPSResetContext causes EOF to be put on the context's
input stream.

• We have come full circle now. EOF is received by
resynchandleerror, which causes it to terminate. The

C.1 RECOVERING FROM POSTSCRIPT LANGUAGE ERRORS 101

outer loop of resyncstart then reopens the context's input
stream %stdin, which clears the end-of-file indication and
resumes execution at the top of the loop. The context is
now ready to read new code.

Although the above strategy works well enough for some appli
cations, it leaves the context and the contents of its private VM
in an unknown state. For example, the dictionary and operand
stacks may be cluttered, or free-running forked contexts may
have been created, or the contents of userdict may have been
changed. Clearing the state of such a context may be very com
plicated.

Note: You may not get POSTSCRIPT language error exceptions
when you expect them. Because of various delays related to
buffering and scheduling, a POSTSCRIPT language error may be
reported long after the C procedure responsible for the error has
returned. This makes it difficult to write an exception handler
for a given section of code. If this code can cause a POSTSCRIPT
language error and will therefore cause DPSDefaultErrorProc to
raise an exception, you can ensure that you get the exception in a
timely manner by using synchronization, which is discussed in
Section 6.4.

Warning: In multi-context applications that require error
recovery, the code to recover from POSTSCRIPT errors can get
quite complicated. An exception reporting a POSTSCRIPT error
caused by one context can be raised by any call on the Client
Library, even one on behalf of some other context, including
calls made from wraps. Although DPSDefaultErrorProc does
pass the context that caused the error as an argument to RAISE,
it is difficult in general to deal properly with an exception from
one context that arises while the application is working with
another.

When the standard handleerror procedure is called to report an
error, no recovery is possible except to display an error message
and destroy the context.

1 02 Client Library Reference Manual

C.2 EXAMPLE EXCEPTION HANDLER

#include <dpsexcept.h>

A typical application might have the following main loop. As
sume that a context has already been created with
DPSDefaultErrorProc as its error procedure, and that
resyncstart has been executed by the context.

while (/* the user hasn't quit *1) {
/* get an input event */
event = GetEventFromQueueO;
/* react to event * /
DURING

switch (event) {
case EVENT_A:

UserWrapA(context, ...);
break;

case EVENT_B:
UserWrapB(context, ...);
break;

case EVENT _C:
Proc ThatCalisSeveralWraps(context);
break;

/* ... */
default:;

}
HANDLER

/* the context's error proc has already posted an
error for this exception, so just reset.
Make sure the context we're using is the
one that caused the error! */

if (Exception.Code == dps_err-ps)
DPSResetContext((DPSContext)Exception.Message);

END_HANDLER

Most of the calls in the 'switch' statement are either direct calls
to wrapped procedures or indirect calls (that is, calls to
procedures that make direct calls to wrapped procedures or to the
Client Library). All of the procedure calls between 'DURING'
and 'HANDLER' can potentially raise an exception. The code be
tween 'HANDLER' and 'END_HANDLER' is executed only if an
exception is raised by the code between 'DURING' and
'HANDLER'. Otherwise, the handler code is skipped.

C.2 EXAMPLE EXCEPTION HANDLER 103

Suppose ProcThatCallsSeveralWraps is defined as follows:

void Proc ThatCallsSeveralWraps(context)
DPSContext context;
{

char *s = ProcThatAllocsAString(...);
int n;

DURING
UserWrapC1 (context, ...);
UserWrapC2(context, &n); /* user wrap returns a value *1
DPSPrintf(context, "I%s %d def\n", s, n); /* client lib proc *1

HANDLER
if ((DPSContext)Exception.Message == context)

{
/* clean up the allocated string *1
free(s);
s = NULL;
}

/* let the caller handle resetting the context *1
RERAISE;

END_HANDLER

/* clean up, if we haven't already *1
if (s 1= NULL) free(s);

This procedure unconditionally allocates storage, then calls
procedures that may raise an exception. If there were no handler
here and the exception simply propagated to the main loop, the
storage allocated for the string would never be reclaimed. The
solution is to define a handler that frees the storage and then calls
RERAISE to allow another handler to do the final processing of
the exception.

1 04 Client Library Reference Manual

%stdin 35, 102

= 59
== 23,59

abnormal termination 20
advanced facilities 28
ASCII conversion 29
ASCII encoding 13, 30, 31
ASCII text 16

backstop error handler 51, 52
backstop handler 27
backstop rext handler 52
basic facilities 10
binary object sequence 30, 72, 76, 79
binary object sequence, extended 78,80
binary object sequence, writing 84
binary-encoded tokens 30
boolean 35
buffer 32
buffer, flushing 50
buffering code and data 31
byte order 30

C types 56
call stack, unwinding 97
call-back procedures 21
chaining contexts 28,43,46,47
changing the text handler 52
child context 28, 46
Client Library, introduction to 4
code, sending 14
code, writing 86
communicating with a context 14
communication channel 36
context 6
context creation 11
context data structures 10
context handle 10
context record 45

contexts
chaining 28, 43, 46, 47
child 28,46
communicating with 14
current 14,51,52,56
destination for code 11
destroying 20, 48
forked 33
invalid 25
mUltiple 56
output from 21
parent 28, 46
resetting 51
sending to 14
setting 14, 52
synchronizing 21,32,53, 102
unchaining 53
writing to 14,53

conversion 18,31
coordinate systems 37
coordinates 57
current context 14,51,52,56
currentfile 35
currentgray 57
curveto 57
cvn 94

data, sending 14
debugging 6,29,35,43,57
default error procedure 48
default text procedure 13
defineusername 75,86
destination for PostScript language code 11
destroying a context 48
destroying a space 48
destroying contexts 20
device independence 37
Display PostScript system 4
displays, multiple 29
DPS_DEF_TOKENTYPE 76
dps_err_pserror 25,48,49,84,101

105

dps_strings 31
DPSAwaitRetumValues 73,74,84
DPSBinObjGeneric 79
DPSBinObjReal 79
DPSBinObjRec 80
DPSBinObjSeqRec 80
DPSBinObjSeqWrite 72, 73, 75, 84
DPSChainContext 28, 48
DPSChangeEncoding 17, 95
dpsclient.h 7,45,47, 79, 91
DPSContext 45
DPSContextFromContextID 33, 34
DPSContextRec 33,47
DPSCreateTextContext 13,31
DPScurrentgray 57
DPScurrentgstate 59
DPSDefaultErrorProc 13,22,43,48,91,95, 102
DPSDefaultTextBackstop 13,22,43
DPSDefinedType 80
DPSdefineuserobject 58
DPSDestroyContext 20, 48
DPSDestroySpace 20, 48, 49
DPSequals 59
DPSequalsequals 59
DPSErrorCode 47
DPSErrorProc 12,48,50
dpsexcept.h 97
DPSExtendedBinObjSeqRec 81
DPSFlushContext 31,35,51
dpsfriends.h 7,45,83
DPSgetchararray 58
DPSGetCurrentContext 51
DPSGetCurrentErrorBackstop 27
DPSGetCurrentErrorBackStop 51
DPSGetCurrentTextBackstop 13,27,51
DPSgetfloatarray 58
DPSGetLastNameIndex 89
DPSinfill 58
DPSinstroke 58
DPSInterruptContext 19,51
DPSinueofIll 58
DPSinufill 58
DPSinustroke 58
DPSLastNameIndex 89
DPSLastObjectIndex 89
DPSMapNames 75, 85

. DPSNameEncoding 30,81
DPSNameFromIndex 76, 86

106 INDEX

DPSNewUserObject 89
dpsops.h 7,55,60
DPSPrintf 16,17,35,51
DPSProcs 81
DPSProcsRec 82
DPSProgramEncoding 30, 82
DPSResetContext 52, 101
DPSResultsRec 73, 83
DPSselectfont 58
DPSsendchararray 57, 58
DPSsendfloat 57
DPSsendfloatarray 58
DPSsendint 58
DPSSetContext 14, 52, 55, 56, 60
DPSsetdash 58
DPSSetErrorBackstop 27,52
DPSSetErrorProc 22, 52
DPSsetfont 59
DPSsetgray 58
DPSsetgstate 59
DPSSetResultTable 73, 84, 86
DPSSetTextBackstop 27, 52
DPSSetTextProc 22, 52
DPSSpace 83
DPSSpaceFromContext 53
DPSSpaceRec 19,83
DPSTextProc 12, 53
DPSuappend 58
DPSueofill 58
DPSufill 58
DPSUnchainContext 28, 53
DPSUpdateNameMap 75, 86
DPSustroke 58
DPSustrokepath 58
DPSversion 59
DPSWaitContext 17,31,32,33,35,53
DPSWriteData 17,18,53
DPSWritePostScript 17, 18,54
DPSWriteStringChars 73, 84, 86
DPSWriteTypedObjectArray 72, 73, 84, 87
DPSxshow 57,58
DPSxyshow 58
DPSyshow 58
drawable object 12
DURING 98

E_RETURN(x) 100
E_RETURN_ VOID 100

encoding 17, 30
encoding PostScript language 30
encoding, name 81
encoding, program 82
END_HANDLER 98
EOF (end of file) 36
errorcodes 25,47,49
error handler 13,21,22,25,48,49,52
error handler, backstop 27,51,52
error handler, X example 91
error messages 23, 48
error procedure 84
error recovery 26, 100
errors commonly made by programmers 35
example code

context creation 11
error handler 91
exception handler 103
generated by wrap 74
HANDLER. .. END_HANDLER 98
sample application 39
text handler 23
wrap 43
wrap with return values 74

examples
buffer with partial token 17
calling a wrap 9
converting the encoding 17
DPSPrintf 16
DPSWriteData and DPSWritePostScript 18
draw into buffer 32
drawing a black box 9
mouse-click event 14
returning font info 15
sending fonnatted text 16
single-operator procedure 15
synchronizing 32

exception handler 97
exception, raising 97, 102
Exception.Code 99, 100
Exception.Message 99
execution context 6, 10
extended binary object sequence 78, 80

facilities, basic 10
file, as system-specific object 11
files 7

dpsclient.h 7,45,47,79,91

dpsexcept.h 97
dpsfriends.h 7, 45, 83
dpsops.h 7,55,60
psops.h 8,52,55,60
stdout 44
system-specific 11

floating-point fonnat 30
flow of control 22
flushing a buffer 31, 33, 50
font dictionary 59
fork 33,34,36
forked context 33
fonnat string 16

GetBuffer 17
graphics state 59

handleerror 25, 96, 102
HANDLER 98
handler, backstop 27
handler, error 49
handler, text 23,52
handlers 21
handling errors 21, 25
handling exceptions 97
header files 7
help 35,57

imaging model 37
initialization 7, 12, 14,22
interface 7
interrupt 19,51
interrupts 19, 51
invalid context 25
invalid context error 49

Iineto 57
linking the application 39

moveto 57
multiple calls to DPSPrintf 16
multiple contexts 56
multiple displays 29
multiple windows 29
MyWrap 17

name encoding 30, 31, 81
name mapping 31,75,84,86

107

name too long error 49,84
Notes 4,21,23,28,45,56,57,60,79,81,84,97,102

See also Warnings
numeric literals 56
numeric representation 30

operand stack 56
operator arguments 56
operators 55
output from a wrapped procedure 73
output from context 21

parent context 28,46
pixmap 12, 32
pointer to context record 10
PostScript

destination for code 11
encoding and translating 30
execution context 6
interpreter errors 47
language errors 25,49,84,97
operand stack 56
operator arguments 56
operators 55

previewer application 26
print 23
printers 30
printf 16, 51
printobject 47, 73
private VM 12
ProcThatCallsSeveralWraps 103
program encoding 30, 82
programming tips 35, 57
PSitransform 44
psops.h 8, 52, 55, 60
PSWDrawBox 44
pswrap translator 8

RAISE 96,99, 101
raising an exception 97
rand 57
rectfill 9
removing context from a chain 53
RERAISE 99
resetting a context 51
resolution independence 37
resource limitations 26
result table 73,82, 84

108 INDEX

result table, setting 86
result values 32
results 15, 33, 73
resynchandleerror 51,95,96, 101
resyncstart 100
return values 15, 73
returning from exception handler 100
rules of thumb 57
runtime support for wrapped procedures 72

sample application 39
sample wrap 43
sending code 72
sending data to a context 18, 53
sending to a context 14,51
server connection, lost 27
setgray 37
setlinewidth 38
setrgbcolor 38
setting the current context 14,52,56
setting the result table 86
shared VM 19
single-operator procedure, example of 15
single-operator procedures 55
size of 73
space 12, 19
space record 19,83
space, destroying 48
standard error codes 25, 47
stdout 44
stop 19
stopped 100
string, writing 86
synchronization 21,32,53, 102
synchronization of name maps 86
system-specific context creation 11
system-specific documentation 2
system-specific interface 11

tag 73
tag check error 49,84
temporary text handler 23
termination 7, 20
termination tag 74, 84
text 13, 16,29
text handler 13,22,23,52
text handler, backstop 27
tips 57

tips for appplication programmers 35
token 76
tokens, binary-encoded 30
translation 30, 31
troubleshooting 35
type check error 49, 84
typecheck 94
types 56

unchaining a context 53
unwinding the call stack 97
user name indices 30, 31, 83
user names 75,81,83,85
user objects 59
user space 37
userdict 102

VM, private 12
VM, shared 19
vrnreclairn 57

waiting 33
Warnings 16,17,45,100,102

See also Notes
whitespace 16
window, as system-specific object 11
windows, multiple 29
word-processing program 26
wrap 8

See also wrapped procedure
wrapped procedure

advantages of 8
defined 14
example code 43
output from 73
runtime support for 72
with return values 74

writestring 23
writing a binary object sequence 84
writing a string 86
writing code 86
writing data to a context 53
writing to a context 14,51

X Window System
context creation 11, 12, 13
DPSCreateTextContext 13
drawable object 12

error handler 91
example code 11, 12, 23
pixmap 12
XDPSCreateSimpleContext 12,43

XII example application 39
XDPSCreateSimpleContext 12, 13,43

109

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040
before placing your electronic, telephone, or direct mail order.

Electronic Orders

To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) .using
a 1200- or 2400-baud modem. If you need assistance using the Electronic Store,
call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

In tern a tional

Internal!

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local DIGITAL subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02j2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local DIGITAL subsidiary or
approved distributor

SOC Order Processing - WMO jE15
or
Software Distribution Center
Digital Equipment Corporation
Westminster, Massachusetts 01473

! For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

