
ULTRIX

Guide to Kerberos

Order Number: AA-PBKVA-TE

Guide to Kerberos

Order Number: AA-PBKVA-TE

June 1990

Product Version:

ULTRIX

UL TRIX Version 4.0 or higher

This guide describes Kerberos, its setup, and the network programming connections of the
kerberos daemon to a Kerberos-authenticated application. Kerberos enhances security by
authenticating applications to each other across machine boundaries in a distributed network.
ULTRIX Kerberos currently supports the authentication of commonly networked applications,
such as named and audi td.

digital equipment corporation
maynard, massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013.

© Digital Equipment Corporation 1989
All rights reserved.

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

IJDmaamO
CDA
DDIF
DDIS
DEC
DECnet
DEC station

DECUS
DECwindows
DTIF
MASSBUS
MicroVAX
Q-bus
ULTRIX
UL TRIX Mail Connection

UL TRIX Worksystem Software
UNIBUS
VAX
VAXstation
VMS
VMS/ULTRIX Connection
VT
XUI

UNIX is a registered trademark of AT&T in the USA and other countries.

Contents

About This Manual

Audience vii

Organization vii

Conventions

Related Documentation

New and Changed Information

1 The Need for Kerberos Authentication

1.1

1.2

Kerberos and the Security of a Local Area Network

Kerberos Security Features and Data Encryption

1.2.1 Encryption
1.2.2 Authentication of a Principal
1.2.3 Reauthentication of a Kerberos Principal .. .
1.2.4 Data Integrity
1.2.5 Password Security
1.2.6 Protection Against the Replay of Authentication Data

2 Authentication

2.1

2.2

2.3

Authentication Requirements

Producing the Session Key

The Kerberos Ticket

Vll1

ix

ix

1-1

1-2

1-2
1-3
1-3
1-4
1-4
1-4

2-1

2-1

2-2

2.4 The Authenticator ... 2-2

2.5 Authentication of Kerberos Principals with the Ticket and Authenticator 2-3

2.6 Mutual Authentication 2-4

3 The Kerberos Daemon and Utilities

3.1

3.2

3.3

The kerberos Daemon in a Network

The Database of Kerberos Principals

3.2.1 Kerberos Database Utilities

3.2.2

3.2.1.1 The kdb_init Utility .. .
3.2.1.2 The kdb_edit Utility
3.2.1.3 The kdb_util Utility .. .
3.2.1.4 The kprop, kpropd, and krb_push Utilities
3.2.1.5 The kdb_destroy Utility .. .

Other Kerberos Utilities

3.2.2.1
3.2.2.2

The kstash Utility
The kdestroy Utility .. .

Session Using Kerberos Database Utilities

4 Setting Up Kerberos

4.1

4.2

4.3

4.4

4.5

4.6

Planning a Kerberos Authenticated Distributed Environment

Preparing to Set Up a Kerberos Authenticated named Daemon

Setting Up the Kerberos Master Server .. .

Setting Up Kerberos Slave Servers .. .

Starting the Kerberos-Authenticated named Daemon

Changing the Master Key of the Kerberos Database

5 Creating an UPGRADE or ENHANCED Distributed Environment

5.1 Transition from BSD to UPGRADE Security Level

3-1

3-2

3-2

3-3
3-3
3-3
3-4
3-4

3-5

3-5
3-5

3-5

4-1

4-3

4-4

4-5

4-10

4-13

5-1

5.2 Preparing for the Transition to UPGRADE Level ... 5-2

5.3 Making the Transition to UPGRADE Level 5-3

5.4 Making the Transition to ENHANCED Level

6 Kerberos Programming Interface

6.1

6.2

Kerberos Libraries

Kerberos Programming Examples .. .

6.2.1 Organization of Example Files .. .
6.2.2 Low-Level Example Explanation .. .

ivContents

5-4

6-1

6-2

6-2
6-3

6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8
6.2.9
6.2.10
6.2.11
6.2.12
6.2.13
6.2.14
6.2.15

Glossary

Examples

High-Level Example Explanation .. .
The all.h File
The comm.c File
The low _level.c File .. .
The high_level.c File
The server.h File
The l_server.c File .. .
The h_server.c File .. .
The server.c File
The client.h File .. .
The l_client.c File
The h_client.c File .. .
The client.c File

6-16
6-23
6-23
6-27
6-30
6-32
6-33
6-35
6-36
6-45
6-46
6-50
6-53

3-1: Using Kerberos Database Utilities in a Session .. 3-6

6-1: The all.h Header File ... 6-23

6-2: The comm.c Routine .. 6-23

6-3: The low_level.c Routine ... 6-27

6-4: The high_level.c Routine .. 6-30

6-5: The server.h Routine .. 6-32

6-6: The l_server.c Routine ... 6-33

6-7: The h_server.c Routine

6-8: The server.c Routine

6-9: The client.h Routine

6-10: The l_client.c Routine

6-11: The h_client.c Routine

6-12: The client.c Routine

Figures

6-35

6-36

6-45

6-46

6-50

6-53

1-1: The Process of Data Encryption .. 1-2

1-2: Using a Key to Create a New Encryption Algorithm 1-3

3-1: Kerberos Database Transfer from Master to Slave .. 3-1

4-1 : Network of Distributed Kerberos Authentication .. 4-1

6-1: Server Initialization ... 6-4

Contents v

6-2: Client Low-Level Initialization

6-3: Low-Level Authentication

6--6

6-9

6-4: Client Authorization 6-12

6-5: Low-Level Access Control List (ACL) File Service 6-14

6-6: Client High-Level Initialization ... 6-17

6-7: High-Level Authentication .. 6-19

6-8: High-Level Access Control List (ACL) File Service 6-21

Tables

4-1: Processes in an Authenticated Environment 4-2

vi Contents

About This Manual

This guide provides mainly setup information about Kerberos, which enhances the
security of a distributed network by authenticating shared applications. It also
describes how to increase the security level in stages from BSD to UPGRADE to
ENHANCED mode. It also provides some general information about Kerberos and
the network programming connections of the kerberos daemon to a Kerberos
authenticated application.

Audience
This book is mainly for network administrators who are setting up a network with
Kerberos authentication. Other users can read Chapter 1 for basic information about
Kerberos.

Organization
This manual consists of six chapters, a glossary, and an index. The six chapters are:

Chapter 1, The Need for Kerberos Authentication

Discusses how Kerberos enhances security through mutual authentication
between client and server in a networked or distributed system service CDSS)
environment.

Chapter 2, Authentication

Discusses the ticket and authenticator in detail and how they implement
Kerberos security features.

Chapter 3, The Kerberos Daemon and Utilities

Discusses Kerberos masters and slaves, database and utilities, and includes an
example session using database utility commands.

Chapter 4, Setting Up Kerberos

Describes how to set up a Kerberos-authenticated named daemon on a
Kerberos master, slave servers, and clients.

Chapter 5, Creating an UPGRADE or ENHANCED Distributed Environment

Describes how to increase security level from the default BSD security
environment to an ENHANCED security environment.

Chapter 6, Kerberos Programming Interface

Describes the Kerberos programming interface to a network through both a
high-level and low-level client-server example. Twelve interrelated sections of
C code are included to facilitate this discussion.

Conventions
The following conventions are used in this guide:

%

user input

The default user prompt is your system name followed by a right
angle bracket. In this manual, a percent sign (%) is used to
represent this prompt.

A number sign is the default superuser prompt.

This bold typeface is used in interactive examples to indicate
typed user input.

system output This typeface is used in interactive examples to indicate system
output and also in code examples and other screen displays. In
text, this typeface is used to indicate the exact name of a
command, option, partition, pathname, directory, or file.

UPPERCASE
lowercase

rlogin

macro

filename

[]

{ I }

cat(l)

IRETURNI

viii About This Manual

The ULTRIX system differentiates between lowercase and
uppercase characters. Literal strings that appear in text,
examples, syntax descriptions, and function definitions must be
typed exactly as shown.

In syntax descriptions and function definitions, this typeface is
used to indicate terms that you must type exactly as shown.

In text, bold type is used to introduce new terms.

In examples, syntax descriptions, and function definitions, italics
are used to indicate variable values; and in text, to give references
to other documents.

In syntax descriptions and function definitions, brackets indicate
items that are optional.

In syntax descriptions and function definitions, braces enclose
lists from which one item must be chosen. Vertical bars are used
to separate items.

In syntax descriptions and function definitions, a horizontal
ellipsis indicates that the preceding item can be repeated one or
more times.

A vertical ellipsis indicates that a portion of an example that
would normally be present is not shown.

Cross-references to the ULTRIX Reference Pages include the
appropriate section number in parentheses. For example, a
reference to cat(l) indicates that you can find the material on the
cat command in Section 1 of the reference pages.

This symbol is used in examples to indicate that you must press
the named key on the keyboard.

ICTRUxl

special

This symbol is used in examples to indicate that you must hold
down the CTRL key while pressing the key x that follows the
slash. When you use this key combination, the system sometimes
echoes the resulting character, using a circumflex (") to represent
the CTRL key (for example, "C for CTRL/C). Sometimes the
sequence is not echoed.

This symbol is used in examples to indicate that you must press
the first named key and then press the second named key. In text,
this combination is indicated as ESC-X.

In text, each mention of a specific command, option, partition,
pathname, directory, or file is presented in this type.

Related Documentation
For more information on topics related to Kerberos and DSS, see the following
documents:

Guide to the BINDIHesiod Services

Describes how to set up the Berkeley Internet Name Domain (BIND) Service
and the Hesiod Name Server supported by BIND.

Security Guide for Users

Describes the security features available in ULTRIX, such as the login
procedure, passwords, and sharing and protection of files.

Introduction to Networking and Distributed System Services

Describes how to set up a network in a distributed environment using time
services.

Security Guide for Administrators

Describes security policy, implemented by assigning user privileges, performing
and reading audits, and initializing and configuring a secure system that
includes user authentication and file protection at the system level.

ULTRIX Reference Pages

The reference pages for the commands and files referred to in the manuals.

New and Changed Information
This is a new manual.

About This Manual ix

The Need for Kerberos Authentication 1

Kerberos is an authentication service that enhances the security of an open network.
It is a part of Project Athena, an ongoing research project at the Massachusetts
Institute of Technology, funded in part by Digital Equipment Corporation. Project
Athena is a software development project for facilitating the communication among
file servers and workstations in a distributed network environment. The version of
Kerberos supported by ULTRIX Version 4.0 is derived from MIT/Athena's Kerberos
Version 4, and will only interoperate with other implementations of that Kerberos
version.

1.1 Kerberos and the Security of a Local Area Network

The process of detennining the identity of an entity is called authentication.
Authentication proves that a given entity is genuine; it is required to prevent one
entity from masquerading as another entity.

The authentication of an application' 'X" to an application' 'Y" that both run on the
same machine, "A," is simple. Y need only ask A for the user ID of X. Since Y
trusts the integrity of the local machine, if the user ID of X is the user ID that Y
expects, then X must be X.

If Y were to use the same method to authenticate X when X runs on a different
machine, "B," then Y would be forced to trust machine B to provide a correct
answer. The security of this method breaks down as soon as anyone machine that Y
is willing to trust is subverted by a hostile user. In addition, it breaks as soon as any
machines that cannot be trusted by Yare allowed on the physical network to which A
and B are connected. Hostile users that have control over these untrusted machines
can force them to produce messages that look as though they come from machine B.

Kerberos software enables the authenticaton of an application to another without
placing security trust at several points in the network. X trusts Kerberos to give Y
only enough infonnation to authenticate itself as Y to X, and Y trusts Kerberos to
give X only enough infonnation to authenticate itself as X to Y. Y no longer needs
to trust machine B to authenticate X.

The UL TRIX version of Kerberos only provides for the authentication of applications
that communicate across a TCP/IP network with the socket interface. Although
ULTRIX Kerberos has the ability to authenticate users at log-in time, it is not
supported by the base system. Also, inter-realm authentication is not supported by
UL TRIX Kerberos. The realm in Kerberos is discussed in detail later, in Chapter 3.

UL TRIX Kerberos was used to authenticate certain networked applications that are
critical to network security - for example, named and audi td. Therefore, each
user in a distributed system services CDSS) network must still rely on the login
program on a given machine.

Kerberos refers to network applications as principals. An application that requests a
service from an application on another machine is a client principal.

The requested application is called a service principal.

1.2 Kerberos Security Features and Data Encryption
To enhance LAN security, Kerberos provides encryption algorithms and the
following features:

• Password security

• Authentication of a Kerberos principal

• Reauthentication of a Kerberos principal

• Protection against the unauthorized interception, modification, and re
transmission of data

• Protection against the replay of authentication data

1.2.1 Encryption
Encryption is a way of protecting sensitive data by changing it so that it looks very
different from the original data. An encryption algorithm encrypts data, as shown
graphically in Figure 1-1.

Figure 1-1: The Process of Data Encryption

original data ---. encryption
algorithm ----~ encrypted data

ZK-0170U-R

An encryption algorithm prevents a hostile user from reconstructing the unencrypted
text from patterns in the encrypted text. For example, after encryption the first eight
bytes (64 bits) of the ASCII phrase, "Now is the time for," might look like:

3£ a4 Oe 8a 98 4d 48 15

In this example, the internal ASCII representation of each character is expressed by
two hexadecimal digits.

The fourth and seventh ASCII characters of the original phrase are both spaces and
you might expect that they would be identical after encryption. However, the fourth
encrypted character is 8a and the seventh is 48. The value of a given bit in the
encrypted text depends on a large subset of bits in the unencrypted text, not on a bit
by-bit encryption mapping. For this reason, it is also possible for the nth bit of the
unencrypted text to be identical to the nth bit of the encrypted text.

A key is an input parameter to an encryption algorithm. It modifies the algorithm
and produces a new one, making it more difficult to decipher the original data. To
reconstruct the original data, a hostile user would need to know both the key and the
original algorithm to which it was applied.

The key that is input to the original encryption algorithm and the new encryption
algorithm are shown graphically in Figure 1-2.

1-2 The Need for Kerberos Authentication

Figure 1-2: Using a Key to Create a New Encryption Algorithm

unencrypted data - - --~

key----. original
encryption
algorithm

I
I
I

'Y

encrypted data

ZK-0171 U-R

Kerberos uses the DES encryption library to encrypt data and passwords. Encryption
is expressed by the following notation, which refers to data encrypted with the key of
principal X:

[data] key (X)

Decryption of data is accomplished by reencryption with the same session key.
Decryption is expressed by the following notation which refers to the decryption of
data that was originally encrypted with the key of principal X:

[[data] key (X)] key (X)

Kerberos uses encryption to protect sensitive data and to avoid sending unencrypted
or c1eartext passwords over the network. Every Kerberos principal is identified by a
unique encryption key that is known only by the kerberos daemon and the
principal. This key identifies a Kerberos principal and is often called the key of the
principal or the password of the principal.

1.2.2 Authentication of a Principal

A ticket is a packet of data given by the kerberos daemon to enable a Kerberos
principal to authenticate itself directly to another Kerberos principal. For example,
client application A authenticates itself to application B by sending it a ticket to
request a service from B. A ticket contains a lifespan that causes it to expire
eventually. After the ticket expires, application A cannot authenticate itself to B
without obtaining another ticket from the kerberos daemon. This protects against
the indefinite replay of a ticket stolen by a hostile user. For more detailed
information about tickets, refer to Chapter 2 of this guide.

1.2.3 Reauthentication of a Kerberos Principal

After a principal A authenticates itself to principal B by passing a ticket to it, both A
and B learn an encryption key called the session key, known only to them.

The Need for Kerberos Authentication 1-3

This session key is the key associated with the communication session between the
two principals, A and B.

The session key is known only by A and B, so it can be used to reauthenticate
principal A to principal B. For example, if A encrypts with the session key a data
item of value, x, and if principal B decrypts the data item and obtains the same value,
x, then B knows that A (and not a false application set up by a hostile user) must
have sent the data, and A is reauthenticated to B.

1.2.4 Data Integrity

Kerberos generates an encryption checksum to detect the modification of data sent
over the network. This checksum depends on the value of the unique session key,
which is known only by two principals. The checksum would be altered if either a
different session key were used, or if the data were changed by a hostile user.
Therefore, the checksum enables both the detection of data modified by a hostile
user, and the reauthentication of a principal to another principal. Refer to
des _crypt (3krb) for detailed information about the checksum operation.

1.2.5 Password Security

Before a principal requests a ticket to communicate with any principal, it must obtain
a ticket-granting ticket from Kerberos. The ticket -granting ticket grants permission
to obtain other tickets, and it enables a principal to authenticate itself to part of the
kerberos daemon called the ticket-granting service. There is a session key
between the ticket-granting service and principal A. Both the session key and the
ticket-granting ticket provide authentication between principal A and the ticket
granting service.

Whenever principal A needs a new ticket, it does not have to send its key or
password over the network where it might be stolen. It sends it back to the ticket
granting service with a request for a ticket to communicate with another application,
B, and includes in this message its ticket-granting ticket and some data encrypted in
the session key between the ticket-granting service and A. This prevents sensitive
data encrypted with the key of principal A from appearing in the network. It also
eliminates the need for principal A to access its password constantly. Both of these
features make it difficult for a hostile user to steal the key of principal A.

1.2.6 Protection Against the Replay of Authentication Data
A ticket can be reused for a long time, usually the eight hours of a typical
workstation session. A hostile user could steal a ticket and replay it to B and be
authenticated as a legitimate principal - for example, as A. However, after the
ticket-granting service gives principal A a ticket to authenticate to principal B,
principal A must create a nonreusable authenticator and send it with the ticket to
request a service from principal B.

Since the nonreusable authenticator can only be produced by an application that
knows the session key between A and B, and because it must be present to
authenticate A, the ticket-authenticator pair is invulnerable to replay by a hostile user.
For detailed information about protection against replay through the ticket
authenticator pair, refer to Chapter 2 of this guide.

1-4 The Need for Kerberos Authentication

Kerberos principals depend on network time synchronization for accurate lifespan and
timestamp data. Kerberos relies on the ntpd daemon that implements Network
Time Protocol (NTP) and the time d daemon that implements the Berkeley time
services. For more information, refer to ntpd (8) , timed (8) , and to Introduction
to Networking and Distributed System Services.

The Need for Kerberos Authentication 1-5

Authentication 2

2.1 Authentication Requirements
For an application "X" to authenticate itself to an application "Y," application X
uses the kerberos daemon's knowledge of two items:

• The secret shared with X: the key of the principal X, which is represented by
the notation, key (X)

• The secret shared with Y: the key of the principal Y, represented by key (Y) .
The kerberos daemon obtains the keys of X and Y from the Kerberos
database. See Chapters 1 and 3 for more information about this database.

This knowledge is used to produce a new secret: the session key between X and
Y, key (X-Y) .

By definition, this session key is known only by X and Y. Therefore, to authenticate
itself to Y, application X needs only to prove to Y that it knows the session key.
Similarly, to prove its identity to X, application Y must prove to X that it knows the
session key.

2.2 Producing the Session Key
The first authentication step for X is to request the kerberos daemon to produce
the session key, key (X-Y), and send it to X in such a way that it cannot be
discovered by monitoring the communication between X and the kerberos
daemon. The kerberos daemon must also provide an equally safe way for X to
pass the secret to Y. Only if the session key remains a secret can X authenticate
itself to Y, and Y to X, by proving that they know the session key.

To accomplish these goals, X first sends a message that includes its ticket-granting
ticket, to the kerberos daemon through a call to a Kerberos library routine,
krb mk req. Refer to krb mk req (3krb) for more information about
krb - mk - req. For more detail onhow the ticket-granting ticket (tgt) is used,
referto Figure 6-2.

To produce a secret, the kerberos daemon simply generates a new key - the
session key between X and Y: key (X-Y) .

To send this secret safely to X, the kerberos daemon includes the session key
between X and Y, key (X-Y), within the message it sends to X. To clearly
associate the new secret, key (X-Y), with Y, the name of Y is included in the
message as well. The entire message is encrypted with the key of X, key (X) .

Since only the kerberos daemon and X know the key of X, and since DES
encryption prevents anyone who does not know the key used to encrypt a block of
data from ever discovering the original data, then only X and the kerberos daemon
will be able to read the message sent to X. (See Chapter 1 for a briefdiscussion of
encryption.)

So far, this message sent to X is represented by the following notation:

[key (X-Y), Y]key(X)

which is the session key between X and Y, encrypted with the key of X.

2.3 The Kerberos Ticket
To provide a secure way of passing the secret to Y through X, the kerberos
daemon produces a Kerberos ticket. A Kerberos ticket is a piece of data which
includes the principal name of X, the address of the machine on which X is running,
a lifespan value for the ticket, a timestamp, and the key, key (X-Y) .

The ticket is encrypted in the key of the principal Y. The ticket to authenticate to Y,
ticket - Y, is represented as:

ticket-Y = [X, address, key(X-Y), lifespan, timestamp] key(Y)

Since the ticket is encrypted in the key, key (Y) , which is known by only the
kerberos daemon and Y, this ticket cannot be read by any entity other than the
kerberos daemon and Y. To associate just one Kerberos principal with the key,
key (X - Y) , the principal name of X is included in the ticket. This association will
be important when Y finally decrypts ticket-yo

The address of the machine on which X is running is included in the message to
prevent the ticket from being sent to Y from a machine other than that of X. The
lifespan and timestamp fields are included to allow the ticket to be used repeatedly
over a limited period of time. The ticket-Y is included in the message to X and
is therefore encrypted with key (X). This encryption step guarantees the
confidentiality of key (X-Y). SO, the message sent to X by the kerberos daemon
is represented with the notation:

message to X =

[key (X-Y), Y, [X, address, key(X-Y), lifespan, timestamp]key(Y)] key(X)

At this point, X must receive and read this message from the kerberos daemon. X
interprets the message with the help of a Kerberos library routine, krb _ mk _ req.
This routine understands the format of responses, has access to the secret key of X,
key (X), and can use the DES algorithm for decryption. The library call decrypts
the response. The decrypted message from the kerberos daemon is:

key(X-Y), Y, [X, address, key(X-Y), lifespan, timestamp]key(Y)

Since the message decrypted correctly, the sender of the message must know the key,
key (X). But, only the kerberos daemon and X know key (X) , so the sender of
the message must be the kerberos daemon. Because Kerberos is trusted to give X
correct information, key (X - Y) must be the session key to use with Y. So far, X
has learned the secret, and the confidentiality of the secret, key (X - Y) , has been
successfully protected.

2.4 The Authenticator
At this point, X must pass the secret that it wants to share with Y, key (X-Y), to Y
and then demonstrate to Y that it knows this secret. The first step is for X to send
the ticket, ticket-Y to Y. Next, to prove that it knows the secret, key (x-y), X
produces a piece of data called the authenticator. The authenticator includes the
principal name of X and a timestamp. It is encrypted with the session key between X

2-2 Authentication

and Y, key (X-Y). SO, the authenticator built by X, auth-X, is represented by the
expanded notation:

auth-X = [X, timestamp] key (X-Y)

The authenticator serves as proof of the knowledge of key (X - Y) , since, if the
authenticator is decrypted with key (X - Y) and the decrypted authenticator contains
both a valid name, X and logical time information (timestamp), then it must have
been encrypted with key (X - Y). Otherwise, the decrypted message would not have
been a well-formatted authenticator. So, if the authenticator is understandable, the
sender must have known key (X-Y) .

The authenticator also prevents the replay of tickets. That is, a hostile user might
steal a ticket and attempt to replay or use it before it expires. But, the lifespan of the
authenticator is short enough, at five minutes, to make the authenticator nonreusable.
Since the authenticator is associated with only one address, address, to use it, a
hostile user would have only five minutes to read the ticket-authenticator pair and
create a false name and address for his workstation. So, since an authenticator is
essentially nonreusable, and since the ticket to use a principal is useless without it,
the authenticator prevents the replay of tickets. Both the authenticator and ticket to
authenticate Y, ticket-Y, are sent through the Kerberos libraries to Y. This
message is represented by the notation:

message to Y = [auth-X, ticket-Y]

which expands to:

[[X, timestamp]key(X-Y),

[X, address, key (X-Y) , lifespan, timestamp]key(Y)]

The confidentiality of the secret is protected with this message as well, because
key (X - Y) is encrypted with key (Y) .

2.5 Authentication of Kerberos Principals with the Ticket and
Authenticator

Next, Y uses auth-X and ticket-Y to authenticate the identity of the sender of
the message it received. To do so, it must first decrypt ticket-Y, by calling a
Kerberos library routine that interprets authentication messages - krb_rd_req
and supply it with the key of Y and the message sent by X to Y. Refer to
krb _ mk _ req (3krb) for more information about krb _ rd _ req.

The decryption of ticket-Y yields:

X, address, key (X-Y) , lifespan, timestamp

After the Kerberos library routine decrypts the ticket, it examines the fields in the
ticket. If the address in the ticket, address, does not match the address of the sender
of the message, then the message was replayed by a hostile user and the
authentication fails. If the ticket is no longer valid according to lifespan and
timestamp, then the authentication attempt fails. Otherwise, since the fields in the
ticket are valid, the ticket must have decrypted correctly. This implies several things.
Since Y knows that only it and the kerberos daemon know key (Y), then the
ticket must have been produced by the kerberos daemon and, since the name of
the principal, X, associated with key (X-Y) is included in the ticket, key (X-Y)
must be the correct session key between X and Y.

Next, the Kerberos library routine decrypts auth-X with the key, key (X-Y), that it
read from the ticket.

Authentication 2-3

The decryption of auth-X yields:

X, timestamp

After the Kerberos library routine decrypts the authenticator, it examines the fields
within it. If the authenticator is still no longer valid according to the timestamp, then
the ticket and authenticator may be a replay to Y by a hostile user. If this is so, the
authentication attempt is rejected. If the principal name, X, within aut h - x, does not
match the principal name in ticket-Y, then the ticket and the authenticator do not
match and the authentication request is rejected. This could indicate that a hostile
user has sent a ticket from one authentication request with the authenticator of
another. Otherwise, since the fields in the authenticator are valid and match the fields
of the ticket, the authenticator must be the one originally sent with the ticket,
ticket-Y, and the authenticator must have decrypted correctly.

Since the authenticator was correctly decrypted with key (X - Y) , the sender of the
message must have known key (X-Y). But, Y knows that key (X-Y) can only be
known to a Kerberos principal if that principal can read a message encrypted in the
key of principal X. This is the message sent by the kerberos daemon to X (in
Section 2.3). So, that principal must have known key (X). But, the only principal
that knows key (X) is X itself, so the sender of the message must be X.

2.6 Mutual Authentication
Mutual authentication is accomplished by Y when it sends some data back to X
encrypted with the session key between X and Y, key (X - Y). This data proves to X
that the message sender knows key (X - Y). Since the only way the sender can know
key (X-Y) is to read it from ticket-Y, the sender must be able to read
ticket-Yo But, ticket-Y is encrypted in the key, key (Y), so the sender of the
message must know key (Y). Therefore, the sender of the message must be Y,
because only Y knows key (Y) .

2-4 Authentication

The Kerberos Daemon and Utilities 3

3.1 The Kerberos Daemon in a Network
The kerberos daemon resides on one master and on possibly several slave servers
in a local area network (LAN). There can be only one kerberos daemon per
machine and only one master per LAN.

The master kerberos daemon is associated with changes to the Kerberos database.
This database is updated on the Kerberos master machine and then transferred to the
Kerberos slave machines, as shown in Figure 3-3. The only difference between a
Kerberos master and a Kerberos slave is that the database on the master can be
modified; on a slave machine, the database is read-only.

Figure 3-1: Kerberos Database Transfer from Master to Slave

Master machine

Kerberos database
transfer

It;
;

;

Slave machine

, , , ,
Kerberos database

transfer , ,
'~

Slave machine

ZK-0163U-R

Kerberos slaves provide a backup function in the event of a system failure on the
master machine and increase the availability of Kerberos throughout the network for
better response time.

Network connections between the kerberos daemon and a Kerberos-authenticated
application are socket-based and implemented through the TCP/IP standard Internet
protocol suite. For more information about the Kerberos programming interface,
refer to Chapter 6 in this guide.

3.2 The Database of Kerberos Principals
The Kerberos database maps Kerberos principals to their corresponding keys. This
enables Kerberos to look up the key of a principal from its name.

The syntax for a Kerberos principal name is:

primaryname.instance@realm

Kerberos identifies a principal by primary name, instance, and a realm. The primary
name is the name of the application. For example, the ULTRIX version of BIND is
Kerberos-authenticated. The daemon that implements the BIND protocol is called
named. The primary K~rberos name for this named daemon is "named."

The instance names the machine where the application resides. For example, the
named that runs on machine JUPITER. dec. corn has an instance name of
jupi ter. Note that the instance name is in lowercase and the domain name has
been stripped.

Kerberos regards identical applications on different machines as different principals.

The realm is associated with all the principals in a single Kerberos database. It is the
name of a group of machines, such as those on a LAN. For example, the named
running on jupiter could be a member of the dec. corn realm at Digital
Equipment Corporation. The full Kerberos principal name for this network entity
would be: named. jupi ter@dec. corn.

The Kerberos database, in ndbrn format, resides in the directory
/var / dss/kerberos / dbase. It consists of three files, principal. pag,
principal. dir, and principal. ok. For more information about an ndbrn
formatted database, see ndbrn (3) .

Each Kerberos client has an entry in the Kerberos database and one client can
authenticate itself to another.

3.2.1 Kerberos Database Utilities
There are four Kerberos database utilities for producing the intial database, editing
existing principals, changing passwords, producing a readable ASCII format from the
ndbrn-formatted database (and vice versa), and for destroying the Kerberos database.
These four database utilities, each of which has a reference page, are:

• kdb_init

• kdb_edit

• kdb_util

• kdb_destroy

3-2 The Kerberos Daemon and Utilities

3.2.1.1 The kdb_init Utility - The kdb_init Kerberos database utility creates and
initializes the Kerberos database on the master. It creates the following database
files:

• /var/dss/kerberos/dbase/principal.dir

• /var/dss/kerberos/dbase/principal.pag

• /var/dss/kerberos/dbase/principal. ok (a semaphore file)

This utility also initializes the database by adding three database entries: the master
database principal, a Kerberos default principal, and the initial ticket-granting service
principal, krbtkt. For more information about the ticket-granting ticket, refer to
kdb_init (Skrb).

The master database principal is the entry to the database itself. You cannot use or
modify the database without the master database password. The krbtkt ticket
granting service provides tickets that enable an application "A" to authenticate itself
to "B."

To use kdb ini t, you must supply the realm name of the Kerberos database, or
you will be prompted for it. You will also be prompted for the master database key,
which is necessary for any database modifications.

For more information about this utility, refer to kdb_init (Skrb).

3.2.1.2 The kdb_edit Utility - The kdb _ edi t Kerberos database utility is used for editing
the Kerberos database. Use the kdb edit command to create or change principals
in the Kerberos database. When you invoke kdb_edit, the command prompts you
for the Kerberos master key and verifies that the key is the same as the one in the
database.

After the master key is verified, kdb _ edi t prompts you for the principal and
instance name that you want to modify. If kdb _ edi t does not find an entry, you
can create one. After kdb edit finds or creates an entry, you can set the
password, expiration date, and maximum ticket lifetime.

The kdb _ edi t command displays the default values for the expiration dates,
maximum ticket lifetimes, and attributes in brackets. You can select any default by
pressing the RETURN key. By displaying a message, the kdb_edit command
indicates whether you have successfully created or changed an entry.

There is no default password. However, if you enter RANDOM as the password for a
principal, kdb _ edi t selects a random key for the principal from the Data
Encryption Standard (DES) library. For information about DES keys, refer to
des_crypt (3krb) and to Chapter 6 of this guide.

For more information about this utility, refer to kdb _ edi t (Skrb) .

3.2.1.3 The kdb_util Utility - Unlike kdb_edit, the kdb_util Kerberos database
utility can change the characteristics of the entire Kerberos database in a single
operation.

When used with its dump option, kdb util converts the Kerberos database from
ndbm format to ASCII text format. Refer to krb_dbase (5krb) for a description
of the ASCII format of this database.

When used with its load option, kdb util replaces the ndbm-formatted Kerberos
database with the data supplied by a krb _ dbase file. These two operations can be

The Kerberos Daemon and Utilities 3-3

used together to eliminate entries in the Kerberos database or to change the
characteristics of several Kerberos principals at once. Although both the dump and
load operations can be performed on slave and master Kerberos servers, the
database should only be altered on the master server.
Use kprop and kpropd to propagate changes in the master database to the slaves.

The kdb_util utility can be used with kprop to transfer a Kerberos database from
a master Kerberos server to a slave Kerberos server. If the s lave _dump option of
kdb_util is used, the ndbm-formatted Kerberos database on the master Kerberos
server is converted to a krb_dbase-formatted file, which can be read by kprop
and transferred over the network to a slave server.

When used with the new_master_key option, kdb_util changes the master key
of the Kerberos database on a master or slave Kerberos server. The master key of the
Kerberos database encrypts portions of the database. If the key has been discovered
by a hostile user, or if enough time has passed to suspect that it might have been,
then the key of the master database must be changed. Otherwise, the Kerberos
authentication system will be compromised.

When used with the new_master_key option, kdb_util dumps the database
into a krb _dbase-formatted file with a new master key supplied by the user. The
krb dbase file can then be used with the load option of kdb util to load the
new database into the ndbm-formatted Kerberos database. The kerberos daemon
must be restarted before it can use the new database. The master keys of the
Kerberos slaves should always be the same as the master key of the master
kerberos daemon. See Section 4.6 in this guide for detailed instructions about
using kdb_util to change the master key of the Kerberos database. Refer also to
k db _ uti 1 (8 k r b) for more information about the master key.

3.2.1.4 The kprop, kpropd, and krb_push Utilities - The kprop and kpropd
Kerberos database utilities and krb _push are used to transfer a Kerberos database
from a Kerberos master server to a Kerberos slave server. A shell script,
krb push, must be created to run on the Kerberos master server. The text for the
krb - push shell script is shown in Section 4.4, step 5, as part of the procedure for
setting up Kerberos slave servers.

The krb push script determines whether the database has changed since the last
time it was sent over the network. If it has, then krb_push uses kdb_util with
the slave_dump option, together with kprop to transfer the database over the
network. The kprop command runs on the Kerberos master server and transfers the
master database over the network. It takes as input a file in krb _ dbase format and
a list of slave machines (krb. slaves) and transmits the file to the kpropd
daemons that run on the Kerberos slave machines.

The kpropd daemon waits on a well-known socket for the database transfer from
kprop, places the new database in a krb_dbase-formatted file and then calls
krb util with the load option to write over the ndbm-formatted Kerberos slave
database. For more information about transferring Kerberos databases, refer to
kprop (8krb), kpropd (8krb), and krb_slaves (Skrb).

3.2.1.5 The kdb_destroy Utility - The kdb_destroy Kerberos database utility destroys
the Kerberos master database. Used only on the master database host, it removes the
Kerberos master database by unlinking the
/var/dss/kerberos/dbase/principal.dir,
/var/dss/kerberos/dbase/principal.pag,and
/var / dss/kerberos/ dbase/principal. ok files.

3-4 The Kerberos Daemon and Utilities

For more information about these files, refer to kdb _ de s troy (8 krb) .

3.2.2 Other Kerberos Utilities
The Kerberos utilities in the following sections do not modify the Kerberos master
database. The k s t ash utility hides the master database password, and the
kdestroy utility destroys unwanted Kerberos tickets, usually at the end of a work
session.

3.2.2.1 The kstash Utility - After using kdb ini t to set up the master database, you
may want to use the kstash utility to hide the master database password on the
database host machine. This enables Kerberos administration programs to access and
manipulate the master database without needing the password to be entered manually.

For more information about the kstash utility, refer to kstash (8krb) .

3.2.2.2 The kdestroy Utility - The kdestroy utility destroys Kerberos tickets by writing
zeros to the file that contains them. If the ticket file does not exist, kdestroy
displays an appropriate message.

After overwriting the file, kdestroy removes the file from the system. The utility
displays a message indicating the success or failure of the operation. If kdestroy
is unable to destroy the ticket file, the utility issues a warning by making the terminal
beep.

Only the tickets in the current user ticket file are destroyed. There are separate ticket
files for holding root instance and password changing tickets. If all tickets are kept
in a single ticket file, they will not have to be destroyed separately. Although user
level authentication is not supported, kdestroy is useful for testing the
requirements of setting up local user authentication. You can place the kdestroy
command in your . logout file, so that your tickets are destroyed automatically at
logout time.

For more information about destroying tickets, refer to kdestroy (8krb) .

Note

Before destroying Kerberos tickets, you may want to look at certain data
about the Kerberos ticket file. The klist command enables you to
print the name of the ticket file, the identity of the principal requesting
the tickets (as listed in the ticket file), and the principal names of all the
Kerberos tickets, including issue date and expiration time for each
authenticator. For more information about the klist utility, refer to
klist (8krb).

3.3 Session Using Kerberos Database Utilities
Example 3-1 is an example session using the kdb_init, kstash, kdb_util,
kdb_edit, kdestroy, and kdb_destroy utilities.

The Kerberos Daemon and Utilities 3-5

Example 3-1: Using Kerberos Database Utilities in a Session

The first two commands show that the Kerberos database utilities reside in
/var/dss/kerberos/bin:

pwd
/var/dss/kerberos/bin

15 -gal
total 778
drwxr-xr-x 2 root system 512 Oct 28 18:46
drwxr-xr-x 6 root system 512 Oct 28 18:47
-rwxr-xr-x 1 root system 102400 Sep 25 11:14 ext srvtab -
-rwxr-xr-x 1 root system 24576 Sep 25 11:14 kdb _destroy
-rwxr-xr-x 1 root system 110592 Sep 25 11:14 kdb edit -
-rwxr-xr-x 1 root system 94208 Sep 25 11:14 kdb init
-rwxr-xr-x 1 root system 102400 Sep 25 11:14 kdb util
-rwxr-xr-x 1 root system 233472 Sep 25 11:15 kprop
-rwxr-xr-x 1 root system 77824 Sep 25 11:14 kstash

The kdb _ ini t command prompts you for the database master password and creates
the database files /var/dss/kerberos/dbase/principal.dir,
/var/dss/kerberos/dbase/principal.pag,and
/var/dss/kerberos/dbase/principal.okasshown:

kdb_init
Realm name: zk3.dec.com
You will be prompted for the database Master Password.
It is important that you NOT FORGET this password.

Enter Kerberos master key:
Verifying, please re-enter
Enter Kerberos master key:

Next, we must the change directory location to see if the three files have been
created:

cd .. /dbase

ls -gal
total 8
drwxr-xr-x 2 root system 512 Jan 24 10:46
drwxr-xr-x 6 root system 512 Oct 28 18:47
-rw------- 1 root system 4096 Jan 24 10:46 principal.dir
-rw------- 1 root system 0 Jan 24 10:46 principal.ok
-rw------- 1 root system 2048 Jan 24 10:46 principal.pag

As shown above, the Kerberos master database is stored in the three principal
files. This is ndbrn database format. The database is stored in the . di rand . pag
files. The file, principal. dir is a directory containing a bit map, and the
principal. pag file contains all the data. The principal. ok file is a
semaphore file used for timestamp information.

If we want to look at the database, which is in ndbrn format, we can use the dump
option of the k db _ uti 1 command and look at the result with the cat command, as
shown:

.. /hin/kdb_util dump ./dumpl

cat dumpl
changepw kerberos 255 1 1 0 11a3b47 3c1ae9af 200459 191546 db creation *
K M 255 1 1 0 6caaec01 49b87372 200001010459 199001241546 db creation *

3-6 The Kerberos Daemon and Utilities

default * 255 1 1 0 0 0 200001010459 199001241546 db creation *
krbtgt zk3.dec.com 255 1 1 0 47bfb34a 8cbf1455 200459 199046 db_creation *

As you can see, the database consists of 12 fields; an asterisk (*) denotes a blank
entry for that field. The first field of the third record, krbtgt, is the ticket-granting
ticket. For a detailed explanation of each of these fields, refer to
krb _ dbase (5krb) .

Next, kdb _ edi t is used to add a Kerberos principal, named, to the database:

.. /bin/xdb_edit
Opening database ...

Enter Kerberos master key:
Verifying, please re-enter
Enter Kerberos master key:

Current Kerberos master key version is 1.

Master key entered. BEWARE!
Previous or default values are in [brackets] ,
enter return to leave the same, or new value.

Principal name: named
Instance: verhogen

<Not found>, Create [y] ? Y

Principal: named, Instance: verhogen, kdc_key_ver: 1
New Password:
Verifying, please re-enter
New Password:
Mismatch - try again

New Password:
Verifying, please re-enter
New Password:

Random password [y] ? Y

Principal's new key version = 1
Expiration date (enter yyyy-mm-dd) [1999-12-31 ?
Max ticket lifetime (*5 minutes) [255] ?
Attributes [0] ?
Edit O.K.
Principal name:

The following kdb_util command, with the dump option, is used to create the
dump2 file to see (with the cat command) whether the new principal has been
added to the database:

•• /bin/xdb_util dump ./dump2

cat dump2
changepw kerberos 255 1 1 0 l1a3b47 3c1ae9af 200459 199546 db_creation *
K M 255 1 1 0 6caaec01 49b87372 200001010459 199001241546 db_creation *
default * 255 1 1 0 0 0 200001010459 199001241546 db_creation *
krbtgt zk3.dec.com 255 1 1 0 47bfb34a 8cbf1455 200459 191546 db creation *
named verhogen 255 1 1 0 d18378f8 3545f62e 200001010459 199001241553 * *

Next, the kdestroy and kdb_destroy commands are used to destroy any tickets
and the Kerberos database:

The Kerberos Daemon and Utilities 3-7

kdestroy
No tickets to destroy.

•• /bin/kdb_destroy
You are about to destroy the Kerberos database on this machine.
Are you sure you want to do this (y/n)? y
Database deleted at /var/dss/kerberos/dbase/principal

Use the Is command to see if the database (consisting of the principal. dir and
pr incipal . pag files) has been deleted:

ls -gal
total 4
drwxr-xr-x 2 root system 512 Jan 24 10:57
drwxr-xr-x 6 root system 512 Oct 28 18:47
-rw-r--r-- 1 root system 308 Jan 24 10:51 dump1
-rw-r--r-- 1 root system 381 Jan 24 10:53 dump2
-rw------- 1 root system 0 Jan 24 10:46 principal.ok

3-8 The Kerberos Daemon and Utilities

Setting Up Kerberos 4

4.1 Planning a Kerberos Authenticated Distributed Environment
In the environment described here, the BIND/Hesiod primary and the Kerberos
master are the same. Figure 4-1 illustrates a network setup for distributed Kerberos
authentication:

Figure 4-1: Network of Distributed Kerberos Authentication

ZK-0133U-R

In Figure 4-1, the Kerberos master is the system on which the master Kerberos
database resides, and it can also run the Kerberos-authenticated named daemon. The
Kerberos master also refers to the BIND/Hesiod primary server that loads the
BIND/Hesiod database from a file on disk. It is highly recommended that the

Kerberos master reside on the best administered and controlled machine that is
available in the LAN.

The BIND/Hesiod primary server distributes the master BIND/Hesiod database to
BIND/Hesiod secondaries and also answers queries. The system that receives the
propagated Kerberos databases from the Kerberos master is the Kerberos slave
server. It can run the Kerberos-authenticated named daemon, and act as a backup if
the Kerberos master cannot be accessed. It is also a BIND/Hesiod secondary server.
The BIND/Hesiod secondary server receives the BIND/Hesiod database from the
BIND/Hesiod primary server and answers queries. It is also a Kerberos slave server
here.

In an authenticated system, the Kerberos client runs an application that uses
Kerberos - for example, a system running the Kerberos-authenticated named
daemon. A Kerberos client can also be a BIND/Hesiod slave, which answers queries
and runs the named daemon. A system that uses the BIND/Hesiod service to
resolve host names and addresses is a BIND/Hesiod client. At the UPGRADE or
ENHANCED security levels, all BIND/Hesiod clients must convert to BIND/Hesiod
slaves and run a Kerberos-authenticated named daemon.

The time master and time client synchronize time among network entities. The time
master is the system that runs the Network Time Protocol (NTP) daemon ntpd, to
synchronize time over a wide area network. The time master also runs the Berkeley
timed as master, to distribute time to all network workstations. The time client is
the system that runs timed as a client. The master can change the time of the
client.

Table 4-1 summarizes the processes running in an authenticated environment.

Table 4-1: Processes in an Authenticated Environment

Kerberos BIND/Hesiod Processes
and Files

Kerberos master BIND/Hesiod primary Authenticated named (optional)
Kerberos master database
BIND/Hesiod master database
kerberos

Kerberos slave
server

4-2 Setting Up Kerberos

krb.conf
/etc/srvtab
Master time d
ntpd

BIND/Hesiod secondary Propagated Kerberos database
BIND/Hesiod secondary database
Authenticated named
kerberos
krb.conf
/etc/srvtab
Master timed
ntpd

Table 4-1: (continued)

Kerberos BINO/Hesiod

Kerberos client BIND/Hesiod slave

Processes
and Files

Authenticated named
krb.conf
/etc/srvtab
timed

Kerberos commands are described fully in corresponding section Bkrb reference
pages. The Kerberos-authenticated named daemon, as well as the kerberos and
kprop commands, depend on time synchronization among network entities. You
must set up the network time services before attempting to configure either the
UPGRADE or ENHANCED security levels. Refer to Introduction to Networking
and Distributed System Services for more information about planning time services
and configurable security levels that depend on Kerberos authentication.

4.2 Preparing to Set Up a Kerberos Authenticated named
Daemon

The rest of this chapter describes how to set up a Kerberos-authenticated named
daemon at the BSD security level. The named daemon guarantees that all Hesiod
information distributed by the Kerberos-authenticated named daemon comes from an
authenticated source. Chapter 5 describes the procedure for making the transition to
an UPGRADE or ENHANCED security level. It is highly recommended that an
experienced administrator perform all Kerberos setup procedures.

Setting up the Kerberos-authenticated named daemon performs these major
functions:

1. Starting Kerberos on the Kerberos master

2. Starting Kerberos on the Kerberos slave servers, and propagating the Kerberos
databases to them

3. Starting the named daemon

If you are already running bind, you must rerun binds et up during the Kerberos
setup procedure. You must be logged on as superuser to run the commands and edit
the files in these procedures.

Note

Kerberos-authenticated named, kerberos, and kprop depend upon
time synchronization among the systems on which they run. If time
differs by more than five minutes between two systems running the
Kerberos-authenticated named daemon, then the authenticated named
may fail. To synchronize the time, start the ntpd daemon and the
timed services as described in the Guide to System and Network Setup.

Before starting these procedures, the network must be installed. Refer to
Introduction to Networking and Distributed System Services) for information about
network installation. You should also be familiar with Guide to the BINDIHesiod
Service and the reference pages: kerberos (Bkrb) , ntpd (B) , and timed (B) .

Setting Up Kerberos 4-3

4.3 Setting Up the Kerberos Master Server
Log in as superuser and ensure that the ntpd and timed daemons are running
before you start to set up Kerberos on the Kerberos master. Proceed as follows (the
system, CACTUS. dec. corn, is the Kerberos master):

1. If necessary, install the Kerberos software subset, UL TKERB400:

set1d -1 ULTKERB400

If you add this subset, you do not need to rebuild the kernel.

2. Change to the /var / dss/kerberos/bin directory, created during the
UL TRIX operating system installation. The Kerberos utilities are located here:

cd /var/dss/kerberos/bin

3. Use the kdb ini t command to create a Kerberos database. This command
prompts you for a realm and a master key (password). This example shows the
creation of a Kerberos database on realm ZONE:

CACTUS.dec.com # kdb_init
Realm name: ZONE
You will be prompted for the database Master Password.
It is important that you NOT FORGET this password.

Enter Kerberos master key:
Verifying, please re-enter
Enter Kerberos master key:

The kdb ini t command creates the files:
/var/dss/kerberos/dbase/principal.dir,
/var/dss/kerberos/dbase/principal.pag,and
/var/dss/kerberos/dbase/principal. ok. These files must be
saved and protected if the machine is reinstalled, and backups should be made
also. Choose a master key according to the recommendations of Security Guide
for Users and Programmers.

4. Use the kstash command to store the master key. The kstash command
stores the master key in a hidden master key file. If you store the master key in
this file, programs that usually prompt for the master key can find the key in
this file. You do not have to enter a password from the keyboard:

kstash

5. Create a /etc/krb. conf configuration file to describe the Kerberos realm
and the Kerberos key distribution center (KDC) for each realm. A line in a
configuration file has two parts, the realm and the hostname of the Kerberos
master.

For more information about the configuration file, refer to k r b . con f (5 k r b) .
The krb. conf file must be saved and protected if the machine is reinstalled.
This example shows the lines in a krb. conf file for CACTUS. dec. corn:

CACTUS.dec.com # cat /etc/krb.conf
ZONE
ZONE CACTUS.dec.com

6. Start kerberos. This example shows the command and the output for a
network with ZONE as the realm:

CACTUS.dec.com # kerberos &
Kerberos server starting

4-4 Setting Up Kerberos

Sleep forever on error
Log file is /var/dss/kerberos/log/kerberos.log

Current Kerberos master key version is 1.

Master key entered. BEWARE!

Current Kerberos master key version is 1.
Local realm: ZONE
CACTUS.dec.com #

The command has no options or arguments.

7. Place an entry in / etc/ rc .local to automatically start kerberos. Place
the entry after the syslog entry, as shown in this example:

echo -n 'local daemons:' > /dev/console
-f /etc/syslog] && {

/etc/syslog & echo -n 'syslog' > /dev/console

-f /usr/etc/kerberos] &&
/usr/etc/kerberos & echo ' kerberos'

4.4 Setting Up Kerberos Slave Servers

> /dev/console

This section describes the procedure for running kerberos on systems other than
the Kerberos master. The only difference between the Kerberos slave servers and a
Kerberos master is that the master periodically updates the database on each slave
server.

Note

It is very highly recommended that Kerberos slave servers are run in the
environment. If every machine that is a Kerberos master or slave is
inoperative, then the utilities that use Kerberos (for example, named),
will not work. Running slave servers makes such an occurrence much
more unlikely. In addition, slave servers increase the number of queries
that the Kerberos system can answer. The number of slave servers
required is proportional to the number of Kerberos principals in the
network.

This procedure uses the following script, utility, daemon, and log file:

• krb push - a shell script that runs periodically on the Kerberos master. This
script determines whether the database has changed since the last time the
master database was distributed to the Kerberos slave servers. If it has, the
script runs kprop to propagate the new databases to the Kerberos slave servers.

• kprop - a process running on the Kerberos master; it propagates the databases
to the Kerberos slave servers.

• kpropd - the Kerberos propagation daemon. This daemon runs on the
Kerberos slave servers, receives a new copy of the master database from
kprop, and updates the database on the Kerberos slave servers.

• kpropd. log - a file that records the propagation of database files by the
kprop daemon to the Kerberos slave.

Setting Up Kerberos 4-5

The procedure includes the steps for setting up the Kerberos master to propagate the
master database and the steps for setting up the slave servers for Kerberos and for
receiving the database.

1. On the Kerberos master, from the /var / dss /kerberos /bin directory, use
kdb_edit to create a principal entry for kprop for each system (instance)
that is to run kerberos: the Kerberos master and any Kerberos slave servers.
In this example, barrel and desert, the Kerberos slaves, and
CACTUS. dec. com, the Kerberos master, must have kprop principal entries.
The slave servers can also run the Kerberos-authenticated named daemon, but
they are not required to. In the following sample session, kdb edit creates
principals in the Kerberos database. You need to enter the pasSWord of the
service for each entry. If you type RANDOM as the password for a principal,
kdb _ edi t selects a random Data Encryption Standard (DES) key for the
principal.

Note

The instance name for CACTUS. dec. com is cact us. Refer to
Section 3.2 for a discussion of Kerberos principal names.

The kdb _ edi t command prompts you for the principal name and password:

CACTUS.dec.com # cd /var/dss/kerberos/bin
CACTUS.dec.com # kdb_edit
Opening database ...

Enter Kerberos master key:
Verifying, please re-enter
Enter Kerberos master key:

Current Kerberos master key version is 1.

Master key entered. BEWARE!
Previous or default values are in [brackets] ,
enter return to leave the same, or new value.
Principal name: kprop
Instance: cactus

<Not found>, Create [y] ? Y

Principal: kprop, Instance: cactus, kdc_key_ver: 1
New Password:
Verifying, please re-enter
New Password:

Random password [y] ? Y

Principal's new key version = 1
Expiration date (enter yyyy-mm-dd) [1999-12-31 ?
Max ticket lifetime (*5 minutes) [255] ?
Attributes [0] ?
Edit O.K

Principal name: kprop
Instance: desert

Repeat for each Kerberos slave server.

4-6 Setting Up Kerberos

2. On the Kerberos master, use the ext srvtab command to create a
new-srvtab file for the Kerberos master and each Kerberos slave. This step
adds kprop to the srvtab file for CACTUS. dec. com. Each time you add a
principal, you must create a new s rvt abo If you run ext _ s rvt ab with the
-n option, ext_srvtab fetches the master key from the master key file. This
example shows how ext_srvtab creates a cactus-new-srvtab file for
CACTUS. dec. com:

CACTUS.dec.com # ext_srvtab cactus

Enter Kerberos master key:
Verifying, please re-enter
Enter Kerberos master key:

Current Kerberos master key version is n.

Master key entered. BEWARE!
Generating 'cactus-new-srvtab' ...
CACTUS.dec.com # ext_srvtab barrel

Repeat for each Kerberos slave.

3. On the Kerberos master, copy each new-srvtab file to / etc/ srvtab on
the host for which you created the file. You must ensure that the slave host
names are in the. rhosts file on the master before you can use rcp to copy
the files. The s rvt ab file should be owned by root and set readable and
writable only by root. It must be saved and protected if the machine is
reinstalled. Use rcp as follows:

CACTUS.dec.com # cp cactus-new-srvtab /etc/srvtab
CACTUS.dec.com # rcp barrel-new-srvtab barrel:/etc/srvtab
CACTUS.dec.com # rcp desert-new-srvtab desert:/etc/srvtab

4. On the Kerberos master, create the /etc/krb. slaves file, which lists the
systems to which kprop distributes the Kerberos master database.

On a network where CACTUS. dec. com is the Kerberos master and barrel
and desert are Kerberos slave servers, the /etc/krb. slaves file should
look like this:

barrel
desert

5. On the Kerberos master, create the krb push script (with permission level set
to 755) to check for changes to the database and to run kprop, which
propagates changes to the Kerberos slave servers. The krb _push script is
shown by using the cat command in the appropriate directory:

CACTUS.dec.com # cd /var/dss/kerberos/dbase
CACTUS.dec.com # cat krb-push
KRB_DBASE=/var/dss/kerberos/dbase
KRB LOG=/var/dss/kerberos/log
KRB=BIN=/var/dss/kerberos/bin

if test -f $KRB_DBASE/principal.dir
then

if test -f $KRB_DBASE/dbase
then

find $KRB DBASE/principal.dir -newer $KRB DBASE/dbase -exec \
$KRB=BIN/kdb_util slave_dump $KRB_DBASE/dbase \; -exec \

Setting Up Kerberos 4-7

else

fi
fi

$KRB_BIN/kprop $KRB_DBASE/dbase /etc/krb.slaves \
2>&1 » $KRB_LOG/kprop.log \;

$KRB BIN/kdb util slave dump $KRB DBASE/dbase
$KRB=BIN/kpr;p $KRB_DBASE/dbase /etc/krb.slaves \

2>&1 » $KRB_LOG/kprop.log

CACTUS.dec.com #

6. On each Kerberos slave server, create a krb. conf configuration file that lists
the Kerberos master. A line in a configuration file has two parts: the name of
the realm, and the name of the Kerberos master. The following example shows
the krb. conf file for a network in which CACTUS. dec. com is the master
Kerberos server:

ZONE
ZONE CACTUS.dec.com

7. On each Kerberos slave server, create the Kerberos database files. If the files do
not exist when you start the kpropd daemon, the process fails. You can create
the files with the touch command as shown:

barrel # cd /var/dss/kerberos/dbase
barrel # touch principal.pag
barrel # touch principal.dir
barrel # touch principal.ok

desert # cd /var/dss/kerberos/dbase
desert # touch principal.dir
desert # touch principal.pag
desert # touch principal.ok

8. On each Kerberos slave server, start the kpropd daemon. Before starting the
daemon, you must set the PATH environment variable to include
/var/dss/kerberos/bin. The following commands add the PATH
variable and run kpropd:

barrel # set path=($path /var/dss/kerberos/bin)
barrel # /usr/etc/kpropd /var/dss/kerberos/dbase/dbase &

desert # set path=($path /var/dss/kerberos/bin)
desert # /usr/etc/kpropd /var/dss/kerberos/dbase/dbase &

9. On each Kerberos slave server, add entries to / etc/ rc .local for
kerberos and kpropd. Place the entries after the syslog entry. The
following shows the lines to add to /etc/rc .local to start kerberos:

echo -n 'local daemons:' /dev/console
[-f /etc/syslog] && {

/etc/syslog & echo -n ' syslog' >/dev/console

-f /usr/etc/kerberos] &&
/usr/etc/kerberos & echo' kerberos' >/dev/console

The following shows the lines to add to / etc/ rc .local to start kprop:

%KPROPDSTART%

PATH=/bin:/usr/ucb:/usr/bin:/var/dss/kerberos/bin

4-8 Setting Up Kerberos

export PATH

echo -n 'kprop daemon:' >/dev/console

-f /usr/etc/kpropd 1 && {

/usr/etc/kpropd /var/dss/kerberos/dbase/dbase & echo ' kpropd' \
>/dev/console

echo' ,

%KPROPDEND%

Note

The kpropd command line above is broken with a backslash (\)
because of the short line length in this manual. In
/ etc / rc. local, this command is on a single line.

10. On the Kerberos master, update the
/var / dss /kerberos/ dbase/principal. dir file by using the touch
command. This makes principal. dir newer than dbase, so that kprop
propagates the database files to the Kerberos slave. For example:

CACTUS.dec.com # touch /var/dss/kerberos/dbase/principal.dir
CACTUS.dec.com #

11. On the Kerberos master, run krb push to start kprop. The following
example shows the command in a network in which CACTUS. dec. com is the
Kerberos master:

CACTUS.dec.com # krb-push

12. On each Kerberos slave server, verify that the kpropd daemon successfully
received the database by looking at the
/var/dss/kerberos/log/kpropd.log file. The following shows an
entry into the log file for a successful transfer:

barrel # more /var/dss/kerberos/log/kpropd.log
***** kpropd started *****
28-Sep-89 11:13:38 Established socket
28-Sep-89 11:16:03 Connection from CACTUS.dec.com, 130.180.4.13
28-Sep-89 11:16:04 kpropd: Connection from kprop.cactus@ZONE
28-Sep-89 11:16:04 File received.
28-Sep-89 11:16:04 Temp file renamed to /var/dss/kerberos/dbase/dbase
28-Sep-89 11:16:05

desert # more /var/dss/kerberos/log/kpropd.log

13. On each Kerberos slave server, run kstash to store the master Kerberos key:

kstash

Setting Up Kerberos 4-9

14. On each Kerberos slave server, start kerberos. The following shows the
commands for a network in which barrel and desert are Kerberos slave
servers:

barrel # /usr/etc/kerberos &

desert # /usr/etc/kerberos &

15. On the Kerberos master, place an entry in / etc/ crontab to run the
krb _push shell script every five minutes to detennine whether the database
has changed. If it has, the script runs kprop to propagate the database to the
Kerberos slave servers.

The following shows such an entry:

0,5,10,15,20,25,30,35,40,45,50,55 * * * * /var/dss/kerberos/dbase/krb-push

16. After you verify that the Kerberos database is propagating successfully to the
Kerberos slave servers, add each Kerberos slave server to the krb . conf file
on any system running the Kerberos-authenticated named daemon on the
Kerberos master, and on Kerberos slaves. If the first system does not respond,
Kerberos tries the other servers listed. The entry for a network in which
CACTUS. dec. corn is the master server, and barrel and desert are
Kerberos slave servers is as follows:

CACTUS.dec.com # cat /etc/krb.conf
ZONE
ZONE CACTUS. dec. corn
ZONE barrel
ZONE desert

4.5 Starting the Kerberos-Authenticated named Daemon
This section describes how to set up and start a Kerberos-authenticated named
daemon.

The examples for each step show a network consisting of CACTUS. dec. corn, as
Kerberos master, and desert and barrel as two other systems that will be
running the Kerberos-authenticated named daemon. Although these show the
Kerberos master running the named daemon, it is not a requirement.

1. On the Kerberos master, change to the /var/dss/kerberos/bin
directory:

cd /var/dss/kerberos/bin

2. On the Kerberos master, use kdb edit to create principal entries in the
Kerberos database for named andhesiod for each system that will run the
Kerberos-authenticated named daemon (including the Kerberos master if it is
going to run named)

When you invoke kdb _ edi t, the command prompts you for the master key
(password). If you invoke kdb _ edi t with the -n option, kdb _ edi t fetches
the key from the master key file. (You must have first created the master key
file with kstash.

The kdb edit command then prompts you for the principal name. If
kdb _ edit does not find an entry in the Kerberos database file, it prompts you

4-10 Setting Up Kerberos

to create one. Create a principle entry for hesiod and named. For the
instance, use the name of a host on which the Kerberos-authenticated named
daemon will run. If you are going to run the named daemon on more than one
system, then, for each system, you must use the procedure shown in the
example below.

You need to enter the password of the service for each entry. If you type
RANDOM as the password for a principal, kdb _ edi t selects a random DES
key for the principal. You also need to enter values for expiration dates,
maximum ticket lifetimes, and attributes. The kdb _ edi t command displays
default values in brackets.

This is an example of a kdb_edit session that adds the hesiod and named
principals for the machine, CACTUS. dec. com. In the example, the default
settings are selected for expiration dates, maximum ticket lifetimes, and
attributes. Repeat the procedure for each instance (system) on which you are
going to run the named daemon. Press the RETURN key to return to the
prompt after entering the last principal and instance:

Note

The instance name of CACTUS. dec. com is cactus. See
Section 3.2 for a discussion of Kerberos principal names.

CACTUS.dec.com # kdb_edit
Opening database ...

Enter Kerberos master key:
Verifying, please re-enter
Enter Kerberos master key:

Current Kerberos master key version is 1.

Master key entered. BEWARE!
Previous or default values are in [brackets] ,
enter return to leave the same, or new value.

Principal name: named
Instance: cactus

<Not found>, Create [y] ? Y

Principal: named, Instance: cactus, kdc_key_ver: 1
New Password:
Verifying, please re-enter
New Password:

Random password [y] ? Y

Principal's new key version = 1
Expiration date (enter yyyy-mm-dd) [1999-12-31 ?
Max ticket lifetime (*5 minutes) [255] ?
Attributes [0] ?
Edit O.K.
Principal name: hesiod
Instance: cactus

<Not found>, Create [y] ? Y

Principal: hesiod, Instance: cactus, kdc_key_ver: 1
New Password:

Setting Up Kerberos 4-11

Verifying, please re-enter
New Password:

Random password [y] ? Y

Principal's new key version = 1
Expiration date (enter yyyy-mm-dd) [1999-12-31 ?
Max ticket lifetime (*5 minutes) [255] ?
Attributes [0] ?
Edit O.K.
Principal name: named
Instance: desert

$

Repeat for each system that will run the Kerberos-authenticated named
daemon.

3. On the Kerberos master, use the ext srvtab command to create a
new- s rvt ab file for each system on-which you are going to run the
Kerberos-authenticated named daemon. If you are going to run named on the
Kerberos master, you must create a new-srvtab file for the Kerberos master.
If you run ext srvtab with the -n option, ext srvtab fetches the
master key from the master key file. The following shows the use of
ext srvtab to create a barrel-new-srvtab file for barrel:

CACTUS.dec.com # ext_srvtab barrel

Enter Kerberos master key:
Verifying, please re-enter
Enter Kerberos master key:

Current Kerberos master key version is n.

Master key entered. BEWARE!
Generating 'barrel-new-srvtab' ...
CACTUS.dec.com # ext_srvtab desert

4. On the Kerberos master, copy each new-srvtab file to / etc/ srvtab on
the host for which you created the file. For example:

CACTUS.dec.com # ep eaetus-new-srvtab /ete/srvtab
CACTUS.dec.com # rep barrel-new-srvtab barrel:/ete/srvtab
CACTUS.dec.com # rep desert-new-srvtab desert:/ete/srvtab

5. On the Kerberos master, copy the krb. conf file to / etc on each host that is
going to run the Kerberos-authenticated named daemon. These are the systems
for which you created new-srvtab files. For example:

CACTUS.dec.com # rep /ete/krb.eonf barrel:/ete
CACTUS.dec.com # rep /ete/krb.eonf desert:/ete

6. On each system that is going to run Kerberos-authenticated named, (the
systems for which you created new-srvtab files) run bindsetup from the
/var / dss /namedb directory. In the example network used in these

4-12 Setting Up Kerberos

procedures, you must run bindset up on CACTUS. dec. com, barrel, and
desert.

Respond to the prompts as you did when you set up BIND/Hesiod, until
prompted for running a Kerberos-authenticated named daemon. Respond to the
prompt with yes, as shown:

Do you want to run Kerberos Authenticated named (y/n) [n] ? y

The bindsetup script terminates the unauthenticated named daemon and
starts a Kerberos-authenticated daemon.

Note

Kerberos-authenticated named and named cannot both serve
Hesiod information in the same network. They can, however,
exchange Internet host information.

The script replaces the line in / etc / r c . 10 cal that starts the name d daemon
with the line shown here:

%BINDSTART% - BIND daemon
[-f /usr/etc/named] && {

/usr/etc/named -s -a kerberos one -b /var/dss/namedb/named.booti\
echo -n ' named ' > /dev/console

Note

The example breaks the named command line with a backs lash (\)
because of the short line length in this manual. In
/ etc/ rc .local, the command appears on a single line.

4.6 Changing the Master Key of the Kerberos Database
The Kerberos database on both slave and master servers contains fields that are
encrypted with the master key of the database. This key, like any other DES key, is
vulnerable over time to attacks by a hostile user. If the master key is not changed
occasionally, and a user discovers the value of the master key, the entire Kerberos
service may be compromised. The following procedure describes how to change the
master key of the Kerberos database in an environment in which barrel and
desert are Kerberos slave servers and CACTUS. dec. com is the Kerberos master
server:

1. On the Kerberos master, disable the ability of krb_push to transfer the
Kerberos master database over the network. To do this, (the ed editor is used
here) eliminate the krb push entry from / etc/ crontab (discussed in
Section 4.4 step 15): -

CACTUS.dec.com # ed lete
CACTUS.dec.com # ep erontab erontab.orig
CACTUS.dec.com # ed erontab
1278
/krbyush
0,5,10,15,20,25,30,35,40,45,50,55 * * * * /var/dss/kerberos/dbase/krbyush
d
w
1203
q
CACTUS.dec.com #

Setting Up Kerberos 4-13

2. On the Kerberos master, use kdb util to produce a file in kdb dbase
fonnat that uses the new master key of the Kerberos database to encrypt
portions of the database.

CACTUS.dec.com # cd /var/dss/kerberos/dbase
CACTUS.dec.com # .. /bin/kdb_util new_master_key ./new_key_dbase

Enter the CURRENT master key.
Enter Kerberos master key:< old kerberos key entered here>
Verifying, please re-enter
Enter Kerberos master key:< old kerberos key entered here>

Current Kerberos master key version is 2.

Master key entered. BEWARE!

Now enter the NEW master key. Do not forget it!!
Enter Kerberos master key:< new Kerberos key entered here>
Verifying, please re-enter
Enter Kerberos master key:< new Kerberos key entered here>

Don't forget to do a 'kdb util load ./new_key_dbase' to reload
the database!
CACTUS.dec.com #

3. On the Kerberos master, use kstash to replace the old master key of the
Kerberos database with the new key:

CACTUS.dec.com # cd /var/dss/kerberos/bin
CACTUS.dec.com # ./kstash

Enter Kerberos master key:< new Kerberos key entered here>
Verifying, please re-enter
Enter Kerberos master key:< new Kerberos key entered here>

Current Kerberos master key version is 2.

Master key entered. BEWARE!
CACTUS.dec.com #

4. On the Kerberos master, stop the execution of the kerberos daemon. If any
machine in the network depends completely on the master kerberos daemon
for Kerberos services, this step could be risky. To avoid this risk, make sure at
least one Kerberos server is running in the network and that every machine in
the network that uses Kerberos has the name of at least one functioning
Kerberos server listed in its krb . conf file:

CACTUS.dec.com # ps -gax I grep kerberos
22853? I 0:29 /usr/etc/kerberos
9798 p5 S 0:00 grep kerberos
CACTUS.dec.com # kill -9 22853

5. On the Kerberos master, use kdb uti 1 to transfer the database that uses the
new master key from the new_key _dbase file, to the ndbm-fonnatted
Kerberos database:

CACTUS.dec.com # cd /var/dss/kerberos/dbase
CACTUS.dec.com # .. /bin/kdb_util load ./new_key_dbase

4-14 Setting Up Kerberos

6. On the Kerberos master, restart the kerberos master daemon:

CACTUS.dec.com # /usr/etc/kerberos
CACTUS.dec.com #

7. On the Kerberos master, edit the / etc/krb. slaves file so that only the first
Kerberos slave appears in the file:

CACTUS.dec.com # cd /etc
CACTUS.dec.com # cp /etc/krb.slaves /etc/krb.slaves.orig
CACTUS. dec. com # cat> /etc/krb.slaves
barrel
AD
CACTUS.dec.com #

8. On the first Kerberos slave, use kstash to replace the old master key of the
Kerberos database with the new key:

barrel # cd /var/dss/kerberos/bin
barrel # ./kstash

Enter Kerberos master key:< new kerberos key entered here>
Verifying, please re-enter
Enter Kerberos master key:< new kerberos key entered here>

Current Kerberos master key version is 2.

Master key entered. BEWARE!
barrel #

9. On the Kerberos slave, stop the execution of the kerberos daemon. If any
machine in the network depends completely on this slave kerberos daemon
for Kerberos services, then this step could be risky. To avoid this risk, make
sure at least one Kerberos server is running in the network and that every
machine in the network that uses Kerberos has the name of at least one
functioning Kerberos server listed in its krb. conf file:

barrel # ps -gax I grep kerberos
22853? I 0:29 /usr/etc/kerberos
9798 p5 S 0:00 grep kerberos
barrel # kill -9 22853

10. On the Kerberos master, use krb push to transfer the database encrypted with
the new master key to the slave server listed in / etc / k r b . s 1 ave s:

CACTUS.dec.com # cd /var/dss/kerberos/dbase
CACTUS.dec.com # touch principal.dir
CACTUS.dec.com # ./krb-push
CACTUS.dec.com #

11. On the Kerberos slave, verify that the transfer of the database was successful by
examining the /var/dss/kerberos/log/kpropd.log file. A
successful transfer looks like the following:

15-Feb-90 14:04:54 Connection from CACTUS.dec.com, 4.5.6.7
15-Feb-90 14:04:54 kpropd: Connection from kprop.cactus@ZONE
15-Feb-90 14:04:56 File received.
15-Feb-90 14:04:56 Temp file renamed to /var/dss/kerberos/dbase/dbase

12. On the Kerberos slave, restart the kerberos master daemon:

barrel # /usr/etc/kerberos
barrel #

Setting Up Kerberos 4-15

13. For every Kerberos slave, repeat steps 7 through 12.

14. On the Kerberos master, replace the original versions of the krb. s laves file
and the / etc/ crontab file:

CACTUS.dec.com # ed lete
CACTUS.dec.com # ep erontab.orig erontab
CACTUS.dec.com # ep krb.slaves.orig krb.slaves

4-16 Setting Up Kerberos

Creating an UPGRADE or ENHANCED 5
Distributed Environment

Before setting up an UPGRADE or ENHANCED distributed environment, you must
first set up a distributed BSD BIND/Hesiod environment as described in Guide to the
BIND/Hesiod Services. The BSD distributed environment verifies that the
BIND/Hesiod primary and secondary servers are accessible and working correctly.

At BSD level, the /etc/passwd file distributes passwords in a network. In
ULTRIX, the passwd, login, su, dxsession, and named programs are
modified to use Kerberos for accessing the distributed aut h data required by the
UPGRADE or ENHANCED security levels.

Workstations and other less-used machines in the distributed (UPGRADE or
ENHANCED) environment must run as BIND/Hesiod slaves. Every system in the
distributed (UPGRADE or ENHANCED) environment must be running the
Kerberos-authenticated named daemon, as described in Chapter 4. For more
information, refer to Security Guide for Administrators.

After setting up a distributed BSD environment, you can set up an UPGRADE
environment.

Note

If you skip the UPGRADE level, no user can log in. The UPGRADE
level converts the current BSD style passwords into the ENHANCED
auth-style passwords.

Users who do not upgrade their BSD passwords when the environment is
at the UPGRADE level cannot log in at the ENHANCED level, unless
the superuser runs passwd for them.

5.1 Transition from eSD to UPGRADE Security Level
Before converting from BSD to UPGRADE security level, you must perform these
procedures:

1. Set up ntpd or timed, or both, on all systems in the distributed environment,
as described in the Guide to System and Network Setup.

2. Set up and run a distributed BSD BIND/Hesiod environment, as described in
Guide to the BIND/ H esiod Services.

3. Start the Kerberos-authenticated named daemon, as described in Chapter 4.

The procedures in Section 5.2 create the auth database and restarts a Kerberos
authenticated named daemon that uses the database.

The procedures in Section 5.3 perform the transition to UPGRADE level.

5.2 Preparing for the Transition to UPGRADE Level
When you have BIND/Hesiod and Kerberos-authenticated named running, you can
start the transition to UPGRADE security level. The steps in the procedure assume
that the same host (in this case CACTUS. dec. com) is the BIND/Hesiod primary
and the Kerberos master.

The first part of the procedure creates a distributed auth file and copies it to the
BIND/Hesiod master server.

1. For maximum security, perform this step while in single user mode (/, /usr,
and /var must be mounted).

On any system in the network (preferably a workstation that will not disrupt the
current environment) copy / etc / pa s s wd to a backup file. Create a
distributed auth database for named by appending the /etc/passwd file
that you want to distribute to the local /etc/passwd. The following
commands show a distributed aut h file being created on workstation me s a
from a password file selected for distribution (passwd. dist).

mesa # ep /ete/passwd passwd.bak
mesa # cat /ete/passwd.dist » /ete/passwd

Delete any duplicate entries in the new / etc/passwd.

2. Run /usr/etc/sec/secsetup as shown:

mesa # /usr/ete/see/seesetup

Do not select any other security options. Select UPGRADE level at the prompt.
The secset up script also creates a local auth database. For a detailed
description of secsetup, refer to the Security Guide/or Administrators.

3. Run getauth to create a distributed auth file:

mesa # /usr/ete/see/getauth > auth

Remove those entries in aut h for user IDs that should not be distributed. For
example, remove entries for user IDs -2, a - 10, 25, and any others that are
specific to your local environment. The first field in the auth entry is the uid
field. The passwd database must have a user entry for each uid in the auth
database.

4. Copy the auth database to the BIND/Hesiodprimary server - in this example,
CACTUS. dec. com:

mesa # rep auth CACTUS.dec.com:/var/dss/namedb/sre/auth

You should now have a passwd and auth database file in the named source
directory on the BIND/Hesiod primary, /var / dss /namedb/ src.

5. Restore the original / et c / pas swd file to the workstation, as shown:

mesa # ep passwd.bak /etc/passwd

6. When you ran secsetup to create the auth file, the workstation made the
transition to UPGRADE level. You must return the workstation to BSD level
before completing the transition by the entire network. To return the
workstation to BSD level, edit / etc/ svc. conf on the workstation and set
the security level to BSD (SECLEVEL=BSD) •

7. Run bindset up on the BIND/Hesiod primary server to set up a Kerberos
authenticated named daemon.

5-2 Creating an UPGRADE or ENHANCED Distributed Environment

8. Run bindset up on the BIND/Hesiod secondary servers to set up a Kerberos
authenticated named daemon.

9. Run bindset up on the BIND/Hesiod slave servers to set up a Kerberos
authenticated named daemon.

10. Allow approximately four minutes for the BIND/Hesiod secondary servers to
obtain the databases from the BIND/Hesiod primary. Then, run nslookup to
determine if the databases have been distributed. Guide to BINDIHesiod
Services describes the nslookup command.

At this point, your environment is still running at BSD level, and both Kerberos and
the Kerberos-authenticated named daemon are running. The next section describes
the procedure for making BIND/Hesiod use Kerberos, which brings the environment
to UPGRADE level.

5.3 Making the Transition to UPGRADE Level
Make the transition from BSD to UPGRADE level first on the BIND/Hesiod
primary, then on the BIND/Hesiod secondaries and slaves. The
/usr / etc/ sec/ secset up command changes the security level.

1. On the Kerberos master BIND/Hesiod primary server, run
/usr/etc/sec/secsetup to change the security level from BSD to
UPGRADE.

2. Change the root password on the Kerberos master BIND/Hesiod primary with
passwd.

3. Run svcsetup or edit the /etc/svc. conf file to set the auth and
pas swd lookup switches to bind as shown:

auth=local,bind
passwd=local,bind

4. Allow approximately two minutes for the distribution delay and then try to log
into the server system as a normal user. (In some cases, the delay may be as
long as five minutes.) Next, change your password with passwd.

5. Use nslookup to examine the new auth password and old password entry.
If the entries are asterisks, then the Kerberos BIND/Hesiod primary server is
running at UPGRADE level. To check the password entry for user lizard,
use the commands that select Hesiod class data:

cactus # nslookup
> set type=txt
> set cl=hs
> lizard.passwd
lizard:*:

6. Repeat steps 1 to 5 on each BIND/Hesiod secondary Kerberos slave server in
sequence.

7. Repeat steps 1 to 5 on each BIND/Hesiod slave Kerberos client.

Your environment is now running at UPGRADE level. Users who do not change
their passwords at this time cannot log in when the environment is set to
ENHANCED. As root on the BIND/Hesiod primary, you can use passwd to reset
the password of users who cannot log in.

Creating an UPGRADE or ENHANCED Distributed Environment 5-3

You can check the progress of the upgrade by examining the
/var / dss/namedb/ src/passwd file, which has an asterisk (*) in place of an
encryption string for all upgraded passwords.

After running in UPGRADE level long enough to collect and change all user
passwords, you can make the transition to ENHANCED level.

5.4 Making the Transition to ENHANCED Level
If all user passwords have been collected and changed, you can make the transition to
ENHANCED level. This section describes the steps in the transition.

1. Starting with the primary server, run /usr / et c/ sec/ secset up to change
the security level from UPGRADE to ENHANCED.

Note

For maximum security, the Kerberos master and BIND/Hesiod
primary server should limit login access to only those people in the
local passwd and auth files. To prevent distributed lookups on
the master, in / etc/ svc. conf on the Kerberos master
BIND/Hesiod primary, set the auth and passwd variables to local
as shown:

auth=local
passwd=local

2. Run /usr/etc/sec/secsetup on each Kerberos slave, BIND/Hesiod
secondary server.

3. Run /usr/etc/sec/secsetup on each BIND/Hesiod slave and on all
other systems running the Kerberos-authenticated named daemon.

5-4 Creating an UPGRADE or ENHANCED Distributed Environment

Kerberos Programming Interface 6

This chapter describes the network programming connections of the kerberos
daemon to a Kerberos-authenticated application. The Kerberos libraries provide an
authentication interface for applications that are Kerberos principals. They enable the
application to contact the kerberos daemon for formatting and sending
authentication information to other Kerberos principals.

6.1 Kerberos Libraries
The Kerberos software components are:

• Kerberos applications library (libkrb)

• Encryption library (libdes)

• Access control list library (libacl)

• Kerberos communications library (libknet)

• Kerberos database library (libkdb)

The Kerberos programming interface consists chiefly of four of these libraries:
libkrb, libdes, libknet, and libkdb. These libraries are used by all
Kerberos-authenticated utilities. They make up the authentication and
communication interface between clients and the kerberos daemon, and between
two principals.

The applications library, 1 ibkrb, provides the programming interface for
authentication. This library contains routines for creating or reading authentication
requests, and for creating messages that cannot be tampered with by a hostile user.
This library can also send messages across TCP/IP connections to the kerberos
daemon as well as to another Kerberos principal. The applications library contains
references to routines in libdes, libknet, and libkdb, so these libraries must
also be linked with any program if the libkrb routines are used. Refer to the
following reference pages for detailed information:

• kerberos(3krb)

• krb_get_lrealm(3krb)

• krb_sendauth(3krb)

• krb_sendmutual(3krb)

• krb_set_tkt_string(3krb)

• krb_svc_init(3krb)

The encryption library (1 ibde s) provides routines that support the Data Encryption
Standard. The DES library routines do not actually perform encryption, but are
support routines for it. Refer to de s _ crypt (3 k r b) for detailed information.

The communications library (1ibknet) provides, for 1ibkrb, support routines for
communicating with the kerberas daemon. There are no routines in 1ibknet
available to be used by an applications programmer.

The Kerberos database library (1ibkdb) provides support routines, for 1ibkrb,
that access the Kerberos database. Only the routines in 1ibkrb use the 1ibkdb
routines.

The access control list (ACL) library, 1ibac1, has routines that can be used by an
application to perform authorization. Authorization is the process of deciding
whether a principal is allowed to perform a particular action. Often, authorization
checks are performed immediately after a principal is authenticated, to distinguish
between the privileges accorded to two different principals. The 1ibac1 library
uses access control lists to store lists of authorized principals. Refer to
ac1_check (3krb) for more information about access control lists.

6.2 Kerberos Programming Examples
The server is designed to store, modify, and access an access control list while the
client is designed to ask questions about the list. The access control list used by the
server is created and serviced by the routines of the 1ibac1 library. Refer to
ac1_check (3krb) for more information about 1ibacl. All data passed between
the client and server is authenticated by Kerberos.

The client uses a TCP socket to communicate with the server, but the code that the
client and server use for communication does not need to be described here. Only
those sections of the code that describe how the client and server use the Kerberos
library calls are discussed.

The examples consist of two client-server pairs. In both, the client and server
programs do the same task. However, the low-level pair use the Kerberos routines
that create packets of authentication information that can be placed inside the' 'on
the-wire" protocol of the application.

The high-level pair use the Kerberos routines for applications whose "on-the-wire"
protocol cannot be altered. The Kerberos routines in the high-level example
encapsulate the "on-the-wire" protocol of the application inside Kerberos-formatted
packets.

The high-level client differs from the low-level client in that the low-level client runs
as a daemon and is a Kerberos principal. The high-level client is not a Kerberos
principal; it takes the identity of the user, principal, that runs the utility as its own
and authenticates itself as the user.

6.2.1 Organization of Example Files
The next two sections of this chapter explain the low-level and high-level examples
by referring to 12 files, which are grouped together after the explanations. This
organization is necessary to facilitate the explanations of high-level and low-level
client-server pair examples, which share much of the same programming code.

These shared code files are organized as follows:

• Common header file - all. h

• Code common to the high-level and low-level server and client - camm. c

• Code specific to the high-level and low-level client-server pairs:

6-2 Kerberos Programming Interface

low level.c

high_level.c

• High-level and low-level server code:

server.h

1 server.c

h server.c

server.c

• High-level and low-level client code:

client.h

1 client.c

h client.c

client.c

You will need to refer to this C code and its embedded comments while reading the
next two sections, "Low-Level Example Explanation" and "High-Level Example
Explanation." Each explanation often points to a specific section of C code by using
a numbered box such as point [I , whose counterpart [I is in Example 6-3.

It is necessary that the high-level and low-level examples share code extensively, to
more easily explain both of the "on-the-wire" protocols:

• The placing of packets of authentication information inside the "on-the-wire"
protocol, explained in Section 6.2.2 (low-level example)

• Applications whose "on-the-wire" protocol cannot be altered, explained in
Section 6.2.3 (high-level example)

This makes it necessary to explain different sections of code nonsequentially among
the 12 example files (including the code not explicitly labeled as a common header
file). To make this task easy, all numbered boxes in the entire block of files continue
as a sequence. For example, the last numbered box in ExaIEEle 6-3 is point lHJ .
Therefore, the first numbered box in Example 6-4 is point I15J .
Whenever the explanation shifts to another file of code, the new file is denoted by
name and example number. However, it is always easier to simply refer to a
numbered point in the block of files. The entire block of files starts on an odd
numbered page (at Section 6.2.4), and you may find it easier to refer to them by
removing them from the binder and placing them nearby.

These examples were compiled on a "one-pass-through" C compiler, whose
efficiency is maximized by placing main at the end of a section of code. That is
why the explanation below starts at point l63l , which is main in the file, server. c.

6.2.2 Low-Level Example Explanation
In server. c (Example 6-8), the low-level server begins execution at point f§3] .

At point ~ , the server sets up the default names of the log file, log_file, the
access control list (ACL) file, acl_file, the primary name of the server,
p state. primary name, the ticket file, p state. tkt file, and the service
table (srvtab) file, p_state. srvtab_file.-The log file is used to print error

Kerberos Programming Interface 6-3

messages, the ACL file stores the access control list that the server will manipulate,
the ticket file stores any tickets that the server receives from Kerberos, and the srvtab
file stores the primary key of the server.

At point 1§5] , the user of the server can change any of the default settings.

At point [§§] , the server calls ini t_files, which is located at point [§2J, to open
the log file and make sure that the ACL file exists.

At point ~ , the server calls in it _ c ornm, which is located at point l61] , to initialize
the TCP socket it uses to communicate with the client. Next, ini t cornm stores the
socket attributes in the p r in _ s tat e structure, p _ s tat e. -

In server. h (Example 6-5), the prin state structure is defined at point ~. A
variable of main, p_state is a prin_state structure used throughout the client
and server for storing some of the attributes associated with the server. The
p_state variable stores the server primary name, primary_name, instance name,
instance, and realm name, realm. It stores the name of the srvtab file and
the tkt file that the server uses, and in stream sock, and stream- addr, it
stores information about the socket that the server uses to communicate with the
client.

In serve r . c (Exa~ 6-8), the low-level server continues executing by calling
ini t krb, at point ~. The ini t krb call initializes the Kerberos libraries for
the server. See Figure 6-1, which illustrates the server Kerberos initialization by
showing each subroutine call on a time line, and how that call interacts with Kerberos
(for the server initialization, there is no interaction).

Figure 6-1: Server Initialization

Server Kerberos

gethostname

krb _get_I real m

Time Line

6-4 Kerberos Programming Interface

In ini t _ krb (point 135]), the server calls gethostname (point I3§]), and
krb _get _phost (point l3Zl), to produce the instance name of the server from the
hostname of the local host. Refer to krb get lrealm (3krb) for more
information about krb get phost, and to gethostname (2) for more
information about gethost~ame.

The instance name will be a lowercase version of the hostname with the BIND
domain name stripped. The call to krb_get_lrealm (pointlaeJ), reads the name
of the realm of which the local host is a member, and stores it in the p state
structure. Refer to krb get 1 realm (3krb) for more information about the
realm name. --

The calls to krb_set_srvtab string (pointl3:9J) and to
krb_set_tkt_string (point~) initialize memory internal to the Kerberos
libraries, with the names of the srvtab file and the ticket file. Refer to
krb_set_tkt_string (3krb) for more information about the ticket file. The
server does not need to contact the kerberos daemon (Figure 6-1), to initialize
itself. The clients will be required to contact Kerberos.

After the Kerberos libraries are initialized, the server calls begin assoc (at point
I§9l) to begin an association with a client. -

In the routine, begin_assoc (at point!52]), the server determines if there is a
client ready to communicate (see the first half of a while loop at point ~.)

Before the client contacts the server, the client begins executing the file client. c
(Example 6-12) in main, which is located atlPoirtl1331. The client reads in the
arguments sent to the client daemon at point 134 . The read_args routine for the
high-level client is different from that for the low-level client, so the read args
routine is in file 1 client. c (Example 6-10) at point I91J . -
At point 192] , the low-level client sets default values for the log file, log file, the
ticket file, p state->tkt file, the srvtab file, p state->srvtab file,
and the primary name of the service in the same way Iii which the server sets
defaults. However, the low-level client uses two extra files: the output file,
out_file, and the command file, comm_file. The output file is the file into
which results from the low-level client operations are placed. The command file is
the file from which commands sent by the low-level client to the server are read.
The low-level client does not use an ACL file. The low-level client allows the user
to change the default values for the files it uses at point I93J .
In client. c (Example 6-12), the client calls the routine ini t files at point
1135l. With the init_files procedure in I_client. c (Example 6-10) at point
190J , the low-level client opens the output file, command file, and log file.

With the init_comm procedure call in client. c (Example 6-12) at point[3§],
the client initializes a socket that it uses to communicate with the server. The
ini t comm procedure itself is located in client. c at point ~ .

In the ini t_krb call at point [l]1] in client. c (Example 6-12), the low-level
client initializes the Kerberos libraries so that the connection between the client and
server can be authenticated. See Figure 6-2, which illustrates the low-level client
initialization through ini t krb, showing each client side subroutine call on a time
line, with the interaction with Kerberos.

Kerberos Programming Interface 6-5

Figure 6-2: Client Low-Level Initialization

Client
init_krb call

gethostname
krb_get_phost
krb_get_lrealm
krb_svc_init call ., .,

Kerberos

., .,
.'.'., request for tkt(tgs) ., ., ., ., .,

response with tkt(tgs) • .. • .. • .. • .. • .. • .. • .. • .. • .. • ..
It

krb_svc_init returns

init_krb returns

~r Time Line

6-6 Kerberos Programming Interface

.,

.. • ..

., ., ., .,
produce tkt(tgs)

• .. • .. • .. • .. • .. • .. •

In the routine ini t krb in file 1 client. c (Example 6-10), at point IS5] , the
low-level client callsthe gethost-;ameJEoint lB§]), the krb _get _phost (point
~), and the krb get 1 realm (point lB.8J) routines for exactly the same reasons
as the server. Refertokrb get lrealm(3krb) and gethostname (2) for
more information about these program calls.

Next, the low-level client calls krb svc ini t (point l8:9.I), which contacts the
kerberos daemon (as shown in Figure 6-2) so that the client can obtain a ticket
granting ticket, tgt. The ticket-granting ticket is used by the client to authenticate
itself to the ticket-granting service, which is a part of the kerberos daemon, without
having continuous access to the client password. The ticket-granting service gives, to
the client, tickets with which it can authenticate itself to other services.

The krb svc ini t routine stores the ticket-granting ticket in the ticket file input
to krb_svc_lnit, and reads the client password from the srvtab file input to
krb _ svc _ini t. For details of the operation of krb _ svc _ ini t, refer to
krb_svc_init(3krb).

The ini t krb routine uses p state, a prin state structure. In client. h
(Example 6-9) the prin_state structure is defined at point~. The p_state
structure of the client is the same as the p state structure for the server, except
that the client does not need a stream sock variable to wait for connections.

After the Kerberos libraries are initialized, the client calls begin assoc at point
~ in client. c (Example 6-12) to begin an association with aserver.

In the beg i n _as soc routine (point [ill]) at the w hi 1 e loop (point ~) the client
first calls read comm file at pOintl1211 to fill in the variable comm (a command
structure) with a command from the command file.

In client. h (Example 6-9), the definition of a command structure is at point lZ2J.
The command struct lists the action the client should take as well as the principal
name of the client to which the action should be applied. Actions are usually ACL
commands such as check, exact match, and add. (See the reference page for
acl check. 3krb for more information.) There are two other commands, begin
and ~nd. The begin command tells the client to begin an association with a server,
and end tells the client to end the session.

In the read comm file procedure of client. c (Example 6-12) at point [01],
the action type and the principal name is read from the command file. At point [Q8I ,
kname par se splits the principal name into its constituent primary, instance, and
realm names. Refer to acl check (3krb) for more information on the format of
a principal name and the usage of kname_parse.

At point 11221, (after the call to read_ comm_file) the client determines whether
the command is a begin command. A begin command includes the principal
name of the server that the low-level client should contact. The rest of the whi le
loop through point [ill] , contacts the appropriate server and fills in sections of the
association state structure, a _ s tat e.

In cl ient . h (Example 6-9), at point!I4l , the association state structure
assoc state, is defined. It describes the association between the client and the
server, and includes the local address of the client, 1 addr, the foreign address of
the server's socket, f addr, the file descriptor that the client uses to communicate
with the server, cornrTI""_ sock, and the principal name of the server:
f_primary_name, f_instance, and f_realm.

In cl ient . c (Example 6-12), at point ~ , the gethostbyname routine uses
the instance name of the server as the name of the machine on which the server runs

Kerberos Programming Interface 6-7

in order to find the address of the server's machine. At point 11241, the client
detennines the port that the server is using to communicate with the client. Both of
these values are stored in a_state->f_addr. At point[2§],
a _ s tat e - > 1_ a ddr is filled with the local address of the client. At point ff2Z] ,
a_state->f-prirnary_narne, a_state->f_instance, and
a_state->f_realrn are filled with the name of the foreign server. All of these
values will be used to authenticate the identity of the server.

Likewise, in serve r . c (Example 6-8) at ~nt ~ , the server fills in the
a_state->f_addr values, and at point~, the a_state->l_addr values.

In serve r . h (Example 6-5) at point l2II , the association state
structure (as soc state) is the same as the one described in client. h
(Example 6-9), at point ~ , except that it does not include the principal name of the
foreign host. This value will be stored in the authen_data structure.

6-8 Kerberos Programming Interface

Figure 6-3: Low-Level Authentication

Client
authen_assoc call

gettimeofday
krb_mk_req call

Kerberos Server
authen_assoc call

• '.'., ... request for tkt(krb_sample_srv)

produce tkt(krb_sample_srv)

read_msg
krb_rd_req

des_key_sched
krb sendmutual

• ,-: write_msg .,.' .,.'. ' .,.,.'
read_msg ~.'.' krb_sendmutual message
krb_get_cred
des_key_sched
krb_recvmutual
make_return_msg
make_authen_msg
write_msg .'.,., authentication OK? .,.,.,

authen_assoc returns

Time Line

.'.,.,
.'.,.~ read_msg
read_authen_msg
read_return_msg

authen_assoc returns

Kerberos Programming Interface 6-9

At point 1561 in the server, server. c (Example 6-8), and at point [28J in the client,
client. c (Example 6-12), the client is connected to the server and is ready to send
authentication information to the server. Both the client and the server authenticate
the association with authen_assoc. The way in which messages are passed
between client and server is pictured in Figure 6-3, which illustrates low-level
authentication by presenting client and server code (and the interaction with
Kerberos) along a time line.

In I_client. c (Example 6-10), the low-level client uses krb_mk_req at point
lZ§] , to format an authentication packet to send to the low-level server. The
krb mk req routine contacts the kerberos daemon to obtain a ticket to
COmmunICate with the server, as illustrated in Figure 6-3. In addition, krb_mk_req
creates an authenticator, packages it with the ticket, and returns the result in variable
krb_txt. The gettimeofday call, at pointlZ5J, produces a random number,
checksum, that is input to krb mk req. The random value is used to provide
mutual authentication. Refer to kerberos (3krb) for more details about
krb mk req. The low-level client sends the authentication information to the
server at point [TIl .

In 1_ serve r . c (Example 6-6), at point 122] , the low-level server receives the
authentication information and uses krb rd req at point ~ to interpret the
authentication information. If the krb ;ct ~eq call succeeds, then the low-level
client really is Kerberos-authenticated to thelow-Ievel server. Refer to
kerberos (3krb) for more information about the krb _ rd _ req call.

At point ~ , the low-level server uses the des key sched procedure to convert
the session key between the low-level server and the row-level client (which was
returned by krb_rd_req in a_state->authen_data) into a key schedule.
Refer to des crypt (3krb) for more details about des key sched. It then
formats a message with krb_sendrnutual, at point ~ ,that WIll authenticate the
low-level server to the client. The message is placed by krb _ sendrnut ual into
krb txt. Refer to krb sendrnut ual (3krb) for more information about
krb=sendrnutual. At point I2§] , the low-level server sends the message formatted
by krb_sendmutual to the low-level client.

In I_client. c (Example 6-10), at point 1Z8J, the low-level client reads the
message sent by the low-level server, uses krb _get _ cred at point f.Z9) to get access
to the session key between the low-level client and the low-level server
(a state->cred), converts the session key into a key schedule at point 00 with
de;-_key_sched and attem~ to authenticate the low-level server with
krb_recvmutual at pointlBlJ.

The krb _ recvmut ual routine is given the message formatted by
krb sendrnut ual in krb txt as input. If krb recvmut ual succeeds, the
low-level server is authenticated to the low-level client. Refer to
kerberos (3krb) for information about krb get cred and to
krb_sendmutual (3krb) for information about krb_recvmutual.

At point lB2J , the low-level client uses make_ret urn_ msg to format a message to
the server that indicates the status of the low-level client's authentication of the low
level server. It then authenticates the message at point ~ with
make aut hen msg, and sends the message to the low-level server, at point 18!l.
The rOUtine, make_authen_msg, will be described in detail later.

In 1 server. c (Example 6-6), at point l2ZJ , the low-level server determines the
status of its authentication to the low-level client in three steps:

6-10 Kerberos Programming Interface

1. by reading the message sent by the low-level client with read_msg,

2. by determining its authenticity with read_authen_msg at point 128l, and

3. by determining the status of the authentication with read ret urn msg at
point 12.9] . - -

The read_authen_msg routine will be discussed in detail later.

At point 151J, in the server, server. c (Example 6-8) and at point [29] in the client,
client. c (Example 6-12), the client is authenticated to the server and the server is
authenticated to the client. Next, the server must determine if the client is authorized
to send commands to the server. The messages passed between the client and the
server to achieve authorization are illustrated in Figure 6-4.

Kerberos Programming Interface 6-11

Figure 6·4: Client Authorization

Client Kerberos Server

• . ' , • • ,

Ii read_msg

read_authen_msg

read_return_msg

Time Line

6-12 Kerberos Programming Interface

,
• ,

• ,
• ,

• ,

• ,

authorize_assoc call

acl check

authorize_assoc returns

make_return_msg

make_authen_msg

,. write_msg
• ,

• ,
• ,

• ,
• ,

• ,
• ,

• ,

• ,. authorization OK?

In server. c (Example 6-8) at point [51] ,the server calls the authorize assoc
procedure at point I!1J to make sure that the client is allowed to communicate with the
server. The decision is made in the authorize assoc routine through a call to
acl check, at point ~. The acl check routine checks to make sure that the
client principal is a member of the ACt file, acl file. If the client is a member,
then the client should be able to ask the server questions about the ACL file. The
principal name of the client that the server is communicating with, is stored in the
authen_data structure returned by krb_rd_req. Refer to
acl_check (3krb) for more information about acl_check.

At point 9 , a message is formatted telling the client whether it has access to the
server. At point 159] , the message is authenticated, and at point I6.Q] , the message is
sent to the client.

In client. c (Example 6-12), at point 11l9], the client determines the status of the
authorization through the use of read msg, read authen msg, at point 113OJ,
and read_return_msg at point!13If. - -

At point [39] here in the client and at point I10J in the server, serve r . c (Example
6-8), the client is authenticated to the server and the server to the client. The server
is ready to service the commands of the client and the client is ready to send
commands. The service assoc routine is used by the client to format and send
commands to the server, and service assoc is used by the server to receive,
process, and answer these commands. The way in which data is passed between the
client and server in service assoc is illustrated in Figure 6-5, which shows the
low-level service of commands by presenting the client and server command
interaction along a time line.

Kerberos Programming Interface 6-13

Figure 6-5: Low-Level Access Control List (ACL) File Service

~r

Client
read_comm_file
make command
make_authen_msg call

Server

make auth bits
des_quad_cksum

make_authen_msg returns
write_msg .,

• , • , • , • , • , command/auth bits .'. '. , .'. '.'.,.
'.,.~ read_msg

read_authen_msg call
read auth bits

des_quad_cksum
read_authen_msg returns

read_command
perform ACL command

make_return_msg
make_authen_msg call

make auth bits
des_quad_cksum

make_authen_msg returns

. ,.' .,.' ., . ,.,. write_msg

.,.'
• ' • ' • ' • ' response/auth bits

read_msg ,.'

read_authen_msg call
read auth bits
des_quad_cksum

read_authen_msg returns
read_return_msg

Time Line

6-14 Kerberos Programming Interface

In client. c (Example 6-12), at point 11iOl, the client reads a command from a file
into the comm_to_do structure with read_comm_file at point[Q1]. It converts
the command into an "on-the-wire" format with make command at point 11111.
The possible commands are check, exact match, ~dd, delete, and end.
Every command except end, includes the mune of the principal associated with the
command. Refer to acl_ check (3krb) for more information about these
commands.

At pointlII2], the command is authenticated by make_authen_msg, and sent to
the server with w r i t e _ ms g, at point I1I3l .
In serve r . c (Example 6-8), at point ~ , the server reads the command with the
read_msg procedure and authenticates it with read_authen_msg at point ~.

In low_level. c (Example 6-3), the make_authen_msg routine at point [Q] and
the read_authen_msg at point [j] are designed to write and read the authentication
information placed on every packet sent between the low-level client and the low
level server. The authentication information guarantees that every message sent
between the low-level server and low-level client comes from the right application
and has not been altered during its journey. The low-level make authen msg and
read _ aut hen _ msg routines do not encapsulate the "on-the-wif"e" protocol of the
low-level client and low-level server. They alter the "on-the-wire" protocol by
adding authentication bits to a command or a response.

The make_authen_msg routine adds the time at which the packet was formatted,
time (at point ITIJ), the address of the machine that is formatting the message,
l_addr (at point[j]}), and a direction value, direction, (at point[j]]), that
indicates whether the low-level client or the low-level server formatted the message
input to make_authen_msg.

At point~, the make_authen_msg call made by the low-level client uses
des_quad_cksum to form a checksum of the message and add it as a part of the
authentication bits. The checksum is formed in such a way as to identify the
producer of the message (authentication), and prevent anyone except the low-level
client and the low-level server from producing the checksum (modification
protection). Refer to des _crypt (3krb) for more information about
des_quad_cksum.

The read_authen_msg procedure, at point [j], called by the low-level client,
reads the information written by the make aut hen msg call (point [Q]), at points
~,~,~d~. --

At point 15] ,des_quad_cksum is used to recreate the checksum that should have
been created by the low-level client for this message.

At point [§] , if the checksum in the message is different from the checksum produced
by des_quad_cksum, then the message is not from the low-level client, or it was
modified by an intruder; so, the message is rejected.

At point lZJ , if the address for which the packet was formatted is not the address from
which the packet was sent, then the packet may have been stolen from the network
and sent by an intruder; so, the message is rejected.

At point [8] , if the message is marked as if it were sent by a server, an intruder must
have sent back to the server a message sent by the server; so, the message is rejected.

At point I9J , if the message is too old, it is rejected.

In serve r . c (Example 6-8) at point ~ , after the server knows the message is
authentic, the command is read from the message with read_command.

Kerberos Programming Interface 6-15

At point [41] , the command is converted into an ACL command and perfonned. The
ACL commands access the ACL file, acl file. For more infonnation about the
ACL commands, refer to acl_ check (3krb) .

At point ~, the result of the command is fonnatted by make ret urn msg,
authenticated by make authen_msg, at point~, and written to the client with
write_msg, at point~.

In client. c (Example 6-12), at point 11141, the result is read by the client,
authenticated by read_authen msg at point [j]]], and interpreted by
read_return_msg at point [1j]].

At point 11171 , the result of the command is printed by the client.

In serve r . c (Example 6-8), at point ~ , if the command sent to the server by the
client is an end command, then the server returns to main from service assoc.
The client does the same in client. c (Example 6-12), at point [j]] . -

In server. c (Example 6-8), at point lZ1l , the server closes its communication
channel to the client with end assoc, and waits for another client with
begin_as soc at point ~. -

In client. c (Example 6-12), the client closes its communication channel to the
server with end_assoc,~ointI1401. It attempts to contact another server with
begin_assoc, at pointl13.8J.

6.2.3 High-Level Example Explanation

The high-level versions of the client and server perfonn the same service in almost
the same way as the low-level client and server, so they are able to share a large
amount of code. The explanation of the way in which the high-level server-client
pair work focuses on the differences between the high-level and low-level server
client pairs.

In server. c (Example 6-8) at point ~ , the high-level server begins like the low
level server. In fact, the execution of the high-level server is equivalent to the low
level server until the high-level server executes the the authen assoc call (see
point ~) inside of begin_assoc at point l52J. -
In client. c (Example 6-12) at point ~ , the high-level client also begins, like
the low-level client. But, the high-level client begins to differ from the low-level in
the calls to read_args at point~and to init_files at pointl13:5J.

The hiA~-~fvel versions of init files and read args are in h client.c at
points 1 and ~ ,respectivelY, The high-level client is not itselfa principal, but
assumes the identity of the user that starts the high-level client. In addition, the high
level client gets its commands from the user, and sends the user back the results of
its messages to the high-level server.

So, to enable the client to communicate with the user, the command file, fio cornrn,
is set equal to stdin, the output file, f io _ cornrn, is set equal to stdout, and the
log file, fio_log is set equal to stderr, in init files at point[Q3J. As a
result, in the read_args routine at points [Q5] andffQ§] , the user is not allowed to
change the values of the log, output, or command files. The service table (srvtab) file
is not used by the high-level client because the user supplies a password.

6-16 Kerberos Programming Interface

Figure 6-6: Client High-Level Initialization

Client
init_krb call

get principal name from person
krb _ set_ tkt_ stri ng

krb_get_pw_in_tkt call .,
• '. , .,

• '. ,

Kerberos

., request for tkt(tgs) .'. '. '.'. '., ., ., ,
produce ticket(tgs)

~r Time Line

Kerberos Programming Interface 6-17

The next portion of code in which the low-level client differs from the high-level is
the ini t _ krb call in cl ient . c (Example 6-12), at point ff31I. See Figure 6-6.

In h client. c (Example 6-11) at point 199J, there is the ini t krb code for the
high-=ievel client. The ini t krb call of the high-level client performs the same
function as the ini t krb call of the low-level client, except that it initializes the
Kerberos libraries fora user instead of for the client daemon.

The high-level client prompts the user for the user principal, instance, and realm
name. Like the low-level server, these three values are stored in the p state
structure at point I1DOI . -
In the low-level client file, 1 client. c (Example 6-10), the krb svc ini t call
at point I8i1 sets the default ticket file, but the krb get pw in tkt call in
h _ c 1 i en t . c (Example 6-11) at point ~ does not set the default ticket file value.
Therefore, the high-level client calls krb set tkt st ring at point [OJ]. For
more details about krb_set_tkt_string, refer to
krb_set_tkt_string(3krb).

At point~, the high-level client calls krb_get_pw_in_tkt to obtain a ticket
granting ticket from the kerberos daemon for the user. The
krb get pw in tkt string call prompts the user for a password, while the
krb -svc -init call in 1 client. c (Example 6-10) at point 189] of the low-level
client, obtained the password of the low-level client from the service table (srvtab)
file. For more details about krb_get_pw_in_tkt, refer to
krb_svc_init(3krb).

6-18 Kerberos Programming Interface

Figure 6-7: High-Level Authentication

Client Kerberos Server

authen_assoc call
gettimeofday
krb_sendauth call

authen_assoc call

.,
.'., request for tkt(krb_sample_srv)

produce tkt(krb_sample_srv) ,.,.,.
~ tkt(krb_sample_srv) .,.

I. I

• I • I • I • I • krb recvauth call I.,. -
krb_sendauth message ,.,.,

krb_sendauth returns
make_return_msg
make_authen_msg

write_msg .'., .'. I.,.

krb_recvauth returns

'.'. '.'. authentication OK? '.,.,. ~
read_msg

read_authen_msg
read_return_msg

authen_assoc returns

authen_assoc returns

Time Line

Kerberos Programming Interface 6-19

Recall that the high-level server first differs from the low-level server in the
authen_assoc call in server. c (Example 6-8) at point I5§] , within the
begin_as soc procedure at point ~. The client's authen_assoc procedure,
called in client. c (Example 6-12) at point [28] within the begin assoc
procedure at point [ill] , also differs from the client's low-level version of
authen_assoc. See Figure 6-7.

The high-level server's version of authen assoc is in file h server. c
(Example 6-7), at point 00 , while the high=Ievel client's version is in h _ c 1 i en t . c
(Example 6-11) at point 19:41. The high-level client calls gettimeofday to produce
a checksum just like the low-level client. However, it then calls krb sendauth, at
point 19:5J. Next, krb sendauth requests a ticket to communicate with the server
from the kerberos daemon, receives the ticket, and produces a ticket-authenticator
pair just like krb mk req, in 1 client. c (Example 6-10) at point lZ§]. Then,
however, unlike k~b mk req, the krb sendauth routine sends the ticket
authenticator pair to the hIgh-level server-on the file descriptor provided,
a state->comm sock.

In h server. c (Example 6-7), the high-level server calls krb recvauth at
pointJ3] , to read the message sent by krb_sendauth with thefile descriptor
provided, a state->comm sock, and, like krb rd req, at point I2al in
1_ serve r -:- c (Example 6-6~ it authenticates the hIgh-ievel client. Because the
KOPT_DO_MUTUAL option is set, krb recvauth formats a message that will
authenticate the high-level server to the hIgh-level client, like krb _ sendmut ual
does at point [25] , and returns the message to the high-level client. Next,
krb sendauth receives the message from the high-level server, and authenticates
the hIgh-level server in the same way as krb_recvmutual, in i_client. c
(Example 6-10) at point[8jJ. Both procedures then return. Refer to
krb_sendauth (3krb) for more information about krb sendauth and
krb recvauth.

6-20 Kerberos Programming Interface

Figure 6-8: High-Level Access Control List (ACL) File Service

~r

Client
read comm_file
make command
make_authen_msg call

krb_mk_safe

make_authen_msg return
write_msg • I. I. I. I.

I. I .'.,.,

Server

.'.,., .,.
auth hdr:command:auth trailer I., read_msg

-,-' -,-'

read_authen_msg call

krb_rd_safe

read_authen_msg return
read_command

perform ACL command
make_return_msg

make_authen_msg call

krb mk safe - -
make_authen_msg return

_, _ write_msg -,-' -,-' -,-'
-' read_msg ,.,., auth hdr:command:auth trailer

read_authen_msg call

krb_rd_safe

read_authen_msg return
read_return_msg

Time Line

Kerberos Programming Interface 6-21

In the service_assoc routine in client. c (Example 6-12), located at point
1:i09l, the client calls make aut hen msg to authenticate a command sent to the
server. The server, in its version of service as soc, at point ~ in server. c
(Example 6-8), calls the read authen msg routine to authenticate the client that
sent the message. The high-level versions of the make authen msg call and the
read_authen_call in file high_level. c (Example 6-4), differ greatly from
the low-level versions, in file low_level. c (Example 6-3). See Figure 6-8.

The high-level version of make authen_msg, at point [1] calls the
krb_mk_safe routine, at pointfj]J to authenticate the sender of the message and to
prevent the message from being tampered with during transit. Unlike the low-level
version of make authen msg, in file low level. c (Example 6-3) the
krb mk safe routine does not add authentiCation information on the end of the
clienf s command, but encapsulates the client's message in a message formatted by
krb_mk_safe. The high-level version of read_authen_msg in file
high level. c (Example 6-4) calls krb rd safe at point [1]] to unpackage the
message formatted by krb_mk_safe. For more details about krb_mk_safe and
krb_rd_safe, refer to kerberos (3krb).

6-22 Kerberos Programming Interface

6.2.4 The all.h File
The all. h file is a common header file, shown in Example 6-1:

Example 6-1: The all.h Header File
/* all.h includes macro definitions for all the low- and

high-level server and client C files.
*/

#include <stdio.h>
#include <krb.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <errno.h>
#include <sys/time.h>
#include <sys/uio.h>
#include <sys/stat.h>

/* procedure return values */
#define OK 0
#define FAILURE -1
#define STOP -2

/* size constraints
#define FILE NAME SZ - -
#define HOST NAME SZ - -

*/

#define MAX_COMM_LINE -
#define MAX_MSG_SZ

#define ALL FDS 32
#define TKT LIFETIME

80
80

SZ 80
1024

255

extern char *krb_get-phost();
extern int errno;

6.2.5 The comm.c File
The carom. c file consists of code that is common to the high- and low-level server
and client. It is shown in Example 6-2:

Example 6-2: The comm.c Routine
/* comm.c contains code which is used by the high and

low-level servers as well as the high- and low-level
clients.

*/

#include "all.h"

extern FILE *fio_log; /* file descriptor of log file */

/* read_bytes attempts to read size bytes from comm_sock.

*/

It returns FAILURE if an error occurs or OK if the bytes
were correctly read.

read_bytes (comm_sock, buf, size)
int comm sock; /* file descriptor used to read (input) */
char *buf; /* buff in which to place bytes read (input) */

Kerberos Programming Interface 6-23

Example 6-2: (continued)
int size; /* the number of bytes to read (input) *1

int len; /* bytes currently read */

while(size > 0 && (len = read(cornrn_sock, buf, size)) > 0)
{

buf += len;
size -= len;

if (len <= 0)
{

fprintf(fio_log, "Bad read_bytes call.\n");
return(FAILURE);

else
{

return (OK) ;

/* read message attempts to read the next message sent on
socket cornrn_sock. A message always begins with the
number of bytes in the message. FAILURE is returned if
an error occurs, OK otherwise.

*/
int read_msg(cornrn_sock, msg, msg_len)

int comm_sock; 1* file descriptor used to read (input)*1
char *msg; 1* buff in which to place the message (input)*1
int msg_len; /* the size of the message (output) */

int read_mask; /* the read mask for select *1
int result_mask; /* the mask of fd ready *1
int cornrn_not_ready = 1; /* 0 if bytes are ready to read *1
int size = sizeof(u_long); 1* size of bytes to read */
int sizeofmsg; 1* size of the message in network form *1
int num_ready; 1* number of file descriptors ready */
int result;

while (cornrn_not_ready)
{

read mask = 1 « cornrn_sock;

if((num_ready = select (ALL FDS, &read_mask,
(int *)NULL, (int *)NULL,
(struct timeval *)NULL)) < 0)

if(errno == EINTR)
{

fprintf(fio_log, "interrupted sys call");
continue;

else
{

else

fprintf(fio_log, "select error");
return(FAILURE);

cornrn_not_ready 0;

6-24 Kerberos Programming Interface

Example 6-2: (continued)
if { {result read_bytes {comm_sock,

(char *) &sizeofmsg, size)) != OK)

fprintf{fio_log, "read error\n");
return (FAILURE) ;

sizeofmsg = ntohl{sizeofmsg);

if{sizeofmsg > msg_len)
{

fprintf{fio_log, "msg too large\n");
return (FAILURE) ;

if ({result = read_bytes (comm_sock, msg, sizeofmsg)) ! = OK)
{

fprintf(fio_log, "read error\n");
return (FAILURE) ;

return{sizeofmsg);

/* write_msg writes the length of a message followed by the
message to a file descriptor. It returns FAILURE if an
error occurred, OK otherwise.

*/
write_msg{comm_sock, msg, size)

int comm_sock; /* the file descriptor written to (input)*/
char *msg; /* buff that holds the message (input)*/
int size; /* the size of the message (input) */

struct iovec iov[2];/* vector of output */
int result;
u_long len = htonl{ (u_long) size) ; /* length of output */

iov[O] .iov_base = (caddr_t)&len;
iov[O] .iov_len = sizeof{u_long);
iov[l] .iov_base = {caddr_t)msg;
iov[l] .iov_len = size;

if { (result writev(comm_sock, iov, (int)2))
!= sizeof{u_long) + size)

fprintf(fio_log,"Bad writemsg call.\n");
return (FAILURE);

return (OK);

/* read_return_msg interprets a message returned to the
receiver in response to an earlier message. read_return
message returns FAILURE if an error occurred or OK,
otherwise.

*/
read return msg(ret msg, len, status)

char *ret_msg; -/* the response msg to a msg (input) */
int len; /* length of the above (input) */
char *status; /* status string in the msg (output) */

*cp;
length;

Kerberos Programming Interface 6-25

Example 6-2: (continued)

cp = ret_msg;
bcopy «char *) cp, (char *) &long_val, sizeof (u_long)) ;
length = ntohl(long_val);

cp += sizeof(u_long);

strcpy(status, cp);
if(strlen(status) + 1 != (int) length)
{

fprintf(fio_log, "Bad length in return msg\n");
return(FAILURE);

return (OK) ;

/* make_return_msg formats a response message to a message
sent earlier to the sender. It places a status string
inside the message. read_return message returns FAILURE
if an error occurred or OK, otherwise.

*/
make_return_msg(ret_msg, len, status)

char *ret msg; /* the response msg to a msg (output)*/
int *len; /* length of the above (ouput) */
char status; /* status code for the msg (input) */

u char
u_long
u char

lengthi / pointer to the length of the msg */
long_val;
*cp;

cp = (u_char *)ret_msg;
length = CPi
cp += sizeof(u_long);

if(status == OK)
strcpy(cp, "OK");

else
strcpy(cp, "FAILURE");

cp += strlen(cp) + Ii

*len = cp - (u_char *)ret_msg;
long_val = htonl(*len - sizeof(u_long);
bcopy «char *) & long_val , (char *) length, sizeof (u_long)) ;

return (OK) ;

6-26 Kerberos Programming Interface

6.2.6 The low_level.c File

The low level. c file (like the high level. c file) contains code that is
specific to the high- and low-level client=Server pairs. The low level. c file is
Example 6-3:

Example 6-3: The low_level.c Routine
/* low level.c contains code common to both the low level

client and the low level server.
*/

#ifdef SERVER

#include "server.h"
int direction = 0; /* direction is 0 if the message is

generated or read by these routines
by the client, 1 otherwise. */

#else /* SERVER */

#include "client.h"
int direction = 1; /* direction is 0 if the message is

generated or read by these routines
by the client, 1 otherwise. */

#endif /* SERVER */

extern FILE *fio_log; /* file descriptor of the log file */

/* read_authen_msg takes a message which has authentication

*/

ill

bits formatted by make_authen_msg at the end of the message
and guarantees, that the message was formatted by the sender
associated with the key, session_key, and that the message
was sent by the principal that formatted the message. In
addition, it guarantees that the message was not altered in
transit, that it is probably not old enough to be a replayed
message, and that it is not a replay of a message sent earlier
by the receiver of the message. It returns FAILURE if any of
the guarantees are broken, otherwise it returns OK.

read_authen_msg(session_key, f_addr, l_addr, safe_msg,
length, msg, msg_len)

des cblock session_key; /* the session key between
client and server (input) */

struct sockaddr in *f_addr;/* addr of sender (input)*/
struct sockaddr in *l_addr;/* addr of receiver (input)*/
u char *safe msg; /* msg received (input) */
int length; 1* length of the above(input)*/
char *msg; /* message without authentication info(output)*/
int *msg_len; /* length of above(output)*/

u_long
struct
struct
struct

length; /* length of the msg without
authentication bytes */

length_auth; /* length of authentication
section of message */

my_cksum[8]; /* checksum of the message */
timeval time; /* time now */
timeval time-packet; /* time packet was sent */
timezone zone; /* time zone */

Kerberos Programming Interface 6-27

Example 6-3: (continued)
long
u_long
u_long
u char
u_long

time_diff; /* time msg spent in transit */
direction-packet; /* direction bit in packet */
f_addr-packeti /* receiver address in packet*/
*CPi
long_val;

if (gettimeofday(&time, &zone))
{

fprintf (fio_log, "bad gettimeofday call. \nli);
return(FAILURE);

cp = safe_msg;
bcopy«char *)cp, (char *)&long val, sizeof(u_long));
length = ntohl(long_val);
cp += sizeof(u_long);
cp += length;

bcopy «char *) cp, (char *) &long_val, sizeof (u_long)) ;
length_auth = ntohl(long_val);
cp += sizeof(u_long);

bcopy «char *) cp, (char *) &long_val, sizeof (u_:~c;g));
time-packet.tv_usec = ntohl(long_val);
cp += sizeof(u_long);

bcopy «char *) cp, (char *) &long_val, sizeof (u_long)) ;
time-packet.tv_sec = ntohl(long_val);
cp += sizeof(u_long);

bcopy «char *) cp, (char *) &long_val, sizeof (u_long)) ;
f_addr-packet = ntohl(long_val);
cp += sizeof(u_long);

bcopy «char *) cp, (char *) &long_val, sizeof (u_long)) ;
direction-packet = ntohl(long_val);
cp += sizeof(u_long);

des_quad_cksum(safe_msg, my_cksum,
(long) (cp - safe_msg), (int) 4, session_key);

if(bcmp((char *)my_cksum, cp, 32))
{

fprintf(fio_log, "bad checksum in read_authen_msg.\n");
return(FAILURE);

if(f_addr-packet != (u_long)f_addr->sin_addr.s_addr)
{

fprintf(fio_log, "bad source address.\n");
return (FAILURE) ;

if (direction_packet
{

6-28 Kerberos Programming Interface

direction)

Example 6-3: (continued)
fprintf(fio_log, "bad direction in read_authen_msg.\n");
return (FAILURE) ;

time diff time-packet.tv_sec - time. tv_sec;

if (time_diff > 60 I I time_diff < -60)
{

fprintf(fio_log, "bad time in read_authen_msg.\n");
return (FAILURE) ;

bcopy(safe_msg, msg, length + sizeof(u_long));

*msg_len = length + sizeof(u_long);

return (OK) ;

/* make_authen_msg adds authentication bits onto the end of

~

a message to guarantees, that the sender of the message can
be determined. In addition, it adds bits to guarantee that
the message cannot be altered in transit, and it helps
prevent replays by placing the time that the message was
sent and the direction in which it was sent in the
authentication bits. It returns FAILURE if any error
occurs, otherwise it returns OK.

make_authen_msg(session_key, f_addr, l_addr, msg, len)
des_cblock session_key; /* the session key between

client and server (input) */
struct sockaddr in *f_addr;/* addr of receiver (input)*/
struct sockaddr in *l_addr;/* addr of sender (input)*/
char *msgi /* message to which authentication info

is added (input) */
int *len; /* length of above(output)*/

struct timeval time;
struct timezone zone;
u char *length;

/* the current time */
/* time zone */

/* pointer to the length section
of the authentication bits */

u_long
u char
u_long

chksum[8];/* checksum to place in message */
*cp;
long_val;

if (gettimeofday(&time, &zone))
{

fprintf(fio_log, "bad gettimeofday call.\n");
return (FAILURE) ;

length = (u_char *)msg + *len;
cp = length + sizeof(u long); [1] -
long_val = htonl((u_long)time.tv_usec);
bcopy((char *)&long_val, (char *)cp, sizeof(u_long));
cp += sizeof(u_long);

long_val = htonl((u_long)time.tv_sec)i
bcopy ((char *) &long_val, (char *) cp, sizeof (u_long));
cp += sizeof(u_long) i

Kerberos Programming Interface 6-29

Example 6-3: (continued)
[12J

long_val = htonl((u_long)l_addr->sin_addr.s_addr);
bcopy ((char *) &long_val, (char *) cp, sizeof (u_long»;
cp += sizeof(u_long);

long_val = htonl((u_long)direction);
bcopy((char *)&long_val, (char *)cp, sizeof(u_long»;
cp += sizeof(u_long);

*len = (cp - (u_char *)msg) + 32;
long_val = htonl((u_long) (cp + 32 -

((u_char *)length + sizeof(u_long»));

bcopy ((char *) &long_val, (char *) length, sizeof (u_long)) ;

long_val des_quad_cksum((u_char *)msg, chksum,
(long) (cp - (u_char *)msg), (int) 4, session_key);

bcopy((char *)chksum, (char *)cp, 8 * sizeof(u_long»;
return(OK);

6.2.7 The high_level.c File

The high level. c file (like the low level. c file) contains code that is
specific to "the high-level and low-level client-server pairs. Example 6-4 consists of
the high_level. c file:

Example 6-4: The high_level.c Routine
1* high_level.c contains code common to both the high-level

client and the high-level server.
*1

#ifdef SERVER
#include "server.h"

#else 1* SERVER *1
#include "client.h"

#endif 1* SERVER */

extern FILE /* file descriptor of the log file */

1* read_authen_msg takes a message which is encapsulated by
krb_mk_safe and uncovers it with krb_rd_req. With krb_rd_rq
it guarantees that the message was formatted by the sender
associated with the key, session_key, and that the message
was sent by the principal that formatted the message. In
addition, it guarantees that the message was not altered

~

in transit, that it is probably not old enough to be a
replayed message, and that it is not a replay of a message
sent earlier by the receiver of the message. It returns
FAILURE if any of the guarantees are broken, otherwise it
returns OK. */

read_authen_msg(session_key, f_addr, l_addr, safe_msg,
length, msg, msg_len)

6-30 Kerberos Programming Interface

Example 6·4: (continued)

/* the session key between
client and server (input) */

struct sockaddr in *f_addr; /* addr of sender (input) */
l_addr; / addr of receiver (input) */ struct sockaddr_in

u char *safe_msg;
int length;

/* msg received (input) */
/* length of the above(input)*/

message without authentication info(output)*/
/* length of above(output)*/

char *msg; /*
int *msg_len;

MSG_DAT message_data; /* information about message sent */
long result;

if ((result krb_rd_safe(safe_msg, (u_long) length, session_key,
f_addr, l_addr, &message_data» != RD_AP_OK)

fprintf(fio_log, "krb rd safe kerberos error %ld\n", result);
return (FAILURE) ;

else
{

bcopy(message_data.app_data, msg, message_data.app_length);
*msg_len = message_data.app_length;
return (OK) ;

/* make_authen_msg encapsulates with krb_mk_safe a message.
With krb_mk_safe, it guarantees, that the sender of the
message can be determined. In addition, it guarantees
that the message cannot be altered in transit, and that
replay of the message is hindered. It returns FAILURE
if any error occurs, otherwise it returns OK.

make_authen_msg(session_key, f_addr, 1 addr, msg, len)
des_cblock session_key; /*session key between

struct sockaddr in
struct sockaddr in
char

int

client and server (input)*/
*f_addr; /*addr of the receiver (input)*/
*1 addr; /*addr of sender (input)*/
*msg; /*message without authentication

info (input), and the message
with authentication info (output)*/

*len; /*length of above (input) and (output)*/

bcopy (msg, (char *) temp _msg, * len) ;

if«*len (int)krb_mk_safe(temp_msg,
<u_long)*len, session_key,

(u_char *)msg,
l_addr, f_addr» < 0)

fprintf(fio_log, "krb mk safe call kerberos
error %d\n", *len);

return(FAILURE);

return (OK) ;

Kerberos Programming Interface 6-31

6.2.8 The server.h File
The serve r . h file is one of four files that contain code for both the high-level and
low-level servers. Example 6-5 consists of server. h:

Example 6-5: The server.h Routine
/* server.h */

#include "all.h"

#define SERVER_NAME"krb_sample_srv"

/* The command structure stores the action performed by
the command as well as the principal name the action
should be performed upon */

ffBJ
struct command {

char action[80];/* command action */
char principal[80];/* principal on which action is done */

} ;

typedef struct command command;

/* The prin_state structure stores the server state associated
only with the running server.

~
*/struct prin_state {

} ;

char primary_name[SNAME_SZ]; /* primary name of server */
char instance[INST_SZ]; /* instance name of server */
char realm[REALM_SZ]; /* realm name of server */
char version[KRB_SENOAUTH_VLEN]; /* version of server */

char
char

srvtab_file[FILE_NAME_SZ]; /* srvtab file of server */
tkt file[FILE_NAME_SZ]; /* ticket file of server */

int stream sock;
struct sockaddr_in

/* socket clients connect to */
stream_addri/* address of the above */

typedef struct prin_state prin_statei

/* The assoc_state structure stores the server state related
to an association with a client.

~
struct assoc_state {

} ;

int comm_sock; /* socket used to talk with client. */
char version[KRB_SENOAUTH_VLEN]i /*version of client */

struct sockaddr in l_addr;
struct sockaddr_in f_addri

/* address of the server */
/* address of the client */

AUTH OAT authen_data; /* authentication data for client */

typedef struct assoc_state assoc_state;

6-32 Kerberos Programming Interface

6.2.9 The I_server.c File
The I server. c file is one of four files that contain code for both the high-level
and low-level servers. Example 6-6 consists of I_server. c:

Example 6-6: The I_server.c Routine
/* 1 server.c contains server code that is only used by

the low level server.
*/

#include "server.h"

extern FILE *fio_log; /* file descriptor of the log file */

/* authen_assoc attempts to authenticate the association
between the low-level client and the low-level server

*/

for the server. It returns FAILURE if the authentication
fails and OK, otherwise.

authen assoc(p state, a state)
assoc state-*a state; /* association descriptor (input)*/
prin_state *p=state; /* state of the principal (input) */

char auth init msg[MAX MSG SZ]; /* krb_rd_req message */
int auth-init-length;- - /* length of the above */
KTEXT ST krb t~t;/* input to krb rd req,krb sendmutual*/
Key_schedules~hedule; /* key schedule for-session key */

char
int
char
char
char

return buf[MAX MSG_SZ];
return_buf_len;
return_msg[MAX_MSG_SZ];
return_msg_len;
status[MAX_MSG_SZ];

int result;

/*status buffer from client */
/* length of the above */
/* status message from client*/
/* length of the above */
/* status sent by client */

if«auth_init_length = read_msg(a_state->comm_sock,
auth_init_msg, MAX_MSG_SZ)) == FAILURE)

fprintf(fio_log, "Bad read_msg call.\n");
return (FAILURE) ;

if«result = krb_rd_req(&krb_txt, p_state->primary_name,
p_state->instance,
(u_long)a_state->f_addr.sin_addr.s_addr,
&a_state->authen_data, p_state->srvtab_file)) != RD_AP_OK)

fprintf(fio_log, "Bad krb_rd_req call.\n");

if (des_key_sched(a_state->authen_data.session, schedule))
{

fprintf (fio_log, "Bad des_key_schedule call. \n") ;
return (FAILURE) ;

if ((result

Kerberos Programming Interface 6-33

Example 6-6: (continued)
KFAILURE, (int)NULL, &a_state->f_addr,
&a state->l addr, &a_state->authen_data,
schedule)) != KSUCCESS)

fprintf(fio_log, "Bad krb sendmutual call.\n")i
return(FAILURE)i

else

[2!]{
if (des_key_sched (a_state->authen_data. session, schedule))
{

fprintf(fio_log, "Bad des_key_schedule call.\n");
return(FAILURE)i

if((result = krb_sendmutual(KOPT_NORDWR, &krb_txt,
KSUCCESS, (int) NULL, &a_state->f_addr,
&a_state->l_addr, &a_state->authen_data,
schedule)) ! = KSUCCESS)

fprintf (fio_log, "Bad krb sendmutual call. \n");
return(FAILURE)i

if (write_msg(a_state->comm_sock, krb_txt.dat,
krb_txt.length) != OK)

fprintf(fio_log, "Bad write_msg call.\n")i
return(FAILURE)i

if((return_buf_len = read_msg(a_state->comm_sock, return_buf,
sizeof(return_buf))) == FAILURE)

fprintf(fio_log, "Bad read_msg call.\n") i

return(FAILURE)i

if((result = read_authen_msg(a_state->authen_data.session,
&a_state->f_addr, &a_state->l_addr, return_buf,
return_buf_len, return_msg, &return_msg_len)) == FAILURE)

fprintf(fio_log, "Intruder alert, bad safe msg.\n")i
return (FAILURE) i

if((result = read return msg(return msg, return_msg_len,
status)) ! = OK)

fprintf(fio_log, "Bad return message\n")i
return(FAILURE)i

6-34 Kerberos Programming Interface

Example 6-6: (continued)
if (! strcmp ("FAILURE", status»
{

return (FAILURE) ;

return (OK) ;

6.2.10 The h_server.c File
The h server. c file is one of four files that contain code for both the high-level
and low-level servers. Example 6-7 consists of h_server. c:

Example 6-7: The h_server.c Routine
1* h server.c contains server code that is only used by the

high-level server.
*1

'include "server.h"

extern FILE *fio_log; 1* file descriptor of the log file */

1* authen_assoc attempts to authenticate the association
between the high-level client and the high-level server
for the server. It returns FAILURE if the authentication
fails and OK, otherwise.

~
authen assoc(p state, a state)

ass~c state-*a state; /* association descriptor (input) *1
prin_state *p=state; /* state of the principal (input) *1

KTEXT ST ticket; /* ticket/authenticator pair from client*1
Key_scheduleschedule; /* key schedule for session key *1

char return_buf[MAX_MSG - SZ] ; I*status buffer from client *1
int return_buf_len; 1* length of the above *1
char return_msg[MAX_MSG_SZ]; /* status message from client*/
char return_msg_ len; 1* length of the above *1
char status[MAX_MSG_SZ); 1* status sent by client *1
int result;

if((result = krb_recvauth((long)KOPT_DO_MUTUAL,
a_state->comm_sock, &ticket,
p_state->primary_name, p_state->instance,
&a_state->f_addr, &a_state->l_addr,
&a_state->authen_data, p_state->srvtab_file,
schedule, a_state->version» != KSUCCESS)

fprintf(fio_log, "Bad krb_recvauth call.\n");
return(result);

if((return_buf_len = read_msg(a_state->comm_sock,
return_buf, sizeof(return_buf») == FAILURE)

fprintf(fio_log, "Bad read_msg call.\n");
return(FAILURE);

Kerberos Programming Interface 6-35

Example 6-7: (continued)

if((result = read_authen_msg(a_state->authen_data.session,
&a_state->f_addr, &a_state->l_addr, return_buf,
return_buf_len, return_msg, &return_msg_len)) == FAILURE)

fprintf(fio_log, "Intruder alert, bad safe msg.\n");
return (FAILURE) ;

if((result = read_return_msg(return_msg, return_msg_len,
status)) ! = OK)

fprintf(fio_log, "Bad return message\n");
return (FAILURE) ;

if (! strcmp ("FAILURE", status))
{

return (FAILURE) ;

return (OK) ;

6.2.11 The server.c File
The server. c file is one of four files that contain code for both the high-level and
low-level servers. Example 6-8 consists of server. c:

Example 6-8: The server.c Routine
/* server.c contains the code that forms the basis of the low

and high-level servers.
*/

#include "server.h"

char
FILE
char
FILE

10g_file[FILE_NAME_SZ]; /* the name of the log file */
fio_log; / file descriptor for the log file */
acl file[FILE NAME SZ]; /* filename of access control list*/
fio_acl; / the file descriptor of the ACL file */

/* init krb initializes the kerberos libraries for the server.

~

If the server is successful, init_krb returns OK. Otherwise,
the server exits.

init_krb(p_state)
prin_state *p_state; /* state of the principal (input) */

char
char
int

if ((result
{

hostname[HOST_NAME_SZ]; /* name of the local host */
*charytr;
result;

gethostname(hostname, sizeof(hostname))) < 0)

6-36 Kerberos Programming Interface

Example 6-8: (continued)
fprintf(fio_log, "gethostname failure\n");
exit (FAILURE) ;

char-ptr = krb_get-phost(hostname);
strcpy(p_state->instance, char-ptr);

krb_get_lrealm(p_state->realm, 0);
if (p_state->srvtab_file [0] != '\0')

krb_set_srvtab_string(p_state->srvtab_file);

if(p state->tkt_file[O] != '\0')
krb_set_tkt_string(p_state->tkt_file);

return (OK) ;

/* read_command reads the command "on-the-wire" protocol.

*/

If an error occurs, read command returns FAILURE.
Otherwise, OK is returned.

read_command (msg, msg_length, command_todo)
char *msg; /* the "on-the-wire" message (input) */
int msg_length; /* length of the message (input) */
command *command_todoi /* command_todo stores the

command (output) */

char
char
u_long

*action;
*principal;

command_length;

/* pointer to action section of the comm */
/* principal name in the command */

/* length of the command */

bcopy (msg, (char *) &command_length, sizeof (u_long)) ;
command_length ntohl(command_length);

action = msg + sizeof(u_long);

if(action + strlen(action) > msg + msg_length - 1)
return (FAILURE) ;

strcpy(command_todo->action, action);

if (! strcmp (action, "end"»
{

if (action + strlen (action) ! = msg + msg_length - 1)
return(FAILURE);

else
return (OK) ;

principal action + strlen(action) + 1;
if (principal + strlen (principal) ! = msg + msg_length - 1)

return (FAILURE) ;

strcpy(command_todo->principal, principal);

return (OK) ;

/* authorize as soc determines if the client is authorized to

Kerberos Programming Interface 6-37

Example 6-8: (continued)

~

talk to the server. If the client is authorized
authorize_assoc returns OK, otherwise, FAILURE.

authorize assoc(acl file, authen data)
char *acl_file:- /* An access control list (input) */
AUTH_DAT *authen_data; /* name of principal (input) */

char principal[80]: /* principal name in acl format */

sprintf(principal, "%s.%s@%s", authen_data->pname,
authen_data->pinst, authen_data->prealm):

if (acl_check(acl_file, principal))

return (OK) :

else
{

return(FAILURE):

/* end_assoc reinitializes an a_state structure after an
association ends. It returns OK if successful, and
FAILURE otherwise.

*/
end_assoc(a_state)

assoc state *a_state: /* association descriptor (input) */

close(a_state->comm_sock):
a_state->version[O] = '\0';

/* service assoc receives and processes commands from the
client described by association, a state. service assoc
returns OK if the association has ended, or FAILURE if
there was an error.

~
service assoc(p state, a state)

assoc_state -*a_state; /* association descriptor (input)*/
prin_state *p_state; /* state of the principal (input) */

~

char safe_msg[MAX_MSG_SZ]:
int safe_msg_len:
char msg[MAX_MSG_SZ]:
int msg_len:
struct command command todo:
char return_buf[MAX_MSG_SZ];
int return_len;
int result:

while (1)
{

/* the message received */
/* length of the above */
/* the command sent */
/* length of the above */
/* the command structure */
/* the return message */
/* length of the above */

if((safe_msg_len = read_msg(a_state->comm_sock, safe_msg,
sizeof(safe_msg))) == FAILURE)

fprintf(fio_log, "Bad read_msg call.\n"):
return(FAILURE);

6-38 Kerberos Programming Interface

Example 6-8: (continued)
!§]

if«result = read_authen_msg(
a_state->authen_data.session,
&a_state->f_addr, &a_state->l_addr, safe_msg,
safe_msg_len, msg, &msg_len)) == FAILURE)

fprintf(fio_log, "Intruder alert, bad safe msg.\n");
continue;

if (read_command (msg, msg_len, &command_todo)
{

fprintf(fio_log, "Bad command format\n");
continue;

if (! strcmp (command_todo.action, "add"))
{

if((result = acl_add(acl_file,
command_todo.principal)) == 0)

else
{

else if (! strcmp (command_todo. action, "delete"))
{

if«(result = acl_delete(acl_file,
command_todo.principal)) == 0)

else
{

else if (! strcmp (command_todo. action, "check"))
{

if((result = acl_check(acl_file,
command_todo.principal)) > 0)

else
{

FAILURE)

else if(!strcmp(command_todo.action, "exact_match"))
{

if«result = acl_exact_match(acl_file,
command_todo.principal)) > 0)

Kerberos Programming Interface 6-39

Example 6-8: (continued)
else
{

else if (! strcmp (command_todo.action, "end"))
make_return_msg(return_buf, &return_Ien, OK);

else
make_return_msg(return_buf, &return_Ien, FAILURE);

if((result = make_authen_msg(a_state->authen_data.session,
&a_state->f_addr, &a_state->l_addr,
return_buf, &return_Ien)) ! = OK)
continue;

if (write_msg(a_state->comm_sock, return_buf,
return_len) != OK)

fprintf(fio_log, "Bad write_msg call.\n");
return (FAILURE) ;

if (! strcmp (command_todo. action, "end"))
break;

return (OK) ;

/* begin_assoc attempt to begin communicating with a client

~

as well as authenticate the client and make sure the client
is authorized to talk to the server. begin_assoc returns
FAILURE if an error occurs or OK if an association has been
established.

int begin assoc(p state, a state)
assoc_;tate *~_state; -/* association descriptor (input) */
prin_state *p_state; /* state of the principal (input) */

int read_mask; /* the read mask for select */
int result_mask; /* the mask of fd ready */
int comm_not_ready = 1; /* 0 if client wants to communicate */
int continue begin = 0; /* 1 if an error has occured */
int num_ready; /* the number of file descriptors ready */
char return_buf[MAX_MSG_SZ]; /* the message returned */
int return_len; /* the length of the above */
int len_addr;
int result;

while (comm_not_ready)
{

if((num_ready = select (ALL FDS, &read mask,
(int *)NULL, (int *)NULL,
(struct timeval *)NULL)) < 0)

6-40 Kerberos Programming Interface

Example 6-8: (continued)

if(errno == EINTR)
{

fprintf(fio_log, "interrupted sys call\n");
continue;

else
{

fprintf(fio_log, "select error\n");
return(FAILURE);

len addr sizeof(struct sockaddr);

if((a_state->comm_sock = accept (p_state->stream_sock,
(struct sockaddr *)&a_state->f_addr,
&len_addr)) < 0)

fprintf(fio_log, "accept failed\nn);
continue;

len addr sizeof(struct sockaddr);

if((result = getsockname(a_state->comm_sock,
(struct sockaddr *)&a_state->l_addr, &len_addr)) < 0 I I
len_addr != sizeof(struct sockaddr_in))

fprintf(fio_log, "getsockname failure\n");
continue;

if((result = authen_assoc(p_state, a_state)) != OK)
{

fprintf(fio_log, "authen assoc error\n");
continue;

if (authorize_assoc (acl_file,
&a_state->authen_data)

fprintf(fio_log,

FAILURE)

"principal: %s instance: %s realm:%s not authorized\n",
a_state->authen_data.pname,
a_state->authen_data.pinst,
a_state->authen_data.prealm);

continue_begin = 1;
make_return_msg(return_buf, &return_len, FAILURE);

}

else

if((result = make_authen_msg(a_state->authen_data.session,
&a_state->f_addr, &a_state->l_addr,

Kerberos Programming Interface 6-41

Example 6-8: (continued)
return_buf, &return len» ! = OK)

continue;

if (write_msg(a_state->comm_sock, return_buf,
return_len) != OK)

fprintf(fio_log, "Bad write_msg call.\n");
continue;

if (continue_begin)
{

continue_begin 0;
continue;

return (OK) ;

/* init_comm initializes the socket that the server will use
to accept connections from clients. The server exits if
an error occurs and returns OK otherwise.

~
int init_comm(p_state)

prin_state *p_state; /* state of the principal (input) */

struct servent *server; /* server descriptor */
int on = 1;
int result;

if((server = getservbyname(SERVER_NAME, "tcp"» < 0)
{

fprintf(fio_log, "getservbyname failure\n");
exit(FAILURE);

socket (AF_INET,
SOCK_STREAM, 0» < 0)

fprintf(fio_log, "socket call failure\n");
exit(FAILURE);

p_state->stream_addr.sin_family = AF_INET;
P state->stream addr.sin addr.s addr = INADDR ANY; - - - - -
p_state->stream_addr.sin_port = htons(server->s_port);

(void)setsockopt(p_state->stream_sock,
SOL_SOCKET, SO_REUSEADDR, (char *) &on, sizeof (on));

if((result = bind(p_state->stream_sock,
(struct sockaddr *)&p_state->stream_addr,
sizeof(struct sockaddr») < 0)

fprintf(fio_log, "bind call failure\n");

6-42 Kerberos Programming Interface

Example 6-8: (continued)
exit(FAILURE);

(void) listen (p_state->stream_sock, 5);

return (OK) ;

/* init_files opens for access all of the files that the
server needs in order to run. init files exits if an
error occurs. Otherwise, it returns, OK.

~
init_files ()
{

int result;
struct stat statistics;

if«fio_log = fopen(log_file, "a+")) == (FILE *)NULL)
{

fprintf(stdout, "LOG file will not open\n");
exit (FAILURE) ;

if«result = stat(acl_file, &statistics)) == -1)
{

fprintf(fio_log, "ACL file does not exist\n");
exit(FAILURE);

return (OK) ;

usage ()
{

fprintf(stdout, "server -a acl_file -1 log_file
-s srvtab_file -p primary_name -t tkt_file");

/* Both the low- and high-level servers begin executing in
main. The server code is designed to receive allow
clients to access the server's access control list file.
All communication between the clients and the server is
Kerberos-authenticated.

main (argc, argv)
int argc; /* number of arguments to the server (input) */
char **argv;/* the arguments to the server (input) */

extern char *optarg: /* the name of a switch */
extern int optind, getopt () ; /* argument routines */
int c; /* the switch name */
prin_ state p-state: /* state of the principal */
assoc state a state; /* an association - -

strcpy(acl file, "./acl file");
strcpy (log=:file, ". /srv=)og_file") ;
strcpy(p_state.primary_name, SERVER_NAME);
p state.tkt file[O] = '\0';
p=state.srvtab_file[O] = '\0';

descriptor */

Kerberos Programming Interface 6-43

Example 6-8: (continued)
while ((c = get opt (argc, argv, "a:l:s:p:t:")) != EOF)
{

switch(c)

case ' a' :

strcpy(acl_file, optarg);
break;

case ' l' :

strcpy(log_file, optarg);
break;

case's' :

strcpy(p_state.srvtab_file, optarg);
break;

case'p':
{

strcpy(p_state.primary_name, optarg);
break;

case 't':

strcpy(p_state.tkt_file, optarg);
break;

default:
{

usage () ;

ini t files () ;

for(;;)

169] {
if (begin_assoc (&p_state, &a_state) == FAILURE)
{

fprintf(fio_log, "Begin association error\n");
exit(FAILURE);

if (service_assoc(&p_state, &a_state) == FAILURE)
{

fprintf(fio_log, "Service association error\n");
exit(FAILURE);

6-44 Kerberos Programming Interface

Example 6-8: (continued)
[Z1]

6.2.12 The client.h File

The client. h file is one of four files that contain code for the high-level and low
level clients. Example 6-9 consists of client. h:

Example 6-9: The client.h Routine
/* client.h includes the structure definitions used by both

the high- and low-level clients.
*/

#include "all.h"

/* The command structure stores the action performed by
the command as well as the principal name the action
should be performed upon.

~
struct command

char action[80];/* command action */
principal[MAX_K_NAME_SZ]; /* entire principal name */
primary_name[ANAME_SZ];/* primary name of principal */
instance[INST SZ];/* instance of the principal */
realm[REALM_SZ];/* realm of the principal */

char
char
char
char

} ;

typedef struct command command;

/* The prin_state structure stores the client state associated
only with the running client.

~
struct prin_state {

} ;

char primary_name[SNAME_SZ];/* primary name of client */
char instance[INST_SZ];/* instance name of client */
char realm[REALM SZ];/* realm name of client */
char version[KRB=SENDAUTH_VLEN]; /* version of client */

char
char

srvtab_file[FILE_NAME_SZ]; /* srvtab file of client */
tkt file[FILE_NAME_SZ]; /* ticket file of client */

typedef struct prin_state prin_state;

/* The assoc_state structure stores the client state
related to an association with a server.

~
struct assoc_state {

int
char

comm_sock; /* socket used to talk with server. */
version[KRB_SENDAUTH_VLEN]; /*version of server */

struct sockaddr in l_addr;
struct sockaddr in f_addr;

/* address of the client */
/* address of the server */

char f-primary_name[SNAME_SZ]; /* primary name of server */

Kerberos Programming Interface 6-45

Example 6-9: (continued)

} ;

char
char

f_instance[INST_SZ]; /* instance name of the server */
f_realm[REALM_SZ]; /* realm name of the server */

CREDENTIALS cred; /* cred structure for the server */

typedef struct assoc state assoc_state;

6.2.13 The I_client.c File
The I_client. c file is one of four files that contain code for both the high-level
and low-level clients. Example 6-10 consists of I_client. c:

Example 6-10: The I_client.c Routine
/* l_client.c contains client code that is only used by

the low-level client.
*/

#include "client.h"

char 10g_file[FILE_NAME_SZ]; /* name of log file */
extern FILE *fio_log; /* file descriptor of log file */
char comm file[FILE NAME SZ]; /* name of command file */
extern FILE *fio comm; /*file descriptor of command file*/
char out file[FILE NAME SZ]; /* name of output file */
extern FILE *fio_out; /* file descriptor of output file*/

/* authen_assoc attempts to authenticate the association
between the low-level client and the low-level server

*/

for the client. It returns FAILURE if the authentication
fails and OK, otherwise.

authen_assoc(p_state, a_state)
assoc_state *a_state; /* association descriptor (input)*/
prin_state *p_state; /* state of the principal (input) */

char auth_init_msg[MAX_MSG_SZ]; /* sendmutual message */
KTEXT_ST krb_txt; /* contains the krb_mk_req message */
struct timeval time; /* current time */
struct timezone zone; /* time zone */
MSG_DAT msg_data; /* sendmutual message sent by server*/
Key_schedule schedule; /* key schedule for session key */

char return_buf[MAX_MSG_SZ]; /* result message to send */
int return len;/* length of the above */
int return=val;/* value to return to caller */
u_long checksum;/* used in krb_mk_req message */
int length;
int result;

if (gettimeofday(&time, &zone))
{

fprintf(fio_log, "bad gettimeofday call.\n");
return (FAILURE) ;

checksum

if «result

6-46 Kerberos Programming Interface

Example 6-10: (continued)

00

a_state->f_instance, a_state->f realm,
checksum)) != KSUCCESS)

fprintf(fio_log, "Bad mk_req call, %d\n", result);
return (FAILURE) ;

if((length = write_msg(a_state->comm_sock, krb_txt.dat,
krb_txt.length)) == FAILURE)

fprintf (fio_log, "Bad write_msg call. \n");
return (FAILURE) ;

if((krb_txt.length = read_msg(a_state->comm_sock,
krb_txt.dat, sizeof(auth_init_msg))) == FAILURE)

fprintf (fio_log, "Bad read_msg call. \n ") ;
return (FAILURE) ;

return val FAILURE;

if((result = krb_get_cred(a_state->f~rimary_name,

a_state->f_instance,
a_state->f_realm, &a_state->cred)) != GC_OK)

fprintf(fio_log, "Bad krb_get_cred call.\n");
make_return_msg(return_buf, &return_len, FAILURE);

else if(des_key_sched(a_state->cred.session, schedule))

fprintf (fio_log, "Bad des_key_schedule call. \n") ;
make_return_msg(return_buf, &return_len, FAILURE);

else if((result = krb_recvmutual(KOPT_NORDWR,
(int)NULL, checksum,
&krb_txt, &msg_data, &a_state->cred,
schedule, &a_state->l_addr,
&a_state->f_addr)) ! = KSUCCESS)

fprintf(fio_log, "Bad krb_recvmutual call,
%s.\n", result);

make_return_msg(return_buf, &return_len, FAILURE);

else
{

return_val = OK;

if((result = make_authen_msg(a_state->cred.session,
&a_state->f_addr, &a_state->l_addr,
return_buf, &return_len)) != OK)

Kerberos Programming Interface 6-47

Example 6-10: (continued)
return (FAILURE) ;

if (write_msg(a_state->cornm_sock, return_buf,
return_len) != OK)

fprintf (fio_log, "Bad write_msg call. \n") ;
return(FAILURE);

return (return_val) ;

/* init_krb initializes the Kerberos libraries for the
low-level client. If the low-level client is successful,
init_krb returns OK. Otherwise, the client exits.

~
init_krb(p_state)

prin_state *p_state; /* state of the principal (input) */

char
char
char
char
int

hostname[HOST_NAME_SZ);/* name of the local host */
srvtab_file; / pointer to the srvtab file name */
tkt file; / pointer to the ticket file name */
*charytr;
result;

if((result = gethostname(hostname, sizeof(hostname))) < 0)
{

l81l}

fprintf(fio_log, "gethostname failure\n");
exit (FAILURE) ;

charytr = krb_getyhost(hostname);
strcpy(p_state->instance, charytr);

if (p_state->srvtab_file [0) != '\0')
srvtab_file p_state->srvtab_file;

else
srvtab file (char *)NULL;

if (p_state->tkt_file [0] != '\0')
tkt_file p_state->tkt_file;

else
tkt file (char *)NULL;

if((result = krb_svc_init(p_state->primary_name,
p_state->instance,
(char *)NULL, (int) TKT_LIFETIME, srvtab_file,
tkt_file)) != KSUCCESS)

fprintf(fio_log, "krb svc init failure\n");
exit (FAILURE) ;

6-48 Kerberos Programming Interface

Example 6-10: (continued)

/* init_files opens for access all of the files that the
low-level client needs to run. in it files exits if an
error occurs. Otherwise, it returns, OK.

~
ini t files ()
{

int result;

if((fio_log = fopen(log_file, "a+"» == (FILE *)NULL)
{

fprintf(stderr, "LOG file will not open\n");
exit(FAILURE);

if((fio_comm = fopen(comm_file, "r"» == (FILE *)NULL)
{

fprintf(fio_log, "COMM file will not initialize\n");
exit (FAILURE) ;

if((fio_out = fopen(out_file, "a+"» == (FILE *)NULL)
{

fprintf(fio_log, "OUTPUT file will not initialize\n");
exit (FAILURE) ;

/* usage prints a usage message */
usage ()
{

fprintf(stdout, "client -c command_file -0 output_file
-1 log_file -s srvtab_file -t tkt_file -p primary_name");

/* read_args reads all of the arguments to the low-level
client command.

read_args(argc, argv, p_state)
int argc; /* number of arguments to the server (input) */
char **argv; /* the arguments to the server (input) */
prin_state *p_state; /* state of the principal (input) */

extern char
extern int
int C;

optarg; / the argument to a switch */
optind, getopt(); /* argument routine */

/* switch character */

strcpy(comm_file, "./comm_file");
strcpy(log_file, "./cli_log_file");
strcpy(out_file, "./cli_out_file");
strcpy(p_state->primary_name, SERVER_NAME);
p_state->tkt_file[O] = '\0';
p_state->srvtab_file[O] = '\0';

whi le ((c = getopt (argc, argv, "c: 0: 1: s : p: t : "» ! = EOF)

[93] {
switch(c)
case'c':

Kerberos Programming Interface 6-49

Example 6-10: (continued)

strcpy(comm_file, optarg);
break;

case '0':

strcpy(out_file, optarg);
break;

case ' l' :

strcpy(log_file, optarg);
break;

case's':

strcpy(p_state->srvtab_file, optarg);
break;

case' t' :

strcpy(p_state->tkt_file, optarg);
break;

case ' p' :
{

strcpy(p_state->primary_name, optarg);
break;

default:
{

usage();

6.2.14 The h_client.c File
The h _ c 1 i e n t . c file is one of four files that contain code for both the high -level
and low-level clients. Example 6-11 consists of h_client. c:

Example 6-11: The h_client.c Routine
/* h_client.c contains client code that is only used by

the high-level client.
*/

#include "client.h"

extern FILE *fio_log;/* file descriptor of log file */
extern FILE *fio comm;/* file descriptor of command file*/
extern FILE *fio=out;/* file descriptor of output file*/

/* authen_assoc attempts to authenticate the association
between the high-level client and the high-level server
for the client. It returns FAILURE if the authentication
fails and OK, otherwise.

~
authen_assoc(p_state, a_state)

6-50 Kerberos Programming Interface

Example 6-11: (continued)
assoc_state
prin_state

*a_state;
*p_state;

/* association descriptor (input) */
/* state of the principal (input) */

KTEXT - ST ticket; /*ticket authenticator pair sent to server*/
struct timeval time; /* current time */
struct timezone zone; /* time zone */
MSG DAT msg_ data; /* message sent by server to client */

Key_schedule schedule; /* key schedule for session key */
u_long checksum; /* used in krb_sendauth message */
char return buf[MAX MSG_SZ); /* result message to send */
int return_len; /* length of the above */
int return_val; /* value to return to caller */
int result;

if (gettimeofday(&time, &zone))
{

fprintf (fio_log, "bad gettimeofday call. \n");
return(FAILURE);

checksum

if((result = krb_sendauth((long)KOPT_DO_MUTUAL,
a_state->comm_sock,
&ticket, a_state->f-primary_name, a_state->f_instance,
a_state->f_realm, checksum, &msg_data,
&a_state->cred, schedule, &a_state->l_addr,
&a_state->f_addr, " first_v")) ! = KSUCCESS)

fprintf(fio_log, "krb_sendauth failure, %d\n", result);
return_val = FAILURE;
make_return_msg(return_buf, &return_len, FAILURE);

else

return_val = OK;

if((result = make_authen_msg(a_state->cred.session,
&a_state->f_addr, &a_state->l_addr,
return_buf, &return_len)) != OK)

return (FAILURE) ;

if (write_msg (a_state->comm_sock, return_buf,
return_len) != OK)

fprintf(fio_log, "Bad write_msg call.\n");
return (FAILURE) ;

return(return_val);

/* init krb initializes the Kerberos libraries for the

Kerberos Programming Interface 6-51

Example 6-11: (continued)

~

high-level client. If the high-level client is
successfull, init_krb returns OK. Otherwise, the
client exits.

init_krb(p_state)
prin_state *p_state; /* state of the principal (input) */

int result;

[W]
fprintf(fio_out,"Primary Name:");
if(fgets(p_state->primary_name, ANAME_SZ, fio_comm)
{

NULL)

return(FAILURE);

p_state->primary_name[strlen(p_state->primary_name) - 1]

fprintf(fio_out,"Instance:");
if(fgets(p_state->instance, INST_SZ, fio_comm)
{

return(FAILURE);

NULL)

p_state->instance[strlen(p_state->instance) - 1] '\0';

fprintf(fio_out,"Realm:");
if(fgets(p_state->realm, REALM_SZ, fio_comm) NULL)
{

return (FAILURE) ;

p_state->realm[strlen(p_state->realm) - 1] , \ 0' ;

[Q1J
if (p_state->tkt_file [0] != '\0')

krb_set_tkt_string(p_state->tkt_file) ;

IW]
if((result = krb_get-pw_in_tkt(p_state->primary_name,

p_state->instance,
p_state->realm, "krbtgt", p_state->realm,
(int) TKT_LIFETIME, (char *)NULL)) != KSUCCESS)

fprintf(fio_log, "krb_get-pw_in_tkt failure\n");
exit(FAILURE);

/* init_files opens for access all of the files that
the high-level client needs in order to run.
init files exits if an error occurs. Otherwise,
it returns, OK.

~
ini t files ()

fio_log = stderr;
fio out = stdout;
fio comm = stdin;

/* usage prints a usage message */
usage ()
{

6-52 Kerberos Programming Interface

, \ 0' ;

Example 6-11: (continued)
fprintf (stdout, "client -t tkt file\n");

/* read_args reads all of the arguments to the high-level
client command.

lillJ
read args(argc, argv, p_state)

int argc; /* number of arguments to the server (input) */
char **argv; /* the arguments to the server (input) */
prin_state *p_state; /* state of the principal (input) */

extern char *optarg; /* argument to a switch */
extern int optind, getopt(); /* argument routine */
int c; /* switch character */

[j]5]
p_state->tkt_file[O] = '\0';

while ((c = get opt (argc, argv, "t:")) != EOF)

ffOID
switch (c)
case't':

strcpy(p_state->tkt_file, optarg);
break;

default:
{

usage () ;

return (OK) ;

6.2.15 The client.c File
The client. c file is one of four files that contain code for both the high-level and
low-level clients. Example 6-12 consists of client. c:

Example 6-12: The client.c Routine
/* client.c contains the code that forms the basis of the

low- and high-level clients.
*/
#include "client.h"

FILE *fio _log; /* file descriptor for the log file */
FILE *fio comm; /* file - descriptor of the command file
FILE *fio out; /* file - descriptor of the ouput file */

*/

int line num 0; /* the number of the line in the command -
file being read */

/* make command creates the "on-the-wire" version of the
command described in comm_todo. The command is placed
in msg. make command returns OK if the command is made

Kerberos Programming Interface 6-53

Example 6-12: (continued)
correctly.

*/
make command(comm todo, msg, msg length)

c~mmand *comm=todo; /* c~mmand to convert (input) */
char *msg; /* command in "on-the-wire" format (output)*/
int *msg_length; /* length of the above (output) */

char *action; /* the action described
char *principal; /* the principal
u char *comm_length;
u_long long_val;

action = (char *)comm_length + sizeof(u_long);
strcpy(action, comm_todo->action);

if (! strcmp (action, "end"))
{

long_val = (action + strlen(action) + 1) -
(msg + sizeof(u_long));

*msg_length = (int) long_val + sizeof(u_long);
long_val = htonl(long_val);
bcopy ((char *) &long_val, (char *) comm_length,

sizeof(u_long));

return (OK) ;

principal = action + strlen(action) + 1;
strcpy(principal, comm_todo->principal);

long_val = (principal + strlen(principal) + 1) -
(msg + sizeof(u_long));

*msg_length = (int)long_val + sizeof(u_long);
long_val = htonl(long_val);
bcopy ((char *) &long_val, (char *) corom_length,

sizeof(u_long));

return (OK) ;

by the command
in the command

/* end assoc reinitializes an a state structure after an
ass~ciation ends. It returns OK if successful, FAILURE
otherwise.

*/
end_assoc(a_state)

assoc state *a_state; /* association descriptor (input) */

close(a state->comm sock);
a_state=>version[O]-= '\0';

socket (AF_INET,
SOCK_STREAM, 0)) < 0)

fprintf(fio_log, "socket call failure\n");
return (FAILURE) ;

return (OK) ;

/* read_comm_file reads a command from the command file

6-54 Kerberos Programming Interface

*/
*/

Example 6-12: (continued)
and converts it to a form that can be stored in a
command structure. read_comm_file returns OK if it
succeeds, FAILURE otherwise.

BMJ
int read_comm_file(comm)

command *comm; /* command read from the file (output) */

char line [MAX COMM LINE SZ];/* line read from the
int lineyos; /* the current position in line */
int actionyos; /* position of the action in line */
int prinyos; /* position
int result;

comm->action[O] = '\0';
comm->principal[O] = '\0';
comm->primary_name[O] = '\0';
comm->instance[O] = '\0';
comm->realm[O] = '\0';

of the principal in

if(fgets(line, (int)MAX_COMM LINE SZ, fio_comm)
{

return (FAILURE) ;

for(lineyos = 0; line[lineyos] ==
'\t' I I line [lineyos] ";
lineyos++) ;

for (actionyos = 0; line [lineyos] != '\t' &&
line [lineyos] ! = , ,

line */

NULL)

&& line [lineyos] != '\0' && line [lineyos] != '\n';
lineyos++, actionyos++)

comm->action[actionyos] = line[lineyos];

comm->action[actionyos] = '\0';

if (! strcmp (comm->action, "end"))
{

return (OK) ;

for(i line [lineyos] == '\t' I I line[lineyos]
, '; lineyos++);

for (prinyos = 0; line [line_pos] ! =
'\t' && line[lineyos] !=
&& line[lineyos] != '\0' && line[lineyos] != '\n'i
lineyos++, prinyos++)

comm->principal[prinyos] line[lineyos]i

comm->principal[prinyos] '\0';

ffQ8]

file

if((result = knameyarse(comm->primary_name, comm->instance,
comm->realm, comm->principal)) ! = KSUCCESS)

*/

Kerberos Programming Interface ~5

Example 6-12: (continued)
fprintf(fio_log, "Line %d: Bad principal name\n",line_num):
return (FAILURE) :

return (OK) :

/* service assoc reads commands from the command file and
sends the commands to the server described by
association, a_state.
service assoc returns OK if the association has ended,
FAILURE if there was an error, or STOP if the command
file has no more commands.

~
service_assoc(p_state, a_state)

assoc_state *a_state: /* association descriptor (input) */
prin_state *p_state: /* state of the principal (input) */

char safe_msg[MAX_MSG_SZ]: /* the message to send */
int safe_msg_len: /* length of the above */
char return_buf[MAX_MSG_SZ]: /* the return message */
int return_len; /* length of the above */
char msg[MAX_MSG_SZ]: /* the answer sent */
int msg_len; /* length of the above */
command comm_todo; /* the command to send */
char status [MAX COMM_LINE_SZ]; /* status of the answer */
int result;

while (1)

tITID
if((result = read_comm_file(&comm_todo))
{

return (STOP) ;

FAILURE)

if((result = make_command(&comm_todo, safe_msg,
&safe_msg_len))!= OK)

fprintf(fio_log, "Line: %d, Error formatting command\n",
line_num) ;

continue;

if((result = make_authen_msg(a_state->cred.session,
&a_state->f_addr, &a_state->l_addr,
safe_msg, &safe_msg_len)) == FAILURE)

fprintf(fio_log, "Line: %d, Error creating
authenticated command\n", line_num);

continue;

if (write_msg (a_state->comm_sock, safe_msg,
safe_msg_len) != OK)

fprintf(fio_log, "Bad write_msg call.\n"):
return(FAILURE);

6-56 Kerberos Programming Interface

Example 6-12: (continued)
11141

if((return len = read msg(a state->comm sock, return_buf,
sizeof(~eturn_buf») == FAILURE) -

fprintf(fio_log, "Bad read_msg call.\n");
return(FAILURE);

if((result = read_authen_msg(
a_state->cred.session,
&a_state->f_addr, &a_state->l addr,
return_buf, return_len, msg, &msg_len» != OK)

fprintf(fio_log, "Intruder alert, bad safe msg.\n");
continue;

if((result = read_return_msg(msg, msg_len, status» != OK)
{

fprintf(fio_log, "Bad return message\n");
continue;

fprintf(fio_out, "Line: %d, '%s %s' %s\n", line_num,
comm_todo.action, comm_todo.principal, status);

fflush(fio_out) ;

if (! strcmp (comm_todo. action, "end"»
{

break;

return (OK) ;

/* begin_assoc attempts to begin communicating with a server
as well as authenticate the server and make sure the client
is authorized to talk to the server. begin_assoc returns
FAILURE if an error occurs, OK if an association has been
established, or STOP if there are no more commands in the
command file.

~
int begin_assoc(p_state, a_state)

assoc_state *a_state; /* association descriptor (input) */
prin_state *p_state; /* state of the principal (input) */

command comm; /* the command read from the file */
int no assoc = 1; /* 1 if no associaction exists */
struct servent *server; /* server entry in /etc/services */
struct hostent *foreign_host; /*name of server's local host*/

char primary_ name [ANAME - SZ] ; /* server's primary name */
char instance name [INST SZ] ; /* server's instance */ - -
char realm_name[REALM_SZ]; /* server's realm */
char return_buf[MAX_MSG - SZ] ; /* the return message */
char return - len; /* length of the above */
char msg[MAX_MSG_SZ]; /* the answer returned */

Kerberos Programming Interface 6-57

Example 6-12: (continued)
char msg_len; 1* length of the above *1
char status[MAX_COMM_LINE_SZ]; 1* status of the answer *1
int result;
int length;

11201
while (no_assoc)

1121 (
if«result = read_comm_file(&comm))
{

return (STOP) ;

if (strcmp(comm.action, "begin"))
{

FAILURE)

fprintf(fio log, "An association must begin with
the-begin command\n");

continue;

if«foreign_host =gethostbyname(comm.instance)) <
(struct hostent *)0)

fprintf(fio_log, "Line %d: gethostbyname failure\n",
line_num) ;

continue;

bcopy«char *)foreign_host->h_addr,
(char *)&a_state->f_addr.sin_addr, sizeof(long));

if«server = getservbyname(comm.primary_name, "tcp")) <
(struct servent *) 0)

fprintf(fio_log, "Line %d: getservbyname failure\n",
line_num) ;

continue;

htons(server->s-port) ;

if«result = connect (a_state->comm_sock,
(struct sockaddr *)&a_state->f_addr,
sizeof(struct sockaddr))) < 0)

fprintf(fio_log, "Line %d: connect failure\n",
line_num) ;

continue;

length sizeof(struct sockaddr_in);

if«result = getsockname(a_state->comm_sock,
(struct sockaddr *)&a_state->l_addr, &length)) < 0 I I

6-58 Kerberos Programming Interface

Example 6·12: (continued)
length != sizeof(struct sockaddr_in»

fprintf(fio_log, "Line %d: getsockname failure\n",
line_num) ;

continue;

strcpy(a_state->f-primary_name, comm.primary_name);
strcpy(a_state->f_instance, comm.instance);
strcpy(a_state->f_realm, comm.realm);

if ((result = authen_assoc (p_state, a_state» != OK)
{

fprintf(fio_log, "authen assoc error\n");
continue;

if((return_len = read_msg(a_state->comm_sock, return_buf,
sizeof(return_buf») == FAILURE)

fprintf(fio_log, "Bad read_msg call.\n");
return(FAILURE);

if((result = read_authen_msg(
a_state->cred.session,
&a_state->f_addr, &a_state->l addr,
return_buf, return_len, msg, &msg_len» != OK)

fprintf(fio_log, "Intruder alert, bad safe msg.\n");
continue;

if((result = read_return_msg(msg, msg_len, status» != OK)
{

fprintf(fio_log, "Bad return message\n");
continue;

if (! strcmp ("FAILURE", status»
{

fprintf(fio log, "The Client is not authorized to
tali to the server.\n");

continue;

fprintf(fio_out, "Line: %d, '%s %s' %s\n", line_num,
comm.action, comm.principal, "OK");

fflush(fio_out) ;

no assoc = 0;

return (OK) ;

/* init comm initializes the socket that the client will use
to communicate with the server. The client exits if an

Kerberos Programming Interface 6-59

Example 6-12: (continued)
error occurs and returns OK otherwise.

tillJ
int init_comm(a state)

assoc_state *a_state; /*an association descriptor (input)*/

socket (AF_INET,
SOCK_STREAM, 0)) < 0)

fprintf(fio_log, "socket call failure\n");
exit(FAILURE);

return (OK) ;

/* Both the low- and high-level clients begin executing in
main. The client code is designed to read commands from
a command file and either begin communicating with a
server or send that command to a server for processing,
depending on the type of command. All communication
between the client and the server is Kerberos-authenticated.

llliJ
main (argc, argv)

int argc; /* number of arguments to the server (input) */
char **argv; /* arguments to the server (input) */

prin_state p_state;
assoc state a_state;
int status;

/* state of the principal */
/* an association descriptor */

~
read_args(argc, argv, &p_state);

[ill]
init files () ;

l1]§]
init_comm(&a state);

[ill]
init_krb(&p state);

for(;;)
{

~
if((status = begin_assoc(&p_state, &a_state)) == FAILURE)
{

fprintf(fio_log, "Begin association error\n");
exit (FAILURE) ;

else if (status == STOP)
{

fprintf (fio_log, "Normal exit\n");
exit (OK) ;

if((status = service_assoc(&p_state, &a_state)) == FAILURE)
{

fprintf(fio_log, "Service association error\n");
exit(FAILURE);

6-60 Kerberos Programming Interface

Example 6-12: (continued)

else if (status == STOP)
{

fprintf(fio_log, "Normal exit\n");
exit (OK) ;

if (end_assoc(&a_state) == FAILURE)
{

fprintf(fio_log, "End association error\n");
exit (FAILURE) ;

Kerberos Programming Interface 6-61

Glossary

Authentication

The process of detennining the identity of an entity such as a user, application,
or a host. Currently, UL TRIX Kerberos supports the authentication of
commonly networked applications, such as passwd, su, named, riogin,
and audi td. That is, Kerberos currently authenticates applications to each
other across machine boundaries in a distributed network.

Authenticator

The authenticator prevents a hostile user from replaying a stolen ticket. It is
used only once, and is built by the client. It expires after approximately five
minutes.

The authenticator contains the name of the client, its workstation IP address,
and the current workstation time, all encrypted with the session key. After
building the authenticator, the client sends it with the service ticket to the
requested service.

Bindmaster

An alias for the machine that runs the master named.

BIND/Hesiod client

Any system that uses the BIND/Hesiod service to resolve host names and
addresses. In an UPGRADE or ENHANCED security level environment, all
BIND/Hesiod clients must convert to BIND/Hesiod slaves and run a Kerberos
authenticated named daemon.

BIND/Hesiod primary server

The server that loads the BIND/Hesiod database from a file on disk. It
distributes the master BIND/Hesiod database to BIND/Hesiod secondaries and
answers queries. See also Kerberos master.

BIND/Hesiod slave

A Kerberos client can be a BIND/Hesiod slave which answers name and
address queries and runs a Kerberos-authenticated named.

2 Glossary

BSD security level

The lowest security level. The named daemon is Kerberos-authenticated at this
level to guarantee that all Hesiod distributed information comes from a correct,
specified source.

The BSD distributed environment verifies that the BIND/Hesiod primary and
secondary servers are accesible and working correctly. At this level, the
/etc/passwd file distributes passwords in a network. This security level is
required before making progressive transitions to the UPGRADE and
ENHANCED security levels.

See also UPGRADE security level and ENHANCED security level.

Cleartext password

An unencrypted password.

Client application

An application that requests that an application on another machine be
performed on its behalf. See also Kerberos client and Server application.

Distributed authentication

The major function of Kerberos as it is now implemented with UL TRIX; it
enables the identification of entities across a network. Network connections
between Kerberos and ULTRIX are socket-based and implemented through the
TCP/lP standard Internet protocol suite. See also Kerberos.

ENHAN CED security level

The highest security level. At this level, the Kerberos master and the
BIND/Hesiod primary server limit login access to only those in the local
passwd and auth files. To prevent distributed lookups on the master, set the
auth and passwd variables to local in the /etc/svc.conf file on the
Kerberos master-BIND/Hesiod primary.

See also BSD security level and UPGRADE security level.

Instance

The second part of a 3-part unique name for a Kerberos principal. It
distinguishes among variations of the primary name. The unique name for a
Kerberos principal is expressed as:

name.instance@realm

The following example shows two different Kerberos principals that share the
same Primary name, but have different instances:

rlogin.venus
rlogin.mars

In the example above, there is no realm name.

IP

Internet Protocol. The Internet standard protocol that defines the Internet
datagram as the unit of information passed across the Internet.

IP datagram

Basic unit of information passed across the Internet. It contains a source and
destination address with the data.

Kerberos

An authentication service offered with ULTRIX. Currently, it authenticates
applications to each other across machine boundaries in a distributed network of
shared applications on different workstations. It serves as a single point of
"trust" in a local area network (LAN).

Kerberos client

A principal that has been authenticated with Kerberos.

Kerberos master

The system on which the master Kerberos database resides. It can run the
Kerberos-authenticated named daemon. The Kerberos master can also be the
BINDIHesiod primary server that loads the BINDlHesiod database from a file
on disk.

Mutual authentication

With Kerberos, there is mutual authentication between applications' 'X" and
"Y" because X trusts Kerberos to give application Y only enough information
to authenticate itself as X to Y. This enables each to know that the other is not
a false representation from a hostile user.

Primary name

The first part of a 3-part unique name for a Kerberos principal. It is the name
of the client or service. The unique name for a Kerberos principal is expressed
as:

name.instance@realm

For example, in the following principal name for rlogin, the primary name is
rlogin:

rlogin.venus

In the example above, there is no realm name.

Principal

Any communicating entity in Kerberos.

Glossary 3

4 Glossary

Private key

A large number derived from a client (that is, principal) password. Each key is
known only to Kerberos and to the client it belongs to. This enables Kerberos
to create a ticket that convinces one principal that another principal is really
who it claims to be. To make session keys, Kerberos uses the Data Encryption
Standard (DES) encryption library.

Realm

The third part of a 3-part unique name for a Kerberos principal. It is the name
of a group of machines, such as those on a Local Area Network (LAN). Each
LAN is located in a separate realm, and each LAN contains a separate Kerberos
master.

The unique name for a Kerberos principal is expressed as:

name.instance@realm

For example, if the realm were located within the Digital Equipment
Corporation, then the Kerberos principal name for rlogin on machine venus
would be:

rlogin.venus@dec.com

Session key

A temporary private key. See also Private key.

Server application

TCP

An application requested by a client application. See also Client application.

Transmission Control Protocol. The Internet standard transport level protocol
that provides full duplex stream data flow between applications.

Ticket

A ticket enables a principal to authenticate to another principal. The
kerberos daemon provides a principal with a ticket.

Ticket-granting ticket

After a principal is Kerberos-authenticated, it recieves a ticket-granting ticket
which grants permission to receive various service tickets. The ticket-granting
ticket can be reused later during the workstation session.

Although ULTRIX Kerberos does not currently support user-level
authentication, the ticket-granting ticket is designed to enable a user to supply a
password only once, at the start of a workstation session.

Time client

The system that runs timed as a client. See also time master.

Time master

The system that runs the NTP (network time protocol) daemon ntpd, for time
synchronization over a wide area network. It also runs the Berkeley timed as
master to distribute time to all workstations in the network. See also Time
client.

UL TKERB400 software subset

This software subset must be installed on the Kerberos master and on all other
systems that are going to run the Kerberos-authenticated named daemon on a
slave server. The kernel does not need to be rebuilt after this subset is added.

UPG RAD E security level

This security level converts the BSD-style passwords into auth-style
passwords. Users who do not upgrade their passwords at this level cannot log
in at the ENHANCED level, unless the superuser runs passwd for them.

See also BSD security level and ENHANCED security level.

Glossary 5

A
auth database (ADB)

copying to BIND/Hesiod primary server, 5-2

creation of, 5-2

distributing of, 5-2

lookup switches, 5-3

uid field, 5-2

auth variables

set to local, 5-4

authentication

mutual,2-4

of named daemon, 4-2, 4-10

of network address, 2-3

of principal, 1-3

processes within environment, 4-2

reason for failure with named daemon, 4-3

requirements of, 2-1

setup for named daemon, 4-3

terminating unauthenticated named daemon, 4-13

through Kerberos, 1-1

authenticator

definition, 1-4

parts of, 2-2

B
bind daemon, 4-3

BIND/Hesiod client

definition, 4-2

BIND/Hesiod primary server

and auth database, 5-2

definition, 4-2

limiting login access with, 5-4

named source directory for, 5-2

BIND/Hesiod secondary server

definition, 4-2

BIND/Hesiod slave

definition, 4-2

bindsetup script, 4-12, 4-13

rerunning during Kerberos setup, 4-3

BSD security level

returning to, 5-2

Index

setting up authenticated named at BSD level, 4-3

c
checksum

used with encryption, 1-4

cleartext password, 1-3

client

See also BIND/Hesiod client

See also time client

BIND/Hesiod slave, 4-2

definition, 4-2

Kerberos principal, 1-1

timed daemon, 4-2

configuration file

o

Kerberos master part, 4-4

realm part, 4-4

word server part, 4-4

Data Encryption Standard (DES), 1-3

key, 2-2, 4-11

database

creation and initialization of, 3-3

creation of, 4-8

destroying Kerberos master, 3-4

database (cont.)

kdb_destroy utility for, 3-4

kdb_edit utility for, 3-3

kdb_init utility for, 3-3

kdb_util utility for, 3-3

kdestroy utility for, 3-5

kstash utility for, 3-5

modification of, 3-2

propagation to Kerberos slave servers, 4-5

transfer from master to slave, 3-1

decryption, 1-4

See also encryption

definition, 1-3

DES

See Data Encryption Standard

distributed environment

network setup, 4-1

E

encryption

See also decryption

and Kerberos authentication, 1-2

checksum, 1-4

definition, 1-2

DES standard library for, 1-3

key, 1-3

using a key to create a new algorithm, 1-2

ENHANCED security level

transition to, 5-4

environment variable

PATH,4-8

/etc/crontab file

running the krb_push script, 4-10

/etc.krb.conf file, 4-4

/etc/krb.slaves file, 4-7

/etc/rc.local, 4-8

/etc/re.loeal file, 4-5, 4-8, 4-13

/ete/srvtab, 4-7

/ete/srvtab file, 4-12

/etc/svc.eonf file, 5-2

ext_srvtab command, 4-7, 4-12

Index-2

G

getauth script, 5-2

H
Hesiod

adding as a principal, 4-11

information distributed by the named daemon, 4-3

principal Kerberos database entry for, 4-10

with authenticated and unauthenticated named,

4-13

instance

part of principal name, 3-2

K

kdb_destroy

Kerberos database utility, 3-4

kdb_edit, 4-6, 4-10

default values for, 4-11

Kerberos database utility, 3-3

used in Kerberos session example, 3-5

kdb init

Kerberos database utility, 3-3

used in example, 4-4

used in Kerberos session example, 3-5

kdb_util

Kerberos database utility, 3-3

used in Kerberos session example, 3-5

KDC

See key distribution center

kdestroy

Kerberos database utility, 3-5

used in Kerberos session example, 3-5

Kerberos

and LAN security, 1-1

libraries, 6-1

network connections with UL TRIX, 3-2

principal, 1-1

programming example, 6-2

starting up, 4-8, 4-10

Kerberos (cont.)

startup, 4-5

within UL TRIX network, 1-1

kerberos daemon, 4-4

authentication dependency, 4-3

kerberos.log file, 4-5

key

definition, 1-2

DES, 2-2, 4-11

distribution center, 3-3

encryption, 1-3

fetching the master, 4-10

for creating new encryption algorithm, 1-2

master, 4-10

of the principal, 1-3

session, 1-4, 2-1

storage of master, 4-4

used with encryption algorithm, 1-2

key distribution center (KDC), 3-3

kprop daemon, 4-3, 4-5, 4-6, 4-7

adding to srvtab file, 4-7

authentication dependency, 4-3

creating the principal entry for, 4-6

propagation of database files, 4-9, 4-10

starting, 4-8

starting up, 4-9

kpropd daemon, 4-5, 4-8, 4-9

kpropd.log file, 4-5, 4-9, 4-15

kprop.log file, 4-8

krb.conf file, 4-4, 4-8, 4-10, 4-12

krb .J>ush script, 4-5, 4-7

running, 4-10

krbtkt

ticket-granting service, 3-3

kstash, 4-4, 4-9

Kerberos database utility, 3-5

used in Kerberos session example, 3-5

L

library

libad,6-1

libdes, 6-1

libkdb, 6-1

library (cont.)

libknet, 6-1

libkrb,6-1

lifespan of ticket, 2-2

log file

M

kerberos.log, 4-5

kpropd.log, 4-5, 4-9, 4-15

kprop.log, 4-8

master

definition, 4-1

destroying Kerberos database on, 3-4

server, 3-1

setting up server, 4-4

within configuration file, 4-4

master key

N

fetching, 4-7, 4-12

file for, 4-4, 4-10

storing, 4-9

named daemon

adding as a principal, 4-11

authenticated at BSD security level, 4-3

authentication dependency, 4-3

authentication of, 4-2

principal Kerberos database entry for, 4-10

reason for authentication failure, 4-3

setting up authenticated version, 4-3

setup for Kerberos authentication, 4-10

starting up, 4-10

terminating unauthenticated version, 4-13

network address

authentication of, 2-3

network connection

between Kerberos and UL TRIX, 3-2, 6-1

new-srvtab file, 4-12

creation of, 4-7

nslookup command, 5-3

ntpd daemon, 1-5,4-2,4-3

Index-3

p

passwd,5-1

passwd database

lookup switches, 5-3

passwd variables

set to local, 5-4

password

distribution of, 5-1

hiding of, for master database, 3-5

in cleartext, 1-3

of the principal, 1-3

PATH environment variable, 4-8

primary name

part of principal name, 3-2

principal

R

adding the, 4-7

authentication of, 1-3

creation or modification of, 3-3

entry for, 4-6

instance part of name, 3-2

Kerberos client, 1-1

Kerberos entity, 1-1

Kerberos service, 1-1

key of, 1-3

naming syntax for, 3-2

primary name, 3-2

realm part of name, 3-2

reauthentication of, 1-3

selection of random DES key for, 4-6

realm

part of principal name, 3-2

within configuration file, 4-4

reauthentication

of Kerberos principal, 1-3

replay

protection against, 1-4, 2-3

Index-4

s
secsetup script, 5-2

security

BSD level, 5-2

ENHANCED level, 5-4

of reusable ticket, 2-3

UPGRADE level, 5-1, 5-2, 5-3

server

BIND/Hesiod primary, 4-2, 5-2

BIND/Hesiod secondary server, 4-2

BIND/Hesiod slave, 4-2

Kerberos master, 3-1,4-1,4-3

Kerberos slave, 3-1,4-2

session key, 2-1

definition, 1-4

slave server, 3-1, 4-5

See also BIND/Hesiod slave

creation of Kerberos database files on, 4-8

definition, 4-2

setting up, 4-5

srvtab file

adding kprop to, 4-7

svcsetup script, 5-3

T

ticket

definition, 1-3

destroying of, 3-5

lifespan of, 2-2

service, 2-2

ticket-granting service, 1-4

ticket-granting ticket, 1-4

timestamp, 2-2

ticket-granting service, 1-4, 3-3

ticket-granting ticket, 1-4, 6-7

time

client, 4-2

master, 4-2

time synchronization, 1-5

dependencies of daemons, 4-3

timed daemon, 1-5,4-3

run as a client, 4-2

timestamp

of ticket, 2-2

u
uid field

in auth database, 5-2

UPGRADE security level

necessity of upgrading BSD password, 5-1

transition to, 5-1, 5-2, 5-3

w
word server, 4-4

Index-5

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud modem from
anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

* Internal

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital Subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMO/E15
or

Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

* For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments ULTRIX
Guide to Kerberos

AA-PBKVA-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manual says) D D D D
Completeness (enough information) D 0 D 0
Clarity (easy to understand) 0 D D 0
Organization (structure of subject matter) D 0 D 0
Figures (useful) D 0 D 0
Examples (useful) D D D 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 0 0 0

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Nameffitle _________________________ _ Dept.
Company ___ ___ Date _____ _

Mailing Address ___ _

Email _____________ Phone

- - - - - -. Do Not Tear - Fold Here and Tape

lamDala™ -----------------------------rrl-rll----------:::::::G~----
NECESSARY

IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

IIh 11111111111111111111111111111 II 1IIIIIhllllllili

-------. Do Not Tear - Fold Here .---,

Cut
Along
Dotted
Line

