
ULTRIX
•

Guide to Network Programming

Order Number: AA-PBKWA-TE

Guide to Network Programming

Order Number: AA-PBKWA-TE

June 1990

Product Version: UL TRIX Version 4.0 or higher

ULTRIX

This manual introduces the programmer to the architectures and components of the UL TRIX
network programming environment. It discusses how network layering schemes, socket
interface, and UL TRIX network components can be used in writing network applications.

digital equipment corporation
maynard, massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013.

© Digital Equipment Corporation 1989
All rights reserved.

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

IlmlBID
CDA
DDIF
DDIS
DEC
DECnet
DEC station

DECUS
DECwindows
DTIF
MASSBUS
MicroVAX
Q-bus
ULTRIX
UL TRIX Mail Connection

ULTRIX Worksystem Software
UNIBUS
VAX
VAX station
VMS
VMS/UL TRIX Connection
VT
XUI

UNIX is a registered trademark of AT&T in the USA and other countries.

X/Open is a trademark of X/Open Company Ltd.

Contents

About This Manual

Audience ix

Organization ix

Related Documents ... x

Conventions

New and Changed Information

1 Introduction to Network Architecture

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

ISO Reference Model

Application Layer

Presentation Layer

Session Layer

Transport Layer .. .

Network Layer .. .

Data Link Layer .. .

Physical Layer .. .

2 Using the Socket Interface

2.1 Writing Network Applications

2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9

Creating a Socket .. .
Binding an Address
Establishing a Connection .. .
Transferring Data .. .
Discarding Sockets
Using Connectionless Sockets .. .
Obtaining Local and Remote Socket Addresses
Obtaining and Setting Socket Options
Handling Multiple Services .. .

x

xi

1-2

1-4

1-4

1-4

1-4

1-4

1-4

1-5

2-1

2-3
2-4
2-4
2-6
2-7
2-8
2-9

2-10
2-10

2.2

2.3

2.4

Network Library Procedures

2.2.1 Obtaining Host Information .. .
2.2.2 Obtaining Network Information .. .
2.2.3 Obtaining Protocol Information .. .
2.2.4 Obtaining Network Services Information

Converting Network Byte Order .. .

Manipulating Variable Length Byte Strings .. .

3 Advanced Socket Topics

2-12

2-13
2-14
2-15
2-15

2-16

2-17

3.1 Selecting Specific Protocols ... 3-1

3.2 Binding an Address .. 3-1

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Creating a Nonblocking Socket

Notifying a Process of an I/O Request

Redefining a Process Number for a Socket

Sending Out-of-Band Data

Broadcasting Packets

Determining Network Configuration

Using Pseudoterminals

4 Client/Server Model

4.1

4.2

4.3

4.4

Client Code Example

Connection Server Code Example

Connectionless Server Code Example

Simplifying Servers

5 X/Open Transport Interface

5.1

5.2

5.3

Description , .. .

XTI Software Components

XTI Documentation

6 Writing Distributed Applications with DECrpc

3-4

3-5

3-6

3-7

3-9

3-10

3-12

4-1

4-3

4-5

4-9

5-1

5-1

5-2

6.1 Distributed Applications .. 6-1

6.2 RPC Software .. 6-1

ivContents

6.3

6.2.1
6.2.2
6.2.3

RPC Runtime Library
Network Interface Definition Language Compiler
Location Broker .. .

DECrpc Documentation

7 UL TRIX Extended SNMP Agent

7.1

7.2

7.3

7.4

7.5

7.6

The Extended SNMP Agent .. .

Online Example Directory

Header Files

Defining Objects in a Private MIB

Library Routines

7.5.1 The snmpextregister(3n) Library Routine
7.5.2 The snmpextgetreq(3n) Library Routine
7.5.3 The snmpextrespond(3n) Library Routine .. .
7.5.4 The snmperror(3n) Library Routine

Compiling and Installing an Extended SNMP Agent

8 Packet Filter Programming

8.1

8.2

8.3

Packet Filter Software .. .

Configuring Packet Filters

Packet Filter Documentation

Examples

6-2
6-3
6-3

6-4

7-1

7-2

7-3

7-3

7-6

7-6
7-8
7-9

7-11

7-12

8-1

8-2

8-3

2-1: Reading Data from Two Sockets ... 2-12

3-1: Specifying Another Protocol Type ... 3-1

3-2: Specifying a Wildcard Address ... 3-2

3-3: System Selects Local Port Number .. 3-3

3-4: Finding a Free Port Number ... 3-3

3-5: Overriding the Default Port Selection ... 3-4

3-6: Marking a Socket as Nonblocking ... 3-5

3-7: Asynchronous Notification of I/O Requests 3-6

3-8: Redefining Process Number for Socket ... 3-7

3-9: Flushing TerminalI/O on Receipt of Out-of-Band Data 3-8

Contents v

3-10: Broadcasting a Message ,;

3-11: ifreq Structure .. .

3-12: Obtaining the Interface Configuration

3-13: Retrieving Interface Flags .. .

3-14: Obtaining Address of the Destination Host

3-15: Creation and Use of a Pseudoterminal

4-1: Remote Login Client Code

4-2: Remote Login Server Code

4-3: rwho Server Code

4-4: Returning the Address of the Peer Process

7-1: Defining a Private MIB (disk~rp.c code) .. .

7-2: Defining a Private MIB (vm~rp.c code)

7-3: Registering a Private MIB with the SNMP Agent, snmpd

7 -4: Waiting for a Request from the SNMP Agent, snmpd

7-5: Returning a MIB Variable to the SNMP Agent, snmpd

7-6: Returning a MIB Variable with NULL Instance

7 -7: Returning an Error to the SNMP Agent, snmpd

Figures

1-1: Protocol Communications between Two Hosts

1-2: ISO Reference Model .. .

4-1: ruptimeO Program Output

5-1: XTI Software Components

3-9

3-10

3-10

3-11

3-12

3-14

4-2

4-4

4-8

4-10

7-4

7-6

7-7

7-8

7-10

7-11

7-11 ..

1-2

1-3

4-6

5-2

6-1: A Distributed Application ... 6-2

6-2: Remote Procedure Call Flow.. 6-3

7-1: SNMP Configuration in a Network .. 7-2

7 -2: SNMP MIB Layout ... 7-5

8-1: Packet Filter Software Structure 8-1

Tables

2-1: Calling Sequence for Connection Mode 2-2

2-2: Calling Sequence for Connectionless Mode ... 2-2

2-3: Socket Address Families .. 2-3

vi Contents

2-4: Socket Types

2-5: Byteorder Routines

2-6: Manipulating Variable Length Byte String Routines

6-1: DECrpc Documentation

7 -1: Response Data Types

8-1: Packet Filter Documentation

2-3

2-17

2-17

6-4

7-10

8-3

Contents vii

About This Manual

This manual introduces the programmer to the architectures and components of the
ULTRIX network programming environment. It discusses how network layering
schemes, socket interface, and UL TRIX network components can be used in writing
network applications.

Audience
This guide is intended for experienced programmers who want to write network
application programs within the UL TRIX environment. Readers should be familiar
with the C programming language and UL TRIX networking concepts.

Organization
This guide consists of eight chapters:

Chapter 1: Introduction to Network Architecture
This chapter describes the network architecture that is used by Digital and how
it relates to the ISO Reference Model for Open System Interconnection (OSI).

Chapter 2: Using the Socket Interface
This chapter describes how the socket interface can be used to write network
applications. The system calls and network library routines that are used for
socket-based applications are described.

Chapter 3:Advanced Socket Topics
This chapter describes some of the facilities described in Chapter 2 in more
detail. It also describes facilities that were not described in Chapter 2. The
examples used in this chapter are taken from the Berkeley paper An Advanced
4.3BSD Interprocess Communication Tutorial.

Chapter 4: Client/Server Model
This chapter contains code examples for the client/server model. The examples
include connection-mode client, connection-mode server, connectionless-mode
server, and inetd daemon. These code examples are taken from the Berkeley
paper An Advanced 4.3BSD inter process Communication Tutorial.

Chapter 5: X/Open Transport Interface
This chapter describes how the X/Open transport interface (XTI) fits within the
UL TRIX networking environment. It describes what the X/Open transport
interface is and points to other documentation for XTI programming details.

Chapter 6: Writing Distributed Applications with DECrpc
This chapter briefly describes the programming interface to DECrpc, the remote
procedure call mechanism supported by the ULTRIX operating system. DECrpc
Version 1.0 is based on and is compatible with the RPC component of Apollo's
Network Computing System (NCS) Version 1.5, which is a set of tools for
heterogeneous distributed computing.

The chapter points to other documentation for programming details.

Chapter 7: ULTRIX Extended SNMP Agent
This chapter describes how to write an Extended SNMP Agent, an extension of
the Simple Network Management Protocol (SNMP) Agent. The Extended
SNMP Agent allows you to manage a private Management Information Base.

Chapter 8: Packet Filter Programming
This chapter briefly describes the packet filter pseudodevice driver, a kernel
resident network packet demultiplexer supported by the UL TRIX operating
system. The packet filter provides a raw interface to Ethemets and similar
network data link layers. Packets received that are not used by the kernel (for
example, to support the IP and DECnet protocol families) are available through
this mechanism.

Related Documents
You should have available the documents in the UL TRIX documentation set,
including the ULTRIX Reference Pages, appropriate C programming documentation,
and the Guide to X/Open Transport Interface, and DECrpc documentation set.

Conventions
The following conventions are used in this guide:

macro

{ I }

cat(1)

user input

In text, bold type is used to introduce new terms.

In syntax descriptions and function definitions, braces enclose
lists from which one item must be chosen. Vertical bars are used
to separate items.

Cross-references to the ULTRIX Reference Pages include the
appropriate section number in parentheses. For example, a
reference to cat(1) indicates that you can find the material on the
cat command in Section 1 of the reference pages.

This bold typeface is used in interactive examples to indicate
typed user input.

system output This typeface is used in interactive examples to indicate system
output and also in code examples and other screen displays. In
text, this typeface.is used to indicate the exact name of a
command, option, partition, pathname, directory, or file.

rlogin

UPPERCASE
lowercase

x About This Manual

In syntax descriptions and function definitions, this typeface is
used to "indicate terms that you must type exactly as shown.

The UL TRIX system differentiates between lowercase and
uppercase characters. Literal strings that appear in text,
examples, syntax descriptions, and function definitions must be
typed exactly as shown.

filename In examples, syntax descriptions, and function definitions, italics
are used to indicate variable values; and in text, to give references
to other documents.

A vertical ellipsis indicates that a portion of an example that
would normally be present is not shown.

New and Changed Information
This is a new manual.

About This Manual xi

Introduction to Network Architecture 1

A network consists of two or more computing systems linked together for the
purpose of exchanging information and sharing resources. Network activity involves
the flow of information between systems. Data originated on one system is routed
through the network until it reaches its destination on another system.

Each system on the network is called a host. Every host has a unique name and
address. Hosts in the network are connected by communication lines over which
communications take place. There are two types of communications, connection
oriented and connectionless-oriented (datagrams). Connection-oriented
communications use virtual circuits for transmission. Virtual circuits provide a
perfect channel by providing automatic sequencing, error control, and flow control.

Connectionless-oriented communications provide a datagram mode of
communications within the environment of a computer network or networks.
Datagram transmission is transaction-oriented, and delivery and duplication
protection are not guaranteed. The datagrams do not use connections but attempt to
deliver each datagram as an isolated message. The messages may arrive out of order
or not at all.

A computing system can run many different processes (running programs). For two
processes to communicate with each other, they have to establish contact and
exchange data. A common way for processes to communicate with each other is to
use a client/server model. In this scheme, client processes request services from a
server process.

For processes to communicate with each other, there have to be rules of procedures
stating just how two or more processes are suppose to interact, for example, how to
send messages to each other. A set of agreements for interaction is known as a
protocol. Individual protocols that work together are known as the network
architecture. The network architecture, which consists of layers, is the complete
definition of all the layers necessary to build the network. Each definition is a set of
protocols that act within the same layer or between layers. The interaction between
adjacent layers is known as an interface. Figure 1-1 shows how protocol
communications take place between two hosts.

Figure 1-1: Protocol Communications between Two Hosts

UNIT
LAYER HOST A HOSTS EXCHANGED

7 Application I~ Apelication ~ I Application Message
Protocol

!INTERFACE INTERFACE!

6 Presentation I~ Presentation ~I Presentation Message
Protocol

!INTERFACE INTERFACE!

5 Session I~ Session ~I Protocol
Session Message

!INTERFACE INTERFACE!

4 Transport I~ Transport ~I Transport
Protocol

Message

!INTERFACE INTERFACE!

3 Network I~ Network ~I Network Packet
Protocol

!INTERFACE INTERFAC~
2 Data Link I~ Data Link ~I Data Link

Protocol Frame

!INTERFACE INTERFACE!

Physical I~ Electric ~I Physical
Signals

Sit

... ...
I Physical Communication Lines I

ZK-0147U-R

1.1 ISO Reference Model
The International Organization for Standardization (ISO) has developed a 7-layer
model for a standard network architecture, the ISO Reference Model for Open
System Interconnection (OSI). The purpose of the ISO Reference Model is to enable
systems from different manufacturers to work together. The model provides an
architectural basis for the development of standards, which different systems can
implement in order to provide the user with true distributed processing.

1-2 Introduction to Network Architecture

Being a hierarchical structure, the OSI architecture consists of layers. Each layer
consists of an independent set of related functions, with its own characteristic
purpose, protocols, and functions. The functions within a layer are spread across the
systems connected in the network.

In this structure, each layer provides a service to the layer immediately above, known
as its user, and is directly used only by that layer. In other words, each layer uses the
service of the layer immediately below and adds functional value to the layer
immediately below. The protocols communicate with same layer on other hosts. For
example, the transport layer protocol on host A communicates with the transport
layer on host B.

In OSI, each layer provides two types of standards: service and protocols for use
within the layer. A system that supports the OSI standards is known as an open
system. In an open systems network, each system supports the protocol standards.

The ISO Reference Model consists of seven layers. Figure 1-2 shows how the ISO
Reference Model relates to the Internet and DNA architectures.

Figure 1-2: ISO Reference Model

ISO MODEL INTERNET DNA PHASE IV

Mail, dcp, dlogin,
Application CTERM,NCP

Layer FTP, SMTP, NFS,
NICE SNMP, TELNET

Presentation Data Access
Layer Protocol (DAP)

Session Layer Session Control

I XTI I Protocol

Transmission User
Transport Control Datagram Network Services

Layer Protocol Protocol Protocol (NSP)
{TCP~ {UDP}

Network Internet
Layer Protocol (IP) Routing Protocol

Data Link
Layer DDCMP DDCMP

Ethernet Ethernet

Physical
SYNC SYNC Layer

ZK-0148U-R

Introduction to Network Architecture 1-3

1.2 Application Layer
The application layer is the highest layer in the OSI architecture. The other six layers
support this layer, because this layer directly serves the end user by providing the
distributed infonnation service appropriate to an application, to its management, and
to system management. Management is defined as the functions required to initiate,
maintain, terminate, and record data concerning the establishment of connections for
data transfer between application processes.

An application consists of cooperating application processes, which
intercommunicate according to application layer protocols. Application processes are
the ultimate sources and destinations for data exchanged. Examples of applications
include electronic mail or file transfer program.

1.3 Presentation Layer
The presentation layer provides the set of services that can be selected by the
application layer to enable it to interpret the meaning of data exchanged. Typical
examples include standard routines that compress text or convert graphic images into
bit streams for transmission across a network~

1.4 Session Layer
The session layer supports the interactions between cooperating presentation entities
by providing the session administration service and session dialog services. The
session administration service binds and unbinds two presentation entities into and
out of a relationship. The session dialog service controls the data exchange, any
delimiting, and the synchronizing of data operations between two presentation
entities.

1.5 Transport Layer
To transfer data between presentation entities, the session layer uses the services
provided by the transport layer. The transport layer provides transparent transfer of
the data between session entities by relieving the session entities of any concern with
how reliable and cost-effective transfer of data is done. In other words, this layer
provides transparent data transfer between a source and destination host and can
provide optional error recovery and flow control for the data transfer.

1.6 Network Layer
The network layer provides functional and procedural means to exchange network
service data units between two transport entities of a network connection. It provides
transport entities with independence from routing and switching considerations.

1.7 Data Link Layer
The data link layer provides the functional and procedural means to transfer data
along network links between defined points on the network.

1-4 Introduction to Network Architecture

1.8 Physical Layer
The physical layer provides mechanical, electrical, functional, and procedural
characteristics to establish, maintain, and release the physical connections between
data link entities.

Introduction to Network Architecture 1-5

Using the Socket Interface 2

The ULTRIX socket interface allows network-based applications to be written
independently of the underlying communication facilities. Therefore, the system can
support communication networks that use different sets of protocols, different naming
conventions, and different hardware. Because of this heterogeneous environment, a
communication domain, also known as an address family, must be defined to provide
the standard semantics of communication and naming.

For communication to take place between two processes, an endpoint of
communication is required. An abstraction known as a socket is the end point of
communication, from which messages are sent and received. Sockets are created
within an address family like files are created within a filesystem. When an
application program requests the UL TRIX operating system to create a socket, a
small integer (descriptor) is returned. The application program can use the descriptor
to reference the newly created socket. Whenever possible, sockets behave exactly like
ULTRIX files or devices, so they can be used with traditional operations like read
and write.

Applications can request the mode of communication, such as datagrams or virtual
circuits. The application can provide a destination address each time it uses the
socket (for example, when sending datagrams), or it can bind the destination address
to the socket and avoid specifying the destination repeatly (for example, when using
a TCP connection). The mode of communication is determined by the type of socket.

2.1 Writing Network Applications
The most commonly used paradigm in constructing distributed applications is the
client/server model. The requester, known as a client, sends a request to a server and
waits for a response. The server is an application-level program that offers a service
that can be reached over the network. Servers accept requests that arrive over the
network, perform their service, and return the result to the requester.

An application program interacts with UL TRIX by making system calls. System calls
look and behave exactly like other procedure calls. They take arguments and return
one or more results. Arguments can contain values (for example, an integer count) or
pointers to objects in the application program (for example, a buffer to be filled with
characters). The sequence of calling the system calls to establish communication
depends upon two major considerations: client or server program and connection or
connectionless mode of communication. Tables 2-1 and 2-2 list the calling sequence
for each case.

Note

It is highly recommended, as you read this chapter, that you also refer to
the reference pages for the respective system calls.

Table 2-1: Calling Sequence for Connection Mode

Operation Client Call Server Call

Create socket SocketO SocketO

Bind address BindO BindO

Define listener ListenO

Request connection ConnectO

Accept Connection AcceptO

Transfer data WriteO WriteO

ReadO ReadO

SendO SendO

RecvO RecvO

SendmsgO SendmsgO

RcvmsgO RcvmsgO

Discard socket CloseO CloseO

ShutdownO ShutdownO

Table 2-2: Calling Sequence for Connectionless Mode

Operation Client Call Server Call

Create socket SocketO SocketO

Bind address BindO BindO

Transfer Data SendtoO SendtoO

RecvfromO RecvfromO

SendmsgO SendmsgO

RecvmsgO RecvmsgO

or

Set destination ConnectO

Transfer Data SendtoO SendtoO

RecvfromO RecvfromO

Discard socket CloseO CloseO
ShutdownO ShutdownO

2-2 Using the Socket Interface

2.1.1 Creating a Socket
Issuing a socket system call creates a socket on demand. The socket call takes
three integer arguments: address family (a/), type (type), and protocol (protocol). It
returns an integer result. It has the form:

s = socket (af, type, protocol)

Argument af specifies the address family (see Table 2-3) to be used with the socket.
This argument depends on the environment in which the application is working.

Table 2-3: Socket Address Families

Address Family Description

AF _DECNET DECnet

AF _DLI Direct data link interface

AF _IMPLINK ARPANET IMP addresses

AF _INET Internetwork (UDP ,TCP)

AF _UNIX Local to host (pipes)

Argument type is selected according to the characteristic properties required by the
application. For example, if reliable communication is required, a stream socket
might be selected. See Table 2-4. It is assumed that processes communicate only
between sockets of the same type, although nothing prevents communication between
sockets of different types should the underlying communication protocols support
this.

Table 2-4: Socket Types

Socket Type

Datagram

Stream

Sequenced Packet

Raw

Description

Supports bidirectional flow of data that is not promised to be
sequenced, reliable, or unduplicated. An important characteristic of a
datagram socket is that record boundaries in data are preserved.

Provides bidirectional, reliable, sequenced, and unduplicated flow of
data, without record boundaries.

Provides properties similar to the stream socket, except the sequenced
packet preserves the boundaries.

Provides users access to the underlying communication protocols that
support socket abstractions. These sockets are normally datagram
oriented, although their characteristics are dependent on the interface
provided by the protocol. Raw sockets are not intended for the general
user; they are used mainly for developing new communication
protocols or for gaining access to the inner workings of existing
protocols.

Using the Socket Interface 2-3

The protocol argument specifies the appropriate protocol for the address family and
socket type. Protocols are indicated by well known constants specific to each address
family. If the protocol is left unspecified (a value of zero), the system selects an
appropriate protocol from those protocols that the address family comprises and that
may be used to support the requested socket type. The default protocol (protocol
argument to the socket call is 0) should be correct for most situations. However, it
is possible to specify a protocol other than the default. See Section 3.1,
protocols () , and services () on specifying other protocols.

Normally, a socket blocks, that is, it places the process into suspension until the I/O
completes. A socket can be marked as nonblocking to have the socket call return
before the process completes, See Section 3.3 for a description on marking sockets as
nonblocking.

For additional information, see socket(2) for creating a socket.

2.1.2 Binding an Address
A socket is created without a name (address). Until an address is bound to a socket,
processes have no way to reference a socket and, consequently, no messages can be
received on it. Applications can explicitly specify a socket's address or can permit
the system to assign one. Socket addresses can be reused if the address family
permits, although address families normally ensure that a socket address is unique on
each host, so that the association between two sockets is unique within the address
family. The address to be bound to a socket must be formulated in a socket address
structure. Applications find addresses of well-known services by looking up their
names in a database. The format of addresses can vary among address families; to
permit a wide variety of different formats, the system treats addresses as variable
length byte arrays.

Communicating processes are bound by an association. An association is a logical
binding between two communication endpoints that must be established before
communication can take place. Associations can be long-lived, such as in virtual
circuit-based communication, or short-lived, such as in a datagram-based
communication.

The bind system call is used to associate (bind) an address to a socket. It has the
form:

bind(s, name, namelen)

The s argument is the integer descriptor of the socket to be bound. The name
argument is a structure that specifies the local address to which the socket should be
bound, and the namelen argument specifies the length of the address in bytes.
Interpretation of the address may vary from address family to address family. For
example, name would contain Internet address and port number in the Internet
address family (AF _INET), whereas, in the UNIX address family (AF _UNIX), it
would contain a pathname.

See Section 3.2 and bind (2) for additional information on binding addresses to
sockets.

2.1.3 Establishing a Connection
In connection-oriented communication, the process that initiates a connection request
is called a client process, and the process that receives a connection request is called
a server process. The server offers its services, advertises, by binding a socket to a

2-4 Using the Socket Interface

well-known address associated with the service and then passively listens on its
socket. An unrelated process can make a connection with the server. The client
requests services from the server by initiating a connection to the server's socket. On
the client side, the connect call is used to initiate a connection. It has the format:

connect(s, name, namelen)

The s argument is the integer descriptor of the socket to connect. The name argument
is a structure that specifies the destination address to which the. socket should be
bound. The namelen argument specifies the length of the address in bytes.

If the socket of the client is unbound at the time of the connect call, the system
automatically selects and binds a name to the socket, if necessary. This is the usual
way that local addresses are bound to a socket.

An error is returned if the connection was unsuccessful (any name automatically
bound by the system, however, remains). Otherwise, the socket is associated with the
server and data transfer can begin. If a connection attempt fails, an error value is
returned in errno. See socket (2) for the possible errors.

For the server to receive a client's connection, it must perform two steps after
binding its socket. The first step is to indicate a willingness to listen for incoming
connection requests. This is done with a listen call. It has the form:

listen(s, backlog)

The backlog parameter of the listen call specifies the maximum number of
pending connections that should be queued for acceptance. Should a connection be
requested while the queue is full, the connection is not refused, but, rather, the
individual messages which make up the request are ignored. This gives a server time
to make room in its pending connection queue while the client retries the connection
request.

With a socket marked as listening, a server may accept a connection. It has the
format:

accept(s, addr, addrlen)

The s argument specifies the descriptor of the socket on which to wait for a
connection. The addr argument points to a structure of type sockaddr, and addrlen
points to an integer. When a connection request arrives, the system places the address
of the requesting client into addr and sets addrlen to the length of the address. The
system creates a new socket that has its destination connected to the requesting client
and returns the new socket descriptor to the caller.

The accept call normally blocks. That is, the accept call does not return until a
connection is available or the system call is interrupted by a signal to a process.
Further, there is no way for a process to indicate if it accepts connections from only a
specific individual, or individuals. It is up to the user process to consider who the
connection is from and close down the connection if it does not want to communicate
with the process.

For additional information, see the listen (2) , connect (2) , and accept (2)
reference pages.

Using the Socket Interface 2-5

2.1.4 Transferring Data
After establishing a connection, a variety of calls can be used to send and receive
data. Because the peer entity at each end of a connection is established, a user can
send or receive a message without specifying the peer. The usual read, readv,
write, and writev system calls can be used. The write call has the fonn:

write(d, buf, nbytes)

The d argument contains either an integer socket descriptor or a file descriptor. The
but argument contains a sequence of bytes to be sent, and the nbytes argument
specifies the number of bytes. If the internal socket buffers are full when a wr it e
call is issued, the call blocks until data can be transferred.

The read call has the form:

read(d, buf, nbytes)

The argument d gives the socket descriptor or file descriptor from which to read data.
The but argument specifies where in memory to store the data, and the nbytes
argument specifies the number of bytes to be read.

Note

The read operation can be used only when the socket is- connected.

The wr it ev call is same as the wr it e call, except the wr it ev call uses what is
known as a gatherwrite. The gatherwrite allows an application program to write
a message without copying the message into contiguous bytes. It has the fonn:

writev(d, iov, ioveclen)

The d argument is used the same as in the wr it e call. The iov argument points to a
iovec structure type that contains a sequence of pointers to blocks of bytes that form
the message. See wr i t e (2) for the details of the iovec structure. The argument
ioveclen specifies the number of entries in iovec.

The readv system call uses a scatterread operation. The scatterread
operation allows the incoming data to be placed in noncontiguous locations. It has
the form:

readv(d, iov, iovcnt)

The d argument is the same as in the read call. The iov argument points to a
i ave c structure type that contains a sequence of pointers to blocks of memory into
which incoming data should be stored. See read (2) for details of the iavec
structure. The iovcnt argument specifies the number of entries in iov.

In addition to read, readv, write, and writev calls, the send and recv can
be used. The send call has the form:

send(s, msg, len, flags)

The s argument specifies the socket to use. The msg argument gives the address of
bytes to be sent and the len argument specifies the number of bytes to be sent. The
flags argument controls the transmission.

The recv call has the form:

recv(s, buf, len, flags)

2-6 Using the Socket Interface

The s argument specifies a socket descriptor from which data should be received. The
buf argument specifies the address in memory into which the message should be
placed and the len argument specifies the length of the buffer area. The flags
argument allows the caller to control the reception.

The send and recv calls differ from the read and write calls in that both
support an additional flags argument. The flags argument, defined in .
<sys/ socket. h>, can be used to peek at incoming data on reception
(MSG_PEEK), to send or receive out-of-band data (MSG_OOB), and to send data
without network routing (MSG_DONTROUTE). See Section 3.6 for additional
information on sending out-of-band data.

The sendrnsg and rcvmsg system calls can also be used. These two calls support
all that read and write system calls do and also provide scatter-gather
operations, specifying and receiving addresses, and transmitting and receiving
specially interpreted data, called access rights.

The sendrnsg call has the format:

sndmsg(s, msg, flags)

The s andflags arguments are used the same as in the send call. The difference is in
the msg argument which contains the address of a msghdr structure that contains the
address for the outgoing message as well as locations for the sender's address. See
recv (2) for a description of the msghdr structure.

The recvmsg call has the format:

recvmsg(s, msg, flags)

The s andflags arguments are used the same as in the recv call. The msg call
contains the address of a msghdr structure that contains the address for the
incoming message as well as locations for the sender's address. This structure is the
same as the one produced by the sndrnsg call, allowing them to function as a pair.

For additional information, see send (2) for the send and sendrnsg calls;
write (2) for write and writev calls; read (2) for the read and readv
calls; and recv (2) for recv and recvmsg calls.

2.1.5 Discarding Sockets
After a socket is no longer of interest, it can be discarded with the c los e call to the
descriptor (d).

close (d)

In normal operation, closing a socket causes any queued but unaccepted connections
to be discarded. If the socket is in a connected state, a disconnect is initiated. The
socket is marked to indicate that a file descriptor is no longer referencing it, and the
close operation returns successfully. When the disconnect request completes, the
socket resources are reclaimed.

Alternatively, a socket can be marked explicitly to force the application process to
linger when closing until there is no more data and the connection has shut down.
This option is marked in the socket data structure, using the setsockopt system
call with the SO LINGER option. When an application indicates that a socket is to
linger, it also specifies a duration for the lingering period. If the lingering period
expires before the disconnect is completed, the socket shuts down and discards any
data still pending.

Using the Socket Interface 2-7

See Section 2.1.8 for additional information on setsockopt call.

Should a user have no use for any pending data, it can perform a shutdown call on
the socket prior to closing it. It has the form:

shutdown(s, how)

The s socket identifies the socket of the connection to be shut down. The how
parameter is 0 if the user is no longer interested in reading data, 1 if no more data is
to be sent, or 2 if no data is to be sent or received.

For additional information, see close (2) and shutdown (2) .

2.1.6 Using Connectionless Sockets

Sections 2.1.3 and 2.1.4 have dealt with sockets that use a connection-oriented
model. However, there is also support for connectionless interactions typical of the
datagram facilities found in contemporary packet-switched networks. A datagram
socket provides a symmetric interface to data exchange. While processes are still
likely to be client and server, there is no requirement for connection establishment.
Instead of using the send and recv system calls, the sendto and recvfrom
calls are used because they permit callers to specify or receive the address of the peer
with whom they are communicating. These calls are most useful for connectionless
sockets, where the peer can vary on each message transmitted or received.

Datagram sockets are created in the same way as described in Section 2.1.1. If a
particular local address is needed, the bind operation must precede the first data
transmission. Otherwise, the system sets the local address and port when data is first
sent. To send data, the sendto call is used. It has the form:

sendto(s, msg, len, flags, to, tolen)

The s, msg, len, and flags arguments are used the same as the send call as described
in Section 2.1.4. The to and tolen arguments point to a socket address structure and
an integer. The to argument specifies destination address and to len specifies its
length. When using an unreliable datagram interface, it is unlikely that any errors are
reported to the sender. When information is present locally to recognize a message
that cannot be delivered (for instance when a network is unreachable), the call
returns -1 and the global value errno contains an error number.

To receive messages on an unconnected datagram socket, the recvfrom call can be
used. The recvfrom call is like the recv call, except recvfrom has two
additional arguments that allow the caller to specify the destination from which data
should be received. It has the form:

recvfrom(s, buf, len, flags, from, fromlen)

The first four arguments are the same as the recv call as described in Section 2.1.4.
The two additional arguments, from and fromlen, point to a socket address structure
and an integer respectively. ULTRIX uses from to record the address of the message
sender and uses fromlen to record the length of the sender's address.

In addition to the two calls, sendto and recvfrom, datagram sockets can also use
the connect call to associate a socket with a specific destination address. In this
case, any data sent on the socket is automatically addressed to the connected peer,
and only data received from that peer is delivered to the user. Only one connected
address is permitted for each socket at one time; a second connect changes the
destination address, and a connect to a null address (family AF _ UNSPEC)
disconnects. Connect requests on datagram sockets return immediately, as this simply

2-8 Using the Socket Interface

results in the system recording the peer's address (as compared to a stream socket,
where a connect request initiates establishment of an end-to-end connection). The
accept and listen calls are not used with datagram sockets.

While a datagram socket is connected, errors from recent send calls may be returned
asynchronously. These errors can be reported on subsequent operations on the socket,
or a special socket option used with getsockopt, SO_ERROR, can be used to
interrogate the error status.

Two other system calls can be used with datagrams: sendmsg and recvmsg.
The sendmsg call is used instead of the sendto call, when a long list of
arguments are to be sent. It has the form:

sendmsg(s, msg, flags)

The s andflags arguments are used the same as in the sendto call. The msg
argument is a msghdr structure that contains the message to be sent. The msghdr
structure is used to minimize the the number of directly supplied parameters. See
recv (2) reference pages for a description of the msghdr structure. This call is
especially useful when used with the re cvms g call, because they both can produce a
message structure in the same format.

The recvmsg call functions like the recvfrom call but requires fewer arguments.
It has the format:

recvmsg(s, msg, flags)

The s and flags arguments are used the same as in the recvfrom call. The msg
argument points to a msghdr structure that holds the address for the incoming
message. See recv (2) for a description of the msghdr structure.

For additional information, see send (2) for the sendto and sendmsg calls;
recv (2) for the recvfrom and recvmsg calls.

2.1.7 Obtaining Local and Remote Socket Addresses
Newly created processes inherit the set of open sockets from the process that created
them. If the newly created process needs to determine the address of the destination
to which a socket connects, getpeername must be called. It has the form:

getpeername(s, name, namelen)

The s argument specifies the socket for which the address is desired. The name
argument points to a sockaddr structure that receives the socket address. The
namelen argument points to an integer that receives the length of the address. The
getpeername system call works only with connected sockets.

The getsockname system call allows a process to determine the local address of a
socket. It has the form:

getsockname(s, name, namelen)

The s argument specifies the socket for which the local address is desired. The name
argument points to a sockaddr structure that contains the address, and argument
name len points to an integer that contains the length of the address.

For additional information, see getpeername (2) and getsockname (2) .

Using the Socket Interface 2-9

2.1.8 Obtaining and Setting Socket Options

The get s ockopt system call allows the application program to request information
about the socket. A caller specifies the socket, the option of interest, and a location at
which to store the requested information. UL TRIX examines its internal data
structures for the socket and passes the requested information to the caller. It has the
form:

getsockopt(s, level, optname, optval, optlen)

The s argument specifies a socket for which information is needed. The level
argument identifies whether the operation applies to the socket itself or to the
underlying protocol being used. In most cases, it is the socket level indicated by the
symbolic constant SOL_SOCKET, defined in <sys/socket .h>. The optname
argument specifies a single option to which the request applies. See socket (2) for
the supported options. The optval and optlen arguments contain pointers. The first
pointer points to a buffer into which the system places the requested value, and the
second points to an integer into which the system places the length of the option
value.

The setsockopt system call allows an application program to set a socket option
using the same set of values obtained with getsockopt. The caller specifies a
socket for which the option should be set, the option to be changed, and a value for
the option. It has the form:

setsockopt(s, level, optname, optval, optlen)

The arguments for setsockopt are the same as getsockopt except the optlen
argument contains the length of the option being passed to the system. The caller
must supply a legal value for the option as well as a correct length for that value.

To determine the type (for example, stream or datagram) of an existing socket, the
SO_TYPE socket option and getsockopt call can be used as follows:

#include <sys/types.h>
#include <sys/socket.h>

if (getsockopt (s,SOL_SOCKET,SO_TYPE, (char*)&type,&size)<O) {
perror("getsockopt");
exit(l);

After the getsockopt call, type sets the value of the socket type, as defined in
<sys . socket. h>. If, for example, the socket was a datagram socket, type would
have the value corresponding to SOCK_DGRAM.

For additional information, see getsockopt (2) for getsockopt and
setsockopt calls.

2.1.9 Handling Multiple Services

A s e 1 e ct system call allows a single server process to wait for connections on
multiple sockets. select call selects blocks waiting on one of a set of file
descriptors to become ready. It has the form.

nfound = select(nfds, readfds, writefds, exceptfds, timeout)

2-10 Using the Socket Interface

The arguments of the select call are:

• nfds specifies how many descriptors should be examined (the descriptors
checked are 0 through nfds-l).

• readfds points to a bit mask that specifies the file descriptor to check for
reading.

• writefds points to a bit mask that specifies the file descriptors to check for
writing.

• exceptfds points to a bit mask that specifies the file descriptors to check for
exception conditions.

• timeout, when it is nonzero, is the address of an integer that specifies how long
to wait for a connection before returning to the caller. A zero value forces the
call to block until a descriptor becomes ready. Because the timeout argument
contains the address of the timeout integer and not the integer itself, a process
can request zero delay by passing the address of an integer that contains zero
(that is, a process can poll to see if I/O is ready).

Issuing a s e 1 e ct system call returns the number of file descriptors from the
specified set that are ready for I/O. It also changes the bit masks to which readfds,
writefds, and exceptfds point, to inform the application which of the selected file
descriptors are ready. Thus, before calculating select, the caller must tum on those
bits that correspond to descriptors to be checked. Following the call,all bits that
remain set to 1 correspond to a ready file descriptor.

Example 2-1 shows reading data from two sockets, sl and s2, as it is available from
each and with a I-second timeout.

Using the Socket Interface 2-11

Example 2-1: Reading Data from Two Sockets

#include <sys/time.h>
#include <sys/types.h>

fd_set read_template;
struct timeval wait;

for (; ;) {
wait.tv sec=l;
wait.tv=:usec=O;

/* one second*/

FD_SET(sl,&read_template);
FD_SET(s2,&read_template);

nb = select(FD SETSIZE, &read_template, (fd_set*)0, (fd_set*)O,&wait);
if(nb <= 0) {

perror("select");
exit(l); /* An error occurred during the select, or

the select timed out. */

if(FD ISSET(sl,&read template)) {
- /* Socket #1 is ready to be read from. */

if (FD_ISSET(s2, &read template)) {
/* Socket-#2 is ready to be read from. */

The arguments to select point to integers instead of pointing to Jd_sets. This type
of call works as long as the number of file descriptors being examined is less than the
number of bits in an integer.

The s e 1 e ct call provides a synchronous multiplexing scheme. Asynchronous
notification of output completion, input availability, and exceptional conditions is
possible through use of the fcntl system call. See Section 3.5 for information on
asynchronous output; see select (2) and fcntl(2) for additional information.

2.2 Network Library Procedures
In addition to the system calls, UL TRIX provides a set of library procedures that
provide useful network functions. The difference between system calls and library
procedures is that system calls pass control to the computer's operating system,
whereas library procedures are like other procedures which are part of an application
program.

The network library procedures provide access to network databases. This access
allows processes to obtain information about host names, protocol port numbers,

2-12 Using the Socket Interface

network services, and other related information.

2.2.1 Obtaining Host Information
A set of library procedures allows a process to retrieve information about a host,
given either a hostname or a host's Internet address. When used with a host on the
same Internet, the library procedures make the process a client of the host by sending
a request to a server and waiting for a response. When used on systems that are not
on the Internet, the routines obtain the desired information from a database kept
locally on disk.

The gethostbyname procedure takes a host name as an argument and returns a
pointer to a hostent structure for that host. It has the form:

ptr_host = gethostbyname(name)

The name argument points to a character string that contains a domain name for the
host. The value returned, ptr _host, points to the following structure:

struct hostent{
char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type (for example, AF_INET) */
int h length; /* length of address */
char **h_addr_list; /* list of addresses, null terminated */

} ;

The gethostbyaddr procedure produces the same information as the
gethostbyname procedure. The difference is that gethostbyaddr accepts a
host address as an argument. It has the form:

ptr_host = gethostbyaddr(addr, len, type)

The addr argument points to a sequence of bytes that contains a host address. The len
argument contains an integer that gives the length of the address, and the type
argument contains an integer that specifies the type of the address (for example,
AF_INET).

Three other procedures allow a user process to read the hosts database (!etc/hosts)
sequentially. The client passes a nonzero argument to the sethostent procedure to
establish a connection to the database and starts at the beginning of the database. The
client then retrieves one entry at a time and finally closes the connection. It has the
form:

sethostent(stayopen)

If the integer argument, stayopen, is nonzero, the database remains open after calling
sethostent to search for an entry.

The gethostent procedure allows a process to retrieve entries sequentially, one at
a time, and returns the same structure as the other retrieval requests. It has the form:

ptr_host = gethostent()

The endhostent procedure closes the connection to the host database. It has the
form:

endhostent ()

Using the Socket Interface 2-13

After a connection has been closed with endhostent, the client can call
sethostent to create a new connection and start again at the beginning of the
database.

See gethostent (3n) for additional information on gethostent,
gethostbyaddr, gethostbyname, sethostent, and endhostent calls.

2.2.2 Obtaining Network Information
ULTRIX hosts keep a database of networks (/ etc/networks). A set of network
library procedures allows a process to access the network database. The
getnetbyname procedure obtains and formats the contents of an entry from the
database given the name of a network. It has the form:

ptr_network = getnetbyname(name)

The name argument points to a string that contains the name of the network for
which infonnation is desired. The getnetbyname procedure returns a pointer to a
netent structure. The netent structure has the format:

struct netent{
char *n name; /* official name of net */
char **n_aliases; /* alias list */
int n addrtype; /* net address type */
int n=net; /* network number, host byte order */

} ;

The getnetbyaddr procedure searches for information about a network, given its
address. It has the form:

ptr_network = getnetbyaddr(net, type)

The net argument contains a 32-bit network address, and the type argument contains
an integer that specifies the type of network address.

Some procedures allow sequential access of the network database. Procedure
setservent allows the calling process to open the network database and move to
the beginning. It has the form:

setnetent(stayopen)

If the integer argument, stayopen, is nonzero, the database remains open after calling
setnetent to search for an entry.

The getnetent procedure allows a process to retrieve entries sequentially, one at a
time, and returns the same structure as the other retrieval requests. It has the form:

ptr_network = getnetent()

The endnetent procedure closes the connection to the network database. It has the
form:

endnetent()

See getnetent (3n) for additional information on gethostent,
getnetbyaddr,getnetbyname,setnetent,andendnetent.

2-14 Using the Socket Interface

2.2.3 Obtaining Protocol Information

Some routines provide access to the protocols database (/ etc/protocols). The
getprotobyname procedure allows a caller to obtain information about a protocol,
given its name:

ptr_protocol = getprotobyname(name)

The name argument points to an ASCII string that contains the name of the protocol
for which information is desired. The procedure returns a pointer to a protent
structure. The protent structure has the format:

struct

} ;

char
char
int

protent{
*p_name;
**p_aliases;
p_proto;

/* official protocol name */
/* alias list */

/* protocol number */

The getprotobynumber procedure allows a process to search for protocol
information using protocol number (proto) as a key:

ptr_protocol = getprotobynumber(proto)

Some procedures allow sequential access to the protocols database. Procedure
setprotoent allows the calling process to open the protocols database and move
to the beginning. It has the form:

setprotoent(stayopen)

If the integer argument, stayopen, is nonzero, the database remains open after calling
setprotoent to search for an entry.

The getprotoent procedure allows a process to retrieve entries sequentially, one
at a time, and returns the same structure as the other retrieval requests. It has the
form:

ptr_protocol = getprotoent()

The endprotoent procedure closes the connection to the protocols database. It has
the form:

endprotoent ()

See getprotoent (3n) for additional information on getprotoent,
getprotobynumber,getprotobyname,setprotoent,andendprotoent
calls.

2.2.4 Obtaining Network Services Information

The network services routines provide information about services and protocol ports.
Given the service name, the getservbyname procedure sequentially searches from
the beginning of the database (/ etc/ services) until a matching service name
(name) is found or until EOF is encountered. If a protocol name (proto) is also
specified, a match is not encountered until both the service and protocol names are
matched. It has the format:

ptr_service = getservbyname(name, proto)

The name argument specifies the address of a string that contains the name of the
desired service, and the integer argument, proto, specifies the protocol with which the
service is to be used. Normally, protocols are limited to TCP and UDP. The returned

Using the Socket Interface 2-15

value points to a servent structure. The servent structure has the format:

struct servent{
char *s_name; /* official service name */
char **s_aliases; /* alias list */
int s_port; /* port number, network byte order */
char *s_proto; /* protocol to use */

} ;

The getservbyport procedure allows the caller to obtain an entry from the
services database, given the port number assigned to it. It has the form:

ptr_port = getservbyport(port,proto)

The port argument is the integer protocol port number assigned to the service. The
proto argument specifies the protocol for which the service is desired.

Some procedures allow sequential access of the services database. Procedure
setnetent allows the calling process to open the services database and move to
the beginning. It has the form:

setservent(stayopen)

If the integer argument, stayopen, is a nonzero, the database remains open after
calling setservent to search for an entry.

The getservent procedure allows a process to retrieve entries sequentially, one at
a time and returns the same structure as the other retrieval requests. It has the form:

ptr_service = getservent()

The endservent procedure closes the connection to the services database. It has
the form:

endservent ()

See getservent (3n) for additional information on getservent,
getservbyport, getservbyname, setservent, and endservent calls.

2.3 Converting Network Byte Order
Hosts can differ in the way they store integer quantities and the Internet defines a
host-independent standard for byte order. The ULTRIX operating system provides
library procedures that convert between the local host byte order and the network
standard byte order. To be portable, programs must be written to call the conversion
routines every time they copy an integer value from the local host to a network
packet, or when they copy a value from a network packet to the local host.

All four conversion routines are functions that take a value as an argument and return
a new value with the bytes rearranged. For example, to convert a long (4-bytes)
integer from network byte order to local host byte order, you might call ntohl
procedure (Network TO Host Long). See Table 2-4. It has the format:

hostlong = ntohl(netlong)

The netlong argument is a 4-byte (32-integer value) in network standard byte order.
The result, hostlong, is in local host byte order.

2-16 Using the Socket Interface

Table 2-5: Byteorder Routines

Call Description

htonl(hostlong) Convert 32-bit quantity from host to network byte order

htons(hostshort) Convert 16-bit quantity from host to network byte order

ntohl(netlong) Convert 32-bit quantity from network to host byte order

ntohs(netshort) Convert 16-bit quantity from network to host byte order

2.4 Manipulating Variable Length Byte Strings
The run-time library contains three routines that are used for manipulation of names.
These routines are listed in Table 2-5.

Table 2-6: Manipulating Variable Length Byte String Routines

Call

bcmp(s 1 ,s2,n)

bcopy(s 1 ,s2,n)

bzero(base, n)

Description

Compare byte-strings; 0 if same, non-zero otherwise

Copy n bytes from s 1 to s2

Zero-fill n bytes starting at base

Using the Socket Interface 2-17

Advanced Socket Topics 3

This chapter describes in more detail some of the facilities discussed in Chapter 2. It
also describes advanced facilities that were not covered in Chapter 2.

3.1 Selecting Specific Protocols
The first two arguments of the socket () call (al and type) are described in Chapter
2. The third argument of the socket call specifies the protocol. If the third
argument is 0, socket selects a default protocol to use with the returned socket of
the type requested. The default protocol is usually correct, and alternate choices may
not be available. However, when using raw sockets to communicate directly with
lower-level protocols or hardware interfaces, the protocol argument can be important
for setting up demultiplexing. For example, raw sockets in the Internet family can
implement a new protocol above IP, and the socket receives packets only for the
protocol specified. To obtain a particular protocol, you determine the protocol
number as defined within the communication domain. For the Internet domain you
can use one of the library routines discussed in Section 2.2, such as
getprotobynarne. Example 3-1 shows how a socket s that is using a stream
based connection can use protocol type newtcp instead of the default TCP.

Example 3-1: Specifying Another Protocol Type

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

struct protoent *pp;

pp = getprotobyname("newtcp");
if((s = socket (AF_INET, SOCK_STREAM, pp->p_proto)) < 0) {

perror("socket");
exit(l);

3.2 Binding an Address
The associations in binding addresses to sockets in the Internet domain are composed
of local and foreign addresses and local and foreign ports. Port numbers are allocated
out of separate spaces, one for each system and one for each domain on that system.
An association can be specified by specifying half of an association at a time. The
two steps are:

1. Use the bind system call for a process to specify half of an association, the
<local address, local port> part.

2. Use the connect and accept calls to complete a socket's association by
specifying the <foreign address, foreign port> part.

Care must be exercised to ensure the association uniqueness requirements are not
violated. Further, it is unrealistic to expect user programs to always know proper
values for the local address and local port, because a host can reside on multiple
networks and the set of allocated port numbers is not directly accessible to a user.

To simplify local address binding in the Internet domain, a wildcard address can be
used. When an address is specified in INADDR_ANY (a constant defined in
<net inet / in. h», the system interprets the address as any valid address.
Example 3-2 shows how a bind call specifies a port number to a socket, but the
local address is not specified.

Example 3-2: Specifying a Wildcard Address

#include <sys/socket.h>
#include <sys/types.h>
#include <netinet/in.h>
struct sockaddr_in sin;

if((s = socket(AF_INET,SOCK_STREAM,O)) < 0) {
perror("socket");
exit(l);

sin. sin family = AF INET;
sin.sin-port = htons(INADDR ANY);
sin.sin=port = htons(MYPORT);
if(bind(s, (struct sockaddr*)&sin,sizeof(sin)) < 0) {

perror ("bind") ;
exit(l);

Sockets with wildcard local addresses can receive messages directed to the specified
port number and sent to any of the possible addresses assigned to a host. For
example, if a host has addresses 128.32.0.4 and 10.0.0.78, and a socket is bound as
above, the process accepts connection requests that are addressed to 128.32.0.4 or
10.0.0.78. If a server process only allows hosts on a given network to connect to it, it
would bind the address of the host on the appropriate network.

Likewise, a local port can be left unspecified (specified as zero), in which case the
system selects an appropriate port number for it. Example 3-3 shows binding a
specific local address to a socket, but leaving the local port number unspecified.

3-2 Advanced Socket Topics

Example 3-3: System Selects Local Port Number

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

struct hostent *hp;
struct sockaddr_in sin;
char *hostname="myhost";
#define NULL 0

hp = gethostbyname(hostname);
if(hp == NULL) {

perror("gethostbyname");
exit(l) ;

bcopy(hp->h addr, (char*)sin.sin addr, hp->h length);
sin. sin_port = htons(O); - -
if (bind (s, (struct sockaddr*) &sin, sizeof (sin)) < 0) {

perror ("bind") ;
exit(l);

The system selects the local port number using these rules:

• Internet ports below IPPORT_RESERVED (1024) are reserved for privileged
users (that is, superusers); Internet ports above IPPORT_USERRESERVED
(5000) are reserved for nonprivileged servers.

• The port number is not currently bound to some other socket.

To find a free Internet port number in the privileged range, the rresvport library
routine can be used to retUlTI a stream socket with a privileged port number as shown
in Example 3-4.

Example 3-4: Finding a Free Port Number

#include <stdio.h>
#include <errno.h>
#include <sys/socket.h>
#include <netinet/in.h>

int lport
int s;

IPPORT_RESERVED-l;

s = rresvport(&lport);
if (s<O) {

if(errno == EAGAIN)
fprintf(stderr,"socket:all ports in use\n");

else
perror("rresvport: socket");

exit(l);

To restrict port allocation allows processes executing in a secure environment to
perform authentication based on the originating address and port number. For
example, the rlogin () command allows users to log in to a remote host without
being asked for a password. This can only happen if:

Advanced Socket Topics 3-3

• The name of the host the user is logging in from is in the file
/ etc/hosts. equi von the host that the user is logging in to (or the system
name and the user name are in the user's. rhosts file in the user's home
directory).

• The user's rlogin process is coming from a privileged port on the host from
which the user is logging in.

The port number and network address of the host from which the user is logging in
can be determined either by the from result of the a c c ept call or from the
getpeername call.

The algorithm used by the system in selecting port numbers for an application can be
unsuitable because associations are created in a 2-step process. For example, the
Internet file transfer protocol, FTP, specifies that data connections must always
originate from the same local port. However, duplicate associations are avoided by
connecting to different foreign ports. In this situation, the system disallows binding
the local address and port number to a socket if a previous data connection's socket
still exists. To override the default port selection algorithm, an option call is
performed prior to address binding, as shown in Example 3-5.

Example 3-5: Overriding the Default Port Selection

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
int on 1;

struct sockaddr in sin;

if (setsockopt (s,SOL_SOCKET,SO_REUSEADDR,&on,sizeof(on)) < 0) {
perror("setsockopt");
exit(l);

if (bind (s, (struct sockaddr*) &sin, sizeof (sin)) < 0) {
perror ("bind") ;
exit(l);

In Example 3-5, local addresses are bound that are already in use. This does not
violate the uniqueness requirement, as the system checks at connect time any other
sockets with the same local address and port that do not have the same foreign
address and port. If the association already exists, the call returns the EADDRINUSE
error.

3.3 Creating a Nonblocking Socket
Normally, sockets block. A blocking socket puts the process into suspension until the
I/O request completes and returns an error. A nonblocking socket returns before the
process completes. To create a nonblocking socket, a socket is created with a
socket () call and marked with the fcntl call. Example 3-6 shows marking a
socket as nonblocking.

3-4 Advanced Socket Topics

Example 3-6: Marking a Socket as Nonblocking

#include <fcntl.h>
#include <sys/socket.h>

if«s = socket(AF_INET,SOCK_STREAM,O» < 0) {
perror("socket");
exit(l);

}

if (fcntl (s,F_SETFL,FNDELAY) <0) {
perror("fcntl");
exit(l) ;

When performing nonblocking I/O on sockets, you must check the global variable
errno for the EWOULDBLOCK error. This error occurs when an operation tries to
block with a nonblocking socket. In particular, accept, connect, and write can
return EWOULDBLOCK, and processes should be prepared to deal with such return
codes. If an operation such as a send cannot be completed, but when partial writes
are acceptable (for example, when using a stream socket), the data that can be sent
immediately is processed, and the return value indicates the amount sent.

3.4 Notifying a Process of an 1/0 Request
The SIGIO signal notifies a process when a socket or file descriptor has data waiting
to be read. To use the SIGIO facility, three steps are required:

1. Use signal or sigvec calls to have the process set up a SIGIO signal
handler.

2. Use the f cn t 1 call to set the process id or process group id that is to be
notified of pending input to its own process id, or the process group id of its
process group. The default process group of a socket is O. See Section 3.5 for
additional information.

3. Use another f cn t 1 call to enable asynchronous notification of pending I/O
requests.

Example 3-7 shows how a given process can receive information on pending I/O
requests as they occur for a socket s. By adding a handler for SIGURG to the code in
Example 3-7, it can be used to prepare for receipt of SIGURG signals.

Advanced Socket Topics 3-5

Example 3-7: Asynchronous Notification of I/O Requests

#include <fcntl.h>
#include <signal.h>
int io_handler();

signal(SIGIO,io_handler);

/* Set the process receiving SIGIO/SIGURG signals to us */

if(fcntl(s,F_SETOWN,getpid())<O) {
perror("fcntl");
exit(l);

/*Allow receipt of asynchronous I/O signals */
if (fcntl (S,F_SETFL,FASYNC) <0) {

perror("fcntl");
exit (1);

3.5 Redefining a Process Number for a Socket
The SIOURO and SIOIO signals create an associated process number for each socket,
just as it is done for terminals. This process number value is initialized to 0, but can
be redefined with the F _SETOWN f cn t 1, as was done in Example 3-7. The
process number indicates either the associated process id or the associated process
group; it cannot specify both at the same time. To set the socket's process id for
signals, positive arguments are given to the fcntl call. To set the socket's process
group for signals, negative arguments are passed to fcntl. A similar fcntl,
F _OETOWN, can be used to determine the current process number of a socket.

The SIOCHLD signal is sent to a process when any child process has changed state.
Normally, servers use the signal to obtain child processes that have exited without
explicitly awaiting their termination or periodic polling for exit status. For example,
the remote login server loop shown in Example 4-2 can be augmented as shown in
Example 3-8.

If the parent server process fails to obtain its children, a large number of zombie
processes can be created.

3-6 Advanced Socket Topics

Example 3-8: Redefining Process Number for Socket

#include <errno.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <syslog.h>
#include <signal.h>

int reaper();

signal(SIGCHLD,reaper);
listen(f,5);
for(;;){

struct sockaddr in from;
int g, len = sizeof(from);

g = accept(f, (struct sockaddr*)&from,&len);
if (g>O) {

if(errno != EINTR)
syslog(LOG_ERR, "rlogind:accept: %m");

continue;
}

#include <sys/wait.h>
reaper ()
{

union wait status;

while (wait3(&status, WNOHANG,O»O)

3.6 Sending Out-of-Band Data
The ULTRIX stream socket supports out-of-band data. Out-of-band data is a
logically independent transmission channel associated with each pair of connected
stream sockets. Out-of-band data is delivered to the user independently of normal
data. The out-of-band data facilities support the reliable delivery of at least one out
of-band message at a time. This message can contain at least one byte of data, and at
least one message can be pending delivery to the user at anyone time. For
communication protocols that support only in-band signaling (that is, the urgent data
is delivered in sequence with the normal data), the system extracts the data from the
normal data stream and stores it separately. This allows users to choose between
receiving the urgent data in order or receiving it, out of sequence, without having to
buffer all the intervening data.

It is possible to read ahead (peek) at out-of-band data using the MSG_PEEK flag. If
the socket has a process group, a SIGURG signal is generated when the protocol is
notified of its existence. A process can set the process group or process id to be
informed by the SIGURG signal, by means of the appropriate fcntl call, as
described in Section 3.5. If multiple sockets can have out-of-band data awaiting
delivery, a select call for exceptional conditions can be used to determine those
sockets with such data pending. Neither the signal nor the select indicate the actual

Advanced Socket Topics 3-7

arrival of the out-of-band data, but only that it is pending.

In addition to the information passed, a logical mark is placed in the data stream to
indicate the point at which the out-of-band data was sent. The remote login and
remote shell applications use this facility to propagate signals between client and
server processes. When a signal flushes any pending output from the remote
processes, all data up to the mark in the data stream is discarded.

To send an out-of-band message, the MSG_OOB flag is supplied to a send or
sendto calls. To receive out-of-band data, MSG_OOB should be indicated when
performing a recvfrom or recv call. To find out if the read pointer is currently
pointing at the mark in the data stream, the SIOCATMARK ioctl is provided:

ioctl(s,SIOCATMARK,&yes)

If yes returns a 1, the next read returns data after the mark. Otherwise, (assuming
out-of-band data has arrived), the next read provides data sent by the client prior to
transmission of the out-of-band signal. The routine used in the remote login process
to flush output on receipt of an interrupt or quit signal is shown in Example 3-9. It
reads the normal data up to the mark (to discard it), then reads the out-of-band byte.

Example 3-9: Flushing Terminal 1/0 on Receipt ot Out-ot-Band Data

#include <stdio.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/file.h>

oob () {
int out = FWRITE;
char waste[BUFSIZ], mark;
int rem;

ioctl{l,TIOCFLUSH, (char*)&out);
for (;;) {

if(ioctl(rem,SIOCATMARK,&mark)<O) {
perror("ioctl") ;

break;
}

if (mark)
break;

(void)read(rem,waste,sizeof(waste));
if(recv (rem, &mark, 1, MSG_OOB) <0) {

perror (" recv") ;
exit(l);

}

A process can read the out-of-band data without first reading up to the mark. This is
more difficult when the underlying protocol delivers the urgent data in-band with the
normal data and only sends the notification of its presence ahead. An example of this
is the TCP protocol used to implement streams in the Internet domain. With such
protocols, the out-of-band byte may not yet have arrived when a recv is done with
the MSG_OOB flag. In that case, the call returns an error of EWOULDBLOCK.
There can even be enough in-band data in the input buffer to prevent the peer from
sending the urgent data until the buffer is cleared. The process must then read enough
of the queued data to allow delivery of the urgent data.

3-8 Advanced Socket Topics

Certain programs that use multiple bytes of urgent data and that must handle multiple
urgent signals (for example, telnet) need to retain the position of the urgent data
within the stream. This treatment is available as a socket-level option,
SO_OOBINLINE; see setsockopt (2) for usage. With this option, the position of
urgent data (the mark) is retained, but the urgent data immediately follows the mark
within the normal data stream returned with the MSG_OOB flag. Reception of
multiple urgent indications moves the mark, but no out-of-band data is lost.

3.7 Broadcasting Packets
A datagram socket can be used to send broadcast packets on networks that support
broadcasting. Broadcast messages place a high load on a network, because they
require every host on the network to service them. For a socket to send broadcast
packets, it has to be explicitly marked for broadcasting. Broadcast is used to:

• Find a resource on a local network, without prior knowledge of its address.

• Perform important functions, such as sending routing information, to all
accessible hosts.

Example 3-10 shows how to send a broadcast message.

Example 3-10: Broadcasting a Message

#include <sys/socket.h>
#include <netinet/in.h>
int on=l;

struct sockaddr_in sin;
if«s = socket(AF_INET,SOCK_DGRAM,O)) < 0) { BO

perror("socket");
exit(l);

if«setsockopt(s,SOL_SOCKET,SO_BROADCAST,&on,sizeof(on)) < 0) { ~
perror("setsockopt");
exit(l);

sin.sin_family=AF_INET; ~
sin.sin addr.s addr = htonl(INADDR ANY);
sin.sin=port =-htons(MYPORT); ~
if(bind(s, (struct sockaddr*)&sin,sizeof(sin)) < 0) {

perror("bind");
exit(l);

BO A datagram socket is created.

~ The socket is marked for broadcasting.

131 A port number is bound to the socket.

The destination address of the message to be broadcast depends on the network on
which the message is to be broadcast. The Internet domain supports a shorthand
notation for broadcast on the local network, the address INADDR_BROADCAST
(defined in <netinet/ in. h».

Advanced Socket Topics 3-9

3.8 Determining Network Configuration
To detennine the list of addresses for all reachable hosts requires knowledge of the
networks to which the host is connected. The UL TRIX operating system provides a
method of retrieving this infonnation from the system data structure. The
SIOCGIFCONF ioctl call returns the interface configuration of a host in the form
of a single ifconf structure; this structure contains a data area which is made up
of an array of ifreq structures, one for each network interface to which the host is
connected. Example 3-11 shows the ifreq structure.

Example 3-11: ifreq Structure

struct ifconf{
int ifc_leni /*size of associated buffer */

} i

union{
caddr_t ifcu_bufi
struct ifreq *ifcu_reqi
}ifc_ifcUi

#define ifc buf ifc ifcu.ifcu buf
#define ifc_req ifc_ifcu_req

#define IFNAMSIZ 16

struct ifreq{

/* buffer address */
/* array of structures returned */

char ifr_name[IFNAMSIZ)i /* if name, for example, "lenO" */

} i

union{
struct sockaddr ifru addr;
struct sockaddr ifru=broadaddr;
shortifru_flags;

caddr t ifru data;
inf_ifru; -

#define ifr addr ifr ifru.ifru addr /* address */
#define ifr dstaddr ifr-ifr.ifru dstaddr/* other end of p-to-p link */
#define ifr-broadaddr - ifr ifru.ifru broadaddr /* broadcast address */
#define ifr-flags ifr ifru~ifru flag; /* flags */
#define ifr=data ifr=ifru.infru_data /* for use by interface */

Example 3-12 shows the call used to obtain the interface configuration.

Example 3-12: Obtaining the Interface Configuration

#include <stdio.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <net/if.h>

struct ifconf ifc;
char buf[BUFSIZ);

ifc. ifc_len = sizeof (but./ i

ifc.ifc_buf = buf; I.1J
if(ioctl(s,SIOCGIFCONF, (char*)&ifc)<O)

perror("ioctl");
exit(l);

3-10 Advanced Socket Topics

11] After the call, but contains one ifreq structure for each network to which the
host is connected and modifies ifc.ifc len to contain the number of bytes used by
the ifreq structures. -

For each structure there exists a set of interface flags that tell whether the network
corresponding to that interface is up or down, point-to-point, or broadcast. The
SIOCGIFFLAGS ioctl retrieves these flags for an interface specified by an ifreq
structure as shown in Example 3-13.

Example 3-13: Retrieving Interface Flags

#include <sys/socket.h>
#include <sys/ioctl.h>
#include <net/if.h>

struct ifconf ifc;
struct ifreq *ifr;

ifr = ifc.ifc_req;

for(n = ifc.ifc len/sizeof(struct ifreq); --n >= 0; ifr++) {
/* -

* We must be careful that we do not use an interface
* devoted to an address family other than those intended;
*/

if(ifr->ifr_addr.sa_family != AF_INET)
continue;

if (ioctl (s, SIOCGIFFLAGS, (char*) ifr) <0) {
perror (" ioctl") ;

}

/*

exit(l);

* Skip boring cases.
*/
if((ifr->ifr_flags & IFF_UP) ==011
(ifr->ifr_flags & IFF_LOOPBACK) 1 1
(ifr->ifr_flags & (IFF_BROADCASTIIFF_POINTOPOINT»==O)

continue;

After the SIOCGIFBRDADDR ioctl call in Example 3-13 obtains the flags, the
broadcast address must be obtained. In broadcast networks the SIOCGIFBRDADDR
ioct 1 call is used~ while in point-to-point networks SIOCGIFDSTADDR obtains
the address of the destination host. Example 3-14 shows how SIOCGIFDSTADDR
can be used.

Advanced Socket Topics 3-11

Example 3-14: Obtaining Address of the Destination Host

#include <stdio.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <net/if.h>

struct sockaddr dst;
struct ifreq *ifr;
char buf[BUFSIZ];
int buflen = sizeof(buf);

if(ifr->ifr_flags & IFF_POINTOPOINT) {
if(ioctl(s,SIOCGIFDSTADDR, (char*)ifr)<O) {

perror("ioctl");
exit(l);

bcopy«char*)ifr->ifr dstaddr, (char*)&dst,sizeof(ifr->ifr dstaddr»;
}else if (ifr->ifr_flags & IFF_BROADCAST) { -

if(ioctl(s,SIOCGIFBRDADDR, (char*)ifr)<O) {
perror("ioctl");
exit(l);

bcopy«char*)ifr->ifr_broadaddr, (char*)&dst,sizeof(ifr->ifr_broadaddr»;
}

if (sendto (s,buf, buflen, 0, (struct sockaddr*) &dst, sizeof (dstU < 0) {
perror("sendto");
exit(l);

111 The sendto call occurs for every interface to which the host is connected that
supports broadcasting or point-to-point addressing. If a process only wished to
send broadcast messages on a given network, code similar to that in Example
3-14 can be used, but the loop would need to find the correct destination address.

Received broadcast messages contain the sender's address and port, as datagram
sockets are bound before a message is sent.

3.9 Using Pseudoterminals
Many programs require a terminal for standard input and output. Because sockets do
not provide the semantics of terminals, a process may have to communicate over the
network through a pseudoterminal. A pseudoterminal is a pair of devices, master
and slave, that allows a process to serve as an active agent in communication
between processes and users. Data written on the slave side of a pseudoterminal is
supplied as input to a process reading from the master side, while data written on the
master side is processed as terminal input for the slave. The process manipulating the
master side of the pseudoterminal controls the information read and written on the
slave side, as if it were manipulating the keyboard and reading the screen on a real
terminal. The purpose of this is to preserve terminal semantics over the connection,
that is, the slave side appears as a normal terminal to any process reading from or
writing to it.

For example, the remote login server uses pseudoterminals for remote login sessions
as follows:

• A user logs in to a remote host and is provided a shell with a slave
pseudoterminal as standard input, output, and error.

3-12 Advanced Socket Topics

• The server process handles the communication between the programs invoked
by the remote shell and the user's local client process.

• A user sends a character that generates a control message for the server process.

• The server then sends an out-of-band message to the client process to signal a
flush of data at the real terminal and on the intervening data buffered in the
network.

Under the UL TRIX operating system, the name of the slave side of a pseudoterminal
is / dev / t t yxy. In the name, the x is a single letter starting at p and continuing to
wand the letter y is a hexadecimal digit (that is, a single character in the range 0
through 9 or a through f). The master side of a pseudoterminal is / dev / pt yxy.
The x and y correspond to the slave side of the pseudoterminal.

A method to obtain a pair of master and slave pseudoterminals is to find a
pseudoterminal that is not currently in use. The master half of a pseudoterminal is a
single-open device; thus, each master can be opened until an open succeeds, as
follows:

• The slave side of the pseudoterminal is opened and is set to the proper terminal
modes, if necessary.

• The process performs a fork operation.

• The child closes the master side of the pseudoterminal and performs an execs
operation for the appropriate program.

• The parent closes the slave side of the pseudoterminal and begins reading and
writing from the master side.

Example 3-15 shows code for a pseudoterminal. This code assumes that a connection
on a socket s exists, connected to a peer that wants a service, and that the process has
disassociated itself from any previous controlling terminal.

Advanced Socket Topics 3-13

Example 3-15: Creation and Use of a Pseudoterminal

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <syslog.h>
#include <sys/stat.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <errno.h>
#include <netinet/in.h>
#include <netdb.h>

int gotpty = 0;
int c; char *line;
struct stat statbuf;
int i, master, slave;
struct sgttyb b;

for(c='p'; !gotpty && c<= 'w' ;c++} {
line = "/dev/ptyXX";
line[sizeof("/dev/pty"}-l)=c;
line[sizeof("/dev/ptyp"}-l) '0';
if(stat(line, &statbuf}<O}

break;
for(i=0;i<16;i++} {

line[sizeof("/dev/ptyp"}-l) "0123456789abcdef"[i);
master = open(line,O RDWR};
if(master > O} { -

if (! gotpty) {

gotpty = 1;
break;

syslog(LOG_ERR,"All network ports in use");
exit(l};

line[sizeof("/dev/"}-l] = 't';
slave = open(line,O_RDWR}; /* slave is now slave side */
if(slave < O} {

syslog(LOG_ERR, "Cannot open slave pty %s", line);
exit(l} ;

ioctl(slave, TIOCGETP,&b}; /* Set slave tty modes */
b.sg_flags = CRMODIXTABSIANYP;
ioctl(slave, TIOCSETP,&b);

i = fork () ;
if(i<O} {

syslog(LOG_ERR,"fork:%m"};
exit (I) ;

}else if (i) {
close(slave);

} else if (i) { /* Parent * /
close(slave};

}else{ /*Child */
(void}close(master);

3-14 Advanced Socket Topics

Example 3-15: (continued)
dup2(slave,O);
dup2(slave,1);
dup2(slave,2);
if(slave > 2)

(void) close (slave) ;

Advanced Socket Topics 3-15

Client/Server Model 4

This chapter contains code examples for the client/server model. In the client/server
model, the client applications request services from a server process. This implies an
asymmetry in establishing communication between the client and server. However,
the communications can be either asymmetric or symmetric. In asymmetric
communications, one side is recognized as the master, with the other side as the
slave. An example of asymmetric communications is using the FrP protocol for an
Internet file transfer. In symmetric communications, either side can function as the
master or slave. An example of symmetric communications is using the TELNET
protocol for remote terminal emulation.

An alternative scheme for a service server is to use the inetd daemon. See Section
4.4 for a description of the inetd daemon.

4.1 Client Code Example
Example 4-1 shows major segments of code that can be used by the client process. In
the example, the client requests the login service from the server process.

Example 4-1: Remote Login Client Code

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>
main (argc,argv)

int argc;
char *argv [] ;

struct sockaddr_in server;
struct servent *sp;
struct hostent *hp;
int s;

sp = get servbyname (" login ", "tcp"); [j]
if(sp NULL) {

fprintf(stderr, "rlogin: tcp/login: unknown service\n");
exit(l);

}

hp gethostbyname(argv[l]); ~
if(hp == NULL) {

fprintf(stderr, "rlogin: %s
exit(2);

unknown host\n", argv[l]);

bzero((char*)&server, sizeof(server»; ~
bcopy(hp->h addr, (char*)&server.sin addr,hp->h length);
server. sin_family = hp->h_addrtype~ -
server. sin_port = sp->s-port;, ~
s = socket(AF INET, SOCK STREAM,O); ~
if(s<O) {- -

perror("rlogin:socket");
exit(3);

/* Connect does the bind() for us */

if(connect(s, (char*)&server,sizeof(server»<O) { ~
perror("rlogin:connect");
exit(S);

[j] The getservbyname call is given login as a service name and tcp as a protocol
name. It uses these names to sequentially search the / etc/ services database
for a matching service and protocol name. If a match is found, the call returns a
pointer to a servent structure that contains the information about the service. If
no match is found, the error message "rlogin:tcp/login:unknown service" is
returned. See Section 2.2.4 for a description of the servent structure.

~ The gethostbyname is given the name of the remote host that the server
wishes to make a connection to and searches the fetcfnetworks database for the
host entry. Once finding the entry, it returns a pointer to a hostent structure
that contains information about that host. If the call cannot find the entry, it
returns the error message "rlogin: hostname : unknown host". See Section 2.2.1
for a description of the hostent structure.

4-2 Client/Server Model

131 The address of the host and address type are placed into the socket structure. This
is done by clearing the address buffer and placing the Internet address of the
remote host into the socket structure. See Section 2.4 for a description of the
bzero and bcopy routines.

~ The socket number of the login process that resides on the remote host is placed
into the socket structure.

I5l A socket is created and a bind operation implicitly is performed to bind the
remote socket (s).

I§] The connect call initiates a connection request to the server's socket s. The
second argument, (char*)&server, specifies the destination address to which the
call implicitly binds the socket (s). If the connection request is successful, data
transfer can begin.

4.2 Connection Server Code Example
The server process remains dormant by listening at a well known address for service
requests. When the client process requests a connection to the server's address, it
responds by servicing the client's request. The major code segments of the server
program are shown in Example 4-2.

Client/Server Model 4-3

Example 4-2: Remote Login Server Code

#include <sys/types.h>
#include <sys/socket.h>
#include <syslog.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/file.h>

main (argc,argv)
int argc;
char *argv[];

int f;
struct sockaddr in from;
struct sockaddr=in sin;
struct servent *sp;
sp = getservbyname ("login", "tcp"); ff]
if(sp == NULL) {

fprintf(stderr, "rlogin: tcp/login:unknown serviceO);
exit(l);

#ifndef DEBUG
/* Disassociate server from controlling terminal */
detach () ;

#endif
sin. sin_port = sp->s port; ~
if((f = socket(AF_INET,SOCK_STREAM,O» < 0) { ~

perror("socket");
exit(l);

if(bind(f, (struct socketaddr*)&sin,sizeof(sin)<O» { ~

listen(f,5); ~
for (; ;) {

int g, len = sizeof(from);
9 = accept(f, (struct socketaddr*)&from,&len); ~
if (g< °) { IZI

if(errno != EINTR)
syslog(LOG_ERR,"rlogin:accept: %m");

continue;
}

if(fork() == 0) { ~
close(f);

doit (g, &from) ;
}

close(g);
}

detach ()
int i;
for(i=O;i<3;++i)

close(i);

open("/", O_RDONLY);
dup2(O,1);

4-4 Client/Server Model

Example 4-2: (continued)
dup2(O,2);

i = open("/dev/tty", O_RDWR);
if(i>=O) {

ioctl(i,TIOCNOTTY,O);
close(i);

III The getservbyname call is given "login" as a service name and "TCP" as a
protocol name. It uses these names to sequentially search the / etc/ services
database for a matching service and protocol name. If a match is found, the call
returns a pointer to a servent structure that contains information about the
service. If no match is found, the error message "rlogin:tcp/login:unknown
service" is returned. See Section 2.2.4 for a description of the servent
structure.

121 The login socket number is placed into the socket structure.

[3J Allocates an open socket to the login process.

~ Binds the allocated socket to the login port to have a point to listen for incoming
connections. Because the remote login server listens at a restricted port number, it
must run with a user-id of root.

15I Issuing the listen call indicates the login server's willingness to listen for an
incoming connection. Setting the backlog parameter to five specifies five as the
maximum number of pending connections that should be queued for acceptance.
See Section 2.1.3 for a description of the listen call.

I§! The accept call blocks and goes into an infinite loop, until a connection is
made. Upon making a connection, the system places the address of the requesting
client into a sockaddr structure. The system creates a new socket (g) that has
its destination connected to the requesting client and returns the new socket
descriptor to the caller.

111 The returned value (g) is checked to ensure a connection has been established. If
the call returns a failure status or is interrupted by a signal such as SIGCHLD, an
error report is logged. Returning a failure status disassociates the server from the
requesting client. After a server disassociates itself, it can no longer send error
reports to the requesting client and must use syslog to log errors.

~ After making a connection, the server produces (fork operation) a child process
and invokes the main body (do it) of the remote login protocol processing. The
socket used by the parent for the queuing connection requests is closed in the
child process, while the socket created from the accept call is closed in the
parent process. The address of the client is passed to the do it routine to
authenticate the requesting client.

4.3 Connectionless Server Co~e Example
An example of a connectionless service (uses datagram sockets) is the rwho service.
The rwho service provides users with status information for hosts connected to a
local area network. This service uses information that is broadcasted to all hosts
connected to a particular network.

Client/Server Model 4-5

A user on any machine that is running the rwho server can obtain the current status
of a machine with the ruptime () program. Figure 4-1 shows a possible output.

Figure 4-1: ruptimeO Program Output

Machine Name Status Up Time Current Users 1 Min 5Min 15 Min

arpa up 9:45, 5 users,load 1.15 1.39 11.31

cad up 2+12:04, 8 users,load 4.67 5.13 4.59

calder up 10:10, o users,load 0.27 0.15 0.14

dali up 2+06:28, 9 users,load 1.04 1.20 1.65

degas up 25+09:48, o users,load 1.49 1.43 1.41

ear up 5+00:05, o users,load 1.51 1.54 1.56

ernie down 0:24

esvax down 17:04

ingres down 0:26

kim up 3+09:16, 8 users, load 2.03 2.46 3.11

matisse up 3+06:18, o users,load 0.03 0.03 0.05

medea up 3+09:39, 2 users,load 0.35 0.37 0.50

merlin down 19+15:37

micro up 1+07:20, 7 users,load 4.59 3.28 2.12

monet up 1+00:43, 2 users,load 0.22 0.09 0.07

oz down 16:09

starvax up 2+15:57, 3 users, load 1.52 1.81 1.86

ucbvax up 9:34, 2 users,load 6.08 5.16 3.28

Each rwho service periodically broadcasts status information for each host. The
same server process also receives the status information and uses it to update a
database (/usr/spool/rwho/whod). The server process interprets the database
information to generate the status information for each host. Each server operates
independently, except for being connected by the local network and broadcast
messages.

Example 4-3 shows a simplified example of an rwho server.

The server performs two major tasks:

1. The server receives status information that is broadcast by other hosts on the
network. Packets received at the rwho port are verified as if they have been
seen by another rwho server process. They are time-stamped with their arrival
time and used to update a file indicating the status of the host. When a host has
not been heard from for an extended period of time, it is assumed that the host
is down and this is indicated on the status reports. The status report can be
incorrect, for a server can be down while a host is up.

4-6 Client/Server Model

2. The server provides information regarding the host's status. This involves
periodically acquiring system status information, packaging it into a message,
and broadcasting it to other rwho servers on the local network. The acquiring
of the status information is triggered by a timer and runs off a signal.

For networks that do not support broadcasting, another scheme must be used instead
of the broadcasting. One possibility is to determine the hosts on the local network
from the status messages received from other rwho servers. If all the hosts on the
network have been recently booted, however, no host would know the other hosts and
thus would never receive or send any status information.

The routing table management process has the identical problem when propagating
routing status information. A solution is to inform one or more servers of known
hosts and request that the servers always communicate with these hosts. If each host
knows of at least one other host, status information can propagate throughout the
local network. If a host is connected to multiple networks, however, the host can
receive status information from itself, and this can lead to endless looping.

In a distributed environment, it is important that each server use the same software.
The UL TRIX operating system helps to isolate host-specific information from
applications by providing system calls that return the necessary information. For
example, the ioctl call provides a way to determine the networks that a host is
directly connected to. In addition, the ULTRIX operating system supports network
broadcasting at the socket level. Both of these features allow a process to broadcast
on any directly connected local network that supports broadcasting in a site
independent manner. This solves the problem of propagating status information in the
case of the rwho server, for status information is broadcast to connected networks at
the socket level, where the connected network have been obtained by means of
ioctl calls.

Client/Server Model 4-7

Example 4-3: rwho Server Code

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/signal.h>
#include <sys/file.h>
#include <sys/time.h>
#include <syslog.h>
#include <netinet/in.h>
#include <stdio.h>
#include <sys/errno.h>
#include <netdb.h>
#include <arpa/inet.h>
#include <protocols/rwhod.h>

#define RWHODIR "/usr/spool/rwho"

main ()
{

int on, s;
struct sockaddr in sin;
struct servent *sp;
struct netent *net;
char path[BUFSIZ];

sp = getservbyname ("who", "udp") ;
net = getnetbyname("localnet");
sin.sin_addr inet_makeaddr(INADDR_ANy,net);
sin. sin_port = sp->s_port;

if (s = socket(AF INET,SOCK_DGRAM,O) < 0) {
syslog(LOG_ERR,"socket: %m");
exit(l);

on = 1;
if (setsockopt (s,SOL_SOCKET,SO_BROADCAST,&on,sizeof(on))<0) {

syslog(LOG_ERR,"setsockopt SO_BROADCAST:%m");
exit(l);

if (bind (s, (struct sockaddr*) &sin, sizeof (sin» < 0) {
syslog(LOG_ERR,"bind: %m");
exit(l);

signal(SIGALRM,onalrm);
ona1rm () ;
for (; ;) {

struct whod wd;
struct sockaddr in from;
int cc, whod, len = sizeof(from)i

cc = recvfrom(s, (char*)&wd,sizeof (struct whod),O,
(struct sockaddr*)&from,&len);
if(cc <= 0) {

if(cc < 0 && errno != EINTR)
syslog(LOG_ERR, "rwhod:recv:%m");

continue;

if(from.sin_port != sp->s port) {

4-8 Client/Server Model

syslog(LOG_ERR, "rwhod: %d: bad from port",
ntohs(from.sin_port»;

Example 4-3: (continued)
continue;

if(!verify(wd.wd_hostname)) {
syslog(LOG_ERR, "whod: malformed host name from %x",

ntohl(from.sin_addr.s_addr));
continue;

(void)sprintf(path, "%s/whod.%s", RWHODIR, wd.wd hostname);
whod = open(path, O_WRONLYIO_CREATIO_TRUNC,0666);

(void)time(&wd.wd recvtime);
(void)write(whod,(char*)&wd,cc);
(void)close(whod);
}

4.4 Simplifying Servers
Servers can be simplified by using the inetd daemon. The inetd daemon does the
majority of IPC operations required in establishing a connection. The server invoked
by inetd expects the socket connected to its client on file descriptors 0 and 1 and
can immediately perform any operations such as read, write, send, or recv.
Servers can use buffered I/O as provided by the stdio conventions, as long as the
f flu s h call is used appropriately.

After being invoked at boot time, the inetd daemon does the following:

• Determines from the file / etc/ inetd. conf which servers are to listen

• Creates a socket for each service it is to listen for, binding the appropriate port
number to each socket

• Performs a select operation to determine which of these sockets are available
for reading

• Waits for a connection to the service corresponding to the socket

• Performs an accept on the socket in question

• Performs a fork and dups operations on the new socket for file descriptors 0
and 1 (stdin and stdout)

• Closes other open file descriptors

• Performs execs operation for the appropriate server

Client/Server Model 4-9

The getpeername call is useful when writing server programs under inetd. This
call returns the address of the peer (process) connected on the other end of the socket.
For example, to log the Internet address in dot notation (for example, 128.32.0.4) of
a client connected to a server under inetd, the code in Example 4-4 can be used.

Example 4-4: Returning the Address of the Peer Process

#include <sys/socket.h>
#include <syslog.h>
#include <netinet/in.h>
#include <netdb.h>

struct sockaddr_in name;
int namelen = sizeof(~ame);

if (getpeername (0, (struct sockaddr*)& name, &namelen) <0) {
syslog(LOG_ERR,"getpeername:%m");
exit(l);

}else
syslog(LOG_INFO,"Connection from %s", inet_ntoa(name.sin_addr));

4-10 Client/Server Model

XlOpen Transport Interface 5

5.1 Description
The X/Open transport service interface (XTI) consists of a set of transport
independent C library functions that conform to the X/Open Transport Interface
specifications. XTI applications can be written to support both BSD sockets and
System V streams. A network application that uses the XTI calls is portable across
systems, as long as both systems incorporate the XTI calls and support the same
underlying transport provider. The transport provider is defined as the entity that
provides the services of the transport service interface. At present, the UL TRIX
operating system supports Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP) services using XTI.

The TCP service is circuit-oriented and enables data to be transmitted over an
established connection in a reliable, sequenced manner. It also provides an
identification mechanism that avoids the overhead of address resolution and
transmission during the data transfer phase. This service is useful for applications that
require relatively long-lived, data stream-oriented interactions.

In contrast, UDP service is message-oriented and supports data transfer in self
contained units, with no logical relationships required among multiple units. This
service requires only a preexisting association between the peer users involved, which
detennines the characteristics of the data to be transmitted. All the information
required to deliver a unit of data (for example, the destination address) is presented to
the transport provider, together with the data to be transmitted, in one service access
that need not relate to any other service access. Each unit of data transmitted is
entirely self-contained. UDP service is useful for applications that:

• Involve short-tenn request/response interactions

• Exhibit a high level of redundancy

• Are dynamically reconfigurable

• Do not require guaranteed, in-sequence delivery of data

To access the services of the transport provider, the transport user issues the
appropriate service requests. The transport user is defined as the entity that requires
these service. A transport user may be a network application or session layer
protocol.

5.2 XTI Software Components
XTI is similar to the existing Berkeley Software Distribution (BSD) socket-based
interprocess communications (IPC). Like IPC, XTI provides a programming interface
to access the underlying transport services and uses a file descriptor to identify the

endpoint for communication. The file descriptor is known as the transport endpoint.
Figure 3-1 shows how XTI is layered into the networking architecture.

Figure 5-1: Xli Software Components

XTI Application

XTI Library

BSD IPC (Socket Interface)
USER

KERNEL
BSD Socket

TCP UDP

ZK-01S0U-R

The XTI applications layer represents the set of application programs making XTI
calls to the XTI library. The XTI library, a C library (/ lib/ libxti. a), provides
all the function calls specified by the XTI specification. The library exists in the user
space and can be bound with both Digital-supplied and user-written applications.

The XTI library is layered over the existing (kernel) BSD socket mechanism. As was
described in Chapter 2, sockets provide the basis for interprocess communication on
BSD systems. Access to the IPC services is provided by the set of BSD IPC
primitives, which is known as the socket interface. The XTI library accesses kernel
services only through the BSD IPC primitives. The lowest layer in Figure 3-1
represents the Transport Providers (TCP and UDP).

5.3 XTI Documentation
The Guide to X/Open Transport Interface describes how to write network
application programs using XTI. The guide not only contains a description of XTI
fundamentals, but it also contains descriptions of client and server examples using
TCP and UDP.

5-2 X/Open Transport Interface

Writing Distributed Applications with 6
DECrpc

This chapter briefly describes the programming interface to DECrpc, the remote
procedure call mechanism supported by the UL TRIX operating system. The chapter
also lists the manuals that provide complete programming information.

DECrpc Version 1.0 is based on and is compatible with the RPC component of the
Network Computing System (NCS) Version 1.5, which is a set of tools for
heterogeneous distributed computing.

6.1 Distributed Applications
U sing remote procedure calls, software applications can be distributed across
heterogeneous collections of computers, networks, and programming environments.
Distributed applications can take advantage of computing resources throughout a
network or internet, with different parts of each program executing on the computers
best suited for the tasks.

There are many applications that can be distributed among multiple systems. For
example, one program might perform graphical input and output on a workstation
while it does intense computation on a supercomputer. A program that performs
many independent calculations on a large set of data could distribute these
calculations among any number of available processors on the network or internet.

6.2 RPC Software
The software for writing distributed applications is written in portable C wherever
possible. The components are:

• Remote Procedure Call (RPC) runtime library, which provides runtime support
for distributed applications

• Network Interface Definition Language (NIDL) Compiler, a tool for developing
distributed applications

• Location Brokers, which provide runtime support for distributed applications

Figure 6-1 illustrates the relationship between a distributed application and the
software components of DECrpc. The rest of this section describes the components.

Figure 6-1: A Distributed Application

GLB Host

Local Host

Local Application

GLB Database

LLB Database

ZK-0113U-R

6.2.1 RPC Runtime Library
The DECrpc runtime library provides the routines that enable local programs to
execute procedures on remote hosts. These routines transfer requests and responses
between the programs calling the procedures and the programs executing the
procedures.

When you develop distributed applications, you usually do not use many runtime
routines directly. Instead, you write interface definitions in NIDL and use the NIDL
Compiler to generate most of the required calls to the runtime library.

Figure 6-2 shows the flow of remote procedure calls and illustrates how the RPC
paradigm hides the remote aspects of a routine from the calling client. The client
application uses ordinary calling conventions to request a procedure, as if the
procedure were a part of the local program, but the procedure is executed by a remote
server. The client stub acts as the "local representative" of the procedure.

A stub is a program module generated by the NIDL Compiler from a user-written
interface definition. The stub uses runtime library calls to communicate with the
server. Similar activities occur within the server process.

6-2 Writing Distributed Applications with DECrpc

Figure 6-2: Remote Procedure Call Flow

Client process Server process

Client ~---

user -written ----

Jl'return

call ~

Client Stub generated by
NIDL Compiler from
interface definition

Jl'return

call
~

RPC Runtime Library

apparent flow

call --------------------

~

Interface

network
messages

return

:. ,.

Manager
--. user-written

call

return

Server Stub generated by
NIDL Compiler from
interface definition

call

return

RPC Runtime Library

ZK-0159U-R

6.2.2 Network Interface Definition Language Compiler

The NIDL Compiler takes as input an interface definition written in NIDL. From
this definition, the NIDL Compiler generates client and server stub programs. An
interface definition specifies the interface between a user of a service and the provider
of the service. The definition describes how a client application "sees" a remote
service and how a remote server" sees" requests for its services.

The stubs produced by the NIDL Compiler contain nearly all of the "remoteness" in
a distributed application. The client stub program performs data conversions,
assembles and disassembles packets, and interacts with the RPC runtime library. The
server stub program provides similar support for the server. It is easier to write an
interface definition in NIDL than it would be to write the stub code that the NIDL
Compiler generates from your definition.

6.2.3 Location Broker

A broker is a server that provides information about resources. The Location Broker
enables clients to locate specific objects, such as a database or a specialized
processor, or specific interfaces, such as a data retrieval interface or a matrix
arithmetic interface. In addition to the Location Broker specific interfaces, DECrpc
includes a name-service independent interface. The interface lets you write programs
that will be portable across future versions of DECrpc and other naming services.
The DECrpc Programming Guide describes the name-service independent interface.

Location Broker software includes the Local Location Broker (LLB) that manages
information about resources on a local host, the Global Location Broker (GLB) that

Writing Distributed Applications with DECrpc 6-3

manages information about resources available on all hosts, a client agent through
which programs use the Location Broker facilities, and the Ib admin
administrative tool. -

The GLB stores in a database the locations of objects and interfaces in a network or
internet. Clients can use the GLB to access an object or interface, without knowing
its location beforehand. The LLB also implements a forwarding facility that provides
access by way of a single address to all of the objects and interfaces at the host,.

6.3 DECrpc Documentation
Table 6-1 lists the software components for developing distributed applications and
the manual that provides information about the component.

In addition to the manuals listed in Table 6-1, the UL TRIX Reference Pages contain
reference pages for each utility, special file, or library routine.

Table 6-1: DECrpc Documentation

Component Manual

RPC DECrpc Programming
Guide

NIDL Compiler DECrpc Programming
Guide

Location Broker Guide to the
Location Broker

6-4 Writing Distributed Applications with DECrpc

Description

Programming information and examples
for developing distributed applications.

Descriptions of interface definitions
written in NIDL. Information on
compiling definitions and the
output of the compilations.

Describes Ib admin, the
Location Broker administrative
tool and the procedures for
setting up and maintaining the
local and global Location Broker
daemons, Ilbd and nrglbd.

UL TRIX Extended SNMP Agent 7

This chapter tells how to write an Extended SNMP Agent, an extension of the Simple
Network Management Protocol (SNMP) Agent. The Extended SNMP Agent allows
you to manage a private Management Information Base.

The Simple Network Management Protocol is used widely in the Internet community
for network management. The protocol defines the role of a Network Management
Station (NMS) and an SNMP Agent. The NMS exchanges messages with the SNMP
Agent by means of the User Datagram Protocol (UDP) over the underlying Internet
Protocols (IP).

The SNMP Agent allows remote network managers on an NMS to monitor and
manage TCP/lP network entities specified in a Management Information Base (MIB).
The MIBs are defined in the Internet Request for Comments (RFC) 1066. The
Extended SNMP Agent implemented in the UL TRIX operating system allows you to
define a private MIB of objects not defined by RFC 1066.

Introduction to Networking and Distributed System Services describes the SNMP
Agent and the procedures for configuring the SNMP Agent daemon and an Extended
SNMP Agent daemon in an ULTRIX system.

RFCs in the Internet Request for Comments series provide complete information
about the SNMP and the MIB. You can obtain copies of the RFCs from the Network
Information Center, SRI International, Menlo Park, CA 94025, or with the ftp(1)
command. The RFCs that define the SNMP and the MIB are:

• RFC 1065-Structure and Identification of Management Information for
TCP/lP-based Internets

• RFC 1066-Management Information Base for Network Management of
TCP/lP-based Internets

• RFC 1067-A Simple Network Management Protocol

7.1 The Extended SNMP Agent
The Extended SNMP Agent allows users to add private MIBs to their environment
and to provide information about the private MIB to the SNMP Agent. An Extended
SNMP Agent is a logical extension of the SNMP Agent. To the Network
Management Stations, both an agent and an extended agent appear as a single entity
and cannot be distinguished by the network manager.

The Extended SNMP Agent must physically reside on the same host as the SNMP
Agent, as illustrated in Figure 7-1.

Figure 7-1:

t
UDP

SNMP Configuration in a Network

NElWORK

t
UDP

I REMOTE HOST SNMP AGENT HOST

• ~,

I NMS I SNMP Extended SNMP

Agent ~ • Agent
user-written

snmpd snmpextd

I
r:::: ~ ..-

MIS Private MIS defined by user-defined __ RFC 1066_ -
ZK-0160U-R

The Extended SNMP Agent conforms to the "Form and Meaning of References to
Managed Objects," as defined in RFC 1067. An Extended SNMP Agent can manage
a single private MIB or multiple private MIBs. More than one Extended SNMP
Agent can be configured into a system and registered with the SNMP Agent.

The program you write is a daemon that sets up your private MIB and provides
information from it. The daemon extracts MIB information from kernel memory,
from static variables from the SNMP configuration file, / etc/ snmpd. conf, or
from wherever your application specifies. The daemon uses the library routines in
libsnmp. a to respond to the SNMP Agent daemon, snmpd, on requests for
information about your private managed objects.

For example, in the application described in Section 7.2, the managed objects in the
private MIB provide virtual memory information and disk information. A network
manager at an NMS requests information about the disk MIB from the SNMP Agent.
The SNMP Agent knows there is an Extended SNMP Agent from an entry in the
/ etc/ snmpd. conf file and sends a request to the Extended SNMP Agent. The
Extended Agent gets the information from the MIB and retUlTIS it to the SNMP
Agent, which returns it to the NMS.

7.2 Online Example Directory
The directory /usr/examples/snmp/snmpext contains code for an Extended
SNMP Agent daemon, snmpextd. The daemon manages two private MIBs, one
that supplies information about disks and another that supplies information about
virtual memory.

Files in the directory are:

defs.h
Header file that contains internal data structure definitions for the Extended
SNMP Agent. Includes the required header files and defines values for the two
supported MIBs.

7-2 UL TRIX Extended SNMP Agent

diskdef.h
Header file that contains definitions for the disk database.

vmdef.h
Header file that contains definitions for the virtual memory database.

main.c
Main program module. Contains code for the daemon that handles the private
MIBs. The module calls the library routines in libsnmp. a to provide to the
snmpd daemon information about the managed virtual memory and disk
objects. The main program module constructs the object identifier in a given
structure and calls the appropriate register routine, either disk or virtual
memory, to register the MIB with snmpd.

snmp.c
Module that processes requests for information from the SNMP Agent daemon,
snmpd. The module contains a routine for determining the MIB for the
request.

disk grp.c
Module that looks up variables in the disk MIB. The code defines the disk
MIB and returns a disk MIB variable to snrnpd. Includes the routine that
registers the disk MIB.

vm grp.c
- Module that looks up variables in the virtual memory MIB. The code defines

the virtual memory MIB and returns a variable to the snmpd from the virtual
memory MIB. Includes the routine that registers the virtual memory MIB.

Makefile
Makefile that builds and installs the example snmpextd daemon.

The next sections describe the header files and the library routines, using code from
the program modules to illustrate the discussion.

7.3 Header Files
Header files that contain required definitions for the Extended SNMP Agent are listed
here:

/usr/include/protocols/snmp.h
Contains data structures and type definitions defined by the SNMP. Defines
internal constants.

/usr/include/protocols/snmperrs.h
Contains error return codes.

In the SNMP example directory, the file de f s . h includes both these header files, as
well as other files required for network calls.

7.4 Defining Objects in a Private MIB
Figure 7-2 illustrates the tree layout of the SNMP MIB as defined in RFC 1066 and
shows the private MIB from the online example program under the private heading.
You can define all the objects under the private and enterprise identifiers as needed
for your application. The example MIB uses the "Your Organization" and "Me"
identifiers to illustrate one way of organizing a private MIB. The' 'Your
Organization" identifier is a number assigned to your organization by the Internet.

UL TRIX Extended SNMP Agent 7-3

The MIBs in this chapter and in the online example directory use the number fifteen
(15) as an example. The Introduction to Networking and Distributed System Services
includes expanded MIB diagrams that list each object identifier in the Management
MIB.

Note

In this implementation of RFC 1065, the object identifier must have the
prefix 1.3.6.1 to be registered. If it does not, the SNMP Agent rejects
the registration.

The code in Example 7-1, from disk grp. c in the example directory, defines one
of the private MIBs illustrated in Figure 7-2.

Example 7-1: Defining a Private MIB (disk_grp.c code)

1*
* My private MIB (this information can also be obtained
* with the df utility) :

*
* iso(l) org(3) dod(6) internet (1) private (4) enterprise (1)
* your org(15) me(l)

*
*
* INT

* STR

* STR

* GAUGE

* GAUGE
*1

unsigned long
Ox01,

} ;

unsigned long
Ox01,

} ;

unsigned long
Ox01,

} ;
unsigned long

Ox01,
} ;

disk MIB(2)
diskIndex(l)
diskDevDescr(2)
diskMountDescr(3)
diskTotalKbytes(4)
diskUsedKBytes(5)

Disk _Var[] = { 1*
Ox03, Ox06, Ox01, Ox04, Ox01,

Disk Index [] = {

Ox03, Ox06, Ox01, Ox04, Ox01,

Disk_DevDescr [] =

Ox03, Ox06, Ox01, Ox04, Ox01,

Disk_MountDescr[] = {

Ox03, Ox06, Ox01, Ox04, Ox01,

unsigned long Disk_TotalKbytes[] = {

1.3.6.1.4.1.15.1.2.1
1.3.6.1.4.1.15.1.2.2
1.3.6.1.4.1.15.1.2.3
1.3.6.1.4.1.15.1.2.4
1.3.6.1.4.1.15.1.2.5

df *1
OxOf, Ox01, Ox02 [j]

OxOf, Ox01, Ox02, Ox01

OxOf, Ox01, Ox02, Ox02

OxOf, Ox01, Ox02, Ox03

Ox01, Ox03, Ox06, Ox01, Ox04, Ox01, OxOf, Ox01, Ox02, Ox04
} ;

unsigned long Disk_UsedKbytes[] = {
Ox01, Ox03, Ox06, Ox01, Ox04, Ox01, OxOf, Ox01, Ox02, Ox05

} ;

III The value Ox02 in the MIB field identifies the disk MIB. The file diskdef . h
defines constants for each attribute value (the last field in the object identifier).

7-4 UL TRIX Extended SNMP Agent

Figure 7-2: SNMP MIS Layout

"1

iso (1)

~
org (3)

(1.3)

~
dod (6)
(1.3.6)

~
internet (1)

(1.3.6.1)

I
1

mgmt (2)
(1.3.6.1.2)

experimental (3)
(1.3.6.1.3)

l
mib (1)

(1.3.6.1.2.1)

system (1)

(1.3.6.1.2.1.1)

interfaces (2)
(1.3.6.1.2.1.2)

at (3)

(1.3.6.1.2.1.3)

ip (4)
(1.3.6.1.2.1.4)

I
private (4)
(1.3.6.1.4)

~
enterprise (1)
(1.3.6.1.4.1)

o~ 0 your organ~zat~on (15)
(1.3.6.1.4.1.15)

(optional-assigned by Internet)

~
me (1)

(1.3.6.1.4.1.15.1)
(optional-application dependent)

I
I l

icmp (5)
(1.3.6.1.2.1.5)

mib (1) mib (2)

tcp (6)
(1.3.6.1.2.1.6)

udp (7)
(1.3.6.1.2.1. 7)

egp (8)

(1.3.6.1.2.1.8)

(1.3.6.1.4.1.15.1.1)
(application dependent)

(1.3.6.1.4.1.15.1.2)
(application dependent)

Total VM (1)
(1.3.6.1.4.1.15.1.1.1)
Descr (2)
(1.3.6.1.4.1.15.1.1.2)
MyObiectID (3)
(1.3.6.1.4.1.15.1.1.3)
Undefined (4)
(1.3.6.1.4.1.15.1.1.4)

MyIPAddr (5)
(1.3.6.1.4.1.15.1.1.5)
AddrXLateFault (6)
(1.3.6.1.4.1.15.1.1.6)
FreeMernPaqes (7)
(1.3.6.1.4.1.15.1.1.7)
CurrentTime (8)
(1.3.6.1.4.1.15.1.1.8)

Index (1)
(1.3.6.1.4.1.15.1.2.1)
DevDescr '(2)
(1.3.6.1.4.1.15.1.2.2)
MountDevscr (3)
(1.3.6.1.4.1.15.1.2.3)
TotalKbytes (4)
(1.3.6.1.4.1.15.1.2.4)

UsedKBytes (5)
(1.3.6.1.4.1.15.1.2.5)

UL TRIX Extended SNMP Agent 7-5

Example 7-2 shows code from vm_grp. c that defines the virtual memory MIB.

Example 7-2: Defining a Private MIB (vm_grp.c code)

unsigned long Vrn_Var[] = { /* vrn */
OxOl, Ox03, Ox06, OxOl, Ox04, OxOl, OxOf, OxOl, OxOl BO

} ;

unsigned long Vrn_TotalVM[] = {
OxOl, Ox03, Ox06, OxOl, Ox04, OxOl, OxOf, OxOl, OxOl, OxOl

} ;

unsigned long Vrn_Descr[] = {
OxOl, Ox03, Ox06, OxOl, Ox04, OxOl, OxOf, OxOl, OxOl, Ox02

} ;

BO The value OxOl in the MIB field identifies the virtual memory MIB.

7.5 Library Routines
The Extended SNMP Agent library, libsnmp. a, includes these routines that
communicate with the SNMP Agent:

snmpextregister(3n)
Registers the MIB of the extended agent with the SNMP Agent.

snmpextgetreq(3n)
Receives a request for a MIB variable from the SNMP Agent.

snmpext respond(3n)
Returns the requested variable to the SNMP Agent.

snmpexterror(3n)
Returns an error to the SNMP Agent.

The next sections describe the library routines. See also the reference page for each
routine.

7.5.1 The snmpextregister(3n) Library Routine

The snmpregister routine registers the Extended SNMP Agent's MIB with the
SNMP Agent. This example shows the syntax:

snrnpextregister (reg, community)
struct snmpareg * reg ;
char *community;

The caller provides the reg parameter, which contains the object identifiers to be
registered.

The snmpareg structure is defined in <protocbls/ snmp. h>, as shown in this
example:

struct snrnpareg
short
objident

} ;

7-6 UL TRIX Extended SNMP Agent

oidtype;
oid;

/* Registration Data Structure */
/* database type of object id */
/* object id */

Section 7.5.3 describes the procedure for defining objects in a private MIB.

The routine in Example 7-3, from /usr / example/ snmp/ snmpext/main. c,
constructs the object identifier structure and then calls snmpextregister to
register the MIB.

Example 7-3: Registering a Private MIB with the SNMP Agent, snmpd

char *community = "public"i /* community name */ 11]

register_disk () 121

register int e = -li

if (reg_oid(Disk_Index, DISK_SIZE, OIDTYP_INST) == e) return(e)i
if (reg oid(Disk DevDescr, DISK SIZE, OIDTYP INST) == e) return(e)i
if (reg=oid(Disk=MountDescr, DISK_SIZE, OIDTYP_INST) == e) return(e)i
if (reg_oid(Disk_TotalKbytes, DISK_SIZE, OIDTYP_INST) == e) return(e)i
if (reg_oid(Disk_UsedKbytes, DISK_SIZE, OIDTYP_INST) == e) return(e)i
return (0) i

reg_oid(oidbuf, numoid, oidtyp) ~
u_long *oidbufi
short numoidi
int oidtYPi
{

static struct snmpareg regi

reg.oidtype = oidtYPi
reg.oid.ncmp = numoidi
bcopy(oidbuf, reg.oid.cmp, numoid*sizeof(u_long))i

if (snmpextregister(®, community) != GENSUC) { ~
return(O)i

11] The community parameter is defined in the snmpd. conf file and can be any
NULL-terminated string of characters known to both the SNMP Agent and the
NMS.

121 This is a user-written routine that works with the user-defined MIB in the
example programs. The register disk and reg aid routines fill the reg
structure with the disk MIB information. -

~ The reg_aid routine constructs the object identifier for the example MIB.

~ The first argument to snmpextregister is a pointer to the reg array,
which contains information about the disk MIB. For DISK DEVDESCR,
defined as 2 in diskdef. h, for example: -

reg.oidtype = OIDTYP_INSTi
reg.oid.ncmp = 10i

/* This object has instance */
/* The number of components

in the object identifier */
reg.oid.cmp[] = 1,3,6,1,4,1,15,1,2,2i /* The object identifier */

UL TRIX Extended SNMP Agent 7-7

If successful, the call to snmpextregister returns GENSUC (generic success),
defined in <protocols / snmperrs . h>.

7.5.2 The snmpextgetreq(3n) Library Routine

The Extended SNMP Agent uses the snmpextgetreq library routine to get a
request for a MIB variable. The syntax of the call is shown in this example:

snmpextgetreq (reqoid, reqinst)
objident *reqoid;
obj ident *reqinst;

The arguments are described here:

reqoid The requested object identifier, as defined in the private MIB. For
example, 1,3,6,1,4,1,15,1,2,2 is the reqoid for DISK_DEVDESCR.

reqinst The object instance associated with the requested variable. Each disk
in the private disk MIB is an instance. The NMS requests
information about a specific instance of an object.

The snmpextd blocks until a request arrives from the SNMP Agent, as shown in
the code in Example 7-4, from main. c in the example directory.

Example 7-4: Waiting for a Request from the SNMP Agent, snmpd

while (1) {
status = snmpextgetreq(&reqoid, &reqinst); BJ
if (status != GENSUC) {

syslog(LOG_ERR, "main: snmpextgetreq failed: %d", status);
continue;

status = procreq(&reqoid, &reqinst);
if (status != 0) {

syslog(LOG ERR, "main: procreq failed: %d", status);
if (notdaemon) printf("main: procreq failed: %dO,
continue;

procreq(reqoid, reqinst) ~
objident *reqoid;
objident *reqinst;
{

int error = 0;

switch (whichmib(reqoid->cmp))
case MIB VM:

return (ret_vm(reqoid));
case MIB DISK:

return (ret_disk (reqoid, reqinst));
default:

syslog(LOG_ERR, "procreq: unknown MIB");
return(l);

7-8 UL TRIX Extended SNMP Agent

[j] The routine snmpextgetreq contains the object identifier for the requested
variable. For example, if the NMS requests the DISK DEVDESCR for disk
number 1, reqoid contains these values: -

reqinst.cmp = 1; /* The instance
reqoid.ncmp = 10; 1* The number of components

in the object identifier
reqoid.cmp[l] = 1,3,6,1,4,1,15,1,2,2; 1* The object identifier

The NMS numbers instances starting with one, not zero.

*1

*/
*1

If successful, the snmpextgetreq routine returns the generic success variable
GENSUC, which is defined in <protocols/ snmperrs. h>.

12l The procreq routine, a user-written routine, processes a request for
information from these example MIB-disk or virtual memory. The routine
determines which MIB the request is for and calls the routine that returns
information for that MIB.

7.5.3 The snmpextrespond(3n) Library Routine

The snmpd uses the snmpextrespond library routine to return the requested
variable to the Extended SNMP Agent. The syntax for the call is shown in this
example:

snmpextrespond (reqoid, rspinst, rspdat)
objident *reqoid;
objident *rspinst;
struct snmparspdat *rspdat;

The arguments for the call are listed here:

reqoid
The requested object identifier. This is the same object identifier used in the
snmpextgetreq call.

rspinst
The object instance associated with the returning variable. If there is no object
instance associated with the requested variable, you must supply a null value.
(See Example 7-5.)

rspdat
The returned variable.

The response data type can be one of the SNMP data types listed in Table 7-1. The
file /usr / incl ude/protocols / snmp. h. includes the definitions for the data
types.

UL TRIX Extended SNMP Agent 7-9

Table 7-1: Response Data Types

Data Type

CNTR
GAUGE
INT
IPADD
OBJ
STR
TIME

Description

Counter
Gauge
Integer
Internet address
Object identifier
Octet string
Time

The SNMP Agent maintains a configurable timer for outstanding requests to the
Extended Agent. Therefore, the Extended Agent must be able to respond within the
SNMP Agent's timeout interval to prevent a premature timeout in the SNMP Agent.

See / etc/ snrnpd. conf for the default timeout value for the system.

The code in Example 7-5, from disk grp. c in the example directory, illustrates a
call to snrnpextrespond. If the NMS had requested the DISK_DEVDESCR, for
example, the case statement shown in the example would execute.

Example 7-5: Returning a MIS Variable to the SNMP Agent, snmpd

ret_disk (reqoid, reqinst) BD

case DISK DEVDESCR:
if (get_diskstat(attrtag, reqinst, &reqmet, &rspinst)

error = BADVAL;
break;

}

rsp.type = STR; ~

!= 0) {[2J

rsp.octets = strlen(reqmetstr); ~
rsp.rspdat = (char *)malloc(strlen(reqmetstr)); ~
bcopy(reqmetstr, rsp.rspdat, strlen(reqmetstr)+l); /*" */
if (snmpextrespond(reqoid, &rspinst, &rsp) != GENSUC) { ~

syslog(LOG_ERR,"disk_grp: respond failed");
error = GENERRS;
break;

BD The ret disk routine returns the requested disk MIB variable to the SNMP
Agent. -

[2J If the request is for the DISK DEVDESCR attribute, this code executes. The
get diskstat routine returns the requested MIB variable to the ret disk
routine, which then fills the rsp array. -

~ The type of the DISK DEVDESCR attribute is declared as STR, one of the
allowable types. -

7-10 ULTRIX Extended SNMP Agent

~ The octets member contains the number of octets in rsp. rspdat.

151 The rspdat member of rsp contains the returned variable.

!§] The snmpext re spond routine then returns the information to the SNMP
Agent, snmpd. The reqoid parameter is the object identifier from the
snmpextgetreq library call. The rspinst parameter specifies the instance
(which disk) of the object.

Example 7-6 shows a call to snmpextrespond in the vm grp. c example
program, in which the requested object has no instance. -

Example 7-6: Returning a MIB Variable with NULL Instance

case VM TOTALVM:
if (snmpextrespond(reqoid, NULL, &rsp) != GENSUC) BD

syslog(LOG_ERR,"vm_grp: respond failed");
break;

return(O);

BD The second parameter, rspinst, is specified as NULL. Because there is only
one virtual memory, there is no instance for the vm MIB.

7.5.4 The snmperror(3n) Library Routine

The library routine snmperror returns errors to the SNMP Agent. This example
shows the syntax of the call:

snmpexterror (error)
long error;

The snmpexterror routine returns one of these errors:

NOERR
Indicates a successful SNMP get-next-request end-of-table. This happens when
the requested instance does not exist.

NOSUCH
Indicates that the requested object identifier was unknown.

GENERRS
Indicates a generic error.

BADVAL
Indicates a bad variable value.

The code in Example 7-7, from disk grp. c in the example directory, illustrates
the call. -

Example 7-7: Returning an Error to the SNMP Agent, snmpd

default:
1* Log the error and respond to snmpd with an error. *1

syslog(LOG ERR, "disk grp: invalid MIB request attribute");
(voId) snmpexterror(NOSUCH); BO
return(-l);

1* switch *1

ULTRIX Extended SNMP Agent 7-11

Example 7-7: (continued)

ffI If the request was for an unknown MIB variable, the call to snmpexterror
returns NOSUCH to the SNMP Agent.

7.6 Compiling and Installing an Extended SNMP Agent
This section describes the procedure for compiling and installing an Extended SNMP
Agent. Refer to the Introduction to Networking and Distributed System Services for
instructions on configuring the Extended Agent daemon in your system.

The Makefile in the online example directory provides an example of the
compilation and installation.

Extended SNMP Agents must be compiled with the libsnmp. a library.

After compiling the extended agent, use the install(l) command to install the
Extended SNMP Agent. In this example, the Extended Agent is installed in / et c so
you must be superuser to perform the installation shown for an Extended Agent
named snmpextd:

install -e -8 snmpextd lete

Add an entry for the Extended SNMP Agent to the /etc/snmpd. conf file, as
described in Introduction to Networking and Distributed System Services.

7-12 ULTRIX Extended SNMP Agent

Packet Filter Programming 8

This chapter briefly describes the packet filter pseudodevice driver, a kernel-resident
network packet demultiplexer supported by the UL TRIX operating system. The
chapter also lists the documentation that provides programming information.

The packet filter provides a raw interface to Ethernets and similar network data link
layers. Packets received that are not used by the kernel (for example, to support the
IP and DECnet protocol families) are available through this mechanism.

8.1 Packet Filter Software
The packet filter driver is kernel-resident code provided by the ULTRIX operating
system. The code appears to applications as character special files. The relationship
between packet filter application programs and the packet filter driver is illustrated by
Figure 8-1.

Figure 8-1: Packet Filter Software Structure

r--"I Network

Kernel T
Device Driver

Packet Filter

/ ~
RARP Monitor
rarpd Application

User Processes

ZK-0168U-R

Each packet filter application process uses one or more of the character special files
to gain access to the network. To open one of these special files, an application
should use the p f open library routine. Packet filter special files are created with the
MAKEDEV script as described in Section 8.2.

Associated with each open instance of a packet filter character special file is a user
settable packet filter "program" that is used to select which incoming packets are
delivered by means of the special file. The filter program returns "true" or "false,"
depending on whether the application wants to see the specific packet. Whenever a
packet (not otherwise consumed in the kernel) is received from the network, the

packet filter driver successively applies the filter programs of each open packet filter
special file to the packet, until one filter program "accepts" the packet. When a
filter accepts the packet, the packet is placed on the packet input queue of the
associated special file. (Optionally, a packet might be delivered to more than one
application.) If no filters accept the packet, it is discarded. The format of a packet
filter is described in detail in packetfilter(4).

Reads from the character special files return the next packet from a queue of packets
that have matched the filter. Writes to the special files transmit packets on the
network, with each write generating exactly one packet.

The packet filter driver provides direct access to the packet format of the underlying
network; the packet filter mechanism does not know anything about the data portion
of the packets it sends and receives. The application must supply the data-link level
headers for transmitted packets (although the system makes sure that the source
address is correct), and the headers of received packets are delivered to the
application. The packet filter programs treat the entire packet, including headers, as
un interpreted data.

8.2 Configuring Packet Filters
Before you can program a packet filter application, you need to configure the packet
filter option into the kernel as described here:

• Make sure the system configuration file includes entries for the packet filter.
(The configuration file is / sys/ conf / {mips, vax} / HOSTNAME.)

optionsPACKETFILTER

pseudo-device packet filter

If you selected the packet filter as a configuration file option during an advanced
installation, the entries should be in the configuration file.

If you need to configure the packet filter into your system, add the entries to the
system configuration file and then rebuild the kernel with the command
/etc/doconfig -c.

Refer to doconfig(8) and System Configuration File Maintenance for
information on rebuilding the kernel.

• If /dev does not include the pf directory, run MAKEDEV with the pfilt
option to create packet filter character special files, as illustrated in this
example:

cd /dev
MAI<EDEV pfil.t

The command creates the directory / dev / p f, which contains the packet filter
character special files.

A single call to i-1AKEDEV with an argument ofpfilt creates 64 character
special files in / dev / p f, which are named p f i 1 tnnn, where nnn is the unit
number. Successive calls to MAKEDEV with arguments of pfiltl, pfilt2,
and p f i 1 t 3 make additional sets of 64 sequentially numbered packet filters to
a maximum of 256, which is the maximum number of minor device numbers
allowed for each major device number.

Refer to MAKEDEV(8) for more information on making special files.

8-2 Packet Filter Programming

The next section lists the documentation that describes packet filter programming.

8.3 Packet Filter Documentation
Table 8-1 lists the documents in the UL TRIX documentation set that provide
infonnation about the packet filter.

Table 8-1: Packet Filter Documentation

Document

The Packet Filter: An
Efficient Mechanism for
User-level Network Code

packet f i1 ter(4)

Description

Describes the implementation, uses, and
perfonnance of the packet filter. Provides
background infonnation about the development
of the packet filter.

Tells how to create packet filter special files.
Describes application code needed to set up a
packet filter. Describes ioct 1(2) requests used
to control a packet filter.

Packet Filter Programming 8-3

A

accept system call, 2-5

address

See also wildcard address

association in binding an, 3-1

automatically selecting an, 2-5

destination, 2-9

example of obtaining a destination host, 3-11

example of returning a peer process, 4--10

address families

See socket system call

AF_DECNET

See socket system call

AF_DLI

See socket system call

AF_IMPLINK

See socket system call

AF_INET

See socket system call

AF_UNIX

See socket system call

AF_UNSPEC

See socket system call

application layer

See ISO reference model

arguments

See also flags

accept system call, 2-5

bind system call, 2-4

close system call, 2-7

connect system call, 2-5

gethostbyaddr procedure, 2-13

gethostbyname procedure, 2-13

getnetbyaddr procedure, 2-14

arguments (cont.)

getnetbyname procedure, 2-14

getpeername system call, 2-9

getprotobyname procedure, 2-15

getservbyname procedure, 2-15

getservbyport procedure, 2-16

getservent procedure, 2-16

getsockname system call, 2-9

getsockopt system call, 2-10

listen system call, 2-5

read system call, 2-6

recv system call, 2-7

recvfrom system call, 2-8

recvmsg system call, 2-7, 2-9

select system call, 2-11

send system call, 2-6

sendmsg system call, 2-9

sendo system call, 2-8

sethostent procedure, 2-13

setnetent procedure, 2-14

setprotoent procedure, 2-15

setsockopt system call, 2-10

shutdown system call, 2-8

sndmsg system call, 2-7

socket system call, 3-1

write system call, 2-6

writev system call, 2-6

asynchronous notification, 2-12

B

bemp routine

See byte strings

bcopy routine

See byte string

Index

bind system call, 2-4

binding an address

See socket

broadcasting packets, 3-9

example of, 3-9

INADDR_BROADCAST address, 3-9

broker, 6--3

byte strings

bcmp routine, 2-17

bcopy routine, 2-17

bzero routine, 2-17

manipulating, 2-17

bzero routine

See byte strings

c
calling sequence

See connection mode

See connectionless mode

client process

See client/server model

client/server model

See also connection mode

client process of, 2-4

definition of, 2-1

description of, 4-1

server process of, 2-4

close system call, 2-7

communications

connectionless-oriented, 1-1

connection-oriented, 1-1

community parameter for SNMP, 7-7

connect system call, 2-5, 2-8

connection mode

calling sequence, 2-2

example of client process in, 4-1

example of server process in, 4-3

connection less mode

calling sequence, 2-2

Index-2

D
data

transferring, 2-6

data link layer

See ISO reference model

data structures

hostent, 2-13

ifconf, 3-10

ifreq, 3-10, 3-11

iovec,2-6

msghdr, 2-7

netent, 2-14

protent, 2-15

servent, 2-16

sockaddr, 2-9

datagram

See socket system call

DECrpc runtime library, 6--2

defining a private MIB, 7-4e

demultiplexing, 3-1

distributed programming with DECrpc, 6--1

E

endhostent procedure, 2-13, 2-14

endnetent procedure, 2-14

endprotoent procedure, 2-15

endservent procedure, 2-16

errors

EADDRINUSE, 3-4

EWOULDBLOCK, 3-8

SO_ERROR,2-9

Extended SNMP Agent, 7-1

community parameter, 7-7

configurable timer, 7-10

constructing an object identifier, 7-7e

defining a private MIB, 7-4e

header files, 7-3

library routines, 7-6

MIB organization, 7-3

object instance, 7-9

registering a MIB with the Extended SNMP Agent,

7-7

Extended SNMP Agent (cont.)

registering an object identifier, 7-6

requesting a MIB variable, 7-8e

restrictions on object identifiers, 7-4

returning a MIB variable, 7-10e

returning an error, 7-11e

where MIB defined, 7-1

where resides, 7-1

F

flags

G

See also interface flags

MSG_DONTROUTE,2-7

MSG_OOB, 2-7, 3-8

MSG_PEEK, 2-7, 3-7

gather write

See writev system call

gethostbyaddr procedure, 2-13

gethostbyname procedure, 2-13

gethostent procedure, 2-13

getnetbyaddr procedure, 2-14

getnetbynamr procedure, 2-14

getnetent procedure, 2-14

getpeername system call, 2-9

getprotobyname procedure, 2-15

getprotoent procedure, 2-15

getserbyport procedure, 2-16

getsockname system call, 2-9

getsockopt system call, 2-10

Global Location Broker, 6-4

H

host

obtaining information about, 2-13

hostent structure

See data structures

htonl routine

See network byte order

htons routine

See network byte order

ifconf structure

See data structures

ifreq structure

See data structures

INADDR_BROADCAST address

See broadcasting packets

inetd daemon, 4-9

interface

See network interface

interface configuration

example of obtaining, 3-10

interface definition in DECrpc, 6-3

interface flags, 3-11

example of retrieving, 3-11

i/o request

example of asynchronous notification for an, 3-5

notifying a process for a, 3-5

iovec

See data structures

ISO reference model

application layer of, 1-4

data link layer of, 1-4

definition of, 1-2

network layer of, 1-4

physical layer of, 1-5

presentation layer of, 1-4

session layer of, 1-4

transport layer of, 1-4

L

listen system call, 2-5

Local Location Broker, 6-4

local port number

unspecified, 3-2

Location Broker, 6-3

Location Broker Client Agent, 6-4

Index-3

M
Management Information Base (MIB)

organization, 7-4

where defined, 7-1

MIB

See Management Information Base

MSG _ DONTROUTE

See flags

msghdr structure

See data structures

MSG_OOB

See flags

MSG_PEEK

See flags

MSG _PEEK flag

See flags

multiplexing

synchronous, 2-12

N

netent structure

See data structures

network architecture

definition of, 1-1

network byte order

converting, 2-16

htonl routine, 2-17

htons routine, 2-17

ntohl routine, 2-17

ntohs routine, 2-17

network configuration

retrieving information about, 3-10

network interface

See X/Open transport interface

See also XTI

definition of, 1-1

Network Interface Definition Language, 6-3

network layer

See ISO reference model

Network Management Station (NMS), 7-1

network protocols

definition of, 1-1

Index-4

network protocols (cont.)

TCP, 5-1

UDP, 5-1

network services

obtaining information about, 2-15

transport provider, 5-1

networks

definition of, 1-1

obtaining information about, 2-14

NIDL

See Network Interface Definition Language

NIDL Compiler, 6-3

NMS

See Network Management Station

nonblocking socket, 2-4, 3-4

example of marking a, 3-4

ntohl routine

See network byte order

ntohs routine

See network byte order

o
object instance, 7-9

objects in DECrpc, 6-3

open systems

definition of, 1-3

ordering RFCs, 7-1

OSI architecture

See ISO reference model

out-of-band data, 3-7

p

a process reading, 3-8

example of flushing terminal i/o on receipt of, 3-8

receiving, 3-8

sending, 3-8

packet filter, 8-1

physical layer

See ISO reference model

port allocation

restricting, 3-3

port number

See also port number selection

determining a, 3-4

example of finding a free, 3-3

example of selecting a, 3-2

rules used in selecting a, 3-4

port number selection

example of overriding a default, 3-4

rules used in, 3-3

portability with DECrpc, 6-1

presentation layer

See ISO reference model

process number

creating an associate, 3-6

example of redefining a, 3-6

protent structure

See data structures

protocol type

example of specifying a, 3-1

protocols

See network protocols

obtaining information about, 2-15

pseudoterminals

description of, 3-12

example of creating a, 3-13

R

raw

See socket

read system call, 2-6

ready system call, 2-6

scatter read, 2-6

recv system call, 2-6

recvfrom system call, 2-8

recvmsg system call, 2-7, 2-9

registering a MIB with the Extended SNMP Agent,

7-7

remote procedure calls, 6-1

Request for Comments

1065, 7-1

1066,7-1

1067,7-1

ordering, 7-1

requesting a MIB variable, 7-8e

RFC

See Request for Comments

RPC, 6-1

rwho service

s

description of, 4-5, 4-6, 4-7

example of, 4-7

scatter read

See ready system call

select system call, 2-10

send system call, 2-6

sendo system call, 2-8

sequenced packet

See socket system call

servent structure

See data structures

server process

See client/server model

session layer

See ISO reference model

sethostent procedure, 2-13

setnetent procedure, 2-14

setprotoent procedure, 2-15

setservent procedure, 2-16

setsockopt system call, 2-10

shutdown system call, 2-8

SIGCHLD signal

See signals

SIGIO signal

See signals

signals

SIGCHLD, 3-6

SIGIO, 3-6

SIGURG,3-6

SIGURG signal

See signals

Simple Network Management Protocol (SNMP),

7-1

sndmsg system call, 2-7, 2-9

SNMP

See Simple Network Management Protocol

Index-5

snmpd.conf configuration file for SNMP, 7-7

snmpexterror library routine, 7-6

snmpextgetregister library routine, 7-6

snmpextgetreq library routine, 7-6

snmpextrespond library routine, 7-6

sockaddr

See data structure

See data structures

SOCK_DGRAM

See socket type

socket

See also non blocking socket

See also socket options

See also socket type

binding an address to, 2-4

creating a, 2-3

datagram, 2-3

lingering a, 2-7

listening on, 2-5

obtaining type of, 2-10

raw, 3-1

reading data from, 2-11

stream, 2-3

unsuccessful connection to, 2-5

socket options

obtaining information about, 2-10

SO_LINGER, 2-7

SOL_SOCKET,2-1O

SO_OOBINLINE,3-9

SO_TYPE,2-1O

socket system call, 2-3

address families of, 2-3

AF _DECNET, 2-3

AF_DU, 2-3

AF _IMPLINK, 2-3

AF_INET,2-3

AF_UNIX, 2-3

AF _UNSPEC, 2-8

arguments of, 2-3

protocol arguments of, 2-4

sequenced packet socket of, 2-3

socket type

defining, 2-10

SOCK_DGRAM, 2-10

Index-6

SO ERROR

See errors

SO_LINGER

See socket options

SOL_SOCKET

See socket options

SO _ OOBINLINE option

See socket options

SO TYPE

See socket options

stream

See socket

stub programs in DECrpc, 6-3

system calls

definition of, 2-1

T

transport layer

See ISO reference model

w
wildcard address, 3-2

example of specifying a, 3-2

write system call, 2-6

write v system call, 2-6

gather write, 2-6

x
X!Open transport interface

description of, 5-1

X/Open Transport Interface

documentation for, 5-2

XTI

software components of, 5-1

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud modem from
anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

* Internal

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital Subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02j2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMO/E15
or
Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

* For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments ULTRIX
Guide to Network Programming

AA-PBKWA-TE

Please use this postage-paid fonn to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Perfonnance Report (SPR) service, submit your
comments on an SPR fonn.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manual says) 0 0 0 0
Completeness (enough infonnation) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find infonnation) 0 0 0 0

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Name(Title ______________________ _ Dept. _______ _

Company _________________________ ___ Date _____ _

Mailing Address ______________________________ _

_____________ Email ____________ Phone _______ __

-- - - - -. Do Not Tear - Fold Here and Tape

IDmaalDTM
-----------------------------r-----~----------------------

II NO POSTAGE
NECESSARY

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

1111 11111111111111 hll. hll.11I11 h .llIh I ••• hllill
.------. Do Not Tear- Fold Here

IF MAILED IN THE
UNITED STATES

Cut
Along
Dotted
Line

Reader's Comments ULTRIX
Guide to Network Programming

AA-PBKWA-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor

Accuracy (software works as manual says) 0 0 0 0
Completeness (enough information) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 0 0 0

What would you like to see more/less of?

What do you like best about this manual? ______________________ _

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

_______________________ Dept. Nameffitle

Company

Mailing Address

Date

_____________ Email ___________ _ Phone

-- - - - -. Do Not Tear - Fold Here and Tape

1IIIIDml™

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

1IIIIIIIIIIIIIIIIIhllllili IIlIhlllh Illh II hllnl

.------. Do Not Tear - Fold Here

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Cut
Along
Dotted
Line

