
ULTRIX

DECrpc Programming Guide

Order Number: AA- PBKYA- TE

DECrpc Programming Guide

Order Number: AA-PBKY A-TE

June 1990

Product Version: UL TRIX Version 4.0 or higher

ULTRIX

This manual provides information for programmers developing distributed applications based
on DECrpc.

digital equipment corporation
maynard, massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013.

© Digital Equipment Corporation 1990
All rights reserved.

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

Illmaala
CDA
DDIF
DDIS
DEC
DECnet
DECstation

DECUS
DECwindows
DTIF
MASSBUS
MicroVAX
Q-bus
ULTRIX
UL TRIX Mail Connection

ULTRIX Worksystem Software
VAX
VAXstation
VMS
VMS/UL TRIX Connection
VT
XUI

UNIX is a registered trademark of AT&T in the USA and other countries.

Contents

About This Manual

Audience xiii

Organization xiii

Related Documentation .. xiii

Conventions xiv

1 Concepts and Terminology

1.1 Distributed Applications 1-1

1.2 RPC Software .. 1-1

1.2.1
1.2.2
1.2.3

RPC Runtime Library
Location Broker .. .
Network Interface Definition Language Compiler

1-1
1-2
1-2

1~3 Object Orientation .. 1-2

1.3.1 Interfaces, Objects, and Types ... 1-2
1.3.2 Universal Unique Identifiers .. 1-3
1.3.3 Clients and Servers .. 1-3

1.4 Communication Protocols 1-3

1-3
1-5

1.5

1.4.1
1.4.2

Sockets and Socket Addresses
Well-Known and Opaque Ports

The Remote Procedure Call Paradigm 1-6

1-7
1-7
1-9

1.5.1
1.5.2
1.5.3

Interfaces
Clients, Servers, and Managers
Handles

1.5.3.1 RPC Handles .. 1-9
1.5.3.2 RPC Binding States ... 1-10

1.5.4 Handle Representations and Binding Techniques 1-11

1.5.4.1 Explicit and Implicit Handles .. 1-12
1.5.4.2 Manual and Automatic Binding ... 1-13

1.5.5 Stubs

1.6 Interface Definitions and the NIDL Compiler

1.6.1 Interface Definitions .. .
1.6.2 Files Generated by the NIDL Compiler

1.7 The Location Broker .. .

1.7.1 Location Broker Software .. .
1.7.2 Location Broker Data .. .
1. 7.3 Location Broker Registrations and Lookups
1.7.4 The Local Location Broker .. .
1.7.5 The Global Location Broker
1.7.6 Designing an Application to Use Global Name Services

2 DECrpc Software

2.1 Daemons and Utilities

2.1.1
2.1.2
2.1.3
2.1.4
2.1.5

The uuid~en(lncs) Utility
The NIDL Compiler .. .
Location Broker Daemons .. .
Location Broker Administrative Tool .. .
Status Code Translator .. .

1-14

1-15

1-15
1-15

1-15

1-16
1-16
1-17
1-17
1-18
1-18

2-1

2-1
2-2
2-2
2-2
2-2

2.2 The rpc_$ Client and Server Library Routines .. 2-2

2.2.1
2.2.2
2.2.3

Client Routines
Server Routines .. .
Routines for Clients or Servers

2.3 The rrpc_$ Client Library Routines

2.4

2.5

2.6

2.7

2.8

2.9

The socket_$ Library Routines .. .

The lb_$ Library Routines .. .

The uuid_$ Library Routines

The error_$ Library Routines

The pfm_$ Library Routines

The pgm_$ Library Routine

2-2
2-3
2-4

2-5

2-5

2-6

2-6

2-7

2-7

2-7

2.10 The System idl Directory ... 2-8

2.10.1 Interface Definition Files for Types and Constants 2-8
2.10.2 Interface Definition Files for Local Interfaces 2-8
2.1 0.3 Interface Definition Files for Remote Interfaces 2-8

2.11 Header Files and Insert Files 2-9

iv Contents

3 Steps in Building a Distributed Application

3.1 A Distributed Application: the binop Interface Definition 3-1

3.2 A Distributed Application: the binop User-Written Files 3-3

3.3

3.2.1 The Client .. 3-3
3.2.2 The Server .. 3-5
3.2.3 The Manager ... 3-6
3.2.4 Building and Running the binop Programs .. 3-6

Using Location Broker Lookups: the binop_lu Example

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5

The Interface Definition
The Client
The Server
The Manager .. .
Building and Running the binop_lu Programs

3-7

3-7
3-8
3-9

3-10
3-10

4 Writing Interface Definitions

4.1 Generating Interface UUIDs ... 4-1

4.2 The Heading .. 4-2

4.3

4.4

4.5

4.2.1 Interface Names ... 4-2
4.2.2 Interface Attributes .. 4-2
4.2.3 Examples of Interface Headings ... 4-3

Import Declarations

Constant Declarations

Type Declarations

4.5.1
4.5.2
4.5.3

The Type Attributes handle and transmit_as
The Field Attributes last_is and max_is
Examples of Type Declarations .. .

4-3

4-4

4-4

4-4
4-5
4-5

4.6 Operation Declarations .. 4-5

4.6.1 Operation Attributes ... 4-6
4.6.2 Parameters .. 4-6
4.6.3 Pointers as Parameters .. 4-7
4.6.4 Arrays as Parameters .. 4-7
4.6.5 Parameter Attributes ... 4-7
4.6.6 The Field Attributes last_is and max_is .. 4-7
4.6.7 Examples of Operation Declarations ... 4-8

4.7 The binop_fw Interface Definition .. 4-8

4.8 Running the NIDL Compiler ... 4-9

Contents v

5 Developing Distributed Applications

5.1

5.2

The binop_fw Application

Data Types and Portability

5-1

5-2
5.3 Writing the Client .. 5-2

5.3.1 Client Structure ... 5-2
5.3.2 Managing RPC Handles ... 5-3

5.3.2.1 Binding Techniques 5-3
5.3.2.2 Overview of RPC Handle Management Routines 5-3
5.3.2.3 Creating Handles ... 5-4
5.3.2.4 Changing Binding States .. 5-5

5.3.3 Obtaining Socket Addresses .. 5-5

5.3.3.1 Using Location Broker Lookup Calls 5-5
5.3.3.2 Converting Names to Addresses 5-7

5.3.4 Using RPC Binding States .. 5-7

5.3.4.1 Fully Bound Handles ... 5-7
5.3.4.2 Bound-to-Host Handles .. 5-7
5.3.4.3 Unbound Handles .. 5-8

5.3.5 Identifying Servers ... 5-9
5.3.6 Handling Errors ... 5-9

5.3.6.1
5.3.6.2
5.3.6.3

Communications Errors
Server Crashes
Interface Mismatches

5-10
5-10
5-10

5.3.7 Using Cleanup Handlers .. 5-11

5.3.7.1 Initializing the Fault Management Routines 5-11
5.3.7.2 Setting and Releasing Cleanup Handlers 5-11
5.3.7.3 Setting Multiple Cleanup Handlers .. 5-12
5.3.7.4 Portability Considerations ... 5-12

5.3.8 Using the comm_status Parameter Attribute 5-13

5.3.8.1 Declaring Status Parameters in Interface Definitions 5-13
5.3.8.2 Checking Status Parameters in Client Programs 5-13
5.3.8.3 Initializing Status Parameters in Manager Routines 5-14

5.3.9 Using the comm_status Operation Attribute 5-14
5.3.10 The binop_fw Client ... 5-14

5.3.10.1 The client.c Module ... 5-15
5.3.10.2 The util.c Module .. 5-17

5.4 Writing the Server .. 5-17

5.4.1 Server Structure ... 5-17
5.4.2 Writing Server Initialization Code .. 5-18

5.4.2.1 Processing Arguments .. 5-18

vi Contents

5.5

5.4.2.2 Creating Sockets ... 5-19
5.4.2.3 Registering with the RPC Runtime Library 5-19
5.4.2.4 Registering with the Location Broker 5-20
5.4.2.5 Unregistering and Fault Handling .. 5-20
5.4.2.6 Listening for Requests ... 5-21

5.4.3 Writing Manager Code ... 5-21

5.4.3.1 Defining Manager EPVs ... 5-21
5.4.3.2 Identifying Objects .. 5-21
5.4.3.3 Identifying Clients ... 5-22
5.4.3.4 Registering Objects ... 5-22
5.4.3.5 Initializing Status Parameters .. 5-22

5.4.4 The binop_fw Server .. 5-22

5.4.4.1
5.4.4.2

The server.c Initialization Module
The binop_fw.c Manager Module

Steps in Building an Application

5-23
5-25

5-26

6 NIDL C Syntax

6.1

6.2

6.3

6.4

Interface Definition Structure

6.1.1
6.1.2
6.1.3
6.1.4

Syntax Identifier
Heading
Body
Comments

Interface Attributes

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5

UUID Attribute .. .
Version Attribute .. .
Port Attribute
Implicit Handle Attribute
Local Attribute

Import Declarations

Constant Declarations

6-1

6-1
6-1
6-1
6-2

6-2

6-2
6-2
6-3
6-3
6-4

6-4

6-5

6.5 Type Declarations .. 6-5

6.5.1 Type Attributes ... 6-5

6.5.2
6.5.3
6.5.4

6.5.1.1 The handle Attribute .. 6-5
6.5.1.2 The transmit_as Attribute ... 6-6

Type Specifiers
Field Attributes .. .
Type Declarators .. .

6.5.4.1
6.5.4.2

Pointers
Arrays

6-6
6-7
6-7

6-7
6-7

Contents vii

6.6 Operation Declarations

6.6.1 Operation Attributes .. .

6.6.1.1 The idempotent Attribute
6.6.1.2 The broadcast Attribute
6.6.1.3 The maybe Attribute
6.6.1.4 The comm_status Attribute .. .

6.6.2 Operation Type Specifiers ...•.....
6.6.3 Operation Declarators .. .
6.6.4 Parameter Lists .. a.a •••.••••••••••••••••••

&-8

&-8

&-8
&-9
&-9
&-9

&-9
&-9
&-9

6.6.4.1 Parameter Type Specifiers .. &-10
6.6.4.2 Field Attributes and Parameter Attributes &-10
6.6.4.3 Parameter Declarators .. &-10

6.6.5 Examples .. &-10

6.7 Data Types .. &-11

6.7.1 Simple Types .. &-11
6.7.2 Constructed Types ... &-12
6.7.3 The RPC Handle Type ... &-14
6.7.4 Named Types .. &-14
6.7.5 Representation of Unions .. &-14

7 Special Topics

7.1 Open Arrays .. 7-1

7.2

7.3

7.1.1 NIDL Attributes for Arrays ... 7-1

7.1.1.1 The last_is Attribute .. 7-2
7.1.1.2 The max_is Attribute ... 7-2

7.1.2 The primes Interface Definition ... 7-3
7.1.3 The primes Client Module .. 7-4
7.1.4 The primes Manager Module ... 7-4
7.1.5 Related Examples .. 7-5

Data Type Conversion

7.2.1
7.2.2
7.2.3
7.2.4
7.2.5

Type Conversion Routines
Using Type Conversion to Pass Complex Types
The xmitas Interface Definition
The xmitas util.c Module
Using Type Conversion for Efficiency

7.2.5.1
7.2.5.2
7.2.5.3

The sparse Interface Definition
The sparse util.c Module
Restrictions

Automatic Binding

7-5

7-5
7-6
7-6
7-7
7-8

7-8
7-9

7-10

7-10

viii Contents

7.3.1
7.3.2
7.3.3

Automatic Binding Activity
Autobinding and Autounbinding Routines .. .
Automatic Binding in the bank Example .. .

7.3.3.1
7.3.3.2

The bank Autobinding Routine
The bank Autounbinding Routine

7-11
7-11
7-12

7-12
7-13

7.4 Multiple Interface Versions .. 7-14

7.5

7.4.1 The binopmv Interface Definitions ... 7-14

7.4.2
7.4.3

7.4.4

7.4.5
7.4.6
7.4.7

7.4.1.1 The vers1.idl Interface Definition .. 7-15
7.4.1.2 The vers2.idl Interface Definition 7-15

Compiling the Interface Definitions
The binopmv Client Modules

7.4.3.1
7.4.3.2
7.4.3.3

Header Files .. .
Location Broker Lookup Criteria .. .
Checking Interface Versions

The binopmv Server Module

7.4.4.1 Registrations and Unregistrations

The binopmv Manager Module
Changing Operations in Interfaces with Multiple Versions
Constants and Types in Interfaces with Multiple Versions

7-15
7-16

7-16
7-16
7-17

7-17

7-17

7-19
7-19
7-20

Multiple Managers 7-21

7-21
7-22
7-22
7-24

7.5.1
7.5.2
7.5.3
7.5.4

7.5.5

The stacks Interface Definition
The stacksdf.h Header File
The stacks Client Module .. .
The stacks Server Module .. .

7.5.4.1 Registrations and Unregistrations

The stacks Manager Modules

7-24

7-25

Glossary

Examples

1-1: Textual Representations of Socket Addresses .. 1-5

3-1: The binop.idl Interface Definition .. 3-1

3-2: The client.c Module for binop 3-4

3-3: The server.c Module for binop .. 3-5

3-4: The binop.c Manager Module ... 3-6

3-5: The binop_lu.idl Interface Definition .. 3-7

3-6: The client.c Module for binop_lu ... 3-8

Contents ix

3-7: The server.c Module for binop_lu

3-8: The binop_lu.c Manager Module

3-9

3-10

4-1: Interface File Generated by uuid_gen 4-2

4-2: The binop_fw Interface Definition ... 4-8

5-1: Setting Up a Cleanup Handler ... 5-12

5-2: Using Local Variables Portably in Fault Handling Code 5-13

5-3: Identifying a Status Parameter ... 5-13

5-4: Checking Status Parameters in Client Programs 5-14

5-5: Initializing Status Parameters in Manager Routines .. 5-14

5-7: The client.c Client Module for binop_fw .. 5-15

5-8: The util.c Module for binop_fw ... 5-17

5-9: Checking the UUID in an Automatically Bound Interface 5-22

5-10: The server.c Module for binop_fw ... 5-23

5-11: The binop_fw.c Manager Module for binop_fw ... 5-25

7-1: The primes.idl Interface Definition ... 7-3

7-2: Excerpts from the client.c Module for primes .. 7-4

7-3: The manager.c Module for primes 7-4

7 -4: The xmitas.idl Interface Definition ... 7-6

7-5: The util.c Module for xmitas ... 7-7

7-6: The sparse.idl Interface Definition ... 7-8

7-7: The util.c Module for sparse ... 7-9

7-8: An Autobinding Routine for UUIDs .. 7-12

7-9: An Autounbinding Routine for UUIDs ... 7-14

7 -10: The vers l.idl Interface Definition for binopmv

7 -11: The vers2.idl Interface Definition for binopmv

7-12: Version Checking Code in the client1.c Module for binopmv

7-13: Registrations and Unregistrations in the server.c Module for binopmv

7-14: The manager.c Module for binopmv .. .

7-15: A Manager Module with Two Versions of an Operation

7 -16: An Interface Definition File for Shared Types and Constants

7-17: The stacks.idl Interface Definition

7 -18: The stacksdf.h Header File

7-19: Excerpts from the client.c Module for stacks

x Contents

7-15

7-15

7-17

7-17

7-19

7-20

7-21

7-21

7-22

7-23

7-20: Registrations and Unregistrations in the server.c Module for stacks 7-24

7-21: The lmanager.c Manager Module for stacks .. 7-26

7 -22: The amanager.c Manager Module for stacks/ 7-26

Figures

1-1: RPC Communications .. 1-4

1-2: Socket Address Structures .. 1-5

1-3: Ordinary Local Procedure Call Flow 1-6

1-4: Remote Procedure Call Flow .. 1-7

1-5: An RPC Server Exporting Two Interfaces ... 1-8

1-6: An RPC Server Exporting an Interface for Two Types 1-9

1-7: RPC Handle ... 1-10

1-8: Explicit and Implicit Handles .. 1-12

1-9: Client Agents and Location Brokers ... 1-17

3-1: Input and Output Files in the binop.idl Compilation 3-2

5-1: Calls That Manage RPC Handles and Their Binding States 5-4

Tables

1-1: RPC Binding States

1-2: Handle Representations and Binding Techniques .. .

1-3: Comparison of Steps in Manual and Automatic Binding

1-4: Location Broker Database Entry

2-1: DECrpc Software

5-1: Comparison of the binop, binop_lu, and binop_fw Examples

5-2: Client Source Code Files for the binop_fw Example

5-3: Server Source Code Files for the binop_fw Example

6-1: Family Values Supported by NIDL

7 -1: Identifiers in the binopmv Example

1-11

1-11

1-13

1-16

2-1

5-1

5-3

5-18

6-3

7-16

Contents xi

About This Manual

This manual provides programming information for the Digital Remote Procedure
Call (DECrpc) Version 1.0. The software is based on and is compatible with Version
1.5 of Apollo's Network Computing System (NCS).

This is a new manual in the DECrpc documentation set; the manual is based on the
manual NCS Reference by Apollo Systems Division of Hewlett Packard.

Audience
This reference manual is for programmers developing applications based on DECrpc.
If you are running, rather than developing, distributed applications, you should not
need this book. Guide to the Location Broker explains how to establish and maintain
the runtime support necessary for distributed applications.

In general, the body of this book shows examples written in C for the ULTRIX
operating system.

Organization
This manual contains seven chapters, a glossary, and an index.

Chapter 1 introduces DECrpc and the concept of a distributed application.

Chapter 2 surveys DECrpc software.

Chapter 3 introduces the steps in building a distributed application.

Chapter 4 describes how to define interfaces in Network Interface Definition
Language (NIDL).

Chapter 5 describes how to develop distributed applications that use DECrpc.

Chapter 6 describes the C syntax of NIDL.

Chapter 7 describes special programming topics.

To submit comments on this document, please use the Reader's Response form at the
back of the book.

Related Documentation
For more information on topics related to NCS, see the following documents:

Guide to the Location Broker

This book explains how to set up and administer the DECrpc runtime software,
the Location Broker.

ULTRIX Reference Pages

The ULTRIX Reference Pages describe the commands and special files referred
to in this manual, and the library routines described in the D ECrpc
Programming Guide.

Conventions
The following conventions are used in this guide:

special

command(x)

variable

literal

italics

[]

UPPERCASE

example

example

new term

$

xi v About This Manual

In text, each mention of a specific command, option, partition,
pathname, directory, or file is presented in this type.

In text, cross-references to command documentation include the
section number in the reference manual where the command is
documented. For example: See the cat(l) command. This
indicates that you can find the material on the cat command in
Section 1 of the ULTRIX Reference Pages.

In syntax descriptions, this type indicates terms that are variable.

In syntax descriptions, this type indicates terms that are constant
and must be typed just as they are presented.

In syntax descriptions, this type indicates terms that are variable.

In syntax descriptions, brackets indicate terms that are optional.

In syntax descriptions, a horizontal ellipsis indicates that the
preceding item can be repeated one or more times.

The UL TRIX system differentiates between lowercase and
uppercase characters. Enter uppercase characters only where
specifically indicated by an example or a syntax line.

In examples, computer output text is printed in this type.

In examples, user input is printed in this bold type.

In text, new terms are introduced in this bold type.

This is the default user prompt in multiuser mode.

This is the default superuser prompt.

In examples, a vertical ellipsis indicates that not all of the lines of
the example are shown.

Concepts and Terminology 1

This chapter describes the concepts and terminology of DECrpc, the remote
procedure call mechanism supported by the UL TRIX operating system. DECrpc is
based on and is compatible with the RPC component of Apollo's Network
Computing System (NCS) Version 1.5. NCS is a set of tools for heterogeneous
distributed computing.

1.1 Distributed Applications
U sing remote procedure calls, software applications can be distributed across
heterogeneous collections of computers, networks, and programming environments.
Distributed applications can take advantage of computing resources throughout a
network or internet, with different parts of each program executing on the computers
best suited for the tasks.

There are many applications that can be distributed among multiple systems. For
example, one program might perform graphical input and output on a workstation
while it does intense computation on a supercomputer. A program that performs
many independent calculations on a large set of data could distribute these
calculations among any number of available processors on the network or internet.

1.2 RPC Software
The software for writing distributed applications is written in portable C wherever
possible. The components are:

• Remote Procedure Call (RPC) runtime library

• Network Interface Definition Language (NIDL) Compiler

• Location Brokers

The RPC runtime library and the Location Brokers provide runtime support for
distributed applications.

The NIDL Compiler is a tool for developing distributed applications.

1.2.1 RPe Runtime Library
The DECrpc runtime library provides the routines that enable local programs to
execute procedures on remote hosts. These routines transfer requests and responses
between the programs calling the procedures and the programs executing the
procedures.

When you develop distributed applications, you usually do not use many runtime
routines directly. Instead, you write interface definitions in Network Interface
Definition Language and use the NIDL Compiler to generate most of the required
calls to the runtime library.

1.2.2 Location Broker

A broker is a server that provides information about resources. The Location Broker
enables clients to locate specific objects, such as a database or a specialized
processor, or specific interfaces, such as a data retrieval interface or a matrix
arithmetic interface.

Location Broker software includes the Local Location Broker (LLB) that manages
information about resources on the local host, the Global Location Broker (GLB) that
manages information about resources available on all hosts, a client agent through
which programs use the Location Broker facilities, and the Ib admin
administrative tool. -

The GLB stores in a database the locations of objects and interfaces in a network or
internet. Clients can use the GLB to access an object or interface, without knowing
its location beforehand. The LLB also implements a forwarding facility that provides
access by way of a single address to all of the objects and interfaces at the host.

Guide to the Location Broker describes the administration of the Location Brokers.

1.2.3 Network Interface Definition Language Compiler
The NIDL Compiler takes as input an interface definition written in NIDL. From
this definition, the NIDL Compiler generates client and server stub programs. An
interface definition specifies the interface between a user of a service and the provider
of the service. The definition describes how a client application sees a remote service
and how a remote server sees requests for its service.

The stubs produced by the NIDL Compiler contain nearly all of the remoteness in a
distributed application. The client stub program performs data conversions,
assembles and disassembles packets, and interacts with the RPC runtime library. The
server stub program provides similar support for the server. It is easier to write an
interface definition in NIDL than it would be to write the stub code that the NIDL
Compiler generates from your definition.

1.3 Object Orientation
Programs written with RPC routines access objects through interfaces and are cast in
terms of the objects they manipulate rather than the machines with which they
communicate. Object-oriented programs are easy to design and can readily
accommodate changes to hardware and network configurations.

1.3.1 Interfaces, Objects, and Types
An object is an entity accessed by well-defined operations. A file, a serial line, a
printer, and a processor can all be objects.

Every object has a type. Programs can access any object of a given type through one
or more interfaces, with each interface a set of operations that can be applied to any
of those objects. For example, you can classify printer queues as objects of the type
printqueue, accessed through a directory interface that includes operations to
add, delete, and list jobs in the queues.

As another example of how object, type, and interface apply to distributed
applications, consider array processors as objects of the arrayproc type.
Programs access these objects through either of two interfaces: a vector interface,
with operations such as vector$add and vector$multiply, and a misc

1-2 Concepts and Terminology

interface, with operations such as misc$root_mean_square and
misc$max_abs_val.

1.3.2 Universal Unique Identifiers
DECrpc identifies every object, type, and interface by a Universal Unique Identifier
(UUID). The UUID is defined as a 16-byte quantity identifying the host on which
the UUID is created and the time at which it is created. Six bytes identify the time,
two are reserved, and eight identify the host.

The uuid_gen utility generates a UUID as a text string or as a data structure
defined in C syntax. The string representation used by the Network Interface
Definition Language (NIDL) Compiler consists of 28 hexadecimal characters
arranged as in this example:

3a2f883c4000.0d.OO.OO.fb.40.00.00.00

1.3.3 CI ients and Servers
A client is a program that makes remote procedure calls. A remote procedure call
requests that a particular operation be performed on a particular object.

A server is a program that implements one or more interfaces and provides access to
one or more objects. A server accepts requests for operations in any of its interfaces.
When it receives a request from a client, it executes the procedures that perform the
operation and it sends a response to the client.

All DECrpc applications involve communication between clients and servers through
interfaces. However, some applications do not involve specific objects and types. If
your application operates on only one object, you can specify uuid_ $nil, the nil
UUID, as the identifier for its type. If your application does not operate on any
object, you can specify uuid _ $nil for both the type and the object.

1.4 Communication Protocols
The RPC runtime library is independent of any underlying communications protocol.
The DECrpc V1.0 runtime library, however, provides support for only the DARPA
defined Internet Protocols (lP).

1.4.1 Sockets and Socket Addresses
The remote procedure calls use the Berkeley UNIX socket abstraction for
interprocess communications. A socket is an endpoint for communications, in the
form of a message queue. An RPC server listens on one or more sockets and
receives any message delivered to a socket on which it is listening.

Figure 1-1 illustrates RPC communications using sockets. It shows two. servers
running on one host and several clients on other hosts.

Concepts and Terminology 1-3

Figure 1-1: RPC Communications

Host 1

Host 2 Host 3 Host 4
ZK-0046U-R

Each socket is identified uniquely by a socket address. A socket address, sometimes
named sockaddr, is a data structure that specifies these socket characteristics:

• Address family

• Network address

• Port number

The address family, also called the protocol family, detennines the communications
protocol used to deliver messages and the structure of the addresses used to represent
communications endpoints.

The network address, given the address family, uniquely identifies a host and
contains infonnation sufficient to establish communication with the host. Hosts also
have host IDs; a host ID uniquely identifies a host but may not be sufficient to
establish communication. In the IP family, the network address and the host ID are
identical.

The port number specifies a communications endpoint within the host. The tenns
port and socket are synonymous, but port number and socket address are not. A port
number is one of the three parts in a socket address. For example, the character
string 77 might represent a port number, while ip:wooster[77] might represent a
socket address.

Figure 1-2 illustrates the structure of socket addresses in the IP family.

1-4 Concepts and Terminology

Figure 1-2: Socket Address Structures

Family Port Network Address

16-bit Integer 16-bit Integer
Network 10 and Host 10

32-bit Integer

ZK-0047U-R

A socket address can be represented textually by a string of the fonn
family:host{port], where family is the textual name of an address family, host is
either a textual host name or a numeric host ID preceded by a number sign (#), and
port is a port number. Several of the routines and utilities accept textual
representations of socket addresses as input or produce them as output.

Example 1-1 shows two textual representations of socket addresses for the IP address
family. The first line shows a textual host name and the second shows a numeric
host ID.

Example 1-1: Textual Representations of Socket Addresses

ip:cactus[57]
ip:#192.5.7.9[53]

1.4.2 Well-Known and Opaque Ports
It is possible to design an interface with a specific port number built in. Clients of
the interface always send to that port and servers always listen on that port. The port
used in such an interface is called a well-known port. Some well-known ports are
assigned to particular servers by the administrators of a protocol. For example, the
administrators of the Internet Protocols have assigned the port number 23 to the
telnet remote login facility. All telnet servers listen on this well-known port, and
all telnet user programs send to it.

For very widely used services such as telnet, well-known ports offer a simple way to
coordinate communication between clients and servers. For most applications,
however, well-known ports are impractical. Each protocol family has a limited
number of ports, so, unless you obtain an assignment from a central administrator,
your application's well-known port number is liable to conflict with that of another
program.

The Location Broker solves this problem by enabling clients to locate servers without
direct use of well-known ports. A server can use ports that the RPC runtime library
assigns dynamically. The server registers its socket address, including the assigned
port, with the Location Broker. A client can then use Location Broker lookup calls
to obtain the socket address of the server. The dynamically assigned port is said to
be opaque, because there is no need for either the client or the server to know the
port number.

Although the RPC runtime library supports both kinds of ports, if you use opaque
ports your application can always coexist with other services.

The Local Location Broker itself uses one well-known port to listen for requests.
Clients and servers find Global Location Brokers by broadcasting to this port.

Concepts and Terminology 1-5

Section 1.7 describes the Location Broker.

1 .5 The Remote Procedure Call Paradigm
Remote procedure calls extend the procedure call mechanism from a single computer
to a distributed computing environment. They enable you to distribute the execution
of a program among several computers in a way that is transparent to the application
code. Figure 1-3 shows the flow of ordinary local procedure calls between a calling
client and called procedures.

Figure 1-3: Ordinary Local Procedure Call Flow

."~'. call ----.. ... _-------M.>; ------~-I Procedures Client
.... ____ ... - return I

(
.~.
,

Interface

ZK-0048U-R

In contrast to Figure 1-3, which shows the flow of local procedure calls, Figure 1-4
shows the flow of remote procedure calls and illustrates how the RPC paradigm hides
the remote aspects of a call from the calling client. The client application uses
ordinary calling conventions to request a procedure as if the procedure were a part of
the local program, but the procedure is executed by a remote server. The client stub
acts as the local representative of the procedure.

A stub is a program module generated by the NIDL Compiler from a user-written
interface definition. The stub uses RPC runtime library calls to communicate with
the server. Similar activities occur within the server process. Section 1.6 briefly
describes interface definitions and Chapter 4 describes the procedure for writing an
interface definition.

1-6 Concepts and Terminology

Figure 1-4: Remote Procedure Call Flow

Client process

apparent flow _csiL __________________ --

-----------------------return

Server process

-=:1 Manager 1
JI' call

Interface e~~~ ; ..

..

1.5.1 Interfaces

n rk etwo
messages

I

•

return ,

1 Server Stub I
JI' call

return ~

RPC Runtime Library

ZK-0049U-R

The interface detennines the calling syntax - the signature - for each of its
operations. Both client and server procedures use the same syntax. The interface is
independent of the mechanism that conveys the request between client and server. It
is also independent of the way the operations are implemented. A server that
implements the operations in an interface is said to export the interface. A client
that requests the operations is said to import the interface.

For example, suppose that a remote matrix arithmetic package is running as a server
on an array processor. Servers on array processor hosts export a vector interface
containing operations such as vector$add and vector$mul tiply. Clients on
other hosts import the vector interface by calling vector$add or
vector$mul tiply. The client programs run on their local hosts, but the matrix
operations run on the remote array processor.

1.5.2 Clients, Servers, and Managers

An RPC client is a program that makes remote procedure calls to request operations.
A client does not know how an interface is implemented and might not know the
location of a server exporting the interface.

An RPC server is a program that perfonns the operations in one or more interfaces.
It executes these operations on objects of one or more types. A server receives
'requests for operations from clients and it sends responses containing the results of
the operations. A server can export interfaces for one object or for several objects.
In the array processor example, there is only one object, the array processor. A file
server, however, might manage many file objects.

A server can also be a client. For example, a server that gets time from a time server
is a client of the time server.

Concepts and Terminology 1-7

A manager is a set of procedures that implement the operations in one interface for
objects of one type. It is possible for a server to export several interfaces or to export
an interface for several types of objects; each combination of interface and type has
its own manager.

Figure 1-4 showed the simplest case, a server that exports one interface for objects of
one type. Figure 1-5 illustrates a server that exports two interfaces.

Figure 1-5: An RPC Server Exporting Two Interfaces

Server

ManaRer
for I nte ace 1

Manager
for Interface 2

call J call
J

"

Interface 1 Interface 2

I return "return

Server Stub 1 Server Stub 2

call'~ call'~

" return " return

RPe Runtime Library

J~

from clients , to clients
- -ZK 0050U R

Figure 1-6 shows a server that exports one interface to objects of more than one type.

1-8 Concepts and Terminology

Figure 1·6: An RPC Server Exporting an Interface for Two Types

Server

Manager Manager
for Type 1 for Type 2

call
, call J,

Interface _ "
'i, . ~. ..~. mtt¥ ~''4'%k'%l&Wg H1, _w,.Wt%~ ~ , ,.

" , i retu'rri " , , , return>~>'

Server Stub

call ~,

" return

RPe Runtime Library

from clients

,if i to clients

ZK-OOS1 U-R

1.5.3 Handles
When a client makes a remote procedure call, requesting that a particular operation
be performed on a particular object, the RPC runtime library needs the following
information to transmit the call:

• The object on which the operation is to be performed

• The location of the server that exports the interface containing the operation

The client process represents this information about the object and the server location
in a handle, which is a pointer to a data structure. The runtime library provides
several routines to create and manage handles. Once created, a handle always
represents the same object. However, it may represent different servers at different
times, or it may not represent a server at all. The server location represented in a
handle is called the binding. To bind a handle is to set its server location.

1.5.3.1 RPC Handles - An RPC handle is a pointer to an opaque data structure containing
the information needed to access an object. The name for this pointer type is
handle_to In this manual, the term RPC handle refers to handle variables of this
type and the term generic handle refers to handle variables of other types, such as a
pathname.

Clients and servers manipulate RPC handles indirectly, through RPC runtime library
routines. Figure 1-7 shows an RPC handle.

Concepts and Terminology 1-9

Figure 1-7: RPC Handle

~ __ H_an_d_le __ ~~~

I--------.... } Socket Address

ZK-0083U-R

1.5.3.2 RPC Binding States - An RPC handle can exist in three binding states:

unbound

An unbound handle (also called an allocated handle) identifies an object but
does not identify a location. When a client uses an unbound handle to make a
remote procedure call, the RPC runtime library broadcasts the request to all
hosts on the local network. Any server that exports the requested interface and
supports the requested object can respond. The client accepts the first response
it receives. This mechanism is inefficient and has other disadvantages described
in Chapter 5.

bound-to-host

A bound-to-host handle identifies an object and a host but does not identify the
port number of the server that exports the requested interface. When a client
uses a bound-to-host handle to make a remote procedure call, the RPC runtime
library sends the request to the host identified in the handle. If the requested
interface specifies a well-known port, the request goes to that port; otherwise,
the request goes to the Local Location Broker forwarding port, and the LLB
forwards the request to the server.

fully bound

A fully bound handle (also called a bound-to-server handle) identifies an
object and the complete socket address of a server. When a client uses a fully
bound handle to make a remote procedure call, the RPC runtime library sends
the message directly to the socket address identified by the handle.

In all cases, when the client RPC runtime library receives a response from a server, it
binds the handle to the server socket address. Therefore, RPC handles are always
fully bound when a remote procedure call returns, and the client does not need to use
the broadcasting or forwarding mechanism for subsequent calls to the server.

Table 1-1 shows, for each possible binding state of a handle when a remote
procedure call is made, the information that the handle represents, the delivery
mechanism of the remote procedure call, and the binding state when the procedure
call returns.

1-10 Concepts and Terminology

Table 1·1:
RPC Binding States

Binding State Information Delivery Mechanism Binding State
on Call Represented on Return

Unbound Object Broadcast to all hosts Fully bound
on the local network

Bound-to-host Object Sent to LLB forwarding Fully bound
Host port at host

Fully bound Object Sent to specific port Fully bound
Host at host
Server

1.5.4 Handle Representations and Binding Techniques
DECrpc provides a choice of handle representations and binding techniques. It
allows applications to use:

• Explicit or implicit handles

• Manual or automatic binding

The handle representation, explicit or implicit, determines whether the client
represents handle information with a parameter in each operation or with a global
variable. The binding technique, manual or automatic, determines whether the
client uses RPC handles directly or uses generic handles that are then converted to
RPC handles by automatic binding routines. Table 2-2 summarizes the effects of the
handle representation and the binding technique on the handle variable.

Table 1-2: Handle Representations and Binding Techniques

Handle Manual Binding Automatic Binding

Explicit Handle Data Type: Data Type:
handle t Generic, user defined

Representation: Representation:
Operation parameter Operation parameter

Implicit Handle Data Type: Data Type:
handle t Generic, user defined

Representation: Representation:
Client global variable Client global variable

Concepts and Terminology 1-11

1.5.4.1 Explicit and Implicit Handles - In an application 'that uses explicit handles, each
operation in the interface must have a handle variable as its first parameter. This
parameter passes explicitly from the client to the server, through the client stub, the
client and server RPC runtime libraries, and the server stub. (The server runtime
library manipulates the location information in the handle so that, on the server side
of the application only, the handle specifies the location of the client making the call.
The server can thereby identify its client. Of course, the handle always represents the
same object.)

In an application that uses implicit handles, the handle identifier is a global variable
in the client. The operations do not need to include a handle parameter, and the
server does not receive a handle. When the client stub delivers a remote procedure
call, it uses the implicit handle variable to supply the handle information needed by
the client RPC runtime library.

An implicit handle makes remote procedure calls look more like ordinary procedure
calls, because there is no need to pass special information in each call. However,
this added simplicity comes at the expense of reduced flexibility. Applications that
use implicit handles have two major limitations:

• Because the server does not receive the object identifier that a handle contains,
the client can access only one object at any time, unless it explicitly passes
some other form of object identifier, such as a pathname, as an operation
parameter.

• Because all remote procedure calls use the same global variable, the client can
access only one server at any time. For example, you cannot use implicit
handles in applications that divide computation in parallel among several hosts.

Figure 1-8 illustrates the differences between explicit and implicit handles.

Figure 1-8: Explicit and Implicit Handles

Client Client Stub

1-12 Concepts and Terminology

Explicit Handle

Client Side Server Side

Implicit Handle

Client Side

RPC Runtime
Library

Server Side

RPe Runtime \I
.... _L_ib_ra..,;ry S_e_rv_e_r_S_tu_b .. ~

ZK-0084U-R

1.5.4.2 Manual and Automatic Binding - In an application that uses manual binding,
the handle variable is an RPC handle, and the client makes all the RPC runtime
library calls that create and bind the handle.

In an application that uses automatic binding, the handle variable is generic, and the
application developer must supply autobinding and autounbinding routines that
convert generic handles (used by the client) to RPC handles (used by the RPC
runtime library). The client stub invokes the autobinding routine each time the client
makes a remote procedure call; it invokes the autounbinding routine after the remote
call returns. The generic handle variable must contain information sufficient for the
autobinding routine to generate an RPC handle.

Automatic binding offers convenience at the expense of performance. Each time the
client stub processes a remote procedure call, it must call routines to convert between
generic handles and RPC handles. Thus, an interface that uses automatic binding can
require more processing than one in which the client performs the binding once and
passes an RPC handle to the stub. The difference in performance is smallest in
interfaces such as the remote file system example, where each call is likely to require
rebinding of the handle.

Table 1-3 shows the differences between manual and automatic binding when a client
makes a remote procedure call.

Table 1-3: Comparison of Steps in Manual and Automatic Binding

Manual Binding

1. Client:
Generates RPC handle
Binds handle, as necessary
Makes procedure call to stub

2. Client stub:
Sends request to server
Recei ves response from server
Returns to client

3. Client:
Receives call return from stub
Manages RPC handle, as necessary,
including unbinding the handle

Automatic Binding

1. Client:
U sing generic handle,

makes procedure call to stub

2. Client stub:
Calls autobinding routine

3. Autobinding routine:
Generates RPC handle from

generic handle
Binds RPC handle as necessary
Returns RPC handle to stub

4. Client stub:
Sends request to server
Receives response from server
Calls auto unbinding routine

5. Autounbinding routine:
Frees handles as necessary
Returns to stub

6. Client stub:
Returns to client

7. Client:
Receives call return from stub

Chapter 7 includes an example of an automatic binding routine.

Concepts and Terminology 1-13

1.5.5 Stubs
Both clients and servers are linked (in "the sense of combining object modules to form
executable files) with stubs, which are generated by the NIDL Compiler from a user
written interface definition. The client stub takes the place of the remote procedures
in the client process and the server stub takes the place of the client in the server
process. Stubs make remote procedure calls resemble local calls, which enables
clients and servers to use the RPC facilities almost transparently.

The client stub marshalls data (copies data into an RPC packet) and unmarshalls
data (copies data from an RPC packet) and transmits and receives the packet from the
server stub.

When a client calls an interface operation, it invokes a routine in the client stub. The
client stub then performs these actions:

1. Marshalls the input parameter values

2. Calls rpc_$sar, an RPC runtime library routine called only by stubs, to send
the packet to the server stub and await a reply

3. Receives the reply packet

4. Unmarshalls the output parameters from the reply packet into the data types
expected by the client (that is, the data types specified in the interface
definition)

5. Converts the output data to the client's native representation, if the client's
native representation is different (for example, converts characters from
EBCDIC to ASCII)

6. Returns to the client

Similarly, the RPC runtime library at a server host calls a server stub routine when
the server receives a request from the client. The server stub then performs these
actions:

1. Unmarshalls the input parameters from the request packet into the data types
expected by the server (that is, the data types specified in the interface
definition)

2. Converts the input data into the representation native to the server, if the client
uses a different representation (for example, converts characters from ASCII to
EBCDIC)

3. Calls the manager procedure that implements the operation

4. Marshalls the output parameter values into an RPC packet

5. Returns the packet to the RPC runtime library for transmission to the client stub

As the preceding summary shows, stub procedures in both the client and the server
check the data representation format in incoming packets. Each side uses its native
format when it marshalls parameters. A label in the header of each transmitted
packet indicates the sender's data representation format for integers, characters, and
floating-point numbers. If the sender's representation of a data type is different from
the receiver's representation, the receiving stub converts that data type when it
unmarshalls values.

There is no conversion of data if the sending and receiving hosts have identical
representations. This technique allows heterogeneity at minimum cost.

1-14 Concepts and Terminology

The NIDL Compiler automatically generates source code for the client and server
stubs from a definition of the interface written in Network Interface Definition
Language. Section 1-6 provides more information about the NIDL Compiler and the
stubs that it generates. Chapter 6 describes NIDL syntax in detail.

1.6 Interface Definitions and the NIDL Compiler
An interface definition written in NIDL defines the signatures for each operation in
an interface. The NIDL compiler takes this definition as input and generates C
source code files that you can use in building an application.

1.6.1 Interface Definitions
An interface definition describes the constants, types, and operations associated with
an interface. NIDL contains constructs for specifying all of this information, but it
contains no executable constructs; NIDL is strictly a declarative language. You can
write NIDL in either of two syntaxes, one that resembles C or one that resembles
Pascal.

DECrpc supports only the C syntax of NIDL and all of the examples in this book are
in the C syntax.

Chapter 3 introduces NIDL interface definitions with a simple example and describes
the input and output files in the NIDL compilation. Chapter 4 describes how to write
an interface definition and Chapter 6 completely describes the C syntax of NIDL.

1.6.2 Files Generated by the NIDL Compiler
The NIDL compiler translates a NIDL interface definition into stub modules that you
then link with clients and servers. As Section 1.5.5 described, these modules
facilitate remote procedure calls by copying arguments to and from RPC packets,
converting data representations as necessary, and calling the RPC runtime library.

In addition to stub files, the NIDL compiler generates C language header files.

1.7 The Location Broker
The Location Broker provides clients with information about the locations of objects
and interfaces. Servers register with the Location Broker their socket addresses and
the objects and interfaces to which they provide access. Clients issue requests to the
Location Broker for the locations of objects and interfaces they wish to access; the
broker returns database entries that match an object, type, interface, or combination
of these, as specified in the request.

The Location Broker also implements the RPC message-forwarding mechanism. If a
client sends a request for an interface to the Location Broker forwarding port on a
host, the broker automatically forwards the request to the appropriate server on the
'host.

This chapter describes the structure and function of the Location Broker software and
databases. Guide to the Location Broker explains how to configure and administer the
Location Brokers.

Concepts and Terminology 1-15

1.7.1 Location Broker Software
The Location Broker consists of the following interrelated components:

Local Location Broker (LLB)
The Local Location Broker is a server that maintains a database of information
about objects and interfaces located on the local host. The LLB runs as the
daemon llbd(8ncs). The LLB provides access to its database for application
programs and also provides the Location Broker forwarding service. An LLB
must run on any host that runs DECrpc servers.

Global Location Broker (GLB)
The Global Location Broker is a server that maintains infonnationabout -objects
and interfaces throughout the network or internet. The GLB daemon is named
n rg lbd(8ncs).

Location Broker Client Agent
The Location Broker Client Agent is a set of library routines that application
programs call indirectly to access LLB and GLB databases. When a program
issues any Location Broker call, the call goes to the Client Agent at the local
host. The Client Agent then performs the actual lookup or update of
information in the appropriate Location Broker database.

1.7.2 Location Broker Data
Each entry in a Location Broker database contains information about an object, an
interface, and the location of a server that exports the interface to the object. Table
1-4 lists the fields in a database entry.

Table 1-4: Location Broker Database Entry

Field

Object UUID

Type UUID

Interface UUID

Flag

Annotation

Socket address length

Socket address

Description

The unique identifier of the object

The unique identifier that specifies the type of the object

The unique identifier of the interface to the object

A flag that indicates whether the object is global (and
therefore should be registered in the GLB database)

64 characters of user-defined information

The length of the socket address field

The location of the server that exports the interface to
the object

Because each database entry contains one object UUID, one interface UUID, one type
UUID, and one socket address, a Location Broker database must have an entry for
each possible combination of object, interface, and socket address. Thus, the
database must have 10 entries for a server that:

• Listens on two sockets, socket_a and socket_b

• Exports interface 1 for object_x, object_y, and object_z

1-16 Concepts and Terminology

• Exports interface_2 for objectyand object_q

• Has only one type UUID

When you look up Location Broker information, you specify any combination of the
object UUID, type UUID, and interface UUID as keys, and you request the
information from the GLB database or from a particular LLB database. Thus, for
example, you can obtain information about all objects of a specific type, all hosts
with a specific interface to an object, or all objects and interfaces at a specific host.

1.7.3 Location Broker Registrations and Lookups

This section describes how servers register their locations with the Location Broker
and how clients use Location Broker lookups to locate servers.

Figure 1-9 illustrates a typical case in which a client requires a particular interface to
a particular object but does not know the location of a server exporting the interface
to the object. In this figure, a server registers itself with the Location Broker by
calling the Client Agent in its host (la). The Client Agent registers the server with
the LLB at the server host (lb) and with the GLB (lc). To locate the server, the
client issues a Location Broker lookup call (2a). The Client Agent on the client host
sends the lookup request to the GLB, which returns it through the Client Agent to the
client (2b). The client can then use RPC calls to communicate directly with the
located server (3a, 3b).

Figure 1-9: Client Agents and Location Brokers

1a
Register
Object

@

Local
Location
Broker

Server Host

1.7.4 The Local Location Broker

Location
Broker

ZK-0086U-R

The LLB manages information about servers running on the local host. It also acts
as a forwarding agent for remote procedure calls.

The forwarding facility of the LLB eliminates the need for a client to know the
specific port that a server uses and thereby helps to conserve well-known ports. The

Concepts and Terminology 1-17

LLB listens on one well-known port per address family. It forwards any messages
that it receives to the local server that exports the requested object. Forwarding is
particularly useful when the requestor of a service already knows the host where the
server is running. The server can use a dynamically assigned opaque port and
register only with the LLB at its local host, not with GLB. To access the server, a
client needs to specify the object, the interface, and the host, but not a specific port.

Although it is recommended that you run an Ilbd on every host, the daemon is
absolutely required only on hosts that run RPC servers. Guide to the Location
Broker describes Location Broker configuration and the utility.

1.7.5 The Global Location Broker
The GLB manages information about servers running anywhere in the network or
internet. Clients typically issue lookup calls to the GLB when they do not know at
what host a server is running.

Guide to the Location Broker describes how to configure the Global Location Broker.

1.7.6 Designing an Application to Use Global Name Services
Currently, DECrpc uses the Location Broker as its sole name service. However,
when designing an application that may eventually migrate to other environments,
you should accommodate the naming requirements of global name services such as
Digital Distributed Name Service (DECdns), X.500, and Hesiod/bind. Such services
use global names to provide a means of advertising and locating computing resources
in any size network.

Global names reflect a naming scheme that is distinct from the UUID-based naming
scheme of the Location Broker. A global name, like a UUID, is a unique identifier
with universal scope. Unlike a UUID, a global name is an easy-to-read, structured
text string that is meaningful to users in a particular computing environment. For
example, a DECdns global name comprises a series of text strings, read from left to
right, that begin with a dot (such as .ACME_CORP.MANUFCTR.INVENTORY).
Establishing naming conventions for a given computing environment helps users to
specify unique global names.

Being structured enables global names to represent one thing in terms of its
relationship to other things. For instance, in a full DECdns global name, each
successive string is subordinate to the preceding string. The right-most string is a
simple name that identifies a specific resource. For example, the full global name
.ACME_CORP.MANUFCTR.INVENTORY reflects the organization of a
hypothetical company, Acme Corporation; the first string represents the company as a
whole, the middle string represents Acme's manufacturing division, and the final
string is a simple name representing a specific account named INVENTORY on a
system in the manufacturing division.

All name services maintain a database whose individual entries correspond to a
specific resource. Database organization, however, differs between the Location
Broker and global name services. In a Location Broker database, each entry has only
unstructured identifiers (an object UUID, interface UUID, and/or object type). These
unstructured identifiers limit the Location Broker to a flat database, whose entries
reside side-by-side, much like the files of a single-level directory. In contrast, in a
global name-service database, each entry has a global name whose textual and
structural information dictates the relative placement of the entry in the database.

1-18 Concepts and Terminology

When entries have full global names, the entries reside in subgroups, much like files
in subdirectories within a multiple-level directory. This allows resources belonging
to different groups to have the same simple name. For example, the DECdns entries
.ACME_CORP.MANUFCTR.INVENTORYand
.ACME_CORP.RETAIL_DIST.INVENTORY would reside in a directory tree with
the following organization:

ACME

/"" MANUFCTR RETAIL_DIST

/ "" INVENTORY INVENTORY

ZK-0175U-R

The differences in the naming schemes of the Location Broker and global name
services can obstruct the eventual migration of a DECrpc application from the
Location Broker to a global name service. Though global name services can interpret
UUIDs, the exclusive use of UUIDs to identify objects is incompatible with the
structural aspects of global naming schemes. Moreover, the Location Broker can
look up an entry by its object type, but some global name services cannot.
Therefore, when designing a DECrpc application that might eventually use a global
name service, you should constrain the use of Location Broker as follows:

• A void proliferating UUIDs as object IDs. You can isolate UUIDs, for example,
by restricting them to the Ib_$register and Ib_$lookup_object
routines or by creating a table to map UUIDs to object names.

• Avoid defining object types.

Concepts and Terminology 1-19

DECrpc Software 2

DECrpc software includes daemons and utilities, library routines, interface definition
files, and header files. This chapter provides a survey of the software to give you
general background for the programming information in Chapter 4, Writing Interface
Definitions; Chapter 5, Developing Distributed Applications; and Chapter 7, Special
Topics. Table 2-1 lists the DECrpc software.

The ULTRIX Reference Pages include a reference page for each utility, library
routine, or daemon.

Table 2-1: DECrpc Software

Software

nidI
uuid_gen
stcode
Ilbd
nrglbd
Ib admin
. idl files
. h files
Library routines

Description

Network Interface Definition Language compiler
UUID generating program
Status code translator
Local Location Broker Daemon
Global Location Broker Daemon (non-replicatable)
Location Broker administrative tool
Interface definitions
C header files
rpc $,rrpc $, socket $, Ib $,uuid $,
err;-r_$, pf;_$, and pg~$ roUtines -

Note

Although the names for the RPC library routines include a dollar sign
($), you must omit the dollar sign from the name when using the mane 1)
utility to read a reference page.

2.1 Daemons and Utilities
The programs described in this section run as shell commands. The utilities
nidl(1ncs), uuid gen(lncs) and stcode(lncs) help you to develop distributed
applications. The Location Broker daemons, nrgIbd(Sncs) and Ilbd(Sncs),
enable client applications to locate servers on remote hosts. The administrative tool,
Ib_admin(1ncs), helps you to maintain Location Broker databases.

2.1.1 The uuid_gen(1 ncs) Utility
The uuid gen utility generates a UUID. Depending on the options you specify,
uuid gen-produces as output a character string representing a UUID, a C

initialization for the UUID, or a skeletal interface definition file in the C syntax of
NIDL.

2.1.2 The NIDL Compiler

The NIDL Compiler, nidI, compiles interface definitions. It takes as input an
interface definition written in NIDL. It produces as output a server stub, a client
stub, and a client switch (all in the C language), together with header files.

2.1.3 Location Broker Daemons
DECrpc includes daemons that manage the Local Location Broker (LLB) database
and the Global Location Broker (GLB) database.

Any host that runs an RPC server must also run the LLB daemon, llbd. Any
network that supports RPC activity must have at least one host running a GLB
daemon. In an internet, at least one GLB daemon must run in each network.

The Location Broker daemons typically run as background processes. On most
ULTRIX systems, they start at boot time from the file /etc/rc . local.

See Guide to the Location Broker for more information on Location Broker
configuration.

2.1.4 Location Broker Administrative Tool

The lb_admin utility allows you to inspect or modify the contents of a Location
Broker database. It provides lookup, register, unregister, and cleanup operations. It
can perform these operations on any LLB or GLB database.

2.1.5 Status Code Translator

The stcode utility translates hexadecimal status code values produced by programs
to textual messages.

2.2 The rpc_$ Client and Server Library Routines
The rpc $ library routines constitute the interface to the RPC runtime library.
Some of these routines are used only by clients, some only by servers, and some by
either clients or servers.

The next subsections describe each set of routines.

2.2.1 Client Routi nes
Most of the rpc _ $ client routines either create a handle or manage its binding state.

rpc_$alloc_handle

Allocates an RPC handle that identifies a specific object but not a specific
server.

rpc_$set_binding

Sets the binding in an allocated handle so that it specifies a socket address.

2-2 DECrpc Software

rpc_$bind

Allocates an RPC handle and sets its binding. This call has the same effect as
an rpc_$alloc_handle call followed by an rpc_$set_binding call.

rpc_$clear_server_binding

Removes the association of an RPC handle with a server, but retains the
association with a host. If a client uses this handle to make a remote procedure
call, the call is sent either to a well-known port or to the Local Location Broker
forwarding port on the remote host.

rpc_$clear_binding

Removes the association of an RPC handle with a server and a host. This call
saves the handle for reuse in accessing the same object, possibly via a different
server. If a client uses this handle to make a remote procedure call, the call is
broadcast.

rpc_$dup_handle

Returns a copy of an existing RPC handle. A handle is not freed until
rpc _ $ free_handle is called on all copies of the handle.

rpc_$free_handle

Frees an RPC handle. This call removes any association of the handle with an
object and an address and releases the handle.

rpc_$set_async_ack

Sets or clears asynchronous-acknowledgement mode in a client.
Asynchronous-acknowledgement mode allows a client to acknowledge its
receipt of replies from servers asynchronously, for greater efficiency.

rpc_$set_short_timeout

Sets or clears short-timeout mode on a handle. If a client uses a handle in
short-timeout mode to make a remote procedure call, but the server shows no
signs of life, the call fails quickly.

rpc_$sar

Sends a remote procedure call request and awaits a reply from the server. This
call is for use only by client stubs that the NIDL Compiler generates, so there is
no reference description for it.

2.2.2 Server Routines
This section describes the rpc $ server routines, most of which initialize the server
so that it has a socket on which to listen and is registered with the RPC runtime
library on its host.

rpc_$use_family

Creates a socket that the server will use to communicate with clients. You
specify the address family. The runtime library assigns an available port
number for the socket.

rpc_$use_family_wk

Creates a socket that uses a well-known port. You specify both the address
family and the port number.

DECrpc Software 2-3

rpc_$register

Registers an interface with the RPC runtime library. This call is superseded by
rpc_ $register_mgr and rpc_ $register_object. Any server that
contains more than one implementation of a type interface or more than one
version of a manager must use rpc $register mgr rather than
rpc_$register. - -

rpc_$register_mgr

Registers a generic interface with the RPC runtime library. You specify an
interface, a type for which the server exports the interface and the set of
manager procedures that implement the interface for that type. Any server that
contains more than one implementation or more than one version of a manager
must use this call rather than rpc_ $register.

rpc_$register_object

Registers an object with the RPC runtime library. You declare an object for
which the server exports interfaces and declare the type of the object.

rpc_$unregister

onregisters an interface that was previously registered with the server by the
rpc $register mgr or rpc $register routines. The server will not
respond to requests for the unregistered interface.

rpc_$listen

Listens for remote procedure call requests from clients. When a request is
received, call the requested manager procedure for the requested operation and
send the result in a reply to the client.

rpc_$in<L0bject

Returns the OVID of the object represented by an RPC handle. This call
enables manager procedures to determine the specific object that they must
access.

rpc_$shutdown

Shuts down. The server stops processing incoming requests and
rpc_ $listen returns.

rpc_$allow_remote_shutdown

Allows or disallows remote shutdown initiated by rpc_ $shutdown.

rpc_$set fault_mode

Controls handling of faults that occur in server routines. By default, the server
reflects faults back to the client and continues processing. You can use this
routine to set the fault-handling mode so that the server sends a
"communications failure" fault to the client and exits.

2.2.3 Routines for Clients or Servers
The rpc _ $ routines listed in this section can be used by either clients or servers.

rpc_$in<Lbinding

Returns the socket address identified by an RPC handle. Typically, a client
uses this call to identify the specific server that responded to a remote procedure
call.

2-4 DECrpc Software

rpc_$in<L0bject

Returns the UUID of the object represented by an RPC handle.

rpc_$name_to_sockaddr

Given a host name and port number, returns the equivalent socket address.
This call is superseded by socket_$from_name.

rpc_$sockaddr_to_name

Given a socket address, returns the equivalent host name and port number.
This call is superseded by socket_ $to_name.

2.3 The rrpc_$ Client Library Routines
This section describes the r rpc $ routines. These routines enable a client to
request information about a server or to shut down a server.

rrpc_$in<Lstats

Obtains statistics about a server.

rrpc_$in<Linterfaces

Obtains a list of the interfaces that a server exports.

rrpc_$shutdown

Shuts down a server, if the server allows it. See
rpc_$allow_remote_shutdown.

2.4 The socket_$ Library Routines
This section describes the socket $ routines. These routines manipulate socket
addresses. Unlike the calls that operating systems typically provide, the socket_ $
routines operate on addresses of any protocol family.

socket_$equal

Compares two socket addresses.

socket_$to_name

Converts a socket address to a textual host name and port number.

socket_$to_numeric_name

Converts a socket address to a numeric host name and port number.

socket_$from_name

Converts a textual host name and port number to a socket address.

socket_$family_to_name

Converts the integer value of a protocol family to its textual name.

socket_$family_from_name

Converts the textual name of a protocol family to its integer value.

socket_$valid_family

Checks whether an address family is usable.

DECrpc Software 2-5

socket_$valid_families

Lists the address families that are usable.

2.5 The Ib_$ Library Routines
This section describes the lb $ routines. These routines constitute the interface to
the Location Broker Client Agent. The routines direct the Client Agent to look up,
register, or unregister entries in a Location Broker database.

lb_$lookup_object

Finds entries in the GLB database that match the specified object identifier.

lb_$lookup_type

Finds entries in the GLB database that match the specified type identifier.

lb_$lookup_interface

Finds entries in the GLB database that match the specified interface identifier.

lb_$lookup_object_local

Finds entries in the specified LLB database that match the specified object
identifier.

lb_$lookup_range

Finds entries in the specified database (LLB or GLB) that match the specified
combination of object, type, and interface UUIDs.

lb $register

Registers a specific object and interface, that is, creates an entry in the Location
Broker database. You can specify an entry as local or global. If it is local, it
will be registered only in the LLB. If it is global, it will also be registered in
the GLB.

lb_$unregister

Unregisters a specific object and interface, that is, removes an entry from the
Location Broker database.

2.6 The uUid_$ Library Routines
This section describes the uuid $ routines. These routines generate and
manipulate Universal Unique Identifiers.

uuid_$gen

Generates a new UUID.

uuid_$decode

Converts a character-string representation of a UUID (as generated by the
uuid_gen utility) into a uuid_ $t value that is usable by a program.

uuid_$encode

Converts a UUID into its character-string representation.

uuid_$equal

Compares two UUIDs.

2-6 DECrpc Software

2.7 The error_$ Library Routines
Most of the runtime library routines indicate their completion status with status
codes. The error $ routines, which are listed in this section, convert these status
codes into textual error messages.

error_$c_get_text

Returns system, module, and error texts for a status code.

error_$c_text

Returns an error message for a status code.

2.8 The pfm_$ Library Routines
The pfm fault management routines, which are described in this section, allow
programs to manage signals, faults, and exceptions by establishing cleanup handlers.

pfm_$cleanup

Establishes a cleanup handler.

pfm_$enable

Enables asynchronous faults after they have been inhibited by a call to
pfm_ $inhibi t.

pfm_$enable_faults

Enables asynchronous faults after they have been inhibited by a call to
pfm_$inhibit_faults.

pfm_$inhibit

Inhibits asynchronous faults.

pfm_$inhibit_faults

Inhibits asynchronous faults but allows task switching.

pfm_$init

Initializes the PPM package.

pfm_$reset_cleanup

Resets a cleanup handler.

pfm_$rls_cleanup

Releases cleanup handlers.

pfm_$signal

Signals the calling process.

2.9 The pgm_$ Library Routine
The pgm _ $ ex i t program management routine listed in this section is often used at
the end of a cleanup handler to terminate a program.

pgm_$exit

Exits from the calling program.

DECrpc Software 2-7

2.10 The System idl Directory
The system idl directory, /usr/include/idl, contains several interface
definition files distributed with DECrpc.

2.10.1 Interface Definition Files for Types and Constants
The following files in the system idl directory define only data types and constants,
not operations:

base.idl

Defines some basic types and constants.

nbase.idl

Defines types and constants used in network interfaces.

ncastat.idl

Defines the completion status codes specified by the RPC runtime library.

Several of the interface definitions described in the following sections import one or
more of these files.

2.10.2 Interface Definition Files for Local Interfaces

The following files in the system idl directory define local interfaces:

Ib.idl

Defines the interface to the Location Broker Client Agent.

rpc.idl

Defines the interface to the RPC runtime library. The NIDL Compiler
automatically imports rpc. idl when it compiles the definition for any
remote interface.

socket.idl

Defines types, constants, and operations pertaining to socket addresses and
protocol families.

uuid.idl

Defines types, constants, and operations pertaining to UUIDs

The operations in these interfaces cannot be called remotely. The NIDL defines the
interfaces so that header files can be generated from a common source. The NIDL
files, rather than the generated header files, serve as readable descriptions of the
interfaces.

2.10.3 Interface Definition Files for Remote Interfaces
The following files in the system idl directory define remote interfaces:

conv.idl

Defines operations that manage client-server conversations.

glb.idl

Defines the interface to the Global Location Broker.

2-8 DECrpc Software

llb.idl

Defines the interface to the Local Location Broker.

rrpc.idl

Defines operations that a client can use to request information about a server or
to shut down a server.

You should not ordinarily need to call any of the operations in the conv , glb ,
and lIb _ interfaces, because you can access most of their functionality through the
lb_ and rpc_ interfaces.

The rrpc _ interface is automatically exported by every RPC server. Its operations
are implemented by the runtime support for the server and are not part of the server
proper.

2.11 Header Files and I nsert Files
For each of the interface definition files described in the previous section, DECrpc
provides corresponding header files in C. DECrpc also provides two header files that
are hand coded, not generated from an interface definition.

The C header files reside in the c subdirectory of the system idl directory,
/usr/include/idl. Many C compilers support options that allow you to
specify this directory as a place where the compiler should look for header files.

idl base.h

This file defines primitives that are present in NIDL but lacking in C, such as
the boolean type. The idl base. h file also contains declarations or
definitions for data types, external functions, and macros used by stubs.

pfm.h

This file defines a portable interface to the Process Fault Manager subsystem.

DECrpc Software 2-9

Steps in Building a Distributed Application 3

To build a distributed application, you combine code that the NIDL Compiler
generates with code that you write. This chapter describes the binop application to
introduce the steps in building a distributed application. Section 3.1 uses binop to
illustrate NIDL interface definitions, and Section 3.2 describes the user-written files
for the application. Many details, however, are unexplained in this section. Chapters
4, 5, 6, and 7 describe interface definition and application development more
thoroughly.

See also Section 3.3, which describes binop _1 u, an application that uses the
Location Broker.

3.1 A Distributed Application: the binop Interface Definition
This section describes binop, an application that performs integer additions on a
remote server. The /usr/exarnp1es/ncs/binop directory contains the source
code files for binop.

The binop application uses explicit handles and manual binding. The
binop. id1 file, shown in Example 3-1, defines the binop interface. Section 3.2
describes the binop client and server programs.

Chapter 4 describes how to generate the UUID and the skeletel interface definition
file with uuid_gen.

Example 3-1: The binop.idl Interface Definition

%c I1J
[uuid(41979f30aOOO.Od.OO.OO.fb.40.00.00.00), ~

port (ip: [6677]) ,version (1)]
interface binop
{

[idempotent] ~
void binop$add(~

handle_t [in] h,
long [in] a,
long [in] b,
long [out] *c
) ;

I1J The first line of the interface definition states that the definition uses the C
syntax of NIDL.

~ The next three lines specify the UUID, well-known ports, version, and name of
the interface.

131 This operation has the idempotent attribute, which specifies that the operation
can safely be executed more than once and allows the RPC runtime library to
employ more efficient calling semantics.

@ The remainder of the definition defines the signature of binop$add, the one
operation in the interface. The first parameter is an RPC handle. The next two
are inputs. The last parameter is an output.

Since the binop example imports no other interface definitions, defines no
constants, and uses only predefined data types, it does not illustrate the NIDL import,
constant, and type declarations. Examples in Chapter 5 and 6 illustrate these
constructs.

To keep the client and server for binop very simple, the interface definition
specifies well-known ports. However, as Chapter 1 recommends, you should avoid
well-known ports in real applications and use opaque ports instead. Section 3.3
describes the b i nop _1 u example, which uses opaque ports by means of Location
Broker lookups. Chapters 4 and 5 develop the binop_fw example, which uses
opaque ports by means of Location Broker forwarding.

To compile an interface definition, run the NIDL Compiler in the examples directory
as shown for binop in this example:

$ nidI binop.idl -m

The -m option allows a server to export more than one version of an interface and
to implement an interface for more than one type. The compiler appends the version
number to the interface name when it generates identifiers in the stub and header
files. For example, the interface specifier for version 2 of the binop interface
would be binop_v3$if_spec.

Figure 3-1 shows the input and output files involved in the compilation of
binop. idle If you build the binop programs in the example directories, as
described in the next section, you can examine the stub, switch, and header files that
the NIDL Compiler produces'~ (The switch file (binop cswtch. c) is generated
but is not used.) -

Figure 3-1: Input and Output Files in the binop.idl Compilation

NIDL
Interface Definition
binop_wk.idl

Header File
binop_wk.h

Client Files
binop wk cstub.c
binop=wk7cswitch.c

Server File
binop_wk_sstub.c

ZK-0085U-R

The header file binop. h declares the binop$add procedure, initializes the
binop vI$if spec interface specifier, and defines the binop vI$epv t data
type. Italso contains directives to include the standard DECrpc header files that
define basic data types and declare RPC runtime library routines.

3-2 Steps in Building a Distributed Application

An if_spec is a data structure that clients and servers pass to the RPC runtime
library when they bind or register an interface. An epv _tis the data type for an
entry point vector (EPV), a record of pointers to the operations in an interface. If
you run the NIDL Compiler with the -rn option, which allows multiple versions of
an interface, the NIDL Compiler appends the version number, for example, _ vl, to
the interface name when it generates EPV identifiers.

The binop cst ub. c and binop cswtch. c modules together implement the
client stub. They contain a procedure named binop$add. This procedure
marshalls its two input arguments, a and b, into an RPC packet and calls
rp c _ $ s ar to send a remote procedure call. When rpc _ $ s ar returns, the result is
unmarshalled from the returned packet into the output argument, c.

The module binop sstub. c is the server stub. It unmarshalls a and b from the
packets sent by clientS, then passes those values to the manager procedure
binop$add. It marshalls the result, c, into an RPC packet and returns control to
the RPC runtime library, which sends the packet back to the waiting client.

As Figure 3-1 shows, the NIDL Compiler generates two client files for an interface:
a stub file, interface cstub. c, and a switch file, interface cswtch. c. The client
switch contains "public" procedures (such as binop$add), while the client stub
contains only' 'private" procedures whose names are not visible outside of the
cst ub . c file. The client stub defines an EPV containing function pointers to the

private procedures, and the client switch invokes these procedures through the EPV
(for example, by calling binop_vl$client_epv.binop$add).

To build a client, you link both the client switch and the client stub with the client.
The client calls the procedures by their ordinary public names, as specified in the
NIDL definition. These procedures are contained in the client switch, which then
calls the client stub procedures through the client EPV.

3.2 A Distributed Application: the binop User-Written Files
Section 3.1 described the compiler-generated files for the binop example. This
section describes the user-written files:

client.c

server.c

The main client module

The main server module

binop . c The manager

The client. c and server. c examples shown in this chapter omit some
conditional and diagnostic code, the utility module utile c, and the compiler
generated header, stub, and switch files. The binop example directory contains
complete source code for binop.

3.2.1 The CI ient
The binop application uses well-known ports, explicit handles, and manual
binding. The client code generates and binds an RPC handle that it passes as the first
argument in its remote procedure calls.

Example 3-2 shows the client module, client. c.

Steps in Building a Distributed Application 3-3

Example 3-2: The client.c Module for binop

#include <sys/time.h>
#include <stdio.h>
#include "binop.h"
#include "socket.h"
#define CALLS_PER_PASS 100

globalref uuid_$t uuid_$nil;

main (argc, argv)
int argc;
char *argv[];
{

handle_t h;
status_$t st;
socket_$addr_t lOCi
unsigned long lIen;
long i, n:
int k, passes;
int start_time, stop_time;

if (argc != 3) {
fprintf(stderr, "usage: client hostname passes\n"): ~
exit(l);

passes = atoi(argv[2]);

socket $from name (socket $unspec, (ndr Schar *) argv[l], ~
(long) strlen(argv[l]) , (long) rpc=$unbound-port,
&loc, &llen, &st):

h = rpc_$bind(&uuid_$nil, &loc, lIen, &st): ~
for (k = 1: k <= passes; k++) {

start_time = time(NULL);
for (i = 1: i <= CALLS PER PASS; i++) {

binop$add(h, i, i,-&n)7~
if (n != i+i)

printf("Two times %ld is NOT %ld\n", i, n);

stop_time = time(NULL):
printf("pass %3d: real/call: %2d ms\n",

k, «stop_time - start_time) * 1000) / CALLS_PER_PASS);

~ This example program takes two arguments: the network address of a host
where a server is running and the number of passes to execute.

l2] To convert the network address of the server host to a socket address, the client
calls socket $from name, part of the socket address manipulation
interface in the -RPC rUlrtime library. Because the port parameter for
socket_$from_name is the predefined constant rpc_$unboundyort,
the resulting socket address specifies a host, but not a particular port at that
host.

[3] The client then supplies this socket address to the rpc _ $bind library call,
which creates an RPC handle and binds this handle to the socket address.
Because the socket address does not specify a port, the rpc $bind call
generates a bound-to-host handle. The first argument to rpc $bind, the
object identifier, is uuid_ $nil, because binop does not operate on any
particular object.

3-4 Steps in Building a Distributed Application

~ When the client issues its first call to binop$add, the RPC runtime library at
the client host extracts the well-known port number for the server from the
binop_vl$if_spec interface specifier, so that the handle is fully bound
when the runtime library sends the request. The handle remains fully bound
for all subsequent calls.

3.2.2 The Server

Example 3-3 shows the server module, server. c.

Example 3-3: The server.c Module for binop

#include <stdio.h>
#include "binop.h"
#include "socket.h"

globalref uuid $t uuid $nil;
globalref binop_v1$epv=t binop_v1$manager_epv;

main (argc, argv)
int argc;
char *argv[];
{

status_$t st;
socket_$addr_t loc;
unsigned long llen;
unsigned long family;
socket $string t name;
unsigned long namelen sizeof(name);
unsigned long port;

if (argc != 2) {
fprintf(stderr, "usage: server family\n"); ffi
exit(1);

family = socket_$family_from_name«ndr_$char *) argv[1], ~
(long) strlen(argv[1]), &st);

rpc_$use_family_wk(family, &binop_v1$if_spec, ~
&loc, &llen, &st);

rpc_$register_mgrb ~
&uuid_$nil, ~
&binop_v1$if_spec,
binop_v1$server_epv,
(rpc_$mgr_epv_t) &binop_v1$manager_epv,
&st) ;

socket_$to_name(&loc, llen, name, &namelen, &port, &st); ~
name [namelen] = 0;
printf("Registered: name='%s', port=%ld\n", name, port);

rpc_$listen«long) 1, &st); ~

ff] This program takes one argument, the name of an address family.

~ The call to socket $family from name converts the address family
name into the integer representatiOn of the family, returned as family.

Steps in Building a Distributed Application 3-5

131 The server then supplies family and the binop interface specifier to
rpc $use family wk, which creates a socket for the server at its well
known port.-The 10 c variable stores this socket address.

~ In order to com~unicate with clients, a server registers itself with the RPC
runtime library at its host. The binop server calls rpc $register mgr
to tell the runtime library that it exports the binop vI interface. -

151 The first argument to rpc_ $register_mgr, the type identifier, is
uuid_ $nil, because binop does not operate on an object. If a server
operates on objects of several types, as in Figure 1-7, it registers its managers
by calling rpc_$register_mgr once for each type, and it must register its
objects by calling rpc_$register_object once for each object.

161 After registering with the RPC runtime library, the binop server calls
socket_$to_name to extract a textual network address and a port number
from its socket address, and it uses this information to print an announcement
of its registration.

1ZI Finally, it invokes rpc_ $listen to begin handling remote procedure calls.
The first argument to rpc_ $listen must be 1.

3.2.3 The Manager

The manager module bin op . c is shown in Example 3-4. This code is linked with
the server module.

Example 3-4: The binop.c Manager Module

'include "binop.h"

globaldef binop_vl$epv_t binop_vl$manager_epv BD
binop$add

} ;

void binop$add(h, a, b, c) ~
handle_t hi
long a, b, *Ci
{

*c = a + bi

BD The module first defines the manager EPV binop _vI $manager _ epv.

121 The next lines contain the actual implementation of the binop$add
procedure.

3.2.4 Building and Running the binop Programs
The binop client program is the result of compiling these programs:

• client. c

• utile c

• binop_cstub.c

• binop_cswtch.c

3-6 Steps in Building a Distributed Application

The server program is the result of compiling these programs:

• server. c

• util.c

• binop. c

• binop_sstub.c

All of these modules contain a #include directive to incorporate the definitions in
binop. h.

To create the binop programs on your system, execute the Makefile file in the
example directory. The file runs the NIDL Compiler to generate stub, switch, and
header files, and then runs a C Compiler to build the client and server programs.

To run binop, first start the server, specifying the ip address family:

$ server ip
Registered: name'ip:elektra', port=6677

After the server has registered itself, run the client, specifying the network address of
the server host (in this example, elektra) and the number of passes to execute:

$ client ip:elektra 4
pass 1; real/call: 20 ms
pass 2; real/call: 20 ms
pass 3; real/call: 10 ms
pass 4; real/call: 10 ms

3.3 Using Location Broker Lookups: the binop_lu Example
Sections 3.1 and 3.2 described binop, an application that uses well-known ports to
coordinate communication between client and server. The examples in this section
show a modified version of bin op that uses opaque ports by means of Location
Broker lookups. The modified example is called binop_lu. As in the binop
example, the code shown omits some conditional and diagnostic code.

See also Chapter 1, which describes issues to consider if you are designing an
application that in the future may use a name service other than the Location Broker.

3.3.1 The Interface Definition
The interface definition for binop 1 u (Example 3-5) differs from the definition for
binop (Example 3-1) in the interface UUID, the interface and operation names, and
the absence of well-known ports.

Example 3-5: The binop_luJdl Interface Definition

%c
[uuid(41979f38dOOO.Od.00.OO.fb.40.00.00.00), version(l)]
interface binop_lu
{

[idempotent]
void binop_lu$add(

handle_t [in] h,
long [in] a,

Steps in Building a Distributed Application 3-7

Example 3-5: (continued)
long [in] b,
long [out] *c
) ;

3.3.2 The Client
Example 3-6 contains the code for the binop _1 u client.

Example 3-6: The client.c Module for binop_lu

#include <sys/time.h>
#include <stdio.h>
#include "binop_lu.h"
#include "lb.h"
#include "socket.h"
#define CALLS_PER_PASS 100

globalref uuid_$t uuid_$nil;

main (argc, argv)
int argc;
char *argv[];
{

handle_t h;
status_$t st;
lb $entry t entry;
lb=$lookup_handle_t ehandle
unsigned long nresults;
socket_$addr_t lOCi
unsigned long llen;
long i, n;
int k, passes
int start time, stop time;
if (argc != 2) { -

fprintf(stderr, "usage: client passes\n"); ffi
exit(l);

passes = atoi(argv[l]);

lb_$lookup_interface(&binop_lu_vl$if_spec.id, &ehandle, 1, ~
&nresults, &entry, &st);

h = rpc_$bind(&uuid_$nil, &entry.saddr, entry.saddr_len, &st); ~

for (k = 1; k <= passes; k++) {
start_time = time(NULL);
for (i = 1; i <= CALLS_PER_PASS; i++) {

binop_lu$add(h, i, i, &n);
if (n != i+i)

printf("Two times %ld is NOT %ld\n", i, n);

stop_time = time(NULL);
printf("pass %3d; real/call: %2d ms\n",

k, ((stop_time - start_time) * 1000) / CALLS_PER_PASS);

ill The binop _1 u client program takes only one argument, the number of passes
to execute. Unlike the binop client, which converts a host name to a socket

3-8 Steps in Building a Distributed Application

address, the binop lu client looks up a server address in the Location
Broker database. There is no need for the user to specify a host name.

12I The lb_$lookup_interface call takes the place of the
socket_ $ from_name call in the binop client (Example 3-2). This lookup
call returns a Global Location Broker database entry that matches the
binop_lu interface UUID. The returned entry contains, in its saddr field,
the socket address of the server.

131 Addresses in Location Broker entries always specify a port number, so the
handle returned by rpc _ $bind in this example is fully bound.

3.3.3 The Server

The binop_lu server (Example 3-7) differs from the binop server (Example 3-3)
in two important ways:

• The binop lu server calls rpc $use family rather than
rpc $use family wk to obtain the socket on which it listens. This call
requests the RPC runtime library to dynamically assign an available port.

• The server calls lb $register to register its interface and its socket address
with the Global Location Broker.

Example 3-7: The server.c Module for binop_lu

#include <stdio.h>
#include "binop_lu.h"
#include "lb.h"
#include "socket.h"

globalref uuid_$t uuid_$nil;
globalref binop_lu_vl$epv_t binop_lu_vl$manager_epv;

main (argc, argv)
int argc;
char *argv[];
{

status_$t sti
socket_$addr_t lOCi
unsigned long lien;
unsigned long family;
socket_$string_t name;
unsigned long namelen sizeof(name);
unsigned long port;
lb_$entry_t entry;

if (argc != 2) {
fprintf(stderr, "usage: server family\n");
exit(l);

family = socket_$family_from_name«ndr_$char *) argv[l],
(long) strlen(argv[l]), &st);

rpc_$use_family(family, &loc, &llen, &st)i BD

rpc_$register_mgr(
&uuid_$nil,
&binop_lu_vl$if_spec,
binop_lu_vl$server_epv,

Steps in Building a Distributed Application 3-9

Example 3-7: (continued)
(rpc_$mgr_epv_t) &binop_lu_vl$manager_epv,
&st);

lb_$register(&uuid_$nil, &uuid_$nil, &binop_lu_vl$if_spec.id, 0, ~
(ndr_$char *) "binop_lu example", &loc, llen, &entry, &st);

socket_$to_name(&loc, llen, name, &namelen, &port, &st);
name [namelen] = 0;
printf("Registered: name'%s', port=%ld\n", name, port);

rpc_$listen((long) I, &st);

[1] The call to rpc $use family requests the RPC runtime library to
dynamically assign an available port.

~ The call to Ib $register registers the interface and its socket address with
the Global Location Broker. The first two arguments to Ib $register, the
object and type identifiers, are both uuid_ $nil, because -binop does not
operate on an object. The server supplies the text string "binop_lu example"
as an annotation for its Location Broker database entry.

3.3.4 The Manager

Except for name changes, the binop_lu manager (Example 3-8) is the same as its
counterpart in binop (Example 3-4).

Example 3-8: The binop_lu.c Manager Module

#include "binop_lu.h"

globaldef binop_lu_vl$epv_t binop_lu_vl$manager_epv
binop_lu$add

} ;

void binop_lu$add(h, a, b, c)
handle_t h;
long a, b, *c;
{

*c = a + b;

3.3.5 Building and Running the binop_lu Programs

You must set up Location Broker services on your network or internet before you can
run the binop 1 u client and server. A Global Location Broker should be running
on at least one hOst in the network or internet where you intend to run a client or
server. A Local Location Broker should be running on each host where you intend to
run a server. Guide to the Location Broker contains guidelines for configuring the
Location Broker and procedures for starting Location Broker daemons.

After you set up the Location Broker services and build the binop _1 u application,
start the binop_lu server, specifying the address family as ip as shown in this
example:

$ server ip
Registered: name'ip:elektra', port=1330

3-10 Steps in Building a Distributed Application

Your port number may differ from this one, because binop_lu uses dynamically
assigned opaque ports.

After the server has registered itself, run the client, specifying the number of passes
to execute as shown in this example:

$ client 4
pass 1; real/call: 20 ms
pass 2; real/call: 20 ms
pass 3; real/call: 10 ms
pass 4; real/call: 10 ms

Steps in Building a Distributed Application 3-11

Writing Interface Definitions 4

The first step in developing a distributed application is to define its interface or
interfaces in Network Interface Definition Language (NIDL). A NIDL interface
definition contains:

• A heading

• Import declarations

• Constant declarations

• Type declarations

• Operation declarations

The NIDL Compiler uses the information in an interface definition to generate header
files and client and server stubs.

This chapter explains how to:

• Generate an interface Universal Unique Identifier (UUID) and a skeleton
interface file

• Write an interface definition in NIDL

• Run the NIDL Compiler to produce the server and client stub files

This chapter shows the development of an interface definition for bin op _ f w, an
application that uses the Location Broker forwarding facility to perform integer
additions on a remote server. Chapter 5 describes how to develop and build the
binop_fw client and server programs.

This chapter introduces NIDL through examples rather than syntax descriptions. For
details of NIDL syntax, see Chapter 6.

4.1 Generating Interface UUIDs
Each object, type, and interface must have a UUID. You must generate a new UUID
each time you create an object, type, or interface. You can create a UUID with the
uuid _gen utility or in your application program with the uuid _ $gen routine.

To generate a skeletal interface definition file in the C syntax, run uuid _gen with
the - c option as shown in this example. The command generates the interface
definition file and places the output in the file binop_fw. idl.:

$ /etc/ncs/uuid_gen -c > binop_fw.idl

Example 4-1 shows the interface file generated by uuid_gen.

Example 4-1: Interface File Generated by uuid_gen

%c []
[

uuid(41979f400000.0d.OO.OO.fb.40.00.00.00), ~
version(l)
]
interface INTERFACENAME { ~

[] The first line of the skeletal definition is the syntax identifier, which is %c in
this example, for the C language.

f2] The next part of the definition is the heading, which specifies a name, a UUIO,
and a version number for the interface.

~ The last part of the definition is an empty pair of braces between which go
import, constant, type, and operation declarations. This chapter describes the
syntax for the declarations.

By convention, the names of interface definition files end with the suffix . idl. To
generate names for header, stub, and switch files, the NIDL Compiler replaces the
suffixwith .h, _cstub.c, _cswtch.c, and sstub.c.

4.2 The Heading
The heading of an interface definition specifies the name and attributes of the
interface.

4.2.1 Interface Names

After you have used uuid gen to generate a skeletal interface definition, replace
the dummy string "INTERFACENAME" with the name of your interface.

One naming convention uses interface names that end with an underscore, such as
rpc_ and socket_. Operation names begin with a dollar sign ($), so that
operations in interfaces have names such as rpc $listen and
socket $equal. Applications have interface names such as bank and binop
and operation names such as bank$deposi t and binop$add.

4.2.2 Interface Attributes
There are five interface attributes. Any interface that contains operations must
specifiy at least the uuid attribute or the local attribute.

uuid The Universal Unique Identifier assigned to the interface by uuid_gen.
No other object, type, or interface can be assigned this UUID.

ve r s i on The version number of the interface. If you want several versions of an
interface to coexist, you can distinguish them with version numbers.

port The well-known port or ports on which servers exporting this interface
will listen. In most cases, you should not use the port attribute;
instead, you should allow the RPC runtime library to assign ports
dynamically. See Chapter 1 for a discussion of well-known ports.

4-2 Writing Interface Definitions

implicit handle
The global variable containing handle information. If you do not specify
this attribute, the handle must be passed as an explicit parameter to each
operation.

local A flag indicating that the NIDL Compiler should generate only header
files (. h), not stubs. The interface definition should contain declarations
only for constants and types, not for operations. If you specify the
local attribute, the NIDL Compiler ignores any other interface
attributes.

4.2.3 Examples of Interface Headings

The heading for the binop _fw interface definition specifies only an interface
UUID, a version number, and the interface name:

[uuid(41979f400000.0d.OO.OO.fb.40.00.00.00), version(l)]
interface binop_fw

The heading for the binop application (see Chapter 3) specifies well-known ports
for the IP address family:

[uuid(41979f30aOOO.Od.OO.OO.fb.40.00.00.00),
port (ip: [6677]), version(l)]

interface binop

4.3 Import Declarations
The NIDL import declaration is similar to the C #include directive. An
import declaration specifies another interface definition whose types and constants
are used by the importing interface.

The import declaration allows you to collect the declarations for types and
constants that are used by several interfaces into one common file. For example, if
you are defining two database interfaces named lookup and update, and these
interfaces have many constants in common, you can declare those constants in a
db. idl file and import this file in the lookup. idl and update. idl interface
definitions:

[

uuid(41979f400000.0d.OO.OO.fb.40.00.00.00),
version(l)
]
interface lookup

import 'db.idl';
}

Interface definitions can also use the import declaration to import one or more of
the files supplied in the system idl directory, /usr/include/idl. (You
should never need to explicitly import rpc. idl, the interface definition for the
RPC runtime library, since the NIDL Compiler automatically imports rpc. idl
when it compiles any interface without the local interface attribute.)

The - i di r option of the NIDL Compiler allows you to specify a directory from
which the Compiler will resolve the pathnames of imported files. You can thereby
avoid putting absolute pathnames in your interface definitions.

Writing Interface Definitions 4-3

Chapter 2 describes files in lusr/include/idl.

4.4 Constant Declarations
The NIDL canst declaration allows you to declare integer, character, or character
string constants, as in the following examples:

[
uuid(4l979f400000.0d.00.00.fb.40.00.00.00),
version(l)
]
interface music {

import 'music.idl';
const int array_size 100;
const char jsb "Johann Sebastian Bach";
}

4.5 Type Declarations
NIDL provides a variety of data types, including simple types (such as integers,
floating-point numbers, characters, and enumerations), constructed types (such as
sets, strings, structures, unions, arrays, and pointers), and the handle t type. The
NIDL type declaration lets you give a name to any of these types. -

The general form of a type declaration is

typedef [type_attribute_list] type_specifier type_declarator_list;

The type _ declarator _list is optional.

This type declaration defines integer32 as a name for a 32-bit integer type:

typedef long integer32;

4.5.1 The Type Attributes handle and transmit_as

The type attributes handle and transmit_as specify characteristics ofa named
type.

The handle attribute specifies that a type can serve as a generic handle. You
supply an autobinding routine to convert the generic handle type to the RPC handle
type.

The t ran smi t _as attribute associates a transmitted type that stubs pass over the
network with a presented type that clients and servers manipulate. You supply
routines that perform conversions between the presented and transmitted types.

One use of the transmit_as attribute is to help applications pass complex data
types such as trees, linked lists, and records that contain pointers. The NIDL
Compiler cannot generate code to marshall and unmarshall (copy data into and out of
RPC packets) these data types, but the transmit_as attribute allows you to
supply routines that convert the complex types into simpler types that can be
marshalled and unmarshalled.

You can also use this feature to pass data more efficiently. For example, you might
write routines that convert between sparse arrays and packed arrays; stubs transmit
packed arrays over the network, and they present sparse arrays to the client and
server programs. Chapter 7 illustrates this technique.

4-4 Writing Interface Definitions

4.5.2 The Field Attributes last_is and max_is

The field attributes last_is and max_is can apply either to members of
structures or to parameters of operations. These attributes let you pass open arrays
between clients and servers. An open array is an array whose length is determined at
runtime, when an operation that uses it is called. The last is and max is
attributes control the amount of data transmitted between the client and server and the
amount of storage allocated at the server.

The type declaration for a structure containing an open array must specify last is
and can also specify max_is. Chapter 7 includes a description of the last_i-;
and max _is attributes and presents an example.

4.5.3 Examples of Type Declarations

The following example declares the type sockhandle t as the textual
representation of a socket address and specifies that this tYPe is to be used as a
generic handle:

typedef [handle] socket_$string_t sockhandle_t;

The interface definition for an example called sparse declares the type
compress_t as a structure containing an open array, then declares two array types,
compress_array and no_compress_array:

1* a run-length-encoded representation of an array *1
typedef struct {

int last;
int [last_is(last)] data[CARRAY_SIZE];

} compress_t;

1* this type will be transmitted as a more compact type *1
typedef [transmit_as(compress_t)] int compress_array[ARRAY_SIZE];

1* this type will be transmitted as is */
typedef int nocompress_array[ARRAY_SIZE];

For more examples of type declarations, you can look at the files in
/usr / incl ude/ idl, which contains interface definitions of structures used at run
time, and in its c subdirectory, for C compiler include file formats. You can find
representations of structures in these files so you will know the form if you want to
extract information from a structure.

4.6 Operation Declarations
Operation declarations specify the signature of each operation in the interface,
including the operation name, the type of data returned (if any), and the types of all
parameters passed in the call. They also specify various field, parameter, and
operation attributes.

The general form of an operation declaration is:

[operation _attribute_list] type _specifier operation_declarator (parameter_list)

The operation_attribute_list is optional. Each entry in the parameter _list specifies
the type, attributes, and the name of a parameter.

This interface for asp a r s e operation contains the following declaration for the
operation sparse$compress_sum:

[idempotent]
int sparse$compress_sum(

Writing Interface Definitions 4-5

handle_t [in] h,
compress_array [in] array
) ;

4.6.1 Operation Attributes
The operation attributes describe characteristics of an operation that affect
communication between server and client. You can specify any of the following
operation attributes:

• idempotent

• broadcast

• maybe

• comm_status

The idempotent attribute specifies that an operation can be executed any number
of times, not just once. This attribute allows the RPC runtime library to forego
enforcement of the default "at most once" semantics. You should specify
idempotent for any operation that can safely be executed more than once. The
binopfw$add operation is idempotent.

The broadcast attribute specifies that an operation should always be broadcast to
all hosts on the local network, rather than delivered to a specific host. The RPC
runtime library automatically applies idempotent semantics to any operation with the
broadcast attribute. We discourage use of this attribute; see the discussion in
Chapter 5.

The maybe attribute specifies that there is no need for confirmation that an
operation has been executed. You can apply this attribute only if an operation has no
output parameters and returns no value.

The c omm _ s tat u s attribute specifies that an operation returns a completion status.
If a communications error occurs while the operation is executing, a cleanup handler
in the client stub will catch the error and return the error code to the client.

4.6.2 Parameters
If an interface uses explicit handles, you must supply a handle as the first parameter
in each operation declaration, as in the following example:

void exp$op(
handle_t [in] h,
int [in] a,
int [in] b,
int [out] c
) ;

If an interface uses an implicit handle, you must specify the handle variable in an
implicit_handle attribute of the interface, and the operations in the interface do
not require handle parameters:

[uuid(338b5f985000.0d.OO.OO.37.27.00.00.00),
implicit_handle(handle_t array_handle)]

void imp$op(
int [in] a,
int [in] b,

4-6 Writing Interface Definitions

int [out] c
) ;

The in and out keywords in the preceding examples are parameter attributes.
Section 4.2.2 describes the attributes you can apply to parameters.

4.6.3 Pointers as Parameters
NIDL pointers are really references: they must point to something and cannot be null.

In the C syntax of NIDL, specify a pointer by preceding the parameter name with an
asterisk (*). This construct is used primarily for output parameters, which, as in C,
must be passed by reference. You can also use pointers to denote input parameters
passed by reference.

The NIDL Compiler generates code that can marshall and unmarshall pointers only at
top level and not within any constructed types. Chapter 7 describes the data type
conversion mechanism that allows you to overcome this restriction.

4.6.4 Arrays as Parameters

In the C syntax of NIDL, specify an array by placing the array length in brackets
after the parameter name. Array subscripts start at o. Arrays are always passed by
reference, so an output array does not require a preceding asterisk. The following
example specifies an array of 13 integers, indexed from 0 to 12, named outputs:

long [out] outputs [13]

NIDL also supports multidimensional arrays and open arrays. Chapter 6 explains
array syntax in more detail.

4.6.5 Parameter Attributes
Characteristics of an operation parameter are specified by parameter attributes.

in The parameter is an input. It passes from client to server.

au t The parameter is an output. It passes from server to client. In the C syntax
of NIDL, an output parameter must be a pointer marked by the * operator.

carom status
An operation returns a completion status. If a communications error occurs
while the operation is executing, a cleanup handler in the client stub will
catch the error and return the error code to the client.

4.6.6 The Field Attributes last_is and max_is
If you pass an open array (an array of variable length) as an operation parameter, you
should use the 1 a s tis and max is attributes to control how many elements are
transmitted between the client and server and how much storage is allocated at the
server. In operation declarations, field attributes appear together with parameter
attributes, preceding the parameter.

Chapter 6 includes descriptions of these attributes. Chapter 7 discusses the attributes
in more detail and provides an example.

Writing Interface Definitions 4-7

4.6.7 Examples of Operation Declarations

The binop_fw interface definition declares one operation, binop_fw$add:

[idempotent]
void binop_fw$add(

handle_t [in] h,
long [in] a,
long [in] b,
long [out] *c
) ;

The next example shows one operation from among several in the bank interface
definition. This operation declares the UUID as the RPC handle.

[uuid(35c2c6a2S000.0d.OO.OO.c3.66.00.00.00), version(l)]
interface bank{

import 'nbase.idl';

type int bank$acct_t [32]

void bank$in~acct(
uuid_$t [in]
bank$acct_t [in]
int [out]
int [out]
int [out]
) ;

h,
acct,
balance,
trans_time,
create_time,

The interface definition for a primes procedure, declares a primes$gen
operation:

[idempotent]
void primes$gen(

handle_t [in] h,
int [in, out] *last,
int [in] max,
status_$t [comm_status, out] *st,
int [in, out, last_is (last), max_is(max)]

values []
) ;

4.7 The binop_fw Interface Definition
Example 4-2 shows the complete definition for the binop_fw interface.

Example 4·2: The binop_fw Interface Definition

%c
[uuid(4448ee491000.0d.OO.OO.fe.da.OO.OO.OO), version(l)]

interface binopfw
{

[idempotent]
void binopfw$add(

handle_t [in] h,

4-8 Writing Interface Definitions

Example 4-2: (continued)
long [in] a,
long [in] b,
long [out] *c
) ;

4.8 Running the NIDL Compiler
After you have written the interface definition, run the NIDL Compiler to generate
stub and header files. The syntax for the command is shown in this example:

nidl filename l -m I -s] [other options]

The filename argument is the pathname of the interface definition file.

You should specify either the -m option or the - s option. These options determine
how stubs generated by the Compiler will dispatch remote procedure calls. If you
specify -m, the stubs will support multiple versions, multiple interfaces, or both
within a single server, enabling you to build a server that exports more than one
version of an interface. If you specify -s, the stubs will support only one version of
an interface.

This command for the binop _ fw application uses the -m option, which allows
you to write mUltiple versions of the interface:

$ nid1 binop_fw.id1 -m

The examples directory contains a Makefile file that invokes the NIDL Compiler
as follows:

nidi binop.idl -s -idir idl.d -no_cpp -idir /usr/include/idl

The - i di r option specifies a directory from which the compiler should resolve
pathnames of imported files. The -no cpp option specifies that the interface
definition should not be run through a C preprocessor before it is compiled.

On ULTRIX systems, the compilation of binop_fw. idl generates files named
binop fw. h, binop fw cstub. c, binop fw cswtch. c, and
binop == fw _ sst ub . c.-These files are used to build the binop _ fw client and
server programs.

Writing Interface Definitions 4-9

Developing Distributed Applications 5

After you have written interface definitions for a distributed application, you write a
client program, write a server program, and build the application. This chapter
follows the bin op _ f w application, whose interface definition was presented in
Chapter 4.

5.1 The binop_fw Application
Table 5-1 compares the binop fw example with the binop and binop Iu
examples. In binop _fw, the USer of the client program specifies a server host on
the command line, and the server listens on an opaque port dynamically allocated by
the RPC runtime library. The server registers with the Local Location Broker on its
host so that the LLB can forward calls to the server port. All three binop
examples use explicit handles and manual binding in which the client code generates
and binds an RPC handle that it passes as the first argument in its remote procedure
calls.

Table 5-1: Comparison of the binop, binop_lu, and binop_fw Examples

Example Server Host Server Port LB Registration Call Delivery

binop Specified on Well-known None Direct to
command line server port

binop_lu Obtained from Opaque Global and local Direct to
LB lookup server port

binop_fw Specified on Opaque Local only From server host
command line forwarding port

For applications in which the client knows where a server is running, you should use
LLB forwarding, as illustrated in binop_fw. The server listens on an opaque port
and does not require the server to register with the GLB. When the client makes its
first remote procedure call, the server host LLB forwards the call to the server port.
On return, the handle is fully bound, so that any subsequent calls go directly to the
server port.

For applications in which the client does not know where a server is running, you
should use Location Broker registration and lookup, as illustrated in binop I u.
The server listens on an opaque port and registers its objects, interfaces, and socket
address with the GLB. The client uses a Location Broker lookup call to obtain the
server socket address and fully binds the handle to this address.

Your applications should use opaque ports with one of these two techniques rather
than well-known ports. (See the discussion of well-known ports in Chapter 1.)

Complete source code for the binop example is in the examples directory. Chapter
3 includes descriptions of binop and binop _1 u.

5.2 Data Types and Portability
When you develop distributed applications, the client and manager code that you
write must conform to the interfaces that you define. The C data types used by your
code must therefore be equivalent to the NIDL data types specified in your interface
definitions.

Many systems (including most systems with Motorola MC680xO, Intel 80x86,
Digital VAX, or IBM Systemj370 processors) support C scalar types that correspond
straightforwardly and exactly to the NIDL scalar types. On other systems, however,
C types that match the NIDL types may not exist. A NIDL type may also be
matched by different C types on different systems.

The NIDL Compiler generates C code that uses data types defined by the Network
Data Representation (NDR) protocol. Every NIDL scalar type maps to one NDR
scalar type; this mapping is the same for all systems. The header file idl_base. h
contains C definitions of the NDR types for particular systems. To ensure
portability, you can use NDR data types to declare variables that correspond to
scalars specified in your interface definitions. The examples in this manual often use
the NDR types ndr_ Schar, ndr_ $short_int, and ndr_ $long_int.

5.3 Writing the Client
This section explains how to write a client program. Section 5-4 presents the
binop _ fw client code.

5.3.1 Client Structure
The source code for a client program consists of these elements:

• The header file generated from your interface definition by the NIDL Compiler

• The client application itself, that is, the user-written code that implements the
client program and calls the remote procedures

• The client switch generated from the interface definition by the NIDL Compiler

• The client stub generated from the interface definition by the NIDL Compiler

• Any user-written code that performs autobinding or data type conversion (see
Chapter 7)

If a client imports several interfaces, the client source code must include the header
file, client switch, client stub, any autobinding routines, and any type conversion
routines for each interface.

Table 5-2 lists the source files that make up the client in the binop fwexample.
There are two application code modules: client. c, which contains the main
program, and uti 1 . c, which contains utility routines that are used by both the
client and the server.

5-2 Developing Distributed Applications

Table 5-2: Client Source Code Files for the binop_fw Example

Source Code File

binop_fw.h
client.c

Module

Header file generated by the NIDL Compiler
Main program

util.c
binop_fw_cswtch.c
binop_fw_sstub.c

Utility routines used by client and server
Client switch generated by the NIDL Compiler
Client stub generated by the NIDL Compiler

5.3.2 Managing RPe Handles

When a client makes a remote procedure call, it must specify to the RPC runtime
library the object that it is trying to access. The client uses an RPC handle to
represent the object and the location of a server that can execute the call.

5.3.2.1 Binding Techniques - There are two binding techniques:

Manual binding

Automatic binding

The client creates and manages RPC handles directly.

The client uses generic handles instead of RPC handles.
Whenever the client makes a remote procedure call, the stub
calls a user-written autobinding routine that converts the
generic handle into an RPC handle.

Chapter 1 discusses the differences between manual and automatic binding and
compares the advantages and disadvantages of these techniques.

The binding technique determines where RPC handle management occurs, in client
code or in autobinding code, but it does not affect how RPC handle management is
implemented. You use the same library routines in both cases.

Like most of the examples in this book and in the online examples directory,
binop _ fw uses manual binding.

5.3.2.2 Overview of RPC Handle Management Routines - The RPC runtime library
contains several routines that client applications can use to create handles, free
handles, or change their binding states. Figure 5-1 illustrates the effects of these
routines and shows the information represented in each possible binding state of an
RPC handle. (See Section 5.3.4 for more information about RPC binding states.)

Developing Distributed Applications 5-3

Figure 5-1: Calls That Manage RPC Handles and Their Binding States

rpq". $bind
with specified port

rpq".$bind
with unspecified port

·------------i
: I
I No Handle :
I I
I I
I I
I I
I I
I I
I I
'--------- ____ 1

t

t

rpc_$set_bindinq
with specified port

"PC_ $ set_binding ~
with unspecified port

I ~
rpc_$set_bindinq
with specified port

I ~
Unbound
Handle

Bound-to-Host
Handle

Fully Bound
Handle

t t'"---_---'
t
rpc_$cle~bindinq

ZK-0091U-R

5.3.2.3 Creating Handles - As Figure 5-1 illustrates, the rpc $bind and
rpc_ $alloc_handle routines enable you to create an-RPC handle in any binding
state: fully bound, bound-to-host, or unbound.

The rpc_ $bind routine takes as input an object UUID and a socket address. It
creates a handle to represent the object and binds the handle to the socket address.
You can create a fully bound handle by calling rpc_ $bind with a fully specified
socket address. You can create a bound-to-host handle by calling rpc_ $bind with
a socket address whose port number is socket _ $unspec _port.

The rpc $alloc handle routine takes as input an object UUID. It creates an
unbound handle to represent the object. You can use this handle to broadcast a
remote procedure call, or you can invoke rpc_$set_binding to set its binding.

5-4 Developing Distributed Applications

5.3.2.4 Changing Binding States - The rpc $ set binding routine sets or resets the
binding state in a handle. This routine enables a client to change the binding state
without freeing and recreating the handle. For example, if an application sequentially
accesses several locations of an object, the client can:

1. Use rpc_$alloc_handle to create a handle.

2. Use rpc_ $set_binding to bind to a server.

3. Make the remote procedure call to access the object.

Repeat steps 2 and 3, binding to servers on each host in sequence, to access all of the
other objects.

The client does not need to call rpc $clear binding before it rebinds the
handle to the next server, because rpc _ $ set .,pinding replaces any existing
binding.

As with rpc $bind, you can use rpc $set binding to obtain a bound-to
host handle, if you supply as input a socket address with a port number of
socket $unspec port. You can use rpc $clear binding or
rpc $clear ser-;er binding to remove parts of thebinding information in a
handle. - -

5.3.3 Obtaining Socket Addresses
To obtain the socket address that rpc $bind and rpc $ set binding require
as input, you can use a Location Broker lookup routine orthe -
socket_ $ from_name routine.

5.3.3.1 Using Location Broker Lookup Calls - The Location Broker Client Agent offers
routines that perform Location Broker lookups by object, type, interface, or any
combination of these identifiers. Each lookup routine returns as output an array of
database entries that match the specified criteria. This chapter illustrates the use of
lb $lookup interface, which looks up servers by interface. The syntax and
arguments for this routine are:

lb $lookup interface (&interjace, &lookup handle,
- - max_results, & num jesuits, results, & status) ;

The arguments are described here:

an interface UUID interface

lookup _ handle

max results

num results

a position in a Location Broker database

the maximum number of database entries that can be returned

the number actually returned

results an array of the returned entries

status the completion status

A client usually specifies lb_$default_lookup_handle as the value for
lookup handle in its first Location Broker lookup call; this value indicates that
the lookup should start at the beginning of the database.

Chapter 3 described the binop _1 u example, in which the client uses the Location
Broker to find a server for the binop 1 u interface. The client calls
lb_$lookup_interface as follows:

Developing Distributed Applications 5-5

status_$t Sti
lb_$entry_t entry;
lb_$lookup_handle_t lookup_handle lb_$default_lookup_handlei
unsigned long nresultsi

do {
lb_$lookup_interface(&binop_lu_vl$if_spec.id, & lookup_handle , lL,

&nresults, entry, &st)i
if (nresul ts < 1) {

fprintf(stderr,
"interface on valid family not found on lb_admin lookup\n")i

exit (1) ;

while (lsocket_valid_family«long)entry.saddr.family, &st))i

The binop lu client initializes lookup handle to the constant
Ib_$default_lookup_handle, which-on input indicates that the lookup should
begin at the start of the GLB database. The value lL for max results indicates
that the routine can return at most one result; nresul ts is the number of entries
that are actually returned.

If the lookup call returns an entry, the binop 1 u client uses the routine
socket_$valid_family to check that theaddress family for that entry is valid
for the client host.

The max_results parameter specifies the maximum number of entries that a
lookup routine can return (in the preceding example, one) and should not exceed the
length of the results array.

If a lookup operation finds max_ re suI t s entries before it has searched the entire
database, it returns a value for lookup_handle that represents the start of the
unsearched part of the database.

If a lookup operation reaches the end of the database before it finds max results
entries, it returns Ib $defaul t lookup handle as the value of -
lookup_handle. Thus, a clientcan obtain all entries that match the lookup
criteria by repeating the lookup call, using at each iteration the lookup handle
returned by the previous call, until the call returns -
Ib_$default_lookup_handle.

Under normal conditions, repeated lookup calls obtain all matching entries in a
database. However, some conditions can cause entries to be skipped or duplicated,
for instance, if the database is modified between lookup calls. The client should be
prepared to deal with missing or duplicated entries in the results array by
retrying and verifying the answer or by using lb $ routines or lb admin(1ncs)
to alter the database. --

The routine may return an entry whose address families cannot be used by the host
doing the lookup. The client program can protect against this by doing a global
Ib $lookup interface to get a list of all interfaces and verify that address
famIlies are valid. The client can also use the socket $valid families
routine, which returns a list of the valid address families on the calling host.

Once the client has obtained the Location Broker entry for a server with a valid
address family, it can use the socket address information in the entry to bind its
handle. The binop _1 u client calls rpc _ $bind as follows:

5-6 Developing Distributed Applications

h = rpc_$bind(&uuid_$nil, &entry.saddr, entry.saddr_len, &st)i
if (st.all != status_$ok) {

fprintf(stderr, "Can't bind - %s\n", error_text(st))i
exit(l);

The code uses the error_text routine, which is defined in utile c, to print any
error message.

5.3.3.2 Converting Names to Addresses - If a client knows the name and the address
family of the host it wishes to access, it can call socket $from name to obtain
a socket address without using the Location Broker. - -

The socket_$from_name call requires a port number as one of its parameter.
Unless the client knows the port number for a server, specify
socket_ $unspec yort. The runtime library will determine the port number at
runtime. The RPC runtime library extracts a port number, if one was specified in the
NIDL definition of the interface, from the interJace$if spec variable. Otherwise,
the port remains unknown, and the call is sent to the forwarding port at the host.

The binop _ fw client, which knows the name of a host where a server is running
but not a port number, uses socket $ from name to convert the name into a
socket address, then calls rpc _ $birlct: -

socket_$from_name((long)socket_$unspec, (ndr_$char *) argv[l],
(long) strlen(argv[l]), (long) socket_$unspec-port,
&loc, &llen, &st);

h = rpc_$bind(&uuid_$nil, &loc, lien, &st)i

5.3.4 Using RPe Binding States
The RPC runtime library has a different delivery. mechanism for each of the three
RPC binding states. This section describes how and why an RPC client might use
fully bound, bound-to-host, and unbound handles.

5.3.4.1 Fully Bound Handles - When a client uses a fully bound handle to make a remote
procedure call, the RPC runtime library sends the call directly to the host and port
identified in the handle.

To obtain a fully bound handle, supply a fully specified socket address to either
rpc $bind or rpc $set binding. Any socket address obtained from a
Location Broker will be fully specified. A socket address converted from a host
name will not be.

Fully bound handles are always a direct and efficient means of communicating with a
server.

5.3.4.2 Bound-to-Host Handles - When a program uses a bound-to-host handle to make a
remote procedure call, the RPC runtime library sends the call to the host identified in
the handle.

If a well-known port was specified in the definition of the requested interface, the call
is delivered to that port. Otherwise the call is delivered to the LLB forwarding port.
The LLB-provided a server for the requested object and interface has registered with
it-forwards the call to the port on which the server is listening. When the call

Developing Distributed Applications 5-7

returns, the RPC runtime library at the client host then binds the handle to that port,
and any subsequent calls are sent directly to the server.

You can obtain a bound-to-host handle in two ways:

• By calling rpc_ $bind or rpc_ $set_binding with an unspecified port in
the socket address input parameter

• By calling rpc_$clear_server_binding on a fully bound handle

A client typically uses the first method, invoking rpc _ $bind or
rpc_$set_binding after it uses socket_Strom_name to generate a socket
address. For example, the following code sends a matrix multiplication call to a
server located at the host identified by hostname:

socket_$from_name (socket_$internet, hostname, hlen,
socket_$unspec-port, &saddr, slen, &st);

h = rpc_$bind (&matrix_id, &saddr, slen, &st);
matrix$multiply (h, a, b, result, &st);

A client typically uses the second method, invoking
rpc_ $clear_server_binding after it has received an
rpc_ $wrong_boot_time error in st. all. If a client is fully bound to a server
that exits and then restarts, listening on a new port, the client can reset the binding to
the new port by calling rpc_ $clear_server_binding on the existing handle;
the handle will be rebound when the server responds to the next call.

Bound-to-host handles are most efficient when a client already knows the name or
address of a host that is running the server it needs. For example, the client might be
seeking a service that is provided by all hosts in the network, or the client might have
been given the name of a particular host to access. The client does not need to do a
Location Broker lookup. The server needs to register with the LLB on its host, but
not with the GLB.

5.3.4.3 Unbound Handles - When a program uses an unbound handle to make a remote
procedure call, the RPC runtime library broadcasts the call to all hosts on the local
network. If a well-known port was specified in the definition of the requested
interface, the call is broadcast to that port. Otherwise, the call is broadcast to the
LLB forwarding port.

You can obtain an unbound handle in two ways:

• By calling rpc_ $alloc_handle to generate a new unbound handle

• By calling rpc_ $clear_binding on an existing handle to clear the
binding

You can also cause an operation to be broadcast by specifying the broadcast
attribute in its NIDL declaration. If you make a remote procedure call to request an
operation that has the broadcast attribute, the call is always broadcast, because
the RPC runtime library automatically clears any binding of the handle before it
issues the call. The client does not need to clear the binding before broadcasting
again.

Instead of using unbound handles or specifying the broadcast attribute, it is
preferable, whenever possible, to determine the address of a server host from a
Location Broker lookup or the socket_Strom_name routine. The broadcast
delivery mechanism has several disadvantages:

5-8 Developing Distributed Applications

• Not all systems and networks support broadcasting.

• Broadcasts are limited to hosts on the local network.

• Broadcasts make inefficient use of network bandwidth and processor cycles.

• The RPC runtime library does not support "at most once" semantics for
broadcast operations; it applies idempotent semantics to all such operations.

All of these disadvantages pertain both to broadcast operations and to any
operations that are called with unbound handles.

The RPC runtime library raises an error (rpc $comm failure, described in
Section 5.3.8) if you attempt to make a call with an unbound handle, unless you have
declared the operation to be idempotent.

The NIDL Compiler issues a warning if you specify the broadcast operation
attribute without also specifying the idempotent attribute.

5.3.5 Identifying Servers
If a client application uses an unbound or bound-to-host handle to make a call, it may
wish to identify the particular server that responded, for use in diagnostic or logging
output. Because the handle is automatically bound to the responding server when the
call returns, you can derive the location of the server from information in the returned
handle.

The rpc_$inCLbinding routine extracts a socket address from a handle. The
socket $to name routine converts a socket address to a textual hostname. For
example,a client might issue the following calls to report the location to which its
handle is bound:

rpc_$in~binding (h, &saddr, &slen, &st);
socket_$to_name (&saddr, slen, name, &namelen, &port, &st);
name [namelen] = 0;
printf ("bound to server on port %ld at host %s\n", port, name);

This technique works even for operations with the broadcast attribute. After a
client receives a reply to a broadcast, the handle is fully bound, and the RPC runtime
library does not clear the binding until the client uses that handle to issue another
call.

5.3.6 Handling Errors
Distributed applications handle some errors in much the same way as local
applications. For example, if a client issues a remote procedure call to request an
operation, and the manager routine for the operation encounters a divide-by-zero
error, that error is reflected to the client as if the server had been locally linked with
the client.

However, a distributed application can also encounter errors that a purely local
application would not. The next sections discuss the causes of three kinds of errors
that are specific to remote procedure calls: communications errors, server failures,
and interface mismatches.

Developing Distributed Applications 5-9

5.3.6.1 Communications Errors - Communications errors occur in the underlying
communications mechanisms, resulting in the failure of a client's request to reach the
server or the failure of a server's response to reach the client. Communications errors
are usually indicated by the rpc_$comrn_failure status. The intro(3ncs)
reference page lists other RPC runtime library statuses. To recover, a client can retry
the failed call or try to find another server.

You can use a status parameter, identified by the comrn_status parameter attribute
to check for communications errors. Chapter 4 describes status parameters.

5.3.6.2 Server Crashes - If a server crashes while handling a remote procedure call, an
rpc $comrn failure status is signaled to the client. To the client, the server
failure is a form of communications error.

If the server fails and restarts between remote calls, the failure is usually indicated by
an rpc $wrong boot time status. A client can also receive an
rpc $w-rong bo"""Ot time status if one server fails and a different server starts,
using the same port number as the failed server.

Recovery techniques depend on whether the client and the server maintain any state
infonnation between procedure calls:

• In a "connectionless" application, one that maintains no state between calls, the
client needs only to rebind the handle. The client can call
rpc $clear server binding; then it can check whether the server has
restarted. If the server did not restart, the client should unbind completely by
calling rpc_ $clear_binding, locate a new server, and rebind to the new
server.

• In an application that does maintain some state between calls, the client must
first clear the state (for example, by unwinding to the point at which it bound to
the server), then rebind as in the connectionless case.

5.3.6.3 Interface Mismatches - An interface mismatch occurs when the interface
definition used to build a server differs from the interface definition used to build a
client. If you increment the version number in the version interface attribute every
time you change the interface definition, mismatches are easily detected and are
indicated by an rpc _ $ unk _ if status. If you do not increment the version number,
the resulting errors may be difficult to diagnose.

In most cases, programs cannot recover from interface mismatch errors. To eliminate
the errors, you should rebuild the out-of-date client or server.

If you want some clients to import an old version of an interface and some clients to
import a new version, you can build one server that exports both versions of the
interface. Chapter 7 describes how to build such a server.

You can add operations to an interface and maintain some backward compatibility
without changing the version number, provided you do not change the signature or
implementation of any existing operation. When you modify the interface definition,
place declarations for new operations after all declarations for existing operations;
that is, add new operations at the end of the interface, not in the middle.

Clients built with the old definition and servers built with the new definition will
interoperate correctly. However, if a "new" client requests a new operation from an
"old" server, the RPC runtime library will signal an rpc_$op_rng_error
status. Example 5-1 shows how you can use a cleanup handler to check for an
rpc_$op_rng_error status.

5-10 Developing Distributed Applications

5.3.7 Using Cleanup Handlers
The RPC runtime library always signals a fault if an error occurs while it is handling
a remote procedure call. Therefore, you should set cleanup handlers around remote
procedure calls to catch and handle any such faults.

5.3.7.1 Initializing the Fault Management Routines - Before invoking any other
DECrpc routines, a client or server should always invoke pfm_$init to initialize
the fault management routines. This call causes C signals to be translated into
signals that can be handled by the fault management routines. Attempts to use C
signal handlers in the same program as fault management cleanup handlers can
therefore result in unexpected behavior.

5.3.7.2 Setting and Releasing Cleanup Handlers - The pfm $cleanup call sets a
cleanup handler. The initial call to pfm_ $cleanup returns as its value
pfm _ $ cleanup_set, a status indicating that the cleanup handler is set; this call
also returns as its output a cleanup record, a record of the context when the cleanup
handler was set.

If a fault is signaled while a cleanup handler is set, these actions occur:

1. The process stack is unwound to the most recent pfm_$cleanup call.

2. The cleanup handler is released.

3. The pfm $cleanup call returns the status value for the error that caused the
fault. -

4. Execution proceeds with the code that immediately follows the
pfm _ $cleanup call.

After you call pfm $cleanup, you should test its return value, so that fault
handling code execUtes only if the value is an error status (indicating that an error has
occurred), not if the value is pfm_$cleanup_set (indicating that the cleanup
handler has just been set).

A cleanup handler typically ends either with code to continue back into the program
or with a call to pfm $ signal or pgm $exi t. If the program will continue, it
should call either pfm_$reset_cleanup or pfm_$enable.

The pfm $rls cleanup call releases a cleanup handler. You should release a
cleanup handler as soon as it is no longer necessary, so that fault handling code is not
executed inappropriately. For example, suppose a cleanup handler is set before a
remote procedure call, and the cleanup handler contains code that prepares to retry
the call. If you do not release the cleanup handler immediately after the call, a fault
that occurs later in the program could cause the call to be executed again,
unnecessaril y.

In RPC applications, a cleanup handler is typically set just before a remote procedure
call and released just after the call.

In Section 5.3.6.3 we explained how to add new operations to an interface and
maintain compatibility between "old" clients (which call only the old operations)
and "new" servers (which export both old and new operations). Of course, an "old"
server cannot execute new operations for a "new" client; when such a client calls a
new operation, it should be prepared to receive an rpc _ Sop _ rng_ error status.

Developing Distributed Applications 5-11

Example 5-1 shows how a client might use a cleanup handler to check for
rpc_$op_rng_error errors.

Example 5-1: Setting Up a Cleanup Handler

pfm_$cleanup_rec clrec;
st = pfm_$cleanup(&clrec);
/*
* if an error occurred, clean up
*/

/* set the cleanup handler */
/* test the return value */

if (st.all != pfm $cleanup set) {
if (st.all-== rpc Sop rng error)
Jound an out-oj-date server; find another one and rebind
pfm_$reset_cleanup(&clrec, &st);

else {
some other error occurred; report the error and exit
pfm_$signal(st) ;

/*
* otherwise, proceed normally
*/

if$newop(h, input, &output);
pfm_$rls_cleanup(&clrec, &st);

/* call the operation */
/* release the cleanup handler */

5.3.7.3 Setting Multiple Cleanup Handlers - More than one cleanup handler can be in
effect at once. If a program has set several cleanup handlers and a fault occurs, the
most recently established cleanup handler is entered first, followed by the next most
recently established cleanup handler, and so on to the first established cleanup
handler if necessary.

5.3.7.4 Portability Considerations - The PPM package uses the C routines set jrnp and
longjrnp to implement cleanup handlers. If you use local variables in fault handling
code, the unusual flow of control introduced by set jrnp and longjrnp can lead
some optimizing C compilers to generate errant object code. Here, we explain how
to circumvent this problem in a portable way.

If a local variable is modified after a cleanup handler is set but before the cleanup
handler is invoked, the variable has an indeterminate value when referenced in the
"fault handling code path." To ensure that modifications made to the variable in the
"normal code path" are visible to the fault handling code, the variable should be
declared with the ANSI C volatile qualifier.

Because vo 1 at i 1 e is not yet supported by all C compilers, the PPM header file
defines a portable Volatile macro. This macro translates to volatile on
systems whose compilers support the qualifier; on other systems it is null. Any
program that uses local variables in cleanup handlers should declare those variables
Volatile. The code in Example 5-2 shows how to use a local variable portably in
fault handling code.

5-12 Developing Distributed Applications

Example 5-2: Using Local Variables Portably in Fault Handling Code

Volatile boolean flag;
flag = false;
st = pfm_$cleanup(&crec);
if (st.all != pfm $cleanup set)

if (flag) - -

}

release-pkt(pkt);
pfm_$signal(st);

pkt = allocate-pkt();
flag = true;

more code
if a fault occurs here, the value of flag is indeterminate
more code
pfm_$rls_cleanup(&crec, &st);

Without the Volatile qualifier, the code in the example would not be portable. If
a fault occurred at the point indicated, thereby invoking the cleanup handler, the
value of flag would be indeterminate, and the cleanup handler would execute
incorrectly.

5.3.8 Using the comm_status Parameter Attribute

The corom_status parameter attribute identifies a parameter as a status
parameter. A status parameter provides a convenient way to check for
communications errors in the execution of a remote procedure call. If you specify
corom status for an operation parameter, the NIDL Compiler puts a cleanup
handler in the client stub routine for the operation. The cleanup handler catches any
error with the rpc_ $mod module code and passes the error to the client in the
status parameter.

All rpc $ statuses have the rpc $mod module code. The intro(3ncs) reference
page desCribes the rpc $ statuses~

5.3.8.1 Declaring Status Parameters in Interface Definitions - A status parameter
must have the corom status and out attributes and must be of type
status St. The declaration of primes$gen, the operation in a primes
application shown in Example 5-3, identifies a status parameter.

Example 5-3: Identifying a Status Parameter

[idempotent]
void primes$gen(

handle_t [in] h,
int [in, out] *last,
int [in] max,
status_$t [comm_status, out] *st,
int [in, out, last_is (last) , max_is (max)] values[]
) ;

5.3.8.2 Checking Status Parameters in Client Programs - A client checks status
parameters in the same way that it checks statuses returned by rpc _ $ calls or other
RPC calls. The client in the primes example checks a status parameter after
primes$gen returns as shown in Example 5-4.

Developing Distributed Applications 5-13

Example 5-4: Checking Status Parameters in Client Programs

primes$gen(h, &last, MAXVALS-l, &st, values);
/* check comm_status value */
if (st.all != status_$ok) (

fprintf(stderr, "Error in rpc - %s\n", error_text(st»;
exit(l);

The prime s client simply prints an error message and exits if the status parameter
indicates an error. In other applications, the client might retry the call that failed or
try to find another server, depending on the particular status that is returned.

5.3.8.3 Initializing Status Parameters in Manager Routines - If a remote procedure
call executes. without error, the value of its status parameter is not set. The manager
routine should therefore set the status parameter to stat us _ $ok before it returns.
Example 5-5 includes code from the primes$gen manager routine.

Example 5-5: Initializing Status Parameters in Manager Routines

void primes$gen(h, last, max, status, values)
handle_t h;
status_$t *status;
ndr_$long_int *last, max, values[);
(

ndr_$long_int n, highest = values[O), index 0;

for (n = 2; n <= highest; n++)
if (isyrime (n» {

values [index++) = n;
if (index > max) break;

*last index-l;
status->all status_$ok;
return;

5.3.9 Using the comm_status Operation Attribute
NIDL also supports a comm_status operation attribute, which specifies that an
operation returns a completion status. The client stub routine for such an operation
contains a cleanup handler that catches any error with the rpc _ $mod module code
and returns the error code as its return value.

The manager routine for an operation with comm status should be coded to
return s tat u s _ $ 0 k if successful.

5.3.10 The binop_fw Client
The binop_fw client is the result of compiling four source code modules:

• client. c

• util.c

5-14 Developing Distributed Applications

• binop_fw_swtch. c

The switch and stub modules, of course, are generated by the NIDL Compiler from
the interface definition The uti 1 . c module contains a routine to print error
messages; both the client and the server use this routine. The main routine is in the
client. c module

5.3.10.1 The client.c Module - The client module contains directives to include three
header files:

binopfw. h The header file generated from the binop _ fw interface definition

socket. h The header file for the socket interface

p f m • h The header file for the portable PPM interface

Example 5-7 shows the client module, client. c.

Example 5-7: The client.c Client Module for binop_fw

#include <stdio.h>
#include "binop_fw. h" I1J
#include "socket.h"
#include <pfm.h>

#define CALLS_PER_PASS 100

globalref uuid_$t uuid_$nil; ~
extern long time();
extern char *error_text();

main (argc, argv)
int argc; "
char *argv[];
{

handle_t h;
status_$t st;
socket_$addr_t loc;
unsigned long llen;
socket_$string_t name;
unsigned long namelen sizeof(name);
unsigned long port;
ndr_$long_int i, n;
int k, passes;
int start_time, stop_time;

if (argc != 3) {
fprintf(stderr, "usage: client hostname passes\n"); ~
exit (1) ;

passes = atoi(argv[2]);

pfm_$init«long) pfm_$init_signal_handlers);~
socket_$from_name«long)socket_$unspec, (ndr_$char *) argv[l], ~

(long) strlen(argv[l]), (long) socket_$unspecyort,
&loc, &llen, &st);

if (st.all != status_$ok) { ~
fprintf(stderr, "Can't convert name to sockaddr - %s\n",

error_text(st»;
exit(l);

h = rpc $bind(&uuid $nil, &loc, llen, &st); ~
if (st~all != stat;s_$ok) {

Developing Distributed Applications 5-15

Example 5·7: (continued)
fprintf(stderr, "Can't bind - %s\n", error_text(st»;

exit(l);

rpc_$in~binding(h, &loc, &llen, &st); ~
if (st.all != status_$ok) {

fprintf(stderr, "Can't inq binding - %s\n", error_text(st»;
exit(l);

socket_$to_name(&loc, lIen, name, &namelen, &port, &st); ~
if (st.all != status_$ok) {

fprintf(stderr, "Can't convert sockaddr to name - %s\n",
error_text(st»;

exit(l);

name [namelen] = 0;

printf("Bound to port %ld at host %s\n", port, name);

for (k = 1; k <= passes; k++) {
start_time = time(NULL);

for (i = 1; i <= CALLS_PER_PASS~ i++)
binop_fw$add(h, i, i, &n); ~

if (n != i+i)
printf("Two times %ld is NOT %ld\n", i, n);

stop_time = time(NULL);

printf("pass %3d; real/call: %21d ms\n", IiOJ
k, «stop_time - start_time) * 1000) / CALLS_PER_PASS)i

III The client module contains directives to include binop fw. h, the header file
generated from the binop _ fw interface definition, and -socket. h, the
header file for the socket interface. The handler file binop fw. h
contains an inc I ude directive for rpc. h, the header file for the rpc
interface. The NIDL Compiler automatically puts such a directive in the -
header file it generates for any remote interface (that is, any interface without
the local attribute).

121 The module declares uuid $nil, the nil UUID, as an external variable. The
client uses uuid $nil as"the object UUID in its handle. The
globalref deci'aration provides portability to VAX C. For other compilers,
the idl base. h header file, which is included by rpc. h, defines
global;ef as a synonym for extern.

I3J The client program takes two arguments: the network address of a host where a
server is running and the number of passes to execute.

~ After it has processed its arguments, the client calls pfm _ $ ini t to initialize
the PPM package. This call should be made before calls to any other RPC
routines.

151 To convert the network address of the server host into a socket address, the
client calls socket $ from name, part of the socket address manipulation
interface in the RPC runtime library. Because the port parameter for
socket_$from_name is the predefined constant

5-16 Developing Distributed Applications

socket_ $unspec_port, the resulting socket address specifies a host, but
not a particular port at that host.

161 After socket $from name returns, the client checks the completion status
of the call, and if the status is not status_ $ok, it prints an error message.
Both the client and the server check the completion status of any call that
returns a status. They use the error text routine, which is defined in
utile c, to print error messages. -

IZI The client supplies the address returned by socket_ $ from_name to
rpc $bind, which creates an RPC handle and binds this handle to the socket
address. Because the address does not specify a port, rpc _ $bind generates
a bound-to'-host handle~ The object UUID in the rpc_ $bind call is
uuid_$nil, since binop_fw does not operate on any particular object.

18I For diagnostic and teaching purposes, the client in this example calls
rpc_ $inCLbinding and socket_ $to_name, so that it can print the host
and port to which it is bound. Most real applications omit this step.

19] The first time the client calls binop fw$add, the call is sent to the LLB
forwarding port at the server host, andthe LLB forwards the call to the server.
On return, the handle is fully bound, so that all subsequent calls are sent
directly to the server port.

I1]J After each pass, the client prints the real elapsed time per call.

After the last pass, the client exits.

5.3.10.2 The util.c Module - The utile c module in Example 5-8 contains only one
routine, error_text. Both the client and the server use this routine to generate
error messages.

Example 5-8: The util.c Module for binop_fw

#include "binop_fw.h"

char *error_text(st)
status_$t st;
{

static char buff[200];
extern char *error_$c_text();

return (error_$c_text (st, buff, (sizeof) buff));

5.4 Writing the Server
This section explains how to write a server program.

5.4.1 Server Structure

The source code for a server program consists of the following elements:

• The header file generated from your interface definition by the NIDL Compiler

• The server initialization code, which registers the interface with the RPC
runtime library and the Location Broker

Developing Distributed Applications 5-17

• The manager code, which implements the operations in the interface

• The server stub generated from the interface definition by the NIDL Compiler

• Any user-written code that performs data type conversion

If a server exports several interfaces, the server source code must include the header
file, manager code, server stub, and any type conversion routines for each interface.

Table 5-3 lists the source files that make up the server in the binop _ fw example.

Table 5-3: Server Source Code Files for the binop_fw Example

Source Code File Element

binop _ fw. h Header File generated from binopfw. idl
by the NIDL Compiler

serve r . c Main program, which contains server initialization code

binop _ fw . c Manager module

binop_fw_sstub. c Server stub generated from binopfw. idl
by the NIDL Compiler

util. c Module containing utility routines used by both the
client and the server

Manager procedures are independent of RPC routines and are exactly as they would
be in a local implementation. The following subsections discuss server initialization
code.

5.4.2 Writing Server Initialization Code
The server initialization code usually appears in the server main procedure (main in
C). This code typically:

• Processes any arguments supplied on the command line

• Creates the sockets on which it will listen

• Registers the server's objects and managers with the RPC runtime library

• Registers the server's objects and interfaces with the Location Broker

• Establishes termination and fault handling conditions

• Begins listening for requests

The next sections describe each of these activities, using as an example the
binop _ fw server program, server. c.

5.4.2.1 Processing Arguments - The binop fw server program performs several
initialization tasks. It checks that there arethe right number of input arguments; it
checks that the specified address family is valid; and, just before it begins listening
for requests, it prints a notification of its host and port.

The server takes as an argument the textual name of the address family ip. It calls
socket $ family from name to convert this name into the integer
representation that the rp c = $ calls use, as shown in this example:

5-18 Developing Distributed Applications

family = socket_$family_from_name«ndr_$char *) argv[l],
(long) strlen(argv[l]), &st);

The server calls socket $valid family to check whether the specified address
family is valid for the host on which It is running:

validfamily = socket_$valid_family (family, &st);
if (!validfamily) {

printf ("Family %s is not valid\n", argv[l]);
exit (1);

5.4.2.2 Creating Sockets - A single server can listen on several sockets at a time.
However, a server that exports several interfaces can listen on one socket for requests
for operations in any of those interfaces. Hence, most servers use only one socket
per address family.

To obtain sockets on which to listen, a server calls rpc $use family or
rpc $use family wk once for each socket. The roUtine rpc $use family
dynamically-assigns an available opaque port, while rpc_ $use_family_wk
assigns the well-known port that you specified in the interface definition. We
recommend that you avoid using well-known ports as discussed in Chapters 1 and 3.

The binop fw server listens on one opaque port. It calls rpc _ $use _family
to obtain its socket:

rpc_$use_family (family, &loc, &llen, &st);

In this call, family is the integer representation of the address family specified on
the command line, 10 c is the socket address for the port assigned by the RPC
runtime library, and lIen is the length of loc.

5.4.2.3 Registering with the RPC Runtime Library - As described in Chapter 3, a
server can export several interfaces and can offer access through these interfaces to
several types of objects. Each combination of interface and type requires a separate
manager.

When the server RPC runtime library receives a remote procedure call from a client,
it determines the correct manager to execute the call, based on the object and the
operation requested, and dispatches the call to that manager. Every server must
therefore inform the RPC runtime library about its managers and objects. A server
calls rpc $register mgr once for each manager that it implements and calls
rpc_ $register_obj~ct once for each object that it supports.

The binop fw server program makes the following call to register its manager
with the RPC runtime library:

rpc_$register_mgr(
&uuid_$nil,
&binop_fw_vl$if_spec,
binop_fw_v1$server_epv,
(rpc_$mgr_epv_t) &binop_fw_vl$manager_epv, &st);

To register a manager, a server must supply a type identifier, an interface specifier, a
server EPV, and a manager EPV. Because binop _ fw does not involve any
particular type, the binop_fw server specifies uuid_$nil as the type identifier.
The interface specifier is defined in the header file, and the server EPV is defined in
the server stub; both of these files, of course, are generated by the NIDL Compiler

Developing Distributed Applications 5-19

from your interface definition. You must define the manager EPV; typically this
definition appears in the manager module.

Because binop_fw does not involve any particular object, the binop_fw server
does not need to call rpc_ $register_object.

5.4.2.4 Registering with the Location Broker - Most servers register their objects and
interfaces with the Location Broker; clients can then use Ib _$ lookup calls to locate
objects. A server must make a separate Ib_ $register call to register each
possible combination of object, interface, and socket address. For example, the
server should make six registration calls if it:

• Listens on one IP socket

• Exports two interfaces

• Manages three objects

Because the binop _ fw application does not involve an object, its server specifies
uuid_ $nil as the object VVID for its Location Broker registration. Clients locate
this server with Location Broker forwarding, so the server should register only with
the Local Location Broker and not with the Global Location Broker.

The binop _ fw server uses the following call to register with the Location Broker:

lb $register (&uuid $nil, &uuid $nil, &binop fw vl$if spec.id,
- (long)lb_$server_flag_local-;- (ndr_$char *) "binop:=fwexample",

&loc, llen, &entry, &st);

This call specifies uuid_ $nil for the object and type identifiers. The interface
identifier is the id member of the if spec for binop fw, defined in the header
file. To register only with the Local Location Broker, the server specifies
Ib_$server_flag_local. It supplies the text string "binop_fw example" as
an annotation for the database entry. The 1 ° c specified in this call is the socket
address that the server obtained from a call to rpc _ $ use _ f ami 1 y.

5.4.2.5 Unregistering and Fault Handling -

When a server starts, it should register itself with the RPC runtime library and with
the Location Broker, so that clients can locate the server and communicate with it.
When a server exits, it should unregister itself, so that clients do not continue trying
to use it.

To unregister from the RPC runtime library, a server calls rpc_ $unregister. In
servers that export several interfaces or manage several objects, unregistrations
should balance registrations: there should be an rpc _ $unregister for every
rpc_$register_mgr and an Ib_$unregister for every Ib_$register.

The code to unregister a server typically appears in a cleanup handler. The server
sets the cleanup handler before it begins listening for requests. If the server receives
a signal, it removes its registrations with the RPC runtime library and the Location
Broker before exiting.

Following is the cleanup handler in the binop _ fw server:

st = pfm_$cleanup(&crec);
if (st.all ! pfm $clean set) {

status_$t st~t; -
fprintf(stderr, "Server received signal - %s\n",

error_text(st» ;

5-20 Developing Distributed Applications

lb_$unregister(&lb_entry, &stat);
rpc $unregister(&binopfw v1$if spec, &stat);
pfm=$signal(st); --

The code uses the error_text routine, which is defined in utile c, to print any
error message.

5.4.2.6 Listening for Requests - To begin listening for requests, the server calls
rpc_$listen. The first argument specifies the maximum number of requests that
the server can process concurrently, in the DECrpc implementation, one (1).

The server uses this call to begin accepting requests from clients:

rpc_$listen ((long) 1, &st);

On normal completion, rpc _ $1 i s t en does not return. However, the call will
return on a catastrophic event or if an application issues a call to rpc $shutdown.
The shutdown call returns with status_ $ok. -

After a server creates sockets, registers objects and interfaces, and begins listening, it
need not make any more calls. However, servers can register or unregister objects
and interfaces while running, and they can also shut themselves down. A server can
take these actions on its own or as part of its execution of client requests (in a
manager routine).

5.4.3 Writing Manager Code
A manager implements the operations in one interface for objects of one type. In
addition to defining a routine for each operation, the manager module defines the
EPV through which these routines are called. Manager modules sometimes also
require code to identify objects, to identify clients, or to register objects with the
Location Broker.

5.4.3.1 Defining Manager EPVs - A manager EPV names the routines that implement the
operations in an interface. The names of manager EPV s and manager routines are
arbitrary, since these names appear only in code that you write, not in code that the
NIDL Compiler generates. By convention, we choose EPV names similar to those of
the client and server EPV s and routine names similar to the operation names in the
interface definition.

The binop _ fw manager defines its EPV as follows:

globaldef binop_fw_v1$epv_t binopfw_v1$manager_epv {binop_fw$add};

Chapter 7 describes examples in which a server contains more than one manager or
more than one version of a manager. In these examples, the manager EPVs help to
distinguish different implementations of an interface.

5.4.3.2 Identifying Objects - In some applications, one manager supports several objects,
and the manager must be able to identify the particular object on which the client
wishes to operate. Clients in such applications typically use explicit handles, so that
a handle passes from client to server with each call.

If the interface is manually bound, the manager can call rpc_ $inCLobject to
extract the object UUID from the RPC handle. If, however, the interface is
automatically bound, the handle must be either the object UUID itself or some other
data type from which the manager can determine the UUID.

Developing Distributed Applications 5-21

Example 5-9 shows a routine that checks to see if the object referred to by the RPC
handle is the object expected. In the example, the bankd program passes the
CheckObject routine a UUID, h. The routine compares the UUID to the known
bank UUID.

Example 5·9: Checking the UUID in an Automatically Bound Interface

static boolean CheckObject(h, st)
uuid_$t *h;
status_$t *st;
{

if (bcmp(h, &BankUUID, sizeof(BankUUID») {
fprintf(stderr, " (bankd) Request for wrong bank!\n");
st->all = -1; /* "object not found" */
return(false);

st->all = status_$ok;
return (true) ;

5.4.3.3 Identifying Clients - A server may wish to identify clients from which it receives
requests, for use in diagnostic or logging output. The RPC runtime library at a server
host manipulates the location information in an RPC handle so that on the server side
of an application, the handle specifies the location of the client making the call.
Thus, just as a client can identify its server by extracting location information from a
handle, a server can identify its client.

A manager routine might issue the following calls to report the location from which a
server received a request:

rpc_$in~binding(h, &loc, &llen, &st);
socket_$to_name(&loc, llen, name, &namelen, &port, &st);
name [namelen] = 0;
printf("Request from port %ld at host %s\n", port, name);

5.4.3.4 Registering Objects - In most applications, server initialization code registers the
objects with the RPC runtime library and the Location Broker. However, if the
server manages transient objects that it creates and deletes, the manager routine that
creates the objects should register them, and the manager routine that deletes objects
should unregister them.

5.4.3.5 Initializing Status Parameters -If an operation has a status parameter (a
parameter with the comrn_status attribute), the manager routine that implements
the operation should set the status parameter to status_ $ok before it returns.

5.4.4 The binop_fw Server

The binop fw server is the result of compiling four source code modules:
server. c, -binop fw. c, utile c, and binop fw sstub. c. The stub
module is generated bY the NIDL Compiler from the interface definition. We saw
utile c, which contains a routine to print error messages, in Example 5-8. The
manager module, binop_fw. c, contains the binop_fw$add routine that
executes the actual addition operations. The serve r . c module performs all of the
server initialization tasks.

5-22 Developing Distributed Applications

5.4.4.1 The server.c Initialization Module - Example 5-10 contains the code for
server. c.

Example 5-10: The server.c Module for binop_fw

#include <stdio.h>

#include "binop_fw.h"
#include "lb.h" [J
#include "socket.h"
#include <pfm.h>

globalref uuid_St uuid_Snil;
globalref binop_fw_v1Sepv_t binop_fw_v1Smanager_epv; ~
extern char *error_text();

main (argc, argv)
int argc;
char *argv[];
{

status_$t st;
socket $addr t loc;
unsigned long lIen;
unsigned long family;
boolean validfamily;
socket Sstring t name;
unsigned long namelen sizeof(name);
unsigned long port;
Ib_Sentry_t entry;
pfm_Scleanup_rec crec;

if (argc != 2) {
fprintf(stderr, "usage: serverfamily\n");
exit (1) ;

}

pfm_Sinit«long)pfm_$init_signal_handlers); ~
family = socket_$family_from_name«ndr_$char *) argv[l], ~

(long) strlen(argv[l]), &st);
if (st.all != status_$ok) {

fprintf(stderr, "Can't get family from name - %s\n",
error_text(st»;

exit (1) ;

validfamily = socket_$valid_family(family, &st); ~
if (st.all != status $ok) {

fprintf(stderr, "Can't check family - %s\n", error_text(st»;
exit(l) ;

if (!validfamily)
printf("Family %s is not valid\n", argv[l]);
exit(l)i

rpc_$use_family(family,&loc, &lleri, &st)i ~
if (st.all != status_$ok {

fprintf(stderr, "Can't use family - %s\n", error_text(st»i
exit(l)i

rpc_$register_mgr(~
&uuid_$nil,
&binop_fw_v1$if_spec,
binop_fw_v1$server_epv,
(rpc_$mgr_epv_t) &binop_fw_v1$manager_epv,
&st) ;

Developing Distributed Applications 5-23

Example 5-10: (continued)
if (st.all != 0) {

printf("Can't register manager - %s\n", error_text(st»;
exit(l);

lb_$register (~
&uuid_$nil,
&uuid_$nil,
&binop fw v1$if spec.id,
(long)lb_$serve~_flag_local,
(ndr_$char *) "binop_fw example",
&loc,
lIen,
&lb_entry,
&st) ;

if (st.all != 0)
printf("Can't register - %s\n", error_text (st));
exit (1);
}

socket_$to_name(&loc, lIen, name, &namelen, &port, &st); ~
if (st.all != status_$ok) {

fprintf(stderr, "Can't convert sockaddr to name - %s\n",
error_text(st»;

exit (1);

name [namelen] = 0;
printf("Registered: name'%s', port=%ld\n", name, port);

st = pfm_$cleanup(&crec); ~
if (st.all != pfm_$cleanup_set) {

status $t stat;
fprintf(stderr, "Server received signal - %s\n",

error_text(st»;
lb $unregister(&lb entry, &stat);
rpc_$unregister(&blnopfw_v1$if_spec, &stat);
pfm_$signal(st);

rpc_$listen«long) 1, &st); BtU

[1] The binopfw server module, like the client module, includes the
binopfw. h, socket. h, and pfm. h header files. In addition, since the
server makes Location Broker calls, the server module includes lb. h, the
header file for the Location Broker Client Agent interface.

[2] The server declares as an external variable the manager EPV
binopfw_vl$manager_epv. The manager module defines this EPV. The
server specifies the EPV when it registers its manager with the RPC runtime
library.

[3] Like the client, the server calls pfm _ $ ini t to initialize the PFM package
before it makes any RPC calls.

~ The server program takes as an argument the textual name of an address family.
It calls socket $family from name to convert the textual name into the
corresponding integer representation~

5-24 Developing Distributed Applications

151 The call to socket_ $valid_family checks whether the family is valid.

161 To obtain a socket on which to listen, the server supplies the address family, in
its integer representation, to rpc _ $ use _ f ami 1 y. The RPC runtime library
assigns an available opaque port to the server; the runtime library returns the
socket address for this port in the 10 c parameter.

rzl To register its manager with the RPC runtime library, the server supplies the
manager EPV to rpc_ $register_mgr. The first parameter, the type UUID,
is uuid_ $nil, because the binopfw application does not involve any
particular type.

181 To register with the Location Broker, the server calls lb $register. It
supplies the following information for its entry in the Location Broker database:

• An object UUID, in this case nil

• A type UUID, also nil

• An interface UUID, taken from the if_spec

• A flag indicating that the entry should appear only in the Local Location
Broker database

• An annotation

• A socket address

Ial The server uses socket $to name to extract the host name and the port
number from its socket address.It prints this information in a message.

[Q] Before it begins listening for requests, the server sets a cleanup handler. If the
server receives a signal, it removes its registrations with the RPC runtime
library and the Location Broker before exiting.

IITI To begin listening for requests, the server calls rpc_ $listen.

5.4.4.2 The binop_fw.c Manager Module - Example 5-11 contains code for the manager
module.

The manager makes no RPC calls, so it includes only binop _ fw . h, which defines
binop_fw_vl$epv_t and declares the binop_fw$add operation.

Example 5·11: The binop_fw.c Manager Module for binop_fw

#include "binop_fw.h"

globaldef binop_fw_vl$epv_t bingp_fw_vl$manager_epv = { binop_fw$add }; BO
void binop_fw$add(h, a, b, c) ~
handle_t h;
long a, b, *c;
{

*c = a + b;

[j] The manager module defines binopfw_vl$manager_epv, the manager
EPV. The globaldef provides portability to VAX C; for other C
compilers, the idl_base. h header file in the c subdirectory of the system
directory /usr/include/idl defines globaldef as a macro with no
replacement text.

Developing Distributed Applications 5-25

[2] The manager module contains the implementation of the binop fw$add
procedure. The definition is just as it would be in a local application.

5.5 Steps in Building an Application
This section lists the usual steps in building a distributed application:

1. For each interface, run the NIDL Compiler to generate header files and to
generate the source code for the server stub, the client stub, and the client
switch.

2. For each interface, use the C compiler to generate object modules for the server
stub, the client stub, and the client switch.

3. For each interface, compile any routines that perform automatic binding or data
type conversion.

4. Compile the client application source to create the client object modules.

5. Compile the server initialization code and the managers to create the server
object modules.

6. Link the client application object modules, the client switches, the client stubs,
any automatic binding routines, and any type conversion routines to make the
executable client.

7. Link the server and manager object modules, the server stubs, and any type
conversion routines to make the executable server.

Remember that the client and the server must include the header files for any Ib $,
rpc_$, socket_$, or uuid_$ library routines or types they use; similarly, any
interface definition that uses predeclared system types should import the
corresponding NIDL file.

The NIDL files are located in the the /usr/include/idl directory; the C header
files are located in the c subdirectory.

The /usr/examples/ncs/binop directory includes a README file, a
Makefile file, and the source files for the binop client and server programs.

5-26 Developing Distributed Applications

NIDL C Syntax 6

This chapter describes the C syntax of the Network Interface Definition Language
(NIDL). This syntax of NIDL is a set of ANSI C, with a few constructs added to
express remote procedure call semantics.

Section 6.1 describes the overall structure of a NIDL interface definition. Sections
6.2 through 6.7 describe each of the elements in that structure. Section 6.8 is a
detailed discussion of NIDL data types.

6.1 Interface Definition Structure
A NIDL interface definition file has the following structure:

%c
[interface_attribute_list] interface identifier
{
import_dec lara tions
constant declarations
type deClarations
operotion_ declarations
}

6.1.1 Syntax Identifier
The first line of an interface definition file identifies the syntax of NIDL in which the
interface definitions are written. For the C syntax of NIDL, this identifier is %c.

6.1.2 Heading
The interface definition heading consists of three elements: an interface attribute list,
enclosed in brackets; the keyword interface; and the interface identifier. Section
6.2 describes interface attributes in detail.

6.1.3 Body
The interface definition body follows the heading and consists of one or more of
these declarations:

import_declaration Described in Section 6.3

constant declaration Described in Section 6.4

type _declaration Described in Section 6.5

operation_declaration Described in Section 6.6

There must be at least one constant, type, or operation declaration; a body containing
only import declarations is not sufficient.

A semicolon terminates each declaration. Braces enclose the entire body.

6.1.4 Comments
As in C, / * and * / delimit comments as illustrated in this example:

/* all natural */
import 'cereal.idl'; /* no preservatives */

6.2 Interface Attributes
An interface definition heading specifies the name and attributes of the interface, as
follows:

[inter/ace_attribute_list] interface identifier

An interface attribute list is enclosed in brackets and includes one or more of the
following elements, separated by commas:

uuid (uuid_string)
version (version number)
port (port identifier list)
implici t_h~ndle (- type_specifier identifier
local

If an interface definition contains any operation declarations, its heading must specify
at least the 10 cal attribute or the u u i d attribute.

6.2.1 UUID Attribute
The uuid attribute assigns a Universal Unique Identifier (UUID) to the interface.
No other object, interface, or type can be assigned this UUID.

The u u i d attribute has the following syntax, where uuid string is the character-
string representation of a UUID: -

uuid (uuid_string)

6.2.2 Version Attribute
The version attribute helps you to manage multiple versions of an interface. It
has the following syntax, where version_number is an integer:

version (version_number)

For example, if you were changing the parameters to a procedure in the array
interface, the interface definition heading might look like this:

%c
[uuid(338bSf98S000.0d.OO.OO.37.27.00.00.00), version (2)]
interface array

6-2 NIDL C Syntax

6.2.3 Port Attribute
The port attribute specifies the well-known port or ports on which servers that
export the interface will listen. In most cases, you should not use this attribute;
instead, you should allow the RPC runtime library to assign opaque ports
dynamically. See Chapter 1 for a discussion of well-known and opaque ports.

The port attribute has the following syntax:

port (port_identifier _list)

Entries in a port _identifier _list are separated by commas. Each entry has this form,
where family is the address family and port number is the well-known port:

family: [port_number]

Specify at most one port per family. Table 6-1 lists the family values supported by
NIDL.

Table 6-1: Family Values Supported by NIDL

Value

unspec
unix

Address Family

Unspecified protocol
Local to host (UNIX pipes, portals)
Internetwork protocols (TCP, UDP) ip

implink
pup

ARPANET Interface Message Processor (IMP) addresses
XEROX PARC Universal Packet (PUP) protocols

chaos
ns

MIT CHAOS protocols
XEROX Network Systems (XNS) protocols
National Bureau of Standards (NBS) protocols nbs

ecma
datakit
ccitt

European Computer Manufacturers Association (ECMA)
Datakit protocols

sna
unspec2

International Telegraph and Telephone Consultative
Committee (CCITT) protocols (X.25, for example)
IBM Systems Network Architecture (SNA) protocols
Unspecified protocol

Although NIDL supports the families in the preceding list, the DECrpc runtime
software supports only the IP address family. For example, the interface definition
binop. idl, described in Chapter 3, specifies a well-known port for the IP address
family:

port (ip: [6677])

6.2.4 Implicit Handle Attribute
The implicit handle attribute indicates that an interface uses implicit global
variables rather than explicit operation parameters to represent objects.

The implicit_handle attribute has the following syntax:

implicit_handle (type_specifier identifier)

NIDL C Syntax 6-3

The type _specifier and identifier are the type and name of the global variable to be
used as an implicit handle. The type _specifier must be either the RPC handle type
handle _tor a generic handle type for which you have specified the handle type
attribute.

If you specify an implicit handle for an interface, the client stub uses this handle to
represent objects in all remote procedure calls and it passes no handle information to
the server. Operations in the interface should not include handle parameters in their
signatures.

If you do not specify an implicit_handle in the interface definition heading,
the interface uses explicit handles, and each operation must include a handle as the
first parameter in its signature.

The interface definition heading for an interface that uses an implicit handle might
look like this:

%c
[uuid(338bSf98S000.0d.OO.OO.37.27.00.00.00),

implicit handle(handle t array handle)]
interface array - --

Chapter 1 discusses handles and binding in detail.

6.2.5 Local Attribute
The local attribute indicates that the interface definition does not declare any
remote operations; therefore, the NIDL Compiler should generate only header files
(. h files), not stubs.

If you specify the local attribute, the NIDL Compiler ignores any other interface
attributes.

6.3 Import Declarations
The NIDL import_declaration is analogous to the C 4I=include directive. It
specifies an interface definition file that declares constants and types that the
importing interface uses. It takes this form, where file is the pathname, enclosed in
double quotation marks, of the file that you are importing:

import file ;

For example, the following declaration imports the definition for the potato_
interface:

import "potato.idl";

The NIDL Compiler translates import declarations into C 41= incl ude directives
to include header files that correspond to the imported interfaces. However, if the
imported interface contains operation declarations, the NIDL Compiler does not
generate stub procedures for these operations. For example, if the interface definition
foo. idl contains an import declaration for the potato interface, then the NIDL
Compiler will generate a C header file named f 0 0 • h that contains the following
41= inc I ude directive:

#include "potato.h"i

The stub files that the Compiler generates, however, will not contain any procedures
for the potato_ operations.

6-4 NIDL C Syntax

You can import interfaces defined in either of the NIDL syntaxes. Importing an
interface many times has the same effect as importing it once.

6.4 Constant Declarations
The NIDL constant declaration takes the form

const type_specifier identifier integer I string I value_identifier;

The type _specifier is the data type of the constant you are declaring, identifier is the
name of the constant, and integer, string, or value _identifier is the value you are
assigning to the constant. A value _identifier can be any previously defined constant.

The C syntax of NIDL provides only int and char constants. NIDL does not
support constant expressions. Following are examples of constant declarations:

const int MAX = 100;
const CHAR DSCH = "Dmitri Shostakovich";

6.5 Type Declarations
The NIDL type_declaration lets you give a name to a data type. It takes the
following form:

type de f [type_attribute _list] type _specifier type_declarator _list ..

The type _attribute _list is optional.

Some of the constructs that appear in type declarations can also appear in the
parameter lists of operation declarations. Section Section 6.6 describes the use of
these constructs in operation declarations. Section 6.7 describes NIDL data types in
detail.

6.5.1 Type Attributes
The optional type _attribute _list includes one or both of the following elements,
separated by commas:

handle
transmit_as (xmit_type)

These attributes can appear only in typedef declarations.

6.5.1.1 The handle Attribute - The handle attribute specifies that a type can serve as a
generic handle. You must supply automatic binding routines to convert this type to
handle _ t, the RPC handle type.

The following example declares a generic handle type, filehandle_t, which is a
structure containing the textual representations of a host and a pathname:

typedef [handle] struct {
socket_$string_t host;
char path[1024];
} filehandle_t;

Chapter 7 discusses automatic binding and autobinding and autounbinding routines,
and describes an application that uses UUIDs as generic handles.

NIDL C Syntax 6-5

6.5.1.2 The transmit as Attribute - The transmit as attribute associates a
transmitted type that stubs pass over the network with a presented type that clients
and servers manipulate. You must supply routines that perform conversions between
the presented and transmitted types.

There are two primary uses for this attribute:

• To pass complex data types for which the NIDL Compiler cannot generate
marshalling and unmarshalling code. Such types include trees, linked lists and
structures that contain pointers.

• To pass data more efficiently. An application can provide routines to convert a
data type between a sparse representation (presented to the client and server
programs) and a compact one (transmitted over the network).

The xmit_type in a transmit_as attribute must be a named type defined
previously in another type declaration; it indicates the transmitted type that the stubs
will pass between client and server.

The following t ypede f statements declare presented and transmitted types for a
linked list:

typedef struct {
int lasti
int [last_is(last)] values[MAXELEMENTS]i
} trans_ti

typedef [transmit_as(trans_t)] struct {
int valuei
list_t *nexti
} list_ti

Because list t contains a pointer to a list t, the NIDL Compiler cannot
generate code to marshall this data type. Instead, it generates code that calls user
written routines to convert between lis t _ t and t ran s _ t, and the stubs transmit
the linked lists as trans t structures.

Chapter 7 discusses type conversion, specifies the signatures for conversion routines,
and describes two applications that use type conversion.

6.5.2 Type Specifiers
The type _specifier portion of a type_declaration can specify any of the following:

Simple types

int unsigned float
long unsigned long double
short unsigned short char
small unsigned small boolean

Constructed types

bitset union
stringO arrays
struct pointers

The RPC handle type handle_t

Named types defined with t ypede f declarations

Section 6.7 describes these types in detail.

6-6 NIDL C Syntax

byte
void
enum
short enum

6.5.3 Field Attributes

NIDL provides two field attributes that apply only to arrays: last_is and
max _i s. These attributes identify last and max fields that at runtime will supply the
stubs with information about the length of an array; last is and max is are
typically used for an open array, an array whose declaration does not specify an
explicit fixed length.

An array with last_is or max_is must be either a member of a structure or a
parameter of an operation. These attributes therefore can appear either in type
declarations or in operation declarations. The attributes precede the array name in a
field_attribute _list:

type_specifier [field_attribute _list] array_declarator [array_length]

The field_attribute _list comprises one or both of the following elements, separated by
commas:

last_is (last)
max_is (max)

The 1 a s tis attribute identifies another field, last, that at runtime will be the
index of thelast array element to be passed. Client and server programs use this field
to dynamically indicate the size of an array.

The max _is attribute identifies another field, max, that at runtime will be the
maximum possible index of the array. Client programs use this field to dynamically
indicate the maximum size of an array.

The following type declaration defines a structure that contains an open array, its
max, and its last:

typedef struct {
int pmax;
int plast;
int [max is (pmax), last_is(plast)] parray[];
} pixels;

See Chapter 7 for a detailed discussion of last is and max is.

6.5.4 Type Declarators
The type declarator list specifies names for a particular type. To include more than
one name in a list, separate the names with commas. For example:

typedef long integer32, int32;

6.5.4.1 Pointers - To specify a pointer type, precede the name with an asterisk. For
example:

typedef int *pointer_to_int;

6.5.4.2 Arrays - To specify an array type, put brackets after the name. Inside the brackets
you can supply the array size, an asterisk, or nothing. If you supply an asterisk or you
supply nothing, you are declaring an open array (one whose length will not be known
until runtime), and you must apply the last_is field attribute to the array. Array
subscripts start at O. The following example of a struct includes two arrays:

NIDL C Syntax 6-7

typedef struct {
char fixed[32];
int last;
char [last_is (last)] open[]i
} arrays;

In a struct that contains an open array, the array must be the last member. A
union cannot contain an open array. See Chapter 7 for more information about
open arrays.

Use consecutive pairs of brackets to declare multidimensional arrays, as in C:

typedef int two_by_four [2] [4];

Only the first dimension of a multidimensional array can be unspecified:

typedef int n_by_four [] [4]; /* this is valid */
typedef int two_by_n [2] []; /* this is NOT valid */

6.6 Operation Declarations
The NIDL operation_declaration is analogous to a C function heading. An operation
declaration has the following form:

[operation_attribute _list] 0 _type _specifier operation_declarator (parameter _list) ;

Entries in a parameter list are separated by commas. Each entry has the following
form: -

p _type_specifier [field_attribute _list parameter _attribute_list] parameter_declarator

The following subsections discuss the parts of an operation declaration.

6.6.1 Operation Attributes
The optional operation_attribute _list includes one or more of the following
keywords, separated by commas:

idempotent
broadcast
maybe
comm_status

6.6.1.1 The idempotent Attribute - By default, the RPC runtime library provides "at
most once" call semantics. These semantics ensure that an operation, when called
once, is executed not more than once. They require the server to save the results of
an operation until the client acknowledges its receipt of those results.

The idempotent attribute specifies that an operation can be executed any number
of times. If an operation is idempotent, the server does not need to save results and
the client does not need to issue acknowledgements, so performance is improved.
Use the idempotent attribute for any operation that can safely be executed more
than once; for instance, an operation that simply reads a value is idempotent, while
one that increments a value is not.

6-8 NIDL C Syntax

6.6.1.2 The broadcast Attribute - The broadcast attribute specifies that the RPC
runtime software should always broadcast an operation to all hosts on the local
network. The broadcast is to a well-known port if one has been specified, to the
Local Location Broker forwarding port if not. When a client calls an operation with
the broadcast attribute, the runtime software automatically clears any binding
from the handle before issuing the remote procedure call.

The RPC runtime library applies idempotent call semantics for all broadcast
operations, so it executes any operation with the broadcast attribute as though
the operation also had the idempotent attribute. For clarity, we recommend that
you explicitly specify idempotent whenever you specify broadcast; if you do
not, the NIDL Compiler issues a warning.

You should avoid using the broadcast attribute. See the discussion of unbound
handles and broadcasting in Chapter 5.

6.6.1.3 The maybe Attribute - The maybe attribute specifies that the caller of an
operation does not expect any response and that the RPC runtime software need not
guarantee delivery of the call. Operations with this attribute cannot have any output
parameters and cannot return anything. You might use maybe for an operation that
posts a notification whose receipt is not crucial.

6.6.1.4 The comm_status Attribute - The cornm_status attribute specifies that an
operation returns a completion status, a status code of type s tat u s _ $ t. If a
communications error occurs while the operation is executing, a cleanup handler in
the client stub will handle the error and return the error code as the return value of
the operation. The manager routine for an operation with the cornm status
attribute should be coded to return s tat us _ $ 0 k if successful. -

NIDL also supports a cornm_status parameter attribute; this attribute identifies an
output parameter that will reflect status and hence provides functionality similar to
that of the c ornm _ s tat us operation attribute. Chapter 5 describes the use of status
parameters.

6.6.2 Operation Type Specifiers
The 0 type specifier is the data type that the operation returns. It can be any scalar
type or previously named type, but it cannot be a pointer. For example, if the
operation returns a short integer, specify short as the o_type_specifier. Specify
status $t if the operation has the cornm status operation attribute. Specify
vo i d if the operation does not return. If you omit the 0 _type _specifier, the operation
must return an into

6.6.3 Operation Declarators
The operation _declarator is the name of the operation.

6.6.4 Parameter Lists
The parameters of an operation appear in a parameter _list. The entry for each
parameter takes the following form:

p _type_specifier [field_attribute _list parameter_attribute _list] parameter_declarator

NIDL C Syntax 6-9

Use commas to separate the entries in a parameter _list.

If an interface uses explicit handles, the first parameter in the parameter _list for each
operation must be the explicit handle. If an operation uses manual binding, the
handle must have the type handle_to

6.6.4.1 Parameter Type Specifiers - The p _type _specifier specifies the data type of the
parameter.

6.6.4.2 Field Attributes and Parameter Attributes - The field attribute list can include
last is and max is and can apply only to array parameters. Theassociated last
and max must also be parameters in the parameter _list. Subsection 6.5.3 describes
field attributes; Chapter 7 discusses them in further detail and presents an example.
The parameter _attribute _list can include the following attributes:

in

out

carom status

The parameter is an input. It passes from client to server, that is,
from the calling routine (the caller) to the called routine (the
callee).

The parameter is an output. It passes from server to client, that is,
from the callee to the caller. Output parameters are passed by
reference and must be either pointers or arrays.

The parameter is a status parameter. If a communications error
occurs, a cleanup handler in the client stub will handle the error
and pass the error code to the client in this parameter.

Every parameter must have at least one of the directional attributes in and out. A
list including both in and out indicates that the parameter passes in both
directions.

A parameter with the carom _ s tat u s attribute must be of type s tat u s _ $ t and
must also have at least the out attribute. Chapter 5 describes the use of status
parameters.

Field attributes and parameter attributes can appear in any order. If a parameter has
more than one attribute, separate the attributes with commas.

6.6.4.3 Parameter Declarators - The parameter _declarator specifies the name of each
parameter. By default, in parameters are passed by value. To denote an in
parameter that is passed by reference, precede the parameter _declarator with an
asterisk (*). This construct is typically used when the application software is
implemented in Pascal.

All out parameters are passed by reference. Unless the parameter is an array, you
must precede the parameter _declarator with an asterisk (*).

Use brackets to specify arrays. The syntax for array parameters is the same as for
array types, described in Subsection 6.5.4.

6.6.5 Examples
The following declares an operation named simple$ap that takes no parameters,
returns no value, and need not be executed:

[maybe] void simple$op();

6-10 NIDL C Syntax

The interface definition for an xmi t a s application declares the xmi t as $ sum
operation. This idempotent operation returns an integer. Its input parameters are an
explicit RPC handle and a list structure of the named type 1 i s t _ t:

[idempotent]
int xmitas$sum(

handle_t [in] h,
list t [in] list
) ;

The interface definition for a primes application declares the primes$gen
operation. This operation does not return a value. Its parameters include two
pointers and an open array. Its declaration illustrates the use of operation attributes,
field attributes, and parameter attributes:

[idempotent]
void primes$gen(

handle_t [in] h,
int [in, out] *last,
int [in] max,
status_$t [comm_status, out] *st,
int [in, out, last_is (last) , max_is(max)] values[]
) ;

6.7 Data Types
This section describes in detail the type _specifier expressions that you can use in type
declarations and in the parameter lists of operation declarations. These expressions
can specify simple types, constructed types, named types, or the RPC handle type
handle t.

6.7.1 Simple Types
NIDL supports a variety of simple data types including integers, floating-point
numbers, characters, boolean, byte, void, and enumerations:

Integer Types

Type

int
long
short
small
unsigned
unsigned long
unsigned short
unsigned small

Size

32 bits
32 bits
16 bits
8 bits

32 bits
32 bits
16 bits
8 bits

You can include the keyword int after any of the other integer type names.
For example, long and long int are synonymous.

NIDL C Syntax 6-11

Floating-Point types

Type Size

float 32 bits
double 64 bits

The byte Type

The integer types listed in the previous table are subject to data conversion
when the native data representation formats of client and server hosts differ.
The byte type is an 8-bit integer whose representation format is guaranteed
not to be converted. You can protect data of any type from data conversion by
transmitting that type as an array of byte; Chapter 7 discusses the use of
transmitted types.

The Character Type

A char is unsigned. NIDL does not support a signed character.

The boolean Type

Following C convention, a value of ° means' 'false," and any nonzero value
means "true."

The void Type

This type is used for an operation that does not return a value.

Enumerations

enum { identifier list}
short enum { identifier_list}

The enumerated types provide names for integers. An enum is a 32-bit
integer; a short enum is a 16-bit integer. You can declare these types only
in typedef statements. The NIDL Compiler assigns integer values,
beginning at 0, to enum identifiers based on their order in identifier_list. Foi
example:

typedef enum {John, Paul, George, Ringo} beatles;

In this declaration, John gets the value 0, Paul gets 1, George gets 2, and
Ringo gets 3.

6.7.2 Constructed Types
NIDL also supports constructed data types, including sets, strings, structures,
discriminated unions, pointers, and arrays:

Sets

bi tset enum { identifier list}
short bitset enum {identifier_list}

A bi tset is similar to an enumeration, but instead of defining names for
integers, it defines names for bits in a single 32-bit integer, starting with the
least significant bit. A short bi tset defines names for bits in a 16-bit
integer. For example:

typedef bitset enum {Steinhardt, Dalley, Tree, Soyer} guarneri;

6-12 NIDL C Syntax

In this declaration, Steinhardt represents the value of bit 0 in an integer,
Dalley represents bit 1, Tree represents bit 2, and Soyer represents bit 3.

Strings

stringO [length]

A stringO is a C-style null-terminated string, that is, a character array
whose last element is the null character \ O. The length indicates the
maximum length of the string, including the terminating zero byte. For
example:

stringO[7]

The specified string is long enough to hold "Ligeti".

Structures

struct tag {
type_specifier [field_attribute_list] declarator;

A NIDL struct cannot contain pointers unless you apply the
t ran smi t _as type attribute and supply routines to convert the structure to a
transmissible type. The tag is optional.

The field_attribute _list can apply only to arrays. Subsection 6.5.3 describes
field attributes.

An open array can appear in a structure only as the last member. A structure
containing an open array must be passed by reference.

Unions

union switch (dJype_specifier discriminator) tag {
case constant: type_specifier declarator;

defaul t : type_specifier declarator;
}

A NIDL union must be discriminated and hence differs considerably from its
C counterpart. In the union header, you specify a discriminator and its type; the
discriminator selects a member at the time the union is used. The NIDL
union is a combination of C union and switch syntax.

The d _type _specifier and the discriminator are the type and the name of the
discriminator. The d _type _specifier must be one of the simple types described
in Subsection 6.7.1. The NIDL Compiler uses the optional tag to generate
identifiers in source code representations of the union; see Subsection 6.7.5.

A default member, identified by the label de fa u It, can optionally appear
anywhere in the list of cases. At the time the union is used, if the value of
discriminator does not match any constant in the list of cases, the default
member applies. In the absence of a default member, failure to match a
discriminator raises an error.

The NIDL Compiler can generate C source code, but not Pascal source code, to
represent a union with a de fa u It case.

To indicate that several cases take the same declarator, omit the type_specifier,
the declarator, and the semicolon in all but the last case. To indicate an
empty member, omit the type _specifier and the declarator. For example:

NIDL C Syntax 6-13

typedef union switch (int pick) {

case 1
case 2 int fraise;
case 3 float framboise;
case 4
case 5
} berries;

A union, like a struct, cannot contain pointers unless you apply the
transmit_as type attribute and supply routines to convert the union to a
transmissible type.

Subsection 6.7.5 discusses how the NIDL Compiler represents discriminated
unions in the C and Pascal source code it generates.

Pointers

type_specifier *identifier

To specify a pointer, precede the identifier with an asterisk. For example:

A NIDL pointer cannot be null.

The NIDL Compiler generates code that can marshall and unmarshall pointers
only "at top level" and not within any constructed types. You can overcome
this restriction by applying the transmit_as type attribute and supplying
routines to convert the constructed type to a transmissible one.

Arrays

type _specifier identifier [length]

To specify an array, follow the name with brackets enclosing the number of
elements in the array. If length is an asterisk or is omitted, the array is open.
Consecutive pairs of brackets specify a multidimensional array. Subsection
6.5.4 describes array syntax in more detail.

6.7.3 The RPC Handle Type
The handle t type denotes an opaque handle type meaningful to the RPC runtime
library. If you specify this type for the explicit handles or the implicit handle in an
interface, the interface uses manual binding.

6.7.4 Named Types
Named types are types defined by type declarations. For example, the following
typedef statement defines long_int to be a synonym for int:

typedef int long_inti

Section 6.5 describes type declarations in detail.

6.7.5 Representation of Unions
NIDL unions are discriminated, unlike C unions. When the NIDL Compiler
generates C code to represent a NIDL union, it embeds the union and the
discriminator in a C structure. The name of the NIDL union becomes the name of the
C structure. If you assign a tag to the NIDL union in your type declaration, the

6-14 NIDL C Syntax

compiler uses the tag to name the embedded C union; otherwise, the compiler uses a
generic name.

In the following declaration, we assign u tag as the tag for a union named
union_with_tag:

typedef union switch (short i) utag {
case 1:
case 2:

struct { short a, bi } struct1i
case 3:
case 4:

struct
case 5:

char Pi
case 6:

char q;

float x, Yi } struct2i

} union_with_tagi

In the C definition that the NIDL Compiler generates, the union name
union_wi th_tag becomes the name of the embedding structure, and the tag
utag becomes the name of the embedded union':

This example of NIDL Compiler output shows code reformatted for readability and
with comments added.

typedef struct union_with_tag union_with_tagi
struct union with tag {

ndr_$short_int i; /* the discriminator */
union { /* the union */

} ;

/ * case (s): 1, 2 * /
struct {

ndr $short int ai

ndr=$short=int bi
} struct1i

/* case(s): 3, 4 */
struct {

ndr_$short_float Xi
ndr_$short_float Yi
} struct2;

/* case(s): 5 */
ndr Schar Pi
/* case(s): 6 */
ndr_$char qi
} utagi

NIDL C Syntax 6-15

Special Topics 7

This chapter covers the following special topics:

• Open arrays

• Data type conversion

• Automatic binding

• Servers that export multiple interface versions

• Servers that contain multiple managers

The examples in this chapter omit most error-handling code and use ellipsis points
(...) to indicate substantial omissions.

7.1 Open Arrays
DECrpc supports both fixed arrays, which have an explicitly declared length, and
open arrays, which have no explicitly declared length. Since the length of an open
array is not known until runtime, special treatment is required to dynamically inform
stubs about the array length.

This section describes the NIDL constructs associated with open arrays and discusses
the interface definition, client module, and manager module for a simple primes
application that generates prime numbers and passes an open array as input and
output.

7.1.1 NIDL Attributes for Arrays
NIDL provides two field attributes that apply only to arrays: last_is and
max _is. These attributes identify last and max fields that, at runtime, will contain
information about the length of an array. The client stub and server stub use the last
and max information to marshall, unmarshall, and store the array.

An array with last is or max is must be either a member of a structure or a
parameter of an operation. The attributes precede the array name in a
field_attribute _list:

type_specifier [field_attribute_list] array_declarator [array_length]

The array _length is optional. To specify an open array, supply an asterisk (*) as the
array _length or omit the array _length altogether. The field _attribute _list comprises
one or both of the following elements, separated by commas:

last_is (last)
max is (max)

7.1.1.1 The last is Attribute - The last is attribute enables client and server
programsto indicate dynamically the size of an array. This attribute infonns the
NIDL Compiler that, at runtime, last will be the index of the last array element to be
passed. When an array passes from client to server, the client program assigns a
value for last, and the client stub uses this value to marshall the array. Likewise,
when an array passes from server to client, the server manager code assigns a value
for last, and the server stub uses this value to marshall the array.

Note that last is an index, not a count.

The last_is attribute is required for open arrays. For a fixed array, last_is is
not required, but you can use it to increase efficiency when you intend to' pass only
part of the array; the stubs will not marshall any element with an index greater than
last. Examples 7-4 and 7-6 apply last_is to fixed arrays.

An array with last_is can appear either in the parameter list of an operation
declaration or in the declaration of a structure. In an operation declaration, the array
and its last are parameters of the operation; in a structure declaration, the array and
its last are members of the structure, and the array must be the last member.

The following declaration specifies that, at runtime, n 1 a s t will be the index of the
last element to be passed in the array narray:

typedef struct {
int nlasti
char [last_is (nlast)] narraY[]i
} namei

If an array has a last, the stub that sends the array uses the last to detennine how
many elements to marshall, and it embeds the element count in the transmitted
representation of the array. The stub that receives the array uses this embedded count
to detennine how many elements it should unmarshall. Therefore, the last, whether a
structure member or a parameter, must be available to the sending stub but need not
be available to the receiving stub.

If the array and its last are members of a structure, this condition is automatically
met because the array and the last are always sent together. However, if the array
and its last are parameters of an operation, you must ensure that the last parameter
travels with or before the array parameter: an in array requires an in last, but an
out array can have either an in or an out last.

It is possible for a last to serve as both last and max for an array, as described in the
next section.

7.1.1.2 The max_is Attribute - The max_is attribute enables a client program to
indicate dynamically the maximum possible size of an array. This attribute infonns
the NIDL Compiler that, at runtime, max will be the maximum possible index of the
array. The client program assigns the value of max; the server stub uses this value
when it allocates storage for the "surrogate" copy of the array on the server side.

Like last, max is an index, not a count.

You typically apply max _is to open arrays that are returned by the server, but you
can always omit it. If you omit max_is for an open array, the NIDL Compiler uses
the last of the array as its max, as though you had declared max_ is (last) .

Like 1 a s tis, max is can appear in an operation declaration or in a structure
declaration. -In an operation declaration, the array and its max are parameters of the

7-2 Special Topics

operation; in a structure declaration, the array and its max are members of the
structure, and the array must be the last member.

The following declaration specifies both max is and last is attributes for the
array parray:

typedef struct {
int pmax;
int plast;
int [max_is (pmax), last_is(plast)] parray[];
} pixels;

Since the client program supplies max for use by the server stub, max must always
pass from client to server and therefore must have at least the in attribute. If you
omit the max is attribute and allow a last to serve as a max, this directional
requirement applies to the last.

One implication of the preceding paragraph is that a structure containing an open
array can never be simply an out. If you intend the array to pass in the out
direction only, the interface definition should declare the structure as both in and
out, and the client program should set the input value of last to prevent the client
stub from marshalling data; in the C syntax of NIDL, arrays are zero-based, so the
input value of last should be -1.

7.1.2 The primes Interface Definition

Example 7-1 shows the NIDL definition for the prime s interface. This definition
contains only one declaration, that of the primes$gen operation. The operation
passes input and output in the array values.

Example 7·1: The primes.idllnterface Definition

%c
[uuid(443d5ala4000.0d.OO.OO.fe.da.OO.OO.OO), version(l)]
interface primes
{

[idempotent]
void primes$gen(

handle_t [in] h,
int [in, out] *last,
int [in] max,
status_$t [comm_status, out] *st,
int [in, out, last_is (last) , max_is(max)] values[]
) ;

/* the first element of values[] will be used
to hold an input parameter */

The empty brackets indicate that values is an open array. The array, its last, and
its max are all parameters of the primes$gen operation.

This interface definition also illustrates use of the comm_status parameter
attribute. If a communications error occurs during a primes$gen call, a cleanup
handler inserted by the NIDL Compiler in the client stub handles the error and passes
the error code to the client in the st status parameter. Chapter 5 discusses status
parameters.

Special Topics 7-3

7.1.3 The primes Client Module

Example 7-2 shows excerpts from the client module, client. c.

The client initializes values to a length of 1000 elements. It asks the user to
specify the integer up to which prime numbers will be generated, and it assigns this
integer to the first element of values.

The client sets last to 0, so that only one element will pass as input to the server.
When it calls primes$gen, the client supplies 999 as the max parameter, to
ensure that, on return, the array will not exceed the space allocated for it.

When primes$gen returns, the client prints the array elements whose indexes
range from 0 to last.

Example 7-2: Excerpts from the client.c Module for primes

#define MAXVALS 1000

main ()
{

handle_t h;
status~$t st;

ndr_$long_int values [MAXVALS], last;
char buf[100];
int i;

printf("Generate primes up to what integer: H);
gets(buf);
values [0] = (ndr_$long_int)atoi(buf);
last = 0; /* marshall only the first element of the array */
primes$gen(h, &last, MAXVALS-1, &st, values);

printf("Primes are:\n");
for (i = 0; i <= last; i++) printf("%d ", values[i]);
printf("\n");

7.1.4 The primes Manager Module

Example 7-3 shows the manager module, manager. c.

The manager routine primes$gen checks integers for primeness and assigns prime
numbers to elements of values. It quits when it reaches the limit specified on
input by the client or when it reaches the array element with index max. Before it
returns, primes$gen sets last to the index of the last element in value.

Example 7·3: The manager.c Module for primes

#include "primes.h"

globaldef primes_v1$epv_t primes_v1$manager_epv {primes$gen};

void primes$gen(h, last, max, status, values)
handle t h;
status=$t *status;
ndr_$long_int *last, max, values[];
{

ndr_$long_int n, highest = values[O], index 0;

7-4 Special Topics

Example 7-3: (continued)
for (n = 2; n <= highest; n++)

if (is-prime(n» {
values [index++] = n;
if (index > max) break;

*last index-1;
status->all status_$ok;
return;

static int is-prime(n)
ndr_$long_int n;
{

int i;

for (i = n/2; i > 1; i--)
if (i*(n/i) == n) return 0;

return 1;

7.1.5 Related Examples

The xmitas and sparse examples, described in Section 7.2, apply last is to
fixed arrays and also show how to pass an array as a member of a structure.

7.2 Data Type Conversion
The NIDL t ran smi t _as attribute lets you associate a transmitted type that stubs
pass over the network with a presented type that clients and servers manipulate.
You write routines to convert between the presented and transmitted types, and you
link those routines with the stubs. Chapter 4 describes the use of transmit as in
NIDL definitions. This section lists the requirements for the conversion routines and
presents two examples: one that uses type conversion to pass a complex data type
and one that uses type conversion for efficiency.

7.2.1 Type Conversion Routines
When you associate a transmitted type with a presented type, you must write four
routines to perform conversion and to manage storage for the types. This section
specifies C prototypes for these routines; in the prototypes, PRES is the name of the
presented type and TRANS is the name of the transmitted type. The
PRES to xmi t rep routine allocates storage for the transmitted type and converts
from the presented type to the transmitted type:

void PRES_to_xmit_rep (presented,transmitted)
PRES presented;
TRANS **transmitted;

The PRES from xmi t rep routine allocates storage for the presented type and
converts from the transmitted type to the presented type:

void PRES_from_xmit_rep (transmitted, presented)
TRANS *transmitted;
PRES *presented;

The PRE S _ f r e e routine frees any storage that has been allocated for the presented
type by PRES_from_xmi t_rep:

Special Topics 7-5

void PRES_free (presented)
PRES presented;

The PRES_free_xmit_rep routine frees any storage that has been allocated for
the transmitted type by PRES_to_xmit_rep:

void PRES_free_xmit_rep (transmitted)
TRANS *transmitted;

7.2.2 Using Type Conversion to Pass Complex Types

The NIDL Compiler cannot generate stub code to marshall and unmarshall complex
types such as trees, linked lists, and structures that contain pointers. Any data type
containing a pointer not "at top level" is complex.

The xmi tas example uses type conversion to pass a linked list as an open array.
The client and server manipulate the linked list type. The client and server stubs
transmit arrays over the network.

This section discusses the interface definition and uti 1 . c module for xmi t as.

7.2.3 The xmitas Interface Definition

Example 7-4 shows the NIDL definition for the xmi tas interface.

Example 7·4: The xmitas.idl Interface Definition

%c
[uuid(441f8a28aOOO.Od.00.00.fe.da.00.00.00), version(l)]
interface xmitas
{

const int MAXELEMENTS = 100;

typedef struct {
int last;

/* maximum size of list */

int [last_is(last)] values[MAXELEMENTS];
} trans_t;

typedef [transmit_as(trans_t)] struct {
int value;
list_t *next;

} list_t;

[idempotent]
int xmitas$sum(handle_t [in] h, list t [in] list);

The transmitted type, trans_t, is a structure whose members are the integer
last and the integer array values. Though values has a declared length, the
last_is attribute is supplied so that no more elements than necessary are passed.

The presented type, 1 i s t _ t, is a linked list structure whose members are the
integer value and the pointer next, which points to the next list_to

There is one operation in the xmi t a s interface, xmi t a s $ sum. Its inputs are h (a
handle) and list (a linked list). The operation returns an integer that is the sum of
the values in list.

7-6 Special Topics

7.2.4 The xmitas util.c Module
Figure 7-5 shows the utile c module, which contains routines to convert between
the 1 i s t _ t and t ran s _ t types and to allocate and free storage for those types.

Example 7-5: The util.c Module for xmitas

#include <stdio.h>
#include "xmitas.h"

static void free_list_recursively(); /* auxiliary function */

void list_t_to_xmit_rep(list, xmit_struct) BO
list_t list;
trans_t **xmit_struct;
{

int count = 0;
list_t *lp = &list;

/* allocate the structure */
*xmit_struct = (trans_t *)malloc(sizeof(trans_t»;

/* copy the values from the list to the array */
while (lp) {

(*xmit_struct)->values[count++] = lp->value;
lp = lp->next;

(*xmit_struct)->last = (ndr_$long_int) (count-l);

void list_t_from_xmit_rep(xmit_struct, list) ~
trans t *xmit struct;
list_t *list;-
{

int index = 0;

/* reconstruct the linked list from the array */
do {

list->value = xmit_struct->values[index++];
if (index <= xmit_struct->last)

list->next = (list_t *)malloc(sizeof(list_t»;
else list->next = NULL;

list = list->next;
while (index <= xmit_struct->last);

void list_t_free(list) ~
list_t list;
{

free_list_recursively(list.next);

void list_t_free_xmit_rep(xmit_struct) ~
trans_t *xmit_struct;
{

free (xmit_struct) ;

static void free_list_recursively(l)
list_t *lp;
{

if (lp->next) free_list_recursively(lp->next);
free(lp);

char *error_text(st)
status_$t st;

Special Topics 7-7

Example 7-5: (continued)

static char buff[200];
extern char *error_$c_text();
return (error_$c_text(st, buff, sizeof buff»;

11] The first routine, list t to xmi t rep, allocates storage for the structure
to be transmitted and then Copies values from the linked list into the array. It
sets (*xmit_struct) ->last to the index of the last element that it copied
to (*xmi t_ struct) ->val ues.

/2] The second routine, list t from xmi t rep, copies values from the
transmitted array into the lillked list, aIlocatulg additional storage as it builds
the list, until it reaches the array element with index last.

13] Any storage allocated by list t from xmi t rep for the linked list is
freed by list t free. - - - -

I!I Any storage allocated by list_t_to_xmit_rep is freed by
list_t_free_xmit_rep.

7.2.5 Using Type Conversion for Efficiency

The sparse example uses type conversion to transmit arrays in a run-Iength
encoded format. The code supplies routines to encode and decode the arrays. The
stubs present sparse arrays to the client and server but pass compact arrays over the
network.

This subsection discusses the interface definition and util·. c module for sparse.

7.2.5.1 The sparse Interface Definition - Figure 7-6 shows the NIDL definition for the
spa r s e interface.

Example 7-6: The sparse.idl Interface Definition

%c
[uuid(442548088000.0d.00.00.fe.da.00.00.00), version(l)]
interface sparse
{

const int ARRAY SIZE = 1000;
const int CARRAY_SIZE = 2000;11]
/* worst case: twice the original size */

/* a run-length-encoded representation of an array */

typedef struct {
int last;
int [last_is (last)] data[CARRAY_SIZE];/2]

} compress_t;

/* this type will be transmitted as a more compact type */
typedef [transmit_as (compress_t)] int compress_array[ARRAY_SIZE];13]

/* this type will be transmitted as is */
typedef int nocompress_array[ARRAY_SIZE];1!I

[idempotent]
int sparse$compress_sum(~

handle_t [in] h,
compress_array [in] array

7-8 Special Topics

Example 7-6: (continued)
) ;

[idempotent]
int sparse$nocompress_sum(~

handle_t [in] h,
nocompress_array [in] array
) ;

111 In the worst case, encoding doubles the length of an array, so the declared
length of the compact array is twice that of the sparse array.

I2J Because we expect the compact array to be shorter we give it the last_is
attribute and embed it in the compress_t structure with a last.

131 The example declares two sparse array types: compress_array has
compress_t as its transmitted form.

~ The array nocompress_array is transmitted unchanged.

r5] Both of the operations in the sparse interface take a sparse array as input
and return the sum of its elements. The operation sparse$compress_sum
passes its inputs in a compact array.

~ The operation sparse$nocompress_sum passes a sparse array.

7.2.5.2 The sparse util.c Module - Example 7-7 shows the util. c module, which
contains the conversion routines for the sparse example. These routines are
similar to those for the xmi tas example.

Example 7-7: The util.c Module for sparse

#include <stdio.h>
#include "sparse.h"

void compress_array_to_xmit_rep(array, xmit_struct) 111
compress_array array;
compress_t **xmit_struct;
{

int rep, val, index = 0, pos = 0;

/* allocate the structure */
*xmit_struct (compress_t *)malloc(sizeof(struct compress_t));

/* run-length encode the array */
do {

rep = 0;
val = array[pos];
while (pos < ARRAY_SIZE && array[pos]

pos++;
rep++;

(*xmit_struct)->data[index] rep;
(*xmit struct)->data[index+l] = val;
index += 2;

while (pos < ARRAY_SIZE);

(*xmit struct)->last = index-l;12J

val) {

void compress_array_from_xmit_rep(xmit_struct, array) ~
compress_t *xmit_struct;
compress_array *array;

Special Topics 7-9

Example 7-7: (continued)

int index, rep, count 0;

for (index = 0; index < xmit_struct->last; index+=2)
for (rep = 0; rep < xmit_struct->data[index]; rep++)

(*array) [count++J = xmit_struct->data[index+l];

void compress_array_free(object) ~
compress_array object;
{

/* no freeing is appropriate here */

void compress_array_free_xmit_rep(xmit_struct) ~
compress_t *xmit_struct;
{

free(xmit_struct);

char *error_text(st)
status_$t st;
{

static char buff[200];
extern char *error_$c_text();

return (error_$c_text(st, buff, sizeof buff»;

11] The compress array to xmi t rep routine allocates storage for the
compact array and then encodes the sparse array.

~ The routine sets (* xmi t s t ru c t) - > 1 a s t to the index of the last element
that it copied to (*xmi t,=struct) ->data, so that no more elements are
passed than necessary.

131 The compress array from xmi t rep routine decodes the compact
array, reconstructing the sparse array. Storage for the sparse array has already
been allocated, so this routine does not perform any allocation.

~ Since compress_array_from_xmit_rep did not allocate any storage,
compress_array _free does not need to free any and thus is defined as a
null operation.

~ Storage allocated by compress_array_to_xmit_rep is freed by
compress_array_free_xmit_rep.

7.2.5.3 Restrictions - You cannot use a data type with the transmit as attribute as an
element of an array or as a member of a structure or union. In effect, you can use a
type with transmit_as only as an operation parameter.

A data type with the t ran smi t _as attribute cannot serve as the transmitted type
for another type.

7.3 Automatic Binding
Automatic binding allows a client to represent objects with generic handles rather
than RPC handles. The data type of a generic handle must have the handle type
attribute. The generic handle can be either a first parameter in each operation (an
explicit handle) or a global variable in the client (an implicit handle).

7-10 Special Topics

Since the RPC runtime library uses only RPC handles, you must supply an
autobinding routine that generates RPC handles from generic handles. The client stub
invokes the autobinding routine each time the client makes a remote procedure call.
In addition, you supply an autounbinding routine that performs any necessary cleanup
(for instance, freeing the RPC handle) after the remote call returns.

7.3.1 Automatic Binding Activity

If an application uses automatic binding, the following occurs when the client makes
a remote procedure call:

1. The client makes a remote procedure call, through the client switch, to the stub.
The client provides a generic handle either as the first parameter of the call (an
explicit handle) or through a global variable (an implicit handle).

2. The stub calls the autobinding procedure, passing to it the generic handle.

3. The autobinding procedure returns an RPC handle to the stub.

4. The stub uses the RPC handle as a parameter to the rpc_ $sar library routine.

5. The rpc_ $sar routine returns the server response to the stub.

6. The stub calls the autounbinding procedure, passing to it the RPC handle.

7. The autounbinding procedure frees the RPC handle and any unneeded resources
associated with the generic handle.

8. The stub returns to the client.

7.3.2 Autobinding and Autounbinding Routines

When you use a generic handle type, you must write autobinding and autounbinding
routines. This example shows the autobinding routine for UUIDs from the bank
example. (Example 7-8 shows the entire routine.) The routine generates an RPC
handle from an object UUID and returns the RPC handle:

handle_t uuid_$t_bind(object)
uuid_$t object;

The next examples show C prototypes for these routines; in the prototypes,
GENERIC is the name of the generic handle type (replacing uuid_ $t in the
previous example). The autobinding routine GENERIC_bind generates an RPC
handle from a generic handle and returns the RPC handle:

handle t GENERIC bind (g-handle)
GENERiC g-handle; -

The autounbinding routine GENERIC unbind takes two inputs, a generic handle
and the RPC handle that was generated from it, and has no outputs:

void GENERIC unbind (g-handle, rpc-handle)
GENERIC g-handle;
handle_t rpc-handle);

An autounbinding routine typically frees the RPC handle and any unneeded resources
associated with the generic handle, but it is not required to do anything.

Special Topics 7-11

7.3.3 Automatic Binding in the bank Example
Examples 7-8 and 7-9 show the autobinding and auto unbinding routines from the
bank example.

These routines, defined in the uuidbind. c module, enable the bank example to
use UUIDs as generic handles. They maintain a cache of handles to save the expense
of invoking lb $lookup object and rpc $bind every time the client makes
a remote procedure call; thiS-approach is particuiarly useful in applications where the
client tends to make several calls to access the same object. The file nbase. idl
defines the UUID data type, uuid_ $t, and assigns to this type the handle type
attribute.

7.3.3.1 The bank Autobinding Routine - The autobinding routine, uuid_$t_bind,
searches the cache for an RPC handle that matches the generic handle (the object
UUID). If there is no matching handle in the cache, it calls Ib_$lookup_object
to get the location of the object and calls rpc $bind to create a new handle. It
uses rpc_$dup_handle to return a copy ofthe handle.

Each handle in the cache has an associated reference count. When all copies of a
handle have been freed, meaning that its binding is not in use, the "original" handle
is kept available but is considered "collectible." If its entry in the cache is needed
for a new handle, it can be freed.

Example 7·8: An Autobinding Routine for UUIDs

/*
* Table mapping UUIDs into RPC handles.
*/

static struct db_entry
boolean valid; /* Is this entry valid? */

/* Object UUID */ uuid_ $t obj;
handle_t handle;
unsigned short refcnt;

uuid_db[MAX_ENTRIES];

/* RPC handle for the object */
/* # of references on this entry */

/*
* Autobinding procedure for type "uuid_$t".
*/

handle_t uuid_$t_bind(object)
uuid_$t object;
{

short i, invalid_i = -1, collectible i-I;
lb_$entry_t lb_entry;
unsigned long n_results;
status_$t st;
lb_$lookup_handle_t lookup_handle lb_$default_lookup_handle;

/*
* Scan the table for an entry that has a matching UUID. If
* we find one, return the handle that's stored there. While
* scanning, keep note of the last invalid entry (i.e. one that
* is unused) and the last collectible entry (i.e. one that has
* an object and handle but isn't being referenced by anyone) .
*/

for (i = 0; i < MAX_ENTRIES; i++) {
struct db_entry *db &uuid_db[i];
if (! db->valid)

invalid i = i;
else {

7-12 Special Topics

Example 7-8: (continued)
if (bcmp(&db->obj, &object, sizeof object) == 0)

db->refcnt++;
return (rpc_$dup_handle(db->handle, &st»;

}

/*

if (db->refcnt == 0)
collectible i = i;

* Didn't find a match in the table.
* Ask the LB for the location.
*/

lb_$lookup_object(&object, & lookup_handle, 1L, &n_results,
&lb_entry, &st);

if (st.all != status_$ok I In_results <= 0) {
fprintf (stderr,

n(uuid_$t_bind) Lookup failed, n_results%ld\nn,
n results);

pfm_$signal(st);

/*
* Decide whether we have an entry to use.
* Free the current handle if we're collecting the entry.
*/

if (invalid_i != -1)
i = invalid_i;

else if (collectible_i != -1) {
i= collectible_i;
rpc_$free_handle(uuid_db[i] .handle, &st);

else {
fprintf(stderr, n(uuid_$t_bind) No space in cache\nn);
abort();

/*
* Fill in the entry with our values.
*/

uuid_db[i] .obj
uuid_db[i] .valid
uuid_db[i] .refcnt

/*

object;
true;
1;

* Make an RPC handle for the object and location and return it.
*/

uuid_db[i] .handle rpc_$bind(&object, &lb_entry.saddr,
lb_entry.saddr_len, &st);

if (st.all != status_$ok)
pfm_$signal(st);

return (rpc_$dup_handle(uuid_db[i] .handle, &st»;

7 .3.3.2 The bank Autounbinding Routine - The autounbinding routine,
uuid_$t_unbind, uses rpc_$free_handle to free a copy of the RPC handle
that matches the generic handle and decrements the reference count of the generic
handle.

Special Topics 7-13

Example 7-9: An Autounbinding Routine for UUIDs

/*
* Autounbinding procedure for type "uuid $t".
*/ -

void uuid $t unbind(object, handle) to
uuid_$t object;
handle_t handle;
{

unsigned short i;
status_$t st;

/*
* Scan the table looking for the handle.
*/

for (i = 0; i < MAX_ENTRIES; i++) {
struct db_entry*db = &uuid_db[i];

if (db->valid && db->handle == handle)
rpc $free handle(handle, &st); ~
db->refcnt--; [3J
return;

fprintf(stderr,
" (uuid_$t_bind) tried to free a handle we didn't return\n");

abort();

[jJ The autounbinding routine uuid $t unbind takes two arguments-an
object (of type uuid_t$ and a handie of type handle_to

~ The routine uses rpc $free handle to free a copy of the RPC handle that
matches the generic handle. -

[3J The routine then decrements the reference count of the handle.

7.4 Multiple Interface Versions
DECrpc allows a single server to simultaneously export several versions of an
interface. The binopmv example, an extension of the binop 1 u example
described in Chapter 3, illustrates this feature. -

There are two versions of the binopmv interface. The first version is essentially
identical to the binop _1 u interface; the second version has one additional
operation.

The binopmv example actually does not require a server that exports both versions
of the interface. Chapter 5 describes a way to add operations to interfaces while
maintaining backward compatibility. However, binopmv illustrates the most
general way to compatibly modify an interface.

This section describes the interface definitions, the client modules, the server module,
and the manager module for binopmv.

7.4.1 The binopmv Interface Definitions
The binopmv example has two interface definition files, named vers 1 . idl and
vers2. idl.

7-14 Special Topics

7.4.1.1 The vers1.idllnterface Definition - Example 7-10 shows versl. idl, the
NIOL definition for version 1 of the binopmv interface. This interface definition
declares one operation, binopmv$add.

Example 7-10: The vers1.idl Interface Definition for binopmv

%c
[uuid(4433af7edOOO.Od.OO.OO.fe.da.OO.OO.OO), version(l)]
interface binopmv
{

[idempotent]
void binopmv$add(

handle_t [in] h,
long [in] a,
long [in] b,
long [out] *c
) ;

7.4.1.2 The vers2.idl Interface Definition - Example 7-11 shows vers2. idl, the
NIOL definition for version 2 of the binopmv interface. The definitions for the
two versions of binopmv specify the same interface UUID and the same interface
name, but different version numbers.

The definition for version 2 declares two operations, binopmv$add and
binopmv$sub.

Example 7-11: The vers2.idllnterface Definition for binopmv

%c
[uuid(4433af7edOOO.Od.OO.OO.fe.da.OO.OO.OO), version(2)]
interface binopmv
{

[idempotent)
void binopmv$add(

handle_t [in] h,
long [in) a,
long [in) b,
long [out] *c
) ;

[idempotent]
void binopmv$sub(

handle t [in) h,
long (In] a,
long [in] b,
long [out) *c
) ;

7.4.2 Compiling the Interface Definitions
When you compile interface definitions for an application whose server will export
multiple interface versions, you must specify the NIDL Compiler -m option.

If invoked with -m, the NIDL Compiler appends the version number to the interface
name when it generates identifiers in the stub and header files. In effect, different
versions of an interface have different names.

Special Topics 7-15

The nidl(lncs) reference page describes all of the NIDL Compiler options.

Table 7-1 lists the identifiers that the NIDL Compiler generates for the binopmv
example. These identifiers are all generated from the interface name and the version
number.

Table 7-1: Identifiers in the binopmv Example

Component

EPV type
Client EPV
Server EPV
Interface specifier

Identifier for Version 1

binopmv_vl$epv_t
binopmv_vl$client_epv
binopmv_vl$server_epv
binopmv_vl$if_spec

7.4.3 The binopmv Client Modules

Identifier for Version 2

binopmv_v2$epv_t
binopmv_v2$client_epv
binopmv_v2$server_epv
binopmv_v2$if_spec

There are two client programs. The first, clientl. c, uses version 1 of the
interface and calls binopmv$add. The second, client2. c, uses version 2 of
the interface and calls both binopmv$add and binopmv$sub.

In most respects, the clientl. c and client2. c programs are similar to the
binop 1 u client described in Chapter 3, so this discussion concentrates on the
client program's use of multiple interface versions.

7.4.3.1 Header Files - Each client includes the header file for its version of the interface as
shown in the following examples.

This example shows the include file for clientl. c:

#include "versl.h"

This example shows the include file for client2. c:

#include "vers2.h"

7.4.3.2 Location Broker Lookup Criteria - The clients perform Location Broker lookups
by interface. Each client supplies to lb_$lookup_interface the id member
of the if_spec for its version of the interface.

This example shows the lb_$lookup_interface call for clientl.c:

Ib_$lookup_interface(&binopmv_vl$if_spec.id, &lookup_handle, lL,
. &nresults, &entry, &st)i

This example shows the lb_$lookup_interface call for client2. c:

Ib_$lookup_interface(&binopmv_v2$if_spec.id, &lookup_handle, lL,
&nresults, &entry, &st)i

Although these lookup calls appear to be different, they are in effect identical because
versions 1 and 2 of the interface have the same VVID. Hence, the lookup calls will
return information about all servers for binopmv, regardless of version. Each client
must either check that a server exports the correct version or deal with possible
version mismatches.

7-16 Special Topics

7.4.3.3 Checking Interface Versions - After a binopmv client has obtained the
Location Broker entry for a binopmv server, the client binds its handle to the
location of the server and then checks that the server exports a matching version of
the interface. Example 7-12 shows the version checking code in clientl. c;
client2 . c contains essentially the same code.

Example 7-12: Version Checking Code in the client1.c Module for
binopmv

#include "versl.h"

#define VERSION 1 /* version of interface requested */

handle_t h;
status_$t st;
rrpc_$interface_vec_t ifs;
unsigned long lastif;
int k, passes, found_version;

/* check for appropriate version */

rrpc_$in~interfaces(h, 2L, ifs, (ndr_$long_int *)&lastif, &st); EO
for (k = 0, found version = 0; k <= lastif; k++) ~

if (ifs[k].vers == VERSION) found_version = 1;
if (!found_version) {

fprintf(stderr, "Couldn't get version %d\n", VERSION);
exit (1) ;

else printf("Found version %d\n", VERSION);

EO The client calls rrpc_$in<L-interfaces to obtain an
rrpc $interface vec t, an array of interface specifiers for the
interfaces exported by the server.

12I The client code checks the ve r s member of each interface specifier against its
own version until it finds a match.

7.4.4 The binopmv Server Module
The server module, server. c, largely resembles the binop_lu server described
in Chapter 3, but does all of its registrations and unregistrations twice, once for each
interface version.

7.4.4.1 Registrations and Unregistrations - Example 7-13 shows the registration and
unregistration code in server. c.

Example 7-13: Registrations and Unregistrations in the server.c
Module for binopmv

#include "versl.h" [j]
#include "vers2.h"

globalref uuid_$t uuid_$nil;
globalref binopmv_vl$epv_t binopmv_vl$manager_epv; 12I
globalref binopmv_v2$epv_t binopmv_v2$manager_epv;

Special Topics 7-17

Example 7-13: (continued)

status_$t st;
socket_$addr_t loc;
unsigned long lIen;
lb Sentry t lb entry[2);
pfm_$cleanup_rec crec;

/* register version 1 ... */

rpc_$register_mgr(&uuid_$nil, &binopmv_v1$if_spec, ~
binopmv vl$server epv,
(rpc_$mgr_epv_t)&binopmv_vl$manager_epv, &st);

/* ... and version 2 with the runtime library */

rpc_$register_mgr(&uuid_$nil, &binopmv_v2$if_spec, ~
binopmv_v2$server_epv,
(rpc_$mgr_epv_t)&binopmv_v2$manager_epv, &st);

/* register version 1 with the lb */

lb $register(&uuid $nil, &uuid $nil, &binopmv vl$if spec.id, OL, ~
- (ndr_$char *)7t"binopmv example (v1)", &loc, lIen,

&lb_entry[O) , &st);

/* ... and version 2 with the lb */

lb_$register(&uuid_$nil, &uuid_$nil, &binopmv_v2$if_spec.id, OL, ~
(ndr_$char *)"binopmv example (v2)", &loc, lIen,
&lb_entry[l), &st);

st pfm_$cleanup(&crec); ~
if (st.all ! pfm_$cleanup_set)

status_$t stat;
fprintf(stderr, "Server received signal - %s\n",

error text(st));
lb_$unreglster(&lb_entry[O) , &stat);
lb_$unregister(&lb_entry[l), &stat);
rpc_$unregister(&binopmv_vl$if_spec, &stat);
rpc_$unregister(&binopmv_v2$if_spec, &stat);
pfm_$signal(st);

I1J The server includes the header files for both versions of the interface.

121 The server declares two manager DPVs as external variables.

These EPV s are defined in the manager module. Their names resemble those of
the client and server EPV s, but this is merely by convention. Manager EPV
names are arbitrary, since they appear only in server and manager code that you
write, not in code that the NIDL Compiler generates.

~ Since it exports several interface versions, the binopmv server must register
each of its manager versions with the RPC runtime library at its (the server's)
host. These registrations enable the runtime library to dispatch incoming
requests to the correct version of the manager.

~ This call registers the second version with the runtime library.

I5J The server also registers twice with the Location Broker. These registrations
supply the same UUID to the Location Broker, and hence are indistinguishable
to a client performing lookups. Each entry has a different annotation.

161 This call registers the second version with the Location Broker.

7-18 Special Topics

111 Before it calls rp c _ $1 is ten to begin accepting requests, the server sets a
cleanup handler. If it is signaled, the server removes all of its registrations
before it exits.

7.4.5 The binopmv Manager Module

Figure 7-14 shows manager. c, the manager module for binopmv. This module
contains all the code to implement both versions of binopmv.

Example 7·14: The manager.c Module for binopmv

#include "versl.h" ill
#include "vers2.h"

globaldef binopmv vlSepv t binopmv vl$manager epv = ~
{binopmv$add} -; 13l - - -

globaldef binopmv v2$epv t binopmv v2$manager epv = ~
{binopmv$add, -binopm;$sub}; 15]- -

void binopmv$add(h, a, b, c)
handle_t h;
ndr_$long_int a, b, *c;
{

*c a + b;

void binopmv$sub(h, a, b, c)
handle t h;
ndr_$long_int a, b, *c;
{

*c a - bi

[j] The manager includes both versions of the header file.

~ This global definition defines the manager EPV for version 1.

13l The EPV for version 1 lists only one operation.

~ This global definition defines the manager EPV for version 2.

l51 The EPV for version 2 lists two operations.

7.4.6 Changing Operations in Interfaces with Multiple Versions
In the binopmv example, version 1 and version 2 can share the manager routine for
binopmv$add because the operation is identical in the two versions. If an
operation has different signatures or implementations in two versions of the interface,
you must write two manager routines for the operation.

Suppose you are changing the implementation of binopmv$add between versions
1 and 2, and you are building a server that exports both versions. You must give
distinct names such as binopmv vl$add and binopmv v2$add to the two
versions of the manager routine. Because these names are not declared in the
ve r s 1 . hand ve r s 2 . h header files that the NIDL Compiler generates, you must
declare them in the manager module.

Example 7-15 shows what a binopmv manager with two versions of
binopmv$add might look like.

Special Topics 7-19

Example 7-15: A Manager Module with Two Versions of an Operation

'include "versl.h"
'include "vers2.h"

void binopmv_vl$add();
void binopmv_v2$add();

globaldef binopmv_vl$epv_t binopmv_vl$manager_epv
{binopmv_vl$add};

globaldef binopmv v2$epv t binopmv v2$manager epv
{binopmv_v2$add, binopmv$sub};- -

void binopmv_vl$add(h, a, b, c)
handle_t h;
ndr_$long_int a, b, *c;
{

*c a + b;

void binopmv_v2$add(h, a, b, c)
handle_t h;
ndr_$long_int a, b, *c;
{

*c = b + a;

void binopmv$sub(h, a, b, c)
handle_t h;
ndr_$long_int a, b, *c;
{

*c = a - b;

/* "old implementation" * /111

/* "new implementation" */111

111 In this manager, the two versions of the add operation have different names and
trivially different implementations. Clients of either interface version continue
to invoke the operation by its name in the interface definition, binopmv$add.

Of course, if an operation has a different signature as well as a different
implementation in two versions of an interface, the manager routines and the
interface definitions must reflect this difference.

7.4.7 Constants and Types in Interfaces with Multiple Versions

When you define a manager EPV, you can declare either that two versions of an
interface will share a manager routine (as in Example 7-14) or that they will use
different manager routines (as in Example 7-15). Thus, the names of the manager
routines in a server will not conflict. The names of constants and types, however, can
conflict.

If you declare the same type in two versions of an interface definition, the NIDL
Compiler emits a C typedef declaration for the type in both of the C header files
it generates. When you build a server program that exports both interface versions,
the server includes both header files, and hence the type declarations are duplicated.
Most C compilers reject such duplicate type dec:larations.

To avoid conflicts of type names, extract type declarations that are shared by the two
versions of the interface and put these declarations in a "version-independent"
interface definition that is imported by the two "version-specific" interface
definitions. When you compile the definitions, the NIDL Compiler emits directives
in the version-specific header files to include the version-independent header file. In
effect, a server that exports both versions of the interface includes this file twice, but

7-20 Special Topics

every header file generated by the NIDL Compiler contains conditional statements to
ensure that its contents are read only once, and therefore no declarations are
duplicated.

If you declare a constant in two versions of an interface definition, the NIDL
Compiler emits a C preprocessor #define directive for the constant in both of the
C header files it generates. Though most C preprocessors accept the resulting
duplication, it is better practice to define each constant only once, so we recommend
that you keep shared constants together with shared types in a separate interface
definition file. Example 7-16 shows what an interface definition file for shared types
and constants might look like. The' 'interface" requires a name but no attributes.

Example 7-16: An Interface Definition File for Shared Types and
Constants

%c
interface sharedstuff
{

const VSIZE 1024;

typedef struct {
int vlast;
float [last_is(vlast)] varray [VSIZE];
} values;

7.5 Multiple Managers
DECrpc allows one server to implement an interface for several object types. A
separate manager implements each combination of interface and type. The server
registers its objects and their types with the RPC runtime library and the Location
Broker; it registers its managers with the RPC runtime library. This section describes
the stacks example, in which a server manages two types of stacks, one based on
lists and one based on arrays.

7.5.1 The stacks Interface Definition
Example 7-17 shows stacks. idI, the NIDL definition for the stacks interface.
There are operations to initialize a stack, to push a value onto a stack, and to pop a
value off a stack. Since the interface definition is purely syntactic, it does not
indicate in any way the existence of two types of stacks. Different object types
require different implementations of operations, but not different signatures.

When you compile stacks. idI, specify the NIDL Compiler -m option. The
nidI reference description describes the NIDL Compiler options.

Example 7-17: The stacks.idl Interface Definition

%c
[uuid(4438675bfOOO.Od.0~.00.fe.da.00.00.OO), version(l)]
interface stacks
{

[idempotent]
void stacks$init(

handle_t [in] h
) ;

SpeCial Topics 7-21

Example 7-17: (continued)
1* stack functions return non-zero on error, zero otherwise *1
int stacks$push(

handle t [in] h,
int [in] value
) ;

int stacks$pop(
handle_t [in] h,
int [out] *value
) ;

7.5.2 The stacksdf.h Header File
Most of the examples in this book do not involve a particular object and hence
specify uuid_ $nil as the object identifier. The bank example, introduced to
illustrate automatic binding, accesses two bank databases that are objects of the same
type. The stacks example accesses two stacks that are objects of different types.

The stacksdf. h header file, shown in Example 7-18, defines symbolic constants
to represent UUIDs for the two stacks (AST ACK and" LST ACK) and their types
(AST ACKT and LST ACKT). The replacement texts for these constants are C
representations of UUIDs, which are generated by invoking uuid_gen with the
-c option.

Example 7-18: The stacksdf.h Header File

1* the two stack objects and their types *1
/* the array-based object */
#define ASTACK {Ox44349d2c, Ox2000, OxOOOO, OxOd, \

{OxOO, OxOO, Oxfe, Oxda, OxOO, OxOO, OxOO}}

#define ASTACKT{Ox4434ge25, OxOOOO, OxOOOO, OxOd, \
{OxOO, OxOO, Oxfe, Oxda, OxOO, OxOO, OxOO}}

1* the list-based object *1
#define LSTACK {Ox4434ge48, Ox2000, OxOOOO, OxOd, \

{OxOO, OxOO, Oxfe, Oxda, OxOO, OxOO, OxOO}}

#define LSTACKT{Ox4434geed, Ox6000, OxOOOO, OxOd, \
{OxOO, OxOO, Oxfe, Oxda, OxOO, OxOO, OxOO}}

7.5.3 The stacks Client Module
Example 7-19 shows excerpts from the client module, client. c. The client
program lets the user access both types of stacks within one session; it maintains a
separate handle for each stack. (Other clients discussed maintain only one handle.)
The handles are kept in an array, as are the UUIDs for the stack types. For each
type, the client:

1. Performs a Location Broker lookup by type

2. Scans the entries returned for one with the desired interface and address family

3. Binds a handle to represent the object and the location registered in the entry

When the client program calls stacks$push or stacks$pop, the object UUID
in the handle determines the stack to be accessed.

7-22 Special Topics

Example 7-19: Excerpts from the client.c Module for stacks

#include "stacks.h"
#include "stackdf.h"

#define MAXENTRIES 5 /* how many L.B. entries we can handle */

main ()
{

handle_t handle[2];
status_$t st;
Ib_$entry_t entries[MAXENTRIES];

static uuid_$t types[2] = {ASTACKT, LSTACKT};
int s, t, k, found_if;
ndr_$long_int val;
char command[100], which[100], value[100];

/* bind handles for each object type */
for (t = 0; t < 2; t++) {

/* find Ib entries for the type */
Ib_$lookup_type(&types[t], &lookup_handle, MAXENTRIES, &nresults,

entries, &st);
if (nresults < 1) {

fprintf (stderr,
"Couldn't find interfaces for type[%d]\n", t);

exit(I);

/* check for appropriate interface for the type */
for (k = 0, found if = 0; k < nresults; k++)

if (uuid_$equal (&entries [k] .obj_interface,
&stacks vl$if spec.id) &&

socket_$valId_famIly(entries[k] .saddr.family,&st»

found_if = 1; /* found appropriate interface */
break;

if (! found_if)
fprintf(stderr, "Couldn't find appropriate interface\n");
exit(I);

/* bind handle */
handle[t] = rpc_$bind(&entries[k] .object,

&entries[k] .saddr, entries[k] .saddr_len, &st);

printf("Initialize stack objects (y/n)? H);
gets(command);
if (*command != 'n' && *command != 'N')

stacks$init(handle[O]);
stacks$init(handle[I]);

do
printf("push, pop, or quit: H);
gets(command);

if (!strcmp(command, "quit"» break;

printf("astack or lstack: H);
gets (which) ;

if (!strcmp(which, "astack"» s = 0;
else s = 1;

if (!strcmp(command, "push"» {

Special Topics 7-23

Example 7·19: (continued)
printf("value: ");
gets(value);
val (ndr_$long_int)atoi(value);
printf("Pushing %d onto %5 ... ",

val, s?"lstack":"astack");
if (stacks$push(handle[s], val» printf("stack full!\n");
else printf("successful\n");

else if (!strcmp(command, "pop"» {
printf("Popping off of %5 ... ", s?"lstack":"astack");
if (stacks$pop(handle[s] , &val»

printf("nothing on stack!\n");
else printf("value is %d\n", val);

while (strcmp(command, "quit"»;

7.5.4 The stacks Server Module
The serve r . c module is linked together with two manager modules to form the
stacks server program as shown in Example 7-20.

7.5.4.1 Registrations and Unregistrations - Example 7-20 shows the registration and
unregistration code in server. c.

The stacks server offers access to both types of stacks. It registers the stack
objects and types with the RPC runtime library and the Location Broker, and it
registers its managers with the RPC runtime library.

The Location Broker registrations enable clients to look up the objects, types, and
interfaces that the server supports, along with the location of the server.

Example 7·20: Registrations and Unregistrations in the server.c
Module for stacks

#include "stackdf.h"
#include "stacks.h"

globalref stacks_vl$epv_t stacks_vl$amanager~epv; GO
globalref stacks_vl$epv_t stacks_vl$lmanager_epv;

status $t st;
lb_$entry_t Ib_entry[2];
pfm_$cleanup_rec crec;
static uuid_$t astack
static uuid_$t lstack =

ASTACK, astackt
LSTACK, lstackt

ASTACKT;
LSTACKT;

/* register manager and object for array-based stack object ... */

rpc_$register_mgr(&astackt, &stacks_vl$if_spec, ~
stacks_vl$server_epv,
(rpc_$mgr_epv_t)&stacks_vl$amanager_epv, &st);

rpc_$register_object(&astack, &astackt, &st); ~

/* ... and list-based stack object with the runtime library */

rpc_$register_mgr(&lstackt, &stacks_vl$if_spec, ~
stacks_vl$server_epv,

7-24 Special Topics

Example 7-20: (continued)
(rpc $mgr epv t)&stacks vl$lmanager epv, &st)i

rpc_$register=object(&lstack, &lstackt,-&st)i~

/* register array-based stack object/interface ... */

lb_$register(&astack, &astackt, &stacks_vl$if_spec.id, OL,
(ndr_$char *) "astack example", &loc, llen, &lb_entry[O], &st) i 161

/* ... and list-based stack object/interface with the lb*/

lb $register(&lstack, &lstackt, &stacks vI$if spec.id, OL,
- (ndr_$char *)"lstack example", &loc-; llen:- &lb_entry[l] , &st); 1ZI

st = pfm_$cleanup(&crec); ~
if (st.all ! pfm_$cleanup_set) {

status_$t stat;
fprintf(stderr, "Server received signal - %s\n",

error text(st));
lb_$unregister(&lb_entry[O] , &stat); ~
lb_$unregister(&lb_entry[l] , &stat)i
rpc_$unregister(&stacks_vI$if_spec, &stat); /* once for each */
rpc $unregister(&stacks vI$if spec, &stat); /* manager */
pfm=$signal(st)i - -

[J The server module declares two manager EPV s as external variables.

121 The manager registrations (rpc $register mgr calls) tell the RPC runtime
library what combination of interlace and type each manager implements.
When the server receives a remote procedure call from a client, the runtime
library dispatches the call to the correct manager. This first call registers the
manager for the array-based stack object.

[aJ The object registrations (rpc $register object calls) tell the RPC
runtime library what objects the server supports and what the type of each
object is. This first call registers the array-based stack object.

~ The second manager registration registers the manager for the list-based stack
object.

~ The second object registration registers the list-based stack object with the
runtime library.

16] The Location Broker registrations enable clients to look up the objects, types,
and interfaces that the server supports, along with the location of the server.
This call registers the array-based stack object/interface with the Location
Broker.

IZI The second call to lb $register registers the array-based stack
object/interface. -

[8J Before it calls rpc $listen to begin accepting requests, the server sets a
cleanup handler. -

[9] If the cleanup handler is signaled, the server removes all of its registrations
before it exits.

7.5.5 The stacks Manager Modules
A separate manager module implements the stacks interface for each type of
stack: lmanager. c (Example 7-21) manages stacks based on linked lists, and
amanager . c (Example 7-22) manages stacks based on arrays.

Special Topics 7-25

Each manager module defines a manager EPV. The EPV specifies the names under
which the stacks operations are implemented. Because both managers are being
linked in one server, the two implementations of each operation have different names.

Example 7-21: The Imanager.c Manager Module for stacks

#include "stacks.h"

void stacks$lstack_init();
ndr_$long_int stacks$lstack-push(), stacks$lstack-pop();

globaldef stacks vl$epv t stacks vl$lmanager epv =
{stacks$lstack_init~ stacks$lstack-push,-stacks$lstack-pop};

#define NULL (struct node *)0
extern struct node *malloc();

static struct node {
ndr_$long_int value;
struct node *next;

the_stack;

void stacks$lstack_init(h)
handle_t h;
{

the_stack.next = NULL;

ndr_$long_int stacks$lstack-push(h, value)
handle_t h;
ndr_$long_int value;
{

struct node *head = malloc(sizeof(struct node));
if (head == NULL) return -1; 1* stack is full *1
head->value = value;
head->next = the_stack.next;
the stack.next = head;
return 0;

ndr_$long_int stacks$lstack-pop(h, value)
handle_t h;
ndr_$long_int *value;
{

struct node *head = the_stack.next;
if (head == NULL) return -1;

*value head->value;
the stack.next = head->next;
free(head);
return 0;

1* stack is empty *1

Example 7-22: The amanager.c Manager Module for stacks/

#include "stacks.h"

void stacks$astack_init();
ndr_$long_int stacks$astack-push(), stacks$astack-pop();

globaldef stacks_vl$epv_t stacks_vl$amanager_epv
{stacks$astack_init, stacks$astack-push, stacks$astack-pop};

#define STACKSIZE 1000

static struct
int head;

7-26 Special Topics

Example 7 -22: (continued)
ndr_$long_int values[STACKSIZE];

} the_stack;

void stacks$astack_init(h)
handle_t h;
{

the_stack.head = STACKSIZE;

ndr_$long_int stacks$astack-push(h, value)
handle_t h;
ndr_$long_int value;
{

if (the_stack.head == 0) return -1;

the_stack.values[--the_stack.head] value;

return 0;

ndr_$long_int stacks$astack-pop(h, value)
handle_t h;
ndr_$long_int *value;
{

/* stack is full */

if (the_stack.head == STACKSIZE) return -1; /* stack is empty */
*value = the_stack.values[the_stack.head++];
return 0;

Special Topics 7-27

Glossary

address famB y
A set of communications protocols that use a common addressing mechanism to
identify endpoints. The terms address family and protocol family are used
synonymously in this manual.

allocate a handle
To create a Remote Procedure Call (RPC) handle that identifies an object but
not a location. Such a handle is said to be allocated or unbound.

attributes
Characteristic declared in the Network Interface Definition Language (NIDL).
An interface itself can be described by five attributes: uuid, local, version, port,
implicit_handle. Type declarations and operation declarations also have
specified attributes: type and field.

automatic binding
Binding technique, in which the client uses generic handles that are then
converted to Remote Procedure Call (RPC) handles by automatic binding
routines. In an application that uses automatic binding, the client does not
manage the binding. The handle variable is generic, and the application
developer must supply autobinding and autounbinding routines that convert
generic handles (used by the client) to RPC handles (used by the RPC runtime
library). See also binding state.

binding
The representation of a server in a handle. To bind a handle or to set its
binding is to establish this representation. See also binding state and handle.

binding state
The amount of information in a handle. A Remote Procedure Call (RPC)
handle can exist in three binding states: unbound, bound-to-host, and fully
bound.

binding technique
Determines whether the client uses Remote Procedure Call (RPC) handles
directly or uses generic handles that are then converted to RPC handles. See
also manual binding and automatic binding.

bound-to-host handle
Handle that identifies an object and a host but does not identify the port number
of the server that exports the requested interface. When a client uses a bound
to-host handle to make a remote procedure call, the Remote Procedure Call
(RPC) runtime library sends a message to the Local Location Broker (LLB)
forwarding port on the specified host. The LLB forwards the message to the
server.

bound-to-server handle
See fully bound and binding state.

broadcast
To send a remote procedure call to all hosts in a network.

broker

client

A server that manages information resources, as in a Location Broker.

A process that uses resources. In the context of this manual, a program that
makes remote procedure calls.

entry point vector (EPV)
A record of pointers to the operations in an interface.

explicit handle
A handle that is passed as an operation parameter, rather than represented as a
global variable in the client process. See also implicit handle.

export an interface
To provide the operations defined by an interface. A server exports an interface
to a client.

forward
Automatic dispatch of a request to a server that exports the requested interface
for the requested object. The Local Location Broker (LLB) forwards remote
procedure calls that are sent to the LLB forwarding port on a server host.

fully bound handle
A Remote Procedure Call handle that identifies an object, a host, and a port.

generic handle
Handle variables that are not of type handl e _ t, such as a pathname. See
also RPC handle.

GLB See Global Location Broker.

Global Location Broker (GLB)
A server that maintains global information about objects on a network or an
internet. Part of the Location Broker, it runs as the nrg Ibd daemon.

handle

host

A temporary local identifier for an object. A handle represents for a client
process the object and a server that exports one or more interfaces to the object.
A handle always represent the same object, but it may represent different
servers at different times, or it may not specify a server at all. See also binding.

A computer that is attached to a network.

host ID
An identifier for a host. A host ID uniquely specifies a host within an address
family on a network, but does not specify the network. A host ID may not be
sufficient to establish communications with a host. See also network ID.

idempotent operation
An operation whose results do not affect the results of any operation. For
example, a call that reads a value is idempotent, but an operation that
increments a value is not.

implement an interface

Glossary-2

To provide the routines that execute the operations in an interface. A manager
implements one interface for one type.

implicit handle
A handle that is represented as a global variable in the client process, rather
than passed as an operation parameter. See also explicit handle.

import an interface
To request the operations defined by an interface. A client imports an interface
from a server. See also export.

interface
A set of operations defined by the Network Interface Definition Language
(NIDL).

interface UUID
A Universal Unique Identifier (UUID) that permanently identifies a particular
interface. Both the Remote Procedure Call (RPC) runtime library and the
location broker use interface UUIDs to specify interfaces.

internet
A collection of networks interconnected by gateways.

LB See Location Broker.

LLB See Local Location Broker.

Local Location Broker (LLB)
A server that maintains information about objects on the local host. The LLB
also provides the Location Broker forwarding facility.

Location Broker (LB)
A set of software including the Local Location Broker, the Global Location
Broker, and the Location Broker Client Agent. The Location Broker maintains
information about the locations of objects.

Location Broker Client Agent
Part of the Location Broker. Programs communicate with Global Location
Brokers and Local Location Brokers by means of the Location Broker Client
Agent.

manager
A set of routines that implement the operations in one interface for objects of
one type.

manual binding
A binding technique in which the client uses Remote Procedure Call (RPC)
handles.

marshall
To copy data into a Remote Procedure Call (RPC) packet. Stubs perform
marshalling. See also unmarshall.

network address
A unique identifier (within an address family) for a specific host on a network
or an internet. A network address is sufficient to identify a host, but it does not
identify a communications endpoint within the host.

Network Computing System (NCS)
A set of software components on which DECrpc is based. These components
include the Remote Procedure Call runtime library, the Location Broker, and
the NIDL Compiler.

Glossary-3

Network Interface Definition Language (NIDL)
A declarative language for the definition of interfaces. NIDL has two syntaxes,
one resembling C and one resembling Pascal.

NIDL
See Network Interface Definition Language.

NIDL Compiler
An NCS tool that converts an interface definition written in Network Interface
Definition Language (NIDL) into several program modules, including source
code for client and server stubs. The NIDL Compiler accepts interface
definitions written in either syntax of NIDL; it generates C source code and C
or Pascal header files.

object
An entity that is manipulated by well-defined operations. Disk files, printers,
and array processors are examples of objects. Objects are accessed through
interfaces. Every object has a type.

object UUID
A Universal Unique Identifier (UUID) that identifies a particular object. Both
the Remote Procedure Call (RPC) runtime library and the Location Broker use
object UUIDs to identify objects.

opaque port
A port that is dynamically assigned to a server by the Remote Procedure Call
runtime library. The port number is said to be opaque because there is no need
for either clients or servers to know the number. See also well-known port.

operation

port

A procedure through which an object is accessed.

A specific communications endpoint within a host. A port is identified by a
port number. See also socket.

port number
One of the three parts in a socket address. For example, the character string 77
might represent a port number, while ip:wooster[77] might represent a socket
address.

protocol family
A set of communications protocols, for example, the DARPA Internetwork
Protocols. All members of a protocol family use a common addressing
mechanism to identify endpoints. The terms address family and protocol family
are used synonymously in this manual.

register an interface
To make an interface known to the Remote Procedure Call (RPC) runtime
library and thereby available to clients through the RPC mechanism. The
rpc_ $register call registers an interface.

register a manager

Glossary-4

To make a manager (the code that implements a particular interface for a
particular type) known to the Remote Procedure Call (RPC) runtime library and
thereby available to clients through the RPC mechanism. The
rpc_ $register_mgr call registers a manager.

register an object with the Location Broker
To enter an object and its location in the Location Broker database. The
lb_ $register call registers an object with the Location Broker. A program
can use Location Broker lookup calls to determine the location of a registered
object.

register with the RPC runtime library
Call to rpc_ $register that allows your program to call routines in the
Remote Procedure Call (RPC) runtime library. Initializes access to the runtime
library.

remote procedure call
An invocation of a remote operation. You can make remote procedure calls
between processes on different hosts or on the same host.

Remote Procedure Call (RPC) runtime library
The set of rpc _ $ system calls that DECrpc provides to implement its remote
procedure call mechanism.

RPC See Remote Procedure Call.

RPC handle
A Remote Procedure Call (RPC) handle is a pointer to an opaque data structure
containing the information needed to access an object. The name for this
pointer type is handle _ t.

server
A process that implements interfaces. In the context of this manual, a server
whose procedures can be invoked from remote hosts. A server exports one or
more interfaces for one or more objects.

set a binding
To set the representation of a server location in a Remote Procedure Call (RPC)
handle.

signature
The syntax of an operation, that is, its name, the data type it returns, and the
order and types of its parameters. The definition of an operation specifies only
its signature, not its implementation.

socket
A communications endpoint in the form of a message queue. A socket is
identified by a socket address.

socket address

stub

A data structure that uniquely identifies a specific communications endpoint. A
socket address consists of a port number and a network address.

A program module that transfers remote procedure calls and responses between
a client and a server. Stubs perform marshalling, unmarshalling, and data
format conversion. Both clients and servers have stubs. The NIDL Compiler
generates client and server stub code from an interface definition.

transmitted type
For data types with the transmit_as attribute, the data type that stubs pass
over the network. Stubs invoke conversion routines to convert the transmitted
type to a presented type, which is manipulated by clients and servers.

Glossary-5

type
A class of object. All objects of a specific type can be accessed through the
same interface or interfaces.

type UUID
A Universal Unique Identifier (UUID) that pennanently identifies a particular
type. Both the Remote Procedure Call (RPC) runtime library and the Location
Broker use type UUIDs to specify types.

unbound handle
A Remote Procedure Call (RPC) handle that identifies an object
but not a location. Synonymous with allocated handle.

Universal Unique Identifier (UUID)
An identifier used by DECrpc to identify interfaces, objects, and types.

unmarshall
To copy data from a Remote Procedure Call (RPC) packet. Stubs perfonn
unmarshalling. See also marshall.

well-known port

Glossary-6

A port whose port number is part of the definition of an interface. Clients of
the interface always send to that port; servers always listen on that port. See
also opaque port.

A

address

converting from names, 5-7

obtaining with socket_$from_name routine,

5-7

address families, 1-4

application

See distributed application

arrays, 6-7, 6-14

as parameters, 4-7, 6-10

field attributes, 6-7

in structures, 6-8

in unions, 6-8

multidimensional,6-8

open, 6-7, 7-1, 7-3

packed,7-8

run-length-encoded, 7-8

sparse, 7-8

subscripting, 6-7

assignment of port, 1-5

at most once calling semantics, 6-8

attribute

for UUID in interface definition, 6-2

idempotent, 3-2e, 4-5e

implicit handle, 6-3

10cal,6-4

of interface definition, 6-2

port, 6-3

version of interface, 6-2

autobinding routines, 1-13, 7-12e

prototypes for, 7-11

automatic binding, 7-10 to 7-14

checking UUID in, 5-22e

handle attribute, 6-5

automatic binding (cont.)

in bank example, 7-12e

routines for, 7-12e

stub activity in, 7-11

autounbinding routines, 1-13, 7-13e

prototypes for, 7-11

B
bank example

automatic binding in, 7-12e

checking the UUID in, 5-22e

interface definition for, 4-8

base.idl file, 2-8

bind routine, 7-11, 7-12e

binding

automatic, 7-10 to 7-14

handle attribute, 6-5

stub activity in, 7-11

binding state

bound-to-host handle, 5-7

fully bound handle, 5-7

unbound handle, 5-8

binding techniques, 5-3

binop application

building and running, 3-6

client module for, 3-3, 5-2

Index

comparison to binop_lu and binopjw, 5-1

interface definition, 3-1

manager module for, 3-6

server module for, 3-5

source code, 3-7

user-written files, 3-3

binop_fw application, 5-1

client module for, 5-14

binopJw application (cont.)

manager module for, 5-25

managing RPC handles, 5-3

server for, 5-22

server initialization module for, 5-18, 5-23

server module, 5-17

util.c module, 5-17

binop Ju application

client module for, 3-8

interface definition for, 3-7

Location Broker lookup calls in, 3-7

manager module for, 3-10

server module for, 3-9

binopmv example

client for, 7-16e

description of, 7-14

interface definition compilation for, 7-15e

interface definition for, 7-14e

manager for, 7-1ge

server for, 7-17e

bitset type, 6-12

boolean type, 6-12

Boolean value

false, 6-12

true, 6-12

bound-to-host handle, 1-10

broadcast attribute, 4-6

broadcast messages, 1-5

broadcast operation attribute, 6-9

broker

Global Location Broker, 1-2

Location Broker, 1-2

byte type, 6-12

c
case clause

in unions, 6-13

char type, 6-12

characters, 6-12

signed, 6-12

unsigned, 6-12

cleanup handlers

example of, 5-lle

Index-2

cleanup handlers (cont.)

in servers, 5-20, 5-2Oe

local variables in, 5-12

portability issues, 5-12

use of multiple handlers, 5-12

client, 1-3

example of, 5-14

identification of on server side, 5-22

in client/server paradigm, 1-7

library routines, 2-2, 2-4

comm_status attribute, 4-6

comm _status operation attribute, 6-9

comm_ status parameter

use of, 5-13

comm_status parameter attribute, 5-13,6-10

communication errors, 5-10

compatibility issues

of data types, 5-1

when adding operations to interfaces, 5-10

complex types, 6-6, 7-6

constant declaration, 4-4, 6-5

constants

in interfaces with multiple versions, 7-20

constructed types, 6-12

conversion of data

suppressing, 6-12

converting names to addresses, 5-7

conv.idl file, 2-8

D
daemon

Global Location Broker, 1-16

llbd, 1-16

Local Location Broker, 1-16

nrglbd, 1-16

data conversion

suppressing, 6-12

DECrpc runtime library, 1-1

DECrpc software, 2-1 to 2-9

client library routines, 2-5

components, 2-1

daemons and utilities, 2-1

error library routines, 2-7

DECrpc software (cont.)

fault management routines, 2-7

header files, 2-9

interface definition files, 2-8

library routines, 2-2, 2-3

Location Broker, 2-2

Location Broker daemons, 2-2

Location Broker library routines, 2-6

NIDL Compiler, 2-2

program management routine, 2-7

socket library routines, 2-5

system idl directory, 2-8

uuid library routines, 2-6

directional attributes, ~ 10

discriminators

in unions, ~13

distributed application

binding techniques in, 5-3

binop_fwapplication, 5-1, 5-17

building and running, 3-6

client example, 5-14

client module for, 3-3, 5-2

developing, 5-1

error handling strategies, 5-11, 5-17

example of, 3-1 e

explicit handles, 5-1

interface definition for, 3-1

listening for requests, 5-21

manager module for, 3-6

managing RPC handles, 5-3

manual binding, 5-1

registration of objects, 5-22

server example, 5-17

server for, 3-5

server initialization module for, 5-18

steps in building, 3-1, 5-26

user-written files for, 3-3

util.c module, 5-17

distributed programming with DECrpc, 1-1

double type, ~11

dynamic assignment of ports, 1-5

E

entry point vectors

See EPV

enum type, ~ 12

enumerations, ~12

EPV
defining for manager, 5-21

in manager module, 7-19

in server module, 7-18

managers with multiple interface versions, 7-19

names for manager module, 5-21

with mUltiple managers, 7-26

error handling strategies, 5-11, 5-17

error _ $ library routines, 2-7

errors

causes of, 5-10

handling, 5-9 to 5-10

explicit handles

as operation parameter, 4-3

defined, 1-11

in example, 3-1

in operation declaration, 4-6, ~, ~ 10

external variables

the uuid_$nil variable, 1-3

F

false

Boolean value, ~12

fault management routines, 2-7

field attributes, 7-1

examples of, 7-3

in interface definition, 4-7

in operation declarations, ~ 1 0

in structures, ~ 13

in type declarations, ~ 7

lasCis, 4-5, ~7, ~10

max_is, 4-5, ~7, ~1O

files

base.idl, 2-8

conv.idl, 2-8

glb.idl, 2-8

idCbase.h, 2-9

Index-3

files (cont.)

Ib.idl,2-8

llb.idl, 2-9

nbase.idl, 2-8

ncastat.idl, 2-8

rpc.idl, 2-8

rrpc.idl, 2-9

socket.idl, 2-8

uuid.idl, 2-8

float type, 6-11

forwarding

binop_fw application, 5-1e

port, 1-10

_free routine, 7-5, 7-8e, 7-1Oe

_free_xmit_rep routine, 7-5, 7-8e, 7-lOe

_from_xmit_rep routine, 7-5, 7-8e, 7-1Oe

G
generation of an interface UUID, 4-le

generic handles

defined, 1-13

handle attribute, 6-5

with automatic binding, 7-10

glb.idl file, 2-8

Global Location Broker, 1-16, 1-18

daemon, 1-16

described, 1-2

registration with, 1-17

globaldef declaration, 5-25

H

handle binding techniques, 5-3

handle parameters, 4-6

handle type attribute

described, 4-4

syntax f~r, 6-5

handles

as parameters, 6-10

bound-to-host, 1-10, 5-7

bound-to-server, 1-10

fully bound, 1-10, 5-7

generic, 1-13, 7-10

Index-4

handles (cont.)

generic (cont.)

handle attribute, 6-5

in operation declarations, 6-10

management of, 5-3

management routines, 5-3

RPC type of, 1-13,6-14

server side of, 1-12

unbound, 1-10, 5-8

header files, 2-9

idempotent operation attribute, 3-2e, 4-5e, 4-6,

6-8

idempotent semantics, 5-9

idl_ base.h file

NDR scalar types, 5-2, 2-9

implicit handles

attribute syntax, 6-3

defined, 1-11

import declaration, 4-3 to 4-4, 6-4

in parameter attribute, 6-10

int type, 6-11

integers

types of, 6-11

interface attributes, 4-2, 6-2

interface definition

attributes of, 4-2, 6-2

body of, 6-1

comments in, 6-2

constant declaration, 4-4, 6-5

defined, 1-2

field attributes in, 4-5, 4-7

for binop application, 3-1

handle parameters in, 4-6

heading for, 4-2, 4-3e, 6-1

implicit handle attribute, 6-3

import declaration, 4-3, 6-4

interface names in, 4-2

local attribute, 6-4

operation attributes in, 4-6

operation declaration in, 4-5

parameter attributes in, 4-7

interface definition (cont.)

port attribute, &-3

structure of, &-1

syntax identifier for, &-1

type attributes, 4-4

type declaration, 4-4

UUID attribute of interface, &-2

version attribute for, &-2

writing of, 4-1 to 4-7

interface definition files

example, 3-1

for DECrpc, 2-8

interface mismatches, 5-10

interface UUID

defined, 1-3

generation of, 4-1 e

interfaces

adding operations compatibly, 5-10

checking version of, 7-17

multiple versions of, 7-15

interprocess communications, 1-3

IP protocols, 1-3

socket address structure for, 1-4

L

last Js field attribute

described, 4-5

for arrays, 7-1

in parameter list, &-10

syntax for, &-7

use with arrays, &-7

use with max_is, 7-3e

Ib _ $ library routines, 2-6

lb.idl file, 2-8

library routines, 2-2

client, 2-2

error_$, 2-7

Ib_$,2-6

pfm_$, 2~7

pgm_$,2-7

rpc_$,2-2

rrpc_$,2-5

server, 2-3

library routines (cont.)

sockec$, 2-5

uuid_$,2-6

IIbd daemon, 1-16

where it must run, 1-18

IIb.idl file, 2-9

local attribute, 6-4

Local Location Broker, 1-17

described, 1-2

functionality of, 1-17

registration with, 1-17

software described, 1-16

where daemon must run, 1-18

Location Broker

administrative utility for, 2-2

daemons, 2-2

database entries for, 1-16

introduction, 1-2

library routines, 2-6

registering objects with, 1-17, 5-22

registration of multiple interface versions, 7-17

software, 1-16

Location Broker Client Agent, 1-16, 1-17

described, 1-2

Location Broker lookups

lb_ $lookup _interface call, 5-5

binop_lu application, 3-7

interface definition for, 3-7

when host is unknown, 1-17

long type, &-11

M

manager module

defining EPVs, 5-21

EPV with multiple interface versions, 7-19

EPV with multiple managers, 7-26

identifying an object, 5-21

multiple for interface, 7-21 to 7-27

registration of multiple versions, 7-17

use of multiple, 7-21e

max_is field attribute, 7-1

described,4-5

in parameter list, &-10

Index-5

maxJs field attribute (cont.)

syntax for, 6-7

use with arrays, 6-7

use with lasCis, 7-3e

maybe operation attribute

defined, 4-6

syntax for, 6-9

messages

broadcast type, 1-5

multidimensional arrays, 6-8

open, 6-8

multiple interface versions, 7-14, 7-14e

changing operations in, 7-19

constants in, 7-20

types in, 7-20

multiple managers

examples of, 7-21e

N

name services

designing applications to use, 1-18

Location Broker, 1-18

named types, 6-5, 6-14

names

of manager EPVs, 5-21

of manager routines, 5-21

nbase.idl file, 2-8

ncastat.idl file, 2-8

NCS (Network Computing System)

defined, 1-1

NDR

scalar types in, 5-1

ndr _$ types, 5-1

network addresses, 1-4

Network Computing System

See NCS

Network Data Representation

See NDR

Network Interface Definition Language

See NIDL

NIDL

definition of, 1-2

interface definition in, 4-1

Index-6

NIDL Compiler

input to, 1-2

output from, 1-2,2-2

purpose of, 2-2

null pointers, 6-14

o
object orientation, 1-2

object UUID, 1-3

objects, 1-2

mUltiple managers for, 7-21e

obtaining socket addresses

socket_ $ from_name routine, 5-5

opaque port

definition of, 1-5

open arrays, 6-7,7-1

field attributes of, 6-7

in structures, 6-8

in unions, 6-8

multidimensional, 6-8

use with lascis and max_is, 7-3e

operation attributes

described, 4-6

syntax for, 6-8

operation declarations, 4-5, 6-lOe

syntax for, 6-8

operations, 1-2

adding to interfaces compatibly, 5-10

calling semantics for, 6-8

changing with interface versions, 7-19

declarators of, 6-9

parameters for, 6-9

out parameter attribute, 6-10

p

packed arrays, 7-8

parameter· attributes

comm_status, 6-10

described, 6-10

directional, 6-10

of interface definition, 4-7

status, 6-10

parameter attributes (cont.)

use of comm_status, 5-13e

parameter deciarators, 6-10

parameters

of an operation, 6-9

use of, 5-13

passing by reference

input parameters, 6-10

structures containing open arrays, 6-13

pfm _$ library routines, 2-7

pgm~ $ library routine, 2-7

pointer operator, 6-10

pointers, 6-7, 6-14

as parameters, 4-7, 6-10

in structures, 6-13

in unions, 6-14

null,6-14

restrictions in use, 4-7, 6-14

port, 1-4

attribute, 6-3

definition of opaque, 1-5

definition of well-known, 1-5

dynamic assignment of, 1-5

numbers, 1-4

portability issues

of cleanup handlers, 5-12

of data types, 5-1

portability with DECrpc, 1-1

presented types

routines for conversion, 7-5

storage for, 7-5

primes example, 7-3

client module for, 7-4e

interface definition for, 7-3e

manager module for, 7-4

program management routine, 2-7

protocol families, 1-4

protocols

IP, 1-3

socket address structure for IP, 1-4

supported by DECrpc, 1-3

R

reference

passing parameters by, 6-10, 6-13

registration of

managers with multiple versions, 7-17

multiple interface versions with the Location

Broker, 7-17

objects with the Location Broker, 5-22

server with Global Location Broker, 1-17

server with Local Location Broker, 1-17

remote procedure call definition, 1-3

RPC handles

defined, 1-13

type of, 6-14

RPC runtime library, 1-3

rpc _$ status codes

rpc_$op_rn~error, 5-10

rpc.idl file, 2-8

rrpc _$ library routines, 2-5

rrpc.idl file, 2-9

runtime library, 1-3

s
server

cleanup handlers in, 5-20e

definition of in client/server paradigm, 1-3

definition of RPC server, 1-7

establishing sockets, 5-19

example, 5-17

failures, 5-10

identifying, 5-9

initialization module, 5-18

library routines, 2-3, 2-4

listening for requests, 5-21

looking up by interface, 5-5

manager code for, 5-21

processing arguments, 5-18

registering with the Location Broker, 5-20

registering with the RPC runtime library, 5-19

source code structure, 5-17

sets, 6-12

Index-7

short bitset type, 6-12

short enum type, 6-12

short type, 6-11

signatures of operations

handles parameters in, 6-4

restrictions to, 6-4

simple types, 6-11

small type, 6-11

socket

how to obtain, 5-19

socket abstraction, 1-3

socket addresses, 1-3

data structure for, 1-4

versus port numbers, 1-4

socket_$library routines, 2-5

socket.idl file, 2-8

sparse arrays, 7-8

conversion routines in, 7-ge

in example, 7-8e

in interface definition, 7-8e

stacks example, 7-21e

client for, 7-22

header file for, 7-22

interface definition compilation for, 7-21

interface definition for, 7-21e

managers for, 7-25

server for, 7-24

status parameters

checking, 5-13e

in interface definitions, 5-13, 6-10

initializing, 5-14e, 5-22

use of, 5-13

string terminator, 6-13

strings

types, 6-13

structures, 6-13

open, arrays in, 6-8

pointers in, 6-13

stubs, 1-2

system idl directory, 2-8

Index-8

T

tags

in unions, 6-13, 6-14

_to _ xmit _rep routine, 7-5, 7-ge

transmit_as type attribute

described, 4-4

examples of, 7-6e, 7-8e

restrictions in use of, 7-10

syntax for, 6-6

transmitted types, 7-8e

routines for conversion, 7-5

storage for, 7-5

true

Boolean value, 6-12

type attributes

example of transmicas, 7-6e

handle, 4-4

handle syntax, 6-5

restrictions in use of, 7-10

syntax for, 6-5

transmicas, 4-4, 6-6

transmicas in example, 7-8e

type conversion, 7-5 to 7-10

examples of, 7-6

examples of routines for, 7-7e to 7-1Oe

for efficiency, 7-8

prototype routines for, 7-5

restrictions in use of, 7-10

to pass complex types, 7-6

type declarations

described, 4-4

examples of, 4-5e

syntax for, 6-5

type specifiers, 6-11

type UUID, 1-3

typedef declaration, 6-5

types

arrays, 6-7

complex, 6-6

dec1arators, 6-7

definition of, 1-2

in interfaces with multiple versions, 7-20

in NDR, 5-1

types (cont.)

u

multiple managers for, 7-21e

NOR representation of scalar, 5-1

pointers, 6-7

portability issues with, 5-1

specifiers, 6-6

specifiers for operations, 6-9

specifiers for parameters, 6-10

_unbind routine, 7-11

examples,7-13e

unbound handle, I-tO

alternative to use, 5-8

creation of, 5-4

reasons for use. 5-8

unions

discriminated in NIOL. 6-13

in NIOL, 6-13

open arrays in, 6-8

pointers in, 6-14

representation in generated code, 6-14

tags for, 6-13, 6-14

unregistering

with the Location Broker, 5-20

with the RPC runtime library, 5-20

unsigned integer types, 6-11

user-written files

for application, 3-3

UUID

argument to routines. 5-4

as RPC handle, 4-8e

attribute in interface definition, 6-2

checking in bank example, 5-22e

data structure, 1-3

defined, 1-3

generation of, 1-3, 2-1

generation of for interface, 4-1e

in interface definition, 4-3

routines for manipulating. 2-6

string representation. 1-3

the nil UUIO, 1-3

uuid _$ library routines, 2-6

uuid_$nil external variable, 1-3

uuid _gen utility

described, 1-3

example of use, 4-1e

output from, 2-1

uuid.idl file, 2-8

v
VAXC

globaldef declaration in, 5-25

version attribute, 6-2

versions of interfaces

checking version of. 7-17

version number in interface name. 7-15

void type, 6-12

for operations, 6-9

Volatile macro, 5-12

volatile qualifier, 5-12

w
well-known port

defined, 1-5

use of LB instead, 1-17

x
xmitas example, 7-6e

conversion routines for, 7-7e

interface definition for, 7-6e

Index-9

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040
before placing your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the
Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal *

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital Subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMO/E15
or
Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

* For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments ULTRIX
DECrpc Programming Guide

AA-PBKYA-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor

Accuracy (software works as manual says) 0 0 0 0
Completeness (enough information) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 0 0 0

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Nameffitle _______________________________ _ Dept.

Company Date

Mailing Address
_________________ Email ___________________ Phone

- - - - - - • Do Not Tear - Fold Here and Tape

Ilmaama™ -----------------------------[[l-[ll----------::~:::A~E----
NECESSARY

IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

1IIIIIIIIhllllllllllllllllih 11111111111 h 111111111

- - - - - - - . Do Not Tear - Fold Here . - i

Cut
Along
Dotted
Line

