
ULTRIX

The Packet Filter: An Efficient
Mechanism for User-Level Code

Order Number: AA-PBM2A-TE

The Packet Filter: An Efficient
Mechanism for User-Level Network Code

Order Number: AA-PBM2A-TE

June 1990

Product Version: UL TRIX Version 4.0 or higher

ULTRIX

This ACM paper describes the packet filter pseudodevice driver, a kernel-resident network
packet demultiplexer supported by the UL TRIX operating system. The packet filter provides
a raw interface to Ethernets and similar network data link layers.

digital equipment corporation
maynard, massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of DFARS 252.227-7013.

© Digital Equipment Corporation 1990
All rights reserved.

© Association for Computing Machinery 1987. This article was first published in "Proceedings of the Eleventh
ACM Symposium on Operating Systems Principles," Volume 21, Number 5 of Operating Systems Review, a
Quarterly Publication a/the ACM Special Interest Group on Operating Systems.

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

mamalla
CDA
DDIF
DDIS
DEC
DECnet
DEC station

DECUS
DECwindows
DTIF
MASSBUS
MicroVAX
Q-bus
ULTRIX
UL TRIX Mail Connection

ULTRIX Worksystem Software
VAX
VAXstation
VMS
VMS/ULTRIX Connection
VT
XUI

UNIX is a registered trademark of AT&T in the USA and other countries.

Ethernet is a registered trademark of Xerox Corporation.

The Packet Filter:
An Efficient Mechanism for User-level Network Code

Jeffrey C. Mogul
Digital Equipment Corporation Western Research Laboratory

Richard F. Rashid
Michael J. Accetta

Department of Computer Science, Carnegie-Mellon University

Abstract

Code to implement network protocols can be ei
ther inside the kernel of an operating system or in
user-level processes. Kernel-resident code is hard to
develop, debug, and maintain, but user-level im
plementations typically incur significant overhead
and perform poorly.

The performance of user-level network code
depends on the mechanism used to demultiplex
received packets. Demultiplexing in a user-level
process increases the rate of context switches and
system calls, resulting in poor performance. Demul
tiplexing in the kernel eliminates unnecessary over
head.

This paper describes the packet filter, a kernel
resident, protocol-independent packet demul
tiplexer. Individual user processes have great
flexibility in selecting which packets they will
receive. Protocol implementations using the packet
filter perform quite well, and have been in produc
tion use for several years.

1. Introduction
It is not always appropriate to implement networking

protocols inside the kernel of an operating system. Al
though kernel-resident network code can often outper
form a user-level implementation, it is usually harder to
implement and maintain, and much less portable. If
optimal performance is not the primary goal of a
protocol implementation, one might well prefer to im
plement it outside the kernel. Unfortunately, in most
operating systems user-level network code is doomed to
terrible performance.

Permission to copy without fee all or
part of this material is granted provided
that the copies are not made or dis
tributed for direct commercial advantage,
the ACM copyright notice and the title of
the publication and its date appear, and
notice is given that copying is by P7r
mission of the Association for Comput~ng
Machinery. To copy otherwise, or to
republish, requires a fee and/or specific
permission.

In this paper we show that it is possible to get ade
quate performance from a user-level protocol im
plementation, while retaining all the features of user
level programming that make it far more pleasant than
kernel programming.

The key to good performance is the mechanism used
to demultiplex received packets to the appropriate user
process. Demultiplexing can be done either in the ker
nel, or in a user-level switching process. User-mode
demultiplexing allows flexible control over how pack
ets are distributed, but is expensive because it normally
involves at least two context switches and three system
calls per received packet. Kernel demultiplexing is ef
ficient, but in existing systems the criteria used to dis
tinguish between packets are too crude.

This paper describes the packet filter, a facility that
combines both performance and flexibility. The packet
filter is part of the operating system kernel, so it
delivers packets with a minimum of system calls and
context switches, yet it is able to distinguish between
packets according to arbitrary and dynamically variable
user-specified criteria. The result is a reasonably ef
ficient, easy-to-use abstraction for developing and run
ning network applications.

The facility we describe is not a paper design, but the
evolutionary result of much experience and tinkering.
The packet filter has been in use at several sites for
many years, for both development and production use
in a wide variety of applications, and has insulated
these applications from substantial changes in the un
derlying operating system. It has been of clear practical
value.

In section 2, we discuss in greater detail the motiva
tion for the packet filter. We describe the abstract inter
face in section 3, and briefly sketch the implementation
in section 4. We then illustrate, in section 5, some uses
to which the packet filter has been put, and in section 6
discuss its performance.

2. Motivation
Software to support networking protocols has be

come tremendously important as a result of use of LAN
technology and workstations. The sheer bulk of this
software is an indication that it may be overwhelming
our ability to create reliable, efficient code: for ex
ample, 30% of the 4.3BSD Unix [8, 21] kernel source,
25% of the TOPS-20 [10] (Version 6.1) kernel source,
and 32 % of the V-system [4] kernel source are devoted
to networking.

Development of network software is slow and sel
dom yields finished systems; debugging may continue
long after the software is put into operation. Continual
debugging of production code results not only from
deficiencies in the original code, but also from in
evitable evolution of the protocols and changes in the
network environment.

In many operating systems, network code resides in
the kernel. This makes it much harder to write and
debug:

• Each time a bug is found, the kernel must be
recompiled and rebooted.

• Bugs in kernel code are likely to cause system
crashes.

• Functionally independent kernel modules may
have complex interactions over shared resources.

• Kernel-code debugging cannot be done during
normal timesharing; single-user time must be
scheduled, resulting in inconvenience for
timesharing users and odd work hours for system
programmers.

• Sophisticated debugging and monitoring facilities
available for developing user-level programs may
not be available for developing kernel code.

• Kernel source code is not always available.
In spite of these drawbacks, network code is still
usually put in the kernel because the drawbacks of put
ting it outside the kernel seem worse. If a single user
level process is used for demultiplexing packets, then
for each received packet the system will have to switch
into the demultiplexing process, notify that process of
the packet, then switch again as the demultiplexing
process transfers the packet to the appropriate destina
tion process. (Figure 2-1 depicts the costs associated
with this approach.) Context switching and inter
process communication are usually expensive, so
clearly it would be more efficient to immediately
deliver each packet to the ultimate destination process.
(Figure 2-2 shows how this approach reduces costs.)
This requires that the kernel be able to determine to
which process each packet should go; the problem is
how to allow user-level processes to specify which
packets they want.

One simple mechanism is for the kernel to use a
specific packet field as a key; a user process registers
with the kernel the field value for packets it wants to

receive. Since the kernel does not know the structure of
higher-layer protocol headers, the discriminant field
must be in the lowest layer, such as an Ethernet [9]
"type" field. This is not always a good solution. For
example, in most environments the Ethernet type field
serves only to identify one of a small set of protocol
families; almost all packets must be further dis
criminated by some protocol-specific field. If the ker
nel can demultiplex only on the type field, then one
must still use a user-level switching process with its
attendant high cost.

Demux
process Network Kernel

Destination
process

Figure 2-1: Costs of demultiplexing in a user process

Network Kernel
Destination
process

Figure 2-2: Costs of demultiplexing in the kernel

The packet filter is a more flexible kernel-resident
demultiplexer. A user process specifies an arbitrary
predicate to select the packets it wants; all protocol
specific knowledge is in the program that receives the
packets. There is no need to modify the kernel to sup
port a new protocol. This mechanism evolved for use
with Ethernet data-link layers, but will work with most
similar datagram networks.

The packet filter not only isolates the kernel from the
details of specific protocols; it insulates protocol code
from the details of the kernel implementation. The
packet filter is not strongly tied to a particular system;
in its Unix implementation, it is cleanly separated from
other kernel facilities and the novel part of the user
level interface is not specific to Unix. Because protocol
code lives outside the kernel it does not have to be

modified to be useful with a wide variety of kernel
implementations. In systems where context-switching
is inexpensive, the performance advantage of kernel
demultiplexing will be reduced, but the packet filter
may still be a good model for a user-level demultiplexer
to emulate.

In addition to the cost and inconvenience of demul
tiplexing, the cost of domain crossing whenever control
crosses between kernel and user domains has dis
couraged the implementation of protocol code in user
processes. In many protocols, far more packets are ex
changed at lower levels than are seen at higher levels
(these include control, acknowledgement, and duplicate
packets). A kernel-resident implementation confines
these overhead packets to the kernel and greatly reduces
domain crossing, as depicted in figure 2-3. The packet
filter mechanism cannot eliminate this problem; we can
reduce it through careful implementation and by batch
ing together domain-crossing events (see section 3).

Network Kernel
Destination
process

Figure 2-3: Kernel-resident protocols
reduce domain-crossing

User-level access to the data-link layer is not univer
sally regarded as a good thing. Some have suggested
that user programs never need access to explicit net
work communication [23]; others might argue that all
networking should be done within a transport protocol
such as IP [19] or the ISO Transport Protocol [15], with
demultiplexing done by the transport layer code. Both
these arguments implicitly assume a homogeneous net
working environment, but heterogeneity is often a fact
of life: machines from different manufacturers speak
various transport protocols, and research on new
protocol designs at the data-link level is still profitable.

The packet filter allows rapid development of net
working programs, by relatively inexperienced
programmers, without disrupting other users of a
timesharing system. It places few constraints on the
protocols that may be implemented, but in spite of this
flexibility it performs well enough for many uses.

2.1. Historical background
As far as we are aware, the idea (and name) of the

packet filter first arose in 1976, in the Xerox Alto [3].
Because the Alto operating system shared a single ad
dress space with all processes, and because security was
not important, the filters were simply procedures in the
user-level programs; these procedures were called by
the packet demultiplexing mechanism. The first Unix
implementation of the packet filter was done in 1980.

3. User-level interface abstraction
Figure 3-1 shows how the packet filter is related to

other parts of a system. Packets received from the net
work are passed through the packet filter and dis
tributed to user processes; code to implement protocols
lives in each process. Figure 3-2 shows, for contrast,
how networking is done in "vanilla" 4.3BSD Unix;
protocols are implemented inside the kernel and data
buffers are passed from protocol code to user processes.
Figure 3-3 shows how both models can coexist; some
programs may even use both means to access the net
work.

I I Network
I I

Kernel T
Device Driver

Packet Filter

7 I .~

pUP VMTP Network
Monitor

User Processes

Figure 3-1: Relationship between packet filter
and other system components

The programmer's interface to the packet filter has
three major components: packet transmission, packet
reception, and control and status information. We
describe these in the context of the 4.3BSD Unix im
plementation.

Packet transmission is simple; the user presents a
buffer containing a complete packet, including data-link
header, to the kernel using the normal Unix write sys
tem call; control returns to the user once the packet is
queued for transmission. Transmission is unreliable if
the data link is unreliable; the user must discover trans
mission failure through lack of response rather than an
explicit error.

I • Network
I -.I

Kernel 1
Device Driver

IP

TCP 1 UDP

/ \ ~

User Processes

Figure 3-2: 4.3BSD networking model

I I N k etwor
I -.I

Kernel

Device Driver

IP Packet
TCP I UDP Filter

/ I >< ~
I PUP VMTP

User Processes

Figure 3-3: Packet filter coexisting with
4.3BSD networking model

Packet reception is more complicated. The packet
filter manages some number of ports, each of which
may be opened by a Unix program as a "character spe
cial device." Associated with each port is a jilter, a
user-specified predicate on received packets. If a filter
accepts a packet, the packet is queued for delivery to
the associated port. A filter is specified using a small
stack-based "language," in which one can push ar
bitrary constants or words from the received packet,
and apply binary operations to the top of the stack. The
filter language is discussed in more detail in section 3.1.
A process binds a filter to a port using an ioctl system
call; a new filter can be bound at any time, at a cost
comparable to that of receiving a packet; in practice,
filters are not replaced very often.

Two processes implementing different communica
tion streams under the same protocol must specify
slightly different predicates so that packets .are
delivered appropriately. For example, a program Im
plementing a Pup [2] protocol would include ~ test o?
the Pup destination socket number as part of Its predI
cate. The layering in a protocol architecture is not
necessarily reflected in a filter predicate, which may
well examine packet fields from several layers.

When a program performs a read system call on the
file descriptor corresponding to a packet filter port, the
first of any queued packets is returned. The entire
packet, including the data-link layer header, is returned,
so that user programs may implement protocols that
depend on header information. The program may ask
that all pending packets be returned in a batch; this is
useful for high-volume communications because it can
amortize the overhead of performing a system call over
several packets. Figure 3-4 depicts per-packet over
heads without batching; figure 3-5 shows how these are
reduced when batching is used.

Network Kernel
Destination
process

Figure 3-4: Delivery without
received-packet batching

Network Kernel
Destination
process

Figure 3-5: Delivery with received-packet batching

If no packets are queued, the read system call blocks
until a packet is available; if no packet arrives during a
timeout period, the read call terminates and reports an
error. Simple programs can be written using a "write;
read with timeout; retry if necessary" paradigm. More
elaborate programs may take advantage of two more
sophisticated synchronization mechanisms: the 4.3BSD
select system call, or a interrupt-like facility using Unix

"signals," either of which allows non-blocking net
work IjO.

3.1. Filter language details
The heart of the packet filter is an interpreter for the

"language" shown in figure 3-6. A filter is a data
structure including an array of l6-bit words. Each word
is nonnally interpreted as an instruction with two fields,
a stack action field and a binary operation field.

A stack action may cause either a word from the
received packet or a constant to be pushed on the stack.
A binary operation pops the top two words from the
stack, and pushes a result. Thus, filter programs
evaluate a logical expression composed of tests on the
values of various fields in the received packet. The
filter is nonnally evaluated until the program is ex
hausted. If the value remaining on top of the stack is
non-zero, the filter is deemed to have accepted the
packet.

It is sometimes possible to avoid evaluating the entire
filter before deciding whether to accept a packet. This
is especially important for perfonnance, since on a busy
system several dozen filters may be applied to an in
coming packet before it is accepted. The filter language
therefore includes four "short-circuit" binary logical
operations, that when evaluated either push a result and
allow the program to continue, or tenninate the
program and return an appropriate boolean.

Figure 3-8 shows an example of a simple filter
program; figure 3-9 shows an example of a filter
program using short-circuit operations. Both are used
with Pup [2] packets on a 3Mbit/sec. Experimental
Ethernet [17]; the data-link header is 4 bytes (two
words) long, with the packet type in the second word
(see figure 3-7.) In nonnal use, the filters are not
directly constructed by the programmer, but are
"compiled" at run time by a library procedure.

The design of the filter language is not the result of
careful analysis but rather embodies several accidents
of history, such as its bias towards l6-bit fields. It has
evolved over the years; in particular, the short-circuit
operations were added after an analysis showed that
they would reduce the cost of interpreting filter predi
cates. One could imagine alternatives to the stack lan
guage structure; for example, a predicate could be an
array of lfield-offset, expected-value) pairs, and the
predicate would be satisfied if all the specified fields
had the specified values. However, the additional
flexibility of the stack language has often proved useful
in constructing efficient filters. Since the "instruction
set" is implemented in software, not hardware, there is
no execution-time penalty associated with supporting a
broad range of operations.

1 0 bits 6 bits

F~~trd: 1 _B_i_n_ar_y_O_p_e_r_at_o_r _---r.I_s_t_a_ck_A_ct_io_n.....,,1

16 bits

Literal constant secondl
word: L...-____________________________ ~

(second word used only if Stack Action = PUSHLIT)

Instruction format

Stack Action
NOPUSH
PUSHLIT

Effect on stack
None
Following instruction word
is pushed

PUSHZERO
PUSHONE
PUSHFFFF
PUSHFFOO
PUSHOOFF
PUSHWORD+n

Constant zero is pushed
Constant one is pushed
Constant OxFFFF is pushed
Constant OxFFOO is pushed
Constant OxOOFF is pushed
nth word of packet is pushed

All binary operations except NOP remove two words
from the top of the stack and push one result word. In
the table that follows, the original top of stack is ab
breviated TI, the word below that is T2, and the result is
R. For logical operations (AND, OR, XOR), a value is
interpreted as TRUE if it is non-zero.

Binary
Operation
EQ
NEQ
LT
LE
GT
GE
AND
OR
XOR
NOP

Result on stack
R:= TRUE ifT2 == Tl, else FALSE
R:= TRUE ifT2 <> Tl, else FALSE
R:= TRUE ifT2 < TI, else FALSE
R:= TRUE ifT2 <= Tl, else FALSE
R:= TRUE ifT2 > Tl, else FALSE
R:= TRUE ifT2 >= Tl, else FALSE
R :=T2ANDTl
R:=T20R Tl
R :=T2XOR Tl
No effect on stack

The following "short-circuit" binary operations all
evaluate R := (Tl == T2) and push the result R on the
stack. They return immediately under specified con
ditions, otherwise the program continues.

Binary
operation
COR
CAND
CNOR
CNAND

Returns
immediately
TRUE
FALSE
FALSE
TRUE

if result is
TRUE
FALSE
TRUE
FALSE

Figure 3-6: Packet filter language summary

(16 bits)
-~
Ethernet EtherDst I EtherSrc o

1
2

3
4
5

header

Pup
header

)

~

I-

I-

HopCount

DstNet

SrcNet

EtherType
PupLength

I PupType

Pupldentifier

I DstHost

DstSocket

J SrcHost

SrcSocket

Data

-

-

-

6
7
8
9
10
11

12

Figure 3-7: Format of Pup Packet header
on 3Mb Ethernet (after [2])

This filter accepts all Pup packets with Pup Types
between 1 and 100. The Pup Type field is a one byte
field, so it must be masked out of the appropriate word in
the packet.

struct enfilter f = {

}i

10, 12, 1* priority and length *1
PUSHWORD+1, PUSHLIT I EQ, 2,

1* packet type == PUP *1
PUSHWORD+3, PUSHOOFF I AND,

1* mask low byte *1
PUSHZERO I GT,

1* PupType > 0 *1
PUSHWORD+3, PUSHOOFF I AND,

1* mask low byte *1
PUSHLIT I LE, 100,

1* PupType <= 100 *1
AND, 1* 0 < PupType <= 100 *1
AND 1* && packet type == PUP *1

Figure 3-8: Example filter program

This filter accepts Pup packets with a Pup DstSocket
field of 35. The DstSocket field occupies two words, so
the filter must test both words and combine them with an
AND operation. The DstSocket field is checked before
the packet type field, since in most packets the DstSocket
is likely not to match and so the short-circuit operation
will exit immediately.

struct enfilter f = {

}i

10, 8, 1* priority and length *1
PUSHWORD+8, PUSHLIT I CAND, 35,

1* Low word of socket == 35 *1
PUSHWORD+7, PUSHZERO I CAND,

1* High word of socket == 0 *1
PUSHWORD+1, PUSHLIT I EQ, 2

1* packet type == Pup *1

Figure 3-9: Example filter program
using short-circuit operations

3.2. Access Control
Normally, once a packet has been accepted for

delivery to a process, it will not be submitted to the
filters of any other processes. Because it is not possible
to determine if two filters will accept overlapping sets
of packets, we need a way to prevent one process from
inappropriately diverting packets meant for another
process.

Associated with each filter is a priority; filters are
applied in order of decreasing priority, so if two filters
would both accept a packet, it goes to the one with
higher priority. (Priority has another purpose; if
priorities are assigned proportional to the likelihood
that a filter will accept a packet, then the "average"
packet will match one of the first few filters it is tested
against, consequently reducing the amount of filter in
terpretation overhead.) If two filters have the same
priority, the order of application is unspecified (the in
terpreter may occasionally reorder such filters to place
the busier ones first); in these cases one must take care
to ensure that the filters accept disjoint sets of packets.

Optionally, a process may specify that the packets
accepted by its filter should be submitted to other,
lower-priority, filters as well; mUltiple copies of such
packets may be delivered. This is useful in implement
ing monitoring facilities without disturbing the
processes being monitored, in "group" communication
where a packet may be multicast to several processes
on one host, or when it is not possible to filter precisely
enough within the kernel.

This access control mechanism does not in itself
protect against malicious or erroneous processes at
tempting to divert packets; it only works when
processes play by the rules. In the research environ
ment for which the packet filter was developed, this has
not been a problem, especially since there are many
other ways to eavesdrop on an Ethernet. An earlier
version of the packet filter did provide some security by
restricting the use of high-priority filters to certain
users, allowing these users first rights to all packets, but
this mechanism went unused.

Because typical networks are easily tapped, most
proposals for secure communication rely on encryption
to protect against eavesdropping. If packets are
encrypted, some header fields must be transmitted in
cleartext to allow demultiplexing; this is not peculiar to
use of the packet filter, especially if encryption is on a
per-process basis.

3.3. Control and status information
The user can control the packet filter's action in a

variety of ways, by specifying: the filter to be as
sociated with a packet filter port; the timeout duration
for blocking reads (or optionally, immediate return or
indefinite blocking); the signal, if any, to be delivered
upon packet reception; and the maximum length of the
per-port input queue.

Information provided by the packet filter to programs
includes: the type of the underlying data-link layer; the
lengths of a data-link layer address and of a data-link
layer header; the maximum packet size for the data
link; the data-link address for incoming packets; and the
address used for data-link layer broadcasts, if one ex
ists.

The user can also ask that each received packet be
marked with a timestamp and a count of the number of
packets lost due to queue overflows in the network in
terface and in the kernel.

4. Implementation
The packet filter is implemented in 4.3BSD Unix as a

"character special device" driver. Just as the Unix
terminal driver is layered above communications device
drivers to provide a uniform abstraction, the packet fil
ter is layered above network interface device drivers.
As with any character device driver, it is called from
user code via open, close, read, write, and ioetl system
calls. The packet filter is called from the network inter
face drivers upon receipt of packets not destined for
kernel-resident protocols.

Most of the complexity in the implementation is in
volved in bookkeeping and in managing asynchrony.
When a packet is received, it is checked against each
filter, in order of decreasing priority, until it is accepted
or until all filters have rejected it (see figure 4-1). The
filter interpreter is straightforward, but must be care
fully coded since its inner loop is quite busy. It simply
iterates through the "instruction words" of a filter
(there are no branch instructions), evaluating the filter
predicate using a small stack. When it reaches the end
of the filter, or a short-circuit conditional is satisfied, or
an error is detected, it returns the predicate value to
indicate acceptance or rejection of the packet.

Accepted := false;
for priority := MaxPriority downto

MinPriority do
for i := FirstFilter[priority] to

LastFilter[priority] do
if Apply(Filter[i], rcvd-pkt)

= MATCH then
Deliver(Port[i], rcvd-pkt);
Accepted .= true;

end;
end;

end;
if not Accepted then

Drop'(rcvd-pkt) ;
end;

Figure 4-1: Pseudo-code for filter application loop

The packet filter module is about 2000 lines of
heavily-commented C source code (under 6K bytes of
Vax machine code); each of the network interface
device drivers must be modified with a few dozen lines
of linkage code. Aside from this, the packet filter re
quires no modification of the Unix kernel. Because it is
well-isolated from the rest of the kernel, it is easily
ported to different Unix implementations. Ports have
been made to the Sun Microsystems Inc. operating sys
tem, which is internally quite similar to 4.2BSD, and to
the Ridge Operating System (ROS) of Ridge Com
puters, Inc. ROS is a message-based operating system
with inexpensive processes [1]; its internal structure is
distinctly different from that of Unix. The packet filter
has also been ported to Pyramid Technology's Unix
system, with minor modification for use in a multi
processor. It appears to be relatively easy to port the
packet filter to a variety of operating systems; this in
turn makes it possible to port user-level networking
code without further kernel modifications.

5. Uses of the packet filter
The packet filter is successful because it provides a

useful facility with adequate performance. Section 6
provides quantitative measures of performance; in this
section we consider qualitative utility.

The primary goal of the packet filter is to simplify the
development and improvement of networking software
and protocols. Since networking software is often in a
continual state of development, anything that speeds
debugging and modification reduces the mismatch be
tween the software and the networking environment.
This is especially important for the experimental
development of new protocols. Similarly, since operat
ing systems are continually changing, decoupling net
work code from the rest of the system reduces the risk
of "software rot. ' ,

The remainder of this section describes examples
demonstrating how the packet filter has been of prac
tical use.

5.1. Pup protocols
The Pup [2] protocol suite includes a variety of ap

plications using both datagram (request-response) and
stream transport protocols. At Stanford, almost all of
the Pup protocols were implemented for Unix, based
entirely on the packet filter. Although Pup, as an ex
perimental architecture, has some notable flaws, for
about five years this implementation served as the
primary link between Stanford's Unix systems and
other campus hosts and workstations. Pup is still in
relatively heavy use in a number of organizations, most
of which have used the Stanford implementation.

The experience with Pup has shown the value of
decoupling the networking implementation from the
Unix kernel. Not only did this make it possible to
develop the Pup code without the effort of kernel

debugging, it also made it possible to modify the kernel
without having to worry about the integrity of the Pup
code. When, every few years, a new release of the
Berkeley Unix kernel became available, it sufficed to
re-install the kernel module implementing the packet
filter. The Pup code could then be run, often without
recompilation, under the new operating system. The
initial port of the packet filter code from 4.1 BSD to
4.2BSD took several evenings; for comparison, it took
six programmer-months to port BBN's TCP implemen
tation from 4.1BSD to 4.2BSD [14]. That the BBN
TCP code is kernel-resident undoubtedly contributed to
the time it took to port.

5.2. V -system protocols
The V-system is a message-based distributed operat

ing system. As an ongoing research project, it is under
continual development and revision. The architects of
the V-system have chosen to design their own
protocols, to obtain high performance and so that they
could make use of the multicast feature of Ethernet
hardware [6].

Although the V-system is primarily a collection of
workstations and servers running the V kernel, Unix
hosts were integrated into the distributed system to
provide disk storage, compute cycles, mail service, and
other amenities not available in a new operating system.
The Unix hosts had to be taught to speak the V-system
Inter-Kernel Protocol (IKP). Fortunately, the packet
filter was available for use as the basis of a user-level V
IKP server process.

The V IKP is a simple protocol and could have been
put in the Unix kernel. This, however, would have
required the V researchers to learn about the details of
the Unix kernel, to participate in the maintenance of the
kernel, and to re-install the IKP implementation in each
new release of the operating system. Instead, they were
able to devote their attention to research on the topics
that interested them. One result of this research was the
VMTP protocol [5], a replacement for the V IKP. Al
though there is a kerne~-resident implementation of
VMTP for 4.3BSD, the first implementation used the
packet filter. The user-level implementation allowed
rapid development of the protocol specification through
experimentation with easily-modified code. (Section
6.3 contrasts the performance differences between the
two VMTP implementations.)

5.3. RARP
The Reverse Address Resolution Protocol

(RARP) [12] was designed to allow workstations to
determine their Internet Protocol (lP) addresses without
relying on any local stable storage. One issue in the
definition of this protocol was whether it should be a
layer above IP, or a parallel layer. The former leads to
a chicken-or-egg dilemma; the latter is cleaner but
raised question of implementability under 4.2BSD.
With the packet filter, however, a RARP implemen-

tation was easy; the work was done in a few weeks by a
student who had no experience with network program
ming, and who had no need to learn how to modify the
Unix kernel.

5.4. Network Monitoring
For the developer or maintainer of network software,

no tool is as valuable as a network monitor. A network
monitor captures and displays traces of the packets
flowing among hosts; a packet trace makes it much
easier to understand why two hosts are unable to com
municate, or why performance is not up to par.

Most commercially-available network monitors
(including the Excelan LANalyzer [11], the Network
General Sniffer [18], and the Communications
Machinery Corp. LanScan [7]) are stand-alone units
dedicated to monitoring specific protocols. A network
monitor closely integrated with a general-purpose
operating system, running on a workstation, has several
important advantages over a dedicated monitor:

• All the tools of the workstation are available for
manipulating and analyzing packet traces.

• A user can write new monitoring programs to dis
play data in novel ways, or to monitor new or
unusual protocols.

One of us has been using the packet filter, on a
Micro VAX-II workstation, as the basis for a variety of
experimental network monitoring tools. This system
has sufficient performance to record all packets flowing
on a moderately busy Ethernet (with rare lapses), and
more than sufficient performance to capture all packets
between a pair of communicating hosts. Since one can
easily write arbitrarily elaborate programs to analyze
the trace data, and even to do substantial analysis in real
time, an integrated network monitor appears to be far
more useful than a dedicated one. (Sun Microsystems'
etherfind program is another example of an integrated
network monitor. It is based on Sun's Network Inter
face Tap (NIT) facility, which is similar to the packet
filter but only allows filtering on a single packet
field! [22].)

6. Performance
We measured the performance of the packet filter in

several ways. We determined the amount of processor
time spent on packet filter routines, and we measured
the throughput of protocol implementations based on
the packet filter. We compared these measurements
with those for kernel-resident implementations of
similar protocols, and found that in practice packet
filter-based protocol implementations perform fairly
well.

All measurements were made using V AX processors

ISun expects to include our packet-filtering mechanism in a future
release of NIT.

running 4.2BSD or 4.3BSD Unix, using either a
10Mbit/sec or 3Mbit/sec Ethernet. Note that the packet
filter coexists with kernel-resident protocol implemen
tations, without affecting their performance.

6.1. Kernel per-packet processing time
One indication of the packet filter's cost is the kernel

CPU time required to process an "average" received
packet. We measured this time for the packet filter, and
for analogous functions of kernel-resident protocols. A
4.3BSD Unix kernel was configured to collect the CPU
time spent in and number of calls made to each kernel
subroutine. The profiled kernel was run for 28 hours on
a timesharing VAX-1I/780, and gprof[13] was used to
format the data.

During the profiling period, the system handled 1.3
million packets. 21% of these packets were processed
by the packet filter; of the remainder, 69% were IP
packets and 10% were ARP packets. All per-packet
processing times reported are for "average" packets
and "typical" filter predicates.

Processing times for transmitted packets are about
the same for either the packet filter or the kernel
resident IP implementation; it takes about 1 mSec to
send a datagram. The packet filter has a slight edge,
since it does not need to choose a route for the
datagram or compute a checksum.

Packet filter: The packet filter spends an average of
1.57 mSec processing each packet. 41% of this
time is spent evaluating filter predicates; the
average packet is tested against 6.3 predicates. We
derived a crude estimate for the time to process a
packet: 0.8 mSec + (0.122 * number of predicates
tested) mSec. The average number of predicates
tested will normally be somewhat less than half the
number of active ports, because the priority
mechanism described in section 3.2 can cause the
most likely filters to be tested first.

Kernel-resident IP implementation: The average
time required to process a received IP packet was
1.77 mSec. This includes all protocol processing
up to the TCP and UDP layers; if only the IP layer
processing is counted, the average packet requires
about 0.49 mSec. This means that the kernel
resident IP layer is about three times faster than the
packet filter at processing an average packet.

6.2. Total per-packet processing time
The kernel profile does not account for the entire cost

of handling packets. We measured actual packet rates
into and out of user processes on a micro Vax-II running
Ultrix 1.2, using a synthetic load. The results for
packet reception are included in tables 6-8 and 6-9 in
section 6.5.

Although sending data grams via the packet filter
costs less than sending an unchecksummed UDP

datagram of the same size (see table 6-1), we estimate
that this is still about twice the cost for the kernel to
send a datagram on its own. For packets that carry no
useful data (acknowledgements, for example) user-level
protocol implementations pay this additional penalty.

Total Elapsed time per packet sent
packet
size
128 bytes
1500 bytes

via
packet filter
1.9 mSec
3.6 mSec

via
UDP
3.1 mSec
4.9 mSec

Table 6-1: Cost of sending packets

6.3. VMTP performance
The only interesting protocol for which there is both

a packet-filter based implementation and a kernel
resident implementation is VMTP [5]. This provides a
basis for a direct measurement of the cost of user-level
implementation; while there are minor differences in
the actual protocols implemented, and the two im
plementations are not of precisely equal quality, they
follow essentially the same pattern of packet transport.
All these measurements, unless noted, were carried out
using microVax-II processors, 4.3BSD Unix, and a
10Mbit/sec Ethernet. In each case, both ends of the
transfer used identical protocol implementations.

We measured the cost for a minimal round-trip
operation (reading zero bytes from a file). The results,
shown in table 6-2, indicate that the penalty for user
level implementation is almost exactly a factor of two.
On this measurement, the Unix kernel implementation
of VMTP is quite close to the V kernel implementation,
indicating that there is no obvious inefficiency in the
Unix kernel implementation.

VMTP
Implementation
Packet filter
Unix kernel
V kernel

elapsed time/operation
14.7 mSec
7.44 mSec
7.32 mSec

Table 6-2: Relative performance of VMTP
for small messages

We also measured the cost for transferring bulk data
using VMTP. This was done by repeatedly reading the
same segment of a file, which therefore stayed in the
file system buffer cache; consequently, the measured
rates should be nearly independent of disk I/O speed.
(In each trial about 1 Mb was transferred.) We also
measured TCP performance, for comparison; note that
TCP checksums all data, whereas these implemen
tations of VTMP do not. The results, shown in table
6-3, show that in this case the penalty for user-level

implementation of VMTP is almost exactly a factor of
three.

Implementation Rate
Packet filter
Unix kernel VMTP
V kernel VMTP
Unix kernel TCP

112 Kbytes/sec
336 Kbytes/sec
278 Kbytes/sec
222 Kbytes/sec

Table 6-3: Relative performance of VMTP
for bulk data transfer

The packet-filter based implementation measured in
table 6-3 uses received-packet batching. Table 6-4
shows that batching improves throughput by about 75%
over identical code that reads just one packet per sys
tem call; the difference cannot be entirely due to
decreased system call overhead, but may reflect reduc
tions in context switching and dropped packets.

Batching
Yes
No

Rate
112 Kbytes/sec
64 Kbytes/sec

Table 6-4: Effect of received-packet batching
on performance

We also tried to measure the cost of a user-level
demultiplexing process, by simulating it within the
client VTMP implementation. This is done by using an
extra process to receive packets, which are then passed
to the actual VMTP process via a Unix pipe. (In this
case, the server process was not modified.) Table 6-5
shows that user-level demultiplexing has a small cost
(20% greater latency) for short messages, but decreases
bulk throughput by more than a factor of four (much of
this is attributable to the poor IPC facilities in 4.3BSD).

Demultiplexing
done in
Kernel
User process

Elapsed time
per minimal
operation
14.72
18.08

Bulk rate
112 Kbytes/sec
25 Kbytes/sec

Table 6-5: Effect of user-level demultiplexing
on performance

6.4. Byte-stream throughput
We compared the performance of a Pup/BSP (Byte

Stream Protocol) implementation using the packet filter
with that of the IP/TCP [20] implementation in the
4.3BSD kernel. These measurements were carried out
using micro Vax-II processors, 4.3BSD Unix, and a
10Mbit/sec Ethernet.

Table 6-6 shows the rates at which the two im
plementations can transfer bulk data from process to
process. TCP is faster by almost a factor of six. When
used to implement a File Transfer Protocol (FfP), TCP
slows by a factor of two if the source of data is a disk
file, but the BSP throughput remains unchanged, in
dicating that network performance is the rate-limiting
factor for BSP file transfer.

Implementation Rate
Packet filter BSP
Unix kernel TCP

38 Kbytes/sec
222 Kbytes/sec

Table 6-6: Relative performance of
stream protocol implementations

Pup (hence BSP) allows a maximum packet size of
568 bytes, whereas TCP in 4.3BSD uses 1078-byte
packets and so sends only half as many; we found that
if TCP is forced to use the smaller packet size, its per
formance is cut in half. After this correction, TCP
throughput is still three times that of BSP; most of dif
ference is attributable to the cost of BSP's user-level
implementation. This is consistent with the factor-of
two difference we measured for VMTP.

We also measured performance for Telnet (remote
terminal access)2. A program on the "server" host
(Vax-l1/780) prints characters which are transmitted
across the network and displayed at the "user" host.
The results are shown in table 6-7. The "Output rate"
column shows the overall throughput, in characters per
second, for each configuration.

Telnet Network Output
protocol bandwidth rate
Pup/BSP 10 Mbit/sec 1635
IP/TCP 10 Mbit/sec 1757

Pup/BSP 3 Mbit/sec 878
IP/TCP 3 Mbit/sec 933

Table 6-7: Relative performance of Telnet

The first two rows of the table show throughput using
an MC68010-based workstation capable of displaying
about 3350 characters per second. The achieved
throughput is about half that, varying only slightly ac
cording to whether TCP or BSP (and thus the packet
filter) is used. The last two rows, measured with
characters displayed on a 9600 baud terminal, showal
most no difference between BSP and TCP performance.
These output rates are clearly limited by the display
terminal, not by network performance.

2This test was done under 4.2BSD.

In summary, a kernel-resident implementation of a
stream protocol such as VMTP or BSP appears to be
about two or three times as fast as an implementation
based on the packet filter. In many applications, the
actual performance difference may be much smaller;
the packet-filter implementation of VMTP is only 40%
slower than the kernel-resident TCP when used for file
transfer. The VMTP and BSP implementations are
quite useful in practice; disks and terminals are more
often serious bottlenecks than the packet filter.

6.5. Costs of demultiplexing outside the kernel
We asserted in section 2 that using a user-level

process to demultiplex received packets to other
processes would result in poor performance. In section
6.3 we showed that this appears to be true, especially
for bulk-data transfer. In this section, we analyze the
additional cost using measurements of Ultrix 1.2; the
measurements are inspired by those made by
McKusick, Karels, and Leffler [16].

6.5.1. Analytical model
If a demultiplexing process is used, each received

packet results in at least two context switches: one into
the demultiplexing process and one into the receiving
process3. If the system has other active processes, an
additional context switch to an unrelated process may
occur, when the receiving process blocks waiting for
the next packet.

With direct delivery of received packets, in the best
case the receiving process will never be suspended, and
no context switches take place.· In the worst case, with
other active processes, a received packet will cause two
context switches.

Either mechanism requires at least one data transfer
between kernel and process. Since Unix does not sup
port memory sharing, the demultiplexing process re
quires two additional data transfers to get the packet
into the final receiving process.

6.5.2. Cost of overhead operations
Benchmarks indicate that a Micro V AX-II running

Ultrix 1.2 requires about 0.4 mSec of CPU time to
switch between processes, and about 0.5 mSec of CPU
time to transfer a short packet between the kernel and a
process. Therefore, we predict that receiving a short
packet using a demultiplexing process should take at
least 2.3 mSec while for the packet filter, these over
head costs may be as low as 0.5 mSec per packet; the
difference increases for longer packets because data
copying requires about 1 mSec/Kbyte.

3We assume that no batching of packets takes place; this assump
tion breaks down when packets arrive faster than the system can
switch contexts.

6.5.3. Measured costs
These costs are not the only ones associated with

recei ving a packet; they are the ones that are affected by
the use of user-level demultiplexing. We measured the
actual elapsed time required to receive packets of
various sizes; the "demultiplexing process" receives
packets from the network and passes them to a second
process via a Unix pipe. The results are shown in table
6-8. The additional cost of user-level demultiplexing
agrees fairly closely with our predication.

Packet
size
128 bytes
1500 bytes

Elapsed time if demultiplexing
done in done in
kernel
2.3 mSec
4.0mSec

user process
5.0 mSec
9.0mSec

Table 6-8: Per-packet cost of
user-level demultiplexing

Since received-packet batching, as we saw in section
6.3, can amortize the costs of context-switching over
many packets, we repeated our measurements with
batching enabled; the batch size was hard to control but
the results are about the same for four or more packets
per batch. The results are shown in table 6-9; batching
clearly reduces the penalty associated with user-level
demultiplexing, but the difference remains significant.

Packet
size
128 bytes
1500 bytes

Elapsed time if demultiplexing
done in done in
kernel
1.9 mSec
3.5 mSec

user process
2.4 mSec
5.9 mSec

Table 6-9: Per-packet cost of user-level
demultiplexing with

received-packet batching

The measurements in tables 6-8 and 6-9 were made
without any real decision-making on the part of the
demultiplexer. Before we condemn user-level demul
tiplexing on the basis of its high overhead, we must
show that the cost of interpreting packet filters in the
kernel does not dwarf the benefit of avoiding context
switches (presumably, a user-level demultiplexer could
make decisions at least as efficiently and possibly more
so). We measured the cost of interpreting filter
programs of various lengths; the results are shown in
table 6-10. (Batching was enabled and all packets were
128 bytes long.) It usually takes two or three filter
instructions to test one packet field; even with rather
long filters (21 instructions) the additional cost for filter
interpretation is less than the cost of user-level demul
tiplexing if no more than three such long filters are
applied to an incoming packet before one filter accepts
it.

Filter length
(instructions)

° 1
9
21

Elapsed time
per packet
1.9 mSec
2.0 mSec
2.2 mSec
2.5 mSec

Table 6-10: Cost of interpreting packet filters

For filters using short-circuit conditionals, the break
even point is closer to an average of about ten filters
before acceptance, which should occur when more than
twenty filters are active. This means that even if one
assumes zero cost for decision-making in a user-level
demultiplexer, the break-even point comes with twenty
different processes using the network. For packets
longer than 128 bytes, the break-even point comes with
even more active processes.

In summary, kernel demultiplexing performs sig
nificantly better than user-level demultiplexing for a
wide range of situations. This advantage disappears
only if a very large number of processes are receiving
packets.

7. Problems and possible improvements
Since its beginnings in early 1980, the packet filter

has often been revised to support additional applica
tions or provide better performance. There is still room
for improvement.

The filter language described in section 3 only allows
the user to specify packet fields at constant offsets from
the beginning of a packet. This has been adequate for
protocols with fixed-format headers (such as Pup), but
many network protocols allow variable-format headers.
For example, since the IP header may include optional
fields, fields in higher layer protocol headers are not at
constant offsets. The current packet filter can be made
to handle non-constant offsets only with considerable
awkwardness and inefficiency; the filter language needs
to be extended to include an "indirect push" operator,
as well as arithmetic operators to assist in addressing
unit conversions.

The current filter mechanism deals with 16-bit
values, requiring multiple filter instructions to load
packet fields that are wider or narrower. It is possible
that direct support for other field sizes would improve
filter-evaluation efficiency. The existing read-batching
mechanism clearly improves performance for bulk data
transfer; a write-batching option (to send several pack
ets in one system call) might also improve performance.

In addition to these problems, which may be regarded
as deficiencies in the abstract interface, there is room
for improvement in the existing implementation.
During evaluation of each filter instruction, the inter
preter verifies that the instruction is valid, that it doesn't

overflow or underflow the evaluation stack, and that it
doesn't refer to a field outside the current packet. Since
the filter language does not include branching instruc
tions, all these tests can be performed ahead of time
(except for indirect-push instructions); this might sig
nificantly speed filter evaluation. Even more speed
could be gained by compiling filters into machine code,
at the cost of greatly increased implementation com
plexity. Finally, with a redesigned filter language it
might be possible to compile the set of active filters into
a decision table, which should provide the best possible
performance.

Idiosyncrasies of the 4.3BSD kernel create other in
efficiencies. For example, because 4.3BSD network
interface drivers strip the data-link layer header from
incoming packets, the packet filter may be spending a
significant amount of time to restore these headers.
Also, in order to mark each packet with a unique times
tamp, the packet filter calls a kernel subroutine called
microtime; on a VAX-ll/780, this costs about 70 uSec,
probably more than the timestamp is worth.

8. Summary
The performance of the packet filter is clearly better

than that of a user-level demultiplexer, and the perfor
mance of protocol code based on the packet filter is
clearly worse than that of kernel-resident protocol code.
Since the packet filter is just as flexible as a user-level
demultiplexer, we believe that in systems where
context-switching has a substantial cost, it is the right
basis for implementing network code outside the kernel.

Are the advantages of user-level network code, even
with the packet filter, worth the extra cost? Our ex
perience has convinced us that in many cases, it is. The
performance of such code is quite acceptable, and it
greatly eases the task of developing protocols and their
implementations. The packet filter appears to put just
enough mechanism in the kernel to provide decent per
formance, while retaining the flexibility of a user-level
demultiplexer.

Acknowledgments
Many people have used or worked on the packet fil

ter implementation over the years; without their support
and comments it would not be nearly as useful as it is.
Especially notable are those who ported the code to
other operating systems: Jon Reichbach of Ridge Com
puters, Inc., Glenn Skinner of Sun Microsystems, Inc.,
and Charles Hedrick of Rutgers University, who ported
it to Pyramid Technology's system. Steve Deering and
Ross Finlayson of Stanford made the VMTP measure
ments possible. We would like to thank the program
committee and student reviewers for their comments.

References

1. Ed Basart. The Ridge Operating System: High per
formance through message-passing and virtual memory.
Proceedings of the 1st International Conference on
Computer Workstations, IEEE, November, 1985, pp.
134-143.

2. David R. Boggs, John F. Shoch, Edward A. Taft,
and Robert M. Metcalfe. "Pup: An internetwork
architecture." IEEE Transactions on Communications
COM-28, 4 (April 1980), 612-624.

3. David Boggs and Edward Taft. Private communica
tion. 1987.

4. David R. Cheriton. "The V Kernel: A software base
for distributed systems." IEEE Software 1 , 2 (April
1984), 19-42.

5. David R. Cheriton. VMTP: A Transport Protocol
for the Next Generation of Communication Systems.
Proceedings of SIGCOMM '86 Symposium on Com
munications Architectures and Protocols, ACM SIG
COMM, Stowe, Vt., August, 1986, pp. 406-415.

6. David R. Cheriton and Willy Zwaenepoel.
"Distributed process groups in the V kernel." ACM
Transactions on Computer Systems 3,2 (May 1985),
77-107.

7. Communications Machinery Corporation.
DRN-1700 LanScan Ethernet Monitor User's Guide.
4th edition, Communications Machinery Corporation,
Santa Barbara, California, 1986.

8. Computer Systems Research Group. Unix
Programmer's Reference Manual, 4.3 Berkeley
Software Distribution, Virtual V AX-11 Version. Com
puter Science Division, University of California at
Berkeley, 1986.

9. The Ethernet, A Local Area Network: Data Link
Layer and Physical Layer Specifications (Version 1.0).
Digital Equipment Corporation, Intel, Xerox, 1980.

10. TOPS-20 User's Guide. Digital Equipment Cor
poration, Maynard, MA., 1980. Form No. AA-4179C
TM.

11. LANalyzer EX SOOOE Ethernet Network Analyzer
User Manual. Revision A edition, Excelan, Inc., San
Jose, California, 1986.

12. Ross Finlayson, Timothy Mann, Jeffrey Mogul,
Marvin Theimer. A Reverse Address Resolution
Protocol. RFC 903, Network Information Center, SRI
International, June, 1984.

13. Susan L. Graham, Peter B. Kessler, and Marshall
K. McKusick. gprof: a Call Graph Execution Profiler.
Proceedings of the ACM SIGPLAN '82 Symposium on
Compiler Construction, ACM SIGPLAN, June, 1982,
pp. 120-126.

14. Robert Gurwitz. Private communication. 1986.

15. ISO. ISO Transport Protocol Specification: ISO
DP 8073. RFC 905, Network Information Center, SRI
International, April, 1984.

16. M. Kirk McKusick, Mike Karels, and Sam Leffler.
Performance Improvements and Functional Enhance
ments in 4.3BSD. Proc. Summer USENIX Conference,
June, 1985, pp. 519-531.

17. Robert. M. Metcalfe and David. R. Boggs.
"Ethernet: Distributed packet switching for local com
puter networks." Communications of the ACM 19, 7
(July 1976), 395-404.

18. The Sniffer: Operation and Reference Manual.
Network General Corporation, Sunnyvale, California,
1986.

19. Jon Postel. Internet Protocol. RFC 791, Network
Information Center, SRI International, September,
1981.

20. Jon Postel. Transmission Control Protocol. RFC
793, Network Information Center, SRI International,
September, 1981.

21. D. M. Ritchie and K. Thompson. "The UNIX
timesharing system." The Bell System Technical Jour
nalS7, 6 (July/August 1978), 1905-1929.

22. Sun Microsystems, Inc. Unix Interface Reference
Manual. Sun Microsystems, Inc., Mountain View,
California, 1986. Revision A.

23. Brent B. Welch. The Sprite Remote Procedure
Call System. UCB/CSD 86/302, Department of Electri
cal Engineering and Computer Science, University of
California - Berkeley, June, 1986.

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040
before placing your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the
Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

* Internal

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital Subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMO/E15
or
Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

* For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments ULTRIX
The Packet Filter: An Efficient

Mechanism for User-Level Network Code
AA-PBM2A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor

Accuracy (software works as manual says) D D D D
Completeness (enough information) D D D D
Clarity (easy to understand) D D D 0
Organization (structure of subject matter) D D D 0
Figures (useful) D D 0 0
Examples (useful) D D D D
Index (ability to find topic) D 0 0 0
Page layout (easy to find information) 0 0 D 0

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Namerritle Dept.
Company __ ____ Date

Mailing Address
_________________ Email __________________ Phone ______ _

I

I

I
I
I

- - - - - - . Do Not Tear - Fold Here and Tape

IlImaalO1M -----------------------------Irl-Ill----------:~:::::G~----I
NECESSARY

IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

1111111111111111111111111 1IIIIIhllllllil 1111 1111111

- - - - - - -. Do Not Tear - Fold Here . - {

Cut
Along
Dotted
Line

Reader's Comments ULTRIX
The Packet Filter: An Efficient

Mechanism for User-Level Network Code
AA-PBM2A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor

Accuracy (software works as manual says) 0 D D D
Completeness (enough information) 0 0 0 0
Clarity (easy to understand) 0 0 D 0
Organization (structure of subject matter) 0 0 D D
Figures (useful) 0 0 D D
Examples (useful) 0 D D D
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 D D D

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Nameffitle ______________________ Dept.

Company Date _____ _

Mailing Address _____________________________ _

____________ Email ____________ Phone ______ __

I
I
I
I
I
I

- - - - - - . Do Not Tear - Fold Here and Tape

IJII~allmDTM
-----------------------------Ill-Ill----------:~::::A~~ ____ I

NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-2/Z04
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

1IIIIIIIIhllllllllllllil 1111111111111111 11111 dlill

- - - - - - _. Do Not Tear - Fold Here .---- - ---- - ------- - - - -- - - - - -- ----- - ---- - ----- --- - - -- - ----------- J

Cut
Along
Dotted
Line

