

Performance Management Guide

Order Number: AA-PKDVA-TE

December 1991

Product Version:

digital equipment corporation
Maynard, Massachusetts

ULTRIX Version 4.2A or higher

ULTRIX

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1991
All rights reserved.

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-I, Bookreader, CDA, DDIF, DDIS, DEC, DECnet, DECstation, DECsystem, DECUS, DECwindows, DTIF,
MASSBUS, MicroVAX, Q-bus, ULTRIX, ULTRIX Mail Connection, ULTRIX Worksystem Software, UNIBUS,
V AX, V AXstation, VMS, VT, XUI, and the DIGITAL logo.

Ethernet is a registered trademark of Xerox Corporation. Prestoserve is a trademark of Legato Systems, Inc.; the
trademark and software are licensed to Digital Equipment Corporation by Legato Systems, Inc. Xenix, MS-DOS,
and MS-OS/2 are trademarks of Microsoft Corporation. This manual is derived from MIT documentation, which
contains the following permission notice: Permission to use, copy, modify, and distribute this documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appears in all copies and that
both that copyright notice and this permission notice appear in supporting documentation, and that the name of MIT
or DIGITAL not be used in advertising or publicity pertaining to distribution of the software without specific, written
prior permission. MIT and DIGITAL make no representations about the suitability of the software described herein
for any purpose. It is provided "as is," without express or implied warranty. Network File System and NFS are
trademarks of Sun Microsystems, Inc. Open Software Foundation, OSF, OSF/I, OSF/Motif, and Motif are
trademarks of the Open Software Foundation, Inc. UNIX is a registered trademark of UNIX System Laboratories,
Inc. X Window System Version 11 and its derivatives (X, XII, and X Version 11) are trademarks of the
Massachusetts Institute of Technology.

Contents

About This Manual

1 Review of ULTRIX Subsystem Resource Usage
1.1 File System 1-1

1.1.1 Function of the File System .. 1-1

1.1.2 Component Parts of a File System. 1-2

1.1.3 Disk Blocks. .. 1-3

1.1.4 Relationship of File Systems to Devices 1-3

1.1.5 Relationship of Files to Other Files in a File System. 1-4

1.1.5.1 Root Directory 1-4

1.1.5.2 Primary Directories Off of the Root 1-5

1.1.6 Associating a Device with a File System 1-5

1.1.7 Relationship Between the File System and Performance 1-6

1.1. 7 .1 Size of the Files .. 1-6

1.1.7.2 Location of Files 1-6

1.1.7.3 Factors Determined at Time of Configuration 1-6

1.1. 7.4 Organizing Files to Improve Performance 1-7

1.2 Understanding Process Control and Scheduling 1-7

1.2.1 Types of Processes 1-7

1.2.2 Process Priorities and Privileged Processes 1-8

1.2.3 Factors Used to Determine Process Priorities 1-8

1.2.4 Scheduling a Process to Run During Off-Peak Hours 1-8

1.2.5 Relationship Between Process Control and Performance 1-9

1.3 Understanding Memory Management 1-9

1.3.1 Types of Memory Management 1-9

1.3.2 Allocating Memory .. 1-10

1.3.3 Buffer Cache .. 1-10

1.3.4 Swap Area 1-11

1.3.5 Changes in Memory Management that Can Affect
Performance .. 1-11

1.3.5.1 Size of the Buffer Cache. 1-11

1.3.5.2 Size and Location of the Swap Area 1-11

1.3.5.3 System Management .. 1-12

1.4 Understanding the I/O Subsystem 1-12

1.4.1 Components of the I/O Subsystem 1-12

1.4.1.1 Block Devices. .. 1-13

1.4.1.2 Character Devices. .. 1-13

Contents iii

iv Contents

1.4.2 Device Special Files .. 1-13

1.4.2.1 Block Device Switch Table 1-13

1.4.2.2 Character Device Switch Table 1-13

1.4.3 Device Drivers. .. 1-13

1.4.3.1 Device Numbers .. 1-14

1.4.4 Disk Drives. .. 1-14

1.4.5 Tape Drives. .. 1-15

1.4.6 Terminals .. 1-15

1.4.6.1 Control Terminal. .. 1-15

1.4.6.2 Role of the Kernel. .. 1-15

1.4.6.3 Raw Mode Versus Cooked Mode. 1-16

1.4.7 Printers .. 1-16

1.4.8 110 Subsystem's Effect on Performance. 1-17

1.5 Understanding the Network 1-17

1.5.1 Function of a Network. .. 1-17

1.5.2 Components of a Network .. 1-17

1.5.2.1 Controllers. .. 1-17

1.5.2.2 Connectors 1-17

1.5.3 Network Software 1-18

1.5.3.1 TCP/IP .. 1-18

1.5.3.2 DECnet. .. 1-18

1.5.3.3 NFS .. 1-18

1.5.3.4 RFS .. 1-19

1.5.4 Network Daemons 1-19

1.5.5 Effect of the Network on Performance 1-19

1.6 Understanding Interprocess Communications. 1-20

1.6.1 Role of the Scheduler 1-20

1.6.2 Messages 1-20

1.6.3 Shared Memory .. 1-20

1.6.4 Semaphores. .. 1-21

1.6.5 The Effect of Interprocess Communications on Performance. 1-21

2 Tools for Monitoring Subsystem Resource Usage
2.1 Tools That Provide System Status 2-2

2.1.1 The crash Utility .. 2-2

2.1.2 The cpustat Command 2-2

2.1.3 The iostat Command 2-3

2.1.4 The netstat Command

2.1.5 The nfsstsat Command

2-3

2-5

2.1.6 The pstat Command 2-6

2.1.7 The vmstat Command 2-6

2.2 Tools That Monitor the File System 2-8

2.2.1 Gathering Information About Disk Organization 2-8

2.2.1.1 Using chpt 2-9

2.2.1.2 Using df . 2-9

2.2.1.3 Using mount 2-10

2.2.2 Creating, Checking, and Tuning a File System. 2-10

2.2.2.1 Using newfs and tunefs to Create and Evaluate a File
System 2-10

2.2.2.2 Using fsck to Evaluate a File System 2-11

2.2.3 Disk Usage Space Allocation 2-12

2.2.4 Swap Space Usage .. 2-13

2.2.5 Exercising the Disk and File System 2-13

2.2.5.1 Using dskx. .. 2-13

2.2.5.2 Using fsx .. 2-14

2.2.6 Monitoring File System Activity 2-14

2.3 Commands that Monitor Process Control and Scheduling 2-14

2.3.1 Determining the System Users and Tasks They Are Running 2-14

2.3.2 Setting or Resetting the Priority of a Process 2-15

2.3.2.1 Using nice .. 2-15

2.3.2.2 Using renice 2-16

2.3.3 Scheduling, Rescheduling, or Stopping a Process 2-16

2.3.4 Monitoring Interrupts, Context Switches, and System Calls. 2-17

2.3.4.1 Using vmstat .. 2-17

2.3.4.2 Monitoring Other Process Control Activity. 2-17

2.4 Tools for Monitoring Memory Management 2-19

2.4.1 Memory Exercisers 2-19

2.4.1.1 Using memx 2-19

2.4.1.2 Using shmx .. 2-20

2.4.2 Using vmstat to Monitor Memory Usage 2-20

Contents v

2.5 Tools for Monitoring the 110 Subsystem. 2-20

2.5.1 Determining Which Devices are Connected to the System .. 2-21

2.5.1.1 Using devstat .. 2-21

2.5.1.2 Using pstat .. 2-21

2.5.2 Exercising Terminals, Printers, and Magnetic Tape 2-22

2.5.2.1 Using cmx 2-22

2.5.2.2 Using lpx. .. 2-22

2.5.2.3 Using mtx 2-23

2.6 Tools for Monitoring the Network 2-23

2.6.1 Determining Network Usage 2-23

2.6.1.1 Using rwho .. 2-23

2.6.1.2 Using ruptime 2-24

2.6.2 Determining the Status of the Network Interfaces 2-24

2.6.2.1 Using ifconfig .. 2-24

2.6.2.2 Using netstat .. 2-25

2.6.3 Displaying Statistics for NFS .. 2-25

2.6.4 Exercising the Network .. 2-27

2.6.4.1 Using ping .. 2-28

2.6.4.2 Using netx .. 2-28

2.6.5 Monitoring Network Activity 2-29

2.6.5.1 Tools For Monitoring Network Activity 2-29

2.6.5.2 Using netstat .. 2-30

2.7 Tools for Monitoring Interprocess Communications 2-30

2.7.1 Using ipcs 2-30

2.7.2 Exercising Shared Memory 2-31

2.7.3 Monitoring IPC Activity 2-31

3 Recognition and Diagnosis of Resource Constraints

vi Contents

3.1 Identifying File System Limitations 3-1

3.1.1 Determining Whether the Disk Subsystem Needs Tuning ... 3-1

3.1.2 Recognizing When the Disk Subsystem Is Disk-Bound 3-2

3.1.3 Recognizing When the Disk Subsystem Is Swap-Bound 3-3

3.2 Identifying Process Control and Scheduling Limitations 3-5

3.2.1 Determining Whether the Process Control Subsystem Needs
Tuning 3-5

3.2.2 Computing the Load Average for the System Under Test 3-6

3.2.3 Recognizing a Well Balanced Load Over the Available Time .. 3---8

3.2.4 Recognizing a Shortage of Slots in the Process Table. 3-8

3.2.5 Recognizing Problems with Interrupts, Context Switches, or
System Calls .. 3---8

3.3 Identifying Memory Management Limitations 3-10

3.3.1 Determining Whether the Memory Management Subsystem
Needs Thning 3-12

3.3.2 Recognizing When Active Virtual Memory Is Too Large 3-12

3.3.3 Recognizing a Shortage of Physical Memory 3-12

3.3.4 Buffer Cache Size. .. 3-13

3.4 Identifying 110 Subsystem Limitations 3-14

3.4.1 Determining Whether the 110 Subsystem Needs Thning ... 3-15

3.4.2 Recommendation for Improving 110 Performance 3-15

3.4.3 Measuring 110 Subsystem Throughput 3-16

3.4.4 Identifying NFS Bottlenecks. .. 3-17

3.4.5 NFS Thning 3-17

3.5 Identifying Network Limitations 3-18

3.5.1 Determining Whether the Network Needs Thning 3-18

3.5.2 Measuring the Network Subsystem Throughput Rate 3-18

3.6 Identifying Interprocess Communication Limitations. 3-19

3.6.1 Determining Whether the Interprocess Communications
Subsystem Needs Thning .. 3-19

3.6.2 Measuring the Interprocess Communications Throughput
Rate 3-20

3.7 Chapter Summary 3-21

4 Tuning Subsystem Resource Usage
4.1 System Configuration File . 4-1

4.1.1 Global Definitions. 4-1

4.1.2 System Image Definitions 4-3

4.1.3 Device Definitions 4-3

4.1.4 Pseudodevice Definitions 4-3

4.2 Tuning the File System. .. 4-4

4.2.1 Reorganizing the File System .. 4-4

4.2.2 Changing the Size of Disk Partitions 4-5

4.2.3 Adding a Second Swap Partition 4-7

4.2.4 Changing the Size of the Buffer Cache 4-8

4.3 Tuning Process Control and Scheduling 4-10

4.3.1 Balancing the Workload 4-10

4.3.2 Changes Involving Global Parameters 4-10

4.3.3 Changing the Priority of a Process. 4-10

4.3.4 Setting the Sticky Bit for a Frequently Executed Process. .. 4-11

Contents vii

4.4 Tuning Memory Management 4-12

4.4.1 Changes Involving maxuva, maxtsiz, maxdsiz, and maxssiz. 4-12

4.4.2 Changes Involving the Size of the Buffer Cache 4-13

4.4.3 Changes Involving Physical Memory and physmem 4-14

4.5 Tuning the I/O Subsystem 4-14

4.5.1 Changes Involving Software 4-15

4.5.2 Changes Involving Hardware .. 4-15

4.6 Tuning the Network. .. 4-15

4.6.1 Changes Involving Global Parameters 4-15

4.6.2 Changes Involving Software 4-16

4.7 NFS Performance Problems 4-17

4.7.1 Network Problems .. 4-17

4.7.2 Client Problems 4-18

4.7.3 Server Problems. .. 4-18

4.7.4 NFS Server Performance .. 4-19

4.7.5 Presto serve's Impact on NFS Server Performance 4-20

4.7.6 Recommendation for Increasing NFS Performance 4-20

4.8 Tuning Interprocess Communications 4-21

4.8.1 Changes Involving Global Parameters 4-21

4.8.2 Changes Involving Software .. 4-22

4.9 Chapter Summary .. 4-22

A DEVSTAT Source Code

B Testing System Calls, Messages, and Semaphores

C The AIM Benchmark Suite III

D The SPEC Benchmark

Index

Figures

1-1: Disk Block Organization .. 1-2
1-2: Typical Root File System 1-4
3-1: Normalized Benchmark Time Versus Response Time 3-7

viii Contents

Tables

2-1: Commands for Monitoring the Subsystems 2-1
2-2: Process Status Flags 2-18
2-3: nfsstsat Output .. 2-26
3-1: Process Timing Experiments 3-7
3-2: Paging Parameter Defaults .. 3-11
4-1: Default Partition Table 4-4
4-2: Reorganizing the File System. 4-5
4-3: Partitions e, f, g, and h Redefined 4-6
4-4: Further Reorganizing the File System 4-6
4-5: File System Tests with Two Swap Partitions 4-8
4-6: Test with Different Sized Buffer Caches . 4-9
4-7: Impact of Changing Process Priorities. .. 4-11
4-8: Impact of Setting the Sticky Bit. .. 4-12
4-9: Impact of Increasing the Size of the Buffer Cache 4-13

Examples

1-1: Directory Listing Showing Device Numbers 1-14
2-1: The chpt -q Command 2-9
2-2: The newfs Command 2-10
2-3: The ifconfig Command 2-24
2-4: The ping -1 Command .. 2-28
2-5: The ipcs Command 2-31
3-1: time and vmstat Output for bldfile Program 3-9
3-2: time and vmstat Output for bldfile Program 3-9
3-3: Output from vmstat when the System Is Idle 3-10
3-4: vmstat Output when the System Could Benefit from More Memory ... 3-13
3-5: Output from ps Showing Excessive Time for the Page Daemon 3-13
3-6: Testing the Message IPC Subsystem .. 3-20
3-7: Testing the Semaphore IPC Subsystem 3-20
4-1: Commands that Change Partitions e, f, g, and h 4-6
4-2: File System Mount Table. 4-7
4-3: Adding bufcache to the Configuration File 4-8
4-4: Setting the Sticky Bit for a Command 4-12
4-5: Network Configuration from rc.local 4-16

Contents ix

About This Manual

The ULTRIX Performance Management Guide is a compilation of tuning
information related to the ULTRIX operating system for system managers
and engineers who need to tune their ULTRIX operating systems.

Tuning, in this context, means changing, adjusting, monitoring, and
manipulating those parameters, subsystems, and resources that are
defined and controlled by the operating system and that affect the overall
performance of the computer system.

Performance is calculated using a metric such as response time, processes
executed per second, or I/O throughput. The metric must be a quantitative,
objective measurement making comparisons.

Specifically, this guide contains the following:

• An overview of the ULTRIX operating system

• A description of ULTRIX operating system tools that you can use to
monitor and improve system performance

• Examples of performance problems

• Advice on how to improve system performance

Audience

The guide is intended for experienced managers and users of the ULTRIX
operating system; however, it does provide basic information that can be
useful to novice users.

This guide provides guidelines; it does not define rules for tuning the ULTRIX
operating system.

About This Manual xi

Structure of This Guide

This guide consists of four chapters and four appendixes:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Appendix A

Appendix B

Appendix C

Appendix D

Associated Documents

Reviews the four major areas of the operating
system where performance improvements can be
found:

File system
Memory management and process control
subsystem
110 subsystem
Networking and interprocess communication
subsystem

This chapter is useful if you are familiar with
operating systems, but not with the ULTRIX
operating system.

Summarizes information about tools that are
available to monitor system performance, including
Digital-supported utilities.

Discusses how tools mentioned in Chapter 2 can be
used to identify performance problems.

Presents examples for tuning drawn from the
problems identified in Chapter 3.

Provides an example of source code written for a
utility that gathers information about devices
connected to the system.

Provides source code for three different test
programs used to illustrate system performance
issues.

Provides a description of the AIM Benchmark Suite
III, which is used as a sample workload in many
examples in this guide.

Provides a description of the SPEC Benchmark,
which is used as a sample workload in many
exam pIes in this guide.

The following ULTRIX documentation is of interest to the general user and
system administrator:

• System and Network Management Documentation Kit - seven volumes

• Software Development Tools Documentation Kit - five volumes

• General Information Documentation Kit - three volumes including
an index

• Supplementary Documents Kit - three volumes

xii About This Manual

Conventions

The following typeface conventions are used in this manual:

csh>

% cat

cat(l)

file

The csh followed by a right angle bracket
represents the C shell system prompt.

A number sign represents the superuser prompt.

Boldface type in interactive examples indicates
typed user input.

A cross-reference to a reference page includes
the appropriate section number in parentheses.
For example, cat(l) indicates that you can find
information on the cat command in Section 1 of
the reference pages.

Italic (slanted) type indicates variable values,
placeholders, and function argument names.

When the complete reference is not given in a footnote, bibliographic
references begin with the author's last name followed by the last two digits,
in brackets ([]), of the publication year of the document.

About This Manual xiii

1 Review of U L TRIX
Subsystem Resource Usage

The overall performance of a system depends on the performance of its CPU,
memory, and I/O resources. Not only must each resource operate efficiently
by itself, but it must also interact with other resources. For example, the
CPU may appear to have a performance problem when it is actually waiting
for disk I/O to be completed or memory to be allocated. A difficult aspect of
performance management can be diagnosing the limiting resource.

This chapter discusses the four major areas of the operating system where
you can look for performance improvements:

• File system

• Memory management and process control

• I/O subsystem
• Networking and interprocess communication subsystem

In each area, the observed behavior is related to the underlying software and
hardware that is responsible. Specific features or aspects of each subsystem
that is a candidate for tuning are explored.

1.1 File System
Users want satisfactory performance from any operating system. To
understand ULTRIX, it is essential to understand the file system and its
components. If you understand the way files are set up and optimal ways
to locate and use files, you will benefit from faster access and more efficient
computer use. Conversely, by knowing the most efficient ways of using
ULTRIX, you can educate others, thereby increasing overall satisfaction
and performance. Knowing how to use the file system is one of the most
immediate ways to improve the performance of the ULTRIX operating system.

1.1.1 Function of the File System

The file system allows users to accomplish the following objectives:

• Store large quantities of data

• Retrieve data quickly and easily

In addition, a file system handles the following functions:

• Manage files

• Allocate file space

• Administer free space

• Control access to the files

Review of ULTRIX Subsystem Resource Usage 1-1

1.1.2 Component Parts of a File System
Every file system consists of four components: a boot block, a super block,
inodes, and data blocks.

In addition to blocks of user information, each file system has blocks that
contain information about the system's organization. The file system depends
on the organizational information contained in these blocks. Figure 1-1
shows the disk block organization.

Figure 1-1: Disk Block Organization

Boot Block

Super Block

· ·
I-node: 1

Direct 0 ~ I Block 10 I Direct 1
Direct 2
Direct 3 Block20 I

· · VI Single Indirect I Block 30

Double Indirect
~ Triple Indirect Block 40

I-node: 2
l .

I I
I I Direct 0

Direct 1 .
I I Direct 2 .

Direct 3

· I I] ·
Sinale Indirect
Double Indirect
Triple Indirect

· · ~I · Block N

MR-4 -R 978 A

A block is comprised of contiguous bytes of information and contains data or
file system information. The block size on early versions of UNIX was 512
bytes, but it was increased first to 1024 bytes (IK) and then to 2048 bytes
(2K). The ULTRIX file system is based on Berkeley UNIX; its block size is
user selectable. The default size is 8K bytes.

A file system's granularity is its block size. As files increase in size, they
are assigned additional blocks. The use of large 8K blocks improves the
throughput of the file system; however, for small files, 8K blocks are an
inefficient use of space. Therefore, the ULTRIX file system allows an 8K

1-2 Review ofULTRIX Subsystem Resource Usage

block to be divided into smaller pieces called frags. The default size frag is lK
bytes. File system data structures keep track of the disk at the frag level.

An inode (index node) describes the files and directories in the system. One
inode exists for each directory and each file. An inode contains information
about permissions, number of links, and block numbers of the data blocks
comprising a file.

The super block contains critical information about the file system, such as
the file system's name, its size in blocks, and number of blocks for inodes. It
is located at block 16 of a disk partition. Backup super blocks are allocated
at the time the file system is created by ULTRIX. One is always created at
Block 32, and periodically after that. The number of backup super blocks
created depends on the size and layout policy of the file system.

The boot block is reserved for the bootstrap program that boots (or initializes)
the operating system. It is located at the beginning of a file system in
the first sector.

1.1.3 Disk Blocks

ULTRIX is ideally suited to addressing small files, though it does allow files
to become quite large. Small files are comprised of direct data blocks. Larger
files are comprised of direct data blocks plus indirect blocks that contain
pointers to more data blocks. Because ULTRIX uses larger block sizes, it
is unlikely that more than a direct block or single indirect block is needed
to address a single file.

The first 12 blocks of data are called direct blocks; they can handle a fixed
number of bytes of information determined by the block size when the file
system is created (4K bytes minimum).

If a file contains more than 12 direct blocks, the thirteenth block is called
an indirect block. It contains pointers to additional data blocks for the file
system. This block can also point to another block that contains pointers to
additional data blocks or pointers.

1.1.4 Relationship of File Systems to Devices

A file system must exist on a device. In this context, a device is a physical
piece of equipment (hardware). Examples of devices that can contain a file
system are hard disks, floppy disks, and sometimes compact discs. Examples
of devices that cannot contain a file system are terminals, printers, and
communication lines.

A file system cannot span physical disk drives or partitions on the same
physical disk drive. It must begin and end on the same physical disk drive
and, furthermore, must begin and end on one partition. Thus, the size of
a file system is limited to the size of a partition on the target disk drive.
Partitions can be adjusted up to the entire physical disk drive if necessary.
See Section 1.1.6 for more information about the relationship between the
ULTRIX file system and devices.

Review of ULTRIX Subsystem Resource Usage 1-3

1.1.5 Relationship of Files to Other Files in a File System

The file system in ULTRIX is hierarchal. Directories contain files, which can
include other directories (subdirectories). Subdirectories also can contain files
or other directories. These directories and subdirectories relate to each other
in predictable ways, depending on their location in the hierarchy.

The directory structure of ULTRIX is graphically depicted as an inverted
tree structure. This image conveys the directory system with its roots, the
trunk, the strong branches and smaller limbs, and finally the leaves. The
file system has a parallel structure. Figure 1-2 shows the tree structure
of the root directory.

Figure 1-2: Typical Root File System

bin dev etc lib mnt usr tmp
MR-4979-RA

1.1.5.1 Root Directory

The root directory (/) is where the directory structure begins. The root
directory is the base from which all other directories are referenced.

Note that the term root is also given to the primary administrative person
involved with the ULTRIX system, the superuser. The superuser assigns
user names among other systemwide tasks and is often a valuable resource
to users. In addition, the superuser maintains and ensures the smooth
operation of the system.

1-4 Review ofULTRIX Subsystem Resource Usage

1.1.5.2 Primary Directories Off of the Root

Each directory off the root directory is significant. The important
representative directories are as follows:

• bin (binary)
The bin directory contains the binary executable versions of ULTRIX
system commands.

• dev (device)
The contains device-special files that facilitate communication between
the operating system and the hardware devices.

• etc (et cetera)
The etc directory is a catchall directory. It usually contains miscellaneous
system utilities (executable programs such as passwd) and data files
(termcap, the terminal capabilities database).

• mnt (mount)
The mnt directory is an empty directory. It is used primarily to
temporarily mount file systems.

• usr (user)
The usr directory contains several key subdirectories, including another
bin (for additional executable commands), dict, games, include, lib
(for library), and others.

• tmp (temporary)
The tmp directory contains files that are used for short periods of time
and then deleted.

1.1.6 Associating a Device with a File System

When you associate a device with a file system, you mount the file system.

A file system can be created on a diskette or hard disk; however, the rest
of the ULTRIX system is unaware of its existence until it is mounted. This
procedure associates the particular physical device with the file system and
relates its existence to the kernel and other parts of the file system that may
be located on different physical devices.

To mount a file system, do the following:

1. Create an empty directory entry if one does not already exist.

2. Mount the device onto that directory. For example:

csh> mount /dev/rzlq /usr/tools

Review of ULTRIX Subsystem Resource Usage 1-5

When you disassociate a device from a file system, you unmount the device.

To unmount a device, use the umount command. For example:

csh> umount /dev/rzlq

Mounting and unmounting a device allows the operating system to
perform some necessary housekeeping tasks. For example, under certain
circumstances, the operating system does not write data to a disk when a
program tells it to do so. Buffered data (the data not yet written to disk)
must be written to the disk before the device is unmounted.

1.1.7 Relationship Between the File System and Performance

The effective use of the ULTRIX file system can significantly impact the speed
at which you can access data. Key variables are the size of files, location of
files, and the location of frequently accessed files.

1.1.7.1 Size of the Files

Smaller files are preferable to large files. With large files, many data blocks
are used; some of those may be indirect or doubly indirect referenced. Also,
as the file system ages, free blocks become randomly distributed over a
disk. Thus, files may contain blocks that are randomly distributed (slower to
access) rather than virtually contiguous (faster to access). The system must
locate these data blocks each time the file is read.

1.1.7.2 Location of Files

The location of files affects file access time. Some locations are determined
when the system administrator configures the system. Other locations are
determined by the user. Correctly locating files, to the extent that the user
has control over their location, is a way to improved performance.

1.1.7.3 Factors Determined at Time of Configuration

Many factors that affect file system performance are determined when the
file system is configured (for example, the physical location on the disk of
the file system).

Other factors, such as contiguous versus noncontiguous blocks, are determined
when files are created and as they grow. When data blocks are contiguous
(located in blocks that are physically close to each other), access time is less
because the read-and-write head of the disk drive has less distance to travel.

You have little control over these factors, but knowing about them helps you to
understand how the way you organize files can affect file system performance.

1-6 Review of ULTRIX Subsystem Resource Usage

1.1.7.4 Organizing Files to Improve Performance

You can affect file system performance in several ways. For example,
organizing files into directories affects file system performance:

• Locating files in one large directory
This is the least desirable way to store data, since finding a file in a large
directory takes longer. Ideally, a directory should not be larger than one
block, although the penalty for searching a larger directory is not great
because ULTRIX search algorithms are very efficient.

• Locating files in multiple subdirectories
By using multiple subdirectory entries, organization is enhanced. If you
create a file that increases the size of a directory by more than one file
system block, then it is best to create a subdirectory.

1.2 Understanding Process Control and Scheduling
ULTRIX is known as a multitasking, multiuser, and timesharing operating
system. Multitasking means that the system can perform several tasks at a
time, or run several processes at a time, for any given user. A process is a
running program with a specific job to do. Multiuser means that the system
is capable of serving more than one user simultaneously. A timesharing
system is one that can schedule tasks and users so both information and
computer time can be shared.

Process control and scheduling is the way that ULTRIX handles all of
these demands. The responsibilities of the process control and scheduling
subsystem include:

• Handling requests from users
• Scheduling related and unrelated tasks

• Responding to simultaneous commands

• Maintaining files
• Coordinating requests for resources with user demands

Users make constant demands on the ULTRIX system. It is important to
understand how the system assigns priorities to processes and what impact
this has on the system's throughput. Users can also be aware of the processes
underway and choose optimal times to run certain processes.

1.2.1 Types of Processes
The process that communicates with your terminal or workstation is called a
foreground process. Most commands by users are foreground processes. For
example, your shell runs as a foreground process. When you ask the shell to
run a command, the shell translates your request into actions by the kernel
and other programs. The shell runs that command as a process.

A background process is a process that is running but is neither connected
directly to any terminal nor waiting for input from the shell. Many system
utilities are background processes that are running all the time. The get t y
program, for example, listens constantly for any attempt to login on a line.
If it detects a login attempt, it forks the login process. You also can put a
process in the background and continue to work on another task while the
background process executes.

Review of ULTRIX Subsystem Resource Usage 1-7

1.2.2 Process Priorities and Privileged Processes
Process control and scheduling is necessary to set up priorities and schedule
processes to run according to these priorities. The kernel runs with the
highest priority; it is the part of the system that manages the resources of
the computer system. It keeps track of random access memory, the disks,
tapes, printers, communication lines, in short, all resources.

The kernel must respond to requests from executing programs and hardware
interrupts from devices that need service. Depending on the priority of the
interrupt, the kernel can suspend all other processes immediately to handle
the interrupt, or it can wait until some other higher priority task is completed.
User processes are assigned a lower priority than system services; however,
these priorities are constantly changing, based on a number of factors.

Certain processes are also given privileged status and their execution takes
precedence over all other processes. To manage memory appropriately, the
swap per (the utility that controls the memory-management facilities) is
always the highest priority task and can preempt other processes.

1.2.3 Factors Used to Determine Process Priorities
User processes are assigned a base priority when they begin. The base
priority is adjusted by the kernel as the process runs to allow all user
processes equal access to system resources. As a process executes, its priority
decreases based on the amount of time it has been active. When the process
is preempted by a higher priority task, it is put onto the run queue. It waits
until its priority is higher than the task that is currently running.

Other factors cause a process to be temporarily suspended. When a process
requires access to a system resource, it executes a system call. For example,
a process that must read data from the disk drive executes a read system call.
Because it takes a finite amount of time for the kernel to pass the request for
data to the disk controller and for the disk to respond with the requested data,
the process that requests the data is suspended until the request is completed.
When the system call is completed, the process is marked as eligible to run
and is restarted in tum. Process priority increases when waiting for 110.

1.2.4 Scheduling a Process to Run During Off-Peak Hours
By using the cron or at commands, you or the system administrator can
change the time when a task is run. System performance is improved if
certain kinds of tasks are scheduled to run when the machine is lightly
loaded. For example, if you schedule system backups when only a few users
are on the machine, users during normal hours are not affected by the
considerable degradation in response time caused by system backup.

The cron command runs a process as a batch job at a specific time. The
cron command periodically examines the directory /usr / lib/ crontab for
files that contain directions on tasks to perform. Based on the instructions
it finds in the file, cron schedules the command or set of commands to run
at the specified times. Tasks that need to be performed on a regular basis
(for example, nightly backups, large jobs, and other administrative tasks)
should be executed through cron.

The cron command is a daemon (a process that is continually running in
the background). You must receive specific authorization from the system
administrator to use cron.

1-8 Review of ULTRIX Subsystem Resource Usage

The at command runs a command at a specified time. The command to be
run is supplied as an argument to the at command at the shell prompt.
Usually, jobs executed through the at command are done only once and
not on a regular basis.

1.2.5 Relationship Between Process Control and Performance

Performance can be improved through process scheduling at the time of
configuration and through system administration.

One way to improve performance is during configuration by increasing or
decreasing the number of processes that can run simultaneously.

You or the system administrator can change the priority with which a process
runs by using the nice command. By default, nice reduces process priority
by 10 percent when it is used to execute a command. You can reduce process
priority by up to 20 percent by using an optional argument to nice. Only the
system administrator can increase the priority of a process.

1.3 Understanding Memory Management
Memory management is the allocation of memory. If physical or main memory
is insufficient for any process, the kernel moves processes between main
memory and secondary memory (refers to back-end storage or page/swap
storage) so all processes can execute. The subsystems of the kernel and
hardware that work together to translate virtual to physical addresses make
up the memory management subsystem.

1.3.1 Types of Memory Management

ULTRIX systems use two types of memory management: simple memory
management, and memory management with swapping and paging. ULTRIX
uses memory management with swapping and paging.

With simple memory management, the kernel allocates the necessary memory
from physical memory to execute a process. Physical memory is divided into
a set of equal sized blocks, called pages. Pages can vary in size from 4K to
512K bytes. Page tables exist that identify the location of these pages. For
example, in one popular simple memory model!, the system contains a set
of memory-management register triples. A register triple is a set of three
registers that contain the following information:

• The first register contains the address of the page table in physical
memory.

• The second register contains the virtual address mapped via the triple.

• The third register contains control information, such as number of pages
in the page table and page access permissions.

Maurice J. Bach, The Design of the UNIX Operating System, Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1986, pp. 155-158.

Review of ULTRIX Subsystem Resource Usage 1-9

When the kernel prepares a process for execution, it loads these registers
with the corresponding data stored in the pregion (per process region table)
tables. A pregion table includes information to determine where the contents
related to the process are located in physical memory. 2

In memory management with swapping and paging, the kernel is responsible
for making certain that sufficient primary memory exists for a process. It
might be necessary at times to write processes to a secondary memory device
to provide more space in primary memory. The secondary memory device is
called a swap device and is on a configurable disk.

By understanding how memory is stored and allocated, you can plan
your workload so that the machine is not running too many processes
simultaneously. Through monitoring the CPU, using the vrnstat command
for example, you can learn whether paging and swapping are occurring
and to what extent. Both swapping and paging are CPU intensive and are
considered common elements in poor system performance.

1.3.2 Allocating Memory
ULTRIX allocates a number of blocks of memory to a program when it first
starts. As the program executes, it can request additional memory. The
kernel allocates additional memory up to a predefined maximum that also is
determined when the kernel is built.

When a program is run, the memory management subsystem sets up two
separate areas, the text area (or region) and the data area. The program
instructions are assigned to the text area; the data related to the process
is located in the data area. By keeping these two sections separate, both
protection and sharing are possible.

The kernel tries to use memory as efficiently as possible. It allows users
executing the same program to share the text segment, the section of memory
in which the program's instructions are stored. This is possible through the
use of virtual addresses. The compiler generates addresses for virtual address
space, and the memory management subsystem translates these virtual
addresses into address locations in physical memory. Thus, several programs
can execute the same virtual addresses but use different physical addresses.

1.3.3 Buffer Cache
The buffer cache is the part of random access memory (RAM) used for disk
blocks that contain data from recently used or frequently used data. A buffer
is memory in which information is temporarily stored and cache is a hiding
place. Thus, the buffer cache functions between the kernel and the memory
as a quickly accessible source of data and instructions.

The buffer cache decreases the frequency of disk access. When the kernel tries
to read data from the disk, it first reads from the buffer cache. If the data is
not there, it reads the data from the disk and caches it for potential future
use. Similarly, pages are written to the buffer cache first until the buffer
cache is full. Only then are the oldest pages written to the disk swap area.

The size of the buffer cache is determined when you configure the system.
The default size of the buffer cache is 10 percent of physical memory. By
increasing the size of the buffer cache, the system may perform fewer reads

2 Ibid., p. 155.

1-10 Review of ULTRIX Subsystem Resource Usage

and writes from the disk and therefore runs more quickly. However, as more
memory is allocated to the buffer cache, less memory is available for program
execution. This reduces the system's capacity, and paging or swapping or
both will increase when the system is loaded. As a result, fewer users can
run programs, and fewer processes can run simultaneously.

1.3.4 Swap Area

The swap area, (also known as swap space) is the section of the swap device
allocated in groups of contiguous blocks. The swap device is a block device
in a configurable section of a disk. The kernel's allocation of swap space
depends on the process scheduling. An in-core table, called a map, maintains
a directory of free space for the swap area. As the kernel allocates and frees
up resources, it updates this map. This enables the kernel to have current
information about free resources.

1.3.5 Changes in Memory Management that Can Affect Performance

You can improve performance by the way you configure the kernel and
through ongoing system management. The size of the buffer cache and
the size and location of the swap partition are two variables that you can
set when you configure the kernel. You can add memory, change process
priorities, and set the sticky bit for executable files. These are examples of
system management that affect system performance.

1.3.5.1 Size of the Buffer Cache

The default size of the buffer cache is usually 10 percent of physical memory.
The increase or decrease in the buffer cache size affects both the speed of the
system and the amount of swapping and paging. The buffer cache is best
tuned for each application. For example, a file server application benefits
from 50 percent of physical memory allocated to the buffer cache, but it
does not benefit from a large number of swap segments. By reducing the
size of the buffer cache, you can give some memory back to the system to
use for programs.

1.3.5.2 Size and Location of the Swap Area

The ULTRIX operating system allows multiple swap devices. The kernel
interleaves swap requests; that is, the kernel attempts to evenly distribute the
swap requests among all the swap devices. A parameter in the configuration
table determines the size of the swap area. The number and location of
swap devices is also specified in the configuration file. Place the swap
partition on the fastest disk. The swap areas are best spread between the
controllers and disks.

Review of ULTRIX Subsystem Resource Usage 1-11

1.3.5.3 System Management

Once you configure the system, the opportunities to effect higher performance
in memory management are reduced. The purchase of additional memory
is the most obvious option. U sing the i 0 s tat and vms tat commands, you
can determine the extent of paging and swapping. If extensive paging is
occurring, the system might require more memory.

These monitoring programs and utilities can measure the efficiency of
the buffer cache by its hit rate. A 98 percent hit rate is possible with a
machine that has sufficient memory. As the hit rate improves, the number of
blocks transferred to and from the disks will be reduced. It is important to
monitor the buffer cache before you decide to purchase additional memory.
Administrators can create and remove swap devices by reconfiguring the
kernel and rebooting the system.

A revaluation of the priorities assigned to various processes can also affect
memory management. Managing processes that require a large amount
of CPU time, have exclusive access to devices that are in short supply,
or consume a large quantity of a system's scarcest resources, can affect
system performance as well. You can improve the system's efficiency by
doing the following:

• Lowering the priority of memory or disk intensive applications

• Educating users to avoid running a large number of processes
simultaneously

• Informing users of the memory requirements of various processes and
programs

• Reducing the number of users working simultaneously

The system administrator can set the sticky bit for frequently used executable
files. The sticky bit is a permissions flag that tells the kernel to retain the text
segment of a program. If the text segment remains in memory, it does not
have to be reloaded when another process executes it. If the system does not
have to reload the program, the program will be executed much more quickly.
Even if the kernel swapped the file to the swap device, it is still faster to load
the text from the swap device than to load it from the file system.

1.4 Understanding the 1/0 Subsystem
The I/O (Input and Output) subsystem involves the hardware that performs
all reading and writing operations on the ULTRIX system. This refers to all
peripheral equipment: terminals, disks, tape drives, printers, the network
and communication lines.

You have direct contact with the pieces of physical equipment that are
interfaced by the I/O subsystem. The more you understand about the
relationships and communications between the hardware, the operating
system, and the applications, the more effectively you can use the entire
system.

1.4.1 Components of the I/O Subsystem
Each system has its own configuration of hardware, but ULTRIX addresses
these devices in particular ways. Two categories of I/O devices exist: block
devices and character devices.

1-12 Review of ULTRIX Subsystem Resource Usage

1.4.1.1 Block Devices

Block devices are random access storage devices. The system can access
particular blocks, not necessarily sequentially. Data is passed to block
devices as complete blocks, buffered by the operating system until a whole
transfer is ready. Data devices can also be accessed in a character device
for unbuffered operations.

1.4.1.2 Character Devices

Character devices include all devices that are not block devices and that
cannot be addressed by block. Data is passed to character devices sequentially
in a stream of characters. Some examples of character devices are terminals,
line printers, and tape drives.

1.4.2 Device Special Files

Each device has a name that looks like any other file name and that is
accessed like a file. However, the device type is stored in the device file
within the inode; it indicates whether the device is addressed as a block
device or as a character device. Two device special files might exist for one
physical device, with one file a block-special file and the other a character
special file. These files contain pertinent information about communication
and operation of the device.

1.4.2.1 Block Device Switch Table

The block device interface in the kernel is the block device switch table.
This table includes entry points for device open, device close, and strategy
procedures as well as others. The kernel uses the strategy procedures
to transmit data between the buffer cache and the device. The strategy
procedures can also schedule I/O jobs for a device.

1.4.2.2 Character Device Switch Table

The character device interface is called the character device switch table. It
includes entry points for device open, device close, read, write, and ioctl
procedures. The ioctl (I/O control) procedures deal with the flow of control
information between devices and processes.

1.4.3 Device Drivers

Device drivers are kernel modules that control the devices. They enable
peripheral devices to serve the entire system. A system might include one
terminal driver for all terminals, one disk driver for all disks, and one tape
driver for all tapes. Even though the specific devices might be different, the
driver distinguishes between them. A buffering mechanism interacts with
the block I/O device driver to initiate the transfer of data to and from the
kernel. The file system interacts directly with the character I/O device driver
without a buffering mechanism.

Review of ULTRIX Subsystem Resource Usage 1-13

1.4.3.1 Device Num bers

In the inode of the file for each device are two numbers for identification:
a major device number and a minor device number. The device number is
a coded combination of these numbers. The major device number identifies
the device type, such as a disk, terminal, or tape drive. This number serves
as an index to the appropriate switch table. The minor device number
indicates the unit number of the device and is an argument that is passed
to the device driver.

Example 1-1 shows a partial directory listing of the / dev directory. The
fourth and fifth fields, separated by commas, are the major and minor device
number for the device special files shown. The last column contains the
device name. For example, rzO is a fixed disk and the letters a through h
refer to the partition. The major device number for the disk is 19 and the
minor device numbers range from 0 to 7.

Example 1-1: Directory Listing Showing Device Numbers

csh> Is -1 /dev
total 24
crw-r--r-- 1 root 3, 1 Nov 15 1988 kmem
crw-r--r-- 1 root 3, 0 Apr 24 12:58 mem
crw-rw-rw- 1 root 3, 2 Jul 25 10:13 null
crw-rw-rw- 1 root 21, 0 Jul 25 10:18 ptypO
crw-r--r-- 1 root 21, 1 Jul 19 17:17 ptyp1
crw-r--r-- 1 root 21, 2 Jul 16 13:56 ptyp2
crw-rw-rw- 1 root 21, 3 Jul 19 11:00 ptyp3
crw-r--r-- 1 root 21, 4 Jul 18 12:06 ptyp4
brw------- 1 root 19, 0 Apr 25 09:50 rzOa
brw------- 1 root 19, 1 May 31 09:24 rzOb
brw------- 1 root 19, 2 Apr 24 09:58 rzOc
brw------- 1 root 19, 3 Apr 24 09:58 rzOd
brw------- 1 root 19, 4 Apr 24 09:58 rzOe
brw------- 1 root 19, 5 Apr 24 09:58 rzOf
brw------- 1 root 19, 6 Apr 24 09:58 rzOg
brw------- 1 root 19, 7 Apr 24 09:58 rzOh

1.4.4 Disk Drives
A disk drive is the physical hardware containing the hard disk used for data
storage. The disks are partitioned (divided) into sections during the initial
configuration (or initialization) of the system. Historically, disks used with
ULTRIX systems are configured into sections that contain individual file
systems to make the disk more manageable. Contiguous tracks and blocks
of the disk are assigned to the file system located in that section, facilitating
copying and data access.

The size of a disk partition depends on the disk type. System utilities
configure an appropriately sized file system to reside on the selected disk
partitions. Partitions may overlap, although the file systems in each partition
must be configured not to overlap. To facilitate system backups, configure
a partition so it includes the entire disk.

Disks can be addressed as either block or character devices, but most
applications address the disk as a block device. The kernel initiates a process

1-14 Review of ULTRIX Subsystem Resource Usage

to open the files to gain access to the block device through the block device
switch table. The major device number is the index into the block device
switch table where pointers to the various device routines are located.

1.4.5 Tape Drives

A tape drive is a character device that interfaces with the user through the
character device table in the kernel. The minor number is an argument to
the driver; it tells the driver to leave the tape positioned to the end of the
data set when it is finished reading or writing, to rewind when the write or
read is finished, or to perform another function.

Tape drives also can be addressed as block devices, although access is much
slower. As a block device, blocks are located on the tape sequentially; thus, to
access a random block, the device driver must know the current location on
the tape and move the tape forward or backward to find the appropriate block.

1.4.6 Terminals

Terminals are character devices with which users have the most ongoing
interaction. To establish a connection between the terminal and the system,
the kernel runs the getty routine and the login and init commands.
When the system detects an active terminal line, the kernel performs the
following procedure:

1. The init command invokes the getty routine which runs continuously,
alternating between the sleep and run states, on that line until it detects
an attempt to log in

2. When get t y detects a login attempt, it execs (replaces itself with) the
login process

3. The login command prompts users to identify themselves with their
user name and password and checks the validity of this information.

4. If the information is correct, it executes the user's shell, and the user
can begin working.

1.4.6.1 Control Terminal

The control terminal is the terminal on which a user logs in. It controls
processes that the user initiates from that terminal, although all processes
run by a user have access to the terminal.

1.4.6.2 Role of the Kernel

In supporting terminals, the kernel uses character blocks (cblocks) and
character lists (clists). Cblocks are buffers that hold the characters coming
from and going to the terminal. Clists maintain pointers and linkage
information to Cblocks. Specifically, the kernel associates three Clists with
each terminal:

• Raw data from the keyboard

• Processed (cooked) data

• Output

Review of ULTRIX Subsystem Resource Usage 1-15

The Clists serve as a buffer mechanism and allow manipulation of data, one
character at a time, in groups of Cblocks.

The transmission of data to and from terminals is controlled by terminal
drivers. Due to the terminal's important role as the user's interface with the
system, the terminal drivers contain line discipline modules that interpret
input and output. These line disciplines manipulate data on clists.

1.4.6.3 Raw Mode Versus Cooked Mode

When a terminal is in raw mode, data is transmitted exactly as the user
types it without any conversion or processing. Many programs that process
input from the user one character at a time must use raw mode. This allows
a program to recognize and to act on a single character that is pressed on
the keyboard. However, when a terminal is in raw mode, and keyboard input
is not being processed by a program, the terminal appears to the user to be
hung; that is, it does not respond to anything typed by the user.

In contrast, when the terminal is in cooked mode, data has gone through
the line discipline process and special characters, such as carriage returns,
erase, and kill, have been converted. In cooked mode, data is echoed back
to the terminal as it is typed.

These modes are usually set by the application or by the system utility stty.
The raw mode is particularly important for screen-oriented applications
(such as the screen editor vi) that contain many commands that do not
end with a carriage return.

1.4.7 Printers

Printers are character devices that are controlled by a daemon process.
A daemon process handles system-wide functions, such as execution of
time-dependent activities and line printer spooling (queueing). A daemon
process always runs, waiting for jobs to be queued to it. When a user sends
output to the printer, a temporary file is written to the spooler directory.

The Ipd line printer daemon is ~ print spool handler. Normally, the program
is invoked at boot time from the / et c / rc file. The daemon works with
several system programs and files to coordinate and synchronize printer
activity. The ULTRIX operating system provides this program. Although
users cannot modify the file, they can specify spooling, logging, and locking
activities. You must have superuser privileges to access this program.

When a print job is submitted using the Ipr command, the printer daemon
schedules jobs and notifies printers that have jobs waiting.

When signaled for inputs, the printer daemon checks the spooler directory,
/usr/spool/lpd, for the existence of a lock file. If the lock file exists, Ipd
knows that another job is currently printing. If a lock file is not present, Ipd
creates one to reserve access to the printer for a particular print job.

1-16 Review ofULTRIX Subsystem Resource Usage

1.4.8 I/O Subsystem's Effect on Performance
The 110 subsystem is very system dependent. The crucial decisions are made
when you purchase the hardware. Most tuning is accomplished when an
application is written. However, you can effect some change in performance
during system configuration and through system administration.

The system administrator determines the way the disk is partitioned and
the assignment of file systems to the partitions. The software engineer
can improve system performance by judicious use of system 110 buffers.
Understanding the way the kernel buffers I/O to devices helps in this effort.

The system administrator can increase or decrease the priority of the printer
scheduler and other processes to improve performance.

1.5 Understanding the Network
The network is an 110 subsystem made up of a group of devices, workstations,
minicomputers, and/or mainframe computers communicating through wires
or cables for the purpose of moving information from place to place. It
enables users to communicate with other users and devices without regard
to their actual physical location. ULTRIX users may also be able to connect
file systems from one computer to the file system of another with the
Network File System (NFS), which is built on top of the Transmission Control
Protocol/Internet Protocol (TCPIIP) network. Thus, users are no longer limited
to the file systems physically located on the machine where they logged on.

1.5.1 Function of a Network
A network provides a means to move data from one device to another. This
data might be no more complicated than electronic mail. You can copy files
containing printable data (for example, word processor files), or binary data
from a local computer to a remote computer, with the same ease as files
copied from one directory to another on the local computer. With remote
login, users can login to a remote computer on which they have an account
and access programs and data as if they were at a terminal connected to
their own host computer.

1.5.2 Components of a Network
A network consists of two essential component parts: the hardware
implementation and the software that runs the network. The hardware
consists of controllers and connectors.

1.5.2.1 Controllers

The controller sends and receives packets of data over the network.
Controllers are specialized and are designed to work with a particular type
of computer (bus architecture). For example, controllers designed to work
with a Digital workstation will not work with a Sun or Hewlett-Packard
workstation, or an IBM-PC, and vice versa.

1.5.2.2 Connectors

The cables or wires connecting different computers (or nodes) on a network
can be twisted-pair, as with telephone wires, thick or thin Ethernet cable, or
optical fiber. The type of controller determines the type of connector.

Review ofULTRIX Subsystem Resource Usage 1-17

1.5.3 Network Software

Two relevant network software implementations exist for ULTRIX: TCP/IP
and DECnet. Their names refer to the protocol used to send information
from one network node to another, as well as to the software written to
implement these protocols, which are the rules and formats that conduct
communications on a network. Protocols govern the way messages are
packaged, addressed, and routed; master/slave relationships among network
nodes; polling; the exchange of control information; and the hierarchy.

1.5.3.1 TCP/IP

TCPIIP (Transmission Control ProtocollInternet Protocol) was developed by
the U.S.Defense Department, Defense Advanced Research Projects Agency
(DARPA). Its name comes from its two main standards: Transmission Control
and Internet. Because TCP/IP is a collection of protocols, rather than a
particular software program, the software that provides its services has been
implemented for many different hardware platforms and operating systems.
The TCP/IP protocols are used as building blocks on which other products
or applications are built. As a result, it is a widely accepted standard in
the UNIX world.

1.5.3.2 OECnet

DECnet is Digital Equipment Corporation's implementation of a network
protocol common to its operating systems. The advantage of DECnet over
TCPIIP in a Digital environment is that Digital controls its development
and distribution and is able to optimize the implementation for its own
hardware and systems software. However, from the user's point of view,
DECnet and TCPIIP accomplish the same tasks. Because both can coexist
on the same physical network, both can be present and used where their
application is warranted.

1.5.3.3 NFS

The Network File System (NFS) is a product that utilizes TCPIIP, built
originally in a Berkeley UNIX environment. It is a proprietary product
developed by Sun Microsystems; however, it has now been ported and
licensed on many other UNIX implementations, including ULTRIX. NFS
allows users to mount remote file systems in their own local directories,
thereby giving the appearance of an extension of their local file system. The
machine that offers file systems for other machines to access is called the
server or file server; the machines that access these file systems by remotely
mounting them are called clients.

NFS, however, is not a network extension of UNIX and does not adhere to
UNIX semantics. It does not support all UNIX file system operations, does
not guarantee atomic operations, and cannot obtain access to remote devices.
It operates independently of the machine and operating system and can be
used on non-UNIX machines as well as those with UNIX.

The User Datagram Protocol (UDP) is commonly used in the Network File
System. UDP is the internet standard protocol that allows an application
program on one host to send a datagram to an application program on another
host. UDP provides an unreliable, connectionless delivery service using IP
to transport messages among hosts.

1-18 Review of ULTRIX Subsystem Resource Usage

UDP is similar to TCP and it provides a mechanism for user applications to
communicate with IP. UDP differs from TCP in that it is a simple protocol
that is entirely dependent upon IP's best effort to provide reliability. UDP
does not guarantee delivery, occasionally generates duplicate data packets,
and may send data in the incorrect order. However, layers above UDP can
create reliable services using UDP.

1.5.3.4 RFS

RFS (Remote File System) is a product developed by AT&T that is similar to
NFS, but that can be used only with UNIX System V operating system. It
ensures that all network transactions follow UNIX 110 semantics. RFS uses
an 110 facility called streams to connect to a network protocol, such as TCP/IP
or Ethernet. It consists of client and server machines living within a domain.
The consistency in maintaining UNIX semantics with RFS contributes to
high traffic, loss of performance, and bottlenecks.

1.5.4 Network Daemons

Both the host (client) and remote (server) machines start network daemon
processes running when they are booted. Machines that can be reached from
the network are listed in a data file with their network addresses. Each
local machine knows its own name and network address. As data is sent out
over the network, the address and routing information are filled in by the
sending network daemon. Network daemons on receiving machines decode
the address to determine for whom the message is intended. If the message
is intended for the receiving machine, it decodes the message and processes
it; otherwise, it does nothing.

1.5.5 Effect of the Network on Performance

The network's configuration is constrained by the hardware used to implement
it. When the system is configured, the system administrator specifies the
controllers and network packages in the configuration file, that is, DECnet,
NFS, and TCP/IP.

Most tuning opportunities that relate to the network involve identifying
bottlenecks. For example, if one of the links in the network times out waiting
for an acknowledgment of a transmitted message, a second transmission of the
message results. When the acknowledgment for the first message is received,
it will be interpreted as the acknowledgment for the second message sent.
This results in an error in the system's estimate of the round-trip delay. This
problem is referred to as the Cypress syndrome.3 The system tries to adjust
its transmission rate based on this incorrect transmission delay and continues
to transmit and retransmit packets as the acknowledgments are delayed.

3 Douglas Comer, Internetworking with TCPIIP: Principles, Protocols, and Architecture, Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1988, p. 294

Review of ULTRIX Subsystem Resource Usage 1-19

1.6 Understanding Interprocess Communications
Interprocess communication OPC) occurs when mechanisms allow processes
to exchange data and synchronize execution. Some examples of IPC are
messages, shared memory, semaphores, pipes, signals, process tracing, and
processes communicating with other processes over a network. IPC is a
functional interrelationship of several ULTRIX subsystems. Elements are
found in process scheduling and networking.

1.6.1 Role of the Scheduler

The scheduler decides when the CPU can act upon a process. The scheduler
uses messages, semaphores, or shared memory to determine if a process is
ready to run, is already running, or should be blocked.

To illustrate the scheduler's function, sometimes a process needs exclusive
access to a system resource (such as writing to a tape drive or sending output
to a printer). The system call to the device indicates to the scheduler whether
a user's program can or cannot gain exclusive access to the requisite resource.
If the process has exclusive access, the scheduler frees the resource by
blocking any process currently using it. If the process cannot have exclusive
access, the scheduler blocks the process until the resource becomes available.

Messages, shared memory, and semaphores are components of the
interprocess communication package provided by the UNIX System V
operating system, as well as by the ULTRIX operating system.

1.6.2 Messages

Messages allow processes to send formatted data packets to other processes.
They are a construct that you cannot access directly but that are implemented
at the program level to allow processes to communicate with each other.
Buffers used by the message system are maintained in the kernel's address
space. The standard ULTRIX configuration file contains no parameters that
affect messages.

1.6.3 Shared Memory

Shared memory enables processes to access blocks of memory (data segments)
outside their normal address space and to share these data segments with
other processes. For example, they can be used as a fast way to pass data
back and forth between processes accessing a common database.

In the DECwindows environment, shared memory is used by processes
running in different windows to communicate with the server.

The ULTRIX configuration file contains five tunable parameters that affect
shared memory. For example, the size of shared memory that can be
accessed, and the number of shared memory segments that can be attached,
per process, can be changed when the kernel is configured.

1-20 Review ofULTRIX Subsystem Resource Usage

1.6.4 Semaphores
A semaphore is a data structure that allows processes to synchronize
execution, obtain exclusive access to a device, or coordinate some other
activity between separate processes by doing a set of operations atomically on
a set of event indicators. A semaphore, like messages and shared memory, is
a construct that is not directly accessible to you; however, it is used by the
software developer when a program is written.

A semaphore contains a table in which entries describe all instances of its
use. Each entry has a numeric key by which it is referenced, a data structure
that maintains status information, a permissions structure, the state of the
semaphore, and other information.

No parameters exist with which to tune semaphore operations in ULTRIX.

1.6.5 The Effect of Interprocess Communications on Performance
The maximum number of shared memory segments and the maximum size
of a shared memory segment are parameters that are set in the configuration
file during system configuration. The ULTRIX operating system documents
no other tunable parameters that affect messages and semaphores.

Review ofULTRIX Subsystem Resource Usage 1-21

2 Tools for Monitoring
Subsystem Resource Usage

One of the most important assets that a system manager brings to a
performance evaluation is an understanding of the normal workload and
behavior of the system. Each system manager must understand the system's
workload sufficiently to be able to recognize normal and abnormal system
behavior, to predict the effects of changes in application, operation or system
usage, and to recognize typical throughput rates.

If you are a system manager, it is recommended that you spend some time
using the tools available for examining and monitoring your system. Over
time, you will Ie am the typical page fault rate for your system, the typical
CPU and memory usage, and so on. You will see how certain applications
or the number of users affect these values. As you continue to monitor
your system, you will recognize the range of values that is acceptable for
your system and to identify trends that indicate some part of your system
is nearing capacity.

Table 2-1 lists the commands available on ULTRIX and the subsystems
that they monitor.

The following utilities are available as layered products:

• xnfsstsat (Digital Network ToolslManagement Station for ULTRIX)

• dxpresto and presto (Prestoserve)

This chapter describes most of these commands and provides examples of
their output. The public domain utilities top and snooper are described,
though not in detail.

Table 2-1: Commands for Monitoring the Subsystems

Process Memory Interprocess
System File Control & Manage- Communic-

Utility Status System Scheduling ment 1/0 Network ations
at X
bg X
chpt X
cpustat X
crash X
df X X
devstat X
du X
fg X
fsck X
ifconfig X
iostat X X
ipcs X
jobs X
kill X
mount X
netstat X X

Tools for Monitoring Subsystem Resource Usage 2-1

Table 2-1: (Continued) Commands for Monitoring the Subsystems

Process Memory Interprocess
System File Control & Manage- Communic-

Utility Status System Scheduling ment I/O Network ations
newfs X
nfsstat X X
nice X
ping X
ps X
pstat X X X X
quot X
renice X
ruptime X
rwho X
stop X
suspend X
tunefs X
uptime X
vmstat X X X X
w X
who X

2.1 Tools That Provide System Status
The commands described in the following sections help you to determine the
status of the components of your system, such as your system's core image
(also known as the kernel); the current state of your CPU, I/O throughput,
and memory; and the state of the network to which your system is attached.

2.1.1 The crash Utility
The crash utility is an interactive program that lets you examine the core
image of the operating system. This utility has facilities that interpret and
format the various control structures in the system and certain miscellaneous
functions that are useful when examining a dump.

2.1.2 The cpustat Command
The cpustat command provides a snapshot of how well the CPU is utilizing
its time. For example, the cpustat command reports the percentage of
time a CPU is in user or system mode, the currently running process, and
the CPU's state. By default, the cpustat command reports a summary of
the statistics since the system has been booted and the state of each CPU.
You can use this information to determine if the CPU is contributing to a
performance problem.

The following example shows the output of the cpustat command:

csh> cpustat
cpu us% ni% sy% id% csw sys trap intr ipi ttyin ttyout

0 33.4 0.0 66.6 0.0 55k 56k 3 1k 0 0 514
cpu state ipi-mask proc pid

0 BR Y 1908

2-2 Tools for Monitoring Subsystem Resource Usage

2.1.3 The iostat Command

The iostat (Input/Output Statistics) command reports on disk and terminal
activity. It displays the following information:

• Number of characters sent to and received from all terminals

• N umber of blocks written or read per second

• N umber of transfers per second

• Number of 512 KB blocks transferred per second

• Percentages of CPU time used in the following:

a. User mode for normal user processes
b. User mode running nice (lower priority) processes
c. System mode
d. Idling (or in the idle loop)

To provide this information for each disk, the system counts the number of
seeks, data transfer completions, and the number of words. It also counts the
number of input and output characters for all terminals collectively. Every
sixtieth of a second, it monitors each disk to see whether it is active. With the
transfer rates for each device and the gathered data, the system determines
the average seek times for each device.

When you run the i 0 s tat command without arguments as in the following
example, the statistics reported are averages since the system was last
booted. An optional argument indicating a sample time interval tells iostat
to sample continuously.

The following shows the output of the iostat command:

csh> iostat
rzO

bps tps
2 0

rz2
bps tps

4 1

2.1.4 The netstat Command

rz4
bps tps

o 0

rzo
bps tps

2 0

cpu
us ni sy id

2 0 2 96

The netstat command (Network Status) shows the contents of the network
related data structures symbolically. Three different output formats are
available, depending on the options that are to display the data. The first
format (chosen with the -a option) displays all active sockets for each protocol.
The second format (chosen with a combination of the -h, -i, -m, -n, -r, and
-s options) displays the contents of other data structures (as chosen with one
or more of the options). The third form (chosen with the -n option and a time
interval) continuously displays network addresses numerically.

With no options specified, netstat displays the current state of all active
sockets using any protocols listed in / etc/protocols. It also shows local
and foreign (remote) addresses, send and receive queue sizes (in bytes), the

Tools for Monitoring Subsystem Resource Usage 2-3

protocol, and internal state of the protocol for all active sockets. The following
shows the output of the netstat command with no options specified:

csh> netstat
Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address

ronyon.1018
ronyon.login
ronyon.1207
ronyon.6000

(state)
ESTABLISHED
ESTABLISHED
ESTABLISHED
ESTABLISHED

tcp 0 0 ronyon.login
tcp 0 a ronyon.1018
tcp 0 a ronyon.6000
tcp 0 a ronyon.1207

tcp
tcp
tcp
udp
udp
udp
Active
Type
stream
stream
stream
stream
stream

0 0 ronyon.800 ronyon.819 CLOSE WAIT
0 0 ronyon.800 ronyon.821 ESTABLISHED
0 0 ronyon.821 ronyon.800 ESTABLISHED
0 0 ronyon.elcsd * *
0 a localhost.ntp * *
0 0 ronyon.ntp * *

UNIX domain sockets
Recv-Q Send-Q Inode Conn Refs Nextref Addr

0 o 80222164 0 0 0 /tmp/.X11-unix/XO
0 0 0 c2013b80 0 0
0 0 0 c2013c80 0 0
0 0 0 c20135cO 0 0
0 0 0 c2013bOO 0 0

The address formats are either in the form host.port or network.port. The
form host.port is used when the host address is known and is displayed
symbolically from the database / etc/hosts. The form network.port is used
when the socket's address specifies a network but not a specific host address.
The symbolic representations come from the database jete/networks.

The interface option provides cumulative statistics about the packets
transferred, errors, and collisions. When an interval is specified, netstat
provides a running count of statistics related to the network interfaces.

The - i option displays statistics on each active or open network interface.
Outgoing packet errors (Oerrs) indicate that the local host may have a
problem. Incoming errors (Ierrs) indicate a potential problem with the

2-4 Tools for Monitoring Subsystem Resource Usage

csh>
Name
qeO
qeO
dmvO
dmvl
dmv2
100
idlO
idll*
id12
id13
id14

network connected to the interface. The following example shows a normal
display (not many Ierrs or Oerrs) from the netstat -i command:

netstat -i
Mtu Network Address Ipkts Ierrs Opkts Oerrs ColI
1500 DEC net RTR 8324125 0 8347463 2 237706
1500 16.31.16 RTR.xxx.corp.co 8324125 0 8347463 2 237706
1284 16.10.16 xx2nnn.pa.corp. 10746232 0 9569078 95 62
1284 16.10.16 xx2yyy.pa.corp.c 4880317 0 4570916 0 0
1284 16.10.16 RTR2zso 1368208 0 1729512 0 31
1536 loop localhost 909234 0 909234 0 0
549 ptopnet 128.45.10.131 0 0 15 0 0
549 none none 0 0 0 0 0
549 none none 0 0 0 0 0
549 none none 0 0 0 0 0
549 128.45.110 128.45.110.111 0 0 15 0 0

2.1.5 The nfsstsat Command
The nfsstsat command (Network File System Statistics) provides statistical
data about the Network File System (NFS) and the Remote Procedure Call
(RPC) interfaces in the kernel. If you do not specify any options, nfsstsat
displays the information as if all options were specified, except -z. After
booting the system, the statistics are reinitialized to zero.

You can view data about the client and server, NFS and RPC, and core and
kernel images. The following example shows the output from the nfsstsat
command. NFS was not active on the system on which this command was
run, so all the data fields shown in the example are zero.

csh> /etc/nfsstat
Server rpc:
calls badcalls
261 0

Server nfs:
calls badcalls
261 0
null getattr
39 14% 99 37%
wrcache write
0 0% 0 0%
mkdir rmdir
0 0% 0 0%

Client rpc:
calls badcalls
7664 3

Client nfs:
calls badcalls
7622 0
null getattr
0 0% 3779 49%
wrcache write
0 0% 282 3%
mkdir rmdir
0 0% 0 0%

nullrecv badlen xdrcall
o 0 0

setattr root lookup readlink read
0 0% % 0 0% 23 8% 0 0% 8 3%
create remove rename link symlink
0 0% 0 0% 0 0% 0 0% 0 0%
readdir fsstat
4 1% 87 33%

retrans badxid timeout wait newcred
9 0 12 0 0

nclget nclsleep
7664 0
setattr root lookup readlink read
213 2% 0 0% 1961 25% 0 0% 774 10%
create remove rename link symlink
59 0% 297 3% 0 0% 107 1% 0 0%
readdir fsstat
121 1% 29 0%

Tools for Monitoring Subsystem Resource Usage 2-5

2.1.6 The pstat Command

The pstat command (Print System Statistics) provides information about the
contents of specific system tables. If you want to examine the system tables
of a system other than the running kernel and the tables in / dev / kmem (for
example, the kernel and core file from a crash dump), you must use the -k
option when specifying a namelist and corefile.

The following options print system tables or information about swap space
usage:

-p Prints the process table for active processes

- s Prints information about swap space usage

-t Prints the table for terminals

-T Displays the number of used and total slots in several system tables
The - T option is useful for checking to see how full the system tables
have become when the system is heavily loaded.

You can control the sizes of some of these tables. If the number of used
slots is almost the same as total slots when the system is heavily loaded,
increase the limit and rebuild the kernel. To do this, you must use the
system configuration parameters maxusers and maxuprc. See Chapter
3 for more information on these parameters.

Output from pstat -s is discussed in Section 2.2.4.

2.1.7 The vmstat Command

The vmstat (Virtual Memory Statistics) command monitors paging,
swapping, and memory activity, including the state of each processor (in
multiple processor systems), virtual memory, paging and swapping activity
and the utilization of the CPU. The vmstat command tells you how much
memory is available, whether the system is paging, and how CPU time
is allocated.

The vmstat command provides the following data:

• Number of runnable, blocked, and short-sleep processes

• Virtual memory subsystem statistics

• Disk activity (not only paging)

• Page fault averages

• Interrupts per second

• System calls per second

• Context switches per second

• Percentages of user time, system time, and idle time

2-6 Tools for Monitoring Subsystem Resource Usage

The vrnstat command is the most informative monitoring tool available
among the standard tools distributed with ULTRIX. The following example
shows the output of the vrnstat command:

csh> vmstat
procs
r b w in

o 0 0 289

faults cpu
sy cs us sy id
74 23 3 2 96

memory
avm fre
26k 5440

re at
o 0

page
pi po fr de
000 0

disk
sr sO sl
000

The following table describes the fields shown in the previous example:

Field

procs

faults

cpu

memory

page

Description

Shows the number of processes in various states:

r

b

w

In the run queue

Blocked for resources (paging and 110)

Runnable or short sleeper, but swapped

Shows the trap and interrupt rate averages:

in (non clock) Device interrupts per second

sy

cs

System calls per second

CPU context switch rate
(switches/second)

Shows the percentage breakdown of CPU usage:

us

sy

id

User time for normal and low priority
processes

System time

CPU idle

Shows information about current usage of virtual and real
memory:

avm

fre

Active virtual pages

Size of the free list

Shows information about page faults and paging activity:

re

at

pi

po

fr

de

sr

Page reclaims

Pages attached

Pages paged in

Pages paged out

Pages freed per second

Anticipated short term memory
shortfall

Pages scanned by clock algorithm per
second

Tools for Monitoring Subsystem Resource Usage 2-7

Field

disk

Description

Shows the number of disk operations per second:

sO, sl ... sn Paging/swapping disk sector transfers
per second

2.2 Tools That Monitor the File System

A number of useful tools exist with which you or the system administrator
can monitor or improve file system performance. Some of the tools show
information about how users utilize the file system. This information is
useful to system administrators who want to change user behavior to improve
system performance.

Other tools run on a live file system and show current usage information
directly relevant to tuning file system parameters. You can use this
information to tune the file system.

2.2.1 Gathering Information About Disk Organization

Before you begin to tune the file system, it is necessary to understand its
configuration; that is, it is necessary to know where you are before you can
decide where you want to go. Using the chpt, df, and mount commands
together can give you a clear picture of the configuration of the disk.

Using the chpt, df, and mount commands, you can accomplish the following:

• Learn the geometry of the disks attached to the system

• Determine which partitions on the disk are in use

• Determine the size of file systems on those partitions

• Determine the amount of space in the file systems currently in use

• Determine the amount of free space available for new files or for the
expansion of existing files

• Determine where in the directory hierarchy the various file systems
are mounted

This information is especially useful if you want to modify the file system to
improve performance. The user must also know the swap and dump devices.

The following sections describe these utilities, their output, and how to use
the resulting information to understand the physical layout of the disks on
which the file system resides.

For more information, see chpt(8), mount(8), and df(l) in the ULTRIX
Reference Pages.

2-8 Tools for Monitoring Subsystem Resource Usage

2.2.1.1 Using cbpt

The chpt (change partition table) command reads the partition table from the
superblock of the a- or c- partition, if it exists, or the default partition table
from the device driver, if it does not. You can run the chpt command only
if you have superuser privileges. This precautionary measure is necessary
because it is possible to change the partition table in the superblock, thereby
destroying the file systems on the disk. However, with the argument -q, chpt
runs without modifying the partition table and simply prints its contents to
standard output (stdout). The following example shows an example of the
command and its output. Note that you must use either the a or c partition
of the raw device with this command.

Example 2-1: The chpt -q Command

cbpt -q /dev/rrzOa

/dev/rrzOa
Current partition table:
partition bottom top size overlap

a 0 32767 32768 c
b 32768 163839 131072 c
c 0 1299173 1299174 a,b,d,e,f,g,h
d 163840 456369 292530 c,g
e 456370 748899 292530 c,g,h
f 748900 1299173 550274 c,h
g 163840 731505 567666 c,d,e
h 731506 1299173 567668 c,e,f

In Example 2-1, the column labeled partition is typical of disks
manufactured by Digital; that is, all have seven partitions (some may
not be used, such as here, in the d-partition). The columns labeled bottom
and top refer to the beginning and ending sector numbers. The column
labeled s i z e shows the size of the partition in sectors. The column labeled
overlap shows the partitions that share some of the same sectors.

2.2.1.2 Using df

The df command displays information about mounted file systems. The
df command lists the partition (corresponding to the output from chpt
-q) and displays the total size of the partition (in kilobytes), the kilobytes
used, kilobytes free, percent used, and the mount point of the partition
all are displayed to standard output. The following example shows the df
command and its output:

csh> df
Filesystem Total kbytes kbytes %
node kbytes used free used Mounted on
/dev/rd1a 7407 5089 1578 76% /
/dev/rd1g 122598 88306 22033 80% /usr
/dev/rdOg 41639 26848 10628 72% /usr/tools

Tools for Monitoring Subsystem Resource Usage 2-9

2.2.1.3 Using mount

You can use the mount command to display the currently mounted file
systems. The command (with no arguments) shows the disk partitions with
file systems mounted and their mount points in the root file system. Any user
can run the command, but superuser privileges are required to mount a file
system. The following example shows the mount command and its output:

csh> mount
/dev/rzOa on / type ufs
/dev/rz2h on /usr type ufs
/dev/rzOd on /var type ufs
/dev/rz2g on /usr/users type ufs

ragll0:/usr/projects/tools on /usr/tools type nfs (rw,hard,bg,intr)

2.2.2 Creating, Checking, and Tuning a File System
As part of improving file system performance, you might have to create a
new file system on one of the disk partitions as shown in Example 2-1. In
rare instances, you might even have to redefine a partition's starting sector
and size before creating a new file system on it. Generally, it is not a good
idea to change partition sizes from those found in the device driver's default
partition table; it makes the file system (disk) hard to maintain. However,
with some small disks, such as the RD53 used in some of the examples in this
manual, or disks with a strange geometry, the benefits of changing partition
sizes might outweigh the liabilities.

In addition, you might need to check the integrity of a file system, although
the system normally does this automatically when it is booted. You might
need to change some of the tunable parameters associated with a mounted
file system. The commands newfs, chpt, fsck, and tunefs accomplish
these tasks.

For more information, see newfs(8), chpt(8), fsck(8), and tunefs(8) in
the ULTRIX Reference Pages.

2.2.2.1 USing newfs and tunefs to Create and Evaluate a File System

The newfs command is an ULTRIX interface to the UNIX utility mkfs. It
takes as arguments the raw partition (character special device file) on which
the file system is to be created and the disk type. The following example
shows thenewf s command and its output:

Example 2-2: The newfs Command

newfs /dev/rrdOq RD53
Warning: 16 sector(s) in last cylinder unallocated
/dev/rrdOb: 33440sectors in 246 cylinders of 8 tracks,
17 sectors 17.1Mb in 16 cylgroups (16 c/g, 1.11Mb/g,
384 i/g) super-block backups (for fsck -b#)at:
32, 2232, 4432, 6632, 8832, 11032, 13232, 15432,17440,
19640, 21840, 24040, 26240, 28440, 30640, 32840,

The newfs command prints information about the created file system,
including its size in sectors, cylinder groups, and megabytes. A backup

2-10 Tools for Monitoring Subsystem Resource Usage

superblock is always located at block number 32, but the number and location
of other backup superblocks depend on the size of the disk.

The newf s command reads necessary information about the disk's geometry
from the file /etc/disktab. This information is passed on to mkfs, which
creates the new file system.

You can set a number of parameters governing the file system's configuration,
overriding the defaults normally passed to mkfs. You can change a limited
number of these parameters later using tunefs , if you need to tune the
file system. For example, you can adjust rotdelay and maxcontig=l
with tunefs.

As a general rule, leave maxcontig equal to 1, and fix rotdelay. The disk
controller used on the system affects the settings for best performance.

Use dumpfs to view the setting of rotdelay. The default for RISe computers
is 0, and the default for VAX computers is 4. The default setting is correct
for all VAX and RISe SCSI systems. The non-SCSI RISe optimal settings is
4 for RA drives. Note that ULTRIX Version 4.0 uses 0 and Version 4.1 and
higher use 4. For nSSI drives, the default is 0 for RF71s and 4 for RF31s.

2.2.2.2 Using fsck to Evaluate a File System

The f s ck command checks and repairs a file system. Normally, the system
executes this command when it is first booted as part of the normal boot
sequence. It performs a number of maintenance chores including the
checking of blocks claimed by inodes and the free list, link counts, directory
size and format, total free blocks, and free inodes. If it detects allocated but
unreferenced files, it places them in the lost+found directory, if it exists. The
following example shows the fsckcommand and its output:

For more information, see fsck(8) in the ULTRIX Reference Pages.

csh> fsck /dev/rzlf
** /dev/rz1f
** Last Mounted on /usr/users3
** Phase 1 -Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cy1 groups

3 files, 10 used, 263413 free (21 frags,32924 blocks, 0.0% fragmentation)

Tools for Monitoring Subsystem Resource Usage 2-11

2.2.3 Disk Usage Space Allocation

One of the factors that affects the performance of the file system is the
percentage of the total number of blocks in the file system that are in use.
When the file system is created, a free-space threshold is specified. Usually it
is 10 percent of the total number of kilobytes in the file system. It is possible
to change this percentage, using the -m argument with the newfs command,
at the time the file system is created, or later using the -m option with the
tune f s command. However, setting the minimum free-space threshold to
zero decreases throughput by a factor of as much as three. The percentage
of kilobytes used, reported by the df command, refers to the total capacity
of the file system, less the free-space threshold.

Two commands, du and quot , are useful when determining how the file
system is currently used. The du command displays the number of blocks
in each directory of the file system. Higher-level directories in the hierarchy
show the total number of blocks occupied in all files and subdirectories below
them. The quot command summarizes file system ownership for names
listed in the password file and displays total blocks owned by file system
and user name. The following examples show the du and quot commands
and their output:

csh> du /us~/tools/aim
290 lusr/tools/aim/bin
6 lusr/tools/aim/h
58 lusr/tools/aim/src/utils
366 lusr/tools/aim/src
1029 lusr/tools/aim/suite2
25 lusr/tools/aim/suite2.data
1 lusr/tools/aim/tmp
1945 lusr/tools/aim

csh> quot /dev/rdla
Idev/rd1a:
31470 bin
10892 root
1958 uucp
818 sysinfo
428 Ip
4 network

By using du and quot, system administrators can determine the most
populated directories and identify the users whose files consume the largest
number of disk blocks. This information can help formulate a strategy to
spread disk activity out across multiple spindles.

In addition, system administrators can use quot in conjunction with quotaon
and quotaoff to establish and monitor disk quotas. The objective of these
efforts is to improve disk performance. Note that the argument to du is the
directory where the tabulation is to start, whereas the argument to quot is
the device-special file for the partition on which the file system resides.

For more information, see duel) and quot(8) in the ULTRIX Reference Pages.

2-12 Tools for Monitoring Subsystem Resource Usage

2.2.4 Swap Space Usage

Configuring the system with enough swap space is primarily an administrative
chore. Monitoring swap space usage with the pstat -s command shows how
the system is using its existing swap space. The following example shows the
pstat command with the -s option and its output:

csh> pstat -s
33440k swap configured

10917k used (2981k text, Ok smem)

22521k free, 2720k wasted, 2k missing

avail: 9*2048kl*1024k 2*512k 5*256k 2*128k 4*64k 4*32k 3*16k 73*lk

The pstat -s command shows the number of 1 KB pages used, free,
wasted, and missing. The missing field includes space allocated for storing
arguments to a currently executing process. It also shows space allocated
to alternate swap partitions when the kernel was configured if the partition
does not appear in the/etc/fstab file. The wasted field indicates the degree
of fragmentation with a larger value indicating more fragmentation. In
addition, the available field shows the number of free contiguous blocks.

You can determine how much swap space is used or free on a percentage
basis by dividing the number in the used field by the swap configured field.
In the previous example, this is 10917k-;-.33440k, or 32.7 percent used. By
looking at the available field and noting the size of the available blocks,
you can determine the degree of fragmentation of the swap space. With
a greater number of large contiguous blocks available, the swap partition
is less fragmented.

2.2.5 Exercising the Disk and File System

ULTRIX provides several system exercisers you can use to identify disk
and file system problems. The exercisers dskx and fsx are relevant to
the file system. All of the exercisers help identify hardware problems and
their respective subsystems. Make sure that performance problems are not
hardware related before analyzing each subsystem further.

Each exerciser can be run for a particular length of time (command line
option) or until killed by a signal. The exercisers collect output in a file
specified by the user; by default, it creates the file in the /usr/field
directory. You must have superuser privileges to run the system exercisers.

For'more information, see dskx(8), f sx(8), and other system exercisers in
the ULTRIX Reference Pages.

2.2.5.1 Using dskx

The dskx command is the disk drive exerciser. It performs random seeks
and reads and writes to an entire disk or to specified partitions on the disk.
Writes are potentially destructive; if dskx detects a valid file system on the
disk, it prompts you twice for confirmation before overwriting it.

Tools for Monitoring Subsystem Resource Usage 2-13

2.2.5.2 Using f sx

The fsx command is the file system exerciser. It works by forking a
specified number of processes determined by a command line option. The
default number is 20. Each process creates, opens, reads and writes files
of random data.

2.2.6 Monitoring File System Activity
The commands mentioned in the previous sections give an overall picture of
how the file system is set up, who is using it, or how the physical components
are functioning. However, this information does not reflect the system while
it runs a normal workload. The following sections discuss two ULTRIX
commands, iostat and vmstat, that you can use to understand how the
system is working under a normal load. These commands allow you to
periodically sample various system tables in the running kernel to provide
statistics about the file system's performance.

You can use the iostat command to monitor file system activity. A small
number of bytes transferred per seek indicates a highly fragmented file
system. Such a file system can benefit from reorganization. In addition, the
file system is fragmented if the bytes transferred per second divided by the
transfers per second (tps) is much less than the disk's transfer rate.

The output from the vms tat command contains information related to paging
and swapping. The fields re, at, and sr (page reclaims, ages attached, and
pages scanned by clock algorithm). The fields pi and po (pages paged in and
pages paged out) relate to activity on the swap partitions.

For more information, see iostat(l) and vmstat(l) in the ULTRIX Reference
Pages.

2.3 Commands that Monitor Process Control and Scheduling
The commands that you or the system administrator can use to monitor or
improve process control and scheduling are limited. Some of the commands
(finger, w, who, uptime) show information about who is using the system
and what they are doing.

Two of the commands (ps and pstat) show current process control and
scheduling information for all processes, systems services, and users.
Unfortunately, neither of these commands runs in a continuous sampling
mode similar to iostat and vmstat. Information provided by these
commands is useful for system management rather than system tuning.

2.3.1 Determining the System Users and Tasks They Are Running
To determine who is using the system, you can use several utilities:

• The who command prints out the login name, terminal name, and login
time for each current user.

• The finger command displays information about each user currently
connected and a selectable amount of additional information.

• The uptime and w commands allow you to see who is logged in and
what they are doing. The first line of the output gives the uptime for the
system (how long since the last boot) and the system's load average.

2-14 Tools for Monitoring Subsystem Resource Usage

The following example shows the output from the who and finger commands:

csh> who
Jlm tty01 Jun 4 08:45
chris tty02 Jun 4 09:06

csh> finger
Login Name
jim Jim Sumrall
chris Chris Farrow

TTY Idle
01
02

When Office
Mon 08:45

6 Mon 09:06

The following example shows the output of the w command. The upt ime
command shows the same information as that in the first line of the output
from the w command. The last field (the what field) shows the command
being executed by the user.

csh> W

1:42pm up 3 days, 33 mins, 3 users, load average: 6.19, 2.42, 1.18
User tty login@ idle JCPU PCPU what
root ttyp1 1:13pm 3 278:25 4:36 . . /cc1 jump. i -quiet -0 -0 jump.
root ttyp2 1:58pm 2 288:57 94:01 sh -c exec mul - double/usr/tools

root ttypO 1:12pm 71:44 24 16 lusr/bin/dxwm

For more information on these commands, see the ULTRIX Reference Pages.

2.3.2 Setting or Resetting the Priority of a Process

When ULTRIX executes commands, the scheduler decides to run a particular
process based on a number of factors, one of which is the process priority. All
processes have a base priority that is determined when they begin to execute.

Some processes, such as the swapper, pagedaemon, init, and other system
level services, have high base priorities, whereas user processes start with
a lower base priority. This priority is called a process' nice value. A high
priority translates into a low nice value. Changing process priorities with
nice or renice can improve system performance, but this option falls into
the category of system management rather than system tuning.

For more information, see nice(1) and renice(8) in the ULTRIX Reference
Pages.

2.3.2.1 Using nice

When you enter a command, you can increase its nice value, that is, you
can lower its priority. The nice command varies if you are using the C-shell
or the Bourne shell. The semantics of the command in C-shell refers to its
nice value, while in Bourne shell, it refers to its priority. For example, the
argument (10) to the nice command changes the priority by 10 percent.
You can lower the priority of your own process by a nice value of as much
as 20 (the upper limit). You must have superuser privileges to increase
the priority of a process.

Tools for Monitoring Subsystem Resource Usage 2-15

2.3.2.2 Using renice

ULTRIX also allows you to reset the priority of a running process using the
renice command. The format of the command and its semantics are the
same as that for the C-shell nice command. Unlike the nice command, the
renice command resides in the /etc directory.

You can change the priorities of your own processes only by increasing the
nice value. If you have superuser privileges, you can change the priority of
any process and can increase or decrease the priority.

You can determine the process ID by using the ps command. For more
information, see Section 2.3.4.2.

2.3.3 Scheduling, Rescheduling, or Stopping a Process
You can use several commands to schedule or reschedule a process. The at
command allows you to schedule a process to run at a later time. To use the at
command, your user ID must appear in the file/usr/lib/cron/at. allow
or it must not appear in the file /usr/lib/cron/at. deny. The system clock
daemon, cron, runs the process at the time specified by the at command.

The at command uses a copy of a named file or standard input as input to
sh or csh. The command at allows you to specify the time when you want
the command to run. The following example shows using the at command
to schedule the command file arc to run at 10:00 PM.:

csh> at 2000 arc
90.154.2000.15

The system breaks the output from the commands into four fields separated by
periods. In order, the fields show the year, the day from the Julian calendar,
the time at which the system runs the job, and the job's queue number.

The C-shell provides several built-in commands that allow some flexibility
in process scheduling. These commands are bg, fg , jobs, kill, stop, and
suspend. With respect to job control, the C-shell gives you greater control
over processes and job scheduling than the Bourne shell.

The bg command places a process in the background. The f g command
brings a process to the foreground. The jobs command displays active jobs.
The kill command sends a signal to a job. The stop command and the
suspend command stops or suspends a job, which you can restart with the
bg or f g commands. You can suspend a process by pressing CtrllZ.

The kill command (on /bin) allows you to stop a currently running process.
To kill a process, you must have the same user ID or process group ID, or
have superuser privileges.

The kill command allows you to send a signal to a running process. For more
information about the signals you can send, see sigvec(2) in the ULTRIX
Reference Pages. If the executing process is designed to catch signals, it
takes whatever action is prescribed on receipt of the quit, terminate, or
interrupt signals. Other signals usually are not used; they are reserved for
system-specific exception conditions.

If the objective is to terminate the process, whether it is catching signals or
not, you can send the signal -9; it is guaranteed to stop the process. Without

2-16 Tools for Monitoring Subsystem Resource Usage

superuser privileges, you can send a signal only to your own processes.
With superuser privileges, you can send a signal to any process. A system
administrator might kill a process that appears to be endlessly looping, or
one that is consuming an inordinate number of system resources, and could
then reschedule the job at a time when the system was less heavily loaded.

For more information, see at(l), kill(l), and the built-in commands (bg(l),
fg(l), jobs(l), kill(l), stop(l), and suspend(l)) of the C-shell in the
ULTRIX Reference Pages.

2.3.4 Monitoring Interrupts, Context Switches, and System Calls
The commands mentioned in previous sections primarily dealt with process
scheduling. Specifically, these commands relate to system management and
might have some impact on system performance. The vrnstat command can
monitor the system as it is running and give some useful information relating
to process control and scheduling.

2.3.4.1 Using vmstat

The information from the vrnstat command relevant to process control and
scheduling is found in the faults field. Section 2.1.7 provides a description
of the of this command. The following example shows the first three fields
of the vrnst at command:

csh> vmstat
procs
r b w
100

in
75

faults
sy cs

101 21

cpu
us sy id
23 25 52

The relevant fields, in, sy and cs, by themselves have little meaning. You
must compare these fields for a system when it is not heavily loaded and
when it is processing several different workloads. If any of the three faults
fields are large when the system is heavily loaded and when the id field
under the cpu heading is also large (showing the percentage of time the CPU
is idle), this indicates some problem. See Chapter 3 for more information
about the type of problem and its remedy.

For more information, see vrnstat(8) in the ULTRIX Reference Pages.

2.3.4.2 Monitoring Other Process Control Activity

The remaining tools you can use to monitor process control activity are ps
and pstat. Both of these tools give a snapshot when you run them. The
output from ps and pstat are similar. However, the quantity of information
available from pstat is greater, as it covers more subsystems than process
control and scheduling.

The ps command prints process status statistics. With no options specified,
the command prints information for the user's processes only. With the -a
option specified, the system prints all user process statistics. With the -x
option, the system prints all process statistics, including those for processes
such as printer and network daemons, system utilities, and other background
tasks. With the -1 option, the system displays all information collected by
ps. The following example shows the edited output from the ps command
with the -al options:

Tools for Monitoring Subsystem Resource Usage 2-17

esh> ps -al

F UID PID PPID CP PRI NI ADDR SZ RSS WCHAN STAT TT TIME COMMAND
b008001 0 135 131 0 1 0 3f54 614 78 e7060 I pO 0:08 /usr/bin/dx
b008001 0 136 131 26 1 0 512a 880 122 e7060 I p1 4:03 /usr/bin/dx
b008001 0 137 136 3 3 0 2d8e 65 33 e08ee I p1 0:12 - (esh)
b008001 0 607 131 2 1 0 46ea 842 151 e7060 S p21 26:49 /usr/bin/dx
b008201 0 608 607 3 15 0 486a 63 44 fe400 I p2 0:24 - (esh)
bOOOO01 0 7778 608 101 50 0 6d5e 231 192 R p2 0:05 s5make mult
b808201 205 6683 6682 5 15 0 255a 54 35 fe400 S p3 0:04 -esh (esh)
bOOOOOl 205 7880 6683 76 44 0 1b78 254 140 R p3 0:00 ps -al

bOOOO01 205 7881 6683 5 1 0 53d2 6 3 5e358 S p3 0:00 tee ps.out

You can obtain the process ID field (PID) (mentioned earlier relating to the
kill command) from the default listing. The system prints the process
priority (PR!) and nice value (NI), which also were discussed earlier. The
state of the process is of interest. Table 2-2 shows the process status flag.

Table 2-2: Process Status Flags

Flag

R

T

P

D

S

I

W

Description

Running Process

Stopped processes

Processes in page wait

Processes in disk (or othershort-term) waits

Processes sleeping for less than 20 seconds

Idle processes (sleeping longer than 20 seconds)

Processes that are swapped out

The system prints other fields of interest for different options. The -au option
displays user-oriented output. The following example shows the output from
ps command with the -au options:

esh> ps -au

USER
root
root
root
root
root
root
root
root
root

root

prD %CPU %MEM SZ RSS TT STAT TIME COMMAND
8071 14.3 0.5 93 50 p2 R 0:10 multiuser
8057 13.5 16.6 2257 1848 p1 R 0:22 .. /ee1 jump.i -quiet -0 -0 jum
8070 13.4 0.5 93 50 p2 R 0:11 multiuser
8069 13.4 0.5 93 50 p2 R 0:10 multiuser
8068 13.4 0.5 93 48 p2 R 0:10 multiuser
8067 13.2 0.5 93 48 p2 R 0:09 multiuser
607 1.1 2.3 2323 237 p2 S 130:46 /usr/bin/dxterm -Is
8061 0.1 0.3 93 28 p2 I 0:02 multiuser
8027 0.0 1.3 185 136 p1 I 0:08 make -f Makefile

8059 0.0 0.4 78 36 p2 I 0:00 sh5 aim. control

Two fields output by the ps -au command are %CPU and %MEM. The %CPU
field shows the CPU utilization of the process. The %MEM field shows the
percentage of real memory used by the process. These fields indicate processes
that consume an inordinately large amount of either resource.

2-18 Tools for Monitoring Subsystem Resource Usage

The sum of the CPU percentages can total more than 100 percent because
the computation uses a decaying average over one minute. If many of the
processes are young, the total could reach a maximum of 200 percent.

The pstat command prints out the contents of some kernel system tables.
For the purposes of monitoring process control and scheduling, the most
useful information that the pstat command displays is the number of used
and free slots in several system tables. The following example shows the
output from the pstat command with the -T option:

csh> /etc/pstat -T
182/ 609 files
431/ 444 gnodes

68/ 288 processes
38/ 38/ 76 active/reclaimable/total texts

2/1843 OOk swap

You can configure the size of these tables. If the output from this command
reveals that one of these system tables (such as the process table) is at or
near capacity when the system is heavily loaded, reconfigure the kernel,
placing larger limits on that table.

For more information, ps(1) and pstat(8) in the ULTRIX Reference Pages.

2.4 Tools for Monitoring Memory Management
Few real opportunities exist to tune the memory management subsystem,
other than to add more memory. Even the system management policies do
not significantly affect memory management. The only tool that monitors
memory management on the running system is vmsta t. In addition, the
ULTRIX field service kit provides two memory exercisers.

2.4.1 Memory Exercisers
Previous sections mentioned system exercisers that ULTRIX provides for the
file system. The system provides two more that test the memory subsystem,
mernx and shmx. These do not test memory management; they test the
memory itself. However, you should know about all tools available so that
you can use the appropriate one to test the system, eliminating the possibility
of any other source of problems.

2.4.1.1 Using memx

The memory exerciser memx forks 20 (the default) processes that exercise
memory by writing and reading a series of 1s and Os to memory. The mernx
command has the following attributes:

• It tests all of memory by dividing available system memory by the number
of processes to be run. The amount of swap space or system memory
acts as the upper bound on the amount of memory that is tested; the
smaller of the two is the maximum.

• It runs until terminated by the QUIT signal, or it runs for a specified
period of time.

• It runs the shared memory exerciser unless that option is disabled.

Tools for Monitoring Subsystem Resource Usage 2-19

2.4.1.2 Using shmx

The shared memory exerciser shmx forks a background process, and the two
processes create, attach, and write and read to as many as six (the default)
shared memory segments. You can specify the number of shared memory
segments that you want to test on the command line when you start the
exerciser. The shmx command runs until terminated by the QUIT signal, or
it runs for a specified period of time. The size of shared memory segments
tested is SMMAX (set in the configuration file) divided by the number of
shared memory segments to be created.

For more information, see memx(8), shmx(8), and the other system exercisers
in the ULTRIX Reference Pages.

2.4.2 Using vmstat to Monitor Memory Usage
Using the vrnstat command, you can check principal memory features such
as swap or paging status. From the output of the vmstat command, you
can decide whether more memory would improve system performance. The
following example shows the output from the vIDstat command:

csh> .vmstat
procs faults cpu memory page
r b w in sy cs us sy id avm fre re at pi po fr de sr .. .

410 404 193 7 9 8 83 10k 18k 0 0 0 0 0 0 0 .. .

This section discusses the fields relevant to memory management.

To determine whether the system is swap bound, examine the fields avm
(active virtual memory) and fre (free list). When the system is heavily
loaded, aVID should be less than 80 percent of real memory, and fre should
be small. If aVID is larger and fre is small, the system has to write pages to
the swap partition, and system performance deteriorates.

If aVID is too large, given the amount of real memory on the system, the
de field (anticipated short term memory deficit) becomes nonzero, and the
system begins to write pages to the swap partition as indicated by nonzero
values in the pi and po fields. You can increase available real memory either
by reducing the buffer cache or by adding more memory.

Positive values in the fr (pages freed per second) and sr (pages scanned per
second) fields can indicate a real memory shortage. If the values in the fr
and sr fields are nonzero, use the command ps -x to determine whether the
page daemon process is using large amounts of time. If it is, you can improve
system performance by adding more memory.

2.5 Tools for Monitoring the 1/0 Subsystem
ULTRIX provides a limited number of tools to monitor the 110 subsystem.
Some of them (finger, w, and who) were described in Section 2.4.1 in
relation to process control and scheduling. These commands allow you to
monitor who is using the system and the terminal on which they are working.
The iostat command shows the number of characters sent and received
by all the terminal interfaces.

2-20 Tools for Monitoring Subsystem Resource Usage

2.5.1 Determining Which Devices are Connected to the System

The kernel collects some information about devices that are configured and
connected to the system. Information about their status is usually available.
For a limited number of devices, performance statistics are also available.
The pstat command prints information that relates to terminals attached
to the system for each terminal line.

2.5.1.1 Using devstat

The devstat command gathers some of the information that the kernel
maintains on attached 110 devices. In general, this information is built into
the device driver for the device. The kernel is configured with this information
when it is built. The strategy to obtain this information is as follows:

• To attempt to open the device-special file (if the device is not present,
the open fails)

• To read information from the driver using the stat and ioctl functions

The following example shows the dev s tat command and its output:

csh> devstat /dev /console /dev/~tOh
ULTRIX DRIVER

DEVICE DEVICE ERR CNT
DEVICE NAME NAME INTERFACE MAJ MIN PNMC # SFT HRD

------------ --------- --- ---
/dev/console VR260 VS SLU 0 0 sm 0 0 0

/dev/rmtOh TK50 VS TAPE 46 8 st 0 0 0

The devstat command does not format its output; the output is piped to an
awk script, which formats it. More information is available from the kernel,
including information about the bus, controller, plug, and status mask, but
it was not reproduced here.

See Appendix A for the source code for the devstat command.

2.5.1.2 Using pstat

The command pstat -t examines buffers in the kernel's data space for
all the terminal devices configured with the system, regardless of whether
a device is attached. By combining information from this command with
information from the w command, you can determine which terminal lines are
active, the processes generating the activity, and the number of characters
the application is generating. The following example shows the output of the
pstat command with the -t option:

Tools for Monitoring Subsystem Resource Usage 2-21

csh> /etc/pstat -t
=It RAW CAN OUT

4 de lines
MODE ADDR DEL COL STATE PGRP DISC

o 0
1 0

2 0

e98 801e9250
o 0

o 0

o
o
o

o
o
o

OC

OC

3 602 48000003 801e94a8 0 13 OCBA

83
o
o
o

32 pty lines
o 0 540500d8 o 0 11 OC

OC

OC

OC

3048 ntty

3049 1

2

3

82
o 82
o 5e0500d8

o 0 10
000

000
3082
3225 ntty

The RAW, CAN, and OUT fields show the number of characters in the raw
and canonicalized input queues and the output queue, respectively. The
STATE field shows the status of the device, where the characters 0, C, D,
and W represent open, carrier on, open nodelay, and waiting for an open to
complete. For a description of the other fields that the pstat(B) command
displays, see the ULTRIX Reference Pages.

2.5.2 Exercising Terminals, Printers, and Magnetic Tape

Previous sections mentioned ULTRIX system exercisers in the file system.
ULTRIX provides three more that test the I/O subsystem: cmx, Ipx , and
mtx. The exercisers provided for the I/O subsystem test terminals, printers,
and tape drives.

The following sections briefly describe the cmx, Ipx, and mtx commands. For
more information about these commands and the other system exercisers,
see the ULTRIX Reference Pages.

2.5.2.1 Using cmx

The cmx utility is the generic communications exerciser. It writes, reads and
validates random data of random packet lengths on specified communication
lines. The line-under test must have a loopback connector attached to it,
either to the distribution panel or to the cable. Disable the line in the
/etc/ttys file. Like the other exercisers, the cmx utility runs for a specified
length of time or until it receives a QUIT signal.

2.5.2.2 Using Ipx

The Ipx utility is the line printer exerciser. It prints five pages of a rolling
character pattern to the printer, sleeps for fifteen minutes, and then repeats.
It continues to do this for a specified length of time or until it receives a QUIT
signal. You must specify the device-special file for the printer under test and
disable the printer queue for that printer while the exerciser is running.

2-22 Tools for Monitoring Subsystem Resource Usage

2.5.2.3 Using mtx

The mtx utility is the generic magnetic tape exerciser. It writes, reads, and
validates a random pattern of data to a specified tape device. You can test
four different record lengths. The exerciser runs for a specified length of
time, or until it receives a QUIT signal.

2.6 Tools for Monitoring the Network
ULTRIX provides a number of tools that monitor network activity. You can
use some of these to determine who is using the network and what they are
doing. You can use these tools for system management and user education.
ULTRIX also provides tools that show what the network is doing at a lower
level of abstraction, that is, at the level of message packets sent and received.
Use this type of tool to diagnose network problems related to hardware and
systems software. The tools described in the following sections apply only
to the TCP/IP protocols and NFS.

2.6.1 Determining Network Usage
You can use two commands, rwho and ruptime, with ps to determine who
is logged in anywhere on the local area network, the machine on which they
are working, and the terminal controlling their session. Use the rupt ime
command to determine which nodes are live and the rwho command to
determine who is logged on to each live node in the network. If you want to
know what a particular user is doing (what processes they are executing), use
the ps command on their local machine. You can run the ps command as a
remote job (rsh or rexec), or you can log in to the remote machine (rlogin
or telnet) and run the ps command in a local shell.

2.6.1.1 Using rwho

The rwho command displays the login name, the node name and login
terminal (separated by a colon), and the date and time the user logged in.
If the terminal is idle for a minute or more, the system prints the idle time
as well. If a terminal is idle for an hour or more, rwho does not display
an entry unless you specify the -a option. The following example the rwho
command and its output:

csh> rwho
chris Alpha: console Jun 5 03:34
chris Opus:ttypO Jun 7 09:04
jim Opus:tty01 Jun 6 09:10
root tinsel:ttyp1 Jun 1 13:13 :21
root tinsel:ttyp2 Jun 1 13:58 :04

The rwhod daemon sends its information in broadcast packets, which
generates a large amount of network traffic. On large networks, the extra
traffic may be objectionable. Therefore, the rwhod daemon is disabled by
default. To make use of the rwhod daemon for both the local and remote
host, remove the comment symbols (#) in front of the lines specifying rwhod
in the / et c / rc file.

Tools for Monitoring Subsystem Resource Usage 2-23

2.6.1.2 Using ruptime

The ruptime command gives a status report in the same format as the
uptime command (discussed in Section 2.3.1) for each machine in a local area
network. Each machine in the network has the system status server, rwhod,
running; it broadcasts its own status once a minute. All the machines in the
network have this process running. I t listens for and broadcasts incoming
status messages and updates several status files in the /usr / spool/ rwho
directory. The following example shows the rupt ime command and its output:

csh> ruptime
Alpha up 2+21:37, 1 user,
Opus up 2+23:54, 2 users,
tinsel up 5+20:08, 2 users,

load 0.32, 0.31, 0.31
load 0.03, 0.00, 0.00
load 5.53, 5.44, 4.86

If the rwhod daemon is not running on a remote machine, the machine
may incorrectly appear to be down when you use the rupt ime command to
determine its status. For more information, see rupt ime(1) in the ULTRIX
Reference Pages.

2.6.2 Determining the Status of the Network Interfaces

ULTRIX provides two tools, ifconfig and netstat, to gather information
about the status of the interfaces. The ifconfig utility is usually run in the
system's startup file rc. local to mark the network as up. Run interactively,
it provides some basic information about the configured interfaces. The
netstat command shows the network status. See Section 2.1.4 for a general
description of the netstat command.

2.6.2.1 Using ifconfig

The ifconfig utility configures the network interfaces for the host machine,
marks an interface as up or down, sets the network mask (determines how
the network address is interpreted in a Class A or B network), and sets
other parameters. You must run ifconfig when the system is booted; it
is usually part of the system's rc .local startup file. When you run the
command and specify only the network interface after the network is up, it
displays some status information about that interface. Example 2-3 shows
an example of the command and its output.

Example 2-3: The ifconfig Command

csh> /etc/ifconfig seQ
seO: 128.10.1.3 netmask ffffOOOO flags=Ox443<DYNPROTO,RUNNING,BROADCAST,UP

broadcast: 128.10.255.255

2-24 Tools for Monitoring Subsystem Resource Usage

2.6.2.2 Using netstat

The netstat command displays the contents of network-related data
structures in the running kernel. Using any of the options -A, -a, or -n
displays a list of all active sockets specifying the protocol being used and any
currently active connections. With any of the options, the netstat command
displays the contents of data structures according to the options chosen. If
you specify no options, the netstat command displays the state of all active
sockets. The following example shows the netstat command and its output:

csh> netstat
Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 tinsel.login Alpha.1022 ESTABLISHED
tcp 0 0 tinsel.704 *.* LISTEN
udp 0 0 tinsel.elcsd *.*
Active UNIX domain sockets
Address Type Recv-Q Send-Q Inode Conn Refs Nextref Addr
8123dc80 stream 0 0 0 8123d58 a 0
8123ddOO stream 0 0 0 8123d5c a 0
8123b580 stream 0 0 0 8123d64 0 0
8123ffOO stream 0 0 0 8123d60 a 0
8123ccOO stream 0 0 0 8123d50 a 0
81235e80 stream 0 0 0 8123d54 0 a
81236700 stream 0 0 0 8123d6c a 0
8123fd80 stream 0 0 0 8123d68 a 0
81238dOO dgram 0 0 80103fd8 0 a 0 /dev/elcscntlsckt
81238c80 stream 0 0 8010409c 0 a 0 /dev/printer

8123cc80 stream 0 0 80105238 0 0 0 /tmp/.X11-unix/XO

2.6.3 Displaying Statistics for NFS

The nfsstsat command displays information about the Network File System
(NFS) and Remote Procedure Call (RPC) interfaces in the kernel. Options to
the n f sst sat command enable to display the following:

• Client information

• Server information

• NFS information

• RPC information

• Information from either a live system or a crash dump

Tools for Monitoring Subsystem Resource Usage 2-25

The following example shows the nfsstat command and its output:

=11= /etc/nfsstat
Server rpc:
calls badcalls nullrecv badlen xdrcall
12121452 0 0 0 0
Server nfs:
calls
1312142
null
0 0%
wrcache
0 0%
mkdir
0 0%

Client
calls
30156

Client
calls
30143
null
0 0%
wrcache
0 0%
mkdir

2 0%

badcalls
0
getattr setattr root lookup readlink read
319612 24% 1220 0% 0 0% 795544 60% 5857 0% 163962 12%
write create remove rename link symlink
7294 0% 165 0% 239 0% 75 0% 74 0% 0 0%
rmdir readdir fsstat
0 0% 17612 1% 334 0%

rpc:
badcalls retrans badxid timeout wait newcred
40 256 0 296 0 0

nfs:
badcalls nclget nclsleep
40 30156 0
getattr setattr root lookup readlink read
5833 19% 21 0% 0 0% 17630 58% 420 1% 3455 11%
write create remove rename link symlink
475 1% 84 0% 10 0% 4 0% 0 0% 0 0%
rmdir readdir fsstat

0 0% 1423 4% 786 2%

The client structure is where clients keep track of an outstanding RPC call.
Because there are six client structures, nclsleep is the number of times
that there were six operations in progress when a seventh one arrived and
had to wait until one of the client structures was freed.

Table 2-3 shows the nfsstat fields and their meanings.

Table 2-3: nfsstsat Output

Field

badcalls

badlen

badxid

calls

create

fsstat

getattr

Meanings

Number of badly formed calls

Number of RPC calls with too small a body

Number of times reply transaction ID did not match request
transaction ID

Number of calls begun or received

Number of times a new file was created

Number of times file system attributes and statistic were
retrieved

Number of file attributes that were retrieved

2-26 Tools for Monitoring Subsystem Resource Usage

Table 2-3: (Continued) nfsstsat Output

Field

link

lookup

mkdir

nclget

nclsleep

newcred

null

nullrec

read

readdir

readlink

remove

rename

retrans

rmdir

root

setattr

symlink

timeout

wait

wcache

write

xdrcall

Meanings

Number of times a hard link was created

Number of times that a directory pathname was looked up

Number of times a directory was created

Number of times a client structure was successfully acquired

Number of times all client structures were busy

Not currently used (contains a zero)

Number of null operations

Number of empty RPC calls

Number of times data was read from a file

Number of times a directory was read

Number of times a symbolic link was read

Number of times a file was removed

Number of times a file was renamed

Number of times RPC calls were transmitted

Number of times a directory was removed

Not currently used (contains a zero)

Number of file attributes that were stored

Number of times a symbolic link was created

Number of times a request was made but not answered

Number of times client system had to sleep because client
structure was busy

Not currently used (contains a zero)

Number of times data was written to a file

Number of RPC calls that failed to decode in XCR

2.6.4 Exercising the Network

ULTRIX provides a command and a utility, ping and netx, respectfully, to
test the physical transmission accuracy of the network. The ping command
is part of the standard TCP/IP implementation. The netx utility is another
ULTRIX system exerciser.

Tools for Monitoring Subsystem Resource Usage 2-27

2.6.4.1 Using ping

The ping command is part of the standard TCPIIP implementation; it
uses the echo request and echo response feature of the Internet Control
Message Protocol (lCMP). With no options other than the host name on
the command line, ping reports that the host is alive or that there is no
answer from the host.

On the command line you can specify several options: the -1 option chooses
long format. You can specify the size of the data packet (the default is
64 bytes), as well as the number of packets you want sent. The average
round trip time of the packets is summarized at the conclusion of the test.
This figure is important to identify any bottlenecks between the local and
a remote host. Example 2-4 shows the output from the ping command
with the -1 option.

Example 2-4: The ping -1 Command

csh> lete/ping -1 opus
PING Opus (128.10.1.1) : 64 data bytes
72 bytes from 128.10.1.1: icmp seq=O. time=10. ms
72 bytes from 128.10.1.1: icmp_seq=l. time=10. ms
72 bytes from 128.10.1.1: icmp_seq=2. time=10. ms
72 bytes from 128.10.1.1: icmp_seq=3. time=10. ms
72 bytes from 128.10.1.1: icmp seq=4. time=10. ms -
72 by1:.es from 128.10.1.1: icmp seq=5. time=10. ms -
72 bytes from 128.10.1.1: icmp seq=6. time=10. ms
72 bytes from 128.10.1.1: icmp_seq=7. time=10. ms
72 bytes from 128.10.1.1: icmp_seq=8. time=10. ms
72 bytes from 128.10.1.1: icmp_seq=9. time=10. ms

----Opus PING Statistics---
10 packets transmitted, 10 packets received, 0% packet loss
round-trip (ms) min/avg/max = 10/10/10

2.6.4.2 Using netx

The netx utility is the TCPIIP network exerciser. It writes, reads, and
validates random data using a stream socket connection to the mi s cd server
in the TCP/IP internet domain. By default, netx utility uses the port
number of the echo service in the / etc/ services file. Also, you must tum
on the echo service in the /etc/inetd. conf file. The net x utility runs
for a specified length of time or until it receives a QUIT signal. For more
information, see netx(8) in the ULTRIX Reference Pages.

2-28 Tools for Monitoring Subsystem Resource Usage

2.6.5 Monitoring Network Activity

If you understand the normal ranges of performance in your network,
you can better determine when the network is performing poorly due to
a network problem. You can use the Network Control Program (NCP) to
accumulate performance information. For TCP/IP networks, you can use
DECmcc Management Station for ULTRIX (DECmcc) to gather performance
information.

In understanding how network performance relates to network troubleshoot
ing, the important concepts are thresholds and usage peaks. Threshold is the
maximum value set for a parameter. Usage peak is the maximum level of
activity the network can withstand before performance is adversely affected.

When thresholds are reached or when activity reaches a peak, transient
and intermittent performance problems may begin to surface. Performance
problems can be among the most difficult to isolate, primarily because they
are often transient and intermittent.

For example, when traffic and queuing requests increase, bandwidth
thresholds can be reached and performance problems can occur.

Maintaining historical performance data is essential for troubleshooting
transient and intermittent problems. For example, if you have a transient
problem, you can com pare the historical performance data to the current
performance data, and evaluate the difference to help isolate the source of
the problem. Historical performance data is also useful in trend analysis for
network growth and network planning.

2.6.5.1 Tools For Monitoring Network Activity

ULTRIX provides the netstat command to monitor network traffic on a
continuous basis. Previous sections describe this command; however, this
section deals with its relevance to monitoring network activity at specified
intervals. See the following section for more information on using the
netstat command.

The Network Control Program (NCP), bundled with the DECnet software,
runs on the ULTRIX operating system and allows you to configure and
control DECnet networks. Using NCP, you can monitor network resources,
test network components by manipulating the configuration database, and
display error counter information.

DECmcc is a network management tool for both IP and DECnet networks.
DECmcc collects, formats, and monitors network data from simple network
management protocol (SNMP)-based agents and DECnet nodes. With
DECmcc, you can do the following:

• Display the data graphically and generate hardcopy reports

• Display information using a DECwindows graphic map, which signals
changes on network by changing the colors of network entities displayed

• Observe trends and prevent problems

For more information about the DECmcc, see the DECmcc Management
Station for ULTRIX User's Manual.

Tools for Monitoring Subsystem Resource Usage 2-29

2.6.5.2 Using netstat

When you start the netstat command with a sample interval, it continuously
displays information regarding packet traffic on the configured network
interfaces until you terminate it with the QUIT signal. These statistics
include the number of packets coming in to and going out from the system,
the number of transmission errors, and the number of packet collisions. The
following example shows the output from the netstat command with a
sample interval of 5 seconds:

csh> netstat 5
input (seO) output input (Total) output

packets errs packets errs calls packets errs packets errs calls
23299 0 31597 0 0 25043 0 33341 0 0

3 0 1 0 0 3 0 1 0 0
1 0 1 0 0 1 0 1 0 0
2 0 1 0 0 2 0 1 0 0
1 0 2 0 0 1 0 2 0 0
1 0 2 0 0 1 0 2 0 0
1 0 1 0 0 1 0 1 0 0
1 0 1 0 0 1 0 1 0 0

2.7 Tools for Monitoring Interprocess Communications
You can monitor three of the four interprocess communications (lPC)
resources ofULTRIX using the ipcs command. The ipcs command displays
information about shared memory, messages, and semaphores. You cannot
access information on sockets using this command.

No equivalent to the continuous monitoring of 110, memory, or network
interfaces is available for interprocess communications. Nevertheless,
you can access a considerable amount of information about interprocess
communications.

2.7.1 Using ipcs

To determine which interprocess communications features are in use, enter
the ipcs command without any arguments. If one or more of the features
are not in use, the command prints a message that states that the particular
feature is not currently defined.

The ipcs command has several options that governs reported statistics.
The -a option prints information for all the options. In addition, the options
-ffi, -q, and -s display information for shared memory segments, message
queues, or semaphores only. You can use them with the other options.

Example 2-5 shows the output from the ipcs command.

2-30 Tools for Monitoring Subsystem Resource Usage

Example 2-5: The ipcs Command

csh> ipcs
IPC status from /dev/kmem as of Wed Oct 2 14:40:00 1991
Message Queues:
T ID KEY MODE OWNER GROUP
q 0 OxOOOOOOOd -Rrw-rw-rw- snow snow

Shared Memory:
T ID KEY MODE OWNER GROUP
m 0 OxOOOOOOOb --rw-rw-rw- snow snow
m 1 OxOOOOOO14 --rw-rw-rw- snow snow
m 2 OxOOOOOOOa --rw-rw-rw- snow snow
m 3 OxOOOOOOOc --rw-rw-rw- snow snow

Semaphores:
T ID KEY MODE OWNER GROUP
s 0 OxOOOOOOOf --ra-ra-ra- snow snow

For more information, see ipcs(l) in the ULTRIX Reference Pages.

2.7.2 Exercising Shared Memory
The shared memory exerciser, shmx, forks a background process and the
two processes create, attach, write to, and read as many as six (the default)
shared memory segments. You can specify the number of shared memory
segments you want to test when you start the exerciser. The shmx utility
runs until terminated by the QUI T signal or for a specified period of time as
determined by an option on the command line. The size of shared memory
segments tested is SMMAX (set in the configuration file) divided by the number
of shared memory segments to be created.

2.7.3 Monitoring IPC Activity
ULTRIX provides no utilities to monitor IPC resources continuously, nor
are there any unsupported or public domain tools. If you want to monitor
IPC activity on a continuous basis, you can write a utility to do that. Each
of the IPC resources maintains a status structure within the kernel's data
space. A program that knows the resource's key can access that structure.
Thus, you can write a utility that accepts the resource's key as an input
parameter, runs at periodic intervals sampling the IPC resource's status
structure, and prints that information.

Tools for Monitoring Subsystem Resource Usage 2-31

3 Recognition and Diagnosis
of Resource Constraints

This chapter discusses how you can use the tools described in Chapter 2 to
identify performance problems typically encountered on a workstation.

By testing a subsystem, you can determine whether it needs tuning. This
chapter provides suggestions on how to determine whether a subsystem is
performing as well as expected, and gives examples of potential problems.
For more information about specific steps to improve system performance,
see Chapter 4.

3.1 Identifying File System Limitations
Most performance problems manifest themselves in 110 hardware saturation.
You can reduce the 110 load on the hardware by reducing or stopping the
paging and swapping, by running fewer applications, or by performing more
efficient 110.

In many ways, the file system is the easiest of the subsystems to tune. More
tools are available to identify potential problems within the file system, and
you can address more of those problems without relinking the kernel.

ULTRIX disk layout has block and fragment sizes to optimize performance
versus space utilization (usually 8 KB/1 KB). Block size is the largest (normal)
110 request to disks. An 110 request may perform read-ahead operations
for sequential file access.

ULTRIX uses a buffer cache to avoid disk 110. Buffer cache statistics can be
viewed with the crash bufstats command. Normally, successful cache
operations should be above 90 percent. Buffer cache size is adjustable; by
default, it is 10 percent of physical memory. Changing the buffer cache size
involves a kernel rebuild and reboot.

ULTRIX attempts to do asynchronous writes when possible. It must write
file system meta data synchronously. Presto serve can improve synchronous
write performance.

3.1.1 Determining Whether the Disk Subsystem Needs Tuning
Determining that the disk or file system needs tuning requires experience
and judgment. Usually, if the answer to any of the following questions is yes,
you can improve file system performance by tuning it:

• Is the CPU idle field of iostat or vrnstat nonzero even when the system
is heavily loaded?

• Is the disk load unbalanced? That is, are the bps and tps fields of
the iostat command's output large for one of the disks, relative to
the other disks?

• Is the average seek time reported by iostat significantly different than
the average seek time for the device as listed by the manufacturer in
product literature?

Recognition and Diagnosis of Resource Constraints 3-1

3.1.2 Recognizing When the Disk Subsystem Is Disk-Bound
Limitations in the disk or file system lead to less than optimal performance.
Problems with the disk or file system can be categorized into two areas:

• Those related to the file system and the disk partition on which it resides
• Those related to the swap partition

If the performance problem is traced to the file system and the partition on
which the file system resides, the problem is generally classified as one in
which the disk subsystem is disk-bound.

A disk subsystem is disk-bound when one or more its disk drives experience
a large amount of traffic and a significant proportion of CPU time is idle
when the system is heavily loaded.

The following example shows the output from the iostat command when
a system is disk-bound:

csh> iostat 5
tty rdO rd1 cpu

tin tout bps tps bps tps us ni sy id
0 2 0 0 2 1 1 0 5 93
0 57 0 0 258 61 28 0 72 0
0 57 0 0 266 63 43 0 57 0
0 47 0 0 266 63 48 0 52 0
0 41 0 0 256 60 43 0 54 4
0 42 0 0 222 55 11 0 46 43
0 60 3 1 238 57 14 0 61 26
0 60 0 0 250 60 14 0 55 31
0 54 0 0 252 60 18 0 57 25
0 59 2 1 207 52 14 0 42 44
0 61 1 0 254 60 15 0 57 28

The first line of output from the i 0 s tat command shows statistics for the
system from the time it was booted to the present. Subsequent lines show
statistics from samples taken at 5 second intervals. The system is heavily
loaded, as evidenced from the three lines following the first line; where the
cpu i d field shows there is 0 percent CPU idle time. The next several lines
show a rise in the CPU idle time, ranging from 4 percent to 44 percent, and
significant activity on one of the disks.

The source of the problem in this example is the disk-load balance. The disk
rd1 shows 50-60 transfers per second and 200-270 blocks read or written per
second. The second disk rdO shows almost no activity.

To confirm that the problem is a poorly balanced disk load, you can examine
the output from vrnstat. The three procs fields (r,b,w) in the output from
vrnstat indicate the number of processes running (r), blocked for a resource
(b), or runnable but swapped (w).

If poor disk performance were the result of fragmentation, the disk load
would be more evenly balanced. The system would still be heavily loaded;
however, some CPU idle time would still exist. Using only the output from
i 0 s tat to determine that poor disk performance is due to excessive head
movement is, at best, a guess. The previous example shows output from the
iostat command for a disk in need of reorganization.

3-2 Recognition and Diagnosis of Resource Constraints

The CPU idle time shown in the following example ranges from 4 percent
to more than 40 percent. The io s ta t and vms tat commands were not run
simultaneously, so the statistics in each of the figures cover slightly different
time periods. The important statistics to note, however, are the bps and tps
fields. These fields show that the disk load is more evenly balanced.

csh> iostat 5
tty rdO rd1 cpu

tin tout bps tps bps tps us ni sy id
0 2 1 1 2 1 1 0 5 93
0 41 88 21 128 30 43 0 54 4
0 42 80 19 101 25 11 0 46 43
0 60 82 20 113 27 14 0 61 26
0 60 91 22 125 30 14 0 55 31
0 54 101 24 126 30 18 0 57 25
0 59 84 20 88 22 14 0 42 44
0 61 80 19 127 30 15 0 57 28

Output from the iostat command shows some CPU idle time. This indicates
that the system is disk-bound.

3.1.3 Recognizing When the Disk Subsystem Is Swap-Bound

The output from the iostat and vrnstat commands might indicate that the
system is not disk-bound, but these tools can indicate another problem with
the disk subsystem. In this case, you can expect to see the following:

• A fairly evenly balanced disk load

• The average seek time for one or more of the disks might or might not be
large relative to the manufacturer's specification

• The system might be paging or swapping

• CPU idle time occurs even though the system is being heavily used

These conditions can indicate the system is swap-bound.

A system is swap-bound when active virtual memory (avm) is large relative
to available real memory, the free list is small, and swap space is less than
two times avm.

When the system is swap-bound, the operating system sends messages
indicating that it has killed processes because it has run out of swap space
as follows:

pid 492 was killed in xalloc: no swap space

If you suspect that the system is swap-bound, the pstat command gives a
quick indication of how the system is using its swap space. The following
example shows that only 4.5 percent or 753 KB of the configured swap
space is free:

Recognition and Diagnosis of Resource Constraints 3-3

csh> pstat -s
16720k swap configured

15965k used (3424k text, 2k smem)
753k free, 4063k wasted, 2k missing

avail: 2*128k 1*64k9*32k 4*16k 81*lk

If you suspect the system is swap-bound, you must determine the source of
the problem. Two likely causes to investigate are as follows:

• A heavily loaded system running very large processes

• A system configured with too little swap space

To determine whether some large processes are forcing the system to exhaust
its swap space, examine the output from the ps command. In the following
example, the fields of interest are sz and RSS, which list the virtual size and
real memory used by the process, respectively, and %CPU, which indicates the
percentage CPU utilization of the process.

csh> ps -uef
USER
spec
spec
spec
spec
root
spec
root
spec
spec
spec
spec
spec
spec
spec
spec

spec

PID %CPU %MEM SZ RSS TT STAT TIME COMMAND
1888 27.1 6.4 418 330 pl R 0:02 ccom /tmp/ctm018864 /tmp/ctmOl
1738 15.9 4.4 317 221 p1 R 0:39 espresso -t bca.in DISPLAY=:O.
1709 14.7 2.4 161 116 p1 R 0:41 xlisp li-input.lspDISPLAY=:O.
1724 14.3 4.6 269 236 pl R 0:40 doducDISPLAY=:O.O EXINIT=set

139 4.1 9.5 2454 477 p1 S 3:54 /usr/bin/dxterm -ls HOME=/ SHE
1886 1.0 0.5 22 20 p1 S 0:00 cc -0 -c y.tab.c DISPLAY=:O.O

140 0.5 1.8 149 85 p1 S 0:13 - HOME=/ SHELL=/bin/csh TERM=v
1598 0.0 1.7 143 81 p1 I 0:02 make FC f77 validate DISPLAY=:
1737 0.0 0.3 13 7 p1 I 0:00 /bin/time espresso -t bca.in D
1721 0.0 0.3 13 7 p1 I 0:00 /bin/time doduc DISPLAY=:O.O E
1634 0.0 1.5 141 71 p1 I 0:00 make -f M.vax validateDISPLAY
1704 0.0 0.3 13 7 p1 I 0:00 /bin/time xlispli-input.lsp D
1622 0.0 1.4 139 65 p1 I 0:00 make -fM.vax validate DISPLAY
1593 0.0 1.4 139 65 p1 I 0:00 make -f M.vax validate DISPLAY
1581 0.0 1.5 139 68 p1 I 0:00 make -f M.vax validate DISPLAY

1597 0.0 0.3 29 8 p1 I 0:00 sh -ce make "FC=f77" validate

The STAT field indicates processes that are swapped: S for processes sleeping
less than 20 seconds, I for processes idle for more than 20 seconds, and
w for processes which are swapped out. In the previous example, none of
the processes use an inordinately large amount of memory, none use an
unusually large amount of CPU time, and none are swapped. Thus, the
source of the swapping problem is elsewhere.

The second possible cause of a swap-bound system is easy to check. The
output from pstat in the previous example shows the total swap space for
the system; output from the vmstat command in the following example
shows active virtual memory and free memory. You also should know the
amount of physical memory with which the system is configured.

3-4 Recognition and Diagnosis of Resource Constraints

csh> vmstat 5
procs
r b w
3 0 0
4 1 0
4 0 0
5 0 0
5 0 0
4 0 0
4 0 0
4 0 0
3 0 0
3 0 0

faults cpu memory page disk
in sy cs us sy id avm fre re at pi po fr de sr sO sl
126 66 12 89 11 0 14k 1163 0 0 0 0 0 0 0 0 0
119 77 40 81 19 0 16k 1060 9 0 62 17 14 0 37 0 24

91 60 35 82 18 0 16k 899 15 0 44 30 36 0 87 0 18
88 72 40 78 22 0 16k 870 29 0 47 86 43 0 102 0 24

133 111 28 78 22 0 16k 922 32 0 21 111 52 0 101 0 17
146 98 23 79 21 0 16k 984 14 0 9 35 16 0 33 1 10
134 82 19 88 12 0 16k 993 14 0 7 29 19 0 32 0 5
118 38 12 93 7 0 15k 1239 5 0 1 8 5 0 9 0 1

78 39 9 95 5 0 15k 1450 2 0 0 1 0 0 2 0 0
68 78 12 80 20 0 15k 1524 3 0 0 0 0 0 0 1 5

Three conditions can exist if a system is configured with too little swap space:

• The active virtual memory is large relative to physical memory

• Little free space exists

• Swap space is not at least two times avm

Such a system is, by definition, swap-bound.

3.2 Identifying Process Control and Scheduling Limitations
Diagnosing problems in the process control subsystem is much more difficult
than diagnosing problems in the file subsystem. Part of the difficulty is that
no clear metric exists with which to determine how the system is performing;
there are, however, several possible measures of performance:

• The absolute number of processes the system is capable of running.
However, this measure does not give a good picture of how rapidly the
system can handle these processes.

• The number of processes completed per second, but this measure is
sensitive to which processes are run.

• The response time to a command typed at a user's terminal when the
system is heavily loaded.

All of these measures depend on system administrators' and users' perceptions
of the responsiveness of the system.

3.2.1 Determining Whether the Process Control Subsystem Needs Tuning
As discussed in Chapter 2, most opportunities to tune the process-control
subsystem require access to kernel source code. Without this access,
tuning the process control subsystem is accomplished only through system
management.

Deciding whether the process control subsystem needs tuning is a matter of
judgment. It is necessary for you to do some homework before evaluating
the system's performance. You must have a baseline performance measure
when the system is lightly loaded against which to measure the system's
performance when it is heavily loaded.

The following general rule is based on a load average computed as the
average number of processes completed per second: Maximize the load

Recognition and Diagnosis of Resource Constraints 3-5

average constrained by some acceptable benchmark that simulates a specified
number of users and computes the processes completed per second.

The AIM Benchmark Suite III is used in some of the examples in this chapter
because it was available and the test environment was not characterized by
any other specific workload. In your own operating environment, you can use
your own workload to evaluate your system's performance.

3.2.2 Computing the Load Average for the System Under Test
Compute the load average for the system and compensate for response time
by timing a typical command a user might execute. You must use a stopwatch,
because the time of interest is the time from which the command is issued
to the time at which the system prompt is received again. The built-in
C-shell command time and the system utility /bin/time are inappropriate,
because they calculate only the time it takes to run the command. The
steps are as follows:

1. Measure response time by entering the date command followed by the
Is command.

csh> date; ls -1
Thu Oct 10 15:41:05 EDT 1991
130
1 jim 100000 Jun 21 10:58 big. file
1 jim 9216 Jun 21 09:50 bldfile
1 jim 433 Jun 21 09:50 bldfile.c
1 jim 6144 Jun 18 10:20 msgtest
1 jim 714 Jun 18 10:19 msgtest.c
1 jim 16 Jun 21 15:36 time.out

2. Enter the date command when the prompt appears again.

csh> date
Thu Oct 10 15:41:07 EDT 1991

Some overhead is involved when you invoke the date command, but it
is small compared with the time it takes to invoke the Is command on
a fairly large directory.

3. Compute response times for the same commands when the AIM
Benchmark Suite III is simulating 5, 10, 15, or 20, or more users.

4. Normalize the total time taken to run the benchmark for each of the
simulated number of users.
Normalization is accomplished by dividing the total time taken to run
the benchmark for each group of simulated users by the time taken by
the largest group of simulated users to complete the benchmark. This
transforms the time to complete the benchmark into the range ° to 1.

5. Normalize the response time for each group of simulated users in the
same way.

6. Chart the resulting normalized load average time and response time
on a graph as follows:

• Place the number of simulated users as the vertical axis.

3-6 Recognition and Diagnosis of Resource Constraints

• Place the normalized load average time on the horizontal axis
increasing from left to right.

• Place the normalized response time on the horizontal axis increasing
from right to left.

The point where the two lines cross indicates the maximum number of users
constrained by an acceptable response time.

Table 3-1 shows the results of these steps, and Figure 3-1 shows the results
when they are graphed. Columns 2 and 3 in Table 3-1 show the processes
per second and total time to complete the benchmark computed by the AIM
Benchmark Suite III for 5, 10, 15, and 20 simulated users. Column 4 shows
the normalized total time computed by dividing the value in column 3 by
3481. Column 5 shows response time for the corresponding user level in
column 1, and column 6 shows its normalized value.

Table 3-1: Process Timing Experiments

Normalized
Processes Real Normalized Response Response

Users per Second Time Time Time Time

5 .053 975.2 .280 2 .143

10 .028 1890.4 .543 3 .214

15 .020 2704.2 .777 6 .429

20 .015 3481.0 1.0 14 1.0

Given the constraint placed on response time, Figure 3-1 shows the maximum
number of users to be between 10 and 15 users.

Figure 3-1: Normalized Benchmark Time Versus Response Time

o Benchmark Time --+ .5 1
1 .-- Response Time 0

20

15

10

5

o

Recognition and Diagnosis of Resource Constraints 3-7

3.2.3 Recognizing a Well Balanced Load Over the Available Time

You can calculate the maximum acceptable load as described in Section 3.2.2,
but this calculation addresses only the instantaneous load. Another method
that maximizes the load a system is capable of handling is to balance the
load over a longer period of time. The command uptime displays the 1, 5,
and 15 minute load averages for the computer. Even these are short-term
measures, if you are concerned with the amount of work that users do during
the course of a day. Thus, you can further improve the instantaneous load
shown in Figure 3-1 by rescheduling jobs that would otherwise increase
the load average over the optimal value displayed there; however, this is a
system management issue.

3.2.4 Recognizing a Shortage of Slots in the Process Table

The process table is a table internal to the kernel that is set up when the
system is configured. The running system keeps information about active
processes in this table.

Two parameters in the configuration file govern its size: maxusers and
maxuprc. The maxusers parameter is unrelated to the user license seen
when the system is booted. A typical workstation, for example, has a two-user
license; however, the value of maxusers can be 16. The number of processes
that an individual user is allowed to run simultaneously is governed by
maxuprc. The size of the process table is determined by maxusers times
maxuprc, plus some overhead.

You may encounter two separate problems that you can trace to the size
of the process table. If you exhaust the number of processes that you are
allowed, the system displays a message that indicates there are no more
processes, and your job will not run.

A more serious problem exists if the process table is full. If the total number of
processes that active users run plus system utilities and other system-related
processes that utilize slots equals the number of available slots in the process
table, the system cannot run any more processes. In this instance, the system
displays a message that indicates that the process table is full. To increase
the size of the process table, you can increase the maxusers or maxuprc
parameters. For more information about this topic, see Chapter 4.

3.2.5 Recognizing Problems with Interrupts, Context Switches, or System Calls

You can achieve performance improvements in the process control subsystem
through careful software development. Again, to understand the normal state
of the system, you must monitor the system when it is idle, under a light load,
or when a suspected inefficient program is running. Poorly written software
can impose a significant load. Some obvious symptoms are inordinately large
numbers of interrupts, context switches, or system calls.

A program called bldfile writes a 100 KB file 100 times; source code for
the program appears in Appendix B. Execution of the program is timed with
the C-shell built-in time command. The first version writes the file using
1000 byte buffers with the write system call. Example 3-1 shows output
from the time and vmstat commands.

3-8 Recognition and Diagnosis of Resource Constraints

Example 3-1: time and vmstat Output for bldfile Program

csh> vmstat 5 &

procs
r b w in
o 0 0 277
o 0 0 74
o 0 0 70

faults cpu memory
sy cs us sy id avm fre
55 14 1 1 98 19k 8436
20 3 2 1 97 20k 8280
10 2 2 0 98 19k 8116

o 0 0 68 13 1 2 0 98 17k 8060

csh> time bldfile.l big. file
1 0 0 129 86 9 6 15 79 20k 8040
o 1 0 164 117 13 2 24 74 20k 8016
o 1 0 164 110 13 2 23 75 20k 8008

re at pi
000
000
000
000

000
000
000

page
po fr de
000
000
000
000

000
000
000

disk
sr sO sl
000
000
000
000

000
000
000

o 1 0 164 114 13 2 23 74 19k 8008 0 0 0 0 0 0 0 0 0
o 1 0 165 120 13 2 24 74 17k 8008 0 0 0 0 0 0 0 0 0

O.Ou 5.1s 0:24 20% 10+20k 0+1204io Opf+Ow
1 0 0 105 55 6 4 9 87 17k 8008 0 0 0 0 0 0 0 0 0
o 0 0 70 14 1 2 1 97 18k 8024 0 0 0 0 0 0 0 0 0
o 0 0 68 16 1 2 1 97 18k 8024 0 0 0 0 0 0 0 0 0
o 0 0 66 8 0 2 0 97 23k 8024 0 0 0 0 0 0 0 0 0

The second version substitutes the fwrite subroutine for the write system
call. The fwri te subroutine allows the system to buffer all disk accesses in
the most efficient manner. Example 3-2 shows output from time and vrnstat.

Example 3-2: time and vmstat Output for bldfile Program

csh> vmstat 5 &

procs
r b w in
o 0 0 277
o 0 0 104
o 0 0 89

faults cpu
sy cs us sy
55 14 1 1
28 6 2 1
17 1 2 0

memory
id avm fre
98 18k 8456
97 20k 8284
98 23k 8116

re at pi
000
000
000

o 0 0 91 22 2 2 0 97 23k 8060 0 0 0

csh> time bldfile.2 big. file
o 0 0 173 47 8 6 10 84 24k 8040 0 0 0
o 1 0 211 37 5 3 14 83 23k 8004 0 0 0
o 1 0 223 36 8 3 15 81 18k 7988 0 0 0
o 1 0 218 39 6 3 15 82 18k 7988 0 0 0
o 1 0 228 39
o 1 0 214 34
o 1 0 226 38

9 3 16 81 18k 7988
5 3 14 83 17k 7988
9 3 16 82 21k 7988

o
o
o

0.3u 1.9s 0:33 6% 20+61k 0+1510io Opf+Ow

o
o
o

o
o
o

page
po fr de
000
000
000
000

000
000
000
000
o
o
o

o
o
o

o
o
o

disk
sr sO sl
000
000
000
000

000
000
000
000
o
o
o

o
o
o

o
o
o

4 0 0 101 26 5 6 1 93 21k 7996 0 0 0 0 0 0 0 6 0
o 0 0 89 15 1 2 1 97 21k 8020 0 0 0 0 0 0 0 0 0
o 0 0 89 22 1 2 1 97 15k 8024 0 0 0 0 0 0 0 0 0
o 0 0 89 12 1 2 0 97 17k 8024 0 0 0 0 0 0 0 0 0

Example 3-3 shows additional output from vms tat when the system is idle.
Note that the number of context switches (cs) is approximately the same as
those shown in Example 3-2 and Example 3-3, and the number of system
calls is not much greater in Example 3-2 than it is in Example 3-3. Both
of these fields are much larger in Example 3-1. The only field in Example
3-1 that is smaller than the same field in Example 3-2 is the number of
interrupts. In general, system calls and context switches require a lot of

Recognition and Diagnosis of Resource Constraints 3-9

system resources because they cause the kernel to transfer data back and
forth between kernel and user space.

Example 3-3: Output from vmstat when the System Is Idle

csh> vmstat 5
procs faults cpu memory page disk
r b w in sy cs us sy id avm fre re at pi po fr de sr sO sl
0 0 0 277 55 14 1 1 98 26k 8468 0 0 0 0 0 0 0 0 0
0 0 0 142 36 3 3 1 96 25k 8248 0 0 0 0 0 0 0 1 3
0 0 0 135 26 2 2 0 97 26k 8104 0 0 0 0 0 0 0 0 2
0 0 0 134 26 2 2 0 97 26k 8056 0 0 0 0 0 0 0 0 0

0 0 0 130 16 1 2 0 98 17k 8040 0 0 0 0 0 0 0 0 0

3.3 Identifying Memory Management Limitations
To improve the performance of the memory management subsystem, you must
be able to recognize when the system has too little physical memory or when
the buffer cache is too large or too small. To recognize memory management
limitations, you must be familiar with how ULTRIX uses memory in running
processes and the relationship between total virtual memory, active virtual
memory, real memory, and the swap partition. For information about these
concepts, see Chapter 1.

Excessive paging and swapping can cause memory bottlenecks. Memory
bottlenecks can become I/O bottlenecks because of the operation of the virtual
memory system. CPU and memory subsystems are getting faster at a greater
rate than disk subsystems; however, the decrease of paging and swapping
is more dramatic on faster CPU systems.

Applications have virtual size. Generally, virtual size is not required for
execution. The size required for execution is the resident set size (RSS).
Virtual and resident sizes of applications can be viewed with the ps command.
Look for sz and RSS headings. Active virtual memory is the total of the
virtual sizes for processes running in the last 20 seconds. Active real memory
is the total of the resident set sizes. You can use the vms tat command to view
virtual memory, active virtual memory, real memory, and active real memory.

The system handles application-execution changes to the resident set size
by paging. Paging in adds memory to the application. Usually, this is
application code or data added to the resident set size for the application.
This is done by application demand (execution). Paging out removes memory
from the application. This may be application code or data, removed from
resident set size. This is done automatically by the system when free memory
is scarce. Some paging is good and removes unnecessary memory from the
resident set size. Excessive paging is bad for performance.

The system pages according to a global page replacement algorithm. When
free memory is less than lotsfree, paging begins. When free memory is less
than minfree, swapping occurs. When free memory is less than desfree for
a significant amount of time (30 seconds), desperation swapping begins. The
parameters fastscan and slowscan control the paging rate; the default
is computed on memsize.

The handspread parameter is the amount of memory between two checks
of memory pages. The first check clears a page's reference bit. The second

3-10 Recognition and Diagnosis of Resource Constraints

check, which occurs after the amount of time the system needs to scan
the handspread, looks to see if the reference bit has been set. If the bit
has not been set, then the page becomes eligible for paging. Changing
the handspread changes the distance between checks which affects the
amount of time it takes for a memory page to become eligible for paging.
Systems that continuously run large applications may benefit by increasing
the handspread parameter because the entire application is more apt to
remain in memory.

Table 3-2 shows the parameter defaults stored as pages. Defaults for
parameters may not be optimal for systems with greater than 8MB.

Table 3-2: Paging Parameter Defaults

Parameter VAX RiSe Maximum Limit

PAGESIZE 512 bytes 4096 bytes None, fixed amount

LOTSFREE 512 KB 512 KB ~ of physical memory

DESFREE 200KB 256KB t of physical memory

MINFREE 64KB 96KB ! of DES FREE

HANDSPREAD 2MB 8MB size of user memory

You can change the default values for each of the parameters listed in Table
3-2 by editing your system's configuration file to include the parameter
and its new value and rebuilding the kernel, as described in the Guide to
Configuration File Maintenance.

Swapping occurs for severe memory shortages and for expansion of the
process page table. The system attempts to select long sleeping processes
(greater than 20 seconds) to be swapped. Generally, swapping is worse than
paging. It causes system performance to vary wildly. Swapping may be good
for very long sleeping processes.

Paging and swapping can be viewed with vmstat -so Take the following
actions to reduce excessive paging and swapping:

• Reduce memory demands on the system by running fewer applications,
by adjusting virtual memory parameters to make better use of memory,
and by swapping and paging across multiple devices

• Add more memory for use by the virtual memory system by reducing
the buffer cache (not below 10 percent of physical memory) and adding
physical memory to the system.

Swap space is preallocated for processes when they begin execution. This is
required in case they need to swap and page or both. Usually, when there
is not enough swap space configured in the system, the system displays a
message that says "not enough core" or "malloc failed." The / etc/pstat -s
command shows swap space that is configured and virtual address space
that is reserved. If the two are close, or if you are seeing errors, more
swap space is needed.

Recognition and Diagnosis of Resource Constraints 3-11

3.3.1 Determining Whether the Memory Management Subsystem Needs Tuning

The primary tool used to evaluate the memory management subsystem is
the vmstat command, with which you look at the fields for active virtual
memory (avm) and free memory (fre).

The memory management subsystem needs to be tuned when the free list is
small and active virtual memory is more than 80 percent of available real
memory when the system is heavily loaded.

3.3.2 Recognizing When Active Virtual Memory Is Too Large

Active virtual memory is probably too large when it exceeds 80 percent of
the available real memory. Look at the short-term memory deficit field (de
field from the vmstat command) to determine if your system is performing
excessive swapping. If the field contains a number greater than 0, then your
system's active virtual memory is too large, resulting in a serious degradation
of performance. Also, check the paging activity fields (pi and po from the
vmstat command) for a large amount of activity. A large value (especially in
the po field) can indicate the beginning of memory problems. The following
example shows the output from the vmstat command when active virtual
memory is too large.

csh> vmstat 5

procs
r b w
4 a a
4 a a
310
4 a a
310
5 a a
4 a a
4 a a
4 a 1
5 a a
4 a a

in
126

62
78
84
76
72
76
71
71
76
64

faults cpu
sy cs us sy
66 12 89 11
56 16 81 19
50 28 73 50
54 19 70 30
54 17 78 22
54 18 75 25
51 27 73 51
42 22 88 42
44 23 84 16
38 32 85 15
34 15 97 3

memory
id avm fre
a 37k 1080
a 34k 685
a 35k 274
a 35k 308
a 36k 338
a 36k 451
a 36k 572
a 33k 2749
a 35k 2583
a 36k 2129
a 36k 1923

page
re at pi po fr de
21 a a a 1 a
31 a a 5 4 a
33 a 1 103 17 a
56 a a 225 79 a
68 a 1 147 116 a
71 a 5 94 107 a
58 9 44 64 66 a
22 2 30 16 16 a
19 11 52 4 4 34
14 4 72 a a a

5 a 23 a a a

disk
sr sa sl
76 1 a

138 2 5
157 15 12
153 9 19
145 7 8
131 3 11

72 9 9
17 6 4

4 12 2
a 14 7
a a a

3.3.3 Recognizing a Shortage of PhYSical Memory
Active virtual memory can be large relative to physical memory but not so
large that it causes excessive paging, a short-term memory deficit, or both.
In this case, a shortage of physical memory may exist. If you suspect a
shortage of physical memory, look at the fields that report the number of
pages scanned per second (sr in vmstat) and the number of pages freed
per second (fr in vmstat). If the values in these fields seem large, check
the output from the ps command.

If the page daemon process, page daemon, shows a large amount of time in
the time field, system performance may be improved by adding more memory
or by reducing the size of the buffer cache, if possible. Examples 3-4 and
3-5 show output from vmstatand ps for a system that might benefit from
added physical memory.

3-12 Recognition and Diagnosis of Resource Constraints

Example 3-4: vmstat Output when the System Could
Benefit from More Memory

csh> vmstat 5
procs faults cpu memory page disk
r b w
4 a a
5 1 a
4 a a
4 a a
4 a a
4 0 a
4 a a
4 a a

?
?

p1
p1
p1

p1

in sy cs us sy id avm fre re at pi po fr
63 34 11 95 5 a 34k 1740 14 a 4 2 a
79 50 37 74 26 a 35k 1596 30 a 68 a 7
68 46 22 91 46 a 35k 1160 27 1 26 5 21
66 51 19 83 17 a 35k 978 54 23 19 12 24
64 51 18 87 13 a 39k 652 69 7 12 12 27
73 41 17 80 20 0 39k 518 69 0 4 52 55
71 41 16 84 16 a 38k 615 65 a 2 90 62
68 36 17 91 9 a 38k 776 75 a 1 75 37

Example 3-5: Output from ps Showing Excessive
Time for the Page Daemon

IW 0:10
D 22:16
S N 35:06
S 0:07
R 0:01

S 0:00

de sr sa sl
a 2 2 1
a 30 2 21
a 65 2 1
a 98 5 1
a 124 4 2
0 127 8 8
a 116 4 9
a 108 2 6

3.3.4 Buffer Cache Size
The configuration file parameter, bufcache, allows a specified percentage of
physical memory to be set aside by the file system for use by the file system
buffer cache. The percentage must be 10 or greater, but less than 100.

By default, buffer cache occupies 10 percent of main memory. Increasing
the buffer cache size means that more file system data is stored in memory.
While a large buffer cache may make a benchmark test run faster, there are
trade-offs. The ULTRIX operating system uses a static buffer cache allocation
methodology. Main memory that is allocated at boot time for the file system
buffer cache cannot be used for user program text or data. Therefore, actual
performance depends on the application.

For example, to set the cache buffer size to 25 percent of memory,
add the following line to your system's configuration file located in the
directory /sys/conf/mips for RISe processors or /sys/conf/vax for
VAX processors:

bufcache 25

After editing the configuration file, you need to rebuild your kernel. See
the Guide to Configuration File Maintenance for more information on the
configuration file and its options and for instructions on rebuilding your
kernel.

Recognition and Diagnosis of Resource Constraints 3-13

Optimal values for bufcache differ among large timesharing systems,
mid-range file servers, and workstations. However, do not alter bufcache
if you have a workstation with 8 megabytes of memory. For workstations
with 16 megabytes of memory limit the value to 30 or less. If you specify
a value greater than 30, your system's file system performance may suffer
because of excessive paging and swapping.

For file servers, increasing the buffer cache can improve performance. Note
that if you make the buffer cache too large, the resulting system may be less
efficient in processing the requests to it from multiple users. To help you
determine the optimal value, use the results from the bufstats command
of the crash utility. This command can provide useful data on cache hit
or miss ratios. See crash(S) in the ULTRIX Reference Pages for more
information on bufstats.

You can experiment with different sized buffer caches, increasing the size
of the buffer cache until the number of blocks transferred to and from the
disks is minimized for a particular workload. If the buffer cache becomes
too large, you will notice an increase in the paging activity and perhaps
even a short-term memory deficit. When this happens, the system has
become swap-bound. Reduce the size of the buffer cache until paging activity
returns to normal.

By default, the buffer cache of the file system block is located in a memory
space not cached by the processor data cache. You can alter this so that the
buffer cache is located in a cached memory space by editing the par am. c
file. The paramo c file is located in the /sys/conf/mips for RISC machines
or /sys/conf/vax for VAX machines. You must add the following to the
param. c file:

int cache bufcache 1;

After editing the paramo c file, you need to rebuild the kernel. See the Guide
to Configuration File Maintenance for information on rebuilding the kernel.

Depending on your application mix, this change may improve file system
throughput. Preliminary work shows that DECSystem 5500s and DECSystem
5100s with Prestoserve perform significantly better under heavy NFS loads
with the buffer cache located in cached memory. Other benchmarks have
shown a slight negative impact of setting this flag.

3.4 Identifying 1/0 Subsystem Limitations
Although, access to kernel source code is required to improve the efficiency
of kernel algorithms that handle I/O processing, some improvement may
be possible by replacing hardware. Carefully monitor the I/O hardware
to determine whether hardware limitations are responsible for system
performance bottlenecks. If such bottlenecks exist, replace the hardware
that is responsible.

3-14 Recognition and Diagnosis of Resource Constraints

3.4.1 Determining Whether the 1/0 Subsystem Needs Tuning
You may feel that the I/O subsystem needs tuning because you or other
users perceive system response time to be sluggish. Such perceptions may
be the best indicators that a system needs tuning. If users' perceive that
the system is slow, then it is slow.

The I/O subsystem consists of terminals, printers, tape drives, and so on,
so an objective measure of the throughput rate must be constructed. If the
throughput rate of these peripherals differs widely from the throughput rate
on another similar workstation, the I/O subsystem may need tuning.

3.4.2 Recommendation for Improving 1/0 Performance
Results of I/O performance tests show that users can tune simple ULTRIX
kernel parameters to significantly improve I/0.1

The tuning parameters available to you are as follows:

• Change the buffer cache size in the configuration file / sys/ eonf / machine
/ SYSTEMNAME, as described in Section 3.3.4.

• Change the write-scheduling policy in the / sys / S YSTEMNAME/pa ram . e
file.
By default, the ULTRIX operating system returns write requests
immediately. If the last byte of a block is written, then the dirty block
is asynchronously sent to disk. When this happens, the block becomes
unavailable until the disk write is complete. While this scheduling
method is beneficial in a time-sharing environment, it hinders some
benchmark tests that read data immediately after writing it.

To set the ULTRIX system so that data can be read as soon as it is written
and writes to disk are delayed as long as possible, make the following
change in the paramo e file located in the directory /sys/eonf/mips for
RISC processors or /sys/eonf/vax for VAX processors:

int delay_wbuffers = 1;

After editing the paramo e file, you need to rebuild the kernel. See the
Guide to Configuration File Maintenance for instructions on rebuilding
your system's kernel.

• Change the update frequency / etc/update.
By default, the update daemon synchronizes dirty blocks to disk every
30 seconds. You can alter this time interval in two ways. The first way
is to add a value to the jete/update command in the file jete/reo
For example, to adjust the update time interval from 30 seconds to
2 minutes, edit the file as follows:

jete/update 120; echo -n 'update' > /dev/eonsole

The second way is to kill the update daemon process and restart it
with the new value.

Alexandre Bronstein, Memo on ULTRIX DiskIFile-System Performance on DS3100IDS5000 (Palo
Alto, CA.: Digital Equipment Corporation, 1990) x-x.

Recognition and Diagnosis of Resource Constraints 3-15

If you have a big cache and an application that often writes over the
same blocks of a file, consider increasing the time interval for update.
Note, the update frequency is the easiest parameter to experiment with
because kernel recompilation is not required.

The first two changes require rebuilding the kernel, as described in the Guide
to Configuration File Maintenance.

Before you set these parameters, you must realize that there are the following
trade-offs:

• Speed versus safety
The main factor that affects safety (that is, preventing loss of data) is the
update (syncing) frequency. In between the synchronization of memory
and disk (syncing), changes intended to be written on the disk only reside
in memory. If the power fails before the disk is updated, those changes
are lost. The default updating the disk is 30 seconds. Choosing the
optimal value involves many factors, some of which are purely technical,
such as the hardware configuration or expected disk traffic; others could
be environmental, such as the application.

The write-scheduling strategy affects safety. The default strategy
increases the level of safety by ensuring that most blocks of data written
to disk before they are read back into memory for access by an application.

• Speed of one application versus the speed of other applications
In the process of tuning the system to accelerate the performance of an
application, you may slow down other applications. For example, if you
increase the update interval and change the write-schedule policy, an
application such as a benchmark may process faster. However, when
memory needs to write its contents to the disk, the system may seem
slow temporarily because of the amount of processing required to write
the contents of memory to disk.

Another important tuning parameter is disk organization; that is, you can
achieve significant improvements by spreading the 110 traffic across as many
physical disks as possible.

Some caution is in order; unless you understand the value of modifying
these parameters and can detect a performance improvement after doing
so, you should use their default values. If you understand the application
being run, know what the machine is capable of doing, and understand
how the parameters are used, your system's performance can improve by
modifying these parameters.

3.4.3 Measuring I/O Subsystem Throughput

As an example of the type of metric you can construct to measure 110
subsystem performance, consider the· following example for the throughput
of a tape drive:2 .

2

throughput
_ speed * blocksize
- (2 * gapsize) + block~ize

denSIty

Richard W. Stevens, UNIX Network Programming. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1990

3-16 Recognition and Diagnosis of Resource Constraints

For a tape drive that has a density of 6250 bits per inch (bpi), a tape speed
of 125 inches per second (ips), and a block size of 32,768 bytes, its optimal
throughput is 678,000 bytes per second. You can copy files of known size to
your tape drive and measure the actual throughput rate. If you compare
the actual rate with the optimal rate, you can determine how well the tape
drive is performing.

3.4.4 Identifying NFS Bottlenecks
NFS bottlenecks can occur in the following areas:

• CPU
• File system
• Network subsystem
• Disk subsystem

You can improve NFS performance by doing the following:

• Using Prestoserve, if your system supports it

• Increasing the buffer cache

• Adding more disks
• Reducing client paging and swapping or both
• Adjusting the number of biod or nfsd daemons

NFS write operations from a client must be done synchronously to a stable
storage device (normally a disk). A single client write can require up to 3
writes on the server: an inode update (indirect blocks), a directory update,
and a data write. Unless there are network problems, the server's NFS
performance is bounded by the time needed to access a stable storage device.
Presto serve circumvents this limitation by using a nonvolatile cache as
a stable storage device. As a result, write performance increases by 600
percent. Overall NFS performance increases by 100 percent.

3.4.5 NFS Tuning
You can improve NFS performance in the following ways:

• Adjust the number of nfsd and biod daemons.
The nfsd daemons are used on the server to service client requests.
The number of daemons executing is equal to the number of parallel
operations. You can adjust the number of daemons to find maximum
performance. The biod daemons are used on the client to provide
asynchronous operation. The number ofbiod daemons executing is equal
to the number of outstanding 110 requests for the system. The nfsd and
biod daemons are started in /etc/rc.local at system startup.

• Turn off kernel's checking and generating UDP checksums by setting
UDPCKSUM equal to 0 by using the kvar(8) command or the d.bx(l)
utility for RISC systems or the ad.b(l) utility for VAX systems. For
more information on these commands and utilities, see the ULTRIX
Reference Pages.
Note, however, that this is only recommended for benchmarks because
of possible data corruption. The nfsstsat -s command can show the
number of corrupt packets detected (xdrcall). This command can alfso
indicate hardware problems.

Recognition and Diagnosis of Resource Constraints 3-17

3.5 Identifying Network Limitations
Because performance is governed largely by the hardware that makes up the
network, identifying network limitations involves testing network connections
to establish a throughput rate. You can compare these values with theoretical
maximum or optimal values to determine how well the network is performing.

3.5.1 Determining Whether the Network Needs Tuning
To determine whether the network needs tuning, you must understand about
the theoretical maximum throughput of an Ethernet network.

Richard Stevens, in his study UNIX Network Programming, presents a
good summary of experimental data about network performance. Stevens
notes that the theoretical maximum throughput rate for a thin Ethernet
cable, using TCPIIP, and accounting for all network overhead, is 1.2 MB per
second. Experiments using a variety of machines from IBM -PCs to Cray
super computers have generated transmission results ranging from a low of
144,000 bytes per second to a high of 890,000 bytes per second.

Network performance can be stated as a percentage of the theoretical
maximum; that is, 144,000 bytes per second represents 12 percent of
the maximum and 890,000 bytes per second represents 74 percent of the
maximum. If you compute the throughput rate for your network, and it falls
somewhere within this 12-74 percent range, you will have to determine the
minimum acceptable level.

3.5.2 Measuring the Network Subsystem Throughput Rate
One way to measure your network's throughput rate is to send a file of known
size from one node on the network to another and to compute the time needed
from start of transmission to completion. To avoid overhead on the receiving
node's end, copy the file to /dev/null rather than to the file system. The
following example shows a 1 MB file that is transmitted to two different
nodes in a small LAN. The time to complete the transmission is computed by
/bin/time in order to get seconds and tenths of seconds in real-time.

csh> /bin/time
9.4 real

csh> /bin/time
14.7 real
csh> /bin/time
12.7 real

csh> /bin/time
14.7 real

rep huge.file Opus:/dev/null
O.luser 4.6 sys

rep huge. file Alpha:/dev/null
O.luser 2.7 sys

rep Opus:/tmp/huge.file /dev/null
0.1 user 4.3 sys

rep Alpha:/tmp/huge.file /dev/null
0.1 user 2.7 sys

The transmission rate computed in the previous example averages only 93,204
bytes per second, 7.8 percent of the theoretical maximum. The three nodes in
this example are running three different versions of UNIX. The node Tinsel,
the originator of the remote copy, is running ULTRIX. The other two nodes,
Alpha and opus, are running different versions of UNIX, and consequently,
each node is running a different implementation of TCP/IP. Both Alpha and
opus are PCs; Alpha's clock speed is 16 MHz and opus' is 20 MHz. Thus,
the difference in transmission rates between the two (about 2 seconds) is

3-18 Recognition and Diagnosis of Resource Constraints

probably attributable to the different clock speeds. The overall slowness of
the transmissions also is likely due to the slowness of the receiving nodes.

One source of problems in communications over the network is transmission
errors resulting in the retransmission of packets. To determine whether
problems are being encountered during transmissions, you can run netstat
to collect information about packets transmitted and received, and about
collisions and errors. The following example shows the output from the
netstat command.

csh> netstat 5
input (seO) output

packets errs packets errs
o 0 0 0
2 0 4 0

413 0 222 0
409 0 223 0
225 0 124 0

o 0 0 0
1 0 0 0

colIs
o
o
o
o
o
o
o

input
packets

o
2

413
409
225

o
1

(Total) output
errs packets errs
000
o 4 0
o 222 0
o 223 0
o 124 0
000
o o o

3.6 Identifying Interprocess Communication Limitations

colIs
o
o
o
o
o
o
o

The ULTRIX (or UNIX) operating systems provide a variety of facilities to
communicate between processes and to coordinate resource usage of those
processes. These facilities include shared memory and semaphores (in UNIX
System V), and sockets (in BSD UNIX and ULTRIX).

The usefulness of these facilities depends upon the number available, and
on their throughput.

3.6.1 Determining Whether the Interprocess Communications
Subsystem Needs Tuning

One set of limitations in the interprocess communication (lPC) subsystem is
obvious; the other is less so. Limitations in the number of any component will
be announced by the operating system. If, for example, one of your processes
tries to create a semaphore set and all semaphores allowed by the system
are in use, your process will fail and the system will display a message that
indicates there is no space left on device.

If the number of pipes, sockets, messages or other IPC resources is within the
system-wide resource limit, the other possible limitation is the throughput
rate of the resource. Thus, a measure by which you can recognize limits in
throughput rate of the IPC subsystem is needed. To identify whether an IPC
subsystem is in need of tuning, you can maximize throughput as measured
by bytes per second for pipes, messages, or sockets, or maximize the number
of semaphore operations per second.

Deciding whether the IPC subsystem needs tuning consists of two steps:

•
•

Determine whether system-wide resource limits are being exceeded

Determine whether the throughput rate is acceptable

Recognition and Diagnosis of Resource Constraints 3-19

3.6.2 Measuring the Interprocess Communications Throughput Rate

You can construct a measure of the IPC subsystem's throughput rate with
which to compare performance under a variety of scenarios, from a lightly
loaded system to a heavily loaded one. If you find a marked difference in
performance under these scenarios, you can begin to look for the source of
these differences. However, if the source of the differences appears to be in the
kernel itself, very little can be done to improve interprocess communications
subsystem performance without access to the kernel source code.

Example 3-6 and Example 3-7 show output from two simple programs that
test interprocess communications. Appendix B contains source code for these
two programs. In the first example, the program sets up a message queue
with a buffer size of 128 bytes and transmits the message to itself 20,000
times. In the second example, a semaphore set is created; the value of each
member is set to 1; and the value of the semaphore is retrieved by itself
20,000 times. Running these simple programs and timing them enables you
to compute a transmission rate of bytes per second in the first example, and
semaphore operations per second in the second example.

Example 3-6: Testing the Message IPC Subsystem

csh> /bin/time msgtest
26.3 real 1.5 user 24.0 sys

Example 3-7: Testing the Semaphore IPC Subsystem

csh> /bin/time semtest
18.9 real 2.3 user 15.8 sys

Example 3-6 shows that the message transmission rate is 97 KB per
second (20000*128/26.3), but only 760 messages are transmitted per second
(20000/26.3). Example 3-7 shows the number of semaphore operations per
second is just over 1,000 (20000/18.9). Normally, a semaphore might be
used in conjunction with shared memory where data is shared between two
processes. Thus the faster signaling rate of semaphores versus messages
is slightly illusory.

By themselves, these numbers have little meaning. However, you can
make these calculations for a machine when it is under a variety of loads
to determine whether some circumstances exist in which it performs less
well than others. Also, you can compare performance between workstations
to determine whether one workstation performs better in some situations'
than in others.

3-20 Recognition and Diagnosis of Resource Constraints

3.7 Chapter Summary
The objective in this chapter has been to examine situations in which
performance of one of the ULTRIX subsystems might be less than optimal
and how to identify those situations. In each instance, examples have
been used to illustrate problems that you might encounter and to show
the commands you can use to generate data with which to understand
the problem.

Several suggestions are offered to assess the performance of the system being
tested. In most cases, deciding whether a system needs tuning is a matter
of judgment that will be developed over time. Use the suggestions presented
here as the starting point to identify suspected problems. Tuning solutions
are presented in Chapter 4.

Recognition and Diagnosis of Resource Constraints 3-21

4 Tuning Subsystem Resource Usage

This chapter presents some concrete examples of particular tuning techniques.
In particular, it discusses the contents of the configuration file, reviews each
of the major subsystems, and provides suggestions on how to improve
performance for some selected conditions.

The tuning methodology requires that you take the following steps:

1. Run a benchmark on the workstation to establish how it performs under
a known load

2. Modify global parameters in the configuration file, or you can modify
other factors that affect the system's performance

3. Rerun the benchmark so that you can observe changes in system
performance

It is important to learn the recommended methodology so as to understand
performance issues. Troubleshooting and making performance improvement
are skills that require insight, an understanding of the system, and an ability
to set up tests that highlight performance problems. It is an exercise in
experimentation: make a change, observe the impact on performance, and
try something else if the desired objective is not achieved.

4.1 System Configuration File
The system configuration file contains two primary elements:

• Instructions used by the utility / etc/ con fig to build
• Dependencies used to compile and link a new kernel

You can build a new kernel automatically by using the utility / etc/ doconfig,
or manually by using /etc/config and a series of other steps. For more
information about the procedure used to build a new kernel, see the Guide
to Configuration File Management.

4.1.1 Global Definitions

You can locate global definitions in the first part of the configuration file.
Global definitions convey information to the kernel building process in the
following ways:

• Flags to include some optional code segments
• Indicators of physical features of the machine or its environment
• Values of parameters that can be set optionally at compile time

Tuning Subsystem Resource Usage 4-1

Examples of parameters used as flags are machine and cpu. The machine
parameter defines the hardware architecture of the workstation, the
parameters vax or mips, for example. The cpu parameter describes the
processor class or processor name.

Parameters that describe the physical features of the machine or its
environment are as follows:

•

•

•

•

ident
The ident parameter must have the same name as the host name
which the system uses during system installation. The host name is
used by procedures residing in the kernel, for example, mail routing
and network access.

processors
The value of processors defines the number of CPUs making up the
system.

scs_sysid
The value of scs sysid identifies each host uniquely on the CI star
cluster to the SCS subsystem.

time zone
Setting the timezone allows the system clock to display the correct time
(standard time and daylight savings time) for your location.

The remaining global definitions in the configuration file are used to compute
sizes of various internal kernel tables or to set minimum and maximum sizes
of several memory allocation parameters. These parameters are maxusers,
maxuprc, maxuva, bufcache, swapfrag, maxtsiz, maxdsiz, maxssiz,
physmem, smmin, smmax, smseg, smbrk, and smsmat. The parameters
maxdsiz and maxssiz in ULTRIX Version 4.0 replace the parameters dmmin
and dmmax in earlier versions.

The maxusers parameter is used in several computations, but most
importantly it is used to compute the size of the system process table. The
maxuprc parameter controls the maximum number of processes one user can
run simultaneously. An internal algorithm using the values of maxusers
and maxuprc determines the size of the system process table. The size of
the system process table controls the maximum number of processes that
can be run at anyone time.

The parameters maxuva, maxtsiz, maxdsiz, maxssiz, smmin, smmax,
smseg, smbrk, and smsmat are all concerned with different aspects of the
manner in which memory is allocated. The maxuva and maxtsiz parameters
set system-wide virtual address space for users and the size of the largest
text segment, respectively. The maxdsiz parameter defines the largest data
segment, in megabytes, allowed by the system; the default value is 32 MB.
The maxssiz parameter defines the largest stack segment, in megabytes,
allowed by the system; the default is 32 MB. The parameters beginning with
the sm prefix control various aspects of shared memory.

The physmem parameter sets the amount of the system's physical memory.
The system uses this when the kernel is built to determine the size of system
page table. Set the physmem parameter value equal to the actual amount of
physical memory. Setting physmem larger or smaller than the size of physical
memory decreases the amount of memory available to applications.

4-2 Tuning Subsystem Resource Usage

The parameter bufcache is used to change the size of the buffer cache when
the kernel is built. The default value of 10 percent is used if bufcache
does not appear in the configuration file. The parameter swapfrag satisfies
requests for additional swap space using the value supplied; the default
is 64. Thus, a process requesting additional swap space will be allocated
64 512-byte blocks.

The last set of parameters appearing in the global definitions are options
flags. By specifying these flags, different optional sections of code are linked
with the kernel when built. These options include the parameters INET
and DECNET for internet communications protocol and the DECnet layered
product, respectively. If the kernel being built does not implement some of
these options, you can delete their options flags in the configuration file. The
text size of the resulting kernel is smaller.

4.1.2 System Image Definitions

The system image definition section of the configuration file consists of lines
beginning with the keyword config. A separate kernel is generated for each
config line. Normally, only one config line exists in the configuration file.
The following keywords control the generation of the system image:

• root specifies the disk partition on which the root file system is found
• swap identifies the disk partition or partitions which are used for the

swapping and paging area
• dumps specifies the disk partition on which crash dumps are stored

4.1.3 Device Definitions

The device definitions section of the configuration file contains a line
describing each hardware component connected to the system or hardware
that can be connected to the system in the future. That is, the device
specified in the configuration file does not have to be present. The keywords
that define the device types are adapter, master, controller, device,
disk, and tape. The format for fields in each of the device definitions is
dependent on the device type.

4.1.4 Pseudodevice Definitions

The pseudo device definitions section of the configuration file is the link
between the device definitions section, which specifies the hardware
controllers, and the equipment connected to those controllers. The pseudo
device keyword is followed by a name that specifies the identifier for the
device driver. The device driver code is compiled (if necessary) and linked
with the kernel to give access to that device. The doconfig utility also uses
this section to create the device-special files needed by the kernel to interface
with the hardware attached to the system.

Tuning Subsystem Resource Usage 4-3

4.2 Tuning the File System
Chapter 3 examined several situations in which the file system appeared
to need tuning. You can take four specific actions to address the problems
identified there:

• Reorganize the file system or move it to a different disk partition
• Change the disk partitions
• Add swap partitions
• Change the size of the buffer cache

The following sections examine examples of each of these actions.

4.2.1 Reorganizing the File System
As an example of different levels of performance achieved by manipulating
the file system, consider the following experiment. A test was conducted
with a VAXstation 2000 with one RD54 disk and one RD53 disk. A standard
installation was followed so that the root file system resides on the RD54's a
partition, the b-partition is used for paging and swapping, and the g-partition
is used for system software and the various supported and unsupported
packages that can be installed. This configuration leaves less than 20 MB
free on the RD54's g-partition, so the RD53 is used exclusively for the user
file system.

Table 4--1 shows the default partition table for the RD53.The a-partition is
reserved for a backup root file system. This leaves sectors 15884 through
138671 available for user file systems. 'I\vo partitions have no mutual overlap,
partitions band g; the first demonstration uses these partitions.

Table 4-1: Defau It Partition Table

Partition Bottom Top Size Overlap

a 0 15883 15884 c,d,e

b 15884 49323 33440 c,e,h

c 0 138671 138672 a,b,d,e,f,g,h

d 0 0 0 a,c,e

e 0 50713 50714 a,b,c,d,g,h

f 50714 138671 87958 c,g,h

g 49324 138671 89348 c,e,f,h

h 15884 138671 122788 b,c,e,f,g

The b-partition is relatively close to the beginning of the disk, whereas the
g-partition encompasses the physical center of it. The first test demonstrates
the impact of locating a file system with a large amount of disk traffic close
to the physical center of the disk. As mentioned in Chapter 3, when disk
statistics indicate that the read/write heads spend excessive time moving
around the disk to locate information (the number of milliseconds per seek
is large, relative to the manufacturer's advertised average milliseconds per
seek), moving frequently accessed files closer to the physical center of the
disk results in reduced seek times.

4-4 1\ming Subsystem Resource Usage

The first set of test results, shown in Table 4-2, demonstrates performance
measures in a simulated multiuser environment derived from AIM
Technologies AIM Benchmark Suite III tests, Version 1.4 dated 12
October 1987 (the version number and date are from the source code
file mul t ius e r . c).1 The benchmark allows you to specify a mix of subsystem
tests to model your own environment. The first set of tests are intended
to reflect an environment in which a large amount of file system activity
exists. Thus, the benchmark is run with weightings of 50 percent disk access,
and 10 percent each of the ram, float, pipe, logic, and math subsystem
tests for 10 simulated users.

Table 4-2 shows the results of Test 1.

Table 4-2: Reorganizing the File System

Test

1

2

Processes
per Second

0.028458

0.028199

System
Time

1076.2

1080.5

Sys+User
Time

1757.0

1773.2

Real
Time

1861.0

1891.7

All the benchmark software and all files created by the benchmark reside in
the g-partition. In Test 2, all the files created by the benchmark are created
in the b-partition. The files created are all 1 MB; 10 simulated users are
active, in addition to the normal system activity. Locating test activity in the
g-partition results in a small improvement over that achieved when disk test
activity occurs in the b-partition. The number of processes per second is 1
percent higher in Test 1, while the real time to complete the test is almost
30 seconds less, or 1.6 percent smaller. The file system in both tests was
unpopulated except for the test software and the files created. Had the file
system been more populated, a larger improvement would have been observed.

4.2.2 Changing the Size of Disk Partitions
If large disks, or a large number of disks, are available, it is possible to spread
disk activity out over multiple disks or to locate file systems with a large
amount of disk activity on partitions close to· the physical center of the disk.
If this luxury is not present, you can consider reorganizing a disk by changing
the size of the disk partitions. Changing partition sizes is not recommended
except in extreme situations, because it makes maintaining the disk more
difficult. However, in some circumstances, no other choice is available.

Table 4-3 shows an example in which the e, f, g, and h-partitions have been
redefined. The intent is to break the existing g-partition into two smaller
partitions - one where the benchmark software resides on the outermost

Several modifications were made to the software to improve the validity of results bearing on the
tests being run. They include the following: (1) Statistics are averages computed over all simulated users
(rather than the results of the first simulated user only); (2) File names, used to create and test reading
or writing of files, have been modified to guarantee that unique file names are used; (3) An option was
added to increase the size of files that are created from 250 KB to 1 or 2 MB in order to more fully test the
handling of large files; (4) the algorithm used to select the random order of the test to be run was changed
from one that uses samples with replacement to one that uses samples without replacement in order to

guarantee that the desired workload and the sample workload are statistically equivalent.

Tuning Subsystem Resource Usage 4-5

part of the disk, and a smaller inner partition closer to the center of the disk
where frequent file activity takes place.

Table 4-3: Partitions e, f, g, and h Redefined

Partition Bottom Top Size Overlap

a 0 15883 15884 c,d,g,h

b 15884 49323 33440 c

c 0 138671 138672 a,b,d,e,f,g,h

d 0 0 0 a,c,g,h

e 79924 138671 58748 c

f 49324 79923 30600 c

g 0 0 0 a,c,d,h

h 0 0 0 a,c,d,g

Example 4-1 shows the commands that repartition the disk.

Example 4-1: Commands that Change Partitions e, f, g, and h

csh> chpt -pe 79924 58748 /dev/rdOa
csh> chpt -pf 49324 30600 /dev/rdOa
csh> chpt -pq 0 0 /dev/rdOa
csh> chpt -ph 0 0 /dev/rdOa
csh> chpt -q /dev/rdOa

Note

Changing partitions that contain file systems requires that you back up and
remake the file system once reconfiguration is complete.

The same benchmark tests reported in Table 4-2 were rerun; however, now
files were created, written, and read in the f-partition, as defined in Table
4-3. Table 4-4 shows the results of that test run, where the results of
Tests 1 and 2 are repeated for reference. Note that the number of processes
completed per second is larger by 1.4 percent than they were in Test 1, and
larger by 2.5 percent than they were in Test 2.

Table 4-4: Further Reorganizing the File System

Processes System Sys+User Real
Test per Second Time Time Time

1 0.028458 1076.2 1757.0 1861.0

2 0.028199 1080.5 1773.2 1891.7

3 0.028913 1062.8 1729.3 1840.9

4-6 Thning Subsystem Resource Usage

Similarly, the times required to complete the tests are less. Real Time in Test
3 is 1840.9 seconds (1.1 percent less than it was in Test 1 and 2.7 percent
less than it was in Test 2).

4.2.3 Adding a Second Swap Partition

The rationale for adding a second swap partition is based on the concept that
if you spread disk activity over several disks on a heavily loaded system, you
can improve performance. Performance would improve because the kernel
is not forced to wait until the first disk is ready for the next chunk of data.
Instead it can transfer data to the second disk while the first disk is still
busy handling the first chunk of data. This presupposes that the system
is busy enough for a delay in access to the first swap partition to create a
bottleneck for the processor.

To add another swap partition to your system, you must perform two tasks:

• First, in the configuration file, you must change the system image
definition to include the second swap partition.
The following shows the old swap configuration file line:

config vmunix root on rdla swap on rdlb dumps on rdlb

The following shows the new line with the secondary swap partition
added:

config vmunix root on rdla swap on rdlb and rdOb dumps on rdlb

• Second, include a line in the /etc/fstab file to use the second swap
partition. When the system is booted, it reads the fstab file to determine
which partitions to mount and where to mount them in the file system. An
example of the fstab file is shown in Example 4-2, before the command
to mount the second swap partition is inserted, and after it is inserted.

Example 4-2: File System Mount Table

OLD:

/dev/rdla:/:rw:l:l:ufs::
/dev/rdlg:/usr:rw:l:2:ufs::
/dev/rdOg:/usr/tools:rw:l:3:ufs::

NEW:

/dev/rdla:/:rw:l:l:ufs::
/dev/rdlg:/usr:rw:l:2:ufs::
/dev/rdOb::sw:O:O:ufs::
/dev/rdOg:/usr/tools:rw:l:3:ufs::

Tuning Subsystem Resource Usage 4-7

After adding a second swap partition, Tests 1 and 3 were run again. Table
4-5 summarizes the results of those tests. Test l(a) is the same as Test 1
in Tables 4-2 and 4-4. Test 3(a) is the same test as Test 3 in Table 4-4. A
small improvement is evident in Test 1. The number of processes per second
increases, and the real time to complete the test decreases. The improvement
in Test 3 is mixed. Processes per second falls slightly, but real time to
complete the tests also falls. The files being created in Test 3 are close to
the physical center of the disk, so some improvement over Test 1 has been
realized already. These tests indicate that some marginal improvement is
still possible, but that adding a second swap partition does not gain much.

Table 4-5: File System Tests with Two Swap Partitions

Processes System Sys+User Real
Test per Second Time Time Time

1(a) 0.028458 1076.2 1757.0 1861.0

2(b) 0.028566 1077.5 1750.3 1860.2

3(a) 0.028913 1062.8 1729.3 1840.9

3(b) 0.028852 1063.5 1733.0 1838.5

4.2.4 Changing the Size of the Buffer Cache
The final set of tests indicates the impact of changing the size of the buffer
cache. Because the operating system tries to delay writing disk blocks to disk
(a slow operation) until necessary, a large buffer cache can translate directly
to less frequent disk accesses. If a file is small, relative to the size of the
buffer cache, the operating system may never have to write the file to disk
until it is closed. A lower limit to the frequency with which the operating
system accesses the disk is determined by its write-scheduling policy.

Usually a sync is done every 30 seconds. In ULTRIX Version 4.0 and later,
this interval can be tuned by running jete/update n, where n can be
as large as 600 (10 minutes). You can force more frequent accesses in the
workload by increasing file sizes that are read or written.

You must edit the configuration file to increase the size of the buffer cache
to 20 percent of total physical memory. The standard configuration file has
no entry for the buffer cache, so you must add it. In the global parameters
section of the file, add a bufeaehe line as depicted in Example 4-3. Rebuild
the kernel and reboot the system to activate the new, larger size buffer cache.

Example 4-3: Adding bufcache to the Configuration File

ident TINSEL
timezone 5dst
physmem 16
bufeaehe 20
maxusers 16

Table 4-6 summarizes tests done with three different-sized buffer caches
and for three different file sizes. The size of the buffer cache is increased

4-8 Tuning Subsystem Resource Usage

from 10 percent to 20 percent and 30 percent of memory. Three different
file sizes are used, 250 KB, 1 MB, and 2 MB. The number of simulated
users is reduced from 10 to 5 because creating files as large as 2 MB leaves
insufficient disk space to run the tests.

Table 4-6: Test with Different Sized Buffer Caches

Processes System Sys+User Real
Test per Second Time Time Time

250 KB Files

4(a) 0.0565 534.1 884.9 921.7

4(b) 0.0563 532.3 887.5 919.7

4(c) 0.0566 531.6 884.1 921.5

1 MB Files

5(a) 0.0443 623.8 1128.3 1200.6

5(b) 0.0446 622.0 1121.4 1187.2

5(c) 0.0454 621.1 1101.1 1156.6

2 MB Files

6(a) 0.0325 743.4 1536.6 1651.3

6(b) 0.0332 744.7 1507.3 1630.4

6(c) 0.0333 741.1 1503.7 1644.4

In the first set of tests, with file sizes of 250 KB being created and five
processes running, the size of the buffer cache needed could be as large as
2.5 MB. The buffer cache as configured is only 1.6 MB (10 percent of 16 MB
real memory). However, it is unlikely that all five processes access their 250
KB files at the same time, and thus it is unlikely that the system will exceed
buffer cache capacity. However, with 1 and 2 MB files it is much more likely
that the system will exceed the size of the buffer cache, unless it is increased
to 20 percent or 30 percent of memory.

Tests 4(a), 5(a), and 6(a) in Table 4-6 show results when the size of the
buffer cache is 10 percent of total physical memory. Tests 4(b), 5(b), and 6(b)
represent tests results when the buffer cache is increased to 20 percent of
system memory. Finally, Tests 4(c), 5(c), and 6(c) show the test results when
the buffer cache is increased to 30 percent of system memory.

The results of these tests show that if you increase the size of the buffer
cache, system performance improves slightly for any of the test file sizes. The
number of processes completed per second is larger in every case for a buffer
cache of 30 percent of system memory as compared to a buffer cache of 10
percent or 20 percent. These may not seem like significant improvements,
but on a heavily loaded system, the increased level of performance may be
even larger. The best recommendation is to experiment and to see what
works best in your situation.

Tuning· Subsystem Resource Usage 4-9

4.3 Tuning Process Control and Scheduling
To improve the performance of the process control and scheduling subsystem
without access to kernel source code, you must rely primarily on system
management. You can do this in several ways:

• Balance the workload of the system over time.
• Change two global parameters that govern the size of the process table

and the number of processes one user can run.
• Change the priority of a process.
• Set the sticky bit for a process that is executed often by many users.

4.3.1 Balancing the Workload
By moving less critical jobs to periods of the day when the system is lightly
loaded, you can improve throughput for users who run during those peak
demand periods.

You can use the at(1) and cron(1) commands to execute programs at a
specified time. For more information about these commands, see the ULTRIX
Reference Pages.

4.3.2 Changes Involving Global Parameters
Global parameters that indirectly affect the process control and scheduling
subsystem are maxusers and maxuprc. The size of the process table is
calculated from the value of maxusers and maxuprc. Have the value for
the maxusers parameter approximate the number of users and processes
logged on to the system at anyone time. Ifmaxusers is too large, the kernel
becomes unnecessarily large, which results in less available memory; if it is
too small, not all users and processes are able to log on.

The maxuprc parameter also limits the number of processes an individual
user may have running simultaneously. Setting a limit may prevent an
user from monopolizing or swamping the system with too many processes.
However, setting the number of processes too low can result in a task not
being completed.

4.3.3 Changing the Priority of a Process
To demonstrate the effect of changing relative priorities of simulated users,
the same set of tests used in Section 4.2 are used again. As before, the
workload comprised of 50 percent from file system activity and 50 percent
from activity of other tests. This set of tests used 2 MB file sizes for files
being created, written, and read.

After a baseline was established the tests were rerun with another benchmark
running, the SPEC 001.gcc1.35 benchmark. This benchmark was chosen
because it takes approximately the same amount of time to complete as
the AIM Benchmark Suite III (30 minutes clock time), and it heavily loads
the system itself. With both benchmarks running, system idle time falls
from at most 10 percent to 0 percent. Paging activity increases, but no
swapping occurs.

Finally, both benchmarks were rerun; however, now the SPEC benchmark
ran with a nice value of +10. That is, the priority of the SPEC benchmark
is reduced by 10 percent. Tests involve comparing the running times and

4-10 Tuning Subsystem Resource Usage

processes completed per second for the AIM Benchmark Suite III under each
of the three scenarios. The following example shows the command to start
the SPEC benchmark with a reduced priority. The nice +10 command tells
the system to increase the nice value for the command that follows it, and
the make command starts the SPEC benchmark.

csh> nice +10 make IDENT=vax VERSION=1.0 001.gcc1.35

Table 4-7 shows the results of the three tests. Test 1 shows the other system
activity beyond normal background tasks. Tests 2 and 3 are the results for
the AIM Benchmark Suite III when the SPEC benchmark is run at normal
priority and then after its priority has been reduced by 10 percent. The
system slows down when the SPEC benchmark is added. However, when the
process priority of the SPEC benchmark is reduced by 10 percent, process
statistics for the AIM Benchmark Suite III return to the level achieved when
the system was under no additional load.

Table 4-7: Impact of Changing Process Priorities

Processes System Sys+User Real
Test per Second Time Time Time

1 0.028667 781.9 1745.4 1904.4

2 0.025841 771.4 1937.8 2079.5

3 0.028730 764.0 1741.7 1879.7

4.3.4 Setting the Sticky Bit for a Frequently Executed Process

Another method by which you can improve a system's performance is to
set the sticky bit for processes executed often by many users. When the
AIM Benchmark Suite III runs, it forks 31 different subsystem exercisers
serially in a random order determined by an internal algorithm. Each
of these processes is run a number of times, depending on the weighting
applied to it. The weighting is dependent on the workload mix that is tested.
Thus, even when it simulates only five users, it is possible that some of
the subsystem exercisers will run 50 or 100 times during the 30 minutes
needed to complete the test.

Example 4-4 shows the command to set the sticky bit. The subsystem
exerciser disk cp is one of the 31 subsystem exercisers mentioned. The
individual numbers in the change mode command chmod are as follows:

1 Set the sticky bit
7 Set read, write, and execute privileges for the owner
5 Set read and execute privileges for group
5 Set read and execute privileges for others

Tuning Subsystem Resource Usage 4-11

Example 4-4: Setting the Sticky Bit for a Command

csh> chmod 1755 disk_cp

Table 4-8 shows the results of the tests with the sticky bit set. Tests 1 and
2 are the same tests listed in Table 4-7 (while set for all of the subsystem
exercisers). Note that the system's performance is improved with the sticky
bit set; however, improvement is not as great when the priority of the SPEC
benchmark was reduced by 10 percent.

Table 4-8: Impact of Setting the Sticky Bit

Processes System Sys+User Real
Test per Second Time Time Time

1 0.028667 781.9 1745.4 1904.4

2 0.025841 771.4 1937.8 2079.5

4 0.026834 764.8 1863.3 2018.6

4.4 Tuning Memory Management
Like the process control and scheduling subsystem, you must have access to
kernel source code to tune the memory management subsystem. However,
four global parameters in the configuration file have a direct impact on how
system memory is used. In addition, the bufcache global parameter affects
memory management, because as the size of the buffer cache increases,
less memory is available for executing programs. The following sections
consider the impact on system performance when you change each of these
global parameters.

4.4.1 Changes Involving maxuva, maxtsiz, maxdsiz, and maxssiz

Four global parameters, maxuva, maxtsiz, maxdsiz, and maxssiz, control
the way in which active virtual memory is allocated to running processes. The
parameters maxuva and maxtsiz set system-wide maximums for memory
allocated to virtual address space and the largest text segment for a user's
program. Unless a system is being so heavily used that it exhausts one of
these constraints, no reason exists to change either.

The parameters maxdsiz and maxssiz control the way memory is allocated
for individual users' processes. The value of maxdsiz determines the
maximum size of the data segment that one of your processes can allocate.
The parameter maxssiz sets the maximum stack size that one of your
processes can address. These parameters replace drnrnin and drnrnax in
versions of ULTRIX earlier than Version 4.0.

You can use the limit built-in command of the C-shell to display the current
settings of the data, the stack region size, and the stack size. The following
example shows output from the C-shell built-in command 1 imi t:

4-12 Tuning Subsystem Resource Usage

csh> limit
cputime unlimited
filesize unlimited
datasize 83936 kbytes
stacksize 512 kbytes
coredumpsize unlimited
memoryuse unlimited

For some programs using a large amount of temporary data storage, a
stack size of 512 KB can be insufficient. The following example shows
how individual users can adjust the stack size by increasing it with the
limit command. However, the largest data-plus-stack region is shown by
datasize and an individual user cannot increase it. Users can decrease
their data region size. If you need a larger data-plus-stack region, you must
relink the kernel using a larger value for maxdsiz.

csh> limit stacksize 4096
csh> limit
cputime unlimited
filesize unlimited
datasize 83936 kbytes
stacksize 4096 kbytes
coredumpsize unlimited
memoryuse unlimited

4.4.2 Changes Involving the Size of the Buffer Cache
For a system with a predictable workload, an optimal size buffer cache exists.
You can find the optimal size of the buffer cache only by experimentation.
However, remember that as more memory is used for the buffer cache, less is
available to run programs. Thus, system performance improves for a while as
the size of the buffer cache increases; however, it declines again as the size
of the buffer cache increases beyond the optimal size, because less memory
is available for the executing programs.

Table 4-9 shows the results of an experiment to find the optimal size for the
buffer cache. U sing the AIM Benchmark Suite III simulating 15 users and
simultaneously running five of the SPEC benchmarks, performance statistics
for the simulated users are collected.

The results indicate a noticeable improvement in execution times and
processes completed per second as the size of the buffer cache increases to
20 percent of system memory. After that, system performance begins to
fall fairly steadily as the buffer cache is increased to 70 percent of system
memory (the largest allowed by system configuration). However, not until
the buffer cache increases to 60 percent does system performance fall below
its level when the buffer cache was 10 percent of system memory.

Table 4-9: Impact of Increasing the Size of the Buffer Cache

Test

10%

20%

Processes
per Second

0.018396

0.020190

System
Time

1414.2

1403.8

Sys+User
Time

2718.0

2476.5

Real
Time

2892.0

2639.6

Tuning Subsystem Resource Usage 4-13

Table 4-9: (Continued) Impact of Increasing
the Size of the Buffer Cache

Processes System Sys+User Real
Test per Second Time Time Time

30% 0.018814 1407.9 2657.5 2842.5

40% 0.018806 1404.6 2658.7 2824.0

50% 0.018744 1406.3 2667.5 2852.3

60% 0.017298 1404.9 2890.4 3099.3

70% 0.016884 1417.5 2961.4 3161.1

4.4.3 Changes Involving Physical Memory and physmem

As a final method to improve performance of the memory management
subsystem, you can add more memory. Before you embark on this more
expensive means to improve system perforn1ance, be sure that you explore
less costly methods:

• Adjust the size of the buffer cache so that active virtual memory is no
more than 80 percent of real memory

• Adjust users' data segment size to a size sufficient for normal user
processes

If neither of these adjustments frees enough memory to improve system
performance, additional memory may be the only answer.

Note that the global parameter physmem does affect system memory
utilization. That is, if you change its value, it can effect on the amount of
memory the system has or recognizes. It does affect the size of the page
table when the kernel is built. Unless testing is being done, set its value
to be equal to the total amount of real memory attached to the system for
the following reasons:

• If you set physmem smaller than the total amount of physical memory on
the system, the system does not use a portion of physical memory that
equals the difference between two values.

• Setting physmem larger results in an unnecessarily large system page
table that requires more memory.

4.5 Tuning the 1/0 Subsystem
Tuning the I/O subsystem requires access to kernel source code. As suggested
in Chapter 3, I/O subsystem performance can appear less than it should be,
and some objective measures of performance can be developed. However,
beyond monitoring software that runs on the system and paying attention
to the hardware purchased (terminals, tape drives, and so on), the primary
means to improve I/O subsystem performance is system management.

4-14 Tuning Subsystem Resource Usage

4.5.1 Changes Involving Software

Programs that interface with the 110 subsystem should do so in the most
efficient manner possible. In general, reads and writes should avoid direct
dependence on the system call interface, unless dictated by sound design
reasons, and should use buffered 110 routines.

4.5.2 Changes Involving Hardware

If an evaluation indicates that software is not the source of performance
problems in the 110 subsystem, look at the 110 hardware. Monitor throughput
using the iostat command (described in Chapter 2), or some variation
on the technique described in Chapter 3 to measure the throughput for a
tape drive. You must obtain a statistic that is comparable to the metric
that the manufacturer uses to describe throughput of the 110 hardware unit
in question. If the measure is significantly different from the one in the
manufacturer's literature, contact the manufacturer's hardware technical
support personnel. However, if the hardware unit is performing as expected,
you might consider replacing it with a faster model.

4.6 Tuning the Network
You can improve network performance in the following ways:

• Monitoring traffic on the network
• Calculating throughput for test message packets between different nodes

on the network
• Isolating links where the throughput is less than acceptable

You need access to kernel source code to change the way network
communications are handled on individual machines in software. Thus,
tuning is primarily an exercise in the following:

• Evaluating hardware links
• Monitoring software that communicates over the network
• Balancing loads on machines connected on the network

Chapter 2 describes a number of utilities you can use to test the network.

4.6.1 Changes Involving Global Parameters

None of the global parameters in the configuration file have any connection
with the network subsystem. In the options portion of the configuration
file, be sure that the flags INET, DECnet, or both are included if the system
requires either the Internet Communication Protocols or the DECnet layered
product. The LAT flag allows you to access the machine from a local area
terminal server. Remember that including these flags causes the code to be
linked, which implements these features when the kernel is built. If you do
not include these flags, the related service is not available.

Tuning Subsystem Resource Usage 4-15

4.6.2 Changes Involving Software
Although you cannot change the way programs communicate over the network
without access to source code, you can attribute some problems to improper
configuration of the network. TCP/IP configures itself from a number of
files stored on the / et c directory when the network is started. Be sure the
following files are configured correctly:

• The hosts file contains names of all of the other known nodes on the
network, as well as any aliases by which those nodes are known.

• The hosts. equi v file lists trusted hosts, nodes on which users have
reciprocal privileges. Note that for this feature to work, users must
have the same login name and user ID on all systems. In addition,
individual users can have a . rhosts file, which lists other nodes that
have reciprocal login privileges for that user account.

• The networks file lists the host network's own address and network
addresses of other networks on the internet to which the host's network
has access.

• The protocols and services files are present, but are not changed
under normal circumstances. Protocol names and numbers listed in the
protocols file are in the services file, which contains four fields listing
the following: the name of the service, its service number, the name
of the protocol used by the service, and aliases by which the Network
Information Center (NIC) specifies service names and numbers.

Next, verify that the network was started correctly. Have the rc .local
file contain the two lines that configure the network; they look something
like the lines in Example 4-5. The first line sets up the localloopback; the
second sets the local host's broadcast address by which other machines on
the network are able to find it.

Example 4-5: Network Configuration from rc. local

/etc/ifconfig 100 localhost

/etc/ifconfig seO Tinsel broadcast128.10.255.255 netmask 255.255.0.0

The rc .local file starts various network daemons.

Be sure that the inetd and rwhod daemons are running. The inetd
daemon is the internet super server; it listens on multiple ports for incoming
connection requests. The rwhod daemon is the server that maintains the
database used by rwho and ruptirne programs.

Depending on the particular system's setup, other daemons that may be
running are as follows:

• routed (the network routing daemon)
• sendrnail (the network mail routing daemon)
• rwalld (the network message server that notifies all network machines

when its local host is going down)
• biod (the NFS asynchronous block I/O daemon (multiple copies) if NFS

is brought up on your system)

4-16 Tuning Subsystem Resource Usage

After you verify that the network is configured correctly and was started
correctly, check for protocol problems. To do this, you must isolate any
problems in a packet trace. When you start the network daemons before
a connection is established on a socket, turn on packet tracing with the
-d option of the inetd daemon. The system traces all traffic and internal
actions, writing the information to a circular trace buffer. You can examine
this buffer by running the trpt utility.

The system's buffering requirement can be adjusted by changing the
socket buffer size for TCP and UDP. TCP's buffer size parameters are
tcp sendspace and tcp recvspace. The defaults are 4 KB. Most gain
is measured going to 8 KB (40 percent). UDP's buffering size parameters
are upd sendspace and udp recvspace. The default is 9 KB, which can
be increased up to 60 KB. -

4.7 NFS Performance Problems
NFS performance problems can be broken down into three basic areas: client,
network, and server problems. The following sections describe each of these
areas and show why the server and, in particular, the server's 110 subsystem
usually are the primary causes of poor NFS performance.

4.7.1 Network Problems

The network used to communicate between the client and server does not
normally cause a performance problem. There are, however, two conditions
to look for: network delays and high retransmission rates. If the Ethernet
is overutilized, clients experience long delays waiting for a free slot to send
requests. Ethernet utilization over 50 percent often indicates excessive
network delay.

Network topology often contributes to excessive delay. If clients are located
across many gateways from the servers that they often use, their requests
experience long delays. You may be able to solve the problem by restructuring
the network topology to distribute the load more evenly.

Excessive retransmissions can cause poor performance because the client
waits for the server to respond before it retransmits a request. The causes of
excessive retransmissions include the following: overloaded servers that drop
packets due to insufficient buffering, inadequate Ethernet transceivers that
cause packets to be dropped under busy conditions, and physical network
errors, such as those caused by a noisy coaxial cable.

You can use the nf sst at -c command to measure the NFS retransmission
rate on client machines. The average NFS response time to a client request
under a low to medium load is approximately 30 milliseconds. Most clients
retransmit a request after approximately 1 second. If a 10 percent reduction
in performance is acceptable, then a 3 millisecond increase in response time
is an acceptable limit. This reduction gives an acceptable NFS retransmission
rate of 0.3 percent. The calculation is as follows:

.003sec./request . . /
1 0 /

.. = 0.003 retransmISSIon request
. sec. retranSmISSIOn

Tuning Subsystem Resource Usage 4-17

Because the worst case NFS request (8 KB read requests) requires seven
packets (one request and six fragmented replies), the error rate of the network
must be less than 0.04 percent. The calculation is as follows:

0.3% = 0.04%
7

The calculation shows the overall acceptable error rate for both the client
and the server, so the acceptable error rate measured at either machine is
half of this rate (0.02 percent).

You can use the nfsstat -i command to measure the network error rate.
If this rate is unacceptably high, determine whether an individual machine
is generating an excessive number of errors. If the problem appears to be
pervasive, analyze the cabling technology that is being used. For example, if
you have difficulties with noisy nonstandard coaxial cable, you could switch
to a twisted-pair Ethernet.

For more information about the nfsstat(8) command, see the ULTRIX
Reference Pages.

4.7.2 Client Problems
Adding disks or memory to a client can improve performance in the following
ways:

• By improving access time
• By reducing the overall load on the server and network

A client can avoid NFS performance problems for files that are not shared
(such as root, swap, and temporary files) by using local disks for these files.
For diskless clients, increased memory can make greatly improve performance
by allowing the client to swap and page less often. By adding local resources,
you can reduce the demands on the server and the network.

Although, it is easy to improve client performance by adding memory or
disk, there are no simple rules to determine whether the improvements are
cost effective. If local disks are used to hold valuable data, administrative
activities, such as backing up the disks and sharing their data, can become a
problem. However, adding resources to the server is often more cost effective.

4.7.3 Server Problems
The server's CPU can be a problem, but in an environment with a reasonably
powerful server (a machine with more than 2 MIPS), the server is probably
not a problem. A powerful server usually can keep up with the rate ofNFS
requests that a single Ethernet can deliver. A less powerful server (a machine
with less than 2 MIPS) cannot keep up with the NFS requests, and even
moderate loads can overwhelm the server's CPU.

On most NFS servers, the limiting factor is the speed of the disk. Most
high-speed disks can sustain from 30 to 40 disk operations per second. Most
of the time spent waiting for a disk operation occurs during head seeks or
rotational delay. If you use a faster disk or disk controller, and if you spread
the load over multiple disks, you can obtain a small improvement in I/O
performance. However, the best way to improve I/O performance is to reduce
the number of disk operations.

4-18 Tuning Subsystem Resource Usage

To alleviate performance problems, concentrate your resources on the server.
If you have already added memory to your server to increase the size of the
buffer cache and the server is still too slow, you can obtain another server
and split the load between the two servers. However, not only does this
solution have a large direct cost, but there is a significant administrative cost
associated with supporting an additional server.

If your system supports it, Presto serve (discussed in Chapter 3 and in Section
4.7.5) is an alternative solution that can increase the performance of the NFS
server without an additional server and its added administrative cost.

4.7.4 NFS Server Performance
ULTRIX uses a buffer cache in memory to avoid disk operations whenever
possible. This memory is effective in reducing the client waiting time for
relatively slow disk 110. It also makes disk 110 more efficient by allowing the
staging and scheduling of disk operations.

You can obtain a gain in performance by allowing the disk device driver to
schedule several requests at a time to take advantage of the position of the
disk arm. The total amount of disk 110 is reduced, because repeat requests
may be found in the cache. If NFS read activity is high, then adding more
memory to your server can improve server performance because the size of
the buffer cache is a percentage of the size of memory.

Performance problems at the server make the ULTRIX buffer cache
inefficient when serving remote write requests. NFS uses a simple stateless
protocol, which requires that each client request be complete and self
contained and that the server completely process each request before sending
an acknowledgment back to the client. If the server crashes or if an
acknowledgment is lost, the client will retransmit its request to the server.
Because of this, the server cannot acknowledge the client's request until data
is safely written to nonvolatile storage. Thus, the client knows exactly how
much modified data has been safely stored by the server. Consequently, the
server cannot cache modified data in volatile storage because the data may
be lost if the server crashes.

The ULTRIX buffer cache cannot be used to improve performance with NFS
requests that modify data. If the server cached modified data in volatile
memory without writing this data to nonvolatile storage before acknowledging
the request, a server crash would make that acknowledgment false. The
users of the client may assume that its data is safely stored, but if a crash
occurs, the data may be lost. Because a single server stores data for many
clients, many clients can be affected. However, if modifications are always
synchronously written to disk, data will not be lost, and you can easily
recover from server crashes.

In addition to write operations, other NFS operations cannot be cached.
Operations that modify data, such as file creation, file removal, and attribute
modification, significantly add to the amount of file system data that the
server must write synchronously to disk before responding. For example,
when the client creates a new file, the server may have to update the data
and file definition blocks for the directory that contains the file. To ensure
file system integrity in the local case, these operations are also written
synchronously to disk.

Tuning Subsystem Resource Usage 4-19

If NFS operations are synchronously committed to disk, a server can survive
system failures because data integrity in ensured. However, performance
is degraded because these operations take place at disk speeds and not at
the memory speeds available to cachable operations. In addition, because
these operations are processed serially, there is no opportunity to optimize
the scheduling of the disk arm. Modifications to the cache are written
synchronously to disk, so there is no opportunity to decrease write-disk
traffic.

Unless your server is only supplying read-only access to files, some NFS
operations must be synchronously committed to disk. Because disks are
much slower than memory, this is a large burden.

4.7.5 Prestoserve's Impact on NFS Server Performance
Presto serve's performance impact on any particular server can vary widely
as a result of the demands placed on the NFS server by its client systems.
Heavily loaded NFS servers, or those with a high percentage (more than 10
percent) of NFS writes, will benefit the most from Prestoserve. Conversely,
when an NFS server is lightly loaded or performing a low percentage (less
than 4 percent) of NFS writes, Presto serve may have no noticeable impact
on performance.

In addition to increased response time, Prestoserve provides for greater NFS
server throughput because Presto serve uses the server's disk more efficiently,
and the disk throughput is usually the biggest NFS concern. For example, in
many cases, Prestoserve allows you to double the number of diskless clients
that a single NFS server can support if it has the necessary disk capacity and
a sufficient amount of main memory. Presto serve's improvement to an NFS
server is most noticeable when the server is busy.

4.7.6 Recommendation for Increasing NFS Performance
The results of several NFS client/server performance tests prove that the
performance of the Digital servers is improved dramatically by modifying
the size of the buffer cache.

In most cases, results show that increasing the buffer cache improves
performance; however, if the buffer cache is increased too much, performance
can degrade. The optimum value for the buffer cache varies, depending on
the type of load placed on the server and also the server under test.

You can use the cache bufcache parameter in paramo c to map the file
system buffer cache into CPU cache. Good results have been found with
NFS file servers.

You can increase the performance of Digital servers by adjusting the NFS
daemons and the size of the buffer cache. It is important to realize that the
optimum setting of the NFS daemons or the buffer file cache is dependent
on the server load and the server.

A characterization study using the SECG Standard ULTRIX NFS Workload
examined the way a server's performance was affected by the number ofNFS
daemons executing on that server.

Performing a standard ULTRIX installation procedure on a server results in
four NFS daemons executing on the server. Changing the number of NFS

4-20 Tuning Subsystem Resource Usage

daemons varies the number of paths through the NFS server code, which
affects the number of NFS requests that can be simultaneously processed.

Three ratios of server NFS daemons to a number of supported clients were
tested: 1:1, 1:2, and 3:4. The 3:4 ratio can be used to form an ULTRIX NFS
server tuning rule: Set the number of NFS daemons executing on the server
equal to 75 percent of the number of clients supported by the server.

This can be achieved by using the following procedure:

1. Search the site-specific startup file /etc/rc .local for the following line:

/etc/nfsd 4; echo -n 'nfsd'

2. Change the value 4 to a value that observes the tuning rule.
3. Reboot the server.

This is a generic 80 percentl20 percent tuning rule. That is, 80 percent of a
server's performance improvement will come from applying the 3:4 rule, and
20 percent will come from normal ULTRIX system management techniques
applied to the server. Because the 3:4 ratio is probably workload dependent,
it does provide customers with a starting point for tuning their NFS servers.

4.8 Tuning Interprocess Communications
To improve the performance of the interprocess communications subsystem, it
is necessary to have access to kernel source code. Several global parameters
in the configuration file control the use of shared memory, but otherwise
tuning consists primarily of monitoring program development and program
usage, and undertaking user education.

4.8.1 Changes Involving Global Parameters
The configuration file contains five global parameters that control the
following:

• The minimum size of shared memory segment (srrunin)
• The maximum size of shared memory segments (srrunin and srrunax)
• The maximum number of shared memory segments per process that

can be created (smseg)
• The address offset at which a shared memory segment will be attached

(smbrk)

• The largest address at which a shared memory segment can be attached
(smsmat)

No parameters that affect messages, semaphores, or sockets are available.

The default maximum size of a shared memory segment is 128 KB. The
smbrk parameter is important because it defines the offset from the end of
the user's private data space at which a shared memory segment will be
attached. Once shared memory is attached, the user's private data space
cannot grow beyond the starting address of the shared segment

Tuning Subsystem Resource Usage 4-21

4.8.2 Changes Involving Software
Chapter 3 presented an example that showed a way to measure different
throughput rates for two different methods of interprocess communications,
one involving messages and the other involving semaphores. Although the
example allows you to measure how rapidly a process is able to communicate
with another, there is really nothing you can do to improve performance
without access to the source code for programs that are communicating. Thus,
performance improvements really hinge on software developers understanding
the environments in which their software will run and designing the softw&re
accordingly. Communicating crucial needs to software developers is the most
effective input from a user that will influence a workstation's performance

4.9 Chapter Summary
The objective of this chapter has been to give some examples where particular
performance problems have been identified and corrected. Recognizing the
problem generally requires setting up a benchmark or some other performance
standard against which to compare the system before undertaking any changes
and after making changes. In identifying system problems, it is critical that
you are methodical in your approach to solve the problem and that you
understand the tests used to verify the problem. This careful approach
improves the chances of finding the problem and fixing it. Each subsystem is
a little· different, but this basic methodology will work with all of them.

Tuning your system can improve its performance. ULTRIX cannot be default
tuned for all environments. In general, avoid excessive. paging and swapping
and I/O hardware saturation by using caching techniques and spreading
I/O over multiple devices.

4-22 Tuning Subsystem Resource Usage

A DEVSTAT Source Code

The following program, devstat. c, gathers information on attached I/O
devices. Specifically, it displays the device name, the device type, the interface
the device uses, the device major and minor numbers, the device mnemonic,
and the hard and soft error count. Other information, such as bus and
controller information, can be obtained with modificatIons to the program.

/*

** DEVSTAT: @(4f:)devstat.c

** Get information about generic device.

*/

4f:include <stdio.h>

4f:include <sys/param.h>

4f:include <sys/types.h>

#include <sys/stat.h>

#include <sys/file.h>

#include <sys/ioctl.h>

#include <sys/devio.h>

#include <sys/termio.h>

extern int errno;

extern int sys_nerr;

extern char*sys_errlist[];

#define

4f:define

#define

#define

FALSE

TRUE

GENERIC

TTY

o
1

1

2

4f:define ERROR -1

typedef union {

struct devget DEVData;

struct termcb TTYData;

} DataType;

DEVSTAT Source Code A-I

main (argc, argv)

int argc;

char *argv[];

register int i, max;

DataType: Data;

struct devget *pDD;

struct termcb *pTD;

struct stat *pDB, DevBuffer;

int fd;

short MajDev, MinDev, DevType;

long DevMode;

char DevName[MAXPATHLEN];

pTD = &Data.TTYData;

pDB = &DevBuffer;

for (i =1; i < (max = argc)i i++, errno 0) {

memset(&Data, O,sizeof(Data»;

strcpy(DevName,argv[i]);

if(stat(DevName,&DevBuffer)

terror(2); continue;

DevType = pDB->st_rdev;

-1) {

MajDev = pDB->st_rdev/256; /* major/minor of fs */

if«MinDev = pDB->st_rdev-(MajDev*256» == -1)

continue;

DevMode = pDB->st_mode;

if «fd = open(DevName, O_NDELAY»== -1) {

terror(3);

continue;

A-2 DEVSTAT Source Code

switch (devctl(fd, DevName, &Data))

case GENERIC:

iprintf(DevName, MajDev, MinDev, &Data);

break;

case TTY:

iprintf(DevName, MajDev, MinDev, &Data);

break;

default:

terror(5);

if(fd != -1)

close (fd);

iprintf(DevName, MajDev, MinDev, pGD)

char DevName[];

short MajDev, MinDev;

struct devget *pGD;

printf("%-19.19s", DevName);

printf("%hd ",MajDev);

printf("%hd

printf("%hd

printf ("%hd

printf("%s

printf("%s

printf("%hd

printf(n%hd

printf ("%hd

printf(n%hd

printf("%s

printf (n%hd

printf("%ld

", MinDev) ;

",pGD->category);

" ,pGD->bus) ;

" ,pGD->interface);

",pGD->device);

n, pGD->bus _ num) ;

",pGD->ctlr_num);

", pGD->rctlr_num) ;

",pGD->slave_num);

n ,pGD->dev_name);

" ,pGD->uni t _num) ;

",pGD->soft count);

/* Raw device name

/* Major device number

/* Minor device number

/* Category

/* Bus

/* Interface (string)

/* Device (string)

/* Bus number

/* Controller number

/* Remote controller number

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

/* Plug or line number */

/* Ultrix device pneumonic */

/* Ultrix device unit number */

/* Driver soft error count */

printf("%ld ",pGD->hard_count); /* Driver hard error count */

printf(n%ld ",pGD->stat); /* Generic status mask */

printf(n%ld\n",pGD->category_stat); /* Category specific mask */

DEVSTAT Source Code A-3

1*
**

**

**

**

If this is a tty we want to use a standard 'ioctl' call; however,

for generic devices (disk drives, tape drives, etc.) we will use

a the generic call to 'ioctl' to get the information about the

device ... if it exists, that is.

*1
devctl(fd, DevName, pGD)

int fd;

char DevName[];

char *pGD;

if (strncmp (&DevName [5], "tty", 3) == 0) {

if (ioctl(fd, TIOCSINUSE) == -1)

terror (6);

if (ioctl(fd, LDGETT, pGD) != -1)

return (TTY);

else {

if (ioctl(fd, DEVIOCGET, pGD) != -1)

return (GENERIC);

ret urn (ERROR);

A-4 DEVSTAT Source Code

1* Is it a tty? *1
1* Is it in use? *1

1* Not atty! *1

B Testing System Calls,
Messages, and Semaphores

This appendix provides the source code for test programs used in this book.
The following programs are described:

•
•
•

bldfile.c

msgtest.c

semtest.c

The first program, bldfile. c, tests system calls by writing a 100 KB file
100 times. You can build this program in the following ways:

1. To compile bldfile .1, issue the following command line:

csh> cc -DSLOW bldfile.c -0 bldfile.l

The program, bldfile .1, writes the file using 1000 byte buffers with
the write system call.

2. To compile bldfile. 2, issue the following command line:

csh> cc bldfile.c -0 bldfile.2

The program, bldfile. 2, writes the file utilizing the fwrite system call.

#include <stdio.h>
#ifdef SLOW
#include <sys/file.h>
#include <limits.h>
#endif

#define
#define
#define

HUNDRED
THOUSAND
PERMS

main (argc,argv)
int argc;
char *argv[];
{

register int i, n;

100
1000
0666

char buffer [THOUSAND+1];
#ifdef SLOW

int fp, j;
#else

FILE *fp;
#endif

memset(buffer, '1' ,THOUSAND);

Testing System Calls, Messages, and Semaphores B-1

for (n=O; n<HUNDRED; n++)
#ifdef SLOW

if «fp open (argv[l], O_RDWR, PERMS)) -1)
#else

if « fp fopen(argv[l], "w")) == NULL)
#endif

perror("open error");

for (i=O; i<HUNDRED; i++)
#ifdef SLOW

if (write (fp, buffer, THOUSAND) == -1)
#else

if (fwrite(buffer, THOUSAND, 1, fp) == 0)
#endif

perror("write error");

#ifdef SLOW

#else

#endif
}

close (fp) ;

fclose (fp) ;

exit (0);

The second program, msgtest. c, enables you to measure a message
transmission rate in bytes per second by setting up a message queue with a
buffer size of 128 bytes and transmitting the message to itself 20,000 times.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define KEY «key_t) 54321)

#define COUNT
#define BUFFSIZE
#define PERMS

20000
128
0666

main (argc,argv)
int argc;
char *argv[];
{

register int i, msqid;
struct {

long m_type;
char m_text[BUFFSIZE];

msgbuff;

if «msqid = msgget(KEY, PERMS
perror ("msgsnd error");

msgbuff.m_type = lL;

B-2 Testing System Calls, Messages, and Semaphores

IPC_CREAT)) < 0)

for (i=O; i<COUNT; i++) {

}

if (msgsnd(msqid, &msgbuff, BUFFSIZE, 0) < 0)
perror("msgsnd error");

if (msgrcv(msqid, &msgbuff, BUFFSIZE, OL, 0) != BUFFSIZE)
perror("msgrcverror");

if (msgctl(msqid, IPC_RMID, (struct msqid_ds *)0) < 0)
perror("IPC_RMID error");

exit (0);

The third program, semtest. c, enables you to measure the semaphore
operations per second by creating a semaphore set, setting the value of each
member to 1, and retrieving the value of the semaphore 20,000 times.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

#define KEY ((key_t) 54321)

#define COUNT
#define NSEMS
#define PERMS

main (argc,argv)
int argc;
char *argv[];
{

20000
10
0666

register int i, j,
struct {

semid;

ushort
short
short

sembuff;

sem_num;
sem_op;
sem_fig;

/* semaphore # */
/* semaphore operation */
/* operation flags */

if (semid = semget(KEY, NSEMS, PERMS I IPC_CREAT» < 0)
perror("semget error");

for (i=O; i<COUNT; i++) {
if (semctl(semid, i % NSEMS, SETVAL, 1) < 0)

perror("semctl error");

Testing System Calls, Messages, and Semaphores B-3

}

sembuff.sem_op = GETVALi
sembuff.sem_num = i % NSEMSi
sembuff.sem_flg = IPC_NOWAITi
if (semop(semid, &sembuff, 1) < 0)

perror("semop error")i

if (semctl(semid, 0, IPC_RMID, (struct semid ds *)0) < 0)
perror("IPC_RMID error");

exit (0);

B---4 Testing System Calls, Messages, and Semaphores

C The AIM Benchmark Suite III

The AIM Benchmark Suite III is a synthetic, multiuser benchmark that
runs on many UNIX. systems. It is a proprietary product of AIM Technology,
Inc., in Santa Clara, California. It was chosen to exercise the system for the
examples because it simulates a multiuser workload and, at the same time,
can be configured to model any environment; thus, it is much more flexible
than a benchmark that simulates a single environment.

The benchmark runs a master program that controls the simulated users that
are run. The master program forks (executes) a process for each simulated
user, but forces them to wait until all can begin running simultaneously.
These simulated users run a synthetic workload that is identical for all,
although the order in which they execute individual components of the
workload is randomly distributed.

The workload is comprised of 31 separate tests or subsystem exercisers. A
representative test opens a file, writes 250 KBytes to the file, closes the
file, and repeats. Other tests search directory paths, or add a sequence
of numbers, or copy data from one area in memory to another, and so on.
Each test is run enough times to generate a time interval of four or five
seconds. The time to complete the workload when only one user is simulated
is approximately two minutes and 30 seconds.

The benchmark reports the time used by the first of the simulated users to
complete the workload, broken into system time, user time, clock time, and
the number of processes completed per second. The number of processes
completed per second is computed by dividing the number of processes run by
the simulated user (fifty) by the cpu time to complete the workload. As the
system becomes heavily loaded, the time to complete the workload increases,
so the processes completed per second falls.

The AIM Benchmark Suite III C-l

D The SPEC Benchmark

The SPEC Benchmark is used in several of this manual's examples in
which the system load needed to be increased to the point that system
memory and CPU cycles were used to capacity. Workloads that comprise
the SPEC Benchmark are single-user, CPU intensive, natural workloads.
Documentation provided with the SPEC Benchmark states the following:

The SPEC benchmark suite consists of FORTRAN and C CPU
intensive benchmarks that are intended to be meaningful samples
of applications that perform fixed and floating point logic and
computations in a technical computing environment. SPEC
Benchmark Release 1.0 does not assess the ability of a system
under test to handle disk, graphics, communication, or multi-user
activity.

The workloads that make up the SPEC Benchmark are programs taken from
real application and development environments. The setup and execution
of the workloads is totally automated by the benchmark software using the
standard UNIX make utility.

The SPEC Benchmark D-1

A

AIM Benchmark Suite III, C-l

allocating disk space

du command, 2-12

quot command, 2-12

allocating swap space, 2-13

pstat command, 2-13

at command, 2-16

B

background processes, 1-7

bg command, 2-16

bi n directory, 1-5

block

definition of, 1-3

boot block

definition of, 1-3

buffer cache, 1-10, 3-1

changing size of, 4-8, 4-13

function of, 1-10

c

recognizing shortage of, 3-13

size of, 1-11

chpt command, 2-9

changing disk partition size, 4-6

cmx utility, 2-22

cpustat command, 2-2

crash utility, 2-2

D

dev directory, 1-5

devstat command, 2-21

df command, 2-9

direct block

definition of, 1-3

Index

directory

bin, 1-5

dev, 1-5

etc, 1-5

primary, 1-5

root, 1-4

tmp, 1-5

usr, 1-5

disk

exercising with dskx, 2-13

modifying partition size, 4-5

disk space allocation

affect on performance, 2-12

dskx command, 2-13

du command, 2-12

E
et c directory, 1-5

F
fg command, 2-16

file system, 1-1

adding a second swap partition, 4-7

associating with a device, 1-5

changing buffer cache size, 4-8

changing disk partition size, 4-5

checking, 2-10

components, 1-2

block, 1-2

boot block, 1-3

disk blocks, 1-3

inode, 1-3

super block, 1-3

creating, 2-10

newf s command, 2-10

evaluating

fsck command, 2-11

tunefs command, 2-10

exercising, 2-13

Index-l

Index-2

with fsx, 2-14

function of, 1-1

identifying a disk-bound state

using iostat command, 3-2

identifying a swap-bound state, 3-3

using ps command, 3-4

using pstat command, 3-3

using vmst at command, 3-4

identifying limitations, 3-1

identifying tuning needs, 3-1

improving performance of

configuration, 1-6

file location, 1-6

file size, 1-6

organizing files into directories,
1-7

monitoring activity, 2-14

mounting, 1-5

recognizing balanced loads, 3-8

recognizing problems

context switches, 3-10

interrupts, 3-8

process table shortages, 3-8

system calls, 3-9

relationship of blocks to devices, 1-3

relationship offiles, 1-4

relationship to devices, 1-3

reorganizing, 4-4

tools for monitoring, 2-8

tuning, 2-10, 4-4

unmounting, 1-6

foreground processes, 1-7

fsck command, 2-11

fsx command, 2-14

G

gathering disk information, 2-8

chpt utility, 2-9

df command, 2-9

mount command, 2-10

110 subsystem, 1-12

assessing tuning needs, 3-15

components of, 1-12

block device switch table, 1-13

block devices, 1-13

character device switch table,
1-13

character devices, 1-13

device special files, 1-13

determining 110 status, 2-21

device drivers, 1-13

disk drives, 1-14

effect on performance, 1-17

exercising, 2-22

using cmx, 2-22

using Ipx, 2-22

using mtx, 2-23

identifying limitations, 3-14

identifying system devices, 2-21

improving file system performance

file location, 1-7

improving performance of, 3-15

major device number, 1-14

measuring throughput, 3-16

minor device number, 1-14

monitoring, 2-20

performance trade-offs, 3-16

printers, 1-16

tape drives, 1-15

terminals, 1-15

tuning

changing hardware, 4-15

changing software, 4-15

ifconfig utility, 2-24

indirect block

definition of, 1-3

inode

definition of, 1-3

interprocess communications, 1-20,
2-30

assessing tuning needs, 3-19

determining IPC status, 2-30

determining IPC usage, 2-30

effect on performance, 1-21

identifying limitations, 3-19

measuring throughput rate, 3-20

messages for, 1-20

monitoring activity, 2-30, 2-31

semaphores with, 1-21

shared memory with, 1-20

tuning, 4-21

changing global partitions, 4-21

changing software, 4-22

iostat command, 2-3

identifying a disk-bound state, 3-2

ipcs command, 2-30

options, 2-30

J
jobs command, 2-16

K
kill command, 2-16

L

lpx utility, 2-22

M
memory

allocating of by kernel, 1-10

buffer cache, 1-10

buffer cache size, 1-11

improving performance, 1-11

changing buffer cache size, 1-11

changing the swap area, 1-11

management techniques, 1-12

managing, 1-9

pregion tables, 1-10

recognizing shortage of, 3-12

swap area, 1-11

memory exercisers

memx,2-20

shmx, 2-20

memory management, 1-9

assessing active virtual memory
size, 3-12

assessing tuning needs, 3-12

identifying limitations, 3-10

memory exercisers, 2-19

monitoring

with vmstat command, 2-20

recognizing a small buffer cache ,
3-13

recognizing shortage of physical
memory, 3-12

tuning, 4-12

changing buffer cache size, 4-13

changing physical memory, 4-14

modifying global parameters,
4-12

memx exerciser, 2-20

mnt directory, 1-5

monitoring subsystem resource usage,
2-1

tools for, 2-1

cpustat command, 2-2

crash utility, 2-2

iost at command, 2-3

netstat command, 2-3

nfsstat command, 2-5

pstat command, 2-6

vmstat command, 2-6

mount command, 2-10

mtx utility, 2-23

Index-3

Index-4

N
netstat command, 2-3

determining network status, 2-25

measuring network throughput,
3-19

monitoring network activity, 2-30

Network Control Program (NCP), 2-29

Network File System (NFS), 1-18

client problems of, 4-18

identifying bottlenecks, 3-17

improving performance of, 3-17,
4-20

network problems of, 4-17

performance problems of, 4-17

Presto serve's impact on perfor-
mance, 4-20

server performance of, 4-19

server problems of, 4-18

network, 1-17

assessing tuning needs, 3-18

components of, 1-17

cabling, 1-17

controllers, 1-17

protocols, 1-18

software, 1-18

determining interface status, 2-24

using ifconfig, 2-24

using netstat, 2-25

determining usage, 2-23

using ruptime, 2-24

using rwho, 2-23

displaying NFS statistics using
nfsstsat, 2-25

effect on performance, 1-19

exercising, 2-27

using netx, 2-28

using ping, 2-28

function of, 1-17

identifying limitations, 3-18

measuring throughput rate, 3-18

using netstat command, 3-19

monitoring, 2-23, 2-29

using netstat, 2--30

NFS performance problems, 4-17

tuning, 4-15

changing global parameters,
4-15

changing software, 4-16

network protocols, 1-18

DECnet, 1-18

NFS, 1-18

RFS, 1-19

TCP/IP, 1-18

netx utility, 2-28

newfs command, 2-10

nfsstat command, 2-5

nfsstsat command

displaying statistics, 2-25

nice command

changing process priority, 4-11

p

ping command, 2-28

Process control and scheduling, 1-7

process, 1-7

background, 1-7

determining priority, 1-8

foreground, 1-7

improving performance, 1-9

rescheduling, 2-16

resetting the priority with renice,

2-16

scheduling, 2-16

scheduling priority and privilege,
1-8

setting stick bit, 4-11

setting the priority, 2-15

stopping, 2--16

process control and scheduling

assessing tuning needs, 3-5

changing global parameters, 4-10

changing process priority, 4-10

computing load average, 3-6

determining users and tasks, 2-15

finger command, 2-15

uptime command, 2-15

w command, 2-15

who command, 2-15

identifying limitations, 3-5

monitoring context switches, 2-17

monitoring interrupts, 2-17

monitoring of

ps command, 2-17

pstat command, 2-19

monitoring system calls, 2-17

sett~ng the sticky bit, 4-11

tuning, 4-10

process table, 3-8

ps command

assessing physical memory, 3-12

identifying a swap-bound state, 3-4

monitoring process control activity,
2-17

pstat command, 2-6, 2-13

determining 110 status, 2-21

identifying a swap-bound state, 3-3

monitoring process control activity,
2-19

Q

quot command, 2-12

R

renice command, 2-16

root directory, 1-4

root directory (/), 1-4

rupt ime command, 2-24

rwho command, 2-23

s
SPEC Benchmark, D-l

shared memory

exercising, 2-20, 2-31

shmx utility, 2-20, 2-31

stop command, 2-16

subsystem resource usage, 4-1

file system

adding secondary swap, 4-7

changing buffer cache size, 4-8

changing disk partition size, 4-5

reorganizing, 4-4

system configuration file, 4-1

tuning 110 subsystem, 4-14

tuning interprocess communica-
tions, 4-21

tuning memory management, 4-12

tuning the file system, 4-4

tuning the network, 4-15

NFS, 4-17

super block

definition of, 1-3

suspend command, 2-16

swap area, 1-11

system configuration file, 4-1

adding buffer cache entry, 4-8

q.evice definitions in, 4-3

global d~finitions in, 4-2

pseudodevice definitions in, 4-3

system image definitions in, 4-3

system exercisers

cmx utility, 2-22

lpx utility, 2-22

mtx utility, 2-23

net x utility, 2-28

Index-5

Index-6

T

terminals

control terminal, 1-15

role of the kernel, 1-16

tmp directory, 1-5

tunefs command, 2-10

u
uptime command, 2-15

us r directory, 1-5

v
vmstat command, 2-6

w

assessing active virtual memory
size, 3-12

assessing physical memory, 3-12

identifying a swap-bound state, 3-4

monitoring memory usage, 2-20

w command, 2-15

who command, 2-15

How to Order Additional Documentation

Technical Support
If you need help deciding which docuqlentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud modem from
anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

* Internal

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital Subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMO/E15
or
Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

* For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments ULTRIX
Performance Management Guide

AA-PKDVA-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manual says) 0 0 0 0
Completeness (enough information) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 0 0 0

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Nameffitle Dept.
Company __ __ Date _________ _

Mailing Address __ - __ _

Email _______________ _ Phone

· - - - - -. Do Not Tear - Fold Here and Tape -----------------------------------r----------------------.

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-3N32
110 SPIT BROOK ROAD
NASHUA NH 03062-2698

Ilh 1I •• lh 1111111111 •• 1.11.1111.1 •• 1 •• 1.1 ••• 1.11 •• 1

------. Do Not Tear - Fold Here

Cut
Along
Dotted
Line

Reader's Comments ULTRIX
Performance Management Guide

AA-PKDVA-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair
Accuracy (software works as manual says) 0 0 0
Completeness (enough information) 0 0 0
Clarity (easy to understand) 0 0 0
Organization (structure of subject matter) 0 0 0
Figures (useful) 0 0 0
Examples (useful) 0 0 0
Index (ability to find topic) 0 0 0
Page layout (easy to find information) 0 0 0

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

____________,-__________ Dept. Nameffitle

Company

Mailing Address

Date

_______________ Email
______ ---------------------------- Phone

Poor

0
0
0
0
0
0
0
0

· - - - - -. Do Not Tear - Fold Here and Tape --1

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-3/Y32
110 SPIT BROOK ROAD
NASHUA NH 03062-2698

111111111111111111111111111 II 1111111111111111 II 11111

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

,------, Do Not Tear - Fold Here ,---,

Cut
Along
Dotted
Line

