
ULTRIX

Guide to X/Open Transport Interface

Part Number: AA-PBKXB-TE

Guide to X/Open Transport Interface

Order Number: AA-PBKXB-TE

May 1991

Operating System and Version: UL TRIX Version 4.2

ULTRIX

This manual contains information on writing network applications using the X/Open
Transport Interface. It describes the system calls and subroutines used with the X/Open
Transport Interface.

digital equipment corporation
maynard, massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1991
All rights reserved.

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1, CDA, DDIF, DDIS, DEC, DECnet, DECstation, DECsystem, DECUS, DECwindows, DTIF, MASSBUS,
MicroVAX, Q-bus, ULTRIX, ULTRIX Mail Connection, ULTRIX Worksystem Software, UNIBUS, VAX,
V AXstation, VMS, VT, XVI, and the DIGIT AL logo.

UNIX is a registered trademark of UNIX System Laboratories, Inc. X/Open is a trademark of X/Open Company Ltd.

Contents

About This Manual

Audience ix

Organization . ix

Related Documents . x

Conventions x

New and Changed Information xi

1 Overview of the Transport Service Interface

1.1 Transport Service Interface

1.1.1
1.1.2
1.1.3
1.1.4

Transport Service Interface Characteristics
Application Portability .. .
XTI Enhancements .. .
Event Handling .. .

1-1

1-2
1-2
1-2
1-2

1.2 Transport Provider .. 1-3

1.3 Transport Endpoints ... 1-3

1.4

1.5

Modes of Service 1-3

1-3 1.4.1 Connection-Mode Service

1.4.1.1 Initialization . 1-4
1.4.1.2 Connection Establishment . 1-5
1.4.1.3 Data Transfer .. 1-6
1.4.1.4 Connection Release . 1-6
1.4.1.5 De-initialization .. 1-7

1.4.2 Connectionless-Mode Service . 1-8

1.4.2.1
1.4.2.2
1.4.2.3

Initialization .. .
Data Transfer
De-initialization

State Transitions

1-8
1-9

1-10

1-10

2 Connection-Mode Service Using the Internet Transports

2.1

2.2

2.3

Connection-Mode Programming Examples

Connection-Mode Initialization

2.2.1
2.2.2

The Client
The Server

Connection Establishment

2.3.1
2.3.2

The Client
The Server

2-1

2-1

2-2
2-5

2-10

2-10
2-13

2.4 Data Transfer 2-16

2.5

2.6

2.4.1
2.4.2

The Client
The Server

Connection Release

2.5.1 The Client
2.5.2 The Server

De-initialization

3 Connection-Mode Service Using the OSI Transport

3.1

3.2

3.3

3.4

3.5

3.6

Connection-Mode Programming Examples

Connection-Mode Initialization

3.2.1
3.2.2

The Client
The Server

Option Negotiation

3.3.1 The Client
3.3.2 The Server

Connection Establishment

3.4.1
3.4.2

The Client
The Server

Data Tran sf er .. .

3.5.1
3.5.2

The Client
The Server

Connection Release

3.6.1 The Client

iv Contents

2-16
2-18

2-19

2-19
2-20

2-21

3-1

3-1

3-3
3-6

3-9

3-9
3-10

3-11

3-11
3-13

3-16

3-16
3-17

3-19

3-19

3.6.2 The Server 3-20

3.7 De-initialization 3-21

4 Connectionless-Mode Service

4.1

4.2

4.3

Initialization

Data Transfer

De-initialization

4-1

4-3

4-5

5 Advanced Topics

5.1 Local Transport Characteristics 5-1

5.1.1 Transport-Protocol Characteristics 5-1
5.1.2 Quality of Service and Protocol Options ... 5-3

5.1.2.1 Types of Service Supported by TCP 5-3
5.1.2.2 Types of Service Supported by UDP 5-3
5.1.2.3 Types of Service Supported by OSI 5-3

5.2 Management of Memory Resources 5-4

5.3 Modes of Execution 5-5

5.4

5.5

Event Handling

Error Reporting

A State Transitions

A.1 States and Events in XTI

A.1.1
A.1.2
A.1.3
A.1.4
A.1.5
A.1.6

Transport Service Interface States
Outgoing Events .. .
Incoming Events .. .
Transport User Actions
State Tables .. .
Events and TLOOK Error Indication .. .

B Guidelines for Writing Protocol-Independent Software

5-5

5-7

A-1

A-1
A-2
A-4
A-5
A-5
A-7

B.1 Amount of Required Changes . B-1

B.2 General Rules B-1

Contents v

C Migrating from Socket-Based Software to XTl-Based Software

D Connection-Mode Programming Examples

D.1 Examples Using the TCP and UDP Transport Providers D-1

D .1.1 Client Programming Example .. . D-1
D.1.2 Server Programming Example .. D-5

D.2 Examples Using the OSI Transport Provider ... D-9

D.2.1 Client Programming Example D-9
D.2.2 Server Programming Example .. D-15
D.2.3 Support Routines for Client and Server Programming Examples D-22

E Connectionless-Mode Programming Examples

E.1

E.2

Connectionless-Mode Server Programming Example

Connectionless-Mode Client Programming Example

Glossary

Index

Examples

2-1: Initialize Phase of the Client (Connection-Mode)

E--1

E--3

2-2

2-2: Initialize Phase for the Server (Connection-Mode) ... 2-5

2-3: Connection Phase for the Client (Connection-Mode) 2-11

2-4: Connection Phase for the Server (Connection-Mode) 2-13

2-5: Data Transfer for the Client (Connection-Mode) .. 2-16

2-6: Data Transfer for Server (Connection-Mode) ... 2-18

2-7: Connection Release for the Client (Connection-Mode)

2-8: Connection Release for the Server (Connection-Mode)

3-1: Initialize Phase of the Client (OSI)

3-2: Initialize Phase for the Server (OSI) .. .

3-3: Client Option Negotiation (OSI)

3-4: Option Negotiation for the Server (OSI)

3-5: Connection Phase for the Client (OSI)

3-6: Connection Phase for the Server (OSI)

vi Contents

2-20

2-21

3-3

3-6

3-9

3-10

3-12

3-14

3-7: Data Transfer for the Client (OSI)

3-8: Data Transfer for Server (OSI)

3-9: Connection Release for the Client (OSI) .. .

3-10: Connection Release for the Server (OSI) .. .

4-1 : Initialize Phase for the Transaction Server (Connectionless-Mode)

4-2: Data Transfer for Transcation Server (Connectionless-Server)

D-1: Connection-Mode Code .. .

D-2: Connection-Mode Server Code .. .

D-3: OSI Client Code .. .

D-4: OSI Server Code

D-5: Support Routines for Client and Server

E-1: Connectionless-Mode Server Code

E-2: Connectionless-Mode Client Code

Figures

3-16

3-18

3-19

3-20

4-1

4-3

D-1

D-5

D-9

D-15

D-22

E-1

E-3

1-1: Transport Service Interface . 1-1

1-2: Communication Path Between Transport User and Provider 1-4

1-3: Connection Establishment ... 1-5

1-4: Connectionless Communication Path . 1-8

Tables

1-1: Initialization Functions for Connection-Mode

1-2: Connection Establishment Functions

1-3: Data Transfer Functions for Connection-Mode

1-4: Connection Release Functions

1-5: De-initialization Functions

1-6: Initialization Functions for Connectionless-Mode

1-7: Data Transfer Functions for Connectionless-Mode

1-5

1-6

1-6

1-7

1-7

1-9

1-9

1-8: De-initialization Functions for Connectionless-Mode 1-10

5-1: Internet Transport Provider Characteristics . 5-2

5-2: OSI Transport Provider Characteristics 5-2

5-3: Keys to Transport Provider Characteristic Table .. 5-2

5-4: TCP Transport Types of Service .. 5-3

Contents vii

5-5: OSI Transport Class 4 Types of Service ... 5-4

A-1: Transport Service Interface States ... A-2

A-2: Outgoing Events ... A-3

A-3: Context Values for Table A-2 ... A-3

A-4: Incoming Events ... A-4

A-5: Common Local Management State Table ... A-5

A-6: Connectionless-Mode State Table ... A-6

A-7: Connection-Mode State Table A-6

A-8: Asynchronous Events That Return a [TLOOK] Error A-7

C-1: TCP Transport Active User .. C-2

C-2: TCP Transport Passive User C-3

C-3: UDP Transport User C-4

C-4: OSI Transport Active User C-5

C-5: OSI Transport Passive User C-6

viii Contents

About This Manual

This guide contains information on the X/Open Transport Interface (XTI) with
information necessary for developing network application programs on the ULTRIX
operating system. The manual also contains information on migrating from socket
based software to the XTI-based software.

Audience
This guide is intended for experienced programmers who want to write network
application programs using the X/Open Transport Interface. Readers should be
familiar with the C programming language and UL TRIX networking concepts.

Organization
This guide consists of five chapters and five appendixes:

Chapter 1 Overview of the Transport Service Interface
This chapter provides a high level overview of the transport service interface
(XTI), that supports the transfer of data between two user processes: transport
user and transport provider.

Chapter 2 Connection-Mode Service Using the Internet Transports
This chapter describes the connection-mode service of the transport service
interface. The examples are appropriate for the TCP and UDP transport
providers. The client-server paradigm is used to describe the connection-mode
service.

Chapter 3 Connection-Mode Service Using the OSI Transport
This chapter describes the connection-mode service of the transport service
interface. The examples are appropriate for the OSI Service Class 4 transport
provider. The client-server paradigm is used to describe the connection-mode
service.

Chapter 4 Connectionless-Mode Service
This chapter describes the connectionless-mode service of the transport service
interface. The connectionless-mode service is used for short-term
request/response interactions.

Chapter 5 Advanced Topics
This chapter describes the characteristics associated with a transport endpoint
that can be changed after an endpoint is opened. How memory resources can be
Managed. Choosing a mode of execution for an application. Reporting events to
an application. Using the two levels of error reporting.

Appendix A States and Events in XTI
This appendix contains tables that list the possible states of the transort provider
as seen by the transport user, the incoming and outgoing events that may occur
on any connection, and identifies the allowable sequence of functions.

Appendix B Guidelines for Writing Protocol-Independent Software
This appendix describes how applications can be written to run over several
transport providers without significant changes.

Appendix C Migrating from Socket-based Software to XTI-based Software
This appendix describes how to migrate a program which uses sockets to a
program that uses the XTI interface.

Appendix D Connection-Mode Programming Code Examples
This appendix contains the connection-mode programming examples in
Chapters 2 and 3 in entirety.

Appendix E Connectionless-Mode Programming Code Examples
This appendix contains the connectionless-mode programming examples in
Chapter 4 in entirety.

Related Documents
You should have available the documents in the ULTRIX documentation set,
including the ULTRIX Reference Pages, appropriate C programming documentation,
and the Guide to Network Programming.

Conventions
The following conventions are used in this guide:

special

command(x)

literal

italics

[]

function

UPPERCASE

example

x About This Manual

In text, each mention of a specific command, option, partition,
pathname, directory, or file is presented in this type.

In text, cross-references to the command documentation include
the section number in the reference manual where the commands
are documented. For example: See the cat(l) command. This
indicates that you can find the material on the cat command in
Section 1 of the ULTRIX Reference Pages.

In syntax descriptions, this type indicates terms that are constant
and must be typed just as they are presented.

In syntax descriptions, this type indicates terms that are variable.

In syntax descriptions, square brackets indicate terms that are
optional.

In syntax descriptions, a horizontal ellipsis indicates that the
preceding item can be repeated one or more times.

In function definitions, the function itself is shown in this type.
The function arguments are shown in italics.

The UL TRIX system differentiates between lowercase and
uppercase characters. Enter uppercase characters only where
specifically indicated by an example or a syntax line.

In examples, computer output text is printed in this type.

example

%

>>>

CTRL/x

In examples, user input is printed in this bold type.

This is the default user prompt in multiuser mode.

This is the default superuser prompt.

This is the console subsystem prompt.

A vertical ellipsis indicates that not all of the lines of the example
are shown.

In examples, symbols like this indicate that you must hold down
the CTRL key while you type the key that follows the slash. Use
of this combination of keys may appear on your terminal screen
as the letter preceded by the circumflex character. In some
instances, it may not appear at all.

New and Changed Information
This manual has been updated to include information on how to use the Open
Systems Interconnection (OSI) transport provider in XTI applications.

About This Manual xi

Overview of the Transport Service Interface 1

This chapter provides a high-level overview of the transport service interface, which
supports the transfer of data between two user processes: transport user and transport
provider. Figure 1-1 illustrates the transport service interface.

Figure 1-1: Transport Service Interface

TRANSPORT USER
(Networking application or Session layer protocol)

• ...
Service Communication Events
Request Path

~, TRANSPORT SER VICE
INTERFACE

~,

TRANSPORT PROVIDER
(TCP or UDP protocol)

ZK-0098U-R

The transport provider is the entity that provides the services of the transport service
interface, and the transport user is the entity that requires these services. Examples of
transport providers are Transport Control Protocol (TCP), User Datagram Protocol
(UDP), and Open Systems Interconnection (OSI). A transport user may be a
networking application or session layer protocol.

To access the services of the transport provider, the transport user issues the
appropriate service requests. An example of a service request would be to request a
data transfer over a connection. In response, the transport provider notifies the user of
various events, such as the arrival of data on a connection.

1.1 Transport Service Interface
The transport service interface (XTI) consists of a set of transport-independent C
library functions that conform to the X/OPEN Transport Interface specifications. A
network application that uses the XTI calls is portable across systems, as long as both
systems incorporate the XTI calls and support the same underlying transport provider.
At present, ULTRIX operating system supports TCP, UDP, and OSI transport
providers using XTI. The OSI transport provider requires DECnet-ULTRIX.

1.1.1 Transport Service Interface Characteristics
In many ways, XTI is similar to the existing Berkeley Software Distributions (BSD)
socket-based interprocess communication (IPC) primitives. Both provide a
programming interface to access the underlying transport services and both use a file
descriptor to identify the endpoint for communication. In XTI, the endpoint (file
descriptor) is called a transport endpoint.

1.1.2 Application Portability
Compared to IPC, XTI provides additional functionality to facilite application
portability. The additional functionality consists of the following:

• XTI provides calls that return the characteristics of the transport protocol. A
portable application can use this information to identify the underlying transport
provider. XTI also provides calls to retrieve, verify, or negotiate protocol
options with the local transport provider.

• XTI defines an event management mechanism that lets transport providers
notify applications of significant events. The current event on a transport
endpoint is always available through user request. Furthermore, the occurrence
of an asynchronous event that requires immediate attention will also cause some
XTI calls to return t_look () (some event).

• XTI allows multiple processes to share the same transport endpoint.
Synchronization calls are defined to allow an application to synchronize with its
transport provider. Synchronization among applications is still left to the user
application.

1.1.3 XTI Enhancements
Compared to the BSD IPC calls, XTI offers certain enhancements. These include:

• During connection establishment, XTI allows an application to exchange and
negotiate connection options, determine the status of a previously-sent connect
request, or selectively accept connections from several incoming connections.

• During data transfer, XTI applications can send one transport service data unit
(normal or expedited) in multiple portions or receive one transport service data
unit (normal or expedited) using multiple issues of the same call.

• During connection release, XTI applications can send user-initiated disconnect
requests, identify the cause of a disconnect and retrieve any user data sent with
the disconnect, initiate an orderly release, or acknowledge receipt of an orderly
release indication.

1.1.4 Event Handling
The transport service interface is inherently asynchronous. Events can occur
independently of the actions of the transport user. Signals can also interrupt the
blocking call.

XTI defines a set of asynchronous events in which the application would be
interested. The transport provider generates these events as a result of either protocol
messages received over the network or clearing of flow control conditions within the
transport provider. Refer to Chapter 5 for a detailed description of event handling.

1-2 Overview of the Transport Service Interface

1.2 Transport Provider
The transport provider is the transport protocol that provides the services of the
transport service interface. Each transport provider supports a set of default quality
of-service parameters. These parameters are negotiable on a per-connection basis for
connection-mode transport services and exchanged on a per-datagram basis for
connectionless-mode transport services. Refer to Chapter 5 for a description of the
transport provider's parameters.

1 .3 Transport Endpoints
The file descriptor (transport endpoint) used by XTI is a UNIX file descriptor, which
can be manipulated by file system calls such as fork (), exec (), read (), and
write().

1.4 Modes of Service
The transport service interface provides two modes of service: connection and
connectionless. Connection-mode is circuit-oriented and enables data to be
transmitted over an established connection in a reliable, sequenced manner. It also
provides an identification mechanism that avoids the overhead of address resolution
and transmission during the data transfer phase. This service is attractive for
applications that require relatively long-lived, data stream-oriented interactions.

In contrast, connectionless-mode is message-oriented and supports data transfer in
self-contained units with no logical relationships required among multiple units. This
service requires only a preexisting association between the peer users involved, which
determines the characteristics of the data to be transmitted. All the information
required to deliver a unit of data (for example, the destination address) is presented to
the transport provider, together with the data to be transmitted, in one service access
that need not relate to any other service access. Each unit of data transmitted is
entirely self-contained. Connectionless-mode service is attractive for applications
that:

• lnvolve_short-term request/response interactions

• Exhibit a high level of redundancy

• Are dynamically reconfigurable

• Do not require guaranteed, in-sequence delivery of data

1.4.1 Connection-Mode Service
The connection-mode transport service is characterized by five phases:

• Initialization

• Connection establishment

• Data transfer

• Connection release

• De-initialization

Overview of the Transport Service Interface 1-3

1.4.1.1 Initialization - The initialization phase defines the local operation between a
transport user and transport provider. For example, a user must establish a
communication path to the transport provider, as illustrated in Figure 1-2. Each
communication path between a transport user and transport provider is a unique
endpoint of communication and is called the transport endpoint. The t _open ()
function enables a user to choose a particular transport provider that will supply the
connection-mode services and establish the transport endpoint.

Figure 1-2: Communication Path Between Transport User and Provider

TRANSPORT USER
(Networking application or Session layer protocol)

• •
Service Communication Events
Request Path

~, TRANSPORT SER VICE
INTERFACE

~~

TRANSPORT PROVIDER
{TCP or UDP protocol)

ZK-0098U-R

Another necessary local function for each user is to establish an identity with the
transport provider. Each user is identified by a protocol address. A protocol address is
associated with each transport endpoint, and one user process can manage several
transport endpoints. In connection-mode service, one user requests a connection to
another user by specifying that user's address. The structure of a transport address is
defined by the address space of the transport provider. An address may be as simple
as a random character string or as complex as an encoded bit pattern that specifies all
information needed to route data through a network. Each transport provider defines
its own mechanism for identifying users. Addresses can be assigned to each transport
endpoint by t _bind ().

In addition to t open () and t bind () , several functions are available to support
local initialization. Table 1-1 summarizes all local initialization functions of the
transport service interface.

1-4 Overview of the Transport Service Interface

Table 1-1: Initialization Functions for Connection-Mode

Function

t_alloc()

t_bind()

t_error()

t_free()

t_getinfo()

t_getstate()

t_look()

t_open()

t_optmgmt()

t_sync()

Description

Allocates memory for transport service interface structures.

Binds a protocol address to a transport endpoint.

Prints a transport service interface error message.

Frees structures allocated using t_alloc().

Gets protocol-specific service information.

Gets the current state of the transport endpoint.

Returns the current event on a transport endpoint.

Establishes a transport endpoint connected to a
chosen transport provider.

Negotiates protocol-specific options with the
transport provider.

Synchronizes a transport endpoint with the transport
provider.

1.4.1.2 Connection Establishment - The connection establishment phase enables two
transport users to create a connection (virtual circuit), between them, as illustrated in
Figure 1-3.

Figure 1-3: Connection Establishment

TRANSPORT USER 1
(Client)

TRANSPORT CONNECTION

TRANSPORT USER 2
(Server)

TRAN SP ORT SERVICE
ACE INTERF

~------------------------------------
TRANSPORT PROVIDER

ZK-0100U-R

This phase is illustrated by a client-server relationship between two transport users.
One user, the server, typically advertises some service to a group of users and then
listens for requests from those users. As each client requires the service, it attempts to
connect itself to the server using the server's advertised transport address. The
t connect () function initiates the connect request. One argument to
t-connect (), the transport address, identifies the server that the client wishes to
access. The server is notified of each incoming request using t_listen () and may

Overview of the Transport Service Interface 1-5

call t_accept () to accept the client's request for access to the service. If the
request is accepted, the transport connection is established.

Table 1-2 summarizes all functions available for establishing a transport connection.

Table 1-2: Connection Establishment Functions

Function Description

t_accept() Accepts a request for a transport connection.

t_connect() Establishes a connection with the transport user
at a specified destination.

t_listen() Retrieves an indication of a connection request
from another transport user.

t_rcvconnect() Completes a connection establishment if t _connect()
was called in asynchronous mode. See Chapter 4.

1.4.1.3 Data Transfer - The data transfer phase enables users to transfer data in both
directions over an established connection. Two routines, t snd () and t rev (),
send and receive data over the connection. All data sent bya user is guaranteed to be
delivered to the user on the other end of the connection, in the order in which it was
sent. Table 1-3 summarizes the connection mode data transfer functions.

Table 1-3: Data Transfer Functions for Connection-Mode

Function Description

t_snd() Sends either normal or expedited data over a
transport connection.

t_rcv() Receives either normal or expedited data on a
transport connection.

1.4.1.4 Connection Release - The connection release phase terminates a given transport
connection in the connection-mode service. Two sets of calls are used, depending on
whether the release is abrupt (abortive) or orderly.

The t snddis () and t rcvdis () functions are used for the abortive release.
Because the abortive release does not coordinate between the peer transport
providers, data can be lost. The t _ snddi s () call rejects an incoming connection
request or ends a connection abruptly, depending on the state of the connection when
the call is made. The t rcvdi s () call identifies the reason for the abortive release
of a connection, where the connection is released by the transport provider or another
transport user.

Orderly release of a transport connections is an optional feature for the TCP protocol.
Data from outstanding t snd () calls are transmitted and retransmitted, as flow
control permits, until all t _ snd () calls have been serviced. (Orderly release is not

1-6 Overview of the Transport Service Interface

supported by the OSI transport.)

The t_sndrel () and t_rcvrel () calls are used for the orderly release. The
t _ s n dre 1 () call can be issued by either transport user to initiate an orderly release
of a transport connection. This call indicates to the transport provider that the
transport user has no more data to send. The connection remains intact until both
users issue the t sndrel () function and t rcvrel () function. The
t rcvrel () function is issued when a useris notified of an orderly release request,
t01nform the transport provider that the user is aware of the remote user's actions.

Table 1-4: Connection Release Functions

Function Description

t_rcvdis() Returns an indication of an aborted connection,
including a reason code and user data.

t_rcvrel() Returns an indication that the remote user has
requested an orderly release of a connection.

t_snddis() Aborts a connection or rejects a connection
request.

t_sndrel() Requests the orderly release of a connection.

1.4.1.5 De-initialization - The de-initialization phase provides local management of a
transport endpoint. It can involve one or both of the following:

• Disabling a transport endpoint from accepting any further requests

• Informing the user that the transport provider is finished with the transport
endpoint

Issuing t _unbind () disables a transport endpoint so that no further request
destined for the that endpoint will be accepted by the transport provider. In addition,
t _unbind () disables event generation and disassociates the endpoint from its
protocol address.

Issuing t _ c 1 o s e () informs the transport provider that the user is finished with the
transport endpoint and frees any local resources associated with that endpoint. Table
1-5 summerizes the de-initialization functions.

Table 1-5: De-initialization Functions

Function Description

t_unbind() No further data or events destined for this transport
endpoint will be accepted by the transport provider.

t_close() The transport provider is informed that the user is
finished with the transport endpoint.

Overview of the Transport Service Interface 1-7

1.4.2 Connectionless-Mode Service

The connectionless-mode transport service is characterized by three phases:

• Initialization

• Data transfer

• De-initialization.

1.4.2.1 Initialization - The initialization phase defines the local operation between a
transport user and transport provider. For example, a user must establish a
communication path to the transport provider, as illustrated in Figure 1-4. Each
communication path between a transport user and transport provider is a unique
endpoint of communication, and is called the transport endpoint. The t open ()
function enables a user to choose a particular transport provider that will supply the
connectionless-mode services and establish the transport endpoint.

Figure 1-4: Connectionless Communication Path

TRANSPORT USER

Transport Endpoint
(Communication Path)

------~------TRANSPORT SERVICE
INTERFACE

TRANSPORT PROVIDER

ZK-0099U-R

Another necessary local function for each user is to establish an identity with the
transport provider. Each user is identified by a protocol address, that is associated
with each transport endpoint, and one user process can manage several transport
endpoints. In connectionless-mode service, in addition to the data sent by a user
process, each message contains a protocol address, making it possible to deliver the
message to the correct recipient and for the recipient to send a reply. Addresses may
be assigned to each transport endpoint by t_bind ().

In addition to t _open () and t _bind (), several functions are available to support
local initialization. Table 1-6 summarizes all local initialization functions of the
transport service interface.

1-8 Overview of the Transport Service Interface

Table 1-6: Initialization Functions for Connectionless-Mode

Function

t_alloc()

t_bind()

t_error()

t_free()

t_getinfo()

t_getstate()

t_look()

t_open()

t_optmgmt()

t_sync()

Description

Allocates memory for transport service interface structures.

Binds a protocol address to a transport endpoint.

Prints a transport service interface error message.

Frees structures allocated using t_alloc().

Gets protocol-specific service information.

Gets the current state of the transport endpoint.

Returns the current event on a transport endpoint.

Establishes a transport endpoint connected to a
chosen transport provider.

Negotiates protocol-specific options with the
transport provider.

Synchronizes a transport endpoint with the transport
provider.

1.4.2.2 Data Transfer - The data transfer phase enables a user to transfer data units
(sometimes called datagrams) to the specified peer user. Each data unit must be
accompanied by the transport address of the destination user. Two functions,
t sndudata () and t rcvudata () support this message-based data transfer
facility. Table 1-7 summarizes all functions associated with connectionless-mode data
transfer.

Table 1-7: Data Transfer Functions for Connectionless-Mode

Command

t_rcvudata()

t_rcvuderr()

t_sndudata()

Description

Retrieves a message sent by another transport user.

Retrieves error information associated with a previously
sent message.

Sends a message to the specified destination user.

Overview of the Transport Service Interface 1-9

1.4.2.3 De-initialization - De-initialization phase provides local management of a transport
endpoint. It may involve one or both of the following:

• Disabling a transport endpoint from accepting any further requests.

• Informing the user that the transport provider is finished with the transport
endpoint.

Issuing t _unbind () disables a transport endpoint such that no further request
destined for the given endpoint will be accepted by the transport provider. In
addition, t _unbind () disables event generation and disassociates the endpoint
from its protocol address.

Issuing t _close () informs the transport provider that the user is finished with the
transport endpoint and frees any local resources associated with that endpoint. Table
1-8 summerizes the de-initialization functions.

Table 1-8: De-initialization Functions for Connectionless-Mode

Function Description

t_unbind() No further data or events destined for this transport
endpoint will be accepted by the transport provider.

t_close() The transport provider is informed that the user is
finished with the transport endpoint.

1.5 State Transitions
The transport service interface has two components:

• The library functions that provide the transport services to users

• The state transition rules that define the sequence in which the transport
functions may be involved

The state transition rules are presented in Appendix A of this guide in the form of
state tables. The state tables define the legal sequence of library calls based on state
information and the handling of events. These events include user-generated library
calls as well as provider-generated event indications.

Note

Before writing software programs using the transport service interface,
the user needs to understand all the possible state transitions.

1-10 Overview of the Transport Service Interface

Connection-Mode Service Using the Internet 2 Transports

This chapter describes the connection-mode service of the transport service interface
using the TCP or UDP transport providers. As described in Section 1.4.1.2, the
connection-mode service can be illustrated using a client-server paradigm.

2.1 Connection-Mode Programming Examples
The important concepts of connection-mode are described in this chapter with two
programming examples: client and server. The client example illustrates how a client
establishes a connection to a server and then communicates with the server. The other
example illustrates the server's side of the interaction. The two examples use the TCP
or UDP transport providers and are presented in their entirety in Appendix D.

2.2 Connection-Mode Initialization
Before the client and server (transport users) can establish a transport connection,
each must first establish a communication path to the transport provider. A transport
endpoint specifies a communication path between a transport user and a specific
transport provider. A local file descriptor identifies a specific transport provider. To
activate a transport endpoint, a protocol address must be associated with an endpoint.

The t _open () function is used to create a transport endpoint and returns protocol
specific information associated with that endpoint. A file descriptor is returned as the
local identifier of the transport endpoint.

A successful t _open () returns a file descriptor and the default characteristics of the
underlying transport protocol are returned in the info parameter. This information
differs across transport providers. Refer to Chapter 5 for a description of the
information returned by the transport provider. This information is returned to the
user by t _open () and consists of the following:

addr Maximum size of a transport address

options Maximum bytes of protocol-specific options that can be passed between
the transport user and transport provider

tsdu Maximum message size that can be transmitted in either connection-mode
or connectionless-mode

etsdu Maximum expedited data message size that can be sent over a transport
connection

connect Maximum number of bytes of user data that can be passed between users
during connection establishment

discon Maximum bytes of user data that can be passed between users during the
abortive release of a connection

servtype Type of service supported by the transport provider

One of the following service types is returned:

T _COTS The transport provider supports connection-mode service but does
not provide the optional orderly release facility.

T_COTS_ORD The transport provider supports connection-mode service with
the optional orderly release facility.

T _CL TS The transport provider supports connectionless-mode service.

Only one of the services can be associated with the transport provider identified by
t_open ().

Note

Some characteristics returned by t open () may change after an
endpoint has been opened. This occurs if the characteristics are
associated with negotiated options, described later in this section.

After a user establishes a transport endpoint with the chosen transport provider, a
protocol address must be associated with a given transport, thereby activating the
endpoint. This association is done with t_bind (),which binds a protocol address
to the transport provider. In addition, for servers, this association directs the
transport provider to begin accepting connect indications, if desired.

Depending upon the transport provider, t bind () can allow more than one
transport endpoint to be bound to the same protocol address but disallows more than
one protocol address to be bound to the same transport endpoint. If the application
requests the binding of more than one transport endpoint to the same protocol
address, only one transport endpoint can be used to listen for connect indications
associated with that protocol address.

An optional facility, t _ optmgmt () , is available during the local initialization
phase. The t optmgmt () function enables a user to negotiate the values of
protocol options with the transport provider. Each transport protocol is expected to
define its own set of negotiable protocol options, which may include such
information as quality-of-service parameters. Because of the protocol-specific nature
of options, only applications written for a particular protocol environment are
expected to use this facility.

2.2.1 The Client
Example 2-1 illustrates the steps necessary to initialize the client. A discussion of
the client initialize phase follows this example segment:

Example 2-1: Initialize Phase of the Client (Connection-Mode)

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <netinet/in.h>
#include <stdio.h>
#include <ctype.h>
#include <errno.h>
#include <signal.h>
#include <setjmp.h>
#include <netdb.h>

2-2 Connection-Mode Service Using the Internet Transports

Example 2-1 : (continued)
#include <xti.h>
#include <fcntl.h>

extern int errno;
int net;
struct t_info t_open_info; /* transport char. from transport */
struct t_info t_getinfo_info;
struct tcp_options tcp_opts;
struct t_optmgmt t_optm_req;
struct t_optmgmt t_optm_ret;
struct sockaddr_in sin;
struct servent *sp;
char *hostname;
struct hostent *host;
#define MAXDSIZE 512
char snd_buf[MAXDSIZE];
char rcv_buf[MAXDSIZE];
int n;
int status;
struct t call t_conn_sndcall;
struct t call t_conn_rcvcall;
struct t call t_rcvconn_call;

struct t_discon discon;
int t_rcv_flags;

main(argc, argv)
int argc;
char *argv [];

char destin[255];

if ((net= t open("tcp", 0 RDWRIO NONBLOCK, &t_open_info)) < 0) { ill
t_error ("<=open failed"); ~
exit(t_errno);

status= t_getinfo(net, &t_getinfo_info); [2J

/*
* t bind - bind an address to a transport endpoint

*
*/

if (t_bind(net, 0, 0) < 0) { [3]
t_error("iexample: t_bind error");
exit(l);

t_optm_req.opt.len = 0;
t_optm_req.flags = T_DEFAULT;
t_optm_ret.opt.maxlen = sizeof(struct tcp_options);
t_optm_ret.opt.buf = (char *) &tcp_opts;

status= t_optmgmt(net, &t_optm_req, &t_optm_ret); 15]
if (status < 0) {

t_error("iexample: t_optmgmt error");
exit(l);

printf("host :");
scanf("%s",destin);

Connection-Mode Service Using the Internet Transports 2-3

Example 2-1: (continued)
host= gethostbyname(destin);

if (host) {
sin.sin_family = host->h_addrtype;
bcopy(host->h_addr, (caddr_t)&sin.sin_addr, host->h_length);
hostname = host->h_name;

[] The first argument, tcp, to t _open () identifies the transport provider as tcp.
In this example, the transport protocol is identified by name (tcp). It is opened
for both reading and writing, as by specified the O_RDWR open. The
O _RDWR flag is ORed with the O _NONBLOCK flag, which specifies non
blocking operation (asynchronous mode). The asynchronous mode means that if
the requested operation t open () cannot be completed, the t open () call
returns -1 immediately and t_errno () is set to a specific value. The third
argument, &t_open_info, returns various default characteristics of the
underlying transport protocol by setting fields in the t _open _info structure. This
argument, t open info, points to the t open info structure which contains
the following members: - -

long addr

long options

long tsdu

long etsdu

long connect

long discon

long servtype

/* max size of the transport protocol address *I

/* max number of bytes of protocol specific options *I

/* max size of a transport service data unit (TSDU) */

/* max size of expedited transport service data unit (ETSDU() */

/* max amount of data allowed on connection established functions *I

/* max amount of data allowed on t_snddis() and t_rcvdis() functions */

/* service type supported by the transport provider *I

Refer to the t _open () reference pages for a description of the members of the
t_open_info structure.

As mentioned before, the third argument of the t open () call can be used to
return to the user the service characteristics of thetransport provider. This
information is useful when writing protocol-independent software, which is
discussed in Appendix B. If the user did not need to know the transport
characteristics, NULL would be specified for the third argument in t _open ()
call.

[21 After opening the transport service, the t get info () call gets
protocol-specific service information, which appears to be redundant to
what was done with the third argument of the t open() call. The
t_getinfo () call was added for illustrative purposes only. Another
alterative would have been to NULL the third argument oft_ open ()
call and use the t_getinfo () to obtain the protocol-specific service
information.

The return value of the t _open () call is a file descriptor obtained by opening
the transport protocol file. This file descriptor is an identifier that is used by all
subsequent transport service interface calls.

[3] After creating the transport endpoint, the client calls t _bind () to assign
an address to it. The first argument (net) identifies the transport endpoint.

2-4 Connection-Mode Service Using the Internet Transports

The second argument describes the address the user would like to bind to
the endpoint, and the third argument is set on return from t bind () to
specify the address that the provider bound. -

To access a server, clients use the address associated with the server's transport
endpoint. Typically, the client does not care about its own address because no
other process will try to access it. This is illustrated in the example, where the
second and third arguments to t bind () are set to NULL. A NULL second
argument means that the transport provider will assign an appropriate address to
be bound; in other words, the address will be chosen for the user. A NULL
third argument indicates that the user does not care what address is assigned to
the endpoint.

~ If either t open () or t bind () fail, the program calls t error ()
to send an appropriate error message to stderr. If any transport service
interface routine fails, the global integer t_errno is assigned an
appropriate transport error value. A set of such error values has been
defined (in <xti. h> for the transport service interface, and t errno
will print an error message corresponding to the value int errno. If
the error associated with a transport function is a system error, t errno
is set to TSYSERR, and errno is set to the appropriate value. -

~ The example also illustrates the use of the optional facility,
t _ optmgmt () , which enables a user to negotiate the values of protocol
options with the transport provider. Each transport protocol defines its
own set of negotiable protocol options, which may include such
information as quality-of-service parameters. Because t _ optmgmt () is
protocol-specific, only applications written for a specific protocol
environment are expected to use this facility.

2.2.2 The Server
The server in this example must perform local initialization steps similarly to the
client before communications can begin. The server must establish a transport
endpoint through which it listens for connect indications. The necessary initialization
steps are shown Example 2-2. A discussion of the server initialization phase follows
this example segment.

Example 2-2: Initialize Phase for the Server (Connection-Mode)

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/wait.h>
#include <sys/file.h>
#include <netinet/in.h>
#include <stdio.h>
#include <signal.h>
#include <errno.h>
#include <sgtty.h>
#include <netdb.h>
#include <syslog.h>
#include <xti. h>

int net,netl,n,nl;
extern int errno;

main(argc, argv)
char *argv[];

Connection-Mode Service Using the Internet Transports 2-5

Example 2-2: (continued)

int fromlen;
struct sockaddr in from;

int status;

status= get_income();
if (status != 0)

exit(l);
else {

sleep(lO);
exit (0);

}

int
get_income ()
{

struct sockaddr in sname;
struct servent *sp;
int i;
int child;

struct t call
struct t call
struct t call
struct t bind
struct t bind
struct t bind
struct t_info
int t_status;

/*

t_list_call;
*t_list_ptr;
t_snddis_call;
t bind addr req;
t=bind=addr=reql;
t bind addr ret;
t=open=info7 /* transport char. from transport */

* Call t_open - establish a transport endpoint

*
*/

if ((net= t_open("tcp", O_RDWR, &t_open_info)) < 0) { I§]
t_error("rexample: t_open error");
exit(l);

/*
* t_bind - bind an address to a transport endpoint

*
*/

sname.sin_port 200;
sname.sin_family = AF INET;
sname.sin_addr.s_addr = 0;

I* load port # */

t_bind_addr_req.addr.len = sizeof (struct sockaddr_in);
t_bind_addr_req.addr.buf = (char *) &sname;
t_bind_addr_req.qlen = 1;
t_bind_addr_ret.addr.maxlen = sizeof (struct sockaddr_in);
t_bind_addr_ret.addr.buf = (char *) &sname;

2-6 Connection-Mode Service Using the Internet Transports

Example 2-2: (continued)
if ((t_bind(net, &t_bind_addr_req, &t_bind_addr_ret)) < 0) { [Z]

t_error("rexample: t_bind error");
exit(l);

t_list_ptr = (struct t_call *) t_alloc(net, T_CALL_STR, T_ADDR); 18:1
bcopy(&sname, t_list_ptr->addr.buf, t_list_ptr->addr.maxlen);

t_status = t_listen(net, t_list_ptr);

if (t_status < 0) {
if (t_errno != TNODATA)

t_error("rexample: t_listen error");
t_unbind(net);
t_close(net);
exit(l);

printf ("Have a incomming connection with sequence # %d\n",
t_list_ptr->sequence);

printf ("attempting to accept sequence # %d\n",
t_list_ptr->sequence);

netl = get_endpoint();
if (t_status = t_accept(net,netl,t_list_ptr) < 0) {

t_error("rexample: t_accept error");
if (t_errno == TLOOK) {

printf("event %x came in\n",t look(netl));

exit(l);

fcntl(netl,F_SETOWN, getpid());
child = fork () ;

if (child == 0)
t_unbind(net);
t_close(net);
t_sync(netl);
doit(netl, t_list_ptr->sequence);

else
{

printf ("Forking Child process =%d for fd
child,netl, t_list_ptr->sequence);

t_unbind(netl);
t_close(netl);
t_free(t_list_ptr, T_CALL_STR);

return(O);

int
get_endpoint ()
{

struct sockaddr in sname;
struct servent *sp;
int tmp_net;

struct t call t_list_call;
struct t bind t_bind_addr_req;

%d seq=%d\n",

Connection-Mode Service Using the Internet Transports 2-7

Example 2-2: (continued)
struct t_bind t_bind_addr_reql;
struct t bind t_bind_addr_ret;

I*

struct t_info t_open_info; /* transport char. from transport */
int t_status;

* Call t_open - establish a transport endpoint

*
*/

if ((tmp_net = t_open ("tcp", O_RDWR, &t_open_info)) < 0) {
t_error("rexample: t_open error");
exit(l);

/*
* t bind - bind an address to a transport endpoint

*
*I

sname.sin_port = 0;
sname.sin_family = AF_INET;
sname.sin_addr.s_addr = 0;

t_bind_addr_req.addr.len = sizeof (struct sockaddr_in);
t_bind_addr_req.addr.buf = (char *) &sname;
t_bind_addr_req.qlen = O;
t_bind_addr_ret.addr.maxlen = sizeof (struct sockaddr_in);
t_bind_addr_ret.addr.buf = (char *) &sname;

if ((t_bind(tmp_net, &t_bind_addr_req, &t_bind_addr_ret)) < 0) {
t_error("rexample: t_bind error");
exit(l);

return(tmp_net);

[§] Like the client, the first step is to call t open () to establish a transport
endpoint with the desired transport provider. Refer to the get_ income routine
in the example for this discussion. This endpoint, net, is used to listen for
connection requests from the clients.

l.Zl Next, the server must bind its address, which is well-known to the clients, to
the endpoint. Each client uses this address to access the server. The second
argument to t_bind (), &t_bind_addr_req, to t_bind () requests that a
particular address be bound to the transport endpoint. This argument points to a
t _bind () structure with the following format:

struct t_bind {
struct netbuf addr;
unsigned qlen;

2-8 Connection-Mode Service Using the Internet Transports

The members have the following meanings:

addr Address to be bound
qlen Maximum outstanding connect indications that may arrive at this endpoint

Note

All transport service interface structure and constant definitions are
located in <xti. h>.

A netbuf structure specifies the address, which consists of the following members:

struct netbuf {
unsigned int maxlen;
unsigned int len;
char *buf;

These members have the following meaning:

buf Points to a buffer containing data which identifies a transport address.
!en Specifies the bytes of data in the buffer.
max/en Indicates the maximum bytes the buffer can hold (set only to return

data to the user by the transport service interface routine).

The structure of addresses varies among each protocol implementation under the
transport service interface. The netbuf structure should be able to support any
variations.

The qlen value specifies the number of outstanding connect indications the transport
provider should support for the given transport endpoint. An outstanding connect
indication is one that has been passed to the transport user by the transport provider
but which has not been accepted or rejected. In the example, qlen (value of 1) is
greater than 0, which means the transport endpoint can be used to listen for connect
indications. The t bind () call directs the transport provider to immediately begin
queueing connect fridications destined for the bound address. Furthermore, the qlen
value specifies the maximum outstanding connect indications the server may process.
The server must respond to each connect request, either accepting or rejecting the
request for connection.

~ The t alloc () call is called to allocate memory for the needed t bind ()
structure to hold the correct address. The t alloc () function takes three
arguments: fd (net, struct type), (T CALL STR), and fields (T ADDR). The first
argument, net, which is a _file descriptor, references a transport-endpoint. It is
used to access the characteristics of the transport provider. The second
argument, struct type, identifies the appropriate transport service interface
structure to be allocated. The third argument, fields, specifies which netbuf
buffers should be allocated for that structure.The size of this buffer is
determined from the transport provider characteristics that define the maximum
address size. The t alloc () call sets the max/en field of this netbuf structure
to the size of the newly allocated buffer.

Connection-Mode Service Using the Internet Transports 2-9

In this example, because qlen is set to 1, the server processes connect indications one
at a time. The address information is assigned to the newly allocated t _bind structure.
The t _bind structure is used to pass information to t _bind () in the second
argument and also is used to return information to the user in the third argument.

On return, the t bind structure contains the address that was bound to the transport
endpoint. Should the transport provider not be able to bind the requested address (for
example, it may already be bound), another appropriate address would be chosen.

The server checks the bound address to ensure that it is the one previously advertised
to clients. Otherwise, the clients will be unable to reach the server.

If t bind () is successful, the transport provider will begin queueing connect
indications. The next phase of communication, connection establishment, is entered.

2.3 Connection Establishment
The connection establishment procedures emphasize the difference between clients
and servers. The transport service interface imposes a different set of procedures in
this phase for each type of transport user. The client uses t _connect () to initiate
the connection establishment procedure by requesting a connection to a particular
server. The server is then notified of the client's request by calling t_listen ().
The server may either accept the client's request by calling t_accept () to
establish the connection, or calling t_snddis () to reject the client's request. The
server notifies the client of the decision to accept or reject the connection when
t _connect () completes.

The transport service interface supports two facilities during connection establishment
that may not be supported by all transport providers. The first is the ability to transfer
data between the client and server when establishing the connection. The client may
send data to the server when it requests a connection. This data will be passed to the
server by t listen (). Similarly, the server can send data to the client when it
accepts or re}ects the connection. The connect characteristic returned by t _open ()
determines how much data, if any, two users may transfer during connect
establishment.

The second optional service supported by the transport service interface during
connection establishment is the negotiation of protocol options. The client may
specify protocol options that it would like the transport provider or the remote user to
use. The transport service interface supports both local and remote option negotiation.
As discussed earilier, option negotiation is inherently a protocol-specific function.
Use of this facility is discouraged if protocol-independent software is a goal (Refer to
Appendix B).

2.3.1 The Client
Continuing with the connection-mode example, the steps needed by the client to
establish a connection are shown in Example 2-3. The example segment is followed
by a discussion of the steps.

2-10 Connection-Mode Service Using the Internet Transports

Example 2-3: Connection Phase for the Client (Connection-Mode)

printf ("host : ");
scanf("%s",destin);

host= gethostbyname(destin);

if (host) {
sin.sin_family = host->h_addrtype;
bcopy(host->h_addr, (caddr t)&sin.sin_addr, host->h_length);
hostname = host->h_name;

sin.sin_port = 200; /* try to connect to port 200 */
t_conn_sndcall.addr.len = sizeof (struct sockaddr_in);
t_conn_sndcall.addr.buf = (char *) &sin;
t_conn_sndcall.opt.len = O;
t_conn_sndcall.udata.len = 0;
t_conn_rcvcall.addr.maxlen = sizeof (struct sockaddr in);
t_conn_rcvcall.addr.buf = (char *) &sin;
t_conn_rcvcall.opt.maxlen = sizeof(struct tcp_options);
t_conn_rcvcall.opt.buf = (char *) &tcp_opts;
t_conn_rcvcall.udata.maxlen = 0;
t_rcvconn_call.addr.maxlen = sizeof (struct sockaddr_in);
t_rcvconn_call.addr.buf = (char *) &sin;
t_rcvconn_call.opt.maxlen = sizeof(struct tcp_options);
t_rcvconn_call.opt.buf = (char *) &tcp_opts;
t_rcvconn_call.udata.maxlen = 0;
t_rcvconn_call.udata.buf = 0;
if ((t_connect(net, &t_conn_sndcall, &t_conn_rcvcall)) < 0) {

if (t_errno == TNODATA) {
while (1) {

status= t_rcvconnect(net, &t_rcvconn_call);

if (status < 0) {
if (t_errno == TLOOK)

printf("Event %x came in\n",t_look(net));
(void) t_unbind(net);
(void) t_close(net);
exit(l);

if (t_errno != TNODATA) {
t_error("iexample: t_rcvconnect()");
(void) t_unbind(net);
(void) t_close(net);
exit(l);

else
break;

}

else {
t_error ("iexample: t_connect () ");
(void) t_unbind(net);
(void) t_close(net);
exit(l);

Connection-Mode Service Using the Internet Transports 2-11

~ The t connect() call establishes the connection with the server. The first
argument, net, identifies the transport provider through which the connection is
established. The second argument, t conn sndcall, identifies the destination
server by containing the address of a t call structure, which has the following
members: -

struct t_call {
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

The members have the following meanings:

addr Specifies the protocol address of the destination transport user.

opt Presents any protocol-specific information that may be needed by the
transport provider.

udata Points to optional user data that may be passed to the destination
transport user during connection establishment.

sequence Has no meaning for this function.

It should be noted that the t conn sndcall.opt.len argument in this example is set to
zero. This argument defines the options, which are specific to the underlying
protocol, that are passed to the transport provider. By setting this argument to zero
means that the user has chosen to use the default options.

The t_conn_sndcall.udata.len argument has also been set to zero in our example.
This argument enables the caller to pass user data to the destination transport, but, by
specifying a value of zero, no data is sent to the destination transport user.

The third argument (t conn reveal/) can be used to return information about the
newly established connection to the user, and can retrieve any user data sent by the
server in its response to the connect request. The t _conn _reveal/ argument points to a
t_call structure. The members of the t_call structure have the following meanings:

addr Returns the protocol address associated with the responding transport
endpoint.

opt Presents any protocol-specific information associated with the connection.

udata Points to optional user that may be returned during connection
establishment.

sequence Has no meaining for this function.

On return, the addr, opt, and udata fields of t conn reveal! are updated to reflect
values associated with connection. Thus, the max/en field of each argument must be
set before issuing t connect () to indicate the maximum size of the buffer for
each. However, if t conn reveal/ had been set to NULL, than no information is
returned to the user-from the t_connect ().

2-12 Connection-Mode Service Using the Internet Transports

[OJ The t rcvconnect () call confirms the connection to the server
(asynchronous mode only). The first argument, net, identifies the local transport
endpoint where communication has been established. The second argument,
t _rcvconn _call, points to a t _call structure that contains information about the
newly established connection.

In our example, the t_rcvconnect () call is operating in asynchronous mode
because the O _NONBLOCK flag was specified in the t_open() call. This means that
t_rcvconnect () is reduced to a poll for an existing connect confirmation. If
there is no connect confirmation, t rcvconnect () fails and returns immediately,
without waiting for the connection to be established. The t rcvconnect () call
must be reissued at a later time to complete the connection establishment phase and
retrieve the information returned to the call.

As shown in the state tables of Appendix A, it is possible in some states to receive
one of several asynchronous events. The t look () routine enables a user to
determine what event has occured if a TLOOK error is returned. The user can then
process that event accordingly. In the example, if a connect request is rejected, the
event passed to the client is a disconnect indication. The client exits if its request is
rejected.

2.3.2 The Server

Continuing with the server example, when the client calls t connect (),a connect
indication is generated on the server's listening endpoint. For each client, the server
accepts the connect request and spawns a server process to manage the connection.
Example 2-4 shows the required steps by the server to establish a connection and it is
followed by a discussion of the steps.

Example 2-4: Connection Phase for the Server (Connection-Mode)

t_list_ptr = (struct t_call *) t_alloc(net, T_CALL_STR, T_ADDR); l12J
bcopy(&sname, t_list_ptr->addr.buf, t_list_ptr->addr.maxlen);

t_status = t_listen(net, t_list_ptr);

if (t_status < 0) {
if (t_errno != TNODATA) {

t_error("rexample: t listen error");
t_unbind(net);
t_close(net);
exit (1);

printf ("Have a incomming connection with sequence # %d\n",
t_list_ptr->sequence);

printf ("attempting to accept sequence # %d\n",
t_list_ptr->sequence);

netl = get_endpoint();
if (t_status = t_accept(net,netl,t_list_ptr) < 0) { [1]

t_error("rexample: t_accept error");
if (t_errno == TLOOK) {

printf("event %x came in\n",t_look(netl));

exit(l);

Connection-Mode Service Using the Internet Transports 2-13

Example 2-4: (continued)
fcntl(netl,F_SETOWN, getpid());
child = fork () ;

if (child == 0)
t_unbind(net);
t_close(net);
t_sync(netl); II3:J
doit(netl, t_list_ptr->sequence);

else
{

printf("Forking Child process =%d for fd
child,netl, t_list_ptr->sequence);

t_unbind(netl);
t_close (netl);
t_free(t_list_ptr, T_CALL_STR);

return(O);

%d seq=%d\n",

int
get_endpoint ()
{

/*

struct sockaddr in sname;
struct servent *sp;
int tmp_net;

struct t call t list call; - - -
struct t - bind t bind addr _req; - -
struct t bind t _bind_ addr _reql;
struct t bind t bind addr ret; - -
struct t - info t _open_ info; /*
int t_status;

transport char. from transport */

* Call t_open - establish a transport endpoint

*
*I

if ((tmp_net = t_open ("tcp", O_RDWR, &t_open_info)) < 0) {
t_error("rexample: t_open error");
exit (1);

/*
* t bind - bind an address to a transport endpoint

*
*/

sname.sin_port 0;
sname.sin_family = AF_INET;
sname.sin addr.s addr = 0;

t_bind_addr_req.addr.len = sizeof (struct sockaddr_in);
t_bind_addr_req.addr.buf = (char *) &sname;
t_bind_addr_req.qlen = 0;
t_bind_addr_ret.addr.maxlen = sizeof (struct sockaddr_in);
t_bind_addr_ret.addr.buf = (char *) &sname;

if ((t_bind(tmp_net, &t_bind_addr_req, &t_bind_addr_ret)) < 0) {

2-14 Connection-Mode Service Using the Internet Transports

Example 2-4: (continued)
t_error("rexarnple: t bind error");
exit(l);

return(trnp_net);

[1] The server loops to process each connect indication. First, the server calls
t_listen () to retrieve the next connect indication. When a connect
indication arrives, the server calls t accept () to accept the connect request.
The first argument, net, oft_ accept () identifies the local transport endpoint
where the connect indication arrived. The second argument, netl, is used for the
local transport endpoint that establishes the connection. Because the connection
is accepted on an alternate endpoint, the server may continue to listen for
connect indications on the endpoint that was bound for listening. If the call is
accepted without error, a process is spawned to manage the connection.

As mentioned before, a different transport endpoint, netl, is used for a connection
than the transport endpoint, net, that is used to receive the connection indication.
Before t accept () can be issued, the endpoint, netl, must be bound to a protocol
address and must be in the T_IDLE state. Refer to the get_endpoint () function
in the example for the procedure on binding the protocol address.

The third argument, t _list _ptr, points to a t _call structure that contains information
required by the transport provider to complete the connection. The members of the
t _call structure have the following meanings:

addr Specifies the address of the caller.

opt Indicates any protocol-specific parameters
associated with the connection.

udata Points to any data to be returned to the call.

Sequence Is the value returned by t_listen()
that uniquely associates the response with
a previously received connect indication.

The t a 11 o c () function is called so that the server can allocate a t call
structure to be used by t listen (). The first argument, net, refers to the
transport endpoint that is used to allocate the new structure. The second
argument (T CALL STR) specifies that the allocated structure that is of type
t call and third argument, T ADDR, specifies which buffers are to be allocated.
fhe t a11oc () call must allocate a buffer large enough to store the address
of the caller. The buffer size is determined from the addr characteristics
returned by t open (). The max/en field of each .PN netbuf structure is set
by t alloc () to the size of the newly allocated buffer.

In the example, the t sync () function is called to synchronize the internal
tables. This function converts an uninitialized file descriptor to an initialized
transport endpoint by updating the necessary library data structures.

Connection-Mode Service Using the Internet Transports 2-15

2.4 Data Transfer
Once the connection has been established, the transport server interface does not
differentiate between the client and the server. Either the client or server may begin
transferring data over the connection using t snd () or t rev (). Not only can
either user send or receive data, but either may also releasethe connection when
appropriate. The transport service interface guarantees reliable, sequenced delivery of
data over an existing connection.

Using the TCP protocol, the transport service interface supports the exchange of both
normal and expedited data over a transport connection. Expedited data is typically
associated with information of an urgent nature. The urgent nature is often indicated
by one byte in the data stream. Most TCP applications are expected to discard all
data up to the urgent data when the urgent signal is received. It should be noted that
the exact semantics of expedited data are subject to the interpretation of the transport
provider.

The TCP transport provider allows the user to specify an urgent condition at any
point in the normal data stream. Several such indications can be combined, with only
the last one shown to the destination. There is no limit to the number of urgent
indications that can be sent. However, the user must send at least one data octet with
each urgent indication. Current TCP implementation support sending up to the
maximum segment size of urgent data, but retrieval of only one byte of urgent data.
If several urgent data are received, only the outstanding urgent data is reported.

Note

The user must set the T MORE flag (t snd ()) to send multiple units
over a transport connection, whereas theT MORE flag is automatically
set to receive (t _rev ()) a message in multiple units. The TCP
transport provider ignores the T _MORE flag.

2.4.1 The Client
Example 2-5 shows how the client can transfer data to or from the server. A
discussion of client data transfer follows this example segment.

Example 2-5: Data Transfer for the Client (Connection-Mode)

printf ("calling t_snd with %d bytes of regular data\n~sizeof (snd_buf));
n = t_snd(net, &snd_buf[O],sizeof(snd_buf) , 0); ~

if (n < 0) {
if (t_errno == TLOOK) {

printf("Generated a %X TLOOK error\n",t_look(net));
(void) t_unbind(net);
(void) t_close(net);
exit(l);

t_error("iexample: t_snd error");
(void) t_unbind(net);
(void) t_close(net);
exit (1);

printf ("t_snd sent %d bytes\n",n);

while (1) {

2-16 Connection-Mode Service Using the Internet Transports

Example 2-5: (continued)
n = t_rcv(net, rcv_buf, sizeof(rcv_buf), &t_rcv_flags); 115]

if (n < 0) {
if (t_errno != TNODATA)

t_error("iexample: t_rcv error");
(void) t unbind(net);
(void) t=close(net);
exit(l);

}
else {

t_error("iexample: NO data available");
}

if (n > 0) break;

printf("t_rcv received %d bytes\n",n);

if (t_rcv_flags & T_EXPEDITED)
printf ("data is expedited\n");

else
printf("data is normal\n");

n = t_sndrel (net, (struct t_call *) 0);

if (n < 0) {
t_error("iexample: error in t_sndrel:");
t_unbind (net);
t close(net);
ei"it (1);

[4] The client calls t snd () to send data to the server. The first argument, net,
identifies the local transport endpoint over which the data is to be sent. The
second argument, &snd _ buf[O], points to the user data to be sent, while the
third argument, size of(snd buf), specifies the number of bytes to be sent. The
fourth argument is used for optional flags. In the example, the argument 0
means no flags are set. The optional flags could have been either
T_EXPEDITED or T_MORE. The T_EXPEDITED flag specifies the data to be
expedited, while a T _ M 0 RE flag is ignored by the TCP transport provider.

l15J The client continuously calls t rev () to process incoming data. Because
t_rcv () is operating in the asynchronous mode in the example, if there is no
data, t _ rcv () will fail. The first argument net identifies the local transport
endpoint through which data arrives. The second argument, rev_ buf, points to
the buffer where the user data is placed, while the third argument,
sizeof(rcv _buf), specifies the size of the receive buffer in bytes.

Connection-Mode Service Using the Internet Transports 2-17

2.4.2 The Server

Example 2-6 shows how the server can transfer data to and from the client. The
server data transfer is discussed following this example segment.

Example 2-6: Data Transfer for Server (Connection-Mode)

doit(f, seq)
int f,seq;

int t_rcv_flags;
struct hostent *hp;
char rcv_buf[512];
char snd_buf[512];
int n;

while (1) {
n = t rcv(f,rcv_buf, sizeof(rcv_buf) ,&t_rcv_flags);

if (n < 0) {

}

if (t_errno != TNODATA)
t_error("rexample: t_rcv error");
t_unbind(f);
t_close(f);
exit (1);

}
else {

t_error("rexample: NO data available");
}

if (n > 0) break;

printf("t_rcv received %d bytes\n",n);

if (t_rcv_flags & T EXPEDITED)
printf("data is e~pedited\n");

else
printf("data is normal\n");

printf("calling t_snd with %d bytes of regular data\n",sizeof(snd_buf));
n = t_snd(f, &snd_buf[O],sizeof(snd_buf) , 0);

if (n < 0) {

if (t_errno == TLOOK)
printf("Generated a %X TLOOK error\n",t_look(f));
(void) t_unbind(f);
(void) t_close(f);
exit(l);

t_error("rexample: t snd error");
(void) t_unbind(f);
(void) t_close(f);
exit(l);

printf ("t_snd sent %d bytes\n", n) ;

2-18 Connection-Mode Service Using the Internet Transports

As mentioned before, when the connection has been established, the transport service
interface does not differentiate between the client and the server. As the following
description shows, the server description is very similar to the client description.

[§] The server calls t_rev () to receive data or expedited data over the
connection. The first argument, f, oft rev () identifies the local transport
endpoint through which data arrives. The second argument, rev buf, points to
the buffer where the user data is placed, while the third argument,
sizeofd(rcv _buf, specifies the size of the receive buffer. The fourth argument,
&t _rcv _flags, points to the optional flags. The example checks for expedited
data, if there is expedited data, the message "data is expedited" is printed.

2.5 Connection Release
At any point during data transfer, either user may release the transport connection and
end the data exchange between the two users. The transport service interface
supports two kinds of connection release:

• Abortive release

• Orderly release

The abortive release breaks a connection immediately and can result in the loss of
any data that has not yet reached the destination user. To generate an abortive release,
either user calls t snddis (). In addition, the transport provider may abort a
connection if a problem occurs below the transport service interface. A user may use
t_snddis () to send data to the remote user when aborting a connection. Although
the abortive release is supported by all transport providers, the ability to send data
when aborting a connection is not.

When the remote user is notified of the aborted connection, t_revdis () must be
called to retrieve the disconnect indication. This call returns a reason code that
indicates the connection was aborted, and returns any user data that may have
accompanied the disconnect indication (if the abortive release was initiated by the
remote user). This reason code is specific to the underlying transport protocol and
should not be interpreted by protocol-independent software.

The orderly release gracefully terminates a connection and guarantees that no data
will be lost. Orderly release is an optional facility that is supported by the TCP
transport provider.

2.5.1 The Client
If the server releases the connection by issuing t sndrel (), t rev () fails and
sets t errno () to TLOOK. The client then processes the connection release as
shown-in Example 2-7.

Connection-Mode Service Using the Internet Transports 2-19

Example 2-7: Connection Release for the Client (Connection-Mode)

n = t_sndrel (net, (struct t_call *) 0);

if (n < 0) {

t_error("iexample: error in t_sndrel:");
t_unbind(net);
t_close(net);
exit(l);

while (1) {
n = t_rcvrel(net);

if (n < 0) {

}

if (t_errno != TLOOK && t_errno != TNOREL)
t_error("iexample: error in t_rcvrel:");
t_unbind (net) ;
t_close(net);
exit (1);

}

else {
if (t_errno == TNOREL)

t_error("iexample: NO T_ORDREL available");
else {

}

}

t_error("iexample: TLOOK event");
t_unbind(net);
t_close(net);
exit (1);

if (n == 0) break;

t_unbind(net); ff8l
t_close(net); 119.J
exit (0);

ffZI Under normal circumstances, the client terminates the transfer of data by calling
t sndrel () to initiate the connection release. When the orderly release
indication arrives at the clienfs side of the connection, the client checks to
make sure the expected orderly release indication has arrived. If so, it proceeds
with the release procedures by calling t rcvrel () to process the indication
and t sndrel () to inform the server that it is also ready to release the
connection. At this point the client exits, thereby closing its transport endpoint.

2.5.2 The Server

The client-server example in this chapter assumes that the transport provider supports
the orderly release of a connection. When all the data has been transferred by the
server, the connection may be released as shown in Example 2-8.

2-20 Connection-Mode Service Using the Internet Transports

Example 2-8: Connection Release for the Server (Connection-Mode)

while (1) {
n = t_rcvrel(f);

if (n < 0) {

if (t_errno != TLOOK && t_errno != TNOREL)
t_error("rexample: error in t_rcvrel:");
t_unbind (f);
t_close(f);
exit (1);

}

else {
if (t_errno == TLOOK) {

t_error("TLOOK error");
t_unbind(f);
t_close(f);
exit(l);

t_error("rexample: NOT ORDREL available");
}

if (n == 0) break;

n = t_sndrel (f, (struct t call *) 0);

if (n < 0) {

t_error("rexample: error in t_sndrel:");
t_unbind(f);
t_close(f);
exit(l);

t_unbind (f) ; II8J
t_close(f); ~
exit(O);

2.6 De-initialization
~ De-initialization of a transport endpoint provides local management only, it

does not send information over the network. Issuing t unbind () disables a
transport endpoint so that no further request destined for the given endpoint is
accepted by the transport provider. In addition, t _unbind () disables event
generation and disassociates the endpoint from its protocol address.

[jJI Issuing t close () informs the transport provider that the user is finished
with the transport endpoint and frees any local resources associated with that
endpoint.

Refer to Examples 2-7 and 2-8 for an example of de-initialization.

Connection-Mode Service Using the Internet Transports 2-21

Connection-Mode Service Using the OSI 3
Transport

This chapter describes the connection-mode service of the transport service interface
using the OSI transport provider. As described in Section 1.4.1.2, the connection
mode service can be illustrated using a client-server paradigm.

3.1 Connection-Mode Programming Examples
The important concepts of connection-mode are described in this chapter with two
programming examples: client and server. The client example illustrates how a client
establishes a connection to a server and then communicates with the server. The other
example illustrates the server's side of the interaction. The two examples use the OSI
transport provider and are presented in their entirety in Appendix D.

3.2 Connection-Mode Initialization
Before the client and server can establish a transport connection, each must first
establish a communication path to the transport provider. A transport endpoint
specifies a communication path between a transport user and a specific transport
endpoint provider. A local file descriptor identifies a specific transport. To activate a
transport endpoint, a protocol address must be associated with an endpoint.

The t open () function is used to create a transport endpoint and returns protocol
specific information associated with that endpoint. A file descriptor is returned as the
local identifier of the transport endpoint.

A successful t open () returns a file descriptor and the default characteristics of the
underlying transport protocol are returned in the info parameter. This information
differs across transport providers. Refer to Chapter 5 for a description of the
information returned by the transport providers. This information is returned to the
user by t _open () and consists of the following:

addr

options

ts du

etsdu

connect

Maximum size of a transport address

Maximum bytes of protocol-specific options that can be passed
between the transport user and transport provider

Maximum message size that can be transmitted in either
connection-mode or connectionless-mode

Maximum expedited data message size that can be sent over a
transport connection

Maximum number of bytes of user data that can be passed between
users during connection establishment

discon Maximum bytes of user data that can be passed between users during
the abortive release of a connection

servtype Type of service supported by the OSI transport provider.
Currently, only T_COTS can be returned. T_COTS provides
connection-mode service without the orderly release facility.

After a user establishes a transport endpoint with the chosen transport provider, a
protocol address must be associated with a given transport, thereby activating the
endpoint. This association is done with t_bind (),which binds a protocol address
to the transport provider. In addition, for servers, this association directs the
transport provider to begin accepting connect indications, if desired.

For the OSI transport provider, the variable length sockaddr osi structure represents
the complete protocol address, with the following format: -

struct sockaddr_osi {
unsigned short osi_family;
unsigned short osi_length;
int osi_proto;
unsigned short osi_nlayers;
unsigned long reserved[8];

The members have the following meanings:

osi Jamily AF_ OSI

osi _length Total length of the structure (fixed length and variable length)

osi_proto OSIPROTO_COTS

osi_nlayers Set to 1 if TSAP only, 2 if TSAP and NSAP are supplied

reserved Eight fields are reserved.

The sockaddr osi structure also includes the user's TSAP (transport service access
point) and optional NSAP (network service access point). The TSAP and NSAP are
dynamically constructed (using the xti_osimakeaddr () routine) at the end of
the sockaddr osi structure.

Depending upon the transport provider, t_bind () can allow more than one
transport endpoint to be bound to the same protocol address but disallows more than
one protocol address to be bound to the same transport endpoint. If the application
requests the binding of more than one transport endpoint to the same protocol
address, only one transport endpoint can be used to listen for connect indications
associated with that protocol address.

An optional facility, t optmgmt (), is available during the local initialization
phase. The t optmgffit () function enables a user to negotiate the values of
protocol options with the transport provider. Each transport protocol is expected to
define its own set of negotiable protocol options, which may include such
information as quality-of-service parameters. Because of the protocol-specific nature
of options, only applications written for a particular protocol environment are
expected to use this facility. Section 3.3 contains the neg_xtiopts() routine used in
this example for option negotiation.

3-2 Connection-Mode SeNice Using the OSI Transport

3.2.1 The Client
Example 3-1 illustrates the steps necessary to initialize the client. A discussion of
the client initialize phase follows this example segment:

Example 3-1: Initialize Phase of the Client (OSI)

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <fcntl.h>
#include <xti.h>
#include <netosi/osi.h>

#define

#define
#define

#define
#define
#define
#define
#define
#define
#define
#define

NULL 0

SNDTSAP "sendtsap"
RCVTSAP "recvtsap"

FUNC T ACCEPT
FUNC_T_CONNECT
FUNC T LISTEN
FUNC T RCV
FUNC T RCVCONNECT
FUNC T RCVDIS
FUNC_T_RCVREL
FUNC T SND

1
5
10
14
15
16
17
20

#define OSIADDRLEN(a) ((a)->osi_length

struct

struct
struct
struct
struct
struct
struct

sockaddr_osi *alloc_sosi();

sockaddr osi *sndsap;
sockaddr_osi *rcvsap;
sockaddr osi *rcvconsap;
isoco_options snd_isoco_opts;
isoco options rev isoco opts;
t_info t_open_info; -

int totsnd;
int totsndexp;

+ sizeof (struct

char *usrdat = "This is the Client calling overen";
char *discondat = "Bye now, over and outen";

main ()
{

int xfd;
int sndblksiz 512;
int expblksiz 10;

xfd = sndgetfd();
if (!sndcon(xfd))

snddata(xfd, sndblksiz);
sndexp(xfd, expblksiz);
snddata(xfd, sndblksiz);

sockaddr_osi))

sleep(3); /* wait for receiver to catch up */
snddis (xfd) ;
destroy(xfd);

/*
* Get a transport endpoint.

*

Connection-Mode Service Using the OSI Transport 3-3

Example 3-1 : (continued)
* NOTE:

*
Addressing is XTI implementation dependent. As such,
our XTI address is represented by sockaddr_osi structure.
Note that this structure is variable length, with TSAP
and NSAP dynamically constructed at the end of the
structure.

*
*
*
*/

int sndgetfd ()
{

struct nsap nsap;
struct t_bind req, ret;
int sfd;
int oflag = O_RDWR;
/*

* Create a transport endpoint.
*/

if ((sfd = t_open ("cots", oflag, &t_open_info)) < 0) { [I
t_error("Client: t_open");
exit(l);

/*
* Init address structures.
*/

sndsap = alloc_sosi(t_open_info.addr);
rcvsap = alloc_sosi(t_open_info.add);
rcvconsap = alloc_sosi(t_open_info.add);
bzero(&rcv_isoco_opts, sizeof(rcv_isoco_opts));
/*

* Init our sap and Server's sap. l2J
*/

(void)xti_osimakeaddr(sndsap, OSIPROTO_COTS, strlen(SNDTSAP), SNDTSAP,
0, NULL, NULL);

getremotensap("mariah", &nsap);
(void)xti osimakeaddr(rcvsap, OSIPROTO COTS, strlen(RCVTSAP), RCVTSAP,

- OSIPROTO_CLNS, nsap.nsap_length, nsap.nsap_addr);

/*
* Must get into the T IDLE state with the t bind before t_optmgmt
* can be called.
*I

req.addr.len = OSIADDRLEN(sndsap);
req.addr.buf = (char *)sndsap;
req.qlen = O; /* sender won't do t listen */
ret.addr.maxlen = t_open_info_addr;
ret.addr.buf = (char *)sndsap;
if (t_bind(sfd, &req, &ret) < 0) ~4 l3J

t_error ("Client: t_bind"); ~
exit (1);

}

/*
* Set our options with the Transport Provider.
*I

neg_xtiopts(sfd, &snd_isoco_opts); ~

return(sfd);

11] The first argument ("cots") to t_open () identifies the transport provider as
OSI Connection Oriented Transport. During options negotiation, the client will
specify Class 4.

3-4 Connection-Mode Service Using the OSI Transport

The second argument (a.flag) identifies any t _open flags; a.flag is optionally
constructed from the O_RDWR flag (specifying open for both reading and writing)
ORed with the O_NONBLOCK flag (specifying non-blocking operation, or
asynchronous mode). The asynchronous mode means that the application can
continue processing while expecting an event. Refer to Section 5.3 for information
about modes of exectution.

The third argument (t open info) returns various default characteristics of the
underlying transport protocol by setting fields in the t _info structure. This argument
(t _open _info) points to the t _info structure.

Refer to the t _open () reference pages for a description of the members of the
t info structure.

As mentioned before, the third argument of the t open () call can be used to return
to the user the service characteristics of the transport provider. This information is
useful when writing protocol-independent software, which is discussed in Appendix
B. If the user did not need to know the transport characteristics, NULL would be
specified for the third argument int_ open call.

l2J This sectioq of code creates the client's and server's protocol addresses by
initializing their sockaddr _ osi structures.

The first xti _ osimakeaddr call puts information about the client into sndsap.
The second argument (OS/PROTO _COTS) identifies the transport layer protocol
identifier associated with the client's TSAP; the third argument (strlen(SNDSAP))
identifies the length of the TSAP; and the fourth argument (SNDTSAP) identifies the
TSAP itself.

Typically, the client does not need to know its own NSAP; the client needs to know
only its TSAP to bind to itself. This is illustrated in the example, where the last
three arguments (which would identify the client's NSAP) are set to NULL.

The second xt i _ os imakeaddr call puts information about the server into rcvsap.
In this case, the NSAP is required, so the last three arguments are supplied.
OSIPROTO CI.NS identifies the network layer protocol associated with the NSAP as
OSI connectionless mode network service; nsap.nsap _length specifies the length of
the NSAP; and nsap.nsap _ addr identifies the NSAP itself.

Note that the client obtained the NSAP of the server using the getremotensap ()
call. In this example, "mariah" is the server node. (getremotensap is a support
routine included in Section D.2.3.)

Refer to the xti osimakeaddr reference page (included in Appendix F) for more
information aboutthis new OSI subroutine.

[31 After creating the transport endpoint, the client calls t _bind () to bind a
protocol address to the endpoint. The first argument (sf d) identifies the transport
endpoint created with the t _open () call. The second argument (req) describes
the address the user would like to bind to the endpoint, and the third argument
(ret) is set on return from t_bind () to specify the address that the provider
bound.

Since the client does not typically listen for incoming calls, the qlen value must be
set to zero.

If either t open () or t bind () fail, the program calls t error () to
send an apl}ropriate error message to stderr . If any transportservice inter/ ace
routine fails, the global integer t_errno is assigned an appropriate transport
error value. A set of such error values has been defined (in <xt i . h>) for the

Connection-Mode Service Using the OSI Transport 3-5

transport service interface, and t _ errno will print an error message
corresponding to the value in t _ errno. If the error associated with a transport
function is a system error, t errno is set to TSYSERR, and errno is set to the
appropriate value. -

~ The neg_xtiopts () routine uses the optional facility, t_optrngrnt (),
which enables a user to negotiate the values of protocol options with the
transport provider. Each transport protocol defines its own set of negotiable
protocol options, which may include such information as quality-of-service
parameters. Because t _ optrngrnt () is protocol-specific, only applications
written for a specific protocol environment are expected to use this facility.
Section 3.3 describes the neg_xtiopts () routine.

3.2.2 The Server
The server in Example 3-2 must perform local initialization steps similarly to the
client before communications can begin. The server must establish a transport
endpoint through which it listens for connect indications. The necessary initialization
steps are shown in the following segment of the example. A discussion of the server
initialization phase follows this example segment.

Example 3-2: Initialize Phase for the Server (OSI)

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <fcntl.h>
#include <xti.h>
#include <netosi/osi.h>

#define NULL 0

#define RCVTSAP "recvtsap"

#define FUNC T ACCEPT
#define FUNC_T_CONNECT
#define FUNC T LISTEN
#define FUNC_T_RCV
#define FUNC_T_RCVCONNECT
#define FUNC_T_RCVDIS
#define FUNC T RCVREL
#define FUNC_T_SND

1
5
10
14
15
16
17
20

#define OSIADDRLEN(a) ((a)->osi_length + sizeof(struct sockaddr_osi))

struct sockaddr osi *alloc_sosi();

struct sockaddr osi *sndsap;
struct sockaddr osi *rcvsap;
struct isoco_options snd_isoco_opts;
struct isoco_options rcv_isoco_opts;
struct t_info t_open_info;
int totrcv;
int totrcvexp;
char *usrdat = "This is the Server, what's up?en";

main(}
{

int xfdO, xfd;
int rcvbufsiz = 512;

3-6 Connection-Mode Service Using the OSI Transport

Example 3-2: (continued)
xfdO = cvgetfd();

/*

xfd = cvcon(xfdO);
rcvdata(xfd, rcvbufsiz); /*receive loop*/

destroy(xfd);
destroy(xfdO);

* Get the listening transport endpoint.

*
* NOTE:

*
Addressing is XTI implementation dependent. As such,
our XTI address is represented by sockaddr_osi structure.
Note that this structure is variable length, with TSAP
and NSAP dynamically constructed at the end of the
structure.

*
*
*
*/

int cvgetfd ()
{

struct nsap nsap;
struct t bind req;
struct t bind ret;
int rfdO;
int of lag = O_RDWR;

/*
* Create a listening transport endpoint
*I

if ((rfdO t_open ("cots", of lag, &t_open_info)) < 0) { [§]
t error("Server: t open");
exit(l); -

/*
* Init address structures.
*/

sndsap = alloc_sosi(t_open_info.addr);
rcvsap = alloc_sosi(t_open_info.addr);
bzero(&snd_isoco_opts, sizeof(snd_isoco_opts));
bzero(&rcv_isoco_opts, sizeof(rcv_isoco_opts));

I*
* Init Server's sap
*/

(void) xti_osimakeaddr(rcvsap, OSIPROTO COTS, strlen(RCVTSAP), RCVTSAP,
0, NULL, NULL) ; 1ZJ

/*
* Bind the TSAP to a transport endpoint
*/

req.addr.len = OSIADDRLEN(rcvsap);
req.addr.buf = (char *)rcvsap;
req.qlen = l;
ret.addr.maxlen = t_open_info.addr;
ret.addr.buf = (char *)rcvsap;
if ((t_bind(rfdO, &req, &ret)) < 0) ~

t_error("Server: t_bind");
exit (1);

/*
* Set listener's options to Transport Provider.
*/

neg_xtiopts(rfdO, &rcv_isoco_opts); 19)

Connection-Mode Service Using the OSI Transport 3-7

Example 3-2: (continued)
return(rfdO);

(§] Like the client, the server calls t _open () to establish a transport endpoint
with the desired transport provider. This endpoint, rfdO, is used to listen for
connection requests from the clients.

IZJ This section of code initializes the sockaddr osi structure with the server's
TSAP. -

~ Next, the server must bind its address, which is well-known to the clients, to
the endpoint. Each client uses this address to access the server. The second
argument to t_bind (), req, requests that a particular address be bound to the
transport endpoint. This argument points to a t _bind structure with the
following format:

struct t_bind {
struct netbuf addr;
unsigned qlen;

The members have the following meanings:

addr Address to be bound
qlen Maximum outstanding connect indications that may arrive at this endpoint

Note

All transport service interface structure and constant definitions are
located in <xti. h>.

A netbuf structure specifies the address, which consists of the following members:

struct netbuf {
unsigned int maxlen;
unsigned int len;
char *buf;

These members have the following meaning:

buf Points to a buffer containing the sockaddr_osi structure which
identifies a transport address.

!en Specifies the bytes of data in the buffer.
maxlen Indicates the maximum bytes the buffer can hold (set only to return

data to the user by the transport service interface routine).

The qlen value specifies the number of outstanding connect indications the transport
provider should support for the given transport endpoint. An outstanding connect
indication is one that has been passed to the transport user by the transport provider
but which has not been accepted or rejected. In the example, qlen (value of 1) is
greater than 0, which means the transport endpoint can be used to listen for connect
indications. The t _bind () call directs the transport provider to immediately begin

3-8 Connection-Mode Service Using the OSI Transport

queueing connect indications destined for the bound address. Furthermore, the qlen
value specifies the maximum outstanding connect indications the server may process.
The server must respond to each connect request, either accepting or rejecting the
request for connection.

f9l The neg_xtiopts () routine uses the t_optmgmt call to negotiate options.
Section 3.3 describes option negotiation and the neg_xtiopts () routine.

3.3 Option Negotiation
With the OSI transport provider, the client and server have a set of options they can
negotiate. Refer to Table 5-5 for the OSI quality of service parameters and protocol
option.

3.3.1 The Client
Example 3-3 illustrates option negotiation. A discussion follows the example.

Example 3-3: Client Option Negotiation (OSI)

/*
* Client negotiates options with the transport provider.
*/

neg_xtiopts(fd, opt)
int fd;
struct
{

isoco_options *opt;

struct
struct

t_optmgmt t_optm_req;
t_optmgmt t_optm_ret;

/*
* Get default options [j]J
*/

t_optm_req.opt.len = 0;
t_optm_req.flags = T_DEFAULT;
t_optm_ret.opt.maxlen = sizeof(struct isoco_options);
t_optm_ret.opt.buf = (char *)opt;
if (t_optmgmt(fd, &t_optm_req, &t_optm_ret) < 0) {

t_error("Client: neg_xtiopt DEF: t_optmgmt");
exit(l);

/*
* Setup the user-specified options to be negotiated
*I

opt->mngmt.dflt=T_NO
opt->mngmt.class = T_CLASS4; [11
opt->mngmt.checksum = T_YES;
opt->expd = T_YES;
opt->mngmt.ltpdu = 2048;

t_optm_req.opt.len = t_optm_ret.opt.len; ff2J
t_optm_req.opt.buf = t_optm_ret.opt.buf;
t_optm_req.flags = T_NEGOTIATE;
t_optm_ret.opt.maxlen = sizeof(struct isoco_options);
t_optm_ret.opt.buf = (char *)opt;
if (t_optmgmt(fd, &t_optm_req, &t_optm_ret) < 0) {

t_error("Client: neg_xtiopt NEG: t_optmgmt");
exit(l);

Connection-Mode Service Using the OSI Transport 3-9

Example 3-3: (continued)

[QI The first step in option negotiation is getting the default options supported by
the transport provider. Setting the t_optm_req.fiags argument to T_DEFAULT
indicates that the purpose of the t optmgmt call t optm ret.opt. When the
flag is T DEFAULT, the t optm req.len field must be zero-and the
t_optm_req.buf field can be NULL.

1I1J In this example, the client selects four options to negotiate transport class as
T_CIASS4, checksum as T_YES, expedited data as T_YES, and maximum
length of the TPDU as 2048 (in octets). The default field of the management
structure (that is, opt->mngmt.dflit) is set to T_NO to indicate that the default
values are not being requested.

ff2:I Setting the t _optm_req.flags argument to T _NEGOTIATE indicates that the
purpose of the t optmgmt call is actual negotiation of options. The
negotiated options are returned in the t _ optm _ret argument.

3.3.2 The Server
Example 3-4 illustrates server option negotiation. A discussion follows the example.

Example 3-4: Option Negotiation for the Server (OSI)

/*
* Server negotiates options with the transport provider.
*/

neg_xtiopts(fd, opt)
int fd;
struct isoco_options *opt;
{

struct
struct

/*

t_optmgmt t_optm_req;
t_optmgmt t_optm_ret;

* Get default options
*/

t_optm_req.opt.len = O;
t_optm_req.flags = T_DEFAULT;
t_optm_ret.opt.maxlen = sizeof(struct isoco_options);
t_optm_ret.opt.buf = (char *)opt;
if (t_optmgmt(fd, &t_optm_req, &t_optm_ret) < 0) {

t_error("Server: t_optmgmt: T_DEFAULT");
exit(l);

/*
* Setup the user-specified options to be negotiated
*/

opt->mngmt.dflt = T_NO
opt->mngmt.class = T_CLASS4;
opt->mngmt.checksum = T_YES;
opt->expd = T_YES;
opt->mngmt.ltpdu = 1024; /* let's be different from Client */

t_optm_req.opt.len = t_optm_ret.opt.len;
t_optm_req.opt.buf = t_optm_ret.opt.buf;
t optm req.flags = T NEGOTIATE;
t=optm=ret.opt.maxlen = sizeof(struct isoco_options);

3-10 Connection-Mode Service Using the OSI Transport

Example 3-4: (continued)
t_optm_ret.opt.buf = (char *)opt;
if (t_optmgmt(fd, &t_optm_req, &t_optm_ret) < 0)

t error("Server: t optmgmt: T NEGOTIATE");
e~it(l); - -

[3] The server begins option negotiation, as did the client, by retrieving the
transport provider's default options.

Ml In this example, the server selects the same four options to negotiate as the
client selected; however, the server requests the maximum length of the TPDU
to be 1024, rather than 2048.

3.4 Connection Establishment
The connection establishment procedures emphasize the difference between clients
and servers. The transport service interface imposes a different set of procedures in
this phase for each type of transport user. The client uses t _connect () to initiate
the connection establishment procedure by requesting a connection to a particular
server. The server is then notified of the client's request by calling t _listen () .
The server may either accept the client's request by calling t_accept () to
establish the connection, or calling t snddis () to reject the client's request. The
server notifies the client of the decision to accept or reject the connection when
t _connect () completes.

The transport service interface supports two facilities during connection establishment
that may not be supported by all transport providers. The first is the ability to transfer
data between the client and server when establishing the connection. The client may
send data to the server when it requests a connection. This data will be passed to the
server by t listen (). Similarly, the server can send data to the client when it
accepts or rejects the connection. The connect characteristic returned by t open ()
determines how much data, if any, two users may transfer during connect -
establishment.

The second optional service supported by the transport service interface during
connection establishment is the negotiation of protocol options. The client may
specify protocol options that it would like the transport provider or the remote user to
use. The transport service interface supports both local and remote option negotiation.
As discussed earilier, option negotiation is inherently a protocol-specific function.
Use of this facility is discouraged if protocol-independent software is a goal (Refer to
Appendix B).

3.4.1 The Client
Continuing with the connection-mode example, the steps needed by the client to
establish a connection are shown Example 3-5. The example segment is followed by
a discussion of the steps.

Connection-Mode Service Using the OSI Transport 3-11

Example 3-5: Connection Phase for the Client (OSI)

/*
* Create a connection to the server.
*I

int sndcon (sfd)
int sfd;

struct
struct

t_call sndcall;
t call rcvcall;

/*
* Connect to Server.
*/

sndcall.addr.len = OSIADDRLEN(rcvsap);
sndcall.addr.buf = (char *)rcvsap;
sndcall.opt.len = 0;
sndcall.opt.buf = 0;
sndcall.udata.len strlen(usrdat) + 1;
sndcall.udata.buf (char *)usrdat;

rcvcall.addr.maxlen = t_open_info.addr;
rcvcall.addr.buf = (char *)rcvconsap;
rcvcall.opt.maxlen = sizeof(struct isoco_options);
rcvcall.opt.buf = (char *)&rcv_isoco_opts;
rcvcall.udata.maxlen = t_open_info.connect;
rcvcall.udata.buf = (char *)malloc(t_open_info.connect);

printf ("Client connecting to Server at (fd=%d) ... \~ sfd);
if ((t_connect(sfd, &sndcall, &rcvcall)) < 0) { @

switch (t_errno) {
case TLOOK:

if (handle_xtievt(sfd, FUNC_T_CONNECT))
return(l);

break;
default:

t_error("Client: t_connect");
exit(l);

printf("Client connected to Server\n");
if (rcvcall.udata.len > 0)

printf("Called user data: %s\n", rcvcall.udata.buf);

return(O);

~ The t connect () call establishes the connection with the server. The first
argument (sfd) identifies the transport provider through which the connection is
established. The second argument (sndcall) contains the address of a t _call
structure, which has the following members:

struct t_call {
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

The members have the following meanings:

3-12 Connection-Mode Service Using the OSI Transport

addr Specifies the protocol address of the destination transport user.

opt Presents any protocol-specific options needed by the
transport provider.

udata Points to optional connect user data passed to the
destination transport user during connection establishment.

sequence Has no meaning for this function.

The sndcall.addr arguments specify the protocol address of the remote server as set
up in the initialization segment of this example. The sndcall.opt fields are set to zero
in this example. This indicates that the options set on this endpoint by means of the
t_opt_mngmt field in the option negotiation segment will apply to the
t_connect () call by default.

The sndcall.udata.len argument is set to the length of the connect user data. This
argument enables the caller to pass user data to the destination transport user. The
sndcall.udata.buf includes the usrdat message, "This is the Client calling over,"
which was set up in the initialization segment of the example.

The third argument (reveal!) can be used to return information about the newly
established connection to the user, and can retrieve any user data sent by the server in
its response to the connect request. The rcvcall argument points to a t call structure.
The members of the t _call structure have the following meanings: -

addr Returns the protocol address associated with the responding transport endpoint.

opt Presents any protocol-specific options associated with the connection.

udata Points to (optional) user data returned during connection establishment.

sequence Has no meaning for this function.

On return, the addr, opt, and udata fields of reveal! are updated to reflect values
associated with connection. Thus, the max/en field of each argument must be set
before issuing t connect () to indicate the maximum size of the buffer for each.
However, if reveal! is set to NULL, no information is returned to the user from the
t_connect ().

3.4.2 The Server
Continuing with the server example, when the client calls t _connect (),a connect
indication is generated on the server's listening endpoint. For each client, the server
accepts the connect request and manages the connection. Example 3-6 shows the
required steps by the server to establish a connection and it is followed by a
discussion of the steps.

Connection-Mode Service Using the OSI Transport 3-13

Example 3-6: Connection Phase for the Server (OSI)

* Accept a connection from the Client.
*/

int rcvcon (rfdO)
int rfdO;
{

int rfd;
int t status;
struct t call t_list_call;
struct
struct

t bind req;
t_bind ret;

/*
* Prepare to receive connect indication.
*/

bzero(&t list call, sizeof(t list call));
t_list_call.addr.maxlen = t_open_info.addr;
t_list_call.addr.buf = (char *)sndsap;
t_list_call.opt.maxlen = sizeof(snd_isoco_opts);
t_list_call.opt.buf = (char *)&snd_isoco_opts;
t_list_call.udata.maxlen = t_open_info.connect;
t_list_call.udata.buf = (char *)malloc(t_open_info.connect);

/*
* Now, listen for incoming connection.
*/

printf("Server listening for connection (fd=%d) ... \n", rfdO);
if (t_listen(rfdO, &t_list_call) < 0) { 11§1

}

/*

switch (t_errno) {
case TLOOK:

if (handle_xtievt(rfdO, FUNC_T_LISTEN))
return(l);

break;
default:

t_error("Server: t_listen");
exit(l);

* This is usually where one might fork off a clone to process
*the rest of the client's requests. This way, we can
* "asynchronously" continue to go back and listen for another
* incoming connection.
*/

printf ("Incoming XTI connection sequence number: %d\n",
t_list_call.sequence);

if (t list call.udata.len > 0)
printf("Caller user data: %s\n", t_list_call.udata.buf);

/*
* Get a new, bound transport endpoint to accept connection.
*/

if ((rfd = t_open("cots", O_RDWR, &t_open_info)) < 0) {
t error("Server: get new tep: t_open");
exit(l);

req.addr.len = OSIADDRLEN(rcvsap);
req.addr.buf = (char *)rcvsap;
req.qlen = 0;
ret.addr.maxlen = t_open_info.addr;
ret.addr.buf = (char *)rcvsap;
if ((t_bind(rfd, &req, &ret)) < 0) {

t_error("Server: t_bind accept fd");
exit(l);

3-14 Connection-Mode Service Using the OSI Transport

Example 3-6: (continued)

/*
* As we are acepting the cal on a different endpoint, establish
* options for the new endpoint with the transport provider.
*/

neg_xtiopts(rfd, rcv_isoco_opts);

/*
* If Client greets us with user data, then return the courtesy.
*/

if (t_list_call.udata.len > 0) {
t_list_call.udata.len strlen(usrdat) + 1;
t_list_call.udata.buf = (char *)usrdat;

/*

t_list_call.opt.len=O;
t_list_call.opt.buf=O;

* Accept the connection
*/

if (t_status = t_accept(rfdO, rfd, &t_list_call) < 0) { ff1J
switch (t_errno) {
case TLOOK:

if (handle_xtievt(rfdO, FUNC_T_ACCEPT))
return(l);

break;
default:

t_error("Server: t_accept");
exit (1);

printf("Server accepted connection from Client at (fd=%d)\n", rfd);
return(rfd);

[§] First, the server calls t _listen () to indication. The first argument (rf dO)
identifies the local transport endpoint being monitored. The second argument
(t _list_ call), upon return, contains information required by the transport
provider to complete the connection. The members of the t_call structure have
the following meanings:

addr Specifies the address of the caller.

opt Indicates any protocol-specific options from the caller.

udata Points to any user data from the caller.

Sequence Is the value returned by t_listen() that associates each
connect request with a unique number, so that multiple
connects can be received at one transport endpoint.

On return, the t _call fields are updated to reflect values associated with connection.
Thus, the maxlen field of each argument must be set before issuing t_listen () to
indicate the maximum size of the buffer for each.

[Z] After a connect indication arrives, the server calls t accept () to accept the
connect request. The first argument (rfdO) oft_ accept () identifies the local
transport endpoint where the connect indication arrived; the second argument

Connection-Mode Service Using the OSI Transport 3-15

(rfd) identifies the local transport endpoint where the connection is accepted.
Accepting the connection on an alternate endpoint allows the server to continue
listening for connect indications on the endpoint originally bound for listening.

Of course, the alternate endpoint (rfd) must already have been bound to a protocol
address and be in the T_IDLE state before the server issues the t_accept ().

The third argument (t list call) points to the t call structure described in the
t listen () discussion-: Note that the t list-call.opt fields were set to zero. This
indicates that the transport provider should negotiate options based on the options
previously negotiated (by means of the t_optmgmt field) for the endpoint and on the
options received in the client connect request.

3.5 Data Transfer
Once the connection has been established, the transport server interface does not
differentiate between the client and the server. Either the client or server may begin
transferring data over the connection using t snd () or t rev (). Not only can
either user send or receive data, but either may also releasethe connection when
appropriate. The transport service interface guarantees reliable, sequenced delivery of
data over an existing connection.

Using the OSI protocol, the transport service interface supports the exchange of both
normal and expedited data over a transport connection. Expedited data is typically
associated with information of an urgent nature. The urgent nature is often indicated
by at least one octet (and up to 16 octets). The exact semantics of expedited data are
subject to the interpretation of the transport provider.

3.5.1 The Client
Example 3-7 shows how the client can transfer normal and expedited data to or from
the server. A discussion of client data transfer follows this example segment.

Example 3-7: Data Transfer for the Client (OSI)

/*
* Transmit normal data.
*I

snddata(sfd, nbytes)
int sfd;
int nbytes;
{

int i, cc;
char *sndbuf;

sndbuf = (char *)malloc(nbytes);
if (sndbuf == NULL) {

printf("Client: malloc: can't get buffer\n");
exit (1);

cc t_snd(sfd, sndbuf, nbytes, 0); B]]
if (cc <= 0) {

if (t_errno == TLOOK)
(void) handle_xtievt(sfd, FUNC_T_SND);

else
t_error("Client: t_snd");

exit(l);

totsnd += cc;

3-16 Connection-Mode Service Using the OSI Transport

Example 3-7: (continued)
printf (" normal data bytes sent: %d\n", cc);

free (sndbuf);

/*
* Transmit expedited data.
*/

sndexp(sfd, nbytes)
int sfd;
int nbytes;
{

int i, cc;
char * sndbuf;

sndbuf = (char *)malloc(nbytes);
if (sndbuf == NULL) {

printf("Client: malloc: can't get buffer\n");
exit(l);

cc O;
cc t_snd(sfd, sndbuf, nbytes, T_EXPEDITED); [9)
if (cc <= 0) {

if (t_errno == TLOOK)
(void) handle_xtievt(sfd, FUNC_T_SND);

else
t_error("Client: expd t_snd");

exit(l);

totsndexp += cc;
printf (" Expedited data bytes sent: %d\n", nbytes);
free (sndbuf);

[SJ The client calls t _ snd () to send data to the server. The first argument (sfd)
identifies the local transport endpoint over which the data is to be sent. The
second argument (snd _bu/) points to the user data to be sent, while the third
argument (nbytes) specifies the number of bytes to be sent. The fourth argument
is used for optional flags. In the example, the argument 0 means no flags are
set. The optional flags could have been either T EXPEDITED or T MORE. The
T_EXPEDITED flag specifies the data to be expedited, while a T_MORE flag
specifies that the TSDU is being sent through multiple t_snd ()calls.
Refer to the t_snd() reference pages for a description
of the T_MORE flag.

[91 In this call, the T _EXPEDITED flag is set, indicating to the server that the
client is sending expedited data.

3.5.2 The Server
Example 3-8 shows how the server can transfer data to and from the client. The
server data transfer is discussed following this example segment.

Connection-Mode Service Using the OSI Transport 3-17

Example 3-8: Data Transfer for Server (OSI)

/*
* Receive data.
*I

int rcvdata(rfd, rcvblksiz)
int rfd;
int rcvblksiz;
{

int t_rcv_flags 0;
int cc, sc;
char *rcvbuf;

rcvbuf = (char *)malloc(rcvblksiz);
if (rcvbuf == NULL) {

/*

printf("Server: can't get receive buffer (%d)\n", rcvblksiz);
exit(l);

* We loop here for messages from the client until the client
* disconnect from us.
*/

while (1)
again: cc = O;

cc t_rcv(rfd, rcvbuf, rcvblksiz, &t_rcv_flags); l20J
if (cc <= 0)

switch (t_errno) {
case TLOOK:

if (handle_xtievt(rfd, FUNC_T_RCV))
cc = 0;
goto done;

break;
default:

goto done;

if (t_rcv_flags & (T_EXPEDITED&T_MORE)) {
totrcvexp += cc;
printf(" Expedited Data Bytes Segment Received: %d\n", cc);

else if (t_rcv_flags & T_EXPEDITED) {
totrcvexp += cc;
printf(" Expedited Data Bytes Received: %d\n", cc);

else if (t_rcv_flags & T_MORE) {
totrcv += cc;

else

printf(" normal data bytes segment received: %d\n", cc);

totrcv += cc;
printf (" normal data bytes received: %d\n", cc);

done:
free(rcvbuf);
if (cc < 0)

t_error("Server");
else

why_no_more(rfd);

3-18 Connection-Mode Service Using the OSI Transport

l2:Q] The server calls t rev () to connection. The first argument (rfd) of
t rev () identifies the local transport endpoint through which data arrives.
The second argument (rev_ bu/) points to the buffer where the user data is
placed, while the third argument (rcvblksiz) specifies the size of the receive
buffer. The fourth argument (t_rcv _flags) points to the optional flags. The
server checks for the T_EXPEDITED and T_MORE flags and appropriately
handles the data received.

3.6 Connection Release
At any point during data transfer, either user may release the transport connection and
end the data exchange between the two users. Using the OSI transport provider, the
transport service interface supports only abortive release.

The abortive release breaks a connection immediately and can result in the loss of
any data that has not yet reached the destination user. To generate an abortive release,
either user calls t snddis (). In addition, the transport provider may abort a
connection if a problem occurs below the transport service interface. A user may use
t snddis () to send data to the remote user when aborting a connection. Although
the abortive release is supported by all transport providers, the ability to send data
when aborting a connection is not.

When the remote user is notified of the aborted connection, t revdis () must be
called to retrieve the disconnect indication. This call returns a reason code that
indicates the connection was aborted, and returns any user data that may have
accompanied the disconnect indication (if the abortive release was initiated by the
remote user). This reason code is specific to the underlying transport protocol and
should not be interpreted by protocol-independent software.

3.6.1 The Client
Example 3-9 illustrates how the connections is disconnected by the client.

Example 3-9: Connection Release for the Client (OSI)

/*
* Disconnect the connection.
*/

snddis (fd)
int fd;
{

struct t call call;

bzero(&call, sizeof(call));

call.udata.len = strlen(discondat) + 1;
call.udata.buf = (char *)disconda~
if (t_snddis (fd, &call) < 0) { 12..1.J

t_error("Client: t_snddis");
exit(l);

printf("Client initiates abortive release\n");

/*
* Unbind and close the transport endpoint.
*/

destroy(fd)

Connection-Mode Service Using the OSI Transport 3-19

Example 3-9: (continued)
int fd;
{

if (fd != NULL) {
(void) t_unbind(fd); 1221
(void) t_close(fd); ~

[21.) Under normal circumstances, the client terminates the transfer of data by calling
t snddis () to initiate the connection release. In this example, the client also
sends some optional user data to the server. The discondat buffer, set up in the
initialization section of the example, contains the message, "Bye now, over and
out."

(22] De-initialization of a transport endpoint provides local management only, it
does not send information over the network. Issuing t unbind() disables a
transport endpoint so that no further request destined for the given endpoint is
accepted by the transport provider. In addition, t _unbind () disables event
generation and disassociates the endpoint from its protocol address.

~ Issuing t close () informs the transport provider that the user is finished
with the transport endpoint and frees any local resources associated with that
endpoint.

3.6.2 The Server

Example 3-10 illustrates receving a disconnect request by the server.

Example 3-10: Connection Release for the Server (OSI)

/*
* Find out if we got disconnected. If so, process it.
*/

why_no_more(fd)
int fd;
{

struct t_discon discon;

bzero(&discon, sizeof(discon));

discon.udata.maxlen = t_open_info.discon;
discon.udata.buf = (char *)malloc(t~n_info.discon);
if (t_rcvdis(fd, &discon) < 0) { ~

if (t_errno == TNODIS I I t_errno == TOUTSTATE) {
t_error("Server: t_rcvdis");
exit(l);

printf("Server disconnected reason: %d disconnect data: %s\n",
discon.reason, discon.udata.buf);

3-20 Connection-Mode Service Using the OSI Transport

/*
* Unbind and close the transport endpoint.
*/

destroy (fd)
int fd;

if (fd != NULL) {
(void) t_unbind(fd); 125]
(void) t_close(fd); 12.§J

~ When the abortive release indicator arrives, the server proceeds with the release
procedure by calling t rcvdi s () . discon.udata.buf is a buffer set up to
receive the (optional) user data sent from the client upon disconnect.

3. 7 De-initialization
~ Issuing t _unbind () disables a transport endpoint so that no further request

destined for the given endpoint is accepted by the transport provider. In
addition, t_unbind () disables event generation and disassociates the
endpoint from its protocol address. De-initialization of a transport endpoint
provides local management only, it does not send information over the network.

12§1 Issuing t _ c 1 o s e () informs the transport provider that the user is finished
with the transport endpoint and frees any local resources associated with that
endpoint.

Refer to the previous client and server connection-release example segment for an
example of de-initialization.

Connection-Mode Service Using the OSI Transport 3-21

Connectionless-Mode Service 4

This chapter describes the connectionless-mode service of the transport service
interface. Connectionless-mode service is appropriate for short-term request/response
interactions, such as transaction processing applications. Data is transferred in self
contained units with no logical relationship required among multiple units.

The TCP and UDP transport providers support connectionless-mode service; the OSI
transport does not.

The connectionless-mode services will be described using a transaction server as an
example. This server waits for incoming transaction queries and processes and then
responds to each query.

The example in this chapter appears in its entirety in Appendix E.

4.1 Initialization
Like the connection-mode service, the transport users must perform appropriate
initialization steps before data can be transferred. A user must choose the appropriate
connectionless transport service provider using t _open () and establish its identity
using t_bind ().

In Example 4-1, the definitions and local management calls needed by the transaction
server are shown and a description follows the example.

Example 4-1: Initialize Phase for the Transaction Server
(Connectionless-Mode)

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/wait.h>
#include <sys/file.h>
#include <netinet/in.h>
#include <stdio.h>
#include <signal.h>

#include <errno.h>
#include <sgtty.h>
#include <netdb.h>
#include <syslog.h>
#include <xti.h>

struct sockaddr_in sname;
int net,ncc;
extern int errno;
extern void do_setup();
struct t_unitdata unitdata;

main(argc, argv)
char *argv[];

Example 4-1: (continued)

do_setup () ;
doit(net);

doit (f)

int f;

int t_rcv_flags;
struct hostent *hp;
char rcv_buf[5120];
struct sockaddr snamel;

unitdata.addr.maxlen = sizeof(snamel);
unitdata.addr.buf = (char *) &snamel;
unitdata.opt.maxlen = 0;
unitdata.opt.buf = O;
unitdata.udata.maxlen = sizeof(rcv_buf);
unitdata.udata.buf &rcv_buf[O];

void
do_setup ()

I*

struct t_call t_list_call;
struct t_bind t_bind_addr_req;
struct t bind t_bind_addr_reql;
struct t bind t_bind_addr_ret;
struct t_info t_open_info; /* transport char. from transport */
int t_status;

* Call t_open - establish a transport endpoint

*
*/

if ((net = t_open ("udp", O_RDWR, &t_open_info)) < 0) { [I
t_error("rexamless: t_open error");
exit (1);

/*
* t bind - bind an address to a transport endpoint

*
*/

sname.sin_port = 200;
sname.sin_family = AF_INET;

t_bind_addr_req.addr.len = sizeof (struct sockaddr_in);
t_bind_addr_req.addr.buf = (char *) &sname;
t_bind_addr_req.qlen = 1;
t_bind_addr_ret.addr.maxlen = sizeof (struct sockaddr_in);
t_bind_addr_ret.addr.buf = (char *) &sname;

if ((t_bind(net, &t_bind_addr_req, &t_bind_addr_ret)) < 0) { l2J
t_error("rexamless: t_bind error");
exit(l);

4-2 Connectionless-Mode Service

Example 4-1: {continued)

11.J The connectionless-mode initialization is similar to the connection-mode
initialization. The server establishes a transport endpoint with the desired
transport provider, using t open (). In the above example segment, the first
argument, udp, oft open() identifies the UDP transport provider. The
second argument, 0-RDWR, identifies the open flag as being READ and
WRITE operation. The third argument, &t open info, points to a location
where the returned characteristics of the underlymg transport protocol are
placed. Refer to the t _open () reference pages for a description of the
returned characteristics.

[2J Like the connection-mode server, the connectionless-mode server also binds a
transport address to the endpoint, so that potential clients can identify and
access the server. The transport address is bound to the endpoint by using a
t _bind () call. The first argument, net, identifies the transport endpoint which
is associated with a protocol address. Both the second argument,
&t_bind_addr _req, and third argument, &t_bind_addr _ret, point to t_bind
structures. The second argument contains the address that is requested to be
bound with the transport endpoint. On return, the third argument contains the
address that was actually bound to the transport endpoint. This returned address
may be different from the address specified in the second argument.

Unlike the connection-mode server, the qlen field of the t bind () structure has no
meaning for connectionless-mode service, because all users are capable of receiving
datagrams once they have bound an address. It should be noted that the transport
service interface does define a client-server relationship between two users in the
connection-mode service; however, no such relationship exists in the connectionless
mode service. It is this example, not the transport service interface, that defines one
user as a server and another as a client.

Once the endpoint is bound, the transport user may send or receive data units through
the transport endpoint.

4.2 Data Transfer
After a user has bound a protocol address to the transport endpoint, datagrams can be
sent or received over that endpoint. Each outgoing message is accompanied by the
address of the destination user. In addition, the transport service interface enables a
user to specify protocol options that should be associated with the transfer of the data
unit. Each transport provider defines the set of options, if any, that may accompany a
datagram. When the datagram is passed to the destination user, the associated
protocol options can be returned as well.

Example 4-2 shows the steps for the server to receive data. A description of the data
transfer follows this example segment.

Example 4-2: Data Transfer for Transcation Server {Connectionless
Server)

doit (f)

int f;

int t_rcv_flags;

Connectionless-Mode Service 4-3

Example 4-2: (continued)
struct hostent *hp;
char rcv_buf[5120];
struct sockaddr snamel;

unitdata.addr.maxlen = sizeof(snamel);
unitdata.addr.buf = (char *) &snamel;
unitdata.opt.maxlen = O;
unitdata.opt.buf = 0;
unitdata.udata.maxlen = sizeof(rcv_buf);
unitdata.udata.buf = &rcv_buf[O];

nee= t_rcvudata(f,&unitdata,&t_rcv_flags); 131

if (nee == 0)
printf("reeeived %d oetets\n",unitdata.udata.len);

else
printf("nec = %d, errno =%d\n",nce,errno);

(void) t_close(f); @
exit (0);

131 In the example, t_rcvudata () is called to receive a data unit. The first
argument, f, oft rcvudata identifies the local transport endpoint through
which data will be received. The second argument, &unitdata, points to a
t _ unitdata structure that contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata

On return from the call, the members have the following meanings:

addr Specifies the protocol address of the sending unit.

opt Identifies protocol-specific options that were associated
with this data unit.

udata Specifies the user data that was received.

The third argument, &t _rev _flags is set on return to indicate that the complete data
unit was not received. In other words, the buffer defined in the udata field of
&unitdata is not large enough to hold the current data unit. The buffer is filled and
T _MORE is set in &t _rev _flags on return, to indicate that another t _rev_ udata
should be issued to retreive the rest of the data unit. Subsequent t_revudata calls
return zero for the length of the address and for options, until the full data unit has
been received.

4-4 Connectionless-Mode Service

4.3 De-initialization
De-initialization of a transport endpoint provides local management only. It does not
send information over the network. Issuing t unbind () disables a transport
endpoint so that no further request destined for the given endpoint is accepted by the
transport provider. In addition, t_unbind () disables event generation and
disassociates the endpoint from its protocol address.

~ Issuing t _ c 1 o s e () informs the transport provider that the user is finished
with the transport endpoint and frees any local resources associated with that
endpoint.

Refer to Example 4-2 for an example of de-initialization.

Connectionless-Mode Service 4-5

Advanced Topics 5

This chapter contains important concepts of the transport service interface that have
not been discussed in the previous chapters. It describes:

• The characteristics associated with a transport endpoint.

• The service and protocol options related to a transport connection.

• How memofy resources can be managed.

• Choosing a mode of execution for an application.

• Reporting events to an application.

• Using the two levels of error reporting.

5.1 Local Transport Characteristics
The XTI library provides information on both the default characteristics of the
underlying transport protocol and the quality of service supported by the transport
provider.

5.1.1 Transport-Protocol Characteristics
As was discussed in previous chapters, the t _open () call returns the default
provider characteristics associated with a transport endpoint. However, some
characteristics can change after an endpoint has been opened. An example is the
maximum TSDU size. The t get info () call may be used to retrieve the current
characteristics of a transport endpoint.

Tables 5-1 and 5-2 list the characteristics of the transport protocol, which are
supported by the underlying transport providers. The characteristics are returned in
the t_info structure by both t_open () and t_getinfo () calls.

Table 5-1: Internet Transport Provider Characteristics

Parameters Before Call After Call (TCP) After Call (UDP)

info->addr I x x

info->options I x -2

info->tsdu I 0 x

info->etsdu I -1 -2

info->connect I -2 -2

info->discon I -2 -2

info->servtype I T_COTS_ORD T_CLTS

Table 5-2: OSI Transport Provider Characteristics

Parameter Before Call After Call (Connection-mode)

info->addr I x

info->options I sizeof(struct isoco_options)

info->tsdu I x

info->etsdu I 16

info->connect I 32

info->discon I 64

info->servtype I T_COTS

Table 5-3 lists the keys to the preceding tables.

Table 5-3: Keys to Transport Provider Characteristic Table

Key Description

I the parameter value is meaningless

x value determined by the transport protocol

0 the transport provider does not support the concept,

although the function is supported in another form

-1 no limit on the value supported

-2 not allowed by the transport protocol

5-2 Advanced Topics

5.1.2 Quality of Service and Protocol Options
In connection mode, an option structure is defined which contains parameters needed
to establish a transport connection. These parameters can be used to negotiate the
values of quality of service and protocol options with the transport provider. Each
transport protocol defines its own set of negotiable protocol options. Because of the
protocol-specific nature of options, only applications written for a particular protocol
environment are expected to use the option structure.

The following are quality of service (types of service) and protocol option parameters
supported by the different transport providers. Variations in some parameters may not
be supported by the underlying transport provider. The application should use the
t _ optrngrnt () call, specifying the T _CHECK flag to verify options with the
transport provider.

5.1.2.1 Types of Service Supported by TCP - The TCP transport provider supports the
types of services listed in Table 5-4. The type of service is returned in the
tcp _options structure in the opt fields of parameters of the t _list en () ,
t connect () , t rcvconnect () , and t optmgmt () calls, and can be
supplied in the tcp yptions structure in the opt fields of parameters of the
t_accept (), t_connect (),and t_optmgrnt () calls.

Table 5-4: TCP Transport Types of Service

Parameter

precedence

timeout(ms)

max_seg_size

secoptions

security

compartment

handling

tee

Service Type

TCP _ROUTINE

TCP _LINGERTIME
converted to ms

TCP_MSS

T_UNUSED

T_UNUSED

T_UNUSED

T_UNUSED

Description

Routine precedence, defined in xti.h

Maximum linger time (2 minutes),
defined in tcp_timer.h

Default maximum segment size for TCP,
defined in tcp.h

Not used

Not used

Not used

Not used

5.1.2.2 Types of Service Supported by UDP - The UDP transport provider does not
support Quality of Service options, because the association of types of service with
each datagram is not supported by UDP.

5.1.2.3 Types of Service Supported by OSI - The OSI transport provider supports the
types of services listed in Table 5-5. The type of service is returned in the
isoco _options structure in the opt fields of parameters of the t _list en () ,
t accept () , t connect () , t rcvconnect () , and t optmgmt () calls,
and can be supplied in the isoco _options structure in the opt fields of parameters of
the t_accetp (), t_connect (),and t_optmgmt () calls.

Advanced T epics 5-3

Table 5-5: OSI Transport Class 4 Types of Service

Parameter Service Type Description

throughput T_UNUSED Throughput

transdel T_UNUSED Transit delay

reserrorrate T_UNUSED Residual error rate

transffailprob T_UNUSED Transfer failure problem

estfailprob T_UNUSED Connection establishment failure problem

relfailprob T_UNUSED Connection release failure problem

estdelay T_UNUSED Connection establishment delay

reldelay T_UNUSED Connection release delay

connresil T_UNUSED Connection resilience

protection T_NOPROTECT Protection

priority T_PRIDFLT Priority

dflt T_YES T_YES: default values are used for the mngmt parameters.
T _NO: the mngmt parameters are used.

ltpdu T_LTPDUDFLT Maximum length of TPDU (in octets)

reastime T_UNUSED Reassignment time (in seconds)

class T_CLASS4 Preferred class

altclass T_CLASS4 Alternative class

extform T_YES Extended format: T _YES or T _NO

flowctrl T_TES Flow control: T_YES or T_NO

checksum T_NO Checksum: T_YES or T_NO

netexp T_UNUSED Network expedited data

netrecptcf T_UNUSED Receipt confirmation

ex pd T_NO Expedited data: T _YES or T _NO

5.2 Management of Memory Resources
The t_alloc () and t_free () functions are used to manage the memory
resources for XTI applications. The t_alloc () function dynamically allocates
storage for the specified library data structure. The structure type has to be one of the
following:

• T_BIND_STR

• T_CALL_STR

• T_OPTMGMT_STR

• T_DIS_STR

• T_UNITDATA_STR

• T_INFO_STR

5-4 Advanced Topics

The t_free () function is used to free memory previously allocated by
t _a 11 o c () . If memory has been allocated for buffers referenced by the structure,
the t free () call also frees the referenced buffers first, before the structure itself is
freed:-Also, the t_free () call frees memory allocated by malloc (). If the ptr
argument in the t_alloc () call or any of the buf pointers points to a block of
memory that was not previous! y allocated by t _a 11 o c () , t _free () does not
return with any warning.

5.3 Modes of Execution
The XTI library offers both synchronous and asynchronous modes of execution. The
effect is local only to the application process. By default, all XTI calls are
synchronous.

In the synchronous mode, an application normally blocks until completion. For
example, an application making a synchronous t _rev () call blocks until data from
over the network can be retrieved.

In the asynchronous mode, an application may use the nonblocking I/O feature. If
the requested operation cannot be completed, the XTI call returns immediately with
-1, and t errno is set to a specific value. For example, an application making an
asynchronous t_rcv () call returns immediately if no data is available. The
application can then periodically poll for the required event by means of the
t look () call. The re-issued XTI call can be successful only after the event has
occurred.

The aynchronous mode is specified through the O_NONBLOCK flag which can be
set in either a t _open () call or a fen t 1 () call.

5.4 Event Handling
The XTI defines a set of events that must be reported to XTI applications. These
events are generated (written) by the transport provider and consumed (read) by XTI
applications. Two means are specified for reporting these events to the application:

• A request tot _look () call

• An exception (in the form of a [TLOOK] error return) during some XTI calls

The TLOOK error serves a special purpose in the transport service interface. It
notifies the user that an event has occurred. As such, TLOOK does not indicate an
error with a transport service interface routine, but the normal processing of that
routine will not be performed because of the pending event.

The t look () call provides a means to peek (without consuming) the events,
exceptfor the T_GODATA and T_GOEXDATA events that are consumed, that have
been generated by the transport provider. The order of event reporting by t _look ()
is systems dependent.

Nine asynchronous events are defined in the transport service interfaces for both
connection and connectionless mode services. The events defined are as follows:

Advanced Topics 5-5

T_LISTEN

T_CONNECT

T_DATA

A request for a connection (connect indication) has arrived
at the transport endpoint.

A connect confirmation of a previously sent connect request
has arrived at the transport endpoint. A connect confirmation is
generated when a server accepts a connect request.

User data has arrived at the transport endpoint.

T _EXDA TA Expedited data has arrived at the transport endpoint.

T _DISCONNECT A notification that the connection was aborted or that the server
rejected a connect request. This is known as the disconnect
indication.

T_ORDREL A request for the orderly release of a connection has arrived
at the transport endpoint. This is known as the orderly release
indication.

T _ UDERR The notification of an error in a previously sent datagram has
arrived at the transport endpoint. This is known as unit data error
indication.

T_GODATA An indication that flow control restrictions on normal data
have been removed.

T _ GOEXDA TA An indication that flow control restrictions on expedited
data have been removed.

As shown in the state tables of Appendix C, it is possible in some states to receive
one of several asynchronous events. The t look () routine enables a user to
determine what event has occurred, if a TLOOK error is returned. The user can then
process that event accordingly. In the example, if a connect request is rejected, the
event passed to the client is a disconnect indication.

The t_look () function is the only XTI call that reports events. It provides a means
for applications to poll for occurrence of events at a transport endpoint. Any of the
above events can be reported int look (). Because it is a local management
function only, no information is sent over the network.

You can use the t_look () function with XTI calls operating in the synchronous or
asynchronous mode. You can issue it to find out what happened at a transport
endpoint, before issuing the appropriate XTI call. Upon immediate return from an
asynchronous XTI call, t look () can also be used to poll for the appropriate event
before reissuing the asynchronous XTI call.

Although t look () facilitates event-driven applications, it does not invoke the
application automatically when a specific event occurs.

5-6 Advanced Topics

5.5 Error Reporting
There are two levels at which errors are defined:

• library level

• system level

System level errors are errors resulting from the operating system routines that are
invoked by the XTI library implementation. These errors result in having the XTI
library setting t _ errno() to [TSYSERR] and the external variable errno containing the
value of the system error.

Library level errors are errors resulting from invalid input parameters or the function
being called out of state. An external integer, t_errno, defined in <xti. h>, reflect
the type of error. The errors reported are caused by:

• Input parameters that are illegal or out-of-bounds

• The function being invoked in the wrong sequence

• Lack of permission to execute the operation required by the function

• Events occurring while the function is executing in the asynchronous mode

The t _ errno function is used to print out a message describing the last error
encountered during a call to a transport library function. This call provides local
management functions only, because no information is sent over the network.

Advanced Topics 5-7

State Transitions A

A.1 States and Events in XTI
The tables in this appendix describe the possible states of the transport provider as
seen by the transport user, the incoming and outgoing events that may occur on any
connection, and identify the allowable sequence of function calls. Given a current
state and event, the transition of the next state is shown, as well as any actions that
must be taken by the transport user.

Note

The t_error () function and the support functions, t_getstate (),
t getinfo(),t alloc(),t free(),t look(), and
t - sync () are excluded from thestate tables,because they do not affect
the state of the interface. Each of these functions may be issued from any
state of the interface except the unitialized state.

A.1.1 Transport Service Interface States
Table A-1 lists all possible states of the transport provider as seen by the transport
user. The transport service interface manages a transport endpoint by using, at most
eight states. The service type may be connection-mode (T_COTS), connection-mode
with orderly release (T_COTS_ORD), or connectionless-mode (T_CLTS).

Table A-1: Transport Service Interface States

State Description Service Type

T_UNINIT Uninitialized - initial T_COTS
and final state of the interface T_CLTS

T_COTS_ORD

T_UNBND Unbound T_COTS
T_COTS_ORD
T_CLTS

T_IDLE No connection established T_COTS
T_COTS_ORD
T_CLTS

T_OUTCON Outgoing connection pending T_COTS
for active user T_COTS_ORD

T_INCON Incoming connection pending T_COTS
for passive user T_COTS_ORD

T_DATAXFER Data transfer T_COTS
T_COTS_ORD

T_OUTREL Outgoing orderly release T_COTS_ORD
(waiting for orderly release indication)

T_INREL Incoming orderly release T_COTS_ORD
(waiting to send orderly release request)

A.1.2 Outgoing Events
The outgoing events listed in Table A-2 correspond to the successful return of the
user-level transport functions, where these functions send a response to the transport
provider. As shown in Table A-2, some events (for example, acceptX) are
distinguished by the context in which they occur. The context is based on the values
shown in Table A-3. ·

A-2 State Transitions

Table A-2: Outgoing Events

Event Description Service Type

opened Successful return of t_open() T_COTS,T_COTS_ORD,T_CLTS

bind Successful return of t_bind() T_COTS,T_COTS_ORD,T_CLTS

optmgmt Successful return of t_optmgmt() T_COTS,T_COTS_ORD,T_CLTS

unbind Successful return of t_unbind() T_COTS, T_COTS_ORD, T_CLTS

closed Successful return of t_close() T_COTS,T_COTS_ORD,T_CLTS

connectl Successful return of t_connect() T_COTS, T_COTS_ORD
in synchronous mode

connect2 TNODATA error on t_connect() T_COTS, T_COTS_ORD
in asynchronous mode, or TLOOK
error due to a disconnect indication
arriving on the transport endpoint

acceptl Successful return of t_accept() T_COTS, T_COTS_ORD
with ocnt== 1,fd==resfd

accept2 Successful return of t_accept() T_COTS, T_COTS_ORD
with ocnt==l,fd!=resfd

accept3 Successful return of t_accept() T_COTS, T_COTS_ORD
with ocnt>l

snd Successful return of t_snd() T_COTS, T_COTS_ORD

snddisl successful return of t_snddis() T_COTS, T_COTS_ORD
with ocnt<=l

snddis2 Successful return of t_snddis() T_COTS, T_COTS_ORD
with ocnt>l

sndrel Successful return of t_sndrel() T_COTS_ORD

sndudata Successful return of t_sndudata() T_CLTS

Table A-3: Context Values for Table A-2

Value Description

ocnt Count of outstanding connect indications (connect indications
passed to the user but not accepted or rejected by the user),
only meaningful for the listening transport endpoint

fd File descriptor of the current transport endpoint

resfd File descriptor of the transport endpoint where a connection
will be accepted

State Transitions A-3

A.1.3 Incoming Events
Table A-4 lists incoming events, except for pass_conn, that correspond to the
successful return of the specified user-level transport functions, where these functions
retrieve data or event information from the transport provider. The pass_conn event is
not associated directly with the return of a function on a given transport endpoint.

The pass_conn event occurs when a user transfers a connection to another transport
endpoint. This event occurs on the endpoint that is being passed the connection,
despite the fact that no function is issued on that endpoint. The pass_conn event is
included in the state tables to describe what happens when a user accepts a
connection on another transport endpoint.

Notice in Table A-4 that the rcvdisX events are distinguished by the context in which
they occur. The context is based on the value of ocnt, which is the count of
outstanding connect indications on the current transport endpoint.

Table A-4: Incoming Events

Incoming Event Description Service Type

listen Successful return of t_listen() T_COTS
T_COTS_ORD

rcvconnect Successful return of t_rcvconnect() T_COTS
T_COTS_ORD

rev Successful return of t_rcv() T_COTS
T_COTS_ORD

rcvdisl Successful return of t_rcvdis() T_COTS
with ocnt==O T_COTS_ORD

rcvdis2 Successful return of t_rcvdis() T_COTS
with ocnt== 1 T_COTS_ORD

rcvdis3 Successful return of t_rcvdis() T_COTS
with ocnt>I T_COTS_ORD

rcvrel Successful return of t_rcvrel() T_COTS_ORD

rcvudat Successful return of t_rcvudata() T_CLTS

rcvuderr Successful return t_rcvuderr() T_CLTS

pass_conn Receive a passed connection T_COTS
T_COTS_ORD

A-4 State Transitions

A.1.4 Transport User Actions
Some state transitions are accompanied by a list of actions the transport user must
take. These actions are represented by the notation [n], where n is the number of the
specific action as follows:

[1] Set the count of outstanding connect indications to zero.

[2] Increment the count of outstanding connect indications.

[3] Decrement the count of outstanding connect indications.

[4] Pass a connection to another transport endpoint as indicated
in t_accept().

A.1.5 State Tables
Tables A-5, A-6, and A-7 describe the possible next states, given the current state
and event. The state is that of the transport provider as seen by the transport user.

The contents of each box represent the next state, given the current state (column)
and the current incoming or outgoing event (row). An empty box represents a
state/event combination that is invalid. Along with the next state, each box may
include an action list as specfied in Section A.1.4. The transport user must take the
specific actions in the order specified in the state table.

Table A-5: Common Local Management State Table

Event T_UNINIT State T_UNBND State T _IDLE State

opened T_UNBND

bind T_IDLE[l]

optmgmt T_IDLE

unbind T_UNBND

closed T_UNINIT T_UNITIT

State Transitions A-5

Table A-6: Connectionless-Mode State Table

Event T _IDLE State

sndudata T _IDLE

rcvudata T _IDLE

rcvuderr T _IDLE

Table A-7: Connection-Mode State Table

Event T_IDLE T_OUTCON T_INCON T_DATAXFER T_OUTREL T_INREL

connect! T_DATAXFER

connect2 T_OUTCON

rcvconnect T_DATAXFER

listen T_INCON[2] T_INCON[2]

accept! T_DATAXFER[3]

accept2 T_IDLE[3][4]

accept3 T_INCON[3][4]

snd T_DATAXFER T_INREL

rev TDATAXFER T_OUTREL

snddisl T_IDLE T_IDLE[3} T_IDLE T_IDLE T_IDLE

snddis2 T_INCON[3]

rcvdisl T_IDLE T_IDLE T_IDLE T_IDLE

rcvdis2 T_IDLE[3]

rcvdis3 T_INCON[3]

sndrel T_OUTREL T_IDLE

rcvrel T_INREL T_IDLE

pass_conn T_DATAXFER

closed T_UNINIT T_UNINIT T_UNINIT T_UNINIT T_UNINIT T_UNINIT

A-6 State Transitions

A.1.6 Events and TLOOK Error Indication
Table A-8 lists the asynchronous that cause an XTI call to return with a [TLOOK]
error.

Table A-8: Asynchronous Events That Return a [TLOOK] Error

XTI Call Asynchronous Events Comment

t_accept: T_DISCONNECT, T_LISTEN

t_connect: T_DISCONNECT, T_LISTEN T_LISTEN occurs only when t_connect is

t_listen: T_DISCONNECT

t_rcv: T_DISCONNECT, T_ORDREL

t_rcvconnect: T_DISCONNECT

t_rcvrel: T_DISCONNECT

t_rcvudata: T _ UDERR

t_snd: T_DISCONNECT, T_ORDREL

t_sndudata: T _ UDERR

t_unbind: T_LISTEN

t_sndrel: T _DISCONNECT

on an endpoint that has been bound with
a qlen > 0 and for which a connect
indication is pending.

This event indicates a disconnect has
occurred on an outstanding connect indication.

When a [TLOOK] error has been received on a transport endpoint by means of an
XTI function, subsequent calls to that and other XTI functions to which the same
[TLOOK] error applies, continue to return [TLOOK] until the event is consumed. An
event causing the [TLOOK] error can be determined by calling t_look (),and can
then be consumed by calling the corresponding consuming XTI function.

State Transitions A-7

Guidelines for Writing Protocol- 8
Independent Software

Protocol-independent applications are applications that can run over several transport
providers without significant changes.

B.1 Amount of Required Changes
The number of changes required depends upon the following factors:

• Extent of transport services required by the application

• Functional compatibility of the transport providers

• Availability of optional XTI functions for examination and negotiation of
transport options

Each transport provider should provide most, if not all, of the transport services
required by the application. Deficiencies in this area may require enhancements in the
application.

Transport providers that are functionally equivalent often have similar transport
characteristics. Thus, default characteristics set by the underlying transport protocols
may be sufficient for application portability. On the other hand, if the default
characteristics between the transport providers differ greatly, the user may enhance
the application or negotiate protocol options with the providers. Optional XTI
functions such as t _ optmgrnt () may be used for this purpose.

B.2 General Rules
In order to maximize portability of XTI applications between different kinds of
machines and to support protocol independence, you should follow these general
rules:

• An application should make use only of these functions and mechanisms
described as being mandatory features of XTI. This assumes that the default
transport services offered are adequate for application support.

• In the connection mode service, the concept of a transport service data unit
(TSDU) may not be supported by all transport providers. The user should make
no assumptions about the preservation of logical data boundaries across a
connection.

• The transport provider identifier should not be hard-coded into the application.
While software may be written for a particular class of service (for example,
connectionless-mode service), it should not be written to depend on any
attribute of the underlying protocol.

• The protocol-specific service limits returned on the t _open () and
t get info () functions must not be exceeded. It is the responsibility of the
user to access these limits and then adhere to the limits throughout the
communication process.

• The user program should not look at or change options that are specific to the
underlying protocol. The t _ optmgmt () function enables a user to access
default protocol options from the transport provider, which can then be blindly
passed as an argument on the appropriate connection establishment function.
Optionally, the user can choose not to pass options as an argument on connect
establishment functions.

• The reason codes associated with t rcvdis () are also protocol-dependent.
The user should not interpret this information if protocol-independence is a
concern.

• Protocol-specific addressing issues should be hidden from the user program.
Similarly, the user must have some way of accessing destination address in an
invisible manner, such as through a name server.

• The error codes associated with t rcvuderr () are protocol-dependent. The
user should not interpret this information if protocol-idependence is a concern.

• Optional orderly release facility of the connection-mode service (for example,
t_sndrel () and t_rcvrel ())should not be used by programs targetted
for multiple protocol environments. This facility is not supported by all
connection-based transport protocols.

B-2 Guidelines for Writing Protocol-Independent Software

Migrating from Socket-Based Software to C
XTl-Based Software

This appendix contains information on migrating from socket-based software to
XTI-based software:

• Table C-1 lists an example of the call sequences issued by an active TCP user.

• Table C-2 lists an example of the call sequences issued by a passive TCP user
which communicates with the active TCP user in Table C-1.

• Table C-3 lists an example of the call sequences issued by a UDP user.

• Table C-4 lists an example of the call sequences issued by an active OSI user.

• Table C-4 lists an example of the call sequences issued by a passive OSI user
which communicates with the active OSI user in Table C-5.

Table C-1 lists an example of the call sequences issued by an active user.

Table C-1: TCP Transport Active User

Socket Level Calls

s=socket (af, type, protocol)

bind (s, sockname, namelen)

connect (s, name, namelen)

nc = snd (s, msg, len, sflags)

close (s)

XTI Calls

fd = t_open (name, oflag, info)
name which corresponds to
<af, type, protocol> is provided in <xti.h>
oflag = O _RDWR

t_bind (fd, req, ret)
req->addr.len =(unsigned int) namelen
req->addr.buf =(char*) sockname
req->qlen =(unsigned) 0
ret->addr.maxlen = (unsigned int)
struct sockaddr_in
ret->addr.buf =&<local socket>

t_connect (fd, sndcall, rcvcall)
sndcall->addr.len = (unsigned int) namelen
sndcall->addr.buf =(char*) name
sndcall->opt.len =(unsigned int) sizeof(struct tcp_options)
sndcall->opt.buf = &<tcp options>
sndcall->udata.len = 0

cc= t_snd(fd, msg, len, tflags)
tflags = T_EXPEDITED if sftags is set to MSG_OOB

t_close (fd)

Table C-2 lists an example of the call sequences issued by a passive TCP user which
communicates with the active TCP user in Table C-1.

C-2 Migrating from Socket-Based Software to XTl-Based Software

Table C-2: TCP Transport Passive User

Socket Level Calls

s = socket (af, type, protocol)

bind (s, sockname, nameln)

setsockopt (s, IPPROTO_TCP),

TCP _ACCEPTMODE,

sizeof(acc_mode))

int acc_mode = ACC_DEFER

listen (s, backlog)

ns =accept (s, addr, addrlen)

XTI Calls

fd = t_open (name, oflag, info)
Name which corresponds to <af,
type, protocol> is provided in <xti.h>
oflag = O_RDWR

t_bind (fd, req, ret)
req->addr.len = (unsigned int) nameln
req->addr.buf =(char *) sockname
req->qlen =(unsigned) backlog
where backlog is input to listen
ret->addr.maxlen =(unsigned int)(struct sockaddr_in)
ret->addr.buf =&<local socket>

&acc_mode,

t_listen (fd, call)
call->addr.maxlen =(unsigned int) (struct sockaddr_in)
call->addr.buf =&<remote socket>
call->opt.maxlen = (unsigned int) sizeof(struct tcp_options)
call->opt.buf =&<remote options>
call->udata.maxlen = 0

setsockopt (ns, IPPROTO_TCP t_accept (fd, resfd, call)

TCP _CONACCEPT, 0, 0)

cc = recv (ns, buf, len, flags)

close (ns)

call->addr.len = (unsigned int) (struct sockaddr_in)
call->addr.buf =&<remote socket>
call->opt.len =(unsigned int) sizeof(struct tcp_options)
call->opt.buf = &<tcp options>
call->udata.len = 0
call->sequence =<sequence number returned in t_listen)

nc = t_rcv (resf d, buf, len, rflags)

t_close (resfd)

Migrating from Socket-Based Software to XTl-Based Software C-3

Note

If resfd != fd, resfd must be obtained by means of a t open () call and
the t bind () call must be issued with qlen = 0. -

Note

On output, rflags, if the type of data received matches that given by flags
in the recv call.

Table C-3 lists an example of the call sequences issued by a UDP user.

Table C-3: UDP Transport User

Socket Level Calls

s =socket (af, type protocol)

bind (s, sockname, namelen)

cc = sendto (s, msg, len,
flags, to, tolen)

cc= recvfrom (s, buf, len, flags)

close (s)

XTI Calls

fd = t_open (name, oftag, info)
Name which corresponds to
<af, type, protocol> is provided in <xti.h>
oflag = O_RDWR

t_bind (fd, req, ret)
req->addr.len =(unsigned int) namelen
req->addr.buf = (char *) sockname
req->qlen = (unsigned) 0
ret->addr.maxlen =(unsigned int) (struct sockaddr_in)
ret->addr.buf = &local socket

t_sndudata (fd,unitdata)
unitdata->addr.len =(unsigned int) tolen
unitdata->addr.buf =to
unitdata->opt.len = 0
unitdata->udata.len = len
unitdata->udata.buf = msg

t_rcvudata (fd, unitdata, flags,
from, fromlen)

unitdata->addr.buf = from
unitdata->opt.maxlen = 0
unitdata->udata.maxlen = (unsigned int) len
unitdata->udata.buf = buf

t_close (fd)

C-4 Migrating from Socket-Based Software to XTl-Based Software

Table C-4 lists an example of the call sequences issued by an active OSI user.

Table C-4: OSI Transport Active User

Socket Level Calls

No socket level calls

XTI Calls

fd = t_open (name, oftag, info)
name which corresponds to <af,
type, protocol> is provided in <xti.h>
which is "cots"
oflag = O_RDWR

t_bind (fd, req, ret)
req->addr.len =(unsigned int) namelen
req->addr.buf =(char*) sockaddr_osi
req->qlen = (unsigned) 0
ret->addr.maxlen =(unsigned int)
(Total length of sockaddr_osi)
ret->addr.buf =&<local sockaddr_osi>

t_connect (fd, sndcall, rcvcall)
sndcall->addr.len =(unsigned int) namelen
sndcall->addr.buf =(char*) sockaddr_osi
sndcall->opt.len =(unsigned int) sizeof(struct isoco_options)
sndcall->opt.buf = &<isoco_options>
sndcall->udata.len =(unsigned int) length of user data
sndcall->udata.buf = &<user data>

cc= t_snd(fd, msg, len, tflags)
tflags = T _EXPEDITED if sending expedited data

= T _MORE if sending a segment of a TSDU

t_close (fd)

Migrating from Socket-Based Software to XTl-Based Software C-5

Table C-4 lists an example of the call sequences issued by a passive OSI user which
communicates with the active OSI user in Table C-5.

Table C-5: OSI Transport Passive User

Socket Level Calls

No socket level calls fd = t_open (name, oflag, info)
name which corresponds to <af,
type, protocol> is provided in <xti.h>
which is "cots"
oflag = O_RDWR

t_bind (fd, req, ret)
req->addr.len =(unsigned int) namelen
req->addr.buf =(char*) sockaddr_osi
req->qlen = (unsigned) backlog
where backlog is input to listen
ret->addr.maxlen =(unsigned int)
(Total length of sockaddr_osi)
ret->addr.buf = &<local sockaddr_osi>

t_listen (fd, call)
call->addr.maxlen = (unsigned int)
(Total length of sockaddr_osi)
call->addr.buf =&<remote socket>
call->opt.maxlen =(unsigned int) sizeof(struct isoco_options)
call->opt.buf =&<remote isoco_options>
call->udata.maxlen =(unsigned int) length of user data
call->udata.buf = &<user data>

t_accept (fd, resfd, call)
call->addr.len = (unsigned int)
(Total length of sockaddr_osi)
call->addr.buf =&<remote socket>
call->opt.len =(unsigned int) sizeof(struct isoco_options)
call->opt.buf =&<remote isoco_options>
call->udata.len =(unsigned int) length of user data
call->udata.buf =&<user data>
call->sequence =<sequence number returned in t_listen)

nc = t_rcv (resfd, buf, len, rfiags)
rflags = T _EXPEDITED if receiving expedited data

= T _MORE if receiving a segment of a TSDU

t_close (resfd)

C-6 Migrating from Socket-Based Software to XTl-Based Software

Connection-Mode Programming Examples D

This appendix contains the connection-mode client and server code examples used in
Chapters 2 and 3.

D.1 Examples Using the TCP and UDP Transport Providers
These sections contain the client and server programming examples that make use of
the TCP or UDP transport providers.

D.1.1 Client Programming Example

Example D-1 shows how the client establishes a transport connection with the server
and then exchanges data with the server using the TCP or UDP transport providers.
The connection is released using the orderly release facility of the transport service
interface.

Example D-1: Connection-Mode Code

#include <sys/type~.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <netinet/in.h>
#include <stdio.h>
#include <ctype.h>
#include <errno.h>
#include <signal.h>
#include <setjmp.h>
#include <netdb.h>
#include <xti.h>
#include <fcntl.h>

extern int errno;
int net;
struct t_info t_open_info; /* transport char. from transport */
struct t info t getinfo info;
struct tcp_options tcp_opts;
struct t_optmgmt t_optm_req;
struct t_optmgmt t_optm_ret;
struct sockaddr_in sin;
struct servent *sp;
char *hostname;
struct hostent *host;
#define MAXDSIZE 512
char snd_buf[MAXDSIZE];
char rcv_buf[MAXDSIZE];
int n;
int status;
struct t_call t_conn_sndcall;
struct t_call t_conn_rcvcall;

Example D-1: (continued)
struct t call t_rcvconn_call;

struct t_discon discon;
int t_rcv_flags;

main(argc, argv)
int argc;
char *argv [];

char destin[255];

if ((net= t_open("tcp", O_RDWRIO_NONBLOCK, &t_open_info)) < 0) {
t_error("t_open failed");
exit(t_errno);

status t_getinfo(net, &t_getinfo_info);

/*
* t bind - bind an address to a transport endpoint

*
*/

if (t_bind(net, 0, 0) < 0) {
t_error("iexample: t bind error");
exit (1);

t_optm_req.opt.len = 0;
t_optm_req.flags = T_DEFAULT;
t_optm_ret.opt.maxlen = sizeof(struct tcp_options);
t_optm_ret.opt.buf = (char *) &tcp_opts;

status= t_optmgmt(net, &t_optm_req, &t_optm_ret);
if (status < 0) {

t_error("iexample: t_optmgmt error");
exit(l);

t_optm_req.opt.len = 0;
t_optm_req.flags = T_DEFAULT;
t_optm_ret.opt.maxlen = sizeof(struct tcp_options);
t_optm_ret.opt.buf = (char *) &tcp_opts;

status= t_optmgmt(net, &t_optm_req, &t_optm_ret);
if (status < 0) {

t_error("iexample: t_optmgmt error");
exit (1);

printf ("host : ") ;
scanf("%s",destin);

host= gethostbyname(destin);

if (host) {
sin.sin_family = host->h_addrtype;
bcopy(host->h_addr, (caddr_t)&sin.sin_addr, host->h_length);
hostname = host->h_name;

sin.sin_port 200; /* try to connect to port 200 */

D-2 Connection-Mode Programming Examples

Example D-1: (continued)
t_conn_sndcall.addr.len = sizeof (struct sockaddr_in);
t_conn_sndcall.addr.buf = (char *) &sin;
t_conn_sndcall.opt.len = O;
t_conn_sndcall.udata.len = O;
t_conn_rcvcall.addr.rnaxlen = sizeof (struct sockaddr_in);
t_conn_rcvcall.addr.buf = (char *) &sin;
t_conn_rcvcall.opt.rnaxlen = sizeof(struct tcp_options);
t_conn_rcvcall.opt.buf = (char *) &tcp_opts;
t_conn_rcvcall.udata.rnaxlen = O;
t_rcvconn_call.addr.rnaxlen = sizeof (struct sockaddr_in);
t_rcvconn_call.addr.buf = (char *) &sin;
t_rcvconn_call.opt.rnaxlen = sizeof(struct tcp_options);
t_rcvconn_call.opt.buf = (char *) &tcp_opts;
t_rcvconn_call.udata.rnaxlen = 0;
t_rcvconn_call.udata.buf = 0;

if ((t_connect(net, &t_conn_sndcall, &t_conn_rcvcall)) < 0) {
if (t errno == TNODATA) {

while (1) {
status= t_rcvconnect(net, &t_rcvconn_call);

if (status < 0) {
if (t_errno == TLOOK)

printf("Event %x came in\n",t_look(net));
(void) t_unbind(net);
(void) t_close(net);
exit(l);

if (t_errno != TNODATA) {
t_error("iexarnple: t_rcvconnect()");
(void) t_unbind(net);
(void) t close(net);
exit(l);-

else
break;

}
else {
t_error("iexample: t_connect()");
(void) t_unbind(net);
(void) t_close(net);
exit(l);

printf("calling t_snd with %d bytes of regular data\n",sizeof(snd_buf));
n = t_snd(net, &snd_buf[O],sizeof(snd_buf) , 0);

if (n < 0) {

if (t_errno == TLOOK) {
printf("Generated a %X TLOOK error\n",t_look(net));
(void) t_unbind(net);
(void) t_close(net);
exit(l);

t_error("iexample: t_snd error");
(void) t_unbind(net);
(void) t_close(net);
exit(l);

printf("t_snd sent %d bytes\n",n);

Connection-Mode Programming Examples D-3

Example D-1: (continued)
while (1) {

n = t_rcv(net, rcv_buf, sizeof(rcv_buf), &t_rcv_flags);

if (n < 0) {

}

if (t_errno != TNODATA)
t_error("iexample: t_rcv error");
(void) t_unbind(net);
(void) t_close(net);
exit(l);

}

else {
t_error("iexample: NO data available");

}

if (n > 0) break;

printf("t_rcv received %d bytes\n",n);

if (t_rcv_flags & T EXPEDITED)
printf("data is expedited\n");

else
printf("data is normal\n");

n = t_sndrel (net, (struct t call *) 0);

if (n < 0) {
t_error("iexample: error in t_sndrel:");
t_unbind(net);
t_close(net);
exit(l);

while (1) {
n = t_rcvrel(net);

if (n < 0) {

}

if (t_errno != TLOOK && t_errno != TNOREL)
t_error("iexample: error in t_rcvrel:");
t_unbind(net);
t close(net);
exit(l);

}

else {
if (t errno == TNOREL)

t __ error("iexample: NO T_ORDREL available");
else {

}
}

t_error("iexample: TLOOK event");
t_unbind(net);
t_close(net);
exit(l);

if (n == 0) break;
}

t_unbind(net);
t_close(net);
exit (0);

D-4 Connection-Mode Programming Examples

0.1.2 Server Programming Example

Example D-2 shows how the server establishes a transport connection with a client
and then exchanges data with the client on the other side of the connection using the
TCP or UDP transport providers. The connection is released using the orderly release
facility of the transport service interface.

Example D-2: Connection-Mode Server Code

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/wait.h>
#include <sys/file.h>
#include <netinet/in.h>
#include <stdio.h>
#include <signal.h>
#include <errno.h>
#include <sgtty.h>
#include <netdb.h>
#include <syslog.h>
#include <xti.h>

int net,netl,n,nl;
extern int errno;

main(argc, argv)
char *argv[];

int f romlen;
struct sockaddr_in from;

int status;

status= get income();
if (status != 0)

exit (1);
else {

sleep(lO);
exit(O);

}

doit(f, seq)
int f,seq;

int t_rcv_flags;
struct hostent *hp;
char rcv_buf[512];
char snd_buf[512);
int n;

while (1) {
n = t rcv(f,rcv_buf, sizeof(rcv_buf) ,&t_rcv_flags);

if (n < 0) {
if (t_errno != TNODATA)

t_error("rexample: t rev error");
t_unbind(f);
t_close(f);
exit(l);

Connection-Mode Programming Examples D-5

Example D-2: (continued)

}

else {
t_error("rexample: NO data available");

}

if (n > 0) break;

printf("t_rcv received %d bytes\n",n);

if (t_rcv_flags & T EXPEDITED)
printf("data is e~pedited\n");

else
printf("data is normal\n");

printf("calling t_snd with %d bytes of regular data\n",sizeof(snd_buf));
n = t_snd(f, &snd_buf[O],sizeof(snd_buf) , 0);

if (n < 0) {

if (t_errno == TLOOK) {
printf("Generated a %X TLOOK error\n",t_look(f));
(void) t_unbind(f);
(void) t close(f);
exit (1); -

t_error("rexample: t snd error");
(void) t_unbind(f);
(void) t_close(f);
exit (1);

printf("t_snd sent %d bytes\n",n);

while (1) {
n = t_rcvrel(f);

if (n < 0) {
if (t_errno != TLOOK && t_errno != TNOREL)

t_error("rexample: error in t_rcvrel:");
t_unbind(f);
t_close(f);
exit(l);

}
else {

if (t_errno == TLOOK) {
t_error("TLOOK error");
t_unbind(f);
t_close(f);
exit(l);

t_error("rexample: NOT ORDREL available");
}

if (n 0) break;

n = t_sndrel (f, (struct t call *) 0);

if (n < 0) {
t_error("rexample: error in t_sndrel:");
t_unbind (f) ;
t_close(f);
exit(l);

D-6 Connection-Mode Programming Examples

Example D-2: (continued)
t_unbind(f);
t_close(f);
exit(O);

int
get_incorne()
{

struct sockaddr_in snarne;
struct servent *sp;
int i;
int child;

struct t call t list call; -
struct t - call *t_list_ptr;
struct t call t snddis call; - -
struct t bind t bind addr req;
struct t bind t =bind=addr=reql;
struct t bind t bind addr ret; - - -
struct t - info t _open_ info; /*
int t status; -
/*

transport char. from transport */

* Call t_open - establish a transport endpoint

*
*/

if ((net= t_open("tcp", O_RDWR, &t_open_info)) < 0) {
t_error("rexarnple: t_open error");
exit(l);

/*
* t_bind - bind an address to a transport endpoint

*
*/

snarne.sin_port 200;
snarne.sin_farnily = AF INET;
snarne.sin_addr.s_addr = O;

/* load port # */

t_bind_addr_req.addr.len = sizeof (struct sockaddr_in);
t_bind_addr_req.addr.buf = (char *) &snarne;
t_bind_addr_req.qlen = l;
t_bind_addr_ret.addr.rnaxlen = sizeof (struct sockaddr_in);
t_bind_addr_ret.addr.buf = (char *) &snarne;

if ((t_bind(net, &t_bind_addr_req, &t_bind_addr_ret)) < 0) {
t_error("rexarnple: t_bind error");
exit(l);

t_list_ptr = (struct t_call *) t_alloc(net, T_CALL_STR, T_ADDR);
bcopy(&snarne, t_list_ptr->addr.buf, t_list_ptr->addr.rnaxlen);

t_status = t_listen(net, t_list_ptr);

if (t_status < 0) {
if (t_errno != TNODATA)

Connection-Mode Programming Examples D-7

Example D-2: (continued)
t_error("rexample: t_listen error");
t_unbind(net);
t_close(net);
exit(l);

printf ("Have a incomming connection with sequence # %d\n",
t_list_ptr->sequence);

printf ("attempting to accept sequence # %d\n",
t_list_ptr->sequence);

netl = get_endpoint();
if (t_status = t_accept(net,netl,t_list_ptr) < 0) {

t_error("rexample: t_accept error");
if (t_errno == TLOOK) {

printf("event %x came in\n",t_look(netl));

exit(l);

fcntl(netl,F_SETOWN, getpid());
child = fork () ;

if (child == 0)
t_unbind(net};
t_close(net);
t_sync(netl);
doit(netl, t_list_ptr->sequence);

else
{

printf ("Forking Child process =%d for fd
child,netl, t_list_ptr->sequence);

t_unbind(netl);
t_close(netl);
t_free(t_list_ptr, T_CALL_STR);

return(O);

%d seq=%d\n",

int
get_ endpoint ()
{

struct sockaddr_in sname;
struct servent *sp;

/*

int tmp_net;

struct t_call
struct t_bind
struct t_bind
struct t_bind
struct t info
int t_status;

t_list_call;
t bind addr req;
t=bind=addr=reql;
t bind addr ret;
t=open:info7 /* transport char. from transport */

* Call t_open - establish a transport endpoint
*
*/

if ((tmp_net = t_open ("tcp", O_RDWR, &t_open_info)) < 0) {
t_error("rexample: t_open error");

D-8 Connection-Mode Programming Examples

Example D-2: (continued)
exit(l);

/*
* t_bind - bind an address to a transport endpoint

*
*I

sname.sin_port = 0;
sname.sin_family = AF_INET;
sname.sin_addr.s_addr = 0;

t_bind_addr_req.addr.len = sizeof (struct sockaddr_in);
t_bind_addr_req.addr.buf = (char *) &sname;
t_bind_addr_req.qlen = 0;
t_bind_addr_ret.addr.maxlen = sizeof (struct sockaddr_in);
t_bind_addr_ret.addr.buf = (char *) &sname;

if ((t_bind(tmp_net, &t_bind_addr_req, &t_bind_addr ret)) < 0) {
t_error("rexample: t_bind error");
exit(l);

return(tmp_net);

D.2 Examples Using the OSI Transport Provider
These sections contain the client and server programming examples that make use of
the OSI transport provider.

D.2.1 Client Programming Example
Example D-3 shows how the client establishes a transport connection with the server
and then exchanges data with the server using the OSI transport provider. The
connection is released using the abortive release facility of the transport service
interface.

Example D-3: OSI Client Code

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <fcntl.h>
#include <xti.h>
#include <netosi/osi.h>

#define NULL 0

#define SNDTSAP "sendtsap"
#define RCVTSAP "recvtsap"

#define FUNC T ACCEPT 1
#define FUNC_T_CONNECT 5
#define FUNC_T_LISTEN 10
#define FUNC_T_RCV 14

Connection-Mode Programming Examples D-9

Example D-3: (continued)
#define FUNC_T_RCVCONNECT 15
#define FUNC T RCVDIS 16
#define FUNC_T_RCVREL 17
#define FUNC_T_SND 20

#define OSIADDRLEN(a) ((a)->osi_length + sizeof(struct sockaddr_osi))

struct sockaddr_osi *alloc_sosi();

struct sockaddr osi *sndsap;
struct sockaddr osi *rcvsap;
struct sockaddr osi *rcvconsap;
struct isoco_options snd_isoco_opts;
struct isoco_options rcv_isoco_opts;
struct t_info t_open_info;
int totsnd;
int totsndexp;
char *usrdat = "This is the Client calling over ";
char *discondat = "Bye now, over and out ";

main()
{

/*

int xfd;
int sndblksiz 512;
int expblksiz 10;

xfd = sndgetfd();
if (!sndcon(xfd))

snddata(xfd, sndblksiz);
sndexp(xfd, expblksiz);
snddata(xfd, sndblksiz);
sleep(3); /*wait for receiver to catch up*/
snddis (xfd) ;
destroy (xfd) ;

* Get a transport endpoint.

*
* NOTE:

*
Addressing is XTI implementation dependent. As such,
our XTI address is represented by sockaddr_osi structure.
Note that this structure is variable length, with TSAP
and NSAP dynamically constructed at the end of the
structure.

*
*
*
*/

int sndgetfd ()
{

struct nsap nsap;
struct t_bind req, ret;
int sfd;
int of lag = O_RDWR;

/*
* Create a transport endpoint.
*/

if ((sfd = t_open("cots", oflag, &t_open_info)) < 0) {
t_error("Client: t_open");
exit(l);

/*
* Init address structures.

D-10 Connection-Mode Programming Examples

Example D-3: (continued)
*/

sndsap = alloc_sosi(t_open_info.addr);
rcvsap = alloc_sosi(t_open_info.addr);
rcvconsap = alloc_sosi(t_open_info.addr);
bzero(&rcv_isoco_opts, sizeof(rcv_isoco_opts));

/*
* Init our sap and Server's sap.
*/

(void)xti_osimakeaddr(sndsap, OSIPROTO_COTS, strlen(SNDTSAP), SNDTSAP,
0, NULL, NULL);

getremotensap("mariah", &nsap);
(void)xti_osimakeaddr(rcvsap, OSIPROTO_COTS, strlen(RCVTSAP), RCVTSAP,

OSIPROTO_CLNS, nsap.nsap_length, nsap.nsap_addr);

/*
* Must get into the T IDLE state with the t bind before t_optmgmt
* can be called.
*/

req.addr.len = OSIADDRLEN(sndsap);
req.addr.buf = (char *)sndsap;
req.qlen = 0; /* sender won't do t listen */
ret.addr.maxlen = t_open_info.addr;
ret.addr.buf = (char *)sndsap;
if (t_bind(sfd, &req, &ret) < 0)

}
/*

t_error("Client: t_bind");
exit(l);

* Set our options with the Transport Provider.
*/

neg_xtiopts(sfd, &snd_isoco_opts);

return (sfd);

/*
* Create a connection to the server.
*/

int sndcon (sfd)
int sfd;
{

struct
struct

/*

t_call sndcall;
t_call rcvcall;

* Connect to Server.
*/

sndcall.addr.len = OSIADDRLEN(rcvsap);
sndcall.addr.buf = (char *)rcvsap;
sndcall.opt.len = 0;
sndcall.opt.buf = 0;
sndcall.udata.len strlen(usrdat) + 1;
sndcall.udata.buf (char *)usrdat;

rcvcall.addr.maxlen = t_open_info.addr;
rcvcall.addr.buf = (char *)rcvconsap;
rcvcall.opt.maxlen = sizeof(struct isoco_options);
rcvcall.opt.buf = (char *)&rcv_isoco_opts;
rcvcall.udata.maxlen = t_open_info.connect;
rcvcall.udata.buf = (char *)malloc(t_open_info.connect);

printf("Client connecting to Server at (fd=%d) ... 0, sfd);

Connection-Mode Programming Examples D-11

Example D-3: (continued)
if ((t_connect(sfd, &sndcall, &rcvcall)) < 0) {

switch (t_errno) {
case TLOOK:

if (handle_xtievt(sfd, FUNC_T_CONNECT))
return(l);

break;
default:

t_error("Client: t_connect");
exit(l);

printf("Client connected to ServerO);
if (rcvcall.udata.len > 0)

printf("Called user data: %s0, rcvcall.udata.buf);

return(O);

/*
* Transmitter.
*/

snddata(sfd, nbytes)
int sfd;
int nbytes;
{

int i, cc;
char *sndbuf;

sndbuf = (char *)malloc(nbytes);
if (sndbuf == NULL) {

printf("Client: malloc: can't get bufferO);
exit (1);

cc= t_snd(sfd, sndbuf, nbytes, 0);
if (cc <= 0) {

if (t_errno == TLOOK)
(void) handle_xtievt(sfd, FUNC_T_SND);

else
t_error("Client: t_snd");

exit (1);

totsnd += cc;
printf(" normal data bytes sent: %d0, cc);

free (sndbuf);

/*
* Transmit expedited data.
*/

sndexp(sfd, nbytes)
int sfd;
int nbytes;
{

int i, cc;
char *sndbuf;

sndbuf = (char *)malloc(nbytes);
if (sndbuf == NULL) {

printf("Client: malloc: can't get bufferO);
exit(l);

D-12 Connection-Mode Programming Examples

Example D-3: (continued)

/*

cc = 0;
cc= t_snd(sfd, sndbuf, nbytes, T_EXPEDITED);
if (cc <= 0) {

if (t errno == TLOOK)
(void) handle_xtievt(sfd, FUNC_T_SND);

else
t_error("Client: expd t_snd");

exit(l);

totsndexp += cc;
printf(" Expedited data bytes sent: %d0, nbytes);
free(sndbuf);

* Disconnect the connection.
*/

snddis(fd)
int fd;
{

I*

struct t_call call;

bzero(&call, sizeof(call));

call.udata.len = strlen(discondat) + 1;
call.udata.buf = (char *)discondat;
if (t_snddis(fd, &call) < 0) {

t_error("Client: t_snddis");
exit (1);

printf("Client initiates abortive releaseO);

* Unbind and close the transport endpoint.
*/

destroy(fd)
int fd;
{

if (fd != NULL) {
(void) t_unbind(fd);
(void) t_close(fd);

/*
* XTI event can occur any time.
*/

handle_xtievt(fd, intrfunc)
f d;

int
int
int
{

intrfunc; /* interrupted function call */

struct t_discon discon;
int retcode = 0;
int evt;

evt = t_look(fd);
if (!evt)

return(O);

if (evt & T_EXDATA)
printf("Client: impossible event: %s0, xti_event2text(evt));
exit(l);

Connection-Mode Programming Examples D-13

Example D-3: (continued)

if (evt & T_DATA) {

}

printf("Client: impossible event: %s0, xti_event2text(evt));
exit(l);

if (evt & T_GODATA)
printf("%s XTI EventO, xti_event2text(evt));

if (evt & T_GOEXDATA) {
printf("%s XTI EventO, xti_event2text(evt));

if (evt & T_DISCONNECT) {
printf("%s XTI EventO, xti_event2text(evt));
bzero(&discon, sizeof(discon));
discon.udata.maxlen = t_open_info.discon;
discon.udata.buf = (char *)malloc(t_open_info.discon);
if (t_rcvdis(fd, &discon) < 0) {

t_error("Client: t_rcvdis");
exit(l);

retcode = 1;
printf("End-of-XTI-EventO);

if (evt & T_LISTEN)
printf("%s XTI EventO, xti_event2text(evt));

if (evt & T CONNECT) {
printf("%s XTI EventO, xti_event2text(evt));

if (evt & T ORDREL I I evt & T UDERR) {
printf("Client: illegal event: %s0, xti_event2text (evt));
exit(l);

handle_xtievt(fd, NULL); /*handle another event if any*/

return(retcode);

I*
* Negotiate the XTI option.
*/

neg_xtiopts(fd, opt)
int fd;
struct isoco_options *opt;
{

struct
struct

/*

t_optmgmt t_optm_req;
t_optmgmt t_optm_ret;

* Get default options
*/

t_optm_req.opt.len = O;
t_optm_req.flags = T_DEFAULT;
t_optm_ret.opt.maxlen = sizeof(struct isoco_options);
t_optm_ret.opt.buf = (char *)opt;
if (t_optmgmt(fd, &t_optm_req, &t_optm_ret) < 0) {

t_error("Client: neg_xtiopt DEF: t_optmgmt");
exit (1);

D-14 Connection-Mode Programming Examples

Example D-3: (continued)

/*
* Setup the user-specified options to be negotiated
*/

opt->mngmt.dflt = T_NO;
opt->mngmt.class = T_CLASS4;
opt->mngmt.checksum = T_YES;
opt->expd = T_YES;
opt->mngmt.ltpdu = 2048;

t_optm_req.opt.len = t_optm_ret.opt.len;
t_optm_req.opt.buf = t_optm_ret.opt.buf;
t optm req.flags = T NEGOTIATE;
t=optm=ret.opt.maxlen = sizeof(struct isoco_options);
t_optm_ret.opt.buf = (char *)opt;
if (t_optmgmt(fd, &t_optm_req, &t_optm_ret) < 0) {

t_error("Client: neg_xtiopt NEG: t_optmgmt");
exit(l);

D.2.2 Server Programming Example

Example D-4 shows how the server establishes a transport connection with a client
and then exchanges data with the client on the other side of the connection using the
OSI transport provider. The connection is released using the abortive release facility
of the transport service interface.

Example D-4: OSI Server Code

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <fcntl.h>
#include <xti. h>
#include <netosi/osi.h>

#define NULL 0

#define RCVTSAP "recvtsap"

#define FUNC_T_ACCEPT 1
#define FUNC_T_CONNECT 5
#define FUNC T LISTEN 10
#define FUNC T RCV 14
#define FUNC_T_RCVCONNECT 15
#define FUNC_T_RCVDIS 16
#define FUNC T RCVREL 17
#define FUNC T SND 20

#define OSIADDRLEN(a) ((a)->osi_length + sizeof(struct sockaddr_osi))

struct

struct
struct

sockaddr osi *alloc_sosi();

sockaddr_osi *sndsap;
sockaddr osi *rcvsap;

Connection-Mode Programming Examples D-15

Example D-4: (continued)
struct isoco_options snd_isoco_opts;
struct isoco_options rcv_isoco_opts;
struct t_info t_open_info;
int totrcv;
int totrcvexp;
char *usrdat = "This is the Server, what's up? ";

main()
{

/*

int xfdO, xfd;
int rcvbufsiz = 512;

xfdO = rcvgetfd();
xfd = rcvcon(xfdO);
rcvdata(xfd, rcvbufsiz); /*receive loop*/

destroy(xfd);
destroy(xfdO);

* Get the listening transport endpoint.

*
* NOTE:

*
Addressing is XTI implementation dependent. As such,
our XTI address is represented by sockaddr_osi structure.
Note that this structure is variable length, with TSAP
and NSAP dynamically constructed at the end of the
structure.

*
*
*
*I

int rcvgetfd ()
{

struct nsap nsap;
struct t_bind req;
struct t bind ret;
int rfdO;
int of lag = O_RDWR;

/*
* Create a transport endpoint
*/

if ((rfdO t_open ("cots", oflag, &t_open_info)) < 0) {
t_error("Server: t_open");
exit (1);

/*
* Init address structures.
*/

sndsap = alloc_sosi(t_open_info.addr);
rcvsap = alloc sosi(t open info.addr);
bzero(&snd_iso~o_opts~ siz~of(snd_isoco_opts));
bzero(&rcv_isoco_opts, sizeof(rcv_isoco_opts));

/*
* Init Server's sap
*/

(void) xti osimakeaddr(rcvsap, OSIPROTO_COTS, strlen(RCVTSAP), RCVTSAP,
- 0, NULL, NULL);

I*
* Bind the TSAP to a transport endpoint
*/

req.addr.len = OSIADDRLEN(rcvsap);

D-16 Connection-Mode Programming Examples

Example D-4: (continued)
req.addr.buf = (char *)rcvsap;
req.qlen = 1;
ret.addr.maxlen = t_open_info.addr;
ret.addr.buf = (char *)rcvsap;
if ((t_bind(rfdO, &req, &ret)) < 0)

t_error("Server: t_bind");
exit (1);

/*
*Set listener's options to Transport Provider.
*I

neg_xtiopts(rfdO, &rcv_isoco_opts);

return(rfdO);

/*
* Accept a connection from the Client.
*/

int rcvcon (rfdO)
int rfdO;
{

int rfd;
int t status;
struct t call t_list_call;
struct
struct

I*

t bind req;
t bind ret;

* Prepare to receive connect indication.
*/

bzero(&t list_call, sizeof(t_list_call));
t list call.addr.maxlen = t open info.addr;
t=list=call.addr.buf = (cha~ *)s~dsap;
t_list_call.opt.maxlen = sizeof(snd_isoco_opts);
t_list_call.opt.buf = (char *)&snd_isoco_opts;
t_list_call.udata.maxlen = t_open_info.connect;
t_list_call.udata.buf = (char *)malloc(t_open_info.connect);

/*
* Now, listen for incoming connection.
*/

printf("Server listening for connection (fd=%d) ... 0, rfdO);
if (t_listen(rfdO, &t_list_call) < 0) {

}

/*

switch (t_errno) {
case TLOOK:

if (handle_xtievt(rfdO, FUNC_T_LISTEN))
return(l);

break;
default:

t_error("Server: t_listen");
exit (1);

* This is usually where one might fork off a clone to process
*the rest of the client's requests. This way, we can
* "asynchronously" continue to go back and listen for another
* incoming connection.
*/

printf("Incoming XTI connection sequence number: %d0,
t_list_call.sequence);

Connection-Mode Programming Examples D-17

Example D-4: (continued)

/*

if (t_list_call.udata.len > 0)
printf("Caller user data: %s0, t_list_call.udata.buf);

/*
* Get a new, bound transport endpoint to accept connection.
*/

if ((rfd = t_open("cots", O_RDWR, &t_open_info)) < 0) {
t_error("Server: get new tep: t_open");
exit(l);

req.addr.len = OSIADDRLEN(rcvsap);
req.addr.buf = (char *)rcvsap;
req.qlen = 0;
ret.addr.maxlen = t_open_info.addr;
ret.addr.buf = (char *)rcvsap;
if ((t_bind (rfd, &req, &ret)) < 0) {

t_error("Server: t_bind accept fd");
exit(l);

/*
* As we are accepting the call on a different endpoint than
* the listening one, establish options for the new endpoint

* with the transport provider.
*/

neg_xtiopts(rfd, &rcv_isoco_opts);

/*
* If Client greets us with
*I

if (t_list_call.udata.len >
t_list_call.udata.len
t_list_call.udata.buf

I*

t_list_call.opt.len 0;
t_list_call.opt.buf 0;

* Accept the connection
*/

user data, then return the courtesy.

0) {
strlen(usrdat) + 1;

= (char *)usrdat;

if (t_status = t_accept(rfdO, rfd, &t_list_call) < 0) {
switch (t_errno) {
case TLOOK:

if (handle_xtievt(rfdO, FUNC_T_ACCEPT))
return(l);

break;
default:

t_error("Server: t_accept");
exit(l);

printf("Server accepted connection from Client at (fd=%d)O, rfd);
return(rfd);

* Receiver.
*/

int rcvdata(rfd, rcvblksiz)
int rfd;
int rcvblksiz;
{

D-18 Connection-Mode Programming Examples

Example D-4: (continued)
int t_rcv_flags = 0;
int cc, sc;
char *rcvbuf;

rcvbuf = (char *)malloc(rcvblksiz);
if (rcvbuf == NULL) {

I*

printf("Server: can't get receive buffer (%d)O, rcvblksiz);
exit(l);

* We loop here for messages from the client until the client
* disconnect from us.
*/

while (1)
again: cc = 0;

done:

I*

cc t_rcv(rfd, rcvbuf, rcvblksiz, &t_rcv_flags);
if (cc <= 0)

switch (t_errno) {
case TLOOK:

if (handle_xtievt(rfd, FUNC_T_RCV))
cc = O;
goto done;

break;
default:

goto done;

if (t_rcv_flags & (T_EXPEDITED & T_MORE)) {
totrcvexp += cc;
printf(" Expedited Data Bytes Segment Received: %d0, cc);

else if (t_rcv_flags & T_EXPEDITED) {
totrcvexp += cc;
printf(" Expedited Data Bytes Received: %d0, cc);

else if (t_rcv_flags & T_MORE) {
totrcv += cc;

else

printf(" normal data bytes segment received: %d0, cc);

totrcv += cc;
printf (" normal data bytes received: %d0, cc);

free(rcvbuf);
if (cc < 0)

t_error("Server");
else

why_no_more(rfd);

* Find out if we got disconnected. If so, process it.
*/

why_no_more (fd)
int fd;
{

struct t_discon discon;

Connection-Mode Programming Examples D-19

Example D-4: (continued)

/*

bzero(&discon, sizeof(discon));

discon.udata.maxlen = t open info.discon;
discon.udata.buf = (char *)malloc(t_open_info.discon);
if (t rcvdis (fd, &discon) < 0) {

if (t_errno == TNODIS I I t_errno == TOUTSTATE) {
t_error("Server: t_rcvdis");
exit(l);

printf ("Server disconnected reason: %d disconnect data: %s0,
discon.reason, discon.udata.buf);

* Unbind and close the transport endpoint.
*/

destroy(fd)
int fd;
{

/*

if (fd != NULL) {
(void) t_unbind(fd);
(void) t_close(fd);

* XTI event can occur anytime.
*/

int
int
int
{

handle_xtievt(fd, intrfunc)
fd;
intrfunc; /* interrupted function call */

struct t discon discon;
int retcode = O;
int evt;

evt = t_look(fd);
if (!evt)

return(O);

if (evt & T_EXDATA)
printf("%s XTI EventO, xti_event2text(evt));
rcvdata(fd, 4096);
printf("End-of-XTI-EventO);

if (evt & T_DATA) {
printf("%s XTI EventO, xti event2text(evt));
rcvdata(fd, 4096);
printf ("End-of-XTI-EventO);

if (evt & T_GODATA)
printf("%s XTI EventO, xti_event2text(evt));

if (evt & T_GOEXDATA) {
printf("%s XTI EventO, xti_event2text(evt));

if (evt & T_DISCONNECT) {
printf("%s XTI EventO, xti_event2text(evt));
bzero(&discon, sizeof(discon));
discon.udata.maxlen = t_open_info.discon;
discon.udata.buf = (char *)malloc(t_open_info.discon);

D-20 Connection-Mode Programming Examples

Example D-4: (continued)
if (t_rcvdis(fd, &discon) < 0) {

t_error("Server: t_rcvdis");
exit(l);

retcode = 1;
printf("End-of-XTI-EventO);

if (evt & T_LISTEN)
printf("%s XTI EventO, xti_event2text(evt));

if (evt & T_CONNECT) {
printf("%s XTI EventO, xti_event2text(evt));

if (evt & T_ORDREL I I evt & T_UDERR) {
printf("Server: illegal event: %s0, xti_event2text(evt));
exit(l);

handle_xtievt(fd, NULL); /*handle another event if any*/

return(retcode);

/*
*Negotiate user's specified option with transport provider.
*/

neg_xtiopts(fd, opt)
int fd;
struct isoco_options *opt;
{

struct
struct

t_optmgmt t_optm_req;
t_optmgmt t_optm_ret;

/*
* Get default options
*/

t_optm_req.opt.len = 0;
t_optm_req.flags = T_DEFAULT;
t_optm_ret.opt.maxlen = sizeof(struct isoco_options);
t_optm_ret.opt.buf = (char *)opt;
if (t_optmgmt(fd, &t_optm_req, &t_optm_ret) < 0) {

t_error("Server: t_optmgmt: T_DEFAULT");
exit(l);

/*
* Setup the user-specified options to be negotiated
*/

opt->mngmt.dflt = T~NO;

opt->mngmt.class = T_CLASS4;
opt->mngmt.checksum = T_YES;
opt->expd = T_YES;
opt->mngmt.ltpdu = 1024; /* let's be different from Client */

t_optm_req.opt.len = t_optm_ret.opt.len;
t_optm_req.opt.buf = t_optm_ret.opt.buf;
t_optm_req.flags = T_NEGOTIATE;
t_optm_ret.opt.maxlen = sizeof(struct isoco_options);
t_optm_ret.opt.buf = (char *)opt;

Connection-Mode Programming Examples D-21

Example D-4: (continued)
if (t_optmgmt(fd, &t_optm_req, &t_optm_ret) < 0)

t_error("Server: t_optmgmt: T_NEGOTIATE");
exit (1);

D.2.3 Support Routines for Client and Server Programming Examples
The following example includes the support routines used in the client and server
programming examples. These routines are not documented in Chapter 3.

Example D-5: Support Routines for Client and Server

I*
* DISCLAIMER: These routines are intended to provide support for the
* the example programs and are by not supported in the
* product. The mechanism implemented by these routines
* may change without notice.
*I

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <fcntl.h>
#include <errno.h>
#include <xti.h>
#include <netosi/osi.h>
#include <stdio.h>

struct sockaddr_osi *alloc_sosi(maxsosilen)
int maxsosilen;
{

struct sockaddr osi *sosi;

sosi = (struct sockaddr_osi *)malloc(maxsosilen);
if (sosi == NULL) {

printf("subx: failed to alloc sockaddr_osi structureO);
exit (1);

bzero(sosi, maxsosilen);
sosi->osi_family AF_OSI;
sosi->osi_length = maxsosilen;
return(sosi);

/*
* Get NSAP of a given host.
*/

getremotensap(hostname, nsap)
char *hostname;
struct nsap *nsap;
{

getnsap(hostname, nsap);

I*
* Get NSAP from local database.
* It assumes that you have an /etc/nsaps file (similar to that

D-22 Connection-Mode Programming Examples

Example D-5: (continued)
* of the /etc/hosts file). The format of the file is:
* node-name/nsap-addr-in-hex
* For example:
* mariah/490013aa000400374c21
* To find out the NSAP of your hosts, type:
* nodename -n
*/

getnsap(node, nsap)
char *node;
struct nsap *nsap;
{

struct hostent *hp;
char *path, pathl [80] , ,chl, ch2;
inti, namelen = strlen(node), nsaplen;
FILE *nsapfile;

if (nsapfile = fopen("/etc/nsaps", "r"))
{

else
{

while(fgets(pathl, 80, nsapfile))

if ((i = strncmp(pathl, node, namelen-1)) != 0) continue;
path= &pathl[namelen+l];
nsaplen = strlen(path) - 1;
if (! (nsaplen & 1))
{

nsaplen = nsaplen/2;
nsap->nsap_length = nsaplen;
for (i=O; i<nsaplen; i++)
{

chl *path++;
ch2 *path++;

if (ch1<='9') chl &= OxOf;
else chl = (chl & Ox07) + 9;
if (ch2<='9') ch2 &= OxOf;
else ch2 = (ch2 & Ox07) + 9;
nsap->nsap_addr[i]
(chl << 4) + ch2;

return;

printf("subx: NSAP length invalid: %d0, nsaplen);
exit(2);

printf("subx: Node name not found: %s0, node);
exit(2);

printf("subx: Unable to open /etc/nsapsO);
exit(2);

char *xti_event2text(evt)
int evt;
{

static char *xtieventtxt[] = {
"T_LISTEN", "T_CONNECT", "T_DATA", "T_EXDATA", "T_DISCONNECT",
"T_UDERR", "T_ORDREL", "T_GODATA", "T_GOEXDATA", "T EVENTS"

} ;

static char evtbuf[80];
char *c evtbuf;
int count = 0;

Connection-Mode Programming Examples D-23

Example D-5: (continued)
int bit;

while (evt > 0) {
bit = evt & Oxl;
if (bit != 0) {

strcpy(c, xtieventtxt[count]);
c = c + strlen(c);
*c++ = ',';

evt = evt >> 1;
count++;

if (* - -c == ' ' ') * c ' ' ;
return(evtbuf);

D-24 Connection-Mode Programming Examples

Connectionless-Mode Programming E
Examples

This appendix contains the connectionless-mode server code example used in Chapter
4 in entirety. It also contains a connectionless-mode client code example.

E.1 Connectionless-Mode Server Programming Example
Example E-1 shows how the server waits for incoming datagram queries and then
processes each query.

As was mentioned in Chapter 3, the client-server relationship between two users does
not exist in the connectionless-mode service. It is only within context of the example
that the term is used because the transport service interface does not support this
relationship.

Example E-1: Connectionless-Mode Server Code

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/wait.h>
#include <sys/file.h>
#include <netinet/in.h>
#include <stdio.h>
#include <signal.h>
#include <errno.h>
#include <sgtty.h>
#include <netdb.h>
#include <syslog.h>
#include <xti. h>

struct sockaddr_in sname;
int net,ncc;
extern int errno;
extern void do_setup();
struct t_unitdata unitdata;

main(argc, argv)
char *argv[];

do setup();
doit (net);

doit(f)
int f;

int t_rcv_flags;
struct hostent *hp;
char rcv_buf[5120];
struct sockaddr snamel;

Example E-1: (continued)
unitdata.addr.maxlen = sizeof(snamel);
unitdata.addr.buf = (char *) &snamel;
unitdata.opt.maxlen = 0;
unitdata.opt.buf = 0;
unitdata.udata.maxlen = sizeof (rcv_buf);
unitdata.udata.buf = &rcv_buf[O];

nee= t_rcvudata(f,&unitdata,&t_rcv_flags);

if (nee == 0)

printf("received %d octets\n",unitdata.udata.len);
else

printf("ncc = %d, errno =%d\n",ncc,errno);
(void) t_close(f);
exit(O);

void
do_setup ()

/*

struct t call t_list_call;
struct t bind t_bind_addr_req;
struct t bind t_bind_addr_reql;
struct t_bind t_bind_addr_ret;
struct t_info t_open_info; /* transport char. from transport */
int t_status;

* Call t_open - establish a transport endpoint

*
*I

if ((net = t_open ("udp", O_RDWR, &t_open_info)) < 0) {
t_error("rexamless: t_open error");
exit (1);

/*
* t bind - bind an address to a transport endpoint

*
*/

sname.sin_port 200;
sname.sin_family = AF_INET;

t bind addr req.addr.len = sizeof (struct sockaddr_in);
t-bind-addr-req.addr.buf = (char *) &sname;
t-bind-addr-req.qlen = 1;
t=bind=addr=ret.addr.maxlen = sizeof (struct sockaddr_in);
t_bind_addr_ret.addr.buf = (char *) &sname;

if ((t_bind(net, &t_bind_addr_req, &t_bind_addr_ret)) < 0) {
t_error("rexamless: t_bind error");
exit (1);

E-2 Connectionless-Mode Programming Examples

E.2 Connectionless-Mode Client Programming Example
The following code represents the client-side (user) that would communicate with the
server-side (user) as represented by the code under the previous section:
Connectionless-Mode Server. This code is not found in Chapter 3.

Example E-2: Connectionless-Mode Client Code

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <netinet/in.h>
#include <stdio.h>
#include <ctype.h>
#include <errno.h>
#include <signal.h>
#include <setjmp.h>
#include <netdb.h>
#include <xti. h>
#include <fcntl.h>

int net;
extern int errno;
struct sockaddr_in sin;
char *hostname;
char hnamebuf(32];
struct t_call t conn_sndcall;
struct t call t conn rcvcall;
struct t=info t=open=info; /* transport char. from transport */
struct t_unitdata unitdata;
int t_rcv_flags;
char snd_buf(6000];
char rcv_buf(6000];
struct hostent *host;
int scc,n;

main(argc, argv)
int argc;
char *argv(];

host= gethostbyname("nil");

/*

if (host) {
sin.sin_family = host->h_addrtype;
bcopy(host->h_addr, (caddr_t)&sin.sin_addr, host->h_length);
hostname = host->h_name;

sin.sin_port 0; /* don't set port till time to do connect */

* Call t_open - establish a transport endpoint

*
*/

if ((net = t_open ("udp", O_RDWR, &t_open_info)) < 0) {
t_error("iexamless: t_open error");
return(l);

Connectionless-Mode Programming Examples E-3

Example E-2: (continued)

/*
* t_bind - bind an address to a transport endpoint

*
*/

if ((t_bind (net, 0, 0)) < 0)
t_error("iexamless: t_bind error");
exit(l);

sin.sin_port = 200;
unitdata.addr.len = sizeof(sin);
unitdata.addr.buf = (char *) &sin;
unitdata.opt.len = 0;
unitdata.udata.len = sizeof(snd_buf);
unitdata.udata.buf = snd_buf;
unitdata.opt.len = 0;

n = t_sndudata(net, &unitdata);

if (n < 0) {
if (t_errno != TNODATA) {

t_error("iexamless: t_sndudata error");
(void) t_close(net);
exit(l);

t_close(net);
exit (0);

E-4 Connectionless-Mode Programming Examples

Glossary

Abortive release
A connection termination that breaks a connection immediately and may result
in the loss of any data that has not reached the destination user.

Asynchronous mode
The mode of execution in which transport service interface routines do not
block while waiting for specific asynchronous events to occur, but instead
return immediately if the event is not pending.

Client
The transport user in connection-mode that initiates the establishment of a
transport connection to a another transport user (server).

Connection establishment
The phase in connection-mode that enables two transport users to create a
transport connection (virtual circuit) between them.

Connection-mode
A circuit-oriented mode of transfer that enables data to be transmitted over an
established connection in a reliable, sequenced manner. It also provides an
identification mechanism that avoids the overhead of address resolution and
transmission during the data transfer phase.

Connectionless-mode
A message-oriented mode that supports data transfer in self-contained units with
no logical relationships required among multiple units.

Connection release
The phase in connection-mode that terminates a previously established
connection and ends the data exchange between two transport users.

Datagram
A unit of data transferred between two transport users during the
connectionless-mode.

Data transfer
The phase in connection-mode or connectionless-mode that supports the
exchange of data between two transport users.

ETSDU
An acronym for Expedited Transport Service Data Unit. ETSDU is the
maximum expedited data message size that may be sent over a transport
connection.

Expedited data
Data that is considered urgent. The transport protocol that provides the transport
service defines the specific semantics for the expedited data.

2 Glossary

Initialization
The phase in either connection-mode or connectionless-mode in which a
transport user establishes a transport endpoint and binds a transport address to
the endpoint.

Orderly release
A procedure in connection-mode to gracefully terminate a transport connection
with no loss of data.

Peer user
The user with whom a given user is communicating above the transport service
interface.

Protocol address
The identifier used to differentiate and locate specific transport endpoints in a
network.

Server
The transport user in connection-mode that advertises services to other users
(clients) and enables these clients to establish a transport connection to it.

Service request
A request for some action generated by a user to the transport provider of a
particular service.

Synchronous mode
The mode of execution in which an application normally blocks until
completion. For example, an application making a synchronous t _rev () call
will block until data from over the network can be retrieved.

T_CLTS
An acronym for Transport ConnectionLess Transport Service. T _ CLTS means
that the transport provider supports connectionless-mode service.

T_COTS
An acronym for Transport Connection Oriented Transport Service. T _COTS
means that the transport provider supports connection-mode service but does
not provide the optional orderly release facility.

Transport address
See protocol address definition.

Transport connection
The communication circuit that is established between two transport users in
connection-mode.

Transport endpoint
The local communication path between a transport user and a transport
provider.

Transport service interface
A set of transport-independent C library functions that support the services of a
transport interface. These functions conform to the X/Open Transport Interface
Specifications.

Transport provider
The transport protocol that provides the services of the transport service
interface.

Transport service data unit
The amount of user data whose identity is preserved from one end of a transport
connection to the other.

Transport user
The user-level application or protocol that accesses the services of the transport
service interface.

TSDU
An acronym for Transport Service Data Unit. TSDU is the maximum message
size that may be transmitted in either connection-mode or connectionless-mode.

Virtual circuit
A transport connection established in connection mode.

Glossary 3

A
aborting

connection, 2-19, 3-19

address

client, 2-5, 3-5

applications

migrating, C-1

portability, B-1

portability rules, B-1

protocol independent, B-1

asynchronous mode

description of, 2-4, 2-13

events, 2-13

B

binding

address, 2-8, 3-8

address to endpoint, 2-5, 3-5

transport address, 4-3

binding address

required state, 2-15, 3-16

bound address of, 2-10

buffers

allocating, 2-9, 2-15

flags, 4-4

maximum size of, 2-12, 3-13, 3-15

netbuf, 2-9

size of, 2-15, 2-17, 2-19, 3-19

user data, 2-17

c
calling functions

legal sequence, 1-10

state tables, 1-10

client

addresss of, 2-5, 3-5

communication path

establishing, 1-4, 2-1, 3-1

connect indication

processing, 2-15, 3-15

.connect indications

listening, 2-15, 3-16

listening for, 2-2, 2-9, 3-2, 3-8

outstanding, 2-9, 3-8

queueing, 2-9, 3-9

connect indictions

maximum number of, 2-9, 3-9

connection

aborting, 2-19, 3-19

accepting or rejecting, 2-10, 3-11

establishing, 1-4, 2-15, 3-16

establishment, 1-5

initiating, 2-10, 3-11

multiple units, 2-16

orderly release, 2-19

release, 2-19, 3-19

requirement for, 2-15, 3-15

connection release

abortive, 1-6

orderly, 1-6

connectionless-mode

communication path, 1-8

data transfer, 1-9

description, 1-3

Index

connectionless-mode (cont.)

initialization functions, 1-8

phases of, 1-8

when to use, 4-1

connection-mode

communication path, 1-4

description, 1-3

phases of, 1-3

release connection, 1-6

D

data

expedited, 2-16, 2-19, 3-16, 3-19

data transfer

functions, 1-6

number of bytes, 2-17, 3-17

terminating, 2-20, 3-20

datagrams

E

all received, 4--4

receiving, 4--4

sending and receiving, 4-3

error

message, 2-5, 3-5

system, 2-5, 3-6

values defined, 2-5, 3-5

errors

library level, 5-7

system level, 5-7

TLOOK, 5-5

event handling

disabling, 1-7

events

asynchronous, 1-2, 5-5

disable, 4-5

disabling, 2-21, 3-20, 3-21

incoming, A-4

outgoing, A-2

expedited

data, 2-16, 2-19, 3-16, 3-19

lndex-2

initialization

functions, 1-4

isoco_options structure, 5-3

L

listening

M

connect indications, 2-2, 3-2

for connection, 2-8, 3-8

memory resources

managing, 5-4

modes

N

asynchronous, 5-5

synchronous, 5-5

neg_ xtiopts(), 3-9

netbuf structure, 2-9, 3-8

NSAP, 3-5

construction, 3-2

p

portability

additional XTI functionality, 1-2

requirements, 1-1

programming example

connectionless-mode client, E-3

connectionless-mode server, E-1

connection-mode client, D-1, D-9

connection-mode server, D-5, D-15

protocol options

negotiating, 2-2, 2-5, 2-10, 3-2, 3-6, 3-11

quality-of-service, 2-2, 3-2, 3-9

specifying, 4-3

Q

quality of service

negotiating, 1-3

s
server

accepting request, 1-6

description, 1-5

identity, 1-5

notify request, 1-6

service

advertising, 1-5

sockaddr_osi, 3-2

sockaddr_osi structure, 3-5

synchronizing

transport endpoint, 2-15

T

t_accept(), 2-10, 2-15, 3-11, 3-15

t_alloc(), 2-9, 2-15, 5-4

t_bind(), 1-4, 1-8, 2-2, 2-5, 2-8, 2-9, 2-10, 3-2,

3-8, 4-1, 4-3

t_call structure, 2-12, 2-15, 3-12, 3-13, 3-15

t_close(), 1-7, 1-10, 2-21, 3-20, 3-21, 4-5

t_connect(), 1-5, 2-10, 2-12, 2-13, 3-11, 3-12, 3-13

tcp _options structure, 5-3

t_errno(), 5-7

t_error(), 2-5, 3-5

t_free(), 5-4

t_getinfo(), 2-4, 5-1

t _info structure, 5-1

t_listen(), 1-6, 2-10, 2-15, 3-11, 3-15

t _look(), 5-5

t_open(), 1-4, 1-8, 2-1, 2-4, 2-8, 2-15, 3-1, 3-4,

3-5, 3-8,4-1,4-3, 5-1

t_open_info structure, 2-4, 3-5

t_optmgmt(), 2-2, 2-5, 3-2, 3-6, 5-3

transport address

actual, 4-3

binding, 4-3

transport endpoint

assigning address, 2-4, 3-5

transport endpoint (cont.)

assigning an address, 1-4

associated address, 1-4, 2-2, 2-5, 3-2, 3-5

binding address, 2-8, 2-15, 3-8, 3-16

binding to, 2-2, 3-2

closing, 2-20, 3-20

description, 1-3

disable, 4-5

disabling, 1-7, 2-21, 3-20, 3-21

establishing, 1-4, 1-8, 2-8, 3-8, 4-3

freeing, 1-7

identifying, 2-1, 2-13, 2-17, 2-19, 3-1, 3-17,

3-19

identity, 2-1, 3-1

manipulating, 1-3

number of bound addresses to, 2-2, 3-2

synchronizing, 2-15

used for connection, 2-15, 3-16

transport protocol

characteristics of, 2-1, 2-4, 3-1, 3-5, 4-3

transport provider

accepting connection, 2-2, 3-2

address, 1-8

address structure, 1-4

characteristics, 5-1

characteristics of, 2-2, 5-1

default characteristics, B-1

description of, 1-1

establishing communication path, 2-1, 3-1

establishing connection, 1-4

functions of, A-2

identifying, 2-4, 2-12, 3-4, 3-12, 4-3

identity, 1-4, 1-8, 4-1

passing data to, 2-12, 3-13

protocol options, 5-3

quality of service, 1-3

returning information, 2-1, 2-12, 3-1, 3-13

service request of, 1-1

service types, 2-2, 3-2

state tables, A-5

states, A--1

supported protocols, 1-1

urgent condition, 2-16, 3-16

lndex-3

transport service interface

BSD IPC enhancements, 1-2

characteristics, 1;2

components, 1-10

consists of, 1-1

event handling, 1-2

transport user

actions, A-5

t_rcv(), 1-6, 2-16, 2-17, 2-19, 3-16, 3-19

t_rcvconnect(), 2-13

t _rcvdata(), 4-4

t_rcvdis, 2-19, 3-19

t_rcvdis(), 1-6, 1-7

t_rcvrel(), 1-7, 2-20

t_rcvudata(), 1-9, 4-4

TSAP, 3-5

construction, 3-2

t_snd(), 1-6, 2-16, 2-17, 3-16, 3-17

t_snddis(), 1-6, 2-10, 2-19, 3-11, 3-19, 3-20

t_sndrel(), 1-7, 2-20

t_sndudata(), 1-9

t_sync(), 2-15

t_unbind(), 1-7, 1-10, 2-21, 3-20, 3-21, 4-5

types of service

OSI protocol, 5-3

TCP protocol, 5-3

UDP protocol, 5-3

lndex-4

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud modem from
anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the Electronic Store, call
800-DIGIT AL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal *

Call

800-DIGIT AL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital Subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - WMO/ElS
or
Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

*For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments ULTRIX
Guide to X/Open Transport Interface

AA-PBKXB-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

Please rate this manual: Excellent Good Fair Poor
Accuracy (software works as manual says) 0 0 0 0
Completeness (enough information) 0 0 0 0
Clarity (easy to understand) 0 0 0 0
Organization (structure of subject matter) 0 0 0 0
Figures (useful) 0 0 0 0
Examples (useful) 0 0 0 0
Index (ability to find topic) 0 0 0 0
Page layout (easy to find information) 0 0 0 0

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual?

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Name{fitle ---------------------- Dept.

Company ------------------------- Date

Mailing Address

------------ Email ----------- Phone -------

- - - - - - · Do Not Tear - Fold Here and Tape

llllJDDID™
-----------------------------rri-r-n----------~~:A~~---

11 NECESSARY

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-3/Y32
110 SPIT BROOK ROAD
NASHUA NH 03062-2698

11111111lh111111II1111I1Ihi11I1I11Inl1I111IdI11 I

IF MAILED IN THE
UNITED STATES

- - - - - - - · Do Not Tear - Fold Here · -

Cut
Along
Dotted
Line

