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About This Manual 

This manual contains information needed by systems engineers who write and port 
device drivers for the VMEbus and the TURBOchannel. Systems engineers who 
write drivers that operate on other buses can find information on driver concepts, 
interfaces to device driver routines, kernel structures, kernel routines used by device 
drivers, installation of device drivers, and header files related to device drivers. 

Audience 
The audience are systems engineers who already know how to write a device driver. 
Although the manual provides some step-by-step instructions for installing device 
drivers, it is not a tutorial. This manual is intended for systems engineers who: 

• Develop programs in the C language using standard library routines 

• Know the Bourne or some other UNIX shell 

• Understand basic ULTRIX concepts such as kernel, shell, process, 
configuration, autoconfiguration, and so forth 

• Understand how to use the UL TRIX programming tools, compilers, and 
debuggers 

• Develop programs in an environment involving dynamic memory allocation, 
linked list data structures, and multitasking 

• Understand the hardware device for which the driver is being written 

• Understand the basics of RISC hardware architecture including interrupts, Direct 
Memory Access (DMA) operations, memory mapping, and I/0. 

Organization 

Chapter 1 Introduction to Device Drivers 

Presents an overview of device drivers 

Part One: OPENbus Hardware and Software Architectures 

Chapter 2 

Chapter 3 

VMEbus Architectures 

Presents an overview of the VMEbus hardware and software 
architectures. 

TURBOchannel Architecture 

Presents an overview of the TURBOchannel software architecture. 

Part Two: Sections of a Device Driver 

Chapter 4 Structure of an UL TRIX Device Driver 



Presents descriptions of the sections that make up any device 
driver. 

Part Three: Data Structures, Kernel Routines, and Autoconfiguration 

Chapter 5 Data Structures Used by Device Drivers 

Chapter 6 

Chapter 7 

Describes members of the structures used in input/output (I/O). 
Only members needed by the device driver writer are described. 
The chapter also describes VMEbus and TURBOchannel 
structures. 

Kernel Routines Used by Device Drivers 

Discusses the kernel routines developed for use with VMEbus and 
TURBOchannel device drivers. The chapter also discusses newly 
developed routines that can be used by any device driver. 

Device Autoconfiguration 

Discusses the sequence of events that occurs during the 
autoconfiguration of VMEbus and TURBOchannel devices. 

Part Four: Error Handling and Installation 

Chapter 8 Error Handling 

Chapter 9 

Provides guidelines for handling errors in VMEbus device drivers. 
In addition, explains an option for testing memory map drivers. 
Also summarizes when and why you would use the different kernel 
routines that allow you to write text to an output device. 

Installing Device Drivers 

Explains how to install VMEbus and TURBOchannel device 
drivers. 

Part Five: Example Drivers 

Chapter 10 VMEbus Device Driver Examples 

Provides VMEbus device driver examples. 

Chapter 11 TURBOchannel Device Driver Examples 

Provides TURBOchannel device driver examples. 

Part Six: Porting Issues 

Chapter 12 Porting VMEbus Device Drivers 

Chapter 13 

Appendix A 

Appendix B 

xii About This Manual 

Describes issues related to porting VMEbus device drivers from 
another vendor's hardware (for this version, Sun Microsystems) to 
Digital hardware. 

Porting TURBOchannel Device Drivers 

Describes issues related to porting Q-bus and UNIBUS device 
drivers to the TURBOchannel. 

Header Files Related to Device Drivers 

Summarizes the header files used by device drivers. 

Kernel Support Routines 

Presents, in reference page (man) style, descriptions of the kernel 



support routines. In addition, describes special files and global 
variables used by device drivers. 

Appendix C Summary of Device Driver Routines 

Summarizes the routines for block and character device drivers. 

Related Documentation 
If this is your first attempt at writing or porting device drivers, you should consult 
some of the commercial manuals. One such manual is Writing a UNIX Device 
Driver, by Janet I. Egan and Thomas J. Teixeira. 

• Guide to Configuration File Maintenance 

This guide contains information on how to maintain the system configuration 
file and how to build a new kernel, either automatically or manually. The 
configuration file provides you with the ability to configure your system to meet 
your needs. You should read this manual if you are responsible for maintaining 
an UL TRIX system. You should also read parts of this manual if you are 
planning to modify or write device drivers. 

• Guide to the Error Logger 

This guide contains information about the error logger and how it records and 
reports errors and other events that occur on your UL TRIX system. The guide 
gives an overview of the error logger, describes how to control error logger 
functions, and describes using the Error Report Formatter, uerf. You should 
read this manual if you manage error information on an UL TRIX system. 

• Guide to Languages and Programming 

This guide describes the compilers and high-level languages that are part of the 
compiler system. The manual gives an overview of the UL TRIX driver 
commands and system tools that are provided for the programming 
environment, and it describes how to program in a POSIX environment. The 
manual also describes debugging programs and provides security guidelines for 
programmers. Although this manual discusses implementation details for the 
supported languages, it does not list the syntax and definition of the elements of 
each language. You should read this manual if you are a programmer on an 
ULTRIX system. 

• Kernel Messages Reference Manual 

This manual describes the messages produced by the files in the ULTRIX 
kernel. You should refer to this manual if you receive a hardware-detected or 
software-detected message that is reported through the UL TRIX kernel 
software. 

• Reference Pages Section 2: System Calls 

This section contains descriptions of calls such as open, getpagesize, and 
s igvec. You should refer to these reference pages if you write software that 
calls the ULTRIX kernel. 

• Reference Pages Section 3: Library Routines 

The ULTRIX system contains library routines for C and FORTRAN 
programmers. The library routines are organized into a number of libraries, 
including libraries for writing international software, standards-conforming 
software, and math software. The UL TRIX system also contains the Internet 
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network library and various other specialized libraries. You should refer to 
these reference pages if you write software that calls routines in any of the 
ULTRIX libraries. 

• Reference Pages Section 4: Special Files 

These reference pages describe the files related to device driver functions and 
network support. You should refer to these reference pages if you need 
information about devices. For example, you might refer to these reference 
pages if you are a programmer who is writing a device driver or a system 
administrator who is partitioning a disk. 

• Reference Pages Section 5: File Formats 

These reference pages describe formats of various files and how the system files 
are used. The files described include assembler and link editor output, system 
accounting, and file system formats. Refer to this reference page section if you 
need information about file formats. 

• Reference Pages Section 8: Maintenance 

These reference pages describe commands used to create new file systems and 
to verify the integrity of file systems. Use these reference pages when you 
perform system administration tasks. 

Conventions 
The following conventions are used in this manual: 

open In text, each mention of a generic device driver routine name is 
presented in this type. 

xxstrategy In text, each mention of an example device driver routine name is 
presented in this type. 

bu f . h In text, each mention of a file name, full path name, or relative 
path name is presented in this type. 

brelse In text, each mention of a kernel routine or kernel macro name is 
presented in this type. 

bp In text and in kernel function definitions, each mention of an 
argument name is presented in this type. 

bdevsw In text, each mention of a structure name or structure member 
name is presented in this type. 

[ ] 

In syntax descriptions, a horizontal ellipsis indicates that the 
preceding item can be repeated one or more times. 

In syntax descriptions, brackets indicate items that are optional. 

A vertical ellipsis indicates that a portion of an example that 
would normally be present is not shown. 

In addition, certain conventions are followed for the kernel routine function 
definitions presented in Appendix B. These conventions are illustrated in the 
following example: 
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int copyin(user addr, kern addr, nbytes) 
caddr_t user addr; -
caddr_t kern-addr; 
unsigned int nbytes; 

The kernel function definition gives you this information: 

• Return type 

Gives the data type of the return value, if the kernel routine returns data. 

• Kernel routine (or macro) name 

Gives the kernel routine (or macro) name, for example, copyin. Note that 
many kernel macro names use uppercase to distinguish them from kernel 
routines. 

• Argument names 

Gives the name of each kernel routine argument name. In the example, the 
argument names are user _addr, kern_addr, and nbytes. 

• Argument types 

Gives the types for each of the arguments. In the example, these types are 
caddr_t and unsigned int. 

The conventions followed for the driver interface function definitions are similar to 
those used for the kernel routines in the way argument names and types are 
represented. However, there are differences in the way return types and names are 
represented in the driver function definitions. The differences in the conventions are 
illustrated in the following example: 

int vmeprobe(ctrl, addrl, addr2) 
int ctrl; 
caddr_t addr 1 ; 
caddr_t addr2; 

The driver interface function definition gives you this information: 

• Return type 

Gives the data type of the return value, if the driver routine returns data. If the 
driver routine does not return data, no type appears. 

• Driver routine name 

Gives the driver routine name. There are two variations on the name illustrated 
in the driver function definitions. First, if the driver interface differs according 
to the bus on which the driver operates, a bus-specific name is used. For 
example, the interface to a driver's probe routine differs according to whether 
the driver operates on the VMEbus or the TURBOchannel. Therefore, either 
the name vmeprobe or turboprobe is used. 

If the driver interface is the same regardless of the bus on which the driver 
operates, the name anydrv followed by the specific interface name is used. For 
example, the interface to a driver's open routine is the same regardless of the 
bus on which the driver operates. Therefore, the name anydrvopen is used. 

Note the use of italics to indicate that the driver routine name is variable. When you 
write your driver routines, you should use the naming conventions described in 
Section 9 .1.1.1. 
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Introduction to Device Drivers 1 

This chapter presents an overview of device drivers by discussing: 

• The purpose of a device driver 

• The types of device drivers 

• When a device driver is called 

• The place of a device driver in ULTRIX 

1.1 The Purpose of a Device Driver 
The purpose of a device driver in ULTRIX is to handle requests made by the kernel 
with regard to a particular type of device. There is a well defined and consistent 
interface for the kernel to make these requests. By isolating device-specific code in 
device drivers and by having a consistent interface to the kernel, adding a new device 
is made easier. 

1.2 The Types of Device Drivers 
A device driver is a software module tliat resides within the ULTRIX kernel and is 
the software interface to a hardware device or devices. A hardware device is a 
peripheral, such as a disk controller, tape controller, network controller device, and so 
forth. In general, there is one device driver for each type of hardware device. Figure 
1-1 shows that device drivers can be classified as: 

• Block device drivers 

• Character device drivers (including terminal drivers) 

• Network device drivers 

The following sections briefly discuss each type. 



. Figure 1-1: Types of UL TRIX Device Drivers 
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1.2.1 Block Device Driver 
A block device driver is one that performs I/O using file system block-sized buffers 
from a buffer cache supplied by the kernel. The kernel also provides support routines 
for the device driver that copy data between the buffer cache and the address space of 
a process. 

A block device driver is particularly well suited for disk drives, the most common 
block device. For block devices, all 1/0 occurs through the buffer cache. During an 
1/0 operation, if the data is not already in the buffer cache the access of the data is 
not as fast as it could be, because there is an extra move of the data getting to or 
from the user's process. 

1.2.2 Character Device Driver 
A character device driver does not handle input and output through the buffer cache. 
Therefore, these device drivers are not tied to a single approach for handling 1/0. 

A character device driver can be used for a device such as a line printer that handles 
one character at a time. However, a character device driver can also be used where it 
is necessary to copy data directly to or from a user process. 

Because of their flexibility, many drivers are character drivers. In addition to line 
printers, interactive terminals and graphics displays are examples of devices that 
require character device drivers. 

A terminal device driver is actually a character device driver that handles input and 
output character processing for a variety of terminal devices. Like any character 
device, a terminal device can accept or supply a stream of data based on a request 
from a user process. Like any other character device, a terminal device cannot be 
mounted as a file system and, therefore, does not use data caching. 
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1.2.3 Network Device Driver 
A network device driver attaches a network subsystem to a network interface, 
prepares the network interface for operation, and governs the transmission and 
reception of network frames over the network interface. This manual does not 
discuss network device drivers. 

1.3 When a Device Driver Is Called 
Figure 1-2 illustrates that the kernel calls a device during: 

• Autoconfiguration 

The kernel calls a device driver at autoconfiguration time to determine what 
devices are available and to initialize them. 

• Input/output operations 

The kernel calls a device driver to perform input/output operations on the 
device. These operations include opening the device to perform reads and 
writes and closing the device. 

• Interrupt handling 

The kernel calls a device driver to handle interrupts generated from devices 
capable of generating interrupts. 

• Special requests 

The kernel calls a device driver to handle such special requests through ioctl 
calls. 

• Reinitialization 

The kernel calls a device driver to reinitialize the driver, the device, or both 
when the bus (the path from the CPU to the device) is reset. 
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Figure 1-2: When the Kernel Calls a Device Driver 
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Some of these requests, such as input or output, result directly or indirectly from 
corresponding system calls in a user program. Other requests, such as the calls at 
autoconfiguration time, do not result from system calls. 

1.3.1 The Place of a Device Driver in UL TRIX 

Figure 1-3 shows the place of a device driver in ULTRIX relative to some device. 
Note that the device is in the center and the outer circles represent the distance of the 
following: 

• User program 

A user program makes calls on the kernel but never directly calls a device 
driver. 

• The kernel 

The kernel runs in supervisor mode and does not communicate with a device 
except through calls to a device driver. 

• A device driver 

A device driver communicates with a device by reading and writing to 
peripheral device registers through a bus. 

• Bus 

The bus is the data path between the main processor and the device controller. 

• Controller 

A controller is a physical interface for controlling one or more devices. Some 
devices (for example, disk and tape drives) can be connected to the controller. 
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Other devices (for example, the network) may be integral to the controller. 

• Peripheral device 

A peripheral device is a device that can be connected to a controller. 

Figure 1-3: The Place of a Device Driver in UL TRIX 

ZK-0201 U-R 

The following sections describe these parts with an emphasis on how a device driver 
relates to them. 

1.3.2 User Program 
User programs make system calls on the kernel that result in the kernel making 
requests of a device driver. For example, a user program can make a read system 
call, which calls the driver's read routine. 

The UL TRIX operating system includes the following: 

• The kernel 

• The shell 

• Utilities that execute UL TRIX commands 

• Interpreters, compilers, debuggers, and so forth 

• Spooling systems 

• Other programs considered for various reasons to be part of the system 

From the point of view of writing device drivers, the parts of the operating system 
other than the kernel are basically like user programs. 
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1.3.3 The Kernel 
The kernel makes requests to a device driver to perform operations regarding a 
particular device. Some of these requests result directly from requests from a user 
program. For example: 

• Block 1/0 (open, strategy, close) 

• Character 1/0 (open, write, close) 

Autoconfiguration requests, such as probe and attach, do not result directly 
from a user program, but as the result of activities performed by the kernel. At boot 
time, for example, the kernel calls the driver's probe routine. 

A device driver may call on kernel support routines to support such tasks as: 

• Sleeping and waking (process rescheduling) 

• Scheduling events 

• Managing the buffer cache 

• Moving or initializing data 

See Appendix B for descriptions of the kernel support routines. 

1.3.4 Device Drivers 
A device driver, run as part of the kernel software, manages each of the device 
controllers on the system. Often, one device driver manages an entire set of identical 
device interfaces. Because the device driver is part of the kernel, it must be 
configured with the rest of the kernel software. On UL TRIX, you can configure more 
device drivers than there are physical devices configured into the hardware system. 
At boot time, the autoconfiguration procedure can determine which of the physical 
devices are accessible and functional and can produce a correct run-time 
configuration for that instance of the running kernel. 

As stated previously, the kernel makes requests of a driver by calling the driver's 
standard entry points (such as probe, attach, open, read, write, close). 
In the case of 1/0 requests such as read and write, it is typical that the device causes 
an interrupt upon completion of each 1/0 operation. Thus, a write system call from a 
user program may result in several calls on the interrupt entry point in addition to the 
original call on the write entry point. 

Device drivers, in turn, make calls upon kernel support routines to perform the tasks 
mentioned earlier. 

The structure declaration giving the layout of the control registers for a device are 
part of the source for a device driver. Device drivers (unlike the rest of the kernel) 
can access and modify these registers. 

1.3.5 Buses 
When a device driver reads or writes to the hardware registers of a controller, the 
data travels across a bus. 

A bus is a physical communication path and an access protocol between a processor 
and its peripherals. A bus standard, with a predefined set of logic signals, timings, 
and connectors, provides a means by which many types of device interfaces 
(controllers) can be built and easily combined within a computer system. The term 
OPENbus refers to those buses whose architectures and interfaces are publicly 
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documented, allowing a vendor to easily plug in hardware and software components. 
The VMEbus and the TURBOchannel can be classified as having OPENbus 
architectures. 

Device driver writers must understand the bus that the device is connected to. 
Different buses require different approaches to writing the driver. For example, a 
VMEbus device driver writer must know how to allocate the VMEbus address space. 
This manual describes what a driver writer must know to write device drivers that 
communicate with a peripheral device that uses the VMEbus and the 
TURBOchannel. 

1.3.6 Device Controller 
Controllers are the hardware interface between the computer and a peripheral device. 
Sometimes a controller handles several devices. In other cases, a controller is built 
into the device. 

1.3.7 Peripheral Devices 
A peripheral device is a piece of hardware that connects to a computer system. It can 
be controlled by commands from the computer and can send data to the computer 
and receive data from it. Examples of peripheral devices include: 

• A data acquisition device, like a digitizer 

• A line printer 

For the most part, the distinction between a device and its controller is not important 
to the driver writer. 
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VMEbus Architectures 2 

The VMEbus is an industry standard high performance bus that supports 8-, 16-, and 
32-bit transfers over a nonmultiplexed 32-bit data bus. In addition, the VMEbus 
supports 16-, 24-, and 32-bit addressing over a separate 32-bit address bus. This 
chapter presents an overview of the VMEbus hardware and software architectures. 
Specifically, the chapter discusses the following: 

• Processors used with the VMEbus hardware 

• VMEbus hardware architecture 

• VMEbus software architecture 

For detailed information on VMEbus architectures, see the IEEE Standard for a 
Versatile Backplane Bus: VMEbus ANSI/IEEE Std 1014-1987. 

2.1 Processors Used with the VMEbus Hardware 
The DECstation 5000 Model 200 supports the VMEbus. The VMEbus attaches to 
the DECstation 5000 Model 200 through an adapter card on the TURBOchannel. 

2.2 VMEbus Hardware Architecture 
The VMEbus, like other buses, is a computer architecture that defines a computer 
data path. Unlike other buses, the VMEbus is microprocessor-independent, is easily 
upgraded from 16-bit to 32-bit processors, and is suitable for a vendor to build 
compatible products. The following describes VMEbus hardware architecture topics 
relevant to the device driver writer: 

• Address spaces 

• Data size 

• Byte ordering 

• Interrupt vectors 

• Interrupt priorities 

2.2.1 VMEbus Address Spaces 

The VMEbus hardware makes no distinction between I/0 space and memory space. 
The device driver writer must understand which address space the board uses. The 
VMEbus hardware architecture includes three address spaces: 

• 16-bit (A16) 

• 24-bit (A24) 



• 32-bit (A32) 

These address spaces are overlapping, that is, an address (for example, OxCO) points 
to the same location in all three address spaces. VMEbus devices can respond to 
address requests in any of the address spaces. 

2.2.2 Data Size 
The VMEbus supports 8-bit(D08), 16-bit(D16), and 32-bit(D32) data sizes. A 
VMEbus device can operate in more than one data space at one time. For example, a 
VMEbus device may have D16 control registers and D32 memory. 

2.2.3 Byte Ordering 

While the VMEbus does not specify any particular byte ordering, most devices use 
the Motorola model, which is big endian. Because the Digital model is little endian, 
two mechanisms are provided to accomplish byte swapping: 

• VMEbus adapter 

The VMEbus adapter provides hardware byte swapping. Digital' s adapters 
provide hardware assist for all DMA transfers and may provide hardware assist 
for programmed 1/0 (PIO) transfers on an adapter-dependent basis. 

• Software routines 

Kernel routines and library calls accomplish the byte swapping. 

See Chapter 6 and Appendix B for information on these byte-swapping routines: 
swap_lw_bytes, swap_word_bytes, and swap_words. 

2.2.4 VMEbus Interrupt Vectors 
VMEbus interrupt vectors range from OxOO to Oxff inclusive. The vectors from OxOO -
Ox3f inclusive are reserved for use by the ULTRIX operating system. The vectors 
Ox40 - Oxff inclusive are available for use by VMEbus devices. 

2.2.5 VMEbus Interrupt Priorities 

The VMEbus provides for seven interrupt priorities. On some host implementations, 
fewer than seven levels may be provided. On those implementations, the VMEbus 
priorities are mapped to the available host priority levels. 

UL TRIX allows the adapter to handle any or all of the VMEbus interrupt levels. In 
general, you will want the adapter to handle all seven levels. If, however, there is 
another processor on the VMEbus that you want to handle VMEbus interrupts, you 
can selectively enable the interrupts handled by Digital's VMEbus adapter. The 
mechanism for accomplishing this is through the intr_mask member of the 
vbada ta structure, which is described in Section 5.2.2. 

2.3 VMEbus Software Architecture 
Before writing device drivers that operate on the VMEbus, you need to consider the 
following topics associated with the VMEbus software architecture: 

• VMEbus address space 
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• Direct Memory Access (DMA) support 

• Input/Output (1/0) access 

• Read-Modify-Write 

• Writes to the hardware device register 

2.3.1 VMEbus Address Space 

The VMEbus supports a 4 gigabytes (GB) address space. ULTRIX divides this 
address space into overlapping address spaces according to the number of address bits 
used. A generic layout of the VMEbus address space is illustrated in Figure 2-1. 
Some adapter configurations, however, modify this generic layout to accommodate 
their specific mapping requirements. 

Figure 2-1: VMEbus Address Space 
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Note that all device CSRs and onboard memory must be configured in the I/0 space 
of the appropriate VMEbus address space. 

VMEbus Architectures 2-3 



By convention, Digital reserves the lower half of the A24 and A32 address spaces for 
VMEbus-to-system memory DMA transfers. The upper half of the A24 and A32 
address spaces and the entire A16 address space are reserved for 1/0 space (CSRs) 
and device-to-device DMA transfers. 

The figure shows the following overlapping address spaces: 

• A 16-bit address space (A16) of 64 kilobytes (KB) 

The entire A16 address space is reserved for I/O space (CSRs) and for device­
to-device Direct Memory Access (DMA) transfers. 

Valid VMEbus CSR addresses for the A 16 I/0 space range from 00000000 to 
OOOOFFFF inclusive. 

• A 24-bit address space (A24) of 16 megabytes (MB) - 64 kilobytes (KB) 

The lower half (8 MB - 64 KB) of the A24 address space is reserved for 
VMEbus-to-system memory DMA transfers. The upper half (8 MB) of the A24 
address space is reserved for I/0 space (CSRs) and for device-to-device DMA 
transfers. 

Valid VMEbus CSR addresses for the A24 I/0 space are from 00800000 to 
OOFFFFFF inclusive. 

• A 32-bit address space (A32) of 4 GB - 16 MB 

The lower half (2 GB - 16 MB) of the A32 address space is reserved for 
VMEbus-to-system memory DMA transfers. The upper half (2 GB) of the A32 
address space is reserved for I/O space (CSRs) and for device-to-device DMA 
transfers. 

Valid VMEbus CSR addresses for the A32 I/O space are from 80000000 to 
FFFFFFFF inclusive. 

You allocate the VMEbus address space for DMA by calling vballoc or 
vbasetup. These routines return an address from the DMA space (the lower half) 
that is mapped to the buffer. For the A24 DMA space, the range of valid VMEbus 
addresses these routines can return is from 00010000 to 007FFFFF inclusive. For the 
A32 DMA space, the range of valid VMEbus addresses these routines can return is 
from 01000000 - 7FFFFFFF inclusive. See Chapter 6, Chapter 12, and Appendix B 
for more information on these routines. 

2.3.2 OMA Support 

Some VMEbus devices can perform Direct Memory Access (DMA). Using DMA, 
the host processor informs the device controller about the following: 

• The address in VMEbus address space where a data transfer occurs 

• The length of the data to be transferred 

• When to start the data transfer 

The host processor makes no further intervention during the transfer of the data. 
Upon completion of the data transfer, the device controller interrupts to indicate that 
transfer has successfully completed. 

There are these scenarios to consider when dealing with the VMEbus and DMA: 

• VMEbus-to and from-host-DMA 
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• VMEbus device-to-device DMA 

• DMA for multiple VMEbus adapters 

2.3.2.1 VMEbus-to Host OMA and VMEbus from-Host-OMA - Figure 2-2 illustrates 
VMEbus-to-host-DMA and VMEbus-from-host-DMA. 

Figure 2-2: VMEbus-to and from-Host-OMA 
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The figure depicts the following typical VMEbus environment: 

• A host CPU and its attendant memory 

• The buffer cache 

• 1/0 space 

• An adapter that contains the mapping registers 

• The VMEbus address space 

• One or more devices (represented by Device 1 through Device n) 

Device n 

D 
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The figure uses two arrows to indicate that the data transfer can take the following 
routes: 

• The data transfer can originate from the device to the system memory of the 
host CPU. 

In this route, the host memory is mapped to the A32 DMA space. As stated 
previously, the lower halves of the A24 and A32 spaces are reserved for 
VMEbus-to-host-DMA transfers. The transfer continues through the adapter 
into the host memory. 
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• The data transfer can originate from the system memory of the host CPU to the 
device. 

In this route, some memory space in the CPU is mapped to the A32 DMA 
space. The device reads from the A32 mapped space and the data is fetched by 
the adapter from mapped host memory. 

If a device performs DMA-to-host memory transfers, the driver must explicitly 
flush the data cache, because there is no hardware cache coherency mechanism. 
To flush the data cache, the driver calls the buff lush kernel support routine 
after the DMA completes but before it releases the buffer to the system. See 
Chapter 6 and Appendix B for descriptions of buff lush. 

It is important to note that in both routes, the device initiates the data transfer. 

Note that not all adapters provide the ability to perform DMA to the entire address 
range. Table 2-1 lists the maximum size for the A24 and A32 DMA space for the 
supported adapter. In addition, the table lists the range of addresses that vballoc 
or vbaset up can return to the device driver for the supported adapter. 

Table 2-1: Maximum Size and Range of Addresses for PMABV-AA 
Adapter 

Address Space Maximum Size 

A24 8MB - 64K = 7.936MB 

A32 128MB - 16MB = 112MB 

Range of Addresses 

0001 QOOO - 007FFFFF 

01000000 - 7FFFFFFF 

2.3.2.2 VMEbus Device to Device OMA - In addition to VMEbus to and from host 
DMA, there is VMEbus device-to-device DMA. Digital provides for this type of 
DMA by designating portions of the VMEbus address spaces as reserved for device­
to-device DMA. As stated previously, the upper halves of the A24 and A32 spaces 
and the entire A16 space are reserved for device-to-device DMA. The VMEbus 
address space may have holes that are created by device registers and on-board 
memory. During VMEbus configuration, those areas are removed from the resource 
allocation map for VMEbus address space and are unavailable for use by any form of 
DMA. 

2.3.2.3 OMA for Multiple \fl\llEbus Adapters -The PMABV-AA adapter for the 
TURBOchannel supports two VMEbus adapters in a single VMEbus backplane. This 
support exists only if the VMEbus adapters are connected to different host CPUs. To 
use this feature, the device driver writer must consider: 

• The configuration of the DMA Page Map Registers (PMRs) 

• The handling of interrupts between the two VMEbus adapters 

The following discussion assumes an understanding of the vbada ta structure and 
the vb al loc and vbaset up routines. See Section 5.2.2 for descriptions of the 
members contained in the vbadata structure. See Chapter 6 and Appendix B for 
information on vballoc and vbasetup. 

Figure 2-3 illustrates how the driver writer can configure the DMA PMRs to 
accommodate the use of two VMEbus adapters. 
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Figure 2-3: Use of Multiple VMEbus Adapters 

Host 
Memory 
CPU1 

Host 
Memory 
CPU2 

OMA 
Page 
Map 

Registers 

Adapter2 

VMEbus 
Address 
S ace 

A 1 6 1/0 Space 

A24 OMA Space 

A32 OMA Space 

1GB 

128 
MB 

1------------~-2GB 

A32 1/0 Space 

ZK-0275U-R 

The figure shows a VMEbus environment consisting of: 

• Two host CPUs and their attendant memories 

• Two adapters: one labeled Adapterl and the other labeled Adapter2 

• The VMEbus address space 

Note that this figure shows a modification of the generic VMEbus address space that 
is illustrated in Figure 2-1. Because the PMABV-AA adapter does not support the 
entire A32 DMA address space, it makes use of the unused space to provide a 
mapping area for the second adapter. You can see this arrangement by studying the 
VMEbus Address Space block in Figure 2-3. The first mapping area resides within 
the first gigabyte and consists of the A 16 I/O space, the A24 DMA space, the A24 
1/0 space, and the A32 DMA space. The second mapping area resides within the 
second gigabyte and consists of the same address spaces as the first mapping area 
except that the address spaces that are shaded cannot be used. 

You use the asc member of the vbadata structure to select either the first 
gigabyte or the second gigabyte of VMEbus address space for the mapping of the 
DMAPMRs. 

By default, the system sets this member to VME MAP LOW, which means the 
vballoc or vbasetup routine maps the DMA PMRs for the adapter (in this 
example, Adapterl) to the VMEbus addresses that reside in the range from 0 -
128MB. These addresses reside in the first gigabyte of the VMEbus address space 
and, specifically, in the A32 DMA address space. 
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To select the second gigabyte, you set the as c member to the constant 
VME_MAP_HIGH. In this case, vballoc or vbasetup maps the DMA PMRs 
for the adapter (in this example, Adapter2) to the VMEbus addresses that reside in 
the range from 40000000 (lGB) - 47FFFFFF (lGB + 128MB). Note that only A32 
DMA can be performed if the map registers are mapped to the second GB. 

This strategy guarantees that the addresses will not overlap. 

The second thing you need to do is to coordinate the handling of the interrupts 
between the two VMEbus adapters. The intr_mask member of the vbadata 
structure must be set so that only one of the VMEbus adapters is handling each 
interrupt level. 

2.3.3 1/0 Access 
Applications access I/O devices through memory locations in the physical address 
space of the CPU. Two mechanisms - programmed 1/0 (PIO) and memory mapping 
- are provided for transferring data as the result of a data transfer request from an 
application. These mechanisms are discussed in the following sections. Figure 2-4 
illustrates programmed I/O and memory mapping. 

Figure 2-4: Programmed 1/0 
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2.3.3.1 Programmed 110 - In the PIO mechanism, the device driver performs the data 
transfer. The device driver has direct access to the CSRs or to device memory. The 
VMEbus address space for the CSRs or onboard memory is mapped during VMEbus 
configuration when the device is configured. The sizes and address spaces for the 
mapped areas are set in these members of the uba _driver structure: 
ud_addrl_size, ud_addr2_size, ud_addrl_atype, and 
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ud_addr2_atype. See Chapter 5 for more information on these and other 
members of the ub a_ driver structure. UL TRIX passes the information contained 
in these members to the device driver through the probe routine. See Section 4.3 
for a description of the probe routine. 

2.3.3.2 Memory Mapping - Many applications make use of memory mapping in which the 
mapped I/0 space (or some portion of it) is mapped into the user address space. This 
allows applications to access VMEbus devices implicitly, through memory 
references. For example, an application can map a portion of the VMEbus address 
space and point to the base of an array at that mapped area. Any memory reference 
to that array in the application causes the corresponding part of VMEbus address 
space to be accessed. This is a commonly used technique for logic simulators and 
array processors. 

An application maps VMEbus space with the mmap system call. The mmap system 
call invokes a kernel routine that, in tum, calls the device driver's memory mapping 
routine so that the driver actually performs the mapping. See Section 4.12 for more 
information on the tasks performed by the mma p system call and the memory 
mapping routine. 

2.3.4 Read - Modify - Write 

Some applications, mainly those using semaphores, require a way to perform atomic 
read and write operations. The VMEbus specification provides for these operations 
through the read-modify-write cycle on the bus. This operation allows an application 
to read a location, check if the location is available for writing, and to write data back 
to the location if the location is available. The DECstation 5000 Model 200 cannot 
support this operation in hardware because the TURBOchannel does not support 
read-modify-write operations. Because the TURBOchannel does not support the 
read-modify-write operations, you cannot use the system main memory for read­
modify-write transactions. 

To support read-modify-write operations, the vme _ rmw routine is provided. This 
routine allows read-modify-write operations to VMEbus memory. See Appendix B 
for a description of vme _ rmw. 

2.3.5 Writes to the Hardware Device Register 

Whenever a VMEbus device driver writes to a hardware device register, the write is 
delayed by the system write buffer used to synchronize the CPU on the 
TURBOchannel. A subsequent read of that register does not wait for the write to 
complete. To ensure that a write to I/0 space completes, the driver calls the 
wbflush kernel support routine. See Chapter 6 and Appendix B for descriptions of 
wbflush. 
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TURBOchannel Architecture 3 

The TURBOchannel is a synchronous, asymmetrical I/O channel that is supported by 
the DECstation 5000 Model 200. 

The device driver writer is not required to be intimately familiar with the details of 
the TURBOchannel hardware. Therefore, this chapter discusses the following aspects 
of the software architecture for a TURBOchannel device driver: 

• Structure of a TURBOchannel device driver 

• Include files 

• Writes to hardware device register 

• DMA-to-host memory transfers 

• Device interrupt line to the processor 

3.1 Structure of a TURBOchannel Device Driver 

In general, you structure a TURBOchannel device driver much like a UNIBUS or Q­
bus driver. This means you declare and initialize a uba driver structure in the 
declarations section of the TURBOchannel driver. In addition to the uba driver 
structure, you also use these other uba structures: uba device and uba ctlr. 
See Chapter 5 for descriptions of these structures. 

Note 

Even though the uba data structures are used, TURBOchannel device 
drivers do not need to use mapping registers, because the 
TURBOchannel address space is included in the system address space. 

3.2 Include Files 
TURBOchannel device drivers, in addition to the usual header files required by 
ULTRIX device drivers, need this header file: 

" .. /io/tc/tc.h" 

See Chapter 4 for information on header files. 

3.3 Writes to the Hardware Device Register 
Whenever a TURBOchannel device driver writes to a hardware device register, the 
write is delayed by the system write buffer used to synchronize the CPU on the 
TURBOchannel. A subsequent read of that register does not wait for the write to 
complete. To ensure that a write to I/0 space completes, the driver calls the 
wbflush kernel support routine. See Chapter 6 and Appendix B for descriptions of 
wbflush. 



3.4 Direct Memory Access {DMA)-to-Host Memory Transfers 
If a device performs DMA-to-host memory transfers, the driver must explicitly flush 
the data cache, because there is no hardware cache coherency mechanism. To flush 
the data cache, the driver calls the buff lush kernel support routine after the DMA 
completes but before it releases the buffer to the system. See Chapter 6 and 
Appendix B for descriptions of buff lush. 

3.5 Device Interrupt Line 
If a device needs to have its interrupts enabled or disabled during configuration or 
during operation, a TURBOchannel device driver can call the 
tc enable option and tc disable option routines. See Chapter 6 and 
Appendix B fur descriptions of tc_enabl~_option and 
tc_disable_option. 
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Part II: Structure of a Device Driver 





Structure of an UL TRIX Device Driver 4 

This chapter describes the sections that make up an ULTRIX device driver. Figure 
4-1 illustrates the sections that a character device driver can contain and the possible 
sections for a block device driver. Both types of drivers contain an include files 
section, a declarations section, an autoconfiguration support section, an open and 
close device section, an ioctl section, and a strategy section (which often is not 
defined for character devices). Note that the strategy section for the character device 
driver is for nbufio, and the strategy section of the block device driver is for queuing 
I/0 requests. (The concept of nbufio is not discussed in this manual.) 

The character device driver contains a read and write device section. The block 
device driver does not contain either of these sections. Although raw block devices 
require a read and write device section, their driver entry points are specified through 
the cdevsw, not the bdevsw. In other words, the device driver for the raw block 
device is both a block and a character driver. When accessed as a block device, the 
system uses the driver's strategy routine as the entry point. When accessed as a 
character device, the driver's read and write routines are used as the entry 
points. (See Section 9.1.1 for descriptions of the cdevsw and bdevsw tables.) 
The character device driver can contain a reset section, a stop section, and a memory 
map (mmap) section. The block device driver does not contain any of these sections. 

Note 

The psize routine is no longer used. It has been superseded by driver 
ioctl calls that are used to obtain disk geometry information. Previously, 
the routine determined the location on the disk where UL TRIX should 
perform a dump. 

ULTRIX supports dumping only to disks that it can boot from. In most cases, 
ULTRIX uses dump routines located in the console subsystem. Because 
UL TRIX does not support booting from a VMEbus disk, dumping to disk is 
not used in a VMEbus device. 

Each device driver section is described following Figure 4-1. 



Figure 4-1: Sections of a Character Device Driver and a Block Device 
Driver 
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The conventions followed for the driver interface function definitions are similar to 
those µsed for the kernel routines in the way argument names and types are 
represented. However, there are differences in the way return types and names are 
represented in the driver function definitions. The differences in the conventions are 
illustrated in the following example: 

int vmeprobe( ctr/, addr 1, addr2) 
int ctrl; 
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caddr_t addrl; 
caddr_t addr2; 

The driver interface function definition gives you this information: 

• Return type 

Gives the data type of the return value, if the driver routine returns data. If the 
driver routine does not return data, no type appears. 

• Driver routine name 

Gives the driver routine name. There are two variations on the name illustrated 
in the driver function definitions. First, if the driver interface differs according 
to the bus on which the driver operates, a bus-specific name is used. For 
example, the interface to a driver's probe routine differs according to whether 
the driver operates on the VMEbus or the TURBOchannel. Therefore, either 
the name vmeprobe or turboprobe is used. 

If the driver interface is the same regardless of the bus on which the driver 
operates, the name anydrv followed by the specific interface name is used. For 
example, the interface to a driver's open routine is the same regardless of the 
bus on which the driver operates. Therefore, the name anydrvopen is used. 

Note the use of italics to indicate that the driver routine name is variable. When you 
write your driver routines, you should use the naming conventions described in 
Section 9 .1.1.1. 

4.1 Include Files Section 
Data structures are defined in header files that the device driver writer includes in the 
driver source code. The following lists the header files most frequently used by any 
device driver, including VMEbus and TURBOchannel device drivers: 

#include " .. /h/types.h" 
#include " .. /h/errno.h" 
#include " .. /h/uio.h" 
#include " .. / .. /machine/common/cpuconf.h" 

Device drivers should use relative path names, not explicit path names. For summary 
descriptions of the contents of the header files listed in this and subsequent sections, 
see Appendix A. 

The header file types . h defines system data types used to declare members in the 
data structures referenced by device drivers. To store values in these structure 
members, the driver writer must declare the variable using the appropriate system 
data type, or cast the stored value. Table 4-1 lists the system data types most 
frequently used by device drivers. 

Table 4-1: System Data Types Frequently Used by Device Drivers 

Data Type Meaning 

daddr t Block device address 

caddr t Main memory virtual address 
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Table 4-1: (continued) 

Data Type Meaning 

in o t In ode index 

label t Vector for set jmp/longjmp 

dev t Device major and minor numbers 

off t File offset 

paddr _ t Main memory physical address 

time t System time 

u short unsigned short 

4.1.1 Include Files for VMEbus Device Drivers 

In order, the minimal header files needed by VMEbus device drivers are: 

#include " .. /h/types.h" 
#include " .. /h/errno.h" 
#include " .. /h/uio.h" 
#include " .. / .. /machine/common/cpuconf.h" 
#include " .. /io/vme/vbareg.h" 

Note that vbareg. h is used exclusively by VMEbus device drivers. 

4.1.2 Include Files for TURBOchannel Device Drivers 
In order, the minimal header files needed by TURBOchannel device drivers are: 

#include " .. /h/types.h" 
#include " .. /h/errno.h" 
#include " .. /h/uio.h" 
#include " .. / .. /machine/common/cpuconf.h" 
#include " .. /io/tc/tc.h" 

Note that tc. his used exclusively by TURBOchannel device drivers. 

4.2 Declarations Section 
The declarations section of a block or character device driver contains: 

• Variable and structure declarations 

• Definitions of symbolic names 

• Declarations of the specific driver routines 

The following example illustrates the declarations section of a VMEbus device 
driver: 

/* Symbolic definitions */ 
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#define SKREGSIZE 256 /* First csr area */ 
#define SKUNIT(dev) (minor(dev)) /*Device minor number*/ 

/* Structure and variable declarations */ 

struct uba device *skdinfo[NSK]; 

/* Driver routines declarations */ 
int skprobe(), skattach(), skintr(), skmmap(); 

The following variables or data structures should be declared as volatile by VMEbus 
and TURBOchannel device drivers: 

• Any variable or data structure that can be changed by a controller or processor 
other than the system CPU 

• Variables that correspond to hardware device registers 

• Any variable or data structure shared with a controller or coprocessor 

When declaring a variable or data structure as volatile, use the compiler key word 
volatile in the declaration. For example: 

volatile int hrdwrereg; 
struct register_for_some_device { 

volatile char stub_O; 
volatile char V; 
volatile char stub_l; 
volatile char M; 

} ; 

/* Base address */ 
/* First readable, always V */ 
/* Data is only on every other word */ 
/* Second readable */ 

4.3 Autoconfiguration Support Section 
The autoconfiguration support section applies to both character and block device 
drivers. It can contain: 

• A probe routine 

• A slave routine 

• An attach routine 

You define the entry point for each of these routines in the uba driver structure. 
See Section 5.1.4 for a description of this structure. 

Each of these routines is discussed in the following sections. 

4.3.1 The Probe Routine 
A device driver's probe routine performs all the tasks necessary to determine if the 
device exists and is functional on a given system. At boot time, the kernel performs 
checks to determine if the device is present before calling the probe routine. The 
kernel calls the probe routine for each device that was defined in the system 
configuration file. 
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The probe routine typically checks some device status register to determine 
whether the physical device is present. To perform this check, the probe routine 
calls the BADADDR macro. If the device is not present, the device is not initialized 
and not available for use. The probe routine returns the size of the control/status 
register address space for the autoconfiguration routines to use. 

The interface to the probe routine differs according to the bus on which the driver 
operates. Therefore, the interfaces to the probe routine for the VMEbus and the 
TURBOchannel are discussed separately. 

4.3.1.1 Probe Routine Interface for VMEbus Driver - For VMEbus device drivers, the 
interface to the probe routine is expressed in the following function definition: 

int vmeprobe (ctr/, addr 1, addr2) 
int ctr/; 
caddr_t addrl; 
caddr_t addr2; 

ctr/ 

addrl 

addr2 

Specifies the controller or device number associated with this device. 
You specified this number in the system configuration file. 

Specifies the System Virtual Address (SVA) for the device. This 
SVA corresponds to the first CSR address that you specified for the 
device in the system configuration file. 

Specifies the System Virtual Address (SV A) for the onboard 
memory. This SVA corresponds to the second CSR address, if 
present, that you specified in the system configuration file. If you did 
not specify a second CSR address, the value of this argument is zero 
(0). 

See Section 9.1.3.3 for information on how to specify a controller's name and logical 
unit number and the first and second CSR addresses in the system configuration file. 
See Section 9.1.3.5 for information on how to specify a device's name and logical 
unit number and the first and second CSR addresses in the system configuration file. 

4.3.1.2 Probe Routine Interface for TURBOchannel Driver - For TURBOchannel 
device drivers, the interface to the probe routine is expressed in the following 
function definition: 

turboprobe(addr, ctr/) 
caddr_t addr; 
struct uba_ctlr * ctr/; 

addr 

ctr/ 

Specifies the System Virtual Address (SV A) control/status registers 
for the device. 

Specifies a pointer to a uba ctlr or a pointer to a uba device 
structure. (The function definition shows a pointer to a uba ctlr 
structure.) 

4.3.2 The Slave Routine 
A device driver's slave routine is called only for controller devices. This routine 
is called once for each slave attached to the controller. You specify the attachments 
of these slave devices in the system configuration file. The interface to the slave 
routine differs according to the bus on which the driver operates. Therefore, the 
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interfaces to the s 1 ave routine for the VMEbus and the TURBOchannel are 
discussed separately. 

4.3.2.1 Slave Routine Interface for VMEbus Driver - For VMEbus device drivers, the 
interface to the s 1 ave routine is expressed in the following function definition: 

vmeslave( ui, addr 1, addr2) 
struct uba_device * ui; 
caddr_t addrl; 
caddr_t addr2; 

ui 

addrl 

addr2 

Specifies a pointer to a uba device structure. This structure 
contains such information as the logical unit number of the device, 
whether the device is functional, the bus number the device resides 
on, the address of the control/status registers, and so forth. See 
Section 5.1.6 for more information on this structure. 

Specifies the System Virtual Address (SV A) for the device. This 
SV A corresponds to the first CSR address that you specified for the 
device in the system configuration file. 

Specifies the System Virtual Address (SVA) for the onboard 
memory. This SVA corresponds to the second CSR address, if 
present, that you specified in the system configuration file. If you did 
not specify a second CSR address, the value of this argument is zero 
(0). 

See Section 9.1.3.3 for information on how to specify the first and second CSR 
addresses in the system configuration file. 

4.3.2.2 Slave Routine Interface for TURBOchannel Driver - For TURBOchannel 
device drivers, the interface to the slave routine is expressed in the following 
function definition: 

turboslave(ui, reg) 
struct uba_device * ui; 
caddr_t reg; 

ui 

reg 

Specifies a pointer to a uba_device structure. This structure 
contains such information as the logical unit number of the device, 
whether the device is functional, the bus number the device resides 
on, the address of the control/status registers, and so forth. See 
Section 5.1.6 for more information on this structure. 

Specifies the System Virtual Address (SV A) control/status registers 
for the device. 

4.3.3 The Attach Routine 
The attach routine usually performs the tasks necessary in establishing 
communication with the actual device. At boot time, this routine is called by the 
autoconfiguration code under the following conditions: 

• If the device is connected to a controller, the attach routine is called if the 
controller's slave routine returns a nonzero value, indicating that the device 
exists. 
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• If the device is not connected to a controller, the attach routine is called if 
the probe routine returns a nonzero value, indicating that the device exists. 

The attach routine is passed a uba_device structure for this device. 

The tasks performed by the attach routine may include initializing a tape drive, 
putting a disk drive on line, or some other similar action. In addition, the attach 
routine initializes any global data structures used by the driver. This routine need not 
return a value. The interface to the attach routine is the same regardless of the 
bus on which the driver operates. 

For VMEbus and TURBOchannel device drivers, the interface to the attach 
routine is expressed in the following function definition: 

anydrvattac h ( ui) 
struct uba_device * ui; 

ui Specifies a pointer to a uba device structure. This structure 
contains such information as the logical unit number of the device, 
whether the device is functional, the bus number the device resides 
on, the address of the control/status registers, and so forth. See 
Section 5.1.6 for more information on this structure. 

4.4 Open and Close Device Section 
The open and close device section applies to both character and block device drivers. 
It contains: 

• An open routine 

• A close routine 

You define the entry point for a driver's open and close routines in the 
cdevsw table for character devices and the bdevsw table for block devices. See 
Section 9.1.1 for descriptions of the cdevsw and bdevsw tables. 

Each of these routines is discussed in the following sections. 

4.4.1 The Open Routine 
A device driver's open routine is called when a process opens a special device file 
whose major device number serves as an index into either the cdevsw or bdevsw 
table. You specify the entry for the driver's open routine in the cdevsw for 
character device drivers and the bdevsw for block device drivers. 

A block device driver's open routine opens a device to prepare it for I/0 operations. 
This routine usually verifies that the device was identified during autoconfiguration. 
For tape devices, this identification may consist of bringing the device on line and 
selecting the appropriate density. 

A character device driver's open routine performs similar tasks to those performed 
by the block device driver. If the character device provides raw access to a block 
device, the open routine is usually the same. Almost all character device drivers 
provide an open routine; however, some block devices do not require this routine. 
For terminal devices, the open routine may block waiting for the necessary modem 
signals, for example, carrier detect. 

Other tasks performed by the open routine for a block or a character device driver 
are to: 
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• Determine the logical unit number from the minor device number 

• Check that the logical unit number is that of a valid device that is functional. 

• Check the state of the device or the flag argument if the device is to be an 
exclusive open, that is, nonblocking open, read-only, or write-only 

• Start any device bookkeeping activities, for example, by setting any software 
flags and state variables 

The return status of the open routine will eventually be the return status from the 
open system call. The interface to the open routine is the same regardless of the 
bus on which the driver operates. For VMEbus and TURBOchannel device drivers, 
the interface to the open routine is expressed in the following function definition: 

int anydrvopen ( dev, flag) 
dev_t dev; 
int flag; 

dev 

flag 

Value 

0 RDONLY 

0 RDWR 

0 WRONLY 

Specifies the major and minor device numbers for this device. The 
minor device number is used to determine the logical unit number for 
the device that is to be opened. 

Specifies the access mode of the device. The access modes are 
represented by flag constants defined in /usr I sys /h/ file. h. 
The following describes some flag constants that you can pass to this 
argument: 

Meaning 

The device is open for reading. 

The device is open for reading and writing. 

The device is open for writing. 

4.4.2 The Close Routine 
A device driver's close routine is called when the last file descriptor that is open 
and associated with this device is closed via the c 1 o s e system call. A block device 
driver's close routine closes a device that was previously opened by the open 
routine. This routine is called only after making the final open reference to the 
device. 

A character device driver's close ro~tine performs similar tasks to those performed 
by the block device driver. If the character device provides raw access to a block 
device, the close routine is usually the same. Almost all character device drivers 
provide a close routine; however, some block devices do not require this routine. 

Other tasks performed by the close routine for a block or a character device driver 
are to: 

• Determine the logical unit number for this device from the minor device number 

• Turn off interrupts for the device 

• Clean up the software state and flag 
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The interface to the c 1 o s e routine is the same regardless of the bus on which the 
driver operates. For VMEbus and TURBOchannel device drivers, the interface to the 
close routine is expressed in the following function definition: 

anydrvclose(dev, flag) 
dev_t dev; 
intflag; 

dev 

flag 

Specifies the major and minor device numbers for this device. The 
minor device number is used to determine the logical unit number for 
the device that is to be closed. 

Specifies the access mode of the device. The access modes are 
represented by flag constants defined in I us r Is y s I h I f i 1 e . h. 
Typically, the close routine does not use this argument. 

4.5 Read and Write Device Section 
The read and write device section applies only to character device drivers. This 
section contains: · 

• A read routine 

• A write routine 

You define the entry point for a character driver's read and write routines in the 
cdevsw table. See Section 9.1.1 for a description of the cdevsw table. 

Each of these routines is discussed in the following sections. 

4.5.1 The Read Routine 
A character device driver's read routine is called from the 1/0 system as the result 
of a read system call. The driver's read routine reads data from a device. If 
there is no data available, the read routine puts the calling process to sleep until 
data is available. If data is available, read copies it from the private kernel buffer 
to the user's process using the uiomove kernel routine. 

In the case of raw block devices, the read routine calls the physio kernel 
routine, passing to it the device-specific parameters. For terminal-oriented devices, 
the driver passes the read request to the generic terminal interface read routine. 

The read routine returns an error number to the process's read system call if 
there was a failure. Otherwise, it returns the number of bytes actually read. 

The interface to the read routine is the same regardless of the bus on which the 
driver operates. For VMEbus and TURBOchannel device drivers, the interface to the 
read routine is expressed in the following function definition: 

int anydrvread(dev, uio) 
dev_t dev; 
struct uio * uio; 

dev Specifies the major and minor device numbers for this device. The 
minor device number is used to determine the logical unit number for 
the device on which the read operation will be performed. 
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uio Specifies a pointer to a u i o structure. This structure contains the 
information for transferring data to and from the address space of the 
user's process. You typically pass this structure unchanged to the 
uiomove or physio routines. See Section 5.1.3 for information 
on the u i o structure. 

4.5.2 The Write Routine 

A character device driver's write routine is called from the 1/0 system as the 
result of a write system call. A character device driver's write routine checks 
the software state of the device to determine if the device is in a state that permits the 
write operation. If not, write places the device into a writable state and writes 
data to the device. (Note that read/write permission is checked at the file system 
level, not in the device driver.) 

If necessary, write allocates a private kernel buffer. It copies the data of the user 
process into the private kernel buffer using the uiomove kernel routine. It then sets 
up the software state of the device for the current output transfer and starts the 
hardware transferring the data. Following this, write puts the process to sleep and 
awakes it after all of the data in the current transfer has been sent to the device. 

If the device is a raw block device, the write routine calls the physio kernel 
routine to accomplish the write. For terminal-oriented devices, the device driver 
passes the write request to the generic terminal interface write routine. 

The write routine returns an error number to the process's write system call if 
there was a failure. Otherwise, it returns the number of bytes actually written. 

The interface to the write routine is the same regardless of the bus on which the 
driver operates. For VMEbus and TURBOchannel device drivers, the interface to the 
write routine is expressed in the following function definition: 

int anydrvwrite(dev, uio) 
dev_t dev; 
struct uio * uio; 

dev 

uio 

4.6 ioctl Section 

Specifies the major and minor device numbers for this device. The 
minor device number is used to determine the logical unit number for 
the device on which the write operation will be performed. 

Specifies a pointer to a u i o structure. This structure contains the 
information for transferring data to and from the address space of the 
user's process. You typically pass this structure unchanged to the 
uiomove or physio routines. See Section 5.1.3 for information 
on the u i o structure. 

The ioctl section applies to both character and block device drivers. This section 
contains an ioctl routine, which is a general purpose device control routine. This 
routine typically performs all device-related operations other than read or write 
operations. A device driver's ioctl routine is called as a result of an ioctl 
system call. Only those ioctl commands that are device-specific or that require action 
on the part of the device driver result in a call to the driver's ioctl routine. 

You define the entry point for the driver's ioctl routine in the cdevsw for 
character device drivers and the bdevsw for block device drivers. See Section 9.1.1 
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for a description of the cdevsw and bdevsw tables. 

Some of the device-related operations performed by the ioctl routine are to: 

• Return device attributes and parameters in response to queries by user programs 

In general, all device drivers have an ioctl routine that identifies the device 
type, controller name, and other related parameters. For example, user 
programs may request information about disks, in which case the ioctl 
routine returns disk geometry information. For user program requests about· 
terminal devices, the ioctl routine might return the current values of the 
terminal line attributes. User program requests about tape drives, on the other 
hand, can result in the return of such attributes as tape density. For more 
information, see devio in the Reference Pages Section 4: Special Files. 

• Return the status of a device 

The device status for a tape drive, for example, might consist of the tape mark 
encountered, end of media encountered, positioning at the bottom of the tape, 
device is write protected, and so forth. 

• Allow for the setting of device-related parameters 

The device settings for a terminal device, for example, may consist of baud rate, 
parity, and so forth. For disk drives, the partition-related information may be 
specified by the ioctl interface. For tape drives, the ioctl routine performs 
tape repositioning commands, such as rewinding and forward or backward 
skipping of tape marks and tape records. 

The ioctl routine returns an error number if there was a failure; otherwise, it 
returns zero (0). This is the return value of the process's ioctl system call. 

The interface to the ioctl routine is the same regardless of the bus on which the 
driver operates. For VMEbus and TURBOchannel device drivers, the interface to the 
ioctl routine is expressed in the following function definition: 

int anydrvioctl(dev, cmd, data, flag) 
dev_t dev; 
int cmd; 
caddr_t data; 
int flag; 

dev 

cmd 

data 

Specifies the major and minor device numbers for this device. The 
minor device number is used to determine the logical unit number for 
the device on which the ioctl operation will be performed. 

Specifies the ioctl command as specified in 
/usr I sys/hi ioctl. h or in another include file defined by the 
device driver writer. Many ioctl commands are handled by the 1/0 
system and do not result in a call to the device driver's ioctl 
routine. However, when some commands require a device-specific 
action, this information is passed to the driver's ioctl routine. 
One of the values you can pass to this argument is DEVIOCGET. 
For information on the DEVIOCGET ioctl request, see Appendix B. 

Specifies a pointer to ioctl command-specific data that is to be passed 
to the device driver, or filled in by the device driver. The particular 
ioctl command implicitly determines the action to be taken. The size 
of this data cannot exceed 128 bytes. 
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flag 

Value 

0 RDONLY 

0 RDWR 

0 WRONLY 

This argument is a kernel address. The ioctl system call performs 
all the necessary copy in and copy out operations by calling the 
copyin and copyout kernel routines. 

Specifies the access mode of the device. The access modes are 
represented by flag constants defined in I us r Is y s I h If i le . h. 
The following describes some flag constants that you can pass to this 
member: 

Meaning 

The device is open for reading. 

The device is open for reading and writing. 

The device is open for writing. 

4. 7 Strategy Section 
The strategy section applies to both character and block device drivers. This section 
contains a strategy routine, which initiates read and write operations. You define 
the entry point for a driver's strategy routine in the cdevsw table for character 
devices and in the bdevsw table for block devices. See Section 9.1.1 for 
descriptions of the cdevsw and bdevsw tables. 

Typically this routine is not called directly from user-level programs; instead, the 
routine is called from different routines within the kernel. For the block driver, it is 
the strategy routine that implements the concept of disk partitions. Disk 
partitions involve subdividing the physical disk into smaller logical disk partitions. 
Through the use of partition tables that define partition boundaries, the strategy 
routine maps read and write requests to the correct disk offset. 

The main user of the block device is the file system. File system reads and writes are 
usually handled through the kernel routines bread and bwri te. Through these 
routines and the routines that they call, the data is read from or written to the data 
cache. When the data being read is not present in the data cache, the block device 
strategy routine will be called to initiate a data transfer to read in the data from 
the disk. When a decision is made to flush the written data out of the data cache to 
the disk media, the block driver strategy routine is called to initiate the transfer. 

For the character device driver, data transfer operations (reads and writes) are 
initiated by the driver's read and write routines. These routines will call the 
strategy routine indirectly to initiate the data transfer operation. 

The interface to the strategy routine is the same regardless of the bus on which 
the driver operates. For VMEbus and TURBOchannel device drivers, the interface to 
the strategy routine is expressed in the following function definition: 

anydrvstrategy( bp) 
struct buf * bp; 

bp Specifies a pointer to a buf structure. This structure contains 
information such as binary status flags, the major/minor device 
numbers, the address of the associated buffer, and so forth. See 
Section 5.1.1 for more information on the buf structure. 
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4.8 Stop Section 
The stop section applies only to character device drivers and it contains a stop 
routine. The st op routine is used by terminal device drivers to suspend 
transmission on a specified line. You define the entry point for a character driver's 
stop routine in the cdevsw table. See Section 9.1.1 for a description of the 
cdevsw table. 

The st op routine is called when the terminal driver has recognized a stop character 
such as "S. There are also specific ioctl calls that request output on a terminal line be 
suspended. These ioctl calls result in the general terminal driver interface calling the 
associated device driver's stop routine. 

The interface to the st op routine is the same regardless of the bus on which the 
driver operates. For VMEbus and TURBOchannel device drivers, the interface to the 
st op routine is expressed in the following function definition: 

anydrvstop( tp, flag) 
struct tty * tp; 
intflag; 

tp 

flag 

Specifies a pointer to a tty structure. This structure contains 
information such as state information about the hardware terminal 
line, input and output queues, the line discipline number, and so 
forth. 

Specifies whether the output is to be flushed or suspended. ULTRIX 
device drivers do not use this argument. However, the pseudo­
terminal driver does use this field for its own purposes. The 
argument is included here for use in your terminal drivers. 

4.9 Reset Section 
The reset section applies only to character device drivers and it contains a reset 
routine. You define the entry point for a character driver's reset routine in the 
cdevsw table. See Section 9.1.1 for a description of the cdevsw table. 

The reset routine is used to force a device reset to place the device in a known 
state after a bus reset. The bus adapter support routines call the reset routine after 
completion of a bus reset. 

For a terminal device driver, the reset routine may consist ofreenabling interrupts 
on all open lines and resetting the line parameters for each open line. Following a 
reset of terminal state and line attributes, transmission may resume on the terminal 
lines. 

The interface to the reset routine is the same regardless of the bus on which the 
driver operates. Note, however, that the reset section would not be used by VMEbus 
and TURBOchannel device drivers. The interface to the reset routine is expressed 
in the following function definition: 

anydrvreset( busnum) 
int busnum; 

busnum Specifies the logical unit number of the bus on which the bus reset 
occurred. 
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4.10 Interrupt Section 
The interrupt section applies to both character and block device drivers and it 
contains an interrupt routine. You define a driver's interrupt routine or 
routines in the device definitions part of the system configuration file when you 
define controllers and devices. The following sections describe the specification of 
interrupt routines in the system configuration file: 

• Section 9.1.3.3 

Describes the controller specification for controllers associated with the 
VMEbus 

• Section 9.1.3.4 

Describes the controller specification for controllers associated with the 
TURBOchannel 

• Section 9.1.3.5 

Describes the device specification for devices that run on the VMEbus 

• Section 9.1.3.6 

Describes the device specification for devices that run on the TURBOchannel 

ULTRIX fields interrupts from devices and dispatches the appropriate device driver 
interrupt routine to service the interrupt. Typically, interrupt service routines handle 
the transfer of data to and from a device. On output, the interrupt routine may 
be called to notify the completion of a Direct Memory Access (DMA) output request. 
Similarly on input, the interrupt routine is called when there is input data 
available from the device. 

The interrupt routine may also be called for device status reporting purposes. 
These events may be caused by the generation of device-specific errors. For terminal 
devices, the interrupt routine may be called to report transitions of modem 
signals. 

The interface to the interrupt routine is the same regardless of the bus on which 
the driver operates. For VMEbus and TURBOchannel device drivers, the interface to 
the interrupt routine is expressed in the following function definition: 

anydrvinterrupt( unit) 
int unit; 

unit Specifies the logical unit number of the controller or device that is 
interrupting. You specified this logical unit number in the system 
configuration file. This logical unit number is used as an index into 
the driver's data structures to obtain per-device state and information. 
See Section 9.1.3.3 for information on how to specify a controller's 
name and logical unit number and the first and second CSR addresses 
in the system configuration file. See Section 9.1.3.5 for information 
on how to specify a device's name and logical unit number and the 
first and second CSR addresses in the system configuration file. 

4.11 Select Section 
The select section applies only to character device drivers, and it contains a select 
routine. You define the entry point for a character driver's select routine in the 
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cdevsw table. See Section 9.1.1 for a description of the cdevsw table. 

The select routine determines whether data is available for reading and whether 
space is available for writing data. The select system call is most frequently 
associated with terminal devices. The select system call is used to determine that 
there are characters available in the terminal input queue for reading. This system call 
is also used to indicate that there is available space in the terminal's output queue to 
accept bytes to be output to the terminal device. For most terminal device drivers, the 
select routine is implemented by the general kernel terminal interface select 
routine called ttselect. 

For nonterminal type character devices that do not support nbufio, the select 
routine is implemented by the kernel routine sel true, which returns true for any 
select request. In this situation, the select routine returns true because all transfers 
are synchronous operations and it should always be possible to read and write to the 
device. 

For nonterminal type character devices that do support nbufio, the select routine 
is implemented by the kernel routine asyncsel. This is applicable to disk and 
tape drivers. The asyncsel routine returns a value of 1 to indicate that there is a 
nonbusy buffer available for reading or writing purposes. If all buffers used for nbufio 
are presently busy, the asyncsel routine returns zero (0) to note this busy status. 

The interface to the select routine is the same regardless of the bus on which the 
driver operates. For VMEbus and TURBOchannel device drivers, the interface to the 
select routine is expressed in the following function definition: 

anydrvselect( dev, rwflag) 
dev_t dev; 
int rwflag; 

dev 

rwflag 

Value 

FREAD 

FWRITE 

Specifies the major and minor device numbers for this device. The 
minor device number is used to determine the logical unit number for 
the device on which the select operation will be performed. 

Specifies the read/write flag. You can set the rwflag argument to one 
of these constants: 

Meaning 

Select on input data 

Select on device being ready to accept more output 

4.12 Memory Map Section 
The memory map section applies only to character device drivers and it contains an 
mmap routine. You define the entry point for a character driver's mmap routine in 
the cdevsw table. See Section 9.1.1 for a description of the cdevsw table. 

A device driver's memory map routine is invoked by the kernel as the result of an 
application calling the mmap system call. An application calls mmap to map a 
character device's memory into user address space. The user address space is 
inherited on a fork and is unmapped automatically on a process exit or exec. (An 
application can also explicitly unmap a previously mapped device memory by calling 
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the munmap system call. See the Reference Pages Section 2: System Calls for 
descriptions of the mmap and munmap system calls.) 

You need to consider the following when writing a memory map routine for your 
driver: 

• The interface to the memory map routine 

• Mapping to nonexistent memory 

• Reading from nonexistent memory 

• Writing to nonexistent memory 

Each of these considerations is discussed in the following sections. 

4.12.1 The Memory Map Routine 

The interface to the memory map routine is the same regardless of the bus on which 
the driver operates. For VMEbus and TURBOchannel device drivers, the interface to 
the memory map routine is expressed in the following function definition: 

int anydrvmmap(dev, off, prot) 
dev_t dev; 
off_t off; 
int prot; 

dev Specifies the major and minor device number for this device. The 
minor device number is used to determine the logical unit number for 
the character device whose memory is to be mapped. 

off Specifies the offset in bytes into the character device's memory. The 
offset must be a valid offset into device memory. 

prot Specifies the protection flag for the mapping. The protection flag is 
the bitwise inclusive OR of these valid protection flag bits defined in 
/usr/sys/h/mman.h: 

Value Meaning 

PROT READ Pages can be read 

PROT WRITE Pages can be written 

The memory map routine, if successful, returns the page frame number corresponding 
to the page at the byte offset specified by the off argument. Otherwise, the memory 
map routine returns -1. 

4.12.2 Mapping to Nonexistent Memory 

Using the memory map interface, a user process can map nonexistent device memory 
into its address space. One way this can occur is when the device memory being 
mapped does not begin or end on a page boundary, as illustrated in Figure 4-2. 
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Figure 4-2: Mapping Nonexistent Device Memory 
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• The address space of the calling process where the device memory is to be 
mapped. 

• The memory for some character device. The lenl symbol represents the number 
of bytes the calling process wants to map into its address space. However, the 
number of bytes that is actually mapped is represented by the len2 symbol and 
includes the shaded area. This shaded area can be nonexistent device memory or 
it can belong to another device. The reason that len2 bytes get mapped is that 
the requested length (lenl) does not begin and end on a page boundary. 

A second way that a user process can map nonexistent device memory into its 
address space is by making a single call to the rnrnap system call to map both CSRs 
and device memory. However, if the CSRs and the device memory are not 
contiguous, nonexistent memory can be mapped. 

4.12.3 Reading from Nonexistent Memory 

When a user process initiates a read from nonexistent device memory, the kernel 
delivers synchronously to this process a SIGBUS (bus error) signal. The default 
action of the SIGBUS signal is to terminate (kill) the process that initiated the read. 

4.12.4 Writing to Nonexistent Memory 
The way writes to nonexistent memory are dealt with is machine-dependent. On 
some hardware architectures, including Digital RISC, a write to 1/0 space is buffered 
by hardware as illustrated in Figure 4-3. 
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Figure 4-3.: Writes to 1/0 Space on Digital RISC Architecture 
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On such architectures, a write to nonexistent memory has the following 
characteristics: 

• The hardware generates a bus timeout. 

• The bus timeout is asynchronous to the user process initiating the write. 

• The hardware provides only minimal state information, namely the physical 
address at which the timeout occurred. 

• The hardware does not provide any information on whether the timeout was 
caused by a kernel or user reference. 

An ideal policy for dealing with bus timeouts is the following: 

• If a timeout is caused by a user reference, the kernel machine check code 
locates and kills the process that initiated the write. 

• If a timeout is caused by a kernel reference, the kernel machine check code 
crashes the processor. A kernel access can arise from the device driver, as 
noted. 

This policy cannot be implemented because: 

• The hardware provides only the physical address at which the timeout occurred. 
And, since the physical address can be mapped by more than one process, it is 
impossible to determine the exact process that caused the timeout. 

• A kernel write cannot be distinguished from a write by a user level process. 

Because of these restrictions, ULTRIX uses the following policy. First, an attempt is 
made to kill all the processes that map the physical address, not just the process that 
caused the timeout. If no such processes are found, the write is assumed to originate 
from the kernel, and the kernel machine check code crashes the machine. 
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Part Ill: Data Structures, Kernel Routines, and 
Autoconfiguration 





Data Structures Used by Device Drivers 5 

Data structures are the mechanism used to pass information between the UL TRIX 
kernel and device driver routines. Because device drivers written for devices 
connected to the VMEbus or TURBOchannel are structured like UNIBUS or Q-bus 
drivers, they use some of the same structures. This chapter describes the existing 
ULTRIX structures pertinent to VMEbus and TURBOchannel device drivers. In 
addition, the chapter describes newly defined structures used exclusively by VMEbus 
device drivers. 

Specifically, the chapter discusses the following: 

• Data structures used by both VMEbus and TURBOchannel device drivers 

• Data structures used only by VMEbus device drivers 

5.1 Data Structures Used by VMEbus and TURBOchannel 
Device Drivers 

The data structures discussed in this section are used in I/O operations. Any device 
driver, including VMEbus and TURBOchannel device drivers, can reference these 
structures. The data structures used in 1/0 are as follows: 

• buf 

• file 

• uio 

The section also discusses the following UNIBUS data structures used by VMEbus 
and TURBOchannel drivers: 

• uba driver 

• uba ctlr 

• uba device 

5.1.1 The buf Structure 
The buf structures describe arbitrary 1/0, but are usually associated with block 1/0 
and physio. A systemwide pool of buf structures exists for block 1/0; however, 
many device drivers also include locally defined bu f structures. Table 5-1 lists the 
members of the bu f structure that a device driver can reference. 



b_flags 

Table 5-1: Members of the buf Structure Used by Device Drivers 

Member Name 

b_flags 

b f orw 

b back 

av f orw 

av back 

b bcount 

b error 

b dev 

b blkno 

b addr 

b resid 

b iodone 

Data Type 

long 

struct buf * 

struct buf * 

struct buf * 

struct buf * 

long 

short 

dev t 

daddr t 

caddr t 

long 

Description 

Specifies binary status flags. 

Specifies a hash chain. 

Specifies a hash chain. 

Specifies the position on the free list if the 
b_flags member is not set to B_BUSY. 

Specifies the position on the free list if the 
b_flags member is not set to B_BUSY. 

Specifies the size of the requested transfer, 
in bytes. 

Specifies that an error occurred on this data 
transfer. 

Specifies the major/minor device number. 

Specifies the block number on the partition 
of a disk. 

Specifies the address of the associated 
buffer. 

Specifies the data (in bytes) not transferred 
because of some error. 

int ( *b_iodone} () Specifies the routine called by iodone. 

The following explains some of these members in more detail. 

The b flags member contains binary status flags. These flags indicate how a 
requestls to be handled and the current status of the request. The following flags are 
applicable to device drivers: 

Flag 

B READ 

B DONE 

B ERROR 

B BUSY 

B PHYS 

Meaning 

This flag is set if the operation is read and cleared if the 
operation is write. 

This flag is cleared when a request is passed to a driver 
strategy routine. The device driver writer must set this 
flag when the operation has been completed or aborted. 

Specifies that an error occurred on this data transfer. 

This flag indicates that the buffer is in use. 

This flag indicates that the associated data is in user address 
space. 
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~lag 

B WANTED 

Meaning 

If this flag is set, it indicates that some process is waiting for 
this buffer. The device driver should issue a call to the 
wakeup kernel routine when the buffer is freed by the 
current process, passing the address of the buffer as an 
argument to it. 

av_forw and av_back 

The av_ f o rw and av_ back members specify the position on the free list if the 
b flags member is not set to B BUSY. If b flags is set to B BUSY, a device 
driver can use the av _forw and -av _back members for other PUrPOSes besides 
queueing. 

b_error and b_resid 

b_dev 

The b _error member specifies that an error occurred on this data transfer. The 
b_resid member specifies the data (in bytes) not transferred because of some error. 
When a data transfer does not complete, the device driver should do the following: 

• Set the error code in b error to one of the values defined in 
/usr/sys/h/errno~h. 

• Set the b _res id member to the number of bytes that could not be transferred. 

• Set the flag B ERROR in the b_flags member. 

The b dev member specifies the major/minor device number. Device drivers often 
use the-minor number to select one unit or drive when several are attached to the 
identic~l controller. You can use the major and minor macros to obtain the 
major and minor number. See Appendix B for descriptions of these macros. 

b_iodone 

The b_iodone member specifies the routine called by iodone. The driver 
routine calls the iodone routine when a data transfer completes. The iodone 
routine then calls the routine pointed to by the b iodone member. 

5.1.2 The file Structure 

There is one f i 1 e structure for each open file in the system. UL TRIX allocates and 
initializes this file structure when a file is opened. Table 5-2 lists the member of 
the file structure that a device driver can reference. 
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Table 5-2: Member of the file Structure Used by Device Drivers 

Member Name 

f_flag 

5.1.3 The uio Structure 

Data Type 

int 

Description 

Specifies file descriptors associated with the 
open file. These descriptors are represented 
by constants defined in 
/usr/sys/h/file.h. 

The uio structure describes 1/0, either single vector or multiple vectors. Table 5-3 
lists the members of the uio structure that a device driver can reference. Typically, 
device drivers do not manipulate the members of this structure. However, they are 
presented here for the purpose of understanding the uiomove kernel routine, which 
operates on the members of the u i o structure. 

Table 5-3: Members of the uio Structure Used by Device Drivers 

Member Name 

uio iov 

uio iovcnt 

uio off set 

uio_segflg 

uio resid 

uio_flag 

Data Type 

struct iovec * 

int 

int 

int 

int 

int 
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Description 

Specifies a pointer to the first i ove c 
structure. The iovec structure has two 
members: one that specifies the address of 
the segment and the other that specifies the 
size of the segment. The system allocates 
these iovecs contiguously. 

Specifies the number of i ove c structures. 

Specifies the offset within the file. 

Specifies the value that indicates the 
segment type. This member can be set to 
one of these values: UIO USERSPACE 
(the segment is from the user data space); 
UIO_SYSSPACE (the segment is from the 
system space); or UIO_USERISPACE (the 
segment is from the user I space). 

Specifies the number of bytes that still need 
to be transferred. 

Contains file descriptor flags associated 
with the file for this I/O operation. This 
member gets set by read and write 
system calls according to the corresponding 
field in the file descriptor. Possible values 
are contained in /usr I sys /h/ file. h. 



5.1.4 The uba_driver Structure 
The ub a_ driver structure is used by ULTRIX to probe a device and to tie device 
driver code to ULTRIX code. The device driver writer must correctly initialize the 
members of this structure in the device driver code. Table 5-4 lists the members of 
the uba driver structure that a device driver can reference. 

Table 5-4: Members of the uba_driver Structure Used by Device Drivers 

Member Name 

ud_probe 

ud slave 

ud attach 

ud_dgo 

ud addr 

ud dnarne 

ud dinf o 

ud rnnarne 

ud rninf o 

ud xclu 

Data Type 

int (*ud_probe) () 

int (*ud_slave) () 

int (*ud_attach) () 

int (*ud_dgo) () 

Description 

Specifies a pointer to the driver's 
probe routine. 

Specifies a pointer to a slave 
routine located within the device 
driver. 

Specifies a pointer to an attach 
routine located within the device 
driver. 

Specifies a pointer to a go routine 
located within the device driver. 
This routine is not used by 
VMEbus and TURBOchannel 
device drivers. 

u short * Specifies the device's CSR 
address. This member is not used 
by VMEbus and TURBOchannel 
device drivers. 

char * Specifies the name of the device. 

struct uba device * * Specifies an array of pointers to 
uba device structures accessed 
by thls device driver. This array is 
indexed with the unit number, as 
specified in the ui_unit 
member of the uba device 
structure. 

char * Specifies the name of the 
controller. 

struct uba ctlr ** Specifiesanarrayofpointersto 

short 

uba ct 1 r structures accessed by 
this device driver. This array is 
indexed with the controller number 
as specified in the urn_ctlr 
member of the uba ctlr 
structure. 

Specifies the driver's need to 
exclusively use buffer data paths 
(bdps ). This member is not used 
by VMEbus device drivers. 
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Table 5-4: (continued) 

Member Name Data Type Description 

ud addrl size - -

ud_addrl_atype 

ud addr2 size - -

ud_addr2_atype 

int 

int 

int 

int 

Specifies the size in bytes of the 
first CSR area. This area is 
usually the control status register 
of the device. 

Specifies the address space and 
data size of the first CSR area. 

Specifies the size in bytes of the 
second CSR area. This area is 
usually the data area and is used 
with devices that have two 
separate CSR areas. 

Specifies the address space and 
data size of the second CSR area. 

You can set the ud addrl a type and ud addr2 a type members to the 
bitwise inclusive OR of: - - -

• One of the nine address space and data size constants 

• One of the four byte swapping constants 

These constants appear in this table: 

Value 

VMEA16D16 

VMEA16D32 

VMEA24D08 

VMEA24D16 

VMEA24D32 

VMEA32D08 

VMEA32D16 

VMEA32D32 

VME BS NOSWAP 

VME BS BYTE 

VME BS WORD 
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Meaning 

Specifies a request for the 16-bit address space and the 16-bit 
data size. 

Specifies a request for the 16-bit address space and the 32-bit 
data size. 

Specifies a request for the 24-bit address space and the 8-bit 
data size. 

Specifies a request for the 24-bit address space and the 16-bit 
data size. 

Specifies a request for the 24-bit address space and the 32-bit 
data size. 

Specifies a request for the 32-bit address space and the 8-bit 
data size. 

Specifies a request for the 32-bit address space and the 16-bit 
data size. 

Specifies a request for the 32-bit address space and the 32-bit 
data size. 

Specifies no byte swapping. 

Specifies byte swapping in bytes. 

Specifies byte swapping in words. 



Value Meaning 

VME BS LWORD Specifies byte swapping in long words. 

You need to declare and initialize a uba_dri ver structure in your device driver, 
so you need to be more familiar with this structure than with other structures 
discussed in this chapter. The uba_dri ver structure declaration is as follows: 

struct uba_driver { 

} ; 

int ( *ud _probe) () ; 
int (*ud_slave) (); 
int (*ud_attach) (); 
int (*ud_dgo) (); 
u short *ud_addr; 
char 
struct 
char 
struct 
short 
int 
int 
int 
int 

*ud_dnarne; 
uba device **ud_dinfo; 
*ud_rnnarne; 
uba ctlr **ud_rninfo; 
ud_xclu; 
ud_addrl size; 
ud_addrl_atype; 
ud_addr2_size; 
ud_addr2_atype; 

The following example shows the declaration of a uba driver structure for a 
VMEbus device driver: 

struct uba driver xxdriver = {xxprobe, 0, 0, 0, 0, "xx", xxdinfo, "0", 
NULL, 0, Ox20, VMEA16Dl6, 0,0}; 

In the example code, the xxdr i ve r structure members are initialized as follows: 

• The ud _probe member is initialized to a probe routine called xxprobe. 

• The ud slave, ud attach, and ud dgo members are initialized to zero 
(0), because this driver does not use any of these routines. 

• The ud addr member is initialized to zero (0), because this member is not 
used by VMEbus device drivers. 

• The ud_dname member is initialized to the name of the device, which is xx. 

• The ud _ dinf o member is initialized to the name of the pointer to an array of 
uba_device structures, which is xxdinfo. 

• The ud mname member is initialized to zero (0) because there is no controller 
for this device. 

• The ud minfo member is initialized to NULL, because this device driver 
does notreference any information in the uba ctlr structures. 
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• The ud xcl u member is initialized to zero (0), because this member is not 
used by VMEbus device drivers. 

• The ud addrl size member is initialized to the size of the first CSR area, 
which is-Ox20 bytes. 

• The ud_addrl_atype member is initialized to the address space and data 
size of the first CSR area, which is the constant VMEAl 6Dl 6. This constant 
represents the A 16 address space and a 16-bit data size. 

• The ud_addr2_size is initialized to zero (0), because it is not used by this 
device driver. 

• The ud_addr2_atype is initialized to zero (0), because it is not used by this 
device driver. 

This example shows the declaration of a uba driver structure for a 
TURBOchannel device driver: 

struct uba_driver qacdriver = 

{ qacprobe, 0, qacattach, 0, qacstd, "qac", qacinfo }; 

In the example code, the qacdri ver structure members are initialized as follows: 

• The ud _probe member is initialized to a probe routine called qacprobe. 

• The ud slave member is initialized to zero (0), because this driver does not 
use a slave routine. 

• The ud attach member is initialized to an attach routine called 
qacattach. 

• The ud _ dgo member is initialized to zero (0), because this driver does not use 
a go routine. 

• The ud addr member is initialized to qacstd, which is an array of type 
u short. The qacstd declaration is as follows: 

u short qacstd []={0}; 

This declaration indicates that the field must be filled in with the address of an 
array. The array has just one zero entry to indicate that this member is not 
used. 

• The ud _ dnarne member is initialized to the name of the device, which is 
qac. 

• The ud dinf o member is initialized to the name of the uba device 
structure-declared in this device driver, which is qacinf o. 
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5.1.5 The uba_ctlr Structure 
The uba ct 1 r structure contains members that store hardware resources 
information and commands for communication between UL TRIX and the device 
driver. The following describes characteristics of the uba _ct 1 r structure pertinent 
to device driver writers: 

• Each uba _ct 1 r structure contains a back pointer to a bus header structure. 
For the VMEbus, the bus header structure is vba _hd. 

• Each uba_ctlr structure contains at least one System Virtual Address (SVA) 
of the device CSRs in onboard memory. 

Table 5-5 lists the members of the uba ctlr structure that a device driver can 
reference. Note that con fig generateSthe values for members from um driver 
to um_ i vn um from information provided in the system configuration file.-

Table 5-5: Members of the uba_ctlr Structure Used by Device Drivers 

Member Name 

um driver 

um ctlrname 

um ctlr 

um_adpt 

um nexus 

um rctlr 

um ubanum 

um vbanum 

um alive 

um intr 

Data Type 

struct uba driver -

char * 

short 

int 

short 

short 

short 

short 

short 

int (**um_intr) () 

* 

Description 

Specifies a back pointer to a 
uba driver structure. 

Specifies the name of the 
controller. 

Specifies the controller index into 
the device driver, for example, tdO. 

Specifies the adapter number 
(consecutive adapter number). 

Specifies the nexus on the I/O bus 
that the controller is on. 

Specifies the remote controller 
number. 

Specifies the uba number the 
controller is on. 

Specifies the VMEbus adapter 
number as specified in the system 
configuration file. For example, a 
VMEbus entry would have these 
specifications: vbaO, vbal, vba2, 
and so forth. (Note that this 
member stores only the VMEbus 
adapter number.) 

Specifies whether the controller 
exists. The value 1 indicates the 
controller exists and the value zero 
(0) indicates the controller does 
not exist. 

Specifies an array of interrupt 
handlers. These interrupt handlers 
are called when the device 
generates interrupts. 
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Table 5-5: (continued) 

Member Name Data Type 

urn addr caddr t 

um addr2 caddr t 

um_bus_priority int 

urn ivnurn int 

um_priority int 

um_physaddr caddr t 

um hd struct uba hd * 

urn vbahd struct vba hd * 

urn ubinf o int 

urn tab struct buf 

5.1.6 The uba_device Structure 

Description 

Specifies the System Virtual 
Address (SVA) corresponding to 
the CSR specified in the system 
configuration file. 

Specifies the System Virtual 
Address (SVA) corresponding to 
the second CSR specified in the 
system configuration file. 

Specifies the configured VMEbus 
priority level of the device. 

Specifies the first configured 
VMEbus device interrupt vector 
number for this device. 

Specifies the main bus request 
level of the VMEbus device. 
Device drivers use this member for 
synchronizing (through the splx 
kernel routine) to the 
corresponding VMEbus devices 
and in blocking out interrupts. 

Specifies the physical address of 
the device in I/O space. This 
member corresponds to the 
member that stores the SV A, 
urn addr. 

Specifies a back pointer to a 
uba hd structure. 

Specifies a back pointer to a 
vba hd structure. 

Saves the UNIBUS or VMEbus 
mapping register information. 

Specifies a buf structure used as 
a queue of devices for this 
controller and a queue for pending 
transfers. 

The uba _device structure has the following characteristics pertinent to device 
driver writers: 

• There is one uba device structure for each data device. The device can be 
a slave or a pure device. 

• Each uba_device structure contains back pointers to uba_hd, 
uba_ctlr, uba_driver, and vba_hd (for VMEbus) structures. 

• Each uba device structure contains at least one System Virtual Address 
(SVA) andphysical address of the device CSRs. 
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Note that con fig generates the values for members from u i _driver to 
u i _ i vn um from information provided in the system configuration file. 

Table 5-6 lists the members of the uba device structure that a device driver can 
reference. 

Table 5-6: Members of the uba_device Structure Used by Device 
Drivers 

Member Name 

ui driver 

ui devname -
ui unit 

ui_adpt 

ui nexus 

ui rctlr 

ui ubanum -

ui vb an um 

ui ctlr 

ui slave 

ui intr 

ui addr 

ui addr2 

Data Type 

struct uba driver 

char * 

short 

int 

short 

short 

short 

short 

short 

short 

int (**ui_intr) () 

caddr t 

caddr t 

* 

Description 

Specifies a back pointer to a 
uba driver structure. 

Specifies the name of the device. 

Specifies the unit number of the 
device on the system. 

Specifies the adapter number 
(consecutive adapter number). 

Specifies the nexus on the I/O bus. 

Specifies the remote controller 
number. 

Specifies the uba number the 
device is on. 

Specifies the VMEbus adapter 
number as specified in the system 
configuration file. For example, a 
VMEbus entry would have these 
specifications: vbaO, vbal, vba2, 
and so forth. (Note that this 
member stores only the VMEbus 
adapter number.) 

Specifies the controller number 
associated with this device, if it 
exists. If it does not exist, this 
member contains the value -1. 

Specifies the slave device number 
on the controller. 

Specifies an array of interrupt 
handlers. These interrupt handlers 
are called when the device 
generates interrupts. 

Specifies the System Virtual 
Address (SVA) corresponding to 
the CSR specified in the system 
configuration file. 

Specifies the System Virtual 
Address (SVA) corresponding to 
the second CSR specified in the 
system configuration file. 
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Table 5-6: (continued) 

Member Name Data Type 

ui dk short 

ui_f lags int 

ui_bus_priority int 

ui ivnum int -

ui_priority int 

ui alive short -
ui_type short 

ui_physaddr caddr t -

ui f orw struct uba device -

ui mi struct uba ctlr * 

ui hd struct uba hd * 

ui vbahd struct vba hd * 

5.2 VMEbus Data Structures 

* 

Description 

If this member is greater than or 
equal to zero (0), then it can be 
used as an index into the set of dk 
arrays defined in 
/usr/sys/h/dk.h. These 
arrays are used to hold 
performance data displayed by the 
iostat command. 

Saves the flags from the system 
configuration file, if any flags were 
specified. 

Specifies the configured VMEbus 
priority level of the device. 

Specifies the first configured 
VMEbus device interrupt vector 
number for this device. 

Specifies the main bus request 
level of the device. 

Specifies whether the device exists. 

Specifies driver-specific type 
information. 

Specifies the physical address for 
standalone (dump) code. 

Specifies a list of devices on a 
controller. 

Specifies a back pointer to a 
uba ctlr structure. If 
connected to the device, this 
uba ct 1 r structure identifies the 
controller. 

Specifies a back pointer to a 
uba hd structure. 

Specifies a back pointer to a 
vba_hd structure. 

In addition to the structures discussed previously, the VMEbus device driver writer 
must understand these structures: 

• vba hd 

• vbadata 

The members of these structures pertinent to VMEbus device drivers are discussed in 
the following sections. 
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5.2.1 The vba_hd Structure 
The vba_hd structure holds a pointer to the interrupt vector table for the VMEbus 
adapter and the VMEbus adapter's address in physical and virtual memory. At boot 
time, ULTRIX determines which devices are attached to the VMEbus adapters and 
fills in the interrupt vectors associated with each device as specified in the system 
configuration file. During normal operation, UL TRIX allocates resources and returns 
them to the vba hd structure. Table 5-7 lists the members of the vba hd 
structure that a VMEbus device driver can reference. 

Table 5-7: Members of the vba_hd Structure Used by Device Drivers 

Member Name Data Type 

next struct vba hd * 

vba_type int 

vbanum int 

adptnum int 

vbavirt caddr t 

vbaphys caddr t 

pio_base caddr t 

vbadata struct vbadata * 

intr vec int (**intr_vec) () 

vbavec_page int (**vbavec_page) 

vba err int (*vba_err) () 

vba vmewant short 

5.2.2 The vbadata Structure 

() 

Description 

Specifies a pointer to the next vba hd 
structure. 

Specifies the VMEbus adapter type. For 
the DECsystem 5000 Model 200 processor, 
this member is set to VBA 3VIA (the 
PMABV-AA adapter suppOrted by the 
DECsystem 5000 Model 200 processor). 

Specifies the VMEbus adapter number as 
provided in the system configuration file for 
this VMEbus adapter. 

Specifies the adapter number (consecutive 
adapter number). 

Specifies the virtual address of the VMEbus 
adapter. 

Specifies the physical address of the 
VMEbus adapter. 

Specifies the base of PIO mapped space. 

Specifies a pointer to a vbadata structure 
for this VMEbus adapter. 

Specifies the interrupt vector routines for 
the DECstation 5000 Model 200 processor. 

Specifies the interrupt vector routines for 
other processors. 

Specifies a pointer to the error routine for 
this VMEbus adapter. 

Specifies that some process is waiting for 
VMEbus mapping resources. 

The vbadata structure is used by ULTRIX to customize a variety of VMEbus 
parameters. Table 5-8 lists the members of the vbadata structure. 
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Table 5-8: Members of the vbadata Structure 

Member Name Data Type 

vme brl 

arb to 

arb_type 

intr mask 

sys con 

release 

asc 

int 

unsigned int 

int 

int 

int 

int 

int 

Description 

Specifies the VMEbus request level for 
adapter master cycles. 

Specifies the arbitration timeout period. 

Specifies the arbitration method, for 
example, round-robin arbitration, single 
level arbitration, and so forth. 

Specifies the interrupt priority levels 
handled by the adapter. You can set this 
member to the bitwise inclusive OR of the 
valid interrupt priority levels to be handled 
by this adapter. These are defined in 
/usr/sys/data/vba_data.c. 

Specifies if the VMEbus adapter is the 
VMEbus system controller. 

Specifies the VMEbus release modes. 

Specifies whether the DMA PMRs are 
mapped to the first or second gigabyte of 
VMEbus address space. 

The members of the vbadata structure are initialized to values that should provide 
proper VMEbus operation for most applications. You should be careful about 
making any modifications to the initialized values for these members, because not all 
adapters support all of these values. 

Table 5-9 lists the initialized values for the members of the vbadata structure. If 
you need to modify the values for any of these members, see the file 
/usr/sys/data/vba_data.c. 

Table 5-9: Initialized Values of the vbadata Structure 

Value 

VME BR 3 

VME ARBTO 64US - -

VME ARB RR 

VME ALL IPL 

VME SYS CONTROLLER 

VME ROR 

5-14 Data Structures Used by Device Drivers 

Description 

Bus request level for master cycles 
is level 3. 

Arbitration time out is 64 
microseconds. 

Arbitration is round robin. 

All interrupt levels are handled by 
the adapter. 

The adapter is a VMEbus 
controller. 

VMEbus release mode is release 
on request. 



Table 5-9: (continued) 

Value Description 

VME MAP LOW The DMA PMRs for this adapter 
are mapped to the first gigabyte in 
the VMEbus address space. 
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Kernel Routines Used by Device Drivers 6 

This chapter describes when and why you would use the kernel routines developed 
for use with VMEbus and TURBOchannel device drivers. In addition, the chapter 
discusses when and why you would use certain other kernel routines that can be used 
by any device driver. The chapter provides brief examples (and references to more 
complete examples when they appear in other chapters) to illustrate how to use these 
routines in device drivers. For complete descriptions of the definitions and 
arguments for these and other kernel routines, see Appendix B. 

Specifically, the chapter discusses kernel routines used by: 

• VMEbus device drivers 

• TURBOchannel device drivers 

• Any device driver 

6.1 Kernel Routines Used by VMEbus Device Drivers 
When writing device drivers for the VMEbus, you need to be familiar with the kernel 
routines that: 

• Allocate VMEbus address space (for DMA) 

• Release VMEbus address space (for DMA) 

• Obtain the VMEbus address 

• Perform byte swapping operations 

• Perform read-modify-write operations 

The two kernel routines that allow VMEbus drivers to log errors are discussed in 
Chapter 8. 

6.1.1 Allocating VMEbus Address Space 

Direct Memory Access (DMA) is a mechanism for allowing a peripheral device to 
access main memory without the help of the CPU. 

In ULTRIX, you can allocate the DMA space and then set up the mapping registers 
for DMA transfer by calling the vballoc or the vbasetup routines or botQ.. 
The primary difference between the two routines is that vbasetup takes a pointer 
to a buf structure as an argument, while vballoc takes an address and the 
number of bytes as arguments. You would use vbasetup when a buf structure is 
provided to the driver. All file system I/0 and most user 1/0 occur using a bu f 
structure. You would use the vballoc routine for driver-initiated I/0, for 
example, device command packets. Each of these routines returns a VMEbus address 
that is mapped to the buffer. If the requested mapping could not be performed, each 
of these routines returns a value of zero (0). 



The following code fragments illustrate the similarities and differences between the 
call to the two routines: 

/*******************************************************************/ 
/* Code fragment for call to vballoc */ 

/* Declarations */ 

#define BUFSIZ 512 

unsigned int vrneaddr; 
register struct uba_device *devptr; 
char buffer[BUFSIZ]; 

/* Call to vballoc */ 
vrneaddr = vballoc (devptr->ui_vbahd~[] 

buffer, BUFSIZ, t2J 
VME DMA I VMEA32D32 I VME_BS_NOSWAP, 131 
0) ;-m 

/*******************************************************************/ 
/* Code fragment for call to vbasetup */ 

/* Declarations */ 

struct buf *bp; 

unsigned int vmeaddr; 
register struct uba_device *devptr; 
/* Call to vbasetup */ 
vrneaddr = vbasetup (devptr->ui vbahd, [] 

bp, l2:I -
VME DMA I VMEA32D32 I VME_BS_NOSWAP, 131 
0);~ 

[] The code fragments show that both routines take as the first argument a back 
pointer to the vba_hd structure associated with this device. Note that the 
back pointer is accessed through the ui_ vbahd member of devptr, which 
is a pointer to a uba_device structure. 

12] The second argument passed to vballoc is an argument (buffer) that 
represents the beginning virtual address of the buffer to be mapped. In 
addition, a third argument (BUFSIZ) that specifies the byte count (size) of this 
buffer is passed. 
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For vbaset up, the second argument is a pointer to a buf structure. 

~ Both routines pass the bitwise inclusive OR of the valid VMEbus flags bits: 
vballoc passes the bits as the fourth argument and vbasetup passes the 
bits as the third argument. 

Some devices may want to perform DMA operations with another VMEbus 
device. To manage the addresses used for these DMA operations, you can set 
the flags bits argument for the vbasetup and vballoc routines to 
VME_RESERV. This value reserves space in the VMEbus 1/0 space (the A16 
1/0 space). The VMEbus address returned will be used in the VMEbus 1/0 
space for the specified VMEbus address space. 

~ Both routines pass a value to indicate some address in the VMEbus address 
space: vballoc passes this value as the fifthi.-argument and vbaSEftup 
passes the value as the fourth argument. In the code frgaments, the value 
passed is zero (0), which indicates that these routines use the next available 
VMEbus address in the A24 or A32 DMA space. It is possible to pass a 
nonzero value, iri which case these routines attempt to map the buffer to the 
requested VMEbus address. 

See Section 10.2.6 for a more detailed example of how to call the vbasetup 
routine in a DMA driver. 

6.1.2 Releasing VMEbus Address Space 
To release the VMEbus address space allocated in a previous call to vballoc or 
vbasetup, use vbarelse. This routine releases the resources (map registers) 
used to map the specified VMEbus address. 

The only situation in which you would not release the resources is when the memory 
needs to be mapped for an extended length of time (for example, common data 
structures). The following code fragment illustrates a call to vbarelse based on 
the code fragments presented in the previous section for vballoc and 
vbasetup: 

/*******************************************************************/ 
/* Code fragment for call to vbarelse */ 

vbarelse (devptr->ui_vbahd, vmeaddr); [1] 

[1] The first argument is the vba hd structure on which the map registers were 
allocated in a previous call to -;balloc or vbasetup. 

The second argument is the VMEbus address that was mapped to the specified 
buffer. This address was returned in a previous call to vballoc or 
vbasetup. 

6.1.3 Obtaining the VMEbus Address 
There are situations when your device driver may need to know the VMEbus address 
that corresponds to the System Virtual Address (SVA) that was passed to the driver's 
probe routine. To retrieve this address, you call the vba _get_ vmeaddr routine. 
Typically, you call this routine to retrieve the VMEbus address used in device-to-
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device DMA. The following code fragment illustrates a call to 
vba _get_ vrneaddr: 

/*******************************************************************/ 
/* Code fragment for call to vba_get_vmeaddr */ 

caddr_t vmeaddr; 
u_long addr; 
register struct uba_device *devptr; 
addr = devptr->ui_addr; 

vmeaddr vba get vmeaddr (devptr->ui vbahd, 111 
- - addr); 12] 

111 The first argument to vba _get_ vrneaddr is a back pointer to a vba _ hd 
structure. The back pointer is accessed through the ui_ vbahd member of the 
uba_device structure pointed to by devptr. 

l2l The second argument is the SV A for the device. This argument is set to the 
value stored in the ui addr member of the uba device structure 
associated with this deVice. In addition, the ui addr2 member of the 
uba device structure associated with this device would have been used if the 
driver wanted the second CSR space. 

6.1.4 Performing Byte Swapping Operations 

The VMEbus does not specify any particular byte ordering. Because most devices 
use the big endian model and the Digital model is little endian, the following kernel 
routines are provided for drivers to perform byte swapping operations: 

• swap_lw_bytes 

Performs a long word byte swap 

• swap_word_bytes 

Performs a short word byte swap 

• swap_words 

Performs a word byte swap 

Figure 6-1 illustrates a 32-bit ( 4 bytes) quantity that the following code fragments 
will swap. 
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Figure 6-1: Results of Byte Swapping Routines 

n 
buffer1 : Oxaabbccdd 

buffer2: Oxaabbccdd 

buffer3: Oxaabbccdd 
words: Oxccddaabb 

output 

ZK-0258U-R 

The figure also shows what the 32-bit quantity looks like after calling each of the 
byte swapping routines and after executing the printf statements. 

/*******************************************************************/ 
/* Code fragment for call to swap_lw_bytes */ 

unsigned int buffer; i
2 unsigned int result; 

unsigned int *bufpt; 

bufpt = &buffer; ~ 
*bufpt = Oxaabbccdd; l5J 

/* Byte swap using swap lw bytes */ 1§1 
printf("\n bufferl: Ox%x\n",*bufpt); 
result= swap_lw_bytes (*bufpt); 
printf("swap long word bytes: Ox%x\n\n",result); 

/* Byte swap using swap_word_bytes */ IZJ 
printf("\n buffer2: Ox%x\n",*bufpt); 
result= swap word bytes (*bufpt); 
printf(" swap ;ord bytes: Ox%x\n\n",result); 
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/* Byte swap using swap words */ ~ 
printf("\n buffer3: Ox%x\n",*bufpt); 
result= swap words (*bufpt); 
printf(" - swap words: Ox%x\n\n",result); 
swap_word_bytes (buffer); 

11] This line declares a 32-bit ( 4 bytes) quantity that will be swapped by the byte 
swapping routines. 

12] This line declares an argument in which the result of the byte swapping 
operation will be stored. 

~ This line declares a pointer to a buffer pointer. 

~ This line initializes the buffer pointer to the address of buffer. 

1§"1 This line initializes the buffer to the 32-bit quantity (aabbccdd). 

I§] The first call to the print f kernel routine prints the value pointed to by the 
bufpt argument. This value is the 32-bit quantity. The swap_lw_bytes 
routine performs a long word byte swap and returns the result in the result 
argument. The second call to the printf statement prints the result of the 
byte swap, as illustrated in Figure 6-1. Note that swap_lw_bytes swaps all 
four bytes. 

III These lines perform the same tasks as those described previously except 
swap_word_bytes performs a short word byte swap, as illustrated in Figure 
6-1. The figure shows that swap word bytes swaps the individual bytes 
that make up each byte of the 32-bit quantity. 

~ These lines perform the same tasks as those described previously except 
swap_ words performs a word byte swap, as illustrated in Figure 6-1. The 
figure shows that swap_ words swaps the two words. 

6.1.5 Performing Read-Modify-Write Operations 
There are situations when your device driver may need to perform a read-modify­
write to VME-side memory. The vme rmw routine is an interlock primitive that 
emulates a hardware read-modify-write-cycle. You can use it to lock a portion of 
memory, read some specified data that resides in that portion of memory, and modify 
(write) that portion of memory with new data. The following code fragment 
illustrates a call to vme rmw. The context is a device driver that implements its 
own locking scheme on m address space: 

/*******************************************************************/ 
/* Code fragment for call to vme rmw */ 

#define DATA LOCKED -1 
#define SUCCESS 0 
#define DRIVER_LOCK_MASK OxOOOOOOOl 

clear_location (vhp, address_p) l1J 
struct vba_hd *vhp; 
unsigned int *address_p; 
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int new_data = 0; 
int lock mask = DRIVER LOCK MASK; 

J* Perform a read-modify-write */ f2:I 

if vrne rmw (vhp, address_p, new_data, lock_mask,) != 0) 
return (DATA_LOCKED); 

else 
return (SUCCESS); 

[I This routine clears a location and returns zero (0) for success. Note that it takes 
two arguments: the first a pointer to a vba _ hd structure and the second a 
pointer to the data to be cleared. 

f2:I The code fragment shows that the first argument to vme _ rmw is a pointer to 
the vba hd structure associated with this device. 

The second argument passed to vme _ rmw is a pointer to the data to be 
modified. 

The third argument is the new data to be written to this memory location. 

The fourth argument is a lock mask that specifies which bits to check to 
determine if the data is locked. 

6.2 Kernel Routines Used by TURBOchannel Device Drivers 
When writing device drivers for the TURBOchannel, you need to be familiar with 
these kernel routines: tc_enable_option and tc_disable_option. 

The tc enable option routine enables a device's interrupt line to the 
processof. A device driver uses this routine only if the device must have its 
interrupts enabled during configuration. The UL TRIX kernel automatically enables 
the device's interrupts after configuration, depending on what you specified in the 
tc option data table. See Section 9.3 for instructions on setting the tc option 
table so that the kernel enables the device's interrupts after configuration. 

The tc disable option routine disables a device's interrupt line to the 
processof. A device-driver uses this routine only if the device must have its 
interrupts alternately enabled and disabled during configuration or during operation. 

The following code fragment illustrates calls to tc_enable_option and 
tc_disable_option: 

/*******************************************************************/ 
/* Code fragment for calls to tc_enable_option */ 
/* and tc_disable_option */ 

extern struct uba_device *cfbinfo[]; 
int cfb_curs_vsync = 0; 
struct uba_device *cfbinfo[l]; 

Kernel Routines Used by Device Drivers 6-7 



case QIOWLCURSOR: 
cfb_curs_vsync = l; 
*(cfbp->frarnebuffer + IREQ OFFSET) = 0; 
tc_enable_option(cfbinfo[OJ); [] 
while (cfb_curs_vsync) 

sleep(&cfb curs vsync, TTIPRI); l2J 
tc_disable_option(cfbinfo(O]); laJ 
break; 

[] This code fragment uses a switch statement whose corresponding case values 
represent some task performed by this driver. The code fragment picks up with 
the QIOWLCURSOR case value and it illustrates the use of the 
tc enable option and tc disable option routines. The single 
argument passed to tc enable option ls the pointer to the 
uba device structure-associated with device unit 0. Device unit 0 is the 
device whose interrupt line to the processor is enabled. 

12] While the cfb_curs_vsync value is true, the process sleeps. 

la! The interrupt line to the processor for device unit 0 is disabled. 

6.3 Kernel Routines That Can Be Used by Any Device Driver 
When writing device drivers for any bus, including VMEbus and TURBOchannel, 
you need to be familiar with the kernel routines that perform these tasks: 

• Flushing the processor data cache 

• Ensuring a write to 1/0 space completes 

• Obtaining the page frame number (for memory mapping) 

6.3.1 Flushing the Data Cache 
The buff lush routine flushes the processor data cache. A device driver must 
explicitly flush the processor data cache if the device performs DMA-to-host­
memory. The reason for this is that there is no hardware cache coherency mechanism 
on some RISC processors. For example, the 5800 systems support hardware cache 
coherency, while the DECsystem 5400 and DECsystem 5000 Model 200 systems do 
not. 

The following code fragment illustrates a call to buff lush: 

/*******************************************************************/ 
/* Code fragment for call to bufflush */ 

struct buf *bp; 

if (bp->b_flags & B_READ) bufflush(bp); ff) 
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11] The argument passed to buff lush is the pointer to the buf structure. In 
this fragment, if the result of the bitwise AND operation produces a one 
(indicating a read operation), buff 1 us h is called to flush the data cache. 

6.3.2 Ensuring a Write to 1/0 Space Completes 

The wbflush routine ensures a write to I/0 space has completed. Whenever a 
device driver writes to I/O space, the write may be intermittently delayed through the 
imposition of a hardware-dependent system write buffer. Subsequent reads of that 
location will not wait for a delayed write to complete. Either the original or the new 
value may be obtained. Subsequent writes of that location may replace the previous 
value, either in I/O space or in the system write buffer, if its writing had been 
delayed. In this case, the previous value would never have been actually written to 
I/O space. 

Whether a given write to I/O space is delayed and how long this period is depends 
upon the existence of a system write buffer, its size, and its content. In general, 
delayed writes are not a problem. Device drivers need not call wbflush except in 
the following special situations: 

• The write causes a state change in the device, and the change is indicated by a 
subsequent device-induced change in the value of the location being written by 
the device driver. This situation normally exists only during initialization of 
certain devices. 

• The value being written is permanently consumed by the act of writing it. This 
situation exists only for certain specific devices, including some terminal 
devices. 

The following code fragment illustrates a call to wbflush: 

/*******************************************************************/ 
/* Code fragment for call to wbflush */ 

if (reg->csr & ERROR) 
{ 

return(O); 

reg->csr=O; 
wbflush () ; 11] 

11] This code fragment shows that if the result of the bitwise AND operation 
produces a nonzero value (that is, the error bit is set), then the value zero (0) is 
returned. If the result of the bitwise AND operation is a zero value (that is, the 
error bit is not set), then the device's control status register is set to zero (0) and 
the wbflush routine is called to ensure that a write to 1/0 space completes. 
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Note that wbflush takes no arguments. 

6.3.3 Obtaining the Page Frame Number 

When writing a device driver that provides a memory mapping routine, you need to 
obtain the page frame number associated with the address of the device. To 
accomplish this task, you use the vtokpfnum routine. This routine obtains the 
page frame number for the page in the character device's memory that was mapped to 
the kernel virtual address. The following code fragment illustrates a call to 
vtokpfnum: 

/*******************************************************************/ 
/* Code fragment for call to vtokpfnurn */ 

register struct sk_reg_t *sk_reg; 

u int kpf nurn; 

vtokpfnurn (sk_reg+off); l1J 

11] The argument passed to vtokpfnum is the kernel virtual address whose page 
frame number is to be returned. This address is the result of the expression 
whose operands consist of the pointer to the structure that represents the 
device's registers and the offset into the device's memory. You pass these 
arguments to the driver's memory map routine. 
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Device Autoconfiguration 7 

Autoconfiguration is the process by which the UL TRIX operating system determines 
what hardware devices might be present on the system. This chapter describes 
autoconfiguration for devices connected to the VMEbus and TURBOchannel. The 
chapter consists of the following: 

• Autoconfiguration overview 

• Autoconfiguration for VMEbus devices 

• Autoconfiguration for TURBOchannel devices 

7.1 Autoconfiguration Overview 
UL TRIX supports a variety of hardware devices that must be configured during 
system startup. It is not possible to configure all of these devices in advance, 
because on different systems these devices are present in different numbers, at 
different addresses, and in different combinations. To solve this problem, ULTRIX 
supports a static configuration procedure and a dynamic configuration procedure. 
The static procedure defines the set of hardware devices that might be on the system 
and the dynamic procedure identifies the set of hardware devices that are actually 
present on the system. This section presents an overview of the dynamic procedure, 
which is usually referred to as autoconfiguration. For information on the static 
procedure, see the Guide to Configura!ion File Maintenance. 

In general, the autoconfiguration procedure requires that device drivers supply: 

• A probe routine 

• A slave routine 

• An attach routine 

The implementation of these (and possibly additional) routines to accomplish the 
autoconfiguration procedure can differ, depending on the bus for which the device 
driver is being written. The following sections discuss the specifics of 
autoconfiguration for devices connected to the VMEbus and the TURBOchannel. 

7.2 Autoconfiguration for Devices Connected to the VMEbus 
The autoconfiguration procedure for VMEbus devices consists of the following: 

• Controller configuration 

• Device configuration 



7 .2.1 Controller Configuration 

The controller configuration routine does the following when it is called: 

• Calls the adapter code, which maps CSR addresses into VMEbus address space 

• Invokes the controller's probe routine 

• Fills in the configuration database controller entry, if the probe routine 
detects the presence of a controller 

• Prints information about the controller to the console and error log file 

• Sets the controller alive bit in the vba ctlr structure 

• Initializes the interrupt vector table 

• Initializes the controller priority field 

• Searches the configuration database and for each configured slave device on a 
controller: 

Calls the controller s 1 ave routine 

Sets the device alive bit in the configuration database, if the slave 
routine detects a device connected to the controller 

Fills in the configuration database device entry 

Sets the device as alive in the uba device structure 

Calls the device driver's attach routine 

7 .2.2 Device Configuration 

The device configuration routine does the following when it is called: 

• Calls the adapter code, which maps the CSR addresses into VMEbus space 

• Determines if the device is present 

• Invokes the device driver's probe routine 

• Fills in the configuration database device entry, if the probe routine detects a 
device 

• Prints information about the device to the console and error log file 

• Initializes the device priority field 

• Sets the device as alive in the uba device structure 

• Initializes the interrupt vector table 

• Calls the device driver's attach routine 

7.3 Autoconfiguration for Devices Connected to the 
TURBOchannel 

Each TURBOchannel device (option module) has the following characteristics, which 
are defined in the tc slot structure: 
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• The name of the I/0 module as it appears in read only memory (ROM) on the 
device 

• The name of the controller or device attached to the TURBOchannel 

• The TURBOchannel I/0 slot number 

• The number of slots occupied by the 1/0 module 

• A pointer to the interrupt routine 

• The unit number of the device 

• The base physical address of the device 

The ULTRIX operating system uses the information contained in the tc slot 
structure to perform the following tasks during autoconfiguration: 

• Probe TURBOchannel option slots 

• Obtain the 1/0 module's name 

• Map TURBOchannel slot numbers 

Following the discussion of these tasks, there is a brief discussion of the 
tc option table and the system configuration file as it affects TURBOchannel 
deVfce driver writers. You can find the tc option table in 
/usr/sys/data/tc_option_data.c~ 

7.4 Probing TURBOchannel Option Slots 
During system startup, ULTRIX searches the TURBOchannel address space to 
determine which slots actually contain an I/0 module. Each TURBOchannel I/0 slot 
is at a fixed and known physical address. Thus, ULTRIX can search the 
TURBOchannel I/0 slots by their known physical addresses. If the slot contains an 
I/0 module, the driver's probe routine performs device-specific setup and 
initialization that may include forcing the device to interrupt. 

Each 1/0 module must have a ROM with a known format. ULTRIX reads that ROM 
to determine the I/0 module's width (that is, the number of slots it occupies) and to 
obtain the I/0 module's name. 

7.4.1 Obtaining the 1/0 Module's Name 
After probing the TURBOchannel I/0 slots, ULTRIX looks . up the module name in 
the tc option data table to obtain the device or controller name as it is specified 
in the system configuration file. This is an internal table that maps TURBOchannel 
module names to names as they appear in the system configuration file. This internal 
table contains a structure entry for each of the TURBOchannel I/0 options on the 
system. The following example illustrates a sample entry in the system configuration 
file: 

device qacO at ibus? vector qacvint 

The following example illustrates the corresponding entry in the t c _option data 
table: 

struct tc_option tc_option [] = 
{ 

/* module driver intr b4 itr aft a dpt */ 
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/* name name probe attach type conf ig */ 
/* ------ ------ ------- ------- ------ */ 
{ "PMAG-BA II "qac", 0, O, 'D' ' 0}' /* QAC 

' /* 
* Do not delete any table entries above this line or your system 
* will not configure properly. 

* 
* Add any new controllers or devices here. 
* Remember, the module name must be blank padded to 8 bytes. 
*/ 

I* 

*I 

* Do not delete this null entry, which terminates the table or your 
* system will not configure properly. 

} ; 

*I 
{ "" , /* Null terminator in the table */ 

ULTRIX compares the device names found in the I/0 slots and the tc_option 
table (optional as well as fixed devices) with the names given in the system 
configuration file. These device names appear in the ubmini t table (an array of 
uba ctlr structures) and the ubdini t table (an array of uba device 
structures). Each entry in the system configuration file specifies the interrupt 
routine name for the device. In the previous example, the interrupt routine is called 
qacvinit. 

The name of the interrupt routine is placed in the ubmini t and ubdini t 
tables by the configuration program. 

For information on how to make an entry in this file, see Section 9.3. 

7.4.2 Mapping TURBOchannel Slot Numbers 

If ULTRIX matches a device name in the tc option table with a device name in 
the system configuration file, ULTRIX puts an entry in the t c _ s 1 ot table. 

If ULTRIX finds a module name in a module ROM that is not in the tc_option 
data table, then the system warns that the device is unknown. 

If UL TRIX finds a device name that was not in the system configuration file, that 
device will not be configured. That is, it will not have its probe or attach 
routines called, and its interrupt line will be disabled. 

For properly configured and recognized controllers and devices, the ULTRIX 
operating system calls the probe, attach, and slave routines through the 
"ibus" configuration routines. The ibus configuration routines obtain the names of 
the probe, attach, and slave routines from the device driver's 
uba driver structure. 

Adapters are handled in a similar way as devices and controllers. Adapters have an 
adapter line in the system configuration file with no interrupt routine name. The 
UL TRIX operating system configuration code looks up the adapter module name in 
the tc option data table and obtains the name of the adapter configuration 
routine to call. One of the arguments passed to the adapter configuration routine is an 
address where that configuration routine places the address of the interrupt handling 
routine. 
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7.4.3 Considerations for TURBOchannel Device Driver Writers 

The tc_option table and the system configuration file provide a flexible 
mechanism for adding third-party devices and device drivers. This table allows 
third-party device driver writers to map additional device names with their associated 
names in the system configuration file. Third-party or customer device drivers must 
conform to standard ULTRIX operating system conventions. For instance, drivers 
must have a uba_driver structure with the name of the device probe routine, 
attach routine, device name, and so forth. The qac, for example, has a 
ub a driver structure that looks like this: 

struct uba_driver qacdriver = 
{ qacprobe, 0, qacattach, 0, qacstd, "qac", qacinfo }; 

The corresponding entry in the system configuration file looks like this: 

device qacO at ibus? vector qacvint 
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Error Handling 8 

The UL TRIX programming environment provides a variety of debugging tools, some 
of which are listed in Table 8-1. 

Table 8-1: UL TRIX Debugging Tools 

Tool 

ct race 

dbx 

error 

gcore 

lint 

trace 

Description 

Allows you to watch program flow and to observe changes to 
variables 

Invokes an interactive debugger 

Inserts error messages from a compiler or language processor 
into a source file at the point of error 

Creates a core image file of a running process 

Checks C source files for waste, errors, and nonportable code 

Traces the system calls made by a command 

See the Guide to Languages and Programming for descriptions and examples of each 
tool. 

This chapter discusses error handling and some topics associated with error handling 
for VMEbus device drivers. Specifically, the chapter discusses the following: 

• Logging errors associated with the VMEbus 

• Testing memory map drivers 

• Writing text to an output device 

You accomplish most of these tasks by calling kernel routines. The chapter provides 
brief examples to illustrate how to use these routines in device drivers. For complete 
descriptions of the function definitions and argument descriptions for these and other 
kernel routines, see Appendix B. 

8.1 Logging Errors Associated with the VMEbus 
Error log events are initiated by hardware errors, informational events, the UL TRIX 
kernel, or applications. Appropriate information is gathered by the applicable driver, 
ULTRIX kernel, or application to form an error log event that is temporarily stored in 
the memory resident error log buffer. The error log daemon, el cs d, retrieves those 
events and transfers them to an error log file for permanent storage. 



The data collection routines responsible for collecting pertinent data that is formed 
into an error log event exist in device drivers, the ULTRIX kernel, or an application. 
For VMEbus device drivers, two kernel routines are provided that allow you to log 
controller and device error events into the errorlog file. You would use these routines 
when you want to record VMEbus-specific error events in the errorlog and later use 
the uerf error report formatter to print these error events. For information on the 
error logging subsystem and the uerf error report formatter, see the Guide to the 
Error Logger. You can also find reference information on this utility in the 
Reference Pages Section 8: Maintenance. 

To log controller error events, use the log_ vme_ctlr_error kernel routine. To 
log device error events, use the log_vme_device_error kernel routine. Both 
routines allocate a message packet that includes the ASCII text supplied by the driver 
and the VMEbus adapter registers. The difference between the routines is that 
log vme ctlr error includes controller information in its message packet, 
while log vme device error includes device information in its message 
packet. - - -

The following lists some of the controller information in the message packet 
provided by log_vme_ctlr_error: 

• The controller index into the device driver (stored in the um ct lr member of 
the uba _ ctlr structure) -

• The System Virtual Address (SV A) corresponding to the CSR specified in the 
system configuration file (stored in the um_addr member of the uba_ctlr 
structure) 

• The System Virtual Address (SV A) corresponding to the second CSR specified 
in the system configuration file (stored in the um addr2 member of the 
uba_ctlr structure) 

• VMEbus adapter information 

The following is the device information provided by log_vme_device_error 
in its message packet: 

• The unit number of the device on the system (stored in the ui unit member 
of the uba_device structure) -

• The System Virtual Address (SV A) corresponding to the CSR specified in the 
system configuration file (stored in the ui _ addr member of the 
uba_device structure) 

• The System Virtual Address (SV A) corresponding to the second CSR specified 
in the system configuration file (stored in the ui addr2 member of the 
uba_device structure) 

• VMEbus adapter information 

The following code fragments illustrate calls to these routines: 

/*******************************************************************/ 
/* Code fragment for call to log_vme_ctlr_error */ 

char driver_text[] = "xxO: device fatal error"; 
register struct vba_hd *vhp; 
register struct uba_ctlr *umptr; 
log_vme_ctlr_error (driver_text, vhp, umptr); ff] 
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/*******************************************************************/ 
/* Code fragment for call to log_vme_device_error */ 

char driver_text[] = "xxO: device fatal error"; 
register struct vba_hd *vhp; 
register struct uba_ctlr *umptr; 
log_vme_device_error (driver_text, vhp, umptr); 111 

111 The first argument is the ASCII text you want the log_vme_ctlr_error 
or log_vme_device_error routine to log. If you do not supply a 
message, log_vme_ctlr_error supplies this message: NO ERROR 
MESSAGE ENTERED BY DRIVER. 

The second argument for both routines is the pointer to the vba hd structure 
associated with this controller or device. These routines use the pointer to the 
vba_hd structure to determine the VMEbus adapter type and VMEbus adapter 
number. 

The third argument for log_vme_ctlr_error is the pointer to the 
uba ct 1 r structure associated with this controller, while the third argument 
for log vme device error is the pointer to the uba device structure 
associated with-this device. -

To obtain all VMEbus adapter and VMEbus controller and device errors from the 
error log, type the following: 

/etc/uerf -A vba 

To obtain all controller and device errors, including VMEbus controller and device 
errors, type: 

/etc/uerf -r 104 

To obtain all adapter errors, including VMEbus adapter errors, type: 

/etc/uerf -r 105 

8.2 Testing Memory Map Drivers 
When debugging memory map device drivers, you may need to change the default 
behavior of the kernel when it responds to a write to nonexistent device memory. 
(See Section 4.12.2 for a discussion of mapping to nonexistent device memory.) By 
default, the kernel tries to locate and kill all processes that used the mmap system 
call to map the memory of the device into their address space. 

You can change the kernel's default behavior by specifying the MMAPDRV _DEBUG 
option in the options definitions part of the system configuration file. By specifying 
this option, you ensure that the compiled kernel does not kill any processes, but 
causes the machine to crash. See Section 9.1.3 for a description of the system 
configuration file and the parts related to device drivers. 
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You would use this option when debugging a device driver to verify that the driver is 
correctly accessing the device. If you do not use this option, the kernel assumes that 
any write to an invalid address must be generated by a user process. The kernel then 
searches for any process that has mapped the area of memory where the invalid 
access occurred. If no user process has mapped that memory, the kernel assumes the 
request came from the device driver and crashes the system. 

8.3 Writing Text to an Output Device 
In handling errors, you need to be familiar with the kernel routines that allow you to 
print data to some output device. This section briefly describes when and why you 
would do this. See Appendix B for the function definitions and additional 
descriptions for these routines. 

The cprintf routine prints only to the console terminal. You generally call this 
routine to report information when there is a problem with the error logging 
mechanism or to perform debugging. 

The mprintf routine logs all text to the kernel error log file. This usually happens 
during hardware failures that are considered soft and corrected. 

The uprintf routine prints to the current user's terminal. This routine guarantees 
not to sleep, thereby allowing it to be called by interrupt routines. It does not 
perform any space checking, so you do not want to use this routine to print verbose 
messages. The uprintf routine does not log messages to the error logger. 

The pr int f routine prints diagnostic information directly on the console terminal, 
and it writes ASCII text to the error logger. Because printf is not interrupt 
driven, all system activities are suspended when you call it. 
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Installing Device Drivers 9 

This chapter discusses how to install VMEbus and TURBOchannel device drivers. It 
begins with detailed discussions of the system files that you must modify as part of 
the driver installation. The chapter includes examples relevant to the VMEbus and 
the TURBOchannel. Because the steps for installing VMEbus and TURBOchannel 
drivers vary, the chapter discusses how to install each separately. 

Specifically, the chapter contains information on: 

• Modifying system files associated with device drivers 

• Installing VMEbus device drivers 

• Installing TURBOchannel device drivers 

9.1 Modifying System Files Associated with Device Drivers 
To add a device driver, you need to modify the following files used during the 
building of an UL TRIX kernel: 

• /usr/sys/machine/comrnon/conf .c 

• /usr/sys/conf/mips/files.mips 

• /usr/sys/conf/mips/MACHINE 

• /usr I sys I data/tc option data. c (for TURBOchannel device drivers 
only) - -

The following sections discuss the parts of these files pertinent to device driver 
writers. 

9.1.1 The conf.c File 
The conf. c file contains two device switch tables called cdevsw and bdevsw. 
The device switch tables have the following characteristics: 

• They are arrays of structures containing device driver entry points. These entry 
points are actually the addresses of the specific routines within the drivers. 

• They may contain stubs for device driver entry points for devices that do not 
exist on a specific machine. 

• They contain major device numbers that the kernel uses as indexes into this 
array of structures. 



9.1.1.1 The cdevsw Table - The cdevsw table contains device driver entry points for 
each character mode device supported by the system. In addition, the table can 
contain stubs for device driver entry points for character mode devices that do not 
exist or for entry points not used by a device driver. 

The following example shows the cdevsw structure defined in 
/usr/sys/h/conf .h: 

struct cdevsw 
{ 

int ( *d_open) (); 
int ( *d_close) (); 
int ( *d_read) (); 
int (*d_write)(); 
int ( *d_ioctl) (); 
int ( *d_stop) (); 
int ( *d_reset) (); 
struct tty *d_ttys; 
int ( * d_select) () ; 
int ( * d _ mma p ) ( ) ; 
int (*d_strat) (); 
int ( d_affini ty) ; 

} ; 

The d open, d close, d read, d write, d ioctl, and d select 
members point to device driver routines. For example, a call to the driver from the 
kernel read system call on a device calls the driver routine pointed to by d read 
in the appropriate cdevsw entry. 

The d _st op member points to a routine used by communication devices. 

The d_reset member points to a routine that is used to reset the bus. 

The d _ttys member is used by communication devices. 

The d _ rnrna p member points to a routine used to perform memory mapping. 

The d_strat member points to a strategy routine used for nbufio. 

The d _affinity member specifies whether the CPU runs the driver as a 
Symmetric Multi-Processing (SMP) driver. The value zero (0) indicates that the 
CPU runs this driver as a non-SMP driver. The system treats a nonzero value as a 
mask of which CPUs can run the SMP driver. For example: 

d_affinity Value 

1 
5 
Oxll 

Oxffffffff 

Valid CPUs 

only CPU 0 
only CPU 0 and CPU 2 
only CPU 0 and CPU 4 

CPUs 0 - 31 

The following example illustrates a sample cdevsw switch table. Note that major 
device numbers 25-29 are marked reserved to local sites for character mode devices: 

struct cdevsw cdevsw[] = 

{ 

{lpopen, 
nodev, 
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lpclose, 
nodev, 

nodev, 
lpreset, 

lpwrite, 
0, 

/*15*/ 



seltrue, nodev, 0, 0}' 

/* 25-29 reserved to local sites */ 
{gpibopen, gpibclose, gpibread, 
gpibioctl, nulldev, nodev, 
seltrue, nodev, 0, 0}, 

{propen, nulldev, 
prioctl, nulldev, 
nodev, nodev, 

I* TURBO channel driver entry 
{qacopen, qacclose, 
qacioctl, qacstop, 
asyncsel, nodev, 

/* VMEbus driver entry */ 
{skopen, skclose, 
nodev, nodev, 
asyncsel, skmmap, 

} ; 

nulldev, 
nulldev, 
0, 0}' 

*/ 
qacread, 
nulldev, 
nodev, 

nodev, 
nulldev, 

nulldev, 

gpibwrite, 
0, 

nulldev, /*75*/ 
0, 

qacwrite, /*76*/ 
0, 
0}' 

nodev, /*77*/ 
0, 
0}' 

/*25*/ 

The example shows that major device number 76 is a TURBOchannel driver with the 
following entries: 

• An open routine called qacopen and a close routine called qacclose. 

• A read routine called qacread and a write routine called qacwri te. 

• An ioctl routine called qacioctl. 

• A stop routine called qacstop. 

• A nulldev entry, which represents the nulldev routine. The nulldev 
routine returns zero (0). You should specify nulldev when it is appropriate 
for the routine to be called, but the driver has no functionality for this device. 
In this example, the reset routine has no functionality for the qac device; 
therefore, the nulldev entry is specified. 

• The value zero (0) to indicate that the qac device does not support the ttys 
entry. 

• A select routine called asyncsel. This driver routine is implemented by the 
kernel for nonterminal type character devices that support nbufio. 

• A nodev entry, which represents the nodev routine. The nodev routine 
returns an ENODEV (error, no such device). You should specify nodev when 
it is not appropriate to call that routine for a particular driver. In this example, 
it is not appropriate to call a memory mapping routine for a qac device; 
therefore, the nodev entry is specified. 

• A nodev entry to indicate that it is not appropriate to call a strategy routine. 

• The value zero (0) to indicate that the kernel treats this as a non-SMP driver. 

The example also illustrates the naming conventions used for device driver routines: 

• A prefix that represents the name of the driver. For example, qac represents 
the name of some device. 
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• The name of the routine, for example, read, write, and so forth. 

Note that each routine entry in the example corresponds to an appropriate member of 
the cdevsw structure. For example, qacopen corresponds to the d _open 
member. 

9.1.1.2 The bdevsw Table -The bdevsw table contains device driver entry points for 
each block mode device supported by the system. In addition, the table can contain 
stubs for device driver entry points for block mode devices that do not exist or for 
entry points not used by a device driver. 

The following example shows the bdevsw structure defined in 
/usr/sys/h/conf .h: 

struct bdevsw 
{ 

} ; 

int 
int 
int 
int 
int 
int 
int 
int 

( *d_open) (); 
( *d_close) (); 
( * d_strategy) (); 
( * d_dump) (); 
(*d_psize) (); 
( * d_flags) (); 
( *d_ioctl) (); 
( d_aff ini ty) ; 

The d open, d close, d strategy, d dump, d psize, and d ioctl 
members point to device driver routines. For example, a call to the driver from the 
kernel open system call on a device calls the driver routine pointed to by d _open 
in the appropriate bdevsw entry. 

The d flags member points to a value that describes the type of device driver. 
For tape drivers, this value is B_TAPE, which gets set in the b_flags member of 
the buf structure. For all other drivers, this member is set to 0. 

The d affinity member specifies whether the CPU runs the driver as a 
Symmetric Multi-Processing (SMP) driver. The value zero (0) indicates that the 
CPU runs this driver as a non-SMP driver. The system treats a nonzero value as a 
mask of which CPUs can run the SMP driver. For example: 

d_affinity Value 

1 
5 
Oxll 

Oxf ff ff ff f 

Valid CPUs 

only CPU 0 
only CPU 0 and CPU 2 
only CPU 0 and CPU 4 

CPUs 0 - 31 

The following example illustrates a sample bdevsw switch table: 

struct bdevsw bdevsw[] = 
{ 

rlopen, 
rlsize, 
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nodev, rlstrategy, 
O, rlioctl, 0 }, 

rldump, /*14*/ 



/* TURBOchannel driver entry */ 
{rzopen, nulldev, rzstrategy, 
rzsize, 0, rzioctl, 0}, 

/* VMEbus driver entry */ 

{xxopen, 
nodev, 
} ; 

xxclose, 
0, 

xxstrategy, 
nulldev, 0},. 

rzdurnp, /*21 *I 

nodev, /*22*/ 

The example shows that major device number 22 defines the following entries for a 
VMEbus driver: 

• An open routine called xxopen. 

• A close routine called xxclose. 

• A strategy routine called xxstrategy. 

• A nodev entry, which represents the nodev routine. The nodev routine 
returns an ENODEV (error, no such device). You should specify nodev when 
it is not appropriate to call that routine for a particular driver. 

• A second nodev entry. 

• A flags entry that is set to zero (0). 

• A nulldev entry, which represents the nulldev routine. The nulldev 
routine returns zero (0). You should specify nulldev when it is appropriate 
for the routine to be called, but the driver has no functionality for this device. 

• The value zero (0) to indicate that the kernel treats this as a non-SMP driver. 

9.1.2 The files.mips File 
The f i 1 es • mi p s file contains lines that indicate: 

• When the driver is to be loaded in the kernel 

• Driver source code location 

• Whether the device driver sources are supplied 

The following example illustrates a sample files. mips file: 

rnachine/rnips/autoconf .c standard device-driver Binary 
rnachine/cornrnon/conf.c standard 
rnachine/rnips/cons sw.c standard Binary 
rnachine/rnips/knOl~c optional cpu DS3100 Binary 

/* TURBOchannel driver source entry */ 
io/tc/qac.c optional qac device-driver Binary 

/* VMEbus driver source entry */ 
io/vrne/xcrn.c optional xcrn device-driver Notbinary 
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The file in the example contains: 

• The location of the source code for the device driver. For example, the source 
code for the qac, a TURBOchannel driver, is located in io/tc/qac. c. 

• The key word standard or the key word optional. The standard key 
word indicates that this software module will be included in every kernel. The 
key word optional indicates that this software module will be included in 
those kernels whose system configuration files have the key string that follows 
the key word optional. For example, the module io/tc/ qac. c will be 
included in those kernels whose system configuration files have the key string 
qac. 

• The key word device-driver, which indicates to the makefile that builds 
the kernel what C compiler flags to use when compiling the device driver. This 
key word is mandatory for all device driver entries. 

• The key word Binary or the key word Notbinary. The Binary key 
word causes symbolic links to be made in the 
/usr/sys/conf/mips/MACHINE directory to existing object modules. 
That is, ln -s .. /mips/BINARY. mips/filename commands are added to 
the makefile. Device drivers supplied by Digital will use the key word 
Binary, which means that no driver sources are supplied. 

The Notbinary key word causes the conf ig program to include cc as 
inline commands to be added to the makefile. Device drivers written by third 
party vendors can use either key word, depending on whether they want to 
supply the driver sources. This may be particularly applicable to VMEbus and 
TURBOchannel drivers. Note that the VMEbus entry in the example specifies 
Notbinary, which means that the driver sources will be used to generate the 
object file. 

9.1.3 The MACHINE File 
The MACHINE file (referred to as the system configuration file) identifies all of the 
device driver source code that needs to be compiled into the kernel, as well as some 
system parameters that influence how the kernel operates. The system configuration 
file has these parts: 

• Global definitions 

• Options definitions 

• Makeoptions definitions 

• System image definitions 

• Device definitions 

• Pseudodevice definitions 

This section discusses the options definitions and device definitions parts of the 
system configuration file as they apply to device drivers written for the VMEbus and 
the TURBOchannel. Therefore, it supplements the information contained in the 
Guide to Configuration File Maintenance, which discusses each of the listed parts in 
detail. 

The options definitions part of the system configuration file contains values that 
specify optional code to be compiled into the system. However, you can remove any 
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of the options if they do not pertain to your site or if your system is short on physical 
memory space. 

The syntax for the options definitions is: 

options optionlist 

The following option is useful for debugging new device drivers: 

options MMAPDRV_DEBUG 

This option allows you to change the default behavior of the kernel when it responds 
to a write to nonexistent memory. By default, the kernel tries to locate and kill all 
user processes that used the mmap system call to map the failing address into their 
address space. If the kernel does not find any such processes, it causes the machine 
to crash. 

By specifying this option, you ensure that the compiled kernel does not kill any 
processes, but only causes the machine to crash. This behavior is desirable when 
debugging device drivers, especially drivers that can generate writes to nonexistent 
memory. See Section 4.12.2 for more information on mapping to nonexistent 
memory. 

The device definitions part of the system configuration file contains descriptions of 
each current or planned device on the system. That is, these definitions describe such 
things as adapter, controller, device, disk, and tape mnemonics and logical unit 
numbers. You need to add these definitions for devices that were not on the system at 
installation time. 

Because the syntax for the definitions varies according to whether the device runs on 
the VMEbus or the TURBOchannel, the discussion of the syntax is divided into the 
following sections, each separated into a section on VMEbus and a section on 
TURBOchannel: 

• Adapter specification 

• Controller specification 

• Device specification 

• Disk specification 

• Tape specification 

9.1.3.1 Adapter Specification for VMEbus - The following is the syntax for specifying 
the adapter that connects to the VMEbus: 

adapter vban at nexus? 

adapter 

vba 

n 

nexus? 

Specifies the key word that precedes a system bus mnemonic and its 
associated unit number. An adapter identifies a physical connection 
to a bus. In this case, the bus is the VMEbus. 

Specifies the mnemonic for the VMEbus adapter. 

Specifies the unit number of the adapter. 

Specifies the key word that identifies the nexus. A nexus is the 
hardware through which each physical connection to the system bus 
is connected. The question mark allows the system to pick the 
appropriate nexus. 
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This example shows an adapter entry for the VMEbus: 

adapter vbaO at nexus? 

9.1.3.2 Adapter Specification for TURBOchannel - The following is the syntax for 
specifying the adapter that connects to the TURBOchannel: 

adapter ibusn at nexus? 

adapter 

ibus 

n 

Specifies the key word that precedes a system bus mnemonic and its 
associated unit number. An adapter identifies a physical connection 
to a bus. In this case, the system bus is the TURBOchannel. 

Specifies the mnemonic for the TURBOchannel adapter. 

Specifies the unit number of the adapter. 

nexus? Specifies the key word that identifies the nexus. A nexus is the 
hardware through which each physical connection to the system bus 
is connected. The question mark allows the system to pick the 
appropriate nexus. 

This example shows an adapter entry for the TURBOchannel. Each TURBOchannel 
slot is configured as an IBUS: 

# ibus entries for DECstation 5000 Model 200 
# IO option slots 
adapter ibusO at nexus? 
adapter ibusl at nexus? 
adapter ibus2 at nexus? 
adapter ibus3 at nexus? 
adapter ibus4 at nexus? 
adapter ibusS at nexus? 
adapter ibus6 at nexus? 
adapter ibus7 at nexus? 

9.1.3.3 Controller Specification for VMEbus - The following is the syntax for 
specifying a controller definition associated with the VMEbus. (Note that you should 
specify the controller entry on one line in the system configuration file.) 

controller dev at condev csr addr [ csr2 addr2 ] [ flags fig_val ] 
priority prilevel vector vec ... vec# 

controller Specifies the key word that precedes a controller mnemonic and its 
associated logical unit number. A controller identifies either a 
physical or a logical connection with one or more slaves attached to 
it. 

dev 

at 

condev 

csr 
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Specifies the controller's name and logical unit number. You specify 
the controller name with a character mnemonic. 

Specifies the key word that appears after the controller key 
word and its associated mnemonic and logical unit number. 

Specifies the name and logical unit number of the adapter to which 
the controller is connected. 

Specifies the key word that precedes a control status register value 
for some device. 



addr 

csr2 

addr2 

flags 

fig_ val 

priority 

prilevel 

vector 

vec ... 

vec# 

Specifies the address of the control status register for the device. The 
address needed here must be in the I/0 space of the VMEbus address 
space. See Section 2.3.1 for a discussion of the VMEbus address 
space. 

Specifies the key word that precedes a second control status register 
value. Many VMEbus devices support direct access to both device 
registers and to onboard memory. It is likely that the locations for 
the device registers and to onboard memory will be in different 
VMEbus address spaces. To accommodate this, a csr2 key word 
has been added. 

Specifies the address of the second control status register area or 
onboard memory for the device. The address needed here must be in 
the I/0 space of the VMEbus address space. See Section 2.3.1 for a 
discussion of the VMEbus address space. 

Specifies the key word that precedes some value that directs the 
system to perform some request. 

Specifies the value for the flag. Possible values are decimal numbers 
and hexadecimal numbers. 

The format of the hexadecimal number is Oxnn, where nn is a 
hexadecimal number consisting of digits from 0 to 9 inclusive and of 
the letters a to f inclusive. 

Specifies the key word that precedes a VMEbus priority level. 

Specifies the VMEbus priority level. Valid VMEbus priority levels 
range from 1 to 7 inclusive. 

Specifies the key word that precedes the name or names of the 
interrupt handlers for a device. 

Specifies the name or names of the interrupt handlers for a device. 

Specifies the interrupt vector number. Vector numbers can range 
from OxOO to OxFF inclusive. Interrupt vector numbers OxOO to Ox3F 
inclusive are reserved for Digital. 

If a device has more than one interrupt handler, the system assigns 
each with the next sequential vector number that follows the number 
you specify here. For example, if you have two interrupt handlers 
and specify Ox40 as the interrupt vector number, the system assigns 
the following: 

Interrupt Vector Number 

Ox40 
Ox41 

Interrupt Handler 

xxintrl 
xxintr2 

This example builds on the adapter example by showing you the adapter entry 
followed by a controller entry for a device connected to the VMEbus: 

adapter vbaO at nexus? 
controller tdO at vbaO csr Ox8020 priority 1 vector tdintr Ox45 
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9.1.3.4 Controller Specification for TURBOchannel - The following is the syntax for 
specifying a controller definition associated with the TURBOchannel: 

controller dev at condev vector vec ... 

controller Specifies the key word that precedes a controller mnemonic and its 
associated logical unit number. A controller identifies either a 
physical or a logical connection with one or more slaves attached to 
it. 

dev 

at 

condev 

Specifies the controller's name and logical unit number. You specify 
the controller name with a character mnemonic. 

Specifies the key word that appears after the controller key 
word and its associated mnemonic and logical unit number. 

Specifies the name and logical unit number of the adapter to which 
the controller is connected. 

vector Specifies the key word that precedes the name or names of the 
interrupt handlers for a device. 

vec... Specifies the name or names of the interrupt handlers for a device. 

This example builds on the adapter example by showing you the adapter entries 
followed by some controller entries for a device connected to the TURBOchannel: 

# ibus entries for DECstation 5000 Model 200 
# IO option slots 
adapter ibusO at nexus? 
adapter ibusl at nexus? 
adapter ibus2 at nexus? 
adapter ibus3 at nexus? 
adapter ibus4 at nexus? 
adapter ibusS at nexus? 
adapter ibus6 at nexus? 
adapter ibus7 at nexus? 
controller ascO at ibus? vector ascintr 
controller as cl at ibus? vector ascintr 
controller asc2 at ibus? vector ascintr 
controller asc3 at ibus? vector ascintr 

9.1.3.5 Device Specification for VMEbus -The following is the syntax for specifying a 
device that runs on the VMEbus. (You should specify the device entry on one line in 
the system configuration file.) 

device dev at condev csr addr [ csr2 addr2 ] [ flags fig_val ] 
priority prilevel vector vec ... vec# 

device 

dev 

at 

condev 

9-10 Installing Device Drivers 

Specifies the key word that precedes a device name and its associated 
logical unit number. 

Specifies the device's name and logical unit number. You specify the 
device name as a character mnemonic. 

Specifies the key word that appears after the device key word and 
its associated mnemonic and logical unit number. 

Specifies the name and logical unit number of the adapter or 
controller to which the device is attached. You specify the adapter or 
controller name as a character mnemonic. For the VMEbus, the 
adapter mnemonic is vba. 



csr 

addr 

csr2 

addr2 

flags 

fig_ val 

priority 

prilevel 

vector 

vec ... 

vec# 

Specifies the key word that precedes a control status register value 
for some device. 

Specifies the address of the control status register for the device. The 
address needed here must be in the 1/0 space of the VMEbus address 
space. See Section 2.3.1 for a discussion of the VMEbus address 
space. 

Specifies the key word that precedes a second control status register 
value. Many VMEbus devices support direct access to both device 
registers and to onboard memory. It is likely that the locations for 
the device registers and to onboard memory will be in different 
VMEbus address spaces. To accommodate this, a csr2 key word 
has been added. 

Specifies the addres~ of the second control status register area or 
onboard memory for the device. The address needed here must be in 
the 1/0 space of the VMEbus address space. See Section 2.3.1 for a 
discussion of the VMEbus address space. 

Specifies the key word that precedes some value that directs the 
system to perform some request. 

Specifies the value for the flag. Possible values are decimal numbers 
and hexadecimal numbers. 

The format of the hexadecimal number is Oxnn, where nn is a 
hexadecimal number consisting of digits from 0 to 9 inclusive and of 
the letters a to f inclusive. 

Specifies the key word that precedes a VMEbus priority level. 

Specifies the VMEbus priority level. Valid VMEbus priority levels 
range from 1 to 7 inclusive. 

Specifies the key word that precedes the name or names of the 
interrupt handlers for a device. 

Specifies the name or names of the interrupt handlers for a device. 

Specifies the interrupt vector number. Vector numbers can range 
from OxOO to OxFF inclusive. Interrupt vector numbers OxOO to Ox3F 
inclusive are reserved for Digital. 

If a device has more than one interrupt handler, the system assigns 
each with the next sequential vector number that follows the number 
you specify here. For example, if you have two interrupt handlers 
and specify Ox40 as the interrupt vector number, the system assigns 
the following: 

Interrupt Vector Number 

Ox40 
Ox41 

Interrupt Handler 

xxintrl 
xxintr2 

This example builds on the adapter example by showing you the adapter entry 
followed by a device entry for a device connected to the VMEbus: 

adapter vbaO at nexus? 
device xcmO at vbaO csr OxaOOO priority 3 vector xcmintr Oxc8 
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9.1.3.6 Device Specification for TURBOchannel - The following is the syntax for 
specifying a device that runs on the TURBOchannel: 

device dev at condev vector vec ... 

device 

dev 

Specifies the key word that precedes a device name and its associated 
logical unit number. 

Specifies the device's name and logical unit number. You specify the 
device name as a character mnemonic. 

at Specifies the key word that appears after the device key word and 
its associated mnemonic and logical unit number. 

condev Specifies the name and logical unit number of the adapter or 
controller to which the device is attached. You specify the adapter or 
controller name as a character mnemonic. For the TURBOchannel, 
the adapter mnemonic is ibus. 

vector Specifies the key word that precedes the name or names of the 
interrupt handlers for a device. 

vec... Specifies the name or names of the interrupt handlers for a device. 

This example builds on the adapter example by showing you the adapter entries 
followed by a device entry for a device connected to the TURBOchannel: 

# ibus entries for DECstation 5000 Model 200 
# IO option slots 
adapter ibusO at nexus? 
adapter ibusl at nexus? 
adapter ibus2 at nexus? 
adapter ibus3 at nexus? 
adapter ibus4 at nexus? 
adapter ibus5 at nexus? 
adapter ibus6 at nexus? 
adapter ibus7 at nexus? 
device qacO at ibus? vector qacvint 

9.1.3.7 Disk Specification for VMEbus - The following is the syntax for specifying a 
disk that runs on the VMEbus: 

disk dev at condev drive n 

disk 

dev 

at 

condev 

drive 

n 
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Specifies the key word that precedes a disk drive name and its logical 
unit number. 

Specifies the disk drive's name and logical unit number. You specify 
the disk drive name as a character mnemonic. 

Specifies the key word that appears after the disk key word and its 
associated mnemonic and unit number. 

Specifies the name and logical unit number of the controller to which 
the disk drive is connected. You specify the controller name as a 
character mnemonic. 

Specifies the key word that precedes the physical unit number of the 
disk drive. 

Specifies the physical unit number of the disk drive. 



This example builds on previous examples by showing you the adapter entry, 
followed by the controller entry, followed by the disk entry for a device connected to 
the VMEbus: 

adapter vbaO at nexus? 
controller tdO at vbaO csr Ox8020 priority 1 vector tdintr Ox45 
disk raO at tdO drive 0 

9.1.3.8 Disk Specification for TURBOchannel - The following is the syntax for 
specifying a disk that runs on the TURBOchannel: 

disk dev at condev drive n 

disk 

dev 

at 

condev 

drive 

Specifies the key word that precedes a disk drive name and its logical 
unit number. 

Specifies the disk drive's name and logical unit number. You specify 
the disk drive name as a character mnemonic. 

Specifies the key word that appears after the disk key word and its 
associated mnemonic and unit number. 

Specifies the name and logical unit number of the controller to which 
the disk drive is connected. You specify the controller name as a 
character mnemonic. 

Specifies the key word that precedes the physical unit number of the 
disk drive. 

n Specifies the physical unit number of the disk drive. 

This example builds on previous examples by showing you the adapter entries, 
followed by the controller entries, followed by the disk entries for a device connected 
to the TURBOchannel: 

# ibus entries for DECstation 5000 Model 200 
# IO option slots 
adapter ibusO at nexus? 
adapter ibusl at nexus? 
adapter ibus2 at nexus? 
adapter ibus3 at nexus? 
adapter ibus4 at nexus? 
adapter ibus5 at nexus? 
adapter ibus6 at nexus? 
adapter ibus7 at nexus? 
controller ascO at ibus? vector ascintr 
controller as cl at ibus? vector ascintr 
controller asc2 at ibus? vector ascintr 
controller asc3 at ibus? vector ascintr 
disk rzO at ascO drive 0 
disk rzl at ascO drive 1 
disk rz2 at ascO drive 2 
disk rz3 at ascO drive 3 

9.1.3.9 Tape Specification for VMEbus - The following is the syntax for specifying a 
tape that runs on the VMEbus: 

tape dev at condev drive n 
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tape 

dev 

at 

condev 

drive 

n 

Specifies the key word that precedes a tape drive name and its logical 
unit number. 

Specifies the tape drive's name and logical unit number. You specify 
the tape drive name as a character mnemonic. 

Specifies the key word that appears after the tape key word and its 
associated name and logical unit number. 

Specifies the name and logical unit number of the controller to which 
the tape drive is connected. You specify the controller name as a 
character mnemonic. 

Specifies the key word that precedes the physical unit number of the 
tape drive. 

Specifies the physical unit number of the tape drive. 

This example builds on previous examples by showing you the adapter entry 
followed by the controller entry followed by the tape drive entry for a device 
connected to the VMEbus: 

adapter vbaO at nexus? 
controller xxO at vbaO csr Ox8010 flags OxOf priority 7 vector xxint OxcO 
tape yyO at xxO drive 0 

9.1.3.10 Tape Specification for TURBOchannel - The following is the syntax for 
specifying a tape that runs on the TURBOchannel: 

tape dev at condev drive n 

tape 

dev 

at 

condev 

drive 

n 

Specifies the key word that precedes a tape drive name and its logical 
unit number. 

Specifies the tape drive's name and logical unit number. You specify 
the tape drive name as a character mnemonic. 

Specifies the key word that appears after the tape key word and its 
associated name and logical unit number. 

Specifies the name and logical unit number of the controller to which 
the tape drive is connected. You specify the controller name as a 
character mnemonic. 

Specifies the key word that precedes the physical unit number of the 
tape drive. 

Specifies the physical unit number of the tape drive. 

This example builds on previous examples by showing you the adapter entries 
followed by the controller entries followed by the tape drive entries for devices 
connected to the TURBOchannel: 

# ibus entries for DECstation 5000 Model 200 
# IO option slots 
adapter ibusO at nexus? 
adapter ibusl at nexus? 
adapter ibus2 at nexus? 
adapter ibus3 at nexus? 
adapter ibus4 at nexus? 
adapter ibus5 at nexus? 
adapter ibus6 at nexus? 
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9.2 

adapter ibus7 at nexus? 
controller ascO at ibus? vector ascintr 
controller as cl at ibus? vector ascintr 
controller asc2 at ibus? vector ascintr 
controller asc3 at ibus? vector ascintr 
tape tzO at ascO drive 0 
tape tzl at ascO drive 1 
tape tz2 at ascO drive 2 
tape tz3 at ascO drive 3 

Installing VMEbus Device Drivers 
This section assumes you are familiar with the syntax associated with modifying the 
appropriate system files, as discussed in previous sections of this chapter. 

To add a VMEbus driver to the UL TRIX operating system, follow these steps: 

1. Write the device driver. The name of the device driver source file should be in 
the following form, where devname. c represents the device name (for 
example, xx. c, lp. c, and dz . c ): 

devname.c 

2. Copy the device driver source files into the appropriate directory. If you are 
providing only the object files, then copy them into the /sys/MIPS/BINARY 
directory. If you are providing the source files, copy them into an appropriate 
directory. Directories are distinguished by bus type. For VMEbus drivers, copy 
the driver source into the I us r Is y s Ii o I vme directory. 

3. Make an entry in /usr/sys/conf/mips/MACHINE, the system 
configuration file, to add the device to the system configuration. MACHINE 
represents the name of the system you want to configure, for example, TIGRIS. 
The entry must follow the syntaxes associated with the VMEbus, as described 
in previous sections. For example: 

controller tdO at vbaO csr Ox8020 priority 1 vector tdintr Ox45 
device xcmO at vbaO csr OxaOOO priority 3 vector xcmintr Oxc8 

4. Add the driver source file to /usr/sys/conf/mips/files .mips as 
either Binary or Notbinary. The following example shows the addition 
of a driver without source code: 

io/vme/td.c optional td device driver Binary 

The following example shows the addition of a driver with source code: 

io/vme/xcm.c optional xcm device-driver Notbinary 

5. Declare the device driver entry points for your device by editing the 
/usr I sys/machine/ common/ conf. c file. The following shows device 
driver routine declarations for a VMEbus device driver: 

#include "sk.h" 
#if NSK > 0 
int 
#else 
#define 
#define 
#define 
#endif 

skopen(),skclose(),skmmap(); 

skopen 
skclose 
skmmap 

nodev 
nodev 
nodev 

First, you include the device driver header file that was created by con fig. 
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The config command creates this header file by using the name of the 
controller or device that you specified in the system configuration file. In this 
example, the header file is sk. h, which indicates that the characters "sk" 
were previously specified for a memory-mapped device in the system 
configuration file. Next, you declare the device driver routines that were 
defined in the cdevsw or the bdevsw if the device constant (or constants) is 
greater than zero, which indicates that the device is actually in the system 
configuration file. The device constant was also created by conf ig in the 
following way: 

• It locates the name of the controller or device that you specified in the 
system configuration file. 

• It converts the lowercase name to uppercase. 

• It appends the uppercase name to the letter "N." 

In this example, the device constant is NSK, and the sk routines defined in the 
cdevsw are declared to return a value of type int. Otherwise, if the device 
is not actually in the system configuration file, you declare the entry points as 
nodev. 

6. Modify the cdevsw or bdevsw table. To do this, edit the 
/usr I sys /machine/ common/ conf. c file and search for struct 
cdevsw or struct bdevsw. Add your entries to the end of the table. The 
easiest way to add entries to the tables is to copy the previous entry, change the 
driver entry point names, and increment the comment by 1. The number in the 
comment is your major device number. Keep this number for use in a 
subsequent step. The following example shows an entry for a VMEbus device 
driver, along with the entry that precedes it: 

struct cdevsw cdevsw[] = 
{ 

{spopen, 
spioctl, 
nodev, 

spclose, 
spstop, 
nodev, 

spread, 
spreset, 
0' 0}' 

/* VMEbus device driver entry points */ 
{skopen, skclose, nodev, 
nodev, nodev, nulldev, 
asyncsel, skmmap, nulldev, 

} ; 

spwrite, /*74*/ 
sp_tty, 

nodev, /*77*/ 
0, 
0}' 

7. Run config on the MACHINE file from the /usr/sys/conf/mips 
directory. Most of the problems you encounter here will be syntactical errors 
you introduced while editing the MACHINE file and the files. mips file. In 
the following example, conf ig is run on the system called TIGRIS: 

% config TIGRIS 

8. Create a file system entry for your device. Use the mknod command: 

% mknod /dev/sk c 77 0 

In this example, c represents character (as opposed to b for block), 77 is the 
major number (the number you were told to record when you added the device 
to the table), and 0 is the minor number. 
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9. Create a new kernel by going to the /usr/sys/MIPS/MACHINE directory, 
which was created by conf ig. Specify the following: 

% cd /usr/sys/MIPS/TIGRIS 
% make depend all 

Some common errors are coding errors in your driver, especially if the driver 
was defined as Notbinary. In addition, you may obtain errors from the 
MACHINE file, the files .mips file, and the conf. c file. 

10. If a new kernel was built successfully, you may still want to back up the 
existing kernel and then place the new kernel in /vmunix. For example: 

% mv /vmunix /vmunix.sav 
% cp vmunix /vmunix 

Use the following for specific modifications: 

• To modify driver source code, start with step 9. 

• To add a new device, start with step 7. 

• To change csr addresses or vectors, perform steps 3, 6, and 8-10. 

• To add entry points, perform steps 5, 6, and 8-10. 

9.3 Installing TURBOchannel Device Drivers 
To add a TURBOchannel driver to the ULTRIX operating system, follow these steps: 

1. Write the device driver. The name of the device driver source file should be in 
the following form, where devname. c represents the device name (for 
example, asc. c and de. c): 

devname.c 

2. Copy the device driver source files into the appropriate directory. If you are 
providing only the object files, then copy them into the I sys/MIPS/BINARY 
directory. If you are providing the source files, copy them into an appropriate 
directory. Directories are distinguished by bus type. For TURBOchannel 
drivers, copy the driver source into the I us r I sys Ii o It c directory. 

3. Make an entry in /usr I sys/ data/tc option data. c, the tc option 
data table. This table provides a mapping between the device name in the ROM 
on the hardware device module and the driver in the UL TRIX kernel. The 
following shows a sample tc_option_data. c file: 

struct tc_option tc_option [] = 
{ 

/* module driver intr b4 itr aft a dpt */ 
I* name name probe attach type conf ig */ 
/* ------ ------ ------- ------- ------ */ 
{ "PMAD-AA II "ln 11 , 0, 1, 'D'' 0}' /* Lance */ ' { "PMAZ-AA II 11 asc", 0, 1, 'C'' 0}' /* SCSI */ ' { "PMAG-BA II 11 qac", 0, 0, 'D'' 0}' /* QAC */ ' { "PMAG-CA II 11ga11' 0, 1, 'D'' 0}' /* 2DA */ 

' { "PMAG-DA II "gq11, 0, 1, 'D'' 0}' /* 3DA */ ' { "PMAG-FA II "???" 0, 1, 'D'' 0}' /* Reserved ... 
' /* 

* Do not delete any table entries above this line or your system 
* will not configure properly. 

* 
* Add any new controllers or devices here. 

Installing Device Drivers 9-17 

*/ 



* Remember, the module name must be blank padded to 8 bytes. 
*/ 

/* 
* Do not delete this null entry, which terminates the table or your 
* system will not configure properly. 
*/ 
{ 

} ; 
"" ' /* Null terminator in the table */ 

The items in the tc option table have the following meanings: 

module name 

In this column, you specify the device name in the ROM on the hardware 
device. The module names in the example are seven characters in length. 
However, you must blank-pad the name to eight bytes. 

driver name 

In this column, you specify the driver name as it appears in the system 
configuration file. 

intr_b4 probe 

In this column, you specify whether the device needs interrupts enabled during 
execution of the probe routine. A zero (0) value indicates that the device 
does not need interrupts enabled; a value of 1 indicates that the device needs 
interrupts enabled. 

intr aft attach 

In this column, you specify whether the device needs interrupts enabled after the 
probe and attach routines complete. A value of 1 indicates that the device 
does not need interrupts enabled; a value of zero (0) indicates that the device 
needs interrupts enabled. 

type 

In this column, you specify the type of device: D (device), C (controller), or 
A (adapter). 

adpt config 

If the device type in the previous column is A (adapter), then you specify the 
name of the routine to configure the adapter. 

4. Make an entry in /usr/sys/conf/mips/MACHINE, the system 
configuration file, to add the device to the system configuration. MACHINE 
represents the name of the system you want to configure, for example, TIGRIS. 
For example: 

device qacO at ibus? vector qacvint 

5. Add the driver source file to /usr/sys/conf/mips/files .mips as 
either Binary or Notbinary. The following example shows the addition 
of a driver without source code: 

io/tc/qac.c optional qac device-driver Binary 

The following example shows the addition of a driver with source code: 

io/tc/qac.c optional qac device-driver Notbinary 

6. Declare the device driver entry points for your device by editing the 
/usr I sys/machine/ common/ conf. c file. The following example shows 
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device driver routine declarations for a TURBOchannel device driver: 

#include "qac.h" 
#if NQAC > 0 
int 
int 
#else 

qacopen(),qacclose(),qacread(),qacwrite(),qacioctl(); 
qacstop(); 

#define qacopen 
#define qacclose 
#define qacread 
#define qacwrite 
#define qacioctl 
#define qacstop 
#endif 

nodev 
nodev 
nodev 
nodev 
nodev 
nodev 

First, you include the device driver header file that was created by con fig. 
The conf ig command creates this header file by using the name of the 
controller or device that you specified in the system configuration file. In this 
example, the header file is q a c . h, which indicates that the characters '' qac'' 
were previously specified for this device in the system configuration file. Next, 
you declare the device driver routines that were defined in the cdevsw or the 
bdevsw if the device constant (or constants) is greater than zero, which 
indicates that the device is actually in the system configuration file. The device 
constant was also created by conf ig in the following way: 

• It locates the name of the controller or device that you specified in the 
system configuration file. 

• It converts the lowercase name to uppercase. 

• It appends the uppercase name to the letter "N." 

In this example, the device constant is NQAC, and the qac routines defined in 
the cdevsw are declared to return a value of type int. Otherwise, if the 
device is not actually in the system configuration file, you declare the entry 
points as nodev. · 

7. Modify the cdevsw or bdevsw table. To do this, edit the 
/usr I sys/machine/ common/ conf. c file and search for struct 
cdevsw or struct bdevsw. Add your entries to the end of the table. The 
easiest way to add entries to the tables is to copy the previous entry, change the 
driver entry point names, and increment the comment by 1. The number in the 
comment is your major device number. Keep this number for use in a 
subsequent step. The following example shows an entry for a TURBOchannel 
device driver, along with the entry that precedes it: 

struct cdevsw cdevsw[] = 
{ 

{propen, 
prioctl, 
nodev, 
/* TURBOchannel 

{qacopen, 
qacioctl, 
asyncsel, 

} ; 

nulldev, 
nulldev, 
nodev, 
qac device 
qacclose, 
qacstop, 
nodev, 

nulldev, 
nulldev, 
0' 0}' 

driver entry points 
qacread, 
nulldev, 
nodev, 

nulldev, /*75*/ 
0, 

*/ 
qacwrite, /*76*/ 
0, 
0}' 

8. Run config on the MACHINE file from the /usr/sys/conf/mips 
directory. In the following example, conf ig is run on the system called 
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TIGRIS: 

% conf ig TIGRIS 

Most of the problems you encounter here will be syntactical errors you 
introduced while editing the MACHINE file and the files. mips file. 

9. Create a file system entry for your device. Use the mknod command: 

% mknod /dev/qac c 76 0 

The entry c represents character (as opposed to b for block), 76 is the major 
number (the number you were told to record when you added the device to the 
table), and zero (0) is the minor number. 

10. Create a new kernel by going to the /usr I sys/MIPS/MACHINE directory, 
which was created by conf ig. Specify the following: 

% cd /usr/sys/MIPS/TIGRIS 
% make depend all 

Some common errors are coding errors in your driver, especially if the driver 
was defined as Notbinary. In addition, you may obtain errors from the 
MACHINE file, the files. mips file, and the conf. c file. 

11. If a new kernel was built successfully, you may still want to back up the 
existing kernel and then place the new kernel in /vmunix. For example: 

% mv /vmunix /vmunix.sav 
% cp vmunix /vmunix 

Use the following for specific modifications: 

• To modify driver source code, start with step 10. 

• To add a new device, start with step 8. 

• To change vectors, perform steps 4, 7, 10, and 11. 

• To add entry points, perform steps 6, 7, 8, 10, and 11. 
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Part V: Example Drivers 





VMEbus Device Driver Examples 10 

This chapter provides the following example VMEbus device drivers: 

• Memory-mapped device driver 

• DMA device driver 

The main purpose of these examples is to illustrate techniques and strategies for 
writing VMEbus device drivers. Although these examples are not working drivers, 
you can use them as the basis for writing working drivers. The source code for the 
examples is located in the /usr I examples/ devdri vers directory, which 
includes: 

• vmemmap.c 

Contains the VMEbus memory-mapped example 

• vmedma.c 

Contains the VMEbus DMA example 

10.1 Memory-Mapped Device Driver 
The memory-mapped device driver example illustrates a driver that provides a 
memory map mechanism for a generic memory-mapped device. For convenience in 
reading and studying the memory-mapped device driver, the source code is divided 
into parts. Table 10-1 lists the parts of the memory-mapped device driver and the 
sections of the chapter where each is discussed. 

Table 10-1: Parts of the Memory-Mapped Device Driver 

Part Section 

Include Files Section 10.1.1 

Declarations Section 10.1.2 

Autoconfiguration Section 10.1.3 

Open and Close Section 10.1.4 

Memory Mapping Section 10.1.5 



10.1.1 Include Files Section 
This example shows the include files section for the memory-mapped device driver: 

/* sk.c - Memory mapped device driver */ 
/* */ 
/* Abstract: */ 
/* */ 
/* This driver provides a memory map mechanism for a */ 
/* generic memory mapped device. */ 
/* */ 
/* Author: Digital Equipment Corporation */ 
/* */ 
/********************************************************/ 
/* INCLUDE FILES */ 
/* */ 
/********************************************************/ 

/* Header files required by memory mapped device driver */ 

#include "sk.h" /* Driver header file generated by config */ 11] 
#include " .. /h/types.h" 
#include " .. /h/errno.h" 
#include " .. /machine/param.h" 
#include " .. /h/uio.h" 
#include " .. / .. /machine/common/cpuconf.h" /*Include for BADADDR */ 121 
#include " .. /io/uba/ubavar.h" 
#include " .. /h/ioctl.h" 
#include " .. /h/param.h" 
#include " .. /h/buf.h" 
#include " .. /io/vme/vbareg.h" /* VMEbus definitions */ 131 
#include " .. /h/vmmac.h" 

11] This line includes the sk. h file, which is the device driver header file created 
by conf ig. This file is also included in 
/usr I sys/machine/ common/ conf. c, which is where you define the 
entry points for most device driver routines. The sk. h file contains #define 
statements for the number of sk devices configured into the system. See 
Section 9.2 for more information on the conf. c file. 

121 The cpuconf. h file is where the BADADDR macro is defined. ULTRIX 
device drivers use this macro to determine whether a device is present on the 
hardware configuration. See the skprobe routine in Section 10.1.3 for an 
example of how the memory-mapped device driver uses BADADDR. 

131 The /usr I sys/ io/vme/vbareg. h header file is specific to VMEbus 
device drivers. It contains definitions for the different VMEbus adapters. For 
summary descriptions of other header files used by device drivers, see 
Appendix A. 
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10.1.2 Declarations Section 
This example shows the declarations section for the memory-mapped device driver: 

/**********************************************************/ 
/* DECLARATIONS */ 
/* */ 
/**********************************************************/ 

#define SKREGSIZE 256 /* First csr area size */ [j] 
#define SKUNIT(dev) (minor(dev)) /*Device minor number*/ 12.] 

/* Driver routines declarations */ 
int skprobe(),skattach(),skintr(),skmmap(); 

/* Array of pointers to uba_device structures */ [3J 
struct uba_device *skdinfo[NSK]; 

I* Declare and initialize uba_driver structure */ ~ 
struct uba_driver skdriver = { 

} ; 

skprobe,0,skattach,0,0, 
"sk",skdinfo,0,0,0,SKREGSIZE,VMEAl6Dl6,0,0 

/* Device register structure */ 15] 
struct sk_reg_t { 

} ; 

volatile char stub_O; /* Base address */ 
volatile char V; /* First readable, always V */ 
volatile char stub_l; /* Data is only on every other byte */ 
volatile char M; /* Second readable */ 
volatile char nonused[124]; 
volatile short status; 
volatile unsigned short intvec; 
volatile unsigned short reset; 
volatile char unused[2]; 
volatile unsigned short start; 
volatile char nevused[2]; 
volatile unsigned short skdata; 
volatile char pads[92]; /* Fills out the remainder of */ 

/* the 256 byte block */ 

/* Define a softc structure for use by the interrupt service */ 
/* routines, the error log routines, etc. */ 1§) 
struct sk_softc{ 

int sk_time; /* Timeout value*/ 
int sk_expint; /* Expecting interrupt*/ 
int sk_timeout; /* Timeout situation : true or false */ 
int sk_data; /* Value read after interrupt*/ 
int intent; /* Number of times interrupts may happen */ 
struct sk_reg_t *sk_base; /* Pointer to sk_reg_t structure */ 

sksoftc [NSK] ; 

/* Define debug constants */ IZ] 
#define SK_DEBUG 
#ifdef SK_DEBUG 
int sk debug = 0; 
#endif-SK_DEBUG 

[j] This line defines a constant that can be used for the size of the first CSR area. 
The memory-mapped device driver initializes the ud_addrl_size member 
of the uba driver structure with this constant. 
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f2J This line defines a constant that represents the device minor number. A call to 
the minor macro obtains the device minor number. This macro takes one 
argument: the number of the device whose associated minor device number you 
want to obtain. See Appendix B for a description of the minor macro. 

~ This line declares an array of pointers to uba_device structures and calls it 
skdinfo. This array is referenced by the driver's skattach and skmmap 
routines. The constant NSK represents the maximum number of sk devices for 
a particular hardware configuration. This number is used to size the array of 
pointers to uba_device structures. This constant was defined by config 
in sk.h. 

~ The uba_driver structure called skdriver is initialized to the following: 

• The driver's probe routine, skprobe. 

• The value 0, to indicate that this driver does not use a slave routine. 

• The driver's attach routine, skattach. 

• The value 0, to indicate that this driver does not use a go routine. 

• The value 0, because VMEbus device drivers do not use the ud addr 
member of the uba driver structure. 

• The value s k, which is the name of the device. 

• The value skdinf o, which references the array of pointers to the 
previously declared uba device structures. You index this array with 
the unit number as specified in the ui _unit member of the 
uba device structure. 

• The value 0, to indicate that there is no controller name associated with 
this device. 

• The value 0, to indicate that this driver does not use the uba_ctlr 
structure. 

• The value 0, to indicate that this driver does not want exclusive use of the 
buffer data paths (bdps ). 

• The value SKREGSIZE, to indicate the size in bytes of the first CSR area. 

• The value VMEAl 6D 16, to indicate the VME address space (Al 6) and 
data size (D 16) of the first CSR area. 

• The value 0, to indicate that this driver does not use the second CSR area. 
(This member specifies the size of the second CSR area.) 

• The value 0, to indicate that this driver does not use the second CSR area. 
(This member specifies the address space and data size of the second CSR 
area.) 

15) This line defines a structure called sk reg t whose members map to the 
characteristics of the sk device. This structure is referenced in the 
autoconfiguration section of the memory-mapped driver, specifically by the 
skprobe, skintr, and skmmap routines. The members of this structure 
are declared using the key word volatile because some of its members 
correspond to hardware device registers for the sk device. In addition, the 
values stored in these members could be changed by something other than the 
device driver. See Section 4.2 for information on when to declare a variable or 
data structure as volatile. 
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[§] This line declares an array of softc structures and calls it sksoftc. The 
size of the array is the value represented by the NSK constant. The memory­
mapped device driver's sk_softc structure allows the interrupt service 
routines and the error logging routines to share data. Driver routines in the 
autoconfiguration and memory-mapping sections reference this structure. 

IZl These lines use several of the C preprocessor statements to set up conditional 
compilation for debugging purposes. In the sk driver, these statements are used 
with the cprintf kernel routine to print intermediate results to the console 
terminal. 
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10.1.3 Autoconfiguration Section 
This example shows the autoconfiguration section for the memory-mapped device 
driver: 

/**********************************************************/ 
/* AUTOCONFIGURATION */ 
/* */ 
/**********************************************************/ 

/********* Probe Routine **********************************/ 
I* */ 
/* The skprobe routine calls the BADADDR macro to */ 
/* determine that there is indeed a board at the */ 
/* specified address. If the board is present, */ 
/* skprobe returns the size of the register space that */ 
/* the board occupies. If the device is not present, */ 
/* skprobe returns 0. */ 
/* */ 
/**********************************************************/ 

skprobe(unit,addrl) 
int unit; /* Unit number associated with the sk device */ ff] 
caddr_t addrl; /* System Virtual Address for the sk device */ ~ 
{ 

/* Pointer to device register structure */ laJ 
register struct sk_reg_t *sk_reg; 

/* Pointer to sk_softc structure */ ~ 
register struct sk_softc *sksc; 

/* Kernel was properly configured */ 15] 
#ifdef SK_DEBUG 

if (sk_debug) cprintf("SK probe routine entered\n"); 
#endif SK_DEBUG 

/* Point to device registers */ !§] 
sk_reg = (struct sk_reg_t *)addrl; 

/* Call the BADADDR macro to determine if */ 
/* the device is present */ [Z] 
if (BADADDR ((char*) &sk_reg->V,sizeof(char)) !=0) 
{ 

return (0); 

/* Check the first location */ laJ 
if (sk_reg->V != 'V') return(O); 

/* Call the BADADDR macro a second time to determine */ 
/* if the device is present */ 19) 
if (BADADDR ((char*) &sk_reg->M,sizeof(char)) !=0) 
{ 

return (0); 

/* Check the second location */ [QI 
if (sk_reg->M != 'M') return(O); 

/* Set the pointer to the address of the sk softc */ 
/* structure array */ ff1J 
sksc = &s~softc[unit]; 

! ~~ 

/* Store tpe base address */ l12J 
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sksc->sk base = (struct sk_reg_t *) addrl; 

/* Device found */ [31 
#ifdef SK DEBUG 

if (sk_debug) cprintf("SK driver found\n"); 
#endif SK DEBUG 

/* Return size of register space */ l14J 
return (SKREGSIZE); 

/*********** Attach Routine *******************************/ 
/* */ 
/* The skattach routine initializes the device and its */ 
/* software state. */ 
/**********************************************************/ 

skattach(ui) 
struct uba device *ui; /* Pointer to uba device structure */ ~ 
{ 

/* Attach routine code goes here */ 
} 

/********** Interrupt Routine *****************************/ 
/* */ 
/**********************************************************/ 

skintr(unit) 
int unit; /* Logical unit number of device */ [§] 
{ 

/* Pointer to device register structure */ IIZJ 
register struct sk_reg_t *sk_reg; 

/* Pointer to sk_softc structure */ [al 
register struct sk_softc *sksc; 

/* Set the device's softc structure */ ff9J 
sksc = &sksoftc[unit]; 

/* Store the base address */ i2Q] 
sk_reg = sksc->sk_base; 

/* Check some status word and then set it */ l21J 
if (sk_reg->status < 0) 
{ 

sk_reg->status = 5; 

/* Read in some data */ ~ 
sksc->sk data sk_reg->skdata; 

[1] This line declares a unit variable that is used to specify the sk device. 

12) This line declares an addrl argument that is the System Virtual Address (SVA) 
that corresponds to the first CSR address that was specified in the system 
configuration file for the sk device. Note that the skprobe routine would 
need an addr2 variable if the sk device used a second CSR area. For this 
example, this is not the case because the ud_addr2_size and 
ud addr2 a type members of the uba driver structure were previously 
initialized to O. -
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131 This line declares a pointer to the sk_reg_t structure and calls it sk_reg. 
The skprobe routine makes several references to members of this structure. 
This structure and its associated members were previously defined in the 
Declarations section of the memory-mapped driver. 

~ This line declares a pointer to the s k _soft c structure and calls it s ks c. 
The skprobe routine makes several references to members of this structure. 
This structure and its associated members were previously defined in the 
Declarations section of the memory-mapped driver. 

~ This section is executed during debugging of the sk driver. The line calls the 
cprintf kernel routine to print the message "SK probe routine entered" on 
the terminal to indicate that the kernel was properly configured. For more 
information on this routine, see Appendix B. 

f§:] This line initializes the s k_ reg pointer to the SV A for the memory-mapped 
device, which is contained in the addrl argument. Because the data types are 
different, this line performs a type casting operation that converts the addr 1 
argument (which is of type caddr_t) to be of type pointer to an sk_reg_t 
structure. 

1ZJ This line calls the BADADDR macro to determine if the device is present. The 
BADADDR macro takes two arguments: the address of the device whose 
existence you want to check and the length of the data to be checked. In this 
call to the macro, the address of the V member of the s k _reg pointer is 
passed. The length is the value returned by the sizeof operator, in this case 
the number of bytes needed to contain a value of type char (because the V 
member is a size char). 

Because the first argument to the BAD AD DR macro is of type caddr _ t; this 
line also performs a type casting operation that converts the type of the V 
member (which is of type char) to type char *. (The data type caddr t 
is actually a typedef to the data type char * .) 
If a device is present, BADADDR returns the value 0. 

181 If a device is present, this line checks the first location. That is, if the V 
member of the sk reg pointer is not equal to the character V, it is not a 
supported device. Therefore, the skprobe routine returns 0. 

Some VMEbus devices have proms with an ID that usually starts with the 
letters VME. Thus, this line reads the prom looking for the specific value V. 
Your driver code may need to find a more unique string. 

l9J This line is identical to the one that previously called BADADDR, except this 
time the M member of the sk reg pointer is passed. If a device is present, 
BADADDR returns the value 0. -

[Q] If a device is present, this line checks the second location. That is, if the M 
member of the sk reg pointer is not equal to the character M, it is not a 
supported device. Therefore, the skprobe routine returns 0. 

[1] This line sets the s ks c pointer to the address of the s k_ soft c structure 
associated with this sk device. 

[21 This line sets the sk base member of the s ks c pointer to the base address 
where the device was found, which is contained in the addrl argument. Note 
that the sk_base member is a pointer to sk _reg_ t, the sk device register 
structure. Therefore this line performs a type casting operation that converts the 
addr 1 argument (which is of type caddr _ t) to be of type pointer to an 
sk _reg_ t structure. 
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[3] This line is executed during debugging of the sk driver. The line calls the 
cprintf routine to print the message "SK driver found" on the terminal to 
indicate that the skprobe routine was successful in finding a device. For 
more information on this routine, see Appendix B. 

[.41 This line returns the size of the register space, which indicates that the sk board 
is present. 

[5] The sk device does not need an attach routine. However, this line shows that 
your attach routine would declare a pointer to a uba _device structure. The 
driver can send any information contained in this structure to the device. 

[§] This line declares a unit argument that is used to specify the logical unit 
number of the memory-mapped device that is interrupting. 

[11.J This line declares a pointer to the sk reg t structure and calls it sk reg. 
The skin tr routine makes several references to members of this structure. 
This structure and its associated members were previously defined in the 
Declarations section of the memory-mapped driver. 

B]] This line declares a pointer to the s k _soft c structure and calls it s ks c. 
The skin tr routine makes several references to members of this structure. 
This structure and its associated members were previously defined in the 
Declarations section of the memory-mapped driver. 

[9J This line sets the s ks c pointer to the address of the s k _soft c structure 
associated with this sk device. Note that sksoftc is the array of structures 
declared in the Declarations section and that unit is the index into this array. 

l2Q] This line sets the sk_reg pointer to the base address, which is the sk_base 
member of the sksc pointer. 

121] If the status member of the sk reg pointer is less than 0, then this line 
sets it to the value 5. -

122] This line sets the s k _data member of the s ks c pointer to the data 
contained in the skdata member of the sk_reg pointer. 
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10.1.4 Open and Close Section 
This example shows the open and close section for the memory-mapped device 
driver: 

/**********************************************************/ 
/* OPEN AND CLOSE */ 
/* *I 
/**********************************************************/ 

/********* Open Routine ***********************************/ 
/* */ 
/**********************************************************/ 

skopen(dev,flag) 
dev t dev; /* Major/minor device number */ [1] 
int-flag; /* Flags from /usr/sys/h/file.h */ 12:] 
{ 

/* Return to the open system call */ ~ 
return (0); 

/********* Close Routine **********************************/ 
I* */ 
/**********************************************************/ 

skclose(dev,flag) 
dev t dev; /* Major/minor device number */ [1] 
int-flag; /* Flags from /usr/sys/h/file.h */ 12:] 
{ 

/* Return to the close system call */ ~ 
return (0); 

[1] This line declares an integer variable that holds the major and minor device 
numbers for the memory-mapped device. The minor device number will be 
used in determining the logical unit number for the memory-mapped device that 
is to be opened or closed. 

12:] This line declares an integer variable to contain flag bits from the file 
I us r Is y s I h I f i 1 e . h. These flags indicate whether the device is being 
opened for reading, writing, or both. 

~ The skopen routine does not do any intricate work other than to return 
execution to the open system call. Likewise, the skclose routine simply 
returns execution to the c 1 o s e system call. 
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10.1.5 Memory-Mapping Section 
This example shows the memory-mapping section for the memory-mapped device 
driver: 

/**********************************************************/ 
/* MEMORY MAPPING */ 
/* */ 
/**********************************************************/ 

/********* Memory Mapping Routine *************************/ 
/* */ 
/* The skmmap routine is invoked by the kernel as a */ 
/* result of an application calling the mmap(2) system */ 
/* call. The skmmap routine makes sure that the */ 
/* specified offset into the memory mapped device's */ 
/* memory is valid. If the offset is not valid, skmmap */ 
/* returns -1. If the offset is valid, skmmap returns */ 
/* the page frame number corresponding to the page at */ 
/* the specified offset. */ 
/* */ 
/**********************************************************/ 

skmmap(dev, off, prot) 
dev t dev; /* Device whose memory is to be mapped */ [) 
off-t off; /* Byte offset into device memory */ 121 
int-prot; /* Protection flag: PROT_READ or PROT_WRITE */ laJ 
{ 

/* Pointer to device register structure */ ~ 
register struct sk_reg_t *sk_reg; 

/* Pointer to sk_softc structure */ ~ 
register struct sk_softc *sksc; 

/* Page frame number */ [§] 
int kpfnum; 

/* Make sure that the offset into the device registers */ 
/* is less than the size of the device register space. */ IZJ 
if ((u_int) off>= SKREGSIZE) 

return (-1); 

/* Otherwise, set the device's sk_softc structure */ ~ 
sksc = &sksoftc [SKUNIT(dev)]; 

/* and store the base address */ ~ 
sk_reg = sksc->sk_base; 

/* Find the register space of the device */ [IQ] 
kpfnum = vtokpfnum(sk_reg+off); 
return kpfnum; 

[] This line declares a dev argument that specifies the character device whose 
memory is to be mapped. 

121 This line declares an off argument that specifies the offset in bytes into the 
character device's memory. The offset must be a valid offset into the device 
memory. 

!al This line declares a prot argument that specifies the protection flag for the 
mapping. The protection flag is the bitwise inclusive OR of these valid 
protection flag bits defined in /usr/sys/h/mman. h: PROT READ or 
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PROT WRITE. 

~ This line declares a pointer to the s k _reg_ t structure and calls it s k _reg. 
The s kmma p routine makes reference to this structure. This structure and its 
associated members were previously defined in the Declarations section of the 
memory-mapped driver. 

[5J This line declares a pointer to the s k _soft c structure and calls it s ks c. 
The s kmma p routine makes reference to this structure. This structure and its 
associated members were previously defined in the Declarations section of the 
memory-mapped driver. 

!§] This line declares a kpfnum variable to contain the page frame number returned 
by the vtokpfnurn kernel routine. 

[Z] If the offset into the memory-mapped device's memory is greater than or equal 
to the size of the first CSR area, the skmmap routine returns -1. This value 
indicates an unsuccessful attempt at mapping this device's memory into the 
user's address space. This line also performs a type casting operation that 
converts the off argument (which is of type off_ t) to be of type u _int. 
The reason is to ensure that you compare an unsigned quantity because the 
offset may be a full longword. 

18] This line sets the s ks c pointer to the address of the s k _soft c structure 
associated with this sk device. Note the use of the SKUNIT macro to obtain 
the minor number associated with this sk device. 

~ This line sets the sk_reg pointer to the base address, which is the sk_base 
member of the sksc pointer. 

[g] This line calls the vtokpfnurn kernel routine. This routine takes one 
argument: the kernel virtual address whose page frame number is to be 
returned. In this example, this address is the result of the expression whose 
operands consist of the pointer to the sk_reg_t structure and the byte offset. 
Upon completing execution successfully, vtokpfnurn sets the kpfnum 
variable to the page frame number associated with the page in the sk device's 
memory. See Appendix B for a description of the vtokpfnurn kernel routine. 
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10.2 OMA Device Driver 
The DMA device driver is a simple DMA interface that uses the 32-bit VMEbus. 
For convenience in reading and studying the DMA device driver, the source code is 
divided into parts. Table 10-2 lists the parts of the DMA device driver and the 
sections of the chapter where each is discussed. 

Table 10-2: Parts of the OMA Device Driver 

Part 

Include Files 

Declarations 

Autoconfiguration 

Open and Close 

Read and Write 

Strategy 

Interrupt 

Section 

Section 10.2.1 

Section 10.2.2 

Section 10.2.3 

Section 10.2.4 

Section 10.2.5 

Section 10.2.6 

Section 10.2. 7 

VMEbus Device Driver Examples 1~13 



10.2.1 Include Files Section 
This example shows the include files section for the DMA device driver: 

/* xx.c - DMA device driver */ 
/* *I 
/* Abstract: */ 
/* */ 
/* This driver supports an XX device. The XX device */ 
/* is a simple DMA interface that uses the */ 
/* 32-bit VMEbus. */ 
I* */ 
/* Author: Digital Equipment Corporation */ 
/* */ 
/********************************************************/ 
/* INCLUDE FILES */ 
/* */ 
/********************************************************/ 
/* */ 
/* Header files required by OMA device driver */ 
#include " .. /h/types.h" 
#include " .. /h/errno.h" 
#include " .. /h/param.h" 
#include " .. /h/buf.h" 
#include " .. /h/dir.h" 
#include " .. /h/user.h" 
#include " .. /h/file.h" 
#include " .. /h/map.h" 
#include " .. /machine/cpu.h" 
#include " .. /io/uba/ubavar.h" 
#include " .. /h/uio.h" 
#include " .. / .. /machine/common/cpuconf.h" /*Include for BADADDR */ [] 
#include " .. /io/vme/vbareg.h" /* VMEbus definitions*/ [2J 
#include "xx.h" /* Driver header file generated by config */ ~ 

11] The cpuconf. h file is where the BADADDR macro is defined. ULTRIX 
device drivers use this macro to determine whether a device is present on the 
hardware configuration. See the xxprobe routine in Section 10.2.3 for an 
example of how the DMA device driver uses BADADDR. 

[2J The /usr I sys I io/vrne/vbareg. h header file is specific to VMEbus 
device drivers. It contains definitions for the different VMEbus adapters. For 
summary descriptions of other header files used by device drivers, see 
Appendix A. 

13) This line includes the xx. h file, which is the device driver header file created 
by conf ig for the XX device. This file is also included in 
/usr I sys/machine/ common/ conf. c, which is where you define the 
entry points for most device driver routines. The xx . h file contains #define 
statements for the number of XX devices configured into the system. See 
Section 9.2 for more information on the conf. c file. 
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10.2.2 Declarations Section 

This example shows the declarations section for the DMA device driver: 

/**********************************************************/ 
/* DECLARATIONS */ 
/* */ 
/**********************************************************/ 

/********* Register Structure for XX device ***************/ 
/* */ 
/**********************************************************/ 

struct xx_reg { 
volatile char csr; 
volatile short count; 
volatile unsigned int addr; 

/* One byte control/status 
/* Short byte count */ 

/* Declare a register structure 
/* 32-bit transfer address 
*I ff] 

/********* Bits for csr member ****************************/ 
/* */ 
/**********************************************************/ 

#define IE 0001 /* Interrupt Enable */ 
#define DMA GO 0002 /* Start DMA */ 
#define RESET 0010 /* Ready for data transfer */ 
#define ERROR 0020 /* Indicate error *I f2J 
#define READ 0040 /* Indicate data transfer is read 

/********* Driver Routines ********************************/ 
I* */ 
/**********************************************************/ 

/* Declare DMA device driver routines */ 
int xxprobe(), xxopen(), xxclose(), xxread(), xxwrite(), 

xxstrategy(), xxintr(); 

register */ 

*/ 

*/ 

/********* buf, uba device, and uba_driver Structures *******/ 
/* - */ 
/************************************************************/ 

/* Declare an array of buf structures */ ~ 
struct buf xxbuf[NXX]; 

/* Declare an array of pointers to uba device structures */ !!! 
struct uba_device *xxdinfo[NXX]; 

/* Declare and initialize uba driver structure */ 15] 
struct uba_driver xxdriver = { 

} ; 

xxprobe,O,O,O,O, 
"xx",xxdinfo,O,O,O,Ox5,VMEA32D32,0,0 

/********* Unit Number Compare Variable *******************/ 
/* */ 
/**********************************************************/ 

/* Declare and initialize unit number compare variable */ l§J 
int nNXX=NXX; 

/********** Softc Structure *******************************/ 
/* */ 
/**********************************************************/ 

/* Declare an xx_softc structure */ IZJ 
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struct xx_softc { 
char sc_csr; 
int sc_open; 

#define XXOPEN 1 
#define XXCLOSE 0 

#define 
#define 
#define 

int sc_error; 
EACCFAULT 200 
ENOMAPREG 201 
EBUFTOOBIG 202 
unsigned int vmeaddr; 
struct buf *bp; 

} xx_softc [NXX]; 

/* A copy of csr */ 
/* XXOPEN, XXCLOSE */ 

/* Driver specific error code */ 
/* Access violation */ 
/* No mapping registers */ 
/* Buffer too big */ 
/* Return for vbasetup */ 
/* To save buffer pointer */ 
/* for use by xxintr */ 

11J The XX device has a 1-byte control/status register, a 16-bit byte count, and a 
32-bit transfer address. The xx reg structure describes these XX device 
characteristics by defining these members: csr, count, and addr. The 
members of this structure are declared using the key word volatile because 
some of its members correspond to hardware device registers for the XX 
device. In addition, the values stored in these members could be changed by 
something other than the device driver (that is, the controller itself). See 
Section 4.2 for information on when to declare a variable or data structure as 
volatile. 

121 The symbolic constants used to define the bits for the cs r member of the 
xx_ reg structure are used by the xxprobe routine. 

13:] This line declares an array of buf structures and calls it xxbuf. This array 
is referenced by the driver's xxread and xxwrite routines. Note that the 
constant NXX is used to size the array. This constant was created by the 
config command using the name of the device, in this case xx, that you 
specified in the system configuration file. 

~ This line declares an array of pointers to uba device structures and calls it 
xxdinf o. This array is referenced by the driVer's xx open, xxclose, 
xxstrategy, and xxintr routines. Note the use of the NXX constant to 
size the array. 

15] The uba_driver structure called xxdriver is initialized to the following: 

• The driver's probe routine, xxprobe. 

• The value 0, to indicate that this driver does not use a slave routine. 

• The value 0, to indicate that this driver does not use an attach routine. 

• The value 0, to indicate that this driver does not use a go routine. 

• The value 0, because VMEbus device drivers do not use the ud addr 
member of the ub a driver structure. 

• The value xx, to indicate the name of the device. 

• The value xxdinf o, which references the array of pointers to the 
previously declared uba_device structures. 

• The value 0, to indicate that there is no controller name associated with 
this device. 
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• The value 0, to indicate that this driver does not use the uba ctlr 
structure. 

• The value 0, to indicate that this driver does not want exclusive use of the 
buffer data paths (bdps ). 

• The value Ox5, to indicate the size in bytes of the first CSR area. 

• The value VMEA32D32, to indicate the address space (A32) and data size 
(D32) of the first CSR area. 

• The value 0, to indicate that this driver does not use the second CSR area. 
(This member specifies the size of the second CSR area.) 

• The value 0, to indicate that this driver does not use the second CSR area. 
(This member specifies the address space and data size of the second CSR 
area.) 

I§] The nNXX variable is initialized to the value of the NXX constant. The nNXX 
variable is used by the driver's xxopen routine. 

[Z] The xx softc structure allows the DMA device driver's routines to share 
data. The driver routines that reference this structure are xxopen, xxclose, 
xxstrategy, and xxintr. Again, note that the constant NXX is used to 
size the array. 
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10.2.3 Autoconfiguration Section 
This example shows the autoconfiguration section for the DMA device driver: 

/**********************************************************/ 
/* AUTOCONFIGURATION */ 
I* */ 
/**********************************************************/ 

/********* Probe Routine **********************************/ 
/* */ 
/* The xxprobe routine is called from the ULTRIX */ 
/* configuration code during the boot phase. The xxprobe */ 
/* routine calls the BADADDR macro to determine */ 
/* if the device is present. If the device is present, */ 
/* xxprobe returns the size of the device structure. */ 
/* If the device is not present, xxprobe returns 0. */ 
/**********************************************************/ 

xxprobe(unit, addrl) 
int unit; /* Unit number for XX device */ 11] 
caddr_t addrl; /* System Virtual Address for the XX device *I [2) 
{ 

/* Initialize pointer to an xx_reg structure */ ~ 
register struct xx_reg *reg = (struct xx_reg *) addrl; 

/* Determine if device is present */ l4J 
if (BADADDR( (caddr_t) &reg->csr, sizeof(char)) !=0) 
{ 

return(O); 

/* Reset the device */ l5:J 
reg->csr = RESET; 

/* Assure that write to I/O space completes */ [§] 
wbflush (); 

/* If device error, return 0 */ IZJ 
if (reg->csr & ERROR) 
{ 

return(O); 

/* Otherwise, initialize the csr */ lal 
reg->csr = 0; 

/* Assure that write to I/0 space completes */ l9J 
wbflush (); 

/* Return size of xx_reg structure */ [Q] 
return (sizeof(struct xx_reg)); 

l1J This line declares a unit variable that is used to specify the logical unit number 
of the XX device. 

12] This line declares an addr 1 argument that is the System Virtual Address (SV A) 
that corresponds to the first CSR address that was specified in the system 
configuration file for the XX device. Note that the xxprobe routine would 
need an addr2 variable if the XX device used a second CSR area. For this 
example, this is not the case because the ud_addr2_size and 
ud_addr2_atype members of the uba_driver structure were previously 
initialized to 0. 
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131 This line declares a pointer to an xx reg structure and calls it reg. The 
xx_reg structure and its associated members were previously defined in the 
Declarations section. This line also initializes reg to the SVA for the XX 
device, which is represented by the addr 1 argument. Because the data types are 
different, this line performs a type casting operation that converts the addr 1 
argument (which is of type caddr_t) to be of type pointer to an xx_reg 
structure. 

~ This line calls the BADADDR macro to determine if the device is present. The 
BADADDR macro takes two arguments: the address of the device whose 
existence you want to check and the length of the data to be checked. In this 
call to the macro, the address of the csr member of the reg pointer is 
passed. The csr member maps to the one byte control/status register for this 
XX device. The length is the value returned by the sizeof operator, in this 
case the number of bytes needed to contain a value of type char (because the 
csr member is a size char). 

Because the first argument to the BADADDR macro is of type caddr t, this 
line also performs a type casting operation that converts the type of the csr 
member (which is of type char) to type caddr_t. 

If a device is present, BADADDR returns the value 0. 

[§] This line sets the XX device's control/status register (represented by the cs r 
member of the reg pointer) to the bit represented by the constant RESET. 
This bit instructs the device to reset itself in preparation for data transfer 
operations. 

[§:I This line calls the kernel routine w bf 1 us h to ensure that a write to I/0 space 
has completed. See Appendix B for detailed information on wbflush. 

fZI If the result of the bitwise AND operation produces a nonzero value (that is, the 
error bit is set), then xxprobe returns the value 0 to the configuration code to 
indicate that the device is broken. 

IS] If the result of the bitwise AND operation produces a zero value (that is the 
error bit is not set), then xxprobe initializes the device's control/status 
register (represented by the csr member of the reg pointer) to the value 0. 

19:] The wbflush routine is called a second time to ensure that a write to I/0 
space has completed. 

[OJ The xxprobe routine returns to the configuration code the size of the device 
structure, which indicates that the device is present. 
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10.2.4 Open and Close Section 
This example shows the open and close section for the DMA device driver: 
/**********************************************************/ 
/* OPEN AND CLOSE */ 
/* */ 
/**********************************************************/ 

/********* Open Routine ***********************************/ 
/* */ 
/* The xxopen routine is called from the ULTRIX */ 
/* spec_open routine. The xxopen routine checks */ 
/* that the device is open uniquely. In addition, it */ 
/* initializes the flag variable. */ 
/**********************************************************/ 

xxopen(dev, flag) 
dev_t dev; /* Major/minor device number */ [j] 
int flag; /* Flags from /usr/sys/h/file.h */ [gj 
{ 

/* Initialize unit to the minor device number */ 131 
register int unit= minor(dev); 

/* Initialize pointer to _uba_device structure *I ~ 
register struct uba_device *devptr = xxdinfo[unit]; 

/* Initialize pointer to xx_softc structure */ 15:] 
register struct xx_softc *sc = &xx_softc[unit]; 

/* Make sure that the unit number is no more than the */ 
/* system configured */ 1§1 
if (unit >= nNXX ) 

return (EIO); 

/* Make sure the open is unique */ IZJ 
if (sc->sc_open == XXOPEN) 

return (EBUSY) ; 

/* If device is initialized, set sc open */ 
/* and return 0 to indicate success~ */ ~ 
if ((devptr !=0) && (devptr->ui_alive == 1)) 
{ 

sc->sc_open = XXOPEN; 
return(O); 

l 

/* Otherwise, return an error. */ 19] 
else return(ENXIO); 

[j] This line declares a variable that holds the major and minor device numbers for 
the XX device. The minor device number will be used in determining the 
logical unit number for the XX device that is to be opened. 

12.1 This line declares an integer variable to contain flag bits from the file 
/usr I sys /h/ file. h. These flags indicate whether the device is being 
opened for reading, writing, or both. 

131 This line declares a unit variable and initializes it to the device minor number. 
Note the use of the minor macro to obtain the device minor number. See 
Appendix B for more information on the minor macro. 
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~ This line declares a pointer to a uba device structure and calls it devptr. 
This line also initializes devptr to the uba device structure associated 
with this XX device. The minor device number (unit) is used as an index into 
the array of uba device structures to determine which uba device 
structure is associated with this XX device. -

~ This line declares a pointer to an xx softc structure and calls it sc. This 
line also initializes sc to the addressof the xx softc structure associated 
with this XX device. The minor device number (unit) is used as an index into 
the array of xx_softc structures to determine which xx_softc structure is 
associated with this XX device. 

~ If the device minor number (unit) is greater than or equal to the number of 
devices configured by the system, this line returns the error code EI 0, which 
indicates an 1/0 error. This error code is defined in I us r I sys I h I err no . h. 

III If the sc open member of the sc pointer is equal to the XXOPEN constant, 
this line returns the error code EBUSY, which indicates that the XX device has 
already been opened. This error code is defined in /usr I sys /h/ errno. h. 

18] If the devptr pointer is not equal to 0 and the ui_alive member of 
devptr is equal to 1, then the device exists. If this is the case, the xxopen 
routine sets the sc open member of the sc structure to the open bit 
XXOPEN and returns 0 to indicate a successful open. 

191 If the device does not exist, xxopen returns the error code ENXIO, which 
indicates that the device does not exist. This error code is defined in 
/usr/sys/h/errno.h. 

/********* Close Routine **********************************/ 
/* */ 
/* The xxclose routine is called from the ULTRIX */ 
/* spec_close routine. The xxclose routine clears the */ 
/* XXOPEN flag to allow other processes to use the */ 
/* device. */ 
/* */ 
/**********************************************************/ 

xxclose(dev, flag) 
dev t dev; /* Major/minor device number */ l1J 
int-flag; /* Flags from /usr/sys/h/file.h */ 12] 
{ 

/* Initialize unit to the minor device number */ 13] 
register int unit= minor(dev); 

/* Initialize pointer to uba_device structure */ ~ 
register struct uba_device *devptr = xxdinfo[unit]; 

/* Initialize pointer to xx_softc structure */ ~ 
register struct xx_softc *sc = &xx_softc[unit]; 

/* Initialize pointer to xx_reg structure */ ~ 
struct xx_reg *reg = (struct xx_reg *) devptr->ui_addr; 

/* Turn off the open bit. */III 
sc->sc_open = XXCLOSE; 

/* Turn off interrupts. */ 18] 
reg->csr = 0; 

/* Assure write to I/O space completes. */ 191 
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wbflush (); 

/* Return success. */ [O] 
return(O); 

[J This line declares a variable that holds the major and minor device numbers for 
the XX device. The minor device number will be used in determining the 
logical unit number for the XX device that is to be closed. 

12) This line declares a flag argument. Note that although the xxclose routine 
declares a flag argument, it does not use it. 

131 This line declares a unit variable and initializes it to the device minor number. 
Note the use of the minor macro to obtain the device minor number. See 
Appendix B for more information on the minor macro. 

@ This line declares a pointer to a uba device structure and calls it devptr. 
This line also initializes devptr to the uba device structure associated 
with this XX device. The minor device number (unit) is used as an index into 
the array of uba device structures to determine which uba device 
structure is associated with this XX device. -

~ This line declares a pointer to an xx softc structure and calls it sc. This 
line also initializes s c to the address of the xx soft c structure associated 
with this XX device. The minor device number (unit) is used as an index into 
the array of xx softc structures to determine which xx softc structure is 
associated with this XX device. -

[§] This line declares a pointer to the xx reg structure and calls it reg. This 
line also initializes reg to the SVA Of the device's registers, which is 
represented by the value stored in the ui addr member of the 
uba device structure associated with tills XX device. 

Because the ui addr member is of type caddr t, this line also performs a 
type casting operation that converts the type of the ui _ addr member to type 
struct xx_reg *. 

lZJ This line sets the sc_open member of the sc pointer to the close bit 
XXCLOSE. 

~ This line turns off interrupts by setting the device's control/status register 
(represented by the csr member of the reg pointer) to the value 0. 

f91 This line calls the wbf lush kernel routine to assure that a write to 1/0 space 
has completed. See Appendix B for detailed information on wbf lush. 

[O] The xxclose routine returns the value 0 to spec_close, to indicate a 
successful close of the XX device. 
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10.2.5 Read and Write Section 
This example shows the read and write section for the DMA device driver: 

/**********************************************************/ 
/* READ AND WRITE */ 
/* */ 
/**********************************************************/ 

/********* Read Routine ***********************************/ 
/* */ 
/* The xxread routine is called from the ULTRIX */ 
/* spec rwgp routine. The xxread routine will call */ 
/* the ULTRIX physio routine to perform the buffer */ 
/* lock, buffer check, I/O package set up. */ 
/* The physio routine calls the xxstrategy routine */ 
/* to access the device. */ 
/* */ 
/**********************************************************/ 

xxread(dev, uio) 
dev_t dev; /* Major/minor device number */ ff] 
struct uio *uio; /* Pointer to uio structure */ 12] 
{ 

/* Initialize unit to the minor device number */ 13] 
register int unit= minor(dev); 

/* Call physio to perform buffer lock, buffer check, and */ 
/* I/O package set up. */ ~ 
return (physio(xxstrategy, &xxbuf[unit], dev, B_READ, minphys, uio)); 

ff] This line declares a variable that holds the major and minor device numbers for 
the XX device. The minor device number is used to determine the logical unit 
number for the device on which the read operation is performed. 

12] Specifies a pointer to a u i o structure. This structure contains the information 
for transferring data to and from the address space of the user's process. You 
typically pass this structure unchanged to the uiomove or physio routines. 
See Section 5.1.3 for information on the uio structure. For information on 
uiomove, see Appendix B. 

13] This line declares a unit variable and initializes it to the device minor number. 
Note the use of the minor macro to obtain the device minor number. See 
Appendix B for more information on the minor macro. 

~ The xxread routine calls the physio kernel routine. The following values 
are passed to physio: 

• The driver's strategy routine, xxstrategy. 

See Section 10.2.6 for a discussion of the xxstrategy routine. 

• The address of a buf structure 

Note that the minor device number (unit) is used as an index into the array 
of bu f structures to determine the buffer associated with this XX device. 
This buffer is a special buffer header owned exclusively by this device. 
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• The device minor number for the XX device 

• The B _READ bit for the read/write flag 

This bit indicates this is a read operation. 

• A rninphys routine 

This argument is a pointer to a rninphys routine. The rninphys kernel 
routine bounds the data transfer size. You can also provide your own 
rninphys routine. 

• A u i o structure 

/********* Write Routine **********************************/ 
/* */ 
/* The xxwrite routine is called from the ULTRIX */ 
/* spec_rwgp routine. The xxwrite routine will call */ 
/* the ULTRIX physio routine to perform the buffer */ 
/* lock, buffer check, I/O package set up. */ 
/* The physio routine calls the xxstrategy routine */ 
/* to access the device. */ 
/* */ 
/**********************************************************/ 

xxwrite(dev, uio) 
dev t dev; /* Major/minor device number */ 
struct uio *uio; /* Pointer to uio structure */ 
{ 

/* Initialize unit to the minor device number */ 
register int unit= minor(dev); 

/* Call physio to perform buffer lock, buffer check, and */ 
/* I/O package set up. */ [1] 
return (physio(xxstrategy, &xxbuf[unit], dev, B_WRITE, minphys, uio)); 

[1] The xxwri te routine is almost identical to the xxread routine. The only 
difference is that xxwri te uses the B WRITE bit instead of the B READ bit 
for the read/write flag to indicate that thiS is a write operation. -
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10.2.6 Strategy Section 

This example shows the strategy section for the DMA device driver: 
/**********************************************************/ 
/* STRATEGY */ 
/* */ 
/**********************************************************/ 
/* */ 
/********* Strategy Routine *******************************/ 
/* */ 
/* The xxstrategy routine is called from the ULTRIX */ 
/* physio routine. The xxstrategy routine first makes */ 
/* sure that the user buffer is both readable and */ 
/* writeable. It determines if the buffer size */ 
/* is larger than MAXPHYS and then initiates the I/O. */ 
/**********************************************************/ 

xxstrategy(bp) 
struct buf *bp; /* Pointer to buf structure */ [] 
{ 

/**************************************************/ 
/* Declare and initialize: unit variable, pointer */ 
/* to uba_device structure, pointer to xx_softc */ 
/* structure, pointer to xx_reg structure, and */ 
/* csr variable. */ 
/************************************************/ 

register int unit= minor(bp->b_dev); 12] 
register struct uba_device *devptr = xxdinfo[uni,t_J; 13) 
register struct xx_softc *sc = &xx_softc[unit]; ~ 
register struct xx_reg *reg = (struct xx_reg *) devptr->ui_addr; 15.J 
short csr; I§] 

/* Determine if the user buffer is writeable */ 
/* during write operations and readable */ 
/* during read operations. */ IZJ 

if (useracc(bp->b_un.b_addr, (int) bp->b_bcount, 
((bp->b_flags & B_READ)==B_READ?B_READ:B_WRITE)) 

NULL) { 

/* Access violation */ 18] 
bp->b_error = EACCFAULT; 

/* A copy to sc_error */ 19] 
sc->sc_error = bp->b_error; 

/* Flag the error */ [j]] 
bp->b_flags I= B_ERROR; 

/* Complete the I/0 and return execution */ 
/* to xxstrategy */ l1IJ 
iodone(bp); 
return; 

/* Determine if the buffer size is larger than */ 
/* xxMAXPHYS */ [2) 

#define xxMAXPHYS (64*1024) /* Maximum DMA size for this device */ 
if (bp->b_bcount > xxMAXPHYS) { 

/* Indicate error */ ~ 
bp->b_error = EBUFTOOBIG; 

/* A copy to the xx softc structure */ ~ 
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sc->sc error = bp->b_error; 

bp->b_flags I= B_ERROR; ~ 

/* Complete the I/O and return execution */ 
/* to xxstrategy */ [§] 
iodone (bp); 
return; 

/* Save bp for use in interrupt routine */ l1ZJ 
sc->bp = bp; 

/* Set up the DMA mapping registers */ ~ 
sc->vmeaddr = vbasetup (devptr->ui_vbahd, bp, 

VME_DMA I VMEA32D32 I VME_BS_NOSWAP, 
0) ; 

/* If requested mapping could not be performed */ l19J 
if (sc->vmeaddr == 0) { 

bp->b_error = ENOMAPREG; 
sc->sc_error = bp->b_error; 
bp->b_flags I= B_ERROR; 
iodone(bp); 
return; 

/* If requested mapping could be performed, 
/* set up the device for transfer. 

reg->addr = sc->vmeaddr; 
reg->count = bp->b_bcount; 
if (bp->b_flags & B_READ) 

csr READ I IE; 
else 

csr = IE; 
reg->csr = csr I DMA_GO; 
wbflush (); 

*/ 
*/ ~ 

[] This line declares a pointer to a buf structure and calls it bp. The 
xxstrategy routine uses these members of the buf structure: b dev, 
b addr, b bcount, b flags, and b error. See Section 5.T.1 for 
descriptions of these members of the bu f structure. 

12] This line declares a variable that holds the major and minor device numbers for 
the XX device. The device minor number is obtained by calling the minor 
macro. Note that the device number passed to minor is the b_dev member 
of the bu f structure pointed to by bp. See Appendix B for a description of 
the minor macro. 

[.3J This line declares a pointer to a uba_device structure and calls it devptr. 
This line also initializes devptr to the uba device structure associated 
with this XX device. The minor device number (unit) is used as an index into 
the array of uba device structures to determine which uba device 
structure is associated with this XX device. -

~ This line declares a pointer to an xx_softc structure and calls it sc. This 
line also initializes s c to the address of the xx soft c structure associated 
with this XX device. The minor device number (unit) is used as an index into 
the array of xx softc structures to determine which xx softc structure is 
associated with this XX device. 

10-26 VMEbus Device Driver Examples 



!§] This line declares a pointer to an xx reg structure and calls it reg. The 
xx - reg structure and its associated members were previously defined in the 
Declarations section. 

This line also initializes the reg pointer to the System Virtual Address (SV A) 
corresponding to the CSR specified in the system configuration file. This SV A 
is stored in the ui_addr member of the devptr pointer. 

Because the data types are different, this line performs a type casting operation 
that converts the ui addr member (which is of type caddr t) to be of 
type pointer to an x~_reg structure. -

1§) This line declares a variable called csr, which stores read, write, and enable 
interrupts status information. 

IZl This line calls the user a cc kernel routine, which determines read or write 
access to a user segment. The xxstrategy routine passes the following to 
user ace: 

• The address of the user segment 

This address is the value of the b addr member of the bp pointer. 

• The size of the user segment 

This size is the value of the b bcount member of the bp pointer. 
Because the second argument to the user a cc routine is of type int, 
this line also performs a type casting operation that converts the type of the 
b_bcount member (which is of type long) to type int. 

• The read/write access flag 

This flag specifies the desired access, either B_READ or B_WRITE. Note 
that this line uses the conditional expression operator to determine the 
value that gets set for b_flags. If the user does not have the 
appropriate access (that is, read or write), this value is NULL and items 
8-12 get executed. Otherwise, the xxstrategy routine determines if the 
buffer size is larger than MAXPHYS (item 13). 

You must use B READ to test the b_flags member because B WRITE 
is equal to zero (0). 

f8] This line sets the b error member of the bp pointer to EACCFAULT, 
which indicates there was an access violation when attempting to access the 
user segment (that is, b_flags is equal to NULL). 

[9J This line copies EACCFAULT to the sc_error member of the sc pointer. 

[OJ This line sets the B ERROR flag in the b flags member of the buf 
structure pointed to by bp. This indicatesan error occurred on this buffer. 

fil] This line completes the I/O operation by calling the iodone kernel routine. 
This routine takes a pointer to a bu f structure as an argument. See Appendix 
B for a description of this routine. After the I/0 completes, iodone returns 
control to xxstrategy which in tum returns to the ULTRIX physio 
routine. The physio routine was called from the DMA driver's xxread or 
xxwri te routine. 

[g) This line checks the buffer size (the b bcount member of the bp pointer) to 
determine if it is greater than xxMAXPHYS. The xxMAXPHYS constant is 
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defined as 64 * 1024. It represents the maximum DMA for this device. 

[3] If the buffer size is greater than xxMAXPHYS, this line sets the b error 
member of the bp pointer to EBUFTOOBIG. -

~ This line copies the error EBUFTOOBIG to the sc_error member of the 
sc pointer. 

~ This line sets the B_ERROR flag in the b_flags member of the buf 
structure pointed to by bp. This indicates an error occurred on this buffer. 

[§] This line completes the I/0 operation by calling the iodone kernel routine. 
This routine takes a pointer to a buf structure as an argument. After the I/O 
completes, iodone returns control to xxstrategy which in tum returns to 
the ULTRIX physio routine. The physio routine was called from the 
DMA driver's xxread or xxwrite routine. 

[ZJ This line saves the pointer to the buf structure used by this device. Note that 
the pointer to the xx_ soft c structure contains as a member a pointer to a 
bu f structure. 

11]] This line calls the vbasetup kernel routine, which allocates and sets up the 
DMA mapping registers. The vbaset up routine takes four arguments: 

• A pointer to a vba _ hd strucuture 

In this case, the ui_ vbahd member of the pointer to the uba device 
structure gets passed. This member is a back pointer to the vba hd 
structure associated with this XX device. 

• A pointer to a buf structure 

• VMEbus flags bits 

The flags argument is the bitwise inclusive OR of a valid bit representing 
the address space and the data size and bits representing other 
characteristics. In this example, the ORed bits have the following 
meanings: 

Flags Bits 

VME DMA 

VMEA32D32 

VME BS NOSWAP 

• A VMEbus address 

Meaning 

Specifies the need for DMA access. 

Specifies a request for the 32-bit address space and the 32-bit 
data size. 

Specifies no byte swapping. 

This argument specifies an address in the appropriate DMA space (the A24 
or the A32 DMA space). In this example, the value 0 is passed, which 
indicates that the vbasetup routine uses the next available VMEbus 
address in the A24 or A32 DMA space. 
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The return value is stored in the vmeaddr member of the s c pointer. 

[91 If vbasetup could not perform the requested mapping of the DMA mapping 
registers, it returns 0 to the vmeaddr member of the sc pointer. The 
xxstrategy routine does the following: 

• It sets the b error member of the bp structure to the constant 
ENOMAPREG. 

• It sets the sc error member of the sc pointer to the constant 
ENOMAPREG. 

• It sets the B ERROR flag in the b flags member of the bu f structure 
pointed to by bp. This indicates an error occurred on this buffer. 

• It calls the iodone kernel routine to complete the I/0 operation. This 
routine takes a pointer to a bu f structure as an argument. After the 1/0 
completes, iodone returns control to xxstrategy which in tum 
returns to the ULTRIX physio routine. The physio routine was 
called from the DMA driver's xxread or xxwri te routine. 

~ If vbasetup returned a VMEbus address that is mapped to the buffer, then it 
set up and allocated the DMA mapping registers. The xxstrategy routine 
does the following: 

• It sets the XX device's transfer address to the VMEbus address mapped to 
the buffer. The XX device's transfer address is represented by the addr 
member of the xx_ reg structure pointed to by reg. 

• It sets the XX device's byte count register to the size of the requested 
transfer, in bytes. The XX device's byte count register is represented by 
the count member of the xx_reg structure pointed to by reg. The 
size of the requested transfer was stored in the b bcount member of the 
buf structure pointed to by bp. 

• If the request is for a read operation, the READ and IE flags are set in the 
csr variable. 

• Otherwise, the request is a write and the IE flag is set in the csr variable. 

• It sets the device's control/status register (represented by the cs r member 
of the xx reg structure pointed to by reg) to the bitwise inclusive OR 
of the value in csr and the bits represented by the OMA_ GO constant. 

• It calls the w bf lush kernel routine to ensure that writes to 1/0 space 
have completed. See Appendix B for detailed information on wbflush. 
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10.2.7 Interrupt Section 
This example shows the interrupt section for the DMA device driver: 

/**********************************************************/ 
/* INTERRUPT */ 
/* */ 
/**********************************************************/ 
/* */ 
/********* Interrupt Routine ******************************/ 
/* */ 
/* */ 
/* The xxintr routine is the interrupt service routine */ 
/* for the XX device. It releases VMEbus mapping */ 
/* registers and flushes the cache if the operation was */ 
/* a DMA read. It then calls iodone to finish the I/O. */ 
/**********************************************************/ 

xxintr(unit) 
int unit; /* Logical unit number for device */ [] 
{ 

/**************************************************/ 
/* Declare and initialize: pointer to uba device */ 
/* structure, pointer to xx_softc structure, */ 
/* and pointer to xx_reg structure. Declare */ 
/* pointer to buf structure. */ 
/**************************************************/ 

register struct uba_device *devptr = xxdinfo[uni;tJ; [2J 
register struct xx softc *sc =&xx softc[unit]; l3J 
/* Pointer to xx_softc structure *f ~ 
register struct xx_reg *reg = 
(struct xx_reg *,}__,devptr->ui_addr; 
struct buf *bp; ~ 

/* Retrieve saved buf pointer */ I§] 
bp = sc->bp; 

/* If error bit set, error occurred*/ IZJ 
if (reg->csr & ERROR) 

bp->b_error = EIO; 
bp->b_flags I= B_ERROR; 

/* Record the number of bytes remaining */ ~ 
bp->b_resid = reg->count; 

/* Release the mapping registers. */ 19.J 
vbarelse(devptr->ui_vbahd, sc->vmeaddr); 

/* If the operation was a read, then it is necessary */ 
/* to flush the data cache to ensure that the next */ 
/* access will get the newly read data. */ IIQJ 
if (bp->b_flags & B_READ) bufflush(bp); 
iodone(bp); 

[] This line declares a unit variable that specifies the logical unit number for this 
XX device that is interrupting. This logical unit number was previously 
specified in the system configuration file. 

[2] This line declares a pointer to a uba_device structure and calls it devptr. 
This line also initializes devpt r to the uba device structure associated 
with this XX device. The minor device number (unit) is used as an index into 
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the array of uba device structures to determine which uba device 
structure is associated with this XX device. -

f3J This line declares a pointer to an xx_softc structure and calls it sc. This 
line also initializes s c to the address of the xx soft c structure associated 
with this XX device. The minor device number (unit) is used as an index into 
the array of xx softc structures to determine which xx softc structure is 
associated with this XX device. -

~ This line declares a pointer to an xx_ reg structure and calls it reg. The 
xx reg structure and its associated members were previously defined in the 
Declarations section. 

This line also initializes the reg pointer to the System Virtual Address (SV A) 
corresponding to the CSR specified in the system configuration file. This SV A 
is stored in the ui_addr member of the devptr pointer. 

Because the data types are different, this line performs a type casting operation 
that converts the ui_addr member (which is of type caddr_t) to be of 
type pointer to an xx_ reg structure. 

1§:1 This line declares a pointer to a buf structure and calls it bp. The xxintr 
routine uses these members of the buf structure: b error, b flags, and 
b_resid. See Section 5.1.1 for descriptions of these members Of the buf 
structure. 

1§.] This line retrieves the pointer to the buf structure that was saved in the 
Strategy section. It does this by setting the bp pointer to the pointer to the 
buf structure member in the xx softc structure associated with this XX 
device. 

lZJ If the error bit in the device csr is set, then an error occurred on the transfer. 
The xxintr routine: 

• Sets the b error member of the buf structure to the error code EIO. 
This code illdicates that there was an 1/0 error. 

• Sets the B_ERROR flag in the b_flags member of the buf structure 
pointed to by bp. This indicates an error occurred on this buffer. 

~ This line sets the b res id member of the bp pointer to the byte count 
register of the XX device, which is represented by the count member of the 
reg pointer. This indicates the data (in bytes) not transferred because of the 
1/0 error. 

191 This line calls the vbarelse kernel routine to release the resources on the 
VMEbus adapter registers. The vbarelse routine takes two arguments: 

• A vba hd structure 

This structure contains the VMEbus adapter number on which the mapping 
registers were allocated in a call to vbasetup in the Strategy section. 
Note that the ui_vbahd member of the pointer to the uba_device 
structure is a back pointer to the vba hd structure associated with this 
XX device. 

• The VMEbus address 

This is the value returned in the previous call to the vbasetup routine in 
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the Strategy section. Note that this value was stored in the vmeaddr 
member of the pointer to the xx_ soft c structure. 

11]] If the transfer was a read, the xxintr routine: calls the buff lush kernel 
routine to flush the processor data cache after a read operation. The xxintr 
routine calls the iodone kernel routine to indicate that the I/O is complete. 
This routine takes a pointer to the buf structure. This routine is called for all 
data transfers. After completion, iodone returns control back to xxintr. 
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TURBOchannel Device Driver Examples 11 

This chapter provides the following example TURBOchannel device drivers: 

• qac device driver 

• Memory-mapped device driver 

The source code for the examples is located in the 
/usr I examples/ devdri vers directory, which includes tcmmap. c. This 
source file contains the TURBOchannel memory-mapped example. 

11.1 qac Device Driver 
For convenience in reading the qac device driver, the source code is divided into 
parts. Table 11-1 lists the parts of the qac device driver and the section of the 
chapter where each appears. 

Table 11-1: Parts of the qac Device Driver 

Part 

Include Files 

Declarations 

Autoconfiguration 

Open and Close 

Read and Write 

ioctl 

Interrupt 

Start 

Stop 

Section 

Section 11.1.1 

Section 11.1.2 

Section 11.1.3 

Section 11.1.4 

Section 11.1.5 

Section 11.1. 6 

Section 11.1. 7 

Section 11.1.8 

Section 11.1.9 



Table 11-1: (continued) 

Part Section 

Parameter 

Break on and break off 
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11.1.1 Include Files 

This example shows the include files section for the qac device driver: 

/* qac.c -
/* 
/* Abstract: 
/* 
/* This driver supports a QAC device. 
/* 
/* Author: Digital Equipment Corporation 
/* 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

/********************************************************/ 
/* INCLUDE FILES */ 
I* */ 
/********************************************************/ 
/* *I 
/* Header files required by qac device driver */ 

#include "qac.h" /* Driver header file generated by config */ [] 
#include " .. /machine/pte.h" 
#include " .. /h/param.h" 
#include " .. /h/systm.h" 
#include " .. /h/ioctl.h" 
#include " .. /h/tty.h" 
#include " .. /h/dir.h" 
#include " .. /h/user.h" 
#include " .. /h/proc.h" 
#include " .. /h/map.h" 
#include " .. /h/buf.h" 
#include " .. /h/vm.h" 
#include " .. /h/conf.h" 
#include " .. /h/file.h" 
#include " .. /h/uio.h" 
#include " .. /h/kernel.h" 
#include " .. /h/devio.h" 
#include " .. / .. /machine/common/cpuconf.h" 
#include " .. /h/exec.h" 
#include " .. /h/kmalloc.h" 
#include " .. /io/uba/ubavar.h" /* auto-config headers */ 
#include " .. /io/tc/qacreg.h" /* qac definitions */ 12] 
#include " .. /machine/cpu.h" 
#include " .. /io/tc/tc.h" ~ 

[] This line includes the qac. h file, which is the device driver header file created 
by conf ig. This file is also included in 
/usr I sys/machine/ common/ conf. c, which is where you define the 
entry points for most device driver routines. The qac. h file contains #define 
statements for the number of qac devices configured into the system. See 
Section 9.1.1 for information on the conf. c file. 

12] The /usr I sys I io/tc/ qacreg. h header file is specific to the qac device 
driver. It contains definitions for use by the different structures referenced by 
the qac driver. For summary descriptions of other header files used by device 
drivers, see Appendix A. 

~ The I us r Is y s Ii o It c It c . h header file is specific to TURBOchannel 
device drivers. It contains definitions and routine declarations needed by 
TURBOchannel device drivers. 
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11.1.2 Declarations 

This example shows the declarations section for the qac device driver: 

/**********************************************************/ 
/* DECLARATIONS */ 
/* */ 
/**********************************************************/ 
/* */ 
/********* Register Structure for QAC device **************/ 
/* */ 
/**********************************************************/ 
I* */ 
typedef unsigned short uhword; 
typedef unsigned int uword; 
/* Device register structure */ [J 
typedef volatile struct { 

uhword csr; 
uhword padO; 
uword padl; 
union { 

uhword rbuf _ro; 
uh word lpr_wo; 

rl; 
uh word 
uword 
uh word 
uh word 
uword 
union { 

pad2; 
pad3; 
tcr; 
pad4; 
pad5; 

uh word 
uh word 

msr_ro; 
tdr_wo; 

r3; 
uhword pad6; 
uword pad7; 

/* DZ control Status Register */ 
/* Set in qacattach */ 
/* Read in qacint */ 

/* data/status buffer read in qac_rint */ 
/* Sets line characteristics */ 
/* Set in qacparam */ 

/* Enable/Disable output interrupts by line */ 
/* Set in qac_tint and qacstart */ 

/* Not referenced */ 
I* Sets line break by line */ 
/* Set in qac_tint, qacbreakon, qacbreakoff */ 

DZ_REGISTERS; /* Registers are aligned on double word boundaries */ 

/*************************************************************/ 
/********* Driver routines declarations **********************/ 
/* */ 
/*************************************************************/ 

int qacstart(), qacbaudrate(); 
int ttrstrt(); 
int qacprobe(), qacattach(); 

u_short qacstd[] = { 0 }; 
struct uba_device *qacinfo[l]; 

I* forward decl for qacdriver table */ 

/* stub for uba csr address */ 
/* storage for uba device structure */ 

/********* Declare and initialize uba driver structure ****/ [2] 
/* - */ 
/**********************************************************/ 

struct uba_driver qacdriver = 
{ qacprobe, O, qacattach, 0, qacstd, "qac", qacinfo }; 

/********* Additional Structures **************************/ 
/* */ 
/**********************************************************/ 

/* Device unit structure */ 13] 
struct qac_unit { 

int attached; 
int adapter; 
int brk; 

/* An attach was done for this unit */ 
/* TC slot number of this unit */ 
/* Force line break flags */ 
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DZ REGISTERS *dz; /* Where the dz is */ 
qac_unit [NQACOPT]; 

/* Generic tty driver flags */ ~ 
struct tty qac_tty[NQACOPT * NQACLINE]; 

/* Declare qac_pdma 
struct qac_pdma { 

char *p_mem; 
char *p_end; 

} qac_pdma [NQACOPT 

structure *I 15] 

/* Pseudo DMA transmitter head */ 
/* Pseudo DMA transmitter tail */ 

* NQACLINE]; 

/* Structure to define 
int qac speeds[16] = { 

-/* BO */ 

valid DZ baud rates */ I§] 

/* BSO */ 
/* B75 */ 
/* BllO */ 

/* B134 */ 
/* B150 */ 
/* B200 */ 
/* B300 */ 

/* B600 */ 
I* B1200 */ 
/* B1800 */ 
/* B2400 */ 

/* B4800 */ 
/* B9600 */ 
/* B19200 */ 
/* B38400 */ 

DZ_LPR_SC_9600, 
DZ_LPR_SC_SO, 
DZ_LPR_SC_75, 
DZ_LPR_SC_llO, 

DZ_LPR_SC_135, 
DZ_LPR_SC_150, 
-1, 
DZ_LPR_SC_300, 

DZ_LPR_SC_600, 
DZ_LPR_SC_l200, 
DZ_LPR_SC_1800, 
DZ_ LP R _SC_ 2 4 0 0 , 

DZ _LPR _SC_ 4 8 0 0, 
DZ_LPR_SC_9600, 
DZ_LPR_SC_19200, 
-1}; 

/* Define debug constants */ IZJ 
#define QAC_DEBUG 
#ifdef QAC DEBUG 
int qac_debug = 0; 
#endif QAC_DEBUG 

11] This line defines a structure called DZ REGISTERS whose members map to 
the registers of the QAC device. This structure is declared using the key word 
volatile because some of its members correspond to hardware device 
registers for the QAC device. In addition, the values stored in these members 
could be changed by something other than the device driver. 

121 The uba driver structure called qacdri ver is initialized to the 
following: 

• The driver's probe routine, qacprobe. 

• The value 0, to indicate that this driver does not use a slave routine. 

• The driver's attach routine, qacattach. 

• The value 0, to indicate that this driver does not use a go routine. 

• The device's CSR address, represented by this previously defined array. 

• The value qac, which is the name of the device. 

• The value qacinfo, which references the array of pointers to the 
previously declared uba device structures. You index this array with 
the unit number as specified in the ui unit member of the 
uba device structure. 
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131 This line declares an array of structures called qac unit. The size of the 
array is represented by the constant NQACOP T, which is defined in 
/usr I sys/ io/tc/ qacreg. h. The constant indicates the number of qac 
option boards configured into the system. 

~ This line declares an array of tty structures called q a c _tty. The size of the 
array is represented by the result of the expression of the constants NQACOPT 
and NQACLINE. As stated previously, NQACOPT represents the number of 
TURBOchannel option slots associated with this qac device. The NQACLINE 
constant represents the number of lines per DZ. 

~ This line declares an array of structures called qac _pd.ma. Like the 
previously declared array of structures, this structure's array size is the result of 
the expression of the two constants NQACOPT and NQACLINE. 

!§] This line declares a structure called qac speeds, which is initialized to the 
constants that represent the valid DZ baud rates. 

1ZJ These lines use several of the C preprocessor statements to set up conditional 
compilation for debugging purposes. In the qac driver, these statements are 
used with the printf kernel routine to print intermediate results to the 
console terminal and to the error logger. 
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11.1.3 Autoconfiguration Section 

This example shows the autoconfiguration section for the qac device driver: 

/**********************************************************/ 
/* AUTOCONFIGURATION */ 
/* */ 
/**********************************************************/ 

/********* Probe Routine **********************************/ 
/* */ 
/* The qacprobe routine is called only after the */ 
/* TURBOchannel initialization code verifies that the */ 
/* device is present. Therefore, qacprobe assumes that */ 
/* the device is okay. */ 
/**********************************************************/ 

qacprobe(vbaddr, unit) 
char *vbaddr; /* Virtual base address of slot */ l1J 
struct uba device *unit; /* uba_device structure for this */ 

/* ui->ui_unit */ [21 

return(l); /* Assume that the device is okay */ 
/* because the TC ROM probe worked */ 

/********* Attach Routine *********************************/ 
/* 
/* 
/* 
/* 

The qacattach routine initializes the qac_unit 
structure and also initializes the csr for the scan 
and interrupt enable. 

*/ 
*/ 
*/ 
*/ 

/**********************************************************/ 

qacattach(ui) 
struct uba device *ui; /* uba device structure for */ 

/* this unit */ 

struct qac_unit *qp; /* Pointer to qac_unit structure */ ~ 
inti; /* [Mark, Larry: Why is this declared? It's not used. */ 

qp = &qac_unit[ui->ui_unit]; 
qp->attached = 1; 
qp->adapter = ui->ui_adpt; 
qp->dz = DZ_ADR(ui->ui_addr); 

/* Pick unit structure */~ 
/* Mark unit attached */ !§[ 
/* Save adapter address */ I§] 
/* Calculate device */ 
/* register address */ lZJ 

qp->dz->csr = DZ CSR TIE 
DZ CSR RIE DZ_CSR_MSE; /* Enable scan */ 

/* and interrupts */ IS] 

l1J This line declares an argument that is used to specify the System Virtual 
Address (SV A) control/status registers for the qac device. 

l2J This line declares a pointer to a uba _device structure. None of the 
members of this structure are used by the qacprobe routine, because the 
TURBOchannel initialization code already verified that the device was present. 
Therefore, qacprobe simply returns the value 1. 

However, the qacattach routine references some of the members of the 
uba device structure. This structure contains such information as the logical 
unit number of the device, whether the device is functional, the bus number the 
device resides on, the address of the control/status registers, and so forth. The 
driver can send any information contained in this structure to the device. See 
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Section 5.1.6 for a description of the uba_device structure. 

131 This line declares a pointer to a qac _unit structure and calls it qp. This 
structure was previously defined in the Declarations section. 

~ This line sets qp to the address of the qac_uni t structure associated with 
this qac device. The ui unit member of the uba device structure 
pointed to by u i holds the unit number of this qac device. Thus, this member 
is used as an index into the array of q a c _unit structures associated with this 
qac device. 

~ This line indicates that this qac device was attached by setting the attached 
member of the qac _unit structure pointed to by qp to the value 1. 

[§] This line sets the adapter member of the qac_unit structure pointed to 
by qp to the adapter number associated with this qac device. The adapter 
number is obtained from the ui adpt member of the uba device 
structure pointed to by u i. - -

1ZJ This line calls the DZ ADDR macro, which uses the device's System Virtual 
Address (SVA) storedln ui _ addr to calculate this qac device's register 
address. The DZ ADDR macro is defined in 
I us r Is y s Ii o It c I qa c reg . h. The line also sets the dz member of the 
qac_unit structure pointed to by qp to this SVA. Note that the dz 
member is a pointer to a DZ_REGISTERS structure defined in qac_unit. 

The SVA is obtained from the ui addr member of the uba device 
structure pointed to by u i. -

~ This line sets the following bits in the csr member of the DZ REGISTERS 
structure pointed to by dz: 

• The transmit interrupt bit, DZ CSR TIE 

• The receiver interrupt bit, DZ CSR RIE 

• The master scan enable bit, DZ CSR MSE 
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11 .1.4 Open and Close Section 

This example shows the open and close device section for the qac device driver: 

/**********************************************************/ 
/* OPEN AND CLOSE */ 
/* */ 
/**********************************************************/ 

/********* Open Routine ***********************************/ 
/* */ 
/* The qacopen routine checks for the validity and for */ 
/* the availability of the device. It calls the generic */ 
/* tty driver open routine to set up the tty structure. */ 
/* It also calls qacparam to set up the device. */ 
/**********************************************************/ 

qacopen(dev, flag) 
dev t dev; /* Major/minor device number */ [1J 
int-flag; /* Flags from /usr/sys/h/file.h */ [2] 
{ 

int n = minor(dev); /*Get minor device number 
struct tty *tp; /* Pointer to tty structure */ 
int s; /* Return value for spltty */ ~ 

/* Is minor ok and is device attached */ 1§1 
if ((n > NQACOPT * NQACLINE) I I !qac_unit[QU(n)] .attached) 

return(ENXIO); 

/* Pick tty structure */ IZJ 
tp = &qac_tty[n]; 

/* Is the line busy? */ ~ 
if ((tp->t_state & TS_XCLUDE) && (u.u_uid != 0)) 

return(EBUSY); 

/* Set the t_addr member */ ~ 
tp->t_addr = (caddr_t)tp; 

/* Pass start routine name */ 
tp->t_oproc = qacstart; [QI 

/* Set up the tty structure */ [1J 
tty_def_open(tp, dev, flag, 1 << (QL(n))); 

/* Set up the line */ lI2J 
qacparam(n); 

if ((flag & O_NOCTTY) && (u.u_procp->p_progenv 
{ 

s spltty (); 
tp->t_state I= TS_ONOCTTY; 
splx(s); 

/* Return value of open call for line discipline */ ~ 
return((*linesw[tp->t_line] .l_open) (dev, tp)); 

A_POSIX)) ~ 

[j] This line declares an integer argument that holds the major and minor device 
numbers for the qac device. The minor device number is used to determine the 
logical unit number for the qac device that is to be opened or closed. 
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[2] This line declares an integer argument that contains flag bits from the file 
/usr I sys/hi file. h. These flag bits indicate whether the device is being 
opened for reading, writing, or both. The flag bits also indicate whether the 
terminal becomes the process's controlling terminal. 

13] This line declares an n variable and initializes it to the device minor number. 
Note the use of the minor macro to obtain the device minor number. See 
Appendix B for more information on the minor macro. 

~ This line declares a pointer to a tty structure and calls it t p. This structure 
contains information such as state information about the hardware terminal line, 
input and output queues, the line discipline number, and so forth. This 
structure is defined in /usr I sys/h/tty. h. 

15:1 This line declares a variable that holds the value returned by a call to the 
s p 1 tty kernel routine and passed as an argument to the s p 1 x kernel routine. 

1§1 This line returns the error constant ENX IO (no such device or address) if the 
device minor number for this qac device is not valid or if the device is not 
attached. Note that this line calls the QU macro, which is defined in 
/usr I sys I io/tc/ qacreg. h. In this case, QU takes the minor device 
number as an argument and uses it to determine the DZ line number associated 
with this qac device. 

IZJ This line sets t p to the address of the tty structure associated with this qac 
device. The minor device number is used as an index into the qac tty array 
of tty structures to obtain the tty structure associated with this qac device. 

18] This line returns the error constant EBUSY (mount device busy) if the 
exclusive use flag constant (TS_XCLUDE) is set and the effective user id (uid) 
is not equal to zero. The effective uid is obtained from the u _ uid member of 
the user structure. A uid of 0 indicates the superuser. 

19:1 This line sets the t addr member of the tty structure pointed to by tp to 
the address of the tty structure associated with this qac device. 

Because the t addr member is of type caddr t, this line also performs a 
type casting operation that converts the type of the tty structure pointed to by 
tp to the type caddr_t. 

[OJ This line sets the t_oproc member of the tty structure pointed to by tp 
to the qac driver's start routine, qacstart. 

111] This line calls the tty def open routine, which is a generic routine used to 
open a tty. The following arguments are passed: 

• The tty structure pointed to by t p, which was set to the address of the 
tty stucture associated with this qac device in item 7. 

• The device minor number for this qac device. 

• The flag argument, whose value was specified on the configuration line. 

• The line number associated with this qac device. The QL macro, defined 
in /usr I sys/ io/tc/ qacreg. h, uses the device minor number to 
calculate the line number associated with this qac device. The bit position 
indicates the line number. 

[2] This line calls the qacparam routine and passes to it the minor device 
number associated with this qac device. See Section 11.1.10 for a discussion of 
the qacparam routine. 
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113] If the O _ NOCTTY error bit is set in the flag argument and the programming 
environment mode of the p _progenv member of the proc structure is equal 
to the constant A_POSIX (an IEEE Pl003.1-compliant process), the 
qacopen routine: 

• Calls the s p 1 tty kernel routine. This routine sets the processor interrupt 
mask to block all device interrupts. See Appendix B for more information 
on the s p 1 tty routine. 

• Sets the TS_ONOCTTY bit in the t_state member of the tty 
structure pointed to by tp. The TS_ONOCTTY bit indicates not to get 
the controlling tty structure on an open. 

• Calls the s p 1 x kernel routine, passing to it the value returned by the 
previous call to spl tty. The splx routine restores the processor 
interrupt mask to its previous value. See Appendix B for more information 
on the s p 1 x routine. 

[41 This line calls the open routine for the line discipline and returns the value. 
Note that the open routine is accessed through the linesw table, which is 
defined in /usr I sys /h/ conf. h. The arguments passed to this routine are 
the device minor number for this qac device and the tty structure pointed to 
by tp. The routine pointed to by linesw is used to set generic terminal 
driver attributes in the associated tty structure. One such attribute is the 
assignment of a controlling terminal to the process group. 

/********* Close Routine **********************************/ 
/* */ 
/* The qacclose routine shuts down the line. */ 
/**********************************************************/ 

qacclose(dev, flag) 
dev t dev; /* Major/minor device number */ [] 
int-flag; /* Flags from /usr/sys/h/file.h */ 12] 
{ 

/* Initialize n to the minor device number ~ 
int n = minor(dev); 

/* Declare pointer to tty structure */ ~ 
struct tty *tp; 

/* Initialize pointer to tty structure */ 15] 
tp = &qac_tty[n]; 

/* Call close routine for line discipline */ l§] 
if (tp->t_line) 

( * linesw [tp->t_line] . l_close) (tp); 

/* Call ttyclose for line discipline */ IZJ 
ttyclose(tp); 
tty def close(tp); /*Call ttydef close*/ le] 
qacbreakoff(n); /*Call ~breakoff */ 19] 
return(O); /*Return*/~ 

[] This line declares an integer argument that holds the major and minor device 
numbers for the qac device. The minor device number is used to determine the 
logical unit number for the qac device that is to be opened or closed. 
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[2] This line declares an integer argument that contains flag bits from the file 
I us r Is y s I h If i le . h. These flag bits indicate whether the device is being 
opened for reading, writing, or both. Note that qacclose does not use this 
argument. 

[3J This line declares an n variable and initializes it to the device minor number. 
Note the use of the minor macro to obtain the device minor number. See 
Appendix B for more information on the minor macro. 

~ This line declares a pointer to a tty structure and calls it tp. This structure 
contains information such as state information about the hardware terminal line, 
input and output queues, the line discipline number, and so forth. This 
structure is defined in /usr/sys/h/tty .h. 

[§] This line sets t p to the address of the tty structure associated with this qac 
device. The minor device number is used as an index into the qac_tty array 
of tty structures to obtain the tty structure associated with this qac device. 

l§:J If a line discipline for this qac device was stored in the t _line member of 
the tty structure pointed to by tp, then call the close routine. Note that the 
close routine is accessed through the lines w table, which is defined in 
/usr/sys/h/conf .h. The argument passed to this routine is the tty 
structure pointed to by t p. 

IZJ These lines call ttyclose, passing to it the tty structure pointed to by tp. 
The ttyclose routine is found in /sys/sys/tty.c. Before completing a close 
on this line, tty close waits for all pending output to drain. This routine 
also disassociates this terminal line as the controlling terminal for this process. 

l8:J This line calls tty_def_close, passing to it the tty structure pointed to 
by tp. The tty_def_close routine is also found in /sys/sys/tty.c. This 
generic terminal driver routine is called to clear many of the terminal attributes 
that are stored in the different members of the tty structure associated with 
this device. 

(9) This line calls qacbreakoff, passing to it the device minor number for this 
qac device. See Section 11.1.11 for a description of the q a cb re a k off 
routine. 

[OJ Upon completion, qacclose returns to the close system call. 
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11.1.5 Read and Write Section 
This example shows the read and write section for the qac device driver: 

/**********************************************************/ 
/* READ AND WRITE */ 
/* */ 
/**********************************************************/ 

/********* Read Routine ***********************************/ 
/* */ 
/* The qacread routine calls the read routine for the */ 
/* line discipline. */ 
/**********************************************************/ 

qacread{dev, uio) 
dev t dev; /* Major/minor device number */_ff] 
str~ct uio *uio; /* Pointer to uio structure */ 12.J 
{ 

struct tty *tp; /* Pointer to tty structure *I 131 

tp = &qac_tty[minor{dev)]; /*Pick tty structure*/~ 

/* Call read routine for line discipline */ 1§1 
return ( (*linesw [tp->t_line]. l_read) (tp, uio)); 

/********* Write Routine **********************************/ 
/* *I 
/* The qacwrite routine calls the write routine for the */ 
/* line discipline. */ 
/**********************************************************/ 

qacwrite(dev, uio) 
dev_t dev; /* Major/minor device number */ 11] 
struct uio *uio; /* Pointer to uio structure */ 121 
{ 

struct tty *tp; /* Pointer to tty structure */ 131 

tp = &qac_tty[minor(dev)]; /*Pick tty structure*/~ 

/* Call write routine for line discipline */ 1§1" 
return ( (*linesw [tp->t_line]. l_write) (tp, uio)); 

11] This line declares an argument that holds the major and minor device numbers 
for the qac device. The minor device number will be used in determining the 
logical unit number for the device on which the read or write operation will be 
performed. 

121 Specifies a pointer to a u i o structure. This structure contains the information 
for transferring data to and from the address space of the user's process. You 
typically pass this structure unchanged to the uiornove or physio routines. 
In this example, the u i o structure gets passed to the read and write routines 
for the line discipline. See Section 5.1.3 for information on the uio structure. 

131 This line declares a pointer to a tty structure and calls it tp. This structure 
contains information such as state information about the hardware terminal line, 
input and output queues, the line discipline number, and so forth. This 
structure is defined in /usr I sys/h/tty. h. 
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~ This line sets t p to the address of the tty structure associated with this qac 
device. The minor device number is used as an index into the qac tty array 
of tty structures to obtain the tty structure associated with this qac device. 

[SJ This line calls the read or write routine for the line discipline. Note that in both 
cases, the read and write routines are accessed through the linesw table, 
which is defined in /usr I sys /h/ conf. h. The arguments passed to these 
routines are the tty structure pointed to by t p and the u i o structure pointed 
to by uio. 

The read and write driver routines are called in response to a user-level 
read or write system call. The read driver routine returns the requested 
number of characters to the user. If there are no characters available or if 
another condition exists that prohibits the read request to be satisfied, the 
read driver routine returns an error. 

The 1 read routine also performs character processing based on the setting of 
terminal attributes in the tty structure associated with this device. The 
l _write routine returns an error condition if the write request cannot be 
performed. If the write can be performed, the driver's qacstart routine is 
called to transfer the characters from the user's data structure to the terminal 
driver's output queue. The driver can perform processing on the characters 
based on the setting of terminal attributes in the tty structure associated with 
this device. 
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11.1.6 ioctl Section 
This example shows the ioctl section for the qac device driver: 

/**********************************************************/ 
/* ioctl */ 
/* */ 
/**********************************************************/ 

/********* ioctl Routine **********************************/ 
/* */ 
/* The qacioctl routine implements standard tty ioctl */ 
/* calls, mostly through calls to the qacparam routine. */ 
/**********************************************************/ 

qacioctl(dev, 
dev_t dev; 
int cmd; 
caddr_t data; 
int flag; 

cmd, data, flag) 
/* Major/minor device number */ 
/* The ioctl command */ 12) 
/* ioctl command-specified data 
/* Access mode of the device */ 

{ 

struct tty *tp; 
int n = minor(dev); 
int error; 

/* Pointer to tty structure */J5.I 
/* Get minor device number *L!§.J 
/* To hold return values */ IZJ 
/* Pointer to devget structure */ la] struct devget *devget; 

/* Pick tty structure */ l9:J 
tp = &qac_tty[n]; 

/* Call to ioctl routine */ [QI 
error = (*linesw [tp->t_line]. l_ioctl) (tp, cmd, data, flag); 

I* Return error or call ttioctl */ [j}] 
if (error >= 0) 

return(error); 
error= ttioctl(tp, cmd, data, flag); 

/* Evaluate cmd and call qacparam */ [2J 
if (error >= 0) 
{ 

switch (cmd) 
{ 

case TCSANOW: 
case TCSADRAIN: 
case TCSADFLUSH: 
case TCSETA: 
case TCSETAW: 
case TCSETAF: 
case TIOCSETP: 
case TIOCSETN: 
case TIOCLBIS: 
case TIOCLBIC: 
case TIOCLSET: 
case TIOCLGET: 

qacparam (n); 
break; 

return(error); 

/* Evaluate cmd if erro < 0 */ [31 
switch (cmd) 
{ 

/* Call qacbreakon */ ~ 
case TIOCSBRK: 

qacbreakon (n) ; 

/* POSIX termios */ 
/* POSIX termios */ 
/* POSIX termios */ 
/* SVID termio */ 
/* SVID termio */ 
/* SVID termio */ 
/* Berkeley sgttyb */ 
/* Berkeley sgttyb */ 
/* Berkeley lmode */ 
/* Berkeley lmode */ 
/* Berkeley lmode */ 
/* Berkeley lmode */ 
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break; 
/* Call qacbreakoff */ ~ 
case TIOCCBRK: 

qacbreakoff(n); 
break; 

/* Fill in devget structure and perform other tasks */ [§] 
case DEVIOCGET: 

devget = (struct devget *)data; 
bzero(devget, sizeof(struct devget)); 
devget->category = DEV_TERMINAL; 
devget->bus = DEV_NB; 
bcopy(DEV_VS_SLU, devget->interface, 

/* terminal cat.*/ 
I* NO bus */ 

/* interface */ strlen(DEV_VS_SLU)); 
bcopy(DEV UNKNOWN, devget->device, 

strlen(DEV_UNKNOWN)); /*terminal*/ 
devget->adpt_num = qac_unit[QU(n)] .adapter; 
devget->nexus_num = 0; /* fake nexus 0 */ 
devget->bus_num = 0; /* NO bus */ 
devget->ctlr num = QU(n); /* cntlr number*/ 
devget->slave num = QL(n); /*line number*/ 
bcopy("qac", devget->dev name, 4); /*Ultrix "qac" */ 
devget->unit_num = QL(n); /* de line? */ 
devget->soft count O; I* soft err cnt */ 
devget->hard-count = O; /* hard err cnt */ 
devget->stat-= 0; /* status */ 
devget->category_stat DEV_MODEM; /* cat. stat. */ 

break; 

/* Check program environment and return */ l1ZJ 
default: 

if (u.u_procp->p_progenv A_POSIX) 
return (EINVAL); 

return (ENOTTY); 
} 

/* Return 0 */ ~ 
return(O); 
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11] This line declares an argument that holds the major and minor device numbers 
for the qac device. The minor device number is used to determine the logical 
unit number for the qac device on which the ioctl is to be performed. 

!21 This line declares a variable to contain the ioctl command as specified in 
/usr I sys /h/ ioctl. h or in another include file defined by the device 
driver writer. 

13] This line declares a pointer to ioctl command-specified data that is to be passed 
to the device driver or filled in by the device driver. The size of this data 
cannot exceed 128 bytes. 

~ This line declares a variable that holds the access mode of the device. The 
access modes are represented by flag constants defined in 
/usr/sys/h/file.h. 

~ This line declares a pointer to a tty structure and calls it t p. This structure 
contains information such as state information about the hardware terminal line, 
input and output queues, the line discipline number, and so forth. This 
structure is defined in /usr I sys/h/tty. h. 

I§] This line declares an n variable and initializes it to the device minor number. 
Note the use of the minor macro to obtain the device minor number. See 
Appendix B for more information on the minor macro. 

l.ZI This line declares a variable to hold the values returned by the ioctl routine for 
the line discipline and the ttioctl routine. 

l8J This line declares a pointer to a devget structure and calls it devget. This 
structure contains such information as the general class of the device, the 
communications bus type, generic device status values, and so forth. This 
structure is defined in /usr I sys/hi devio. h. 

19] This line sets t p to the address of the tty structure associated with this qac 
device. The minor device number is used as an index into the qac tty array 
of tty structures to obtain the tty structure associated with this qac device. 

[QI This line calls the ioctl routine for the line discipline. The line discipline ioctl 
routine handles ioctl calls that are specific to the line discipline in use. Note 
that the ioctl routine is accessed through the lines w table, which is defined in 
/usr I sys/hi conf. h. The specific line discipline for this qac device is 
accessed through the t_line member of the tty structure pointed to by 
tp. The following are the arguments passed to the ioctl routine for the line 
discipline: the tty structure pointed to by t p, the cmd argument, the data 
argument, and the flag argument. 

ff1J If the value in error is greater than or equal to zero (0), qacioctl returns 
this error. By returning the error condition, the ioctl system call relays the error 
state to the user level program. Otherwise, it calls the ttioctl routine, 
passing to it the same arguments it passed to the ioctl routine for the line 
discipline. The ttioctl routine is called to handle generic terminal driver 
ioctls that are not specific to the qac device. 

l12J If error is greater than or equal to 0, ttioctl, the generic terminal driver 
ioctl routine, completed without error. In this case, there are a number of 
specific ioctls that affect terminal attributes represented by the underlying qac 
hardware. For this class of ioctls, the qacparam routine is called to set these 
hardware attributes. The success status from ttioctl is returned to the 
upper level ioctl system call code to allow the system call to complete with a 
success status. See Section 11.1.11 for a description of qacparam. 
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113] If error is less than 0, the ioctl might not be one of the generic terminal driver 
ioctls handled by ttioctl. For example, the ioctl might be specific to the 
qac device, or the ioctl relates closely to the qac hardware. The particular ioctl 
that is specified in the cmd argument is compared against a list of qac-related 
ioctls. If the ioctl command in cmd matches one in the list, appropriate action 
is taken. 

[HJ If cmd is the set break bit macro (TIOCSBRK), qacioctl calls the 
qacbreakon routine. See Section 11.1.11 for a description of 
qacbreakon. 

[§] If cmd is the clear break bit macro (TIOCCBRK), qacioctl calls the 
qacbreakoff routine. See Section 11.1.11 for a description of 
qacbreakoff. 

[§] If cmd is the get device information macro (DEVIOCGET), qacioctl calls 
the bzero and bcopy kernel routines and fills in different members of the 
devget structure pointed to by devget. This ioctl is called to obtain 
device-specific information in a generic devget data structure. See Appendix 
B for information on DEVIOCGET. 

l1ZJ If cmd has none of the previous values, qacioct l determines if the 
p _progenv member of the proc structure pointed to by u _procp is equal 
to A_POSIX (an IEEE P1003.1-compliant process). If so, qacioctl returns 
the error constant E INVAL (invalid argument). Otherwise, it returns ENO TTY 
(not a typewriter). 

This is done to allow the ioctl system call to return with an error status 
indicating that the specified ioctl is not implemented or is not relevant to the 
qac device. 

118] A value of zero (0) is returned to allow the ioctl system call to return successful 
status to the user level program. 
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11.1. 7 Interrupt Section 

This example shows the interrupt section for the qac device driver: 

/**********************************************************/ 
/* Interrupt */ 
/* */ 
/**********************************************************/ 

/********* Interrupt Routines 
/* 

*****************************/ 

/* The qacint routine vectors control to qac_rint and 
/* qac_int. 

*/ 
*/ 
*/ 

/**********************************************************/ 

qacint(ctlr) 
int ctlr; /* Unit number of controller */ [] 
{ 

struct qac_unit *qp; /* Pointer to qac_unit structure 
int csr; /* DZ control status register */ 

qp = &qac_unit[ctlr]; /*Pick unit structure*/~ 
csr = qp->dz->csr; /* Set the DZ control status register */ ~ 

/* Call 
if (csr 

/* Call 
if (csr 

qac_rint */ 1§:1 
& DZ_CSR_RDONE) 
qac_rint (qp) f.wi 
qac_tint *I tZJ 
& DZ_CSR_TRDY) 
qac_tint(qp, csr); 

[j] This line declares a variable that holds the logical unit number of the controller 
that is interrupting. This logical unit number was previously specified in the 
system configuration file. The logical unit number is used as an index into the 
qac driver's data structures to obtain per device information. See Section 
9.1.3.4 for information on how to specify a controller's name and logical unit 
number in the system configuration file. 

12] This line declares a pointer to a qac _unit structure and calls it qp. This 
structure was previously defined in the Declarations section. 

[3] This line declares a variable that holds a local copy of the DZ control status 
register. 

~ This line sets qp to the address of the q a c _unit structure associated with 
this qac device. Note that the address of the structure is obtained by 
referencing the logical unit number of the controller associated with this qac 
device. 

~ This line sets the csr variable to the DZ control status register, which is 
obtained from the csr member of the DZ REGISTERS structure pointed to 
by dz. (This pointer is a member of the qac_unit structure pointed to by 
qp). 

1§:1 If the receiver interrupt occurred bit (DZ_CSR_RDONE) is set, qacint calls 
qac rint passing to it the qac unit structure pointed to by qp for this 
qac device. -

IZJ If the transmit interrupt occurred bit (DZ_ CSR_ TRDY) is set, qacint calls 
qac_tint passing to it: 
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• The qac_unit structure pointed to by qp for this qac device. 

• The DZ control status register associated with this device 

/**********************************************************/ 
/* */ 
/* The qac rint processes incoming characters */ 
/**********************************************************/ 
qac_rint(qp) 
struct qac_unit *qp; 
{ 

int data; 
int line; 
struct tty *tp; 
int iflag; 

/* Device driver spins as long as charcaters available */ [] 
while ((data= qp->dz->rbuf) & DZ_RBUF_DVAL) 
{ 

/* Examine relevant bits in data */ 12) 
line= DZ_RBUF_RL(data); 

/* Locate the relevant tty structure */ l3J 
tp = &qac_tty[(qp - qac_unit) * NQACLINE +line]; 

/* Discard the character */ ~ 
if ((tp->t_state & TS_ISOPEN) == 0) 
{ 

wakeup((caddr_t)&tp->t_rawq); 
continue; 

/* Set iflag to the termio flag */ 15] 
iflag = tp->t_iflag; 

/* Indicate that receive silo overflowed */ !§] 
if (data & DZ_RBUF_OERR) 
{ 

printf("qac%d: input silo overflowO, qp - qac_unit); 
continue; 

/* Indicate framing error occurred */ IZJ 
else if (data & DZ_RBUF_FERR) 
{ 

data = 0; 

if (iflag & IGNBRK) 
continue; 

else if (iflag & BRKINT) 
{ 

if (((tp->t_lflag_ext & PRAW) == 0) I I 
(tp->t_line == TERMIODISC) ) 

ttyflush(tp, FREAD I FWRITE); 
gsignal(tp->t_pgrp, SIGINT); 
continue; 

else if (iflag & PARMRK) 
{ 

(* linesw [tp->t_line]. l_rint) (0377, tp); 
(*linesw[tp->t_line] .l_rint) (0, tp); 
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} 

/* Indicate parity error occurred */ ~ 
else if (data & DZ_RBUF_PERR) 

if (iflag & INPCK) 
{ 

if (iflag & IGNPAR) 
continue; 

else if (iflag & PARMRK) 
{ 

else 

( * linesw [tp->t_line] . l_rint) (0377, tp); 
(*linesw[tp->t_line] .l_rint) (0, tp); 

data = 0; 

/* 8-bit character isolated from data var */ 19] 
data= DZ RBUF DATA(data); 
/* Receiv~d ch~racter stripped to 7 bits */ [Q] 
if (iflag & ISTRIP) 

data &= 0177; 
else if ((data== 0377) && (tp->t_line == TERMIODISC) && 

(iflag & PARMRK)) 
( * linesw [tp->t_line] . l_rint) ( 0377, tp); 

/* Pass character to line discipline */ [1] 
(*linesw[tp->t_line] .l_rint) (DZ_RBUF_DATA(data), tp); 

f1] The device driver spins in this while loop as long as there are characters 
available. Because it takes time to process each character, it is possible that 
another character will become available from the qac device while processing 
the current character. By reading the qp->dz->rbuf address, the driver 
removes the character from the qac device and assigns it to the data argument. 

The driver checks data to determine if the bit specified by DZ_RBUF _DVAL is 
set. If the bit is set, a valid character has just been read from the qac device. 
The driver exits from this routine when there are no longer any valid characters 
available. 

[2J Because the qac hardware supports more than one terminal line, the 
qac rint routine examines the relevant bits in data to determine which line 
the input character is associated with. 

!al Based on the terminal line number, the qac_rint routine locates the device's 
associated tty structure. 

~ If the terminal line is not presently in use, the continue statement causes the 
character to be discarded. 

151 The qac rint routine sets ifiag to be a register local copy of the terminal 
driver termio input modes flag, t _if 1 ag. 

1§1 If the DZ RBUF OERR bit is set, the receive silo has overflowed. This 
indicates that the receive interrupts are not being serviced fast enough to keep 
pace with the input rate of the qac device. 
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fZJ If the Dz_ RB UF _FE RR bit is set, a framing error occurred. This typically 
indicates that a break condition was detected on this line. Based on the setting 
of various terminal attributes, qac_rint performs appropriate processing to 
break the condition. 

~ If the DZ_RBUF _PERR bit is set, a parity error occurred. Based on the setting 
of various terminal attributes, q a c _ r int performs appropriate processing to 
handle the parity error. 

~ The 8-bit character is isolated from the data variable. 

[Q] Based on the setting of various terminal attributes, qac r int might, strip the 
received character to 7 bits. -

[jJ The qac _ r int routines passes the character to the line discipline specific 
input routine. This routine typically performs any character processing 
specified in the terminal attributes prior to passing the character on to the user 
level process. 

/**********************************************************/ 
/* */ 
/* The qac_tint processes outgoing characters */ 
/**********************************************************/ 
qac_tint(qp, csr) 
struct qac_unit *qp; 
int csr; 
{ 

} 

int n; 
struct tty *tp; 
struct qac_pdma *pd; /* Pointer to qac_pdma structure */ ff] 

/* Set n to the appropriate index */ ~ 
n = (qp - qac unit) * NQACLINE +DZ CSR TL(csr); 
/* Assign pointer to relevant structure-*/ 13) 
pd= &qac_pdma[n]; 

/* Start break condition */ ~ 
if (pd->p_mem != pd->p_end) 
{ 

qp->dz->tdr = qp->brk I (unsigned char) (*pd->p_mem++); 
} 

/* Previously initiated transmissions completed */ ~ 
else 
{ 

tp = &qac_tty[n]; 
tp->t_state &= -TS_BUSY; 
if (tp->t_state & TS_FLUSH) 

tp->t_state &= -TS_FLUSH; 
else 
{ 

/* Remove properly transmitted characters */ I§] 
ndflush(&tp->t_outq, pd->p_mem-tp->t_outq.c_cf); 

pd->p_end = pd->p_mem = tp->t_outq.c_cf; 
} 

/* Call line discipline specific start routine */ fZJ 
if (tp->t_line) 

else 
(* linesw [tp->t_line] . l_start) (tp); 

/* Call qacstart to commence next transmission */ ~ 
qacstart(tp); 

/* Disable transmitter interrupts */ ~ 
if ((tp->t_state & TS_BUSY) == 0) 

qp->dz->tcr &= -DZ_TCR_ENA(QL(n)); 
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[] Each terminal line on a gac device has an associated qac _pdma structure that 
is used to store characters waiting to be transmitted. 

l2] This line sets the variable n to the appropriate index for this qac line within its 
associated qac _pdma structure. 

13] Based on the index assigned to n, this line assigns a pointer to the relevant 
qac _pdma structure. 

~ If there are characters waiting to be output, start a break condition on this line 
by setting the appropriate bit in the tdr register. 

1§1 There are no more characters waiting to be trans,mitted. This indicates that all 
previously initiated transmissions have now completed. 

[§] This line removes the characters that were properly transmitted on the qac 
device from the terminal driver's output queue. 

lZJ If a line discipline-specific start routine is available, call it to commence the 
next transmission. 

l8J Call the qacstart routine to begin the next transmission, if there are 
additional characters waiting to be output. 

r9:J If the device is not currently busy transmitting, disable transmitter interrupts 
because there is no present need to be notified of transmitter completion. 

11.1.8 Start Section 
This example shows the start section for the qac device driver: 

/**********************************************************/ 
/* Start */ 
/* */ 
/**********************************************************/ 

/********* Start Routine **********************************/ 
/* */ 
/* The qacstart routine starts output on a terminal. */ 
/* */ 
/**********************************************************/ 

qacstart(tp) 
struct tty *tp; /* Pointer to tty structure */ [] 
{ 

int n; /* Holds minor device number */ 
int s; /* Stores return value for spltty */ 
int cc; /* Return value for ndqb */ 
struct qac_pd.ma *pd; /* Pointer to qac_pd.ma structure */ l2J 

n = minor(tp->t_dev); /*Get minor device number*/ 13] 

s = spltty(); /* Block all device interrupts */ ~ 

/* If bits set, continue execution at out */ 1§1 
if (tp->t_state & (TS_TIMEOUT I TS_BUSY I TS_TTSTOP)) 

goto out; 

/* Otherwise, check linked list queue */ [§] 
if (tp->t_outq.c_cc <= TTLOWAT(tp)) 
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out: 

/* 
/* 
I* 
if 
{ 

} 

Is TS_ASLEEP bit set? */ 
If so, flip the bits */ 
and call wakeup. *I [Z] 
(tp->t_state & TS_ASLEEP) 

tp->t_state &= -TS_ASLEEP; 
wakeup((caddr_t)&tp->t_outq); 

/* Otherwise, check proc structure 
/* If condition is true, call selwakeup, 
/* set the proc structure to O, and 
I* flip the bits in t_state 
if (tp->t_wsel) 
{ 

*I ~ 
*/ 
*/ 
*/ 

selwakeup(tp->t_wsel, tp->t_state & TS_WCOLL); 
tp->t_wsel = 0; 
tp->t_state &= -TS_WCOLL; 

/* Otherwise, check that linked list queue equals 0 */ 19] 
if (tp->t_outq.c_cc == 0) 

goto out; 

/* Determine number of characters awaiting output */ 11]] 
if ((tp->t_lflag_ext & PRAW) I I (tp->t_oflag_ext & PLITOUT) I I 

((tp->t_oflag & OPOST) == 0)) 

else 
{ 

cc= ndqb(&tp->t_outq, 0); 

cc= ndqb(&tp->t_outq, DELAY_FLAG); 
if (cc == 0) { 

cc= getc(&tp->t outq); 
timeout (ttrstrt, - (caddr_t) tp, (cc&Ox7f) + 6); 
tp->t_state I= TS_TIMEOUT; 
goto out; 

} 

I* Initiate actual character transmission */ II1J 
tp->t_state I= TS_BUSY; 
pd= &qac_pdma(n]; 
pd->p_end = pd->p_mem = tp->t_outq.c_cf; 
pd->p end += cc; 
I* Enable transmit interrupts */ [2] 
qac_unit[QU(n)] .dz->tcr I= DZ_TCR_ENA(QL(n)); 

splx(s); /* Restore spl level */ ff3:J 

ff] This line declares a pointer to a tty structure and calls it tp. This structure 
contains information such as state information about the hardware terminal line, 
input and output queues, the line discipline number, and so forth. This 
structure is defined in I us r I sys I h It t y . h. 

121 This line declares a pointer to a qac_pdma structure and calls it pd. This 
structure was previously defined in the Declarations section. 

13] This line initializes n to the device minor number associated with this qac 
device. The device minor number is obtained from the t dev member of the 
tty structure pointed to by t p for this qac device. 
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~ This line calls the spltty kernel routine, which blocks all device interrupts. 
After it completes execution, s p 1 tty returns the current spl level (that is, the 
spl level prior to its being called). See Appendix B for more information on the 
spl tty routine. 

l5] If the t state member of the tty structure pointed to by t p for this qac 
device is-set to the TS TIMEOUT or TS BUSY or TS TTSTOP bit, 
execution continues at label out. The bit settings, defined in 
/usr I sys/h/tty. h, have the following meanings: 

Bit Value 

TS TIMEOUT 

TS BUSY 

TS TTSTOP 

Meaning 

Delay execution; timeout in progress 

A previous transmission is currently in progress 

Output stopped when user pressed "S 

!§] If the bits in the previous line were not set, check the linked list queue of 
characters to determine if it is less than or equal to the value returned by the 
TTLOWAT macro. This macro indicates if there is presently room in the output 
queue to accept additional characters. This linked list queue of characters is 
defined by the clist structure defined in /usr I sys/h/tty. h. 

IZl If the previous line is true, this line checks if the Ts_ ASLEEP bit is set in the 
t _state member of the tty structure pointed to by t p for this qac device. 
If TS ASLEEP is set, this terminal line was previously blocked on output 
because there were already too many characters in the output queue. Now that 
the number of characters in the output queue is below an acceptable level the 
TS_ASLEEP flag can be cleared. This bit is defined in 
/usr/sys/h/tty.h. 

After clearing the bit, this line calls the wakeup kernel routine. This routine 
takes one argument: the address on which the wakeup is to be issued. In this 
case, this address is that of the linked list queue of characters. This line also 
performs a type casting operation because the data type expected by wakeup 
is of type caddr t and the data type of the linked list queue is of type 
clist. See Appendix B for more information on the wakeup routine. 

!BJ If the TS ASLEEP bit in the previous condition statement was not set, check 
the proc-structure pointed to by t_wsel to determine if a select system call 
was previously issued on this line. If the condition is true: 

• Call the selwakeup kernel routine 

This routine wakes up a select blocked process and takes two arguments. 
The first argument is a pointer to a proc structure. In this case the 
pointer is accessed through the t_wsel member of the tty structure 
pointed to by tp for this qac device. The second argument is a value that 
indicates whether more than one process is blocked on this file descriptor. 
In this case, the value is obtained from setting the t _state member to 
the TS WCOLL bit. This bit, defined in /usr/sys/h/tty. h, 
indicates a collision on a write select, indicating that there is more than one 
process that issued a select system call on this line. 

• Clear the t wsel member and the TS WCOLL bit in the t state to - -
indicate that the pending select was serviced. 
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191 If cc is zero (0), it indicates that there are no more characters waiting to be 
output. Thus, a jump to the label out is done to exit this routine. 

[Q] In a manner determined by the terminal attributes, the number of characters 
awaiting to be output is determined. 

[jj] The actual character transmission is initiated by setting the appropriate pointers, 
state fields, and character counts. 

[2] Transmit interrupts are enabled for this line so that the driver knows when 
transmission completes. 

[31 This line calls the s p 1 x kernel routine. This routine takes as an argument the 
interrupt mask returned in a previous call to one of the spl routines, in this 
case s p 1 tty. The s p 1 x routine restores the processor to the interrupt mask 
specified in the argument. 

11-26 TURBOchannel Device Driver Examples 



11.1.9 Stop Section 

This example shows the stop section for the qac device driver: 

/**********************************************************/ 
/* Stop */ 
/* */ 
/**********************************************************/ 

/********* Stop Routine ***********************************/ 
/* */ 
/* The qacstop routine suspends transmission on a */ 
/* specified line. */ 
/* */ 
/**********************************************************/ 

qacstop(tp, flag) 
struct tty *tp; /* Pointer to tty structure */ [] 
int flag ; /* Output flag */ [21 
{ 

int n; /* Holds device minor number */ 
int s; /* Return from spltty */ 
struct qac_pdma *pd; /* Pointer to qac_pdma structure */ 13] 

n = tp - qac_tty; /* Get device minor number */ ~ 
pd= &qac_pdma[n]; /*Pick qac_pdma structure*/ 5 
s = spltty(); /*Set processor interrupt mask*/ 6 
if (tp->t_state & TS_BUSY) /* If TS_BUSY bit set */ IZJ 
{ 

pd->p_end = pd->p_mem; /* Set p_end member */ 
if ((tp->t_state & TS_TTSTOP) 0) /*If TS_TSTTSTOP */ 

/* bit set */ 
tp->t_state I= TS_FLUSH; /* Set TS FLUSH bit */ 

splx(s); /*Restore interrupt mask*/~ 

[] This line declares a pointer to a tty structure and calls it t p. This structure 
contains information such as state information about the hardware terminal line, 
input and output queues, the line discipline number, and so forth. This 
structure is defined in /usr I sys/h/tty. h. 

121 This line declares a variable that specifies whether the output is to be flushed or 
suspended. UL TRIX device drivers do not use this argument. 

13] This line declares a pointer to a qac _pd.ma structure and calls it pd. This 
structure was previously defined in the Declarations section. 

~ Then variable is assigned to the index of this line within the qac _pdma 
structure. 

15:1 This line sets pd to the address of the qac _pd.ma structure associated with 
this qac device. The minor device number is used as an index into the array of 
qac pd.ma structures to obtain the qac pd.ma structure associated with this 
qac device. -

l§:I This line calls the spl tty kernel routine to block all device interrupts. This 
routine returns the current spl level. 

IZJ This line performs a conditional test based on the TS BUSY bit, which 
indicates that output of characters is in progress. If the bit is set in the 
t state member of the tty structure pointed to by tp, qacstop: 
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• Sets the pseudo DMA transmitter tail (the p _end member of the 
qac_pdrna structure pointed to by pd) to the pseudo DMA transmitter 
head (the p _mem member of the qac _pdrna structure pointed to by 
pd). 

• Performs a conditional test on setting the TS_TTSTOP bit, which 
indicates that output of characters was stopped by the user pressing "S. If 
this bit is set in the t state member of the tty structure pointed to by 
tp, then set t state to the TS FLUSH bit. This bit indicates that the 
output queue has been flushed during DMA. 

18] This line calls the splx kernel routine passing to it the value returned in a 
previous call to s pl tty. The s pl x routine returns the processor interrupt 
mask to the previous spl level. 
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11.1.1 0 Parameter Section 

This example shows the parameter section for the qac device driver: 

/**********************************************************/ 
/* Parameter */ 
/* */ 
/**********************************************************/ 

/********* Parameter Routine ******************************/ 
/* 
/* 
/* 
/* 
/* 

The qacparam routine sets the hardware attribute for 
this line to the values specified in the terminal 
attributes from the associated tty structure. 

*/ 
*/ 
*/ 
*/ 
*/ 

/**********************************************************/ 

qacparam(n) 
int n; 
{ 

struct tty *tp; 
int param; 

tp = &qac_tty[n]; 

/* Set baud rate */ ff] 
param = qac_speeds[tp->t_cflag & CBAUD] I DZ_LPR_LINE(QL(n)); 

if ((tp->t_line != TERMIODISC) && ((tp->t_cflag_ext & CBAUD) == BllO)) 
/* Set number of stop bits */ 

tp->t_cflag I= CSTOPB; 

if (tp->t cflag & CREAD) 
I* Enable receive interrupts */ 
param I= DZ_LPR_RXENA; 

if (tp->t cflag & CSTOPB} 
/* Set nu;;;ber of stop bits */ 

param I= DZ_LPR_STOP; 

if (tp->t_cflag & PARENB) 
/* Enable parity detection */ 12) 
param I= DZ_LPR_PARENA; 

if (tp->t_cflag & PARODD} 
/* Set parity to odd or even */ 
param I= DZ_LPR_ODDPAR; 

switch (tp->t_cflag & CSIZE) 
{ 

/* Set number of data bits to 5, 
case CSS: pa ram I= DZ - LPR_CHAR_S; 
case CS6: pa ram I= DZ - LPR_CHAR_6; 
case CS7: par am I= DZ - LPR_CHAR_7; 
case CS8: pa ram I= DZ - LPR CHAR 8; - -
} 

6, 7, or 
break; 
break; 
break; 
break; 

/* Write specified line parameters */ laJ 
qac_unit[QU(n)] .dz->lpr = param; 

8 */ 

ff] This line sets the the baud rate of this terminal line in accordance with the 
values of the terminal attributes. 
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121 This line enables parity detection on input and generation on output. 

13] This line writes the specified line parameters from a local copy to the actual 
hardware reg~ster. 
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11.1.11 Break On and Break Off Section 
This example shows the break on and break off section for the qac device driver: 

/**********************************************************/ 
/* Break On and Break Off */ 
/* */ 
/**********************************************************/ 

/********* Break On Routine *******************************/ 
/* */ 
/* The qacbreakon routine turns on line breaks. */ 
/* This routine is called by qacioctl. */ 
/**********************************************************/ 

qacbreakon(n) 
int n; /* Major/minor device number */ [j] 
{ 

struct qac_unit *qp; /* Pointer to qac_unit structure */ 12] 

qp = &qac_unit[QU(n)]; /*Pick qac_unit structure*/ 131 

/* Set line breaks for flag */ ~ 
qp->brk I= DZ_TDR_BRK(QL(n).l-; 
/* tdr<15:8> byte write */ ~ 
*(char*) (((int)&qp->dz->tdr) + 5) qp->brk >> 8; 

/********* Break Off Routine ******************************/ 
/* */ 
/* The qacbreakoff routine turns off line breaks. */ 
/* This routine is called by qacioctl. */ 
/**********************************************************/ 

qacbreakoff (n) 
int n; /* Major/minor device number */ [j] 
{ 

struct qac_unit *qp; /* Pointer to qac_unit structure */ 12] 

qp = &qac_unit[QU(n)]; /*Pick qac_unit structure*/ 131 

/* Set line breaks for flag */ ~ 
qp->brk &= -DZ_TDR_BRK(QL(n,)J; 
/* tdr<15:8> byte write */ ~ 
*(char*) (((int)&qp->dz->tdr) + 5) qp->brk >> 8; 

[] This line declares an integer variable that holds the major/minor device number 
for this qac device. The qacioctl routine passes the minor device number 
for this qac device to qacbreakon and qacbreakoff. See Section 11.1.6 
for a description of qacioctl. 

121 This line declares a pointer to a qac _unit structure and calls it qp. This 
structure was previously defined in the Declarations section. 

131 This line sets qp to the address of the q a c unit structure associated with 
this qac device. Note that the QU macro is used to calculate the DZ unit 
number for this qac device. The minor device number is passed to this macro. 
The QU macro is defined in /usr I sys/ io/tc/ qacreg. h. 

~ Both routines set the line breaks flag as follows: 
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• The qacbreakon routine calls the DZ TDR BRK and QU macros to 
calculate the bits to OR in the brk member ofthe qac_unit structure 
pointed to by qp. 

• The qacbreakoff routine calls the same macros to calculate the bits to 
AND in the brk member of the qac unit structure pointed to by qp. 
Note, however, that qacbreakoff uses the ones complement operator 
to flip the bits calculated by the macros. 

15] Each line of the qac device has an associated break bit in the tdr register. 
This statement sets or clears the individual break bit corresponding to this line 
while leaving the break bits of the other line unchanged. 
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11 .2 Memory-Mapped Device Driver 
The memory-mapped device driver example illustrates a driver that provides a 
memory map mechanism for a generic memory-mapped device. For convenience in 
reading and studying the memory-mapped device driver, the source code is divided 
into parts. Table 11-2 lists the parts of the memory-mapped device driver and the 
sections of the chapter where each is discussed. 

Table 11-2: Parts of the Memory-Mapped Device Driver 

Part Section 

Include Files Section 11.2.1 

Declarations Section 11.2.2 

Autoconfiguration Section 11.2.3 

Open and Close Section 11.2.4 

Memory Mapping Section 11.2.5 
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11.2.1 Include Files Section 
This example shows the include files section for the memory-mapped device driver: 

/* sk.c - Memory mapped device driver */ 
/* */ 
/* Abstract: */ 
I* */ 
/* This driver provides a memory map mechanism for a */ 
I* generic memory mapped device. */ 
/* */ 
/* Author: Digital Equipment Corporation */ 
/* */ 
/********************************************************/ 
/* INCLUDE FILES */ 
I* */ 
/********************************************************/ 

/* Header files required by memory mapped device driver */ 

#include "sk.h" /* Driver header file generated by config */ ff] 
#include " .. /h/types.h" 
#include " .. /h/errno.h" 
#include " .. /machine/param.h" 
#include " .. /h/uio.h" 
#include " .. / .. /machine/common/cpuconf.h" /*Include for BADADDR */ [21 
#include " .. /io/uba/ubavar.h" 
#include " .. /h/ioctl.h" 
#include " .. /h/param.h" 
#include " .. /h/buf.h" 
#include " .. /h/vmmac.h" 
#include " .. /io/tc/tc.h" /* TURBOchannel definitions*/~ 

[] This line includes the sk. h file, which is the device driver header file created 
by conf ig. This file is also included in 
/usr I sys/machine/ common/ conf. c, which is where you define the 
entry points for most device driver routines. The sk. h file contains #define 
statements for the number of sk devices configured into the system. See 
Section 9.2 for more information on the conf. c file. 

12] The cpuconf. h file is where the BADADDR macro is defined. ULTRIX 
device drivers use this macro to determine whether a device is present on the 
hardware configuration. See the skprobe routine in Section 10.1.3 for an 
example of how the memory-mapped device driver uses BADADDR. 

~ The I us r Is y s Ii o It c It c . h header file is specific to TURBOchannel 
device drivers. For summary descriptions of other header files used by device 
drivers, see Appendix A. 
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11.2.2 Declarations Section 
This example shows the declarations section for the memory-mapped device driver: 

/**********************************************************/ 
/* DECLARATIONS */ 
/* */ 
!**********************************************************/ 

#define SKREGSIZE 256 /* First csr area size */ [] 
#define SKUNIT(dev) (minor(dev)) /*Device minor number*/ 12] 

/* Driver routines declarations */ 
int skprobe(),skattach(),skintr(),skmmap(); 

/* Array of pointers to uba_device structures */ [al 
struct uba_device *skdinfo[NSK]; 

/* Declare and initialize uba_driver structure */ ~ 
struct uba_driver skdriver = { 

} ; 

skprobe,O,skattach,O,O, 
"sk",skdinfo,O,O,O 

/* Device register structure */ 15] 
struct sk_reg_t { 

} ; 

volatile char stub_O; /* Base address */ 
volatile char T; /* First readable, always T */ 
volatile char stub_l; /* Data is only on every other byte */ 
volatile char C; /* Second readable */ 
volatile char nonused[124]; 
volatile short status; 
volatile unsigned short intvec; 
volatile unsigned short reset; 
volatile char unused[2]; 
volatile unsigned short start; 
volatile char nevused[2]; 
volatile unsigned short skdata; 
volatile char pads[92]; /*Fills out the remainder of*/ 

/* the 256 byte block */ 

/* Define a softc structure for use by the interrupt service */ 
/* routines, the error log routines, etc. */ I§] 
struct sk_softc{ 

int sk_time; /* Timeout value*/ 
int sk_expint; /* Expecting interrupt*/ 
int sk_timeout; /* Timeout situation : true or false */ 
int sk_data; /* Value read after interrupt*/ 
int intent; /* Number of times interrupts may happen */ 
struct sk_reg_t *sk_base; /* Pointer to sk_reg_t structure */ 

sksoftc[NSK]; 

/* Define debug constants */ IZJ 
#define SK_DEBUG 
#ifdef SK_DEBUG 
int sk_debug = 0; 
#endif SK_DEBUG 

ff] This line defines a constant that can be used for the size of the first CSR area. 
The memory-mapped device driver initializes the ud_addrl_size member 
of the uba driver structure with this constant. 
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l2J This line defines a constant that represents the device minor number. A call to 
the minor macro obtains the device minor number. This macro takes one 
argument: the number of the device whose associated minor device number you 
want to obtain. See Appendix B for a description of the minor macro. 

~ This line declares an array of pointers to uba device structures and calls it 
skdinfo. This array is referenced by the driver's skattach and skrnrnap 
routines. The constant NSK represents the maximum number of sk devices for 
a particular hardware configuration. This number is used to size the array of 
pointers to uba_device structures. This constant was defined by config 
in sk. h. 

l4J The uba_driver structure called skdriver is initialized to the following: 

• The driver's probe routine, skprobe. 

• The value 0, to indicate that this driver does not use a slave routine. 

• The driver's attach routine, skattach. 

• The value 0, to indicate that this driver does not use a go routine. 

• The value 0, because VMEbus device drivers do not use the ud addr 
member of the uba driver structure. 

• The value s k, which is the name of the device. 

• The value skdinf o, which references the array of pointers to the 
previously declared uba_device structures. You index this array with 
the unit number as specified in the u i _unit member of the 
uba device structure. 

• The value 0, to indicate that there is no controller name associated with 
this device. 

• The value 0, to indicate that this driver does not use the uba_ctlr 
structure. 

• The value 0, to indicate that this driver does not want exclusive use of the 
buffer data paths (bdps ). 

~ This line defines a structure called sk reg t whose members map to the 
characteristics of the sk device. This structure is referenced in the 
autoconfiguration section of the memory-mapped driver, specifically by the 
skprobe, skintr, and skrnrnap routines. The members of this structure 
are declared using the key word vo 1ati1 e because some of its members 
correspond to hardware device registers for the sk device. In addition, the 
values stored in these members could be changed by something other than the 
device driver. See Section 4.2 for information on when to declare a variable or 
data structure as volatile. 

l§J This line declares an array of softc structures and calls it sksoftc. The 
size of the array is the value represented by the NSK constant. The memory­
mapped device driver's sk softc structure allows the interrupt service 
routines and the error logging routines to share data. Driver routines in the 
autoconfiguration and memory-mapping sections reference this structure. 

!Zl These lines use several of the C preprocessor statements to set up conditional 
compilation for debugging purposes. In the sk driver, these statements are used 
with the cp r int f kernel routine to print intermediate results to the console 
terminal. 
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11.2.3 Autoconfiguration Section 

This example shows the autoconfiguration section for the memory-mapped device 
driver: 

/**********************************************************/ 
/* AUTOCONFIGURATION */ 
/* */ 
/**********************************************************/ 

/********* Probe Routine **********************************/ 
/* */ 
/* The skprobe routine calls the BADADDR macro to */ 
/* determine that there is indeed a board at the */ 
/* specified address. If the board is present, */ 
/* skprobe returns the size of the register space that */ 
/* the board occupies. If the device is not present, */ 
/* skprobe returns 0. *I 
/* */ 
/**********************************************************/ 

skprobe(addrl,unit) 
caddr t addrl; /* System Virtual Address for the sk device */ [) 
int unit; /* Unit number associated with the sk device */ l2J 
{ 

/* Pointer to device register structure */ 13] 
register struct sk_reg_t *sk_reg; 

/* Pointer to sk softc structure */ ~ 
register struct sk_softc *sksc; 

/* Kernel was properly configured */ ~ 
#ifdef SK_DEBUG 

if (sk_debug) cprintf("SK probe routine entered\n"); 
#endif SK DEBUG 

/* Point to device registers */ I§] 
sk_reg = (struct sk_reg_t *)addrl; 

/* Call the BADADDR macro to determine if */ 
/* the device is present */ [Z] 
if (BADADDR ((char*) &sk_reg->T,sizeof(char)) !=0) 
{ 

return (0); 

/* Check the first location */ ~ 
if (sk_reg->T != 'T') return(O); 

/* Call the BADADDR macro a second time to determine */ 
/* if the device is present */ 19] 
if (BADADDR ((char*) &sk_reg->C,sizeof(char)) !=0} 
{ 

return (0); 

/* Check the second location */ [Q] 
if (sk_reg->C != 'C') return(O); 

/* Set the pointer to the address of the sk_softc */ 
/* structure array */ [1] 
sksc = &sksoftc[unit]; 

/* Store the base address */ 112.1 
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sksc->sk base = (struct sk_reg_t *) addrl; 

/* Device found */ [al 
#ifdef SK_DEBUG 

if (sk_debug) cprintf("SK driver found\n"); 
#endif SK DEBUG 

/* Return size of register space */ l1AJ 
return (SKREGSIZE); 

/*********** Attach Routine *******************************/ 
/* */ 
/* The skattach routine initializes the device and its */ 
/* software state. */ 
/**********************************************************/ 

skattach(ui) 
struct uba device *ui; /* Pointer to uba device structure */ ~ 
{ 

/* Attach routine code goes here */ 
} 

/********** 
/* 

Interrupt Routine *****************************/ 
*/ 

/**********************************************************/ 

skintr(unit) 
int unit; /* Logical unit number of device */ [§! 
{ 

/* Pointer to device register structure */ [Z] 
register struct sk_reg_t *sk_reg; 

/* Pointer to sk_softc structure */ l1BJ 
register struct sk_softc *sksc; 

/* Set the device's softc structure */ ~ 
sksc = &sksoftc[unit]; 

/* Store the base address */ l2Q] 
sk_reg = sksc->sk_base; 

/* Check some status word and then set it */ [2jJ 
if (sk_reg->status < 0) 
{ 

sk_reg->status = 5; 

/* Read in some data */ l22J 
sksc->sk data sk_reg->skdata; 

[] This line declares an addr 1 argument that is the System Virtual Address (SV A) 
that corresponds to the base slot address. 

[2J This line declares a unit variable that is used to specify the sk device. 

13.J This line declares a pointer to the sk_reg_t structure and calls it sk_reg. 
The skprobe routine makes several references to members of this structure. 
This structure and its associated members were previously defined in the 
Declarations section of the memory-mapped driver. 

11-38 TURBOchannel Device Driver Examples 



~ This line declares a pointer to the sk softc structure and calls it sksc. 
The skprobe routine makes severalreferences to members of this structure. 
This structure and its associated members were previously defined in the 
Declarations section of the memory-mapped driver. 

15] This section is executed during debugging of the sk driver. The line calls the 
cprintf kernel routine to print the message "SK probe routine entered" on 
the terminal to indicate that the kernel was properly configured. For more 
information on this routine, see Appendix B. 

!§:] This line initializes the s k reg pointer to the SV A for the memory-mapped 
device, which is contained fri the addr 1 argument. Because the data types are 
different, this line performs a type casting operation that converts the addr 1 
argument (which is of type caddr_t) to be of type pointer to an sk_reg_t 
structure. 

lZJ This line calls the BADADDR macro to determine if the device is present. The 
BADADDR macro takes two arguments: the address of the device whose 
existence you want to check and the length of the data to be checked. In this 
call to the macro, the address of the T member of the sk reg pointer is 
passed. The length is the value returned by the sizeof operator, in this case 
the number of bytes needed to contain a value of type char (because the T 
member is a size char). 

Because the first argument to the BADADDR macro is of type caddr t, this 
line also performs a type casting operation that converts the type of the T 
member (which is of type char) to type char *. (The data type caddr t 
is actually a typedef to the data type char * .) 
If a device is present, BADADDR returns the value 0. 

la] If a device is present, this line checks the first location. That is, if the T 
member of the sk reg pointer is not equal to the character V, it is not a 
supported device. Therefore, the skprobe routine returns 0. 

Some TURBOchannel devices have proms with an ID that usually starts with 
the letters TC. Thus, this line reads the prom looking for the specific value T. 
Your driver code may need to find a more unique string. 

~ This line is identical to the one that previously called BADADDR, except this 
time the C member of the sk_reg pointer is passed. If a device is present, 
BADADDR returns the value 0. 

11]] If a device is present, this line checks the second location. That is, if the C 
member of the s k reg pointer is not equal to the character C, it is not a 
supported device. Therefore, the skprobe routine returns 0. 

[1J This line sets the sksc pointer to the address of the sk _ softc structure 
associated with this sk device. 

[12] This line sets the sk_base member of the sksc pointer to the base address 
where the device was found, which is contained in the addrl argument. Note 
that the sk_base member is a pointer to sk_reg_t, the sk device register 
structure. Therefore this line performs a type casting operation that converts the 
addrl argument (which is of type caddr _ t) to be of type pointer to an 
sk_reg_t structure. 

[3] This line is executed during debugging of the sk driver. The line calls the 
cprintf routine to print the message "SK driver found" on the terminal to 
indicate that the skprobe routine was successful in finding a device. For 
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more information on this routine, see Appendix B. 

~ This line returns the size of the register space, which indicates that the sk board 
is present. 

[SJ The sk device does not need an attach routine. However, this line shows that 
your attach routine would declare a pointer to a uba_device structure. The 
driver can send any information contained in this structure to the device. 

[§] This line declares a unit argument that is used to specify the logical unit 
number of the memory-mapped device that is interrupting. 

1111 This line declares a pointer to the sk reg t structure and calls it sk reg. 
The skin tr routine makes several references to members of this structure. 
This structure and its associated members were previously defined in the 
Declarations section of the memory-mapped driver. 

!181 This line declares a pointer to the sk_softc structure and calls it sksc. 
The skin tr routine makes several references to members of this structure. 
This structure and its associated members were previously defined in the 
Declarations section of the memory-mapped driver. 

~ This line sets the s ks c pointer to the address of the s k soft c structure 
associated with this sk device. Note that sksoftc is the array of structures 
declared in the Declarations section and that unit is the index into this array. 

!20] This line sets the sk_reg pointer to the base address, which is the sk_base 
member of the sksc pointer. 

1211 If the status member of the sk reg pointer is less than 0, then this line 
sets it to the value 5. -

122) This line sets the s k data member of the s ks c pointer to the data 
contained in the skdata member of the sk reg pointer. 
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11.2.4 Open and Close Section 
This example shows the open and close section for the memory-mapped device 
driver: 

/**********************************************************/ 
/* OPEN AND CLOSE */ 
/* */ 
/**********************************************************/ 

/********* Open Routine ***********************************/ 
/* */ 
/**********************************************************/ 

skopen(dev,flag) 
dev t dev; /* Major/minor device number */ ff] 
int-flag; /* Flags from /usr/sys/h/file.h */ 12] 
{ 

/* Return to the open system call */ [3J 
return (0); 

/********* Close Routine **********************************/ 
/* */ 
/**********************************************************/ 

skclose(dev,flag) 
dev t dev; /* Major/minor device number */ ff] 
int-flag; /* Flags from /usr/sys/h/file.h */ 12] 
{ 

/* Return to the close system call */ [3J 
return (0); 

ff] This line declares an integer variable that holds the major and minor device 
numbers for the memory-mapped device. The minor device number will be 
used in determining the logical unit number for the memory-mapped device that 
is to be opened or closed. 

12] This line declares an integer variable to contain flag bits from the file 
/usr I sys/h/file. h. These flags indicate whether the device is being 
opened for reading, writing, or both. 

13] The skopen routine does not do any intricate work other than to return 
execution to the open system call. Likewise, the skclose routine simply 
returns execution to the close system call. 
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11.2.5 Memory-Mapping Section 
This example shows the memory-mapping section for the memory-mapped device 
driver: 

/**********************************************************/ 
/* MEMORY MAPPING */ 
/* */ 
/**********************************************************/ 

/********* Memory Mapping Routine *************************/ 
/* *I 
/* The skmmap routine is invoked by the kernel as a */ 
/* result of an application calling the mmap(2) system */ 
/* call. The skmmap routine makes sure that the */ 
/* specified offset into the memory mapped device's */ 
/* memory is valid. If the offset is not valid, skmmap */ 
/* returns -1. If the offset is valid, skmmap returns */ 
/* the page frame number corresponding to the page at */ 
/* the specified offset. */ 
/* */ 
/**********************************************************/ 

skmmap(dev, off, prot) 
dev t dev; /* Device whose memory is to be mapped */ [] 
off=t off; /* Byte offset into device memory */ 12] 
int prot; /* Protection flag: PROT_READ or PROT_WRITE */ 13.J 
{ 

/* Pointer to device register structure 
register struct sk_reg_t *sk_reg; 

/* Pointer to sk_softc structure */ [§] 
register struct sk_softc *sksc; 

/* Page frame number */ I§] 
int kpf num; 

/* Make sure that the offset into the device registers */ 
/* is less than the size of the device register space. */ IZJ 
if ((u_int) off>= SKREGSIZE) 

return (-1); 

/*Otherwise, set the device's sk softc structure */IS] 
sksc = &sksoftc [SKUNIT(dev)]; 

/* and store the base address */ [9J 
sk_reg = sksc->sk_base; 

/* Find the register space of the device */ 11.Q] 
kpfnum = vtokpfnum(sk_reg+off); 
return kpfnum; 

[] This line declares a dev argument that specifies the character device whose 
memory is to be mapped. 

12] This line declares an off argument that specifies the offset in bytes into the 
character device's memory. The offset must be a valid offset into the device 
memory. 

(3) This line declares a prot argument that specifies the protection flag for the 
mapping. The protection flag is the bitwise inclusive OR of these valid 
protection flag bits defined in /usr I sys/h/mman. h: PROT_READ or 
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PROT WRITE. 

~ This line declares a pointer to the sk reg t structure and calls it sk reg. 
The skmmap routine makes referenceto this structure. This structure and its 
associated members were previously defined in the Declarations section of the 
memory-mapped driver. 

~ This line declares a pointer to the sk_softc structure and calls it sksc. 
The skmmap routine makes reference to this structure. This structure and its 
associated members were previously defined in the Declarations section of the 
memory-mapped driver. 

[6J This line declares a kpfnum variable to contain the page frame number returned 
by the vtokpfnum kernel routine. 

IZJ If the offset into the memory-mapped device's memory is greater than or equal 
to the size of the first CSR area, the skmmap routine returns -1. This value 
indicates an unsuccessful attempt at mapping this device's memory into the 
user's address space. This line also performs a type casting operation that 
converts the off argument (which is of type off_ t) to be of type u _int. 
The reason is to ensure that you compare an unsigned quantity because the 
offset may be a full longword. 

18] This line sets the s ks c pointer to the address of the s k _soft c structure 
associated with this sk device. Note the use of the s KUN IT macro to obtain 
the minor number associated with this sk device. 

19] This line sets the sk reg pointer to the base address, which is the sk base 
member of the sksc-pointer. -

[Q] This line calls the vtokpfnum kernel routine. This routine takes one 
argument: the kernel virtual address whose page frame number is to be 
returned. In this example, this address is the result of the expression whose 
operands consist of the pointer to the s k _reg_ t structure and the byte offset. 
Upon completing execution successfully, vtokpfnum sets the kpfnum 
variable to the page frame number associated with the page in the sk device's 
memory. See Appendix B for a description of the vtokpfnum kernel routine. 
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Part VI: Porting Issues 





Porting VMEbus Device Drivers 12 

The VMEbus is an industry standard bus that operates in a variety of hardware 
platforms. This chapter discusses the tasks you need to perform when porting 
VMEbus device drivers from other hardware platforms to Digital hardware, focusing 
on drivers written for the Sun Microsystems platform, which is a BSD UNIX 
derivative. Porting from hardware platforms that use a derivative of System V may 
be more difficult. 

This chapter makes reference to the way the operating system for Sun Microsystems 
performs certain tasks. These references are based on an understanding of Sun 
Microsystems UNIX Versions 3.1 to 4.0.3. Because Digital is not in a position to 
fully understand the mechanisms or future plans for Sun Microsystems hardware and 
software, there can be no guarantee as to the accuracy of these references. 

Table 12-1 lists the tasks associated with porting VMEbus device drivers and the 
section where each is discussed. 

Table 12-1: Tasks Associated with Porting VMEbus Device Drivers 

Task 

Writing test suites 

Checking header files 

Reviewing device driver installation 

Checking driver routines 

Checking data structures 

Comparing DMA mechanisms 

Testing for device access 

Checking the design of a device driver 

Setting interrupt priority levels 

Performing byte swapping operations 

Comparing memory mapping 

12.1 Writing Test Suites 

Section 

Section 12.1 

Section 12.2 

Section 12.3 

Section 12.4 

Section 12.5 

Section 12.6 

Section 12.7 

Section 12.8 

Section 12.9 

Section 12.10 

Section 12.11 

Porting a device driver from one company's hardware platform to the Digital 
platform requires that you understand the hardware device and the associated driver 
you want to port. One way to learn about the hardware device and its associated 



driver is to run a test suite, if it exists, on the machine you are porting from (the 
source machine). If the test suite does not exist, you need to write a full test suite for 
that device on the source machine. For example, if you port a device driver from a 
Sun Microsystems machine, write the full test suite on the Sun Microsystems 
machine. 

To successfully port drivers from one company's hardware platform to Digital 
hardware requires you to write tests for all the tasks performed by the driver. Write 
the test suite so that only minimal changes are necessary when you move it to the 
system you are porting to (the target machine). The test suite represents a cross­
section of your users, and they should not have to modify their applications to work 
with the ported driver. You need to have both the source machine and the target 
machine on a network or make them accessible through a common interface, such as 
SCSI. 

After writing the test suite on the source machine, move the driver and the test suite 
to the target machine. Move only the . c and the . h files that were created for the 
driver. Do not copy any system files, because the system files on the source machine 
will probably not be compatible on the target machine. 

12.2 Checking Header Files 
Although you may be porting a driver from a hardware platform that is a BSD UNIX 
derivative, do not assume that all of the header files are the same as those used in 
ULTRIX. Check the header files contained in the driver you want to port with those 
used in ULTRIX device drivers. See Section 4.1.1 for the minimal header files 
needed by VMEbus drivers. See Appendix A for short descriptions of the header 
files related to device drivers. 

12.3 Reviewing Device Driver Installation 
The actual steps of installing a driver may vary on the source machine and the target 
machine. When installing a device driver on the UL TRIX operating system, follow 
the steps described in Chapter 9. 

12.4 Checking Driver Routines 
The probe routine and the attach routine may execute differently on the source 
machine and the target machine. This section discusses some of the differences you 
need to consider. 

A device driver's probe routine is called by the system during the boot phase. For 
VMEbus drivers on ULTRIX, the probe routine can take three arguments: ctr!, 
addrl, and addr2. You should check the probe routine from the source machine 
because the order and number of arguments may be different. An important task 
performed by the probe routine is to access each controller to see whether it is 
actually present on the system. Because it is not certain whether the device is on the 
system at the time it is invoked, it is necessary to recover from bus errors when 
attempting to access device registers. On the Sun Microsystems platform, the peek 
and poke routines perform the task of recovering from bus errors. On the Digital 
platform, the BADADDR macro performs a similar task. Note that BADADDR does 
not actually pass data from or to the device. If the probe of the device is successful, 
the device exists and the probe routine must return the size of the 1/0 space in 
bytes. If the access to the device is unsuccessful, the probe routine returns zero (0), 
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indicating that the device is not present. See Section 10.1.3 for an example of the 
BADADDR macro used with the skprobe routine. See Section 10.2.3 for an 
example of the BADADDR macro used with the xxprobe routine. 

For VMEbus drivers on ULTRIX, the attach routine takes a pointer to a 
uba device structure. You should check the attach routine from the source 
machine because the argument or arguments it takes may be different. 

12.5 Checking Data Structures 
Data structures are an important area to consider when porting device drivers from 
other platforms. In general, structure and member names used by the source machine 
are not the same as those used by the target machine. However, in many cases the 
members of the source machine perform similar tasks to those performed on the 
target machine. 

This section describes some of the differences between the structures used by Sun 
Microsystems device drivers and those used by UL TRIX VMEbus device drivers. 
Specifically, you need to check these data structures: 

• uba driver 

• uba device 

• uba ctlr 

12.5.1 Checking the uba_driver Structure 
A VMEbus device driver on ULTRIX must declare and initialize a uba driver 
structure. Likewise, a comparable structure called mb _driver must be declared 
and initialized for a device driver in the Sun Microsystems environment. Table 12-2 
compares the members of the uba driver structure with the members of the 
mb driver structure. 

Table 12-2: Comparison of the uba_driver and mb_driver Structures 

uba_driver Member mb_driver Member 

ud_probe mdr_probe 

ud slave mdr slave 

ud attach mdr attach 

ud_dgo mdr_go 

Comments 

Both specify a pointer to the 
driver's probe routine. 

Both specify a pointer to a 
s 1 ave routine located within the 
device driver. 

Both specify a pointer to an 
attach routine located within the 
device driver. 

Both specify a pointer to a go 
routine located within the device 
driver. This routine is not used by 
VMEbus and TURBOchannel 
device drivers. 
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Table 12-2: (continued) 

uba_ driver Member mb_driver Member 

ud addr NIA 

NIA mdr done 

NIA mdr intr 

ud dname mdr dname 

ud dinf o mdr dinf o 

ud mname mdr cname 

ud minf o mdr cinf o 
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Comments 

The ud addr member stores the 
device's-CSR address. This 
member is not used by VMEbus 
and TURBOchannel device 
drivers. The mb driver 
structure does nothave a member 
that corresponds to ud _ addr. 

The uba driver structure does 
not have amember that 
corresponds to mdr done. This 
member points to a done routine 
located within the device driver. 

This member specifies a pointer to 
a polling interrupt routine located 
within the device driver and is 
specific to Multibus machines. 
Because Digital does not support 
Multibus machines, this member is 
not needed; thus, there is no 
corresponding member in the 
uba driver structure. 

Both specify the name of the 
device. 

The ud_dinfo member specifies 
an array of pointers to 
uba device structures accessed 
by thls device driver. This array is 
indexed with the unit number, as 
specified in the ui_ unit 
member of the uba device 
structure. The mdr din f o 
member specifies backpointers to 
mbdini t structures. 

Both specify the name of the 
controller. 

The ud_minfo member specifies 
an array of pointers to 
uba _ ctlr structures accessed by 
this device driver. This array is 
indexed with the controller number 
as specified in the um ctlr 
member of the uba ctlr 
structure. The mdr cinfo 
member specifies backpointers to 
mbcini t structures. 



Table 12-2: (continued) 

uba_driver Member mb_driver Member 

ud xclu mdr_flags 

ud addrl size mdr size 

ud_addrl_atype NIA 

ud addr2 size N/A 

ud_addr2_atype NIA 

NIA mdr link 

Comments 

The ud xclu member specifies 
the driver's need to exclusively use 
buffer data paths (bdps ). This 
member is not used by VMEbus 
device drivers. The mdr flags 
member specifies several flags, one 
of which indicates that the device 
needs exclusive use of the Main 
Bus. 

The ud addrl size member 
specifiesthe size Tn bytes of the 
first CSR area. This area is 
usually the control status register 
of the device. The mdr size 
member specifies the amount of 
memory in bytes needed by the 
device. 

The ud addrl atype member 
specifiesthe address space and 
data size of the first CSR area. 
The mb driver structure does 
not havea member that 
corresponds to 
ud _ addrl _atype. 

The ud addr2 size member 
specifiesthe size Tn bytes of the 
second CSR area. This area is 
usually the data area and is used 
with devices that have two 
separate CSR areas. The 
mb driver structure does not 
have a member that corresponds to 
ud addr2 size. 

The ud addr2 atype member 
specifiesthe address space and 
data size of the second CSR area. 
The mb driver structure does 
not have a member that 
corresponds to 
ud_addr2_atype. 

The uba driver structure does 
not have a member that 
corresponds to mdr_link. This 
member specifies an interrupt 
routine linked list, which is used 
by the Sun Microsystems 
autoconfiguration procedure. 
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12.5.2 Checking the uba_device and uba_ctlr Structures 

To account for devices that do not have controllers, BSD UNIX specifies many 
similar members in both the device and controller structures. This tradition has been 
continued by both Sun Microsystems and Digital. In ULTRIX, these structures are 
called uba_device and uba_ctlr. In the Sun Microsystems platform, the 
corresponding structures are mb device and mb ctlr. The most important 
differences between the Sun Microsystems device and controller structures and the 
corresponding ULTRIX structures relate to the architecture of their respective 
machines. 

One architectural difference is that the Digital processors support several buses in 
addition to the VMEbus. Because the VMEbus on Digital machines is only one of 
several supported buses, the uba_device and uba_ctlr structures have 
members that identify the nexus (ui_nexus and um_nexus), the remote controller 
number (ui rctlr and um rctlr), and the adapter (ui adpt and um adpt). 
The device driver writer may need to use these members only when debugging a 
system crash. 

Another architectural difference is the presence of the ui bus priority member 
in the uba device structure and the um bus priority member in the 
uba ctlrstructure. These members specify the configured VMEbus priority level 
of the device. You should not confuse these members with the ui_priority and 
um priority members, which the driver should use to reference the system 
prionty level of the VMEbus device. The ui bus priority and 
um_bus_priority members should be used for informational purposes only. 

A third architectural difference involves two separate I/0 spaces. To accommodate 
these two I/O spaces, the uba_device structure provides the ui_addr and 
ui addr2 members and the uba ctlr structure provides the um addr and 
um - addr2 members. These members allow you to access a device that occupies 
two separate I/0 spaces with one device driver. Therefore, there are instances where a 
device that required two drivers on the Sun Microsystems platform only requires one 
on the Digital platform. However, you can still use two drivers on the Digital 
platform, if you want. 

The interrupt members are slightly different in syntax: Sun Microsystems uses a 
vector structure defined in the mb ct 1 r structure to store some of this information. 
(This vector structure is not used in the mb_device structure.) If you use this 
information, you have to change your code to remove this intermediate reference. 
The following maps the members of the vector structure to the corresponding 
members in the uba device and uba ctlr structures. 

uba_device Member uba_ctlr Member mb_ctlr Member 

ui intr um intr v f unc 

ui ivnurn urn ivnurn v vec 

NIA NIA v_ptr 

12-6 Porting VMEbus Device Drivers 



12.6 Comparing Direct Memory Access Mechanisms 
When comparing the Direct Memory Access mechanisms for Digital and Sun 
Microsystems, you need to consider: 

• Underlying mapping mechanisms 

• Methods for allocating DMA space 

• Maximum DMA 

12.6.1 Underlying Mapping Mechanisms 
To understand the porting issues involving DMA, you need to understand the 
underlying mapping mechanisms on the Sun Microsystems platform and the Digital 
platform. On Sun Microsystems VME implementations, the first lMB of VME 
address space (0-lMB) is hard mapped into lMB of system address space. Any 
DMA transfer must be performed to buffers in that lMB of system space. 

On ULTRIX systems, there is no hard mapping of VMEbus address space to system 
space. The mapping is perfonned by using Page Map Registers (PMRs ). Each PMR 
maps one system page. A PMR can map to any system address, including those in a 
user process. Therefore, the management of buffers is entirely separated from the 
mapping operation. 

12.6.2 Methods for Allocating OMA Space 
The differences in the underlying mapping mechanisms require alternative ways for 
allocating DMA space. The following code fragments are examples of DMA I/0. 
The first fragment is for a Sun Microsystems system and the second is for an 
ULTRIX system. 

/********************************************************************/ 
/* SUN MICROSYSTEMS */ 
/********************************************************************/ 

/********************************************************************/ 
/ * DECLARE ARGUMENTS l1J * / 
/********************************************************************/ 
/* Declare the arguments passed to kernel routines. Also, declare */ 
/* the variables to contain values returned by these kernel */ 
/* routines. */ 
/********************************************************************/ 

struct cmd 
int dma_addr; 

} *cmd buf; 
struct buf *bp; /* pointer to buf structure */ 
struct mb_device *md; /* pointer to mb device structure */ 
int info; /* return from mbsetup */ 

struct reg { 
int cmd_addr; 
int start; 

} regptr *reg; /* pointer to reg structure */ 
/********************************************************************/ 

/********************************************************************/ 
/ * ALLOCATE COMMAND BUFFER l2J * / 
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/********************************************************************/ 
/* Allocate the command buffer by calling rmalloc and map the */ 
/* data buffer by calling mbsetup. */ 
/********************************************************************/ 

cmd_buf = (struct *cmd)rmalloc(iopbmap, size) 
info= mbsetup(md->md hd, bp, 0); 

/********************************************************************/ 

/********************************************************************/ 
/* ACCESS DEVICE REGISTERS ~ */ 
/********************************************************************/ 
/* Access the device registers, obtain the VMEbus address to be */ 
/* used, and start the DMA transfer. */ 
/********************************************************************/ 

regptr = (struct reg*) md->md_addr; 
cmd_buf->dma_addr = MBI_ADDR(info); 
regptr->cmd_addr = &cmd_buf - DVMA; 
regptr->start = 1; /* Start DMA */ 

/* Code for I/O completion */ 

/********************************************************************/ 

/********************************************************************/ 
/ * RECYCLE MAP RESOURCES ~ *I 
/********************************************************************/ 
/* Recycle the previously allocated map resources and free the */ 
/* the main bus resources. */ 
/********************************************************************/ 

rmfree(iopbmap, size, (long)cmd_buf); 
mbrelse(md->md_hd, &info); 

/********************************************************************/ 

ULTRIX 

/********************************************************************/ 
/********************************************************************/ 
/********************************************************************/ 
/********************************************************************/ 
/********************************************************************/ 
/********************************************************************/ 

/********************************************************************/ 
/* DECLARE ARGUMENTS [jJ */ 
/********************************************************************/ 
/* Declare the arguments passed to kernel routines. Also, declare */ 
/* the variables to contain values returned by these kernel */ 
/* routines. */ 
*/ */ 
/********************************************************************/ 

struct cmd { 
int dma_addr; 

} cmd buf; /* command buffer */ 
struct buf *bp; /*-pointer to buf structure */ 
struct uba ctlr *um; /* pointer to uba ctlr structure */ 
unsigned int .;me cmd addr; /*return from~balloc */ 
unsigned int vme=data_addr; /* return from vbase~up */ 
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struct reg { 
int cmd_addr; 
int start; 

} regptr *reg; /* pointer to reg structure */ 
/********************************************************************/ 

/********************************************************************/ 
/* ALLOCATE DMA SPACE 12) * / 
/********************************************************************/ 
/* Allocate the DMA space and then set up the mapping registers */ 
/* for DMA transfer by calling the vballoc and/or the */ 
/* vbasetup routine. */ 
/********************************************************************/ 

vme cmd addr = 
vballoc(um->um vbahd, &cmd buf, sizeof(cmd buf), 

VME-DMAIVMEA16Dl61VME ~S NOSWAP); 
vme_data_addr = vbasetup(um->um_vba_hd~ bp, 

VME DMAIVMEA16Dl61VME BS NOSWAP); 
/********************************************************************/ 

/********************************************************************/ 
/* ACCESS DEVICE REGISTERS [3) */ 
/********************************************************************/ 
/* Access the device registers, obtain the VMEbus address to be */ 
/* used, and start the DMA transfer. */ 
/********************************************************************/ 

regptr = (struct reg*) um~>um_addr; 

cmd_buf->data_addr = vme_data_addr; 
regptr->dma_addr = vme cmd addr; 
regptr->start = l; /* Start DMA */ 

/* Code for I/O completion */ 

/********************************************************************/ 

/********************************************************************/ 
/ * RELEASE RESOURCES ~ *I 
/********************************************************************/ 
/* Release the previously allocated resources on the VME adapter. */ 
/********************************************************************/ 

vbarelse(vhp, vme_cmd_addr); 
vbarelse(vhp, vme data addr); 

/********************************************************************/ 

11] In the Sun Microsystems environment, cmd _buf specifies a command buffer 
allocated by rmalloc. In the ULTRIX environment, cmd_buf specifies the 
virtual address of a command buffer passed to vballoc. Note that cmd_buf 
is a pointer to a structure in the Sun Microsystems environment and a structure 
of type cmd in the ULTRIX environment. 

In both the Sun Microsystems and UL TRIX environments, there is a pointer to 
a bu f structure. In the UL TRIX environment, the bu f structure is typically 
passed in from the driver's strategy routine. You pass this buf structure 
to the vbasetup routine. 
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In the Sun Microsystems environment, the mbsetup and mbrelse routines 
take a pointer to an mb_device structure. 

In ULTRIX, when you write a device driver routine that calls vballoc or 
vbasetup, you declare a pointer to a uba_ctlr structure. You then pass to 
vballoc or vbasetup the um vbahd member of the uba ctlr 
structure or the ui vbahd member of the uba device structure. 

In the Sun Microsystems environment, info stores the virtual address returned 
by mbsetup. You pass info to the MBI ADDR macro to obtain the VMEbus 
address. In the ULTRIX environment, vme cmd addr stores the value returned 
by vballoc and vme data addr stores the value returned by vbasetup. 
The value returned by these routines is a VMEbus address that is mapped to the 
buffer. 

In both environments, you declare a pointer to a reg structure. This structure 
has two members: cmd addr and start. The reg structure represents 
the characteristics of the hardware device. 

!2J In the Sun Microsystems environment, your driver calls rmalloc to allocate 
command, data, or miscellaneous buffers. For large buffers, Sun Microsystems 
recommends that the driver allocate a buf structure and call the mbsetup 
routine to allocate the buffer from the DMA space. To perform DMA to user 
space, the pages must be mapped onto the lMB of DMA space by using the 
mbsetup routine. In the ULTRIX environment, you can allocate the DMA 
space and then set up the mapping registers for DMA transfer by calling the 
vballoc and the vbasetup routines or both. 

The differences in allocating DMA space can be further elaborated by 
discussing the arguments passed to the respective routines. The rmalloc 
routine takes two arguments. The first argument is a resource map, which in 
this example is a preinitialized rmalloc map called iopbmap. The second 
argument is the size of the address map to allocate. Note that the return type 
for rmalloc is type cast to struct cmd * because the return type for 
rmalloc is of type long and the type for the cmd_buf argument is of type 
struct cmd *. The mbsetup routine takes three arguments. The first 
argument is a pointer to an mb hd structure. The second argument is the 
buf structure. The last argument is aflag, which in this example is the value 
zero (0). 

The vballoc and vbasetup routines take similar arguments. The primary 
difference between the two routines is that vbasetup takes a pointer to a 
buf structure as an argument, while vballoc takes an address and the 
number of bytes as arguments. You would use vbasetup when a buf 
structure is provided to the driver. All file system I/0 and most user I/0 occur 
using a buf structure. You would use the vballoc routine for driver­
initiated I/0, for example, device command packets. Each of these routines 
returns a VMEbus address that is mapped to the buffer. If the requested 
mapping could not be performed, each of these routines returns a value of zero 
(0). 

13] In the Sun Microsystems environment, regptr is set to the base address of the 
device, that is, its control/status registers. The base address of the device is 
represented by the value stored in the md_addr member of the mb_device 
structure. In the ULTRIX environment, regptr is set to the the System Virtual 
Address (SVA) corresponding to the CSR specified in the system configuration 
file. This SVA is stored in the um addr member of the uba ctlr 
structure. 
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In the Sun Microsystems environment, you call the MBI ADDR macro to 
obtain the VMEbus address. The MBI ADDR macro subtracts the offset of the 
DMA space to obtain the VMEbus address to be used. The argument you pass 
to this macro is the value returned in a previous call to mbsetup. In the 
ULTRIX environment, you set the data addr member of the cmd buf 
structure to the VMEbus address that is mapped to the buffer (vme data addr). 
This address was returned in a previous call to vbasetup. - -

In the Sun Microsystems environment, you set the cmd addr member to the 
result of the expression & cmd _bu f - DVMA, which provides the VMEbus 
address for the command buffer. 

In the ULTRIX environment, you set the cmd addr member to the VMEbus 
address that is mapped to the buffer (vme data-addr). This address was 
returned in a previous call to vballoc.- -

Finally, in both environments, the regptr->start=l; line starts the Direct 
Memory Access transfer. 

~ In the Sun Microsystems environment, you call rmfree to recycle the map 
resource allocated in a previous call to rmalloc. You also call mbrelse to 
release the Main Bus DVMA resources allocated in a previous call to 
mbsetup. In the ULTRIX environment, you call vbarelse to release 
resources on the VMEbus adapter registers, which were allocated in a previous 
call to vballoc or vbasetup. 

The differences in releasing resources can be further elaborated by discussing 
the arguments passed to these routines. The rmfree routine takes three 
arguments. The first argument is a pointer to the resource map allocated in a 
previous call to rma 11 o c. In this case, the allocated map was the 
preinitialized rmalloc map called iopbmap. The second argument is the 
size of the address map that was allocated. The third argument is the address at 
which the allocated map begins. Note that the third argument is the value 
returned by rmalloc. The argument is type cast as a long to satisfy the 
data type required by the rmf ree routine. 

The mbrelse routine takes two arguments. The first argument is the pointer 
to the mb device structure. The second argument is the address of the 
integer (inthis case info) returned in a previous call to mbsetup. 

The vbarelse routine takes two arguments. The first argument is a pointer 
to a vba hd structure, which contains the VMEbus adapter number on which 
mapping registers were allocated in a previous call to vballoc and/or 
vbaset up. The second argument specifies the VMEbus address, which is the 
value returned in a previous call to vballoc and/or vbasetup. 

12.6.3 Maximum OMA 
Because all DMA on Sun Microsystems systems must go to the low lMB of 
VMEbus address space, the maximum DMA is lMB. On ULTRIX systems, the 
maximum DMA is limited by the number of Page Map Registers and the size of a 
system page. This may vary among Digital VMEbus adapters. On the DECstation 
5000 Model 200, the maximum DMA is 128MB in the A32 space. 

Porting VMEbus Device Drivers 12-11 



12. 7 Testing for Device Access 

Because various bus error conditions may be created when attempting to access a 
device that is not present or is not functional, it is necessary to use special routines 
that protect from those error conditions. These routines are typically called once, in 
the probe routine of the driver. It is also advisable to use these routines when 
logging device registers after a fatal device error has occurred. This will ensure that 
the system does not crash because the device is no longer functional. 

On Sun Microsystems systems, the peek and poke family of routines is used. On 
ULTRIX, the equivalent is the BADADDR macro. Because the BADADDR macro 
takes a size as one of its arguments, multiple functions are not needed. Note that 
ULTRIX has no equivalent to the Sun Microsystems poke routine. You must call 
the BADADDR macro prior to any read or write that is to be protected. 

12.8 Checking the Design of a Device Driver 
As central processing unit performance dramatically increases with each generation of 
CPUs, certain design inconsistencies may begin to appear. For example, race 
conditions that did not show up on a slower machine may become magnified on a 
faster machine. Architectural differences used to achieve these improvements can 
mean that certain failures that are fatal on some machines are not fatal on others. 
Some of the improvements may be caches, buffers, and compiler optimizations. 

These differences should not affect a well-written driver or application. They simply 
amplify a problem that already existed but may not have been detected. 

One area where a well written driver may still need modification is when operating 
systems are upgraded or migrated. It has been Digital's software policy to always 
provide a compatible migration path. This is not guaranteed if your software uses 
undocumented or unsupported features of the operating system. 

12.9 Setting Interrupt Priority Levels 
You may be porting a device driver from a machine that uses all seven VMEbus 
interrupt priority levels. Digital machines can map these seven VMEbus levels to a 
smaller number of system levels. The DECstation 5000 Model 200 has one system 
level. Note that the VME adapters choose the device to be serviced based on the 
VMEbus priority level. The level mapping takes place after the VMEbus priority 
arbitration completes. For example, a VMEbus level 7 will be processed before a 
VMEbus level 1; however, both levels may be mapped to the same internal system 
level (as on the DECstation 5000 Model 200). 

12.10 Performing Byte Swapping Operations 

Many hardware devices use the big endian model of byte ordering. Digital devices 
use the little endian model. The mechanisms provided to accomplish the byte 
swapping are explained in Section 2.2.3. 
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12.11 Comparing Memory Mapping 
The device driver you are porting may have implemented a memory mapping routine. 
You should compare the memory mapping routine interface of the driver you are 
porting with that implemented on ULTRIX, which takes three arguments: device, off, 
and prot. See Section 4.12 for a discussion of the memory map section of a device 
driver. 
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Porting TURBOchannel Device Drivers 13 

This chapter presents guidelines for porting device drivers from other Digital buses 
(specifically, the UNIBUS and the Q-bus) to the TURBOchannel. These guidelines 
are actually summaries of topics described in more detail in other chapters; these 
summaries are included here as a convenient checklist before porting a driver to the 
TURBOchannel. 

Consider the following when porting device drivers from other Digital buses to the 
TURBOchannel: 

• Structure the driver for a TURBOchannel device like a driver for a UNIBUS or 
Q-bus device. 

• Make sure that the TURBOchannel driver defines a uba driver structure 
with all necessary information filled in. 

• Include the appropriate header files. In general, TURBOchannel drivers include 
many of the same header files that appear in UNIBUS or Q-bus drivers. 
However, TURBOchannel drivers must also include t c . h. 

• Use the routine wbflush to assure that a write to I/0 space has completed. 

• Explicitly flush the processor data cache by calling buff lush, if the device 
performs DMA-to-host memory. Call this routine after the DMA is complete 
but before releasing the buffer to the system. 

• Call tc enable option to enable a device's interrupt line to the processor. 
Call tc=disable_option to disable a device's interrupt line to the 
processor. 

• Add a TURBOchannel driver to the UL TRIX operating system using the steps 
described in Chapter 9. Make sure to add the appropriate entry to the 
tc_option table in /usr/ sys/data/tc_option_data. c. 

The tc_option table and the system configuration file provide a flexible 
mechanism for adding third-party devices and device drivers. This table allows 
third-party device driver writers to map additional device names with their associated 
names in the system configuration file. Third-party or customer device drivers must 
conform to standard ULTRIX operating system conventions. For instance, drivers 
must have a uba driver structure with the name of the device probe routine, 
attach routine, device name, and so forth. The qac, for example, has a 
uba driver structure that looks like this: 

struct uba_driver qacdriver = 

{ qacprobe, 0, qacattach, 0, qacstd, "qac", qacinfo }; 



The corresponding entry in the system configuration file looks like this: 

device qacO at ibus? vector qacvint 

13-2 Porting TURBOchannel Device Drivers 



Part VII: Appendixes 





Header Files Related to Device Drivers A 

Table A-1 lists the header files related to device drivers, along with a short 
description of their contents. For convenience, the path name is included with the 
file and the files are listed in alphabetical order. Note, however, that device drivers 
should include header files that use the relative path name instead of the explicit path 
name. For example, although bu f . h resides in I us r Is y s I h I bu f . h, device 
drivers should include it as " .. /h/buf. h". 

Table A-1: Header Files Related to Device Drivers 

Header File 

/usr/sys/h/buf .h 

/usr/sys/h/clist.h 

/usr/sys/h/conf .h 

/usr/sys/rnachine/common/cpuconf .h 

/usr/sys/h/devio.h 

/usr/sys/h/dir.h 

/usr/sys/h/errno.h 

/usr/sys/h/file.h 

/usr/sys/h/inode.h 

/usr/sys/h/ioctl.h 

Contents 

Defines the buf structure used to pass 1/0 
requests to the strategy routine of a block 
driver. 

Defines the cblock structure used to hold 
clist data. 

Defines the bdevsw (block device switch), 
cdevsw (character device switch), and 
linesw (tty control line switch) structures. 
This file is included in the source file 
/usr/sys/machine/common/conf .c. 

Defines a variety of macros, constants, and 
structures used by the system. The BADADDR 
macro, which is of interest to VMEbus device 
driver writers, is defined in this file. 

Defines common structures and definitions for 
device drivers and ioctl. 

Defines structures and macros that operate on 
directories. 

Defines the error codes returned to a user 
process by a driver. The codes EIO, ENXIO, 
EACCES, EBUSY, ENODEV, and EINVAL are 
used by driver routines. 

Defines 1/0 mode flags supplied by user 
programs to open and fcntl system calls. 

Defines values associated with the generic file 
system. 

Defines commands for i o ct 1 routines in 
different drivers. 



Table A-1: (continued) 

Header File Contents 

/usr/sys/h/kernel.h 

/usr/sys/h/map.h 

/usr/sys/h/mbuf .h 

/usr/sys/h/mtio.h 

/usr/sys/h/param.h 

/usr/sys/h/proc.h 

/usr/sys/h/systm.h 

/usr/sys/io/tc/tc.h 

/usr/sys/h/time.h 

/usr/sys/h/tty.h 

/usr/sys/h/types.h 

/usr/sys/h/uio.h 

/usr/sys/h/user.h 

/usr/sys/io/vme/vbareg.h 

/usr/sys/h/vm.h 

/usr/sys/h/vmmac.h 

A-2 Header Files Related to Device Drivers 

Defines global variables used by the kernel. 

Defines structures associated with resource 
allocation maps. 

Defines constants related to memory allocation 
and macros used for type conversion. 

Defines commands and structures for magnetic 
tape operations. 

Defines constants and macros used by the 
UL TRIX kernel. 

Defines the proc structure, which defines a 
user process. This file is not usually included 
by device driver source files. 

Defines global variables, such as the number of 
entries in the block switch and the number of 
character switch entries. It also defines the 
structure of the system-entry table. 

Contains definitions and routine declarations 
needed by TURBOchannel drivers. 

Contains structures and symbolic names used b 
time-related routines and macros. 

Defines parameters and structures associated 
with interactive terminals; also defines the 
clist structure. This file can be included by 
any device driver that uses the clist 
structure. 

Defines system data types and major and minor 
device macros. 

Contains the definition of the uio structure, 
some symbolic names, and an enumerated data 
type that can be assigned the value U IO_ REAI 
or UIO WRITE. 

Defines the user structure that describes a 
user process and passes information about I/O 
requests to device drivers. 

Contains definitions for the VMEbus adapter. 

Contains a sequence of include statements that 
includes all of the virtual memory-related files. 
Including this file is a quicker way of including 
all of the virtual memory-related files. 

Contains defintions for the vtokpfnum kerne: 
routine. 



Kernel Support Routines B 

This appendix describes: 

• The kernel 1/0 support routines (and macros) used by device drivers 

• Special files used by device drivers 

• Global variables used by device drivers 

8.1 Kernel Support Routines 
Table B-1 summarizes the kernel routines discussed in this appendix. Following the 
table are descriptions of each routine, presented in alphabetical order. 

Of particular interest to VMEbus device driver writers are: 

• buff lush 

• vballoc 

• vba _get_vmeaddr 

• vbarelse 

• vbasetup 

• swap_lw_bytes 

• swap_word_bytes 

• swap_words 

• vme rmw 

• vtokpf num 

• wbf lush 

TURBOchannel device driver writers will be interested in: 

• buff lush 

• tc_disable_option 

• tc_enable_option 

• vtokpf num 

• wbf lush 



Note 

The following lists the header files most frequently used by any device 
driver, including VMEbus and TURBOchannel device drivers: 

#include " .. /h/types.h" 
#include " .. /h/errno.h" 
#include " .. /h/uio.h" 
#include " .. / .. /machine/common/cpuconf.h" 

Table B-1: Summary Description for Kernel 110 Support Routines 

Kernel Routine Summary Description 

BADADDR checks read accessibility of addressed data 

bcmp compares byte strings 

bcopy copies a byte string 

b zero zeros a byte string 

buff lush flushes the processor data cache 

copyin copies data from user space to kernel space 

copyout copies data from kernel space to user space 

cprintf writes text only to the console 

DELAY delays the calling routine a specified number of microseconds 

fubyte fetches a byte from user space 

fuword fetches a word from user space (See fubyte) 

getnewbuf returns a pointer to a buf structure previously found on a 
free list 

gsignal sends a signal to a process group 

insque adds an element to the queue 

iodone indicates that 1/0 is complete 

KM ALLOC allows dynamic allocation of kernel virtual memory 

KM FREE deallocates (frees) the allocated kernel virtual memory 

log_vme_ctlr_error logs VMEbus controller errors into the errorlog file 

log_vme_device_error logs VMEbus device errors into the errorlog file 

major gets the device major number 

makedev makes a device number 

minor gets the device minor number 

minphys bounds the data transfer size 

mprintf logs a message to the error logger (See cprintf) 

panic causes a system crash 

physio implements raw 1/0 
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Table B-1: (continued) 

Kernel Routine 

printf 

psignal 

remque 

selwakeup 

sleep 

spl5 

spl6 

spl7 

splbio 

splextreme 

splimp 

spltty 

splx 

strcmp 

strncmp 

strlen 

subyte 

suser 

suword 

svtophy 

swap_lw_bytes 

swap_word_bytes 

swap_words 

tc_disable_option 

tc_enable_option 

tc module name 

timeout 

uiomove 

untimeout 

Summary Description 

prints text to the console and the error logger (See 
cprintf) 

sends a signal to a process 

removes an element from the queue 

wakes up a select blocked process 

puts a calling process to sleep 

sets the Interrupt Priority Level (IPL) field of the Processor 
Status Longword (PSL) to the level indicated by the routine 
name 

sets the IPL field of the PSL to the level indicated by the 
routine name 

sets the IPL field of the PSL to the level indicated by the 
routine name 

blocks against all I/O interrupts 

blocks against all but halt interrupts 

blocks against network device interrupts 

blocks against terminal device interrupts 

resets the hardware interrupt priority to the level specified by 
the argument 

compares two strings 

compares two strings, using a specified number of characters 

computes the length of a string 

stores a byte into user space 

determines if the current process is superuser 

stores a word into user space (See subyte) 

returns the physical address 

performs a long word byte swap 

performs a short word byte swap (See swap_lw_bytes) 

performs a word byte swap (See swap_lw_bytes) 

disables a device's interrupt line to the processor 

enables a device's interrupt line to the processor 

determines the name of a specific option module 

initializes a callout queue element 

moves data between user and system virtual space 

removes the scheduled routine from the callout queues 
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Table B-1: (continued) 

Kernel Routine 

uprintf 

useracc 

uvtophy 

vballoc 

vba_get vmeaddr 

vbarelse 

vbasetup 

vme rmw 

vs lock 

vsunlock 

vtokpfnum 

wakeup 

wbf lush 

8-4 Kernel Support Routines 

Summary Description 

nonsleeping kernel printf function (See cprintf) 

determines read or write access to a user segment 

returns the physical address 

~Hocate and set up the DMA mapping registers 

obtains the VMEbus address 

releases the resources (map registers) used to map the 
specified VMEbus address 

allocate and set up the DMA mapping registers (See 
vballoc) 

performs a read-modify-write 

loclcs a virtual segment 

unlocks a virtual segment 

obtains the page frame number 

wakes up all processes sleeping on a specified address 

ensures a write to IJO space has completed 



Name 

Syntax 

BADADDR - checks read accessibility of addressed data 

#include " .. / . ./machine/common/cpuconf.h" 

BADADDR(addr, length) 
caddr_t addr; 
int length; 

Arguments 

addr 

length 

Description 

Specifies the address of the data to be checked for read accessibility. 

Specifies the length in bytes of the data to be to be checked. Valid 
values are 1, 2, and'4. 

The BADADDR macro generates a call to a machine- and model-dependent routine 
that does a read access check of the data at the supplied address and dismisses any 
machine check exception that may result from the attempted access. 

Return Value 
The BADADDR macro returns zero (0) if the data is accessible and nonzero if the 
data is not accessible. 
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Name 

Syntax 

hemp - compares byte strings 

unsigned int bcmp(stringl, string2, length) 
caddr_t string]; 
caddr_t string2; 
unsigned int length; 

Arguments 

string] 

string2 

length 

Description 

Specifies the first string to be compared. 

Specifies the second string to be compared. 

Specifies the length in bytes of the data to be compared. 

The bcmp routine compares byte string string] with byte string string2. Each string 
is assumed to be length bytes long. 

Return Value 
The bcmp routine returns zero (0) if the compared strings are identical and nonzero 
if the compared strings are not identical. 

See Also 
bcopy, bzero 
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Name 

Syntax 

bcopy - copies a byte string 

void bcopy(stringl, string2, length) 
caddr_t string 1 ; 
caddr_t string2; 
unsigned int length; 

Arguments 

Specifies the source string. 

Specifies the destination string. 

string] 

string2 

length Specifies the length in bytes of the data to be copied. 

Description 
The bcopy routine copies length bytes from byte string string] to byte string 
string2. 

Return Value 

None. 

See Also 
bcmp, bzero 
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Name 

Syntax 

bzero - zeros a byte string 

void bzero(stringl, length) 
caddr_t string I ; 
unsigned int length; 

Arguments 

string I 

length 

Description 

Specifies the string to be zeroed. 

Specifies the length in bytes of the data to be zeroed. 

The bzero routine places zeros (ASCII null bytes) in string]. The value in string] 
is assumed to be length bytes long. 

Return Value 

None. 

See Also 
bcmp, bcopy 
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Name 

Syntax 

bufflush - flushes the processor data cache 

bufflush(bp) 
struct buf * bp; 

Arguments 

bp Specifies a pointer to a bu f structure. 

Description 
The buff lush routine flushes the processor data cache. A device driver must 
explicitly flush the processor data cache if the device performs DMA-to-host­
memory. The reason for this is that there is no hardware cache coherency mechanism 
on some RISC processors. For example, the 5800 systems support hardware cache 
coherency, while the DECsystem 5400 and DECsystem 5000 Model 200 systems do 
not. 

Return Value 

None. 

See Also 
wbflush 
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Name 

Syntax 

copyin - copies data from user space to kernel space 

int copyin(user addr, kern addr, nbytes) 
caddr_t user addr; -
caddr_t kern-addr; 
unsigned int nbytes; 

Arguments 

user addr 

kern addr 

nbytes 

Description 

Specifies the virtual address in user space to copy the data from. 

Specifies the virtual address in kernel space to copy the data to. 

Specifies the number of bytes of data to copy from user space to 
kernel space. 

The copy in routine copies data from user space to kernel space. 

Return Value 
Upon successful completion, copyin returns a value of zero (0). Otherwise, 
copy in can return the following errors: 

Error 

EFAULT 

EFAULT 

See Also 
copyout 
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Meaning 

The user_ addr argument points outside of the allocated 
address space. 

The nbytes argument is negative. 



Name 
copyout - copies data from kernel space to user space 

Syntax 
int copyout(kern addr, user addr, nbytes) 
caddr_t kern addr; -
caddr_t user -addr; 
unsigned int-nbytes; 

Arguments 

kern addr 

user addr 

nbytes 

Description 

Specifies the virtual address in kernel space to copy the data from. 

Specifies the virtual address in user space to copy the data to. 

Specifies the number of bytes of data to copy from kernel space to 
user space. 

The copyout routine copies data from kernel space to user space. 

Return Value 
Upon successful completion, copyout returns the value zero (0). Otherwise, 
copyout can return the following errors: 

Error 

EFAULT 

EFAULT 

See Also 
copy in 

Meaning 

The user_ addr argument points outside of the allocated 
address space. 

The nbytes argument is negative. 
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Name 

Syntax 

cprintf, mprintf, printf, uprintf - write text to some output device 

cprintf (format, var arglist) 
char *format; -
va_dcl var _arglist; 

mprintf (format, var arglist) 
char *format; -
va_dcl var _arglist; 

printf(format, var arglist) 
char *format; -
va_dcl var _arglist; 

uprintf (format, var arglist) 
char *format; -
va_dcl var _arglist; 

Arguments 

format 

var_ arglist 

Description 

Specifies a pointer to a string that contains two types of objects. One 
object is ordinary characters such as ''hello, world,'' which are 
copied to the output stream. The other object is a conversion 
specification such as %d. Each conversion specification causes the 
routines described here to convert and print for the next argument in 
the variable argument list (var_ arglist). 

Specifies the argument list. 

The cprintf routine prints only to the console terminal. You generally call this 
routine to report information when there is a problem with the error logging 
mechanism or to perform debugging. 

The mprintf routine logs all text to the kernel error log file. This usually happens 
during hardware failures that are considered soft and corrected. 

The uprintf routine prints to the current user's terminal. This routine guarantees 
not to sleep, thereby allowing it to be called by interrupt routines. It does not 
perform any space checking, so you do not want to use this routine to print verbose 
messages. The uprintf routine does not log messages to the error logger. 

The print f routine prints diagnostic information directly on the console terminal, 
and it writes ASCII text to the error logger. Because printf is not interrupt 
driven, all system activities are suspended when you call it. 

The cprintf, mprintf, printf, and uprintf routines are scaled-down 
versions of the C library routines. All of these routines support the following formats 
that device driver writers will find particularly useful: 
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b Allows decoding of error registers. 

The following illustrates the format of the printf routine with the %b conversion 
character: 

printf ("reg=%b\n", regval, "<base><arg>*"); 

In this case, base and arg are defined as: 

<base> Is the output base expressed as a control character. For example, \10 
gives octal and \20 gives hexadecimal. 

<arg> Is a sequence of characters. The first character gives the bit number 
to be inspected (origin 1). The second and subsequent characters (up 
to a control character, that is, a character <=32) give the name of the 
register. 

The following illustrates a call to pr int f: 

printf("reg=%b\n", 3, "\10\2BITTW0\1BITONE\n"); 

This example would produce this output: 

reg=2<BITTWO,BITONE> 

The following illustrates the format of the printf routine with the %rand %R 
conversion characters: 

r 

printf("%r R", val, reg_desc); 

Allows formatted printing of bit fields. This code outputs a string of 
the format: 

"<bit field descriptions>" 

R Allows formatted printing of bit fields. This code outputs a string of 
the format: 

"0x%x<bit field descriptions>" 

You describe the individual bit fields by using a reg desc structure. To describe 
multiple bit fields within a single word, you can declare multiple reg_desc 
structures. The reg_desc structure is defined as follows: 

struct reg_desc { 
unsigned rd_mask; /* mask to extract field *I 
int rd_shift; /* shift for extracted *I 

/* value, - >>, + << *I 
char *rd_name; /* field name *I 
char *rd_format; /* format to print field *I 
struct reg_ values *rd_ values; /* symbolic names of *I 

/* values */ 
} ; 

rd mask Specifies an appropriate mask to isolate the bit field within a word 
ANDed with the val argument. 

rd shift Specifies a shift amount to be done to the isolated bit field. The shift 
is done before printing the isolated bit field with the rd_ format 
member and before searching for symbolic value names in the 
rd values member. 
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rd name If non-NULL, specifies a bit field name to label any output from 
rd_format or searching rd_ values. If neither rd_format 
nor rd values is non-NULL, rd name is printed only if the 
isolatedbit field is non-NULL. -

rd format If non-NULL, specifies that the shifted bit field value is printed using 
this format. 

rd values If non-NULL, specifies a pointer to a table that matches numeric 
values with symbolic names. The routine searches the rd values 
member, and it prints the symbolic name if it finds a match:- If it 
does not find a match, it prints '' ??? ' '. 

The following is a sample reg_desc entry: 

struct reg_desc dsc[J = { 

/* mask shift name format values */ 
{ VPNMASK, O, "VA", "Ox%x", NULL } , 
{ PIDMASK, PIDSHIFT, "PID", "%d"' NULL } ' 
{ 0, 0, NULL, NULL, NULL } ' 

} ; 

The cprintf, mprintf, printf, and uprintf routines also accept a field 
number, zero filling to length. For example: 

printf(" %8x\n",regval); 

The maximum field size is 11. 

Return Value 

None. 
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Name 

Syntax 

DELAY - delays the calling routine a specified number of microseconds 

DELAY(n) 
int n; 

Arguments 

n Specifies the number of microseconds for the calling process to sleep. 

Description 
The DELAY macro delays the calling routine a specified number of microseconds. 
DELAY spins, waiting for the specified number of microseconds to pass before 
continuing execution. For example, the following code would result in a 10000 
microsecond delay: 

DELAY (10000); 

The range of delays is system-dependent, due to its relation to the granularity of the 
system clock. The system defines the number of clock ticks per second in the h z 
variable. Specifying any value smaller than l/hz to the DELAY macro results in an 
unpredictable delay. For any delay value, the actual delay may vary by plus or minus 
one clock tick. 

Usage of the DE LAY macro is discouraged. The reason for this is that the processor 
will be consumed for the specified time interval. Consequently, the processor is 
unavailable to service other processes. In cases where device drivers need timing 
mechanisms, the sleep and timeout routines should be used instead of the 
DELAY macro. The most common usage of the DELAY macro is in the system boot 
path. Usage of DE LAY in the boot path is often acceptable, because there are no 
other processes in contention for the processor. 

Return Value 

None. 

See Also 
hz 
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Name 

Syntax 

fubyte, fuword - fetch a byte or a word from user space 

int fubyte(user addr) 
caddr_t*user_a(idr; 

int fuword(user addr) 
caddr_t*user_addr; 

Arguments 

user addr 

Description 

Specifies the user virtual address from which fubyte obtains a 
byte or fuword obtains a word. 

The fubyte routine fetches a byte from user space at the virtual address specified 
by the user _addr argument. The fuword routine fetches a word from user space at 
the virtual address specified by the user_ addr argument. 

Return Value 
These routines return a -1 if the current user does not have write access to the 
specified user virtual address (user addr). Otherwise, these routines return the value 
at the location, either a byte or a word. 

See Also 

Note 

A user of fuword will not be able to distinguish between a value of -1 
at an accessible user virtual address and an inaccessible address. 

copyin, copyout, subyte 
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Name 
getnewbuf - returns a pointer to a bu f structure previously found on a free list 

Syntax 
struct buf * getnewbuf() 

Arguments 
None. 

Description 
The getnewbuf routine returns a pointer to a buf structure previously found on a 
free list. The routine searches the AGE list first for the buf structure. If the routine 
does not find it on the AGE list, it searches the LRU list. 

Return Value 
The getnewbuf routine returns a pointer to a buf structure previously found on a 
free list. 

Kernel Support Routines B-17 



Name 

Syntax 

gsignal - sends a signal to a process group 

gsignal(pgroup) 
int pgroup; 
int signal; 

Arguments 

pgroup 

signal 

Description 

Specifies the process group to which you want to send a specified 
signal. 

Specifies the signal that you want to send to the specified process 
group. You can specify any of the signals defined in 
/usr/sys/h/signal.h. 

The gsignal routine sends a signal to a process group, invoking psignal for 
each process that is a member of the specified process group. 

Return Value 

None. 

See Also 
psignal 
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Name 

Syntax 

insque, remque - manipulate the queue 

struct generic_qheader { 
struct generic_qheader *q_forw; 
struct generic_qheader *q_back; 
} ; 

int insque(elem, pred) 
struct generic_qheader *elem; 
struct generic_qheader *pred; 

int remque( elem) 
struct generic_qheader *elem; 

Arguments 

elem 

pred 

Description 

Specifies the address of the queue header that contains the element to 
be manipulated. 

Specifies the address of the queue header that contains the element to 
precede the one specified by elem in the queue. 

The insque routine adds the element specified by the elem argument to the queue. 
The routine iqserts elem in the next position after pred in the queue. 

The remque routine removes the element specified by the elem a,rgument from the 
queue it is currently in. 

Queues are built from doubly linked lists. Each element is linked into the queue 
through a queue header. Queue headers are all of the generic form struct 
generic qheader. A given element may have multiple queue headers. This 
allows each element to be simultaneously linked onto multiple queues. 

Any driver routine that manipulates these queues must call an appropriate spl 
routine to ensure that the spl level is high enough to block out any interrupts for 
other device drivers that may access these queues. 

Return Value 

None. 
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Name 
iodone - indicates that I/0 is complete 

Syntax 
iodone(bp) 
struct buf * bp; 

Arguments 

bp 

Description 

Specifies a pointer to a bu f structure. 

The iodone routine indicates that 1/0 is complete and reschedules the process that 
initiated the I/0. 

Return Value 

None. 
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Name 

Syntax 

KM_ALLOC - allows dynamic allocation of kernel virtual memory 

#include <sys/kmalloc.h> 

KM_ALLOC(addr, cast, nbytes, type, flags) 
addr; /* pointer to user defined type *I 
cast; /* user defined type */ 
unsigned long nbytes; 
long type; 
long flags; 

Arguments 

addr 

cast 

nbytes 

type 

flags 

Description 

Specifies the pointer to the memory. The data type for this argument 
is defined by the user. 

Specifies that this argument will be cast to the data type of the 
resulting pointer, to avoid compiler warnings. 

Specifies the number of bytes to allocate. 

Specifies the type of memory allocation and used only for statistics. 
The types of memory allocation are represented by the constants 
defined in /usr I sys /h/kmalloc. h. The constant 
KM_DEVBUF is normally used by device drivers to allocate and free 
memory. 

Specifies the type of memory allocation. These flags are the bitwise 
inclusive OR of these valid flags bits defined in 
/usr I sys /h/kmalloc. h. Flags bits that are of interest to 
device driver writers are KM_NOARG, KM_NOWAIT, KM_CLEAR, 
and KM CONT I G. 

The KM_ ALLOC macro allows dynamic allocation of kernel virtual memory. Device 
drivers should use KM ALLOC instead of km_alloc to allocate temporary storage 
space. 

You can set flags to the following: 

Value 

KM NOARG 

KM NOWAIT 

Meaning 

No special requirements are placed on the memory being 
allocated. The process could go to sleep, if the requested 
amount of memory is not available. 

The process should not sleep, if the requested amount of 
memory is not available. 
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Value 

KM_CLEAR 

KM CONTIG 

KM CALL 

Return Value 

None. 

See Also 
KM FREE 
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Meaning 

The memory allocated should be zeroed. 

The physical memory allocated must be contiguous. 

A flag that indicates whether to call the km alloc kernel 
routine. If you set this flag, the KM_ ALLOC macro calls the 
km_ a 11 o c kernel routine to allocate the memory. If you do 
not set this flag, the code to perform the memory allocation is 
expanded in the driver. This results in higher performance, 
because no subroutine call is involved; however, it results in 
a larger kernel image. You should use the KM_ CALL flag 
whenever performance is not an issue, that is, during startup 
and initialization. You should not use the KM CALL for any 
memory allocations in performance-sensitive code regions. 



Name 

Syntax 

KM_FREE - deallocates (frees) the allocated kernel virtual memory 

#include <kmalloc.h> 

KM_FREE( addr, type) 
addr; /* type of pointer is user defined *I 
long type; 

Arguments 

addr Specifies the pointer to the memory to be freed. You must have 
previously set this pointer in a call to KM_ ALLOC. The data type 
for this argument is defined by the user. 

type Specifies the type of memory allocation and used only for statistics. 

Description 

The types of memory allocation are represented by the constants 
defined in /usr I sys/h/kmalloc. h. The constant 
KM_DEVBUF is normally used by device drivers to allocate and free 
memory. 

The KM FREE macro deallocates (frees) the allocated kernel virtual memory, which 
was allocated in a previous call to KM ALLOC. 

Return Value 

None. 

See Also 
KM ALLOC 
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Name 

Syntax 

log_ vme_ctlr_error - logs VMEbus controller errors into the errorlog file 

log_ vme_ctlr_error(text, vhp, devptr) 
char* text; 
struct vba_hd * vhp; 
struct uba_ctlr * devptr; 

Arguments 

text 

vhp 

devptr 

Description 

Specifies an ASCII error message supplied by the device driver. 

Specifies a pointer to a vba_hd structure. When you write a driver 
routine that calls log vme ctlr error, you declare a pointer to 
a uba_ctlr structure. You then pass the um_vbahd member of 
the uba_ctlr structure as the second argument to this routine. 

Specifies a pointer to a uba ct 1 r structure. 

The log_vme_ctlr_error routine logs VMEbus controller errors into the 
errorlog file. This routine allocates a message packet that includes the ASCII text 
supplied by the driver, controller information, and the VMEbus adapter registers. 

Return Value 

None. 

See Also 
log_vme_device_error 
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Name 

Syntax 

log_ vme_device_error - logs VMEbus device errors into the errorlog file 

log_ vme_device_error( text, vhp, devptr) 
char* text; 
struct vba_hd * vhp; 
struct uba_device * devptr; 

Arguments 

text 

vhp 

devptr 

Description 

Specifies an ASCII error message supplied by the device driver. 

Specifies a pointer to a vba _ hd structure. When you write a driver 
routine that calls log_ vme_device_error, you declare a 
pointer to a uba device structure. You then pass the 
ui vbahd member of the uba device structure as the second 
argument to this routine. 

Specifies a pointer to a uba device structure. 

The log_vme_device_error routine logs VMEbus device errors into the 
errorlog file. This routine allocates a message packet that includes the ASCII text 
supplied by the driver, device information, and the VMEbus adapter registers. 

Return Value 

None. 

See Also 
log_vme_ctlr_error 
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Name 

Syntax 

major - gets the device major number 

#include " .. /h/types.h" 

major( device) 
dev _t device; 

Arguments 

device 

Description 

Specifies the number of the device for which the major macro will 
obtain the major device number. 

The major macro gets the device major number associated with the device 
specified by the device argument. 

Return Value 

None. 

See Also 
minor, makedev 
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Name 

Syntax 

makedev - makes a device number 

makedev(major, minor) 
int major; 
int minor; 

Arguments 

major 

minor 

Description 

Specifies the major number for the device. 

Specifies the minor number for the device. 

The makedev macro makes a device number of type dev _ t based on the numbers 
specified for the major and minor arguments. This macro is defined in 
/usr/sys/h/types.h. 

Return Value 

None. 

See Also 
ma jar, minor 
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Name 

Syntax 

minor - gets the device minor number 

#include " .. /h/types.h" 

minor (device) 
dev _t device; 

Arguments 

device 

Description 

Specifies the number of the device for which the minor macro will 
obtain the minor device number. 

The minor macro gets the device minor number associated with the device 
specified by the device argument. 

Return Value 

None. 

See Also 
major, makedev 
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Name 

Syntax 

minphys - bounds the data transfer size 

unsigned int minphys ( bp) 
struct buf * bp; 

Arguments 

bp Specifies a pointer to a buf structure. 

Description 
The minphys routine bounds the data transfer size by checking the b bcount 
member of the buf structure. If the b_bcount member is greater than 64 * 1024, 
minphys sets b bcount to 64 * 1024. 

Return Value 
The minphys routine does not return a value. However, it may change the 
contents of the b bcount member of the buf structure. 

See Also 
physio 
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Name 

Syntax 

panic - causes a system crash 

panic(message) 
char * message; 

Arguments 

message 

Description 

Specifies the message you want the panic routine to print on the 
console. 

The panic routine is called to cause a system crash, usually because of fatal errors. 
It prints the message, the contents of useful registers (for example, sp, fp, pc, and so 
forth), the interrupt stack, and the kernel stack to the console and error logger. After 
printing the message, panic reboots the system. 

Return Value 

None. 

See Also 
print£ 
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Name 

Syntax 

physio - implements raw 1/0 

physio(strategy, bp, device, rwfiag, mincnt, uio) 
int (*strategy)(); 
register struct buf * bp; 
dev_t device; 
int rwfiag; 
unsigned int ( * mincnt) (); 
struct uio * uio; 

Arguments 

strategy 

bp 

device 

rwfiag 

mincnt 

uio 

Description 

Specifies the device driver's strategy routine for the device. 

Specifies a pointer to a buf structure. This structure contains 
information such as binary status flags, the major/minor device 
numbers, the address of the associated buffer, and so forth. Note that 
this buffer is always a special buffer header owned exclusively by the 
device for handling 1/0 requests. 

Specifies the device number. 

Specifies the read/write flag. 

Specifies a pointer to a minphys routine. 

Specifies a pointer to a u i o structure. 

The physio routine implements raw 1/0. This routine maps the request directly 
into the user buffer, without using bcopy. 

Return Value 

None. 

See Also 
vslock, vsunlock, minphys 
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Name 

Syntax 

psignal - sends a signal to a process 

psignal(process, signal) 
struct proc *process; 
int signal; 

Arguments 

process 

signal 

Description 

Specifies a pointer to a proc structure. 

Specifies the signal that you want to send to the specified process. 
You can specify any of the signals defined in 
/usr/sys/h/signal.h. 

The psignal routine posts a signal to the specified process. The posting of a 
signal causes that signal to be added to the set of pending signals for the specified 
process. Depending on the state of the process and the state of the process's signals, 
this signal may be ignored, masked, caught by a tracing parent, or caught by the 
actual target process. If the signal is to be delivered to the target process, ps ignal 
examines and modifies the process state to prepare the execution of the appropriate 
signal handler. 

Return Value 

None. 

See Also 
gsignal 
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Name 

Syntax 

selwakeup- wakes up a select blocked process 

selwakeup(process, collision) 
register struct proc *process; 
int collision; 

Arguments 

process 

collision 

Description 

Specifies a pointer to a proc structure. This is typically a pointer 
to a process that has issued a select which blocked. For example, a 
process can select waiting for input, which causes the process to 
block until input becomes available. 

Specifies whether more than one process is blocked on this file 
descriptor. 

The selwakeup routine wakes up a select blocked process. This routine is used to 
notify a process that the condition causing the process to be blocked has changed. 
This allows the select system call to return. 

It is possible to have more than one process blocked on the same file descriptor. 
When the blocking condition is met, selwakeup is called to allow the blocked 
process to proceed. The selwakeup routine examines the collision argument to 
determine if more than one process is blocked on this file descriptor. If you pass the 
value 0 to collision, then only the process pointed to by the process argument will be 
placed in a runnable state to allow the process to unblock. If you pass a nonzero 
value to collision, then there is more than one process to be unblocked. In this case, 
you notify the other processes by issuing a wakeup on a common address that the 
blocked processes would be sleeping on. 

Return Value 

None. 

See Also 
wakeup 
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Name 

Syntax 

sleep - puts a calling process to sleep 

sleep(channel, pri) 
caddr_t channel; 
int pri; 

Arguments 

channel 

pri 

Description 

Specifies a unique address associated with the calling process to be 
put to sleep. 

Specifies the priority of the calling process upon waking. 

The sleep routine puts a calling process to sleep on the address specified by the 
channel argument. This address should be unique to prevent unnecessary wake/sleep 
cycles. Upon waking, the calling process has the priority you specified in the pri 
argument. If the numerical value of pri is less than P ZERO (which has the value 
25), signals are queued but the sleeping process will not be waked. 

The sleep and wakeup pair of routines block and then wake a process. 
Generally, device drivers call these routines to wait for the transfer to complete 
interrupt from the device. That is, the write routine of the device driver sleeps on 
the address of a known location, and the device's interrupt service routine wakes the 
process when the device interrupts. It is the responsibility of the waked process to 
check if the condition for which it was sleeping has been removed. 

Generic priorities (for example, P ZERO and PUSER) are defined in 
/usr I sys /h/pararn. h. Device driver writers can define their own priorities. 

Return Value 

None. 

See Also 
wakeup 

B-34 Kernel Support Routines 



Name 

Syntax 

spl5, spl6, spl7 splbio, splextreme, splimp, spltty, splx- blocks against all 1/0 
interrupts 

int spl5() 

int spl6() 

int spl7() 

int splbio () 

int splextreme() 

int splimp() 

int spltty() 

int splx(old spl) 
int old spl; -

Arguments 

old_spl 

Description 

Specifies the interrupt mask to restore the processor to. This value 
was returned from a previous call to one of these spl routines: 
spl5, spl 6, spl 7, splbio, splextreme, splimp, or 
spltty. 

The spl5, spl6, spl 7, splbio, splextreme, splimp, and spltty 
routines set the processor interrupt mask to an appropriate value. The hierarchical 
relationship between these values is shown in Figure B-1. 

Figure B-1: spl Hierarchical Relationships 

spl7 splextreme 

spl5 spltty splbio splimp 

ZK-0211U-R 

As the figure shows, spl 7 and splextreme occupy identical positions at the top 
of the hierarchy. Those routines at the top of the hierarchy can block all interrupts. 
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The spl 6 routine is next in the hierarchy. The spl5, splbio, splimp, and 
s pl tty routines are last on the hierarchy, and they set the processor interrupt mask 
to identical values. The spl routines with character names are preferred over the 
ones with numbers in their names. The spl5, spl 6, and spl 7 routines are 
provided for compatibility with older versions of the UL TRIX operating system. 

Setting the processor interrupt mask to splextreme blocks all interrupts. This 
includes device (splS) and clock interrupts (spl6), as well as those internal-based 
interrupts reporting the existence of abnormal conditions (spl 7). This setting is 
only used with extreme care in highly validated code where interrupts of any type 
cannot be tolerated. Most device drivers do not have such sections of code. 

Setting the processor interrupt mask to s p 16 blocks all interrupts except for those 
internal-based interrupts reporting the existence of abnormal conditions. This 
includes device- and clock-generated interrupts. This setting, too, is used with 
extreme care, as the blocking of clock-generated interrupts can result in degradation 
of all timer-based functions. Most device drivers need never block interrupts to this 
extent. 

Setting the processor interrupt mask to spl tty, splbio, or splimp blocks all 
device interrupts. These settings are used frequently by device drivers. The processor 
is also set to one of these interrupt masks prior to invocation of any device interrupt 
service routine. 

The s p 1 x routine restores the processor interrupt mask to its previous value. This 
value must have been obtained from a previous call to splbio, splextreme, 
splimp, spl tty, splS, spl 6, or spl 7. 

The spl routines allow the creation of critical sections. A critical section is a 
special segment of code that contains a guarantee as to what kinds of interrupts can 
occur. You create critical sections by calling splbio, splextreme, splimp, 
or s p 1 tty. You terminate these critical sections by calling s p 1 x. These s p 1 
routines are used by device drivers mainly to synchronize accesses to data structures. 

Device drivers often access a variety of data structures from within their interrupt 
service routines. They also access these same data structures from other places, 
including from within routines invoked in process context. Interruptions must be 
prohibited while such accesses are made to prevent possible data structure corruption. 
Critical sections represent the mechanism used by drivers to accomplish this 
requirement. 

Note 

Not all data structure accesses need be synchonized. Only accesses to 
dynamically changing fields require protection through use of critical 
sections. ·· · 

The following example illustrates how a device driver protects a criticial section of 
code: 

old_spl splbio(); /*Set interrupt mask to block all I/O interrupts. */ 

/* criticial code section */ 
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(void) splx(old_spl); /*Restore interrupt mask to previous value. */ 

Return Value 
These routines return the current spl level. 
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Name 

Syntax 

strcmp - compares two strings 

strcmp(stringl, string2) 
char *string 1 ; 
char * string2 ; 

Arguments 

string] 

string2 

Description 

Specifies the string to be compared with string2. 

Specifies the string to be compared with string 1. 

The strcmp routine compares string] with string2 and returns an integer that is 
greater than, equal to, or less than zero (0), according to whether string 1 is 
lexicographically greater than, equal to, or less than string2. A string is an array of 
characters terminated by a NULL character. 

Return Value 
This routine returns an integer that is greater than, equal to, or less than zero (0), 
depending on the results of the comparison between string 1 and string2. 

See Also 
strncmp, strlen 
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Name 

Syntax 

strncmp - compares two strings, using a specified number of characters 

strncmp(stringl, string2, n) 
char *string 1 ; 
char * string2; 
int n; 

Arguments 

string] 

string2 

n 

Description 

Specifies the string to be compared with string2. 

Specifies the string to be compared with string]. 

Specifies the maximum number of characters that can be compared. 

The strncmp routine compares two strings, using a specified number of characters. 
A string is an array of characters terminated by a NULL character. The strncmp 
routine compares string 1 with string2, comparing at most n characters. It returns an 
integer that is greater than, equal to, or less than zero (0), according to whether 
string 1 is lexicographically greater than, equal to, or less than string2. 

Return Value 
This routine returns an integer that is greater than, equal to, or less than zero (0), 
depending on the results of the comparison between string] and string2. 

See Also 
strcmp, strlen 
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Name 

Syntax 

strlen - performs string operations 

int strlen(stringl) 
caddr_t* string]; 

Arguments 

string] 

Description 

Specifies the address of a string (arrays of characters terminated by a 
null character). 

The strlen routine determines the number of characters in the string] argument, 
not including the terminating null character. 

Return Value 
This routine returns the number of characters in the string] argument, not including 
the terminating null character. 

See Also 
strcmp, strncmp 
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Name 

Syntax 

subyte, suword - store a byte or a word into user space 

int subyte(user _addr, value) 
caddr_t* user addr; 
unsigned long value; 

int suword( user addr, value) 
caddr_t* user addr; 
unsigned long value; 

Arguments 

user addr 

value 

Description 

Specifies the user virtual address that is to be set to the specified 
value: a byte or a word. 

Specifies the value (a byte or a word) that will be stored at the 
specified user virtual address. 

The subyte routine stores a byte into user space at the virtual address specified by 
the user addr argument. The suword routine stores a word into user space at the 
virtual address specified by the user addr argument. 

You must specify an address that is within the virtual address space of the current 
process. The virtual address must also be write accessible by the process. Protection 
against inaccessible address faults is provided while storage occurs. 

Return Value 
These routines return a -1 if the current user does not have write access to the 
specified user virtual address (user_ addr). Otherwise, these routines return a value 
other than -1. 

See Also 
copyin, copyout, fubyte 
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Name 

Syntax 

swap_lw _bytes, swap_ word_bytes, swap_ words - perform byte swapping operations 

unsigned int swap_Iw_bytes(buffer) 
unsigned int buffer; 

unsigned int swap_word_bytes(buffer) 
unsigned int buff er; 

unsigned int swap_words(buffer) 
unsigned int buffer; 

Arguments 

buffer Specifies a 32-bit ( 4 bytes) quantity. 

Description 
The swap lw bytes routine performs a long word byte swap. The 
swap word bytes routine performs a short word byte swap. The swap words 
routine performs a word byte swap. Although the VMEbus does not specify any 
particular byte ordering, many devices use a big endian model. Because Digital 
devices support the little endian model of byte ordering, there is a need for these byte 
swapping routines. These routines perform the same type of byte swapping as that 
provided by the VMEbus adapter hardware. Figure B-2 compares and contrasts the 
byte swapping performed by these routines. For the purposes of the following 
discussion, a long word is equal to 4 bytes; a short word is equal to 2 bytes; and 1 
byte is equal to 8 bits. The swap_lw_bytes routine takes the 32-bit quantity 
specified by the buff er argument and swaps all four bytes. The 
swap word bytes routine takes the 32-bit quantity specified by the buffer 
argument andswaps the individual bytes that make up each word of the 32-bit 
quantity. The swap_ words routine takes the 32-bit quantity specified by the buffer 
argument and swaps the two 16-bit words. 
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Figure B-2: VMEbus Byte Swapping 
Long Word Byte Swap (swap_lw_bytes) 
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Return Value 
These routines return the result of the byte swapping. 
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Name 
suser - determines if the current process is superuser 

Syntax 
int suser() 

Arguments 
None. 

Description 
The suser routine determines if the current process is superuser. The superuser is 
identified by a user identification number of 0. 

Device drivers often need to restrict certain operations to superusers only. The need 
to limit operations is always device-specific. The suser routine provides the 
verification tool for enforcing such restrictions. 

The ASU bit flag is set in the u acf lag member of the user structure whenever 
the current process is superuser. -The u acf lag member is a user area field that 
contains accounting flags for the currentprocess. By setting this bit flag, the 
information that the current process used its superuser privileges while executing is 
saved in the accounting record generated on process termination. 

Return Value 
This routine returns a value of 1 if the current process is superuser. Otherwise, the 
routine returns a value of zero (0). 

Side Effects 
The EPERM error value is set in the u error member of the user structure 
whenever the current process is not superuser. This user field contains the error code 
automatically returned to the current process in the errno external integer following 
failure of a system call. By setting this value and disallowing the operation, the 
current process will be able to ascertain the appropriate reason ( ''not owner'' ) why 
its request was denied. 
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Name 

Syntax 

svtophy - returns the physical address 

u_long svtophy(kern addr) 
caddr_t kern_addr; -

Arguments 

kern addr Specifies the kernel virtual address. 

Description 
The svtophy macro returns the physical address associated with the kernel virtual 
address you specified in the kern _ addr argument. 

Return Value 
This routine returns the physical address associated with the specified virtual address. 

See Also 
uvtophy 
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Name 

Syntax 

tc_disable_option - disables a device's interrupt line to the processor 

tc_disable_option(ui) 
struct uba_device * ui; 

Arguments 

ui 

Description 

Specifies a pointer to a uba device structure or a uba ctlr 
structure. Note that the function definition shows a pointerto a 
uba device structure. 

The tc_disable_option routine disables a device's interrupt line to the 
processor. A device driver uses this routine only if the device must have its 
interrupts alternately enabled and disabled during configuration or during operation. 

Return Value 

None. 

See Also 
tc_enable_option 
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Name 

Syntax 

tc_enable_option - enables a device's interrupt line to the processor 

tc_enable_option( ui) 
struct uba_device * ui; 

Arguments 

ui 

Description 

Specifies a pointer to a uba device structure or a uba ctlr 
structure. Note that the function definition shows a pointerto a 
uba device structure. 

The tc enable option routine enables a device's interrupt line to the 
processOf. A device driver uses this routine only if the device must have its 
interrupts enabled during configuration. The ULTRIX kernel automatically enables 
the device's interrupts after configuration, depending on what you specified in the 
tc_option data table. 

Return Value 

None. 

See Also 
tc_disable_option 
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Name 

Syntax 

tc_module_name - determines the name of a specific option module 

tc_module_name(ui, cp) 
struct uba_device * ui; 
char cp [TC_ROMNAMLEN]; 

Arguments 

ui 

cp 

Description 

Specifies a pointer to a uba device structure or a uba ctlr 
structure. Note that the function definition shows a pointerto a 
uba device structure. 

Specifies a character array to be filled in by tc module name. 

The tc module name routine fills in the character array cp with the ASCII string 
of the TURBOchannel option's module name referred to by the pointer to the 
uba device or uba ctlr structure. 

Return Value 
This routine returns a value of -1 if it was unable to use the cp pointer you passed. 
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Name 

Syntax 

timeout - initializes a callout queue element 

timeout(function, argument, time) 
int (*function) (); 
caddr_t argument; 
register int time; 

Arguments 

function 

argument 

time 

Description 

Specifies the address of the routine to be called. 

Specifies a single argument passed to the called routine. 

Specifies the amount of time to delay before calling the specified 
routine. Time is expressed as time (in seconds) * h z. 

The timeout routine initializes a callout queue element to make it easy to execute 
the specified routine at the time specified in the time argument. Callout routines are 
often used for infrequent polling or error handling. The routine you specified will be 
called on the interrupt stack (not in processor context) as dispatched from the 
softclock routine. The timeout routine places a callout structure on the 
callout queue. The hardclock routine decrements the front elements' 
time _till_ due until the specified routine is dispatched a few milliseconds after the 
time specified in the time argument. The granularity of the time delay is dependent 
on the hardware. For example, the granularity on a DECstation 3100 is 
approximately 4 milliseconds. 

The global variable h z contains the number of clock ticks per second. This variable 
is a second's worth of clock ticks. Thus, if you wanted a four-minute timeout, you 
would pass 4 * 60 * hz as the third argument to timeout: 

timeout (lptout, (caddr_t) dev, 4 * 60 * hz); 

Return Value 

None. 
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See Also 
untimeout 
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Name 

Syntax 

uiomove - moves data between user and system virtual space 

#include <sys/uio.h> 

uiomove(kern buf, nbytes, rwflag, uio) 
register caddrj kern buf; 
int nbytes; -
enum uio _rw rwflag; 
struct uio * uio; 

Arguments 

kern_buf 

nbytes 

rwflag 

uio 

Description 

Specifies a pointer to the kernel buffer in system virtual space. 

Specifies the number of bytes of data to be moved. 

Specifies whether data is to be moved from or to user space. Each 
operation is represented by the appropriate enumerated data type: 
UIO_READ (move data to user virtual space) or UIO_WRITE (move 
data from user virtual space). 

Specifies a pointer to the u i o structure. This structure describes the 
current position within a logical user buffer in user virtual space. See 
Section 5.1.3 for a description of the uio structure. 

The uiomove routine moves data between user and system virtual space. Data may 
be moved in either direction. Accessibility to the logical user buffer is verified before 
the move is made. Accessibility to the kernel buffer is always assumed. 

The kernel buffer must always be of sufficient size. It cannot be less than the number 
of bytes requested to be moved. Data corruption or a system panic may result if this 
is ever the case. 

The size of the logical user buffer as described by the uio structure may be less 
than, equal to, or greater than the number of bytes requested. The number of bytes 
actually moved is truncated whenever this size is not sufficient to fulfill a request. In 
all other cases, only the bytes requested are moved. 

Normally there is no need for device drivers to set up uio structures or worry about 
their composition or content. The uio structures are usually set up external to 
drivers. Their addresses are passed in through the cdevsw as arguments to driver 
read and write routines. The user logical buffers they describe are accessed only by 
routines external to the driver, for example, uiomove. The external uio structures 
are quite often updated by such accesses. 

The uiomove routine always updates the uio structure to reflect the number of 
bytes actually moved. The structure continues to describe the current position within 
the logical user buffer. The structure members that are subject to change are listed in 
the Side Effects section. See Section 5.1.3 for a description of the ui o structure. 
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Return Value 
A zero (0) is returned whenever the user virtual space described by the uio structure 
is accessible and the data is successfully moved. Otherwise, an EFAULT error value 
is returned. This indicates an inability to fully access the user virtual space from 
within the context of the current process. A partial move may have occurred before 
the logical user buffer became inaccessible. The u i o structure is appropriately 
updated to reflect such partial moves. 

The EFAULT return value is suitable for placement in the u_error member of the 
user structure. Following failure of a system call, this member contains the error 
code automatically returned in errno to the current process. Device drivers should 
explicitly set this value when it is returned and disallow the requested operation. 
This allows the current process to determine the appropriate reason ("bad address") 
why its request could not be satisfied. 

Side Effects 
The following members of the ui o structure may be updated: 

Value 

uio iov 

uio iovcnt 

uio resid 

uio off set 

Meaning 

The address of the current logical buffer segment 

The number of remaining logical buffer segments 

The size of the remaining logical buffer 

The current offset into the full logical buffer. 

The following members of the logical buffer segment descriptor vector ( u i o _ i ov) 
may be updated: 

Value Meaning 

iov base Specifies the address of the current byte within the current 
logical buffer segment. 

iov len Specifies the remaining size of the current segment. 

Note 
The uiornove routine can also be used to move data solely within 
system virtual space. In such cases, uiornove continues to specify a 
pointer to a uio structure. However, in this circumstance, the structure 
describes a logical buffer in system virtual space. See Section 5.1.3 for 
an explanation of the structure. 
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See Also 
copyin, copyout, fubyte, subyte 
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Name 

Syntax 

untimeout - removes the scheduled routine from the callout queues 

untimeout (function, argument) 
int (*function) (); 
caddr_t argument; 

Arguments 

function 

argument 

Description 

Specifies the address of the routine to be removed from the callout 
queues. 

Specifies a single argument passed to the called routine. 

The untimeout routine removes the scheduled routine from the callout queues. 
The specified routine was placed on the callout queues in a previous call to 
timeout. The argument parameter must match the argument parameter provided in 
the previous call to timeout. 

Return Value 

None. 

See Also 
timeout 
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Name 

Syntax 

useracc - determines read or write access to a user segment 

#include <sys/buf.h> 

int useracc(user addr, nbytes, rwflag) 
caddr_t user addr; 
int nbytes; -
int rwflag; 

Arguments 

user addr 

nbytes 

rwflag 

Description 

Specifies the address of the user segment. 

Specifies the size of the user segment. 

Specifies the desired access, either B READ or B WRITE. 

The user a cc routine determines read or write access to a user segment. A user 
segment is a representation of a portion of the virtual address space of the current 
process. The examination is made within the context of the current process. It also 
verifies existence of the user segment within the virtual address space of the current 
process. 

You can set the rwflag argument to the following values: 

Value 

B READ 

B WRITE 

Return Value 

Return Value 

0 

1 

Meaning 

Segment is checked for read access 

Segment is checked for write access 

Meaning 

Access is not allowed. User segment is nonexistent within 
the process address space. 

Access is allowed. 
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Narrie 

Syntax 

uvtophy - returns the physical address 

u_long uvtophy(process, addr) 
struct proc *process; 
int addr; 

Arguments 

process 

addr 

Description 

Specifies a pointer to a proc structure. 

Specifies the user address that corresponds to the physical address 
that you want. 

The uvtophy routine returns the physical address associated with the user virtual 
address you specified in the addr argument. You must lock the page in main 
memory (by calling vs lock) prior to calling uvtophy. 

Return Value 
This routine returns the physical address associated with the specified user virtual 
address. 

See Also 
svtophy 
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Name 

Syntax 

vballoc, vbasetup - allocate and set up the DMA mapping registers 

unsigned int vballoc( vhp, addr, bent, flags, vme addr) 
struct vba_hd * vhp; -
caddr_t addr; 
int bent; 
int.flags; 
long vme _addr; 

unsigned int vbasetup(vhp, bp,jlags, vme_addr) 
struct vba_hd * vhp; 
struct buf * bp; 
long flags; 
long vme_addr; 

Arguments 

vhp 

addr 

bp 

bent 

flags 

vme addr 

Specifies a pointer to a vba _ hd structure. When you write a driver 
routine that calls vballoc or vbasetup, you declare a pointer to 
a uba ctlr or a uba device structure. You then pass the 
um vbahd member of the uba ctlr structure or the ui vbahd 
member of the uba_device structure as the first argumentto these 
routines. 

Specifies the beginning virtual address. 

Specifies a pointer to a buf structure. 

Specifies the byte count (size) of the address space you want to 
allocate. 

Specifies the bitwise inclusive OR of a valid bit representing the 
address space and data size and bits representing other characteristics. 
A table of the valid bits appears in the Description section. 

Specifies an address in the appropriate DMA space (the A24 or the 
A32 DMA space). You can specify the value 0 or some specific 
address from the DMA space. 

If you specify 0 and the asc member of the vbadata structure is 
set to VME MAP LOW (the default), vballoc or vbasetup uses 
the next available-VMEbus address in the A24 or the A32 DMA 
space. If you specify some specific address and as c is set to 
VME MAP LOW, these routines attempt to allocate space at that 
VMEbus address. The address must be on a 4K boundary. 

If you set the as c member of the v ba data structure to the 
constant VME MAP HIGH and specify the value 0, vballoc or 
vbaset up selects an address in the second gigabyte of the VMEbus 
address space for the mapping of the DMA PMRs for this adapter. If 
you specify some specific address and set asc to 
VME_MAP _HIGH, these routines attempt to allocate space at that 
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address offset by one gigabyte. 

For example, if you pass the address 010000000 to vme _ addr and set 
asc to VME MAP HIGH, vballoc or vbasetup returns an 
address of 4iOOOOOOO if space is available. See Section 2.3.1 for the 
figure that illustrates this address space. 

Description 
The vballoc and vbasetup routines allocate and set up the DMA mapping 
registers. On ULTRIX systems, there is no hard mapping of VMEbus address space 
to system space. The mapping is performed by using Page Map Registers (PMRs ). 
Each PMR maps one system page. A PMR can map to any system address, 
including those in a user process. Therefore, the management of buffers is entirely 
separated from the mapping operation. 

You can use the vballoc and the vbasetup routines or both to allocate and set 
up the DMA mapping registers. The primary difference between the two routines is 
that vbasetup takes a pointer to a buf structure as an argument, while 
vballoc takes an address and the number of bytes as arguments. You would use 
vbasetup when a buf structure is provided to the driver. All file system 1/0 and 
most user 1/0 occur using a buf structure. You would use the vballoc routine 
for driver-initiated 1/0, for example, device command packets. Each of these 
routines returns a VMEbus address that is mapped to the buffer. If the requested 
mapping could not be performed, each of these routines returns a value of zero (0). 

As stated previously, each of these routines can specify the bitwise inclusive OR of 
the valid bit representing the address space and data size and the bits representing 
other characteristics. The following describes the valid flags bits: 

Flags Bits 

VME DMA 

VME RESERV 

VME CANTWAIT 

VME BS NOSWAP 

VME BS BYTE 

VME BS WORD 

VME BS LWORD 

VMEA16D08 

VMEA16D16 

VMEA16D32 
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Meaning 

Specifies the need for DMA access. 

Specifies the reserve VMEbus address space. 

Specifies the driver's need to have the VMEbus address space 
now. If this flag is not set and the resources needed to 
perform the mapping are not available, the process is put to 
sleep until resources become available. 

Specifies no byte swapping. 

Specifies byte swapping in bytes. 

Specifies byte swapping in words. 

Specifies byte swapping in long words. 

Specifies a request for the 16-bit address space and the 8-bit 
data size. 

Specifies a request for the 16-bit address space and the 16-bit 
data size. 

Specifies a request for the 16-bit address space and the 32-bit 
data size. 



Flags Bits 

VMEA24D08 

VMEA24D16 

VMEA24D32 

VMEA32D08 

VMEA32D16 

VMEA32D32 

Return Value 

Meaning 

Specifies a request for the 24-bit address space and the 8-bit 
data size. 

Specifies a request for the 24-bit address space and the 16-bit 
data size. 

Specifies a request for the 24-bit address space and the 32-bit 
data size. 

Specifies a request for the 32-bit address space and the 8-bit 
data size. 

Specifies a request for the 32-bit address space and the 16-bit 
data size. 

Specifies a request for the 32-bit address space and the 32-bit 
data size. 

Each of these routines returns a VMEbus address that is mapped to the buffer. If the 
requested mapping could not be performed, each of these routines returns a value of 
zero (0). 

See Also 
vbarelse 
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Name 

Syntax 

vba_get_ vmeaddr - obtains the VMEbus address 

u_long vba_get_ vmeaddr( vhp, addr) 
struct vba_hd * vhp; 
u_long addr; 

Arguments 

vhp 

addr 

Description 

Specifies a pointer to the vba _ hd structure. When you write a 
driver routine that calls vba get vmeaddr, you declare a pointer 
to a uba_ctlr or a uba_device structure. You then pass the 
um vbahd member of the uba ctlr structure or the ui vbahd 
member of the uba - device structure as the first argumentto this 
routine. 

Specifies the System Virtual Address (SV A) for the device. This 
address is one of the two addr arguments that are passed to the 
driver's probe routine. 

The vba_get_ vmeaddr routine obtains the VMEbus address corresponding to the 
SV A you passed in the addr argument. You typically call this routine to retrieve the 
VMEbus used in device-to-device DMA. 

Return Value 
This routine returns the VMEbus address corresponding to the SVA passed to this 
routine. 
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Name 

Syntax 

vbarelse - releases the resources (map registers) used to map the specified VMEbus 
address 

vbarelse( vhp, vme addr) 
struct vba_hd * vhp; 
int vme_addr; 

Arguments 

vhp 

vme addr 

Description 

Specifies the vba_hd structure, which contains the VMEbus 
adapter number on which mapping registers were allocated in a 
previous call to vballoc or vbasetup. 

Specifies the VMEbus address, which is the value returned in a 
previous call to vballoc or vbasetup. 

The vbarelse routine releases resources on the VMEbus adapter and then 
unblocks any process waiting for these resources. 

Return Value 

None. 

See Also 
vballoc, vbasetup 
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Name 

Syntax 

vme_rmw- performs a read-modify-write 

int vme_rmw(vhp, address_ptr, data, mask) 
struct vba_hd * vhp; 
u_int *address _ptr; 
u_int data; 
u_int mask; 

Arguments 

vhp 

address _ptr 

data 

mask 

Description 

Specifies a pointer to a vba_hd structure. 

Specifies a pointer to the data that you want to modify. 

Specifies the new data to be written. 

Specifies which bit or bits to check for locked data. 

The vme _ rmw routine performs a read-modify-write to VMEbus memory using the 
VMEbus adapter. This routine is an interlock primitive that can be used by device 
driver writers to suit the needs of their individual drivers. This routine emulates a 
hardware read-modify-write cycle; therefore, you can use it to lock a portion of 
memory, read some specified data that resides in that portion of memory, and modify 
(write) that portion of memory with new data. 

The address _ptr argument is the SV A of the VMEbus memory that a device driver 
writer wants to modify. This address will be based on the SVA passed to the 
probe routine. The mask argument specifies which bits to check in order to 
determine if the data is locked. If the mask indicates that the data is not locked, 
vme _ rmw writes the new data specified by the data argument to this memory 
location and returns a success value of zero (0). As the write occurs, the VMEbus 
adapter emulates a read-modify-write to the VMEbus memory, while vme rmw 
blocks interrupts, thus ensuring that no other process can access the locked data. If 
the mask indicates that the data is locked, vme rmw keeps the existing data in the 
memory location and returns a failure value of -=l.. 
There are numerous strategies for a device driver to control the modifying of data. 
For example, a device driver could provide an ioctl routine that uses vme_rmw 
to perform the transfer of new data to VME memory in blocks of 1024 words. 

Return Value 
This routine returns a value of zero (0) upon successfully completing the read­
modify-write. It returns -1 upon failure due to the fact that the data was locked. 
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Name 

Syntax 

vslock - locks a virtual segment 

int vslock(user addr, nbytes) 
caddr_t user addr; 
int nbytes; -

Arguments 

user addr 

nbytes 

Description 

Specifies the virtual address of the segment to lock. You must 
supply this value to vsunlock when the segment is unlocked. 

Specifies the size of the virtual segment in bytes. You must supply 
this value to vsunlock when the segment is unlocked. 

The vs lock routine locks a virtual segment. A virtual segment is a representation 
of a portion of the address space of the current process. You must lock this address 
space by calling vs lock prior to utilizing this segment as a source or target of a 
DMA I/0 operation. This guarantees the physical presence of the segment and its 
contents within memory during satisfaction of the I/0 request. Virtual segments 
locked by vs lock must be unlocked by vsunlock within the context of the same 
process following completion of the I/0 request. 

Prior to invocation of this routine, the device driver must verify that the virtual 
segment: 

• Is within the current process's virtual address space 

• Is accessible by the current process in the required fashion 

You should use the useracc routine to perform these checks. Unpredictable 
results may occur if these checks are not made. These results include (but are not 
limited to) data corruption and system panics. 

A request to lock a virtual segment may not be immediately satisfied at the time it is 
made for the following reasons: 

• Not all segment contents may be physically resident 

• The segment or some portion of it may already be locked 

Segment contents may not be memory resident for a variety of reasons. They may 
never have been resident or they may have been moved to secondary storage because 
the physical page frames they currently occupy are required for other purposes. Such 
movements occur for a given page frame only if its contents have been modified. 
Otherwise, its contents already exist on secondary storage and the associated page 
frame can be immediately reused if needed. 

Many instances exist where the physical page frames occupied by the segment or 
some subset of them are already locked. One example of such a situation occurs 
when multiple processes attempt to simultaneously lock virtual segments 
corresponding to the same shared memory region. Only the first process will be able 
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to obtain the lock. Another example occurs when one process manipulates two virtual 
segments possessing a common page frame and the frame spans the boundary 
between the two segments. Locking one segment prevents locking of the other. This 
situation can be avoided by aligning nonoverlapping virtual segments on cluster 
boundaries. For this reason, such alignment is highly recommended. 

\\'hen a request to lock a virtual segment cannot be immediately satisfied, the 
requesting process is put to sleep. This allows other processes access to the CPU. The 
sleeping process is not allowed to receive signals while it is sleeping. It is awakened 
each time the contents of one of the virtual segment's physical page frames is paged 
in. Awakening also takes place each time a lock on one of the virtual segment's 
physical page frames is released. This sleep/wakeup cycle continues until such time 
as all requirements for locking the virtual segment have been satisfied by the current 
process. 

Return Value 

None. 

See Also 
useracc, vsunlock 
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Name 

Syntax 

vsunlock - unlocks a virtual segment 

#include <sys/buf.h> 

int vsunlock(user _addr, nbytes, rwflag) 
caddr_t user addr; 
int nbytes; -
int rwflag; 

Arguments 

addr 

nbytes 

rwflag 

Value 

B READ 

B WRITE 

Description 

Specifies the virtual address of the segment to unlock. You 
previously specified this value to vs lock when the segment was 
originally locked. 

Specifies the size of the virtual segment in bytes. You previously 
specified this value to vs lock when the segment was originally 
locked. 

Specifies the read/write flag. Specifies the type of 1/0 the virtual 
segment was subject to while locked. You can set the read/write 
flag, rwflag, to one of the following: 

Meaning 

The segment was modified. You should specify B READ 
whenever a virtual segment was both accessed and modified 
(that is, reading from a device writes memory) while locked. 

The segment was accessed only. 

The vsunlock routine unlocks a virtual segment. A virtual segment is a 
representation of a portion of the address space of the current process. You must lock 
this address space by calling vs lock prior to utilizing this segment as a source or 
target of a DMA 1/0 operation. This guarantees the physical presence of the segment 
and its contents within memory during satisfaction of the I/0 request. 

Unlocking a virtual segment invalidates the guarantee of physical presence. It allows 
the contents of the segment to be moved to secondary storage whenever the physical 
page frames they currently occupy are required for other purposes. Note that 
segment contents need be saved only if they were modified while the segment was 
locked. Otherwise, they already exist on secondary storage and the associated page 
frames can be immediately reused. You must set the rwflag argument to B _READ in 
the call to vs lock to indicate modification of the virtual segment and to direct 
saving of virtual segment contents as needed. 
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Unlocking a virtual segment wakes up all processes sleeping on any of the physical 
page frames currently assigned to the segment. One example of such a situation 
occurs when multiple processes attempt to simultaneously lock virtual segments 
corresponding to the same shared memory region. The first process to make the 
attempt obtains the lock. The second process must wait until such time as the first 
process releases its lock. In the interim, it is put to sleep. 

The same situation can also develop with just one process manipulating two virtual 
segments. However, the two segments must possess one page frame in common: the 
one which spans the boundary between the two segments. Aligning nonoverlapping 
virtual segments on cluster boundaries prevents this arrangement from existing and, 
for this reason, is highly recommended. 

Attempting to unlock a virtual segment not locked by vs lock results in the 
following system panic: 

MUNLOCK: dup page unlock 

Virtual segments must always be unlocked within the context of the process in which 
they were originally locked. 

Return Value 

None. 

See Also 
vs lock 
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Name 

Syntax 

vtokpfnum - obtains the page frame number 

#include <sys/vm.h> 

u_int vtokpfnum(kern addr) 
caddr_t kern_addr; -

Arguments 

kern addr 

Description 

Specifies the kernel virtual address whose page frame number is to be 
returned. 

The vtokpfnum routine obtains the page frame number for the page in the 
character device's memory that was mapped at the kernel virtual address (kern_addr). 

Return Value 
The vtokpfnum routine always returns the page frame number. If kern_addr is 
not a kernel virtual address or if the kernel virtual address is not valid, the page 
frame number returned by vtokpfnum is undefined. There is no error return. 
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Name 

Syntax 

wakeup - wakes up all processes sleeping on a specified address 

int wakeup( channel) 
caddr_t channel; 

Arguments 

channel Specifies the address on which the wakeup is to be issued. 

Description 
The wakeup routine wakes up all processes sleeping on a specified address. The 
routine wakes these processes on the address specified by the channel argument. All 
processes sleeping on this address are awakened and made scheduable according to 
the priorities they specified when they went to sleep. It is possible for no processes 
to be sleeping on the channel at the time the wakeup is issued. This may occur for a 
variety of reasons and does not represent an error condition. 

The sleep and wakeup pair of routines block and unblock a process. Generally, a 
device driver issues these routines on behalf of a process requesting 1/0 while a 
transfer is in progress. That is, a process requesting 1/0 is put to sleep on an address 
associated with the request by the appropriate device driver routine. When the 
transfer asynchronously completes, the device driver interrupt service routine issues a 
wakeup on the address associated with the completed request. This makes the 
relevant process scheduable. The process resumes execution within the relevant 
device driver routine at the point immediately following tQe request to sleep. The 
driver on behalf of the process can then determine whether the condition for which it 
was sleeping, in this example completion of an 1/0 request, has been removed. If so, 
it can continue on to complete the I/0 request. Otherwise, the appropriate driver 
routine can decide to put the process back to sleep to await removal of the indicated 
condition. 

The UL TRIX kernel issues a wakeup on the global variable lbo 1 t each second. 
This provides device drivers with a convenient method for waiting on behalf of a 
process for the occurrence of a specific event. They need only sleep on lbol t, 
releasing the CPU for use by other processes. After one second or so, the kernel 
timer maintenance roytines issue the lb o 1 t wakeup, making the relevant process 
scheduable. In due time, the process resumes execution within the relevant device 
driver routine at the point immediately following the request to sleep on lbol t. 
The driver on behalf of the process can then determine whether the specific event 
occurred. If not, this procedure can be repeated as many times as is necessary until 
the desired event takes place. 

Return Value 

None. 
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See Also 
sleep, lbol t 
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Name 
wbfl.ush - ensures a write to I/0 space has completed 

Syntax 
wbftush() 

Arguments 
None. 

Description 
The wbflush routine ensures a write to I/0 space has completed. Whenever a 
device driver writes to I/O space, the write may be intermittently delayed through the 
imposition of a hardware-dependent system write buffer. Subsequent reads of that 
location will not wait for a delayed write to complete. Either the original or the new 
value may be obtained. Subsequent writes of that location may replace the previous 
value, either in I/O space or in the system write buffer, if its writing had been 
delayed. In this case, the previous value would never have been actually written to 
1/0 space. 

Whether a given write to I/O space is delayed and how long this period is depends 
upon the existence of a system write buffer, its size, and its content. In general, 
delayed writes are not a problem. Device drivers need not call wbflush except in 
the following special situations: 

• The write causes a state change in the device, and the change is indicated by a 
subsequent device-induced change in the value of the location being written by 
the device driver. This situation normally exists only during initialization of 
certain devices. 

• The value being written is permanently consumed by the act of writing it. This 
situation exists only for certain specific devices, including some terminal 
devices. 

Return Value 

None. 

B-70 Kernel Support Routines 



B.2 ioctl commands 
Table B-2 summarizes the special file discussed in this appendix. Following the 
table is a description of the special file. 

Table B-2: Summary Description for Special Files 

Special File Summary Description 

DEVIOCGET obtains information about a device 
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Name 

Syntax 

DEVIOCGET - obtains information about a device 

#inciude <sysidevio.h> 
#include <sysioctl.h> 

Description 
The DEVIOCGET ioctl request obtains information about a device. This request 
obtains generic device information by polling the underlying device driver. 
DEVIOCGET uses the following structure defined in /usr I sys/hi devio. h: 

struct devget { 
short category; 
short bus; 
char interface[DEV _SIZE]; 
char adpt_num; 
short nexus_num; 
short bus_num; 
short ctlr_num; 
short rctlr_num; 
short slave_num; 
char dev _name[DEV _SIZE]; 
short unit_num; 
unsigned soft_count; 
unsigned hard_count; 
long stat; 
long category _stat; } ; 

The following describes the meaning of the members of this structure: 

category Specifies the general class of the device. This member can be set to 
one of these values: DEV _TAPE (tape category), DEV _DISK (disk 
category), DEV_ TERMINAL (terminal category), DEV_ PRINTER 
(printer category), or DEV_ SPECIAL (special category). 

bus Specifies the communications bus type. For example, for XMI 
devices this member would be set to the value DEV XML 

interface Specifies a string of up to eight characters that identifies the 
controller interface type. 

adpt_num This member is set to the bus adapter number. 

nexus num This member is set to the particular node or nexus number the device 
represents. This node or nexus number is the specific node on this 
adapter. 

bus n um This member is set to the bus number that the device controller 
resides on. 

ctlr num This member is set to the specific controller number for the controller 
of this device. This number is the specific controller number on this 
bus. 
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rctlr num This member is set to the remote controller number. 

slave num This member is set to the device unit number. For a disk device, this 
unit number is the physical device unit number. For a terminal 
device, this number is the terminal line number. 

dev name This member is set to the device name type, which is a string of up 
to eight characters. Usually this device name type is the name as it 
appears in device autoconfiguration messages. 

unit n um This member is set to the kernel configuration representation of a 
device unit number. The value in this member is frequently the same 
as the slave num member. The difference is that slave num 
represents the physical unit number, while the unit_num member 
represesents a logical unit number representation for the device. 

soft count This member is set to a driver counter of soft (noncritical) errors. 

hard count This member is set to a driver counter of hardware errors. 

stat This member is set to the device status. This member is used 
primarily to represent drive status for tape devices. Some examples 
of drive status include: the drive is at the bottom of tape, or the drive 
is write protected. 

category stat 
- This member is set to generic device status values, which are defined 

in /usr I sys/hi devio. h. The values are organized according 
to these device types: tapes, disks, and communications devices. 

The following example prints out the device type and unit number: 

struct devget dev st; 11] 
if (ioctl (fd, DEVIOCGET, &dev_st) < 0) { 

printf ("DEVIOCGET failed\n"); 
exit (1); 

} [2] 
printf ("Device type= %s\n",dev_st.device); 131 
printf ("Unit number= %d\n",dev_st.unit_num); ~ 

The following numbered items explain the preceding example: 

11] This line declares a structure of type devget. 

12] This line is a test to determine whether the call to ioctl succeeds or fails. Note 
that fd is an open file descriptor for the associated device special file. 

131 This line obtains the device number. 

~ This line obtains the unit number. 
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8.3 Global Variables Used by Device Drivers 
Table B-3 summarizes the global variables used by device drivers. Following the 
table are descriptions of each global variable, presented in alphabetical order. 

Tab!e B-3: Summar/ Description for Global Variables 

Global Variable 

cpu 

hz 

lbolt 
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Summary Description 

provides a unique logical family identifier of the processor 
type of the running system 

variable to store number of clock ticks per second 

periodic wakeup mechanism 



Name 
cpu - provides a unique logical family identifier of the processor type of the running 
system 

Description 
The cpu global variable provides a unique logical family identifier of the processor 
type of the running system. The logical system name may represent a single 
processor or a family of processor types. For example, the constant D S _ 5 0 0 0 
represents the DECstation 5000 Model 200. The defined system names appear in the 
file /usr I sys/machine/ common/ cpuconf. h. 

This global variable is used to conditionally execute processor-specific code. For 
example, the following code fragment calls a system-specific initialization routine for 
the DECstation 5000 Model 200 processor: 

if (cpu == DS 5000 
init 5000 
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Name 
hz - variable to store number of clock ticks per second 

Description 
The h z global variable is set to the number of clock ticks per second. The value is 
useful for timing purposes. For example, if a device driver wants to schedule a 
routine to be run in two seconds, the following call could be used: 

timeout (lptout, (caddr_t) dev, 2*hz); 
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Name 
lbolt - periodic wakeup mechanism 

Description 
The lbol t global variable is used as a periodic wakeup mechanism. Wakeups are 
done on the lbol t variable once per second. For example, if a driver was polling 
for an event once per second, the following code could be used: 

sleep((caddr_t)&lbolt, DNPRI); 
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Summary of Device Driver Routines C 

Table C-1 summarizes the routines used by VMEbus and TURBOchannel device 
drivers. The table has the following columns: 

• Routine 

This column lists the driver routine name. 

• Structure/file 

This column lists the structure (or file) where you define the driver routine entry 
point. 

• Character 

An X appears in this column if the routine is applicable to a character device. 
Otherwise, an N/ A (not applicable) appears. 

• Block 

An X appears in this column if the routine is applicable to a block device. 
Otherwise, an NJ A (not applicable) appears. 

For convenience, the routines appear in alphabetical order. 

Note 

The psi z e routine is no longer used. It has been superseded by driver 
ioctl calls that are used to obtain disk geometry information. Previously, 
the routine determined the location on the disk where UL TRIX should 
perform a dump. 

UL TRIX supports dumping only to disks that it can boot from. In most cases, 
UL TRIX uses dump routines located in the console subsystem. Because 
ULTRIX does not support booting from a VMEbus disk, dumping to disk is 
not used in a VMEbus device. 

Table C-1: Summary of Device Driver Routines 

Routine Structure/File Character Block 

attach uba driver x x 
close cdevsw x x 

bdevsw 

interrupt system x x 
configuration file 

ioctl cdevsw x x 
bdevsw 



Table C-1: (continued) 

Routine Structure/File Character Block 

rnrnap cdevsw x NIA 
open cdevsw x x 

bdevsw 

probe uba driver x x 
read cdevsw x NIA 
reset cdevsw x NIA 
select cdevsw x NIA 
slave uba driver x x 
stop cdevsw x NIA 
strategy cdevsw x x 

bdevsw 

write cqevsw x NIA 
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A 
adapter key word 

See also system configuration file 

to precede system bus mnemonic, 9-7 

address space 

See TURBOchannel address space 

A16, 2-4 

A24, 2-4 

A32, 2-4 

allocating for VMEbus, 2-4 

conventions used by Digital, 2-4 

for VMEbus, 2-3 

allocating buffers 

use of rmalloc kernel routine, 12-9 

allocating DMA space 

use of vballoc kernel routine, 12-10 

use of vbasetup kernel routine, 12-10 

asyncsel kernel routine 

select routine for nonterminal type character 

devices that support nbufio, 4-16 

at key word 

See also system configuration file 

to follow controller key word, 9-8 

attach driver routine 

accessing the uba_device structure, 12-3 

called during controller configuration for VMEbus, 

7-2 

called during device configuration for VMEbus, 

7-2 

called through the ibus configuration routines, 7-4 

differences between ULTRIX and other platforms, 

12-2 

function definition and description of arguments for 

device drivers, 4-8 

Index 

attach driver routine (cont.) 

use of uba_driver structure to define entry point, 

4-5 

autoconfiguration 

8 

controller configuration for VMEbus, 7-2 

definition of, 7-1 

device configuration for VMEbus, 7-2 

for devices connected to the TURBOchannel, 7-2 

for devices connected to the VMEbus, 7-1 

use of attach to establish communication with 

device, 4-7 

use of probe routine to determine if device is 

present, 4-5 

use of slave for controller devices, 4-6 

BADADDR macro 

function definition and formal description, B-5 

to check read accessibility of addressed data, 

12-12 

to recover from bus errors, 12-2 

use with DMA driver to determine if device is 

present, 10-19 

use with memory-mapped driver to determine if 

device is present, 10-8, 11-39 

B _BUSY constant 

binary status flag that influences behavior of 

av _forw and av _back members of buf 

structure, 5-3 

hemp kernel routine 

function definition and formal description, B-6 

bcopy kernel routine 

function definition and formal description, B-7 



bdevsw table 

characteristics of, 9-1 

example defined in /usr/sys/h/conf.h, 9-4 

formal description of, 9-4 

sample, 9-5 

B_ERROR constant 

binary status flag for b_flags member of buf 

structure, 5-3 

to flag an error in interrupt section of DMA driver, 

10-31 

to flag an error in strategy section of DMA driver, 

10-27, 10-28, 10-29 

big endian 

See byte ordering 

Binary key word 

See files.mips file 

block device driver 

compared with character device driver, 4-1 

definition of, 1-2 

example of declarations section, 4-4 

B _READ constant 

to indicate read access in strategy section of DMA 

driver, 10-27 

to indicate read operation in call to physio in read 

and write section of DMA driver, 10-24 

bread kernel routine 

to handle file system reads, 4-13 

buf structure 

declared array called xxbuf for DMA driver, 10-16 

definition of, 5-1 

formal description of av_back member, 5-3 

formal description of av_forw member, 5-3 

formal description of b_dev member, 5-3 

formal description of b_error member, 5-3 

formal description of binary status flags associated 

with b_flags member, 5-2 

formal description of b_iodone member, 5-3 

formal description of b_resid member, 5-3 

members used by device drivers, 5-2t 

used by xxintr routine in DMA driver, 10-31 

used by xxstrategy routine in DMA driver, 10-26 

buff er cache 

description of for block drivers, 1-2 

lndex-2 

bufflush kernel routine 

example code fragment to illustrate call, 6-8 

function definition and formal description, B-9 

to flush processor data cache in interrupt section of 

DMA driver, 10-32 

to flush the data cache, 2-6, 3-2 

bus 

See also OPENbus 

definition of, 1-7 

relationship to device driver, 1-6 

bus error condition 

See porting issues for VMEbus device drivers 

B WRITE constant 

to indicate write access in strategy section of DMA 

driver, 10-27 

to indicate write operation in call to physio in read 

and write section of DMA driver, 10-24 

bwrite kernel routine 

to handle file system writes, 4-13 

byte ordering 

Digital model, 2-2 

for VMEbus, 2-2 

Motorola model, 2-2 

byte swapping 

See swap_lw_bytes kernel routine 

See swap_word_bytes kernel routine 

See swap_words kernel routine 

provided by kernel routines, 2-2 

provided by VMEbus adapter, 2-2 

results of byte-swapping routines, 6-5f 

bzero kernel routine 

function definition and formal description, B-8 

c 
cdevsw table 

example defined in /usr/sys/h/conf.h, 9-2 

formal description of, 9-2 

sample, 9-3 

character and block device driver 

sections of, 4-2f 

character device driver 

compared with block device driver, 4-1 

definition of, 1-2 



character device driver (cont.) 

example of declarations section, 4-4 

written for devices that handle one character at a 

time, 1-2 

written for terminal devices that can accept or 

supply a stream of data, 1-2 

close driver routine 

description of tasks performed by, 4-10 

function definition and description of arguments for 

device drivers, 4-10 

use of cdevsw and bdevsw to define entry points, 

4-8 

close system call 

to execute after return from skclose routine, 10-10, 

11-41 

conf.c file 

contains two device switch tables, 9-1 

includes qac.h file for qac driver, 11-3 

includes sk.h file for memory-mapped driver, 10-2, 

11-34 

includes xx.h file for DMA driver, 10-15 

conf.h file 

contains declaration of bdevsw structure, 9-4 

contains declaration of cdevsw structure, 9-2 

config command 

generates values for some members of uba_ctlr 

structure, 5-9 

generates values for some members of uba_device 

structure, 5-11 

to create qac.h file for qac driver, 11-3 

to create sk.h file for memory-mapped driver, 

10-2, 11-34 

to create xx.h file for DMA driver, 10-14 

to define NSK constant used by memory-mapped 

driver, 10-4, 11-36 

controller 

definition of, 1-7 

relationship to device driver, 1-7 

controller key word 

See also system configuration file 

to precede controller mnemonic, 9-8 

copyin kernel routine 

function definition and formal description, B-10 

copyout kernel routine 

function definition and formal description, B-11 

cprintf kernel routine 

function definition and formal description, B-12 

used in debugging memory-mapped driver to print 

message on console, 10-8, 10-9, 11-39, 

11-39 

cpuconf.h file 

defines BADADDR macro used in DMA driver, 

10-14 

defines BADADDR macro used in memory­

mapped driver, 10-2, 11-34 

included in DMA driver, 10-14 

included in memory-mapped driver, 10-2, 11-34 

csr key word 

See also system configuration file 

to precede control status register value, 9-8 

csr2 key word 

See also system configuration file 

to precede second control status register value, 9-9 

D 
data cache 

flushing with bufflush kernel routine, 2-6, 3-2 

data size 

supported by VMEbus, 2-2 

data structures 

UNIBUS structures used by VMEbus and 

TURBOchannel, 5-1 

used in 1/0, 5-1 

debugging 

tools used in, 8-1 t 

use of C preprocessor statements to set up 

conditional compilation for debugging 

memory-mapped driver, 10-5, 11-36 

use of C preprocessor statements to set up 

conditional compilation for debugging qac 

driver, 11-6 

DECstation 5000 Model 200 

attaching of VMEbus, 2-1 

processor supporting the TURBOchannel, 3-1 

DELAY macro 

function definition and formal description, B-15 

lndex-3 



device autoconfiguration 

See autoconfiguration 

device driver 

See block device driver 

See character device driver 

definition of, 1-1 

place in UL TRIX, 1-5f 

relationship to kernel, 1-6 

structure of TURBOchannel driver, 3-1 

summary of device driver routines, C-lt 

types of ULTRIX device drivers, 1-2f 

when called by the kernel, 1-4f 

device interrupt line 

disabling with tc_disable_option kernel routine, 

3-2 

enabling with tc_enable_option kernel routine, 3-2 

device key word 

See system configuration file 

device register logging 

See porting issues for VMEbus device drivers 

device switch tables 

See bdevsw table 

See cdevsw table 

device-driver key word 

See files.mips file 

DEVIOCGET ioctl request 

possible value for ioctl driver routine, 4-12 

DEVIOCGET special file 

formal description, B-72 

Direct Memory Access 

See DMA 

disk key word 

See system configuration file 

disk partitions 

implemented by block driver strategy routine, 4-13 

DMA 

device-to-device, 2-6 

DMA-to-host memory transfer, 3-2 

for multiple VMEbus adapters, 2-6 

maximum size and range of addresses for 

PMABV-AA Adapter, 2-6t 

performed by VMEbus, 2-4 

VMEbus to and from host, 2-5 

lndex-4 

DMA driver example 

discussion of argument and structure declarations, 

10--16 

discussion of include files, 10--14 

discussion of routine used in autoconfiguration 

section, 10--18 

discussion of routines in interrupt section, 10-30 

discussion of routines used in open and close 

section, 10--20 

discussion of routines used in read and write 

section, 10--23 

discussion of routines used in strategy section, 

10--26 

parts of the DMA device driver, 10--13t 

DMA_GO constant 

to indicate start DMA in strategy section of DMA 

driver, 10--29 

drive key word 

See system configuration file 

driver interface function definitions 

conventions followed for, 4-3 

dump driver routine 

not used in VMEbus device, 4-1 

DZ REGISTERS structure 

declared in qac driver, 11-5 

E 
EACCF AULT constant 

to indicate access violation in strategy section of 

DMA driver, 10--27 

EBUFTOOBIG constant 

to indicate buffer is too big in strategy section of 

DMA driver, 10--28 

EBUSY error code 

to indicate device already opened in xxopen routine 

of DMA driver, 10--21 

EIO error code 

to indicate I/O error in interrupt section of DMA 

driver, 10-31 

to indicate I/O error in xxopen routine of DMA 

driver, 10--21 

elcsd error log daemon 

to transfer events to error log file, 8-1 



ENOMAPREG constant 

to indicate no mapping registers in strategy section 

of DMA driver, 10-29 

ENXIO error code 

to indicate device does not exist in xxopen routine 

of DMA driver, 10-21 

errno.h file 

defines error codes used by xxopen routine of 

DMA driver, 10-21 

defines error codes used in b_error member of buf 

structure, 5-3 

ERROR constant 

to indicate device is broken in autoconfiguration 

section of DMA driver, 10-19 

error log event 

definition of, 8-1 

example device drivers 

F 

See DMA driver example 

See memory-mapped driver example 

See qac driver example 

file structure 

definition of, 5-3 

member used by device drivers, ~t 

file.h file 

use of flag bits for flag argument used with skclose 

routine, 10-10, 11-41 

use of flag bits for flag argument used with skopen 

routine, 10-10, 11-41 

use of flag bits for flag argument used with xxopen 

routine, 10-20 

files.mips file 

modifications needed for installing device drivers, 

9-5 

sample, 9-6 

flags key word 

See also system configuration file 

to specify a value that directs system to perform 

some request, 9-9 

FREAD constant 

flag to select on input data in select driver routine, 

4-16 

fubyte kernel routine 

function definition and formal description, B-16 

fuword kernel routine 

function definition and formal description, B-16 

FWRITE constant 

flag to select on device ready to accept more output 

in select driver routine, 4-16 

G 
getnewbuf kernel routine 

function definition and formal description, B-17 

global variables 

summary descriptions of, B-74t 

gsignal kernel routine 

function definition and formal description, B-18 

H 

hardware architecture 

for VMEbus, 2-1 

hardware device 

definition of, 1-1 

hardware device register 

write by TURBOchannel driver, 2-9, 3-1 

header file 

See include file 

header files 

header files related to device drivers, A-lt 

minimal list needed by TURBOchannel device 

drivers, 4-4 

minimal list needed by VMEbus device drivers, 

4-4 

ibus mnemonic 

See also system configuration file 

to indicate TURBOchannel adapter, 9-8 

IE constant 

to indicate interrupt enable in strategy section of 

DMA driver, 10-29 

include file 

for TURBOchannel driver, 3-1 

lndex-5 



input/output 

See 1/0 
insque kernel routine 

function definition and formal description, B-19 

interrupt driver routine 

description of tasks performed by, 4-15 

function definition and description of arguments for 

device drivers, 4-15 

use of system configuration file to define, 4-15 

interrupt priority 

for VMEbus, 2-2 

interrupt vector 

for VMEbus, 2-2 

1/0 

access to by applications, 2-8 

ioctl driver routine 

description of tasks performed by, 4-11 

function definition and description of arguments for 

device drivers, 4-12 

iodone kernel routine 

K 

function definition and formal description, B-20 

to complete 1/0 in strategy section of DMA driver, 

10-27, 10-28, 10-29 

to indicate completion of 1/0 in interrupt section of 

DMA driver, 10-32 

kernel 

relationship to device driver, 1-6 

summary descriptions for I/0 support routines, 

B-2t 

KM_ ALLOC macro 

function definition and formal description, B-21 

KM FREE macro 

function definition and formal description, B-23 

L 

little endian 

See byte ordering 

log_ vme _ ctlr _error kernel routine 

comparison with log_ vme_device_error to log 

errors for VMEbus device drivers, 8-2 

lndex-6 

log_ vme _ ctlr _error kernel routine (cont.) 

example code fragment to illustrate call, 8-2 

function definition and formal description, B-24 

log_ vme _device_ error kernel routine 

M 

comparison with log_ vme_ctlr_error to log errors 

for VMEbus device drivers, 8-2 

example code fragment to illustrate call, 8-2 

function definition and formal description, B-25 

MACHINE file 

See system configuration file 

major macro 

function definition and formal description, B-26 

makedev kernel routine 

function definition and formal description, B-27 

mapping register 

no need to use with TURBOchannel driver, 3-1 

mb_ctlr structure 

See uba_ctlr structure 

mb_device structure 

See uba_device structure 

mb driver structure 

See uba_driver structure 

MBI ADDR macro 

discussion of argument used in example, 12-11 

to obtain 32-bit virtual address, 12-11 

mbrelse kernel routine 

discussion of arguments used in example, 12-11 

to release the Main Bus DVMA resources, 12-11 

mbsetup kernel routine 

discussion of arguments used in example, 12-10 

to allocate buffers from DMA space, 12-10 

memory mapping 

mapping into nonexistent device memory, 4-18f 

to allow access to VMEbus devices, 2-9 

to transfer data, 2-8 

writes to 1/0 space on Digital MIPS architecture, 

4-19f 

memory-mapped driver example 

discussion of argument and structure declarations, 

10-3, 11-35 

discussion of include files, 10-2, 11-34 



memory-mapped driver example (cont.) 

discussion of routines in memory-mapping section, 

10-11, 11-42 

discussion of routines used in autoconfiguration 

section, 10-7, 11-38 

discussion of routines used in open and close 

section, 10-10, 11-41 

parts of the memory-mapped device driver, 10-lt, 

11-33t 

minor macro 

function definition and formal description, B-28 

used by SKUNIT macro to obtain device minor 

number for memory-mapped driver, 10-4, 

11-36 

used by xxclose to obtain device minor number for 

DMA driver, 10-22 

used by xxopen to obtain device minor number for 

DMA driver, 10-20 

used by xxread to obtain device minor number for 

DMA driver, 10-23 

used by xxstrategy to obtain device minor number 

for DMA driver, 10-26 

minphys kernel routine 

function definition and formal description, B-29 

to bound data transfer size in call to physio in read 

and write section of DMA driver, 10-24 

mman.h file 

contains protection flag bits used with skmmap 

routine's prot argument, 10-12, 11-43 

mmap driver routine 

description of tasks performed by, 4-17 

function definition and description of arguments for 

device drivers, 4-17 

use of cdevsw to define entry point, 4-16 

mmap system call 

calls driver's memory map routine, 4-16 

to map a character device's memory into user 

address space, 4-16 

to map VMEbus space, 2-9 

MMAPDRV _DEBUG option 

See system configuration file 

mprintf kernel routine 

function definition and formal description, B-12 

munmap system call 

to explicitly unmap a previously mapped device, 

4-17 

N 

nbufio,4-16 

network device driver 

definition of, 1-3 

nexus key word 

See also system configuration file 

to identify the nexus, 9-7 

nonexistent memory 

considerations when writing mmap driver routine, 

4-17 

Notbinary key word 

See files.mips file 

NSK constant 

defined by config in sk.h, 10-4, 11-36 

to size array of sk_softc structures, 10-5, 11-36 

to size skdinfo array of pointers to uba_device 

structures, 10-4, 11-36 

NXX constant 

to size array of buf structures, 10-17 

to size xxdinfo array of pointers to uba_device 

structures, 10-17 

0 
onboard memory 

configured in 1/0 space, 2-3 

open driver routine 

description of tasks performed by, 4-9 

use of cdevsw and bdevsw to define entry points, 

4-8 

open system call 

to execute after return from skopen routine, 10-1 O, 

11-41 

OPENbus 

description of, 1-7 

TURBOchannel as an open architecture, 1-7 

VMEbus as an open architecture, 1-7 

optional key word 

See files.mips file 
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0 RDONLY constant 

flag to indicate device is open for reading in ioctl 

driver routine, 4-13 

flag to indicate device is open for reading in open 

driver routine, 4-9 

O _ RDWR constant 

flag to indicate device is open for reading and 

writing in ioctl driver routine, 4-13 

flag to indicate device is open for reading and 

writing fu open driver routine, 4-9 

0 WRONLY constant 

p 

flag to indicate ·device is open for writing in ioctl 

driver routine, 4-13 

flag to indicate device is open for writing in open 

driver routine, 4-9 

panic kernel routine 

function definition and formal description, B-30 

peek kernel routine 

to recover from bus errors, 12-2 

peripheral device 

definition of, 1-7 

relationship to device driver, 1-7 

physio kernel routine 

called by xxread in read and write section of DMA 

driver, 10-23 

function definition and formal description, B-31 

PIO 

to transfer data, 2-8 

poke kernel routine 

to check and read an address on Sun Microsystems, 

12-12 

to recover from bus errors, 12-2 

porting 

See porting issues for TURBOchanhel device 

drivers 

See porting issues for VMEbus device drivers 

porting issues for TURBOchannel device drivers 

entry in tc_option table, 13-1 

header files used by TURBOchannel drivers, 13-1 

need for uba_driver structure, 13-1 

structure like driver for a UNIBUS or Q-bus 

device, 13-1 
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porting issues for TURBOchannel device drivers 

(cont.) 

use of bu:fflush kernel routine, 13-1 

use of tc_disable_option kernel routine, 13-1 

use of tc_enable_option kernel routine, 13-1 

use of wbflush kernel routine, 13-1 

porting issues for VMEbus device drivers 

bus error condition on Sun Microsystems, 12-12 

bus error condition on ULTRIX, 12-12 

comparison of Direct Memory Access mechanisms, 

12-7 

comparison of memory mapping routines, 12-13 

comparison of uba_device and mb_device 

structures, 12-6 

comparison of uba_driver and mb_driver 

structures, 12-3 

CPU design inconsistencies, 12-12 

device register logging, 12-12 

effects of operating system upgrades and migration, 

12-12 

example of allocating DMA space, 12-7 

execution of attach driver routine on UL TRIX, 

12-2 

execution of probe driver routine on ULTRIX, 

12-2 

from hardware using a derivative of System V, 

12-1 

header files used by ULTRIX device drivers, 12-2 

maximum DMA on DECstation 5000 Model 200, 

12-11 

mechanisms for accomplishing byte swapping, 

12-12 

members of uba_driver and mb_driver structures, 

12-3t 

methods for allocating DMA space on Sun 

Microsystems, 12-7 

methods for allocating DMA space on UL TRIX, 

12-7 

running a test suite, 12-2 

steps for installing driver, 12-2 

tasks associated with porting VMEbus drivers, 

12-lt 

use of seven interrupt priority levels on DECstation 

5000 Model 200, 12-12 



porting issues for VMEbus device drivers (cont.) 

writing test suites to understand hardware device, 

12-2 

printf kernel routine 

function definition and formal description, B-12 

priority key word 

See also system configuration file 

to precede a VMEbus priority level, 9-9 

probe driver routine 

called during device configuration for VMEbus, 

7-2 

called through the ibus configuration routines, 7-4 

description of tasks performed by, 4-6 

differences in executing between UL TRIX and 

other platforms, 12-2 

function definition and description of arguments for 

device drivers, 4-9 

function definition and description of arguments for 

TURBOchannel drivers, 4-6 

function definition and description of arguments for 

VMEbus drivers, 4-6 

use of during autoconfiguration of TURBOchannel 

devices, 7-3 

use of uba_driver structure to define entry point, 

4-5 

probe routine 

receiving address space information, 2-9 

programmed 1/0 

See PIO 

PROT_READ constant 

protection flag bit defined in mman.h file, 10-12, 

11-43 

PROT WRITE constant 

pro~ction flag bit defined in mman.h file, 10-12, 

11-43 

psignal kernel routine 

function definition and formal description, B-32 

psize driver routine 

superseded by driver ioctl calls to obtain disk 

geometry, 4-1 

Q 

qac driver example 

discussion of argument and structure declarations, 

11-5 

discussion of include files, 11-3 

discussion of routine used in parameter section, 

11-29 

discussion of routines used in break on and break 

off section, 11-31 

discussion of routines used in interrupt section, 

11-19 

discussion of routines used in ioctl section, 11-16 

discussion of routines used in open and close 

section, 11-9 

discussion of routines used in read and write 

section, 11-13 

discussion of routines used in start section, 11-24 

discussion of routines used in stop section, 11-27 

parts of the qac device driver, 11-lt 

qacattach routine 

attach routine initialized in qacdriver structure for 

qac driver, 11-5 

description of arguments, 11-8 

qacbreakoff routine 

description of arguments, 11-31 

qacbreakon routine 

description of arguments, 11-31 

qacdriver structure 

uba_driver structure for qac driver, 11-5 

qac.h file 

header file created by config command for qac 

driver, 11-3 

included in qac driver, 11-3 

qacint routine 

description of arguments, 11-19 

qacprobe routine 

description of arguments, 11-7 

probe routine initialized in qacdriver structure for 

qac driver, 11-5 

qacread routine 

description of arguments, 11-13 

qacstart routine 

description of arguments, 11-24 
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qacstop routine 

description of arguments, 11-27 

Q-bus device driver 

similar in structure to TURBOchannel driver, 3-1 

R 
raw block device 

specification of entry points in cdevsw, 4-1 

READ constant 

to indicate read operation in strategy section of 

DMA driver, 10-29 

read driver routine 

description of tasks performed by, 4-10 

function definition and description of arguments for 

device drivers, 4-11 

use of cdevsw to define entry point, 4-10 

read-modify-write, 2-9 

recovering from bus errors 

See BADADDR macro 

See peek kernel routine 

See poke kernel routine 

on the Digital platform, 12-2 

on the Sun Microsystems platform, 12-2 

remque kernel routine 

function definition and formal description, B-19 

RESET constant 

to indicate device is ready for data transfer in 

autoconfiguration section of DMA driver, 

10-19 

reset driver routine 

description of tasks performed by, 4-14 

function definition and description of arguments for 

device drivers, 4-14 

use of cdevs w to define entry point, 4-14 

rmalloc kernel routine 

discussion of arguments used in example, 12-10 

for allocating buffers, 12-9 

rmfree kernel routine 

discussion of arguments used in example, 12-11 

to recycle the allocated map resource, 12-11 
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s 
select driver routine 

function definition and description of arguments for 

device drivers, 4-16 

use of cdevs\11 to define entr; point, 4-16 

select system call 

to determine that characters are available in 

terminal input queue, 4-16 

seltrue kernel routine 

select routine for nonterminal type character 

devices that do not support nbufio, 4-16 

selwakeup kernel routine 

function definition and formal description, B-33 

sizeof operator 

argµment passed to BADADDR macro in DMA 

driver, 10-19 

argument passed to BADADDR macro in 

memory-mapped driver, 10-8, 11-39 

skattach routine 

attach routine initialized in skdriver structure for 

memory-mapped driver, 10-4, 11-36 

description of argument, 10-9, 11-40 

skclose routine 

description of arguments, 10-10, 11-41 

skdriver structure 

uba_driver structure for memory-mapped driver, 

10-4, 11-36 

sk.h file 

header file created by config command for 

memory-mapped driver, 10-2, 11-34 

skintr routine 

description of argument, 10-9, 11-40 

skmmap routine 

description of arguments, 10-11, 11-42 

skopen routine 

description of arguments, 10-10, 11-41 

skprobe routine 

description of arguments, 10-7, 11-38 

probe routine initialized in skdriver structure for 

memory-mapped driver, 10-4, 11-36 

reading device prom ID in memory-mapped driver, 

10-8, 11-39 



SKREGSIZE constant 

to indicate size of first CSR area for memory­

mapped driver, 10-4 

sk _reg_ t structure 

declared as pointer in autoconfiguration section of 

memory-mapped driver, 10-8, 10-9, 11-38, 

11-40 

declared as pointer in memory-mapping section of 

memory-mapped driver, 10-12, 11-43 

declared in memory-mapped driver, 10-4, 11-36 

initialized to the System Virtual Address by 

memory-mapped driver, 10-8, 11-39 

sk softc structure 

declared as pointer in autoconfiguration section of 

memory-mapped driver, 10-8, 10-9, 11-39, 

11-40 

declared as pointer in memory-mapping section of 

memory-mapped driver, 10-12, 11-43 

declared by memory-mapped driver, 10-5, 11-36 

SKUNIT macro 

to obtain the minor number associated with sk 

device, 10-12, 11-43 

slave driver routine 

called through the ibus configuration routines, 7-4 

function definition and description of arguments for 

TURBOchannel drivers, 4-7 

function definition and description of arguments for 

VMEbus drivers, 4-7 

use of uba_driver structure to define entry point, 

4-5 

sleep kernel routine 

function definition and formal description, B-34 

software architecture 

for VMEbus, 2-2 

special files 

summary descriptions of, B-71t 

spl hierarchical relationships, B-35f 

spl5 kernel routine 

function definition and formal description, B-35 

spl6 kernel routine 

function definition and formal description, B-35 

spl7 kernel routine 

function definition and formal description, B-35 

splbio kernel routine 

function definition and formal description, B-35 

splextreme kernel routine 

function definition and formal description, B-35 

splimp kernel routine 

function definition and formal description, B-35 

spltty kernel routine 

function definition and formal description, B-35 

splx kernel routine 

function definition and formal description, B-35 

standard key word 

See files.mips file 

stop driver routine 

description of tasks performed by, 4-14 

function definition and description of arguments for 

device drivers, 4-14 

use of cdevsw to define entry point, 4-14 

strategy driver routine 

description of tasks performed by, 4-13 

function definition and description of arguments for 

device drivers, 4-13 

use of cdevsw and bdevsw to define entry points, 

4-13 

strcmp kernel routine 

function definition and formal description, B-38 

strlen kernel routine 

function definition and formal description, B-40 

strncmp kernel routine 

function definition and formal description, B-39 

structures 

See data structures 

subyte kernel routine 

function definition and formal description, B-41 

suser kernel routine 

function definition and formal description, B-44 

suword kernel routine 

function definition and formal description, B-41 

SVA 
See System Virtual Address 

svtophy macro 

function definition and formal description, B-45 

swap_lw_bytes kernel routine 

example code fragment to illustrate swapping of 

32-bit quantity, 6-5 
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swap _lw _bytes kernel routine (cont.) 

function definition and formal description, B-42 

swap_ word_ bytes kernel routine 

example code fragment to illustrate swapping of 

32-bit quantity, 6-5 

function definition and formal description, B-42 

swap_words 

function definition and formal description, B-42 

swap_ words kernel routine 

example code fragment to illustrate swapping of 

32-bit quantity, 6-5 

Symmetric Multi-Processing (SMP) driver 

specifying with the d_affinity member, 9-2, 9-4 

system configuration file 

See also tc_option structure 

description of key words and mnemonic associated 

with adapter connection to TURBOchannel, 

9-8 

description of key words and mnemonic associated 

with adapter connection to VMEbus, 9-7 

description of key words associated with controller 

definition for TURBOchannel, 9-10 

description of key words associated with controller 

definition for VMEbus, 9-8 

description of key words associated with device 

that runs on TURBOchannel, 9-12 

description of key words associated with device 

that runs on VMEbus, 9-10 

description of key words associated with disk that 

runs on TURBOchannel, 9-13 

description of key words associated with disk that 

runs on VMEbus, 9-12 

description of key words associated with tape that 

runs on TURBOchannel, 9-14 

description of key words associated with tape that 

runs on VMEbus, 9-14 

disk specification 

for TURBOchannel, 9-13 

example adapter entry for TURBOchannel, 9-8 

example adapter entry for VMEbus, 9-8 

example controller entry for TURBOchannel, 9-10 

example controller entry for VMEbus, 9-9 

example device entry for TURBOchannel, 9-12 

example device entry for VMEbus, 9-11 
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system configuration file (cont.) 

example disk entry for TURBOchannel, 9-13 

example disk entry for VMEbus, 9-13 

example tape entry for TURBOchannel, 9-15 

example tape entry for VMEbus, 9-14 

sample entry for TURBOchannel device, 7-3 

specifying syntax for the device definitions part, 

9-7 

specifying values for the options definitions part, 

9-6 

syntax for specifying adapter connection to 

TURBOchannel, 9-8 

syntax for specifying adapter connection to 

VMEbus, 9-7 

syntax for specifying controller definition for 

TURBOchannel, 9-10 

syntax for specifying controller definition for 

VMEbus, 9-8 

syntax for specifying device that runs on 

TURBOchannel, 9-12 

syntax for specifying device that runs on VMEbus, 

9-10 

syntax for specifying disk that runs on 

TURBOchannel, 9-13 

syntax for specifying disk that runs on VMEbus, 

9-12 

syntax for specifying tape that runs on 

TURBOchannel, 9-14 

syntax for specifying tape that runs on VMEbus, 

9-13 

syntax for the options definitions part, 9-7 

tape specification 

for TURBOchannel, 9-14 

to define a driver's interrupt routines, 4-15 

use of MMAPDRV _DEBUG option to change 

default behavior of kernel, 9-7 

System Virtual Address 

relationship to addrl argument used with skprobe 

routine, 10-7, 11-38 

relationship to addrl argument used with xxprobe 

routine, 10-19 

relationship to uba_device structure used with 

qacprobe-rou,tine, 11-8 



T 

tape key word 

See system configuration file 

tc _disable_ option kernel routine 

example code fragment to illustrate call, 6-7 

function definition and formal description, B-46 

to disable device interrupt line, 3-2 

tc_enable_option kernel routine 

example code fragment to illustrate call, 6-7 

function definition and formal description, B-47 

to enable device interrupt line, 3-2 

tc.h file 

header file used exclusively by TURBOchannel 

device drivers, 4-4 

included in qac driver, 11-3 

use with TURBOchannel driver, 3-1 

tc _module_ name kernel routine 

function definition and formal description, B-48 

tc _option structure 

See also system configuration file 

definition of, 7-3 

example of entry corresponding to entry in system 

configuration file, 7-4 

tc _option table 

See tc_option structure 

tc_slot structure 

contains characteristics of TURBOchannel device, 

7-2 

use of in autoconfiguration for devices connected 

to TURBOchannel, 7-3 

terminal device driver 

See character device driver 

select routine implemented by ttselect general 

kernel terminal interface, 4-16 

timeout kernel routine 

function definition and formal description, B-49 

ttselect general kernel terminal interface routine 

to implement a driver's select routine, 4-16 

TURBOchannel 

definition of, 3-1 

to attach DECstation 5000 Model 200, 2-1 

TURBOchannel address space 

included in system address space, 3-1 

type casting operations 

to convert b_bcount member for DMA driver, 

10-27 

to convert T member for memory-mapped driver, 

11-39 

to convert addrl argument for DMA driver, 10-19 

to convert addrl argument for memory-mapped 

driver, 10-8, 11-39 

to convert csr member for DMA driver, 10-19 

to convert off argument for memory-mapped 

driver, 10-12, 11-43 

to convert ui_addr member for DMA driver, 

10-22, 10-27, 10-31 

to convert V member for memory-mapped driver, 

10-8 

types.h file 

u 

defines system data types frequently used by device 

drivers, 4-3t 

uba _ ctlr structure 

comparison with mb_ctlr structure, 12-6 

definition of, 5-9 

members used by device drivers, 5-9t 

use with TURBOchannel driver, 3-1 

uba_device structure 

accessed by the attach driver routine, 12-3 

comparison with mb_device structure, 12-6 

declared array of pointers called skdinfo for 

memory-mapped driver, 10-4, 11-36 

declared array of pointers called xxdinfo for DMA 

driver, 10-16 

definition of, 5-10 

initialized by xxclose routine in DMA driver, 

10-22 

initialized by xxintr routine in DMA driver, 10-31 

initialized by xxopen routine in DMA driver, 

10-21 

initialized by xxstrategy routine in DMA driver, 

10-26 

members used by device drivers, 5-llt 

use with TURBOchannel driver, 3-1 
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uba _driver structure 

comparison with mb_driver structure, 12-3 

definition of, 5-5 

example declaration for TURBOchannel device 

driver, 5-8 

example declaration for VMEbus device driver, 

5-7 

initialized by DMA driver, 10-16 

initialized by memory-mapped driver, 10-4, 11-36 

members used by device drivers, 5-5t 

to set address space of mapped areas, 2-8 

use with TURBOchannel driver, 3-1 

values for ud_addrl_atype member, 5-6 

values for ud_addr2_atype member, 5-6 

uerf error report formatter 

to print error events, 8-2 

uio structure 

declared by qacread routine, 11-13 

declared by xxread routine, 10-23 

definition of, 5-4 

members used by device drivers, 5-4t 

uiomove kernel routine 

function definition and formal description, B-51 

operates on uio structure, 5-4 

UIO_SYSSPACE constant 

segment type for uio_segftg member of uio 

structure, 5-4 

UIO _ USERISP ACE constant 

segment type for uio_segftg member of uio 

structure, 5-4 

UIO _ USERSP ACE constant 

segment type for uio_segftg member of uio 

structure, 5-4 

UNIBUS device driver 

similar in structure to TURBOchannel driver, 3-1 

untimeout kernel routine 

function definition and formal description, B-54 

uprintf kernel routine 

function definition and formal description, B-12 

user program 

relationship to device driver, 1-5 

useracc kernel routine 

description of arguments passed by xxstrategy in 

DMA driver, 10-27 
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useracc kernel routine (cont.) 

function definition and formal description, B-55 

uvtophy macro 

function definition and formal description, B-56 

v 
vba mnemonic 

See also system configuration file 

to indicate VMEbus adapter, 9-7 

VBA _ 3VIA constant 

to indicate adapter type for DECsystem 5000 

Model 200, 5-13 

vbadata structure 

definition of, 5-13 

initialized values for members of, 5-14t 

members used by VMEbus device drivers, 5-14t 

to disable interrupt handling, 2-2 

vba _ data.c file 

contains values for vbadata structure, 5-14 

vba _get_ vmeaddr kernel routine 

example code fragment to illustrate call, 6-4 

function definition and formal description, B-60 

vba _ hd structure 

definition of, 5-13 

members used by VMEbus device drivers, 5-13t 

vballoc kernel routine 

discussion of arguments used in example, 12-10 

example code fragment to compare call with 

vbasetup, 6-2 

function definition and formal description, B-57 

to allocate DMA space, 12-10 

to allocate VMEbus address space, 2-4 

vbareg.h file 

header file used exclusively by VMEbus device 

drivers, 4-4 

included in DMA driver, 10-14 

included in memory-mapped driver, 10-2, 11-34 

vbarelse kernel routine 

description of arguments used in interrupt section 

of DMA driver, 10-31 

discussion of arguments used in example, 12-11 

example code fragment to illustrate call, 6-3 

function definition and formal description, B-61 



vbarelse kernel routine (cont.) 

to release resources on VMEbus adapter registers, 

12-11 

vbasetup kernel routine 

description of arguments used in strategy section of 

DMA driver, 10-28 

discussion of arguments used in example, 12-10 

example code fragment to compare call with 

vballoc, 6-2 

function definition and formal description, B-57 

to allocate DMA space, 12-10 

to allocate VMEbus address space, 2-4 

vector key word 

See also system configuration file 

to precede interrupt handlers for a device, 9-9 

VMEA16D16 constant 

initialized in VMEbus example uba_driver 

declaration, 5-8 

to indicate address space and data size of first CSR 

area for memory-mapped driver, 10-4 

VMEA32D32 constant 

to indicate address space and data size in strategy 

section of DMA driver, 10-28 

to indicate address space and data size of first CSR 

area in declarations section of DMA driver, 

10-17 

VME _BS_ NOSW AP constant 

to indicate no byte swapping in strategy section of 

DMA driver, 10-28 

VMEbus 

address space, 2-3 

address spaces, 2-3f 

allocating address space, 2-4 

byte ordering, 2-2 

data size support, 2-2 

definition of, 2-1 

hardware architecture, 2-1 

interrupt priority, 2-2 

interrupt vector, 2-2 

processors used with, 2-1 

programmed J/O, 2-8f 

software architecture, 2-2 

support for DMA, 2-4 

use of multiple VMEbus adapters, 2-7f 

VMEbus (cont.) 

VMEbus-to and from-Host-DMA, 2-5f 

VMEbus byte swapping, B-42f 

VME_DMA constant 

to indicate need for DMA in strategy section of 

DMA driver, 10-28 

VME_RESERV constant 

to manage addresses used to perform DMA 

operations with another VMEbus device, 

6-3 

vme_rmw kernel routine 

example code fragment to illustrate call, 6-6 

function definition and formal description, B-62 

volatile declarations, 4-5 

criteria for declaring variables and data structures 

as volatile, 4-5 

volatile key word 

to declare DZ_REGISTERS structure, 11-5 

to declare members of sk_reg_t structure, 10-4, 

11-36 

to declare members of xx_reg structure, 10-16 

used to declare variables and data structures as 

volatile, 4-5 

vslock kernel routine 

function definition and formal description, B-63 

vsunlock kernel routine 

function definition and formal description, B-65 

vtokpfnum kernel routine 

description of argument, 10-12, 11-43 

example code to illustrate call, 6-10 

function definition and formal description, B-67 

use with memory-mapped driver, 10-12, 11-43 

w 
wakeup kernel routine 

function definition and formal description, B-68 

wbflush kernel routine 

assuring write to IJO space completes, 2-9, 3-1 

example code fragment to illustrate call, 6-9 

function definition and formal description, B-70 

used by xxclose routine in DMA driver, 10-22 

used by xxstrategy routine in DMA driver, 10-29 

used in autoconfiguration section of DMA driver, 

10-19 
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write driver routine 

x 

description of tasks performed by, 4-11 

function definition and description of arguments for 

device drivers, 4-11 

use of cdevsw to define entry point, 4-10 

XXCLOSE constant 

to indicate device is closed in xxclose routine of 

DMA driver, 10-22 

xxclose routine 

description of arguments, 10-22 

xxdriver structure 

uba_driver structure for DMA driver, 10-16 

xx.h file 

header file created by config command for DMA 

driver, 10-14 

xxintr routine 

description of argument, 10-30 

xxMAXPHYS constant 

to determine size of buffer in strategy section of 

DMA driver, 10-28 

XXOPEN constant 

to indicate device is open in xxopen routine of 

DMA driver, 10-21 

xxopen routine 
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