dlilglitall

ULTRIX

Guide to Writing and Porting VMEbus
and TURBOchannel Device Drivers

Order Number: AA-PGL5A-TE
May 1991

Product Version: ULTRIX Version 4.2
Operating System and Version: ULTRIX Version 4.2 and higher

This guide contains information needed by systems engineers who write and port device
drivers for the VMEbus and the TURBOchannel. Systems engineers who write drivers that
operate on other buses can find information on driver concepts, interfaces to device driver
routines, kernel structures, kernel routines used by device drivers, installation of device
drivers, and header files related to device drivers.

digital equipment corporation
maynard, massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1991
All rights reserved.

Portions of the information herein are derived from copyrighted material as permitted under license agreements with
AT&T and the Regents of the University of California. © AT&T 1979, 1984, All Rights Reserved.

Portions of the information herein are derived from copyrighted material as permitted under a license agreement with
Sun MicroSystems, Inc. © Sun MicroSystems, Inc, 1985. All Rights Reserved.

Portions of this document © Massachusetts Institute of Technology, Cambridge, Massachusetts, 1984, 1985, 1986,
1988.

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital or its
affiliated companies.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-1, CDA, DDIF, DDIS, DEC, DECnet, DECstation, DECsystem, DECUS, DECwindows, DTIF, MASSBUS,
MicroVAX, Q-bus, ULTRIX, ULTRIX Mail Connection, ULTRIX Worksystem Software, UNIBUS, VAX,
VAXstation, VMS, VT, XUI, and the DIGITAL logo.

SunOS, NeWs, and Open Look are registered trademarks of Sun Microsystems. UNIX is a registered trademark of
UNIX System Laboratories, Inc.

Contents

About This Manual

Audience

Organization

...

...

Related DOCUIMENIATION ..vuiueniininiiintitee ettt eereteseaetsaeanenseesseessesnesessesscnsensasenes

Conventions

...

1 Introduction to Device Drivers

1.1 The Purpose of @ Device DIiVET ccoviiiiiiiiiiiiiiirieiiee et eevie e eeeeie e e
1.2 The Types of Device DIIverscccciiiviiiirieiiiiiiniiiieiiiiecenn et
1.2.1 BloCK DEVICE DIIVET covriiniiniiiiiiiiiiiiieiiie ettt et senerneenaanereanes
1.2.2 Character DeviCe DIIVET co.vuivnieiiniiiiicieineteitieneereeererererierssesnencenes
1.2.3 Network Device DIIVET ..cevvivvniviiiiiiieieeeieeireei et eere e st e annes
1.3 When a Device Driver Is Called oovviiiiniiiiiiieii e e eenes
1.3.1 The Place of a Device Driver in ULTRIX .cooeiririiiiiiiiiieiniceenenens
1.3.2 User Program ccceviiiiiiiiiiniiiiii ittt
| TG ¥ o o G v 1 1) NN
1.3.4 DEVICE DIIVETS .ivrriiniiiiiiriieiietieeiieeiereeieeeeneeternneereiaeranernnssanees
| I T T =1 10T ST
1.3.6 Device COntroller couviiviiiiiiiiiiiiiieterieenerierteererrernienssnasanasnassesnnes
1.3.7 Peripheral DEVICES .ccuveuiiiiiiiriiiiiiiiieiiiiiiiiiei e e

Part I: OPENbus Hardware and Software Architectures

2 VMEDbus Architectures

2.1 Processors Used with the VMEbus Hardwarec.coeovvvvieiriiiineiniieenieneennanns
2.2 VMEDus Hardware ATCHItECIUIE cuvnieinieirieiinineneeneteneeeeneineatenseeensseenenenses
2.2.1 VMEDbus Address Spacesceceeevueiiiiiiiriiieiieeiineeieieeeereie e eren e

222

|91 B ./ TR

xi
xi
Xiii

Xiv

1-1
1-1

1-2
1-2
1-3

1-3

1-4
1-5
1-6
1-6
1-6
1-7
1-7

2-1
2-1

2-1
2-2

2.2.3 Byte OrderiNgcoovvimmiiiiiiniiiiiiiicieeeiiii et s erernen s e 2-2

2.2.4 VMEDus Interrupt VECIOTS ...cceeevvrueneeerierninenereeeeenreeninnaeseeeerrmeneneaaees 2-2
2.2.5 VMEDbus Interrupt Prioritiescceeeeeriiiiiiereeeriieiiiiiieeeeeeeeniiiieeeeas 2-2
2.3 VMEDbus Software ArChiteCturee.ceeiiereimuiiienereinenniiiiiereseeeeremuieneeees 2-2
2.3.1 VMEDbus Address Space cccceeiereiiiiiiiiiiiiiiiiiiiineeieeneeeeerereseeeeeiaeaes 2-3
2.3.2 DMA SUDPPOIT ..iiiiiiiiiiiiiiiie ettt e triine s eeeenebeseese s s s s e sannan e ne s 2-4
2.32.1 VMEbus-to Host DMA and VMEbus from-Host-DMA 2-5
2.3.22 VMEDbus Device to Device DMAccoiviiiiiiiireeieneereneienieennnnes 2-6
2.3.2.3 DMA for Multiple VMEbus Adaptersccccecervvevvvevvevevnnannes 2-6

2.3.3 J/O ACCESS cevuueieiinieeeriiiieieeeetieeeettaeeetenssetaiaeeaenaioneeeerenaaeerannesanans 2-8
2.3.3.1 Programmed /O ..o 2-8
2.3.32 Memory Mapping ...c..oveeeviieeieiiiierieieeeeriiie e eereriee e eernee e er e 2-9
2.3.4 Read — Modify — WIIte ccooeiiiiiiiiiiiniriiiie e e 2-9
2.3.5 Writes to the Hardware Device RegIiSterccovvvviiemiiiinnieiecrninnneenes 2-9

3 TURBOchannel Architecture

3.1 Structure of a TURBOchannel Device DIiVErccocceveivveeiiiiineinerereviniiineenens 3-1
3.2 INCIUAE FIES ..oviiiiiiiiiieiciiiiiiee et eee e e e e bt e s s e aeeba s aeaes 3-1
3.3 Writes to the Hardware Device Registerccouuiveiiiiiiiiiiiiiiininneeecniiieeenes 3-1
3.4 Direct Memory Access (DMA)-to-Host Memory Transfers —...........ccoeeevueeennnnen 32
3.5 Device Interrupt Lineccevuiiiiiiiieriiiiiicveeie e e eeerereeaa 3-2

Part ll: Structure of a Device Driver

4 Structure of an ULTRIX Device Driver

4.1 Include FileS SECHOM ..ivuiiuiinvenrinniriineternienierenerteenernsenerrnrarerernrrnernoes SO

4.2 Declarations SECHIOM .ouvvueeienieriietiinrenentitaeerentesrsenerensaerneteasensenersesensenensanen
4.3 Autoconfiguration SuUpport SECHON ccceeviiiiiiiiiiiimiiiiiiiiiiiiii e
4.3.1 The Probe ROULIIE .iuieniiiiiiiiniiiiniiiiiiieiietsenenteentinsesasensanensrernsnsans

4.3.1.1 Probe Routine Interface for VMEbus Driverccovvveivierinvenenenes
4.3.1.2 Probe Routine Interface for TURBOchannel Driverc.c........

432 The SIave ROULINE oovviiiiiiiniiniiiiieieiiieiieenteneraeinernertsereeneenerseneens

4.3.2.1 Slave Routine Interface for VMEDbus Drivercoccovvvvvnvivnrnenn. 4-7
4.3.2.2 Slave Routine Interface for TURBOchannel Driverc..oe.e.... 4-7

O NS SR G G

iv Contents

4,3.3 The Attach ROULINE ..vviviininiiiniiiiieiiiieieee e ttereree i eae it eresnenesaerarnnes 4-7

4.4 Open and Close DeviCe SECtiON cceceviuierieiiiiiirerriieeeintererreeseeennneeeseennnes 4-8
4.4.1 The Open ROULINE ..c.ouuveiiiiirrniiiiiereriiiiriiiineeereeiei e ereeeninaeeseeeeeenenee 4-8
4,42 The Close ROULINE .iivvuuiiiiiiiiiimiiiiiiiiieiiiiiiiiiie et eetianeaseeeeeee e 4-9
4.5 Read and Write Device SECtiOn ccecivierriiuiereiriiiereeiierinnieeetieeeraranaeenns 4-10
4.5.1 The Read ROULINE ...ccouuiiiiiniiiiiiiiiiiiiiiiinncrie e et 4-10
4.5.2 The Write ROUtINE ooiiiiiiiiiiiiiiiiiiiiiiiiice et e eccetie e eeeeennenes 4-11
4.6 10CHL SECHOM tivuuuueeerieeiiiiieieeniiiiiiiereerereririereeseeerttsiieresenesesioessesesnsanessnnnns 4-11
4.7 SHALEZY SECHON .evvuvriiiiiiiieiiieniiereiieeererreeteeeeteereeereteertrrsateeseesesseseseserses 4-13
TR I (0 BT 5 1o PPN 4-14
4.9 RESEE SECHON tuvuuiiieiireiieiieeeierireiireeereerareeiieseeeeeaneesneeseeeararenneseaessresnnnnanss 4-14
4.10 Interrupt SECHOM ..ivvueiiiiiiiriieiiee et ieeriee e e eeii e rerieeeeeeaereaneeeeanansaaenennnnns 4-15
411 Select SECHOM .revieuiieiiruiiereiiiereraneettiierertenaeeeetiaseeseaneeasasseesenanseessennensane 4-15
4.12 Memory Map SECtiON cccovieiiiiiiiiiiiiiiiiiiniiiiiiii 4-16
4.12.1 The Memory Map ROUtINE ...oc.uviriiieiriiiiiiieeeiienreiaieeeenieeeereiieeeeeees 4-17
4.12.2 Mapping to Nonexistent MEMOIycceveivviiiiiiiminnieiiiniiiiiniennnnnennn 4-17
4.12.3 Reading from Nonexistent MEMOIYccceceeeviererinreeeeenneeerrineneeeceees 4-18
4.12.4 Writing to Nonexistent MEMOTY uevierereiiiiiiiiiiiieinitiiiniiiiineeinns 4-18

Part lll: Data Structures, Kernel Routines, and Autoconfiguration

5 Data Structures Used by Device Drivers

5.1 Data Structures Used by VMEbus and TURBOchannel Device Drivers —........... 5-1
5.1.1 The DUL SIUCLUIE trvvieiiiiiiiiieiiniireiieieeietnerernsenernennrressessereernesnaanns 5-1
5.1.2 THE fIl€ SHUCLUTE eeuvnireeinininiueineeeeniteereenesseesesseneeeenssernssesnsasenssnesnes 5-3
5.1.3 The UI0 SHIUCTUIE ceeviriniiiriiiiiieiiieretirteirteenenstesesteencsensasseseressencessnnns 54
5.1.4 The uba_drivVer StIUCIUTE ce.vvuiveiirieieinirnienerereenrierneesrererassiosrnsenesnnss 5-5
5.1.5 The uba_Ctlr SIIUCIUIE .ivuivrivieiriinernrirenernerieeerrerirensesensrasnessorserennen 5-9
5.1.6 The uba_device SIrUCLUIE cevviiniiniiivrnerieiiernerterierneaernereesneansssessnens 5-10
5.2 VMEDUS Data SITUCIUIES .vevivureneenirnienieirenerreererreeeressessonterernssssrresssensersesnesss 5-12
5.2.1 The vba_hd StruCLUIe cvivririiiiiiiniiiiiiiiieireerererrrcerenenesteanererarsnns 5-13
5.2.2 The vbadata SIIUCIUIE ..vucvuivniiniiniiiiiiiirienireeieeinerriiereraesiresneraesseens 5-13

Contents v

6 Kernel Routines Used by Device Drivers

6.1 Kemel Routines Used by VMEbus Device Driverscccoeeeervivirerrvrieeenennen
6.1.1 Allocating VMEbus Address Spacecccccccevreivreereeerernnninininiiennnnnens
6.1.2 Releasing VMEbus Address Spaceccccocoeeveriieirmiiiiirnineneninineeeenanns
6.1.3 Obtaining the VMEDbUS AdAressceevvvereerirrieieriiiriiiiniiieereneneneenns
6.1.4 Performing Byte Swapping Operationscccccveveeeereereeeeernrneiennns
6.1.5 Performing Read-Modify-Write Operationscccccceevvvevvvvievnnrnnnnnnnn.

6.2 Kemel Routines Used by TURBOchannel Device Drivers —cccceeeereennnen.

6.3 Kernel Routines That Can Be Used by Any Device Drivercccovvvvvvvivnnnnnn.
6.3.1 Flushing the Data Cachecccccviiiiiiniiiiiiiiirieniiciieiinire e
6.3.2 Ensuring a Write to I[/O Space Completes ccvveeeiveniiieriiieereenneennnn.
6.3.3 Obtaining the Page Frame Numbercccccccveviiiiiiiininiiiiinieeerenennnnnn.

7 Device Autoconfiguration

7.1 Autoconfiguration OVETVIEW ceeeiiieiiiiiieieiiriiiiieseeeeeeeerrseisseeeesessnneeesaeenes
7.2 Autoconfiguration for Devices Connected to the VMEbus ccooeevvvennennnnn.
7.2.1 Controller Configurationcoveeiuiiiuierrreeriirriiniereeeeeennineereerenannans
7.2.2 Device Configuration cccooveeiouiiiimiieeeeeeieeniireerereeeeaeeeeeeeeeaeseaans
7.3 Autoconfiguration for Devices Connected to the TURBOchannel
74 Probing TURBOchannel Option SIOtS ccouvviviiiieriiiiiieieiiie et eeieeeeeianee
7.4.1 Obtaining the I/O Module’s Name cooeveiiiinieiiiiiiniiieneniriiien e
7.4.2 Mapping TURBOchannel Slot Numbers —.......cccccuvemiiiiiriniinrieeenennnan,
7.4.3 Considerations for TURBOchanne! Device Driver Writers cc..ceuueens

Part IV: Error Handling and Installation

8 Error Handling

8.1 Logging Errors Associated with the VMEDUS ...cccvvvuiiiiriiieriiiiiiieieeeiieneenes
8.2 Testing Memory Map DIIVEIS .o.oivviiiieiiiiiiiinieie st eei s eevnee s vaneeaeaaees
8.3 Writing Text to an Output DEVICE ...civviiveriiieiiiiiiieieeeceeeeric e ree e e e aenens

9 Installing Device Drivers

9.1 Modifying System Files Associated with Device Driverscccccceeeveeicrnnnnnnn.
9.1.1 TheconfiCc Filecoiviiiiiiiiiiiiiiiiiiiiic i,
9.1.1.1 The cdevsw Table c.ciiiiiiii e

vi Contents

6-1

6-1
6-3
6-3

6-7
6-8

6-8
6-9

7-1
7-1
7-2
7-2
7-2
7-3

7-3
7-4
7-5

8-1
8-3
84

9-1
9-1

9.1.1.2 The bdevsw Tableccovvuruimmiiiiiiiiiiiierce e e eeeeeeneeeene 94
9.1.2 The files.mips File . .ccooimmiiiiiiiiiiiiiiiiiiie e 9-5
9.1.3 The MACHINE File ..cccuuiiiiiiiimiiiiiiiiiiiiiiiineeneeeeeteinnenesereneseeaesene 9-6
9.1.3.1 Adapter Specification for VMEDbUS cccoccoieiiiiiiiiiiiniiiiinnninnne 9-7
9.1.3.2 Adapter Specification for TURBOchannelcccccvvveniennene. 9-8
9.1.3.3 Controller Specification for VMEDbUSccovvvviieevriienereiannenn. 9-8
9.1.3.4 Controller Specification for TURBOchannelcccoueiieennn. 9-10
0.1.3.5 Device Specification for VMEDUScccvveeiiiiiiieriniiiriiennennnnn. 9-10
9.1.3.6 Device Specification for TURBOchannelcccovvvrvinnnneennne 9-12
9.1.3.7 Disk Specification for VMEDUS ceiiiiiiiiiriniiiiiiiniiiinienenenene 9-12
9.1.3.8 Disk Specification for TURBOchannelccccccoeviiiiivieinannienne 9-13
9.1.3.9 Tape Specification for VMEDbUS c..ccovviriiiiiiieiricieniiieinieecnn. 9-13
9.1.3.10 Tape Specification for TURBOchannelcccoeeererrerrreenn. 9-14
9.2 Installing VMEDbuUS Device DIIVEIS coiiieieirieuiieeiineieneeriniereereneeeniereenenens 9-15
9.3 Installing TURBOchannel Device DIIVETS cecvvrieiiireiereeeinieriereriereneeennnesenes 9-17
Part V: Example Drivers
10 VMEbus Device Driver Examples
10.1 Memory-Mapped Device DIIVETr cccoiviiiieriiiiiiiiiieiee e eeenic e eees 10-1
10.1.1 Include Files SECtioncceuueiririiiimiiiiiieeeciiiiiiiiree et e eeeceanes 10-2
10.1.2 Declarations SECHOM ccccereiiirrirrerrieeerurunniieieineereeiiieeeeenaeeseaeeeens 10-3
10.1.3 Autoconfiguration SECHON cccvuurimirumuiiiiiiiiiccr e eeeecenene 10-6
10.1.4 Open and Close SECHOM ...cccvuvuiiriiiiruniiiiiieeiiiiiiiiienereetrieseeeraneenes 10-10
10.1.5 Memory-Mapping SECLON ..c..uuiriiirreiiiiiriieriiiniiieeeereriieisrereesesens 10-11
10.2 DMA DevViCe DIIVET ..vuviiiiiiiiieieiieienieieeeerereerereererereeerreeserinerressessssssesessens 10-13
10.2.1 Include Files SECtionc.ceervviriemmmeremimuinrieniieinniineeeieeeseneenaeeeens 10-14
10.2.2 Declarations SECON coceeeeeriviiiiimeimiiiniiiieiiiiiiie e eeeee e 10-15
10.2.3 Autoconfiguration SECHON c..cviiiiiiiimiirriimer e e serieenrerenass 10-18
10.2.4 Open and Close SECHON ...ccvvuuuriririirrueieinreeereirmnniireeeeerinsnsieseeresesans 10-20
10.2.5 Read and Write SECtION ccvvuieieiiiiiiiiiiiiiinrciiiiiniieeererereieeneeeanenens 10-23
10.2.6 Strateg@y SECHON ..eccvviiiireiieererieuuneniieireniirissesereeseserassssessesenresersneens 10-25
10.2.7 INterrupt SECHOM ...ccevviiiieienieiiimiiiierrerniiienierererereresssessresuaneseses 10-30
11 TURBOchannel Device Driver Examples
11.1 qac Device DIIVET ..icciviiiiiiiiiiiiiiiiiiiinieciiiii e trrerieie s e caebai s e snaias s 11-1
11.1.1 Include FIles .oivvveiviriiiiieiiiininiiiecriii e cenriiseseennieeesnuasesecannesennnasesssns 11-3
11.1.2 Declarationscceeeieceeereriimueneriemmmmmiiirreermirermeeeeseesesemmonsessssmamnsns 114
11.1.3 Autoconfiguration SECHON ccvveeeermuiieeeenesrereeerisresieneeesneseseenses 11-7
11.1.4 Open and CloSe SECION .eeu.evervuurirrenereeenuiereetennernermnnrssernnesernnrseeeenes 11-9

Contents vii

11.2

11.1.5 Read and WTIte SECHOM .vuivviiriiriiiiiieriiniinereteererseenssaeresessenssnes

11.1.6 0CtL SECHON weevveeiiiiiiiiiiiiiiiiiieeieiiecre ettt s
11.1.7 Interrupt SECHiON ccoveiiiiiiiiiiiiiiiiiiiiiiiiiiiieiii e
11.1.8 Start SECHION ..ivivuiiiiiiiiiriinieiitiiiiieeeininseetieneresssseteeseneernniessetnnnonnee
11,119 StOD SECHOM ..ivvvveeiiiiiiiiiiiieeertrunieentiereeeinereerieeeessseseerananseesrennenens
11.1.10 Parameter SECHION cccvirmreriiiiririirinieeiiiienrenniiiirereeeeneieiiesseeneenes
11.1.11 Break On and Break Off Sectioncccoceviviririinieerinirriinecrieneennenen

Memory-Mapped Device DIVEr ecciiiiiiiiiiiiiiieerciiieeeecteiiieee e eernennes
11.2.1 Include Files SECtiON cceevvvmeiieiiiiiereriniiineeeeiirieeseeereernsennaeeees
11.2.2 Declarations SECHON ..cccciiiiiierreeerirererereereriuriuemiiessseaseensssessessssnnnes
11.2.3 Autoconfiguration SECHON eeeiererieeririniinreeeniineerenerrnrirneirereenaes
11.2.4 Open and Close SECHON ..c.ccuevuririiiieriiiiemiiiineeerieiieeceretnenneseeeeneens
11.2.5 Memory-Mapping SECtON c.cecevrirrerrreimimiuiiiirireneeeerereeeeneeeeeeneennens

Part Vi: Porting Issues

12 Porting VMEbus Device Drivers
12,1 Writing Test SIS ..vvviiviiiiiiiiiiiiiiic it
122 Checking HEader FIIES vvueveeeneeieeeeeeeseeeseeseeeeseeesseeeseesesseesesessesssnens
12.3 Reviewing Device Driver Installationccceeveeiviiieiirerieemniiinereerereeneennnnns.
12.4 Checking Driver ROULINES ccovuuiiieiiririiiiiniiienrieirieirereenrienananeeeeereeesannnnes
12.5 Checking Data SIrUCIUIES ccvviiviineiniiiiiiiiieeireceie e
12.5.1 Checking the uba_driver StruCturecccveereiieeiirnrieereruneeeeennieenens
12.5.2 Checking the uba_device and uba_ctlr Structures ccocereeeveennnnnenn.
12.6 Comparing Direct Memory Access Mechanisms —cceeevvvvemiiieniiiriininsinnenns
12.6.1 Underlying Mapping MechaniSms ccccceevererinrecriiiininerereeeenennes
12.6.2 Methods for Allocating DMA Spaceccccevveieeiiiiiiniiiiiieiicieeeeennn.
12.6.3 Maximum DMA et et e er et e e e e aaaaes
12.7 Testing for Device ACCESS ivuirueeririeriiimiiirieriitiiiier ettt eerereenseaeesees
12.8 Checking the Design of a Device DIIVEr coevieivimiiiieieiiiiiiiieeneeerveieiiiness
12.9 Setting Interrupt Priority Levels ...t
12.10 Performing Byte Swapping Operationscccceeeverieciimuiieeeerieeninnnnene
12.11 Comparing Memory Mappingcc.cceereummiiieriieiimmioiieeeciiemiineeeiimeminmnn.

viii Contents

13 Porting TURBOchannel Device Drivers
Part VII: Appendixes
A Header Files Related to Device Drivers

B Kernel Support Routines

B.1 Kernel Support RoUtines eeveeeemeiimmeniiiiiiiienieeneeeneneenenns
B.2 ioctl commandseceeeiiiiiiiiiiiein e e e e
B.3 Global Variables Used by Device Driversccccoeeeeeerrennnne.

C Summary of Device Driver Routines
Index

Figures

1-1: Types of ULTRIX Device DIiverscccoecveeieereiieneeecennennns
1-2: When the Kernel Calls a Device Drivercccccoevvveviieiniiennnnns
1-3: The Place of a Device Driver in ULTRIXcccoooiiiiiiiennninns
2-1: VMEDbus Address SPacec.ccecvvereenieeeenneeiininreeruireenenennas
2-2: VMEDbus-to and from-Host-DMA cccoiiiiieiiiiniiieiiieeceeneennes
2-3: Use of Multiple VMEbus Adaptersccccccevveiivrrvnnnniniinennns
2-4: Programmed I/Ocociiiiiiiiiiiiiiii :
4-1: Sections of a Character Device Driver and a Block Device Driver

4-2: Mapping Nonexistent Device MEmMOrycccocveerieevivvnnnneeens

4-3.: Writes to I/O Space on Digital RISC Architecture

6-1: Results of Byte Swapping Routinesococoveveuuvnreneneenenne
B-1: spl Hierarchical Relationshipsccccooieeveeeeeineeiieeieeennnns
B-2: VMEDbus Byte SWappingccccceveeiiiiiiiiiiineniriienieneneecnininnnnes

Tables

2-1: Maximum Size and Range of Addresses for PMABV-AA Adapter
4-1: System Data Types Frequently Used by Device Drivers
5-1: Members of the buf Structure Used by Device Drivers

..................

Contents ix

5-2: Member of the file Structure Used by Device Driversccccoeviviiiiininiiiniiinnne. 54
5-3: Members of the uio Structure Used by Device Drivers cccoccovivinncieiinicriannne. 54
5-4: Members of the uba_driver Structure Used by Device Driverscccccceeiirveenne. 5-5
5-5: Members of the uba_ctlr Structure Used by Device Driversc.ccccvvvivvninnnn. 5-9
5-6: Members of the uba_device Structure Used by Device Driversccccceeviririnnnn 5-11
5-7: Members of the vba_hd Structure Used by Device Driversccccocervevneaerennn, 5-13
5-8: Members of the vbadata StruCtureccoeovevviviiiiiiiiiiiiiniiiiiiiriirei, 5-14
5-9: Initialized Values of the vbadata Structureccooevvviiiviiiiiiiiiiiniiiinninininnnn. 5-14
8-1: ULTRIX Debugging TOOIS ...ivcvreerruererieiiniretieiiiaritiiereesrencr et evneseeisesiaeees 8-1
10-1: Parts of the Memory-Mapped Device Driver covviiiiiiiiiiininiiiiiinnnnnn, 10-1
10-2: Parts of the DMA Device DIIVET ...ccoovvviiviiiiiiiiiiiiiiniiiiiiiiiiiiiiieineiin s 10-13
11-1: Parts of the qac Device DIIVETr coiiiiviiiiiniiiiiiiniiiiiiiii s 111
11-2: Parts of the Memory-Mapped Device Drivercevvvvvviiremnevivnivimininnnnnenn, 11-33
12-1: Tasks Associated with Porting VMEbus Device Drivers ccccccveviiineiicinnnne, 12-1
12-2: Comparison of the uba_driver and mb_driver Structurescccoeeeevininierinnnne 12-3
A-1: Header Files Related to Device Drivers —.......cccccoeviviimiiiiniiiiiiiiiiiinninn, A-1
B-1: Summary Description for Kernel 1/O Support Routines ooeeviiiminiiinininnn. B-2
B-2: Summary Description for Special Filesccccoooiiiiiiiiii B-71
B-3: Summary Description for Global Variablescccccviviiiiiiiiiiiiiniinnninnnnnn, B-74
C-1: Summary of Device Driver Routinesccccevvviivivnrremmrnnnineiineeinnien. C-1

x Contents

About This Manual

This manual contains information needed by systems engineers who write and port
device drivers for the VMEbus and the TURBOchannel. Systems engineers who
write drivers that operate on other buses can find information on driver concepts,
interfaces to device driver routines, kernel structures, kernel routines used by device
drivers, installation of device drivers, and header files related to device drivers.

Audience

The audience are systems engineers who already know how to write a device driver.
Although the manual provides some step-by-step instructions for installing device
drivers, it is not a tutorial. This manual is intended for systems engineers who:

e Develop programs in the C language using standard library routines
¢ Know the Bourne or some other UNIX shell

¢ Understand basic ULTRIX concepts such as kernel, shell, process,
configuration, autoconfiguration, and so forth

¢ Understand how to use the ULTRIX programming tools, compilers, and
debuggers

e Develop programs in an environment involving dynamic memory allocation,
linked list data structures, and multitasking

e Understand the hardware device for which the driver is being written

e Understand the basics of RISC hardware architecture including interrupts, Direct
Memory Access (DMA) operations, memory mapping, and I/O.

Organization

Chapter 1 Introduction to Device Drivers
Presents an overview of device drivers
Part One: OPENbus Hardware and Software Architectures

Chapter 2 VMEbus Architectures
Presents an overview of the VMEbus hardware and software
architectures.

Chapter 3 TURBOchannel Architecture

Presents an overview of the TURBOchannel software architecture.
Part Two: Sections of a Device Driver
Chapter 4 Structure of an ULTRIX Device Driver

Presents descriptions of the sections that make up any device
driver.

Part Three: Data Structures, Kernel Routines, and Autoconfiguration

Chapter 5

Chapter 6

Chapter 7

Data Structures Used by Device Drivers

Describes members of the structures used in input/output (I/O).
Only members needed by the device driver writer are described.
The chapter also describes VMEbus and TURBOchannel
structures.

Kernel Routines Used by Device Drivers

Discusses the kernel routines developed for use with VMEbus and
TURBOchannel device drivers. The chapter also discusses newly
developed routines that can be used by any device driver.

Device Autoconfiguration

Discusses the sequence of events that occurs during the
autoconfiguration of VMEbus and TURBOchannel devices.

Part Four: Error Handling and Installation

Chapter 8

Chapter 9

Error Handling

Provides guidelines for handling errors in VMEDbus device drivers.
In addition, explains an option for testing memory map drivers.
Also summarizes when and why you would use the different kernel
routines that allow you to write text to an output device.

Installing Device Drivers

Explains how to install VMEbus and TURBOchannel device
drivers.

Part Five: Example Drivers

Chapter 10

Chapter 11

VMEbus Device Driver Examples
Provides VMEDbus device driver examples.
TURBOchannel Device Driver Examples

Provides TURBOchannel device driver examples.

Part Six: Porting Issues

Chapter 12

Chapter 13

Appendix A

Appendix B

xii About This Manual

Porting VMEDbus Device Drivers

Describes issues related to porting VMEbus device drivers from
another vendor’s hardware (for this version, Sun Microsystems) to
Digital hardware.

Porting TURBOchannel Device Drivers

Describes issues related to porting Q-bus and UNIBUS device
drivers to the TURBOchannel.

Header Files Related to Device Drivers
Summarizes the header files used by device drivers.
Kernel Support Routines

Presents, in reference page (man) style, descriptions of the kernel

support routines. In addition, describes special files and global
variables used by device drivers.

Appendix C Summary of Device Driver Routines

Summarizes the routines for block and character device drivers.

Related Documentation

If this is your first attempt at writing or porting device drivers, you should consult
some of the commercial manuals. One such manual is Writing a UNIX Device
Driver, by Janet I. Egan and Thomas J. Teixeira.

Guide to Configuration File Maintenance

This guide contains information on how to maintain the system configuration
file and how to build a new kernel, either automatically or manually. The
configuration file provides you with the ability to configure your system to meet
your needs. You should read this manual if you are responsible for maintaining
an ULTRIX system. You should also read parts of this manual if you are
planning to modify or write device drivers.

Guide to the Error Logger

This guide contains information about the error logger and how it records and
reports errors and other events that occur on your ULTRIX system. The guide
gives an overview of the error logger, describes how to control error logger
functions, and describes using the Error Report Formatter, uerf. You should
read this manual if you manage error information on an ULTRIX system.

Guide to Languages and Programming

This guide describes the compilers and high-level languages that are part of the
compiler system. The manual gives an overview of the ULTRIX driver
commands and system tools that are provided for the programming
environment, and it describes how to program in a POSIX environment. The
manual also describes debugging programs and provides security guidelines for
programmers. Although this manual discusses implementation details for the
supported languages, it does not list the syntax and definition of the elements of
each language. You should read this manual if you are a programmer on an
ULTRIX system.

Kernel Messages Reference Manual

This manual describes the messages produced by the files in the ULTRIX
kernel. You should refer to this manual if you receive a hardware-detected or
software-detected message that is reported through the ULTRIX kernel
software.

Reference Pages Section 2: System Calls

This section contains descriptions of calls such as open, getpagesize, and
sigvec. You should refer to these reference pages if you write software that
calls the ULTRIX kernel.

Reference Pages Section 3: Library Routines

The ULTRIX system contains library routines for C and FORTRAN
programmers. The library routines are organized into a number of libraries,
including libraries for writing international software, standards-conforming
software, and math software. The ULTRIX system also contains the Internet

About This Manual xiii

network library and various other specialized libraries. You should refer to
these reference pages if you write software that calls routines in any of the
ULTRIX libraries.

® Reference Pages Section 4: Special Files

These reference pages describe the files related to device driver functions and
network support. You should refer to these reference pages if you need
information about devices. For example, you might refer to these reference
pages if you are a programmer who is writing a device driver or a system
administrator who is partitioning a disk.

® Reference Pages Section 5: File Formats

These reference pages describe formats of various files and how the system files
are used. The files described include assembler and link editor output, system
accounting, and file system formats. Refer to this reference page section if you
need information about file formats.

® Reference Pages Section 8: Maintenance

These reference pages describe commands used to create new file systems and
to verify the integrity of file systems. Use these reference pages when you
perform system administration tasks.

Conventions

The following conventions are used in this manual:

open In text, each mention of a generic device driver routine name is
presented in this type.

xxstrategy Intext, each mention of an example device driver routine name is
presented in this type.

buf.h In text, each mention of a file name, full path name, or relative
path name is presented in this type.

brelse In text, each mention of a kernel routine or kernel macro name is
presented in this type.

bp In text and in kernel function definitions, each mention of an
argument name is presented in this type.

bdevsw In text, each mention of a structure name or structure member
name is presented in this type.

.. In syntax descriptions, a horizontal ellipsis indicates that the
preceding item can be repeated one or more times.

[1] In syntax descriptions, brackets indicate items that are optional.
* A vertical ellipsis indicates that a portion of an example that
would normally be present is not shown.

In addition, certain conventions are followed for the kernel routine function
definitions presented in Appendix B. These conventions are illustrated in the
following example:

xiv About This Manual

int copyin(user_addr, kern_addr, nbytes)
caddr_t user_addr;

caddr_t kern_addr;

unsigned int nbytes;

The kernel function definition gives you this information:
e Return type

Gives the data type of the return value, if the kernel routine returns data.
e Kemel routine (or macro) name

Gives the kernel routine (or macro) name, for example, copyin. Note that
many kernel macro names use uppercase to distinguish them from kernel
routines.

® Argument names

Gives the name of each kernel routine argument name. In the example, the
argument names are user_addr, kern_addr, and nbytes.

e Argument types

Gives the types for each of the arguments. In the example, these types are
caddr_t and unsigned int.

The conventions followed for the driver interface function definitions are similar to
those used for the kernel routines in the way argument names and types are
represented. However, there are differences in the way return types and names are
represented in the driver function definitions. The differences in the conventions are
illustrated in the following example:

int vmeprobe(ctrl, addrl, addr2)
int ctrl;

caddr_t addrl ;

caddr_t addr2;

The driver interface function definition gives you this information:
e Return type

Gives the data type of the return value, if the driver routine returns data. If the
driver routine does not return data, no type appears.

e Driver routine name

Gives the driver routine name. There are two variations on the name illustrated
in the driver function definitions. First, if the driver interface differs according
to the bus on which the driver operates, a bus-specific name is used. For
example, the interface to a driver’s probe routine differs according to whether
the driver operates on the VMEbus or the TURBOchannel. Therefore, either
the name vmeprobe or turboprobe is used.

If the driver interface is the same regardless of the bus on which the driver
operates, the name anydrv followed by the specific interface name is used. For
example, the interface to a driver’s open routine is the same regardless of the
bus on which the driver operates. Therefore, the name anydrvopen is used.

Note the use of italics to indicate that the driver routine name is variable. When you

write your driver routines, you should use the naming conventions described in
Section 9.1.1.1.

About This Manual xv

Introduction to Device Drivers 1

This chapter presents an overview of device drivers by discussing:
e The purpose of a device driver

e The types of device drivers

e When a device driver is called

e The place of a device driver in ULTRIX

1.1 The Purpose of a Device Driver

The purpose of a device driver in ULTRIX is to handle requests made by the kernel
with regard to a particular type of device. There is a well defined and consistent
interface for the kernel to make these requests. By isolating device-specific code in

device drivers and by having a consistent interface to the kernel, adding a new device
is made easier.

1.2 The Types of Device Drivers

A device driver is a software module that resides within the ULTRIX kernel and is
the software interface to a hardware device or devices. A hardware device is a
peripheral, such as a disk controller, tape controller, network controller device, and so

forth. In general, there is one device driver for each type of hardware device. Figure
1-1 shows that device drivers can be classified as:

¢ Block device drivers
e Character device drivers (including terminal drivers)
e Network device drivers

The following sections briefly discuss each type.

Figure 1-1: Types of ULTRIX Device Drivers

ULTRIX
Device
Drivers
Block Character Network
Device Device Device
Drivers Drivers Drivers
ZK-0199U-R

1.2.1 Block Device Driver

A block device driver is one that performs I/O using file system block-sized buffers
from a buffer cache supplied by the kernel. The kernel also provides support routines
for the device driver that copy data between the buffer cache and the address space of
a process.

A block device driver is particularly well suited for disk drives, the most common
block device. For block devices, all I/O occurs through the buffer cache. During an
I/O operation, if the data is not already in the buffer cache the access of the data is
not as fast as it could be, because there is an extra move of the data getting to or
from the user’s process.

1.2.2 Character Device Driver

A character device driver does not handle input and output through the buffer cache.
Therefore, these device drivers are not tied to a single approach for handling 1/O.

A character device driver can be used for a device such as a line printer that handles
one character at a time. However, a character device driver can also be used where it
is necessary to copy data directly to or from a user process.

Because of their flexibility, many drivers are character drivers. In addition to line
printers, interactive terminals and graphics displays are examples of devices that
require character device drivers.

A terminal device driver is actually a character device driver that handles input and
output character processing for a variety of terminal devices. Like any character
device, a terminal device can accept or supply a stream of data based on a request
from a user process. Like any other character device, a terminal device cannot be
mounted as a file system and, therefore, does not use data caching.

1-2 Introduction to Device Drivers

1.2.3 Network Device Driver

A network device driver attaches a network subsystem to a network interface,
prepares the network interface for operation, and governs the transmission and
reception of network frames over the network interface. This manual does not
discuss network device drivers.

1.3 When a Device Driver Is Called
Figure 1-2 illustrates that the kernel calls a device during:
* Autoconfiguration

The kernel calls a device driver at autoconfiguration time to determine what
devices are available and to initialize them.

e Input/output operations

The kernel calls a device driver to perform input/output operations on the
device. These operations include opening the device to perform reads and
writes and closing the device.

e Interrupt handling

The kernel calls a device driver to handle interrupts generated from devices
capable of generating interrupts.

e Special requests

The kernel calls a device driver to handle such special requests through ioctl
calls.

e Reinitialization

The kernel calls a device driver to reinitialize the driver, the device, or both
when the bus (the path from the CPU to the device) is reset.

Introduction to Device Drivers 1-3

Figure 1-2: When the Kernel Calls a Device Driver

To handle
— special requests
through ioctl calls
At autoconfiguration, roer;; UNIBUS,
to determine availability —— reiniti’aliz o
and to initialize the device
To perform I/O
resulting from
standard library
/O calls v
To handle interrupts
from the device
to say data Device
is rea Driver
dy
ZK-0200U-R

Some of these requests, such as input or output, result directly or indirectly from
corresponding system calls in a user program. Other requests, such as the calls at
autoconfiguration time, do not result from system calls.

1.3.1 The Place of a Device Driver in ULTRIX

Figure 1-3 shows the place of a device driver in ULTRIX relative to some device.
Note that the device is in the center and the outer circles represent the distance of the
following:

e User program

A user program makes calls on the kernel but never directly calls a device
driver.

J The kernel

The kernel runs in supervisor mode and does not communicate with a device
except through calls to a device driver.

. A device driver

A device driver communicates with a device by reading and writing to
peripheral device registers through a bus.

e Bus
The bus is the data path between the main processor and the device controller.
e Controller

A controller is a physical interface for controlling one or more devices. Some
devices (for example, disk and tape drives) can be connected to the controller.

1-4 Introduction to Device Drivers

Other devices (for example, the network) may be integral to the controller.
e Peripheral device

A peripheral device is a device that can be connected to a controller.

Figure 1-3: The Place of a Device Driver in ULTRIX

Bus
Driver

Kernel
User Program
ZK-0201U-R

The following sections describe these parts with an emphasis on how a device driver
relates to them.

1.3.2 User Program

User programs make system calls on the kernel that result in the kernel making
requests of a device driver. For example, a user program can make a read system
call, which calls the driver’s read routine.

The ULTRIX operating system includes the following:

¢ The kemel

¢ The shell

e Utilities that execute ULTRIX commands

e Interpreters, compilers, debuggers, and so forth

¢ Spooling systems

e Other programs considered for various reasons to be part of the system

From the point of view of writing device drivers, the parts of the operating system
other than the kernel are basically like user programs.

Introduction to Device Drivers 1-5

1.3.3 The Kernel

The kernel makes requests to a device driver to perform operations regarding a
particular device. Some of these requests result directly from requests from a user
program. For example:

¢ Block I/O (open, strategy, close)
e Character 1/O (open, write, close)

Autoconfiguration requests, such as probe and attach, do not result directly
from a user program, but as the result of activities performed by the kernel. At boot
time, for example, the kernel calls the driver’s probe routine.

A device driver may call on kernel support routines to support such tasks as:
e Sleeping and waking (process rescheduling)

* Scheduling events

® Managing the buffer cache

* Moving or initializing data

See Appendix B for descriptions of the kernel support routines.

1.3.4 Device Drivers

A device driver, run as part of the kernel software, manages each of the device
controllers on the system. Often, one device driver manages an entire set of identical
device interfaces. Because the device driver is part of the kernel, it must be
configured with the rest of the kernel software. On ULTRIX, you can configure more
device drivers than there are physical devices configured into the hardware system.
At boot time, the autoconfiguration procedure can determine which of the physical
devices are accessible and functional and can produce a correct run-time
configuration for that instance of the running kernel.

As stated previously, the kernel makes requests of a driver by calling the driver’s
standard entry points (such as probe, attach, open, read, write, close).
In the case of I/O requests such as read and write, it is typical that the device causes
an interrupt upon completion of each I/O operation. Thus, a write system call from a
user program may result in several calls on the interrupt entry point in addition to the
original call on the write entry point.

Device drivers, in turn, make calls upon kernel support routines to perform the tasks
mentioned earlier.

The structure declaration giving the layout of the control registers for a device are
part of the source for a device driver. Device drivers (unlike the rest of the kernel)
can access and modify these registers.

1.3.5 Buses

When a device driver reads or writes to the hardware registers of a controller, the
data travels across a bus.

A bus is a physical communication path and an access protocol between a processor
and its peripherals. A bus standard, with a predefined set of logic signals, timings,
and connectors, provides a means by which many types of device interfaces
(controllers) can be built and easily combined within a computer system. The term
OPENDus refers to those buses whose architectures and interfaces are publicly

1-6 Introduction to Device Drivers

documented, allowing a vendor to easily plug in hardware and software components.
The VMEbus and the TURBOchannel can be classified as having OPENbus
architectures.

Device driver writers must understand the bus that the device is connected to.
Different buses require different approaches to writing the driver. For example, a
VMEDbus device driver writer must know how to allocate the VMEbus address space.
This manual describes what a driver writer must know to write device drivers that
communicate with a peripheral device that uses the VMEbus and the
TURBOchannel.

1.3.6 Device Controller

Controllers are the hardware interface between the computer and a peripheral device.
Sometimes a controller handles several devices. In other cases, a controller is built
into the device.

1.3.7 Peripheral Devices

A peripheral device is a piece of hardware that connects to a computer system. It can
be controlled by commands from the computer and can send data to the computer
and receive data from it. Examples of peripheral devices include:

e A data acquisition device, like a digitizer
® A line printer

For the most part, the distinction between a device and its controller is not important
to the driver writer.

Introduction to Device Drivers 1-7

Part I: OPENbus Hardware and Software
Architectures

VMEbus Architectures 2

The VMEDbus is an industry standard high performance bus that supports 8-, 16-, and
32-bit transfers over a nonmultiplexed 32-bit data bus. In addition, the VMEbus
supports 16-, 24-, and 32-bit addressing over a separate 32-bit address bus. This
chapter presents an overview of the VMEbus hardware and software architectures.
Specifically, the chapter discusses the following:

. Processors used with the VMEbus hardware
. VMEDbus hardware architecture

. VMEbus software architecture

For detailed information on VMEDbus architectures, see the IEEE Standard for a
Versatile Backplane Bus: VMEbus ANSI/IEEE Std 1014-1987.

2.1 Processors Used with the VMEbus Hardware

The DECstation 5000 Model 200 supports the VMEbus. The VMEbus attaches to
the DECstation 5000 Model 200 through an adapter card on the TURBOchannel.

2.2 VMEbus Hardware Architecture

The VMEDbus, like other buses, is a computer architecture that defines a computer
data path. Unlike other buses, the VMEbus is microprocessor-independent, is easily
upgraded from 16-bit to 32-bit processors, and is suitable for a vendor to build

compatible products. The following describes VMEbus hardware architecture topics
relevant to the device driver writer:

e Address spaces
e Data size

e Byte ordering

e Interrupt vectors

¢ Interrupt priorities

2.2.1 VMEbus Address Spaces

The VMEbus hardware makes no distinction between I/O space and memory space.
The device driver writer must understand which address space the board uses. The
VMEDbus hardware architecture includes three address spaces:

e 16-bit (A16)
o 24-bit (A24)

e 32-bit (A32)

These address spaces are overlapping, that is, an address (for example, 0xCO0) points
to the same location in all three address spaces. VMEbus devices can respond to
address requests in any of the address spaces.

2.2.2 Data Size

The VMEDbus supports 8-bit(D08), 16-bit(D16), and 32-bit(D32) data sizes. A
VMEDbus device can operate in more than one data space at one time. For example, a
VMEDbus device may have D16 control registers and D32 memory.

2.2.3 Byte Ordering

While the VMEbus does not specify any particular byte ordering, most devices use
the Motorola model, which is big endian. Because the Digital model is little endian,
two mechanisms are provided to accomplish byte swapping:

e VMEbus adapter

The VMEDbus adapter provides hardware byte swapping. Digital’s adapters
provide hardware assist for all DMA transfers and may provide hardware assist
for programmed I/O (PIO) transfers on an adapter-dependent basis.

e Software routines
Kernel routines and library calls accomplish the byte swapping.

See Chapter 6 and Appendix B for information on these byte-swapping routines:
swap_lw_bytes, swap_word_bytes, and swap_words.

2.2.4 VMEbus Interrupt Vectors

VME-bus interrupt vectors range from 0x00 to Oxff inclusive. The vectors from 0x00 -
0x3f inclusive are reserved for use by the ULTRIX operating system. The vectors
0x40 - Oxff inclusive are available for use by VMEDbus devices.

2.2.5 VMEbus Interrupt Priorities

The VMEbus provides for seven interrupt priorities. On some host implementations,
fewer than seven levels may be provided. On those implementations, the VMEbus
priorities are mapped to the available host priority levels.

ULTRIX allows the adapter to handle any or all of the VMEbus interrupt levels. In
general, you will want the adapter to handle all seven levels. If, however, there is
another processor on the VMEbus that you want to handle VMEDbus interrupts, you
can selectively enable the interrupts handled by Digital’s VMEbus adapter. The
mechanism for accomplishing this is through the intr mask member of the
vbadata structure, which is described in Section 5.2.2.

2.3 VMEDbus Software Architecture

Before writing device drivers that operate on the VMEDbus, you need to consider the
following topics associated with the VMEDbus software architecture:

e VMEbus address space

2—-2 VMEbus Architectures

e Direct Memory Access (DMA) support
e Input/Output (J/O) access
¢ Read-Modify-Write

e Writes to the hardware device register

2.3.1 VMEbus Address Space

The VMEDbus supports a 4 gigabytes (GB) address space. ULTRIX divides this
address space into overlapping address spaces according to the number of address bits
used. A generic layout of the VMEbus address space is illustrated in Figure 2-1.
Some adapter configurations, however, modify this generic layout to accommodate
their specific mapping requirements.

Figure 2-1: VMEbus Address Space

VMEbus Address
4GB FFFFFFFF
A32 1/0 Space
OGB Jemremmmem e 80000000
7FFFFFFF
A32 DMA Space
01000000
16MB O0FFFFFF
A24 1/O Space
... 00800000
SMB 007FFFFF
A24 DMA Space
00010000
64KB 0000FFFF
A16 |/O Space
0 00000000
Note: This drawing is not to scale.
ZK-0197U-R

Note that all device CSRs and onboard memory must be configured in the I/O space
of the appropriate VMEbus address space.

VMEbus Architectures 2—-3

By convention, Digital reserves the lower half of the A24 and A32 address spaces for
VMEDbus-to-system memory DMA transfers. The upper half of the A24 and A32
address spaces and the entire A16 address space are reserved for I/O space (CSRs)
and device-to-device DMA transfers.

The figure shows the following overlapping address spaces:
e A 16-bit address space (A16) of 64 kilobytes (KB)

The entire A16 address space is reserved for I/O space (CSRs) and for device-
to-device Direct Memory Access (DMA) transfers.

Valid VMEbus CSR addresses for the A16 I/O space range from 00000000 to
000OFFFF inclusive.

e A 24-bit address space (A24) of 16 megabytes (MB) - 64 kilobytes (KB)

The lower half (8§ MB - 64 KB) of the A24 address space is reserved for
VMEDbus-to-system memory DMA transfers. The upper half (8 MB) of the A24
address space is reserved for I/O space (CSRs) and for device-to-device DMA
transfers.

Valid VMEbus CSR addresses for the A24 I/O space are from 00800000 to
OOFFFFFF inclusive.

e A 32-bit address space (A32) of 4 GB - 16 MB

The lower half (2 GB - 16 MB) of the A32 address space is reserved for
VMEDbus-to-system memory DMA transfers. The upper half (2 GB) of the A32
address space is reserved for I/O space (CSRs) and for device-to-device DMA
transfers.

Valid VMEbus CSR addresses for the A32 I/O space are from 80000000 to
FFFFFFFF inclusive.

You allocate the VMEbus address space for DMA by calling vballoc or
vbasetup. These routines return an address from the DMA space (the lower half)
that is mapped to the buffer. For the A24 DMA space, the range of valid VMEbus
addresses these routines can return is from 00010000 to O07FFFFF inclusive. For the
A32 DMA space, the range of valid VMEbus addresses these routines can return is
from 01000000 - 7FFFFFFF inclusive. See Chapter 6, Chapter 12, and Appendix B
for more information on these routines.

2.3.2 DMA Support

Some VMEDbus devices can perform Direct Memory Access (DMA). Using DMA,
the host processor informs the device controller about the following:

e The address in VMEbus address space where a data transfer occurs
e The length of the data to be transferred
* When to start the data transfer

The host processor makes no further intervention during the transfer of the data.
Upon completion of the data transfer, the device controller interrupts to indicate that
transfer has successfully completed.

There are these scenarios to consider when dealing with the VMEbus and DMA:
e VMEbus-to and from-host-DMA

2—-4 VMEbus Architectures

2.3.2.1

VMEDbus device-to-device DMA
DMA for multiple VMEbus adapters

VMEbus-to Host DMA and VMEbus from-Host-DMA — Figure 2-2 illustrates

VMEDbus-to-host-DMA and VMEbus-from-host-DMA.

Figure 2-2: VMEbus-to and from-Host-DMA

Mem Space VME Addr Space

4GB

04
B T e T T Ty ¥y . ™

RN N R R R AR NN NN I UM A AT R RN NSRRI A AN RRD U BRI
*

, A32 |/O Space Device 1
Main
Memory ggg‘ﬁg Adaptor
Unit ------------------------------------
A32 DMA Space
CPU
Mapping
Registers = }.eeeeee A 24 VO .§P.a.9.e. Device n
A24 DMA Space
/0 Space
A16 1/0 Space
0
ZK-0255U-R

The figure depicts the following typical VMEDbus environment:

A host CPU and its attendant memory

The buffer cache

I/O space

An adapter that contains the mapping registers
The VMEbus address space

One or more devices (represented by Device 1 through Device n)

The figure uses two arrows to indicate that the data transfer can take the following
routes:

The data transfer can originate from the device to the system memory of the
host CPU.

In this route, the host memory is mapped to the A32 DMA space. As stated
previously, the lower halves of the A24 and A32 spaces are reserved for
VMEDbus-to-host-DMA transfers. The transfer continues through the adapter
into the host memory.

VMEDbus Architectures 2-5

23.2.2

2.3.2.3

¢ The data transfer can originate from the system memory of the host CPU to the
device.

In this route, some memory space in the CPU is mapped to the A32 DMA
space. The device reads from the A32 mapped space and the data is fetched by
the adapter from mapped host memory.

If a device performs DMA-to-host memory transfers, the driver must explicitly
flush the data cache, because there is no hardware cache coherency mechanism.
To flush the data cache, the driver calls the bufflush kernel support routine
after the DMA completes but before it releases the buffer to the system. See
Chapter 6 and Appendix B for descriptions of bufflush.

It is important to note that in both routes, the device initiates the data transfer.

Note that not all adapters provide the ability to perform DMA to the entire address
range. Table 2-1 lists the maximum size for the A24 and A32 DMA space for the
supported adapter. In addition, the table lists the range of addresses that vballoc
or vbasetup can return to the device driver for the supported adapter.

Table 2-1: Maximum Size and Range of Addresses for PMABV-AA

Adapter
Address Space Maximum Size Range of Addresses
A24 8MB - 64K = 7.936MB 00010000 - 007FFFFF

A32 128MB - 16MB = 112MB 01000000 - 7FFFFFFF

VMEbus Device to Device DMA — In addition to VMEbus to and from host
DMA, there is VMEbus device-to-device DMA. Digital provides for this type of
DMA by designating portions of the VMEbus address spaces as reserved for device-
to-device DMA. As stated previously, the upper halves of the A24 and A32 spaces
and the entire A16 space are reserved for device-to-device DMA. The VMEbus
address space may have holes that are created by device registers and on-board
memory. During VMEDbus configuration, those areas are removed from the resource

allocation map for VMEbus address space and are unavailable for use by any form of
DMA.

DMA for Multiple VMEbus Adapters — The PMABV-AA adapter for the
TURBOchannel supports two VMEbus adapters in a single VMEbus backplane. This
support exists only if the VMEbus adapters are connected to different host CPUs. To
use this feature, the device driver writer must consider:

e The configuration of the DMA Page Map Registers (PMRs)
e The handling of interrupts between the two VMEDbus adapters

The following discussion assumes an understanding of the vbadata structure and
the vballoc and vbasetup routines. See Section 5.2.2 for descriptions of the
members contained in the vbadata structure. See Chapter 6 and Appendix B for
information on vballoc and vbasetup.

Figure 2-3 illustrates how the driver writer can configure the DMA PMRs to
accommodate the use of two VMEbus adapters.

2-6 VMEbus Architectures

Figure 2-3: Use of Multiple VMEbus Adapters

Host DMA VMEbus
Memory Page Address
ChU1 Map Space

Registers

A16 I/O Space

A24 DMA Space
A24 1/O Space

>~ 1GB

Adapter1

A32 DMA Space

Host
Memory

CPU2 unused
area

128

Adapter2 M8

A32 DMA Space y
2GB
A32 l/O Space
ZK-0275U-R

The figure shows a VMEbus environment consisting of:

e Two host CPUs and their attendant memories

e Two adapters: one labeled Adapterl and the other labeled Adapter2
e The VMEbus address space

Note that this figure shows a modification of the generic VMEbus address space that
is illustrated in Figure 2-1. Because the PMABV-AA adapter does not support the
entire A32 DMA address space, it makes use of the unused space to provide a
mapping area for the second adapter. You can see this arrangement by studying the
VMEbus Address Space block in Figure 2-3. The first mapping area resides within
the first gigabyte and consists of the A16 I/O space, the A24 DMA space, the A24
1/O space, and the A32 DMA space. The second mapping area resides within the
second gigabyte and consists of the same address spaces as the first mapping area
except that the address spaces that are shaded cannot be used.

You use the asc member of the vbadata structure to select either the first
gigabyte or the second gigabyte of VMEbus address space for the mapping of the
DMA PMRs.

By default, the system sets this member to VME_MAP_LOW, which means the
vballoc or vbasetup routine maps the DMA PMRs for the adapter (in this
example, Adapterl) to the VMEbus addresses that reside in the range from 0 -
128MB. These addresses reside in the first gigabyte of the VMEbus address space
and, specifically, in the A32 DMA address space.

VMEbus Architectures 2-7

2.3.3

2.3.3.1

To select the second gigabyte, you set the asc member to the constant
VME_MAP_HIGH. In this case, vballoc or vbasetup maps the DMA PMRs
for the adapter (in this example, Adapter2) to the VMEbus addresses that reside in
the range from 40000000 (1GB) - 47FFFFFF (1GB + 128MB). Note that only A32
DMA can be performed if the map registers are mapped to the second GB.

This strategy guarantees that the addresses will not overlap.

The second thing you need to do is to coordinate the handling of the interrupts
between the two VMEbus adapters. The intr mask member of the vbadata
structure must be set so that only one of the VMEbus adapters is handling each
interrupt level.

/0 Access

Applications access I/O devices through memory locations in the physical address
space of the CPU. Two mechanisms — programmed I/O (PIO) and memory mapping
— are provided for transferring data as the result of a data transfer request from an
application. These mechanisms are discussed in the following sections. Figure 2-4
illustrates programmed I/O and memory mapping.

Figure 2-4: Programmed I/O

Mem Space 4GB VME Addr Space
Main A32 I/0 Space Device 1
Mgmory-E-gggﬁg Adapter
Unlt ------------------------------------
A32 DMA Space
CPU
Ma R
Mapping \ o P24VOSpace
Registers Device n
' A24 DMA Space
/O Space P : Sk
A161/0 Space
0

%
RN R NN NS NSRS RN RIS R N ENS R
Ad

mmap/PIO ¢,
@iua:xn:natnnnnuiwuus‘a-uunuu&auuu!nnuusnn.!u
£

ZK-0256U-R

Programmed 1/O — In the PIO mechanism, the device driver performs the data
transfer. The device driver has direct access to the CSRs or to device memory. The
VMEbus address space for the CSRs or onboard memory is mapped during VMEbus
configuration when the device is configured. The sizes and address spaces for the
mapped areas are set in these members of the uba_driver structure:
ud_addrl_size, ud_addr2_size, ud_addrl_atype, and

2-8 VMEbus Architectures

2.3.3.2

ud_addr2_atype. See Chapter 5 for more information on these and other
members of the uba_driver structure. ULTRIX passes the information contained
in these members to the device driver through the probe routine. See Section 4.3
for a description of the probe routine.

Memory Mapping — Many applications make use of memory mapping in which the
mapped I/O space (or some portion of it) is mapped into the user address space. This
allows applications to access VMEbus devices implicitly, through memory
references. For example, an application can map a portion of the VMEbus address
space and point to the base of an array at that mapped area. Any memory reference
to that array in the application causes the corresponding part of VMEbus address
space to be accessed. This is a commonly used technique for logic simulators and
array processors.

An application maps VMEDbus space with the mmap system call. The mmap system
call invokes a kernel routine that, in turn, calls the device driver’s memory mapping
routine so that the driver actually performs the mapping. See Section 4.12 for more
information on the tasks performed by the mmap system call and the memory
mapping routine.

2.3.4 Read — Modify — Write

Some applications, mainly those using semaphores, require a way to perform atomic
read and write operations. The VMEbus specification provides for these operations
through the read-modify-write cycle on the bus. This operation allows an application
to read a location, check if the location is available for writing, and to write data back
to the location if the location is available. The DECstation 5000 Model 200 cannot
support this operation in hardware because the TURBOchannel does not support
read-modify-write operations. Because the TURBOchannel does not support the
read-modify-write operations, you cannot use the system main memory for read-
modify-write transactions.

To support read-modify-write operations, the vme_rmw routine is provided. This
routine allows read-modify-write operations to VMEbus memory. See Appendix B
for a description of vme_rmw.

2.3.5 Writes to the Hardware Device Register

Whenever a VMEbus device driver writes to a hardware device register, the write is
delayed by the system write buffer used to synchronize the CPU on the
TURBOchannel. A subsequent read of that register does not wait for the write to
complete. To ensure that a write to I/O space completes, the driver calls the
wbflush kernel support routine. See Chapter 6 and Appendix B for descriptions of
wbflush.

VMEDbus Architectures 2-9

TURBOchannel Architecture 3

The TURBOchannel is a synchronous, asymmetrical I/O channel that is supported by
the DECstation 5000 Model 200.

The device driver writer is not required to be intimately familiar with the details of
the TURBOchannel hardware. Therefore, this chapter discusses the following aspects
of the software architecture for a TURBOchannel device driver:

e Structure of a TURBOchannel device driver
e Include files

e Writes to hardware device register

¢ DMA-to-host memory transfers

e Device interrupt line to the processor

3.1 Structure of a TURBOchannel Device Driver

In general, you structure a TURBOchannel device driver much like a UNIBUS or Q-
bus driver. This means you declare and initialize a uba_driver structure in the
declarations section of the TURBOchannel driver. In addition to the uba_driver
structure, you also use these other uba structures: uba_device and uba_ctlr.
See Chapter 5 for descriptions of these structures.

Note

Even though the uba data structures are used, TURBOchannel device
drivers do not need to use mapping registers, because the
TURBOchannel address space is included in the system address space.

3.2 Include Files

TURBOchannel device drivers, in addition to the usual header files required by
ULTRIX device drivers, need this header file:

"../io/tc/tc.h"

See Chapter 4 for information on header files.

3.3 Writes to the Hardware Device Register

Whenever a TURBOchannel device driver writes to a hardware device register, the
write is delayed by the system write buffer used to synchronize the CPU on the
TURBOchannel. A subsequent read of that register does not wait for the write to
complete. To ensure that a write to I/O space completes, the driver calls the
wbflush kernel support routine. See Chapter 6 and Appendix B for descriptions of
wbflush.

3.4 Direct Memory Access (DMA)-to-Host Memory Transfers

If a device performs DMA-to-host memory transfers, the driver must explicitly flush
the data cache, because there is no hardware cache coherency mechanism. To flush
the data cache, the driver calls the bufflush kernel support routine after the DMA
completes but before it releases the buffer to the system. See Chapter 6 and
Appendix B for descriptions of bufflush.

3.5 Device Interrupt Line

If a device needs to have its interrupts enabled or disabled during configuration or
during operation, a TURBOchannel device driver can call the
tc_enable_optionand tc_disable_option routines. See Chapter 6 and
Appendix B for descriptions of tc_enable_ option and

tc_disable option.

3-2 TURBOchannel Architecture

Part lI: Structure of a Device Driver

Structure of an ULTRIX Device Driver 4

This chapter describes the sections that make up an ULTRIX device driver. Figure
4-1 illustrates the sections that a character device driver can contain and the possible
sections for a block device driver. Both types of drivers contain an include files
section, a declarations section, an autoconfiguration support section, an open and
close device section, an ioctl section, and a strategy section (which often is not
defined for character devices). Note that the strategy section for the character device
driver is for nbufio, and the strategy section of the block device driver is for queuing
I/O requests. (The concept of nbufio is not discussed in this manual.)

The character device driver contains a read and write device section. The block
device driver does not contain either of these sections. Although raw block devices
require a read and write device section, their driver entry points are specified through
the cdevsw, not the bdevsw. In other words, the device driver for the raw block
device is both a block and a character driver. When accessed as a block device, the
system uses the driver’s strategy routine as the entry point. When accessed as a
character device, the driver’s read and write routines are used as the entry
points. (See Section 9.1.1 for descriptions of the cdevsw and bdevsw tables.)
The character device driver can contain a reset section, a stop section, and a memory
map (mmap) section. The block device driver does not contain any of these sections.

Note

The psize routine is no longer used. It has been superseded by driver
ioctl calls that are used to obtain disk geometry information. Previously,
the routine determined the location on the disk where ULTRIX should
perform a dump.

ULTRIX supports dumping only to disks that it can boot from. In most cases,
ULTRIX uses dump routines located in the console subsystem. Because
ULTRIX does not support booting from a VMEbus disk, dumping to disk is
not used in a VMEDbus device.

Each device driver section is described following Figure 4-1.

Figure 4-1: Sections of a Character Device Driver and a Block Device

Driver

Character Device Driver Block Device Driver
/’: Include Files Section */ /' include Files Section */
/" Declarations Section */ /* Declarations Section */
/* Autoconfiguration Support Section */ /* Autoconfiguration Support Section */
/' Open and Close Device Section */ /* Open and Close Device Section */
/ Strategy Section for nbufio */ /* Strategy Section */
/*E ioctl Section */ /* ioctl Section */
/’ Stop Section */ /* psize Section */
/* Reset Section */ /* Dump Section */
/* Read and Write Device Section */ .
/" Memory Map (mmap) Section */

ZK-0204U-R

The conventions followed for the driver interface function definitions are similar to
those used for the kernel routines in the way argument names and types are
represented. However, there are differences in the way return types and names are
represented in the driver function definitions. The differences in the conventions are
illustrated in the following example:

int vmeprobe(ctri, addrl, addr2)
int ctri;

4-2 Structure of an ULTRIX Device Driver

caddr_t addrl;
caddr_t addr2;

The driver interface function definition gives you this information:
e Return type

Gives the data type of the return value, if the driver routine returns data. If the
driver routine does not return data, no type appears.

. Driver routine name

Gives the driver routine name. There are two variations on the name illustrated
in the driver function definitions. First, if the driver interface differs according
to the bus on which the driver operates, a bus-specific name is used. For
example, the interface to a driver’s probe routine differs according to whether
the driver operates on the VMEbus or the TURBOchannel. Therefore, either
the name vmeprobe or turboprobe is used.

If the driver interface is the same regardless of the bus on which the driver
operates, the name anydrv followed by the specific interface name is used. For
example, the interface to a driver’s open routine is the same regardless of the
bus on which the driver operates. Therefore, the name anydrvopen is used.

Note the use of italics to indicate that the driver routine name is variable. When you
write your driver routines, you should use the naming conventions described in
Section 9.1.1.1.

4.1 Include Files Section

Data structures are defined in header files that the device driver writer includes in the
driver source code. The following lists the header files most frequently used by any
device driver, including VMEbus and TURBOchannel device drivers:

#include "../h/types.h"

#include "../h/errno.h"”

#include "../h/uio.h"

#include "../../machine/common/cpuconf.h"

Device drivers should use relative path names, not explicit path names. For summary
descriptions of the contents of the header files listed in this and subsequent sections,
see Appendix A.

The header file types.h defines system data types used to declare members in the
data structures referenced by device drivers. To store values in these structure
members, the driver writer must declare the variable using the appropriate system
data type, or cast the stored value. Table 4-1 lists the system data types most
frequently used by device drivers.

Table 4-1: System Data Types Frequently Used by Device Drivers

Data Type Meaning
daddr_t Block device address
caddr_t Main memory virtual address

Structure of an ULTRIX Device Driver 4-3

Table 4-1: (continued)

Data Type Meaning

ino_t Inode index

label t Vector for setjmp/longjmp
dev_t Device major and minor numbers
off t File offset

paddr_t Main memory physical address
time_t System time

u_short unsigned short

4.1.1 Include Files for VMEbus Device Drivers

In order, the minimal header files needed by VMEbus device drivers are:

#include
#include
#include
#include
#include

Note that

"../h/types.h"

"../h/errno.h"

"../h/uio.n”
"../../machine/common/cpuconf.h"
"../io/vme/vbareg.h"

vbareg.h is used exclusively by VMEbus device drivers.

4.1.2 Include Files for TURBOchannel Device Drivers

In order, the minimal header files needed by TURBOchannel device drivers are:

#include
#include
#include
#include
#include

Note that

"../h/types.h"

"../h/errno.h"

"../h/uio.h"
"../../machine/common/cpuconf.h"
"../io/tc/tc.h"

tc.h is used exclusively by TURBOchannel device drivers.

4.2 Declarations Section

The declarations section of a block or character device driver contains:

. Variable and structure declarations

e Definitions of symbolic names

e Declarations of the specific driver routines

The following example illustrates the declarations section of a VMEbus device

driver:

/* Symbolic definitions */

4-4 Structure of an ULTRIX Device Driver

#define SKREGSIZE 256 /* First csr area */
#define SKUNIT (dev) (minor(dev)) /* Device minor number */

/* Structure and variable declarations */

struct uba_device *skdinfo[NSK];

/* Driver routines declarations */

int skprobe(), skattach(), skintr(), skmmap():;

The following variables or data structures should be declared as volatile by VMEbus

and TURBOchannel device drivers:

e Any variable or data structure that can be changed by a controller or processor

other than the system CPU

* Variables that correspond to hardware device registers

e Any variable or data structure shared with a controller or coprocessor

When declaring a variable or data structure as volatile, use the compiler key word
volatile in the declaration. For example:

volatile int hrdwrereg;

struct register_for_some_device {
volatile char stub_0;
volatile char V;
volatile char stub_1;
volatile char M;

/*
/*
/*
/*

Base address */

First readable, always V */

Data is only on every other word */
Second readable */

4.3 Autoconfiguration Support Section

The autoconfiguration support section applies to both character and block device

4.3.1

drivers. It can contain:
e A probe routine
. A slave routine

. An attach routine

You define the entry point for each of these routines in the uba_driver structure.
See Section 5.1.4 for a description of this structure.

Each of these routines is discussed in the following sections.

The Probe Routine

A device driver’s probe routine performs all the tasks necessary to determine if the
device exists and is functional on a given system. At boot time, the kernel performs
checks to determine if the device is present before calling the probe routine. The
kernel calls the probe routine for each device that was defined in the system

configuration file.

Structure of an ULTRIX Device Driver 4-5

4.3.1.1

4.3.1.2

The probe routine typically checks some device status register to determine
whether the physical device is present. To perform this check, the probe routine
calls the BADADDR macro. If the device is not present, the device is not initialized
and not available for use. The probe routine returns the size of the control/status
register address space for the autoconfiguration routines to use.

The interface to the probe routine differs according to the bus on which the driver
operates. Therefore, the interfaces to the probe routine for the VMEbus and the
TURBOchannel are discussed separately.

Probe Routine Interface for VMEbus Driver — For VMEbus device drivers, the
interface to the probe routine is expressed in the following function definition:

int vmeprobe(ctrl, addrl, addr2)
int ctrl;

caddr_t addrl;

caddr_t addr2;

ctrl Specifies the controller or device number associated with this device.
You specified this number in the system configuration file.
addrl Specifies the System Virtual Address (SVA) for the device. This

SVA corresponds to the first CSR address that you specified for the
device in the system configuration file.

addr2 Specifies the System Virtual Address (SVA) for the onboard
memory. This SVA corresponds to the second CSR address, if
present, that you specified in the system configuration file. If you did
not specify a second CSR address, the value of this argument is zero

0).

See Section 9.1.3.3 for information on how to specify a controller’s name and logical
unit number and the first and second CSR addresses in the system configuration file.
See Section 9.1.3.5 for information on how to specify a device’s name and logical
unit number and the first and second CSR addresses in the system configuration file.

Probe Routine Interface for TURBOchannel Driver — For TURBOchannel
device drivers, the interface to the probe routine is expressed in the following
function definition:

turboprobe(addr, ctrl)
caddr_t addr;
struct uba_ctlr * ctri;

addr Specifies the System Virtual Address (SVA) control/status registers
for the device.

ctrl Specifies a pointer to a uba_ctlr or a pointer to a uba_device
structure. (The function definition shows a pointer toa uba_ctlr
structure.)

4.3.2 The Slave Routine

A device driver’s slave routine is called only for controller devices. This routine
is called once for each slave attached to the controller. You specify the attachments
of these slave devices in the system configuration file. The interface to the slave
routine differs according to the bus on which the driver operates. Therefore, the

4-6 Structure of an ULTRIX Device Driver

4.3.2.1

4.3.2.2

interfaces to the slave routine for the VMEbus and the TURBOchannel are
discussed separately.

Slave Routine Interface for VMEbus Driver — For VMEbus device drivers, the
interface to the slave routine is expressed in the following function definition:

vmeslave(ui, addrl, addr2)
struct uba_device * ui;
caddr_t addrl ;

caddr_t addr?2;

ui Specifies a pointer to a uba_device structure. This structure
contains such information as the logical unit number of the device,
whether the device is functional, the bus number the device resides
on, the address of the control/status registers, and so forth. See
Section 5.1.6 for more information on this structure.

addrl Specifies the System Virtual Address (SVA) for the device. This
SVA corresponds to the first CSR address that you specified for the
device in the system configuration file.

addr2 Specifies the System Virtual Address (SVA) for the onboard
memory. This SVA corresponds to the second CSR address, if
present, that you specified in the system configuration file. If you did
not specify a second CSR address, the value of this argument is zero

0).

See Section 9.1.3.3 for information on how to specify the first and second CSR
addresses in the system configuration file.

Slave Routine Interface for TURBOchannel Driver — For TURBOchannel
device drivers, the interface to the slawve routine is expressed in the following
function definition:

turboslave(ui, reg)
struct uba_device*ui;
caddr_t reg;

ui Specifies a pointer to a uba_device structure. This structure
contains such information as the logical unit number of the device,
whether the device is functional, the bus number the device resides
on, the address of the control/status registers, and so forth. See
Section 5.1.6 for more information on this structure.

reg Specifies the System Virtual Address (SVA) control/status registers
for the device.

4.3.3 The Attach Routine

The attach routine usually performs the tasks necessary in establishing
communication with the actual device. At boot time, this routine is called by the
autoconfiguration code under the following conditions:

e If the device is connected to a controller, the attach routine is called if the
controller’s slave routine returns a nonzero value, indicating that the device
exists.

Structure of an ULTRIX Device Driver 4-7

. If the device is not connected to a controller, the attach routine is called if
the probe routine returns a nonzero value, indicating that the device exists.

The attach routine is passed a uba_device structure for this device.

The tasks performed by the attach routine may include initializing a tape drive,
putting a disk drive on line, or some other similar action. In addition, the attach
routine initializes any global data structures used by the driver. This routine need not
return a value. The interface to the attach routine is the same regardless of the
bus on which the driver operates.

For VMEbus and TURBOchannel device drivers, the interface to the attach
routine is expressed in the following function definition:

anydrvattach(ui)
struct uba_device * ui;

ui Specifies a pointer to a uba_device structure. This structure
contains such information as the logical unit number of the device,
whether the device is functional, the bus number the device resides
on, the address of the control/status registers, and so forth. See
Section 5.1.6 for more information on this structure.

4.4 Open and Close Device Section

The open and close device section applies to both character and block device drivers.
It contains:

e An open routine
e A close routine

You define the entry point for a driver’s open and close routines in the
cdevsw table for character devices and the bdevsw table for block devices. See
Section 9.1.1 for descriptions of the cdevsw and bdevsw tables.

Each of these routines is discussed in the following sections.

4.4.1 The Open Routine

A device driver’s open routine is called when a process opens a special device file
whose major device number serves as an index into either the cdevsw or bdevsw
table. You specify the entry for the driver’s open routine in the cdevsw for
character device drivers and the bdevsw for block device drivers.

A block device driver’s open routine opens a device to prepare it for I/O operations.
This routine usually verifies that the device was identified during autoconfiguration.
For tape devices, this identification may consist of bringing the device on line and
selecting the appropriate density.

A character device driver’s open routine performs similar tasks to those performed
by the block device driver. If the character device provides raw access to a block
device, the open routine is usually the same. Almost all character device drivers
provide an open routine; however, some block devices do not require this routine.
For terminal devices, the open routine may block waiting for the necessary modem
signals, for example, carrier detect.

Other tasks performed by the open routine for a block or a character device driver
are to:

4-8 Structure of an ULTRIX Device Driver

e Determine the logical unit number from the minor device number
¢ Check that the logical unit number is that of a valid device that is functional.

¢ Check the state of the device or the flag argument if the device is to be an
exclusive open, that is, nonblocking open, read-only, or write-only

e Start any device bookkeeping activities, for example, by setting any software
flags and state variables

The return status of the open routine will eventually be the return status from the
open system call. The interface to the open routine is the same regardless of the
bus on which the driver operates. For VMEbus and TURBOchannel device drivers,
the interface to the open routine is expressed in the following function definition:

int anydrvopen(dev, flag)

dev_t dev;

int flag;

dev Specifies the major and minor device numbers for this device. The

minor device number is used to determine the logical unit number for
the device that is to be opened.

flag Specifies the access mode of the device. The access modes are
represented by flag constants defined in /usr/sys/h/£file.h.
The following describes some flag constants that you can pass to this

argument:
Value Meaning
O_RDONLY The device is open for reading.
O_RDWR The device is open for reading and writing.
O_WRONLY The device is open for writing.

4.4.2 The Close Routine

A device driver’s close routine is called when the last file descriptor that is open
and associated with this device is closed via the close system call. A block device
driver’s close routine closes a device that was previously opened by the open
routine. This routine is called only after making the final open reference to the
device.

A character device driver’s close routine performs similar tasks to those performed
by the block device driver. If the character device provides raw access to a block
device, the close routine is usually the same. Almost all character device drivers
provide a close routine; however, some block devices do not require this routine.

Other tasks performed by the close routine for a block or a character device driver
are to:

e Determine the logical unit number for this device from the minor device number
e Turn off interrupts for the device
¢ (Clean up the software state and flag

Structure of an ULTRIX Device Driver 4-9

The interface to the close routine is the same regardless of the bus on which the
driver operates. For VMEbus and TURBOchannel device drivers, the interface to the
close routine is expressed in the following function definition:

anydrvclose(dev, flag)

dev_t dev;

int flag;

dev Specifies the major and minor device numbers for this device. The
minor device number is used to determine the logical unit number for
the device that is to be closed.

flag Specifies the access mode of the device. The access modes are

represented by flag constants defined in /usr/sys/h/file.h.
Typically, the close routine does not use this argument.

4.5 Read and Write Device Section

The read and write device section applies only to character device drivers. This
section contains:

U A read routine
U A write routine

You define the entry point for a character driver’s read and write routines in the
cdevsw table. See Section 9.1.1 for a description of the cdevsw table.

Each of these routines is discussed in the following sections.

4.5.1 The Read Routine

A character device driver’s read routine is called from the 1/O system as the result
of a read system call. The driver’s read routine reads data from a device. If
there is no data available, the read routine puts the calling process to sleep until
data is available. If data is available, read copies it from the private kernel buffer
to the user’s process using the uiomove kernel routine.

In the case of raw block devices, the read routine calls the physio kernel
routine, passing to it the device-specific parameters. For terminal-oriented devices,
the driver passes the read request to the generic terminal interface read routine.

The read routine returns an error number to the process’s read system call if
there was a failure. Otherwise, it returns the number of bytes actually read.

The interface to the read routine is the same regardless of the bus on which the
driver operates. For VMEbus and TURBOchannel device drivers, the interface to the
read routine is expressed in the following function definition:

int anydrvread(dev, uio)
dev_t dev;
struct uio * wuio;

dev Specifies the major and minor device numbers for this device. The

minor device number is used to determine the logical unit number for
the device on which the read operation will be performed.

4-10 Structure of an ULTRIX Device Driver

uio Specifies a pointer to a uio structure. This structure contains the
information for transferring data to and from the address space of the
user’s process. You typically pass this structure unchanged to the
uiomove or physio routines. See Section 5.1.3 for information
on the uio structure.

4.5.2 The Write Routine

A character device driver’s write routine is called from the I/O system as the
result of a write system call. A character device driver’s write routine checks
the software state of the device to determine if the device is in a state that permits the
write operation. If not, write places the device into a writable state and writes
data to the device. (Note that read/write permission is checked at the file system
level, not in the device driver.)

If necessary, write allocates a private kernel buffer. It copies the data of the user
process into the private kernel buffer using the uiomove kernel routine. It then sets
up the software state of the device for the current output transfer and starts the
hardware transferring the data. Following this, write puts the process to sleep and
awakes it after all of the data in the current transfer has been sent to the device.

If the device is a raw block device, the write routine calls the physio kernel
routine to accomplish the write. For terminal-oriented devices, the device driver
passes the write request to the generic terminal interface write routine.

The write routine returns an error number to the process’s write system call if
there was a failure. Otherwise, it returns the number of bytes actually written.

The interface to the write routine is the same regardless of the bus on which the
driver operates. For VMEbus and TURBOchannel device drivers, the interface to the
write routine is expressed in the following function definition:

int anydrvwrite(dev, uio)
dev_t dev;
struct uio * uio;

dev Specifies the major and minor device numbers for this device. The
minor device number is used to determine the logical unit number for
the device on which the write operation will be performed.

uio Specifies a pointer to a uio structure. This structure contains the
information for transferring data to and from the address space of the
user’s process. You typically pass this structure unchanged to the
uiomove or physio routines. See Section 5.1.3 for information
on the uio structure.

4.6 ioctl Section

The ioctl section applies to both character and block device drivers. This section
contains an ioctl routine, which is a general purpose device control routine. This
routine typically performs all device-related operations other than read or write
operations. A device driver’s ioctl routine is called as a result of an ioctl
system call. Only those ioctl commands that are device-specific or that require action
on the part of the device driver result in a call to the driver’s ioctl routine.

You define the entry point for the driver’s ioctl routine in the cdevsw for
character device drivers and the bdevsw for block device drivers. See Section 9.1.1

Structure of an ULTRIX Device Driver 4-11

for a description of the cdevsw and bdevsw tables.
Some of the device-related operations performed by the ioctl routine are to:
¢ Return device attributes and parameters in response to queries by user programs

In general, all device drivers have an ioctl routine that identifies the device
type, controller name, and other related parameters. For example, user
programs may request information about disks, in which case the ioctl
routine returns disk geometry information. For user program requests about’
terminal devices, the ioctl routine might return the current values of the
terminal line attributes. User program requests about tape drives, on the other
hand, can result in the return of such attributes as tape density. For more
information, see devio in the Reference Pages Section 4: Special Files.

. Return the status of a device

The device status for a tape drive, for example, might consist of the tape mark
encountered, end of media encountered, positioning at the bottom of the tape,
device is write protected, and so forth.

* Allow for the setting of device-related parameters

The device settings for a terminal device, for example, may consist of baud rate,
parity, and so forth. For disk drives, the partition-related information may be
specified by the ioctl interface. For tape drives, the ioctl routine performs
tape repositioning commands, such as rewinding and forward or backward
skipping of tape marks and tape records.

The ioctl routine returns an error number if there was a failure; otherwise, it
returns zero (0). This is the return value of the process’s ioctl system call.

The interface to the ioctl routine is the same regardless of the bus on which the
driver operates. For VMEbus and TURBOchannel device drivers, the interface to the
ioctl routine is expressed in the following function definition:

int anydrvioctl(dev, cmd, data, flag)

dev_t dev;

int cmd;

caddr_t data;

int flag;

dev Specifies the major and minor device numbers for this device. The
minor device number is used to determine the logical unit number for
the device on which the ioctl operation will be performed.

cmd Specifies the ioctl command as specified in
/usr/sys/h/ioctl.h or in another include file defined by the
device driver writer. Many ioctl commands are handled by the I/O
system and do not result in a call to the device driver’s ioctl
routine. However, when some commands require a device-specific
action, this information is passed to the driver’s ioctl routine.
One of the values you can pass to this argument is DEVIOCGET.
For information on the DEVIOCGET ioctl request, see Appendix B.

data Specifies a pointer to ioctl command-specific data that is to be passed

to the device driver, or filled in by the device driver. The particular
ioctl command implicitly determines the action to be taken. The size
of this data cannot exceed 128 bytes.

4-12 Structure of an ULTRIX Device Driver

This argument is a kernel address. The ioctl system call performs
all the necessary copy in and copy out operations by calling the
copyin and copyout kernel routines.

flag Specifies the access mode of the device. The access modes are
represented by flag constants defined in /usr/sys/h/file.h.
The following describes some flag constants that you can pass to this

member:
Value Meaning
O_RDONLY The device is open for reading.
O_RDWR The device is open for reading and writing.
O_WRONLY The device is open for writing.

4.7 Strategy Section

The strategy section applies to both character and block device drivers. This section
contains a strategy routine, which initiates read and write operations. You define
the entry point for a driver’s strategy routine in the cdevsw table for character
devices and in the bdevsw table for block devices. See Section 9.1.1 for
descriptions of the cdevsw and bdevsw tables.

Typically this routine is not called directly from user-level programs; instead, the
routine is called from different routines within the kernel. For the block driver, it is
the strategy routine that implements the concept of disk partitions. Disk
partitions involve subdividing the physical disk into smaller logical disk partitions.
Through the use of partition tables that define partition boundaries, the strategy
routine maps read and write requests to the correct disk offset.

The main user of the block device is the file system. File system reads and writes are
usually handled through the kernel routines bread and bwrite. Through these
routines and the routines that they call, the data is read from or written to the data
cache. When the data being read is not present in the data cache, the block device
strategy routine will be called to initiate a data transfer to read in the data from
the disk. When a decision is made to flush the written data out of the data cache to
the disk media, the block driver strategy routine is called to initiate the transfer.

For the character device driver, data transfer operations (reads and writes) are
initiated by the driver’s read and write routines. These routines will call the
strategy routine indirectly to initiate the data transfer operation.

The interface to the strategqgy routine is the same regardless of the bus on which
the driver operates. For VMEbus and TURBOchannel device drivers, the interface to
the strategy routine is expressed in the following function definition:

anydrvstrategy(bp)
struct buf * bp;

bp Specifies a pointer to a buf structure. This structure contains
information such as binary status flags, the major/minor device
numbers, the address of the associated buffer, and so forth. See
Section 5.1.1 for more information on the buf structure.

Structure of an ULTRIX Device Driver 4-13

4.8 Stop Section

The stop section applies only to character device drivers and it contains a stop
routine. The stop routine is used by terminal device drivers to suspend
transmission on a specified line. You define the entry point for a character driver’s
stop routine in the cdevsw table. See Section 9.1.1 for a description of the
cdevsw table.

The stop routine is called when the terminal driver has recognized a stop character
such as AS. There are also specific ioctl calls that request output on a terminal line be
suspended. These ioctl calls result in the general terminal driver interface calling the
associated device driver’s stop routine.

The interface to the stop routine is the same regardless of the bus on which the
driver operates. For VMEbus and TURBOchannel device drivers, the interface to the
stop routine is expressed in the following function definition:

anydrvstop(tp, flag)

struct tty * tp;

int flag;

tp Specifies a pointer to a tty structure. This structure contains

information such as state information about the hardware terminal
line, input and output queues, the line discipline number, and so
forth.

flag Specifies whether the output is to be flushed or suspended. ULTRIX
device drivers do not use this argument. However, the pseudo-
terminal driver does use this field for its own purposes. The
argument is included here for use in your terminal drivers.

4.9 Reset Section

The reset section applies only to character device drivers and it contains a reset
routine. You define the entry point for a character driver’s reset routine in the
cdevsw table. See Section 9.1.1 for a description of the cdevsw table.

The reset routine is used to force a device reset to place the device in a known
state after a bus reset. The bus adapter support routines call the reset routine after
completion of a bus reset.

For a terminal device driver, the reset routine may consist of reenabling interrupts
on all open lines and resetting the line parameters for each open line. Following a
reset of terminal state and line attributes, transmission may resume on the terminal
lines.

The interface to the reset routine is the same regardless of the bus on which the
driver operates. Note, however, that the reset section would not be used by VMEbus
and TURBOchannel device drivers. The interface to the reset routine is expressed
in the following function definition:

anydrvreset(busnum)

int busnum;

busnum Specifies the logical unit number of the bus on which the bus reset
occurred.

4-14 Structure of an ULTRIX Device Driver

4.10 Interrupt Section

The interrupt section applies to both character and block device drivers and it
contains an interrupt routine. You define a driver’s interrupt routine or
routines in the device definitions part of the system configuration file when you
define controllers and devices. The following sections describe the specification of
interrupt routines in the system configuration file:

. Section 9.1.3.3

Describes the controller specification for controllers associated with the
VMEbus

. Section 9.1.3.4

Describes the controller specification for controllers associated with the
TURBOchannel

e Section 9.1.3.5
Describes the device specification for devices that run on the VMEbus
e Section 9.1.3.6

Describes the device specification for devices that run on the TURBOchannel

ULTRIX fields interrupts from devices and dispatches the appropriate device driver
interrupt routine to service the interrupt. Typically, interrupt service routines handle
the transfer of data to and from a device. On output, the interrupt routine may
be called to notify the completion of a Direct Memory Access (DMA) output request.
Similarly on input, the interrupt routine is called when there is input data
available from the device.

The interrupt routine may also be called for device status reporting purposes.
These events may be caused by the generation of device-specific errors. For terminal
devices, the interrupt routine may be called to report transitions of modem
signals.

The interface to the interrupt routine is the same regardless of the bus on which
the driver operates. For VMEbus and TURBOchannel device drivers, the interface to
the interrupt routine is expressed in the following function definition:

anydrvinterrupt(unit)
int unit;
unit Specifies the logical unit number of the controller or device that is

interrupting. You specified this logical unit number in the system
configuration file. This logical unit number is used as an index into
the driver’s data structures to obtain per-device state and information.
See Section 9.1.3.3 for information on how to specify a controller’s
name and logical unit number and the first and second CSR addresses
in the system configuration file. See Section 9.1.3.5 for information
on how to specify a device’s name and logical unit number and the
first and second CSR addresses in the system configuration file.

4.11 Select Section

The select section applies only to character device drivers, and it contains a select
routine. You define the entry point for a character driver’s select routine in the

Structure of an ULTRIX Device Driver 4-15

cdevsw table. See Section 9.1.1 for a description of the cdevsw table.

The select routine determines whether data is available for reading and whether
space is available for writing data. The select system call is most frequently
associated with terminal devices. The select system call is used to determine that
there are characters available in the terminal input queue for reading. This system call
is also used to indicate that there is available space in the terminal’s output queue to
accept bytes to be output to the terminal device. For most terminal device drivers, the
select routine is implemented by the general kernel terminal interface select
routine called ttselect.

For nonterminal type character devices that do not support nbufio, the select
routine is implemented by the kernel routine seltrue, which returns true for any
select request. In this situation, the select routine returns true because all transfers
are synchronous operations and it should always be possible to read and write to the
device.

For nonterminal type character devices that do support nbufio, the select routine
is implemented by the kernel routine asyncsel. This is applicable to disk and
tape drivers. The asyncsel routine returns a value of 1 to indicate that there is a
nonbusy buffer available for reading or writing purposes. If all buffers used for nbufio
are presently busy, the asyncsel routine returns zero (0) to note this busy status.

The interface to the select routine is the same regardless of the bus on which the
driver operates. For VMEbus and TURBOchanne! device drivers, the interface to the
select routine is expressed in the following function definition:

anydrvselect(dev, rwflag)

dev_t dev;

int rwflag;

dev Specifies the major and minor device numbers for this device. The
minor device number is used to determine the logical unit number for
the device on which the select operation will be performed.

rwflag Specifies the read/write flag. You can set the rwflag argument to one
of these constants:

Value Meaning

FREAD Select on input data

FWRITE Select on device being ready to accept more output

4.12 Memory Map Section

The memory map section applies only to character device drivers and it contains an
mmap routine. You define the entry point for a character driver’s mmap routine in
the cdevsw table. See Section 9.1.1 for a description of the cdevsw table.

A device driver’s memory map routine is invoked by the kernel as the result of an
application calling the mmap system call. An application calls mmap to map a
character device’s memory into user address space. The user address space is
inherited on a fork and is unmapped automatically on a process exit or exec. (An
application can also explicitly unmap a previously mapped device memory by calling

4-16 Structure of an ULTRIX Device Driver

4.12.1

412.2

the munmap system call. See the Reference Pages Section 2: System Calls for
descriptions of the mmap and munmap system calls.)

You need to consider the following when writing a memory map routine for your
driver:

e The interface to the memory map routine
e Mapping to nonexistent memory

e Reading from nonexistent memory

e Writing to nonexistent memory

Each of these considerations is discussed in the following sections.

The Memory Map Routine

The interface to the memory map routine is the same regardless of the bus on which
the driver operates. For VMEbus and TURBOchannel device drivers, the interface to
the memory map routine is expressed in the following function definition:

int anydrvmmap(dev, off, prot)

dev_t dev;

off_t off;

int prot;

dev Specifies the major and minor device number for this device. The
minor device number is used to determine the logical unit number for
the character device whose memory is to be mapped.

off Specifies the offset in bytes into the character device’s memory. The
offset must be a valid offset into device memory.

prot Specifies the protection flag for the mapping. The protection flag is
the bitwise inclusive OR of these valid protection flag bits defined in
/usr/sys/h/mman.h:

Value Meaning

PROT_READ Pages can be read

PROT_WRITE Pages can be written

The memory map routine, if successful, returns the page frame number corresponding
to the page at the byte offset specified by the off argument. Otherwise, the memory
map routine returns —1.

Mapping to Nonexistent Memory

Using the memory map interface, a user process can map nonexistent device memory
into its address space. One way this can occur is when the device memory being
mapped does not begin or end on a page boundary, as illustrated in Figure 4-2.

Structure of an ULTRIX Device Driver 4-17

4.12.3

Figure 4-2: Mapping Nonexistent Device Memory

e Page Boundary

S lent len2
\\\ -
PROCESS ADDRESS SPACE DEVICE MEMORY
ZK-0253U-R

The figure shows the following:

e The address space of the calling process where the device memory is to be
mapped.

e The memory for some character device. The lenl symbol represents the number
of bytes the calling process wants to map into its address space. However, the
number of bytes that is actually mapped is represented by the len2 symbol and
includes the shaded area. This shaded area can be nonexistent device memory or
it can belong to another device. The reason that len2 bytes get mapped is that
the requested length (lenl) does not begin and end on a page boundary.

A second way that a user process can map nonexistent device memory into its
address space is by making a single call to the mmap system call to map both CSRs
and device memory. However, if the CSRs and the device memory are not
contiguous, nonexistent memory can be mapped.

Reading from Nonexistent Memory

When a user process initiates a read from nonexistent device memory, the kernel
delivers synchronously to this process a SIGBUS (bus error) signal. The default
action of the SIGBUS signal is to terminate (kill) the process that initiated the read.

4.12.4 Writing to Nonexistent Memory

The way writes to nonexistent memory are dealt with is machine-dependent. On
some hardware architectures, including Digital RISC, a write to I/O space is buffered
by hardware as illustrated in Figure 4-3.

4-18 Structure of an ULTRIX Device Driver

Figure 4-3.: Writes to /O Space on Digital RISC Architecture

CPU |———>»| writebuffer |————| 10 Device

ZK-0254U-R

On such architectures, a write to nonexistent memory has the following
characteristics:

e The hardware generates a bus timeout.
e The bus timeout is asynchronous to the user process initiating the write.

¢ The hardware provides only minimal state information, namely the physical
address at which the timeout occurred.

e The hardware does not provide any information on whether the timeout was
caused by a kernel or user reference.

An ideal policy for dealing with bus timeouts is the following:

e If a timeout is caused by a user reference, the kernel machine check code
locates and kills the process that initiated the write.

e If a timeout is caused by a kernel reference, the kernel machine check code
crashes the processor. A kernel access can arise from the device driver, as
noted.

This policy cannot be implemented because:

e The hardware provides only the physical address at which the timeout occurred.
And, since the physical address can be mapped by more than one process, it is
impossible to determine the exact process that caused the timeout.

* A kernel write cannot be distinguished from a write by a user level process.

Because of these restrictions, ULTRIX uses the following policy. First, an attempt is
made to kill all the processes that map the physical address, not just the process that
caused the timeout. If no such processes are found, the write is assumed to originate
from the kernel, and the kernel machine check code crashes the machine.

Structure of an ULTRIX Device Driver 4-19

Part lll: Data Structures, Kernel Routines, and
Autoconfiguration

Data Structures Used by Device Drivers 5

Data structures are the mechanism used to pass information between the ULTRIX
kernel and device driver routines. Because device drivers written for devices
connected to the VMEbus or TURBOchannel are structured like UNIBUS or Q-bus
drivers, they use some of the same structures. This chapter describes the existing
ULTRIX structures pertinent to VMEbus and TURBOchannel device drivers. In

addition, the chapter describes newly defined structures used exclusively by VMEbus
device drivers.

Specifically, the chapter discusses the following:
e Data structures used by both VMEbus and TURBOchannel device drivers
¢ Data structures used only by VMEbus device drivers

5.1 Data Structures Used by VMEbus and TURBOchannel
Device Drivers
The data structures discussed in this section are used in I/O operations. Any device

driver, including VMEbus and TURBOchannel device drivers, can reference these
structures. The data structures used in I/O are as follows:

. buf
° file
[uio

The section also discusses the following UNIBUS data structures used by VMEbus
and TURBOchannel drivers:

¢ uba driver
®* uba_ctlr

* uba_device

5.1.1 The buf Structure

The buf structures describe arbitrary I/O, but are usually associated with block I/O
and physio. A systemwide pool of buf structures exists for block I/O; however,
many device drivers also include locally defined buf structures. Table 5-1 lists the
members of the buf structure that a device driver can reference.

Table 5-1: Members of the buf Structure Used by Device Drivers

Member Name Data Type

Description

b_flags long

Specifies binary status flags.

b _forw struct buf Specifies a hash chain.

b _back struct buf Specifies a hash chain.

av_forw struct buf Specifies the position on the free list if the
b_flags member is not set to B_BUSY.

av_back struct buf Specifies the position on the free list if the
b_flags member is not set to B_BUSY.

b_bcount long Specifies the size of the requested transfer,
in bytes.

b_error short Specifies that an error occurred on this data
transfer.

b _dev dev_t Specifies the major/minor device number.

b_blkno daddr_t Specifies the block number on the partition
of a disk.

b addr caddr_t Specifies the address of the associated
buffer.

b_resid long Specifies the data (in bytes) not transferred
because of some error.

b _iodone int (*b_iodone) () Specifies the routine called by iodone.

The following explains some of these members in more detail.

b_flags

The b_flags member contains binary status flags. These flags indicate how a
request is to be handled and the current status of the request. The following flags are

applicable to device drivers:

Flag Meaning

B_READ This flag is set if the operation is read and cleared if the
operation is write.

B_DONE This flag is cleared when a request is passed to a driver
strategy routine. The device driver writer must set this
flag when the operation has been completed or aborted.

B_ERROR Specifies that an error occurred on this data transfer.

B_BUSY This flag indicates that the buffer is in use.

B_PHYS This flag indicates that the associated data is in user address
space.

5-2 Data Structures Used by Device Drivers

Flag Meaning

B_WANTED If this flag is set, it indicates that some process is waiting for
this buffer. The device driver should issue a call to the
wakeup kernel routine when the buffer is freed by the
current process, passing the address of the buffer as an
argument to it.

av_forw and av_back

The av_forwand av_back members specify the posmon on the free list if the

b flags member is not set to B _BUSY. If b_flagsissetto B_BUSY, a device
driver can use the av_forw and av_back members for other purposes besides
queueing.

b_error and b_resid

The b_error member specifies that an error occurred on this data transfer. The
b_resid member specifies the data (in bytes) not transferred because of some error.
When a data transfer does not complete the device driver should do the following:

¢ Set the error code in b_error to one of the values defined in
/usr/sys/h/errno.h.

J Set the b_resid member to the number of bytes that could not be transferred.

e Set the flag B_ERROR in the b_flags member.

b_dev
The b_dev member specifies the major/minor device number. Device drivers often
use the minor number to select one unit or drive when several are attached to the
identical controller. You can use the major and minor macros to obtain the
major and minor number. See Appendix B for descriptions of these macros.
b_iodone

The b_iodone member specifies the routine called by iodone. The driver
routine calls the iodone routine when a data transfer completes. The iodone
routine then calls the routine pointed to by the b_iodone member.

5.1.2 The file Structure

There is one file structure for each open file in the system. ULTRIX allocates and
initializes this file structure when a file is opened. Table 5-2 lists the member of
the file structure that a device driver can reference.

Data Structures Used by Device Drivers 5-3

Table 5-2: Member of the file Structure Used by Device Drivers

Member Name Data Type

Description

f flag int

Specifies file descriptors associated with the
open file. These descriptors are represented
by constants defined in
/usr/sys/h/file.h.

5.1.3 The uio Structure

The uio structure describes I/O, either single vector or multiple vectors. Table 5-3
lists the members of the uio structure that a device driver can reference. Typically,
device drivers do not manipulate the members of this structure. However, they are
presented here for the purpose of understanding the uiomove kernel routine, which
operates on the members of the uio structure.

Table 5-3: Members of the uio Structure Used by Device Drivers

Member Name Data Type

Description

uio_iov struct iovec *
uio_iovent int
uio_offset int
uio segflg int
uio_resid int
uio_flag int

Specifies a pointer to the first iovec
structure. The iovec structure has two
members: one that specifies the address of
the segment and the other that specifies the
size of the segment. The system allocates
these iovecs contiguously.

Specifies the number of iovec structures.
Specifies the offset within the file.

Specifies the value that indicates the
segment type. This member can be set to
one of these values: UIO_USERSPACE
(the segment is from the user data space);
UIO_SYSSPACE (the segment is from the
system space); or UIO_USERISPACE (the
segment is from the user I space).

Specifies the number of bytes that still need
to be transferred.

Contains file descriptor flags associated
with the file for this I/O operation. This
member gets set by read and write
system calls according to the corresponding
field in the file descriptor. Possible values
are contained in /usr/sys/h/file.h.

5-4 Data Structures Used by Device Drivers

5.1.4 The uba_driver Structure

The uba_driver structure is used by ULTRIX to probe a device and to tie device
driver code to ULTRIX code. The device driver writer must correctly initialize the
members of this structure in the device driver code. Table 5-4 lists the members of
the uba_driver structure that a device driver can reference.

Table 5-4: Members of the uba_driver Structure Used by Device Drivers

Member Name

Data Type

Description

ud probe

ud_slave

ud_attach

ud_dgo

ud_addr

ud_dname

ud_dinfo

ud_mname

ud_minfo

ud_xclu

int (*ud_probe) ()

int (*ud_slave) ()

int (*ud_attach) ()

int (*ud_dgo) ()

u_short *

char *

struct uba_device **

char *

struct uba_ctlr **

short

Specifies a pointer to the driver’s
probe routine,

Specifies a pointer to a slave
routine located within the device
driver.

Specifies a pointer to an attach
routine located within the device
driver.

Specifies a pointer to a go routine
located within the device driver.
This routine is not used by
VMEDbus and TURBOchannel
device drivers.

Specifies the device’s CSR
address. This member is not used
by VMEbus and TURBOchannel
device drivers.

Specifies the name of the device.

Specifies an array of pointers to
uba_device structures accessed
by this device driver. This array is
indexed with the unit number, as
specified in the ui_unit
member of the uba_device
structure.

Specifies the name of the
controller.

Specifies an array of pointers to
uba_ctlr structures accessed by
this device driver. This array is
indexed with the controller number
as specified in the um_ctlr
member of the uba_ctlr
structure.

Specifies the driver’s need to
exclusively use buffer data paths
(bdps). This member is not used
by VMEbus device drivers.

Data Structures Used by Device Drivers 5-5

Table 5-4: (continued)

Member Name Data Type Description

ud_addrl_size int

ud_addrl_atype int
ud_addr2_size int
ud_addr2_atype int

Specifies the size in bytes of the
first CSR area. This area is
usually the control status register
of the device.

Specifies the address space and
data size of the first CSR area.

Specifies the size in bytes of the
second CSR area. This area is
usually the data area and is used
with devices that have two
separate CSR areas.

Specifies the address space and
data size of the second CSR area.

You can set the ud_addrl_atype and ud_addr2_atype members to the

bitwise inclusive OR of:

¢ One of the nine address space and data size constants

e One of the four byte swapping constants

These constants appear in this table:

Value Meaning

VMEA16D16 Specifies a request for the 16-bit address space and the 16-bit
data size.

VMEA16D32 Specifies a request for the 16-bit address space and the 32-bit
data size.

VMEA24D08 Specifies a request for the 24-bit address space and the 8-bit
data size.

VMEA24D16 Specifies a request for the 24-bit address space and the 16-bit
data size.

VMEA24D32 Specifies a request for the 24-bit address space and the 32-bit
data size.

VMEA32D08 Specifies a request for the 32-bit address space and the 8-bit
data size.

VMEA32D16 Specifies a request for the 32-bit address space and the 16-bit
data size.

VMEA32D32 Specifies a request for the 32-bit address space and the 32-bit

VME_BS_NOSWAP
VME_BS_BYTE
VME_BS_WORD

5-6 Data Structures Used by Device Drivers

data size.
Specifies no byte swapping.
Specifies byte swapping in bytes.

Specifies byte swapping in words.

Value Meaning

VME_BS_LWORD Specifies byte swapping in long words.

You need to declare and initialize a uba_driver structure in your device driver,
so you need to be more familiar with this structure than with other structures
discussed in this chapter. The uba_driver structure declaration is as follows:

struct uba_driver {

int (*ud_probe) () ;
int (*ud_slave) () ;
int (*ud_attach) () ;
int (*ud_dgo) () ;

u_short *ud_addr;

char *ud_dname;

struct uba_device **ud_dinfo;
char *ud_mname;

struct uba_ctlr **ud _minfo;
short ud_xclu;

int ud_addrl_size;

int ud_addrl_atype;

int ud_addr2_size;

int ud_addr2_atype;

}i

The following example shows the declaration of a uba_driver structure for a
VMEDbus device driver:

struct uba_driver xxdriver = {xxprobe, 0, 0, 0, 0, "xx", xxdinfo, "0",
NULL, 0, 0x20, VMEAléDl6, 0,0};

In the example code, the xxdriver structure members are initialized as follows:
e The ud_probe member is initialized to a probe routine called xxprobe.

e The ud_slave, ud_attach, and ud_dgo members are initialized to zero
(0), because this driver does not use any of these routines.

e The ud_addr member is initialized to zero (0), because this member is not
used by VMEDbus device drivers.

The ud_dname member is initialized to the name of the device, which is xx.

The ud_dinfo member is initialized to the name of the pointer to an array of
uba_device structures, which is xxdinfo.

The ud mname member is initialized to zero (0) because there is no controller

for this device.

The ud_minfo member is initialized to NULL, because this device driver
does not reference any information in the uba_ct1lr structures.

Data Structures Used by Device Drivers 5-7

The ud_xclu member is initialized to zero (0), because this member is not
used by VMEDbus device drivers.

The ud_addrl_size member is initialized to the size of the first CSR area,
which is 0x20 bytes.

The ud_addrl_atype member is initialized to the address space and data
size of the first CSR area, which is the constant VMEA16D16. This constant
represents the A16 address space and a 16-bit data size.

The ud_addr2_size is initialized to zero (0), because it is not used by this
device driver,

The ud_addr2_atype is initialized to zero (0), because it is not used by this
device driver.

This example shows the declaration of a uba_driver structure for a
TURBOchannel device driver:

struct uba_driver gacdriver =

{ gqacprobe, 0, gacattach, 0, gacstd, "gac", gacinfo };

In the example code, the gacdriver structure members are initialized as follows:

The ud_probe member is initialized to a probe routine called gacprobe.

The ud_slave member is initialized to zero (0), because this driver does not
use a slave routine.

The ud_attach member is initialized to an attach routine called
gacattach.

The ud_dgo member is initialized to zero (0), because this driver does not use
a go routine.

The ud_addr member is initialized to gacstd, which is an array of type
u_short. The gacstd declaration is as follows:

u_short gacstd []={0}:

This declaration indicates that the field must be filled in with the address of an
array. The array has just one zero entry to indicate that this member is not
used.

The ud_dname member is initialized to the name of the device, which is
gac.

The ud_dinfo member is initialized to the name of the uba_ device
structure declared in this device driver, which is gacinfo.

5-8 Data Structures Used by Device Drivers

5.1.5 The uba_ctlr Structure

The uba_ctlr structure contains members that store hardware resources
information and commands for communication between ULTRIX and the device
driver. The following describes characteristics of the uba_ct1r structure pertinent
to device driver writers:

e Each uba_ctlr structure contains a back pointer to a bus header structure.
For the VMEDbus, the bus header structure is vba_hd.

e Each uba_ctlr structure contains at least one System Virtual Address (SVA)
of the device CSRs in onboard memory.

Table 5-5 lists the members of the uba_ct1r structure that a device driver can
reference. Note that config generates the values for members from um_driver
to um_ivnum from information provided in the system configuration file.

Table 5-5: Members of the uba_ctir Structure Used by Device Drivers

Member Name

Data Type

Description

um_driver
um_ctlrname
um_ctlr
um_adpt
um_nexus
um_rctlr
um_ubanum

um_vbanum

um_alive

um_intr

struct uba_driver *
char *

short

int

short

short

short

short

short

int (**um_intr) ()

Specifies a back pointer to a
uba_driver structure.

Specifies the name of the
controller.

Specifies the controller index into
the device driver, for example, td0.

Specifies the adapter number
(consecutive adapter number).

Specifies the nexus on the I/O bus
that the controller is on.

Specifies the remote controller
number.

Specifies the uba number the
controller is on.

Specifies the VMEbus adapter
number as specified in the system
configuration file. For example, a
VMEbus entry would have these
specifications: vba0, vbal, vba2,
and so forth. (Note that this
member stores only the VMEbus
adapter number.)

Specifies whether the controller
exists. The value 1 indicates the
controller exists and the value zero
(0) indicates the controller does
not exist.

Specifies an array of interrupt
handlers. These interrupt handlers
are called when the device
generates interrupts.

Data Structures Used by Device Drivers 5~9

Table 5-5: (continued)

Member Name

Data Type

Description

um_addr

um_addr2

um_bus_priority

um_ivnum

um_priority

um_physaddr

um_hd
um_vbahd
um_ubinfo

um_tab

caddr_t

caddr_t

int

int

int

caddr_t

struct uba_hd *
struct vba_hd *
int

struct buf

Specifies the System Virtual
Address (SVA) corresponding to
the CSR specified in the system
configuration file.

Specifies the System Virtual
Address (SVA) corresponding to
the second CSR specified in the
system configuration file.

Specifies the configured VMEbus
priority level of the device.

Specifies the first configured
VMEDbus device interrupt vector
number for this device.

Specifies the main bus request
level of the VMEDbus device.
Device drivers use this member for
synchronizing (through the splx
kernel routine) to the
corresponding VMEDbus devices
and in blocking out interrupts.

Specifies the physical address of
the device in I/O space. This
member corresponds to the
member that stores the SVA,
um_addr.

Specifies a back pointer to a
uba_hd structure.

Specifies a back pointer to a
vba_hd structure.

Saves the UNIBUS or VMEbus
mapping register information.

Specifies a buf structure used as
a queue of devices for this
controller and a queue for pending
transfers.

5.1.6 The uba_device Structure

The uba_device structure has the following characteristics pertinent to device

driver writers:

® Thereis one uba_device structure for each data device. The device can be
a slave or a pure device.

e FEach uba_device structure contains back pointers to uba_hd,
uba_ctlr, uba_driver, and vba_hd (for VMEDbus) structures.

e Each uba_device structure contains at least one System Virtual Address
(SVA) and physical address of the device CSRs.

5-10 Data Structures Used by Device Drivers

Note that config generates the values for members from ui_driver to
ui_ivnum from information provided in the system configuration file.

Table 5-6 lists the members of the uba_device structure that a device driver can

reference.

Table 5-6: Members of the uba_device Structure Used by Device

Member Name

Data Type

Description

ui_driver

ui_devname

ui_unit
ui_adpt

ul_nexus

ui_rctlr
ui_ubanum

ui_ vbanum

ui_ctlr

ui_slave

ui_intr

ui_addr

ui_addr2

struct uba_driver *

char *

short
int

short

short
short

short

short

short

int (**ui_intr) ()

caddr_t

caddr_t

Specifies a back pointer to a
uba_driver structure.

Specifies the name of the device.

Specifies the unit number of the
device on the system.

Specifies the adapter number
(consecutive adapter number).

Specifies the nexus on the I/O bus.

Specifies the remote controller
number.

Specifies the uba number the
device is on.

Specifies the VMEDbus adapter
number as specified in the system
configuration file. For example, a
VMEDbus entry would have these
specifications: vba0, vbal, vba2,
and so forth. (Note that this
member stores only the VMEbus
adapter number.)

Specifies the controller number
associated with this device, if it
exists. If it does not exist, this
member contains the value ~1.

Specifies the slave device number
on the controller.

Specifies an array of interrupt
handlers. These interrupt handlers
are called when the device
generates interrupts.

Specifies the System Virtual
Address (SVA) corresponding to
the CSR specified in the system
configuration file.

Specifies the System Virtual
Address (SVA) corresponding to
the second CSR specified in the
system configuration file.

Data Structures Used by Device Drivers 5-11

Table 5-6: (continued)

Member Name Data Type

Description

ui_dk short

ui_flags int

ui_bus_priority int

ui_ivnum int

ui_priority int

ui_alive short

ui_type short

ui_physaddr caddr_t

ui_forw struct uba_device *
ui_mi struct uba_ctlr *
ui_hd struct uba_hd *
ui_vbahd struct vba_hd *

If this member is greater than or
equal to zero (0), then it can be
used as an index into the set of dk
arrays defined in
/usr/sys/h/dk.h. These
arrays are used to hold
performance data displayed by the
iostat command.

Saves the flags from the system
configuration file, if any flags were
specified.

Specifies the configured VMEbus
priority level of the device.

Specifies the first configured
VMEDbus device interrupt vector
number for this device.

Specifies the main bus request
level of the device.

Specifies whether the device exists.

Specifies driver-specific type
information.

Specifies the physical address for
standalone (dump) code.

Specifies a list of devices on a
controller.

Specifies a back pointer to a
uba_ctlr structure. If
connected to the device, this
uba_ctlr structure identifies the
controller.

Specifies a back pointer to a
uba_hd structure.

Specifies a back pointer to a
vba_hd structure.

5.2 VMEbus Data Structures

In addition to the structures discussed previously, the VMEbus device driver writer

must understand these structures:
* vba_hd

. vbadata

The members of these structures pertinent to VMEbus device drivers are discussed in

the following sections.

5-12 Data Structures Used by Device Drivers

5.2.1 The vba_hd Structure

The vba_hd structure holds a pointer to the interrupt vector table for the VMEbus
adapter and the VMEbus adapter’s address in physical and virtual memory. At boot
time, ULTRIX determines which devices are attached to the VMEbus adapters and
fills in the interrupt vectors associated with each device as specified in the system
configuration file. During normal operation, ULTRIX allocates resources and returns
them to the vba_hd structure. Table 5-7 lists the members of the vba_ hd
structure that a VMEDbus device driver can reference.

Table 5-7: Members of the vba_hd Structure Used by Device Drivers

Member Name Data Type

Description

next

vba_type

vbanum

adptnum
vbavirt
vbaphys

pio_base

vbadata
intr_vec
vbavec_page
vba_err

vba_vmewant

struct vba_hd *

int

int

int
caddr_t
caddr_t

caddr_t

struct vbadata *

int (**intr vec) ()
int (**vbavec_page) ()
int (*vba_err) ()
short

Specifies a pointer to the next vba_hd
structure.

Specifies the VMEbus adapter type. For
the DECsystem 5000 Model 200 processor,
this member is set to VBA_3VIA (the
PMABV-AA adapter supported by the
DECsystem 5000 Model 200 processor).

Specifies the VMEbus adapter number as
provided in the system configuration file for
this VMEbus adapter.

Specifies the adapter number (consecutive
adapter number).

Specifies the virtual address of the VMEbus
adapter. '

Specifies the physical address of the
VMEbus adapter.

Specifies the base of PIO mapped space.

Specifies a pointer to a vbadata structure
for this VMEbus adapter.

Specifies the interrupt vector routines for
the DECstation 5000 Model 200 processor.

Specifies the interrupt vector routines for
other processors.

Specifies a pointer to the error routine for
this VMEbus adapter.

Specifies that some process is waiting for
VMEbus mapping resources.

5.2.2 The vbadata Structure

The vbadata structure is used by ULTRIX to customize a variety of VMEbus
parameters. Table 5-8 lists the members of the vbadata structure.

Data Structures Used by Device Drivers 5-13

Table 5-8: Members of the vbadata Structure

Member Name Data Type

Description

vme_brl int
arb to unsigned int
arb_type int
intr_mask int
syscon int
release int
asc int

Specifies the VMEDbus request level for
adapter master cycles.

Specifies the arbitration timeout period.

Specifies the arbitration method, for
example, round-robin arbitration, single
level arbitration, and so forth.

Specifies the interrupt priority levels
handled by the adapter. You can set this
member to the bitwise inclusive OR of the
valid interrupt priority levels to be handled
by this adapter. These are defined in
/usr/sys/data/vba_data.c.

Specifies if the VMEDbus adapter is the
VMEDbus system controller.

Specifies the VMEbus release modes.

Specifies whether the DMA PMRs are
mapped to the first or second gigabyte of
VMEDbus address space.

The members of the vbadata structure are initialized to values that should provide
proper VMEbus operation for most applications. You should be careful about
making any modifications to the initialized values for these members, because not all

adapters support all of these values.

Table 5-9 lists the initialized values for the members of the vbadata structure. If
you need to modify the values for any of these members, see the file

/usr/sys/data/vba_data.c.

Table 5-9: Initialized Values of the vbadata Structure

Value

Description

VME_BR_3

VME_ARBTO_64US

VME_ARB_RR
VME_ALL_ IPL

VME_SYS_CONTROLLER

VME_ROR

5-14 Data Structures Used by Device Drivers

Bus request level for master cycles
is level 3.

Arbitration time out is 64
microseconds.

Arbitration is round robin.

All interrupt levels are handled by
the adapter.

The adapter is a VMEbus
controller.

VMEDbus release mode is release
on request.

Table 5-9: (continued)

Value Description

VME_MAP_LOW The DMA PMR:s for this adapter
are mapped to the first gigabyte in
the VMEbus address space.

Data Structures Used by Device Drivers 5~15

Kernel Routines Used by Device Drivers 6

This chapter describes when and why you would use the kernel routines developed
for use with VMEbus and TURBOchannel device drivers. In addition, the chapter
discusses when and why you would use certain other kernel routines that can be used
by any device driver. The chapter provides brief examples (and references to more
complete examples when they appear in other chapters) to illustrate how to use these
routines in device drivers. For complete descriptions of the definitions and
arguments for these and other kernel routines, see Appendix B.

Specifically, the chapter discusses kernel routines used by:
e VMEbus device drivers
¢ TURBOchannel device drivers

* Any device driver

6.1 Kernel Routines Used by VMEbus Device Drivers

When writing device drivers for the VMEbus, you need to be familiar with the kernel
routines that:

e Allocate VMEbus address space (for DMA)
e Release VMEbus address space (for DMA)
e Obtain the VMEDbus address

e Perform byte swapping operations

e Perform read-modify-write operations

The two kernel routines that allow VMEbus drivers to log errors are discussed in
Chapter 8.

6.1.1 Allocating VMEbus Address Space

Direct Memory Access (DMA) is a mechanism for allowing a peripheral device to
access main memory without the help of the CPU.

In ULTRIX, you can allocate the DMA space and then set up the mapping registers
for DMA transfer by calling the vballoc or the vbasetup routines or both.

The primary difference between the two routines is that vbasetup takes a pointer
to a buf structure as an argument, while vballoc takes an address and the
number of bytes as arguments. You would use vbasetup when a buf structure is
provided to the driver. All file system 1/O and most user I/O occur using a buf
structure. You would use the vballoc routine for driver-initiated I/O, for
example, device command packets. Each of these routines returns a VMEbus address
that is mapped to the buffer. If the requested mapping could not be performed, each
of these routines returns a value of zero (0).

The following code fragments illustrate the similarities and differences between the
call to the two routines:

/***/
/* Code fragment for call to vballoc */

/* Declarations */

#define BUFSIZ 512

unsigned int vmeaddr;
register struct uba_device *devptr;
char buffer[BUFSIZ];

/* Call to vballoc */

vmeaddr = vballoc (devptr->ui_vbahd [:
buffer, BUFSIZ,
VME_DMA | VMEA32D32 | VME_BS_NOswap, [3]
0):

.
/***/

/* Code fragment for call to vbasetup */

/* Declarations */

struct buf *bp;

unsigned int vmeaddr;

register struct uba_device *devptr;

/* Call to vbasetup */

vmeaddr = vbasetup (devptr—>ui_vbahd,l:
bp,
VME_DMA | VMEA32D32 | VME_BS_NOSWAP, [3]
0);

4] The code fragments show that both routines take as the first argument a back
pointer to the vba_hd structure associated with this device. Note that the
back pointer is accessed through the ui_vbahd member of devptr, which
is a pointer to a uba_device structure.

@ The second argument passed to vballoc is an argument (buffer) that
represents the beginning virtual address of the buffer to be mapped. In
addition, a third argument (BUFSIZ) that specifies the byte count (size) of this
buffer is passed.

6—2 Kernel Routines Used by Device Drivers

For vbasetup, the second argument is a pointer to a buf structure.

B Both routines pass the bitwise inclusive OR of the valid VMEbus flags bits:
vballoc passes the bits as the fourth argument and vbasetup passes the
bits as the third argument.

Some devices may want to perform DMA operations with another VMEbus
device. To manage the addresses used for these DMA operations, you can set
the flags bits argument for the vbasetup and vballoc routines to
VME_RESERV. This value reserves space in the VMEbus 1/O space (the A16
I/O space). The VMEbus address returned will be used in the VMEbus 1/0
space for the specified VMEbus address space.

4 Both routines pass a value to indicate some address in the VMEbus address
space: vballoc passes this value as the fifth argument and vbasetup
passes the value as the fourth argument. In the code frgaments, the value
passed is zero (0), which indicates that these routines use the next available
VMEDbus address in the A24 or A32 DMA space. It is possible to pass a
nonzero value, in which case these routines attempt to map the buffer to the
requested VMEbus address.

See Section 10.2.6 for a more detailed example of how to call the vbasetup
routine in a DMA driver.

6.1.2 Releasing VMEbus Address Space

To release the VMEbus address space allocated in a previous call to vballoc or
vbasetup, use vbarelse. This routine releases the resources (map registers)
used to map the specified VMEDbus address.

The only situation in which you would not release the resources is when the memory
needs to be mapped for an extended length of time (for example, common data
structures). The following code fragment illustrates a call to vbarelse based on
the code fragments presented in the previous section for vballoc and

vbasetup:
/******************************‘k************************************/

/* Code fragment for call to vbarelse */

vbarelse (devptr->ui_vbahd, vmeaddr); []

[The first argument is the vba_hd structure on which the map registers were
allocated in a previous call to vballoc or vbasetup.

The second argument is the VMEbus address that was mapped to the specified
buffer. This address was returned in a previous call to vballoc or
vbasetup.

6.1.3 Obtaining the VMEbus Address

There are situations when your device driver may need to know the VMEbus address
that corresponds to the System Virtual Address (SVA) that was passed to the driver’s
probe routine. To retrieve this address, you call the vba_get vmeaddr routine.
Typically, you call this routine to retrieve the VMEbus address used in device-to-

Kernel Routines Used by Device Drivers 6-3

device DMA. The following code fragment illustrates a call to
vba_get_vmeaddr:

/***/
/* Code fragment for call to vba_get_vmeaddr */

caddr_t vmeaddr;

u_long addr;

register struct uba_device *devptr;
addr = devptr->ui_addr;

vmeaddr = vba_get_vmeaddr (devptr->ui vbahd,[]
addr) ;

[{] The first argument to vba_get vmeaddr is a back pointer to a vba_hd
structure. The back pointer is accessed through the ui_vbahd member of the
uba_device structure pointed to by devptr.

2 The second argument is the SVA for the device. This argument is set to the
value stored in the ui_addr member of the uba_device structure
associated with this device. In addition, the ui_addr2 member of the
uba_device structure associated with this device would have been used if the
driver wanted the second CSR space.

6.1.4 Performing Byte Swapping Operations

The VMEbus does not specify any particular byte ordering. Because most devices
use the big endian model and the Digital model is little endian, the following kernel
routines are provided for drivers to perform byte swapping operations:

* swap_lw_bytes

Performs a long word byte swap
* swap_word bytes

Performs a short word byte swap
® swap_words

Performs a word byte swap

Figure 6-1 illustrates a 32-bit (4 bytes) quantity that the following code fragments
will swap.

6-4 Kernel Routines Used by Device Drivers

Figure 6-1: Results of Byte Swapping Routines

1 byte

File Edit Text

4
M
puffert. Oxaabbeedd

swap long word bytes: 0xddecbbaal

Luffer2: Oxaabbeedd

woiters: Oxaabbeedd

ZK-0258U-R

The figure also shows what the 32-bit quantity looks like after calling each of the
byte swapping routines and after executing the printf statements.
/**************‘k**/
/* Code fragment for call to swap_lw_bytes */

unsigned int result;

unsigned int buffer; %
unsigned int *bufpt;

bufpt = &buffer; @
*bufpt = Oxaabbccdd; @

/* Byte swap using swap_lw_bytes */ @
printf("\n bufferl: 0x%$x\n", *bufpt);
result = swap_lw bytes (*bufpt);

printf ("swap long word bytes: 0x%x\n\n",result);

/* Byte swap using swap_word_bytes */

printf ("\n buffer2: 0x%x\n",*bufpt):;
result = swap_word_bytes (*bufpt):
printf (" swap word bytes: 0x%x\n\n",result);

Kernel Routines Used by Device Drivers 6-5

/* Byte swap using swap_words */

printf ("\n buffer3: 0x%x\n", *bufpt) ;
result = swap_words (*bufpt);
printf (" swap words: 0x%x\n\n",result);

swap_word_bytes (buffer);
This line declares a 32-bit (4 bytes) quantity that will be swapped by the byte
swapping routines.

This line declares an argument in which the result of the byte swapping
operation will be stored.

This line declares a pointer to a buffer pointer.
This line initializes the buffer pointer to the address of buffer.
This line initializes the buffer to the 32-bit quantity (aabbccdd).

DoEE N =

The first call to the printf kemnel routine prints the value pointed to by the
bufpt argument. This value is the 32-bit quantity. The swap lw_bytes
routine performs a long word byte swap and returns the result in the result
argument. The second call to the printf statement prints the result of the
byte swap, as illustrated in Figure 6-1. Note that swap_ lw_bytes swaps all
four bytes.

These lines perform the same tasks as those described previously except
swap_word_bytes performs a short word byte swap, as illustrated in Figure
6-1. The figure shows that swap_word_bytes swaps the individual bytes
that make up each byte of the 32-bit quantity.

These lines perform the same tasks as those described previously except
swap_words performs a word byte swap, as illustrated in Figure 6-1. The
figure shows that swap_words swaps the two words.

6.1.5 Performing Read-Modify-Write Operations

There are situations when your device driver may need to perform a read-modify-
write to VME-side memory. The vme_rmw routine is an interlock primitive that
emulates a hardware read-modify-write cycle. You can use it to lock a portion of
memory, read some specified data that resides in that portion of memory, and modify
(write) that portion of memory with new data. The following code fragment
illustrates a call to vme_rmw. The context is a device driver that implements its
own locking scheme on an address space:
/************************k***/

/* Code fragment for call to vme_rmw */

#define DATA_LOCKED -1
#define SUCCESS 0
#define DRIVER_LOCK_MASK 0x00000001

clear_location (vhp, address_p) m
struct vba_hd *vhp;
unsigned int *address_p;

6-6 Kernel Routines Used by Device Drivers

{
int new_data = 0;
int lock_mask = DRIVER LOCK_MASK;
/* Perform a read-modify-write */ []

if vme_rmw (vhp, address_p, new_data, lock_mask,) != 0)
return (DATA LOCKED) ;

else
return (SUCCESS) ;

@ This routine clears a location and returns zero (0) for success. Note that it takes
two arguments: the first a pointer to a vba_hd structure and the second a
pointer to the data to be cleared.

2l The code fragment shows that the first argument to vme rmw is a pointer to
the vba_hd structure associated with this device.

The second argument passed to vme_rmw is a pointer to the data to be
modified.

The third argument is the new data to be written to this memory location.

The fourth argument is a lock mask that specifies which bits to check to
determine if the data is locked.

6.2 Kernel Routines Used by TURBOchannel Device Drivers

When writing device drivers for the TURBOchannel, you need to be familiar with
these kernel routines: tc_enable_optionand tc_disable_option.

The tc_enable_option routine enables a device’s interrupt line to the
processor. A device driver uses this routine only if the device must have its
interrupts enabled during configuration. The ULTRIX kernel automatically enables
the device’s interrupts after configuration, depending on what you specified in the
tc_option data table. See Section 9.3 for instructions on setting the tc option
table so that the kernel enables the device’s interrupts after configuration.

The tc_disable_option routine disables a device’s interrupt line to the
processor. A device driver uses this routine only if the device must have its
interrupts alternately enabled and disabled during configuration or during operation.

The following code fragment illustrates calls to tc_enable option and
tc_disable_option:

/*******************‘k**************-k********************************/

/* Code fragment for calls to tc_enable_option */
/* and tc_disable_option */

extern struct uba_device *cfbinfol[];
int cfb_curs_vsync = 0;
struct uba_device *cfbinfol[l];

Kernel Routines Used by Device Drivers 6~7

case QIOWLCURSOR:
cfb_curs_vsync = 1;
* (cfbp->framebuffer + IREQ OFFSET) = 0;

tc_enable_option(cfbinfo[0]);
while (cfb_curs_vsync)
sleep (&cfb_curs_vsync, TTIPRI):; []
tc_disable_option(cfbinfo[0]);
break;

] This code fragment uses a switch statement whose corresponding case values
represent some task performed by this driver. The code fragment picks up with
the QIOWLCURSOR case value and it illustrates the use of the
tc_enable_optionand tc_disable option routines. The single
argument passed to tc_enable_option is the pointer to the
uba_device structure associated with device unit 0. Device unit 0 is the
device whose interrupt line to the processor is enabled.

2 While the cfb_curs_vsync value is true, the process sleeps.

B] The interrupt line to the processor for device unit 0 is disabled.

6.3 Kernel Routines That Can Be Used by Any Device Driver

When writing device drivers for any bus, including VMEbus and TURBOchannel,
you need to be familiar with the kernel routines that perform these tasks:

e Flushing the processor data cache
* Ensuring a write to I/O space completes

e Obtaining the page frame number (for memory mapping)

6.3.1 Flushing the Data Cache

The bufflush routine flushes the processor data cache. A device driver must
explicitly flush the processor data cache if the device performs DMA-to-host-
memory. The reason for this is that there is no hardware cache coherency mechanism
on some RISC processors. For example, the 5800 systems support hardware cache
coherency, while the DECsystem 5400 and DECsystem 5000 Model 200 systems do
not.

The following code fragment illustrates a call to bufflush:

/*************‘k**‘k**/

/* Code fragment for call to bufflush */

struct buf *bp;

if (bp->b_flags & B_READ) bufflush (bp);

6-8 Kernel Routines Used by Device Drivers

] The argument passed to bufflush is the pointer to the buf structure. In
this fragment, if the result of the bitwise AND operation produces a one
(indicating a read operation), bufflush is called to flush the data cache.

6.3.2 Ensuring a Write to /O Space Completes

The wbflush routine ensures a write to I/O space has completed. Whenever a
device driver writes to I/O space, the write may be intermittently delayed through the
imposition of a hardware-dependent system write buffer. Subsequent reads of that
location will not wait for a delayed write to complete. Either the original or the new
value may be obtained. Subsequent writes of that location may replace the previous
value, either in I/O space or in the system write buffer, if its writing had been
delayed. In this case, the previous value would never have been actually written to
I/O space.

Whether a given write to I/O space is delayed and how long this period is depends
upon the existence of a system write buffer, its size, and its content. In general,
delayed writes are not a problem. Device drivers need not call wbflush except in
the following special situations:

e The write causes a state change in the device, and the change is indicated by a
subsequent device-induced change in the value of the location being written by
the device driver. This situation normally exists only during initialization of
certain devices.

e The value being written is permanently consumed by the act of writing it. This
situation exists only for certain specific devices, including some terminal
devices.

The following code fragment illustrates a call to wbflush:

/***/

/* Code fragment for call to wbflush */

if (reg->csr & ERROR)
{

return(0);

}
reg->csr=0;
wbflush() ;

[{] This code fragment shows that if the result of the bitwise AND operation
produces a nonzero value (that is, the error bit is set), then the value zero (0) is
returned. If the result of the bitwise AND operation is a zero value (that is, the
error bit is not set), then the device’s control status register is set to zero (0) and
the wbflush routine is called to ensure that a write to I/O space completes.

Kernel Routines Used by Device Drivers 6-9

Note that wbflush takes no arguments.

6.3.3 Obtaining the Page Frame Number

When writing a device driver that provides a memory mapping routine, you need to
obtain the page frame number associated with the address of the device. To
accomplish this task, you use the vtokpfnum routine. This routine obtains the
page frame number for the page in the character device’s memory that was mapped to
the kernel virtual address. The following code fragment illustrates a call to
vtokpfnum:

/***/

/* Code fragment for call to vtokpfnum */
register struct sk_reg t *sk_reg;
u_int kpfnum;

vtokpfnum (sk_reg+off); E]

[{] The argument passed to vtokpfnum is the kernel virtual address whose page
frame number is to be returned. This address is the result of the expression
whose operands consist of the pointer to the structure that represents the
device’s registers and the offset into the device’s memory. You pass these
arguments to the driver’s memory map routine.

6-10 Kernel Routines Used by Device Drivers

Device Autoconfiguration 7

Autoconfiguration is the process by which the ULTRIX operating system determines
what hardware devices might be present on the system. This chapter describes
autoconfiguration for devices connected to the VMEbus and TURBOchannel. The
chapter consists of the following:

e Autoconfiguration overview
e Autoconfiguration for VMEbus devices

e Autoconfiguration for TURBOchannel devices

7.1 Autoconfiguration Overview

ULTRIX supports a variety of hardware devices that must be configured during
system startup. It is not possible to configure all of these devices in advance,
because on different systems these devices are present in different numbers, at
different addresses, and in different combinations. To solve this problem, ULTRIX
supports a static configuration procedure and a dynamic configuration procedure.
The static procedure defines the set of hardware devices that might be on the system
and the dynamic procedure identifies the set of hardware devices that are actually
present on the system. This section presents an overview of the dynamic procedure,
which is usually referred to as autoconfiguration. For information on the static
procedure, see the Guide to Conﬁguragion File Maintenance.

In general, the autoconfiguration procedure requires that device drivers supply:
e A probe routine

¢ A slave routine

e An attach routine

The implementation of these (and possibly additional) routines to accomplish the
autoconfiguration procedure can differ, depending on the bus for which the device
driver is being written. The following sections discuss the specifics of
autoconfiguration for devices connected to the VMEbus and the TURBOchannel.

7.2 Autoconfiguration for Devices Connected to the VMEbus
The autoconfiguration procedure for VMEbus devices consists of the following:
e Controller configuration

e Device configuration

7.2.1 Controller Configuration

The controller configuration routine does the following when it is called:

e Calls the adapter code, which maps CSR addresses into VMEbus address space
e Invokes the controller’s probe routine

. Fills in the configuration database controller entry, if the probe routine
detects the presence of a controller

e Prints information about the controller to the console and error log file
* Sets the controller alive bit in the vba_ctlr structure

e Initializes the interrupt vector table

» Initializes the controller priority field

e Searches the configuration database and for each configured slave device on a
controller:

- Calls the controller slave routine

- Sets the device alive bit in the configuration database, if the slave
routine detects a device connected to the controller

- Fills in the configuration database device entry
- Sets the device as alive in the uba_device structure

- Calls the device driver’s attach routine

7.2.2 Device Configuration
The device configuration routine does the following when it is called:
e (Calls the adapter code, which maps the CSR addresses into VMEbus space
e Determines if the device is present
¢ Invokes the device driver’s probe routine

e Fills in the configuration database device entry, if the probe routine detects a
device

e Prints information about the device to the console and error log file
e Initializes the device priority field

e Sets the device as alive in the uba_device structure

e [Initializes the interrupt vector table

U Calls the device driver’s attach routine

7.3 Autoconfiguration for Devices Connected to the
TURBOchannel

Each TURBOchannel device (option module) has the following characteristics, which
are defined in the tc_slot structure:

7-2 Device Autoconfiguration

¢ The name of the I/O module as it appears in read only memory (ROM) on the
device

e The name of the controller or device attached to the TURBOchannel
e The TURBOchannel I/O slot number

e The number of slots occupied by the I/O module

e A pointer to the interrupt routine

e The unit number of the device

e The base physical address of the device

The ULTRIX operating system uses the information contained in the tc_slot
structure to perform the following tasks during autoconfiguration:

¢ Probe TURBOchannel option slots
e Obtain the I/O module’s name
e Map TURBOchannel slot numbers

Following the discussion of these tasks, there is a brief discussion of the
tc_option table and the system configuration file as it affects TURBOchannel
device driver writers. You can find the tc_option table in
/usr/sys/data/tc_option_data.c.

7.4 Probing TURBOchannel Option Slots

During system startup, ULTRIX searches the TURBOchannel address space to
determine which slots actually contain an I/O module. Each TURBOchannel I/O slot
is at a fixed and known physical address. Thus, ULTRIX can search the
TURBOchannel I/O slots by their known physical addresses. If the slot contains an
1/0 module, the driver’s probe routine performs device-specific setup and
initialization that may include forcing the device to interrupt.

Each I/O module must have a ROM with a known format. ULTRIX reads that ROM
to determine the I/O module’s width (that is, the number of slots it occupies) and to
obtain the I/O module’s name.

7.4.1 Obtaining the /0 Module’s Name

After probing the TURBOchannel I/O slots, ULTRIX looks up the module name in
the tc_option data table to obtain the device or controller name as it is specified
in the system configuration file. This is an internal table that maps TURBOchannel
module names to names as they appear in the system configuration file. This internal
table contains a structure entry for each of the TURBOchannel I/O options on the
system. The following example illustrates a sample entry in the system configuration
file:

device gac0 at ibus? vector gacvint

The following example illustrates the corresponding entry in the tc_option data
table:

struct tc_option tc_option [] =
{
/* module driver intr_b4 itr_aft adpt */

Device Autoconfiguration 7-3

/* name name probe attach type config */

J* mmmmee mmmme e mme e e */

{ "PMAG-BA ", "gac", 0, 0, ‘D", 0}, /* QAC */
/*

* Do not delete any table entries above this line or your system

* will not configure properly.

*

* Add any new controllers or devices here.

* Remember, the module name must be blank padded to 8 bytes.

*/

/*
* Do not delete this null entry, which terminates the table or your
* system will not configure properly.
x/
{ ", e } /* Null terminator in the table */
}i

ULTRIX compares the device names found in the I/O slots and the tc_option
table (optional as well as fixed devices) with the names given in the system
configuration file. These device names appear in the ubminit table (an array of
uba_ctlr structures) and the ubdinit table (an array of uba_device
structures). Each entry in the system configuration file specifies the interrupt
routine name for the device. In the previous example, the interrupt routine is called
gacvinit.

The name of the interrupt routine is placed in the ubminit and ubdinit
tables by the configuration program.

For information on how to make an entry in this file, see Section 9.3.

7.4.2 Mapping TURBOchannel Slot Numbers

If ULTRIX matches a device name in the tc_option table with a device name in
the system configuration file, ULTRIX puts an entry in the tc_slot table.

If ULTRIX finds a module name in a module ROM that is not in the tc_option
data table, then the system warns that the device is unknown.

If ULTRIX finds a device name that was not in the system configuration file, that
device will not be configured. That is, it will not have its probe or attach
routines called, and its interrupt line will be disabled.

For properly configured and recognized controllers and devices, the ULTRIX
operating system calls the probe, attach, and slave routines through the
‘‘ibus’’ configuration routines. The ibus configuration routines obtain the names of
the probe, attach, and slave routines from the device driver’s
uba_driver structure.

Adapters are handled in a similar way as devices and controllers. Adapters have an
adapter line in the system configuration file with no interrupt routine name. The
ULTRIX operating system configuration code looks up the adapter module name in
the tc_option data table and obtains the name of the adapter configuration
routine to call. One of the arguments passed to the adapter configuration routine is an
address where that configuration routine places the address of the interrupt handling
routine.

7-4 Device Autoconfiguration

7.4.3 Considerations for TURBOchannel Device Dr_iver Writers

The tc_option table and the system configuration file provide a flexible
mechanism for adding third-party devices and device drivers. This table allows
third-party device driver writers to map additional device names with their associated
names in the system configuration file. Third-party or customer device drivers must
conform to standard ULTRIX operating system conventions. For instance, drivers
must have a uba_driver structure with the name of the device probe routine,
attach routine, device name, and so forth. The qgac, for example, has a
uba_driver structure that looks like this:

struct wuba_driver gacdriver =
{ gacprobe, 0, gacattach, 0, gacstd, "gac", gqgacinfo };

The corresponding entry in the system configuration file looks like this:

device gacO at ibus? vector gacvint

Device Autoconfiguration 7-5

Part IV: Error Handling and Installation

Error Handling 8

The ULTRIX programming environment provides a variety of debugging tools, some
of which are listed in Table 8-1.

Table 8-1: ULTRIX Debugging Tools

Tool Description

ctrace Allows you to watch program flow and to observe changes to
variables

dbx Invokes an interactive debugger

error Inserts error messages from a compiler or language processor

into a source file at the point of error

gcore Creates a core image file of a running process
lint Checks C source files for waste, errors, and nonportable code
trace Traces the system calls made by a command

See the Guide to Languages and Programming for descriptions and examples of each
tool.

This chapter discusses error handling and some topics associated with error handling
for VMEDbus device drivers. Specifically, the chapter discusses the following:

¢ Logging errors associated with the VMEbus
e Testing memory map drivers

¢ Writing text to an output device

You accomplish most of these tasks by calling kernel routines. The chapter provides
brief examples to illustrate how to use these routines in device drivers. For complete
descriptions of the function definitions and argument descriptions for these and other
kerne] routines, see Appendix B.

8.1 Logging Errors Associated with the VMEbus

Error log events are initiated by hardware errors, informational events, the ULTRIX
kernel, or applications. Appropriate information is gathered by the applicable driver,
ULTRIX kernel, or application to form an error log event that is temporarily stored in
the memory resident error log buffer. The error log daemon, elcsd, retrieves those
events and transfers them to an error log file for permanent storage.

The data collection routines responsible for collecting pertinent data that is formed
into an error log event exist in device drivers, the ULTRIX kernel, or an application.
For VMEDbus device drivers, two kernel routines are provided that allow you to log
controller and device error events into the errorlog file. You would use these routines
when you want to record VMEbus-specific error events in the errorlog and later use
the uerf error report formatter to print these error events. For information on the
error logging subsystem and the uerf error report formatter, see the Guide fo the
Error Logger. You can also find reference information on this utility in the
Reference Pages Section 8: Maintenance.

To log controller error events, use the log_vme_ctlr_ error kernel routine. To
log device error events, use the log_vme_device_error kernel routine. Both
routines allocate a message packet that includes the ASCII text supplied by the driver
and the VMEDbus adapter registers. The difference between the routines is that
log_vme_ctlr_error includes controller information in its message packet,
while log_vme_device_error includes device information in its message
packet.

The following lists some of the controller information in the message packet
provided by log _vme_ctlr error:

¢ The controller index into the device driver (stored in the um_ct 1r member of
the uba_ctlr structure)

e The System Virtual Address (SVA) corresponding to the CSR specified in the
system configuration file (stored in the um_addr member of the uba_ctlr
structure)

e The System Virtual Address (SVA) corresponding to the second CSR specified
in the system configuration file (stored in the um_addr2 member of the
uba_ctlr structure)

e VMEDbus adapter information

The following is the device information provided by log_vme_device_error
in its message packet:

e The unit number of the device on the system (stored in the ui_unit member
of the uba_device structure)

e The System Virtual Address (SVA) corresponding to the CSR specified in the
system configuration file (stored in the ui_addr member of the
uba_device structure)

e The System Virtual Address (SVA) corresponding to the second CSR specified
in the system configuration file (stored in the ui_addr2 member of the
uba_device structure)

e VMEbus adapter information

The following code fragments illustrate calls to these routines:

/**‘k********/
/* Code fragment for call to log_vme_ctlr_error */

char driver_text[] = "xx0: device fatal error";
register struct vba_hd *vhp;

register struct uba_ctlr *umptr;
log_vme_ctlr_error (driver_text, vhp, umptr);

8~2 Error Handling

/**k***/

/* Code fragment for call to log vme_device error */

char driver_text[] = "xx0: device fatal error";
register struct vba hd *vhp:

register struct uba_ctlr *umptr;
log_vme_device_error (driver_text, vhp, umptr);[]

[{] The first argument is the ASCII text you want the log vme ctlr error
or log_vme_device_error routine to log. If you do not supply a
message, log_vme_ctlr error supplies this message: NO ERROR
MESSAGE ENTERED BY DRIVER.

The second argument for both routines is the pointer to the vba_hd structure
associated with this controller or device. These routines use the pomter to the
vba_hd structure to determine the VMEbus adapter type and VMEbus adapter
number.

The third argument for log_vme ctlr error is the pointer to the
uba_ctlr structure associated with this controller, while the third argument
for log vme_device_error is the pointer to the uba_device structure
associated with this device.

To obtain all VMEbus adapter and VMEbus controller and device errors from the
error log, type the following:

/etc/uerf -A vba

To obtain all controller and device errors, including VMEbus controller and device
errors, type:

/etc/uerf -r 104

To obtain all adapter errors, including VMEbus adapter errors, type:
/etc/uerf -r 105

8.2 Testing Memory Map Drivers

When debugging memory map device drivers, you may need to change the default
behavior of the kernel when it responds to a write to nonexistent device memory.
(See Section 4.12.2 for a discussion of mapping to nonexistent device memory.) By
default, the kernel tries to locate and kill all processes that used the mmap system
call to map the memory of the device into their address space.

You can change the kernel’s default behavior by specifying the MMAPDRV_DEBUG
option in the options definitions part of the system configuration file. By specifying
this option, you ensure that the compiled kernel does not kill any processes, but
causes the machine to crash. See Section 9.1.3 for a description of the system
configuration file and the parts related to device drivers.

Error Handling 8-3

You would use this option when debugging a device driver to verify that the driver is
correctly accessing the device. If you do not use this option, the kernel assumes that
any write to an invalid address must be generated by a user process. The kernel then
searches for any process that has mapped the area of memory where the invalid
access occurred. If no user process has mapped that memory, the kernel assumes the
request came from the device driver and crashes the system.

8.3 Writing Text to an Output Device

In handling errors, you need to be familiar with the kernel routines that allow you to
print data to some output device. This section briefly describes when and why you
would do this. See Appendix B for the function definitions and additional
descriptions for these routines.

The cprintf routine prints only to the console terminal. You generally call this
routine to report information when there is a problem with the error logging
mechanism or to perform debugging.

The mprintf routine logs all text to the kernel error log file. This usually happens
during hardware failures that are considered soft and corrected.

The uprintf routine prints to the current user’s terminal. This routine guarantees
not to sleep, thereby allowing it to be called by interrupt routines. It does not
perform any space checking, so you do not want to use this routine to print verbose
messages. The uprintf routine does not log messages to the error logger.

The printf routine prints diagnostic information directly on the console terminal,
and it writes ASCII text to the error logger. Because printf is not interrupt
driven, all system activities are suspended when you call it.

8-4 Error Handling

Installing Device Drivers 9

This chapter discusses how to install VMEbus and TURBOchannel device drivers. It
begins with detailed discussions of the system files that you must modify as part of
the driver installation. The chapter includes examples relevant to the VMEbus and
the TURBOchannel. Because the steps for installing VMEbus and TURBOchannel
drivers vary, the chapter discusses how to install each separately.

Specifically, the chapter contains information on:

* Modifying system files associated with device drivers
e Installing VMEbus device drivers

e Installing TURBOchannel device drivers

9.1 Modifying System Files Associated with Device Drivers

To add a device driver, you need to modify the following files used during the
building of an ULTRIX kernel:

e /usr/sys/machine/common/conf.c

¢ /usr/sys/conf/mips/files.mips

e /usr/sys/conf/mips/MACHINE

e / uls ;:/ sys/data/tc_option_data.c (for TURBOchannel device drivers
only

The following sections discuss the parts of these files pertinent to device driver
writers.

9.1.1 The conf.c File

The conf. c file contains two device switch tables called cdevsw and bdevsw.
The device switch tables have the following characteristics:

e They are arrays of structures containing device driver entry points. These entry

points are actually the addresses of the specific routines within the drivers.

¢ They may contain stubs for device driver entry points for devices that do not
exist on a specific machine.

e They contain major device numbers that the kernel uses as indexes into this
array of structures.

9.1.1.1 The cdevsw Table — The cdevsw table contains device driver entry points for
each character mode device supported by the system. In addition, the table can
contain stubs for device driver entry points for character mode devices that do not
exist or for entry points not used by a device driver.

The following example shows the cdevsw structure defined in
/usr/sys/h/conf.h:

struct cdevsw

{

int (*d_open) ()
int (*d_close) ();
int (*d_read) ();
int (*d_write) ();
int (*d_ioctl) ();
int (*d_stop) ();
int (*d_reset) ();
struct tty *d _ttys;
int (*d_select) ()
int (*d_mmap) ()
int (*d_strat) ();
int (d_affinity);

}z

The d_open, d_close, d_read, d_write, d_ioctl,and d_select
members point to device driver routines. For example, a call to the driver from the
kernel read system call on a device calls the driver routine pointed to by d_read
in the appropriate cdevsw entry.

The d_stop member points to a routine used by communication devices.
The d_reset member points to a routine that is used to reset the bus.

The d_ttys member is used by communication devices.

The d_mmap member points to a routine used to perform memory mapping.
The d_strat member points to a strategy routine used for nbufio.

The d_affinity member specifies whether the CPU runs the driver as a
Symmetric Multi-Processing (SMP) driver. The value zero (0) indicates that the
CPU runs this driver as a non-SMP driver. The system treats a nonzero value as a
mask of which CPUs can run the SMP driver. For example:

d_affinity Value Valid CPUs
1 only CPU 0
5 only CPU 0 and CPU 2
Ox11 only CPU 0 and CPU 4
OxffEEEFfEE CPUs 0 — 31

The following example illustrates a sample cdevsw switch table. Note that major
device numbers 25-29 are marked reserved to local sites for character mode devices:

struct cdevsw cdevsw[] =

{
{1lpopen, lpclose, nodev, lpwrite, /*15%/

nodev, nodev, lpreset, 0,

9-2 Installing Device Drivers

seltrue, nodev, 0, 0},

/* 25-29 reserved to local sites */

{gpibopen, gpibclose, gpibread, gpibwrite, /*25%/
gpibioctl, nulldev, nodev, 0,
seltrue, nodev, 0, 0},
{propen, nulldev, nulldev, nulldev, /*75%/
prioctl, nulldev, nulldev, 0,
nodev, nodev, 0, 0},
/* TURBOchannel driver entry */
{gqacopen, qgacclose, gacread, gacwrite, /*76%*/
gacioctl, gacstop, nulldev, 0,
asyncsel, nodev, nodev, 0},

/* VMEbus driver entry */

{skopen, skclose, nodev, nodev, /*77%/
nodev, nodev, nulldev, 0,
asyncsel, skmmap, nulldev, 0},

}s

The example shows that major device number 76 is a TURBOchannel driver with the
following entries:

An open routine called gqacopen and a close routine called gacclose.
A read routine called gacread and a write routine called gacwrite,.
An ioctl routine called qacioctl.

A stop routine called gacstop.

A nulldev entry, which represents the nulldev routine. The nulldev
routine returns zero (0). You should specify nulldev when it is appropriate
for the routine to be called, but the driver has no functionality for this device.
In this example, the reset routine has no functionality for the qac device;
therefore, the nulldev entry is specified.

The value zero (0) to indicate that the gac device does not support the ttys
entry.

A select routine called asyncsel. This driver routine is implemented by the
kemel for nonterminal type character devices that support nbufio.

A nodev entry, which represents the nodev routine. The nodev routine
returns an ENODEV (error, no such device). You should specify nodev when
it is not appropriate to call that routine for a particular driver. In this example,
it is not appropriate to call a memory mapping routine for a qac device;
therefore, the nodev entry is specified.

A nodev entry to indicate that it is not appropriate to call a strategy routine.

The value zero (0) to indicate that the kernel treats this as a non-SMP driver.

The example also illustrates the naming conventions used for device driver routines:

A prefix that represents the name of the driver. For example, gac represents
the name of some device.

Installing Device Drivers 9-3

¢ The name of the routine, for example, read, write, and so forth.

Note that each routine entry in the example corresponds to an appropriate member of
the cdevsw structure. For example, gacopen corresponds to the d_open
member.

9.1.1.2 The bdevsw Table — The bdevsw table contains device driver entry points for
each block mode device supported by the system. In addition, the table can contain
stubs for device driver entry points for block mode devices that do not exist or for
entry points not used by a device driver.

The following example shows the bdevsw structure defined in
/usr/sys/h/conf.h:

struct bdevsw

{

int (*d_open) ()
int (*d_close) ()
int (*d_strategy) ()
int (*d_dump) ()
int (*d_psize) ();
int (*d_flags) ()
int (*d_ioctl) ()
int (d_affinity):

b

The d_open, d_close, d_strategy, d_dump, d_psize,and d_ioctl
members point to device driver routines. For example, a call to the driver from the
kernel open system call on a device calls the driver routine pointed to by d_open
in the appropriate bdevsw entry.

The d_flags member points to a value that describes the type of device driver.
For tape drivers, this value is B_TAPE, which gets set in the b_flags member of
the buf structure. For all other drivers, this member is set to O.

The d_affinity member specifies whether the CPU runs the driver as a
Symmetric Multi-Processing (SMP) driver. The value zero (0) indicates that the
CPU runs this driver as a non-SMP driver. The system treats a nonzero value as a
mask of which CPUs can run the SMP driver. For example:

d_affinity Value Valid CPUs
1 only CPU O
5 only CPU 0 and CPU 2
0x11 only CPU 0 and CPU 4
OxfEfffffff CPUs 0 — 31

The following example illustrates a sample bdevsw switch table:

struct bdevsw bdevsw([] =

{

{ rlopen, nodev, rlstrategy, rldump, /*14%/
rlsize, 0, rlioctl, 0},

9-4 Installing Device Drivers

/* TURBOchannel driver entry */
{rzopen, nulldev, rzstrategy, rzdump, /*21*/
rzsize, 0, rzioctl, 0},

/* VMEbus driver entry */

{xxopen, xxclose, xxstrategy, nodev, /*22%/
nodev, 0, nulldev, 0}, .
}:

The example shows that major device number 22 defines the following entries for a
VMEbus driver:

¢ An open routine called xxopen.

e A close routine called xxclose.

e A strategy routine called xxstrategy.

* A nodev entry, which represents the nodev routine. The nodev routine
returns an ENODEV (error, no such device). You should specify nodev when
it is not appropriate to call that routine for a particular driver.

e A second nodev entry.
e A flags entry that is set to zero (0).

. A nulldev entry, which represents the nulldev routine. The nulldev
routine returns zero (0). You should specify nulldev when it is appropriate
for the routine to be called, but the driver has no functionality for this device.

e The value zero (0) to indicate that the kernel treats this as a non-SMP driver.

9.1.2 The files.mips File
The files.mips file contains lines that indicate:
¢ When the driver is to be loaded in the kernel
e Driver source code location
* Whether the device driver sources are supplied

The following example illustrates a sample files.mips file:

machine/mips/autoconf.c standard device-driver Binary
machine/common/conf.c standard
machine/mips/cons_sw.c standard Binary
machine/mips/kn0l.c optional cpu DS3100 Binary

/* TURBOchannel driver source entry */
io/te/gac.c optional gac device-driver Binary

/* VMEbus driver source entry */
io/vme/xcm.c optional XCcm device-driver Notbinary

Installing Device Drivers 9-5

The file in the example contains:

The location of the source code for the device driver. For example, the source
code for the qac, a TURBOchannel driver, is located in io/tc/gac.c.

The key word standard or the key word optional. The standard key
word indicates that this software module will be included in every kernel. The
key word optional indicates that this software module will be included in
those kernels whose system configuration files have the key string that follows
the key word optional. For example, the module io/tc/gac.c will be
included in those kernels whose system configuration files have the key string
gac.

The key word device-driver, which indicates to the makefile that builds
the kernel what C compiler flags to use when compiling the device driver. This
key word is mandatory for all device driver entries.

The key word Binary or the key word Notbinary. The Binary key
word causes symbolic links to be made in the
/usr/sys/conf/mips/MACHINE directory to existing object modules.
Thatis, 1n -s ../mips/BINARY.mips/filename commands are added to
the makefile. Device drivers supplied by Digital will use the key word
Binary, which means that no driver sources are supplied.

The Notbinary key word causes the config program to include cc as
inline commands to be added to the makefile. Device drivers written by third
party vendors can use either key word, depending on whether they want to
supply the driver sources. This may be particularly applicable to VMEbus and
TURBOchannel drivers. Note that the VMEbus entry in the example specifies
Notbinary, which means that the driver sources will be used to generate the
object file.

9.1.3 The MACHINE File

The MACHINE file (referred to as the system configuration file) identifies all of the
device driver source code that needs to be compiled into the kernel, as well as some
system parameters that influence how the kernel operates. The system configuration
file has these parts:

Global definitions
Options definitions
Makeoptions definitions
System image definitions
Device definitions

Pseudodevice definitions

This section discusses the options definitions and device definitions parts of the
system configuration file as they apply to device drivers written for the VMEbus and
the TURBOchannel. Therefore, it supplements the information contained in the
Guide to Configuration File Maintenance, which discusses each of the listed parts in
detail.

The options definitions part of the system configuration file contains values that
specify optional code to be compiled into the system. However, you can remove any

9-6 Installing Device Drivers

9.1.3.1

of the options if they do not pertain to your site or if your system is short on physical
memory space.

The syntax for the options definitions is:

options optionlist

The following option is useful for debugging new device drivers:
options MMAPDRV_DEBUG

This option allows you to change the default behavior of the kernel when it responds
to a write to nonexistent memory. By default, the kernel tries to locate and kill all
user processes that used the mmap system call to map the failing address into their
address space. If the kernel does not find any such processes, it causes the machine
to crash.

By specifying this option, you ensure that the compiled kernel does not kill any
processes, but only causes the machine to crash. This behavior is desirable when
debugging device drivers, especially drivers that can generate writes to nonexistent
memory. See Section 4.12.2 for more information on mapping to nonexistent
memory.

The device definitions part of the system configuration file contains descriptions of
each current or planned device on the system. That is, these definitions describe such
things as adapter, controller, device, disk, and tape mnemonics and logical unit
numbers. You need to add these definitions for devices that were not on the system at
installation time.

Because the syntax for the definitions varies according to whether the device runs on
the VMEDbus or the TURBOchannel, the discussion of the syntax is divided into the
following sections, each separated into a section on VMEbus and a section on
TURBOchannel:

* Adapter specification

e Controller specification
e Device specification

e Disk specification

e Tape specification

Adapter Specification for VMEbus — The following is the syntax for specifying
the adapter that connects to the VMEbus:

adapter vban at nexus?

adapter Specifies the key word that precedes a system bus mnemonic and its
associated unit number. An adapter identifies a physical connection
to a bus. In this case, the bus is the VMEDbus.

vba Specifies the mnemonic for the VMEbus adapter.
n Specifies the unit number of the adapter.
nexus? Specifies the key word that identifies the nexus. A nexus is the

hardware through which each physical connection to the system bus
is connected. The question mark allows the system to pick the
appropriate nexus.

Installing Device Drivers 9~7

This example shows an adapter entry for the VMEbus:

adapter vbal0 at nexus?

9.1.3.2 Adapter Specification for TURBOchannel — The following is the syntax for
specifying the adapter that connects to the TURBOchannel:

adapter ibusn at nexus?

adapter Specifies the key word that precedes a system bus mnemonic and its
associated unit number. An adapter identifies a physical connection
to a bus. In this case, the system bus is the TURBOchannel.

ibus Specifies the mnemonic for the TURBOchannel adapter.
n Specifies the unit number of the adapter.
nexus? Specifies the key word that identifies the nexus. A nexus is the

hardware through which each physical connection to the system bus
is connected. The question mark allows the system to pick the
appropriate nexus.

This example shows an adapter entry for the TURBOchannel. Each TURBOchannel
slot is configured as an IBUS:

ibus entries for DECstation 5000 Model 200
IO option slots

adapter ibus0 at nexus?
adapter ibusl at nexus?
adapter ibus2 at nexus?
adapter ibus3 at nexus?
adapter ibus4 at nexus?
adapter ibus5 at nexus?
adapter ibusé at nexus?
adapter ibus? at nexus?

9.1.3.3 Controller Specification for VMEbus — The following is the syntax for
specifying a controller definition associated with the VMEbus. (Note that you should
specify the controller entry on one line in the system configuration file.)

controller dev at condev csr addr [csr2 addr2 1 [flags flg val]
priority prilevel vector vec... vec#

controller Specifies the key word that precedes a controller mnemonic and its
associated logical unit number. A controller identifies either a
physical or a logical connection with one or more slaves attached to
it.

dev Specifies the controller’s name and logical unit number. You specify
the controller name with a character mnemonic.

at Specifies the key word that appears after the controller key
word and its associated mnemonic and logical unit number.

condev Specifies the name and logical unit number of the adapter to which
the controller is connected.

csr Specifies the key word that precedes a control status register value
for some device.

9-8 Installing Device Drivers

addr

csr2

addr2

flags

flg_val

priority

prilevel
vector

vec...

vectt

Specifies the address of the control status register for the device. The
address needed here must be in the I/O space of the VMEbus address
space. See Section 2.3.1 for a discussion of the VMEbus address
space.

Specifies the key word that precedes a second control status register
value. Many VMEDbus devices support direct access to both device
registers and to onboard memory. It is likely that the locations for
the device registers and to onboard memory will be in different
VMEbus address spaces. To accommodate this, a csr2 key word
has been added.

Specifies the address of the second control status register area or
onboard memory for the device. The address needed here must be in
the I/O space of the VMEbus address space. See Section 2.3.1 for a
discussion of the VMEbus address space.

Specifies the key word that precedes some value that directs the
system to perform some request.

Specifies the value for the flag. Possible values are decimal numbers
and hexadecimal numbers.

The format of the hexadecimal number is Oxnn, where nn is a
hexadecimal number consisting of digits from O to 9 inclusive and of
the letters a to f inclusive.

Specifies the key word that precedes a VMEbus priority level.

Specifies the VMEbus priority level. Valid VMEbus priority levels
range from 1 to 7 inclusive.

Specifies the key word that precedes the name or names of the
interrupt handlers for a device.

Specifies the name or names of the interrupt handlers for a device.

Specifies the interrupt vector number. Vector numbers can range
from 0x00 to OxFF inclusive. Interrupt vector numbers 0x00 to Ox3F
inclusive are reserved for Digital.

If a device has more than one interrupt handler, the system assigns
each with the next sequential vector number that follows the number
you specify here. For example, if you have two interrupt handlers
and specify 0x40 as the interrupt vector number, the system assigns
the following:

Interrupt Vector Number Interrupt Handler

0x40 xxintrl
Ox41 xxintr2

This example builds on the adapter example by showing you the adapter entry
followed by a controller entry for a device connected to the VMEDbus:

adapter vbal at nexus?
controller td0 at vbaO csr 0x8020 priority 1 vector tdintr 0x45

Installing Device Drivers 9-9

9.1.3.4 Controller Specification for TURBOchannel — The following is the syntax for
specifying a controller definition associated with the TURBOchannel:

controller dev at condev vector vec...

controller

dev

at

condev

vector

vec...

Specifies the key word that precedes a controller mnemonic and its
associated logical unit number. A controller identifies either a
physical or a logical connection with one or more slaves attached to
it.

Specifies the controller’s name and logical unit number. You specify
the controller name with a character mnemonic.

Specifies the key word that appears after the controller key
word and its associated mnemonic and logical unit number.

Specifies the name and logical unit number of the adapter to which
the controller is connected.

Specifies the key word that precedes the name or names of the
interrupt handlers for a device.

Specifies the name or names of the interrupt handlers for a device.

This example builds on the adapter example by showing you the adapter entries
followed by some controller entries for a device connected to the TURBOchannel:

ibus entries for DECstation 5000 Model 200
IO option slots

adapter
adapter
adapter
adapter
adapter
adapter
adapter
adapter
controller
controller
controller
centroller

ibus0 at nexus?
ibusl at nexus?
ibus2 at nexus?
ibus3 at nexus?

ibus4 at nexus?
ibus5 at nexus?
ibus6 at nexus?
ibus? at nexus?
asc0 at ibus? vector ascintr
ascl at ibus? vector ascintr
asc2 at ibus? vector ascintr
asc3 at ibus? vector ascintr

9.1.3.5 Device Specification for VMEbus — The following is the syntax for specifying a

device that runs

on the VMEbus. (You should specify the device entry on one line in

the system configuration file.)

device dev at

condev csr addr [csr2 addr2 1 [flags flg val]

priority prilevel vector vec... vec#

device

dev

at

condev

9-10 Installing Device Drivers

Specifies the key word that precedes a device name and its associated
logical unit number.

Specifies the device’s name and logical unit number. You specify the
device name as a character mnemonic.

Specifies the key word that appears after the device key word and
its associated mnemonic and logical unit number.

Specifies the name and logical unit number of the adapter or
controller to which the device is attached. You specify the adapter or
controller name as a character mnemonic. For the VMEbus, the
adapter mnemonic is vba.

Csr

addr

csr2

addr2

flags

flg_val

priority

prilevel
vector

vec...

vec#

Specifies the key word that precedes a control status register value
for some device.

Specifies the address of the control status register for the device. The
address needed here must be in the I/O space of the VMEbus address
space. See Section 2.3.1 for a discussion of the VMEbus address
space.

Specifies the key word that precedes a second control status register
value. Many VMEbus devices support direct access to both device
registers and to onboard memory. It is likely that the locations for
the device registers and to onboard memory will be in different
VMEDbus address spaces. To accommodate this, a csr2 key word
has been added.

Specifies the address of the second control status register area or
onboard memory for the device. The address needed here must be in
the 1/O space of the VMEbus address space. See Section 2.3.1 for a
discussion of the VMEDbus address space.

Specifies the key word that precedes some value that directs the
system to perform some request.

Specifies the value for the flag. Possible values are decimal numbers
and hexadecimal numbers.

The format of the hexadecimal number is Oxnn, where nn is a
hexadecimal number consisting of digits from O to 9 inclusive and of
the letters a to f inclusive.

Specifies the key word that precedes a VMEDbus priority level.

Specifies the VMEDbus priority level. Valid VMEbus priority levels
range from 1 to 7 inclusive.

Specifies the key word that precedes the name or names of the
interrupt handlers for a device.

Specifies the name or names of the interrupt handlers for a device.

Specifies the interrupt vector number. Vector numbers can range
from 0x00 to OxFF inclusive. Interrupt vector numbers 0x00 to 0x3F
inclusive are reserved for Digital.

If a device has more than one interrupt handler, the system assigns
each with the next sequential vector number that follows the number
you specify here. For example, if you have two interrupt handlers
and specify 0x40 as the interrupt vector number, the system assigns
the following:

Interrupt Vector Number Interrupt Handler

0x40
0x41

xxXintrl
xxintr2

This example builds on the adapter example by showing you the adapter entry
followed by a device entry for a device connected to the VMEDbus:

adapter vbal0 at nexus?
device xcm0 at vbalO csr 0xa000 priority 3 vector xcmintr 0xc8

Installing Device Drivers 9-11

9.1.3.6 Device Specification for TURBOchannel — The following is the syntax for
specifying a device that runs on the TURBOchannel:

device dev at condev vector vec...

device

dev

at

condev

vector

vec...

Specifies the key word that precedes a device name and its associated
logical unit number.

Specifies the device’s name and logical unit number. You specify the
device name as a character mnemonic.

Specifies the key word that appears after the device key word and
its associated mnemonic and logical unit number.

Specifies the name and logical unit number of the adapter or
controller to which the device is attached. You specify the adapter or
controller name as a character mnemonic. For the TURBOchannel,
the adapter mnemonic is ibus.

Specifies the key word that precedes the name or names of the
interrupt handlers for a device.

Specifies the name or names of the interrupt handlers for a device.

This example builds on the adapter example by showing you the adapter entries
followed by a device entry for a device connected to the TURBOchannel:

ibus entries for DECstation 5000 Model 200
IO option slots

adapter
adapter
adapter
adapter
adapter
adapter
adapter
adapter
device

ibus0 at nexus?
ibusl at nexus?
ibus?2 at nexus?
ibus3 at nexus?
ibus4 at nexus?
ibusb at nexus?

ibusé at nexus?
ibus?7 at nexus?
gacO at ibus? vector gqacvint

9.1.3.7 Disk Specification for VMEbus — The following is the syntax for specifying a
disk that runs on the VMEbus:

disk dev at condev drive n

disk

dev

at

condev

drive

9-12 Installing Device Drivers

Specifies the key word that precedes a disk drive name and its logical
unit number.

Specifies the disk drive’s name and logical unit number. You specify
the disk drive name as a character mnemonic.

Specifies the key word that appears after the disk key word and its
associated mnemonic and unit number.

Specifies the name and logical unit number of the controller to which
the disk drive is connected. You specify the controller name as a
character mnemonic.

Specifies the key word that precedes the physical unit number of the
disk drive.

Specifies the physical unit number of the disk drive.

9.1.3.8

9.1.3.9

This example builds on previous examples by showing you the adapter entry,
followed by the controller entry, followed by the disk entry for a device connected to
the VMEbus:

adapter vbal at nexus?
controller td0 at vba0 csr 0x8020 priority 1 vector tdintr 0x45
disk ra0 at tdO drive 0

Disk Specification for TURBOchannel — The following is the syntax for
specifying a disk that runs on the TURBOchannel:

disk dev at condev drive n

disk Specifies the key word that precedes a disk drive name and its logical
unit number.

dev Specifies the disk drive’s name and logical unit number. You specify
the disk drive name as a character mnemonic.

at Specifies the key word that appears after the disk key word and its
associated mnemonic and unit number.

condev Specifies the name and logical unit number of the controller to which
the disk drive is connected. You specify the controller name as a
character mnemonic.

drive Specifies the key word that precedes the physical unit number of the
disk drive.

n Specifies the physical unit number of the disk drive.

This example builds on previous examples by showing you the adapter entries,
followed by the controller entries, followed by the disk entries for a device connected
to the TURBOchannel:

ibus entries for DECstation 5000 Model 200
IO option slots

adapter ibus0 at nexus?

adapter ibusl at nexus?

adapter ibus2 at nexus?

adapter ibus3 at nexus?

adapter ibus4 at nexus?

adapter ibus5 at nexus?

adapter ibus6 at nexus?

adapter ibus?7 at nexus?

controller ascO at ibus? vector ascintr
controller ascl at ibus? vector ascintr
controller asc?2 at ibus? vector ascintr
controller asc3 at ibus? vector ascintr
disk rzQ at asc0O drive 0

disk rzl at ascO drive 1

disk rz2 at ascO drive 2

disk rz3 at ascO drive 3

Tape Specification for VMEbus — The following is the syntax for specifying a
tape that runs on the VMEbus:

tape dev at condev drive n

Installing Device Drivers 9-13

tape Specifies the key word that precedes a tape drive name and its logical
unit number.

dev Specifies the tape drive’s name and logical unit number. You specify
the tape drive name as a character mnemonic.

at Specifies the key word that appears after the tape key word and its
associated name and logical unit number.

condev Specifies the name and logical unit number of the controller to which
the tape drive is connected. You specify the controller name as a
character mnemonic.

drive Specifies the key word that precedes the physical unit number of the
tape drive.
n Specifies the physical unit number of the tape drive.

This example builds on previous examples by showing you the adapter entry
followed by the controller entry followed by the tape drive entry for a device
connected to the VMEbus:
adapter vbal0 at nexus?

control