

c

C'
/

c

o

DECnet-ULTRIX

Programming

May 1990

This manual offers guidelines for application programming in the
DECnet-ULTRIX environment, describes DECnet-ULTRIX
system calls and subroutines, and shows DECnet-ULTRIX data
structures and programming examples.

Supersession/Update Information:

Operating System and Version:

Software Version:

Order Number: AA-EA88D-TE

This is a revised
manual.

ULTRIX V4.0

DECnet-ULTRIX V4.0

AA-EA88D-TE
May 1990

The information in this document is subjectto change without notice and should not be construed as
a commitment by Digital Equipment Corporation. Digital Equipment assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or
copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions
as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013.

Copyright © 1985,1987,1988,1990 by Digital Equipment Corporation
All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

DEC
DECnet

DECUS

PDP
ULTRIX

UNIBUS

UNIX is a registered trademark of AT&T in the USA and other countries.

VAX
VMS

~DmBDmDTM

This manual was produced by Networks and Communications Publications.
c

c

" C
'''',,

c

c

Contents

Preface . vii

Part I

Chapter 1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

Chapter 2

2.1

2.2

2.3

2.4

2.5

Overview

Introduction to the DECnet-ULTRIX Programming Environment

DECnet-ULTRIX Programming Interface

Network Objects .. .

Communication Domains

Sockets .. .

Blocking and Nonblocking Input/Output Modes

Accept-Immediate and Accept-Deferred Modes

Access-Control Information

Proxy Access .. .

Optional Data .. .

Out-of-Band Messages

DECnet-ULTRIX Programming Tools

How the dnet_conn Subroutine Works

How the dnet_eof Subroutine Works

How the DECnet Object Spawner Works

How DECnet-ULTRIX System Calls Work
2.4.1 Using System Calls for Client Programs
2.4.2 Using System Calls for Server Programs

Three Ways to Use DECnet-ULTRIX Programming Tools
2.5.1 Using dneCconn with the DECnet Object Spawner
2.5.2 Using DECnet-ULTRIX System Calls
2.5.3 Combining DECnet-ULTRIX Tools

1-1

1-2

1-2

1-2

1-2

1-3

1-3

1-3

1-4

1-4

2-1

2-2

2-2

2-3
2-3
2-4

2-6
2-6
2-7
2-7

iii

Chapter 3 Programming in the DECnet Domain

3.1 How to Program a Client-Initiated Connection
3.1.1 Choosing a Socket Type for the Client

3.1.1.1 Using dnet_conn
3.1 .1 .2 Using System Calls

3.1.2 Specifying a Node and Server
3.1.2.1 Using dnet_conn
3.1.2.2 Using System Calls

3.1.3 Specifying Access-Control Information
3.1.3.1 Using dnet_conn
3.1.3.2 Using System Calls

3.1.4 Requesting Proxy
3.1.4.1 Using dnet_conn
3.1 .4.2 Using System Calls

3.1 .5 Setting Up Optional Data for the Client .
3.1.5.1 Using dneCconn
3.1 .5.2 Using System Calls

3.2 How to Establish a Connection for the Server
3.2.1 Choosing a Socket Type for the Server

3.2.1 .1 Using the Network Control Program (NCP)
3.2.1.2 Using System Calls

3.2.2 Assigning a Name to Your Server
3.2.2.1 Using the Object Spawner
3.2.2.2 Using System Calls

3.2.3 Selecting Accept-Immediate or Accept-Deferred Modes
3.2.3.1 Using the Object Spawner
3.2.3.2 Using System Calls

3.2.4 Verifying Remote User Access to the Server
3.2.4.1 Using the Object Spawner
3.2.4.2 Using System Calls

3.2.5 Exchanging Optional Data

3.3 Transferring Data After Establishing a Connection
3.3.1 Using Blocking or Nonblocking 1/0
3.3.2 Using Out-of-Band Messages
3.3.3 Detecting Zero-Length Messages

3.4 How to Disconnect a DECnet Connection

Part II Reference

Chapter 4 DECnet-ULTRIX System Calls

4.1 System Call Summary

4.2 On-Line Manual Pages

4.3 Format and Conventions.

iv

3-1
3-1
3-2
3-2
3--3
3--3
3--3

3-5
3-5
3-6
3-7
3-7
3-7
3-8
3-8
3-9

3-10
3-11
3-11
3-11
3-12
3-12
3-12
3-13
3-13
3-13
3-13
3-14
3-14
3-14

3-15
3-15
3-16
3-16

3-17

4-1

4-2

4-2

,/ ." ..

c

4.4 System Call Descriptions
accept (2dn) .. .

c bind (2dn)
close (2dn) .. .
connect (2dn) .. .
getpeername (2dn)
getsockname (2dn)
getsockopt (2dn) and setsockopt (2dn)
listen (2dn) .. .
read (2dn) .. .
recv (2dn)
select (2dn) .. .
send (2dn) .. .
setsockopt (2dn) .. .
shutdown (2dn)
socket (2dn)
write (2dn) .. .

Chapter 5 DECnet-ULTRIX Subroutines

5.1 Subroutine Summary .. .

5.2 On-Line Manual Pages

S.3 Format and Conventions

5.4 Subroutine Descriptions
dnet_addr (3dn)
dnet_conn (3dn) .. .
dnet_eof (3dn) .. .
dnet_getalias (3dn)
dnet_htoa (3dn)
dnet_ntoa (3dn)
dnet_otoa (3dn)
getnodeadd (3dn) .. .
getnodeent (3dn) .. .

c getnodename (3dn) .. .
nerror (3dn)

Appendix A DECnet-ULTRIX Data Structures

A.1 Access-Control Information Data Structure

A.2 DECnet Node Address Data Structure

A.3 Logical Link Information Data Structure

A.4 Optional User Data Structure

A.S Socket Address Data Structure

o

4-3
4-4
4-6
4-8
4-9

4-11
4-13
4-15
4-19
4-20
4-22
4-24
4-26
4-28
4-29
4-30
4-32

5-1

5-2

5-2

5-3
5-4
5-5
5-9

5-10
5-11
5-12
5-13
5-14
5-15
5-17
5-18

A-1

A-1

A-1

A-2

A-2

v

Appendix B DECnet-ULTRIX Programming Examples

B.1 Sample Client Program Using dnet_conn

B.2 Sample Server Program Using the dnet_spawner ,

B.3 Sample Client Program Using System Calls

B.4 Sample Server Program Using System Calls

B.5 Sample Application Gateway Program

Glossary

Index

Tables

vi

2-1
2-2
2-3

3-1
3-2
4-1

5-1

Client Program Calling Sequences

Server Program Calling Sequences.

Methods for Establishing a Client-Server Session .

Socket Types Compared

Object Number Assignments

DECnet-ULTRIX System Calls

DECnet-ULTRIX Subroutines

B-2

B-4

B-6

B-8

B-1 0

2-4

2-5
2-7
3-1

3-12
4-1

5-1

,r~
r

~Jl

c

c

c

o

Preface

The DECnet-ULTRIX product is layered software that runs on an ULTRIX
system. With this software, an ULTRIX system functions as an end node in a
DECnet network. The DECnet-ULTRIX product is an end-node implementation
of Digital Network Architecture (DNA) Phase Iv.

Manual Objectives

Using both tutorial and reference material, this manual show programmers how
to write programs for client and server applications in the DECnet-ULTRIX
environment.

Intended Audience

This manual is for programmers using DECnet-ULTRIX software to write net­
work applications. The manual assumes the following:

• You are familiar with an editor, such as vi or ed.

• You have a working knowledge of the C programming language and experi­
ence writing system or network programs.

• You are familiar with the ULTRIX system, including its naming conventions,
system commands, system calls, and subroutines.

Structure of This Manual

The DECnet-ULTRIX. Programming manual is divided into two parts, five chap­
ters, and two appendixes.

Part I introduces DECnet-ULTRIX programming concepts and guidelines for
application programming in the DECnet-ULTRIX programming environment:

Chapter 1

Chapter 2

Chapter 3

Describes DECnet-ULTRIX programming concepts.

Describes DECnet-ULTRIX programming tools and how they work in
the DECnet-ULTRIX programming environment.

Explains how to write programs for clients and server applications in
the DECnet-ULTRIX programming environment.

vii

Part II contains descriptions and other reference information about the
DECnet-ULTRIX system calls and subroutines:

Chapter 4

Chapter 5

Describes the DECnet-ULTRIX system calls.

Describes the DECnet-ULTRIX subroutines.

The appendixes show DECnet data structures and programming examples.

Appendix A Contains the DECnet-ULTRIX data structures.

Appendix B Contains DECnet-ULTRIX programming examples.

Related Documents

viii

To supplement the DECnet-ULTRIX Programming manual, refer to the following
manuals:

• DECnet-ULTRIX Release Notes

This document contains miscellaneous information and updates not included
in other books in the DECnet-ULTRIX documentation set.

• DECnet-ULTRIX DECnet-Internet Gateway Use and Management

This manual describes the DECnet-Internet Gateway and contains directions
for installing, using, and managing, it.

• DECnet-ULTRIX Network Management

This manual defines the DECnet-ULTRIX network databases and compo­
nents. It describes the Network Control Program (ncp) and how it is used
to configure, monitor, and test your network. Other topics include loopback
testing, event logging, and instructions for displaying network information.

• DECnet-ULTRIX NCP Command Reference

This reference manual describes the ncp commands used for defining, moni­
toring, and testing your network.

• DECnet-ULTRIX Installation Guide

This manual describes procedures for installing a DECnet-ULTRIX node and
testing it for proper operation. This manual also lists the
DECnet-ULTRIX distribution files and the path names to which they are
installed.

• ULTRIX Guide to the Data Link Interface (DLI)

This manual describes procedures for using DLI to write application programs
a t the data link layer.

• ULTRIX Introduction to Network Programming

This manual describes network programming concepts for programming in
the ULTRIX environment.

To obtain a detailed description of DNA, refer to the DECnet Digital Network
Architecture (Phase N), General Description.

c

c

Graphic Conventions

This manual uses the following graphic conventions:

Convention

special

command()

literal

[]

lowercase!
UPPERCASE

example

italics

%

Ikeyl

Meaning

Command options, system calls, subroutines, and data struc­
tures appear in special type.
Cross-references to specific command documentation include
the section number in the reference manual where the com­
mands are documented. For example: See the socket(2dn)
system call. This indicates that you can find the material on
the socket system call in Section 2dn of the reference pages.

Indicates terms that are constant and must be typed just as
they are presented.

Square brackets indicate optional arguments. Do not type the
brackets.

Horizontal ellipsis points indicate that the preceding item can
be repeated one or more times.

NOTE

In examples, vertical ellipsis
points represent either user
input or system input that has
been omitted to emphasize
specific information.

Because DECnet-ULTRIX software is case-sensitive, you
must type all literal input in the case shown. UPPERCASE
is also used for the names of all DECnet nodes, including
DECnet-ULTRIX. nodes. This convention follows DEC net pro­
tocol, which names and recognizes all nodes in UPPERCASE.
However, node names are not case-sensitive and need not be
typed in the case shown.

Indicates an example of system output. System output is in
black type; user input is in red type.

Indicate a variable, for which either you or the system must
specify a value.

The default user prompt in multiuser mode.

The default superuser prompt.

Indicates a key on your keyboard. I cTRukey I represents a
CONTROL key sequence, where you press the CONTROL key
at the same time as the specified key.

Other conventions are as follows:

• All numbers are decimal unless otherwise noted.

• All Ethernet addresses are hexadecimal.

ix

Part I

Overview

c

Ir ""\
~"=/

c

1.1

c

o

Chapter 1

Introduction to the DECnet-ULTRIX Programming
Environment

This chapter introduces some of the DECnet programming concepts on which
the DECnet-ULTRIX programming interface is based. All terms and concepts in
this chapter are presented in the context of the DECnet-ULTRIX programming
environment.

For more infonnation about programming in the ULTRIX environment, see the
ULTRIX Network Programming Guide and the article itA 4.2 BSD Interprocess
Communication Primer," in the ULTRIX Supplementary Documentation, Volume
III.

DECnet-ULTRIX Programming Interface

The DECnet-ULTRIX programming interface lets you write cooperating programs
that exchange data over a DECnet network. The interface provides the following
support:

Client-server communication. This is sometimes called task-to-task
communication. The client application initiates a connection and requests
services from the server application. The server application either accepts or
rejects the request. Client-server communication lets DECnet-ULTRIX Phase
IV applications communicate with remote Phase III and Phase IV DECnet
applications through a socket-level programming interface.

DEC net and TCPIIP coexistence. DECnet protocols and Transmission
Control ProtocollInternet Protocol (TCPIIP) coexist and can share system
resources, including Ethernet and Digital Data Communications Message
Protocol (DDCMP) hardware. You can modify most TCPIIP programs to use
DECnet protocols, or DECnet programs to use TCPIIP protocols. You can use
DECnet and TCPIIP simultaneously on an Ethernet and alternate between
the two protocols on DDCMP point-to-point lines.

File access. Programs on any other DECnet Phase IIIIIV system can access
DECnet-ULTRIX files for sequential reading, writing, directories, or deletion.

Access Control. DECnet-ULTRIX supports two ways for your client
application to gain access to the server: access-control information and proxy.

See Sections 3.1.3 and 3.1.4 for instructions on how to use proxy and
access-control infonnation in a connection request.

Introduction to the DECnet-UL TRIX Programming Environment 1-1

1.2 Network Objects

In the DECnet-ULTRIX programming environment, a network object is a server
application that can be accessed by name or number from other DECnet nodes.
A client application identifies the server application it wants to connect to by
specifying the server's object name or number as part of a connection request.

See the DECnet-ULTRIX NCP Command Reference manual for examples of
network objects.

1.3 Communication Domains

A communication domain is a set of protocols that have common communi­
cation properties. DECnet-ULTRIX. introduces the DECnet domain into the
ULTRIX Interprocess Communication (IPC) environment for applications that
communicate through the DECnet standard protocols.

1.4 Sockets

A socket is an addressable endpoint for communication. The client and server
applications each create a socket that acts as a handle for sending and receiving
data.

Each communication domain supports a different set of socket types. The DECnet
communication domain supports the following socket types for DECnet-ULTRIX
applications:

Sequenced-packet sockets. A sequenced-packet socket supplies a bi­
directional, reliable, ordered, first~in,first~out (FIFO), unduplicated flow of
data.

The socket preserves the record boundaries. A write operation transmits
one message across the connection; a read operation-if it completes
successfully-returns a single, logical message.

Stream sockets. A stream socket also supplies a bidirectional, reliable,
ordered, FIFO, unduplicated flow of data.

Stream sockets provide a byte stream without using message boundaries.
Data supplied as part of a write operation mayor may not transmit a message
across the connection, and a read operation may return data from one or more
data packets. These possibilities depend on system variables unknown to the
program.

1.5 Blocking and Nonblocking Input/Output Modes

Blocking and nonblocking are input/output (1/0) modes that cause a calling
process to either wait (blocked) or not wait (nonblocked) for an 1/0 operation.
Blocking prevents an I/O system call from returning control to a calling procedure
until the operation completes. The nonblocking I/O mode returns control to the
calling procedure immediately with an error message if there are not enough
resources available to complete the operation.

1-2 Introduction to the DECnet-UlTRIX Programming Environment

;//~\

I,..-f

c

1.6

c

1.7

1.8

c

Accept-Immediate and Accept-Deferred Modes

DECnet supports two modes for accepting incoming connections: immediate and
deferred.

Accept-Immediate mode makes it possible for the server program to send
and receive data as soon as the accept caII operation completes. However,
in this mode, the server does not have access to any optional data or
access-control infonnation that may have been supplied with'the connection
request.

Accept-Deferred mode lets the server program store, examine, and process
any access-control infonnation or optional data that is supplied as part of a
connection request. The server must then accept or reject the connection.

As long as the socket is in accept-deferred mode, a server program can
retrieve access-control infonnation or retrieve and return optional data when
a connect is pending; that is, after an accept call has successfully completed,
but before the server accepts or rejects the connection.

Access-Control Information

The DECnet architecture lets the client requesting the connection pass access­
control information to a server application. The server application then uses this
infonnation to determine if access should be granted. This information consists of
three strings: username, password, and account. These are defined as follows:

username

password

account

A name of up to 39 characters assigned to the user on the
server system.

A string of up to 39 characters that you use to gain access to
the user account on the server system.

A string of up to 39 characters that some DECnet systems use
to identify the remote users and their privileges upon logging
in. The server ignores this string if it is not required.

Different servers interpret and use these strings according to their own require­
ments. In many cases, servers compare received access-control information
against the system password file. UsuaIIy, the results of this comparison deter­
mine whether a connection request is accepted and, if it is, what privileges and
quotas are aIIowed.

Proxy Access

In the DECnet domain, proxy access is a method of screening client application
access to the server application without supplying a password.

When the client requests a connection, the node on which the client resides
passes the identity of the client application to the target node on which the server
resides. The supplied name (a log-in name or user ID) of the user initiating the
request for the client must correspond with an entry listed in the target node's
proxy access file.

This procedure is more secure than sending a password over the network.

Introduction to the DECnet'-ULTRIX Programming Environment 1-3

1.9 Optional Data

In the DECnet domain, optional data is a string of up to 16 bytes that clients and
servers can exchange on either a connect or disconnect sequence. This data is
interpreted differently according to the application.

Some application protocols exchange additional identifying information (such as a
protocol version number) at the time of the connection. This information is used
to determine whether a connection request should be accepted. For example,
DECnet Network Management uses optional data to exchange protocol version
numbers before a connection is established. Also, when a socket is disconnected
or a connection request is rejected, the application may use optional data to send
an error message.

1.10 Out-of-Band Messages

An out-of-band message is an unsolicited, high-priority message that one
application sends to another outside of the normal data channel. In most cases, it
informs the receiving application of an unusual or abnormal event in the sending
application.

1-4 Introduction to the DECnet-ULTRIX Programming Environment

c

c

c

c

c

c

Chapter 2

DECnet-ULTRIX Programming Tools

This chapter describes some of the tools for writing DECnet--ULTRIX client and
server applications. It explains how the tools work and recommends methods of
using them in the DECnet--ULTRIX programming environment.

Tools for programming client and server tasks in the DECnet domain include:

• The DECnet library (libdnet.a), which contains subroutines that simplify
many basic programming operations. Two important subroutines included in
this library are:

The dnet_conn subroutine, a routine that establishes a connection to a
specified network object on a remote node.

The dnet_eof subroutine, a routine that tests the state of an established
connection to a remote DECnet application.

NOTE

When you build programs that use these routines, you must specify
-Idnet in the command line or makefile. Versions of the libraries
suitable for use by lint are contained in the unsupported subset.
See the DECnet-ULTRIX Installation manual for the subset name
and location.

• The object spawner, a server program that listens for connection requests on
behalf of all servers that are not actively listening for connection requests.

• System calls used within the DECnet domain to perform network connection
and data transfer functions. Examples of these calls are accept, bind, write,
and close.

2.1 How the dnet conn Subroutine Works

When you use dnet_conn to establish a connection for a client application, the
subroutine performs connection tasks in the following order:

1. Creates a socket in the DECnet domain.

2. Formats access-control information and optional connection data.

3. Issues a connection request to a server application.

4. Returns optional data received from the server if the connection is estab­
lished.

The dnet_conn subroutine accepts the following as input:

• The name of the node to which you connect.

DECnet-ULTRIX Programming Tools 2-1

• The name or number of the server on the node.

• The socket type.

• A buffer for outgoing optional data, and a buffer for incoming optional data.

The dnet_conn subroutine also lets you pass access-control infonnation to the
server by appending it to the node name.

NOTE

The name of the node supplied to dnet_conn may be a node alias as
defined in the .nodes file. Programs that use dnet_conn will prompt
you for a password if you choose to omit the password field in an
access-control string. To provide account security, the password that
you type after the prompt does not echo.

If a connection is established successfully, dnet_conn returns a socket descriptor
that can be used for subsequent read and write operations. If an error is
encountered, dnet_conn returns a -1 value with additional error detail available
in the external variable errno. Use the nerror system call to print out relevant
DECnet error messages.

NOTE

The dnet_conn subroutine no longer returns the ULTRIX diagnostic
message [ECONNABORTED] or [ECONNRESET]. If DECnet is not
installed on the system, the socket request that dnet_conn makes will
fail with the ULTRIX error message [EPROTONOSUPPORT], which is
equivalent to the DECnet error message, "Protocol not supported."

2.2 How the dnet eof Subroutine Works

When you use dnet_eof to test the state of an established connection, the
subroutine performs the following steps:

1. Tests a DECnet socket to determine if an end-of-file (EOF) condition exists.

2. Returns a value of 0 if it determines a connection is in an active state.

3. Returns a nonzero value if it determines that a connection is in an inactive
state.

This subroutine is useful for determining if any data exists for a read operation
and if the socket is connected.

See dnet_eof(3dn) for more information about how to use the dnet_eof subrou­
tine.

2.3 How the OECnet Object Spawner Works

The logic sequence for using the object spawner follows:

1. The object spawner creates a socket in the DECnet domain and listens for
incoming connection requests on behalf of multiple DECnet objects (named
and numbered).

2. When the object spawner receives a request to connect to an object, the
spawner checks the object database to verify that either the server program
or the default object is defined. If neither is found, it rejects the connection.

2-2 DECnet-ULTRIX Programming Tools

(--~ -./"-

c

2.4

2.4.1

c

3. If access-control information is specified with the connection request, the
object spawner verifies the information with the system password file. If the
information is invalid, the connection is rejected. If it is valid, go to step 7.

4. If proxy is requested with the connection request, the object spawner verifies
the proxy request with the system proxy file. If no entry is found, the object
spawner uses the default user associated with the object entry for the server.

5. If access-control information is not specified or proxy is not requested, the
object spawner uses the default user associated with the object entry for the
server.

6. If the default user is specified for the object entry and defined in the system
password file, the connection is accepted. Otherwise, the connection is
rejected.

7. The object spawner redirects standard input and standard output to the
network connection.

8. The object spawner executes the server program after setting up the
environment. The environment is based on information in the password file
entry of the user through which access was granted to the object. In addition,
the setting for the process group is set equal to the process ID, and the group
access list is initialized. Standard error is then redirected to /dev/null.

The logic sequence for server programs using the object spawner depends on the
specified mode of acceptance, as follows:

1. If the accept mode is immediate, the object spawner completes the server
connection. The server program can then exchange data by reading standard
input and writing standard output.

2. If deferred mode was chosen, the connection request must be completed by
the server using either standard input or standard output as the socket
handle. The server program uses the getsockopt and setsockopt calls to
complete the connection, as shown in steps 6 through 8 of the system call
logic sequence described in Section 2.4.1.

How DECnet-ULTRIX System Calls Work

The following sections describe how client and server applications use system
calls to establish a connection, exchange data, and terminate a connection.

Using System Calls for Client Programs

The following list shows how a client application can use system calls to establish
a network connection:

1. To initiate a connection, a client program creates a socket for the connection
by issuing a socket call. This call creates a socket of the specified type in the
DECnet domain. The socket call returns a descriptor for the socket, which is
used for subsequent program requests.

2. To set up access control, use one or both of the following methods:

a. To pass access-control information, issue the setsockopt call on the
descriptor returned from the socket call with the option
DSO_CONACCESS. The structure accessdata_dn, which contains the
data you have specified, is passed as a parameter to the call.

DECnet-ULTRIX Programming Tools 2-3

b. To use proxy access, set the SDF _PROXY bit in the sdnJlags field of the
sockaddr_dn structure before issuing the connect call. If the program is
to be executed with superuser privileges, you may want to bind a name
to be used as the proxy source name to the socket, before issuing the
connect call.

3. To pass optional data, issue setsockopt again with the option
DSO_CONDATA. The structure optdata_dn, which contains the data you
have specified, is passed as. a parameter.

4. A client program issues a connect call to request a connection to a specified
object. If the preceding setsockopt calls were successful, DECnet will use the
data you have supplied when the connect call is issued.

5. The client program can issue a getsockopt call to retrieve incoming optional
data.

6. If the connect call is successful, the program can use the socket to send and
receive data by means of the read and write or recv and send calls.

7. The program can use the getsockopt or setsockopt call to send or receive
optional data with the close call.

8. The close call terminates the connection.

Table 2-1 summarizes the logic sequences for a typical DECnet-ULTRIX client
application using system calls. See Appendix B for programming examples.

Table 2-1: Client Program Calling Sequences

Function

Create a socket for the connection.

Send optional data and/or access-control
information with the connection request.

Define a name for the socket.

Request a connection to a server program.

Retrieve optional data from the server.

Transfer normal data.

Transfer out-of-band data.

System Calls

socket
setsockopt*

bind*
connect
getsockopt *
send
recv
read
write
send ..
recv *

Send or receive optional data with the close call setsockopt*
getsockopt ..

Terminate the connection. close

* Optional.

2.4.2 Using System Calls for Server Programs

The following list describes the logic sequence for a typical DECnet-ULTRIX
server program using system calls to establish a con.nection.

1. The server program creates a socket in the DECnet domain by issuing a
socket call.

2-4 DECnet-ULTRIX Programming Tools

c

C·
,/

c

c

c

2.

3.

4.

5.

The object name or nwnber is stored in the sockaddr_dn structure. The
server issues a bind call to assign the object name or number. (See the
description of the bind call in bind(2dn». .

A server can issue a setsockopt call to set the mode of acceptance to deferred.

A server issues a listen call, which declares that the socket is available for
receiving connection requests directed to the bound name.

An accept call completes when the system receives a connection request.
(Note that an accept call in deferred mode must be issued to receive a
request, but does not actually accept the connection.) If the accept is
successful, a new server socket is created.

NOTE

If you specified accept-immediate mode, you can use the socket
to send and receive data. If you specified accept-deferred mode,
however, you must complete the following steps before attempting
to transfer data.

6. A server issues a getsockopt call to retrieve any access-control information or
optional data that was supplied with the connect call.

7. A server issues a setsockopt call to supply any optional data that it wants to
return to the client program.

S. The server issues a setsockopt call to accept or reject the connection.

9. If the server accepts the connection, the program can use the socket to send
and receive data by means of the read and write or recv and send calls.

10. The program can use the getsockopt or setsockopt call to send or receive
optional data with the close call.

11. The close call terminates the connection.

Table 2-2 summarizes the calling sequences for a typical DECnet-ULTRIX server
application using system calls. See Appendix B for programming examples.

Table 2-2: Server Program Calling Sequences

Function System Calls

Create a socket to listen for connection requests.

Define a name for the socket.

socket
bind

Set the mode of acceptance. The default mode setsockopt ..
is IMMEDIATE, and the other possible mode is
DEFERRED.

Declare the socket available for connection listen
requests.

Block the server program until it receives a accept
connection request.

When in accept-deferred mode, receive optional getsockopt ..
data or access-control information.

When in accept-deferred mode, supply optional setsockopt ..
data, such as the server software version number.

"Optional

(continued on next page)

DECnet-ULTRIX Programming Tools 2-5

Table 2-2 (Cont.): Server Program Calling Sequences

Function System Calls

When in accept-deferred mode, accept or reject setsockopt •
the connection.

Transfer normal data. send
recv
read
write

Transfer out-of-band data. send"
recv"

Send or receive optional data with the close call. setsockopt·
getsockopt •

Terminate the connection. close

"Optional

2.5 Three Ways to Use DECnet-ULTRIX Programming Tools

You can use DECnet-ULTRIX tools to establish a connection between client and
server applications in three ways:

• Let DECnet-ULTRIX. subroutines and the DECnet object spawner handle
programming tasks for you.

• Use system calls to perform the same tasks yourself.

• Combine DECnet-ULTRIX subroutines and DECnet object spawner functions
wi th system call functions.

Mter you have established a connection between the client and server, you can
use system calls and subroutines to perform data transfer tasks and disconnect
the network connection.

2.5.1 Using dnet_conn with the DECnet Object Spawner

You can let the dnet_conn subroutine and the object spawner establish the
connection between the client and server. dnet_conn initiates the connection and
performs connection tasks for the client application. The object spawner performs
connection tasks on behalf of the server.

The object spawner is the recommended tool for server programs because it
provides the following services:

• Eliminates the need for coding connection request processing, including
access-control information and proxy handling, in the server program.

• Reduces the number of idle processes because it listens on behalf of multiple
servers.

See Appendix B for a programming example that shows how you can use dnet_
conn and the object spawner to establish a connection between client and server
applications.

2-6 DECnet-ULTRIX Programming Tools

/ "

c

o

2.5.2 Using DECnet-ULTRIX System Calls

You can use DECnet-ULTRIX system calls to establish a session and accept
connection requests. The system calls can perform all the tasks that dnet_conn
performs for you. They can also give you more programming flexibility by letting
you control each task during the connection process.

See Appendix B for programming examples.

2.5.3 Combining DECnet-ULTRIX Tools

You can combine tools to establish a session. For example, you can use dnet_conn
to initiate a connection request for the client and use the system calls to accept
the request for the server. Also, you can use system calls to initiate a connection
request for the client and let the object spawner accept the request for the server.
Table 2-3 shows four ways to establish a session with DECnet-ULTRIX tools.

Table 2-3: Methods for Establishing a Client-Server Session

Client Application Task

dnet_conn requests a session.

dnet_conn requests a session.

System calls request a session.

System calls request a session.

Server Application Task

DECnet object spawner establishes the con­
nection.

System calls accept or reject the request.

DECnet object spawner accepts the request.

System calls accept or reject the request.

DECnet-ULTRIX Programming Tools 2-7

c

C'

o

3.1

Chapter 3

Programming in the DECnet Domain

This chapter explains procedures for writing DECnet-ULTRIX applications by
using either subroutines or system calls. The following sections explain how to
perform four basic network application programming tasks:

•
•
•
•

Program a client application to initiate a network connection.

Program a server application to respond to a network connection request.

Perform data transfer tasks after establishing a connection.

Disconnect a session between a client and server application.

How to Program a Client-Initiated Connection

'lb initiate a network connection between your client application and a remote
DECnet application, you can use dnet_conn or system calls to:

1. Choose the socket type for the client.

2. Identify the node and server to which the client is attempting to connect.

3. Set up either access-control or proxy for client access to servers.

4. Send and receive optional data.

3.1.1 Choosing a Socket Type for the Client

DECnet supports two socket types: sequenced-packet sockets and stream sockets.
Table 3-1 compares these sockets.

Table 3-1: Socket Types Compared

Sequenced-Packet Socket

Preserves message boundaries

DECnet-VAX. default socket

Not available on TCPIIP

Stream Socket

Does not preserve message boundaries

Commonly used for ULTR1X applications

Available on TCP/IP

When writing applications, use the same socket type as the program you connect
to uses. If a connection uses both types of sockets, the program using the stream
socket:

• Has no control over how much data the sequenced-packet socket will get
when it performs its next read operation.

Programming in the DECnet Domain 3-1

• Does not receive any indication of the record boundary on a read opera tion­
even though the program using the sequenced-packet socket creates a record
boundary with each write operation.

Applications that use message boundaries to interpret data cannot be used in
connections using both stream and sequenced-packet sockets. If you cannot
guarantee that both ends of a connection will use the same socket type, design an
application protocol that does not use record boundaries.

3.1.1.1 Using dnet_conn

To specify the socket type as an argument in dnet_conn, use this format:

s=dnet_conn(node,object, type,)

where

type

EXAMPLE:

is either SOCK_STREAM, if you want to specify a stream socket, or
SOCK_SEQPACKET, if you want to specify a sequenced-packet socket.
If the socket type is set to 0, use the default, SOCK_SEQPACKET.

This example shows a sequenced-packet socket being selected for node NAVAHO
with object 17.

s=dnet_conn(NAVAHO,17,SOCK_SEQPACKET,)

For more information about socket types, see the description in dnet~conn(2dn).

3.1.1.2 Using System Calls

To specify a socket type during a socket call operation, use this format:
s=socket(node, object,type,)

where

type

EXAMPLE:

is either SOCK_STREAM, if you want to indicate a stream socket, or
SOCK_SEQPACKET, if you want to indicate a sequenced-packet socket.

This example shows a sequenced-packet socket being selected for a DECnet node.

s=socket(AF_DECnet,SOCK_SEQPACKET,)

For more information about socket types, see the description in socket{2dn).

3-2 Programming in the DECnet Domain

c

3.1.2 Specifying a Node and Server

C Before your client application can request a connection, you must:

C'
/

c

o

3.1.2.1

1. Identify the node on which the server resides.

You can use a node name (an alphanumeric string of one to six characters) or
node address (an area number from 1 to 63, followed by a period and a node
number from 1 to 1,023).

2. Identify the server you want to connect to.

The client application can specify the server application in one of two ways:

• By a network object name of up to 16 characters.

• By a network object number from 1 to 255.

If the remote object is defined (that is, an object number has been assigned to
the server process-either by Digital or by the user), the object number is the
recommended method for requesting the network service to avoid any conflicts in
naming conventions.

See the DECnet-ULTRIX NCP Command Reference manual for detailed
information on preassigned network object numbers and procedures for defining
network objects in the object database.

Using dnet_conn

To specify a node and server while requesting a connection, use the following
format:
d net_con n(node,object,)

where

node

object

is either the node name or address used to specify the node.

is either the object name or the object number used to specify the
server.

The following examples show you how to use dnet_conn to specify a node and a
server by name and number while establishing a connection.

EXAMPLE 1:

In this example, the client program uses dnet_conn to connect to object number
17 on node NAVAHO.

s=dnet_conn("navaho","#17",)

EXAMPLE 2:

In this example, the client program uses dnet_conn to connect to object xyz on
the node with a DECnet address 55.342.

s=dnet_conn("55.342","xyz",)

3.1.2.2 Using System Calls

To specify the node and server, you must use the sockaddr_dn data structure.

Programming in the DECnet Domain 3-3

EXAMPLE 1:

In this example, the client program connects to server xyz on node 55.342:

tdefine SERVERNAME "xyzu 0
tdefine NODE "55.342"

struct sockaddr_dn sockaddr; ~
struct dn_naddr*node_addr;
int sock;

bzero(&sockaddr, sizeof(sockaddr»;

sockaddr.sdn_family = AF_DECnet; E)

sockaddr.sdn objnamel = strlen(SERVERNAME); C)
strncpy(;ockaddr.sdn_objname,SERVERNAME,

sizeof(sockaddr.sdn_objname»;

node_addr = dnet_addr(NODE); ~

sockaddr.sdn_add = *node_addr;

if (connect (sock, &sockaddr, sizeof(sockaddr» < 0)
{

perror("connect");
exit(l);

COMMENTS:

o Defines the server using a network object name. This name can be up to
16 characters long.

~ The sockaddr_dn data structure is defined in the file Isys/netdnet/dn.h
(see Appendix A).

6) You must specify the AF _DECnet address family.

o These three lines show how the server name is put into the sockaddr_dn
structure.

o If you are using the dnet_addr subroutine to specify a node in the
sockaddr_dn data structure, you must use a node address.

EXAMPLE 2:

This example shows you how to connect to server 17 on node NAVAHO by number.

3-4 Programming in the DECnet Domain

c

c

c

o

3.1.3

def ine SERVERNUMBER 1 7 0
define NODENAME "navaho"

struct sockaddr_dn sockaddri ~
struct nodeent *nodepi
int sock;

bzero(&sockaddr, sizeof(sockaddr}}i

sockaddr. sdn family = AF DECnet; 6)
sockaddr.sdn=objnum = SERVERNUMBERi

nodep = getnodebyname(NODENAME}; C)
bcopy(nodep->n_addr, sockaddr.sdn_nodeaddr, nodep->n_length}; ~
sockaddr.sdn_nodeaddrl = nodep->n_lengthi

if (connect (sock, &sockaddr, sizeof(sockaddr)} < O}
{

perror("connect");
exit(l};

COMMENTS:

o Defines the server using a network object number. This can be any
number from 1 to 255.

8 The sockaddr_dn data structure is defined in the file Isys/netdnet/dn.h
(see Appendix A).

o You must specify the AF _DECnet address family.

e If you are using the getnodebyname subroutine to specify a node in the
sockaddr_dn structure, you must specify a node name.

~ These three lines show how to fill in the node address fields of the
sockaddr_dn data structure.

See Appendix B for more detailed programming examples.

Specifying Access-Control Information

You can use either the dnet_conn subroutine or system calls to specify
access-control information for the client application.

3.1.3.1 Using dnet_conn

To specify access-control information, use the following format:
dnet_conn("node / username[/ password][/ account]")

where

Programming in the DECnet Domain 3-5

node is a string that specifies the node name or address~ followed by the
username ~ password~ and account strings separated by slashes (/).

username is a name of up to 39 characters assigned to the user on the server
system.

password

account

3.1.3.2 Using System Calls

is a string of up to 39 characters that you use to gain access to the user
account on the server system.

is a string of up to 39 characters used by some DECnet systems. The
server ignores this string if it is not required.

1b specify access-control infonnation~ issue a setsockopt call with the
DSO_CONACCESS option. The access-control data is passed in the
accessdata_dn data structure (described in Appendix A). The access-control
information is used when the client issues the connect call.

EXAMPLE:

This example shows a setsockopt call being issued with a DSO_CONACCESS
option in the accessdata_dn structure.

set access control(socket, user, password) ft
int-socket;
char *user, *password;

struct accessdata_dn acc_data;

bzero(&acc_data, sizeof(acc_data»;

acc data.acc userl = strlen(user);
strncpy(acc_data.acc_user, user, acc_data.acc_userl);

acc_data.acc-passl = strlen(password); ~
strncpy(acc_data.acc-pass, password, acc_data.acc-passl);

return (setsockopt (sock, DNPROTO NSP, DSO CONACCESS,
&acc_data, sizeof(acc_data»); -

COMMENTS:

o The lengths of the user name and password are defined in
Isys/netdnet/dn.h.

8 The account string is not used in this example.

NOTE

The setsockopt call must precede the connect call to supply access
information for the connection request.

Mter the client issues a connect call, DECnet flushes any access-control
infonnation previously set with the setsockopt call and the DSO_CONACCESS
option. Therefore, you must specify new access-control data for any subsequent
connection requests that the client issues on the same socket.

3-6 Programming in the DECnet Domain

c

3.1.4

c
3.1.4.1

3.1.4.2

c'

c

c

Requesting Proxy

You can use either the dnet_conn subroutine or system calls to request proxy for
a client application.

Using dnet_conn

The dnet_conn subroutine requests proxy by default. If the default (proxy)
setting is not changed, dnet_conn binds the user's log-in name (converted to
uppercase) to the socket. This bound name is used as the source name for the
outgoing connection only when a program's user ID is set to root or invoked by
the superuser. Otherwise, the ASCII form of the user's ID is used as the source
name for proxy access.

If you do not want dnet_conn to request proxy access at the remote system, set
the external variable, proxy _requested, equal to zero.

EXAMPLE:

In this example, the proxy yequested variable is set to zero.

extern char proxy_requested;
proxy requested=O;

Using System Calls

To request proxy, set the SDF_PROXY bit in the sdnJlags field of the
sockaddr_dn structure before issuing the connect call.

EXAMPLE:

In this example, the client program issues a request for proxy access.

-# define SERVERNAME "xyz"
-# define NODE "55.342"

struct sockaddr dn sockaddr;
struct sockaddr=dn bindaddr;
struct dn naddr *node addr;
char *user_name, *getlogin();
int sock, len, status;

bzero(&sockaddr, sizeof(sockaddr»;
bzero(&bindaddr, sizeof(bindaddr»;

if «(user_name = getlogin(» == NULL) I I (*user_name
user_name = "anonymous";

bindaddr.sdn family = AF DECnet;
len = strlen(user name);-
if (len> sizeof(bindaddr.sdn_objname»

len = sizeof(bindaddr.sdn objname); ..
bindaddr.sdn objnamel = len; -
strncpy(bindiddr.sdn_objname, user_name, len);

NULL))

Programming in the DECnet Domain 3-7

if (bind (sock, &bindaddr, sizeof(bindaddr»)
{

perror ("bind") ;
exit(l);

sockaddr.sdn flags 1= SDF_PROXY; ~
sockaddr.sdn-family = AF_DECnet;
sockaddr.sdn=objnamel = strlen(SERVERNAME);
strcpy(sockaddr.sdn_objname, SERVERNAME);

node_addr = dnet_addr(NODE);

sockaddr.sdn add *node_addr;

status connect (sock, &sockaddr, sizeof(sockaddr»;

COMMENTS:

o Bind a name to the socket before issuing the connect call.

@ If your program is running with superuser privileges, the name you bind
to the socket is used as the source name for proxy access.

NOTE

If you do not bind a name to the socket, or if you issue a connect call
without root privileges, DECnet-ULTRIX uses the user's ID in ASCII
as the source name for proxy access.

3.1.5 Setting Up Optional Data for the Client

Use dnet_conn or system calls to exchange up to 16 bytes of optional data while
a connection is being established.

3.1.5.1 Using dnet_conn

The dnet_conn subroutine lets you specify a buffer containing optional data to
be sent to the server. It also lets you specify a buffer containing any optional
data returned by the server. Mter a client program sends optional data with a
connection request, DECnet flushes the data.
To specify optional data, use the following format:

dnet_conn (node,object,type,opt_out,opt_outl,opt_in,opt_inl)

where

opCout

opCoutl

opCin

opCinl

EXAMPLE 1:

specifies the address of the outgoing data.

specifies the length of the outgoing data.

specifies the address of the buffer that will store the optional data
returned by the server.

is the address of an integer that specifies the size of that buffer before
the call and will contain the actual number of bytes of optional data
returned by the server on successful completion of dnet_conn.

3-8 Programming in the DECnet Domain

c

3.1.5.2

c

You can specify no outgoing optional data to be supplied and no incoming optional
data to be expected. For example, when using a sequenced-packet socket to
connect to object SOAPBOX on node ALEXUS, issue the following call:

s=dnet_conn("alexus", "soapbox", SOCK_SEQPACKET,O,O,O,O);

EXAMPLE 2:

In this example, the client program connects to the network management object
nml (object number 19).

char in data[16], out data[] = {4,0,0}; t)
int in_length, out_length = sizeof(out_data);
int sock;

sock dnet conn("alexus/root", 8
- "#19", 0, 8

out_data, out_length, ()
in_data, &in_length); ~

COMMENTS:

t) This example shows the current version of the NICE protocol used by nml.

8 This call would be issued if you wanted to connect to node ALEXUS as
user ROOT.

6) In this example, a socket type of 0 defaults to SOCK..,SEQPACKET.

o The protocol version number is sent as optional data and a version
number is expected in return.

eD A buffer is provided in which the nml object can return its protocol version
number.

Using System Calls

To specify that optional data is to be sent to the server, use the optdata_dn
structure. To set up the connection data to send to the server, use the setsockopt
call.

NOTE

You must set the optional data each time you reissue the connection
request.

EXAMPLE 1:

. In this example, the client program sends three bytes of optional data to the
server.

char version[] = {4, 0, O};

struct optdata_dn out_opt; t)
int sock;

bzero(&out_opt, sizeof(out_opt»;

Programming in the DECnet Domain 3-9

out opt.opt optl = sizeof(version); ~
bcopy(versi;n, out_opt.opt_data, out_opt.opt_optl);

if (setsockopt(sock, DNPROTO NSP, DSO CONDATA,
& out_opt , size;f(out_opt» < 0)

perror("setsockopt");
exit(l);

COMMENTS:

o Defined in the Isys/netdnet/dn.h file.

8 Optional data is copied into the optdata_dn structure. The data length is
also put into this structure.

After the connection has been established, use the getsockopt call to retrieve the
data returned by the server program.

EXAMPLE 2:

In this example, up to 16 bytes of data are placed in in_opt and the data count is
placed in in_opt_len.

struct optdata dn in opt;
int sock, in_opt_len:

bzero(&in_opt, sizeof(in_opt»;

in_opt_len = sizeof(in_opt);

if (getsockopt(sock, DNPROTO_NSP, DSO CONDATA,
&in_opt, &in_opt_len) < 0)

perror("getsockopt");
exit(l);

3.2 How to Establish a Connection for the Server

The DECnet domain supports two methods for programming the server:

• Use the DECnet object spawner to listen for connection requests on behalf of
your server. When the spawner receives a request for your server, it executes
a copy of your server and redirects standard input and standard output to the
network connection.

• Use system calls to set up a server that can run independently as a daemon.

You can use either method to perform the following tasks:

• Specify the socket type: stream or sequenced-packet.

• Assign a name to the server.

• Select an accept mode: immediate or deferred.

• Verify remote user access to the server.

3-10 Programming in the DECnet Domain

(. ~
-/

c

c

• Exchange optional data with client applications.

3.2.1 Choosing a Socket Type for the Server

3.2.1.1

When writing a server application, you must choose either of the two available
socket types: sequenced-packet or stream. (Table 3-1 compares the characteristics
of each socket type.)

NOTE

Be sure to use the same socket type as for the client application.

Using the Network Control Program (NCP)

The DECnet object spawner uses the object database, which consists of entries
defined by the network manager. One of the characteristics defined for the object
entry is the socket type. Use ncp commands to choose between a stream socket
and sequenced-packet socket. For example, to define a stream socket as the
socket type for an object entry, you can use the ncp command set object:
set object object-name type
where

object object-name

type

EXAMPLE:

Specifies that parameters are to be created or modified for the
named object only (a maximum of 16 alphanumeric characters).

is either SOCK_STREAM, if you are specifying a stream
socket, or SOCK_SEQPACKET, if you are specifying a
sequenced-packet socket.

This example shows how to use the set object command to choose a socket type
for object entry myserver.

> ncp ~
ncp> set object myserver type stream ~

See the DECnet-ULTRIX NCP Command Reference manual for more infonnation
about using ncp commands.

3.2.1.2 Using System Calls

To specify a socket type, use the following fonnat:

s=socket (node, object, type,)

where

type

EXAMPLE:

is either SOCK_STREAM, if you are specifying a stream
socket, or SOCK_SEQPACKET, if you are specifying a
sequenced-packet socket.

This example shows how to use the socket call to specify a socket type.

s=socket (AF_DECnet,SOCK_STREAM,O,);

Programming in the DECnet Domain 3-11

3.2.2 Assigning a Name to Your Server

All server applications must have an object name or number associated with
them. Object names contain 1 to 16 alphanumeric characters. Object numbers
range from 0 to 255; however, some numbers are reserved for certain types of
applications. Table 3-2 shows these assignments:

Table 3-2: Object Number Assig nments

Object
Number

1-127

128-255

Type of Application

Reserved for DEC net-supplied programs, such as fal and dlogin.

Should be used if you are writing a server application that performs a
known network service.

3.2.2.1 Using the Object Spawner

If you have chosen an object number from 1 to 255, you must define your object
name and number in the object database.
EXAMPLE:

In the following example, the ncp set object command defines the Network
Management Listener (nml) as object number 19.

% ncp ~
ncp> set object nml number 19 ~

(For more details, see the DECnet-ULTRIX Network Management manual.)

If your object number is 0, you can define it in the database or the spawner will
use the entry for the default object.

NOTE

The default DECnet object is no longer shipped with a default user
defined for it. Therefore, incoming connections to this object without
valid access-control information or proxy will not be accepted. If you
want to allow unrestricted access to your system through this object,
issue the following ncp command:

% ncp define object default user guest ~

In previous DECnet-ULTRIX releases, the process group ID for
processes created by the DECnet spawner was set to O. Starting
with Version 2.2, the process group ID setting is equal to the process
ID setting.

3.2.2.2 Using System Calls

You must specify your object name, object number, or both in a sockaddr_dn
structure. If you are using object number 0, you must also specify an object
name. You can then issue a bind call on the same socket you use to listen for
calls.
EXAMPLE:

3-12 Programming in the DECnet Domain

c:

(~\

c

In this example, 128 is specified as an object number.

int s;
struct sockaddr_dn server;

server.sdn family = AF DECnet;
server.sdn-objnum = 128;
if (bind (s;&server, sizeof(struct sockaddr_dn)}<O}

exit () ;

3.2.3 Selecting Accept-Immediate or Accept-Deferred Modes

3.2.3.1

The server uses accept-immediate or accept-deferred mode to accept incoming
connections. (See accept(2dn) for details on how to use the accept call to
establish a network connection.)

NOTE

Accept-immediate mode is the default setting for both the DECnet
object spawner and system calls.

Using the Object Spawner

Use the set object command to choose between accept-immediate and
accept-deferred modes for an object entry.
EXAMPLE:

This example shows you how to use the set object command to select
accept-deferred mode for the server, myserver.

% ncp ~
ncp> set object myserver accept deferred ~

For more information about ncp commands, see the DECnet-ULTRIX NCP
Command Reference manual.

3.2.3.2 Using System Calls

Use the setsockopt call to select accept-immediate or accept-deferred mode.
Specify the ACC_IMMED option to select accept-immediate mode; specify the
ACC_DEFER option to select accept-deferred mode.
EXAMPLE:

In this example, the socket accept mode is set to deferred.

char val = ACC_DEFER;

setsockopt(s,DNPROTO_NSP,DSO_ACCEPTMODE,&val,sizeof(vaI)};

3.2.4 Verifying Remote User Access to the Server

A server can screen incoming connection requests from the client based on the
access-control or proxy information the client supplies;

Programming in the DECnet Domain 3-13

3.2.4.1 Using the Object Spawner

Regardless of the accept mode chosen for the server, the spawner verifies
access-control information or proxy information that the client supplies. The
spawner also rejects or processes connection requests based on the following
conditions:

• If the information is invalid, the spawner rejects the connection request.

• If the information is valid, the spawner processes the connect request
according to the accept mode specified for the server in the object database.

• If immediate mode was specified, the spawner accepts the request and
initiates the server.

• If deferred mode was specified, the spawner initiates the server. The server
must then use the setsockopt call with either the DSO_CONACCEPT or
DSO_CONREJECT option to either accept or reject the request.

See Section 2.3 for more information about how the object spawner uses
access-control or proxy information.

3.2.4.2 Using System Calls

If you are not using the spawner to process requests for the server, you can use
the getsockopt system call to screen requests. If the server is bound and it is
listening on a specific address for its own connection requests, it can verify access
to the service based on incoming access-control information or proxy.

EXAMPLE:

In this example, the getsockopt call retrieves incoming access-control
information.

struct accessdata_dn acc_data;

getsockopt(s,DNPROTO_NSP,DSO_CONACCESS,&acc_data,sizeof(acc_data»;

NOTE

A process has access to data in the password field of the accessdata_dn
structure only if it is running with superuser privileges. If not, the
password field of the accessdata_dn structure will be null.

3.2.5 Exchanging Optional Data

In the DECnet domain, client and server can exchange up to 16 bytes of optional
data during the connection and disconnection processes. Both server and client
interpret this data according to an application-specific design. The following steps
describe how the client and server applications exchange optional data:

1. Before the server can read optional connection data, you must ensure that the
socket is in accept-deferred mode.

2. If the server is going to accept the connection, use the setsockopt call with
the DSO_CONDATA option to specify the outgoing optional data.

3. To accept the connection, issue the setsockopt call with the
DSO_CONACCEPT option.

4. If the server is going to reject the connection, specify outgoing optional data
using the setsockopt call with the DSO_DISDATA option.

3-14 Programming in the DEC net Domain

/

c

c

c

c

c

3.3

5. 1b reject the connection, issue the setsockopt call with the
DSO_CONREJECT option.

EXAMPLE 1:

This example shows how the optdata_dn structure specifies optional data before
accepting or rejecting a connection.

struct optdata_dn optional;
char message[] = { 1, 2, 3, 4, 5 };

bzero(&optional, sizeof(optional»;
bcopy(message, optional.opt_data, sizeof(message»;
optional.opt_optl = sizeof(message);

EXAMPLE 2:

In this example, the server program sends optional data and accepts a connection.

setsockopt(sock, DNPROTO NSP, DSO_CONDATA, &optional,
sizeof(optional»;

setsockopt(sock, DNPROTO_NSP, DSO_CONACCEPT, 0, 0);

EXAMPLE 3:

In this example, the server program sends optional data and rejects a connection.

setsockopt(sock, DNPROTO NSP, DSO_DISDATA, &optional,
sizeof(optional»;

setsockopt(sock, DNPROTO_NSP, DSO_CONREJECT, 0, 0);

Transferring Data After Establishing a Connection

Mter establishing a connection, the client and server applications use their
sockets to send and receive data via the send, recv, write, and read system calls.

NOTE

If you are using the DECnet object spawner, standard input and
standard output are redirected to the network connection.

DECnet-ULTRIX software supports the following services during data transfer
between client and server applications:

• Blocking or nonblocking input/output modes

• Out-of-band messages

• Zero-length message detection on sequenced packet sockets

3.3.1 Using Blocking or Nonblocking I/O

Blocking mode is the default mode for ULTRIX software. Unless otherwise
specified, an ULTRIX read call blocks a calling process until data is available
for the read operation, and an ULTRIX write call blocks a calling process until
enough resources are available to buffer data for the write operation.

If no data is available when a read call is issued, or if there are not enough
resources to buffer data for a write operation, a nonblocking 1/0 call returns
control to the calling process immediately with an EWOULDBLOCK message.
Otherwise, the calling procedure regains control as soon as the read or write
operation completes.

Programming in the DECnet Domain 3-15

EXAMPLE:

To set up the nonblocking I/O mode, include the ULTRIX. fcntl(2) system call in
the beginning of your application, as follows:

fcntl(sock,F_SETFL,FNDELAY);

3.3.2 Using Out-of-Band Messages

An application can send an out-of-band message from 1 to 16 bytes long ahead of
normal data messages. However, it can send only one out-of-band message over a
socket at a time.

The receiving application must read any pending out-of-band message before the
sending program can send another. The signal SIGURG indicates the arrival of
out-of-band data.

To send or receive an out-of-band message, an application must specify the
MSG_ OOB flag with the send or recv call, depending on the following conditions:

• The send call specifies the socket used to send an out-of-band message and
the buffer used to contain the message.

• The recv call specifies the socket used to receive an out-of-band message and
the buffer used to contain the message.

EXAMPLE 1:

In this example, the application sends "buffer" as an out-of-band message:

char buffer[] = { 1, 2, 3, 4, 5 };
send(sock, buffer, sizeof(buffer), MSG_OOB);

You can also use the select call to wait for out-of-band data. When the select call
returns and indicates that an out-of-band message is present, you can use a recv
call to read the message.

EXAMPLE 2:

In this example, the application uses the select call to determine if out-of-band
data has arrived.

int EMask;
EMask = l«sock;
select (sock+1, (int *)0, (int *)0, &EMask, (struct timeval *)0);

if(EMask & l«sock
msgsize = recv(sock, buffer, sizeof(buffer) , MSG_OOB);

3.3.3 Detecting Zero-Length Messages

On a sequenced-packet socket, a returned value of zero on a read operation
indicates that either the end of the file has been reached or a zero-length message
has been received. An end-of-file status on a socket indicates that the logical link
was disconnected and communication over the socket is not possible.

To distinguish between an end-of-file message and a zero-length packet, use
the dnet_eof subroutine. If the return value from the dnet_eof call is zero,
a zero-length packet has been received. Otherwise, the logical link has been
disconnected.

EXAMPLE:

3-16 Programming in the DECnet Domain

("'" I,~

/'

c

c

This example shows how to use dnet_eof to distinguish zero-length messages
from end-of-file messages.

/* Read the next packet on a DECnet sequenced packet socket */
length = read(sock, buff, buffsize);
if(length == -1)
/* read failed, refer to read(2dn) for more information */
else if(length == 0 && dnet eof(sock))
/* End Of File has been reached */

/* If here, then we have successfully read a packet */

3.4 How to Disconnect a DECnet Connection

Either the client or the server application can initiate the disconnection of a
DECnet connection. The application that initiates the disconnection can also
specify the optional disconnect data to send to the other application.

'1b disconnect a DECnet connection:

1. Before initiating the disconnection, the application can specify between 1 and
16 bytes of optional disconnection data by issuing a setsockopt call with a
DSO_DISDATA option.

2. The application either closes all references to the DECnet socket or issues
a single shutdown call to request disabling of the send or send and recv
operations. The shutdown call is used when the application is set to reference
the DECnet socket after the connection is terminated.

3. If an application does not initiate the disconnection, it can retrieve the
optional disconnection data sent by the application that initiated the
disconnection. The application can issue a getsockopt call with the
DSO_DISDATA option.

EXAMPLE 1:

In this example, the application terminates the DECnet connection while sending
optional disconnection data.

struct optdata_dn disdata;
char message[] = {I, 2, 3, 4, 5};

/* Prepare optional disconnect data */
bzero(&disdata, sizeof(disdata»;
bcopy(message, disdata.opt data, sizeof(message»;
disdata.opt_optl = sizeof(;essage);

setsockopt (sock, DNPROTO_NSP, DSO_DISDATA, &disdata,sizeo f(disdata»S ();
close(sock);

EXAMPLE 2:

In this example, the application determines that the DECnet connection has
been terminated, and retrieves any optional data that may have been sent by the
application that terminated the connection.

struct optdata dn disdata;
int length; -

length = read(sock, buff, buffsize);

/* Check to see if the connection has been disconnected */
if(length == 0 && dnet_eof(sock»
{

int structsize;

Programming in the DECnet Domain 3-17

/* Retrieve any optional disconnect data that was sent */
structsize = sizeof(disdata);
getsockopt(sock,DNPROTO_NSP,DSO_DISDATA,&disdata,&structsize);

/* No longer need the socket descriptor. Closing it will free
up local network resources that were associated with it */
close(sock);

NOTE

The successful completion of a write call does not necessarily indicate
that the data has already been sent to the remote node. A successful
write operation means that the local system has accepted the data and
will transmit it as soon as possible.

The effect of issuing a close call while data that has not been sent is
queued for a remote application depends on the value of the LINGER
option, which is set through the setsockopt call. If the SO_LINGER
option is set, the close operation will be delayed while an attempt
is made to send or acknowledge all data. Otherwise, the data in the
queue is eliminated and the system processes the close operation with
an abort condition.

3-18 Programming in the DECnet Domain

/-~

("-;

c

c'

c

o

Part II

Reference

c

c

c'

4.1

C'

C

Chapter 4

DECnet-ULTRIX System Calls

This reference chapter describes DECnet-ULTRIX system calls in detail. The
format for this information corresponds to that in the ULTRIX reference pages.
See the ULTRlX Reference manuals for more information about format.

Each system call begins a separate page in alphabetical order. The name of
the system call appears in a running head followed by the appropriate section
nwnber and a suffix. For example, accept(2dn) appears on the reference pages
describing the accept call. The 2 indicates that the section describes system calls.
The dn indicates that the system call is used in the DECnet domain.

System Call Summary

Table 4-1 swnmarizes the function of each DECnet-ULTRIX system call.

Table 4-1: DECnet-ULTRIX System Calls

System Call

accept
bind
close
connect
getpeername
getsockname
getsockopt
listen
read
recv
select
send
setsockopt
shutdown
socket
write

Function

Accepts a connection request.

Binds a name to a socket.

Terminates a logical link and deactivates a socket descriptor.

Initiates a connection request.

Returns the name of the peer connected to a socket.

Returns the current name of a socket.

Returns the options associated with a socket.

Listens for pending connection requests.

Reads (receives) data.

Receives normal data and out-of-band messages.

Performs synchronous I/O multiplexing.

Sends data and out-of-band messages.

Sets socket options.

Shuts down a DEC net connection.

Creates a new socket.

Writes (sends) data.

DECnet-ULTRIX System Calls 4-1

4.2 On-Line Manual Pages

The system call descriptions also appear as on-line documentation in accept(2dn),
bind(2dn), close(2dn), and so on.

4.3 Format and Conventions

The descriptions of the DECnet-ULTRIX. system calls have the following format:

SYNTAX

Gives the complete syntax for the system call. The following conventions
apply to syntax lines:

command

italics

%

DESCRIPTION

Indicates terms that are constant and must be typed
exactly as presented.

Indicates that the preceding item can be repeated one or
more times.

Indicate a variable, for which either you or the system
must specify a value.

The default user prompt in multiuser mode.

The default superuser prompt.

Supplies function and background information.

RETURN VALUE

Explains the meaning of a value returned by a utility when it completes or
does not complete an operation.

DIAGNOSTICS

Lists diagnostic messages that can be returned.

RESTRICTIONS

Describes restrictions that apply to the use of the system call or subroutine.

4-2 OECnet-ULTRIX System Calls

c

c

c

c

c

SEE ALSO

Provides cross-references to associated infonnation in this manual and in
other DECnet-ULTRIX and ULTRIX manuals.

In text, cross-references to specific manual reference pages include the
section number in the ULTRIX or DECnet-ULTRIX reference manual where
the commands are documented. For example, socket(2dn) refers to the
description of the socket system call in Section 2dn of the ULTRIX reference
pages.

4.4 System Call Descriptions

The following pages describe each system call in detail.

DECnet-ULTRIX System Calls 4-3

accept (2dn)

accept (2dn)

NAME

SYNTAX

accept - accept a connection request

tinclude <sys/types.h>\bold
tinclude <sys/socket.h>\bold
tinclude <netdnet/dn.h>\bold

ns = accept (s,addr,addrlen)
int nSf s;
struct sockaddr dn *addr;
int *addrlen;

where

Input Arguments:

s

addr

addrlen

specifies a descriptor for a socket that has been returned by the socket
call, bound to a name by the bind call, and is listening for connection
requests after issuing a listen call.

is the address of a sockaddr_dn structure. This address identifies the
source entity that is requesting the connection.

specifies the size of the source address.

Return Arguments:

ns

addr

addrlen

is the new descriptor for the accepted socket.

specifies the address of a sockaddr_dn structure. This call fills in the
following data fields:

sdnJamily

sdn_objnum

sdn_objnamel

sdn_nodeaddrl

specifies the communications domain as
AF_DECnet.

specifies the source DECnet object number.

is the size of the source node's object name. This
argument is used only when the DECnet object
number, sdn_objnum, is O.

defines the name of the network program, which
can be up to 16 characters. This argument is used
only when the DECnet object number, sdn_objnum,
is O.

is the size of the node address for the source pro­
gram.

specifies the node address for the source program.

specifies the actual length (in bytes) of the returned address.

4-4 DECnet-ULTRIX System Calls

(' \.

I~/

c

c

c

C i
"

accept (2dn)

DESCRIPTION

The accept call extracts the first connection request on the queue of pending
connections, creates a new socket having the same properties as s, and allocates
a new file descriptor, ns, for the socket. s remains open and listens for connection
requests.

There are two modes of accepting an incoming connection: immediate and
deferred. You can specify the mode of acceptance with the setsockopt call.

Accept-immediate mode, specified as ACC_IMMED, causes both client
and server programs to complete the protocol exchange at the Network
Services Protocol (NSP) level. The server program ignores any access-control
information or optional data that the source program may have sent. ACC_
IMMED is the default.

DefelTed mode, specified as ACC_DEFER, causes the accept call to be
completed by a server program without a full protocol exchange between itself
and the client program. Deferred mode allows a server program to examine
and process any access-control information or optional data before notifying
the client program of the acceptance or rejection of its connect request.

RETURN VALUE

If the accept call succeeds, it returns a nonnegative integer, which is a descriptor
for the accepted socket. If an error occurs, the call returns a value of -1 and the
external variable errno will contain the type of error.)

DIAGNOSTICS

SEE ALSO

The call succeeds unless:

[EBADF]

[ECONNABORTED]

[EFAULT]

[EWOULDBLOCK.]

The s argument is not a valid descriptor.

DEC net is shutting down on the local node.

The addr argument is not in a write-enable part of the
user address space.

The socket is marked for nonblocking, and no connec­
tions are waiting to be accepted.

bind(2dn), Iisten(2dn), setsockopt(2dn), socket(2dn)

DECnet-ULTRIX System Calls 4-5

bind (2dn)

bind (2dn)

NAME

SYNTAX

bind - bind a name to a socket

iinclude <sys/types.h>
iinclude <sys/socket.h>
iinclude <netdnet/dn.h>

bind (s,name,namelen)

int s;
struct sockaddr dn name;
int namelen;

where

s specifies a descriptor for a socket that has been returned by the socket
call.

name

namelen

specifies the address of a sockaddr_dn structure.

specifies the size of the address of the sockadd r _ d n structure. This
call fills in the following data fields:

sdnJamily specifies the communications domain as AF_
DECnet.

specifies the DECnet object number to which you
are binding. If the object number is 0, the DECnet
object name, sdn_objname, is used.

specifies the size of the object name to which you
are binding. This argument is used only when the
DECnet object number, sdn_objnum, is O.

specifies the name of the source network program.
This argument is used only when the DECnet object
number, sdn_objnum, is O.

DESCRIPTION

The bind call assigns a name to a socket. When a socket is created with the
socket call, it exists in a name space (address family) but has no assigned name.
The bind call requests that a specific name be assigned to the socket.

NOTE

The DECnet object nwnbers 1 through 127 are reserved by Digital for
sockets that are in programs running as superuser.

4-6 DECnet-ULTRIX System Calls

/

c

c

c

c

c

bind (2dn)

RETURN VALUE

If the bind call is successful, a value of 0 is returned. If the call is unsuccessful, a
value of -1 is returned and the external variable errno contains elTor detail.

DIAGNOSTICS

The call succeeds unless:

[EACCESS]

[EADDRINUSE]

[EAFNOSUPPORT]

[EBADF]

[EFAULT]

[EINVAL]

The requested address is reserved, and the current user does
not have superuser privileges.

The specified name is already bound to a listening socket on
the local machine.

The sdnJamily is not AF _DECnet.

The s argument is not a valid descriptor.

The name argument is not located in a valid part of the user's
address space.

The namelen argument is not the size of 80ckaddr _dn, or sdn_
objnamel is not in the range of 0 to 16.

RESTRICTION

SEE ALSO

Bound names are ignored for sockets set up to initiate connections in all programs
except programs running as superuser.

socket (2dn)

DECnet-ULTRIX System Calls 4-7

close (2dn)

close (2dn)

NAME

SYNTAX

close - terminate a DECnet connection

close (s)
int s;

where

s specifies a descriptor for a socket that has been returned by the socket or the
accept call.

DESCRIPTION

The close call terminates an outstanding connection over a DECnet socket
descriptor and deactivates the descriptor. When the last close call is issued on
that descriptor, all associated naming information and queued data are discarded.
(The close call deletes a descriptor from the per-process object reference table. If
this is the last reference to the underlying socket, the socket is deactivated.)

The effect of issuing a close call while unsent data is queued for a remote
program depends on the value of the linger option set with the setsockopt call.
If SO_LINGER is set, the close operation is delayed while an attempt is made to
send or acknowledge all data; otherwise, the data in the queue is eliminated and
the system processes the close with an abort.

A close of all of a program's descriptors is automatic when an exit call is issued,
but because there is a limit on the number of active descriptors per program, the
close call is necessary for programs that deal with many descriptors.

RETURN VALUE

If the call succeeds, a value of 0 is returned. If an error occurs, a value of -1 is
returned. Additional error detail is specified in the external variable errno.

DIAGNOSTICS

The call succeeds unless:

[EBADF] The s argument is not a valid descriptor.

SEE ALSO

accept(2dn), setsockopt(2dn), socket(2dn)

4-8 DECnet-ULTRIX System Calls

c

c

(''''' "
1

.-/

c

o

connect (2dn)

connect (2dn)

NAME

SYNTAX

connect - initiate a connection request

iinclude <sys/types.h>
iinclude <sys/socket.h>
iinclude <netdnet/dn.h>

connect (s,name,namelen)
int s;

struct sockaddr dn * name;
int namelen;

where

s specifies a descriptor for a socket that has been returned by the socket
call.

nam.e

namelen

specifies the address of a sockaddr_dn structure. This address
identifies the destination process for the connect.
specifies the size of the address of the sockaddr_dn structure. This
call fills in the following data fields:

sdnJamily

sdn..flags

sdn_objnamel

specifies the communications domain as AF_
DECnet.

specifies the object flag option, which you can use to
request outgoing proxy.

specifies the DECnet object number to which you
are connecting. If the object number is 0, the
DECnet object name, sdn_objnam.e, is used.

specifies the size of the object name to which you
are connecting. This argument is used only when
the DECnet object number, sdn_objnum, is O.

specifies the name of the destination program. This
argument is used only when the DECnet object
number, sdn_objnum, is O.

DESCRIPTION

The connect call issues a connect request to a server program. The server
program is specified by the name argument, which is an address in the DECnet
domain.

Optional user data and access-control information are passed with the connect
call if this data is previously set with the setsockopt call.

DECnet-ULTRIX System Calls 4-9

connect (2dn)

RETURN VALUE

If the connect succeeds, a value of 0 is returned. If the connect fails, a value of
-1 is returned and the external variable errno contains error detail.)

DIAGNOSTICS

SEE ALSO

The call succeeds unless:

[EACCESS]

[EADDRNOTAVAIL]

[EAFNOSUPPORT]

[EBADF]

[ECONNREFUSED]

[EFAULT]

[EHOSTDOWN]

[EHOSTUNREACH]

[EINVAL]

[EISCONN]

[ENETDOWN]

[ENOSPC]

[ESRCH]

[ETIMEDOUT]

[ETOOMANYREFS]

[INPROGRESS]

The access-control information was rejected.

No such node.

Addresses in the specified address family cannot be
used with this particular socket.

The s argument is not a valid descriptor.

The attempt to connect was refused by the remote
object.

The name argument specifies an area outside the
process address space.

Local node is shut down.

Node unreachable.

The namelen argument is not the size of sockaddr_
dn, or sdn_objnamel is not in the range of 0 to 16.

The socket is already connected.

The remote node is shutting down.

There are no resources available for a new connection
at either the local or remote system.

Unrecognized object at the remote node.

Connection establishment was timed out before a
connection was established.

The remote object has too many active connections.

The socket is nonblocking and the connection is in
progress. To determine when the connection has either
completed or failed, select the socket for write using
the select call.

accept(2dn), close(2dn), setsockopt(2dn), socket(2dn)

dnet_conn(3dn)

4-10 DECnet-ULTRIX System Calls

c

c

c'

c

getpeername (2dn)

getpeername (2dn)

NAME

SYNTAX

getpeername - get name of connected peer

#include <sys/types.h>
#include <sys/socket.h>
#include <netdnet/dn.h>

getpeername (s,name,namelen)
int s;
struct sockaddr dn *name;
int *namelen;

where

Input Arguments:

s specifies a descriptor for a socket that has been returned by the socket
or the accept call.

name specifies the address of a sockaddr_dn structure.

namelen specifies the length of the address of the sockaddr_dn structure.

Return Arguments:

name

namelen

specifies the address of a sockaddr _dn structure. This call fills in the
following data fields:

sdnJamily

sdn_nodeaddrl

sdn_nodeaddr

specifies the communications domain as AF_
DECnet.

specifies the DECnet object number for the peer
program. If the object number is 0, the DECnet
object name, sdn_objname, is used.

is the length of the peer object name. This argu­
ment is used only when the object number, sdn_
objnum, is o.
specifies the name of the peer network program,
which can be up to a I6-element array of characters.
This argument is used only when the object number,
sdn_objnum, is o.
is the size of the remote node address.

specifies the remote node address.

returns the length of the address ofa sockaddr_dn structure.

DESCRIPTION

The getpeername call retu.rris the name of the peer DECnet program connected
to a specified socket.

DECnet-ULTRIX System Calls 4-11

getpeername (2dn)

RETURN VALUE

If the call succeeds, a value of 0 is returned. If an error occurs, a value of -1 is
returned. When .an error condition exists, the external variable errno contains
error detail.

DIAGNOSTICS

The call succeeds unless:

[EBADF]

[EFAULT]

[ENOBUFS]

[ENOTCONN]

4-12 DECnet-ULTRIX System Calls

The 8 argument is not a valid descriptor.

The name argument points to memory located in an invalid
part of the process address space.

Insufficient resources were available in the system to perform
the operation.

The socket 8 is not connected.

c

c

getsockname (2dn)

getsockname (2dn)

NAME

SYNTAX

getsockname - return the current name for a socket

getsockname (s,name,namelen)
int s;
struct sockaddr dn *name;
int *namelen;

where

Input Arguments:

s

name

namelen

specifies a descriptor. for a socket that has been returned by the socket
or the accept call.

specifies the address of a SoCkaddr_dn structure. This address is the
name that was bound to the socket.

specifies the length of the address of the sockaddr_dn structure.

Return Argmnents:

name

namelen

specifies the address of a sockaddr_dn structure. This call fills in the
following data fields:

sdnJamily

sdn_nodeaddrl

sdn_nodeaddr

specifies the communications domain as AF_
DECnet.

specifies the DECnet object number for the socket.
If the object number is 0, the DECnet object name,
sdn_objname, is used.

is the size of the object name. This argument is
used only when the object number, sdn_objnum, is
o.
specifies the DECnet object name, which can be up
to a I6-element array of characters. This argument
is used only when the object number, sdn_objnum,
is o.
is the size of the local node address.

specifies the local node address.

returns the length of the address of the sockaddr_dn structure.

DESCRIPTION

The getsockname call returns the current name of a specified socket.

DECnet-ULTRIX System Calls 4-13

getsockname (2dn)

RETURN VALUE

If the call succeeds, a value of 0 is returned. If an error occurs, a value of -1 is
returned. When an error condition exists, the external variable errno contains
error detail.

DIAGNOSTICS

SEE ALSO

The call succeeds unless:

[EBADF]

[EFAULT]

[ENOBUFS]

bind(2dn)

4-14 DECnet-ULTRIX System Calls

The 8 argument is not a valid descriptor.

The name argument points to memory located in an invalid
part of the process address space.

Insufficient resources were available in the system to perform
the operation.

("

/'

c

getsockopt (2dn) and setsockopt (2dn)

getsockopt (2dn) and setsockopt (2dn)

NAME

SYNTAX

getsockopt, setsockopt - get and set options on sockets

#include <sys/types.h>
#include <sys/socket.h>
#include <netdnet/dn.h>

setsockopt (s,level,optname,optval,optlen)
int s,level,optname;
char *optval;
int *optlen;

getsockopt (s,level,optname,optval,optlen)
int s,level,optname;
char *optval;
int *optlen;

where

Input Arguments:

8

level

optname

optval, optlen

specifies a descriptor for a socket in the AF _DECnet domain.

specifies the level at which options are interpreted:

The socket call level SOL_SOCKET causes options to be interpreted
at the socket level.

A level ofDNPROTO_NSP instructs DECnet to interpret an option.

specifies an option to be interpreted at the level specified.

specify option values that are used with the getsockopt and setsock­
opt calls. The interpretations of these arguments relative to each call
are as follows:

getsockopt:
optval

optlen

setsockopt:
optval

optlen

specifies the buffer that will contain the returned
value for the requested option.

is the value result parameter that initially contains
the size of the buffer pointed to by optval and is
modified on return to indicate the actual length of
the returned value.

specifies the address for the buffer that contains
information for setting option values.

specifies the length of the option value buffer.

DECnet-ULTRIX System Calls 4-15

getsockopt (2dn) and setsockopt (2dn)

DESCRIPTION

The getsockopt and setsockopt calls manipulate various options associated with
a socket. Options may exist at multiple levels, so you must specify the level for
the desired operation. The socket level SOL_SOCKET options are as follows:

SO_DEBUG

SO_LINGER

enables the recording of debugging information.

controls the actions taken when unsent messages are queued on a
socket and a close call is issued. If SO_LINGER is set, the system
will block the process until all data has been received by the remote
system or until it is unable to deliver the information.

At the DECnet level, socket options can define the way in which a pending
connection is accepted. Options at this level also control the sending and
receiving of optional user data and access-control information, and return
information on current link status. The DECnet options follow:

DSO_ACCEPTMODE

4-16 DECnet-ULTRIX System Calls

The accept mode option is used at the DECnet level for pro­
cessing accept calls. The program must issue a bind call on
the socket before this option is valid. A setsockopt call to set
the accept mode is valid only if issued before a listen call is
performed.

There are two values that can be supplied for this option:
ACC_IMMED (immediate mode) and ACC_DEFER (deferred
mode). (The optional value (optval) for this option is the char
type.)

The default mode for this option. When immediate
mode is in effect, control is immediately returned to
a server program following an accept call with the
connection request accepted.

Enables a server program to complete an accept
call without fully completing the connection to
the client program. The server program can then
examine the access-control information and/or
optional data before accepting or rejecting the
pending connection. The server program can then
issue the setsockopt call with the appropriate
reject or accept option.

Allows the server program to accept the connection on socket
returned by the accept call and previously set to ACO_DEFER
mode. Any optional data previously set by DSO_CONDATA
will be sent. (There is no optional value (optval) for this
option.)

Lets the server program reject a pending connection on a
socket returned by the accept call and previously set to ACC_
DEFER mode. Any optional data previously set by DSO_
DISDATA will be sent. The reject reason is passed with this
option as a short int value.

c

c

c

o

RETURN VALUE

getsockopt (2dn) and setsockopt (2dn)

This option allows up to 16 bytes of optional user data to be
sent by the setsockopt call. The data is sent as a result of
the connect or the accept (with the deferred option) call.
The optional data is passed in an optdata_dn structure. (See
the optdata_dn data structure in Appendix A for format­
ting information.) The data is read by the task issuing the
getsockopt call with this option.

Allows up to 16 bytes of optional data associated with the
setsockopt call. It is sent as a result of the close call. The
optional data is passed in a optdata_ dn structure. (See the
optdata _ dn data structure in Appendix A for formatting
information.) The data is read by the program issuing the
getsockopt call with this option.

Allows access-control information to be set by the client pro­
gram and received by the server program. The data is sent
with the setsockopt call and passed to the server when an
ensuing connect call is issued. The server retrieves the infor­
mation by issuing a getsockopt call. The access data is sent
to the server program. It is passed with the connect call in
an accessdata_dn data structure. (See the accessdata_dn
data structure in Appendix A for formatting information.) The
access data is read by the program issuing the getsockopt
call with this option.

NOTE

The DSO_CONACCESS socket
option for the getsockopt call
will function only in programs
running as root.

Gets information on the state of a DECnet logical link. Link
state information is passed in a linkinfo_dn structure in the
idn_linkstate field. The following are possible link states and
their respective values:

LL INACTIVE logical link inactive
LL CONNECTING logical link connecting
LL RUNNING logical link running
LL DISCONNECTING logical link disconnecting

See Appendix A for information on formatting for the linkinfo_
dn data structure.

If the call completes successfully, a value of 0 is returned. If the call fails, a value
of -1 is returned and the external variable errno contains error details.

DECnet-ULTRIX System Calls 4-17

getsockopt (2dn) and setsockopt (2dn)

DIAGNOSTICS

The call succeeds unless:

[EBADF]

[EBUsy]

[EDOM]

[EFAULT]

[EMSGSIZE]

[ENOBUFS]

[ENOPROTOOPT]

[EOPNOTSUPP]

4-18 DECnet-ULTRIX System Calls

The 8 argument is not a valid descriptor.

The pending connection has gone away.

The acceptance mode is not valid.

The options are not located in a valid part of the
process address space.

The size of the option buffer is incorrect.

No buffer space is available to return access-control
data.

No access-control information was supplied with the
connection request.

The option is unknown.

c

c

c'

c

c

listen (2dn)

listen (2dn)

NAME

SYNTAX

listen - listen for pending connect requests

listen (s,backlog)
int s,backlog;

where

8

backlog

specifies a descriptor for a socket that has been returned by the socket
call and bound to a name by the bind call.

defines the maximum length for the queue of pending connection
requests for a particular socket. If a connection request arrives when
the queue is full, the connection will be rejected.

DESCRIPTION

The listen call declares a socket as being available to receive connection requests
and listens for incoming connections. The listen call must be issued before the
server program accepts an incoming connection request.

RETURN VALUE

If the call succeeds, a value of 0 is returned. If an error occurs, a value of -1 is
returned. When an error condition exists, the external variable errno contains
error details.

DIAGNOSTICS

SEE ALSO

The call succeeds unless:

[EADDRINUSE]

[EBADF]

The name bound to the socket is already being used
for a listen socket.

The 8 argument is not a valid descriptor.

accept(2dn), connect(2dn), socket(2dn)

DECnet-ULTRIX System Calls 4-19

read (2dn)

read (2dn)

NAME

SYNTAX

read - read or receive data·

#include <sys/types.h>
#include <sys/sockets.h>

cc = read (s,buf,buflen)
int cc, s;
char *buf;
int buflen;,

where

Input Arguments:

s

buf

buflen

Return Arguments:

cc

specifies a descriptor for a socket that has been returned by the
socket call.

specifies the address of buffer into which data is read.

sp~cifies the size of the message buffer.

is the length of the returned message.

DESCRIPTION

The read call is used to read normal data messages from another DECnet
program. You can use read only on a connected socket. If no messages are
available at the socket, the read call waits for a message to arrive. However, if
the socket is nonblocking, a status of -1 is returned with the external variable
errno set to EWOULDBLOCK.

You can use the select call to determine when more data will arrive.

, The length of the message is returned in cc. If a message is too long to fit in
the supplied buffer, the excess bytes can be discarded, depending on the type of
socket from which the message is received. Sequenced-packet sockets discard
extra bytes. Stream sockets store extra bytes in the kernel and use them for the
next read call.

RETURN VALUE

If the call succeeds, the number of bytes actually read and placed in the buffer are
returned. The system reads the number of bytes requested only if the descriptor
references a file containing that many bytes before the end of file. If the end of
file has been reached, a value of 0 is returned.

4-20 DECnet-Ul TRIX' System Calls

/ "'.

c

c

c

read (2dn)

NOTE

A returned value of 0 can also indicate that a zero-length message has
been received on a sequenced-packet socket. See dnet_eof(3dn) for
more information.

If an error occurs, a value of -1 is returned and the global variable errno is set to
indica te the error.

DIAGNOSTICS

SEE ALSO

The call succeeds unless:

[EBADF]

[EFAULT]

[EINTR]

[EWOULDBLOCK]

connect(2dn), socket(2dn)

dnet_eof(3dn)

dup(2), socketpair(2)

The 8 argument is not a valid file descriptor open for
reading.

The buf argument points outside the allocated address
space.

A read operation from a slow device was interrupted by the
delivery of a signal before any data arrived.

The socket is marked nonblocking and the read operation
would have blocked.

DECnet-ULTRIX System Calls 4-21

recv (2dn)

recv (2dn)

NAME

SYNTAX

recv - receive normal data and out-of-band messages

#include <sys/types.h>
#include <sys/socket.h>

cc = recv (s,buf,buflen,flags)
int cc, s;
char *buf;
int buflen,flags;

where

Input Arguments:

s

buf

buflen

flags

specifies a descriptor for a socket that has been returned by the socket
call.

specifies the address of the buffer that will contain the received mes­
sage.

specifies the size of the message buffer.

are set to MSG_PEEK, which looks at incoming messages, or to
MSG_OOB, which indicates that a program will receive out-of-band
messages.

Return Arguments:

cc is the length of the returned message.

DESCRIPTION

The recv call is used to receive normal or out-of-band data from another DECnet
program. recv can be used only on a connected socket (see connect(2dn». If no
messages are available at a socket, the recv call waits for a message to amve.
However, if the socket is nonblocking, a status of -1 is returned with the external
variable errno set to EWOULDBLOCK.

Use the recv call instead of the read call when you want to specify the
MSG_PEEK and MSG_OOB flags arguments to look at incoming messages and to
receive out-of-band messages.

You can use the select call to determine when more data will arrive.

The length of the message is returned in cc. If a message is too long to fit in
the supplied buffer, the excess bytes may be discarded depending on the type of
socket from which the message is received. Sequenced-packet sockets discard
extra bytes. Stream sockets store extra bytes in the kernel and use them for the
next recv call.

4-22 DECnet-ULTRIX System Calls

c

c

C'"
)

c

C:

c

recv (2dn)

The flags argument for a recv call is formed by oring one or more of the following
values:

#define
#define

MSG PEEK Oxl /* peek at incoming message */
MSG OOB Ox2 /* process out-of-band data */

Out-of-band messages are sent to a receiving program ahead of normal data
messages. Out-of-band messages are sent and received as DECnet interrupt
messages and can be from 1 to 16 bytes in length. The signal SIGURG indicates
the arrival of out-of-band data. You can also use the select call to determine if
out-of-band data has arrived by using the exceptfds argument.

RETURN VALUE

If the call succeeds, the number of received characters is returned. If an error
occurs, a value of -1 is returned. Additional error detail will be specified in the
external variable errno.

DIAGNOSTICS

The call succeeds unless:

[EBADF]

[EFAULT]

[EWOULDBLOCK.]

The s argument is not a valid descriptor.

The data was specified to be received into a nonexis­
tent or protected part of the process address space.

The socket is marked nonblocking and the receive
operation would have blocked.

RESTRICTION

The MSG_PEEK flags argument cannot be used with out-of-band messages.

SEE ALSO

read(2dn), send(2dn), socket(2dn), write(2dn)

DECnet-UL TRIX System Calls 4-23

select (2dn)

select (2dn)

NAME

SYNTAX

select - synchronous 110 multiplexing

#include <sys/time.h>

nfound = select (nfds,readfds,writefds,exceptfds,timeout)
int nfound,nfds, *readfds, *writefds, *exceptfds;
struct timeval *timeout;

where

Input Arguments:

nfds

readfds

writefds

except{ds

timeout

specifies the number of descriptors to be checked. For example, the bits
from 0 to nfds-#l in the masks are examined.

specifies the descriptor to be examined for read (or receive) data ready.
This descriptor can be given as a null pointer (0) if it is of no interest.

specifies the descriptor to be examined for write (or send) data ready.
This descriptor can be passed as a null pointer (0) if it is of no interest.

specifies the descriptor to be examined for out-of-band data ready. This
descriptor can be given as a null pointer (0) if it is of no interest.

specifies an address of a tlmeval structure. If timeout is a nonzero
pointer, it specifies a maximum interval to wait for the selection to
complete. If timeout is a zero pointer, the select blocks indefinitely.
To affect a poll, timeout should be nonzero, pointing to a zero-valued
timeval structure.

Return Argument:

nfound is the total number of ready descriptors returned.

DESCRIPTION

The select call examines the 1/0 descriptors specified by the bit masks readfds,
writefds, and exceptfds to determine whether the descriptors are ready for reading
or writing or have an out-of-band condition pending, respectively. File descriptor f
is represented by the bit 1<<fin the mask. The nfds descriptors are checked; that
is, the bits from 0 through nfds -#1 in the masks are examined. The select call
returns a mask of those descriptors that are ready. The total number of ready
descriptors is returned in nfound.

If timeout is a nonzero pointer, it specifies a maximum interval to wait for
the selection to complete. If timeout is a zero pointer, the select call blocks
indefinitely. To affect a poll, the timeout argument should be nonzero and
pointing to a zero-valued tlmeval structure.

The readfds, writefds, and exceptfds arguments can be defined as 0 if no descrip­
tors are of interest.

4-24 DECnet-ULTRIX System Calls

" c ... -.-"·'····

c

()

select (2dn)

RETURN VALUE

The select call returns the number of descriptors that are contained in the bit
masks. If an error occurs, a value of -1 is returned. Additional error details will
be contained in the external variable errno. If the time limit expires, a value of 0
is returned.

DIAGNOSTICS

The call succeeds unless:

[EBADF]

[EINTR]

One of the bit masks is specified as an invalid descriptor.

An asynchronous signal was delivered before any of the se­
lected events occulTed or the time limit expired.

RESTRICTION

SEE ALSO

The descriptor masks are always modified on return, even if the call returns as
the result of the timeout.

accept(2dn), connect(2dn), read(2dn), recv(2dn), send(2dn), write(2dn)

DECnet-ULTRIX System Calls 4-25

/'

send (2dn)

send (2dn)

NAME

SYNTAX

send - send normal data and out-of-band messages

#include <sys/types.h>
#include <sys/socket.h>

cc = send (s,msg,msglen,flags)
int cc, s;
char *msg;
int msglen, flags;

where

Input Arguments:

s

msg

msglen

flags

specifies a descriptor for a socket that has been returned by the socket
call.

specifies the address of the buffer that contains the outgoing message.

specifies the size of the message.

are set to MSG_OOB, which sends an out-of-band message.

Return Argwnent:

cc is the number of characters sent.

DESCRIPTION

The send call transmits normal or out-of-band data to another program. It can
be used only when a socket is in a connected state. See connect(2dn) for more
information.

Use the send call instead of write when you want to specify the MSG_OOB
flags argument to indicate that out-of-band data will be sent to the destination
program. Out-of-band messages are sent to a receiving program ahead of normal
data messages. Out-of-band messages are sent and received as DECnet NSP
interrupt messages and can be from 1 to 16 bytes long.

The number of characters sent is returned in cc. If no message space is available
at the receiving socket to hold the message being transmitted, the send call will,
in most cases, block. If the socket is set in nonblocking I/O mode, send returns
an error with errno set to EWOULDBLOCK.

You can use the select call to determine when it is possible to send more data.

4-26 DECnet-ULTRIX System Calls

c

c

c

send (2dn)

RETURN VALUE

If the call succeeds, the number of characters sent are returned. If an error
occurs, a value of -1 is returned. Additional error detail will be specified in the
external variable errno.

DIAGNOSTICS

SEE ALSO

The call succeeds unless:

[EBADF]

[EFAULT]

[EMSGSIZE]

[EWOULDBLOCK]

read(2dn), recv(2dn), write(2dn)

The s argument is not a valid descriptor.

An invalid user address space was specified for an
argument.

The socket requires that the message be sent atomi­
cally, but the size of the message made this impossible.
Note that zero-length messages are illegal.

The socket is marked nonblocking and the send
operation would have blocked.

DECnet-Ul TRIX System Calls 4--27

setsockopt (2dn)

setsockopt (2dn)

NAME
See getsockopt(2dn)

c
4-28 DECnet-ULTRIX System Calls

("'/

. /

o

shutdown (2dn)

shutdown (2dn)

NAME

SYNTAX

shutdown - shut down a logical link

shutdown (s, how)
int s,how;

where

s

how

is a descriptor for the socket associated with the DECnet logical link
that you want to shut down.

is an integer specifying how the connection is shut down. If the value
of how is 0, further receives are disabled. If the value of how is 1,
further sends are disabled. If the value of how is 2, further sends and
receives are disabled.

DESCRIPTION

The shutdown call shuts down all or part of a DECnet logical link connection on
the socket specified by the argument s .

RETURN VALUE

If the call succeeds, a value of 0 is returned. If the call fails, a value of -1 is
returned.

DIAGNOSTICS

SEE ALSO

<he call succeeds unless:

[EBADF]

[ENOTCONN]

[ENOTSOCK]

The s argument is not a valid descriptor.

The specified socket is not connected.

The s argument is a file, not a socket.

connect(2dn), socket(2dn)

DECnet-ULTRIX System Calls 4-29

socket (2dn)

socket (2dn)

NAME

SYNTAX

socket - create a socket and return a descriptor

#include <sys/types.h>
#include <sys/socket.h>
#include <netdnet/dn.h>

s = socket (af,type,protocol)
int s,af,type,protocol;

where

Input Arguments:

af specifies the address format for the DECnet communication domain as AF_
DECnet.

type specifies the socket type. The DECnet domain supports the following socket
types:

• SOCK_STREAM. Stream sockets provide bidirectional, reliable, sequenced,
and unduplicated byte streams.

• SOCK_SEQPACKET. Sequenced-packet sockets provide bidirectional,
reliable, sequenced data flow while preserving record boundaries in data.

protocol specifies the protocol to be used with the socket. Valid protocols are 0 (default)
and DNPROTO_NSP (DECnet protocol). If you specify the socket type SOCK_
SEQPACKET, you must set the protocol to zero.

Return Argument:

8 is the value for the socket descriptor.

DESCRIPTION

The socket call creates a socket and returns a socket descriptor.

A socket is an addressable endpoint of communication. A program uses the socket
to transmit and receive data to and from a similar socket in another program.
Subsequent calls on a particular socket reference that socket's descriptor.

RETURN VALUE

If the call completes successfully, a socket descriptor value is returned. This
descriptor is used for subsequent system calls on this particular socket. If an
error occurs, a value of -1 is returned. Additional error detail is contained in the
external variable errno.

4-30 DECnet-ULTRIX System Calls

c

c

C'

C"",
I,

c

o

DIAGNOSTICS

SEE ALSO

The call succeeds unless:

[EAFNOSUPPORT]

[EMFILE]

[ENFILE]

[ENOBUFS]

[EPROTONOSUPPORT]

[ESOCKTNOSUPPORT]

dnet_conn(3dn)

socket (2dn)

The specified address family is not supported
in this version of the system.

Too many open files.

The per-process descriptor table is full.

No buffer space is available. The socket
cannot be created.

The specified protocol is not supported.

The specified socket type is not supported in
this address family.

DECnet-ULTRIX System Calls 4-31

write (2dn)

write (2dn)

NAME

SYNTAX

write - write or send data

*include <sys/types.h>
*include <sys/socket.h>

cc = write (s,msg,msglen)
int cc, s;
char *msg;
int msglen;

where

Input Arguments:

s

msg

msglen

specifies a descriptor for a socket that has been returned by the socket
call.

specifies the address of the buffer that contains the outgoing message.

specifies the size of the message.

Return Argument:

cc is the number of bytes sent.

DESCRIPTION

The write call is used to transmit normal data messages to another program. You
can use write only when a socket is in a connected state. See connect(2dn) for
more information.

The number of bytes sent is returned in cc. If no message space is available at
the receiving socket to hold the message being transmitted, the write call will, in
most cases, block. If the socket is set in nonblocking I/O mode, the write returns
in error with errno set to EWOULDBLOCK

You can use the select call to determine when it is possible to send more data.

RETURN VALUE

If the call succeeds, the number of bytes actually written is returned. If an error
occurs, a value of -1 is returned and errno is set to indicate the error.

4-32 DECnet-ULTRIX System Calls

c

c

C::

c

write (2dn)

DIAGNOSTICS

SEE ALSO

The call succeeds unless:

[EBADF]

[EFAULT]

[EMSGSIZE]

[EPIPE]

[EWOULDBLOCK.]

The s argument is not a valid descriptor open for writing.

Part of s or data to be written to the file points outside the
process's allocated address space.

An attempt is made to transmit a zero-length message or a
message that is larger than the DECnet pipeline quota on a
sequenced-packet socket.

An attempt is made to write to a socket type
SOCK_STREAM, which is not connected to a peer socket.

The socket is marked nonblocking and the write operation
would have blocked.

connect(2dn), read(2dn), recv(2dn), send(2dn)

DECnet-ULTRIX System Calls 4-33

('''''

/

c
5.1

(~"

c

Chapter 5

DECnet-U L TRIX Subroutines

This reference chapter describes the DECnet-ULTRIX subroutines, which you can
find in the C library, llib/libdnet.a. The fonnat for this infonnation corresponds
to that in the ULTRIX reference pages. See the ULTRIX Reference manuals for
more infonnation about fonnat.

Each subroutine begins a separate page in alphabetical order. The name of the
subroutine appears in a running head followed by the appropriate section number
and a suffix. For example, dnet_addr(3dn) appears on the pages describing the
dnet_addr subroutine. The 3 indicates that the section describes subroutines.
The dn indicates that the subroutine is used in the DECnet domain.

Subroutine Summary

Table 5-1 summarizes the function of each DECnet-ULTRIX subroutine.

Table 5-1: DECnet-ULTRIX Subroutines

Subroutine

dnet_addr

dnet_conn

dnet_getalias

dnet_htoa

Function

Converts an ASCII node address to binary.

Connects to a specified network object on a remote node and
sends any access-control information or optional user data.

Tests the current state of a connection to determine whether
the end-of-file has been reached.

Gets extended node information.

Returns a DECnet ASCII node name that corresponds to a
I6-bit binary node address contained in a structure of the type
dn_naddr. If a node name is not found for the node address,
dnet_htoa returns an ASCII string representation of the node
address.

Converts a I6-bit binary node address, which is contained
in a structure of the type dn_naddr, to its ASCII string
representation.

Converts a DECnet object name or number to its ASCII string
representation.

(continued on next page)

DECnet-ULTRIX Subroutines 5-1

Table 5-1 (Cont.): DECnet-ULTRIX Subroutines

Subroutine

getnodeadd

getnodeent

getnodename

nerror

5.2 On-Line Manual Pages

Function

Returns a pointer to a structure of the type dn_naddr, which
contains your local DECnet-ULTRIX node address.

Accesses the network node database and returns node informa­
tion.

Returns an ASCII string representation of your local DECnet­
ULTRIX. node name.

Produces DECnet error messages.

The subroutine descriptions appear also as on-line documentation; for example,
dnet_addr(3dn), dnet_conn(3dn), dnet_eof(3dn), and so on.

See the DECnet-ULTRIX Use manual for instructions on how to use on-line
manual pages.

5.3 Format and Conventions

The descriptions of the DECnet-ULTRIX system calls have the following format:

SYNTAX

Gives the complete syntax for the subroutine. Syntax lines use the graphic
conventions described at the end of this chapter. The following conventions
apply to syntax lines:

conunand

italics

%

DESCRIPTION

Indicates terms that are constant and must be typed
exactly as presented.

Indicates that the preceding item can be repeated one or
more times.

Indicate a variable, for which either you or the system
must specify a value.

The default user prompt in multiuser mode.

The default superuser prompt.

Supplies function and background information.

RETURN VALUE

Explains the meaning of a value returned by a subroutine when it completes
or does not complete an operation.

DIAGNOSTICS

Lists diagnostic messages that can be returned.

RESTRICTIONS

Describes restrictions that apply to the use of the subroutine.

5-2 DECnet-ULTRIX Subroutines

c-

c

C·.\
, .1

SEE ALSO

Provides cross-references to associated infonnation in this manual and in
other DECnet-ULTRIX and ULTRIX manuals.

In text, cross-references to specific manual reference pages include the section
number in the ULTRIX or DECnet-ULTRIX reference manual where the
commands are documented. For example, dnet_conn(3dn) refers to the
description of the dnet_conn subroutine in Section 3dn of the ULTRIX
reference pages.

5.4 Subroutine Descriptions

The following pages describe each subroutine in detail.

DECnet-ULTRIX Subroutines 5-3

dnet_addr (3dn)

dnet_addr (3dn)

NAME

SYNTAX

dnet_addr - convert ASCII node address to binary

#include <netdnet/dn.h>

struct dn naddr *
dnet_addr (op)

char *op;

where

Input Argument:

cp is a character pointer to the ASCII node address string. A DECnet
node address is specified as a.n, where a is the area number and n is
the node number.

A DECnet node address includes an area number (which identifies a
node's area in a multiple area network) and a node number (which
uniquely identifies a DECnet node). In a multiple area network, a is
the area number for that node. For a node in a single area network,
the a argument defaults to 1.

Return Argwnent:

dn_naddr specifies the node address structure. The following fields are filled in
by this subroutine:

specifies the length of the returned node address.

specifies the node address.

DESCRIPTION

The dnet_addr subroutine converts an ASCII node address string to binary and
returns a pointer to a dn_naddr structure, which contains the node address and
the length of the returned node address. This information is required for the
sockaddr_dn data structure.

RETURN VALUE

If the call succeeds, a pointer to a dn_naddr structure is returned. If an error
occurs, a value of 0 is returned.

RESTRICTION

If you plan to call this function again before you finish using the data, you must
copy the data into a local structure.

5-4 DECnet-ULTRIX Subroutines

c

c:

C
"~' '\

/

c

dnet_conn (3dn)

dnet_conn (3dn)

NAME

SYNTAX

dnet_conn - connect to target network object

#include <sys/types.h>
#include <sys/socket.h>
#include <netdnet/dn.h>

int
dnet_conn (node, object, type, opt_out, opt_outl, opt_in,opt_inl)

char *node;
char *object;
u char *opt out,*opt in,
int opt_outl, *opt_inl;

where

s

node

is a returned socket descriptor over which a connection has been
established.

specifies the address of the string that contains the remote node name
and any optional access data. The node string can have one of the
following formats:

"nodename[lusernamelpasswordlaccount]"

or

"a.n[lusernamelpasswordlaccount]"

where a is the area number and n is the node number.

Node names are matched without regard to case, and access-control
information is passed as supplied. (Case is preserved.)

NOTE

Programs that use dnet_conn prompt
you for a password if you omit the
password field in an access-control
string. The password that you type
after the prompt does not echo, which
provides account security.

DECnet-ULTRIX Subroutines 5-5

dnet_conn (3dn)

object

type

DESCRIPTION

specifies the address of the string that contains the target network
object. You can specify the object by name or number. If the object
number is zero, you must specify the object by name. If the object
number is something other than zero, you can specify the object by
name or number, but for remote non-ULTRIX. nodes, it is recommended
that you specify them by number. (To specify the object by name on
a remote non-ULTRIX. node, see the documentation for that operating
system.) Specify object name and number strings as follows:

By object name:

"objectname" (For example, "test".)

By object number:

"#objectnumber" (For example, "#17")

Case conversion is not performed on object names before they are sent
to a destination program.

is the socket type. The DECnet domain currently supports the follow­
ing socket types:

• SOCK_STREAM (stream socket).
• SOCK_SEQPACKET (sequenced-packet socket).

A value of 0 defaults to SOCK_SEQPACKET.

specifies the address of the outgoing optional user data buffer. The
message can be up to 16 bytes long. If this argument is not required,
supply a NULL pointer.

specifies the size of the optional outgoing message. The message can be
up to 16 bytes long. If this argument is not required, supply a NULL
value.

specifies the address of the buffer that will store the optional incoming
message. The message can be up to 16 bytes long. If this argument is
not required, supply a NULL pointer.

specifies the size of the buffer that will store the optional incoming
message. On return, this argument contains the actual size of the
optional incoming message. If this argument is not required, supply a
NULL pointer.

The dnet_conn subroutine establishes a connection to a specified network object
on a remote node. Default access-control infonnation is used to validate access
privileges. You can override the default access control by supplying optional
access-control information. You can also supply optional connection data.

In addition or instead of supplying access-control information, you can request
proxy access on the remote node. The DECnet-ULTRIX Network Management
manual contains a full description of proxy access.

The dnet_conn subroutine requests proxy by default. If you do not want outgoing
requests to ask for proxy access at the remote systems, your program should clear
the global variable proxy_requested.

5-6 DECnet-ULTRIX Subroutines

c

c

c

o

dnet_conn (3dn)

The dnet_conn subroutine creates a socket in the DECnet domain and binds a
name to the socket. The bound socket name is the respective user's log-in name
converted to uppercase. This bound name is used as the source name for the
outgoing connection only when a program is running as superuser; otherwise, the
user ID in ASCII is used as the source name.

When you write a program using dnet_conn, you must subsequently call nerror
in order to return any DECnet system errors that occur. For example, if dnet_
conn returns an error, use the nerror subroutine to display the DECnet system
error.

RETURN VALUE

If the subroutine completes successfully, the socket descriptor is returned. If an
error occurs, a value of -1 is returned. Additional error detail will appear in the
external variable errno.

RESTRICTION

Currently, dnet_conn creates a socket in the DECnet domain and binds a name to
the socket. The bound socket name is the respective user's log-in name converted
to uppercase. This bound name is used as the source name for the outgoing
connection only when a program is running as superuser; otherwise the user ID
in ASCII is used as the source name.

DIAGNOSTICS

Use nerror to map the following standard ULTRIX errors to equivalent DECnet
error messages. The DECnet error text is written to a standard error message.

ULTRIX Error

[EACCES]

[EADDRINUSE]

[EADDRNOTAVAIL]

[ECONNREFUSED]

[EHOSTDOWN]

[EHOSTUNREACH]

[EINVAL]

[EISCONN]

[ENAMETOOLONG]

[ENETDOWN]

[ENOBUFS]

[ENOSPC]

[ESRCH]

[ETIMEDOUT]

[ETOOMANYREFS]

Equivalent DECnet Error Message

Connect failed, access control rejected

Connect failed, insufficient network resources

Connect failed, unrecognized node name

Connect failed, connection rejected by object

Connect failed, local node shutting down

Connect failed, node unreachable

Connect failed, invalid object name format

Connect failed, insufficient network resources

Connect failed, invalid node name format

Connect failed, remote node shutting down

Connect failed, insufficient network resources

Connect failed, insufficient network resources

Connect failed, unrecognized object

Connect failed, no response from object

Connect failed, object too busy

DECnet-ULTRIX Subroutines 5-7

dnet_conn (3dn)

SEE ALSO
errors(2)

c
5-8 DECnet-ULTRIX Subroutines

c

c

c

o

dnet_eof (3dn)

dnet_eof (3dn)

NAME

dnet_eof - test for end-of-file on a DECnet socket

SYNTAX

int
dnet eof (s)

int s;

where

s specifies a DECnet socket.

DESCRIPTION

The dnet_eof subroutine tests a DECnet socket to determine if an end-of­
file (EOF) condition exists. An EOF on a DECnet socket indicates that it
is impossible to read any more data because no more data exists for a read
operation and the socket is no longer connected.

This subroutine is useful for determining if an EOF condition exists on a DECnet
sequenced-packet socket when a read operation has returned zero bytes. ULTRIX
uses a returned value of zero on a read operation to indicate EOF. Since it is
always possible to read a zero-length packet on a DECnet sequenced-packet
socket, you cannot determine whether you have just read a zero,;,length packet or
reached EOF without using dnet_eof.

RETURN VALUE

If dnet_eof determines a connection to be in an active state, a value of 0 is
returned. If dnet_eof determines a connection to be in an inactive state, a
nonzero value is returned.

RESTRICTION

SEE ALSO

Even though zero-length packets may be available for a read operation, dnet_eof
will indicate an EOF condition if the DECnet socket is no longer connected.

read(2dn)

DECnet-ULTRIX Subroutines 5-9

dnet_getalias (3dn)

dnet_getalias (3dn)

NAME
dnet_getalias - get extended node infonnation

SYNTAX

char *
dnet_getalias (alias)

char *aliasi

where

alias is a character pointer to an alias.

DESCRIPTION

The dnet_getalias subroutine searches for a .nodes file in your home directory
and returns any alias definitions found in that file. The dnet_getalias subroutine
returns a node name and any default access-control infonnation associated with
the node name.

RETURN VALUE

If a node has default access-control infonnation associated with it, the node name,
followed by the access data, is returned in the following fonnat:

nodenamelusernamelpasswordlaccount

If you have a .nodes file in your home directory that defines aliases, any alias
definition for the specified alias name is returned.

If a matching alias entry is not found, a NULL pointer is returned.

RESTRICTION

If you plan to call this function again before you finish using the data, you must
copy the data into a local structure.

5-10 DECnet-ULTRIX Subroutines

C:

c'

c

o

dnet_htoa (3dn)

dnet_htoa (3dn)

NAME

SYNTAX

dnet_htoa - return ASCII node name or node address

#include <netdnet/dn.h>

char *
dnet_htoa (add)

struct dn naddr *add

where

Input Argument:

add specifies a pointer to a structure of the type dn_naddr, which contains the
node address.

Return Argument:

dn_naddr specifies the node address structure. The following fields are filled in
by this subroutine:

a_len specifies the length of the returned node address.

specifies the node address.

DESCRIPTION

The dnet_htoa subroutine searches the node database for a node by address.
If the node is found, the ASCII node name string is returned. If the node is
not found, the 16-bit binary node address is converted to the ASCII string
representation (area. number).

RETURN VALUE

If the node name is found, a pointer to the ASCII node name string is returned.
Otherwise, the ASCII node address string is returned.

RESTRICTION

If you plan to call this function again before you finish using the data, you must
copy the data into a local structure.

DECnet-ULTRIX Subroutines 5-11

dnet_ntoa (3dn)

dnet_ntoa (3dn)

NAME

SYNTAX

dnet_ntoa - convert binary node address to ASCII

#include <netdnet/dn.h>

char *
dnet _ ntoa (add)

struct dn naddr *add;

where

Input Argument:

add specifies a pointer to a structure of the type dn_naddr, which contains
the node address.

Return Argument:

specifies the node address structure. The following fields are filled in
by this subroutine:

specifies the length of the returned node address.

specifies the node address.

DESCRIPTION

The dnet_ntoa subroutine converts a I6-bit binary node address to its ASCII
string representation (area. number).

RETURN VALUE

A pointer to the ASCII string representation of the DECnet node address is
returned.

RESTRICTION

If you plan to call this function again before you finish using the data, you must
copy the data into a local structure.

5-12 DECnet-ULTRIX Subroutines

/

/' ",

c

c

c

dnet_otoa (3dn)

dnet_otoa (3dn)

NAME

SYNTAX

dnet_otoa - convert DECnet object name or number to ASCII

iinclude <netdnet/dn.h>

char *
dnet_otoa (dn)

struct sockaddr dn *dn;

where

dn is the address of a structure sockaddr_dn.

DESCRIPTION

Given a sockaddr_dn data structure, dnet_otoa converts a DECnet object name
or number to its ASCII string representation.

RETURN VALUE

A character pointer to the ASCII string representation of the DECnet object name
or number is returned.

RESTRICTION

If you plan to call this function again before you finish using the data, you must
copy the data into a local structure.

DECnet-ULTRIX Subroutines 5-13

getnodeadd (3dn)

getnodeadd (3dn)

NAME

SYNTAX

getnodeadd - return local node address

#include <netdnet/dn.h>

struct dn naddr *
getnodeadd () ;

where

specifies the node address structure. The following fields are filled in
by this subroutine:

specifies the length of the returned node address.

specifies the local node address.

DESCRIPTION

The getnodeadd subroutine returns a pointer to a structure of the type dn_
naddr, which contains the DECnet node address of your local DECnet-ULTRIX
node.

RETURN VALUE

If the subroutine is successful, a pointer to a dn_naddr structure is returned. If
an error occurs, a value of 0 is returned.

RESTRICTION

If you plan to call this function again before you finish using the data, you must
copy the data into a local structure.

5-14 DECnet-UlTRIX Subroutines

c

c

o

getnodeent (3dn)

getnodeent (3dn)

NAME

SYNTAX

getnodeent - get node infonnation from network node database

#include <netdnet/dnetdb.h>

struct nodeent *
getnodeent ()

struct nodeent *
getnodebyname (name)
char *name

struct nodeent *
getnodebyaddr (addr, len, type}
char *addr;
int len, type;

int setnodeent ()

endnodeent ()

where

name

addr

specifies the address of the buffer containing the node name string.

specifies the address of the buffer containing the node address string in the
form returned by the dnet_addr subroutine.

len

type

is the length of the node's address string.

specifies the address type. This must be specified as AF _DECnet.

getnodeent returns a pointer to a structure of type nodeent with the following
members:

struct nodeent

} ;

char
int
int
char

nodeent

*n_name;
n_addrtype;
n_length;
*n_addr;

/* name of node */
/* node address type */
/* length of address */
/* address */

specifies the node-address database structure. The following data fields
are filled in by this subroutine:

specifies the name of the node.

specifies the returned address type as
AF_DECnet.

specifies the length of the address.

specifies the network address for the node.

DECnet-ULTRIX Subroutines 5-15

getnodeent (3dn)

DESCRIPTION

Given a node name or node address, the getnodebyname and getnodebyaddr
subroutines, respectively, access the network node database and return node
information. Both return a pointer to a nodeent structure. This structure
contains an entry from the network node database. The returned nodeent
structure is stored in static memory allocated in the getnodeent subroutine.
Therefore, to save it, you must copy it to user memory.

The getnodebyname and getnodebyaddr subroutines search sequentially from
the beginning of the database until a matching host name or host address is
found, or until the end of the database is found. Node addresses are always
arranged in ascending numeric order.

The setnodeent, getnodeent, and endnodeent functions are similar to the
sethostent, gethostent, and endhostent functions. They read through the node
database and perform functions in the following order:

1. setnodeent sets the pointer to the beginning of the database.

2. getnodeent reads the next entry in the database.

3. endnodeent closes the database.

RETURN VALUE

setnodeent returns a value of 0 if the subroutine completes successfully; if it
fails, a value of -1 is returned.

If getnodeent completes successfully, the address for the nodeent structure is
returned. If an error or an EOF occurs, a value of 0 is returned.

DIAGNOSTICS

NULL pointer (0) is returned on EOF or error.

The following error messages can be returned by the database routines get node­
byname, getnodebyaddr, getnodeent, and setnodeent:

[EADDRNOTAVAIL] No such node name in database.

[EFAULT] Incompatible database version number.

[ENAMETOOLONG]

[ENOBUFS]

[EPROTONSUPPORT]

5-16 DECnet-ULTRIX Subroutines

The node name is too long.

Insufficient resources to complete request.

Type not supported or length not a valid length.

C'\
,>'

c

c

getnodename (3dn)

getnodename (3dn)

NAME

SYNTAX

getnodename - return local node name

char *
getnodename ()

DESCRIPTION

The getnodename subroutine returns the ASCII string representation of your
local DECnet-ULTRIX node name.

RETURN VALUE

If the subroutine is successful, your local DECnet node name is returned. If an
error occurs, a value of 0 is returned.

DECnet-ULTRIX Subroutines 5-17

nerror (3dn)
nerror (3dn)

NAME

SYNTAX

nerror - produce DECnet error messages

void
nerror (s)
char *s;

where

s is the program name, such as dlogin, since the value of the s argument
is the name of the program that incurred the error (as it is with
perrOr).

DESCRIPTION

The nerror subroutine produces dnet_conn error messages by mapping standard
ULTRIX errors to the appropriate DECnet error message. The resulting DECnet
error text is written to the standard error file. The error number is taken from
the external variable errno, which is set when errors occur, but is not cleared
when nonerroneous calls are made.

The DECnet error text is output to the standard error file.

RETURN VALUE

This function returns no value.

SEE ALSO

dnet_conn (3dn)

5-18 DECnet-ULTRIX Subroutines

/

c

(
~\.'

)'

c

c

A.1

Appendix A

DECnet-ULTRIX Data Structures

This appendix shows the DECnet-ULTRIX data structures. For guidelines on
specifying these data structures, see the relevant system calls and the header file
Isys/netdnet/dn.h.

Access-Control Information Data Structure

struct accessdata dn
unsigned short
unsigned char
unsigned short
unsigned char
unsigned short
unsigned char

} ;

acc_accl;
acc_acc[40];
accyassl;
accyass[40] ;
acc_userl;
acc_user[40];

/* length of account string */
/* account string */
/* length of password string */
/* password string */
/* length of user string */
/* user string */

A.2 DECnet Node Address Data Structure

A.3

* define DN MAXADDL 2

struct dn naddr

} ;

unsigned short a len; /* length of address */
unsigned char a_addr[DN_MAXADDL]; /* address as bytes */

NOTE

The structure member a_addr represents the DECnet Phase IV node
address. It is a 16-bit unsigned value, where bits 0-9 are the node
address and bits 10-15 are the area number.

Logical Link Information Data Structure

struct linkinfo dn {
unsigned-short
unsigned char

} ;

idn segsize;
idn=:linkstate;

/* segment size for link */
/* logical link state */

DECnet-ULTRIX Data Structures A-1

A.4 Optional User Data Structure

struct opt data dn
unsig;-ed short
unsigned short
unsigned char

} ;

opt status;
opt-optl;
opt:=data[16];

/* extended status return */
/* length of user data */
/* user data */

A.5 Socket Address Data Structure

struct

} ;

sockaddr dn {
unsign;d short
unsigned char
unsigned char
unsigned short

char
struct dn naddr

A-2 DECnet-ULTRIX Data Structures

sdn_family; /*
sdn flags; /*
sdn:=objnum; /*
sdn objnamel; /*
sdn-objname[16];

sd;_add; /*

AF DECnet */
flags */
object number */
size of object name */

/* object name */
node address */

/" '\

c

c:

c

c

Appendix B

DECnet-ULTRIX Programming Examples

This appendix presents the following types of programming examples:

• A sample client program using dnet_conn

• A sample server program using the dnet_spawner

• A sample client program using system calls

• A sample server program using system calls

• A sample gateway program

These programming examples are also available on line in lusr/examples/decnet.

DECnet-UlTRIX Programming Examples 8-1

B.1 Sample Client Program Using dnet_conn

iifndef lint
static char *sccsid
iendif lint

/*
*

"@(i)dnet_echo1.c 1.5 7/27/90";

* dec net e x amp 1 e : d net e c h 0 1

*
* Description: This client program connects to the partner server
* program "dnet echo1d" on the node specified on the
* command line.- Once connected, lines are read from
* standard input and shipped over the network to
* dnet echo1d, which then echoes the lines back to
* this-program, which then prints them on standard
* output.

*
* Input:

*
Name of the node on which dnet echo1d will run.

* Output: none
* / - '-,
* To compile: cc dnet echo1.c -ldnet -0 dnet echo1

*
* Examples:

*
*
* Comments:

*
*
*
*
*
*/

dnet echo1 boston
dnet-echo1 boston/jones/topsecret

This example illustrates the use of dnet conn to
establish a network connection. Compar; the
simplicity of using dnet conn with doing the connect
with system calls, as sh;wn in example dnet echo2.c.
Whether access control is required depends ;n how the
companion program (dnet_echo1d) was set up.

/*
* Digital Equipment Corporation supplies this software example on
* an "as-is" basis for general customer use. Note that Digital
* does not offer any support for it, nor is it covered under any
* of Digital's support contracts.
*/

iinclude <stdio.h>

idefine BUFSIZE 1024

main (argc, argv)
int argc;
char *argv[];
{

int sock;
int length;
char buff[BUFSIZE];

/*

/* size of buffer for read/write */

/* socket for connection */
/* length of data */
/* buffer for data */

* Make sure the node name was given on the command line
*/

if(argc < 2) {
fprintf(stderr, "Usage: %s nodename\n", argv[O]);
exit () ;

B-2 DECnet-ULTRIX Programming Examples

c

c

(~\

c

/*
* connect to our partner "dnet echold" on the specified node
*/

sock = dnet_conn(argv[l] , "dnet_echold" , 0, 0, 0, 0, 0):
if(sock < °)
{

/* print DECnet specific connect error */
nerror (argv[O]):

exit () :

puts("Connected!");

/*
* read lines from standard input, send them over the network,
* then read and print the echoed line from our partner
*/

while(gets(buff) != NULL)
{

/*

length = strlen(buff):

/* Only send nonempty lines */
if(length> °) {

if(write(sock, buff, length) < °) {
perror("couldn't send line over network"):
break:

if((length = read(sock, buff, BUFSIZE» < 0)
perror("couldn't read line over network"):
break;

buff [length]
puts (buff) :

'\0' ;

* finished - close network connection and exit
*/

puts("Exiting ... "):
close(sock):

DECnet-ULTRIX Programming Examples 8-3

B.2 Sample Server Program Using the dnet_spawner

#ifndef lint
static char *sccsid
#endif lint

"@(#)dnet_echo1d.c 1.5 7/27/90";

/*
*
* dec net e x amp 1 e : d net e c h old

*
* Description: This server program reads messages from the network
* connection and then writes (echoes) them back to the
* network connection, until the network connection is

*
*
* Input:

*
* Output:

*

broken.

none

none

* To compile: cc dnet echo1d.c -ldnet -0 dnet echo1d

* * Comments:

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/

/*

This example illustrates the use of the dnet_spawner
to listen for incoming connect requests on behalf of
other server programs. Note that standard in and
standard out are directed to the network connection
(socket) by the dnet spawner before executing this
program. Compare the-simplicity of using the spawner
with the complexity of using system calls as is done
in example dnet_ech02d.c.

To work with the spawner the decnet object database
must be properly configured. There are two
alternatives:

1} A person with superuser privileges must define
this object using ncp, for example:
ncp set object dnet echo1d \

file /usr/examples/dnet echo1d
2} Object "DEFAULT" must be defined in the object

database (DECnet comes with DEFAULT defined),
and this program must be moved to a directory
searched by the spawner (for example, /usr/bin).

In either case, if no default user is defined for the
object, access control information must be specified
by the client (dnet echol) when attempting to
connect. If a defa~lt user is defined, and such an
account actually exists, then access control is not
required (although it can still be specified if
desired) .

* Digital Equipment Corporation supplies this software example on
* an "as-is" basis for general customer use. Note that Digital
* does not offer any support for it, nor is it covered under any
* of Digital's support contracts.
*/

#include <stdio.h>

#define BUFSIZE 1024

#define TRUE 1
#define FALSE 0

main()
{

char buff[BUFSIZE];
int length;

8-4 DECnet-ULTRIX Programming Examples

/* size of buffer for read/write */

c

c

c

c

c

while (TRUE}

/*
* read messages from standard input,
* write them to standard output
*/

length = read(O, buff, sizeof(buff»;
if(length <= ° }

/* if at "end-of-file" (connection broken) */
if(dnet_eof(O})

break;

write(l, buff, length);

DECnet-ULTRIX Programming Examples 8-5

8.3 Sample Client Program Using System Calls

:ftifndef lint
static char *sccsid
:ftendif lint

"@(#)dnet_echo2.c 1.5 7/27/90";

/*
*
* dec net e x amp 1 e : d net e c h 0 2

*
* Description: This client program connects to the partner server
* program "dnet_echo2d" on the node specified on the
* command line. Once connected, lines are read from
* standard input and shipped over the network to
* dnet echo2d, which then echoes the lines back to
* this-program, which then prints them on standard
* output.
*
* Input:

*
* Output:

*

Name of the node on which dnet ech02d will run.

none

* To compile: cc dnet ech02.c -ldnet -0 dnet echo2

*
* Example:

*
* Comments:

*
*
*
*
*
*/

dnet ech02 boston

This example illustrates the use of system calls
to establish a network connection. Compare this
method with that of using dnet conn as is done in
dnet_echo1.c. Also, the connect request is by
object number, rather than by object name as was
done in dnet echo1.c.

/*
* Digital Equipment Corporation supplies this software example on
* an "as-is" basis for general customer use. Note that Digital
* does not offer any support for it, nor is it covered under any
* of Digital's support contracts.
*/

:ftinclude <stdio.h>
:ftinclude <sys!types.h>
:ftinclude <sys/socket.h>
:ftinclude <netdnet/dn.h>
:ftinclude <netdnet/dnetdb.h>

:ftdefine BUFSIZE 1024

main (argc, argv)
int argc;
char *argv[];
{

int sock, length;
char buff[BUFSIZE];

/* size of buffer for read/write */

struct sockaddr_dn address;
struct dn naddr *node addr;
struct nodeent *nodep;

if(argc < 2)
fprintf(stderr, "Usage: %s nodename\n", argv[O]);
exit () ;

/* Create a socket in DECnet domain */
if((sock = socket(AF_DECnet, SOCK_SEQPACKET, 0» < 0)

perror(argv[O]);
exit () ;

8-6 DECnet-ULTRIX Programming Examples

c

c

c

c

c

o

/* Specify target object number for connection */
bzero(&address, sizeof(address»;
address.sdn family = AF DECnet;
address.sdn=objnum = 128;

if((node addr = dnet addr(argv[1]» == NULL) {
if((nodep = getn~debyname(argv[1])} == NULL} {

fprintf(stderr, "%s: Node unknown\n", argv[1]);
exit ();

else {
bcopy(nodep->n addr,address.sdn nodeaddr,nodep->n length);
address.sdn nodeaddrl = nodep->n_length; -

else
address.sdn_add = *node_addr;

/* Connect to partner on specified node */
if (connect(sock, &address, sizeof(address» < 0) {

perror(argv[O]);
exit () ;

puts("Connected ..• ");

/* Read lines from standard input, send them over */
/* the network connection, and print the response */

while(gets{buff) != NULL

length = strlen(buff};

/* Only send non-empty lines */
if(length> 0) {

if{ write(sock, buff, length) < 0) {
perror("couldn't send line over network");
break;

if((length = read(sock, buff, BUFSIZE» < 0)
perror{"couldn't read line over network");
break;

buff [length]
puts(buff);

printf ("Exiting ..• \n ") ;
close(sock);

, \0' ;

/* Close link and exit */

DECnet-ULTRIX Programming Examples B-7

8.4 Sample Server Program Using System Calls

iifndef lint
static char *sccsid
iendif lint

"@(i)dnet_ech02d.c 1.5 7/27/90";

/*

*
* dec net e x amp 1 e : d net e c h 0 2 d

*
* Description:

*
*
*
*
*
*
* Input:

*
* Output:

*

This server program is designed to run as a daemon.
When a network connection is created, it forks and
executes a child, which then reads messages from the
network connection and then writes (echoes) them back
to the network connection, until the network
connection is broken.

none

none

* To compile: cc dnet ech02d.c -ldnet -0 dnet ech02d

*
* Example:

*
* Comments:

*
*
*
*
*
*
*
*
*/

dnet ech02d &

This example illustrates the programming of a server
that does not use the dnet spawner. This program
must be started manually before attempting to connect
to it from the client program (dnet ech02). Note
that no access control verification-is done in this
example, but a "real" server program would
need to do some form of access control verification
(in example dnet_echo1d, access control verification
is done automatically by the dnet_spawner) .

/*
* Digital Equipment Corporation supplies this software example on
* an "as-is" basis for general customer use. Note that Digital
* does not offer any support for it, nor is it covered under any
* of Digital's support contracts.
*/

iinclude <stdio.h>
iinclude <sys/types.h>
iinclude <sys/socket.h>
iinclude <netdnet/dn.h>
iinclude <sys/wait.h>
iinclude <signal.h>
iinclude <errno.h>

idefine BUFSIZE 1024

main (argc, argv)
int argc;
char *argv[];
{

/* size of buffer for read/write */

int s, ns, acclen, rdlen;
char buf[BUFSIZ];
struct sockaddr dn sockaddr, accsockaddr;

/* Create socket in DECnet address family */
/* of type sequenced packet. */
if ((s = socket(AF DECnet, SOCK_SEQPACKET, 0» < 0) {

perror(argv[O]);
exit () ;

8-8 DECnet-ULTRIX Programming Examples

c

('" -,
/

c

c

/* The socket address indicates the DECnet address */
/* and object number of 128. */
bzero(&sockaddr, sizeof(struct sockaddr_dn»;
sockaddr.sdn_family = AF-PECnet;
sockaddr.sdn_objnum = 128;

/* Bind the socket to a DECnet socket address and */
/* listen for a connection. */
if(bind(s, &sockaddr, sizeof(sockaddr» < 0) {

perror(argv[O]);
exit () ;

if(listen(s, SOMAXCONN) < 0) {
perror(argv[O]};
exit () ;

/* Accept an incoming connection */
for(; ;) {

do {
acclen = sizeof(accsockaddr);
ns = accept(s, &accsockaddr, &acclen};

while(ns == -1 && errno == EINTR);

/* Fork child to handle the new connection */
if(fork() 0)

break;
close(ns};
}

/* Redirect standard input and output to new socket */
dup2(ns, 0); dup2(ns, 1);
close(ns}; close(s);

for(; ;) {
if((rdlen = read(O, buf, sizeof(buf») <= 0)

if(dnet eof(O))
break;

write(l, buf, rdlen);
}

DECnet-ULTRIX Programming Examples 8-9

8.5 Sample Application Gateway Program

#ifndef lint
static char *sccsid
#endif lint

/*
* DESCRIPTION

*

"@(#}gatewayd.c 1.4 5/27/90";

*
*
*
*
*

This program illustrates how an ULTRIX system can be used as a
gateway to swap transports for an application protocol. A brief
description of how the program is used is given below. For more
details on usage, see file /usr/examples/decnet/gatethru/README

* USAGE

*
*
*
*
*

gatewayd
gatewayd -inet desthost destservice
gatewayd -dnet destnode destobject

* In the first case (with no arguments specified), three
* lines should be sent initially:

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

protocol
destsystem
destentity

("inet" or "dnet" without the quotes)
(host or node name)
(service or object name)

These must be delimited by one of the following:

<LF> (linefeed)
<CR><LF> (carriage-return linefeed)

A response will be returned as:

Connected to destsystem (destentity) via protocol

for success, and

Not-Connected [further explanation]

for failure. These responses will be delimited by the
same delimiter that had delimited the protocol.

In the other cases, there will be no exchange. If the
connection couldn't complete to the destsystem/destentity,
the connection to the client is simply disconnected.

* In all cases, "service" must be defined in /etc/services on the
* gateway system, and "host" must be in /etc/hosts.
*/

/*
* Digital Equipment Corporation supplies this software example on
* an "as-is" basis for general customer use. Note that Digital
* does not offer any support for it, nor is it covered under any
* of Digital's support contracts.
*/

#include <stdio.h>
#include <strings.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <netdnet/dn.h>
#include <netinet/in.h>
#include <netdb.h>

#include <signal.h>

8-10 DECnet-ULTRIX Programming Examples

. "'.,

c

c

#include <errno.h>
#include <sysexits.h>

#define
#define

STREQL(a, b)
NIL

(strcmp(a, b)
(0)

0)

char
char
char

char

int

DestProto[40];
DestHost[256];
DestObj[256];

LineDelim [10]

SmartMode;

1* Protocol family to connect by *1
1* Remote system to connect to *1
1* Remote object/service to connect to *1

"\n"; 1* Default line delim in smart mode *1
1* Get destination info from client mode *1

1* Signal handler for SIGPIPE (write on a disconnected socket) *1
abort ()
{

1* We still had data to transfer and the side who should have
received it has gone away. We will consider it an I/O error *1

exit (EX_IOERR) ;

main (argc, argv)
int argc;
char *argv[];

1* # of command line arguments *1
1* the command line arguments *1

int client,
server;

1* Socket connected to client */
1* Socket to use for server *1

/* Check usage *1
if(! (argc == 4 I I argc == 1))

exit(EX_USAGE);

/* If no arguments, operate in Smart Mode *1
SmartMode = argc == 1;

if(!SmartMode) {
1* Fetch connect info from command line *1
strcpy(DestProto, &argv[l] [1]);
strcpy(DestHost, argv[2]);
strcpy(DestObj, argv[3]);

else {
char *p; 1* Temp *1

1* Get connect info from client *1
fgets(DestProto, sizeof(DestProto), stdin);
fgets(DestHost, sizeof(DestProto), stdin);
fgets(DestObj, sizeof(DestProto), stdin);

p =strpbrk(DestProto, "\r\n");
strcpy(LineDelim, p);
*p = '\0';

strpbrk (DestHost, "\r\n") [0]
strpbrk(DestObj, "\r\n") (0]

'\0' ;
'\0' ;

/* Time to attempt the connection *1

if(STREQL(DestProto, "dnet")) {
server = dnet_conn(DestHost, DestObj, SOCK_STREAM,

(u_char *) 0, 0, (u_char *) 0, (int *) 0);

if(server < 0 } {
1* Return failure indication back to c~ient in Smart Mode *1
if(SmartMode) {

printf ("Not-Connected%s", LineDelim);
fflush(stdout);

DECnet-ULTRIX Programming Examples 8-11

/* Some spawners (DECnet) log children's exit codes */
exit(EX_CANTCREAT);

else if(STREQL(DestProto, "inet")) {
server = inet_conn(DestHost, DestObj);

if(server < 0) {

else

/* Return failure indication back to client in Smart Mode */
if(SmartMode) {

printf("Not-Connected%s", LineDelim);
fflush(stdout);

/* Some spawners (DECnet) log children's exit codes */
exit(EX_CANTCREAT);

/* Error; Request to connect via an unknown protocol */

/* Return failure indication back to client in Smart Mode */
if(SmartMode) {

printf ("Not-Connected Unknown protocol %s%s",
DestProto, LineDelim);

fflush (stdout) ;

/* Some spawners (DECnet) log children's exit codes *1
exit(EX_PROTOCOL);

/* Return success indication back to client in Smart Mode */
if(SmartMode) {

printf("Connected to %s (%s) via %s%s",
DestHost, DestObj, DestProto, LineDelim)j

fflush(stdout);

/* Just to make the code more readable */
client = 0;

/* We will abort gracefully when the client or remote system
goes away */

signal (SIGPIPE, abort);

/* Now just go and move raw data between client and
remote system */

dowork(client, server);
/* ... NEVER RETURNS */

dowork(client, server)
int client, server;

/* select(2) masks for client and remote */
int ClientMask, ServerMask;

/* Combined ClientMask and ServerMask */
int ReadMask;

/* Initialize select(2) masks */
ClientMask = l«client;
ServerMask = l«server;

ReadMask = ClientMask I ServerMask;

/* Now move raw data for the rest of our life between
client and remote */

for(; ; } {
/* Local Variables */
int SelectReadMask;/* select (2) mask modifiable by select(2) */
int nreadYi /* status return from select (2) */

8-12 DECnet-ULTRIX Programming Examples

c

.,

C"·

c

" C"""

C

o

do {
/* Intialize select(2) mask every time

as select(2) always modifies it */
SelectReadMask = ReadMask;

/* Wait for data to be present to be moved */
nready = select (32,&SelectReadMask, (int *)0, (int *)O,NIL);

while(nready < 0 && errno == EINTR);

/* select(2) failed, should not happen. Exit abnormally */
if(nready < 0)

exit(EX_SOFTWARE);

/* Favor the client (unspecified reason)
if s/he has data */

if(SelectReadMask & ClientMask)
xfer(client, server);

/* Then check on the other operation*/
if(SelectReadMask & ServerMask)

xfer(server, client);

/* NEVER REACHED */

4tdefine BUFSIZE 256 /* Max bytes to move at a time */

xfer(from, to)
int from, to; /* Move data from "from" to "to" */
{

static char buf[BUFSIZE]; /* Buffer data to be moved */
int nready; /* 4t bytes readable */
int got; /* * bytes actually being moved */

int
inet

{

/* Query the system how many bytes are ready to be read */
ioctl(from, FIONREAD, &nready);

/* Only try to get the smaller of nready and BUFSIZE */
got = read(from, buf, nready < BUFSIZE ? nready : BUFSIZE);

/* Zero bytes returned indicates end of stream, exit gracefully */
if(got == 0)

exit (EX_OK);

/* Now send it across to the other side */
write (to, buf, got);

_conn (host, port)
char *host;
char *port;

/* Local Vars */
int sock; /* Socket to use for the connection */
struct hostent *hostent; /* Destination host entry */
struct servent *servent; /* Destination service entry */
struct sockaddr in addr; /* Formatted destination for connect */

/* Fetch the requested host and service entries */
hostent = gethostbyname(host);
servent = getservbyname(port, "tcp");

/* No host entry, no service entry, or host is not
Internet, error! */

if(servant == NIL I I
hostent == NIL I I
hostent->h_addrtype != AF_INET)
return -1;

/* Get a socket from the system to use for the connection */
if((sock = socket(AF_INET, SOCK_STREAM, 0» < °)

return -1;

DECnet-ULTRIX Programming Examples B-13

/* Make sure we start with a clean address structure ... */
bzero(&addr, sizeof(addr»;

/* ... then fill in the required fields */
addr.sin family = AF INET;
addr.sin~ort = se;Vant->s-port;
bcopy(hostent->h_addr, &addr.sin_addr, hostent->h_length);

/* Now try connection to the destination */
if(connect(sock, &addr, sizeof(addr» < 0) {

/* No go, release the socket, and then return error! */
close(sock);
return -1;

/* Success. Return the connected socket descriptor */
return sock;

8-14 DECnet-ULTRIX Programming Examples

c

,., C'"

c

o

Glossary

Accept-Deferred Mode
A mode for accepting incoming connections. Deferred mode lets the server
program store, examine, and process any access control information or
optional data that is supplied as part of a connection request.

Accept-Immediate Mode
A mode for accepting incoming connections. Immediate mode makes it
possible for the server program to send and receive data as soon as the accept
call operation completes.

Access Control Information
Identification information used to screen inbound connect requests and
verify them against a system account. In the DECnet domain, access control
information consists of a specified user name, password, and account string.

Blocking Input/Output (1/0)
An I/O mode that causes a calling process to wait for an input/output
operation. Blocking prevents an input/output system call from returning
control to a calling procedure until the operation completes. See also
Nonblocking Input/Output.

Client Application
Any application that initiates a connection and requests services from the
server application.

Client-Server Commu nication
Task-to-task communication between applications through a socket interface.

Communication Domain
A set of protocols that have common communication properties. For
example, the Internet domain supports applications that communicate
through the Defense Advanced Research Projects Agency (DARPA) standard
communication protocols, and the DECnet domain supports applications that
communicate through the Digital NetworkArchitecture.

Digital Data Communications Message Protocol (DDCMP)
A set of conventions used for data transmission over physical links.

Glossary-1

Glossary-2

Interprocessor Communication (IPC)
Communication between two independent processes, such as client and server
programs. These processes use system calls to establish connections and
communicate with each other through sockets.

Network Object
A task or program (for example, fal or nml) that provides generic services
across a network. In the DECnet-ULTRIX programming environment,
a network object is a server application that can be accessed from other
Internet or DECnet nodes on a network.

Nonblocking InputlOutput (1/0)
A mode that causes a calling process to not wait for an I/O operation. The
nonblocking input/output mode returns control to the calling procedure
immediately with an error message if there are not enough resources
available to complete the operation. See also Blocking Input/Output.

Optional data
In the DECnet domain, a string of up to 16 bytes that clients and servers can
exchange on either a connect or disconnect sequence. This data is interpreted
differently according to the application.

Out-of-Band Message
An unsolicited, high-priority message that one application sends to another
outside of the normal data channel. In most cases, it informs the receiving
application of an unusual or abnormal event in the sending application.

Proxy Access
A method of screening client application access to a server application without
using a password. The supplied name of the user making the access request
must correspond with an entry listed in the target node's proxy access file.

Sequenced-Packet Socket
A socket type that preserves record boundaries and supplies a bidirectional,
reliable, ordered, first-in, first-out (FIFO), unduplicated flow of data.

Server Application
Any application that either accepts or rejects a request from a client
application and provides services to client applications.

Stream Socket
A socket type that provides a byte stream without using message boundaries.
It also supplies a bidirectional, reliable, ordered, first-in, first-out (FIFO),
unduplicated flow of data.

Socket
An addressable endpoint for communication. Client and server applications
each create a socket that acts as a handle for sending and receiving data.

c

c

o

A
accept,

accept a connection request, 4-4
modes for accepting connect requests, 4-5,4-16
to accept a connect request, 4-5

Access control,
overview of, 1-3
receiving incoming information, 3-13
supplying outgoing information, 3-6

Access-control information,
returned by dnet_getalias, 5-10
use with connect call, 4-9
use with dnet_conn, 5-5

ACC_DEFER,
see accept, modes for accepting connect requests

ACC_IMMED,
see accept, modes for accepting connect requests

Aliases,
returned by dnet_getalias, 5-10

Application programs,
sample gateway program, 8-10

B
bind,

restrictions for using, 4-7
to bind name to socket, 4-6 to 4-7

c
Calls,

on-line documentation for,
see On-line documentation

summary of call functions, 4-1
Client programs,

sample DECnet-UlTRIX program, B-2, 8-6
using the dnet_conn subroutine for, 2-1

close,
to terminate connection, 4-8

Communication domain,
definition of, 1-2

connect,

o

to initiate connection request, 4-9
to initiate connect request, 4-10

Data structures,
access-control information, A-1
DECnet node address, A-1

Data structures, (Cont.)

logical link information, A-1
optional user data, A-2
socket address, A-2

DECnet domain,
socket types supported in, 1-2

DECnet-UlTRIX calls
summary of call functions, 4-1

DECnet-Ul TR IX subroutines,
summary of subroutine functions, 5-2

dnet addr,

Index

co;vert ASCII node address to binary, 5-4
format for DECnet node address, 5-4

dnet conn,
co;nect to target object, 5-5 to 5-8
error messages, 5-7
producing error messages for,

see nerror
using access-control information with, 5-5

dnet eof,
determine if end-of-file, 5-9

dnet_getalias,
get alias information, 5-1 0

dnet htoa,
return ASCII node name/address, 5-11

dnet ntoa,
convert binary node address to ASCII, 5-12

dnet otoa,
co;vert object name/number to ASCII, 5-13

DNPROTO_NSP,
see Protocol levels

Domain,
see Communication domain

E
Error messages,

G

for dnet_conn, 5-7
subroutine for producing,

see nerror

Gateway programs,
sample DECnet-UlTRIX program, 8-10

getnodeent,
get node information, 5-15 to 5-16

getnodename,
return local node name, 5-17

getpeername,
to get name of peer socket, 4-11 to 4-12

Index-1

getsockname,
to get name for socket, 4-13 to 4-14

getsockopt,

L

DSO_ACCEPTMODE,
definition of, 4-16

DSO_CONACCEPT,
definition of, 4-16

DSO_CONACCESS,
definition of, 4-17

DSO_CONDATA,
definition of, 4-16

DSO_CON REJ ECT,
definition of, 4-16

DSO_DISDATA,
definition of, 4-17

DSO_LlNKINFO,
definition of, 4-17

list of DECnet NSP level options, 4-16
list of socket level options, 4-16
SO_DEBUG,

definition of, 4-16
SO_LINGER,

definition of, 4-16
to get socket options, 4-15 to 4-18

listen,
to listen for connect requests, 4-19

M
mode,

N

for accepting connection request,
see accept

for file transfer,
see File transfer

nerror,
produce DECnet error messages, 5-18

Node,
address,

format and definition for, 5-4

o
On-line documentation,

for DECnet-ULTRIX system calls, 4-2
On-Line documentation,

for DECnet-ULTRIX subroutines, 5-2
Optional user data,

overview of, 1-4
supplying outgoing, 3-15
use with connect call, 4-9
use with dnet conn, 5-6

Out-of-band data, -
receiving, 4-23
sending, 4-26

p
Protocol levels,

0,
value for socket level, 4-15

Index-2

Protocol levels, (Cont.)
DNPROTO_NSP,

R

value for DECnet NSP level, 4-15
for the socket call, 4-30

read,
to read data, 4-20 to 4-21

recv,

s

receiving out-of-band data with, 4-22
to receive datalout-of-band messages, 4-22 to

4-23

select,
synchronous VO multiplexing, 4-24 to 4-25

send,
to send datalout-of-band messages, 4-26 to 4-27

Server programs,
sample DECnet-ULTRIX program, 8-4, B-8
using the DECnet object spawner for, 2-6

setsockopt,
DSO _ACCEPTMODE,

definition of, 4-16
DSO_CONACCEPT,

definition of, 4-16
DSO_CONACCESS,

definition of, 4-17
DSO_CONDATA,

definition of, 4-16
DSO_CON R EJECT,

definition of, 4-16
DSO_DISDATA,

definition of, 4-17
DSO_LlNKINFO,

definition of, 4-17
list of DECnet NSP level options, 4-16
list of socket level options, 4-16
SO_DEBUG,

definition of, 4-16
SO_LINGER,

definition of, 4-16
effect on close call, 4-8

to set socket options, 4-15 to 4-18
shutdown,

to shut down connection, 4-29
socket,

to create a socket, 4-30 to 4-31
Socket,

definition of, 1-2
descriptor,

value of, 4-30
options,

see getsockopt or setsockopt
sequenced-packet,

definition of, 4-30
method of reading data, 4-20, 4-22
significance of 0 return value, 4-21
use with dnet_conn, 5-6

stream,
definition of, 4-30
method of reading data, 4-20, 4-22
use with dnet conn, 5-6

Socket type, -

see Socket, sequenced-packet or Socket, stream

/ .. ".

c

c'

c

Socket types,
supported in DECnet domain, 1-2

SOCK_SEQPACKET,
see Socket sequenced-packet

SOCK_STREAM,
see Socket, stream

SO_DEBUG,
see getsockopt or setsockopt

SO_LINGER,

see getsockopt or setsockopt

Subroutines,
on-line documentation for,

see On-Line documentation
summary of subroutine functions, 5-2

System calls,
on-line documentation for,

see On-line documentation

w
write,

to write (or send) data, 4-32 to 4-33

Index-3

("'" ''',

,/

('"''

"
I

~/

o

HOW TO ORDER ADDITIONAL DOCUMENTATION

I DIRECT TELEPHONE ORDERS I
In Continental USA
call 80D-DIG ITAL

In Canada
call 800-267-6215

In New Hampshire
Alaska or Hawaii
call 603-884-6660

In Puerto Rico
call 809-754-7575
x2012

I ELECTRONIC ORDERS (U.S. ONLY) I
Dial 80D-DEC-DEMO with any VT100 or VT200
compatible terminal and a 1200 baud modem.
If you need assistance, call1-800-DIGITAL.

DIRECT MAIL ORDERS (U.S. and Puerto Rico*)

DIGITAL EQUIPMENT CORPORATION
P.O. Box CS2008

Nashua, New Hampshire 03061

DIRECT MAIL ORDERS (Canada)

DIGITAL EQUIPMENT OF CANADA LTD.
940 Belfast Road

Ottawa, Ontario, Canada K1 G 4C2
Attn: A&SG Business Manager

I INTERNATIONAL I

DIGITAL
EQUIPMENT CORPORATION

A&SG Business Manager
clo Digital's local subsidiary

or approved distributor

Internal orders should be placed through the Software Distribution Center (SOC),
Digital Equipment Corporation, Westminster, Massachusetts 01473

* Any prepaid order from Puerto Rico must be placed
with the Local Digital Subsidiary:

809-754-7575 x2012

c

C

c

o

READER'S COMMENTS

DECnet-ULTRIX
Programming

AA-EA88D-TE

What do you think of this manual? Your comments and suggestions will help us to improve the
quality and usefulness of our publications.

Please rate this manual:

Poor Excellent
Accuracy 1 2 3 4 5
Readability 1 2 3 4 5
Examples 1 2 3 4 5
Organization 1 2 3 4 5
Completeness 1 2 3 4 5

Did you find errors in this manual? If so, please specify the error(s) and page number(s).

General comments:

Suggestions for improvement:

Name Date ---------
Title Department ________ _
Company _____________ Street ___________ _

City ____________ State/Country Zip---

DO NOT CUT - FOLD HERE AND TAPE

111111

BUSINESS REPLY LABEL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

~DmDDmDTM

Networks and
Communications Publications
550 King Street
Littleton, MA 01460-1289

DO NOT CUT - FOLD HERE

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

