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A raster graphics architecture and a raster graphics device are described. The graphics architecture 
is an extension of the RasterOp model and supports operations for rectangle movement, text writing, 
curve drawing, flood, and fill. The architecture is intended for implementation by both closely and 
loosely coupled display subsystems. The first implementation of the architecture is a remote raster 
display connected by fiber optics to a VAX minicomputer. The device contains a separate micropro- 
cessor, frame buffer, and additional local memory; it is capable of executing raster commands on 
operands in local memory or VAX host memory. 

Categories and Subject Descriptors: 1.3.1 [Computer Graphics]: Hardware Architecture--raster 
display devices; 1.3.2 [Computer Graphics]: Graphics Systems--remote systems; stand-alone systems; 
1.3.3 [Computer  Graphics] :  Picture/Image Generation--display algorithms 

General Terms: Design 
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1. INTRODUCTION 
High-resolution bit-mapped raster displays, as pioneered on the Xerox PARC 
Alto computer [17], have now become standard on many personal computers and 
workstations [1, 3, 14]. These displays are characterized by a relatively large 
(typically 15 inch to 19 inch diagonal) display surface containing on the order of 
1000 x 1000 addressable picture elements at a resolution of 70 to 90 elements 
per inch. High-resolution raster systems allow the user to create, view, and 
manipulate images containing graphics, multiple type fonts, and picture images 
either separately or within a single document or activity [5, 13, 15]. These 
capabilities are made possible by the high-resolution format. Another powerful 
concept typically supported by such displays is a window management system [9, 
10, 12, 16]. A window management system allows multiple independent processes 
to share the display screen, the output from each process appearing in a rectan- 
gular area known as a window. Although window systems have been implemented 
on more traditional display terminals [11], the practical application of window 
systems is aided by the larger screen area provided by newer displays. 
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In 1981, a project was started at Digital to provide users of VAX minicomputers 
with a workstation environment. It was clear at that  time that  a VLSI VAX 
implementation suitable for an integrated VAX workstation was still several 
years away. In the interim, a device was required that  would allow experimenta- 
tion with workstation software while connecting to a standard VAX minicom- 
puter. Two advanced development efforts were then underway at Digital: a project 
prototyping a single-user VAX system with a raster graphics display (known 
internally as SUVAX) and an effort to define a display system to support 
Smalltalk on the VAX [2]. These efforts were combined to form the VAXstation 
program, with the Smalltalk effort providing the dominant architectural char- 
acteristics. 

There were several goals for the design of the display system. First, since VAX 
minicomputers were too large to place in an office, the display would have to 
operate at a relatively long distance (e.g., 1 kilometer) from the CPU. Second, it 
should present an architectural interface suitable for use in an integrated work- 
station when a smaller VAX became available. Third, it should support primitives 
for window management systems and highly interactive applications (e.g., Small- 
talk [7]). Fourth, at least in the initial remote version, it should be possible to 
connect several of  the display systems to one of the larger VAX computers. 

Goals One and two were the  hardest to combine, since they require a highly 
integrated yet remote graphics system. Most integrated systems are based on the 
Xerox PARC Alto model; that  is, the display frame buffer memory is shared by 
the host and display system. The display is an integral part  of a single-user 
computer system, and instructions executed on the CPU of that  system directly 
manipulate the display frame buffer, thus modifying the image on the screen. 
The ability to directly construct the display image with CPU instructions provides 
for great flexibility. Not only does the processor have fine-grained control over 
image production, but images can be stored and manipulated anywhere in the 
processor's address space, including the frame buffer memory. I n  contrast are 
remote raster graphics devices such as the BBN BitGraph [4]. Devices of this 
type are more loosely coupled; they typically include a microprocessor that  
receives commands over a serial line and operates on a frame buffer local to the 
display device. 

The VAXstation design lies somewhere in the middle of these two alternatives. 
VAXstation is similar to remote devices in that  it contains a separate micropro- 
cessor, memory, and frame buffer. Commands from the host initiate display 
system graphics operations. However, unlike these devices, the VAXstation can 
also perform graphics operations in host memory. In this way, high-level graphics 
operations are not restricted to the frame buffer or display-local memory. Host 
memory can be used for storing images, occluded windows, etc., and operations 
can be performed by the display processor on those images in host memory. 
These operations are asynchronous with the operation of the host processor. The 
VAXstation is thus a coprocessor to the VAX host. 

Section 2 describes the structure of the VAXstation 100, the first implemen- 
tation of the VAXstation architecture. The remainder of the paper presents the 
VAXstation graphics architecture, that  is, the set of text and graphics commands 
supported by the VAXstation microprocessor. 
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Fig. 1. VAXstation 100 block structure. 

2 VAXstation 100 HARDWARE STRUCTURE 

The VAXstation 100 (VS100) is a display subsystem that connects to a VAX 
minicomputer. Figure 1 illustrates the basic block structure of the VS100. The 
right-hand side of this figure shows the device subsystem consisting of a small 
box housing three modules and connectors to the user I/O devices. This box is 
placed near the desk on which the devices reside. The monitor is a 19-inch, 60- 
hertz, horizontal-format, noninterlaced, monochrome device that displays 1088 
× 864 picture elements. The display size and format were chosen (over 15 inch 
vertical format which is used in the Alto) because (1) the larger area gives more 
flexibility for arranging activities, (2) it was felt that users would rather have 
additional space for icons and windows on the sides instead of on the top and 
bottom, and (3) we saw that most second generation systems had gone to larger 
horizontal format. The system uses a three-button mouse as the standard pointing 
device, a 105-key unencoded keyboard, and an optional tablet for graphics input. 

The left side of Figure 1 shows the VAX connection section of the hardware. 
A VAX Unibus interface was chosen because of the requirement that the VS100 
work on all VAX systems. The Unibus Window module, which plugs into the 
Unibus backplane of the host, allows the VS100 to read and write VAX memory. 
It provides the VS100 with an 18-bit (256-Kbyte) virtually contiguous window 
into VAX primary memory. A data structure maintained by the host operating 
system specifies the primary memory locations of 512-byte virtual pages within 
this address space. The Unibus Window also contains control and status registers 
through which host software commands the VS100. Modification of the control 
registers by the host causes a special interrupt in the VS100 subsystem. 

To control the device, the host VS100 device driver places the address of a 
command packet in a VS100 control and status register. The VS100 then reads 
and responds to the command, performing operations on whatever memory is 
specified. All data transfers between display and host memory are carried out by 
the display microprocessor. ,~ 

Because of the requirement that the VS100 run with high bandwidth over 
relatively long distances, the 15-megahertz fiber optic cable is used between the 
Unibus Window module on the host and the VS100 display subsystem. Two fiber 
optic transceiver modules, one attached to the Unibus Window and one in the 
VS100 subsystem, control the sending and receiving of messages over the fiber 
optic link. 

Within the subsystem itself are three boards: the VS100 display controller, a 
performance accelerator, and the fiber-optic transceiver. The main VS100 display 
controller module contains a Motorola 68000 microprocessor, 512 Kbytes of local 
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image memory, 128 Kbytes of local program memory, and the screen refresh 
logic. The M68000 is responsible for receiving, interpreting, executing, and 
responding to all commands from the host. The M68000 also receives keyboard 
and pointing device events, reports the events to the VAX, and moves the pointer 
image on the screen as the pointing device is moved. 

A ROM in the VS100 contains the initial M68000 program. This program is 
capable of executing start-up diagnostics, reporting device status to the host, and 
responding to simple commands from the host driver. When the driver determines 
that the system is operating properly, it commands the VS100 to down-line load 
its program into local RAM. 

The performance accelerator is a hardware device built with 2901 bit-slice 
components that aids the M68000 in performing certain operations. These 
operations include rectangle movement, line and curve drawing, and text writing. 
The accelerator is simply another processor with a faster cycle time and a faster 
bus to memory. Its program is stored in ROM. Since the 2901s are somewhat 
harder to program, most general purpose functions are performed in the M68000, 
while more specific performance-critical functions are executed by the accelera- 
tor. The M68000 interfaces to the accelerator through a shared memory; the 
microprocessor loads the shared memory with parameters describing the com- 
mand to execute and then initiates the accelerator. Although the M68000 is 
capable of executing the entire architecture itself (and will do so should the 
accelerator be absent) there is up to a fivefold performance improvement with 
the accelerator. 

The VS100 processors, both M68000 and accelerator, view a logical address 
space that is physically divided into several parts. First are the 512 Kbytes of 
local storage for images. This half megabyte includes the 128-Kbyte display frame 
buffer from which the screen is refreshed. The remaining 384 Kbytes of memory 
are used for storing text fonts, icons, images, and so on, as directed by software 
in the host. This memory can also be used for building images off screen prior to 
viewing. Second-are 128 Kbytes of local storage for M68000 instructions and 
data. Although both sections of memory are general purpose and can be used for 
storing either code or images, a division is made so that the M68000 can execute 
instructions in parallel with accelerator operations that saturate local image 
memory. The third section of the logical address space is formed by the 18 bits 
of VAX memory mapped for the device by the Unibus Window. 

The M68000 microprocessor and the accelerator module can both read and 
write VS100 local memory (frame buffer and off-screen memory) and VAX host 
memory that has been mapped for the Unibus window. Since raster operations 
are performed on memory, the device can execute any of its output functions on 
screen, off screen, or in VAX memory. That is, it is possible for VS100 to 
construct a complex image involving text and graphics within a segment of VAX 
memory and then move the image to VS100 to make it visible. The input operands 
for any VS100 operation can also be stored both locally or in VAX memory. In 
fact, the display processor cannot tell where its operations are performed--it 
simply operates on the logical addresses supplied as parameters in the command 
packet. On a system with multiple VS100s, several VS100s can be reading or 
writing VAX or local memory, performing in parallel with each other and the 
VAX CPU. 
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01O0010000111110 
0100010000001000 
0100010000001000 
0111ii0000001000 
0100010000001000 
0100010000001000 
0100010000111110 

Fig. 2. B i t m a p  specification.  

Source ~ Source 
Image Mask 

Fig. 3. 
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VAXstation architectural model. 

3. VAXstation GRAPHICS ARCHITECTURE 

The VAXstation architecture defines the set of commands that a VAXstation 
device must process and the behavior of those commands. Each command is 
issued by placing the address of the command packet in one of the device's 
control registers. The message packet contains an operation code, specifying the 
function to perform, and a set of operands. These operands include addresses of 
parameters to be read or written by the VAXstation. Command packet addresses 
are always VAXstation logical addresses, and thus any parameters (and the 
packet itself) can be stored in either VAX memory or display local memory, 

The workstation display executes a set of five basic output commands: 

(1) copy area 
(2) draw curve 
(3) print text 
(4) fill area 
(5) flood area 

Each command is capable of processing a number of different parameter types 
and formats. In this section we first define the representation of bitmaps on 
which commands operate, then present a general model of VAXstation operation, 
and finally describe the commands and their parameters in more detail. 

At its most basic level, VAXstation commands operate on bitmaps. A bitmap 
is a memory segment that  describes a rectangular image that can be displayed 
on the monitor. The image is represented by a rectangular array of pixels, where 
a pixel is a single screen picture element. Each pixel has a value that  indicates 
the intensity or color of that  picture element when displayed on the screen. Foz 
example, Figure 2 shows a bitmap specification and the associated bitmap for a 
small icon on a 1-bit/pixel machine, such as VS100. The bitmap in Figure 2 is 
specified by its address, the height and width of the bitmap rectangle, and the 
depth or number of bits per pixel, which is 1 in this case. 
ACM Transactions on Graphics, Vol. 3, No. 1, January 1984. 
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Each VAXstation command generally selects a source bitmap and uses it to 
modify a destination bitmap in a specified way. However, in the most general 
case, only certain pixels in the source may be selected to replace destination 
pixels, and only certain pixels in the destination may be available for modifica- 
tion. The architectural model, shown in Figure 3, indicates how these source and 
destination pixels are specified. This model is similar to the model used by the 
Smalltalk graphics system [8]. 
The architectural model is logically divided into three stages. The first stage, 

consisting of the source image and source mask, determines a set of source pixels 
to be used to update the destination. The last stage, consisting of the destination 
offset (OFF), clipping rectangles, and destination image bitmap, determines what 
pixels of the destination are available for modification. The map box in the 
center specifies a function with which source pixel values may be transformed 
before replacing destination pixels. Alternatively, the destination pixels may be 
replaced with a function of both source and destination pixels, as illustrated by 
the arrow leading from the destination to the map. The following subsections 
describe the parameters more fully as part of the copy area command. 

3,1 Copy Area Command 

The copy area command is the fundamental operation of the display system, and 
all other output operations are extensions of the basic copy area function. Copy 
area performs a general BitBlt (bit string block transfer) or RasterOp function, 
similar to that described in [6-9, 13]. However, copy area differs in the way that 
the source and mask are defined; it also provides multiple clipping rectangles 
and two combination function formats. In its simplest form, copy area merely 
moves a source bitmap to a destination bitmap. Both bitmaps must be in display- 
addressable memory, which can include the display frame buffer, VAXstation 
0ff-screen memory, or VAX host memory, as stated previously. 

Assuming that the source and destination bitmaps represent identically sized 
rectangles, copy a~ea simply replaces destination bitmap pixels with source pixels 
at corresponding-~coordinates. In addition to simple replacement, the values 
moved to the destination can be either (1) a function of the source pixel values, 
or (2) a function of both source and destination values. Finally, copy area allows 
for a mask parameter to select some subset of the source to be used and a set of 
clipping rectangles to restrict the updating of the destination. The following is a 
list of the copy area parameters and their options: 

(1) Source Image. The source image parameter specifies the values of pixels 
used to update the destination bitmap. The source image can be specified in three 
ways: 

(a) In the most general case, the source image can be specified as a bitmap in 
display-addressable memory. Destination pixels are replaced by source pixels. If 
the source and destination bitmaps overlap, the copy operation sequences through 
the pixels so that source pixels are not modified before they are used to update 
the destination. 
(b) A common raster display requirement is to fill a destination area with a 

single color or intensity. For this purpose, the copy area source parameter can be 
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a single constant value. The entire destination bitmap, as qualified by the source 
mask and clipping described below, is set to this pixel value. 

(c) Finally, the source can specify a halftone or stipple pattern to be replicated 
within the destination as specified by the remaining parameters. The halftone is 
a small (e.g., 16-pixel-square) bitmap. On a monochrome machine, different 
alternating patterns produce the effect of different grey shades. The halftone 
bitmap rectangle is replicated horizontally and vertically to fill the destination 
bitmap. The pattern is always aligned relative to the origin of the destination 
bitmap. 

(2) Source Mask. In many cases, only a subset of the source bitmap is used 
in the copy operation, and the source mask defines the subset. Two mask formats 
are available, depending on how the source subset is to be determined. 

(a) First, the mask can select a rectangular subset of the source bitmap. The 
subset is specified by its origin (relative to the source bitmap's origin) and a 
height and width. The selected rectangle is moved to the location in the desti- 
nation bitmap specified by the destination offset. 

(b) Second, the mask can be specified as a template of 0 and 1 values (the 
template is always a binary-valued bitmap independent of the number of bits per 
pixel in the source). This is the most general form, in which the 1-valued elements 
of the template select an arbitrary set of pixels from the source to be used in the 
operation. 

Any of the source and mask formats can be combined. For example, combining 
a constant value source with a rectangle mask generates a bitmap rectangle of 
the specified size filled with the specified source color. Or, use of a halftone 
source with a bitmap mask selects a halftone pattern whose shape is determined 
by the 1 bits in the mask. Thus, if the source is a bitmap, the mask defines a 
subset of that  bitmap to be used; if the source is a constant or halftone, the mask 
defines the size and shape of an area filled with that  pattern. Note that  using a 
template mask, it is possible to extract any arbitrarily shaped image from a 
bitmap, or to insert any arbitrarily shaped image into a bitmap, 

(3) Destination Image Bitmap and Destination Offset. The destination image 
is always a display-addressable bitmap to be modified and is specified as described 
previously in Figure 2. The destination offset specifies where the source origin 
should be placed relative to the destination origin. The source can thus be moved 
to any position within the destination and is automatically clipped to the 
boundaries of the destination. 

(4) Map. The map parameter defines a transformation table used to deter- 
mine the values with which to replace selected destination pixels. This parameter 
provides what is generally called the RasterOp function [13] on a one-plane 
machine. The map can have three forms: 

(a) First, the map can be null, in which case source pixels directly replace 
destination pixels (i.e., the identity map). 

(b) Second, a source map can be specified. On a machine with n bits per pixel, 
the source map is an array with 2" entries, each entry containing n bits of 
information. Each source pixel value is used as an index into the map table, the 
ACM Transactions on Graphics, Vol. 3, No. 1, January 1984. 
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Source Mask 

Fig. 4. Copy area example. 

C l i p p i n g  Des t i n a t  ion  
R e c t a n g l e s  Bitmap 

value selected being used to replace the corresponding destination pixel. On a 1- 
bit/pixel machine, for example, the following map would cause the source to be 
complemented (reverse video) when moved to the destination: 

source map 
0 1 
1 0 

(c) Third, the map can be a source and destination map, represented by a two- 
dimensional array where source and destination pixel values are used as indices 
to select a new destination pixel value. In the case of a single bitplane machine, 
for example, this table can be used to express any of the 16 possible logical 
functions of the source and destination. Some of these functions, however, can 
be performed more easily using a source-only table or source mask. 

For the single bitplane case, the source-destination map is a 4-bit literal. On a 

machine with n bits per pixel, the map is an array with 2" x 2" entries, each 
entry containing n bits of information. 

Although the source-destination map can be expressed as a RasterOp function 
on the single-plane system, the map concept is in fact more general, since it 
allows the user to define any meaningful transformation function for multiple 
bit per pixel machines. For example, the user can define a color transformation 
for a green source and blue destination. In many cases, however, only a source 
map is needed. (These maps do not replace the need for a color map to determine 
the relationship of pixel value to final color.) 

(5) Clipping Rectangles. A common requirement for the support of a window 
management system is the ability to constrain output to a subset of the destina- 
tion. This clipping of the output is particularly useful when a program writes to 
a window that  is partially occluded by another. For this purpose, the VAXstation 
architecturesupports multiple clipping rectangles on output commands. The 
clipping rectangles parameter is the address of a list of clipping rectangles (origins 
plus extents). These clipping rectangles are used to restrict the operation to some 
subset of the pixels in the destination bitmap. Each rectangle specifies an area 
of the destination available for modification. Thus, the union of all of the clipping 
rectangles defines the area of the destination that  can be modified. The operation 
is additionally constrained by the size of the destination bitmap itself. 

Figure 4 illustrates a copy area command. In this case, a halftone source is 
combined with a mask that  is a template of a ring. T h e  ring, filled with the 
halftone, is to be copied to a partially occluded window within the destination 
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Fig. 5. Draw curve c o m m a n d  examples .  

bitmap. No map is used. The destination offset for this command would specify 
the origin of the window to which the ring is being moved, while the clipping 
rectangles form the nonoccluded partion of that  window. 

3.2 Draw Curve Command 

Draw curve is the VAXstation graphics command; it allows drawing of any 
connected or disconnected graph of curved and/or straight segments. An exten- 
sion of the basic copy area operation, draw curve accepts all of the parameters 
specified in the architectural model (Figure 3), plus three  additional parameters: 

In the draw curve command, the source and source mask parameters specify a 
shape and color or intensity with which each segment is drawn. To use the 
standard metaphor, the source mask determines the brush shape and the source 
image determines the paint with which the curve will be drawn. The curve is 
then drawn by painting the image, determined by source and source mask, one 
pixel at a time between the segment endpoints. Conceptually, a copy area of the 
source is done at each pixel along the path. This allows for drawing of curves 
with any shaped object in any color. A map parameter can be specified, as in the 
copy area command, causing the segment to be added to the destination with 
specified combination function. 

The curve to be drawn is described by a list of points, called the path parameter. 
Each point in the path is specified by a pair of coordinates and a set of flags. 
The flags contain the following indicators: 

(1) A relative or absolute bit indicates whether the point's coordinates are 
relative to the previous point in the path list or the destination offset parameter. 

(2) A straight or curved bit indicates whether a straight or curved line should 
be drawn between the previous and current path points. If a curved line is 
specified, then the previous point must have a predecessor in the list, and t he  

ACM Transactions on Graphics, Vol. 3, No. 1, January 1984. 



i 
( 

fy 
~ g  

.=r. 

,TS. 

~ e  
~r. 

=ld 
is 

he 

VAXstation: A General-Purpose Raster Graphics Architecture • 79 

current point must have a successor. The curve path is determined by a cubic 
spline algorithm implemented in the VAXstation display system. 
: (3) A draw or move bit indicates whether the segment should be drawn at all, 
or whether the path should just advance to the next point. This bit allows for 
specification of additional points needed for curve drawing, and also for construc- 
tion of disconnected graphs. 

(4) A write or skip endpoint bit indicates whether or not the final point in the 
segment should be drawn. This is particularly useful when drawing multisegment 
lines using an XOR map function. In this case, the last point in each segment 
must be drawn only once; otherwise it will be complemented. 

Two additional parameters to the draw curve command allow for drawing of 
patterned {i.e., dashed or dotted) lines. These parameters specify a pattern string 
whose bits are scanned to indicate, at each pixel along a segment, whether or not 
to actually modify the destination. For example, the pattern string 0000111111 
will draw a line or curve with alternating 4-pixel spaces and 6-pixel segments. 

Figure 5 illustrates the use of the draw curve command. In the first part  of the 
example, a rectangle mask is used to draw straight segments between four points. 
Since the mask has greater height than width, horizontal lines will be wider than 
vertical lines. In the second example, the curved flag is used to draw a circle from 
a single-pixel mask (i.e., the circle is drawn with a 1-pixel-wide brush). Although 
four points define the circle, the first and last points must be specified twice in 
the path list to provide the tangents for the first and fourth arcs. 

Through the use of the draw/move bit, it is possible to draw disconnected 
figures (for example, several circles) with a single draw curve command. The 
only restriction is that all lines must be drawn with the same source and source 
mask (i.e., they must typically be the same color and width). 

3.3 Print Text Command 

Like draw curve, the print text command accepts all of the standard copy area 
parameters, plus a few additional parameters. An obvious additional parameter 
is the text string that  specifies the symbols to be written. The text string contains 
indices into a "strike format" [8] font data structure. The font is a constant- 
height bitmap with variable-width cells; each cell contains a bit pattern repre- 
senting a character symbol. A table called the "left-x" table indicates the starting 
position, within this bitmap strip, of each of the cells in the font. By looking at 
the left-x entry for a character and its successor, the VAXstation can determine 
the width of a particular character cell. As with other parameters, the font can 
be stored either in VAX host memory or in VAXstation local memory. 

Within the framework of the architectural model, the font can be specified in 
one of two ways: source image or source mask. In the simple case, the font is 
used as a source image and no source mask is allowed. Each character cell in the 
font contains the character image plus a surrounding rectangular background. 
The entire rectangle for each specified character is copied to the destination 
bitmap. Character and background colors are encoded by pixel values in the font 
bitmap (although a map can be supplied, as before). 

For the second option, the font is specified as the source mask, where each cell 
is a character template. In this case, each 1-bit/pixel font cell defines the shape 
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of a character. The source image parameter, generally a constant or halftone, 
specifies the writing color for the character. Since the character is a mask, no 
surrounding rectangle is moved to the destination. Use of the font as a mask 
thus allows overstrikes of other characters and graphics. 

The remaining parameters to the print text command are used for justification 
or special-character string processing and positioning. For simple justification, 
two parameters, the intercharacter pad and space pad, specify an additional 
number of pixels to be added following each character or each space, respectively. 
This allows for a line to be stretched for right justification. 

For more complex situations, the command allows a control string to be passed 
along with the character string. The control string consists of a list of operation 
codes and parameters indicating how each character in the character string is to 
be processed. There are four string processing operation codes: 

(1) OUT(N) causes the next N characters of the text string to be output, 
(2) OUTALL causes the remainder of the string to be output, 
(3) SKIP(N) skips the next N characters of the string, 
(4) ADJUST(X, Y) adds signed X and Y adjustments to the current position 

before processing continues. 

Using a control string, it is possible to output text in any position on the screen 
with a single command, as long as a single font is used. The SKIP feature allows 
skipping of special control characters in the text string that may not be repre- 
sented in the font. 

3.4 Flood Area and Fill Area 

The flood area and fill area commands are used to fill a bounded object with a 
single color, intensity, or halftone. These commands rely on a somewhat simpli- 
fied version of the general architectural model. For example, only one clipping 
rectangle is allowed. 

The flood area command operates on a closed region within the destination 
bitmap. The command specifies a seed point within the destination as the place 
to start the flood. A boundary map parameter provides a binary-valued table 
defining the internal and external points of the closed figure in the bitmap. The 
system begins by examining the seed point and then all of its neighbors. As each 
point is examined, its pixel value is used as an index into the boundary map. Any 
pixel value mapping to a 0 entry in the table is an internal point, and any value 
mapping to a 1 is a boundary point. Internal points are set to the source value 
and the scan continues. External points cause the scan to stop in the current 
direction. Processing continues until all internal points have been colored. 

Fill area is generally used to construct a source consisting of one or more closed 
objects, where each object is filled with the source color or halftone. The closed 
objects are described by a path list; each point in the path list is specified as in 
the draw curve command. Using the draw/move bit, it is again possible to describe 
several disjoint objects. The filled shapes are copied to the specified location in 
the destination bitmap. 

The fill command is used when the boundary or boundaries of the area or areas 
to be filled are known and can be defined by a list of straight or curved segments. 
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Flood, on the other hand, is used when the boundary is not completely known, 
but the user can specify one internal point and the pixel values that form the 
boundary. 

4. VAXstation MEMORY MANAGEMENT 

Management of the VAXstation local memory store is left entirely up to the 
VAX host processor. When the VAXstation is initialized, ROM-based code in 
the VAXstation reports its status, including the size and address of its program 
memory space, the size and address of its frame buffer memory, and the size and 
address of all additional on-board image memory. All addresses are reported as 
M68000 virtual addresses. The VAX host then down-line loads the M68000 
program into the program memory space and starts it. From then on, the 
VAXstation simply executes commands. Each command contains some number 
of addresses that refer to command parameters. The VAXstation is not aware of 
where those command parameters are located; it merely does 16-bit word reads 
and writes of memory. Some of those reads and writes occur locally and some 
require VAX Unibus transfers. 

The two memory management commands for the VAX host are the copy area 
command, which can move bitmaps or parts of bitmape from memory to memory, 
and the move object command, which copies a byte string from memory to 
memory. The move object command is used to transfer fonts, command packets, 
and other byte-oriented data structures between host and VAXstation memory. 
It can also be used for moving data structures within VAXstation memory (or 
for that matter, within VAX memory). 

5. DISCUSSION 

This paper has described the VAXstation graphics architecture and the structure 
of the VS100, the first implementation of that architecture. The VAXstation 100 
is not a stand-alone workstation but a remote graphics device. The architecture, 
however, is intended for both remote devices and more tightly integrated work- 
stations. 

The VAXstation architecture is based on an extended model of the RasterOp 
function. This model provides a set of general purpose commands for text 
printing, curve drawing, and rectangle manipulation based on a unified set of 
hardware primitives. Multiple clipping rectangles are provided to support window 
management. Flood and fill operations are also included. The general addressing 
8tincture allows the device to operate on host memory as well as local memory. 
This removes some constraints, for example, on the number of supported fonts 
or windows, that might appear if the device had only a limited local memory. 

In developing an architecture, trade-offs are always made between conceptual 
completeness in the architecture and performance in the final implementation. 
The VAXstation architecture attempts to provide a consistent model for a set of 
operations. It can be argued that the overall architecture is somewhat complex 
in the number of parameters needed to perform operations. When the VAXstation 
architecture was developed, an intermediate ground was chosen for the level of 
display system support. For example, although windowing was important, we 
decided that the first window management system should be built in host 
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software. The device has primitives for windowing, such as multiple clippin[ 
rectangles, but has no concept of window itself. 

In retrospect, we should probably have modified the architecture to support 
at the same time, both lower level and higher level primitives. That is, at the 
lower level, the device should have extremely simple commands to do the mosl 
frequent graphics operations. At a higher level, the device should have som~ 
concept of window and be able to move windows, pop windows, and so on. Some 
experimentation has been done on this and it has been relatively successful. 

Of course, within the constraints of the VAXstation architecture, there are 
many implementation trade-offs, For example, although the draw curve command 
is very general, it is important to implement the most common options as if they 
were special purpose. The most typical draw curve command draws a straight 1- 
pixel-wide segment. If this were implemented as part of the general curve drawin~ 
facility, performance of the command would not be satisfactory. In fact, experi- 
ments with different codings of the draw curve command showed a sixfold 
performance range for drawing of simple segments. Therefore, within a ver~ 
general command, the code must quickly recognize common options and dispatch 
to special purpose code to handle them. 

The most ~difficult performance problems to solve with VAXstation have 
been those outside of the device itself, that is, those involving host software. 
VAXstation device drivers have been built for both the VAX/VMS and Unix ~ 
operating systems. In both cases we found that the cost of interfacing to the 
driver from a user program, which is typically on the order of several milliseconds, 
quickly surpasses the cost of command processing within the device. We were 
also surprised to find that the major difference in text performance between 
fonts in VAXstation memory and fonts in VAX memory was caused, not by the 
additional access time through the fiber optic and Unibus Window, but by the 
cost of locking and mapping the font in VAX memory. The conventional device 
driver approach does not seem to lend itself to displays such as VAXstation 
because of the ratio of host overhead time to device processing time on small 
commands. 

Since the VS100, several experimental display processors have been built to 
make integrated workstations from some of the new smaller VAXes. For example, 
an integrated display has been built for the VAX-11/725, a small VAX in ar 
office workstation package. This display processor is based on the VS100 design 
but is contained on a single module that plugs directly into the backplane of thq 
VAX-11/725. The fiber optics and performance accelerator have beenremoved 
and the Unibus Window logic has been added to the display controller modul~ 
to meet the single board form factor. The I/O devices connect to a bulkhead o! 
the back of the VAX-11/725 package. Because it supports the same architecturz 
model, support of this device required no change to the VAX-11 host softwan 
and only minor changes to the Motorola 68000 software. 
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