
VAX
WORKSTATION
PROGRAM

SYSTEM DISPLAY
ARCHITECTURE

· Revision 1.2

HENRY M. LEVY
DANIEL E. GANEK

System Display Architecture (SDA) -COMPANY CONFIDENTIAL-

Date: 27 Oct 82

File: EUBIE::DOC$PUBLIC:SDA.MEM

Title: SYSTEM DISPLAY
ARCHITECTURE

·Revision 1.2

Author: HENRY M. LEVY
DANIEL E. GANEK

Abstract:

This document describes the System Display Architecture, a
high-level programmin~ inter~ace to display te~inals, including
input, output, and display space management.

The new high-resolution, bit-mapped display· terminals have more
sophisticated ~apabilities than existing ASCII terminals and thus
require a different programming interface. First, the
possibility of full-page or larger displays allows sharing of the
screen by several simultaneous activities. The user of the
display is allowed to arrange the activities on the screen as he
or she wishes in a manner largely transparent to the application
programs. Second, the terminals support graphics, multiple
fonts, proportionally spaced text, and digitized images.

Because the display screen and keyboard can be multiplexed among
independent processes, applications cannot have direct access to
the display hardware. In addition, programs must be able to
operate on a family of display processors with varying
characteristics. Therefore, the goal of this architecture is to
provide a high-level procedural interface for display control,
isolating the programmer from the characteristics and current
state of the· particular display device. This document defines an
architectural model for the control and programming of display
devices, and the interface seen by application programs. A model
for layering of the system and emulation of existing terminal
devices is also provided.

~ys~em Dlsplay Architecture (SDA) -COMPANY CONFIDENTIAL-

Revision: Description Author Date

0 Pre.I im. design with H. Levy 5-Feb-1982
D. Ganek, K. Lefebvre

1 First Revision with i<. D. Ganek l-May-1982
Lefebvre, E. Osman, L.
Samberg. This revision
was for internal review
only

1.1 Rev. 1 modified with D. Ganek 12-Aug-1982
additional comments
from K. Lefebvre, H.
Levy, E. Osman, L.
Samberg, A. Schulert.

1.2 Rev 1.1 modified with D. Ganek
expanded Intro, PB's H. Levy
on PB's, minor changes
to align spec with
current implementation

System Display Architecture
Table of Contents

{SDA) -COMPANY CONFIDENTIAL- Page i
27 Oct 82

TABLE of CONTENTS

PART I SYSTEM DESCRIPTION

CHAPTER 1 INTRODUCTION

1.1 THE GOALS OF A WINDOW SYSTEM .
1.2 THE SYSTEM DISPLAY ARCHITECTURE -- A MODEL FOR A

COMPOSITION-BASED SYSTEM
1.2.1 Program Objects •
1.2.1.1 Virtual Displays .
1.2.1.2 Pasteboards
1.2.1.3 Windows
1.2.2 Screen Objects
1.2.3 The SDA Speci~ication •
1.3 REFERENCES • . . .

CHAPTER 2 DISPLAY VOCABULARY

2.1 DISPLAY • • • • • •
2.2 PIXEL • • •
2.3 RASTER . • • •
2.4 RECTANGLE
2.5 FRAME BUFFER . • •
2.6 BITBLT . • • • •
2.7 RASTEROP • •
2.8 VIRTUAL •
2.9 VIRTUAL TERMINAL . • • •
2.10 VIRTUAL DISPLAY • • • •
2.11 PASTEBOARD . • •
2.12 WINDOW . • •
2.13 VIRTUAL SCREEN . • •
2.14 VIEWPORT . •
2.15 OCCLUDING VIEWPORT • • •
2.16 CHARACTER SET • • • • • • •
2.17 CHARACTER .. • • •
2.18 CHARACTER CODE •
2.19 CHARACTER TYPEFACE .
2.20 CHARACTER RENDITION •
2.21 CHARACTER FONT . • •
2.22 CLIPPING RECTANGLE . • • •
2.23 CURSOR . • • •
2.24 OUTPUT CURSOR • •
2.25 POINTER •
2.26 POINTING DEVICE •
2.27 MOUSE • • • •
2.28 TOUCH PAD

1-1

1-4
1-4
1-5
1-5
1-7
1-7
1-8 . 1-8

. 2-1 . 2-1 . 2-1 . 2-1 . 2-1
2-2
2~2

. 2-2
2-2 . 2-2 . 2-2 . 2-3 . 2-3 . 2-3
2-3
2-3
2-3
2-4
2-4
2-4
2-4
2-4
2-4
2-4
2-5 . 2-5
2-5
2-5

~ystem D1splay Architecture (SDA) -COMPANY CONFIDENTIAL
Table of Contents

Page ii
27 Oct 82

CHAPTER 3

CHAPTER 4

4.1
4.2
4.2.l
4.2.2
4.2.3
4.3
4.3.1
4.3.2
4.3.3
4.4
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.6
4.6.l
4.6.2
4.7
4.7.l
4.7.1.1
4.7.1.2
4.8
4.8.1
4.8.2
4.8.3
4.8.4
4.8.5
4.8.6
4.8.7
4.8.8
4.8.9
4.8.9.l
4.8.9.2
4.8.9.3
4.8.9.4
4.8.9.5
4.8.9.6
4.9

CHAPTER 5

5.1
5.2
5.3
5.4

LAYERING

VIRTUAL DISPLAY AND VIRTUAL SCREEN OBJECTS

INTRODUCTION • • • • • • • • • • • • • • • • • 4-1
VIRTUAL DISPLAY OBJECTS • • • • • • • • • • • 4-1

Virtual Displays • • • • • • • • • • • • • • 4-1
Pasteboards • • • • • • • • • • • • • • • • 4-3
Windows • 4-4

VIRTUAL SCREEN OBJECTS • • • • • • • • • • • • • • 4-4
The Virtual Screen And Physical Screen • • • • • 4-5
Viewports • • • • • • • • • • • • • • • • • • • 4-S
Example • 4-5

VISIBLE EFFECTS OF WINDOW AND VIEWPORT OPERATIONS 4-8
BACKGROUND AND WRITING COLORS • • • • • • 4-9

Color Specification • • • • • • • • • • • • 4-9
·CLEAR Specification • • • • • • • • • 4-10
Grey Scale Representation • • • • • • 4-10
Halftones • • • • • • • • • • • • • • • • • • 4-10

INPUT DEVICES • • • • • • • • • • • • • • • 4-11
Virtual Input Devices • • • • • • • • • • • • 4-11
Assigning Physical Input Devices • • • • • 4-11

THE POINTER • • • • • • • • • • • • • • • • 4-12
Examples Of Pointing • • • • • • • • • 4-12

Activating Viewports And Pasteboards • • • • 4-13
Sharing Input Devices • • • • • • • • • • • 4-13

VDS TEXT MANAGEMENT OBJECTS • • • • • • • • 4-14
. Lines • • • • • • • • • • • • • • • • • • 4-14
Fields • • • • • • • • • • • • • • • • • • 4-14
Subfields • • • • • • • • • • • • • • • • 4-15
Characters • • • • • • • • • • • • • • • 4-15
Character Addrsssing • • • • • • • 4-15
Text Manipulation • • • • • • • • • • • • • • 4-16
Scrolling • • • • • • • • • • • • • • • • • • 4-16
Character Imaging • • • • • • • • 4-17
Character Renditions • • • • • • • • • 4-17

Weight • • • • • • • • • • • • • • • 4-18
Style • • • • • • • • • • • • • • • 4-18
Blink • • • • • • • • • • • • • • • • • • • 4-18
Reverse Writing • • • • • • • • • • • • 4-18
Underlining And Cross-out • • • • • • • • • 4-18
Proportional Spacing • • • • • • • • • • 4-19·

VDS GRAPHICS MANAGEMENT • • • • • • • • 4-20

EXAMPLE USES OF THE SDA IN APPLICATIONS AND USER
INTERFACES

INTRODUCTION • • • • • • • • • • • • • • • • • • • 5-1
A MULTIPLE-LOGICAL TERMINAL DISPLAY SYSTEM • • 5-1
A COMPOSITE DOCUMENT MODEL SYSTEM • • • • • • • • 5-1
GKS - GRAPHICS KERNEL SYSTEM • • • • • • • • • • • 5-1

System Display Architecture (SDA) -COMPANY CONFIDENTIAL
Table of Contents

Page iii
27 Oct 82

PART II - SYSTEM SPECIFICATION

CHAPTER 6

6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6
6.1.7
6.1.8
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8
6.2.9
6.2.10
6.2.11
6·. 3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5

CHAPTER 7

7.1
7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.3
7.3.l
7.3.2
7.3.3

VIRTUAL DISPLAY SERVICES OPERATIONS

VIRTUAL DISPLAY OPERATIONS • • • • • • 6-4
Create Virtual Display • • • • • • • 6-4
Get Virtual Display Characteristics • • • • • • 6-6
Set Virtual Display Characteristics • • • • • • 6-7
Delete Virtual Display ••••••••••••• 6-8
Create Virtual Keyboard • • • • • • • ••• 6-9
Delete Virtual Keybo~rd •••••••••• 6-9
Create Virtual Positioner • • • • • • • • 6-10
Delete Virtual Positioner • • • • • • • • 6-10

PASTE~OARD OPERATIONS • • • • • • • 6-11
Create Pasteboard • • • • • • • • • • • • 6-11
Delete Pasteboard • • • • • • • • • • • • • • 6-12
Paste Virtual Display • • • • • • • • • • 6-13
Paste Pasteboard To Pasteboard • • • • • • 6-14
Unpaste Display From Pasteboard • • • • • • • 6-15
Move Display On Pasteboard • • • • 6-15
Move Display To Top Of Pasteboard • • • • 6-16
Attach Virtual Keyboard To Pasteboard • • • • 6-16
Detach Keyboard • • • • • • • • • • • • • • • 6-17
Attach Virtual Positioner To Pasteboard • • • 6-17
Detach Positioner • • • • • • • • • • • • • • 6-18

WINDOW OPERATIONS • • • • • • • • • • • • • 6-19
Create Window • • • • • • • • • • • • • • 6-19
Get Window Characteristics • • • • • • 6-20
Set Window Characteristics • • • • 6-21
Get Associated Viewport Characteristics • • • 6-22
Delete Window • • • • • • • • • • • • • • • • 6-23

VIRTUAL SCREEN SERVICES OPERATIONS

VIEWPORT OPERATIONS • • • • • • • • • • • • • 7-2
Create Viewport • • • • • • • • • • • • 7-2
Get Viewport Characteristics •••••••••• 7-3
Set Viewport Characteristics • • • • • • • • 7-4
Attach Viewport To Window • • • • • • • • • • • 7-5
Detach Viewport • • • • • • • • • • • • • • • • 7-5
Delete Viewport • • • • • • • • • • • • • • 7-6

VIRTUAL SCREEN OPERATIONS • • • • • • • • • • • • 7-7
Create Virtual Screen ••••••••••••• 7-7
Delete Virtual Screen ••••••••••••• 7-7
Attach Viewport To Virtual Screen • • • • • 7-8
Detach Viewport From Virtual Screen • • • • • • 7-8
Move Viewport On Virtual SCreen • • • • • • •• 7-9
Move Viewport To Top Of Virtual Screen • • • 7-9

PHYSICAL SCREEN OPERATIONS • • • • • • • • • • 7-10
Assign Physical Screen • • • • • • • • • • 7-10
Get Physical Screen Characteristics • • • 7-11
Set Physical Screen Characteristics • • • • • 7-11

System Display Architecture (SDA) -COMPANY CONFIDENTIAL
Table of Contents

Page iv
27 Oct 82

7.3.4
7.3.5
7.3.6
7.3.7
7.4
7.4.1
7.4.2
7.4.3

CHAPTER 8

8.1
8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6
8.1.7
8.1.8
8. l. 9
8.1.10
8.2
8.2.1

CHAPTER 9

APPENDIX A

A.l
A.2
A.2.1
A.2.2
A.3
A.4

APPENDIX B

B.l
B.1.1
B.1.2

Move Physical Screen In Virtual Screen •· •
Deassign Physical Screen • • • • • • • • • • •
Assign Physical Keyboard To Pasteboard • •
Assign Physical Positioner To Pasteboard •

POINTER OPERATIONS • • • • • • • • • • •
Create Virtual Pointer • • • • • • • • • • • •
Assign Physical Positioner To Pointer ••
Delete Poi~ter • • • • • • • • • • • • • • ••

VIRTUAL DISPLAY TEXT MANAGEMENT OPERATIONS

7-12
7-13
7-14
7-14
7-15
7-15
7-15
7-16

VIRTUAL DISPLAY INPUT • • • • • • • • • • • • • • 8-1
Virtual Display State Poll • • • • • • • • ••• 8-2
Insert Line • • • • • • • • • • • • • • 8-3
Delete Line • • • • • • • • • • • • • • • • • • 8-4
Insert Field • • • • • • • • • • • • • • • • • • 8-5
Delete Field • • • • • • • • • • • • • • • • • • 8-5
Insert Sub-Field • • • • • • • • • • • • • • • • 8-6
Delete Sub-Field • • • • • • • • • • • • • • • • 8-7
Insert Text String • • • • ••••••••• 8-7
Write Text String • • • • ••••• 8-8
Delete Character • • • • • • • • • • • • 8-8

VIRTUAL DEVICE INPUT • • • • • • 8-10
Read Virtual Keyboard • • • • • • • • • • 8-10

VIRTUAL DISPLAY GRAPHICS OPERATIONS

- CONFORMANCE LEVELS

INTRODUCTION • • • • • • • • • • • • • • • • • • • A-1
CONFORMANCE LEVELS • • • • • • • • • • • • A-1

System Conformance • • • • • • • • • • • • • • • A-1
Application Program Conformance •••••••• A-1

OPT! ONS • A-1
UNDEFINED OPERATIONS • • • • • • • • • • • • • A-2

COMPATIBILITY WITH OTHER ARCHITECTURES

INTRODUCTION • • • • • • • • • • • • •
The Terminal Interface Architecture
The Terminal Software Architecture •

• • • • • • B-1-
• • • • B-1

• • • • • •. B-6.

PART I

SYSTEM DESCRIPTION

CHAPTER 1

INTRODUCTION

With new video technologies and an increase in computing cycles
available to individual users, interest in interactive systems
and the human interface has substantially increased. As P
result, a new generation of high-resolution raster display
systems is replacing the standard video terminal in many
engineering, programming, and office applications. Such displays
are characterized by a relatively large (typically 15" to 19"
diagonal) display surface containing on the order of 1000 x 1000
addressable picture elements at a resolution of 70 to 90 elements
per inch.

High-resolution raster systems allow the user to create, view,
and manipulate images containing graphics, multiple type fonts,
and pictures either se~arately or within a single document or
activity [Newman and Sproull 79, Ingalls 81, Foley and vam Dam
82]. These capabilities are made possible by the high-resolution
format. Another powerful concept · typically available on such
displays is that of the window management system [Kay and
Goldberg 77, Teitelman 79, Lantz and Rashid 79, Meyrowitz and
Moser 81]. A. window management system allows multiple
independent processes to share the display screen, the output
from each process appearing in a rectangular area known as a
window. Windows allow the user to coordinate the activities of
multiple processes, responding to those that he or she ·chooses,
and moving from activity to activity as the need arises (for
example, leaving an editing window to read and reply to mail in a
mail window, then returning to the editing session). Although
window systems have been implemented on more traditional display
t~rminals [Mccrossin et al 78], the full potential of window
systems is better realized on the larger screen area provided by
newer displays.

1.1 THE GOALS OF A WINDOW SYSTEM

Unlike an ordinary video terminal, which is generally used by
only one process at a time, a display is a shareable device.
Sharing of the display implies, as it does for example with a
disk, that user programs cannot directly read or write arbitrary

System Display Architecture {SDA) -COMPANY CONFIDENTIAL- Page 1-2
System Description 27 Oct 82

areas of the device as ~hey please.
control device access in order to
primary goal of the windowing system is
physical display space. The window
available screen space among some number

Some intelligence must
prevent chaos. Thus, the

to manage the use of
manager partitions the
of processes.

A second goal of the window management system is to provide
primitives for application programs to construct images. That
is, the window manager establishes an interface that allows
programs to write text, .graphics, and pictures to the screen.
This interface can be specified at many possible levels. For
example, it can expor~ only the operations available on the
physical display hardware, or it can implement a higher level
interface involving more complex abstractions and operations.
Some number of interfaces can be provided for compatibility, as
the system ·might allow programs written for existing terminal
devices to use a new display without change.

Moreover, the window manager must provide a level of indirection
between the application program and the screen because of the
shareable nature of the device. The program must be written in a
way that is independent of the physical location of its output on
the display monitor. Although the program can build a complex
image composed of many parts in well-defined spatial
relationships, it cannot in general rely on either the position
of that complex image on the display o~ the relationship of that
image to other images on the display.

Finally, the window manager is responsible for interacting with
the user {the display operator) about the location, size, and
status of windows on the screen. In general, the user is given
total control of the screen layout. The user can create, modify,
move, and destroy windows on the display under his or her
control. Multiple processes can thus be created, controlled, and
destroyed from a single device.

Using commands provided by the window manager, the display system
user arranges the screen with activities of interest in an
ordering that suits the user's needs. The window management
system supplies the user with a command or menu interface for
this purpose.

While the user creates a work area by arranging activities on the
screen, each of the images produced by the activities can itself
·be composed of several parts. That is, from an implementation
point of view, it may be convenient for the application to
construct its image out of sections that are created by different
procedures, · modules, or processes. How the image is produced is
completel~ up to the application program, and the fact that it is
composed of several pieces may or may not be visible to the user
at the screen. For example, in the Smalltalk system [Ingalls 78]
the screen is divided into a number of panes, each containing a
different class of information, such as Smalltalk code, menus,
lists, and so on. Each of the panes has a title and a

~ystem Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page 1-3
System Description 27 Oct 82

surrounding border to distinguish it. However, one might imagine
a document containing graphics and text that is maintained by the
application as separate graphics and text sections. This fact is
hidden from the viewer, · as the sectioning merely simplifies
implementation.

Many existing window management systems therefore allow the
construction of images from several parts. In most cases, this
image construction is based on a decomposition mechanism. The
application program is given a fixed-sized resource object,
typically a segment of physical memory (a bitmap), in which to
build its image. This object represents a potentially viewable
rectangular region and in some cases may actually be a section of
the frame buffer from which the display is refreshed. The system
then provides primitives- for subdividing the object; the program
can create any number of rectangular subregions, and these
subregions can be passed to other procedures or processes to be
written. A subregion is just a bounded rectangular subset of the
original region object. Conceptually, all regions or subregions
have identical type, . in that they are fixed-sized rectangular
segments that can be written and/or further subdivided. The
window management system ensures that no data is written outside
of the boundaries of a specified region object.

The decomposition mechanism allows the application programmer to
build a library of useful procedures, each capable of creating
output within a region object passed to it as a parameter. In·
order to perform their task, these procedures can.choose to
further decompose the problem by subdividing the initial region
objects and passing these to other local or global routines, and
so on.

One complexity in this scheme arises from the finite
single-resource nature of the original region object. That is,
the region is represented by a single segment of physical memory.
The division of a region into subregions creates objects that
indirectly address sections of this single memory segment.
Applications often need to overlap regions temporarily, or to
create several overlapping regions to be written by independent
activities. For exam·ple, an application may temporarily obscure
part of a region to present the user with a menu, scroll bar, or
some new information. Later, the new information must be
removed, leaving the previous contents intact. In these cases,
the application is. often responsible for providing backing
storage for any overwritten image that is to be later restored,
or for knowing how to regenerate the image. Synchronization
might also be required between procedures or processes writing to
overlapping.regions.

On a more global level, the same storage management problems
exist in the sharing of the physical screen. If the frame buffer
is divided among several independent processes, and one process'
window overlaps another's, then the process controlling the
overlapped window must be stopped from writing, even if most of

System Display Architecture {SDA) -COMPANY CONFIDENTIAL- Page 1-4
System Description 27 Oct 82

its window is visible. Or, its output can be clipped to the
visible portion, and the process can be asked at a later time to
update the entire window if more becomes visible.

An alternative to the decomposition scheme is a mechanism based
on the principle of composition. In this case, the application
begins with a collection of fundamental regions. Each region is
represented by a fixed-sized physical resource, as above.
However, instead of subdividing a single resource, the
application program produces a composite image from the multiple
regions. This composite image is specified by describing the
spatial relationship of the regions within.a two-dimensional
coordinate system. That is, the regions are "pasted up" on a
plane to form a composite image.

1.2 THE SYSTEM DISPLAY ARCHITECTURE
COMPOSITION-BASED SYSTEM

A MODEL FOR A

The System Display Architecture is based upon a number of
fundamental principles, most derived from goals stated in
previous sections. First, programs must be written in a ~anner
independent of the location of their output on the physical
screen and the relationship of that output to other images on the
screen. Second, programs should be independent of the physical
characteristics 0£ the display. That is, as much as possibie,
programs should not count on details such as resolution, screen
size, number of bit planes, etc. Finally, the user operating the
display system should have total control over the arrangement of
applications on the screen.

A cr.itical separation in the architecture is made between the
application program and the user of the display. To enforce the
distinction between user and program, the architecture provides a
distinct set of objects for user control and a different set of
objects for application program control. The application,
through a procedural interface, manipulates objects provided for
the construction of images; the user, through a command
interface, manipulates objects provided for the arrangement of
screen space. Following sections describe the objects available
in each domain.

1.2.1 Program Objects

This section describes the interface that the window management
system makes available to the application program for the purpose
of composing images. We describe a set of objects, the
properties of the objects, and the operations provided on the
objects.

system Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page 1-5
System Description 27 Oct 82

1.2.1.1 Virtual Displays -

The fundamental building block for the application program is the
virtual display. A virtual display is a rect~ngular display
object that has the properties of a display device but is not
necessarily implemented on physical display hardware. The
virtual display is created as a fixed-sized entity; its main
attributes are its height and width. A process can create as
many virtual displays as it needs, and each can be a different
size to suit a different purpose.

A virtual display, once created, can be passed from procedure to
procedure or from process to process. The program can output
text and/or graphics to the virtual display. This output can be
performed even if the virtual display is not visible or is
partially occluded on the display screen. In many cases,
applications may wish to perform a series of .operations on a
virtual display before it is made visible, in order to construct
an image prior to viewing.

One of the previously stated goals was to isolate from programs
the physical nature of the display device. For this purpose, two
high-level interfaces to virtual display output are provided: a
text interface and a graphics interface. The text interface
imposes a text structure on the virtual display. It allows
output and manipulation of variable-height text lines, where each
line is composed of a number of fields that contain characters.
Fields allow for absolute positioning on a line. Primitives are
provided for inserting and deleting characters, fields, and
lines, as well as for justifying, scrolling, and so on.
Characters, fields, and lines can hav~ attributes, such as
reverse video and underline. Multiple fixed- and
proportionally-spaced fonts are supported. Since fonts are
defined by name and size (e.g., Helvetica 12 point) the program
need not be concerned with resolution and font representation
issues. The text interface is thus device independent.

The graphics interface consists of a rather standard graphics
core package. Once again, the use of a high-level graphics
package removes from the program concern for issues such as
mapping physical distances into pixels. The program executes
procedure calls to draw graphics in the virtual display, using a
standard· coordinate system. Primitives are provided to map from
the graphics coordinate system to character positions within the
text structure for programs wishing to combine text and graphics.

1.2.1.2 Pasteboards -

The virtual display described above is the basic output entity in
the display architecture. In the simplest case, a program
creates a single virtual display that is used as a virtual
terminal. The entire virtual display is made visible on some

System Display Architecture {SDA) -COMPANY CONFIDENTIAL- Page 1-6
System Description 27 Oct 82

portion of the display screen. However, the application can also
build complex images using virtual displays as the building
blocks. The mechanism for combining virtual displays into a
single image is called a pasteboard.

A pasteboard is simply a two-dimensional cartesian coordinate
space used to specify the spatial relationship between virtual
displays. A pasteboard is an object that can be created,
destroyed, and passed between environments. Virtual 'displays are
pasted on the pasteboard through a paste operation, specifying
the pasteboard coordinates at which the virtual display origin is
to be placed. The unpaste operation removes a virtual display
from the pasteboard. Any number of virtual displays can be
pasted.on a pasteboard and, more important, virtual displays can
overlap one another. When a virtual display is pasted partially
or fully on top of anothe~, it occludes the view of any
previously pasted surfaces that it covers. {A pasteboard is
actually a three-dimensional space in the sense that pasted
virtual displays have a stacking order.)

Pasteboards have no associated resource, except of course a data
structure that indicates the current state of pasted virtual
displays. The only attribute of a pasteboard is its color, i.e.,
what one would see when looking at a pasteboard with no virtual
displays pasted on it.

The pasteboard mechanism allows the ~pplication program to
produce a dynamically changing visual environment without concern
for the management qf underlying storage. A virtual display
maintains its storage database independent of its position on a
pasteboard. Pasting, unpasting, or moving a virtual display on a
pasteboard only changes the data structure describing the
pasteboard. The pasteboard. data structure is used to produce an
image when the pasteboard is made visible.

For example, virtual displays can be constructed containing
standard menus, scroll bars, images, etc. When needed, these
virtual displays are pasted on a pasteboard, possibly covering
some existing area. When removed, that area of the pasteboard
returns to its original condition. In addition, there is no need
for synchronization between processes writing to separate virtual
displays, whether or not they overlap on the same pasteboard.

Finally, note that a single
several pasteboards at a
made visible on one or more
In addition, a recursive
allowing pasteboards images

virtual display could be pasted on
time, and that a pasteboard could be

physical display screens at a time.
relation between pasteboards .can by

to pasted on other pasteboards.

bystem Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page 1-7
System Description 27 Oct 82

1.2.1.3 Windows -

So far, we have described how the program creates an image but
not how the image is made visible. Before an area of a
pasteboard can be seen, the application program must create a
window over that area. A window defines a rectangular area of a
pasteboard that is potentially viewable on the screen. A program
can define one or more windows on a pasteboard, and the windows
can overlap. In the normal case, a window will cover the entire
image produced on the pasteboard, that is, the area on which
virtual displays have been pasted. However, the application
could make a smaller area visible, allowing the window to travel
around the pasteboard to observe other areas if desired. Or, the
application could construct several disjoint images on the
pasteboard, switching between them by moving the window.

1.2.2 Screen Objects

The objects described above provide a programming facility for
the composition and viewing of images. The virtual display and
the pasteboard allow the program to construct composite images,
while the window specifies the section of that image that can be
viewed by the user. These objects are under the total control of
the application program. Program objects allow
screen-position-independent output from the program's point of
view. It is the human at the display that determines the
physical location of images on the display monitor. Therefore,
there must be a separate set of objects that the human
manipulates to arrange the screen.

Where the window determines a viewable area of a pasteboard, a
viewport provides screen space for a window on the monitor. A
viewport is a rectangular area of the display screen in which a
window is viewed. The viewport shows a full border-to-border
image from a window. It is the viewport that the user moves on
the screeri in order to relocate an image. Moving the viewport
moves the position of the image on the screen, while moving the
window changes the image (the part of the pasteboard) that is
viewed.

In fact, viewpoits are actually positioned on an area larger than
the physical screen itself, called the virtual screen. At any
point in time, the physi~al screen shows a section of the virtual
screen. As the physical screen is panned around the virtual
screen, different viewports become visible on the monitor or
disappear from view. Or, the physical screen can be zoomed back
to show the entire virtual screen, scaled to size, or forward to
focus on a smaller area.-

The user thus directly controls a potentially large area
the virtual screen space. Viewports are positioned
virtual screen. The physical screen is positioned on a

called
on the

section

System Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page 1-8
System Description 27 Oct 82

of the virtual screen to make underlying viewports visible on the
monitor.

1.2.3 The SDA Specification

The System Display Architecture, as described in this document,
consists of two services: the Virtual Display Service (VOS) and
the Virtual Screen Service (VSS). Both sets of services are
meant to be used by system designer for developing systems which
take full advantage of the latest state-of-art user interface
devices (high resolution displays) and which meet the needs of
the future user -- the non-programming professional.

The Virtual Display Service is used to design the . application
program interfaces, such as,

0 Virtual Terminal Emulators (e.g., VT100, VT125,
Tektronix 1410),

0 Graphics Program Interface (e.g., XTIG, SIGgraph CORE
standard, GKS)

0 Interactive Text/Graphics System (e.g., Off ice
Automation, Typesetting)

The Virtual Screen Service and the Virtual . Display S.ervice ar·e
used by the human interface designer to develop user interfaces.

1.3 REFERENCES

[Foley and vam Dam 82]
James D. Foley and
Interactive Computer
Company, 1982.

[Ingalls 78]

Andries
Graphics,

van Dam, Fundamentals of
Addison-Wesley Publishing

Daniel H. H. Ingalls, The Smalltalk-76 Programming System
Design and Implementation, Proceedings of the 5th ACM
Symposium on Principles of Programming Languages, January
1978.

[Ingalls 81]
Daniel H. H. Ingalls, The Smalltalk Graphics Kernel, Byte,
6(8), August 1981.

[Kay and Goldberg 77]
Alan Kay and Adele Goldberg, Personal Dynamic Media,

uzQ~~m uispiay Archltecture (SDA) -COMPANY CONFIDENTIAL- Page 1-9
System Description 27 Oct 82

Computer, 10(3), March 1977.

[Lantz and Rashid 79]
Keith A. Lantz and Richard F. Rashid, Virtual Terminal
Management in a Multiple Process Environment, Proceedings of
the Seventh Symposium on Operating Systems Pr1nc1ple'S;
December 1979.

[Mccrossin et al 78]
J.M. Mccrossin, R.P. O'Hara, and L.R. Koster, A
Time-Sharing Display Terminal Session Manager, IBM Systems
Journal, 17(3), 1978.

[Meyrowitz and Moser 81]
Norman Meyrowitz and Margaret Moser, BRUWIN: An Adaptable
Design Strategy for Window Manager/Virtual Terminal Systems,
Proceedings of the Eighth Symposium on Operating· Systems
Principles, December 1981.

[Newman and Sproull 79]
W.M. Newman and R.F. Sproull, Principles of Interactive
Computer Graphics, McGraw-Hill, 1979.

[Sproull 79]
Robert F. Sproull, Raster Graphics for Interactive
Programming Environments, Xerox Palo Alto Research Center,
CSL-79-6, June 1979.

[Teitelman 77]
Warren Teitelman, A Display-Oriented Programmer's Assistant,
Report CSL-77-3, Xerox Palo Alto Research Center, March
1977.

CHAPTER 2

DISPLAY VOCABULARY

2.1 DISPLAY

For the purposes of this document, a physical device consisting
of a high-resolution, raster-scan monitor, keyboard, pointing
device, control processor and microcode. A memory in the display
specifies the intensity or color for each pixel on the monitor.
Each pixel is individually addressable from the host.

2.2 PIXEL

A single picture element or addressable point on a display. Each
pixel has a value, represented by one or more bits, that
describes its state (i.e., the intensity or color of that point).

2.3 RASTER

A rectangular array of pixels specified by an or1g1n in a
Cartesian coordinate system and an extent (its height and width).
The sides of a raster are parallel to the X and Y axes of the
coordinate system.

2.4 RECTANGLE

Same as RASTER.

2.5 FRAME BUFFER

The memory used to store the current value of each pixel from
which the physical display is refreshed.

oy~~~m uispiay Architecture (SDA) -COMPANY CONFIDENTIAL- Page 2-2
System Description 27 Oct 82

2.6 BITBLT

BIT BLock Transfer {pronounced "bit blit"). The transfer of a
bit string or block from one location to another.

2.7 RASTEROP

A raster operation. The copying {or bitblt) from one raster to
another. The destination rece1v1ng a logical function of the
source and destination rasters (e.g., XOR or OR).

, 2.8 VIRTUAL

Refers to an object that supports the interface or abstraction of
a physical device but is not that physical device.

2.9 VIRTUAL TERMINAL

An object supporting the interface of a particular terminal. For
example, a virtual VT100 terminal supports the VT100 programming
interface and creates the illusion of a VT100 to the operator and
to the application program, but is not 1mplemented on a physical
VT100 terminal.

2.10 VIRTUAL DISPLAY

An object created by the Virtual Display Service of the System
Display Architecture that _has the appearance of a raster-scan

'display. A virtual display is a rectangular coordinate system to
which text and graphics output is done and from which input can
be received. All virtual display operations are performed
through use of the Virtual Display Service procedural Interface.

2.11 PASTEBOARD

A rectangular coordinate system on which application programs
arrange virtual displays and windows for viewing.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page 2-3
System Description 27 Oct 82

2.12 WINDOW

A rectangular area defined on a pasteboard that can potentially
be viewed on the display monitor. The window bounds the area
that can be viewed and provides a unique ID for that area.
Moving the window across the pasteboard potentially changes the
picture that would be seen.

2.13 VIRTUAL SCREEN

A rectangular memory space in which viewports lie. The physical
screen is fully contained in the virtual screen, and therefore
always shows part of the virtual screen. The physical screen can
be moved within the virtual screen, providing a panning over the
viewports.

2.14 VIEWPORT

An object that provides vfrtual screen space for a window. A
viewport is a rectangle located on the virtual screen that maps
an entire window into its display space. Moving a viewport
changes the location of that view on the virtual screen, but not
the view itself. Many viewports can be visible on a display, and
viewports can overlap.

2.15 OCCLUDING VIEWPORT

A viewport that covers or obstructs part or all of another
viewport.

2.16 CHARACTER SET

An ordered sequence of symbols. The symbols area commonly
refered to as "characters". Each symbol has a name as defined in
the Coded Charater Set Register of ISO 2375.

2.17 CHARACTER

Same as a character code.

~ys~em Dlsplay Architecture (SDA) -COMPANY CONFIDENTIAL- Page 2-4
System Description 27 Oct 82

2.18 CHARACTER CODE

A 8 or 16-bit index into a character set.

2.19 CHARACTER TYPEFACE

A particular stylization of the symbols that make up a character
set. Common typeface designations are Gothic, Helvatica, etc.
Character typeface does not include character size or rendition.

2.20 CHARACTER RENDITION

Modifications to the appearance of a character other than its
typeface and size. These modifications include weight
(e.g.FAINT, NORMAL, BOLD), blink· mode {OFF,SLOW,FAST), writing
mode {NORMAL,REVERSE), style (ITALICS or NORMAL),
underlining(ON,OFF), crossout(ON,OFF), proportional
spacing(ON,OFF), etc.

2.21 CHARACTER FONT

A specific combinatidn of character typeface,
rendition. This is equivalent to printer's "type".

2.22 CLIPPING RECTANGLE

size, and

A rectangle whose intersection with another rectangle constrains
operations on pixels in the intersected recta~gle to the
non-overlapping part. An operation on a rectangle may be
constrained by several clipping rectangles.

2.23 CURSOR

A small raster displayed on the screen to indicate a point of
interest.

2.24 OUTPUT CURSOR

A cursor that indicates the position at which the next character
output will be displayed.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page 2-5
System Description 27 Oct 82

2.25 POINTER

· The cursor that is controlled by the pointing device.

2.26 POINTING DEVICE

A physical device used to position the pointer to a location on
the physical screen. The pointing device and associated pointer
are under control of the display operator.

2.27 MOUSE

A pointing device consisting of a small plastic box with several
buttons, generally resting on a sphere that is x-y encoded.

2.28 TOUCH PAD
·-

A pointing device consisting of a rectangular area capable of
sensing the x-y position at which· it is touched with a finger or
object.

CHAPTER 3

LAYERING

The System Display Architecture is part of a layered system
model, each layer provides a different level of service and
manipulates objects at a different level of abstraction, as shown
below in Figure 1. Bi-directional communications exist between
each of the layers in · the system architecture. The System
Display Architecture encompasses the layers identified as Virtual
Display Service and Virtual Screen Service. It defines the
interface between the layers above it in the following diagram.

virtual
terminal
emulators

+-----------------------+ +-----------~------+
I Application Programs I I User I
+-----------------------+ I Control I +------+ +--~--+ I Service I
I t4014 I lvt1001 I I
+------+ +-----+ +------------------+ +-----------------------+ +------------------+
I Virtual Display I· I Virtual Screen I
I Service (VDS) I I Service (VSS) I
+-----------------------+ +------------------+ +---+
I Physical Display Service (PDS) I
+----------------------~------------------------+ +---+
I Physical Display Hardware I
+---+

Figure 1. System Architecture Layers

At the highest layer in Figure 1 are the user application
programs. Applications have two options in manipulating the
display: virtual terminal emulators (VTEMS) or Virtual Display
Service. VTEMS are packages that simulate existing graphics or
.ASCII terminals, such as. the Tektronix 4014 or the DEC VT100
family. - Existing programs that require the characteristics of
such terminals can continue to operate without change; programs
transmit ASCII characters, escape sequences, and graphics
commands as though to an actual device. The user will see a
viewport on the screen whose size and characteristics are those
of the simulated terminal. Although VTEMS exactly match the

System Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page 3-2
System Description 27 Oct 82

programming interface of the simulated device, it may not be
possible to exactly duplicate the visual properties of the device
on the display screen. ·

The next two layers, Virtual Display Service and Virtual Screen
Service, form the basis of the System Display Architecture.
These layers manage the objects that allow the multiplexing of
the physical screen and input devices among many application
processes. The two sets of services provide a separation between
the management of programmed input and output objects and the
management of screen space objects. Moreover, programs
manipulate virtual display objects whether or not the objects are
visible on the display screen. A single process in the system
allows the user to control the appearance of the display screen
and the lay.out on the screen of views of various virtual
displays.

Thus, the Virtual Display Service (VDS) supports creation and
manipulation of the objects available for input and output. The
purpose of VDS is to supply virtual display objects that isolate
the program from the current state of the physical display.
Applications can create, write to, and read from virtual display
devices, programming each as if it were a single autonomous
device. Newer applications may use the VDS interface directly,
while VTEMS will use VDS on behalf of existing applications that
communicate via existing terminal protocols: such as ASCII,
REGIS, etc.

While VDS is responsible for the display programming interface,
the Virtual Sc~een Service (VSS) is responsible for manipulation
of objects on the display screen. That is, VSS manages the
relationship between virtual displays and their appearance as
viewports on the physical screen. In general & single privileged
process is responsible for responding to user's screen management
requests and calling VSS procedures to manage the allocation of
physical screen space and input devices. This process will be
refered to as the User Control Service (UCS) • The UCS performs
the functions of a traditional screen manager.

Following the Virtual Display and Virtual Screen Service in the
hierarchy is the Physical Display Service (PDS) • Physical
display service is provided by what is traditionally called a
device ·driver. The PDS layer is responsible for processing
physical display requests from the higher levels, for building
physical display command lists, and transmitting commands to the
physical display in the form in which they are required. The PDS
layer also manages I/O space and mapping registers, and receives
and processes interrupts. The PDS layer isolates higher layers
from the characteristics of the physical device and
interconnection scheme.

The final layer in this structure is the display hardware that
includes the physical display monitor, the keyboard and pointing
device, and any controlling processor and microcode.

CHAPTER 4·

VIRTUAL DISPLAY AND VIRTUAL SCREEN OBJECTS

4.1 INTRODUCTION

The application interface to the System Display Architecture is
provided by the Virtual Display and Virtual Screen Service. The
division of a single layer into two service packages implies a
conceptual division between application-visible objects and
operator-visible objects. That is, applications perform input
and output operations to virtual devices, without regard to the
state of the physical screen or the mapping of their virtual
devices to the screen. ·A separate set of services, generally
under control of a single process commanded by the display
operator, allows for manipulation of visible screen objects
(viewports). The followings sections define the objects
supported by each of the services.

4.2 VIRTUAL DISPLAY OBJECTS

The Virtual Display Service forms the programming interface
between the application and the display. The objective of VDS is
to isolate the program from the details of screen space
management. The application performs input and output operations
on logical objects, and constructs views that can be made visible
on the display screen by the display operator. VOS maintains a
database describing the current state of the output objects for
each program.

4.2.1 Virtual Displays

The virtual display is the basic object that VOS· provi~es for
output. / Each virtual.display is a rectangular coordinate space
to which text and graphics can be written. An application can
create and manipulate several virtual displays at a time. Output
is automatically constrained to the fixed boundaries of the
virtual display.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page 4-2
System Description 27 Oct 82

As an example, the virtual terminal emulator responsible for
VT100 emulation will create a single virtual display capable of
holding standard 80 column by 24 line VT100 text. Of · course,
this virtual display will be used only for text, as the VT100
does not support graphics. Other applications can create virtual
_displays of different sizes and characteristics, to which they
may oµtput text, graphics, or both.

A virtual display.is represented by a database that contains data
structures despribing its state. Separate data structures
maintain the virtual display's text and graphics context.
Therefore, text and graphics operations do not interfere with
each other. When a virtual display is shown on the screen, the
text and graphics are superimpo~ed to form the screen image
(i.e., logically ORed for a one-plane display).

When a virtual display is created, default values are specified
for various attributes of the virtual display. For example, the
virtual display's background color or intensity could be
specified, also, a color for writing text or graphics, a default
text font and so on. The defaults can be subsequently modified.
In the simplest case, text written to the virtual display assumes
the defaults set for the virtual display, however these
attributes can be changed on a local basis for a particular line,
field, or character.

A program can create and manipulate several virtual displays at a
time. The figure below shows three virtual displays, one used
for text output, one used for graphics output, and one used for
both.

virtual
display

A

+---------------+

<text>

+---------------+

+---------------+
I I
I I
l <text & I
I graphics> I
I I
I I
+---------------+
+----------~----+

virtual
display

B

I l virtual
I <graphics> l display
l l c
+---------------+

Figure 2. Example Virtual Displays

~ystem Display Architecture {SDA) -COMPANY CONFIDENTIAL- Page 4-3
System Description 27 Oct 82

4.2.2 Pasteboards

The pasteboard is an application mechanism for forming virtual
displays into simple or complex arrangements for viewing. It ·is
a rectangular area on which virtual displays can be placed. In
the simple case, a pasteboard might contain a single virtual
display that emulates a VT100. However, to form a more complex
picture, such as a two-column document page including graphics,
several virtual displays can be "pasted" together on the
pasteboard to form the composite document. The pasteboard simply
provides an area in which the position of each virtual display
can be specified. A pasteboard has a finite size; a virtual
display can be positioned anywhere within the pasteboard area,
but no part of a virtual display can be placed outside the area.
The figure below shows a pasteboard with virtual displays placed
on it. The dotted lines in the figure indicate virtual display
boundaries; the dashed lines, the border of the pasteboard. The
application can request that virtual display boundaries be either
visible or invisible. Pasteboards borders can never been
displayed.

+---+
.
• vi rt. dsp • . c •
• <graphics> • . • • • <text> •
• • • . <text & vi rt. dsp. • . graphics> A

• •
• vi rt. dsp~ . B .

+---+
Figure 3. Example Pasteboard

In this example, an application has chosen to implement the three
sections of a document as separate virtual displays. Although
this pasteboard could have been constructed with a single virtual
display to which both text and graphics are written, the use of
several virtual displays simplifies the application's management
of both text and graphics. Note that each virtual display is an
independent device. The pasteboard merely provides a frame of
reference in which they can be located.

In more complex relationships, virtual displays can overlap on
the pasteboard. A virtual display that overlaps another virtual
display fully or partially occludes its view. The stacking order

System Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page 4-4
System Description 27 Oct 82

is determined by the order in which virtual displays are-pasted.
Virtual displays can be dynamically placed on, moved across , and
removed from the pasteboard.

A user can create multiple pasteboards, and a single virtual
display can be pasted on several pasteboards at a time.

In addition to pasting virtual displays on pasteboards,
pasteboards themselves can be pasted onto other pasteboards.
This is an especially powerful facility which allows segmentation
of functions. In this case, the pasted pasteboard acts like a
virtual display image -- a flat 2-dimensional structure. Virtual
displays which may reside on the pasted pasteboard have no effect
on the internal structure of the bottom pasteboard. The pasted
pasteboard cannot be larger than the bottom pasteboard. In
addition, a pastebaord can not be pasted onto itself, nor can it
be pasted on to any pasteboard that would result in a similar
self-recursive relationship.

4.2.3 Windows

A window defines a rectangular area on a pasteboard that can be
presented to the physical display screen. A particular window
may or may not be visible on the screen at.any particular time.
Many windows can be defined for a single pasteboard, and windows
can overlap. A window can also overlap several virtual displays.
Windows can be.created, moved, enlarged, reduced, and destroyed.
No part of a window can be placed outside the area of tbe
pasteboard. Note that output does not take place to a wiridow and
is not constrained to any particular window. Output takes place
tg virtual displays. If a window exactly overlaps a virtual
display on the pasteboard, output to that virtual display will
appear to be clipped to the window.

In the simple case of a VT100 virtual terminal, the pasteboard
will contain a single virtual display with a single overlapping
window. In a more complex application, a small window could be
moved around within the pasteboard to pan over a large area
composed o~ several virtual displays.

4.3 VIRTUAL SCREEN OBJECTS

The Virtual Screen Service (VSS) provides primitives to manage
the physical display space. It controls the creation and
arrangement of viewports on the screen. It is assumed that
virtual screen service· is under the control of a single
privileged application (UCS). This application responds to
operator commands to allocate and arrange objects on the screen.
VSS thus provides the link between VOS objects and physical
screen space. It manages a database describing the state of the

uz~~~m ui~piay Arcnltecture (SDA) -COMPANY CONFIDENTIAL- Page 4~5
System Description 27 Oct 82

screen and the relationship of viewports to pasteboard windows.

4.3.1 The Virtual Screen And Physical Screen

The virtual screen is a fixed-sized rectangular area, minimally
the size of the physical screen. Fully contained within this
rectangular area is the physical display screen. The Virtual
Screen Service manages the virtual screen and determines what
part is visible at any time. Moving the physical screen around
in a larger virtual screen space has the visual effect of panning
a camera over an area. The size of the virtual screen is
implementation dependent.

4.3.2 Viewports

A viewport is a rectangular area that is a mapping of a window
onto a specific area on the virtual screen. The viewport is
defined by its position on the virtual screen its size, and its
·associated window. Viewports can be moved within the virtual
screen transparently to the application program.

At any point in time, many viewports may be defined on the
virtual screen, and viewports can overlap. A viewport that
overlaps another obstructs its view, i.e., the first occludes the
second. The stacking of viewports is determined by the order in
which they are created or moved.

Viewports can be created, moved within virtual screen space,
altered in size, connected and disconnected to windows, and
destroyed. A viewport maps an entire window into its virtual
screen space. Changing the size of the viewport causes scaling
of the mapped window image.

A number of events are defined that can be reported back to the
application whose virtual display is visible in a viewport. For
example, the application may wish to know when the virtual
display (in the viewport} becomes occluded, when the pointer
enters the virtual display, or when the pointer leaves the
virtual display. This information is fed back from VSS through
VDS, that is, from the viewport database to the virtual display
database.

4.3.3 Example

Figure 4 shows an example of the use of the objects just
described. Two pasteboards are in use, named pasteboard -1 and
pasteboard 2. Pasteboard 1 has the single virtual display A
defined. A single window, P, contains part of virtual display A.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page 4-6
System Description 27 Oct 82

Pasteboard 2 has three virtual displays named B, C and D. Window
Q coincides with virtual display D. These are the basic objects
related to the pasteboards and their manipulation by the program.

Below the pasteboards are the objects related to the visual
interface. The virtual screen defines a rectangle in which
viewports can lie. The physical screen is entirely contained
within the virtual screen, along with viewports X and Y. The
arrowheads indicate that viewport X is connected to window Q, and
viewport Y is connected to window P. Note that viewport X is
located partially outside of the physical screen rectangle, and
thus virtual display D will only be partially visible on the
display screen. Viewport X will show a picture of that part of
virtual display A inside of it, along with the values of the
other enclosed pixels that are part of pasteboard l's master
virtual display.

system Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page 4-7
System Description 27 Oct 82

Pasteboard 1 Pasteboard 2
+-----------------------+ +-----------------------+ I I . lvirt. virt. dsp. I

vi rt.
dsp.

* * •

ldsp. • c I
I B I

A * * I • I
* * I • I
* * I • I

········*··· * I
I
I

---~> * *
I ***********
I window P ************** I

----> *virt. dsp. D* I I
I I ************** I
I I window Q I

+--+--------------------+ +-+---------------------+
I
I

I
I

+--+------------------------------+---------------------+
I I $$1
I I ·$ I $I

I +++$++++++++++ I $1
I + $ + <------ $1
I +++$++++++++++ $1
I viewport X $I
I $ $1
I $ +++++++++++ $1
I $ + + $I
-------------$------------> + • + $1

$ + + $I
$ + + $I
$ +... + $1
$ + + $I
$ +++++++++++ $1
$ viewport Y $1
$ $1
$ $1
$ $1
$$1

· Physical Screen I
+---+

Virtual Screen

Figure 4. Example window and viewport mapping.

System Display Architecture {SDA) -COMPANY CONFIDENTIAL- Page 4-8
System Description 27 Oct 82

4.4 VISIBLE EFFECTS OF WINDOW AND VIEWPORT OPERATIONS

A number of operations can be performed on windows and viewports,
each operation having a different effect on the user image. In
this section we list the various visual operations that users may
wish to perform, and how they can be accomplished. All are
described in terms of the image, that is, the current picture
seen by the display operator inside the borders of a viewport.

1. Move Image. The operator wishes to move an image from
one location on the physical screen to another location
on the physical screen. This operation is performed by
simply moving the viewport.

2. Magnify or Reduce Image. The operator wishes to enlarge
or shrink the size of the picture. Since a viewport is
a scaled border-to-borde(representation of the window,
enlarging the viewport will cause the window data to be
scaled and hence magnified. Shrinking the viewport size
causes the image to be reduced.

3. Clip Image. The operator wishes to look at only a
portion of the current image, for example, at only 12
lines of a 24-line text image. This operation is
accomplished by reducing the size of both the window and
viewport proportionately.

4. Zoom Image. The operator wishes to zoom in on a smaller
area of the image, causing the smaller image to fill the
current viewport and be magnified. This operation is
accomplished by reducing the size of the window while
keeping the viewport the same size.

5. Pan Image. The operator wishes to move the image around
in an area larger than that visible in the viewport.
This operation is performed by moving the window within
the pasteboard.

Architecturally, all of these operations are possible with the
two mechanisms defined: windows and viewports. Some
implementations may not be able to accomplish all functions, for
example, scaling may be difficult without special hardware
assistance. Also, some of the operations will generally require
interaction between both the application program and the screen
manager. For example, the clip image operation requires that
both the viewport and window be modified "simultaneously" t6 give
the desired effect.

System Display Architecture {SDA) -COMPANY CONFIDENTIAL- Page 4-9
System Description 27 Oct 82

4.5 BACKGROUND AND WRITING COLORS

All objects in the architecture have both a background color and
a foreground color. Foreground color is sometimes referred to as
the writing color. Some objects may be primarily background such
as virtuals display and pasteboards - only their borders, if they
have any, are written in the foreground color. Other object may
be primary foreground, e.g. text. The graphics operations of
flood and fill are done with background colors.

4.5.1 Color Specification

There are a number of common methods by which color can be
specified, such as RGB {Color monitor gamut), NTSC {television
color standard) • These are hardware related standards that have
little resemblance to the physiological and psychological aspects
of color preception. The SDA specifies color via the HLS
specification. This refers to Hue, Luminence and Saturation;
these attributes of color representation have a closer relation
to the manner in which color is perceived by humans.

This system specifies color as three real numbers:

Hue {H) The hue of the color expressed as an angle on
the color wheel.

Luminence {L) The relative brightness of the color
expressed as a percentage of full brightness.

Saturation {S) The relative saturation expressed as a
percentage of the fully saturated hue.

There are a minimum of 8 background colors which can be
alternately specified by name: white, black, bl.ue, red, green,
magenta, cyan, yellow. There are a minimum of two foreground
colors: black and white.

The HLS specification for these colors are:

Color H L s R G

White 100% 1 1
Blue 0 50% 100% 0 0
Magenta 60 50% 100% 1 0
Red 120 50% 100% 1 0
Yellow 180 50% 100% 1 1
Green 240 50% 100% 0 1
Cyan 300 50% 100% 0 1
Black 0% 0 0

B

1
1
1
0
0
0
1
0

System Display Architecture (SDA) -COMPANY CONFIDENTIAL-Page 4-10
System Description 27 Oct 82

4.5.2 CLEAR Specification

There is an additional "color" which isn't really a color since
it specifies the absences of color. That color specification is
CLEAR. When CLEAR is specified as the color of an object, the
object does not occlude any underlying objects. For example~ if
a virtual display has a background color of CLEAR and is paste to
a pasteboard which has color RED. Then the RED shows though the
virtual display at all places where there is nothing written on
the virtual display. CLEAR is an OPTION, except as a text
background color where CLEAR is required.

4.5.3 Grey Scale Representation

Those system that cannot represent color, but do
capabilities, will map color to grey scale
conventions established by the photographic
industry.

Gray Scale

0.0
I
I
I
I
I
v

1.0

4.5.4 Halftones

Color

Black (no color, dark)
Blue
Red_
Magenta
Green
Cyan
Yellow
White

have in.tensity
following the

and broadcast

Certain hardware implementations may have less than the minimum
number of colors or intensities. Indeed, the most common (i.e.,
inexpensive) system will probably have only one level of
intensity. A very effective emulation of grey scale intensities
can be created via halftoning. Thus, those system which cannot
implement the minimum number of intensities will be allowed to
use a set of halftones for background shading.

ISSUE: Should we explicitly support "color by index"? In
multi-viewport system such support requires separate HW color
look-up tables for each viewport. It is doubtful that such
features will ever exist in 'the HW.
*********~***

~ystem Display Architecture (SDA) -COMPANY CONFIDENTIAL-Page 4-11
System Description 27 Oct 82

4.6 INPU~ DEVICES

Associated with the display station will be a set of input
devices. Input devices can be classified as either text input or
graphics input devices. Text input devices are used by the user
to input character codes. Examples of text input devices are

'keyboards, numeric pads, etc.

Graphics input device are used to input positional
(N-dimensional) ~nformation. Examples of graphics input devices
are joystick, graphic tablet, mouse, trackball, etc. Graphics
devices can also have operator-controlled state information
associated with them. Such state information is usually
generated by buttons or keys on the device such as the three
buttons on a mouse.

Text and graphics input devices allow the operator to transmit
information .to an application program. In order to be used an
application must create a virtual equivalent and associate it
with a pasteboard.

4.6.1 Virtual Input Devices

A virtual input device is the basic object that the_VDS uses for
input. Just as an application creates a set of virtual displays
which allow it to display information to the operator; an
application can create virtual input devices in order to obtain
information from the operator. Virtual input devices are
attached to pasteboards in a manner analogous to pasting virtual
displays to a pasteboard.

A virtual input device is represented by a database in the form
of a FIFO buffer. Each entry in the buffer consists of a
character code for keyboards or positioner co-ordinates and state
information. In addition each entry also contains the the
position and state information of the pointing device at the time
the information was entered by the user. The relevance of this
information is discussed below.

4.6.2 Assigning Physical Input Devices

Physical Input devices are assigned to a pasteboard via the VSS.
Note that these operation are normally performed by the UCS.
Thus, just as the user controls the display of pasteboard
information via viewports, the user and the UCS control the
assignment of specific physical input devices to pasteboara$.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL-Page 4-12
System Description 27 Oct 82

4.7 THE POINTER

The pointer is a small icon (cursor) on the display that tracks
the position of the display's pointing device. One of the
workstations graphics input devices is designated as the pointing
device. The user positions the pointer to indicate an object of
interest. The position of the pointer is normally used by the
UCS to determine what actions will occur when a key on the
keyboard, pointing device, or other graphics devices are pressed
or released. The pointer is under the complete physical control
of the user (operator), that is, its position cannot be modified
by application programs or UCS. However, the icon can be changed
by the UCS and the UCS can disassociate itself from the a
pointer.

Although the System Display Architecture does not specifically
dictate how the pointer is to be used by the UCS or applications,
the following was basic in its conception.

The pointing device is solely "owned" by the user; the
architecture guarantees that

1. a pointer icon exists on the screen at all times,

2. the user can always move the pointer to any plaqe on the
physical screen.

It is highly recommended that the pointer icon and physical
pointing device be physically controlled by the hardware display
controller. This is to insure that the pointer is response to
the operators movements of the pointing device.

As its name implies, the primary purpose of the pointing device
is to point to objects on the physical screen. Some of the
objects on the screen belong to or are under control of the UCS
itself. The rest of the objects on the screen belong to
application programs.

4.7.1 Examples Of Pointing

Some of the common uses of the pointer by the UCS or applications
are:

1. To activate viewports, pasteboards, and their associated
processes,

2. To simplify the sharing of input devices such as the
keyboard.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL-Page 4-13
System Description 27 Oct 82

4.7.1.1 Activating Viewports And Pasteboards -

Since overlapping viewports occlude, the pointer can only be
inside of one viewport at a time. This viewport is said to be ·
the active viewport. The active viewport is mapped to a specific
window which in turn is associated with a specific pasteboard.
This pasteboard is then said to be the active pasteboard.

Within this pasteboard, the pointer is either within a virtual
display or outside all virtual displays of that pasteboard.
Again, as overlapping virtual displays occlude, the pointer can
only be inside of one virtual display at a time. If it is within
a virtual display, that virtual display is said to be active.

Thus, the UCS or an application program can identify a set of
objects that the user is pointing to. Depending on the objects
pointed to or the context of the user, the UCS or application
program can take appropriate action. For example, if the user
moves the pointer to a partially-occluded viewport, the UCS can
bring that viewport to the top of the display stack and activate
the application associated with it.

An application program can switch its own context as the user
moves the pointer from object to object (e.g. virtual display to
virtual display). Thus, it's not necessary for the user to
explicitly give mode changing commands to the application~ This
simplifies the user interface because mode changes can become
implicit rather than explicit.

4.7.1.2 Sharing Input Devices -

Some physical input devices, such as the keyboard, are shared by
a number of pasteboards. The assignment of the physical keyboard
or other physical input devices to virtual devices can be changed
by the UCS as the pointer moves from pasteboard to pasteboard.
Thus, as the operator move the pointer across the physical
screen, the UCS activates various pasteboards and switches
assignment of the shared input devices such as the keyboard.
Practical or physical limitations may require the operator to
perform a state change in the pointing device, i.e. press a
button on the device.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL-Page 4-14
System Description 27 Oct 82

4.8 VOS TEXT MANAGEMENT OBJECTS

The Virtual Display Service supports output of text to virtual
displays. This section describes the basic text objects and the
operations available for text output. The basic text objects
consi~t of an hierarchy of entities: virtual display text plane,
lines, fields, subfields, and characters. Each object has a set
of attributes; the default attributes are determined from higher
order objects. Thus, the default character font of a field is
the character font of the line in which it is defined. Any
defaulted attribute is automatically changed whenever the higher
attribute is modified. For example, changing the character size
of a line changes the character size of all fields, subfields,
and individual characters which where not specifically
enumerated.

4.8.1 Lines.

For the purposes of text output, a virtual display is divided
into a sequenc~ of lines, numbered consecutively 1 through N,
where N lines have been defined. A line is defined by a line
number, height, baseline position, and a set of attributes. A
line spans the entire horizontal extent of the virtual display.
Lines cannot overlap, however different lines in a virtual
display can have different heights and attributes. Although a
line has a fixed height, there is no requirement that all
characters within the line be the same size. Characters on a
line can be selected from different typefaces and have different
heights and widths. The presentation of characters whose size
exceeds the height of a line is UNDEFINED.

4.8.2 Fields

Each line consists of one or more fields. A field
its starting and ending position within the
attributes, and one or more vertically positioneq
fields height is identical to the line in which it
field is addressed by its starting position.

is defined by
line, a set of
subfields. A
is defined. A

A field allows the application to force placement of a strings
starting at a specific horizontal position within the line. This
function would otherwise be difficult with variable-spaced
characters.

Placement of a field within a line causes a logical boundary to
be defined. The first field in a line, created automatically
when a line is created, is starts at position 1 and spans the
entire line. Fields are not required to be adjacent, and they
must not overlap. Before a new field can be created, any
underlying fields must be deleted. If a line is not completely

~z~~~m ui~piay Arcn1tecture (SDA) -COMPANY CONFIDENTIAL-Page 4-15
System Description 27 Oct 82

divided into fields, there will be some space where characters
cannot be written.

4.8.3 Subfields

A field is further divided into vertically positioned subfields.
A subfield is defined by its vertical position within a field,
its height, and a set of attributes. A subfields horizontal
extent is equal to the fields extent. Like fields, subfields
within a field can not overlap. The first subfield in a field,
created automatically when the field is created, starts at
position l and spans the entire height of the field. Before a
new subfield can be created any underlying subfields must be
deleted.

Any characters on de.leted subfields· are erased. If. a field. is
not complet~ly divided into subfields, there will be some space
where characters cannot be written.

The character strings within a subfield are formatted according
to the text format specification of the subfield. The text
string can be left-justified (default), right-justified,
centered, or filled. Whenever a character· or string of
characters is inserted, deleted, or replaced within a subfield,
the entire subfield is reformatted according to the format
specification of the subfield. Characters output to the· subfield
are constrained to the subfield horizontal boundaries.

4.8.4 Characters

A character defines a s¥1'1bol to be output within a subfield. A
set of the symbols is refered to as a character set. Each
character of a set is identified by a character number or index,
called a character code. Character codes are either 8- or 16-bit
integer. Displayed characters possess a set of three attributes:
typeface, size, and rendition. These attributes are NOT part of
the character set, but of the display or imaging process. See
the following section on Character Imaging below.

4.8.5 Character Addressing

Within each virtual display, then, there exists a set of lines, .
fields, subfields, and characters making up the textual state of .
the virtual display. Each individual character is addressed by a
quartet, <line,field,subfield,char>, that specifies its location,
characteristics, and attributes. For simple characters sets and
traditional cell text, the lines and characters may form a simple
rectangular grid. However, in the more general case, lines and

System Display Architecture (SDA) -COMPANY CONFIDENTIAL-Page 4-16
System Description 27 Oct 82

characters within a virtual display may be of different sizes and
characteristics.

4.8.6 Text Manipulation

Text management within the virtual display operates largely
through a system of defaults. When the virtual display is
created, a number of defaults are specified that determine the
attributes of text output to the display. These include line
height, set, background color, and so on. Changing the default
values does not affect existing virtual display text state, but
only changes those defaults with respect to future text output.

When the virtual display is created, it is automatically
partitioned into a set of contiguous equal-sized lines. Lines
are numbered from the top of the virtual display to the bottom.
The virtual display always contains an integral number of lines.
It is impossible to manipulate lines so that only a slice of the
line is in the display. Given that the virtual display height
may not be an integral multiple of the line s.ize, some space can
exist at the top or bottom of the virtual display to which text
cannot be written.

4.8.7 Scrolling

Scrolling is the vertical movement of a contiguous set of text
lines The scrolling directions supported are up and down only,
that is, there is no horizontal scrolling of virtual display
text, since horizontal scrolling of text can not be defined for
proportionally spaced text. The direction to scroll is specified
at each occurrence of a deletion or insertion. These is no
default mode.

Scrolling a set of lines up is accomplished as follows: The
first (top) line of the set is deleted. The remaining lines o~
the set are renumbered by decrementing their respective lin~
numbers. A new line is added at the bottom of the scrolled
lines. T~e screen is updated to reflect the change in the state
of the virtual display text. Note that one line is deleted and
one line is added; there is no change in the lines outside of
the scroll region.

The line that is added is not required to be of the same line
height as the deleted line or any other lines of the set. If the
added line and the deleted line have different heights, all lines
below the scroll set are adjusted so that the display is
contiguous. That is, if the new line is smaller than the deleted
line, all line below the scroll set are moved up. If the new
line 1s larger, all lines below the scroll set are moved down.

system Display Architecture (SDA) -COMPANY CONFIDENTIAL-Page 4-17
System Description 27 Oct 82

Scrolling down is done in a similar manner. In this case, the
last (bottom) line of the set is deleted, the remaining lines
renumbered by incrementing their line numbers, and a new line
added at the top of the set. If the new line is not the same
height as the deleted line, all lines below the scroll set are
adjusted as in the scrolling up procedure. Note that the set of
lines above the scroll region are .never moved - it is always the
set below the scroll region which is adjusted.

4.8.8 Character Imaging

,Characters are symbols that are obtained by indexing into a
'character set' using 'character codes'. Each symbol is unique
as specified by the Coded Charater Set Register of ISO 2375.
These character symbols only define the ~hape of the symbols;
they not include character size, or physical attributes, such
weight (e.g., BOLD), typeface (e.g., GOTHIC), highlighting or
blinking, etc. In other words, an "A" is an "a" is an "A".

When characters are displayed or imaged on the display screen,
they are embodied with a set of three attributes, size, typeface,
and renditions.

Size is the physical size of the character on the screen, it is
measured· in printers points (1/72 of an inch). The default size
is 12 pts.

Typeface is a particular stylization of
Examples of typefaces are Helvetica,
DEC_VT100, etc.

the. character
Times Roman,

symbol.
Gothic,

Character rendition is the collection of ALL other "attributes"
associated with the presentation of characters. This include
such things as blinking, bold, underlining, italics, etc. All
renditions are said to be orthogonal, i.e., they are independent
of one another and do not interact with one other. There is a
set of default or normal renditions. Hardware constraints may
limit the implementation of certain renditions; for these cases
there is a defined fallback presentation (which may be to ignore
the rendition).

4.8.9 Character Renditions

The following defines characters renditions, their normal mode
(default), and fallback presentation.

System Display Architecture {SDA) -COMPANY CONFIDENTIAL-Page 4-18
System Description 27 Oct 82

4.8.9.1 Weight -

Weight describes the thickness of the lines used to·generate the
character symb61. Three weights are defined: LIGHT, NORMAL, and
BOLD. NORMAL is the default. Fallback presentation for LIGHT is
NORMAL. BOLD and NORMAL are required at all · levels of
compliance.

4.8.9.2 Style -

Style has two
presentation is
an option.

4.8.9.3 Blink -

states: ITALIC and NORMAL. The
NORMAL, i.e., ignore the rendition.

f allback
Italics is

Blink refers to the operation of changing the weight of a
character from LIGHT to BOLD at a fixed rate. For SLOW blink the
rate is slower or equal to twice a second. FAST is defined as a
rate faster th~ twice a second. Note, that blink refers to the
character weight and NOT the background. The VT100 reverse video
bl.ink does not meet this definition. All levels of compliance
require at least one blink rate {SLOW or FAST). The fallback
rate for the undefined rate is the implemented rate.

4.8.9.4 Reverse Writing -

When reverse writing is in effect, the use of the background
color and writing color are inverted. That is, the background
color is used to write the character and the writing color is
used for the background. Reverse writing is required

4.8.9.5 Underlining And Cross-out -

Underlining and cross-out refer to the addition of a horizontal
stroke either below the character symbol {underlining) or through
the center of the character symbol {e.g. virtual display)
Underling is required. Cross-out is an option. The fallback for
crossout is no crossout, i.e. ignore the rendition.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL-Page 4-19
System Description 27 Oct 82

4.8.9.6 Proportional Spacing -

Proportional spacing refers to the display procedure that allows
each character to be placed in an area proportional to the size
of its symbol. That is, only enough space is used as is required
by the physical extent of the character symbol. For example, the
letter "i" requires much less space than the letter "w". Most
current terminals do not implement proportional spacing, but
instead use "cell text". With cell text the physical space on
the screen is divided into a rectangular array of fixed cells
into which character symbols are placed. Proportional spacing is
an option. The fallback is cell text.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL-Page 4-20
System Description 27 Oct 82

4.9 VOS GRAPHICS MANAGEMENT

The current VOS graphics management facilities are undefined. It
is expected that the propose ANSI VDI (Virtual Device Interface)
will be used as the basis for the SDA graphics management

- facilities.

CHAPTER 5

EXAMPLE USES OF THE SDA IN APPLICATIONS AND USER INTERFACES

5.1 INTRODUCTION

The SDA is a powerful display architecture that can implement
very simple to very sophisticated user .interfaces. It can also
be used by application to generate complex images with a ·minimum
of effort on part of the application and its developer. This
chapter will describe a few examples; these are not necessarily
describe the best implementation. In some cases descriptions may
have simplified in order to keep the explanation manageable. The
purpose here is to give the reader an rough idea of how the SDA
is intended to be used.

~.2 A MULTIPLE-LOGICAL TERMINAL DISPLAY SYSTEM·

[Describe the implementation of the VAXStation Version 1 user
interface]

5.3 A COMPOSITE DOCUMENT MODEL SYSTEM

[Describe the Workstation A/D Composite Document Model]

5.4 GKS - GRAPHICS KERNEL SYSTEM

[Describe how the GKS normalized device co-ordinate and
workstation objects would be implemented using SDA objects]

PART II

SYSTEM SPECIFICATION

CHAPTER 6

VIRTUAL DISPLAY SERVICES OPERATIONS

This chapter describes the primitives for
manipulating Virtual Dtsplay Services objects.
are described by a Pascal procedural interface.
uses the following Pascal definitions.

creating and
The· primitives
The interface

type

{ define data types }

BUFFER= packed array [l •• max_buf_size] of byte;

STRING= packed array [l •• max_string_length] of char;

ANGLE = 0 •• 360; {angle in degrees}

PERCENT = 0 •• 100; { 0% - 100% }

BUF PTR = ""BUFFER; ; { general buff er and po in_ter

POINTER = INTEGER; { general address pointer }

POINT = record { define point addressing }
X: INTEGER; { X coordinate }
Y: INTEGER { Y coordinate }
end;

EXTENT = record { define rectangular size }
HEIGHT: INTEGER;{ height of rectangle }
LENGTH: INTEGER { length of rectang.le }
end;

to same

{ define a relative rectangle }

}

RECTANGLE = record
ORIGIN: POINT;
SIZE: EXTENT
end;

{ or1g1n relative to defining structure
{ side lengths }

System Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page 6-2
System Specification 27 Oct 82

ID = record { general user-visible ID }
SEQUENCE: INTEGER; { sequence number }
INDEX: INTEGER { index into array }
end;

COLOR NAME = (BLACK,WHITE,RED,GREEN,BLUE,
MAGENTA,CYAN,YELLOW,CLEAR,
HLS,HALFTONE); { standard color names}

COLOR = record {Color specific options}
Case NAME : COLOR NAME of { HLS }

HLS:(HUE:ANGLE;
LUMINENCE:PERCENT;
SATURATION:PERCENT);

BLACK:(); {By common names}
WHITE:();
RED:();
GREEN:();
BLUE:();
MAGENTA:();
CYAN:();
YELLOW:();
CLEAR:();
HALFTONE:(INTEGER) {Halftones}

end;

DIRECTION= (UP,DOWN); {scrolling directions}

TEXT FMT = (LEFT JUST,RIGHT JUST,
CENTER); { simple text formatting }

TEXT PTR = record { text pointer record }
LINE: INTEGER; { line number }
FIELD: INTEGER; { field position }
SUBFIELD: INTEGER { subfield position}
CHAR: INTEGER { character number }
end;

ON OFF SWITCH= (OFF,ON); {On/Off switch}

TYPEFACE= (HELVETICA,TIMES_ROMAN,VT100); {Typeface names}

RENDITION = record {character renditions}
STYLE:(NORMAL,ITALIC);
WEIGHT:(LIGHT,MEDIUM,BOLD);
BLINK:(NONE,SLOW,FAST);
WRITING MODE:(POSITIVE,NEGATIVE);
UNDERLINE:ON OFF SWITCH;
CROSS OUT:ON-OFF-SWITCH;
end; - - -

System Display Architecture (SDA) -COMPANY CONFIDENTIAL~ Page 6-3
System Specification 27 Oct 82

FONT = record
TYPEFACE NAME:
SIZE: INTEGER;
CHAR RENDITION:
end;

{character set attributes}
TYPEFACE; {typeface name}

{Character Size}
RENDITION {Rendition spec}

FSTATUS = (SUCCESS,FAILURE,INVALID); { function return status}

VDB INDEX = INTEGER; { virtual display control block index }

PCB INDEX = INTEGER; { pasteboard control block index }

WCB INDEX = INTEGER; { window control block index }

VCB INDEX = INTEGER; { viewport control block index }

VSB INDEX = INTEGER; { virtual screen control block index }

PVP INDEX = INTEGER; { pasted virtual display or pastebaord

VKB INDEX = INTEGER; { ·virtual keyboard control block index

VPB INDEX = INTEGER; { virtual postioner control block index

{typend}

System Display Architecture {SDA) -COMPANY CONFIDENTIAL- Page 6-4
System Specification 27 Oct 82

6.1 VIRTUAL DISPLAY OPERATIONS

The following procedures manipulate virtual displays, which are
the basic I/O objects provided by VDS.

6.1.1 Create Virtual Display

This operation creates a new virtual display object, specifying
the defaults for output to the virtual display. A unique ID is
returned by which the virtual display can be referenced.

function CREATE DISPLAY{

where:

SIZE

SIZE: EXTENT;
BACKGROUND: COLOR;
FOREGROUND: COLOR;
DEFAULT FONT: FONT;
TEXT LINESIZE: INTEGER;
TEXT-BASELINE: INTEGER;
var DISPLAY ID: VDB INDEX):
FSTATUS; - -

The height and width of the virtual
display.

BACKGROUND The default background color or
intensity for the virtual display.

FOREGROUND

DEFAULT FONT

TEXT LINESIZE

TEXT BASELINE

The default writing color or
intensity for the virtual display.

The default font {typeface, size,
renditions).

The default size for text lines in
the virtual display. The virtual
displa~ is initialized with lines
of this size, the number depending
on the linesize and the height of
the virtual display.

The default text baseline within
the line, as an offset from the
base of the line. The baseline is
used for positioning text on the
line.

.:>y5l:em u1sp1ay Architecture (SDA) -COMPANY CONFIDENTIAL- Page 6-5
System Specification 27 Oct 82

DISPLAY ID The returned unique ID for the
virtual display.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page 6-6
System Specification 27 Oct 82

6.1.2 Get Virtual Display Characteristics

This operation returns the current defaults for a given virtual
display.

procedure GET DISPLAY CHAR(
DISPLAY ID: VDB INDEX;
var BACKGROUND:-COLOR;
var FOREGROUND: COLOR;
var DEFAULT FONT: FONT;
var TEXT LINESIZE: INTEGER;
var TEXT-BASE LINE: INTEGER);

where:

DISPLAY ID

SIZE

BACKGROUND

FOREGROUND

DEFAULT FONT

TEXT LINESIZE

TEXT BASELINE

The unique ID of the
display to be examined.

virtual

The height and width of the virtual
display.

The default background color · ot
intensity for the virtual display.

The default writing color or
intensity for the virtual display.

The default font (typeface, size,
renditions). ·

The default size for text lines in
the virtual display.

The default text baseline within
the line, as an offset from the
base of the line. The baseline is
used for positioning text on the
line.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page 6-7
System Specification 27 Oct 82

6.1.3 Set Virtual Display Characteristics

This operation changes the default values for the virtual
display. Changing the defaults does not affect existing virtual
display state, but merely changes the defaults with respect to
future operations.

function SET DISPLAY CHAR(
DISPLAY ID: VDB INDEX;
SIZE: EXTENT; -
BACKGROUND: COLOR;
FOREGROUND: COLOR;
DEFAULT FONT: FONT;
TEXT LINESIZE: INTEGER;
TEXT-BASELINE: INTEGER;
FSTATUS; .

where:

DISPLAY ·ID

SIZE

BACKGROUND

FOREGROUND

DEFAULT FONT

TEXT LINESIZE

TEXT BASELINE

The ID of the virtual display to be
modified.

The height and width of the virtual
display.

Th~ default background color or
intensity for the virtual display.

The default writing color or
intensity for the virtual display.

The default font (typeface, size,
renditions).

The default size for text lines in
the virtual display.

The default text baseline within
the line, as an offset from the
base of the line.

System Display Architecture'(SDA) -COMPANY CONFIDENTIAL- Page 6-8
System Specification 27 Oct 82

6.1.4 Delete Virtual Display

This operation destroys a virtual display object. All state
associated with the virtual display is destroyed. The virtual
display is removed from any pasteboards to which it had been
pasted. Any part of the virtual display that may be visible is
erased.

procedure DELETE DISPLAY(
DISPLAY ID: VDB_INDEX);

where:

DISPLAY ID The ID of the virtual display to be
destroyed.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page 6-9
System Specification 27 Oct 82

6.1.5 Create Virtual Keyboard

This operation creates a new virtual keyboard. A unique ID is
returned by which the virtual keyboard can be referenced. Before
data can be read from the virtual keyboard, it must be assigned
to a pasteboard.

function CREATE VIRTUAL KEYBOARD(
var KEYBOARD ID: VKB_INDEX):
FSTATUS;

where:

KEYBOARD ID The returned unique ID for the
virtual keyboard.

6.1.6 Delete Virtual Keyboard

This operation destroys a virtual Keyboard. All state associated
with the virtual keyboard is destroyed. The keyboard is
deass1gned from any pasteboards towhich it had been assigned.
Any unread data within the keyboard buffers are lost.

procedure DELETE VIRTUAL KEYBOARD(
KEYBOARD-ID: VKB=INDEX);

where:

KEYBOARD ID The ID. of the virtual keyboard to
be destroyed.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL-Page 6-10
System Specification 27 Oct 82

6.1.7 Create Virtual Positioner

This operation creates a new virtual graphics input device. A
unique ID is returned by which the virtual display can be
referenced. Before data can be read from the virtual positioner
it must be assigned to a pasteboard.

function CREATE VIRTUAL POSITIONER(
var POSITION ID: VPB INDEX):
FSTATUS; -

where: '

POSITION ID The returned unique ID for the
graphics positioner

6.1.8 Delete Virtual Positioner

This operation destroys a virtual graphics positioning devices
All state associated with the virtual positioner is destroyed.
The virtual postioner is deassigned from any pasteboards to which
it may have been assigned. Any unread data are lost.

procedure DELETE POSITIONER(
POSITIONER ID: VPB_INDEX);

where:

POSITIONER ID The ID of the virtual positioner to
be destroyed.

~ystem Display Architecture (SDA) -COMPANY CONFIDENTIAL-Page 6-11
System Specification 27 Oct 82

6.2 PASTEBOARD OPERATIONS

The following operations manipulate pasteboards, which provide
the basic application mechanism for specifying spatial
relationships between virtual displays. Pasteboards allow for
composite pictures to be constructed from multiple ·virtual
displays, and provide a mechanism for the application to specify
what parts of those pictures can be made visible.

6.2.1 Create Pasteboard

This operation creates a new pasteboard and returns a unique ID
by which it can be specified. A pasteboard has a height and
width, and a background color.

function CREATE PASTEBOARD(
BACKGROUND: COLOR;
SIZE: EXTENT;
var PASTEBOARD ID: PCB_INDEX):
FSTATUS;

where:

BACKGROUND

SIZE

PASTEBOARD ID

The default background color or
intensity that will be seen if a
window covers an empty part of the
pasteboard.

The height and
pasteboard

width .of the

The unique ID for this pasteboard.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL-Page 6-12
System Specification 27 Oct 82

6.2.2 Delete Pasteboard

This operation destroys a pasteboard. Any windows that are
attached to this pasteboard are also destroyed, and any currently
visible data erased from the screen. Any virtual displays or
pasteboards pasted to the pasted border are unpasted. Any
virtual input devices are assigned to the pasteboards are
deassigned and any physical input devices attached to the
pasteboard are detached.

procedure DELETE PASTEBOARD(
PASTEBOARD ID: PCB_INDEX);

where:

PASTEBOARD ID The unique ID of the p~steboard to
be deleted.

System Display Architecture {SDA} -COMPANY CONFIDENTIAL-Page 6-13
System Specification 27 Oct 82

6.2.3 Paste Virtual Display

This operation causes a virtual display image to be pasted on the
specified· pasteboard. The virtual display can be positioned
anywhere within the pasteboard bounds, but no part of the virtual
display may· exceed the pasteboard boundaries. The stacking
position is specified relative to an existing pasted object
{virtual display or other pasteboard); or it can be placed on
top of all other pasted objects. A unique ID is returned which
identifies this pasting instance. That is, a given virtual
display ca~ be pasted to any number of past~boards, and it· can
also be pasted to the same pasteboard more than once. The
pasting ID uniquely identifies a specific pasting operation.

function PASTE DISPLAY TO PASTEBOARD(
DISPLAY ID: VDB INDEX;
PASTEBOARD ID: PCB INDEX;
ORIGIN: POINT; -
BORDERS: BOOLEAN;
varPASTING ID: PVP INDEX):
FSTATUS; -

where:

DISPLAY ID

PASTEBOARD ID

ORIGIN

BORDERS

PASTING ID

The unique ID of the
display to be pasted.

virtual

The unique ID of the pasteboard to
be used.

The position in the pasteboard
coordinate space at which the
origin of the virtual display is to
be placed.

Boolean indicating whether or not
the virtual display border should
be made visible. ·

A unique ID which identifies this
specific pasting instance.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL-Page 6-14
System Specification 27 Oct 82

6.2.4 Paste Pasteboard To Pasteboard

This operation causes a pasteboard image (called the "top
pasteboard") to be pasted onto the another pasteboard ("bottom
pasteboard"). For this pasting operation the top pasteboard is
treated like a virtual display im?ge. That is, it is considered
to be a flat 2-dimensional entity; the internal structure
(pastings and windows) of the top pasteboard have no effect on
the internal structure of the bottom pasteboard, and vica-versa.
The · only effect is a visual effect within windows of the BOTTOM
pasteboard. This pasting instance has NO effect within any
windows attached to the TOP pasteboard.

A pasteboard may be pasted to any number of other pasteboards,
however, a pasteboard can not be pasted to itself, nor can any
pasting operation be specified that results in such a
self-recursive relationship.

A unique ID is returned which identifies this pasting instance.

function PASTE PASTEBOARD TO PASTEBOARD(
DISPLAY ID: PCB INDEX;
PASTEBOARD ID: PCB INDEX;
ORIGIN: POINT; -
varPASTING ID: PVP_INDEX):
FSTATUS;

where:

DISPLAY ID

PASTEBOARD ID

ORIGIN

PASTING ID

The unique ID of the pasteboard to
be pasted.

The unique ID of the pasteboard to
be used.

The position in the pasteboard
coordinate space at which the
origin of the virtual display is to
be placed.

A unique ID which identifies this
specific pasting instance.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL-Page 6-15
System Specification 27 Oct 82

6.2.5 Unpaste Display From Pasteboard

This operation removes a pasted object (virtual display or
pasteboard) from a pasteboard. The operation removes a single
pasting instance. If the same object is pasted to more than one
pasteboard or pasted to the same pasteboard more than once, only
the specified instance is removed. If the object were visible,

·it is removed from the screen and any occluded images are made
visible.

procedure UNPASTE DISPLAY FROM PASTEBOARD(
PASTING ID: PVP_INDEX);

where:

PASTING ID The unique ID of the pasting be
removed.

6.2.6 Move Display On Pasteboard

The operation
pasteboard to
is~not changed.

moves a pasted object from a point on th~
another point. The stacking order of the display

Procedure MOVE DISPLAY ON PASTEBOARD(
PASTING ID:PVP-INDEX,
ORIGIN:-POINT);

Where:

PASTING ID

.ORIGIN

The unique-ID of the pasted object
to be used.

The position in the pasteboard
coordinate space at which the
origin'of the virtual display is to
be placed.

System Display Architecture {SDA) -COMPANY CONFIDENTIAL-Page 6-16
System Specification 27 Oct 82

6.2.7 Move Display To Top Of Pasteboard

The operation moves a pasted object to the top of the pasteboard
stack. It spatial position is not changed.

Procedure MOVE DISPLAY ON PASTEBOARD{
PASTING_ID:PVP=INDEX);

Where:

PASTING ID The unique ID of the pasted object
to be used.

page

6.2.8 Attach Virtual Keyboard To Pasteboard

This operation establishes
keyboard and a pasteboard.
connection

a connection between a virtual
A unique ID is ·re.turned identify the

procedure ATTACH VIRTUAL KEYBOARD TO PASTEBOARD{
KEYBOARD-ID: VKB-INDEX; - -
PASTEBOARD ID: VDB INDEX
varATTACH ID: AKB INDEX)
FSTATUS; -

where:

KEYBOARD ID The unique ID of
keyboard.

the virtual

PASTEBOARD ID The unique ID of the pasteboard to
be associated with the keyboard

ATTACH ID The unique ID returned
identifies the attachment.

which

oy;::H .. t::m uisp.Lay Arcn1 tecture {SDA) -COMPANY CONFIDENTIAL-Page 6-17
System Specification 27 Oct 82

6.2.9 Detach Keyboard

This operation destroys a connection between a virtual keyboard
and the pasteboard to which it is attached. This operatiort does
not destroy any state information about the virtual keyboard

procedure DETACH KEYBOARD(
ATTACH_ID: AKB_INDEX);

where:

ATTACH ID The unique ID which identifies the
attachment.

6.2.10 Attach Virtual Positioner To Pasteboard

This operation establishes a connection between a
positioner and a pasteboard.

procedure ATTACH VIRTUAL POSITIONER TO PASTEBOARD(
POSITIONER ID: VGB INDEX; - -
PASTEBOARD-ID: VDB-INDEX)
varATTACH ID: APB INDEX)
FSTATUS; -

where:

POSITIONER ID The unique ID of
positioner.

the virtual

.PASTEBOARD ID

ATTACH ID

The unique ID of the virtual to be
associated with the positioner.

The unique ID returned
identifies the attachment.

which

virtual

System Display Architecture (SDA) -COMPANY CONFIDENTIAL-Page 6-18
System Specification 27 Oct 82

6.2.11 Detach Positioner

This operation destroys a connection between a virtual positioner
and the pasteboard to which it is attached. This operation does
not destroy any state information about the virtual positioner

procedure DETACH POSITIONER(
ATTACH ID: APB_INDEX)

where:

ATTACH ID The unique ID returned
identifies the attachment.

which

-.c - --m .., • ...,~•Y:J .ru. '-'U.L 1..c\,,; Luce \~UJ\) -CUMPANY CONFIDENTIAL-Page 6-19
System Specification 27 Oct 82

6.3 WINDOW OPERATIONS

The following operations manipulate windows,
application objects that specify .a rectangular
pasteboard that can be made visible on the display.

which are
section of a

6.3.1 Create Window

This operation creates a new window and associates it with an
existing pasteboard. A unique ID is returned by which the window
can be referenced. The position and size of the window are
specified. Any number of windows can be created on a pasteboard.
Windows simply define a rectangular area on the pasteboard;
windows do not interact with one another, i.e. they do not
occlude each other.

function CREATE WINDOW(
PASTEBOARD ID: PCB_INDEX;
ORIGIN: POINT;
SIZE: EXTENT;
var WINDOW ID: WCB_INDEX):
FSTATUS;

where:

PASTEBOARD ID

ORIGIN

SIZE

WINDOW ID

The unique ID of the pasteboard on
which the window is to be created.

The origin (upper left corner) of
the window within the pasteboard
coordinate space.

The extent (height and width) of
the wind~w rectangle.

The unique ID of the newly created
window.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL-Page 6-20
System Specification 27 Oct 82

6.3.2 Get Window Characteristics

This operation returns information about a window.

procedure GET WINDOW CHAR(
WINDOW ID: WCB INDEX;
var PASTEBOARD-ID: PCB_INDEX;
var ORIGIN: POINT;
var SIZE: EXTENT);

where:

WINDOW ID

PASTEBOARD ID

ORIGIN

SIZE

The unique ID of the window to be
examined.

The unique ID of the pasteboard on
which the window is defined.

The origin of the window within the.
pasteboard coordinate space.

The extent (height and width) of
the window rectangle.

~y~~em uispiay Architecture (SDA) -COMPANY CONFIDENTIAL-Page 7-12
System Specification 27 Oct 82

6.3.3 Set Window Characteristics

This operation modifies the position or size of a window. This
operation is used to either move a window on a pasteboard or
change its size. If the window's size is changed and the origin
is not, the right and bottom edges of the window are moved.

functi~n SET WINDOW CHAR(
WINDOW ID: WCB INDEX;
ORIGIN: POINT;
SIZE: EXTENT):
FSTATUS;

where:

WINDOW ID

PASTEBOARD ID

ORIGIN

SIZE

The unique ID of the window to be ·
modified.

The unique ID of the pasteboard on
which the window is defined.

The origin of the window within the
pasteboard coordinate space.

The extent· (height and width) of
the window rectangle.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL-Page 6-22
System Specification 27 Oct 82

6.3.4 Get Associated Viewport Characteristics

This operation returns to the application information about the
viewport that is currently attached to the specified window.
That is, given the window ID, the user can request status about
the visibility of the window on the display screen.

procedure GET ASSOC VIEWPORT(
WINDOW ID: WCB INDEX;
SIZE: EXTENT; -
VISIBILITY: INTEGER);

where:

WINDOW ID

SIZE

VISIBILITY

The unique ID of the ·window under
interrogation.

The size of the viewport associated
with this window.

Indication of
associated viewport
partially visible on
display screen.

whether the
is fully or
the physical

. --.... --- ---- --- .._ '- ,~~~ 1 -~v"rn~i ~u~~iu~N~lAL-Page 6-23
27 Oct 82 System Specification

6.3.5 Delete Window

This operation deletes a window. Any information visible in an
associated viewport is erased.

procedure DELETE WINDOW(
WINDOW ID: WCB~INDEX);

where:

WINDOW ID The unique ID of the window to be
deleted.

CHAPTER 7

VIRTUAL SCREEN SERVICES .OPERATIONS

This chapter describes the primitives · for creating and
manipulating Virtual Screen Services objects. In general, these
primitives are available only to a single process known as the
screen manager or User Interface. The screen manager responds to
requests from the display operator to create, modify, move, and
destroy viewports on the screen.

uz~~~m ui~piay Arcn1~eccure (SDA) -COMPANY CONFIDENTIAL- Page 7-2
System Specification 27 Oct 82

7.1 VIEWPORT OPERATIONS

7.1.1 Create Viewport

This operation creates a new viewport within a specified virtual
screen.

function CREATE VIEWPORT(
VS ID: VSB INDEX;
ORIGIN: POINT;
SIZE: EXTENT;
VISIBLE: BOOLEAN;
var VIEWPORT ID: VCB_INDEX):
FSTATUS;

where:

VS ID

ORIGIN

SIZE

TYPE

VISIBLE

VIEWPORT ID

The ID of the virtual screen in
which the viewport will be placed.

The origin of the viewport
rectangle within the virtual
screen.

The height and width
viewport rectangle.

of the

The type of viewport. Viewport
type indicates the characteristics
of the visual border surrounding
the viewport, including size and
fonts for the header and trailer.
For example, some viewports might
have "handles" on them, some might
look like file folders.

A boolean that specifies whether
the viewport should be visible or
invisible.

Unique ID of the newly created
viewport.

~ys~em u~spiay Arcn~~ec~ure \~UAJ -~uMrft~X ~u~rLu~~LLn~- ra~c ,-~

System Specification 27 Oct 82

7.1.2· Get Viewport Characteristics

This operation returns information about the specified viewport.

procedure GET VIEWPORT CHAR(
VIEWPORT ID: VCB INDEX;
ORIGIN: POINT; -
SIZE: EXTENT;
VISIBLE: BOOLEAN;
STACKING: INTEGER;
COVERED: INTEGER);

where:

VIEWPORT ID

ORIGIN

SIZE

TYPE

VISIBLE

STACKING

COVERED

The unique ID of the viewport to be
examined.

The origin
rectangle
screen.

of
within

the
the

The height and width
viewport rectangle.

viewport
virtual

of the

The type of viewport, d~fining the
appearance of its border.

A boolean indicating whether the
viewport is visible or invisible.

The stacking
viewport.

priority of the

An indication of the current visual
state of the viewport, i.e.,
whether it is partially or fully
occluded.

oy~L~m uispiay Arcnltecture (SDA) -COMPANY CONFIDENTIAL- Page 7-4
System Specification 27 Oct 82

7.1.3 Set Viewport Characteristics

This operation modifies the current characteristics
viewpor,t.

function SET VIEWPORT CHAR(
VIEWPORT ID: VCB INDEX;
ORIGIN: POINT; -
SIZE: EXTENT;
VISIBLE: BOOLEAN;
STACKING: INTEGER):
FSTATUS;

where:

VIEWPORT ID

ORIGIN

SIZE

TYPE

VISIBLE

STACKING

The unique ID of the viewport to be
mod i.f ied.

The origin of the
rectangle within the
screen.

The height · and width
viewport rectangle.

viewport
vi.rtual

of the

The type of viewport, defining the
appearance of its border.

A boolean indicating whether the
viewport should be visible or
invisible.

The stacking
viewport.

priority of the

of a

system u1sp1ay Arcn1~eccure \bLJA} -~uM~A~X ~u~rLU~~iLn~- ra~~ ,-~

System Specification 27 Oct 82

7.1.4 Attach Viewport To Window

This operation establishes a connection between a viewport and a
wlndow, making the information in the ~indow visible on the
screen if the viewport is visible. Only one viewport can be
attached to a window.

function ATTACH VIEWPORT(
VIEWPORT ID: VCB INDEX;
WINDOW ID: WCB INDEX):
FSTATUS; -

where:

VIEWPORT ID

WINDOW ID

The unique ID of the viewport to be
attached.

The unique ID of the window be
attached to the viewport.

7.1.5 Detach Viewport

This operation removes the connection between a viewport and
window. Any i~age inside of the viewport is erased.

procedure DETACH VIEWPORT(
VIEWPORT-ID: VCB_INDEX);

.where:

VIEWPORT ID Unique ID of the viewport to· be
detached.

~z~~crn ui~piay Arcn1tecture (SDA) -COMPANY CONFIDENTIAL- Page 7-6
System Specification 27 Oct 82

7.1.6 Delete Viewport

Thfs operation deletes a viewport from the virtual screen. If
visible- on the physical screen, the image is erased and any
occluded viewports become visible.

procedure DELETE VIEWPORT(
VIEWPORT-ID: VCB_INDEX);

where:

VIEWPORT ID The unique ID of the viewport to be
deleted.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page 7-7
System Specification 27 Oct 82

7.2 VIRTUAL SCREEN OPERATIONS

7.2.1 Create Virtual Scr~en

This operation creates a new virtual screen.

procedure CREATE VIRTUAL SCREEN(

where:

var VIRT-SCREEN ID:VSB INDEX;
VIRT SCREEN COLOR: COLOR):
FSTATUS;

VIRT SCREEN ID The ID of the virtual screen in
which the viewport will be placed.

VIRT SCREEN COLOR Color of the virtual screen.

7.2.2 Delete Virtual Screen

This operation deletes a virtual screen. All viewports attached
to the virtual screen are deleted.

procedure DELETE VIRTUAL SCREEN(
VIRT SCREEN ID:VSB INDEX):
FSTATUS; - -

where:

VIRT SCREEN ID The unique ID of the virtual screen
to be deleted.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page 7-8
System Specification 27 Oct 82

7.2.3 Attach Viewport To Virtual Screen

This operation establishes a connection between a viewport and a
virtual screen.

procedure ATTACH VIEWPORT TO SCREEN(
VIEWPORT-ID: VPB INDEX;
VIRT SCREEN ID: VSB INDEX;
ORIGIN:POINT): -
FSTATUS;

where:

VIEWPORT ID The unique ID of the viewport to be
attached.

VIRT SCREEN ID The unique ID of the window be
attached to the viewport.

ORIGIN The origin of the viewport
rectangle within the virtual
screen.

7.2.4 Detach Viewport From Virtual Screen

This operation removes the connection between a viewport and
virtual screen. Any , image of the viewport is erased from the
screen.

procedure DETACH VIEWPORT FROM SCREEN(
VIEWPORT-ID: VPB INDEX;
FSTATUS; -

where:

VIEWPORT ID Unique ID of the viewport to be
detached.

System Display Architecture {SDA) -COMPANY CONFIDENTIAL- Page 7-9
System Specification 27 Oct 82

7.2.5 Move Viewport On Virtual screen

The operation moves a viewport from one point on a _virtual screen /
to another point. The stacking order is not changed.

Procedure MOVE VIEWPORT ON SCREEN{
VIEWPORT ID: VPB INDEX,
VIRT SCREEN ID:VSB INDEX,
ORIGIN: POINT); -

Where:

VIEWPORT ID The unique ID of the viewport to be
moved.

VIRT SCREEN ID The unique ID of the virtual screen
to be used.

ORIGIN The position in the virtual screen
coordinate space at which the
origin of the viewport is to be
placed.

7.2.6 Move Viewport To Top Of Virtual Screen

The operation moves a viewport to the top of the virtual ' screen
stack. It spatia~ position is not changed.

Procedure MOVE VIEWPORT TO TOP{
VI~WPORT ID: VPB INDEX,
VIRT_SCREEN_ID:VSB_INDEX);

Where:

VIEWPORT ID The unique-ID of the viewport to be·
moved.

VIRT SCREEN ID The unique ID of the virtual screen
to be used.

.... .z & .. ,,,,..,.;;i.t"..1.ay nL \,;UJ. l::.ecl:ure (:::ilJA) -COMPANY CONFIDENTIAL-Page 7-HJ
System Specification 27 Oct 82

7.3 PHYSICAL SCREEN OPERATIONS

7.3.1 Assign Physical Screen

This operation assigns a specific physical screen on the
specified virtual screen.

function ASSIGN PHYSICAL SCREEN(
PHYS SCREEN SPEC: PSB SPEC;
VIRT-SCREEN-ID: VSB INDEX;
SIZE: EXTENT; -
ORIGIN: POINT;
var PHYS SCREEN ID: PSB_INDEX):
FSTATUS;

where:

PHYS SCREEN SPEC The system dependent specification
- - of a physical screen.

VIRT SCREEN ID

SIZE

ORIGIN

The ID of
which the
placed.

the virtual screen in
physical screen will be

The size of the physical screen

The origin of the physical screen
within the virtual screen.

PHYS SCREEN ID The ID of the physical
created.

screen

System Display Architecture (SDA) -COMPANY CONFID~NTlAL-~age 1-ii

System Specification 27 Oct 82

7.3.2 Get Physical Screen Characteristics

This operation returns information about the specified physical·
screen.

procedure GET PHYSICAL SCREEN CHAR(
PHYS SCREEN ID: PSB INDEX;
var ORIGIN:-POINT; -
var SIZE: EXTENT);

where:

PHYS SCREEN ID The unique ID of. the
screen to be examined.

physical

ORIGIN The origin of the physical on the
virtual screen.

SIZE The size of the physical screen

7.3.3 Set Physical Screen Characteristics

This operation modifies the current characteristics of a physical
screen

procedure SET PHYSICAL SCREEN CHAR(
PHYS SCREEN ID: PSB INDEX;
ORIGIN: POINT; -
SIZE: EXTENT);

where:

PHYS SCREEN ID The unique ID of the physical
screen to be modified.

ORIGIN The origin of the physical screen
rectangle within the virtual
screen.

~y~~em uispiay Architecture (SDA) -COMPANY CONFIDENTIAL-Page 7-12
System Specification 27 Oct 82

SIZE The height and width
viewport rectangle.

7.3.4 Move Physical Screen In Virtual Screen

of the

The operation moves a physical screen with in the virtual screen

Procedure MOVE PHYSICAL SCREEN ON VIRTUAL SCREEN(
PHYS SCREEN ID:-PSB INDEX~ -
ORIGIN: POINT); -

. where:

PHYS SCREEN ID The unique ID of the
screen to be moved.

physical

ORIGIN The origin of the physical screen
rectangle within the virtual
screen.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL-Page 7-13
System Specification 27 Oct 82

7.3.5 Deassign Physical. Screen

This operation detaches a physical screen from it assign virtual
screen.·

procedure DELETE PHYSICAL SCREEN(
PHYS SCREEN ID:PSB INDEX):
FSTATUS; - -

where:

~HYS SCREEN ID The unique ID of the
screen to be deleted.

physical

~z~~~m ui~pidy Arcn1~ecture (SDA) -COMPANY CONFIDENTIAL-Page 7-14
System Specification 27 Oct 82

7.3.6 Assign Physical Keyboard To Pasteboard

This operation assigns a physical keyboard to a pasteboard. If a
virtual keyboard is attached to the pasteboard, data from the
physical keyboard are placed in the virtual keyboards buffer.

procedure ASSIGN PHYS KEYBOARD TO PASTEBOARD(
PASTEBOARD ID: PCB INDEX;-
PHYS KEYBOARD DEV:-DEVICE SP.EC);
FSTATUS; -

where:

PASTEBOARD ID The unique ID of the pasteboard

PHYS KEYBOARD ID The device specification of the
physical keyboard.

7.3.7 Assign Physical Positioner To Pasteboard

This operation assigns a physical graphics input device to a
pasteboard.

procedure ATTACH PHYS POSITIONER TO PASTEBOARD(
PASTEBOARD ID: PCB INDEXT -
PHYS POSITlONER DEV: DEVICE SPEC);
FSTATUS; -

where:

PASTEBOARD ID The unique ID of the pasteboard

PHYS POSITIONER DEV The device specification of the
-physical positioner.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL-Page 7-15
System Specification 27 Oct 82

7.4 POINTER OPERATIONS

7.4.1 Create Virtual Pointer

This operation creates a new virtual pointer.

function CREATE VIRTUAL POINTER(
var POINTER ID:-PTB_INDEX;
FSTATUS;

where:

POINTER ID The ID of the pointer created.

7.4.2 Assign Physical Positioner To Pointer

This operation defines physical graphics input device to be a
specified pointer.

procedure ASSIGN POSITIONER TO POINTER(
POSITIONER ID: PGB INDEX; .
POINTER ID: PTB_INDEX;)

where:

POINTER ID

POSITIONER ID

The ID of the pointer.

The ID of the positioner to. be used
as the pointer.

~ys~em u1sp1ay Architecture (SDA} -COMPANY CONFIDENTIAL-Page 7-16
System Specification 27 Oct 82

7.4.3 Delete Pointer

This operation destroys a virtual pointer.

function DELETE POINTER(

where:

var POINTER ID: PTB_INDEX;
FSTATUS;

POINTER ID The ID of the pointer
destroyed

to be

CHAPTER 8

VIRTUAL DISPLAY TEXT MANAGEMENT OPERATIONS

This chapter describes the primitives for text input and output
to the virtual display. Text output is controlled by the current
virtual display defaults for font, writing and background color,
text line size, and baseline offset. Whenever a text string is
written, the current virtual display defaults are used.
Modification of defaults only affects future text output
requests.

General
virtual
defined
control
font.

output requests simply place characters within the
display. Characters are specified as elements of a

font. No control characters are interpreted, and ASCII
characters may have printing symbols defined .within the

Simple formatting is provided within a line or field using the
simple Write String primitive. A more complex operation is also
available if the user requires explicit control over the
placement of each character.

bYStem Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page 8-2
System Specification 27 Oct 82

8.1 VIRTUAL DISPLAY INPUT

8.1.1 Virtual Display State Poll

This operation returns the current input and output state of the
specified virtual display. The information returned indicates
the current text and graphics output positions, as well as the
position of the pointer if currently inside of the virtual
display.

procedure DISPLAY STATE POLL(
DISPLAY ID: VDB-INDEX;
var ACTIVE: BOOLEAN;

where:

var POINTER GRAPHICS: POINT;
var POINTER-TEXT: TEXT PTR;
var CUR GRAPHICS: POINT;
var CUR-TEXT: TEXT_PTR);

DISPLAY ID . The unique ID of the
display to be examined.

virtual

ACTIVE Boolean indicating whether or not
the virtual display is active, that
is, whether the pointer is
currently within a visibl~ portion
of this virtual display through a
screen viewport.

POINTER GRAPHICS If ACTIVE is true, then this
contains the current position of
the pointer in the virtual display
coordinate system, otherwise
undefined.

POINTER TEXT If ACTIVE is true, then this
contains the current text character
posit~on, if any, of the pointer.

CUR GRAPHICS The current output position for
graphics operations on the virtual
display.

CUR TEXT The current output position for
text operations on the virtual
display.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page 8-3
System Specification 27 Oct 82

8.1.2 Insert Line

This operation inserts an empty line in the virtual display, at
the specified line number. If the scrolling direction is
specified to be "up", then the lines before the inserted line are
renumbered and the original line 1 is deleted. If the scrolling
direction is specified to be "down", then the lines after the
inserted line are renumbered.

procedure INSERT LINES(
DISPLAY ID: VDB_INDEX;
LINE: INTEGER;
SCROLL DIR: DIRECTION
LINE HEIGHT: INTEGER);

where:

DISPLAY ID

LINE

SCROLL DIR

LINE HEIGHT

The ID of the virtual display in
which to insert the line.

The number of the line to be
inserted

The direction scroll the text
before or after the inserted lin~.

The height of the inserted line.

~ystem Dlsplay Architecture (SDA) -COMPANY CONFIDENTIAL- Page 8-4
System Specification 27 Oct 82

8.1.3 Delete Line

This operation deletes a line from the virtual display. All
lines below the deleted lines are scrolled up.

procedure DELETE LINE(
DISPLAY ID: VDB INDEX
LINE_NUMBER);

where:

DISPLAY ID

LINE NUMBER

The ID of the virtual display being
modified.

This line number and the current
line number determine the set of
lines to be deleted.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page 8-5
System Specification 27 Oct 82

8.1.4 Insert Field

This operation defines a new field within a line. The field has
a specific horizontal starting and ending position within the
line. The field number is specified by the position in the line.
The line number is specified by the line number in the current
text position. The new field must not overlap an existing field.

procedure INSERT FIELD(
DISPLAY ID: VDB INDEX;
START x: INTEGER;
FIELD-SIZE: INTEGER);

where:

DISPLAY ID

START X

FIELD SIZE

8.1.5 Delete Field

The ID of the virtual display •

The starting X position of the
field within the line.

The physical length of the field.

This operation destroys the current field and its contents.
Deletion of a field does not cause any of the remaining fields in
the line to move.

procedure DELETE FIELD(

where:

DISPLAY ID: VDB INDEX;
FIELD POSITION:-INTEGER):

DISPLAY ID The ID of the virtual display.

FIELD POSITION Position of the field to be deleted

bystem Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page 8-6
System Specification 27 Oct 82

8.1.6 Insert Sub-Field

This operation defines a new sub-field within a field. The
sub-field has a specific vertical starting and physical height
The sub-field number is specified by the position in the field.
A sub-field must not overlap an existing sub-field.

procedure INSERT SUBFIELD(
DISPLAY ID: VDB INDEX;
START Y: INTEGER;
HEIGHT: INTEGER;
FORMAT: TEXT_FMT);

where:

DISPLAY ID

START Y

HEIGHT

FORMAT

The ID of the virtual display •

The starting Y position of the
sub-field within the field.

The physical
sub-field

height of the

Specification of special formatting
instructions. The string can be
formatted within a field.
Supported formats are CENTER, LEFT
JUSTIFY, RIGHT JUSTIFY.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page 8-7
System Specification 27 Oct 82

8.1.7 Delete Sub-Field

This operation destroys the current sub-field and its contents.
Deletion of a sub-field does not cause any of the remaining
sub-fields in the field to move.

procedure DELETE SUBFIELD(
DISPLAY ID: VDB INDEX;
SUB FIELD. POS: INTEGER):

where:

DISPLAY ID The ID of the virtual display.

SUB FIELD POSITION The Position of the sub-field to
be deleted.

8.1.8 Insert Text String

This operation outputs a text string to the specified position in
the virtual display. The text is output with current character
attributes. When inserting at character position k within a
sub-field, if character k already exists, the string is inserted
before k. Characters at and after position k are moved to the
right. If character k does not exist, spaces are inserted as
fill characters until k-1 characters do exist; then the inserted
string is appended. After the string is inserted, the entire
field is reformated according to the field's text format.

procedure INSERT TEXT(

where:

DISPLAY ID: VDB INDEX;
INSERT POSITION7 TEXT PTR
STRING=SIZE: INTEGER;
STRING: BUFFER);

DISPLAY ID The unique ID of the virtual
display being written.

INSERT POSTION The line,field,sub-field and
character position.

~ys~em u1sp1ay Architecture (SDA) -COMPANY CONFIDENTIAL- Page 8-8
System Specification 27 Oct 82

STRING SIZE

STRING

The number of symbols to be written
to the virtual display.

An array
specifying
output.

of character codes
the symbols to be

8.1.9 Write Text String

This ·operation outputs a text string to the specified position in
the virtual display. The .text is output with current character
attributes. Writing text is a character for character replace
operation. After the string is written, the entire field is
reformated according to the text format.

procedure WRITE TEXT{
DISPLAY-ID: VDB INDEX;
WRITE POSITION:-TEXT PTR;
STRING SIZE: INTEGER;
STRING! BUFFER);

where:

DISPLAY ID

WRITE POSTION

STRING SIZE

STRING

The unique ID of the
display being written.

virtual

The line,field,sub-field and
character position at which the
text string is to be written.

The number of symbols to be written
to the virtual display.

An array
specifying
output.

of character codes
the symbols to be

8.1.10 Delete Character

This operation deletes the character at the specified text
position. After deletion, the entire field is reformated
according to the field's text format.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page 8-9
System Specification 27 Oct 82

procedure DELETE CHAR(

where:

DISPLAY ID: VDB INDEX;
DELETE POSITION7 TEXT_PTR) :

DISPLAY ID The ID of the virtual
display-being manipulated.

DELETE POSTION The line,field,sub-field and
character position of the character
to be deleted.

System Display Architecture (SDA) -COMPANY CONFIDENTIAL-Page 8-10
System Specification 27 Oct 82

8.2 VIRTUAL DEVICE INPUT

8.2.1 Read Virtual Keyboard

This ~peration reads the next character for a virtual keyboard.

function READ VIRTUAL KEYBOARD(
VIRT KEYBOARD-ID: VKB INDEX;
var POINTER POS: POINTER INDEX;
var ENTRY TIME: UNIVERSAL TIME;
var CHARACTER: CHARACTER INDEX;)
FSTATUS; -

where:

VIRT KEYBOARD ID Id of the virtual keyboard to be
read.

.POINTER POS:

ENTRY TIME:

CHARACTER:

Position of the pointer at the
time the' character was entered by
the user

Time at which the character was
entered.

The character code of the entered
character.

CHAPTER 9

VIRTUAL DISPLAY GRAPHICS OPERATIONS

[The current VDS graphics management facilities are undefined.
It is expected the the propose ANSI VDI (Virtual Device
Interface) will be used as the basis for the SDA graphics
management facilities.]

APPENDIX A

CONFORMANCE LEVELS

A.l INTRODUCTION

A.2 CONFORMANCE LEVELS

A.2.1 System Conformance

Any system claiming to implement the SDA conforming to level n:

1. · shall implement ALL functions· of levels 0 to n,

2. may implement some Level n+l or higher functions, and

3. may implement. any function not defined in any level.

Level n is a stric~ superset of level n-1. These constraints
reduce the variability between systems to manageable proportions
as seen by application programs.

A.2.2 Application Program Conformance

Any application software claiming to conform to level n:

1 •. may use any function in levels 0 to n,

2. shall NOT use any functions in levels n+l or higher, and

3. shall NOT used any functions not defined in any level

A.3 OPTIONS

For a given conformance level, the architectural specifications
combines some additional functions together to form a minimum
number of options for that level. The system implementor may
choose to include or omit options in a given implementation, or
may choose to permit the application developer to use such

System Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page A-2
SDA Appendices 27 Oct 82

option.

For the purpose of conformance:

1. Systems claiming to to implement an option shall
implement ALL functions in that op~ion, but need not
implement any lower level options unless specifically
required by the specification of the option.

2. Applications claiming to support options, shall use any
functions in those options, but shall use NO functions
in other option. Furthermore, APPLICATIONS THAT SUPPORT
OPTIONS SHALL OPERATE IN A SENSIBLE WAY IF THAT OPTION
IS NOT PRESENT IN THE SYSTEM.

A.4 UNDEFINED OPERATIONS

Occasionally there are operations whose effect cannot be
guaranteed to be the same in all implementations. Such
operations shall be identified in BOTH the architectural and
system specification as UNDEFINED (l]. Applications conforming
to the SDA specification shall NOT use UNDEFINED operations.
Every attempt will be made to minimize the number of UNDEFINED
operations in the specifications since applications that
inadvertently issues an UNDEFINED operation may NOT operate the
same on all systems.

[1] See the VAX System Reference manual for this precedent.

APPENDIX B

COMPATIBILITY WITH OTHER ARCHITECTURES

B.l INTRODUCTION

This appendix compares the SDA architectures with other display
' architectures currently unQer development with DIGITAL.

B.1.1 The Terminal Interface Architecture

The following is a unedited comparision of the TIA and SDA
written by the TIA architect.

**

ABSTRACT: This paper describes the structure of the System
Display Architecture being developed for graphics workstations,
and the Terminal Interface Architecture being developed for video,
printer and computing terminal devices. It describes the
relationship of the components of the two architectures, and
indicates how implementations of the architectures would map
together to provide a consistent applications interface.

**

1.0 TIA STRUCTURE

The Terminal Interface Architecture is designed to provide a
consistent internal and external interface to terminal devices by
"virtualizing" the device concept. This interface is referred to
as a Virtual Terminal.

1.1 Virtual Terminals

System Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page B-2
SDA Appendices 27 Oct 82

A physical terminal may support multiple Virtual Terminals
simultaneously or in sequence. Each Virtual Terminal has a data
store, which presented as one or more Virtual Output Devices.
Virtual Output Devices typically look like existing terminal
products, such as a VT100, VT125, LA120, etc. Data may be written
into the Virtual Output Device.by an application, and operations
on the data ·in the store may be performed according to the Service
Class associated with the Virtual Output Device. A Virtual
Terminal also has one or more Virtual Input Devices, which are
typically modelled to appear as existing input devices, such as
the VT100 keyboard. Each Virtual Input Device is associated at
any point in time with a specific Virtual Output Device in the
Virtual Terminal.

1.2 Windows And Viewports

It is a function of the Virtual Terminal to map data in· the
data store to the physical display surface. Because it may be
desirable for performance reasons to store more data in the
terminal than is displayed at any one time, Windows are created
into the data store to indicate portions of the data which are to
be displayed. A Window represents a rectangular area of a Virtual
Output Device which may be mapped to the physical display. Each
Virtual Output Device may have one or more Windows associated with
it.

A Viewport represents a rectangular portion of the physical
display into whfch the windowed data is to be mapped. The
boundaries of a Window and its associated Viewport map one to one.
Future implementations of this architecture may provide the
ability to pan, zoom, scale, rotate, or mirror data by the use of
Windows and Viewports.

2.0 SDA STRUCTURE

The Systems Display Architecture is a layered architecture,
designed to provide a consistent applications interface to high
performance display devices in a closely coupled system. Many of
the concepts employed are similar to those used by TIA, although
their implementation differs somewhat.

2.1 Virtual Devices

In SDA, appliqations typically address the display through
virtual terminal emulators, or Virtual Displays. These Virtual
Displays are identical in concept to TIA's Virtual Output Devices.
They simulate the functions of known display devices, such as

System Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page B-3
SDA Appendices 27 Oct 82

VT100, VT125, Tektronix 4014, etc. An application may create an
unlimited number of Virtual ·Displays.

2.2 Pasteboards

SDA introduces the concept of Pasteboards to allow the
creation of composite images using multiple Virtual Displays.
Multiple Virtual Displays may be positioned within a Pasteboard in
some fixed relationship to one another. One example of the use of
a Pasteboard would be to represent a page of a document which
contained text as well as graphics data. The text could be
written into a VT100 Virtual Display, the graphics could be
written into a 4014 Virtual Display, and the· two images could be
juxtaposed in the pasteboard to build the composite page image.

2.3 Windows And Viewports

SDA also employs Windows and Viewports to map portions of the
composite image to the display. The fundamental difference
between TIA and SDA is that in SDA the Windows define portions of
the Pasteboard, not portions of the Virtual Display (which would
be the equivalent of TIA's Windows into Virtual Ovtput Devices).
Thus operations on Windows by applications have a different result
in TIA and SDA, a fact that· will be dealt with in a later section
of this report.

2.4 Virtual Screen

SDA also introduces the concept of a Virtual Screen. The
Virtual Screen may be larger than the actual physical display
surface. Thus Viewports (which get mapped into the Virtual
Screen) may not always be visible on the Physical Screen. This
concept is implied but not explicitly expressed in TIA.

3.0 DIFFERENCES AND MAPPINGS

As indicated previously, the fundamental difference between
TIA and SDA lies in the use of Pasteboards and Windows. TIA does
not include the Pasteboard concept. In TIA, composite images are
created directly on the physical display by the use of Windows and
Viewports. There are several reasons why this simpler structure
~is employed:

1. It is less memory intensive, and thus more likely to be
implementable in low cost terminal devices.

2. It provides for buffering at a level (Virtual Output

System Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page B-4
SDA Appendices 27 Oct 82

Device) which is more suitable to the way in which
terminals are designed, and provides better performance
on low speed communications lines, which is the assumed
default for terminal operations.

3. It does not require a sophisticated human interfacing
process to be resident in the terminal to affect the
manipulation of Windows and Viewports for the human
operator, which is assumed in the high performance
workstation environment.

It is not the intention of TIA that applications should use
the Virtual Terminal interface directly, but that some level of
translation should be provided by software services (such as
run-time libraries or system services). Thus compatibility
between TIA and SDA can be maintained at the applications level by
providing a mapping of SDA's Pasteboard Windows (hereafter
referred to as "macro-Windows") to TIA's Virtual Output Device
Windows. This can be accomplished in the following manner:

1. When an application writes data into a Virtual Display,
the data is transmitted to a Virtual Terminal and stored
in a corresponding Virtual Output Device. Thus a copy of
all data to be manipulated bi the application is
maintained in a store local to the terminal.

2. The application juxtaposes Virtual Displays in the
Pasteboard to create the desired composite image. The
Virtual Terminal has no knowledge of this positional
relationship.

3. A macro-Window is created into the Pasteboard, which
includes data from more than one Virtual Display. This
macro-Window would be mapped into a macro-Viewport on the
Virtual Screen. In the case of a terminal, the
macro-Window is "decomposed" into a set of Windows, which
are then mapped into Viewports on the physical display,
juxtaposed so as to provide the same visual effect as the
macro-Viewport. Moving of the macro-Window in the
Pasteboard requires corresponding movement of all Windows
in the macro~Window set to maintain the desired composite
image. (See attached drawing)

~y~~~m u1spiay Architecture (SDA) -COMPANY CONFIDENTIAL- Page B-5
SDA Appendices 27 Oct 82

1

WORKSTATION

Virtual Displays

I I
I I
I I
I I

2
I I
I I
I I
I I

VIRTUAL TERMINAL

3

\/ \/ \/ remote connection
\/>>>>>>>>>>>\/>>)>>>>>>>>\/>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
\/ \/ \/ \/ \/ \/
\/ \/ \/ \/ Virtual Ouput Devices \/
\/ \/. \/ ------------ ----------- ------------
\/ \/ \/ I I I : I : •••••• : I
\/ local connection \/ 1 I I 2 I I ~ I I
\/ \/ \/ ••••• I I • • • • • I I · I I
\/ \/ \/ : I I I I I I

Pasteboard \/ \/ ------------ ----------- ----!-------
-------------------------- \ \ I

I \ \ Windows to
1 · I 2 \ \ Viewports
••••••••••• Physical Screen \ I

-----\------/----/----
-------:---------:-------- 1 \ I I I

: •••••••.•• :macro-Window t • • • • • • • • • • • I
I \ I I

3 I \ I : ---------: I
I \ I : ••••••••• : I

--------------- I I I
I

Virtual Screen I
-----------------------------!-------
' I I I I I
I macro-Viewport ;· I
I • • • • • • • • • • • I
I : : I
I :---------: I
I : ••••••••• : I
I I
I I·
I l
I I
------------------------------------- I

SDA Mapping to TIA

Macro-Window/Viewport mapped to multiple Windows and Viewport

System Display Architecture (SDA) -COMPANY CONFIDENTIAL- Page B-6
SDA ~ppendices 27 Oct 82

B.1.2 The Terminal Software Architecture

[tbs].

