1. DUERVIEW

The US 100 workstation is a 19° monochrome workstation desisned for the erofessional user. The US 100 consists of a corporate standard multibox containins an H7865 power sufely, display frocessor module, a fiber optics transmitter/receiver module and a bitblit accelerator module. The US100 uses a 19 in monitor (UR100) in a landscape format. The monitor has a screen resoultion of 1088 pixel horizontally by 864 fixels vertically. The US100 interfaces to 3 VAX $11 / 7 X X$ CFU throush a 10 MHz fiber optic cable and a VAX installed Unibus window module. The US100 is sufelied with a LK201Cx kesboard and a USIOX-EA mouse as input devices. An optional disitizins tablet USIOX-BA is available.
2. FRODUCT DESCRIPTION AND FUNCTION

3. FRODUCT REQUIREMENTS

4. STANDARIIS,REGULATIONS ANI CEFITIFICATION

The US100 complies with the standards and resulations listed in the followins subsections.
4.1 FRODUCT SAFETY

UEC. STI. 119 - disital product safets (covers UL 478, UL 114, CSA 22.2 NO. 154, UDE 0804, and IEC 435)

IEC 435 Safety requirements for data processins equiftment
4.2 AC FOUER
nEC.STII. 002 - AC fower wirins, sroundins, receptacles and nameplates
DEC.STI. 122 - AC power line standsrd (operatins frequency 47-63 Hz , oferatins voltases 87-128VAC or 174-256VAC).
4.3 ELECTROMAGNETIC COMPATABILITY

DEC. STD. 103 - electromasnetic compability (EMC) hardware desisn reauirements.

FCC rules and resulations, part 15 - Radio freauency devices, subfart J (level A)

IIRECTIVE EEC - 76/889-EMI/FFI requirements for the British Isles VDE 0871 level $N-12$ - Limits of radio interference from radio freauency apearatus and installations.

4×4	ACOUSTIC NOISE
	IIN 45635 FTI and FT16 - Measurement of airborne noise emmited by machines
	UnE 2058 Fisrt 2
	0EC.std, 102, section 4 will supercede the above suidelines when available
4.5	ERGONOMICS
	ZN1/535-Ersonomics requirements for disflay workstations in the office
	enviromerit.
4.6	ENUIRONMENT
	DEC.std. 102 - Environment standard for computers and peripherals (class B, with oferatins temperature ranse of 10 to 40 desrees C and 10 to 90 percent relative humidity).
4.7	Language
	DEC.std. 107 - Inisital standard for termirials keyboards
	DEC. sts. 168 - Multinational character set
4.8	miscellaneous
	[IEC.std. 060 - Iesisn and certification of hardware products to national and international resulations and standards.
	DEC.std. 092 - Color and finish standard
	DEC.std. 105 - IIisplay workstation ersonomics
	UNE 0730 - office machine eauiptment
	VIE 0860-video display equiptment
4.9	CERTIFICATION AND APFROUAL
The US100 is desisned such that it will obtain the followins listinss, certifications, and approvals:	
	(safety) listins asainst UL 478 and CSA 22.2 , No 154*
	(safety) certification of comeliance to IEC 435
	(EMI/RFI) international certification of compliance to FCC level A and ULE $N-12$ level

5. HARIWARE

5.1 DISFLAY FROCESSOF BOARI

5.1.1 IESCRIFTION

The displas frocessor module (IFM) in the USi00 contains the MC68000
 processor module as daushter boards are the fiber oftic transmitter/reciever (FOT/R) module and the Bit Blit Accelerator (BBA) module.

The timins for the Ifim is derived from 379.96 Min ECL oscillator and divided down to 40 Mhz g 20Mhz 10 Mhz and other lower freauencies for use in the system. The goinz clock Bllows for a screen display of 1088 pixels horizoritally by 864 fixels vertically.

Communcation with the host cou (UAX11/7xx) is thru a fiber oftic cable of uf to 300 meters in lensth, which connects to the Unibus Window Module (URW) located in the VAX unibus backelane. The fiber optic interface operates at a lomiz rate. All transmissions across the fiber optic cable are initiated by the IFM's 68000 cFu or by the EBA module. Transmissions to the UAX ceu are 54 bits in lenath (16 data bits, 16 crc bits; 18 address bits, 1 control bit, 3 spare bits). Recieved data from the UAX cpu is 24 bits in lensth. (16 data bits. 1 control bit and 7 sfare bits). Hata is transfered across the fiber link. in a EI-FHASE L encodins scheme, All data transmissions are sent with a 16 bit CRC checksum.

The IFM also contains:
a srosrammable CFTC controller for seneratins the necessary timins sisnals for the UR100 monitor
two prosrammade USART's for communication with the optional disitizins tablet arid the LK201Cx kesboard.

A discrete interface for the USiOX-EA hand held mouse
A set of 5 LED's for fault indication. 4 led's are rede and 1 led is sreen. The led's are located on the rear of the Ifim and are viewable from the resr of the multibox.

A power-uf self test diasnostic used for testins of all major fortions of the UFM module; the BBA module, the FOT/R module; and the LK201Cx keyboard. An extended set of tests are frovided for user tests of the US10X-EA hand held mouse, the USIOX-BA disitiains tablet; arid alisnment of the UR100 moriitor.

Ilde loof self test that will run continuosly after fower-uf self test is ruri but before the user loss onto the VAX cfu. Idle self-test frovide a continuous check of the functionality of the vSioo.

The Micro-diasnostics also has a MAINTANCE MONE which will enable the user to run sfecific tests and to test the I/0 devices.
5.1.2. BLOCK DIAGRAM, IISPLAY FROCESSOR BOARD

5.1.3. MEMORY MAF

The US100 has a total of 656 k b on board memory, allocated as follows:

PROGRAM RAM	128Kb
PROGRAM ROM	16 Kb
SCREEN RAM	512Ki (4.2M bits)
ADIRESS SFACE	000000-07FFFF $=$ FROGRAM FAM
	080000-0FFFFF $=$ UNIBUS
	100000-17FFFF $=$ FRAME BUFFER
	180000-1FFFFF $=$ FROGRAM ROM

The US100 can address 256 kb of unibus address space
5.1.4. I/O REGISTERS

The followins devices are mapped into the $I / 0$ space (addr $23=1$) of the ric68000 ceut

Tablet USART
Kesboard USART
Mouse position resister
Crt controller resister
System status resister
test led resister
BEA "so' f/f
5.1.4.1 CRT controller resister

The CRT controller provides the necessary timins sisnals to the UR100 monitor, and the address for the start of the visible screen memory that will be read out sequentially durins refresh of the screen. The CRT controller has two memors addresses assisned in the I/0 sface. The first is a fointer resister that is loaded with the value of the resister that data will be deposited in. Their are 14 resisters available for use in the CRT controller. The second resister is the data resister. Ans data deposited in the data resister will be transfered to the resister fointed to by the address resister.

CTRC ADIRESS REGISTER
address $=8000 \mathrm{~A} 0(\mathrm{HEX})$ write only
CRTC IATA REGISTER
adoress $=8000 \mathrm{~A} 4$ (HEX) read/write
BIT

REFER TO DEC. SPEC. A-PS-16963-00 FOR MORE DETAILED INFORMATION

The reguired parameters for proper operation of the UFio0 monitor at a sereen resolution of 1088 Horz $\times 960$ Vert pixels are:

$\mathrm{RO}=45$	$\mathrm{R} 1=34$
$\mathrm{R} 2=37$	$\mathrm{R} 3=06$
$\mathrm{R} 4=74$	$\mathrm{RS}=05$
$\mathrm{R} 6=72$	$\mathrm{R} 7=72$
$\mathrm{R} 8=00$	$\mathrm{R9}=11$
$\mathrm{R} 10=00$	$\mathrm{R} 11=00$
$\mathrm{R} 12=00$	$\mathrm{R} 13=00$
$\mathrm{R} 14=00$	$\mathrm{R} 15=00$

The IIISPLAY FROCESSOR STATUS resister is used by the MC68000 cpu to obtain the status of events the have an effect on the operation of the US100 system. This resister is a \quad read only" resister.

```
address = 8000C0 (HEX) read orily
```

bit
$\left.\begin{array}{cccccccccccc}7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\ \hdashline 1 & 107 & 1 & 106 & 1 & 05 & 1 & 14 & 1 & 113 & 1 & 12\end{array}\right)$
bit $7=$ mouse pushbuttongrisht. losic $1(3 v)=0 F F$
losic $0(0 v)=O N$
bit $6=$ mouse pushbutton,middle. losic $1(3 v)=0 F F$ losic $0(O V)=O N$
bit 5 = mouse pushbuttongleft losic 1 (3v) $=0 \mathrm{FF}$
bit $4=1 i n k$ available
losic $0(O V)=O N$
losic 1 (3v) = link is present
losic $0(0)$) link not available
losic 1 (3v) = link error detected losic $0(0 v)=$ no link error detected losic $1(3 v)=$ the UBW attempted to sccess non-existant VAX memory. Illesable address from the BBA or the DFM. Used as a status bit to indicate the reason for failure to sain access to the UNI-BUS.
losic 0 ($O V$) = address placed on the the uni-bus was a valid address. losic $0(0 v)=$
bit 1 = BEA present
bit $0=$ mariufacturins mode
losic $1(3 v)=$ EBA not present losic $0(O V)=$ BBA present losic 1 (3v) $=$ not in marnfacturing mode
losic $0(0, \quad=$ the module is in a manufacturins enviromerit.
5.1.4.3 MOUSE FOSITION REGISTEF

The MOUSE FOSITION resister is used as a count/direction resister by the 68000 cou. This resister will contain the value of increments that the mouse was moved since the last "MOUSE FOSITION FEG" read by the 68000 cpt .

```
address \(=800060\) (HEX) read only
```

$\begin{array}{llll}\text { bit } 15 & 8 \quad 7 & 0\end{array}$

bit $15=Y 7$ The $M . S . B$. of the Y position resister. Used to indicate the direction of mouse movement in the vertical $3 \times i s(Y a x i s)$. losic $1(3 v)=$
losic $0(0 v)=$
bit 14-8 = the value of the mouse movement in the "Y" direction
bit $7=X 7$ The M.S.E. of the X position resister. Used to indicate the direction of mouse movement in the horizontal axis (X axis). losic $1(3 \cup)=$
losic $0(0 v)=$
bit 6-0 $=$ the value of the mouse movement in the "X" directioni

The TEST LED's resister is used to turn on/off the 4 red led's and 1 sreen led located on the rear of the fipm board. These LEI's are used bs the microdiasnostics to indicate failure of ans of the major sections of hardware in the US 100 5ystem.

```
3ddress = 800080 (HEX) WRITE ONLY
```


REFER TO SECTION 7.5 FOF A COMFLETE IESCRIFTION OF THE TEST LEDS ERROR CONES
5.1.4.5 TABLET USART

The TARLET USART resister is 4 I/0 maffed locations used to set-up the 2661 USART for frofer commurications with the oftional US10X-BA disitizins tablet. The clock to the USART is 5 . OOOMAz. The normal commurications baud rate to the tablet is 9600 baud

```
ardress = 800020 (HEX) REAII/WRITE
    800022 (HEX) FEAD/WRITE
    800024 (HEX) REAL/WRITE
    800026 (HEX) REAI/WRITE
```

BIT

	7	6	5	4	3	2	1	0			
1	117	1	166	1	115	1	114	1	113	1	112
	1	111	1	10	1						

REFEF TO IIEC.SFEC. A-PS-18623-00 FOR MORE DETAILEI INFORMATION
NOTE: The clock infut to the USART is 5.000 Mhz
5.1.4.6 KEYBOARI USART

The KEYBOARD USART resister is 4 I/O mafped locations used to set-up the 2661 USART for communications with the LK201Cx kesboard. The clock to the USART is 5.000 ifhz . The baud rate for the LK201Cx keyboard is 4800 baud. .

```
address = 800000 READ/WRITE
    800002 REAII/WRITE
    800004 REAI/WRITE
    800006 READ/WRITE
```

$\begin{array}{llllllllll} & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$

REFER TO IEC.SPEC. A-FS-18623-00 FOR MORE IETAILEI INFORMATION
NOTE: The clock infut to the USART is 5.000 Mhz
5.1.5 I/O CONNECTOR DESCRIFTIONS

The followins I/0 connectors are located on the rear fanel of the USioo IISFLAY PROCESSOR MOLULE,
$5.1,5.1$ MONITOR OUTFUT CONNECTORS
The UR100 monitor uses 3 seperate outputs. These outputs are provided throush isolated ENC ture 50 ohm connectors. The levels of the outputs are:

$$
\begin{aligned}
\text { video } & 0.0 \mathrm{v}-800 \mathrm{mv} \\
\text { black }= & 0.0 \mathrm{v} \\
\text { white }= & 0.700 \mathrm{v} \\
\text { horz. } 5 \text { ync } & 0.4 \mathrm{v}-2.4 \mathrm{v} \\
\text { vert. } 5 \text { ync } & 0.4 \mathrm{v}-2.4 \mathrm{v}
\end{aligned}
$$

5.1.5.2 TABLET POWER AND SIGNAL CONNECTORS

The tablet uses 2 connectors, one for power and one for sisnals. The connectors are industry standard 0 -SUB miniature type connectors, located on the backeanel of the IIFM module.

```
9 fin fower connector (female, D-sub miniature)
```


5.1.5.3 MOUSE POWER/SIGNAL CONNECTOR

15 Fin fower/sisnizl connector (female, Il-sub miniature)

Fin 1	YA
Fin 2	YB
pin 3	XB
Pin 4	XA
Fin 5	N.C.
Pin 6	+5U D.C.
Pin 7	N.C.
fin 8	N.C.
Pin 9	GROUNI
pin 10	GROUND
Pin 11	N. C.
pin 12	RIGHT BUTTON
Fin 13	MIINDLE BUTTON
Pin 14	LEFT BUTTON
pin 15	N.C.

5.1.5.4 KEYBOARI FOWER/SIGNAL CONNECTOR

```
4 fin female telco connector FS-423 COMPATIBLE
fin 1 RECEIVE
fin 2 GROUND
sin 3 +12v de
Pin4 TRANSMIT
```

The MC68000 uF on the IIFM has 7 levels of iriterrupt Level
7, the hishest level is non-maskable. Interrist vector addresses are fixed. The 7 levels of interruft are:

5.1.7 MANUFACTURING MODE

A jumper has been frovided on the DPM module that will allow for a dynamic functional burn-in of the zebra/boa/fotr in a manufacturins erivironment. This jumper reasires the use of loopback connectors on the tablet $i / 0$ fort (IEC. FT* 12-15536-00), and a loosback connector on the Keyboard fort (DEC.FT* 12-XXXXX-XX), when in this mode, the micro-diasnostics will loof continuously on the fower-if self test. The unit will halt at the first occurance of a detected errory and displas the test number in the led indicators.

5.2.1 FUNCTIONAL DESCRIPTION

The M7452 module is a standard heisht hex size module used as an interface between the $U S 100$ and the $V A X 11 / 7 X X$ cpu. The module connects to the VAX unibus backplane and recieves its fower from the VAX. The M7852 is connected to the US100 by a 2 channel fiber optic cable. The M7452 has 8-16 bit resisters used for the transfer of data between the US100 and the VAX cpu. The UAX is allowed to address the control/status resisters only, The US100 can address either the control/status resisters or the VAX memory.

The M7452 is an NPR device and is also carable of interrufts to the VAX. The address ranse of the module is selected by switches. The interrupt vector addresses are frosrammble. The Iriterruft level is selected by atandard BR chif, set at level BR5.

The unibus module is capable of supportins one (1) US100 communications link. The maximum lensth of Fiber ortic cable that can used with the vsioo is 300 meters.
5.2 .2 MAINTANCE MODE LOOPBACK

The M7452 module is provided with the capability to ferform loofback. of data while under prosram control. This is accomplished on two levels. The first is an electrical loopback of data that has been encoded into bi-phase L data at an ECL voltase level. While in this mode, the XMIT ON bit should be dis-asserted. this will prevent data from beins transmitted to the USiOO display processor board. Also, while in this mode, the CRC senerator may be disabled.

The second level of loopback is the OfTICAL loopback, this mode reauires that an oftical loopback connector (DEC FT. $\ddagger 12-y y y y y-z z$) be installed on the fiber optic connectors. While in this mode, the XMIT ON bit must be asserted, and the CRC senerator mas be either asserted or de-asserted.

The loopback process is started by first settins the aprofriate bits in CSR 0,then loadins the data to be loofed back into CSR5. Loadins of data into CSRS will initiate the loopoack sequence. llata will be loaded into CSR6. If interrupts are enabled, the unibus module will interrupt the host, with the vector adoress that was previously loaded onto CSR7.

5.2.3 SWITCH SELECTABLE BUS ADDRESSES

The base address of the M7852 is selectable throush a set of switches located on the module. The ranse of addresses is $760000-777760$ (BASE 8) The numberins and location of the switches is as follows:

sddress bit	ON	12	11	10		9	8		7		6	5		4
		1 ON	1 ON	1 ON	1	ON	1	1	ON	1	ON	1	1 ON 1	
	OFF	1	1	1	1		10FF	1				IOFF	1	1
switch posi	ion	1	2	3		4	5		6		7	8		9

UNIEUS
AIDRESS
760440(8)
FFE120(16)
5.2.4 SOFT UECTOR ADNRESSES

The VECTOR addresses that the US100 uses to interrupt the host cpu are loaded by the nEUICE URIUER frior to ucode load. The vector address must be loeded into CSF 7. The allowable ranse of addresses is 000000-001776(BASE 8)
5.2.4 BLOCK IIIAGRAM

BIT 15 Link Transtition
set when:

1. a link error occurs
2. there is a chanse in the state of the link. available bit
cleared by: The host CPU
BIT 14 Link Available indicates the status of the fiber cable sauelch circuitry

	set when: s sufficient level of lisht is detected by the fiber optic receiver cleared by: The host CPU
BIT 13	Link Error set when: a CRC error is detected by the fiber optic receiver durins data reception
	cleared by: cleared when the host cou clears bit 15
BIT 12	```Xmitter On used to control the state of the Fiber Optic PIN transmitter diode set to 1 = lisht on cleared to 0 = lisht off```
BIT 11	Maintance Mode controls the state of the U.B.W. module. Allows data to be looped back internally to the module for testins purposes. set to a $1=$ maintance mode enabled cleared to $0=$ normal operation of the module
BIT 10	Crc Disable used by diasnostics to disable the seneration of CRC checksums.
	set to $1=$ disable CRC seneration cleared to $0=$ enable CRC seneration
BIT 9	```Maintance Done used to sisnal the end of a maintance mode cycle set to 1 = maintance mode cycle done cleared to 0=```
BIT 8	RESERUED
BIT 7	OWN
BIT 6	Interrupt Eriable
EIT 5	RESERUED
BIT 4-1	FUNCTION CODE specifies an operation to be ferformed by the displas processor.
BIT 0	G0 bit

The US 100 micro-code will suffort the followins 3 functions in ROM based firmware, and the 2 commands associated with the SEND PACKET function.

The "SEND FACKET' furiction has two seperate commands that are supforted in the $V 5100$. They aret

1. REFORT STATUS -- this command returns information about the display's status and addressins enviroment to the host.
2. MOUE OBJECT ---- this command allows down-line loadins of the displas micro-code into displas local. memory.

5.3 BIT BLIT ACCELERATOR

$5.3,1$ FUNCTIONAL IIESCRIFTION
The Elit Eit Accelerator (BBA) is used to move data to and from the IIisplay Frocessor Screen memory at hish speed independant of the fisflay processor CFU. The EBA recieves command Fackets from the lisislay frocessorg and can modify,marifulate arid move data for the purpose of auickly chansins visually displayed information.

From a functional viewfoint, the BBA is divided into two sections. One secton interpets commands; computes addresses, and frovides control and execution of alsorithms, The second section is used to frocess bit data.

The followins instructions are surforted by the BEA firmware
A. COFY AREA
B. FRINT TEXT
C. VECTOR
D. HALFTONE

For a complete description of these instructions, refer to the WORKSTATION GRAFHIC ARCHITECTURE U1.0, HANK LEUY MARCH 1. 1983

5.3.2 BLOCK IIIAGRAM

5.4 FIBER OPTIC TRANSMITTER/RECEIVER MODULE (DEC, * 54-16010)

5.4.1 FUNCTIONAL DESCRIFTION

The fiber oftic transmitter/receiver module is used to orive the fiber optic cable. The data inputs to the module are ECL level sisnals, the data outruts from the module are ECL level sisnals. Also outrut from the module is the link available sisnal, used to indicate that the lisht received is above a minimum value as determined by the squelch circuitry.

NOTE: the link available sisnal assereted indicates that lisht is beins received. It does not mean that the fiber optic link is functional.

5.4.2 ELOCK DIAGRAM

the FOT/R has four sections. These are: 1 , the hsbrid receiver, 2 , the sQuelch circuit, 3 , the link available circuit and 4 , the transmit L.E. I . driver.
5.4.3 SIGNAL DESCRIPTION

$\begin{aligned} & \text { Fins } \\ & \text { Fins } \end{aligned}$	$\begin{aligned} & 1,2,3,4 \\ & 5,6,11,12, \\ & 29,30,32,33, \\ & 34,36,37,38, \\ & 40 \end{aligned}$	$\begin{aligned} & +5 v \\ & \text { GND. } \end{aligned}$
pins	7,8,9,10	+12v
pins	13,14,15,16	$-12 v$
Fins	$\begin{aligned} & 17,18,22, \text { N.C. } \\ & 23,24,25,26, \end{aligned}$	
	27,28	
pin	19	link avail H
pin	20	link avail L
pin	21	xmit on H
pin	31	ecl t\% data L
fin	35	ecl t\% data H
pin	39	ecl bip data L

5.5 FIRER OFTIC CABLE

IEC. FPT* 17-00333-01 unterminated
DEC.FT\# 17-00343-Nx termiriated (BC25E-××)
The fiber optic cable used in the US100 is a two channel cable, that oferates in a sraded-index mode of operation, the optical fiber is 100 nm in diameter, clad with slass that is 140 nm in diameter.
5.5.1 WEIGHT

The weisht of the fiber oftic cable is $100 \mathrm{lbs} / \mathrm{km}$ nominal, $45 \mathrm{ks} / \mathrm{km}$ nominial 5.5.2 COLOK

The color of the outer jacket of the cable is TAN (fer DEC. 216 , BEIGE) 5.5.3 CABLE LENGHTS

The terminated cable is available in standard lensths of:

DIGITAL PART NO.	IIIGITAL OPTION NO.	LENGTH ($-0 \%+2 \%,+30 \mathrm{~cm}+$)
17-00343-02	BN25815	15M (49 ft.)
17-00343-03	EN25830	30M (98 ft.)
17-00343-04	BN25860	60M (197 ft.)
17-00343-05	EN25890	90 M (295 ft)
17-00343-01	BN25B150	150 M (492 ft.)
17-00343-06	EN25B300	300M (984 FT.)

The cable is available in the unterminated version only on special order. The DEC pt* for unterminated cable is 17-00333-01. All disital cable that meets these furchase sfecs will have the transmit cable clearly identified. The recieve cable will also be identified. The cable has the followins charactersitcs:

```
minimum bend radius; fiber cable with outer sheathins
    > 3.0 inches, > 7.6cm
minimum bend radius fiber cable without outher sheathins
    > 1.0 inch, > 2.54cm
the cable will withstand a crush force of 400LBS./linear inch
```

5.6 UR100 monitor
5.6.1 DECSRIFTION

The monitor used with the US100 is a 19in (diasonal) landscape mode monochrome cathode ras tube(CRT) containins all of the necessary electronics for displayins hish resolution alphanumeric/sraphic video information. It is $A C$ fowered, self contained in a compact flastic enclosure and receives video and sunchronizins sisnals thru a 3 conductor cable from the USiOO multibox.

The monitor is equifed with fault indicatins LElls (normally on) and is intended for mountins on a tilt/swivel base. Other key features of the monitor are:

```
    rear panel mounted controls for brishtness and contrast
    self contained fower supply
    OCLI anti-צlare screen coatins
    noise free operation without a fan
    meets class A FCC radiation levels
    UL bsproved
```

5.6.2 UIEUABLE AREA

FORMAT:
The viewable presentation is a rectanslular format of sQuare pixels with 1088 pixels across the horizontal dimension and 864 pixels across the vertical dimension.
5.6.3 ACTIUE DISPLAY AREA:

With a solid white screen applied and at a maximum sisnal level of 40 foot-lamberts, the active disflay size shall be:

Horizontal	354.3 mm	+-1.5 mm	$13.95 i n$
Vertical	281.4 mm	+-1.5 mm	11.08 in
screen aspect	ratio	$1.26: 1$	

5.6.4 FIXEL SIZE:

Horizontal	.325 m	0.0128 in
Vertical	.325 mm	0.0128 in

pikel aspect ratio 1:1
5.6.5 FAULT INDICATING L.E.D.S

The UR100 monitor is equiped with 4 fault indicating LEDs. These LEDs are normally illuminated to indicate the presence of the necessary sisnals/voltases for the proper oferation of the monitor.

The LEDs indicate the followins conditions:
UIDEO minimum threshold of 300 MV reauired
HORZ SYNC TTL level reauired
VERT SYNC TTL level reauired
B+ Voltase
80% of reauired $\mathrm{E}+$ level for normal operation of the monitor is available
fisure of back panel
T.B.S.
5.6.6 FOWER REQUIREMENTS

```
115v e 1amp. 240ve.5amp
fuse type = 3AG (U.S.)
    5mm X 20mm (EUROFEAN)
```

5.6.7 CONTROLS,EXTERNAL
brishtriess
contrast
5.6.8 INPUTS

The infuts to the UR100 monitor are GNC type connectors, located on the rear fanel of the monitor.
5.6.8.1 VERTICAL

U. sync width $=$	0.1 to 0.5 Msec
U. sync period $=$	16.667 Msec
U. sync. Tr $=$ ins.	$\mathrm{Tf}=$ <3ns.
U. blankins interval	0.775 Msec
U. unblank interval	15.912 Msec
U. frequency $=$	60 Hz.

5.6.8.2 HORIZONTAL

H. sync width $=$	$2-8$ uSEC
H. sync, feriod $=$	18.416 USEC
H. sync, Tr $=<3 n s$.	
H. blankins interval	$4.804 \mathrm{Tf}=$ uSEC
H. unblank interval	13.612 uSEC
H. frequency $=$	54.3 KHz.

5.6.8.3 UIDEO

```
Voh = (white level)
Vol = (black level)
Tr = < 3ns.
Tf = < 3ns.
```

5.6.9 FOWER REQUIREMENTS

```
120v ac 1amF
240 v ac e. 5 amp
```

5.6.10 FHYSICAL DIMENSIONS
heisht(w/o tilt/swivel) $=14.75$ in. (37.5cm)
width $=18.0$ in. $(45.7 \mathrm{~cm})$
depth $=16.0 \mathrm{in} .(40.6 \mathrm{~cm})$ weisht(w/o tilt/swivel) $=\langle 45 \mathrm{lb} .(20.5 \mathrm{ks})$
5.6.11 TILT/SWIUEL BASE supplied with each unit. customer installed swivel ranse $=360$ desrees (limited by the cables) tilt ranse $=\quad-5$ to +15 desrees

5.7 MOUSE USIOX-EA

5.7.1 IIESCRIPTION

The MOUSE is a hand held fointins device used to select objects on the display screen. It is attached to the display processor module throush a 12 ft . cable with a male 15 pin D-sub miniture connector. Fower for the MOUSE is derived from the display processor module. The MOUSE provides relative position data to the display frocessor by means of quadurature encode sisnals for each axis (X and Y). The MOUSE also has 3 buttons used to sisnal events to the display processor. The mouse buttons are numbered 1 thru 3 from left to risht.
5.7.2 PHYSICAL DIMENSIONS

```
Heisht = 1.3 in (3.30m)
Lensth = 3.75in (9.5cm)
Width = 2.75in (7.0cm)
Weisht = <100z. (280sr.)
cable lensth = 12 FT.
cable color = DEC 068 GREY
```

5.7 .3 SIGNAL DESCRIPTION

```
15 pin ll-SUB miniature connector type,male
pin 1 thru 15
```

NOTE: cable shield is tied to the metal housins of the connector.

5.7.4 ACCURACY

The USIOx-EA is cafable of providins 200 pulses/inch. The rate of movement of the MOUSE is limited to $10 \mathrm{in} / \mathrm{sec}$.

5.7.5 FOWER REQUIREMENTS

 +5 do $+/-10 \%$ e <150ma. protected by a circuit board mounted "pico'fuse.Note: the "pico" fuse is not customer serviceable.
OPERATION
5.8 TABLET, W/5 BUTTON FUCK DEC. PT * 30-20037-01
5.8.1 DESCRIPTION

The USIOX-BA disitizins tablet is hishly accurate absolute fositionins device used to infut coordinate data to the display processor board. The disitizins tablet is connected to the display processor by two cables. One is a 9 pin cable used to supply fower to the tablet, and the second cable surflies data to and from the tablet. The tablet itself is a micro-processor controlled device, with a hand held fuck which has 5 buttons for controllins the oferation of the tablet.

The US10X-BA is a disitizins system consistins of the followins components

TABLET
5 BUTTON CURSOR
12 FT POWER CABLE
12 FT SIGNAL CABLE

US10X-CA
US10X-IIA
17-00341-01
17-00322-06

The disitizins tablet is a computerized input device which sends $X-Y$ coordinate date to the US100 to indicate the position of the cursor on the surface of the tablet to a hish level of accuracy
5.8.2 ACCURACY

The accuracy of the tablet is 1000 Lines/inch at 22 des. $C+/-4$ des. C at the specified humidity and altitude

REFEATABILITY +/ - 0.001 inch (with cursor)
COORDINATE ORIGIN: absolute
5.8.3 OPERATION OF THE TABLET

The tablet may be operated in any of the followins modes of operation
FOINT: stylus switch or cursor indicates a sinsle X-Y output
CONTINUOUS: Multiple $X-Y$ pairs are output as lons as the stylus or cursor is in the proximity of the tablet. No switch activation is required.

LINE: Multifle $X-Y$ fairs are output as lons as the stylus or cursor switch is held down.

INCREMENTAL: Movement of the stylus or cursor of more than 0.01 inch in line mode initiates outfut.
5.8.4 FHYSICAL DIMENSIONS
$5 \cdot 8 \cdot 4 \cdot 1$
IIGITIZING TABLET USIOX-CA
heisht 2.171 in (55 mm) in level fosition 4.203 in (122 mm) in tilt position
tilt ansle 14 des $+/-2$ des.
width 16.75 in (425 mm)
depth 16.75 in (425 mm)
weisht
5.8.4.2 USEABLE SURFACE SIZE

The surface is seamless, opaque acrylic plastic

width	11.0 in (273.4 mm)
depth	$11.0 \mathrm{in}(273.4 \mathrm{~mm})$

5.8.5 FOWER REQUIREMENTS

$$
\begin{array}{r}
5 U \text { DC }<2.0 \mathrm{amp} \\
+12 U \mathrm{DC}<120 \mathrm{ma} \\
-12 U \mathrm{DC}<120 \mathrm{ma}
\end{array}
$$

5.8.6 SIGNAL DESCRIFTION

I/O cable, 25 fin male, 12ft. (3.7m), DEC 068 srey

fin	function
1	sround
2	transmit data
3	recieve data
4	reauest to send
5	clear to send
6	data set ready
7	sround
8	carrier detect
20	data terminal ready
other pins	reserved for other functions

FOWER CABLE, 9 pin female, $12 f t .(3.7 \mathrm{~m})$, $\operatorname{DEC} 068$ srey

PIN

FUNCTION

1	$+5 v$
2	+5v
3	N,C.
4	+12v DC
5	N.C.
6	-12v IC
7	sround
8	sround
9	n.c.
shell	chassis sround

5.8.7 RELIABILITY

The M.T.B.F. shall be $>10,000$ hrs.
5.8.8 DATA FORMAT
fisure to be supflied

5.8 .9 SWITCH FOSITION SETTINGS

```
    fisure to be supplied
```


5.9 LK2O1-CA KEYBOARI

5.9.1 NESCRIPTION

The keyboard used with the $u s 100$ workstation is the LK201C . This keyboard is a product specific variation of the D.E.C. standard LK201 family of keyboards. For a more detailed description of the LK201 keyboard, refer to the documents listed in the appendix.

5.9.2 MODEL DESIGNATIONS

All LK200 family keyboards are desisnated by a model number which describes the kesswitch sroups implemented, keycap placementyand labelins. The keyboards described here are desistated LK201C:

LK201 C \times

- -

11
| ---- alphabetic describins keycap labels.
1
------ alohabetic desisnatins a US100 specific kesboard.

	EL NO.	KEYBOARI		LEGENI		
1	US $10 X-A A$	1	LK201-CA	1	USA/CANADA	1
1	US10X-AB	1	LK201-CB		BELGUIM FLEMIS	H
1	US10X-AC	1	LK201-CC		CANADA (FRENCH)	1
1	US10X-AD	1	LK201-CD	1	IENMARK	1
1	US10X-AE	1	LK201-CE		UNITED KINGDOM	1
1	US10X-AF	1	LK201-CF	1	FINLAND	1
1	US10X-AG	1	LK201-CG	1	GERMANY	1
1	US10X-AH	1	LK201-CH	1	HOLLAND	1
1	US10X-AI	1	LK201-CI	1	ITALY	1
1	US10X-AJ	1	LK201-CJ		JAPAN KATAKANA	1
1	US10X-AK	1	LK201-CK		SWISS (FRENCH)	1
1	US $10 X-A L$	1	LK201-CL		SWISS (GERMAN)	1
1	US10X-AM	1	LK201-CM	1	SWEDEN	1
1	US10X-AN	1	LK201-CN	1	NORWAY	1
1	US 10 X -AF	1	LK201-CP	1	FRANCE	1
1	US10x-AS	1	LK201-cs	1	SPAIN	1
1	US10X-AZ	1	LK201-CZ	1	AUSTRALIA	1

5.9.3 GIMENSION

The heisht from the desktor to the finser contact surface of the home row of kess shall be $30 \mathrm{~mm} .+/-1.0 \mathrm{~mm}$.

The overall dimensions for the keshoard are :

width	21 inches	53.3 cm
defth	6.75 inches	17.2 cm
heisht (includins kescafs) 2.0 inches	5.1 cm	

The unsculptured keys are mounted on a curved base which will produce a sculptured keyboard profile with unsculftured keys.

The weisht of the kesboard with the interconnectins cable is less than 5.0 1bs 2.3ks

$5.9+3.1$ COLOR

The function kess located on the top row of keys, the cursor keys and the six keys located directly above the cursors will be a neutral color (DEC 217). The color of the remainder of the kess and the keyboard are sres (DEC 068).
$5,9,3,2$ REFLECTANCE

The keycaps reflect less than 45% of the incident 1 isht,
fisure to be sufplied

5.9 .3 .4 KEYBOARD INTERCONNECT

The keyboard interconnect cable is 16 ft in lensht. In an uncoiled condition, the cable is 19 ft . The keyboard cable uses a 4 fin male telefhone coninector at each end.

5.9.3.5 KEYBOARD OPERATION

The operator uses the keyboard to transmit encoded kesins events to a buffer in the workstation. A keyins event is transmitted when;

1. any key is newly fressed
2. any of a certain set of keys is depressed
3. certain keys are held down and are seneratins
auto repeatkesins events.
excert as allowed above, the release of a key is not an event.
data is transmitted from and recieved by the keyboard at a rate of 4800 baud.
transmitted data is in sinsle bute format for a siven
key, upon receivins a reset command fron the USIOO, the keyboard will perform a power-up self test and then transmit a 4 byte code to the VS100. The 4 bytes transmitted at power-uf are defined as follows:
first byte firmware I.D.
second byte hardware I.I.
third bste error code or 0 error code can indicate RAM error, ROM checksum error or key down condition
fourth bute indicates specific key down if any

The user must identify the keyboard to the USi00 ie, what natural lansuase, serman,french etc., either in the set-us mode or throush escape seauences when switchins keycsps or keyboards.

5.9.3.6 N KEY ROLLOUER

The keyboard will transmit the last key down even thoush other keys are not released. This will enable the workstation to exibit the N key rollover feature when:

1. "shantom key" possibilities do not exists.
2. The bell of the keyboard can be prosrammed for various volume levels
3. The kesclick indicator can be prosrammed to an ON or OFF condition.
```
5.10 FOWEF SUPFLY - H7865
5.10.1 OFERATION
The H7865 power supply is a sinsle ended,switch type, resulated AC-niC converter circuit. It utilizes a uni-directional transformer in a half wave transformer coupled mode. The unit operates at a constant frequency and resulation is achieved by fulse width modulation of the inverter primary current conduction time. Frimary enersy storase is in the input filter capacitors at approximately 300 V DC. Discrete pulses of known current are provided to the UDT primary windins with each trissered period of operation. This current is transformed by the UIIT and is available at lower voltase and hisher current at the secondary windinss of the UDT. By increasins or decreasing the fulse width , the available output voltase is affected correspondinsly. Hence, a constant output \(\operatorname{IC}\) voltase is maintained with varyins lines and loads by increasins or decreasins the converter pulse width.
```


5.10.2 ELECTRICAL SPECIFICATIONS

5.10.2.1 AC INFUT SPECIFICATIONS
5.10.2.2 LINE vOLTAGE

Line voltase infut ranse is selected by an operator accessible switch located near the $A C$ inlet connector. This switch reauires a small tool, such as a screwdriver to operate.
5.10.2.2.1 $\quad 120 V A C$ nominaly sinsle phase, 3 wire.
$87 V A C$ to $128 U$ AC.
$5 \cdot 10 \cdot 2 \cdot 2 \cdot 2$
$220 \mathrm{~V} A C$ nominal, sinsle fhase, 3 wire. $174 \mathrm{~V} A C$ to 256 V AC.

5.10.3 FREQUENCY

5.10.4 CURRENT

5.10.4.1 6A RMS Maximum (87U AC input for full rated outeut)
5.10.4.2 4 A RMS Maximum (174U AC input for full rated outsut)

5.10.5 POWER FACTOR

The power factor __-_RMS WATTS__-.-. of the infut shall be sreater RMS volts \times RMS ames
than 0.60 at full output fower and $120 \mathrm{~V} \mathrm{AC}, 60 \mathrm{~Hz}$ line.

$5 \cdot 10 \cdot 10 \cdot 1.3$	high voltage transients
	A spike is defined as a voltase transient, of either polarity
snos of either	Amon or differential mode, with a rise time (10% to 90%)
of 0.1 micro	的ds or less and a fall time (to 10\%) of 10 microseconds or
more.	
	The averase power of spikes shall not exceed 0.5 watts.
5.10 .10 .1 .4	LOW ENERGY TRANSIENTS
	The supply shall withstand a 300 V peak voltase spike containins not more than 0.2 watt-seconds of enerss per spike without sustainins damase or desradation to any fortion or component of the supely.
$5 \cdot 10 \cdot 10 \cdot 1.5$	HIGH ENEFGY TRANSIENTS
	The supply shall withstand a 1 KU peak voltase spike containins not more than 2.5 watt-seconds of enersy per spike without sustainins damase or desradation to ans portion or component of the supply. This is a one-shot, non-repetitive transient.
5.10 .11	ELECTROMAGNETIC INTERFERENCE SUSCEFTABILITY
5.10 .11 .1	AC POWER LINES
$5 \cdot 10.11 .2$	CW RF
	The power supfly shall operate without system despadation with 3 volts RMS suferimposed on the $A C$ fower interface. (all three lines; powergneutral and sround).
5.10 .11 .3	TRANSIENTS
	The power supply shall operate without desradation when transients with an enersy level of 2.5 watt-seconds are superimposed on all conductors (Fower neutral and ground) of the power cord for testins purposes, the averase transient power shall not exceed 0.5 watts.

$5 \cdot 10 \cdot 11.4$	RF FIELI STRENGTH
	The power supply shall operate without desradation in the followins fields， 100% amplitude modulated with 1000 Hz sauare wave．
	10KHz to $30 \mathrm{MHz}: 2 \mathrm{v} / \mathrm{meter}$ 30 MHz to 1 GHz ： $5 v / m e t e r$
$5 \cdot 10 \cdot 11.5$	EQUIPTMENT EMINATIONS
	In a system confisuration，the interference voltase on all connection to commerical AC fower shall not exceed 80 db sbove 1 microvolt e 10 KHz decressins with freasency to 58 dh above 1 microvolte $150 \mathrm{KHz}-450 \mathrm{KHz}$ and 48 db above 1 microvolt from 450 KHz to 30 MHz ．The interference field strensth shall not exceed the followins levels at 30 meters from the easiptment：
	Freauency level
	$\begin{array}{llll}10 \mathrm{Khz}-30 \mathrm{MHz} & 50 \mathrm{JV} / \mathrm{m} & (34 \mathrm{dbuV} / \mathrm{m}) \\ 30 \mathrm{MHZ}-1 \mathrm{GHz} & 17 \mathrm{JV} / \mathrm{m} & (25 \mathrm{dbuV} / \mathrm{m})\end{array}$

$5+10+12$
$5+10+13$
5.10 .14

COOLING

Forced air is sumplied by a sinsle $12 V$ nC fan．Minimum airflow thru the fan is $27.0 \mathrm{C}, \mathrm{F} . \mathrm{M} . \mathrm{g}$ independant of the AC line input voltase．

ACOUSTIC NOISE
At the system level（complete system box with all boards，I／0 devices attached and the power suffly fan on ，the reauirements are：
－noise power emmission level＜xッハイ at zzzaz
－front operator sosition a－weishted sound eressure
－ro fromeriient tone or impulse noise
meassurements shall be made and reported in accordance with DEC．STI．102．4，which includes the requirements of ANSI S1．29， which in turn includes the reauirements of ISO 3741 throush 3746 and of 1506081 for noise messurements．

ACCESSIBILITY

The fower supply case can be operied orily by the use of tools．

$5 \cdot 10.15$	INPUT/OUTPUT CONNECTORS
$5+10+15 \cdot 1$	AC LINE INFUT INTEFFACE
	$A C$ line infut is directly tinto a line filter, thru a three pin IEC connector. An $18 A W G$ Fower cord is required.
$5 \cdot 10.15 .2$	AC LINE DUTFUT INTERFACE
	A switched AC line output is provided thrus a line filter to provide power to the UR100 monitor that is supplied with the sustem. The switched $A C$ line output has a maximum ratins of 1 AMP at $120 \vee \mathrm{AC}$. Connection to the external device is thris a three pin IEC female connector.
$5 \cdot 10 \cdot 16$	IC OUTFUT CONNECTOR
	The followins voltases are available at the power supaly outfut connector. When viewed from the rear of the power supply,fIN 1 is on the risht.
PIN	VOLTAGE
1	DCOK
2	N/C
3	FOK
4	-12 V de
5	+12 V de
6	+5U de
7	+5v de
8	+5V de
9	+5V de
10	GNII
11	GND
12	GND
13	GND
14	GNI
15	GND
16	GNI

5.11 MULTIBOX

5.11.1 The US100 is housed in a corporate standard multibox fisure to be supflied

5.11.2 PHYSICAL DIMENSIONS

heisht	$=$
width	$=6.65$ in $(16.9 \mathrm{~cm})$
depth	$=19.21$ in $(48.9 \mathrm{~cm})$
weisht	$=14.31$ in $(36.4 \mathrm{~cm})$

5.11 .3 COLOR

The color of the multibox is DEC 068 srey, with DEC 217 srey trim
6.0
6.1 ROM RESIIIENT
A. SIZE --- $16 k \times 16$ bits (word)
B. INSTRUCTIONS 3 basic commands cofy area
move object start displas
C. FLOWCHART
T. B. S.

1. OFERATION
T.B.S.

6.2 RAM RESIIENT

A. SIZE
T.B.S.
B. INSTRUCTIONS
T, E, S.
C. FLOWCHART
T.B.S.
D. OPERATION
T.B.S.

OUERALL MICROCODE STRATEGY
The US100 microcode is defined as the 16.0 kilobyte powerup/diasnostic packase, implemented in Motorola 68000 assembly lansuase, and resides in read-only memory on the liselay frocessor Module. The microcode is responsible for down-loadins the display firmware, but is otherwise invisible to the host. Host (UAX-11) diasnostics are the property of the Macro Iliasnostic packase, but may call the Micro Diasnostics via the Reset function. When the user loss ir, control over the 68000 uF shifts from the microcode to the display firmware.

The microcode is comprised of four major sections; Fowerup, Idle Loop, Command Loop and Maintenance Mode. The foweruf code is responsible for testins and initialisins all hardware on the terminal end of the $U S 100$ system. The Idle Loof performs a modified continuins sequence of the fowerup code; and polls between tests for Host WGA Commands, Mouse Losin events, and Keyboari Maintenance Mode entry events. The Command Loop waits for and processes WGA Commands until the host sends the Feset Command to return the erocessor to the Idle Loop. Maintenance Mode is used primarily to test the four infut/outrut devices that mas be attached to the US100 terminal;

1. ILEC LK201 Universal Keyboard
2. Philifs Monochrome $19^{\circ} / 60 \mathrm{~Hz}$ P4 Landscafe Monitor
3. Hawley 3-button Mouse Pointins Device
4. GTCO 11" Disi-Pad Grashic Tablet with 5-button Cursor (optional)

These devices reauire a human interface, althoush the Keyboard and Table

7.0.1 POWERUP SELF-TEST

Tests occur in order of increasins losic comelexity, in order to maximise error detection and minimise the chance of a catastrophic system failure. The 68000 remains st friority level seven (all maskable interrupts disabled) until all I/0 control chips have been tested and initialised. At this foint, the friority level is lowered to zero (all maskable interrupts enabled) :

The Fowerus code should run less than twenty seconds; the expected cold-start warm-ur time for the monitor. The Kescoard's 70-millisecond Self-Test runs in parallel, but is under the control of the Keyboard's centrel processins unit. At the end of Fowerife SelfTest, one of two icons is displayed on an otherwise white screen:

1. Mouse Losin Icon -- displayed if there were no Powerup errors. 2. System Failure Icon -- displayed if there were Foweruf errors.

In addition, the keyboard's bell is runs when the Mouse Losin Icon is diselayed, to let the user know that the terminal is ready for normal operation. Losins are disabled if there were errors on Powerup, but are not disabled if errors are found durins Idle Loof. Once the user hits a mouse button to losin, however, there is the charice that the link mas be down or mas so down while transmittins the mouse event to the host. In this case, the Mouse Losin Icon is realaced by a third icon; the Link Iown Icon. Whenever this icon apfears on the screen, it is us to the host to reinitiate communcation with the terminal.

The Powerup code is structured so that confidence is built hierarchically. Each erocedure first checks the error flas, and skips over the diasnostic fortion if there were any previous errors (only the first detected error is reported, and further initialisation functions only to enable entrance to Maintenance Mode). Tests are executed in the followins order:
A. SIZE contained in the F / W roms appr bko
B. OPERATION
on sower-uF of the system, the u-diasnostics will ferform 3 self test of the mother board, BBA board,FOT/R board,the fiber oftic link and the UEW board. The test coverase is $>80 \%$. Errors will be reforted by means of the leds located on the rear of the mother board, and reported to the host CFU if possible, on successful completion of the rower-up tests, the GREEN led on the motherboard will be lit, and the u diasnostics will enter IILE self test until the user fresses a mouse button.

7.0.2 IIC POWER SUFFLY

When fower is initially applied to the Mother Board, an internal RESET L sisnal provides a 100 ms RESET sisnal to initialise the hardware to a known state. If the H7862 Fower Supfly voltases are not within tolerances (DC OK nesated), RESET L will be held trise; therebs ereventins the microcode from starting. The RESET L sisnal turns all five Mother Board LED's (1 Green: 4 Red) on, which provides a test of the LEI's themselves. At the end of RESET L (nesated), the Foweruf code blinks the LEI's off and on asain once. This action also causes the state seauencers to rembe fom from $\$ 000000$ to $\$ 180000$.

Two checkerboard test fatterns ($\$ 55$ and $\mathcal{A A}$) are used, first for byte path immediate data and next for lonsword path immediate data, usins resister do.

Once do has been verified for immedizte addressins, it is reloaded with the first checkerboard patterr, $\$ 55555555$. This pattern is then cascaded throush all eisht data resisters (so-d7) and all seven address resisters (a0-a6). The routine is then repeated with do initialised to the second checker-bosrd pattern, fAAAAAAAA, This routine validates resister RAM space and resister source and destination effective addressins modes.

The third step is to test three losical instructionsi 'and", "eor", and "or'. After that, the sisned multifly and divide instructions are verified, and finally the left-shift and risht-rotate instructions are verified.

The final step is to test bit manipulation usins the BCLR, BSET, and Sce instructions. This is a farticularly important stef, as the diasnostics rest heavily on the functionality of the bit-oriented instructions to determine their fath.
7.0.4 ROM CHECKSUM

The ROM verification routine compares the truncated 8-bit computed checksum asainst the correct value (stored at the end of ROM). This checksum is computed by a UAX-11 FORTRAN utility, and is inserted into the final byte of the source file before creatins the master set of ROM's.

7.0.5 PROGRAM MEMORY

A cursory memory test is ferformed, using 32-bit lonsword instructions. The test is in three basic sections:

1. Clear frosram memory (write all zeroes). This ferforms an initial check on contimuity of memory addressins.
2. Restart at the besinnins of memory, Read the currerit lonsword for all zeroes, write all ones, read for all ones and frosress. to the next lonsword until end of memory.
3. Restart at the besinnins of memory, Read the cirrent lonsword for all ores, write checkerboard pattern $\$ 1$ ($\$ 55555555$), read to verify, write checkerboard pattern $\neq 2$ (\$AAAAAAAA), resd to verify, clesr the location (write all zeroes), resd for all zeroes and frosress to the next lonsword until end of memory,

7.0 .6 VECTOR INITIALISATION

All 256 exception vectors are initialised to foint to exception-recovery code. Unimplemented vectors foint to a common exception handler which cleans us the stack znd, when in Maintenance Mode, senerates an error messase indicatins which vector occurred and what the value of the access address and prosram counter was.

7.0.7 MOTOROLA 6845 CRT CONTROLLER

The only read/write resister of the CRTC is the cursor resister, which we test by writins and immediately verifyins all data patterns available; decrementins from \&FFFFFF to zero. UFon completion of the diasnosticy resisters are initialised to define the screen size as 1088 pixels wide by 864 pixels hish (sivins a pixel separation of afproximately $1 / 78$ inches, or 3256 mm); 35 follows;

R0	(1472/32)-1	$=45$	total horizontal characters fer line -1
R1	1088/32	$=34$	displayed horizontal charscters fer line
R2	(1088/32)+3	$=37$	horizontal sync fosition in characters
R3	(0*16) +6	$=06$	vertical/horizontal ssnc widths in characters
R4	(900/12)-1	$=74$	total vertical character rows fer screen -1
F5	5	$=05$	adjustment to vertical sync to force $60-\mathrm{Hz}$
R6	864/12	$=72$	displayed vertical character rows per sereen
R7	(864/12)+1-1	$=72$	vertical suric fosition in charscter rows $+1-1$
R8	0	$=00$	non-interlaced modeg no skew
F9	12-1	$=11$	scari lines fer character row -1
R10	0	$=00$	cursor start
R11	0	$=00$	cursor end
R12	0	$=00$	start address hish bute
F 13	0	$=00$	start address low bute
R14	0	$=00$	cursor hish bute
F15	0	$=00$	cursor low oste

7.0.8 TABLET PORT

Internal loop-back mode is set on the Tanlet USART, and the same scheme used to test the CRTC Cursor Fesister is imflemented here on the data holdins resister. The internal loop-back scheme reauires that the mode resisters be set uf for normal oferations, in order to test the USART as it would normally be used. Thereforeg the Tablet USART is initialised erecedins the test; as follows:

Baud Rate <-- 9600
Farity Control [isabled
Asynchronous Receive/Transmit Mode
1 Stof Eit
8 [Iata Bits (Character Lensth) I/0 <-- $16 \times$ Baud Rate

The $I / 0$ bit is initialised to 16 times the Easd Rate factor to account for bute-lensth characters. Followins the test, the receiver is enabled and the transmitter disabled. The transmitter must be enabled frior to each transmit oferationg as transmit interrists are cleared bs disablins the transmitter.

7.0.9 KEYBOARD FORT

Internal loof-back mode is set on the kesboard USART, and the same scheme used to test the CFTC Cursor fesisters is imflemented here on the data holdins resister. The internal loop-back scheme reauires that the mode resisters be set uf for rormal oferations, in order to test the USART as it would normally be used. Thereforeg the keyooard USART is initialised frecedins the test, as follows:

Baud Rate <-- 4800
Farity Control Disabled
Asynchronous Receive/Transmit Mode
1 Stop Bit
8 Data Bits (Character Lensth)
I/0<-- $16 \times$ Baud Riate

The $I / 0$ bit is initialised to 16 times the Baud Rate factor to accourit for byte-lefstin characters. Followins the test, the receiver is enabled and the transmitter disabled. The transmitter must be enabled prior to each transmit oferationg as transmit interrufts are clesred by disablins the transmitter.

7.0.10 FIBRE OPTICS ELECTRICAL LOOP-BACK

The Fibre Control Resister is set for Electricsl LoopBack Mode, and two checkerboard fatterns ($\$ 5555$ and $f A A A A$) 3 re then written to the Host Control and Status Resister individuzlls, After writins each patterri, NXM is checked for error status or the packet. If NXM is okas, then the pattern is read back from the loop-back. address, If the racket returns bad information, the date will be either all ones or all zeroes. Following this test, the fibre Control Fesister is set for Fowerup State and Lirk_Available is checked. If the host's fibre lisht is ong the Link_Available software flas is set and the terminal's fibre lisht is set at the end of fowerife (frovided that sink Transition interruFt is not received in the meantime). Otherwiseg the terminal's fibre lisht remains off until \exists Link. Transition interrist occurs. Any time the Fibre Control fesister is written to, it must be followed bs 3 1ms timer to allow the host time to receive the new status.

7.0.11 USYNC VECTOR TIMEOUT

Interrupt are now enabled. If we do not receive a vsunc interrupt within 100 msg a fillure is reported.

7.0.12 FRAME BUFFER MEMORY

The same scheme is used as in the Prosram Memors test; thoush frame buffer memory is tested in four auadrantsy for the sake of sfeed and modularity, Each auadrant of frame buffer memory is tine same size as prosram memory, so the frame buffer test entails four calls to the common memory test.

7.0.13 BIT-BLOCK TFANSFER ACCELERATOR MODULE

The US100 status resister is checked for the presence of the BBA, If the BBA is fresent, four tests are executed:

1. Scratchrad RAM -- all 256 words
2. Copyarea
3. Halftones
4. Vectors
7.0.14 KEYBOARD SELF-TEST

A reauest for the kesboard's hardware II times out after 1 second, If the In is received, we then call the keshoard's self-test. It is necessary to call the Self-Test asain at this point, as the results the previous Self-Test could not be interfreted oy the uninitislised 68000. The results of the current test are reforted to the keyboard LEII'sy anid to the 68000 via the followins four-byte messase:

BYTE 1: KBII (Firmware) -- The Kesboard II which is stored in firmware BYTE 2: KBID (Hardware) -- The Keyboard ID which is read from jumpers in the hardware
BYTE 3: ERROR COLE (Self-Test)
00 No Errors
3 II Key down on Fowerup
3E Self-Test Failure, FOM or FAM
BYTE 4: KEYCOLIE (Foweriff)
00 No keys down on Fowerue
$x \times$ Code for first key down on Powerup
If the keyboard does not respond with the hardware $I I I$ after one secondy an error is assumed and reforted.

After successful completion of the fowerup code, the 68000 continuously looss on a modified version of the same code until the user either loss in or enters Maintenance Mode. If Ide Loof faile a test, it does not do ans more testins until the next fass. All errors are lossed to the host, but only the first error detected is reported to the Mother Board and Keyboard LEI's. The followins tests are executed durins Idle Self-Test:

1. 68000 CPU (extended)
2. ROM Checksum
3. Prosram Memory (truncated)
4. Usuric Vector Time-Out
5. Frame Buffer Memory (truncated)
6. BBA Scratchead Memory
7. Keyboard III

Between tests, Idle Loop polls for mouse buttons (in which case the host is informed), host commands (in which case we branch to the command loop), and control/shift/f4 (in which case we branch to maintenance mode). After a mouse button is hit, we initialise a counter and increment it durins vsync for five seconds. Between tests. we check this flas to make sure the five minuts are not ur. If we have not received a command from the host in that time, and link is zyailable, we can assume the host is dead in the water and fut the Link llown icon us on the screen.

7.2 COMMAND LOOP

The host may reauest the $U S 100$ to perform WGA commands at this point. The followins commands are defined at microcode level:

1. Reset (so to Idle Loof via Foweruf diasnostics)
2. Send_Command_Facket (includes Move_Object and Report_Status Commands)
3. Start_nisplay-Firmware (transfers control to the disflay firmware)
4. Init (iritialise CSR's and so to command loop)

Init initialises the Control/Status Resisters as follows:

1. CSR $\# 0$ (Control/Status Resister) Untoucheds taboo!
2. CSR $\geqslant 1$ (Interrupt Reason Resister) Bit 1 <-- Init_Done
3. CSR $\neq 2$ (Peripheral Event Resister) Clesred
4. CSR $\ddagger 3$ (Function Farameter Low) Unibus-Ram base adoress low
5. CSF $\ddagger 4$ (Function Farameter Hish) Unibus-Ram base address hish
6. CSR $\ddagger 5$ (Identification Resister) Bits 3-5 <-- hardware III
7. CSR $\ddagger 6$ (Unused Resister) Cleared
8. CSR $\neq 7$ (Interrisft Vector Resister) Untouched; taboo!

CSR's $\# 5 / 6$ are the X and Y Mouse/Tablet Cursor Position Resisters once the display firmware has been downloaded. Refer to the Workstation Grarhics Architecture document for details on the Control/Status Resisters.

After the first command, we wait in 3 loop for five seconds for another command. If we do not receive another command in that time, we assume the host is dead in the water, put uf the Link. Nown icon, and exit the command loop to re-enter Idle Loop,

Several tests are availate to test the infut/output devices, as well as a special test for the fibre link. All tests in Maintenance Mode reauire a human interface. This mode is entered by tyfing control/shift/f4> while in Idle Loopy smd results in the followins menu beins frinted to the screen;
***** US100 Maintenance Mode -- type function key f4 to exit

Keypad Detions:

```
O Jumf to Poweruf
1 Kesboard Test
2 Mouse Test
3 Monitor Test
4 \text { Tablet Test,}
5 Oftical Loof-Back.
```

Typins "f4" exits the menu and returns to the Idle Loop.
7.3.1 KEYBOARD FUNCTIONALITY TEST

Uron enterins the keyboard Test, the followirns messase is frimted to the screen;
***** US100 Maintenarice Mode -- type function kes f4 to exit

Kеyャad Options:

O Feturn to Main Menu
1 Kesboard ID Test
2 Keyhoard Self-Test
3 Kesboard Loof-Back
4 Keyboard Eutton Test
If aris of the tests is called and fails; the status is frinted beneath the meriu. The user is advised to execute tests 1-3 (which indirectly tests those keys), then type " ' $^{\text {(}}$ to select the Button Test. A Current Keycode: " erompt will then appear beneath the ment. Type each of the other kess on the keyooard ExCEFT for the o on the keypad. Then "metronome" any key, and tybe 'o" to exit and return to the main meru. The kescode for the kes pressed will be sent to the screen in decimal format, by the Current Kescode; header. Metronome also results in a code beins displayed. as does the release of the shift or control kess. The keyboard button test sits in a loof that folls for keshozrd keycodes.

7.3.2 MOUSE FUNCTIONALITY TEST

Ufon enterins this mode, the followins messase is printed to the screen:
***** US100 Maintenance Mode -- tyre function kes f4 to exit

Keypad Options:
0 Return to Main Menu
1 Mouse Button Test
2 Mouse Cursor Test
There are basically two aspects of the mouse that need to be tested; directional/masnitudinal accuracs of the cursor, and communication of mouse button events. If the Button Test is selected, a "Current Button: " prompt affears beneath the menu and records the number of the button that is currently beins held down. If no button is derressed, the line contains information on the last button it received. The button test essentially sits on a loof that folls the US100 status resister for mouse buttons.

If the Cursor Test is selected, the sereen is erased and a 64×64 pixel crosshair cursor is masked to the screen. The cursor is updated at every frame interruft to indicate movement of the mouse, and is initialised to the screen centre. A 64×64 fixel black. peripheral bok is masked to each of the four corriers of the screen at an offset of 64 pixels in each direction (to allow passase of the crosshair cursor around the boxes), asainst the standard grafinics halftone backsround (halftone \$9). The mouse is used to move the cursor onto, around, and inside each of the boxes; to test seneral directional and masnitudinal correctness.

Uron enterins this test, the followins menu is printed to the screen:
***** US100 Maintenance Mode -- type function key f 4 to exit

Keypad Options:
O Return to Main Menu
1 Universal Alisnmerit Fattern
2 Stairstes of Halftones
3 Tossle Screen Contents
For any fattern, the screen is preserved until "0" is hit to exit.

7.3.3.1 TEST PATTERN $\# 1$ (Universal Alisnment Fattern)

The first monitor test pattern produces a stationary diasram on the screen for adjustments and measurements, in five stases:

1. Feriphery Diasram: The first and last eixel of each row and column are lit in order to define the active diselay area for centrins adjustments.
2. Crosshatch Fattern: Centred at a vertical indentation of 42 pixels (13.68 mm), and a horizontal indentation of 48 fixels (14.33 mm), is a black-on-white erosshatch pattern, comprised of orie-pixel wide lines at $1 / 20$ pixel spacins (6.513 mm).
3. White Central Outer Box: A white rectansular box of dimensions 608 fixels hish (198.01 mm) by 448 fixels hish (145.89 mm) is centred \bar{t} t the screen centre. The box is solid, and is written directly to the screen rather than masked onto the crosshatch. It is only a few fixels shy of beins tansent to the white peripheral circle,
4. Black Central Inner Box: A black sauare box of dimension 112 pixels (36.47 mm) is centred at the screen centre. The hox is solid, and is written directly to the screen rather than masked onto the white bow.
5. Centred Fehripheral Circle: A white circle is senerated about the screen centre utilsins Michener's adartation of Bresenham's circle alsorithm. The diameter is 768 fixels (250.1 mm), so that the circle is only five pixels shy of beins tansent to the crosshatch periphery.

7.3.3.2 TEST FATTERN $\$ 2$ (Stairstef of Halftones)

The second monitor test pattern is a stairstep of 17 halftones, soins from left to risht. The first halftone is black, the last halftone is white, and the fifteen halftones in between are the standard US100 halftones. Each halftone pattern spans the screen heisht and is 64 pixels wide.

7.3.3.3 TEST FATTERN $\$ 3$ (Tossle Screen Contents)

Resardless of which test was executed previously, this command tossles the entire current screen contents. This effectively doubles the number of screen patterns available. The pattern can always

```
7.3.4 TABLET FUNCTIONALITY TEST
    Upon enterins this mode, the followins messase is
Frinted to the screen:
***** US100 Maintenance Mode -- tyFe furiction kes f4 to exit
```

K゙eypad Options:
O Feturn to Main Menus
1 Tablet Button Test
2 Tablet Fuck Test

Similar to the Mouse Test, except that the Tablet has 5 buttons numbered 0-4. For future adaftability to 16-biston pucksy a decimal conversion routine is used to refort the button number.
7.3 .5 FIBRE OPTICS OFTICAL LOOF-BACK TEST

Same as electrical loof-back test in fowerupg except the test is performed with the fibre lisht on, and a loop-back is reauired.

All two-hundred fifty-six 68000 interrupts and exceptions are supported by the microcode, whether or not they can be expected to occur. The 68000 frovides two kinds of interrupts; Auto-Vectored and Inevice-Vectored. The US100 utilises the Auto-Vector system. All unimplemented interrupts and exceptions result in the seneration of an error code/messase.

7.4.1 EXCEFTIONS

Bus_Errors are senerated by accessins non-existant Unibus memory (if NXM is set), when the link soes down while accessins lesitimate Unibus memory (not includins CSR's, which are alwass considered to be accessible), or when the retry counter overflows. Address-Errors occur when a word or lons-word operand is accessed at an odd address.

Other exceftions are initislised even thoush unused, in order to insure asainst hardware/firmware/microcode buss. All exceptions other than bus errors are recovered from dy use of the rte instruction.

7.4.2 AUTO-UECTOR INTERRUPTS

Seven levels of interrupts are available on the 68000 , in increasins level of eriority. The hishest level of interrist is nonmaskable. The auto-vectors are assisned as follows:

Keyboard and Tablet Interrupts occur under two conditions: When the USART Holdins Resister receives a byte of information from the device, a receiver interrupt is generated. When the USART Holdins Resister transmits a bute of information to the device, a transmitter interrupt is senerated. Receiver interrupts are cleared by reading the data from the Holdins Resister. Transmitter interrupts are cleared by disablins the transmitter.

Vertical sync interrupts occur at every vertical sync; that is, every $1 / 60$ second. Mouse Buttons are folled durins vertical sunc handiins, for the purfose of reportins losin events to the host, Vertical Sunc interrupts are cleared by performins a read operation on address $\$ 8000 E 1$.

Mouse interrupts occur every time the mouse is moved. The information is stored and used durins vertical sunc handins to update the mouse cursor when it is attached. Mouse interrupts are cleared by readins data from the mouse cursor.

Link_Error Interrupts are isnored, but Link_Transition Interrupts are used to determine whether or not to turn on the fibre's LEII driver at the US100 end of the system. We store the information of the current state in memory, and examine Lirk_Available to determine whether to turn the LEI on or off. Link_Transition occurs when the state of the LED driver at the UBW end of the system chanses.

Each interrupts sets a flas indicatins that it occurred. (e.s., levels sets the "link_transition" flas). These flass are all cleared on fowerup.

All diasnostics at all levels of microcode attempt to report errors in each of three ways:

1. Error code to Mother Board LEII's
2. Error code to LK201 Keyboard LED's
3. Error code to Host's Interrupt Reason Fesister (CSR \#1)

The error code is a nsbble (4 bits) code identifyins the test that failed. The code is the same for all three error code output forms.

FOWERUF: sreen led off, test $\#$ in LEDS. Code set in advance of test. If error, skip rest of foweruf diasnostics and freeze the led code during idle loop tests.

IDLE LOOF: sreen led on, test \ddagger in LEDS. Code set in sdvance of test. If error, replace led code with poweruf error code; that is, sreen led off and test \ddagger in leds. Isnore rest of idle loop, freeze leds, but start testins asain at besinrins of next idile loof.

MANUFACTURING: read status for jumper. Green led ony test \ddagger in leas. No keyboard leds or reportins to host or screen messase (that is, loop before reachins "processmerrors"). Loof on ans test that fails, but otherwise loos back to the besinnins of powerup (after first lookins out interrupt and reloadins the stack.).

"O" is used to indicate that the LED is turned off; '1" is used to indicate that it is on. The same code is used for the Kesboard LEDS, Mother Board LEDS and Host Interrupt Reason Fesister (with bits 14 and 15 turned on to indicate a diasnostic failure). The Mother Board also has a sreen LED, which is used to indicate the mode that the machine is operatins under. Lurins Powerup, the error code on the Mother Board is set in advance of each test with the sreen LEIl turned off to indicate that the test failed (in case it does not reach completion). Once the Powerus confidence test is sone and we enter Idle Loop, the error code on the Mother Board is set in advance of each test with the sreen LEII turned on to indicate no errors. If the test finds a failure, it replaces the same error code with the Powerup error code; i.e., the sreen LED is turned off to indicate an error condition. Only the first error detected is reported to the Mother Board LEDS. Once an error is detected, it is reaorted to the Keyboard LEDS and the Host Interrupt Reason Resister. Orly the first error detected is reported to the Keyboard LEDS, but all errors are reported to the Host (includins bit \#4 set to indicate error during Idle Loop versus Powerup failure).

Manufacturins Mode is entered uFon fowerup when a jumper is inflace next to the Mother Board LEI's. In this mode, loop-back. conrectors are used at the keyboard and tanlet forts for special tests that are available ONLY when the jumper is in flace and zre executed in Flace of the normal $1 / 0$ self-tests. At the end of the Fowerup SelfTest, the microcorie jumps back to a location in fom (to be determined) and executes the entire self-test. This cscle continues indefinitely,

Manufacturins Mode is a special mode used by the module manufacturins facility durins burn-in of the US 100 mother Board. A jumper has been provided which the 68000 reass to determine whether the module is in a manufacturins environment, When the jumper is in flace, the normal Poweruf sequence is slishtly modified, and error reportins is limited solely to the Mother Board LEI's. For Mariufacturins Mode to function froperly, the followins loop-back conrectors must be in flace BEFORE Power is 3pflied:
$\begin{array}{ll}\text { Tablet } 1 / 0 & \text { Pin } 2 \text { connected to Pin } 3 \\ \text { Kesboard } 1 / 0 & \text { Pin } 2 \text { connected to Pin } 3\end{array}$
Fibre Detics Optical Loop-Back Conrector in Flace
The Bit Block Transfer Accelerator Modisle is oftional: The microdiastiostic checks for fresence of the module, and skifs the EBA selftest if the module is not eresent.

The followins tests are modified as follows:

1. Fibre Oftics Loop-Back. Test

The electrical loop-back test is now followed by an oftical loof-back test, which is the same exceft for that it reauires a special jumper to be in place.
2. Tablet USART Test

The internal loop-back test is now followed by an external loop-back test, which is the same exceft for that it reauires a special jumper to he in place.
3. Keyboard USART Test

The internal loof-back test is now followed by an external loop-back test, which is the same except for that it reauires a special jumper to be in olace.

The followins tests are deleted:

1. Keyboerd In Test
2. Keyboard Self-Test

$7 \cdot 7$	MC68000 MEMORY	MAP			
Address	(hex)				
FFFFFF		----------------			
		$1 \times \times \times \times \times \times 2 \times \times \times \times \times \times \times \times \times 1$			
		\| \times ¢			
8000 E0		$1--------------1$			
		1 CLEAR_USYNC 1	1	word	
8000 E 0		$1---------------1$			
8000 C 2		1-----------------1			
		1 US100_STATUS I	1	word	
80000		$1-------------1$			
		$\mid \times 1$			
		$\mid \times \times x \times 1$			
8000A4		\|----------------			
		1 CRT_CONTROLLEF 1	2	words	
8000A0		$1---------------1$			
		$\mid \times 1$			
		$\mid \times 1$			
800082		$1--------------1$			
		1 US100_LEIS 1	1	word	
800080		$1---------------1$			
		$\mid \times 1$			
		$\mid \times \times \times \times \times \times \times x \times x \times \times \times \times \times \times 1$			
800062		1----------------\|			
		I MOUSE_CURSOR I	1	word	
800060		1----------------1			
		$\mid \times 1$			
		$\mid \mathrm{\mid x} \mathrm{\times x} \mathrm{\times x} \mathrm{\times} \mathrm{\times 1}$			
800042		$1-------------1$			
		1 FIBRE_CONTROL I	1	word	
800040		1----------------1			
		$\mid \times 1$			
800028		1-----------------\|			
		I TABLET_USART I	4	words	
800020		1----------------\|			
		$\mid \mathfrak{K} \times 1$			
		$\mid \times \times x \times x \times x \times x \times \times \times \times x \times \times 1$			
800008		$1-------------1$			
		I KEYEOARD_USART I	4	words	
800000		1----------------1			
		$\mid \times 1$			
400002		1----------------1			
		I HOST_INTERFUPT \|	1	word	
400000		1----------------\|			
		$\mid \times \times x \times \times \times \times \times x \times \infty \times \times \times \times \times 1$			
		$\mid \times x \times x \times x \times 1$			
4A0002		$1--------------1$			
		1 LOOP_BACK 1	1	word	
4 AOO 00		1---------------1			

4A0000	-------------------		
	$\|\times \times \mathrm{x}\|$		
480010	\|----------------1		
	1 HOST_CSFS 1	8 words	
480000	\|----------------1		
260002	1----------------\|		
	1 BBA_G0 1	1 word	
260000	\|----------------1		
	$\|\times \times \mathrm{x}\|$		
240200	1----------------\|		
	1 EBA_SCRATCHFAI 1	256 words	
240000	I_---------------1		
184000	$1--------------1$		
	1 US100_FOM I	8K words	
180000	1-----------------1		
	1 FRAME_BUFFER 1	256 K words	
100000	$1--------------1$		
OEOOO2	\|---------------1		
	\| FETRY_INFINITE		1 word
OEOOOO	$1--------------1$		
	$\mid \times \times \times \times \times \times \times$ ¢		
OC0002	1----------------1		
	1 RETFY_FINITE 1	1 word	
0 COOOO	1-----------------1		
0 AOOOO	1-----------------1		
	1 UNIBUS_FIAM 1	$64 K$ words	
080000	$1--------------1$		
020000	1-----------------1		
	1 FROGRAM_RAM I	64 K words	
000000	I_---------------1		

7.8 USI00 STATUS REGISTER

```
    Here is a maf of the USl00 read-only status resister:
bit # 7 6 5 4 3 2 1 0
    | 1 1 | | | `----- Manufacturins Mode (0= yes, 1 = no)
    | 1 1 1 1 \----- BEA Present (0 = yes, 1 = no)
    | | | | `--m-- NXM (0 = no, 1 = yes)
    | | | | '----- Retry_overflow (0 = no, 1 = yes)
    | | \----- Link_Available (0 = no; 1 = yes)
    | | v----- Left Mouse Button (0 = yes, 1 = no)
    I '---- Centre Mouse Button (0 = yes, 1 = no)
    v---- Risht Mouse Bistton (0 = yes, 1 = no)
```

Manufacturins Mode is set when the host is performins an electrical loop-back on the fibre link at its own end. NXM is set when non-existant UBW memory is accessed from the 68000. If non-existant UBW memory is accessed from the $B B A$, a level7 interrupt is senerated instead. The 68000 senerates a bus error when NXM is set, and it is the duty of the microcode to examine this resister in the bus error routine to determine the nature of the bus error.

Mouse buttons senerate a zero code when depressedy but their status bits otherwise remain hish. Lirk_Available True means that the LEII is lit at the UBW end of the fibre link.
7.8.1 MOUSE CURSOR

The mouse cursor resister contains two eisht-bit counters which keep track of the mouse's horizontal and vertical. movement:
bit * $\quad 15 \begin{array}{lllllllllllllll}14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$

7.8.2 MOTHER BOARD LED's

There are five LED's on the Mother Board; four red LED's and one sreen LED. The sreen LED is used to indicate OK status of the US100, and the red LED's are used to report error conditions,
bit $\# 76543210$
1 | 1 | | | 1 ----- Red LEI $\geqslant 3$
| 1 | | | 1 ----- Red LED $\$ 2$
| | | | | ----- Red LEII $\$ 1$
| 1 | 1 ----- Red LED $\neq 0$
11 | ----- Green LED
1 | - ---- Tied to Pin 4
| •---- Unused
'---- Unused

The fibre control resister uses three bits. These are write-only sisnals, and are used by the hardware. XMIT ON causes the hardware to lisht the LEI at the Mother Board end of the fibre link. The other two sisnals are diasnostic sisnals.
bit

* 765543210

The followins bit patterns are defined:

7.8.4 USART's (Motorola 2661 EPCI's)

Each USART has four resisters that are accessible by the 68000. The map is as follows:

Bute 1 Holdins Fesister
Byte 3 Status Resister
Byte 5 Mode Resisters
Byte 7 Control Resister
The first time one writes to Byte 5 , one accesses Mode fesister 0. Thereafter, ans reference to Byte 5 refers to Mode Resister 1 . Byte 1 refers to the Transmit Holdins Resister or the Receive Holdins Resister, dependins on whether one is performins a read or write oferation.

7.8.5 CRT CONTROLLER

The CRT Controller is two ostes. Bute 1 is the adoress pointer. Byte 2 is the data resister. You must write the value of the resister you wish to write to into the address pointer before writins the desired value of that resister into the CRTC's data resister.

```
1. OVEFUIEW WGA/SIA
2. [ESCRIFTION
3. OFERATION
4. IIEVICE IRIUER
    The device driver for the UAXSTATION 100 disflzy will
permit a callins prosram to send command and arsument lists to the
US100 IISFLAY FROCESSOR. In addition to this basic function, the
driver can be instructed to start and stop the display frocessorgload the processor microcode from UAX memory or disk, and load character
``` fonts.
1. HARIWARE LIMITS
```

A. memory access cycle time = 400ns.
B. screen memory access time = 800ns.
C. unibus memory access time =
1. fiber oftic
2. worst case unibus access time
3. vax memory cycle time

```
2. SOFTWARE DUERHEAII
T. \(\mathrm{B}, \mathrm{I}\).
```

10.0
MAINTAINABILITY
RELIABILITY
A. SYSTEM M.B.T.F,
The sustem soal is 4000hrs
MTTR 2.0 hrs or less
MTTI 4.0 hrs or less
B. SUB-ASSEMELY M.B,T,F.
all values are
CALCULATED USEING
MIL SPEC STANDARI
217 G.B.
11.0
maintainability
No customer maintainable components. No customer adjustable controls

```

FLOW CHART OF INTERFACE -- TO EE SUPFLIEI
13.0 REFERENCE MATERIAL

IIEC. STA. 158 UNIBUS SPECIFICATION
A-FSS-17-00333-0-0 CABLE,FIEER OPTIC,TWD CHANNEL,UNTERMINATEII
A-FS-17-00343-0-0 CABLE,FIEER OFTIC,TWO CHANNEL,TERMINATEII
A-SP-H7865-0-0 FOWER SUFFLY, H7865,MULTIPLE OUTFUT,5U,+12U,-12U A-F'S-30-20240-0-0 MONITOR, ALFHA/GRAPHIC UIDEO, 19 INCH, MONOCHROME A-PS-30-20037-0-0 TABLET; DIGITIZING

A-FPS-30-20038-0-1 MOUSE, HAND HELD
A-SF-LK2O1-A-2 LK201 KEYBOARI DESIGN SFECIFICATION
WORKSTATION GRAHPIC ARCHITECTURE U1.0; 1 MARCH 1983. H LEUY
Uriver spec --- latest cofy afril 82
firmware sfec --- not available
uCorie spec
Dizs sfec level 2b```

