
VAX-11

SORT

User's Guide

Order No. AA-D113A-TE

January 1979

This manual describes how to use the VAX-11 native mode SORT utility. The
manual is Intended for all users.

VAX-11

SORT

User's Guide

Order No. AA-D113A-TE

SUPERSESSION/UPDATE INFORMATION: This Is a new document for this release.

OPERATING SYSTEM AND VERSION: VAX/VMX V01.5

SOFTWARE VERSION: VAX/VMS V01.5

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard, massachusetts

First Printing, January 1979

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The softwar·e described in this document is furnished under a license, and
may only be used or copied it in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip
ment that is not supplied by DIGIT AL or its affiliated companies.

Copyright© 1979 Digital Equipment Corporation

The postage-paid READER'S COMMENTS form on the last page of this
document requests your critical evaluation to assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DECnet
DECsystem-10
DECSYSTEM-20
DECtape
DECUS
DIBOL
DIGITAL

FOCAL
IAS
MASSBUS
PDP
RSX
UNIBUS
VAX
VMS

7/80-14

Contents

Preface

Chapter 1 Introduction

1.1 Sort Types
1.2 Input and Output . .
1.3 Statistics
1.4 Functions Supported. .

Chapter 2 Running SORT In Interactive and Batch Mode

2.1 The SORT Command .
2.2 Interactive Sessions . '•

2.2.1 A Sample Sort.
2.2.2 Selecting the Sort Type
2.2.3 SORT Statistics .
2.2.4 Samples.

2.3 Batch Sessions.
2.4 The SORT Command Description

2.4.1 Command Name Qualifiers.
2.4.2 Input-File-Specification Qualifiers
2.4.3 Output-File-Specification Qualifiers.

2.5 Specification File

2.5.1 Specification File Records
2.5.2 Specification File Record Formats

2.6 Setting up the Keys .
2.7 Setting up the Work Files

Chapter 3 Calling SORT from User Programs

3.1 File 1/0 Interface
3.2 Record 1/0 Interface
3.3 Programming Considerations .

3.3.1 Key Comparisons ..

3.4 Subroutines (Parameters, Definitions, and Valid Re~urns)

3.4.1 SOR$INIT_SORT
3.4.2 SOR$PASS_FILES . . .
3.4.3 SOR$RELEASE_REC.
3.4.4 SOR$SORT_MERGE ..
3.4.5 SOR$RETURN-REC . .
3.4.6 SOR$END_SORT

3.5 Sample MACRO Program
3.6 Sample COBOL-74/V AX Program . .
3.7 Sample FORTRAN IV PLUS Program

Page
u

1-1
1-2
1-2
1-2

2-1
2-5

2-6
2-7
2-12
2-12

2-11·
2-17

2-17
2-20
2-21

2-23

2-24
2-25

2-31
2-35

3-1
3-2
3-2

3-4

3-5

3-6
3-9
3-11
3-12
3-13
3-14

3-15
3-17
3-20

iii

Chapter 4 Error Conditions

4.1 Command Interpreter Error Messages.
4.2 SORT]~rror Messages .
4.3 RMS E:rror Codes

Chapter 5 Improving SORT Efficiency

Glossary

5.1 Functional Description. . . .

5 .1.1 Sorting Processes . .

5.1.1.1 Record Sort .
5.1.1.2 Tag Sort . .
5.1.1.3 Address Sort . .
5.1.1.4 Index Sort .

5.1.2
5.1.3
5.1.4
5.1.5

Internal Organization
Buffer Allocation and Work Areas.
Dynamic Memory Usage . .
1/0 Considerations

5.2 Tuning Procedure

5.2.1 User Performance Considerations . .
5.2.2 System Manager Performance Considerations .

Appendix A Octal/Hexadeclmal/Declmal Conversion

Appendix B Character Set ASCII Collatlng Sequence

Appendix C Data Types

Appendix D Data Structures and Basic Concepts

Index

Figures

iv

2-1 SORT's Four Sorting Processes.
2-2 File Organization 1/0 Flow
2-3 Sample Sort Statistics Printout. .
2-4 Interactive Session Sample #1
2-5 Interactive Session Sample #2 . .
2-6 SORT Specification Form . . .
2-7 Setting Up the Keys
2-8 Recognizing Data Types and Signed Numbers ..
2-9 Specifying Work Files

.4-2
4-2
4-8

5-1

5-3

5-3
5-3
5-5
5-6

5-7
5-10
5-10
5-11

5-11

5-11
5-14

2-8
. 2-10
. 2-12
. 2-13'
. 2-15
. 2-25

2-32
. 2-33

2-36

Tables

3-1
5-1
5-2
5-3
5-4
5-5
5-6

Subroutine Set Summary
VAX-11 SORT 1\.rchitecture, Main Functional Components
Sample Record Types
Sample Address Sort Output File. .
Sample Index Sort Output File . . .
VAX-11 SORT Operating Phases ...
SORT Dynamic Memory Usage. .

2-1 SORT Command Summary
2-2 File 1/0 Considerations.
2-3 Fixed Position SORT Specification Summary . .
5-1 Sorted Output File.

. 3-3

. 5-2

. 5-4

. 5-6

. 5-7

. 5-9

. 5-10

. 2-3

. 2-11

. 2-28

. 5-5

Commercial Engineering Publications typeset this manual using DIGITAL's
TMS-11 System.

784all

u

Preface

Intended Audience

This manual is written for the full range of V AXNMS system users, from
beginners to the most advanced level: system operator, applications pro
grammer, system manager, or software developer. Emphasis is on the how to
use information, and detailed descriptions of SORT internals are kept to a
minimum.

You can use SORT as an interactive utility (Chapter 2), or as a set of
subroutines, callable from VAX-11 programming languages (Chapter 3).

New users or those with simple sort requirements, can learn how to use SORT
by reading Chapters 1and2. To use SORT efficiently or for more than simple
sorts, read also Chapters 3 and 5.

vii

Structure of this Document

Chapter 1 introduces the VAX-11 SORT program and describes its environ
ment, features, and requirements, and explains user requisites.

Chapter 2 explains how the SORT command is used to run VAX-11 SORT
interactively or in batch mode. ·

Chapter 3 explains how to call SORT routines from user programs, and de
scribes how to use subroutine parameters.

Chapter 4 provides complete lists of SORT error messages and recovery proce
dures.

Chapter 5 provides information and programming techniques for improving
VAX-11 SORT efficiency.

The Glossary defines terms used in this manual.

Appendixes A, B and C consist of helpful programming aids such as: code
conversion charts, character sets, and data types used by VAX-11 SORT.

Appendix D summarizes basic concepts.

Finally, page references to key terms appear in the index.

Associated Documents

The following documents are relevant to VAX-11 SORT users:

• PDP-11 SORT Reference Manual

• V AXNMS Primer

• V AXNMS Summary Description

• V AXNMS Command Language User's Guide

• V AXNMS System Messages and Recovery Procedures Manual

• Introduction to VAX-11 Record Management Service

• VAX-11 Record Management Services User's Guide

• VAX-11 Record Management Services Reference Manual

• VAX-11 Software Installation Guide

• V AXNMS System Services Reference Manual

• VAX-11 Common Run-Time Procedure Library Reference Manual

• VAX-11/780 Architecture Handbook

• VAX-11/780 Processor Handbook

• VAX-11/780 Software Handbook

• V AX-11/780 Technical Summary

um

Symbology
You will encounter the following symbols, colors, and special graphics in this
manual.

dollar sign
$

Return
ml

Square Brackets
[]

Braces
n
n

Underscore

Hyphen

Comma

Circumflex
"

Uppercase Letters
ABC

Lowercase Letters
abc

Red print

Shading

The system prompt; indicates that the VAXNMS com
mand interpreter is ready for command input. The next
$ prompt indicates successful completion of command
processing, and the system's readiness to accept an
other command.

In addition, the $ must appear in the first character
position of a command to be executed in an indirect
command file.

Indicates RETURN or ESC key entry required. Press
ing this key after entering a full command line ends the
command input and begins processing.

When using the prompted command format, ~ or m
is required after each command segment.

Used in manual text to indicate qualifiers; not entered.
Used in command syntax to indicate enclosed portion is
optional.

Used in manual text to indicate input options where
one in the vertical list must be selected; not entered.

Used in this manual text to indicate variable data input
(typically some number value); not entered.

Indicates an entered underscore character.

Indicates line continuation.

Commas are entered to separate listed subqualifiers.

Represents the CTRL key on many terminals. Nor
mally entered simultaneously with the .alphabetic char
acter that immediately follows.

For example, AC is the same as CTRL/C.

Indicates command inputs that must be entered as
shown.

Used in text to describe the command syntax; not
entered.

Indicates characters you type at the terminal. All sys
tem printouts appear in black print.

Used to highlight that portion of an example that is
being described in text.

ix

Chapter 1
Introduction

VAX-11 SORT rearranges and reformats records in any VAX-11 record man"'.
agement service (VAX-11 RMS) file organization. SORT consists of two func
tional parts: a control program called the utility, and a callable subroutine
package. The utility can be used in an interactive terminal session or in batch
mode using the VAXNMS DIGITAL command language (DCL) SORT com
mand. The callable subroutines are invoked by the SORT utility. Users can
write control programs in most VAX-11 languages using these callable
subroutines.

You can invoke SORT interactively by entering a SORT command with quali
fiers and input/output parameters. The command specifies one of four sort
types and the sorting keys. During program execution, SORT indicates all
errors. At the completion of each session, SORT prints a statistical summary.

1.1 Sort Types

The four sort types (or sorting processes) are:

• Record Sort

• Tag Sort

• Address Sort

• Index Sort

Record Sort produces a reordered data file sorted by specified key fields (that
is, entire records are reordered). This sort uses any V AXNMS input device
and can process any valid VAX-11 RMS format. Record, a relatively slow
sort, is the default process.

Tag Sort produces the same kind of output file as record sort by sorting only
the record keys. Tag sort then randomly reaccesses the input file to create a
resequenced output file according to those record keys. This method conserves
temporary storage, but can only accept input files residing on disk.

1-1

Addre11 Sort produces an address file. That is, a reordered address file, on
disk only, of record's file addresses (RFAs). The address file, sorted by record
keys, can be used by programs as an index to read the original file in the
desired sequence. This is the fastest of the four sorting processes.

Index Sort produces an address file containing the key field of each data record
and a pointer (RFA) to its location in the input file. The address file can be
used by programs to randomly access data from the original file in the desired
sequence. Like address sort, this is a high-speed process.

For more information on sort types, see Chapter 2.

1.2 l·nput and Output

As input, SORT accepts sequential, relative or indexed-sequential data files
containing records of fixed, variable, or variable with fixed-length control
(VFC) format. Character, binary, or decimal data types, and files from disk,
magnetic tape, card reader or terminals are accepted.

As output, SORT produces sequential, relative or indexed-sequential data
files. These files can be of fixed, variable or VFC format and output to disk,
magnetic tape, printer or terminal. In addition, SORT outputs address files
(on disk only) for sequential access by programs.

1.3 Statistics

SORT prints statistics at the end of each session. These statistics include:

• Elapsed execution time

• Number of records read, sorted, and output

• The longest record length

For more information on statistics and how they can be useful, see Section
2.2.3 and Chapter 5.

1.4 Functions Supported by VAX-11 SORT

1. Sort types: record, tag, address, index.

2. File organizations as input and output: sequential, relative, indexed
sequential. All VAX-11 RMS file types are supported.

3. Record format for input and output: fixed, variable, and VFC. All
V AX-11 RMS record formats are supported.

4. All V AXNMS devices are supported for input and output.

5. Multivolume support as provided by VAX-11 RMS.

1-2 Introduction

6. Callable subroutine package. VAX-11 programming languages producing
native mode code are supported. Included are:

VAX-11 COBOL-74

VAX-11 FORTRAN IV-PLUS

VAX-11 MACRO

VAX-11 BLISS

7. Controlled by command string or specification file.

8. Free field and fixed position specification file formats.

9. Data Types:

• Character data is ASCII representation

• Binary data is VAX representation

• Packed decimal data is VAX representation

• Zoned data is VAX representation

• Decimal data supports:

- leading separate sign
- leading overpunched sign
- trailing separate sign
- trailing overpunched sign

10. Ascending/descending output based on each key field.

11. Output file blocking and allocation size.

12. Sort statistics provided at completion.

13. ASCII collating sequence for character keys.

14. RSX SORT-11 utility option.

Introduction 1-3

Chapter 2
Running SORT in Interactive and Batch Mode

This Chapter explains how to use the SORT command to sort files interac
tively or in batch mode.

2.1 The SORT Command

The SORT command consists of three parts: the command name, the input
file specification parameter, and the output file specification parameter, in
that order. Each part must be separated by one or more spaces or tabs, and is
invoked by terminating with ~ when the command is entered as a continu
ous command string.

This section describes how sorts are performed using the SORT command
without the specification file qualifier. The specification file is a more sophis
ticated method of controlling SORT, and therefore is described later in Sec
tion 2.5. The specification file is a command qualifier and should not be
confused with the file specifications for the input and output files.

Format:

' ' $ 4 0 RT C ci u a 1 if i er s ~~n Put - f i 1 e - s Pe c if i cation C ci u a 1 i f i e rs}..
'\: u t Put - f i 1 e - s Pe c i f i c at i on C ci u a 1 i f i e r s J/([IT)

I • O Command Name (SORT)

SORT is the command name· that invokes the VAX-11 SORT utility. Com
mand name qualifiers specify the sort process, describe the sorting key(s),
specify the number of work files, indicate the specification file if a sort other
than a standard sort is to be performed, and finally indicate whether the
VAX-11 SORT utility or the RSX SORT-11 utility is to be invoked.

2-1

9 Input Fiie Specification Parameter

This parameter specifies the physical location of the input file (see Appendix
D for additional file specification information). Input file qualifiers define the
input file attributes such as record format and file size.

e Output F'lle Specification Parameter

This parameter specifies the physical location of the sorted output file (see
Appendix D for additional file specification information).

Output file qualifiers define the output file attributes such as record format,
record size, block size, file organization, allocation quantity, contiguous allo
cation, overlay existing file, and bucket size.

The V AXNMS command interpreter will prompt you for input and output
file specifications if they are not entered in the first command string. The
following is an example of prompted format:

$.._J ... sw.o R....,r .. 1 K ... ' E •• '._' = ,.......=..,. , SIZE= 80) (Bfil) i---command with qualifiers
$_Fi 1 e : R 1 0 0 SQ (8If) input-file-specification
$ _ 0 u t Put : TEST • TM P (8(f) output-file-specification

The following example shows how the SORT command is structured:

SORT Command

rcommand

;,
Name Command Parameters --'. * f$ ""j '. f. 1 f . 1 '~ET Ke1wort input- l e-sPe[ut- i e-sPec ·i=i

Command Qualifiers File Qualiliersj
(/keyword eyword/keyword) (/keyword/keyword/keyword)

,.__ _____ Subquallflers J
(=n) or (=(keywordf eyword))

Values
(=n)

Notes: 1. keywords may be truncated and are unique.
2. n indicates variable data input (typically some number value).

Table 2-1 summarizes all the SORT command qualifiers, subqualifiers, and
input values. The complete details on qualifiers and input values are dis
cussed in Section 2.4.

2-2 Running SORT in Interactive and Batch Mode

Table 2-1: SORT Command Summary

Notation Used:

• Underlined upper-case characters indicates the minimum entry required.
• Brackets [] indicate enclosed portion is optional.
• If several enclosed words are listed vertically, only one may be used.
• Qualifiers, subqualifiers and values that must be specified are shown without brackets.
• Braces I I indicate a selection must be made from the vertical list.
• Defaults are shown in bold type.

Command
Qualifiers

$SORT

r'ROCESS~
/KEY=

Subqualifiers
and Values

[RECORDl~ ~gRESS
INDEX

([NUMBER=[l-101]

,POSITION=ll-163831

{

1-255 for CHARACTER data type}
,SIZE= l, 2, or 4 for BINARY data type

1-31 for DECIMAL data type

[

CHARACTER]
.~IN ARY
,iONED
,D.E.QIMAL
,PACKED_DECIMAL

[
,LEADING_SIGN 1
,TRAILING_SIG~

[
,,SEPARATE_SIGN 1
,OVERPUNCHED_SIGNj

[
,ASCENDING) 1
,DESCENDING)j

[!WORK_FILES=[0,2-101]

[!SPECIFICATION [=file-specification[)

[!RSX11]

Notes

/KEY: is not required if specified in a spec
ification file.

TRAILING_SIGN is default if data type
is DECIMAL.

OVERPUNCHED_SIGN is default if
data type is DECIMAL.

SYS$INPUT is default file name.

VAX-11 SORT is default. /RSXll requires
PDP-11 SORT command switches. Refer
to the PDP-11 SORT Reference Manual.

(continued on next page)

Running SORT in Interactive and Batch Mode 2-3

Table 2-1: SORT Command Summary (continued)

Input File
Qualifiers

Subqualifiers
and Values

input-file-specification

[!.EORMAT=

Output File
Qualifiers

(RECORD_-8IZE=[l-16383LJ

GEILE_SIZE= (1-4294967295]) J

Subqualifiers
and Values

output-file-specification

[!.EORMAT] = (VARIABLE:=[l-16383] ~
FIXED=[l-16383]]

(CONTROLLED=[l -16383]

GSIZE=[l-25fil]

(,BLOCK_SIZE= (18-327671)]

[

/SEQUENTIAL]
/RELATIVE
/INDEXED_SEQUENTIAL

[I ,ALLOCATION =(1-4294967295 J]

[!QONTIGUOUS]

[!Q.YERLA Y]

[/fil.ICKET_SIZE=[l-321]

2-4 Running SORT in Interactive and Batch Mode

Notes

See Appendix D for file-specifications.
DAT is default file-type.

RECORD_SIZE is not normally
specified.

FILE_SIZE is not normally specified.

Notes

See Appendix D for file specifications. The
default output file type is the same as in
put file type.

FIXED record format is default if sort pro
cess is index or address.

Used for VFC records only. Default value is
2 if CONTROLLED is specified and SIZE
is not.

For magnetic tape files only.

Default is the input file organization if sort
process is record or tag, otherwise
/SEQUENTIAL is default. If
/INDEXED_SEQUENTIAL is specified,
/OVERLAY must be specified.

Required if /CONTIGUOUS is specified.
The default value is determined by the
number of records sorted.

/NOCONTIGUOUS is default.
/CONTIGUOUS is invalid if
/ALLOCATION is not specified.

/NOOVERLA Y is default. /OVERLAY is
required if /INDEXED SEQUENTIAL out
put file organization is specified.

Default value is the same as the
input file value if the input and output file
organizations are the same, otherwise
default is 1.

2.2 Interactive Sessions

To invoke SORT in interactive mode simply enter the s·ORT command. Any
errors in the command are immediately reported at your terminal (see Chap
ter 4, Error Conditions). At the end of a successful run, SORT prints the
statistics message (see Section 2.2.3).

SORT accepts two kinds of command formats: a keyboard-oriented command
string containing all the command qualifiers (excluding /SPECIFICATION),
or a keyboard-oriented command string containing the /SPECIFICATION
qualifier pointing to a specification file containing the command qualifiers.

For example:

$ SORT/KEY=<POSITION=l ,SIZE=10) inPut-file-sPecification
outp1.1t-f i le-specification ffiJ

or:

$ SORT/SPECIFICATION=file-specification
inPut-file-sPecification output-file-specification l8@

The use of the specification file is the more involved method and therefore
explained in Section 2.5.

In order to specify a sorting sequence, you must select key fields within the
data itself. Remember, SORT reorders the entire file. The information pro
vided in Section 2.6 can help you to set up the key fields (keys).

You can extract key information from a file and store it in a reordered format
for future use in accessing data in your original file in the order of your
reordered file. In addition, the contents of your sorted file can be entire
records, key fields with record pointers, or record indices relative to the posi
tion of each record within the file. Your intentions for the sorted output file
usage, together with input and output file organizations, determine what sort
process to use. The information provided in Section 2.2.2 can help you to
choose the correct sorting process.

Because SORT is designed to process all RMS file organizations, you also
must consider how to direct the sorting process you have chosen, so that your
output file organization will be usable on your peripheral device. The informa
tion provided in Section 2.2.2 and Table 2-2 compares file organizations and
sorting processes.

If your sorting task requires more than two work files, Section 2.7 can help you
to set up additional work files. Most sorts will normally use the default num
ber of work files.

Finally, you must specify input and output file specifications. Appendix D
reviews the standard VAX/VMS file-specification information, and file speci
fication qualifiers are summarized in Table 2-1, and described in detail in
Section 2.4.

Running SORT in Interactive and Batch Mode 2-5

2.2.1 A Sample Sort

Users can invoke the SORT command by simply providing the required key
position and size for a single key and the file name of a single input file
located on the user's default disk.

The format of the command is:

$ SORT/KEY=<POSITION=Cl-18383] tSIZE=C1-255J)
inPut-file-sPecification output-file-specification IBEf)

This means:

• A record sorting process is performed on the specified input file

• The input file key data type must be character

• The input file must reside on the user's default disk

• All the records in the input file are reordered in the output file in ascending
alphabetic order

• Input file type DAT is assigned, and output file type DAT is assigned

• SORT assigns two work files for temporary storage

• Output file organization is the same as the input file organization

• Output file record format is the same as input records format

• Output file bucket size is the same as input file bucket size

• SORT statistics are printed at the terminal that executed the sort

An abbreviated representation of the preceding command example is:

$ SORT/K=<P0=1 tSI=80) INPUT OUTPUT CB:IT)

Description:

If you specify the key position and size, and character data type by default;
this sort reads the single input file specified (on the user's default disk), sets
up two work files on the user's default disk, and performs a record sort.

This process creates an output file named OUTPUT.DAT having the same
file organization as the input file. All the records in INPUT.DAT are reor
dered in ascending alphabetic order in the output file. The alphabetic order is
determined by the contents of the 80-character key field (SI=80) starting in
position one (PO=l) of each record.

NOTE:

A quick test can be run at your terminal by using
SYS$0UTPUT as the output-file-specification. This technique
displays the sorted output file before the sort statistics are
printed.

2-6 Running SORT in Interactive and Batch Mode

Finally, upon completion of the run the sort statistics are printed at the
terminal that executed the sort.

2.2.2 Selecting the Sort Type

SORT offers a choice of four processes: record, tag, address, and index. You
specify the sort process by using the proper qualifier in the command or in the
specification file code. Each process has its particular input requirements,
processing methods, device requirements, and resultant output files.

SORT provides four sorting techniques:

• RECORD (/PROCESS=RECORD, or SORTR if specification file)
Record sort produces a reordered data file sorted by _specified key fields
(that is, entire records are reordered). This sort can be used on any accept
able input device, and can process any valid V AX-11 RMS format. Record,
a relatively slow sort, is the default process.

• TAG (/PROCESS=TAG, or SORTT if specification file)
Tag sort produces the same kind of reordered data file as record sort by
sorting only the record keys. This method conserves temporary storage, but
can only accept input files residing on disk. Tag sort is faster than record
sort, if the key size is much smaller than the record size and the file size is
small so that the reaccessing process is short.

• ADDRESS (/PROCESS=ADDRESS, or SORTA if specification file)
Address sort produces an address file without reordering the input file. That
is, a reordered address file (on disk only) of record's file addresses (RF As).

The address file, sorted by record keys, can later be used as an index* to
read the original file in the desired sequence. Any number of address files
may be created for the same data base. A customer master file, for instance,
may be referenced by either customer-number index or sales-territory index
for different reports. This is the fastest of the four sorting processes.

• INDEX (/PROCESS=INDEX, or SORTI if specification file)
Index sort produces an address file containing the key field of each data
record and a pointer (RFA) to its location in the input file. The address file
can be used by programs to randomly access data from the original file in
the desired sequence. Like Address sort, this is a high speed process.

Figure 2-1 summarizes these options to help you determine which process is
best for your sorting application. Chapter 5 provides additional information
regarding sorting processes where performance considerations are important.

* Not indexed by VAX-11 RMS.

Running SORT in Interactive and Batch Mode 2-7

Figure 2-1: SORT's Four Sorting Processes

Input Data File

[~ }·~\ default process.
(Slowest Process)

(Dlsk,Magtape,Cards,Termlnal)

Records. of Reordered Rec. ords
Sorted by Keys.

Entire ~ Output Data Fiie

--~~---~-~~- D __ _

Input Data File
A __ _
8 __ _
c __ _
D

(Disk Only)

F-MK-00018-00

INDEX Sort
(A fast process if Key

Size is less than Record.)

Temporary Disk only, C __ _
Storage 2-10 Files. B

(Work Files) A---

(Disk,ANSI Magtape,
Printer, Terminal)

(Faster than Record sort
if Key Size is smaller than
record and file size is small.)
Uses less temporary

storage than Record sort.

(Fastest
Process)
Uses minimum

temporary
storage.

Output Address Fiie
of Reordered Record's Fiie

Address (RFA) Records
(fixed 6-byte records).

RFA in binary
RFA in binary
RFA in binary
RFA in binar

Temporary
Storage

(Work Flies)
Disk only,
2-10 Flies.

(Disk Only)
For !ater use to access the original
File when this particular sequence
is desired.

Output Address Fiie
of Record's Fiie Address (RFA)
Records (fixed 6-byte records)

plus Key Fields.
RF in nary + ey
RFA in binary + Key

_____,.RFA in binary + Key

RFA in binary + Key

(Disk or ANSI Magtape)

For later use to randomly access the
original File in the desired sequence.

2-8 Running SORT in Interactive and Batch Mode

Fiie 1/0 Co11slderatlons

Input and output file organizations are another important factor in determin
ing which eort type to use. Figure 2-2 shows how the 1/0 flows through SORT,
and Table 2-2 list all possible 1/0 combinations and shows the default output
file organb:ations.

Inputs to v,,X-11 SORT can be files of sequential, relative, or indexed organiza
tion containing records of fixed, variable, or VFC format from disk, magnetic
tape, card reader, or terminals.

Input parameters to the sort program are either provided by RMS after proc
essing the input file header records, or specified in the command in the form
of input-file-specification qualifiers (that is, /FORMAT ...).

Outputs frc1m VAX-11 SORT are files of records reordered by key fields and are
created in sequential, relative, or indexed organization. 'rhese files may con
tain record types of fixed, variable, or VFC format. Output files can be written
to disk, m.ignetic tape, printer, or terminals.

Sorted output address files of 6-byte RF As in binary coded records are output
to disk only for sequential access by programs. These output address files are
intended {iJr software use as indices into input files, and cannot be output to
printers or terminals without further processing.

Output parameters to the sort program are specified in the command in the
form of output-file-specification qualifiers (that is, /FORMAT ...).

Running SORT in Interactive and Batch Mode 2-9

Figure 2-2: File Organization 1/0 Flow

INPUT

SEQUENTIAL

DATA FILE

RELATIVE

DATA FILE

INDEXED-SEQUENTIAL
DATA FILE

NOTES:

SORT

OUTPUT

SEQUENTIAL

DATA FILE

SEQUENTIAL

ADDRESS FILE

RELATIVE

DATA FILE

SEQUENTIAL

ADDRESS 'FILE

INDEXED

DATA FILE

SEQUENTIAL
ADDRESS FILE

1. RECORD & TAG produce reordered data files of the same organization as input
by default.

2. INDEX produces reordered address files of RFA's plus keys in sequential file
organization.

3. ADDRESS produces reordered address files of RFA's only in sequential file
organization.

F-MK-00019-00

2-10 Running SORT in Interactive and Batch Mode

Table 2-2: File 1/0 Considerations

Output File
Type of Sort Organization

Input File Process Specified Results

Sequential Reordered sequential data file.
Record Relative Reordered file of data records.

Indexed-Seq Populates (overlays) an already existing Indexed-
Sequentiai output file with reordered data records.

Sequential }
Sequential Tag Relative Same as for record.
Data File Indexed-Seq

Sequential }
Address Relative Sequential address file of RFAs.

Indexed-Seq

Sequential }
Index Relative Sequential address file of RFAs with keys.

Indexed-Seq

Sequential
Record Relative

Indexed-Seq

Sequential
Relative Tag Relative
Data File Indexed-Seq Same as above for each process.

Sequential
Address Relative

Indexed-Seq

Sequential
Index Relative

Indexed-Seq

Sequential
Record Relative

Indexed-Seq

Indexed- Sequential
Sequential Tag Relative
Data File Indexed-Seq Same as above for each process.

--~ Sequential
Address Relative

Indexed-Seq
~____,

Sequential
Index Relative

Indexed-Seq
....,.,.., .. _

Note: The default output file organization is shown in italic type.

Running SORT in Interactive and Batch Mode 2-11

. 2.2.3 SORT Statistics

Statistics are automatically printed at the completion of each sort session.
These consist of: elapsed execution time, the number of records read, sorted,
and output; the longest record length; the multiblock count used and the
multibuffer count used for input and output; the merge order; the number of
merge passes; the working set size used; the number of initial runs; and the
virtual memory used for the sort tree.

In addition, SORT statistics include statistics kept by VAX/VMS for the
number of buffered and direct 1/0 operations, CPU time, and the number of
page faults. Figure 2-3 illustrates a typical SORT statistics printout of a
single sequential input file (filename RlOOSQ.DAT) that is 10,000 records in
length, and each record is 80 characters long. The sorting is done on an 80
character key starting at position 1 of each record. The output filename is
TEST.TMP and is output in the same format as the input file by default.

The command string that caused the sample printout in Figure 2-3 was:

$ SORT/KEY=CPOS=1,SIZE=80) C8fll
$_File: R100SQ (8fll
$_01.ttP1.tt:TEST.TMP ~

The statistics can be used to help tune the parameters you specify for a
specific sort, such as the best working set quota size to use (see Chapter 5,
Section 5.2.2.5).

Figure 2-3: Sample Sort Statistics Printout

SORT STATISTICS:

RECORDS READ: 10000
RECORDS SORTED: 10000
RECORDS OUTPUT: 10000
MM{ I MUM WORK I NG SET USED: 128 0
VIRTUAL MEMORY ADDED: 2380328
DIRECT IO COUNT: 227
BUFFERED IO COUNT: 23
PAGE FAULTS: 15598
ELAPSED TIME: 00: 02: 28. 97 C)
$

LONGEST RECORD LENGTH: 80
INPUT MULTI BLOCK COUNT: 11
OUTPUT MULTI BLOCK COUNT: 20
INPUT MULTI BUFFER COUNT: 2
OUTPUT MULTI BUFFER COUNT: 2
NUMBER OF INITIAL RUNS: 38
ORDER OF THE MERGE: 7
NUMBER OF MERGE PASSES: 2
CPU TI ME: 5055 8

Notes: O Maximum working set used is in blocks.
fJ Virtual memory added is in bytes.
C) Elapsed time is the total sort run time from start to end in hrs: min: sec.

1/100secs.
8 CPU time is the data processing time less 1/0 time in 1 /1 OOsecs. (that is, 5055

is 50 seconds and 55/100th's seconds.)

2.2.4 Samples

Figure 2-4 shows a step-by-step session for an interactive sort on a single key.
Figure 2-5 shows how an interactive sort would appear when sorting on two
keys.

2-12 Running SORT in Interactive and Batch Mode

Figure 2-4: Interactive Session Sample #1

Step 1: Observe the Input file you want to sort to determine where the key fields are
located and their size.

To sort this Input file named BOATS.LST In alphabetic order by manufacturer you must
specify a single key field starting at character position 2 and having a key field size of 1 O
characters.

MANUFACTURER MODEL RIG LENGTH WEIGHT BEAM PRICE

NORTHERN 37 KETCH 37 1a1000 11 $5(11000
CHALLENGER al KETCH a1 281700 13 $511228
OLYMPIC ADIJENTURE KETCH az 2a12so 13 $80 I 500
EASTWARD HO M/S 2a 7 1000 09 $15 1900
AMERICAN 28-MS M/S 28 5t500 08 $18t895
LINDSEY 39 M/S 39 1a15oo 12 $351800
WINDPOWER IMPULSE SLOOP 16 650 07 $3t500
CAPE DOf~Y TYPHOON SLOOP 18 1 t 900 08 $4t285
VENTURE 222 SLOOP zz 21000 07 $3t56ll
SALT 19 SLOOP 25 21600 07 $Gt580
AMERICAN 28 SLOOP 28 a1000 08 $91895
HUNTER 27 SLOOP 27 G t500 08 $1a1sss
TANZER 28 SLOOP 28 6t800 10 $17t500
ALBIN BALLAD SLOOP 30 71276 10 $27t500
GRAMPIAN Z-3a SLOOP 3a 11 t800 10 $28t675
CHRIS-CRAF CARIBBEAN SLOOP 35 18t000 11 $37t850
ISLANDER 36 SLOOP 36 13t450 11 $31 t730
COLUMBIA 41 SLOOP 41 20 t 700 11 $ll8 tll90

7
/KEY =(POSITION=2,SIZE= 10)

Step 2: Enter the following SORT command to sort the input file named BOATS. LST and
create an output flle named BOATS.ALB:

$ SORT/KEY=<POS=2tSIZE=10) BOATS+LST BOATS.ALB (5£!)

Running SORT in Interactive and Batch Mode 2-13

Step 3: Observe this printout when SORT has completed.

SORT STATISTICS:

RECORDS READ: 18
RECORDS SORTED: 18
RECORDS OUTPUT: 18
MAXIMUM WORKING SET USED: 200
VIRTUAL MEMORY ADDED: 404982
DIRECT IO COUNT: 2
BUFFERED I 0 COUNT: 1 7
PAGE FAUL TS: 146
ELAPSED TIME: OO:OO:Oi.87
$

LONGEST RECORD LENGTH: 57
INPUT MULTI BLOCK COUNT: 20
OUTPUT MULTI BLOCK COUNT: 32
INPUT MULTI BUFFER COUNT: 2
OUTPUT MULTI BUFFER COUNT: 2
NUMBER OF INITIAL RUNS: 0
ORDER OF THE MERGE: 0
NUMBER OF MERGE PASSES: 0
CPU TIME: 54

Step 4: Examine your newly sorted output file named BOATS.ALB. Notice that the re-
cords are now in alphabetical order.

MANUFACTURER MODEL RIG LENGTH WEIGHT BEAM Pl~ I CE

ALBIN BALLAD SLOOP 30 7t27G 1 0 $27 1500
AMER I CAN 26 SLOOP 26 t.!1000 08 $81885
AMERICAN 26-MS M/S 26 5,500 08 $181885
CAPE DORY TYPHOON SLOOP 18 1 ,900 06 $41285
CHALL ENGEi~ 41 KETCH ll 1 261700 13 $51 1228
CHRIS-CRAF CARIBBEAN SLOOP 35 181000 11 $371850
COLUMBIA ll 1 SLOOP 41 20,700 11 $l!8 1ll80
EASTWARD HO M/S 2l! 71000 08 $15t800
GRAMPIAN 2-34 SLOOP 3l! 111800 1 0 $2B1G75
HUNTER 27 SLOOP 27 8t500 09 $ ltJ 1888
ISLANDER 38 SLOOP 36 131l!50 11 $31 ,730
LI ND SEY 38 MIS 38 1l! t500 12 $351800
NORTHERN 37 KETCH 37 1l!1000 11 $501000
OLYMPIC ADVENTURE KETCH 42 2llt250 13 $801500
SALT 18 SLOOP 25 21600 07 $81580
TANZER 28 SLOOP 28 6, 800 1 (I $171500
VENTURE 222 SLOOP 22 21000 07 $3 15Gl!
WIND POWER IMPULSE SLOOP 18 650 07 $31500

2-14 Running SORT in Interactive and Batch Mode

Figure 2-5: · Interactive Session Sample #2

Step 1: Observe the Input flle you want to sort to determine where the key fields are
located and their size.

To sort this Input file named BOATS.LST In ASCII alphanumeric order first by beam, and
then by price, you must specify two keys. The first key (or primary key) field starts at
character position 4 7 and has a size of 2. The second key starts at character position 51
and has a size of 7.

MANUFACTURER MODEL RIG LENGTH WEIGHT BEAM PRICE

NORTHERN 37 KETCH 37 1llt000 11 $50t000
CHALLENGER ll 1 KETCH ll 1 2Gt700 13 $51 t228
OLYMPIC ADlJENTURE KETCH ll2 2llt250 13 $80t500
EASTWARD HO M/S 2ll 7 , 000 09 $15,900
AMERICAN 28-MS MIS 28 5t500 08 $18t895
LINDSEY 39 MIS 39 1llt500 12 $35t800
WINDPOWER IMPULSE SLOOP 18 850 07 $3t500
CAPE DORY TYPHOON SLOOP 18 1 t800 OB $llt285
VENTURE 222 SLOOP 22 ZtOOO 07 $3t5Gll
SALT 19 SLOOP ·25 2 t GOO 07 $6t580
AMERICAN 28 SLOOP 28 lltOOO 08 $8t885
HUNTER 27 SLOOP 27 Gt500 09 $1llt889
TANZER 28 SLOOP 28 Gt800 10 $17t500
ALBIN BALLAD SLOOP 30' 7t278 10 $27t500
GRAMPIAN 2-3ll SLOOP 3ll 11 tBOO 10 $29t875
CHRIS-CRAF CARIBBEAN SLOOP 35 18t000 11 $37t850
ISLANDER 36 SLOOP 38 13tll50 11 $31 t730
COLUMBIA ll1 SLOOP ll1 20t700 11 $ll8tll90

/KEY=(POS=47,~2) T
/KEY=(P0S=51,SIZE=7)

Step 2: Enter the following SORT command to sort the input file named BOATS.LST and
create an output file named BOATS.BEM:

$ SORT /KEY= (POS=tn 1SIZE=2) /KEY= (POS=51 t!3I:ZE=7)
BOATS+LST BOATS+BEM (Bffl

Running SORT in Interactive and Batch Mode 2-15

Step 3: Observe this printout when SORT has completed.

SORT STATISTICS:

RECORDS READ: 18
RECORDS SORTED: 18
RECORDS OUTPUT: 18
MAXIMUM WORKING SET USED: 200
VIRTUAL MEMORY ADDED: 202240
DIRECT ID COUNT: 2
BUFFERED IO COUNT: 17
PAGE FAUL TS: 142
ELAPSED TIME: 00:00:01.85
$

LONGEST RECORD LENGTH: 57
INPUT MULTI BLOCK COUNT: 20
OUTPUT MULTI BLOCK COUNT: 17
INPUT MULTI BUFFER COUNT: 2
OUTPUT MULTI BUFFER COUNT: 2
NUMBER OF INITIAL RUNS: 0
ORDER OF THE MERGE: 0
NUMBER OF MERGE PASSES: 0
CPU TIME: as

Step 4: Examine your newly sorted output file named BOATS.BEM. Notice that the
records are now In order first by beam width, and second by price.

MANUFACTURER MODEL RIG LENGTH WEIGHT BEAM PRICE

CAPE DORY TYPHOON SLOOP 18 1 ,900 08 $4,285
WINO POWER IMPULSE SLOOP 18 850 07 $3,500
VENTURE 222 SLOOP 22 2,000 07 $3,584
SALT 18 SLOOP 25 2,900 07 $8,580
AMERICAN 26 SLOOP 26 a,ooo 08 $8,885
AMERICAN 28-MS M/S 26 5,500 08 $18,885
HUNTER 27 SLOOP 27 9,500 09 $14,999
EASTWARD HO MIS 24 7,000 09 $15,800
TANZER 28 SLOOP 28 s,soo 10 $17 ,500
ALBIN BALLAD SLOOP 30 1,218 1 0 $27,SOO
GRAMPIAN 2-3ll SLOOP 3ll 11 , 800 10 $29,675
ISLANDER 36 SLOOP 38 13,450 11 $31 ,730
CHRIS-CRAF CARIBBEAN SLOOP 35 10,000 11 $37,850
COLUM~IA ll1 SLOOP ll1 20,700 11 $ll8,ll90
NORTHERN 37 KETCH 37 1a,ooo 11 $50t000
LINDSEY 38 M/S 39 1a,500 12 $35,800
CHALLENGER 41 KETCH ll1 28,700 13 $51 ,220
OLYMPIC ADVENTURE KETCH ll2 za,250 13 $8(1,500

2-16 Running SORT in Interactive and Batch Mode

2.3 Batch Sessions

To run the same sort as shown in Figure 2-4 using batch mode, perform the
following steps:

Step 1: Create a command file named BOATSl.COM as follows:

$ PRINT BOATS.LST
$ SORT/KEY=<POS=2tSIZE=10) BOATS.LST BOATS.ALB
$ PRINT BOATS.ALB

Step 2: Enter this command:

$ SUBMIT BOATS1.COM filj)

Observe this response:

Job n entered on queue SYS$6ATCH

Step 3: Observe that the input file, output file, sort statistics, and batch
statistics are all printed on the system printer.

2.4 The SORT Command Description

NOTE:

Review the SYMBOLOGY in the front of this manual before
continuing.

Format:

$ SORT[qualifiersJ inPut-file-sPecification[qualifiersJ
outPut-file-sPecification[qualifiersJ ~

2.4.1 Command Name Quallflers

Abbreviated Example:

$ s 0 R rl/Jp::~::a::e::fi::~::s::;::ri::z::k:iiNt:!B\fJ%M\\~fdBJiliX:x~::li.~~ltt~il1S\:~::~:;·~~:i::D1m1::ttN[\f:i;"rt1
inPut-file-sPecification[qualifiersJ
outPut-file-sPecification[qualifiersJ ~

/PROCESS= r~g::J
~NDEX ~

Indicates the type of sort to be performed. /PROCESS=RECORD is the
default.

Running SORT in Interactive and Batch Mode 2-17

/KEY=

This qualifier must be specified unless defined in a specification file.· It de
fines a sorting key, and may appear several times in a single command string
in order to specify several sort keys (up to 10).

NOTE:

ThE~ /KEY subqualifiers group must be enclosed in parentheses.

((NUMBER=n]

n specifies the precedence of the sort key being defined, where 1 is the
primary sort key, 2 is the secondary sort key, and so on. If this option is
not specified on the first /KEY qualifier, NUMBER=! is assumed. If
this option is not specified on subsequent /KEY qualifiers, the default
NUMBER value is the NUMBER value of the previous key plus 1.
Legal values are 1 - 10.

,POSITION=n

n specifies the position of the key within each record, where the first
character of the record is 1. This subqualifier input must be specified.

,SIZE=n

n specifies the length of the sort key in either characters, bytes, or
digits, depending on the key field data type. This subqualifier input
must be specified. If the sort key data type is CHARACTER, key size
must be less than or equal to 255 characters. If the data type is binary,
key size must be 1, 2, or 4 bytes. If the data type is any of the decimal
types, key size must be less than or equal to 31 digits. The total of all
key field sizes must be less than or equal to 255 bytes. See Section 2.6
for additional key size information.

,CHARACTER
,BINARY
,ZONED
,DECIMAL
,PACKED_DECIMAL

ThiB subqualifier indicates the type of data appearing in the sort key
field. See Section 2.6 for data type descriptions. CHARACTER is the
default.

2-18 Running SORT in Interactive and Batch Mode

f,LEADING_SIGN l
LTRAILING_SIGNJ

This subqualifier indicates whether the sign of a decimal data type key
appears at the beginning or end of the key. If the key data type is
DECIMAL and this option is not specifed, TRAILING_SIGN is the
default. See Section 2.6 for key descriptions.

[
OVERPUNCHED_SIGNJ

,SEPARATE_SIGN

This subqualifier indicates whether the sign of a decimal data type key
is superimposed on the decimal value or is separate from the decimal
value. If the key data type is DECIMAL and this option is not speci
fied, OVERPUNCHED_SIGN is the default. See Section 2.6 for key
descriptions.

f,ASCENDING J
6DESCENDING

Indicates whether the key is to be sorted into ascending or descending
order. ASCENDING is the default value.

[/WORK_FILES=n]

n specifies the number of temporary work files to be used during the sort.
Values of 0, or from 2 to 10 may be used. Default value is 2. 0 specifies no work
files because data will fit in real memory. See Section 2. 7 for additional
information.

[/SPECIFICATION[=file-specification J]
Specifies the name of a file which contains SORT specification statements. If
this qualifier is not specified, a standard sort is performed. See Section 2.5
and Appendix D for additional information. SYS$INPUT is the default value.

[/RSXll]

Indicates that SORT-11 (/RSXll) is to be invoked. The SORT-11 command
format and switches are not described in this manual. Refer to the PDP-11
SORT Reference Manual when using the /RSXll qualifier. VAX-11 SORT is
the default value.

Running SORT in Interactive and Batch Mode 2-19

NOTE:

Only the minimal unique abbreviated form of qualifier and
parameter inputs are required, but all four character abbrevia
tions are accepted (for example, enter SPE= for
spgc1FICATION=SYS$INPUT).

An abbreviated example is:

$ SORT/KEY=CNUM=1,POS=12tSIZE=2,QECI)/SPE=
inPut-file-sPecification[qualifiersl
outPut-file-sPecification[qualifiersl ~

The actual example including defaults is:

$SORT/PROCESS=RECORD/KEY=-
< NUMBER= 1 ,posITION=12tSIZE=2,QECIMALtTRAILING_SIGN,
OVERPUNCHED_SIGN,ASCENDING)/WORK_FILES=2-
/SPECIFICATION=SYS$INPUT -

inPut-file-sPecification[qualifiersJ
outPut-file-sPecification[c:iualifiersl (Bf[)

2.4.2 Input-Fiie-Specification Quallflers

Defines input file attributes.

Format:

$ SORTCc:iualifiersJ inPut-file-sPecification-
UWSiO.!~iMAJhi:::~}R!t;:O:iJJ~:(l:fil§:jJ:j(g:E::#,fo@mt:::tJL§kH~tUG)i#A\i}]J
outPut-file-sPecification[c:iualifiers] ~

NOTE:

If the input file name does not contain a file type, the default
file type becomes DAT.

If only one FORMAT subqualifier is specified, the parentheses
() can be omitted.

[/FORMAT=(RECORD_SIZE=n J
This input should be used only to override the record size input normally ·
retrieved from RMS. Omitting RECORD_SIZE indicates that the file record
format is to be obtained from the file header or label. n specifies the longest
record length (LRL) in bytes. The LRL input is optional, but should be
specified if the input file is not on disk or is inaccurate. The longest record
length allowed is 16,383 bytes (not including control bytes). For additional
information on determining the LRL, refer to the $F AB MRS parameter in
the VAX-11 Record Management Services Reference Manual. Note, stream
format is not supported because VAX-11 RMS does not support it.

2-20 Running SORT in Interactive and Batch Mode

~FILE_SIZE=n)]

This input should only be used to supply the file size normally pro
vided by RMS when the input file is not on disk. This input is used to
determine the size of the work files based on input file size. n specifies
the input file size in blocks. Default is 1000 if file size cannot be
obtained from RMS and is not specified by the user. Maximum file
size is 4,294,967 ,295 blocks.

2.4.3 Output-File-Specification Quallflers

Defines output file attributes.

Format:

$ SORT[qualifiersJ inPut-file-sPecification[qualifiersJ
outPut-file-sPecification-

!~lllllillllWPdDllli~\~l~'l'~'~~~IBllMlllllllllllll
NOTE:

If the output file name does not contain a file type, the output
file type becomes the same as the input file type.

If only one FORMAT option is specified, parentheses() may be
omitted.

[/FORMAT=]

~(FIXED=n l
(V ARIABLE=n
(CONTROLLED=n

Indicates the output file record format. n specifies the longest record
length (LRL) of the output records in bytes, and is optional. The
longest record length allowed is 16,383 bytes (less any control bytes).
Default is input file record format if record or tag sort, and FIXED if
index or address sort. For additional information on determining the
LRL, refer to the $FAB MRS parameter in the VAX-11 Record Man
agement Services Reference Manual.

[,SIZE=n]

This input applies to CONTROLLED records only. That is, variable
with fixed-length controlled (VFC) records. n specifies the size in bytes
of the fixed portion of controlled records. Maximum fixed control area
size is 255 bytes. If CONTROLLED is specified, and SIZE is not,
default is two bytes.

Running SORT in Interactive and Batch Mode 2-21

GBLOCILSIZE=n)]

This input applies to magnetic tape files only. n specifies the block
length in bytes of the output file. Default value is the block size of the
input tape file, or that which was established at tape mounting time.
Block length must be in the range of 18 to 65,535 bytes.

NOTE:

To ensure for correct data interchange with other DIGITAL
systems, you should specify a block size less than or equal to
512 bytes. To ensure compatibilty with most non-DIGITAL
systems, the block size should be less than or equal to 2048
bytes.

[

/SEQUENTIAL l
/RELATIVE
/INDEXED-SEQUENTIAL

Indicates the organization of the output file. If /INDEXED_SEQUENTIAL
is specified, the output file must already exist and must be empty; therefore,
/OVERLAY must be specified. Default is the input file organization if a
record or tag sort (/PROCESS= RECORD or /PROCESS=TAG) is performed.
Otherwise, /SEQUENTIAL is default.

[/ALLOCATION=n]

n specifies the number of 512-byte blocks of disk space to be allocated for the
output file. The default value is whatever the output requires based on the
number of records sorted. Blocks allocated must be in the range of 1 to
4,294,967, 295.

[/CONTIGUOUS]

Indicates contiguous allocation of blocks for output file. Default is /NOCON
TIGUOUS. This qualifier is invalid if /ALLOCATION is not specified, or if
/ALLOCATION value is insufficient for total output and the file must be
extended.

[/OVERLAY]

/OVERLAY indicates that an existing file which has the same name as the
output file should be overwritten with the SORT output. /OVERLAY requires
that the existing file must be empty. Default is /NOOVERLAY.

[/BUCKET._SIZE=n]

n specifies the RMS bucket size (that is, the number of 512-byte blocks per
bucket) for the output file. If the output file has the same organization as the
input file, the default value is the same as input file bucket size. The maxi
mum number of blocks per bucket is 32. If the output file organization is
different from the input file organization, the default value is 1.

2-22 Running SORT in Interactive and Batch Mode

2.5 Specification Fiie

Use of the /SPECIFICATION qualifier in the SORT command allows SORT
to be controlled by SORT specification statements. These statements are
contained in the header record and field records of a specification file, and
provide a means for expanding the range of sorting features.

Having sort processes controlled by specification files enables dynamic pro
gram control of specification file statements, and therefore dynamic control of
subsequent sort processes using the same specification file modified. Also,
specification file libraries can be maintained for often-used sorts.

The command string for a typical standard sort using a specification . file
would look like this:

$ SORT/SPECIFICATION[=specification file]
input-file-specification output-file-specification ~~

There are eeveral methods of entering the /SPECIFICATION qualifier. If you
allow the predetermined specification file statements to control the sort,
SORT will run automatically with no further operator prompts.

Example:

$ SORT/SPECIFICATION[=file-sPecification
of the Predetermined specification file]
inPut-file-sPecification
output-file-specification CB~

However, if you use the default specification file (that is, =SYS$INPUT, and
providing your terminal is set to be the input device), SORT will prompt you
for the specification file values.

Example:

$ SORT/SPECIFICATION
inPut-file-sPecification
OUtPUt-file-SPecification (BTI)

PLEASE ENTER SPECIFICATION FILE RECORDS.
_enter the specification file header record 1.iali.tf?~5 IBID
-enter the specification file field record values for

the 1st ~\e'/ field CBtf)

_enter the specification file field record values far
t h e l a '::i t K e '/ f i e 1 d (QIB~I]

Running SORT in Interactive and Batch Mode 2-23

If you allow SORT to prompt you for the input and output files as well as the
specification file values, then the SORT command will be input in the follow
ing sequence:

$ SORT/SPECIFICATION ~
_file: input-file-specification ~
_OUTPUT: output-file-specification ~
PLEASE ENTER SPECIFICATION FILE RECORDS.
-enter the specification file header record 1.1alues ~
-enter the specification file field record values for

the 1st ~\e)' field~

-enter the specification file field record values for
the last ~\e)' field@~

2.5.1 Specification Fiie Records

The specification file records can have either of two formats; fixed position
field format (SORT-11), and logical position field format (VAX--11 SORT).

NOTE:

Since omit/include and alternate collating sequences are not
supported, ALTSEQ records and record type records are in
valid and cause errors. Only header and field specification re
cords are processed.

Fixed Position Fleld Format (SORT-11)

In order to allow ease of conversion from SORT-11 V2 use to VAX-11 SORT,
the existing fixed-position-fields format of SORT-11 is accepted.

Free Fleld Format (VAX-11 SORT)

To allow some flexibility for new users, fields may be separated by commas,
and records may be variable length up to 132 characters. Blanks are ignored
unless they are embedded within a field, such as 1 00, in which case an error is
generated. Continuation lines are supported as in DCL. The individual fields,
their length, meaning and order are identical to SORT-11.

Comments in this format are placed at the end of the line by placing an
exclamation point (!) immediately before the comment. The format for a
VAX-11 SORT header record would look like:

Pase nu1r1bertline nu1r1ber,H,sort t)'Pettotal ~\e)' field size,
sort ins order ,col la.tins sec:iuence ,output ~\e)' trecord lensth
! c o lrlfrl e n t

2-24 Running SORT in Interactive and Batch Mode

A specific example would be:

1 t1 tHt t10tAt t}-{t132 !header for record sort ascend ins -
ordert KeY field size 10.

2.5.2 Specification Fiie Record Formats

Two record types and two record formats exist for specification files. The two
record types are header records and field specification records. Each record
type may contain either fixed position fields to support SORT-11 compatible
files, or free fields for VAX-11 SORT.

2.5.2.1 For SORT-11 Type Flies (fixed position flelds) - A DIGITAL SORT
specification form is available for use when setting up fixed position fields (see
Figure 2-6).

Figure 2-6: SORT Specification Form

D11e __ _

Programmer-------·----

Mode of Processin

Lone :c SORTR
! SORTT
>- SORTA
,_ SORTI

To111
Leng1h of 2
Key Fields j

NOT USED

SORT SPECIFICATIONS

HEADER SPECIFICATION

---.--------------
SORTR,T

FIELD SPECIFICATION

I 2 !~ ~6 . . 1]_ 78 7! l!O

ITT P•og•am o l [J I]
Paye ldent1ficat1011 _ -· _____ --·· _.

Comments
(Program 1ft'cntif1ca11onl

Comments

L 1
.----.--........... .-------...---..---------- ·-------·--------~

Forced

Lme u. ~ ~ Field Location ~

~za ~~i
~ ! §1--Fr-om·~-To----1~ ! 8

I-----,
Field Nilme I

Comments

Running SORT in Interactive and Batch Mode 2-25

The format of each type of SORT-11 specification record is fixed. The SORT
specification form is based on card columns, as shown in Figure 2-6. The
following entries are common to both types of specification file lines.

Column Entry Notes

1-2 Page number Required only when different types of records are to be
described. A separate page, numbered in ascending sequence,
should be used for each record type and its corresponding Field
Spe~ifications. Only the first page has a header specification.

3-5 Line number Specifies line sequence. If column 5 is blank, 0 is assumed.
Thus a digit entry in this column can be used to identify later
line insertions.

6 Specification Type H for Header, or F for Field

In the following material, unless otherwise stated, these criteria apply:

• Numeric data is decimal.

• Either leading zeroes or leading blanks are acceptable in right-justified
entries.

• All field position definition records begin at column 1.

Table 2-3 summarizes all fixed position SORT specification entries.

Header Record:

The first record in a specification file must be the header. The header tells the
SORT program what kind of sorting process to use, key field size, sorting
order, and output record size.

Format:

Field
Position Function Legal Values

1-2 Page number Any number or blanks

3-5 Line number Any number or blanks

6 Header record ID H

7-12 Sorting process SORT R,l,A, T or blanks

13-17 Total key field size Any number or blanks

18 Sorting order A, D, or blank

19-25 (not used) Blanks (anything-ignored)

26 (not used) Blank (anything-ignored)

27 (not used) Blank (anything-ignored)

28 (not used) Anything-ignored

29-32 Output record length Any number or blanks

33-132 (not used by SORT, may be Anything-ignored
used for comments)

2-26 Running SORT in Interactive and Batch Mode

Notes and Comments on Header Specification Entries:

Columns Explanations and Legal Entries

7-12

13-17

Type of SORT (must be left-justified)
Legal values: SORTR or blanks - Record sort

SORTT - Tag sort
SORTA - Address sort
SORT! - Index sort

Total of all key field sizes
Legal values: 1-255

Must be equal to the total size in bytes of the largest record
key on the file and right-justified.

18 Normal sort order sequence
Legal values: A or blank - ascending

D - descending

This field may be qualified by N or 0 entered in column 7 of the field
specification.

29-32 Output Record Length (for SORTR and SORTT only)
Legal values: A decimal number (right-justified) equal to the number of

bytes in the largest output record.

To determine this number, add the sizes of the key fields in the field specifi
cations for the largest record in the file. If neither SORTT nor SORTR are to
be run at this time, an entry in this field is not needed.

Field Specification Records:

The field specification records follow the header record and specify key fields
(up to ten).

NOTE:

Data fields are not supported since each entire record in a file is
written to the output file for SORTR and SORTT. For SORTA
or SORTI, output files contain only pointers and possibly some
restricted-format key data.

Format:

:Field
Position Function Legal Values

1-5 Page/Line number See Header Specification

6 Field record ID F

7 Key field order Nor 0

8 Key field type B,C,D,I,J,K,P,Z

9-12 First byte of field Any number or blanks

13-16 Last byte of field Any number or blanks

17-19 (not used) Anything-ignored

20-80 (not used - available Anything-ignored
for comments)

Running SORT in Interactive and Batch Mode 2-27

Notes and Comments on Field Specification Entries:

Columns

7

Explanations and Legal Entries

Key Field Order - specifies keys and their -sort sequence (this entry can satisfy
the column 18 entry for the Header Specification).

Legal values: N - normal sort sequence
' 0 - opposite sort sequence

8 Key field data type codes:

B - Binary (two's complement binary)

C - Character (8-bit ASCII coded alphanumeric characters). This is the de
fault data type.

D - Decimal d~ta with sign trailing and overpunched.

I - Same as D, but with the sign leading and separate, so that the first byte of
the field is a + or -.

1J - Same as I, but with the sign trailing and separate.

K - Same as D, but with the sign leading and overpunched

P - Packed-decimal format.

Z - Zoned ASCII format.

9-12 Field location (location of the first byte of a multi-byte key field).

Legal values: A decimal number (right-justified) specifying the first byte of
a key field.

Blanks can be used to specify a one-byte key field.

13-16 Field location (location of the last, or only, byte of a key field).

Legal values: A decimal number (right-justified) specifying the last byte,
or the only byte, in a key field.

Table 2-3: Fixed Position SORT Specification Summary

Header Specifications

Column Entry Explanation

6 H Header specification

7-12 SORTR Record sort
SORTT Tag sort
SORTA Address sort
SORTI Index sort

13-17 1-255 Decimal number specifying the total length of all key
fields listed in the Field Specifications (must be the
maximum for SORTR).

18 A or blank, Sort processing sequence: ascending or descending.
D

29-32 Decimal number This entry specifies the number of bytes for the largest
(SORTR or SORTT record.
only) 1-16,383.

(continued on next page)

2-28 Running SORT in Interactive and Batch Mode

c 0 11.llllrl

Header
Field

Table 2-3: Fixed Position SORT Specification Summary (continued)

Field Specifications

Column Entry Explanation

6 F Field specification

7 N Normal - Key field sequenced as indicated in column
18 of Header Specification.

0 Opposite - Key field sequenced opposite to column 18
of Header Specification.

8 c Character type data (8-bit ASCII alphanumeric data
in key field).

z Zoned ASCII.

D Digit - use digit value or convert to binary for FOR-
TRAN IV numbers.

I Same as D, but with sign leading and separate (that is,
the first byte of the field is a + or -) .

J Same as D, but with sign trailing and separate (that is,
the last byte of the field is + or -) .

K Same as D, but with sign leading overpunched (that is,
the sign is superimposed on the first byte of the field).

p Packed-decimal data type.

B Binary data type - the key field is in two's complement
binary notation.

9-12 Decimal number Location of the first byte of the key field.
1-16,383

13-16 Decimal number Location of the last (or only) byte in the key field.
1-16,383

17-19 (not used) All values are ignored.

20-80 Anything Comments.

Sample Fixed Position Specification Fiie:

The following sample shows a header record and field record. Together they
specify an index sort process on a character key of four bytes starting in
position 10 of the record, and the output file is to be sorted in descending
order.

numbers
Record

Record

1234587 11 33 48
HSORTI HEADER I NOE)-{ SORT ALL DEFAULT
FOC00100013 FIELD SPEC ALPHA

NOTE:

This sample specification file performs the same sorting process
as the sample shown for free field position format.

KEY

Running SORT in Interactive and Batch Mode 2-29

2.5.2.2 For VAX-11 SORT (free fields, that Is flelds separated by commas): -
Free fields are formatted in the same sequence as the fixed position fields
described previously; however, instead of identifying fields with column num
bers, commas are used. If you wish to enter blanks or use the default value,

. you must follow the entry with a comma.

Header records and field specification records are used in the same manner
here as they are for the fixed position field records described previously, and
the same explanations and legal entries also apply (see Table 2-3).

Header Records:

Field
Position Function

1 Page number

2 Line number

3 Header record ID

4 Sorting process

5 Total key field size

6 Sorting order

7 Collating sequence

8 Output key

9 Record length

10 Comment

Fleld Specification Records:

Field
Position Function

1 Page number

2 Line number

3 Field record ID

4 Key sorting order

5 Key data type

6 start position of key

7 ending position of key

8

9 comment

2-30 Running SORT in Interactive and Batch Mode

Legal Values

Any number, or blank, or comma,

Any number, or blank, or comma,

H,

SORT R,I,A, T, or blank, or comma

Any number, or blank, or comma,

A, D, or blank, or comma,

Anything, or comma,

Anything, or comma,

Any number, or blank, or comma,

! anything, or blank

Legal Values

See Header

See Header

F,

N, 0, or blank, or comma,

B,C,D,I,J,K,P,Z, or blank, or comma,

Any number, or blank, or comma,

Any number, or blank, or comma,

Anything-ignored, or comma,

! Anything-ignored

Header

Field

.

Sample Free Fleld Position Specification Fiie:

The following sample shows a header record and field record. Together they
specify an index sort process on a character key of four· bytes starting in
position 10 of the record, and the output file is to be sorted in descending
order.

Record

Record

t t H t SORT I t t , t , ! HEADER INDEH SORT ALL DEFAULT E}<CEPT
TYPE

t1F101C110t13tt!FIELD SPEC ALPHA KEY 4 BYTES POS
OPPOSITE ORDER

NOTE:

This sample specification file performs the same sorting process
as the sample shown for fixed position format .

1 (I

2.6 Setting Up the Keys

When entering the SORT command qualifier /KEY, you must specify
/KEY=(subqualifiers and values) for each key field by which the records are
to be sorted. The total size of all key fields must be less than or equal to 255
bytes, and the maximum number of key fields allowed is ten.

Before entering the key subqualifiers and values into the SORT command
string, perform the following steps (1through6). See Section 2.4.1 for /KEY=
specification information. Figure 2-7 provides a flowchart for quick reference
when setting up keys.

Step 1

Each sort key is assigned a precedence number. You may choose to use either
the default system or the key numbering system. First decide what your key
fields will be and in what order you want them sorted. Make notes of their
sequence for use when assigning the precedence number to each. Note, if you
intend to enter the sort keys into the command string in the order of preced
ence you have chosen for your sorting operation, then the NUMBER=
subqualifier is not necessary. Instead, the default feature will automatically
assign the first key entered as key number 1 and each subsequent key the next
higher number.

K NUMB:a~p,le: ~:'3'. 2nd. Key 3rd. Key 4th.Key

.no7 required n
18

$ SORT/KEY=()1K_E_Y-==(-)/KEY=()/KEY==(·)
(default)

Q-MK-00020-00

2nd.Key Primary .Key 4th. Key 3rd. Key

Running SORT in Interactive and Batch Mode 2-31

Figure 2-"/: Setting Up the Keys

Make sure to enter keys
Into the SORT command
string In the correct
order or . precedence If
default , key numbering
ll' used.

YES

STEP3 ~ SPECIFY
LEADING or

TRAILING SIGN*

TEP4 ~ SPECIFY
OVERPUNCHED*

or SEPARATE SIGN

NO
(default

STEP 1
ASSIGN

KEY
NUMBERS

Make notes of key number
assignment, starting position,
and key field size for each key.

SPECIFY
ZONED

CHARACTER
(default)

STEP 5
SPECIFY ST ART
POS and SIZE
for each key

STEP 8
SPECIFY

ASCEND* or
DESCEND ORDER

Enter these key specifications
for each key Into the SORT
command string.

BINARY

SPECIFY
BINARY

NOTE: Data type determines the
unit of key field size.

NOTE: Total size of all key fields
must be le11 than or equal
to 255 bytes.

*Indicates default parameter.

F·MK-00021·00

2-32 Running SORT in Interactive and Batch Mode

Step 2

Before you can enter key size in Step 5, you must first determine what the
data type of each key field is. Figure 2-8 shows a summary of the data types
supported. See Appendix C for specific descriptions of the date types.

Example:
For decimal data type, specify DECIMAL in the command string. For exam
ple:$ SORT/KEY=(POS=l,SIZE=lO,DECIMAL).

Figure 2-8: Recognizing Data Types and Signed Numbers

1. CHARACTER - 8-b It ASCII coded alphanumeric characters.

2. BINARY - (for example, 01010101)

Packed-Decimal String

POSITIVE NUMBER
Odd# Even#

NEGATIVE NUMBER
Odd# Even#

54321+ II 4321+ Is 54321- Is
54321A 04321A 54321D

T T._ ______ Last byte In string
.__ ______ First byte In string

3.. DECIMAL - 8-blt ASCII coded decimal digits 0-9

4321- Is
04321D

~•ding Numeric String (Moat significant byte ls llgnod 12345)

. SIGNED NUMBER +
+or -12345

Separate Numeric Format

+12345
I

~ex 28 or 2~

-12346

~

Tralllng Numeric String (Least significant digit la algned 64321)

+
SIGNED NUMBER

54321+ or -

Separate Numeric Format Zoned Numeric Format

64321+ 54321 + Is 54321
I

~ /Hex 28 or 2d\

54321- 54321- Is 5432g

~ ~

UNSIGNED NUMBER
12346

Overpunched Format

+ 12346 Is A2345

~

-12346 II J2345

~

UNSIGNED NUMBER
54321

Overpunched Format

54321 + Is 5432A

~

54321-11 5432J

~

Running SORT in Interactive Batch Mode 2-33

Step 3

If data type is decimal, specify the position of the sign. If data type is not
decimal, proceed to Step 5.

Examples:

1. For + 12345 or -12345, specify the optional keyword LEADING_SIGN in
the command string. For example:

$ SORT/KEY=<POS=1 tSIZE=10tDECIMALt LEAD)

2. For trailing sign numbers (that is, 12345+ or 12345-), the optional key
word TRAILING_SIGN is not required (TRAILING_SIGN is default).

Step 4

For decimal data types, specify if the sign is overpunched (superimposed) or
separate from the decimal value.

Examples:

1. For separate sign (that is, +12345 or -12345), specify the optional keyword
SEPAHATE_SIGN in the command string. For example:

$ SORT/KEY=<POS=1 tSIZE=10 tDECIMAL tLEAD tSEPA)

2. For overpunched sign (that is, 5432A or 5432J), the optional keyword
OVERPUNCHED_SIGN is not required (OVERPUNCHED_SIGN is
default).

Step 5

You must specify the starting position (first character in the key field) and the
size for each key. The first character of the record is 1.

Example: (in this example, key NUMBER= is default, data type is
CHARACTER).

$ SORT /KEY =(POS== 1,SIZE= 10)/KEY =(POS=22,SIZE=8)/KEY =(POS=42,SIZE=6·)/KEY =-(POS=:84,SIZE=18·)

80-~:::r ri I~I ::: ~:::= [~
1 10

Character/ ~
POBitione 10-ch.

key

22 29
~

8-ch.
key

42 48,,.,,,,
7-ch.
key

2-34 Running SORT in Interactive and Batch Mode

64 79 80

16-ch.
key

Q..MK-OOOU-00

NOTE:

Key field size can represent either the number of bytes, or
digits depending on the data type. The chart below describes
which unit of key field size to use:

Data Type Size Indicates

Character Number of characters (bytes) must be less than or equal to
255.

Binary Number of bytes must be either 1, 2, or 4.

Decimal

1 byte for decimal values in the range of -128 to 127.

2 bytes for decimal values in the range of --32, 768 to
32,767.

4 bytes for decimal values in the range of-2,147,483,648 to
2,147,483,647.

Number of digits in the string must be less than or equal to 31.

The number of bytes in the key field for character, binary, zoned numeric,
and overpunched is identical to the number of characters or digits. The size of
leading separate or trailing separate fields is equal to the number of digits
plus one. The size of packed-decimal fields is equal to (number of digits/2) + 1.

See Appendix C for additional information.

Step 6

Specify for each key, whether that key is to be sorted into ascending or
descending order. Ascending order is default.

Example:

To sort the first key in ascending order and the second key in descending
order, enter the key parameters into the command string as follows:

$ SORT/KEY=(POS=11SIZE=10)/KEY=(POS=221SIZE=81DESCENDING)

Now that you have performed Steps 1through6 to assemble specifications for
each key, you are ready to _enter these key specifications into the SORT
command string.

2. 7 Setting Up the Work Files

SORT automatically assigns two work files to your SYS$DISK device if you
choose to use the default. The size of these two work files (SORTWORKO and
SORTWORKl) is determined by SORT from the size of your input file.
(Note; if no assignment is done, work files are created on SYS$DISK).

Running SORT in Interactive Batch Mode 2-35

To assign your work files to a device other than the deviee your directory is on,
type:

$ASSIGN (device>: SORTWORKO
$ASSIGN (device>: SORTWORKl

$ASSIGN (device>: SORTWORK8

Example: $ ASSIGN 063: SORT WORK 1

Figure 2-9 illustrates how logical names are assigned to physical devices.

Figure 2-9: Specifying W~rk Files.

WORK FILE # Logical Name

1
2
3
4
5
6
7
8
9
10

SORTWORKO
SORTWORK1
SORTWORK2
SORTWORK3
SORTWORK4
SORTWORK5
SORTWORK6
SORTWORK7
SORTWORK8
SORTWORK9

A specific physical device code is assigned to a
specific logical name using the ASSIGN, or DE
FINE commands.

Physical Device Codes------------

DB: RP04, RP05, RP06 Disk
OM: RK06 Disk

Example: ASSIGN

E
ORKO

Unit 0 }

Controller A

------ RP06 Disk

2-36 Running SORT in Interactive and Batch Mode

Default is AO

Chapter 3
Calllng SORT from User Programs

You can use SORT as a set of callable subroutines from your programming
language. There are two functional interfaces to choose from; the file 1/0
interface and the record 1/0 interface. Both 1/0 interfaces share the same set
of six subroutines, and the same calls are used from all languages.

This SORT subroutine package consists of six external function calls. Each
call causes a phase of the SORT program to be performed, and returns a
status (32-bit) value indicating either success or the failure type of the phase.
Calls and associated parameters conform to the VAX-11 standard calling
interface. The calls are:

Subroutine Name

1. SOR$INIT_SORT

2. SOR$PASS_FILES

3. SOR$RELEASE-REC

4. SOR$SORT_MERGE

5. SOR$RETURN-REC

6. SOR$END_SORT

3.1 Fiie 1/0 Interface

Function

Initialize scratch files, work area, sorting parameters

Pass a file name to SORT

Pass a record to SORT

Initiate sorting and intermediate merging of records

Initiate final merge pass and receive output record from
SORT

Allow clean up of files and work area to complete the
sort operation

The file 1/0 interface enables you to specify an input file and an output file to
SORT. SORT then reads the data from the input file and sorts it into the
output file.

3-1

For the file VO interface, use the following four calls in the order listed:

Call

1. SOR$PASS __ FILES

2. SOR$INIT __ SQRT

3. SOR$SORT._MERGE

4. SOR$END __ SORT

3.2 Record 1/0 Interface

Function

Pass file specifications

Initialize work areas

Sort records

Clean up work areas

The record 1/0 interface enables you to pass individual data records to SORT.
SORT orders them, then returns each record in correct order, individually.

For the record VO interface, use the following five calls in the order listed:

Call Function

1. SOR$1NIT __ SQRT Intialize work areas

2. SOR$RELEASE_REC Pass an input record

3. SOR$SORT_MERGE Sort records

4. SOR$RETURN_REC Receive a sorted output record

5. SOR$END __ SORT Clean up work areas

NOTE:

Calls 2 and 4 are each repeated for as many times as there are records to be
sorted.

3.3 Programming Considerations

Any program can use either SORT subroutine package interface, providing
the languagEi used produces V AX-11 native mode code and supports the fol
lowing features.

• 32-bit integers

• Longword addresses

• Call by string descriptors

• Call by reference

• Either CALLS or CALLG (that is, VAX/VMS standard calling sequence)

• External function calls (each SORT subroutine returns a 32-bit status code)

3-2 Calling SORT from User Programs

Additional information regarding the VAX/VMS calling standards can be
found in Appendix C of the VAX-11 Common Run-Time Procedure Library
Reference Manual. SORT follows the Mod\Ilar Procedure Standards and uses
the common Run-Time Library routines to allocate memory and event flags.
However, SORT is not re-entrant.

The SORT subroutines are a part of the standard VMS library, therefore to
use the package a user only has to code the appropriate calls into his program,
compile or assemble and link. During the linking process the appropriate
SORT routines will automatically be linked with the user's program.

Figure 3-1 summarizes the callable subroutine set.

Figure 3-1: Subroutine Set Summary

NOTE:.

Use the subroutine calls In the order shown.

Call

1. SOR$PASS_FILES

2. SOR$1NIT _SORT

3. SOR$RELEASLREC

4. SOR$SORT _MERGE

5. SOR$RETURN_REC

6. SOR$ENO_SORT

Function

Open the Input file and create the output file.

Set up the key comparison buffer and validate key
Information.

Get memory for sorting Initial phase, Input and output
buffers, and set up to read Input.

Create work files and lnltlallze the sort.

Get record from user and bulld key.

Insert record by key into sort tree.

If sort tree Is full, continue; If not, get another record.

Output records to work files as a number of strings of
sorted records.

Output and Input until no more records and all records
are output.

Read In strings from work file and merge them until
there are ten or less left in work files.

Set up to output records to user.

Do final merge pass to output records (not work files)
to user.

Return memory, close output and Input files, and de
lete work files.

Calling SORT from User Programs 3-3

3.3.1 Key Comparisons

Both Interfaces

When using either interface, you have the choice of allowing SORT to do key
comparison to determine the correct order of any two records, or of writing a
routine of your own that SORT can call to do the key comparisons.

The advantage of writing your own routine is that you may know a great deal
more about the nature of the key data and therefore write a routine specifi
cally tailored to that particular data. Because SORT does not know anything
about the key data in advance of receiving it, SORT's key comparison routine
must be general in order to handle all types of data. A routine tailored to a
particular data type or set can therefore be much·more efficient, both in space
and performance.

If you want to use the SORT key comparison routine, you must provide the
key definitions in the SOR$INIT_SORT call. Or, if you want to use your key
comparison routine with SORT, you must pass the address of your routine's
entry point (with parameters) to SORT in the SOR$INIT_SORT call. See
Section 3.4.3, Definitions, for details. Users can write a program that uses any
key data type.

For debugging purposes, it should be noted that the key comparison routine
may not necessarily be called each time a call is made to SORT. This situa
tion can occur with the following calls:

SOR$RELEASE-REC
SOR$SORT_MERGE
SOR$RETURN-REC

Record 1/0 Interface Only

For record 1/0 interface, you must set up the key data area before passing the
record to SORT if SORT is to do the comparisons.

The key field must be set up with each key physically next to the one before it,
in order of precedence from left to right.

For example:
If the key definitions looked like this:

Key 1 - Character, Ascending, Pos 1, Size 4.
Key 2 - Binary, Descending, Pos 15, Size 2.
Key 3 - Packed, Ascending, Pos 30, Size 4.

Then, the key area in the user's program should look like this:

,A I c 0.aj-3,6 3 \4 D,

keyl k/y2 key3

SORT will handle ascending/descending considerations as long as SORT is
doing the key comparisons. The user does not have to modify the key data in
any way.

3-4 Calling SORT from User Programs

In addition the entire key area must physically preceed and be adjacent to the
record. For example:

(KEYAREA) ABCD45634D
(RECORD) ABCDEFGHIJKLMN45

When passing the record to SORT, the record descriptor must describe the
entire string including the key area. Therefore, the length of the string is (total
key length plus record length) and the address is the address of the first byte
of the key area.

For record 1/0 the only valid key types are 1, 2, and 4; character, binary, and
packed decimal. However, the instruction set provides a set of decimal in
structions that allow conversion from all of the other decimal formats to
packed. Therefore, when you build the key area from your record data you can
convert the other decimal types to packed, and by doing so, sort on any of the
nine valid key data types that the file 1/0 interface accepts.

When SORT returns the record it will strip off the key data. The length
returned will be the length of the record alone and the first byte of the output
buffer will contain the first byte of the record, not the key.

If you are passing the address of your own key comparison routine to SORT
and you do not wish to set up the key field :preceding the record, you may
specify a 0 value as the total key size in the call to SOR$INIT_SORT. You
then pass just the record to SORT. When SORT calls your key comparison
routine the addresses of the two keys will be the ,iddresses of the first byte of
each record.

3.4 Subroutines (Parameters, Definitions, and Valld Returns)

Each call requires several user supplied parameters. Parameters, parameter
definitions, and valid returns are provided in the following paragraphs for
each call. Both symbolic and hexadecimal values are provided for the re
turned messages as an aid when debugging.

All user program value parameters must be passed to SORT using "call by
reference" (that is, the address of the value in the user's data area is passed to
the SORT routine, not the value itself).

All file specifications and records are passed to SORT using string descriptors.
A descriptor is a 2-longword structure of format.

For example:

flags word] length. of string = 2 words = 1 longword

address of string = 1 longword

The address of the descriptor is passed to SORT.

To omit an optional parameter, either leave it null or pass a 0 address in the
argument list; do not pass the address of a data item with a 0 value. In general
the meaning of a parameter and its legal values are identical to the equivalent
parameter in the command line to the utility.

Calling SORT from User Programs 3-5

3.4.1 SOR$1NIT_SORT

Function: Initialize scratch files, work area, and sorting parameters.

Parameters: Each of the following parameters is numbered to match its defi
nition which follows.

1. Key buffer address 0

2. Longest record length (LRL) •

3. File size•

4. Number of work files

5. Sort type e
6. Total key size •

7. Comparison routine address•

Notes: o Mandatory for the file 1/0 interface and for the record 1/0 interface
only if SORT is to do the key compares.

8 Mandatory for the record 1/0 interface.

e Needed for the record 1/0 interface and input from unit record or
magnetic tape devices in order for SORT to be efficient, but is not
required.

8 Valid only for the file 1/0 interface.

e Mandatory only if parameter 1 is not present and the user program
is to do the key compares.

Definitions:

1. Set up the key buffer in your user data area. The key buffer describes the
definition of the keys to be sorted on, and has the following format:

key type

key order

start position

length

one word = 1-9 for file 1/0 interface, and 1, 2, or 4
for record 1/0 interface

one word = 0 or 1

one word = 1 to (max record size)

one word = 1-255 (depends on key type)

Up to ten of these blocks can be specified in the order of key precedence.

3-6 Calling SORT from User Programs

The key buffer must be preceded by a word specifying the number of keys
specified in the following blocks. For example:

2

1
Key 1 0

10
40

4
Key 2 0

60
10

Key Types: 1 =Character
2 =Binary
·a= Zoned
4 = Packed-decimal
5 =not used

Key Order: 0 = Ascending

number of keys

key type (character)
key order (ascending)
start position in record
length of key

key type (packed-decimal)
key order (ascending)
start position in record
length of key in number of digits

6 = Decimal leading overpunched
7 = Decimal leading separate
8 = Decimal trailing overpunched
9 = Decimal trailing separate

1 = Descending

When passing the address of the key buffer, pass the address of the word
with the number of keys.

2. Longest record length (LRL) is a decimal number (one word in length)
indicating the longest record length in bytes not including key size.

3. File size (one longword in length) is the value for the input file size in
blocks.

4. Number of work files (one byte in length) is the value of 2 - 10 or 0.

5. Sort type (one byte in length) is the value of 1 - 4 as listed:

1 = Record sort
2 =Tag sort

3 = Index sort
4 = Address sort

6. Total key size (one byte in length) is the value of 1 - 255.

7. Address of the user generated key comparison routine. You have the op
tion of performing your own key comparisons, and not supplying a key
definition to SORT. SORT calls your routine at the specified address, and
with the following parameters:

1) address of key 1
2) address of key 2

SORT expects the following return value:

-1 if key 1 is less than key 2.
0 if key 1 is equal to key 2.
1 if key 1 is greater than key 2.

NOTE

Keys must not be modified in any way.

Calling SORT from User Programs 3-7

Valid Returns:

Symbolic Hex Value Meanin1

SOR$-SORT __ ON 1C802C A sort is already in progress or this call is in
the wrong sequence.

SOR$_MISS_.KEY 1C8004 No key definition specified.

SOR$-13AD_TYPE 1C806C An invalid sort process was specified.

SOR$_BAD-1.JRL 1C8084 An invalid LRL was specified.

SOR$_LRLMISS 1C8074 No LRL was specified and is required.

SOR$_BAD_FILE 1C808C An invalid file size.

SOR$_WORK_DEV 1C800C Work file deviee not random access device or
not local node.

SOR$_ VM_FAIL 1C801C SORT failed to get needed virtual memory.

SOR$_WS_FAIL 1C8024 SORT failed to get needed working set size.

SOR$_NUM_.KEY 1C803C Invalid number of keys specified (must be
1-10).

SOR$_KEY_LEN 1C80AC Invalid key length specified.

SS$_NORMAL 1 Success

All RMS error codes See Chapter 4.

3-8 Calling SORT from User Programs

3.4.2 SOR$PASS_FILES

Function: Pass a file specification to SORT.

Parameters: Each of the following parameters is numbered to match its defi
nition which follows.

1. Input file descriptor]· 2. Output file descriptor

3. Output file organizaton

4. Output file record format

5. Output file bucket size

6. Output file block size •
7. Output file maximum record size

8. Output file allocation

9. Output file file options

Notes: All output file parameters are specified as for VAX-11 RMS.

O These parameters are mandatory.

8 ;These parameters are optional.
(

Definitions:

1. Input file descriptor is the string descriptor for the string in ASCII of the
input file specification.

2. Output file descriptor is the string descriptor for the string in ASCII of the
output file specification.

3. Value of output file organization (one byte in length):

FAB$C_SEQ
FAB$C-REL
FAB$C-1DX

4. Value of record format for output (one byte in length):

FAB$C_FIX
FAB$C_VAR
FAB$C_VFC

Calling SORT from User Programs 3-9

5. Value for bucket size (one byte in length) is 1 - 32.

6. Value for block size (one word in length) is 18 - 32,767.

7. Value for maximum record size (one word in length) is 1 - 16,383.

8. Value for output file allocation (one longword in length) is 1 to the maxi
mum RMS file size.

9. Value for output file file options (one longword in length) is: see the $FAB
FOP parameters in the VAX-11 Record Management Services Reference
Manual.

Valld Returns:

Symbolic

SS$_NORMAL

SOR$_SORT_ON

SOR$_ VAR__FIX

SOR$-1NCONSIS

SOR$_0PENIN

SOR$_0PENOUT

All RMS error codes

Hex Value

1

1C802C

1C8064

1C805C

1C109C

1ClOA4

3-10 Calling SORT from User Programs

Meaning I

Success

A sort is already in progress or this call is in
the wrong sequence.

Cannot change variable records to fixed
records.

Inconsistent data for file.

Cannot open input file.

Cannot open output file.

See Chapter 4.

3.4.3 SOR$RELEASE_REC

Function: Pass a record to SORT.

Parameters: Each of the following parameters is numbered to match its defi
nition which follows ..

1. Record descriptor

Notes: Parameter 1 is mandatory.

Definitions:

1. Record descriptor is the address of the descriptor for the key and record
being input to SORT. The length of the record must include the total key
length plus the total record length. Also, the key field must physically
immediately precede and adjoin the record, and the descriptor must point
to the beginning of the key.

Valld Returns:

Symbolic Hex Value Meaning

SS$_NORMAL 1 Success

SOR$_SQRT_ON 1C802C A sort is already in progress or this call is in
the wrong sequence.

SOR$__BAD_LRL 1C8084 Record length is longer than LRL specified.

SOR$__BAD_ADR 1C8094 Invalid descriptor address passed.

SOR$_KEY_LEN 1C80AC Invalid key length specified.

SOR$_EXTEND 1C80A4 Failed to extend work file.

SOR$_MAP 1C809C Internal sort map error.

SOR$_NO_WRK 1C8014 Cannot do sort in memory, need work files.

Calling SORT from User Programs 3-11

3.4.4 SOA$SOAT_MEAGE

Function: Initiate sorting and intermediate merging of records.

Parameter1: None.

Valld Returns:

Symbolic Hex Value Meaning

SS$_NORMAL 1 Success

SOR$_SOR'f'_QN 1C802C A sort is already in progress or this call is in
the wrong sequence.

SOR$_EXTE:ND 1C80A4 Failed to extend work file.

SOR$_NQ_WRK 1C8014 Cannot do sort in memory, need work files.

SOR$_MAP 1C809C Internal sort map error.

SOR$_READERR 1ClOB4 Cannot read a specified input file record.

SOR$_WRIT.EERR 1ClOD4 Cannot write a specified output file record.

SOR$_BADFIELD lClOlC Bad data in key field.

3-12 Calling SORT from User Programs

3.4.5 SORSRETURN_REC

Function: Initiate final merge pass and receive output record from SORT.

Parameters: Each of the following parameters is numbered to match its defi
nition which follows.

1. Record descriptor 8
2. Record size

Notes: 8 This parameter is mandatory.

Definitions:

1. Record descriptor for the output area that SORT is to place the output
record into.

2. The location (one word in length) in which SORT is to place the actual
size of the record returned.

Valld Returns:

Symbolic

SOR$_MAP

SOR.$-EXTEND

SS$_NORMAL

SS$-ENDOFFILE

Hex Value

1C809C

1C80A4

1

870

Meaning

Internal sort map error.

Failed to extend work file.

Success, a record has been returned.

Success, no more records to return.

Calling SORT from User Programs 3-13

3.4.6 SOR$END_SORT

Function: Allow clean up of files and work area to complete the sort opera
tion.

Parameters: None

Definitions: None

Valld Returns:

Symbolic Hex Value

SS$_NORMAL 1

SOR$_CLEAN_UP 1C80B4

3-14 Calling SORT from User Programs

Meaning

Success

Failed to delete work files and reinitialize
work areas and data areas.

3.5 Sample MACRO Program

.TITLE TESTSUB

.IDENT x01.01

THIS IS A SAMPLE MACRO
PROGRAM WHICH CALLS
THE SORT SUBROUTINE
PACKAGE. THERE IS AN
EXAMPLE USING EACH
INTERFACE.

' DATA AREA
;
FILENAMEIN:
FILENAMEOUT:

IN_FAB:
IN_RAB:
OUT_FAB:
OUT-RAB:
FILEIN:

FILEOUT:

KEYBUF:
KEYTYPE:
KEYORD:
KEYPOS:
KEYSIZ:
INLRL:
WRKFILE:
NUMWRK:
TAGSRT:

KEYAREA:
RECORDBUF:
RECDESC:

.ADDRESS

.ASCII /R010SQ.DAT/

.ASCII /TEST.TMP/

.BLKB 2

.BLKB 80

.BLKB 68

.BLKB 80

.BLKB 68
• LONG 10
.ADDRESS FILENAMEIN
.LONG 8
+ADDRESS FILENAMEOUT
.WORD 1
.WORD 1
.WORD 0
.WORD 1
• WORD 10
.WORD 80
• LONG 500,
.BYTE ll
.BYTE 2
.BLKB 2
.BLKB 10
.BLKB 80
.LONG 80

KEYAREA

;INPUT FILENAME
;QUTPUT FI LE NAME

;RMS DATA BLOCKS

;INPUT FILE NAME DESCRIPTOR

;ouTPUT FILE NAME DESCRIPTOR

;KEY DEFINITION BUFFER

;INPUT RECORD LONGEST LENGTH
;woRK FILE SIZE
;NUMBER OF WORK FILES
;TAG SORT

;KEY BUFFER
;RECORD BUFFER
;RECORD DESCRIPTOR

FIRST THE FILE I/O INTERFACE. DO A TAG SORT ON THE FILE 'R010SQ.DAT'
INTO THE FILE 'TEST.TMP' USING ll WORK FILES. KEY IS CHARACTERt 10 BYTES
LONGt STARTING POSITION 1 •

• EXTRN

FILEID::
.ENTRY

PUSHAB
PUSHAB
CALLS
BLBC
PUSH AB
PUSHAB

SOR$PASS-FILEStSOR$INIT_SORTtSOR$SORT_MERGEtSOR$END-SORTt
SOR$RELEASE_RECtSOR$RETURN_REC

FILEOUT
FILEIN
#2tSOR$PASS_FILES
ROt2$
TAGSRT
NUMWRK

;SAIJE REGISTERS
;DEFAULT ALL OUTPUT OPTIONS
;pusH FILENAME DESCRIPTOR ADDRESS

;PASS FILENAMES TO SORT
;TEST FOR ERROR
;PUSH SORT TYPE
;pusH NUMBER OF WORK FILES

Calling SORT from User Programs 3-15

CLRQ
PUSHAB
CALLS
BLBC

CALLS
BLBC
CALLS
BLBC

-<SP>
KEYBUF
•5tSOR$1NIT-SORT
ROt2$

•OtSOR$SORT-MERGE
ROt2$
•OtSOR$ENO_SORT
ROt2$

DEFAULT LRL ANO WORM FILE SIZE
PUSH KEY BUFFER ADDRESS
INITIALIZE THE SORT
TEST FOR ERROR
LET SORT DO COMPARES
START SORTING
TEST FOR ERROR
00 CLEAN UP
TEST FOR ERROR

NOW TRY THE RECORD I/O INTERFACE. RECORDS ARE 80 BYTES LONG, KEY IS
CHARACTER, 10 BYTES LONGt STARTING IN POSITION 1. WORK FILE SIZE IS
500 BLOCKS.

CALLS •OtOPEN-INPUT ;oPEN USER INPUT ANO OUTPUT FILE
BLBC ROt2$;TEST FOR ERROR

;DEFAULT SORT TYPE ANO WORK FILES
PUSHAB WRKFILE ;pusH WORK FILE SIZE
PUSHAB INLRL ;pusH LRL
PUSHAB KEYBUF ;pusH KEY BUFFER ADDRESS
CALLS •3 tSORUNIT-SORT ;INITIALIZE THE SORT
BLBC ROt2$;TEST FOR ERROR
MOVZWL •1000 tl~G ;sET UP LOOP INDEX

1$: CALLS #OtGELRECORD ;GET RECORD FROM MY FILE
BLBC ROt2$;TEST FOR ERROR
MOVC3 •lOtRECORDBUFtKEYAREA ;SET UP KEY IN KEY BUFFER

;soRT DOES COMPARES
PUSHAB RECDESC ;pusH RECORD DESCRIPTOR
CALLS •1 tSOR$RELEASE_REC ;GIVE RECORD TO SORT
BLBC R0t2$;TEST FOR ERROR
SOBGTR RS, 1$

;soRT DOES COMPARES
CALLS •OtSOR$SORT-MERGE ;NO MORE RECORDS TO GIVE

2$: BLBC ROtG$
3$:

PUSHAB INLRL ;pusH RECORD SIZE LOCATION
PUSHAB RECDESC ;pusH RECORD DESCRIPTOR
CALLS •2,SOR$RETURN_REC ;GET RECORD BACK
CMPL ROtSSLENDOFFILE ;GOTTEN ALL RECORDS
BEQL 4$;YES
BLBC ROt8$;ERROR
CALLS •O, PUT .. RECORD ;puT RECORD INTO OUTPUT
BRB 3$

4$: CALLS •OtSOR$ENO_SORT ;FINISH UP
BLBC ROtG$;TEST FOR ERROR
CALLS #OtCLOSE_FILE ;CLOSE UP FILES
MOVL •1 tRO ;INDICATE SUCCESS
RET

6$: CLRL RO ;INDICATE FAILURE
RET

.END

3-16 Calling SORT from User Programs

3.6 Sample COBOL-74NAX Program

IDENTIFICATION DIVISION.
PROGRAM-IO. TSTSORT.
*
* THIS IS A SAMPLE COBOL-74/VAX PROGRAM THAT CALLS THE NATIVE
* SORT SUBROUTINE PACKAGE USING THE RECORD I/O INTERFACE. IT
* REQUESTS A RECORD SORT USING A 5 BYTE CHARACTER KEY.
*
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FILE-IN
ASSIGN TO 11 SY 11

•

SELECT FILE-OUT
ASSIGN TO "SY".

DATA DIVISION.
* * ASSIGN FILE DEVICES
* ANO NAMES ANO DEFINE INPUT AND OUTPUT RECORD AREAS.
* FILE SECTION.
FD FILE-IN

VALUE OF ID IS 11 SORTIN.DAT 11

LABEL RECORDS ARE STANDARD.
01 IN-REC.

05 IN-1
05 IN-2
05 IN-3

FD FILE-OUT

PIC X<9> •
PIC X<5>.
PIC X<S>.

VALUE OF ID IS 11 SORTOU.DAT 11

LABEL RECORDS ARE STANDARD.
01 OUT-REC PIC X<20>.
* * SET UP DATA FOR SORT SUBROUTINE PARAMETERS.
* WORKING-STORAGE SECTION.
77 ENO-OF-FILE-SW PIC X

88 END-OF-FILE
77 SHOW-STAT

*

VALUE 11 0 11
•

VALUE II 1".
PIC 9(9) •

* LONGEST RECORD LENGTH, WORK FILE SIZE
* AND RETURN STATUS VALUES.
* 77 LRL PIC 99 VALUE 20 COMP.
77 FILE-SIZ
01 SORT-STATUS

88 SS-NORMAL
88 SS-ENDOFFILE

*

PIC 9(8) VALUE 1 COMP.
PIC S9(8) COMP VALUE O.

VALUE 1.
VALUE 2160.

* KEY BUFFER INDICATING ONE 5 BYTE CHARACTER KEY STARTING IN
* POSITION 10 OF EACH RECORD, ASCENDING ORDER.
* 01 KEY-BUFFER.

05 KEY-NUMBER PIC 9(4) VALUE 1 COMP.
05 KEY-TYPE PIC 9(4) COMP VALUE 1 •
05 KEY-ORDER PIC 9(4) COMP IJALUE o.
05 KEY-START PIC 9(4) COMP VALUE 10.
05 KEY-LENGTH PIC 9(4) COMP VALUE 5.

* * AREA FOR KEY AND RECORD.

*

Calling SORT from User Programs 3-17

01 WK-REC-ALL.
05 WK-KEYl PIC X<5>.
05 WK-REC.
10 WK-1 PIC X<S>.
10 WK-2 PIC X<S>.
10 WK-3 PIC X<G>.

PROCEDURE DIVISION.
MAIN-LOGIC•

* * OPEN THE INPUT AND OUTPUT FILES. THEN INITIALIZE THE SORT
*SPECIFYING THE KEY DEFINITION, THE LRL AND WORK FILE SIZE.

*

*

OPEN INPUT FILE-IN
OUTPUT FILE-OUT.

CALL "SOR$INIT_SORT" USING KEY-BUFFER LRL FILE-SIZ
GIVING SORT-STATUS.

IF NOT SS-NORMAL
MOVE SORT-STATUS TO SHOW-STAT
DISPLAY "FAILURE DURING SOR$INIT, STATUS WAS "SHOW-STAT

PERFORM ABORT-JOB.

* READ RECORDS FROM FILE
* EXTRACT THE KEY AND THEN HAND EACH TO SORT.

* PERFORM RELEASE-RECS UNTIL END-OF-FILE.

* * END OF FILE CALL SORT TO FINISH SORTING RECORDS.

*

*

CALL 11 SOR$SORT_MERGE" GIVING SORT-STATUS.
IF NOT SS-NORMAL

MOVE SORT-STATUS TO SHOW-STAT
DISPLAY "FAILURE DURING SOR$MERGE, STATUS WAS " SHOW-STAT
PERFORM ABORT-JOB.

MOVE "0" TO END-OF-FILE-SW.

* REQUEST RECORDS BACK FROM SORT UNTIL ALL RECEIVED.

* PERFORM RETURN-RECS UNTIL END-OF-FILE.

* * CALL SORT TO CLEAN UP WORK AREAS.

*

*

CALL "SOR$END_SORT" GIVING SORT-STATUS.
IF NOT SS-NORMAL

MOVE SORT-STATUS TO SHOW-STAT
DISPLAY "FAILURE DURING SOR$END, STATUS WAS 11 SHOW-STAT
PERFORM ABORT-JOB.

* CLOSE FILES.

*

*

CLOSE FILE-IN
FILE-OUT.

STOP RUN.

* READ RECORDS AND BUILD KEY.

* RELEASE-RECS.
READ FILE-IN

AT END
MOVE 11 1 11 TO END-OF-FILE-SW.

IF NOT END-OF-FILE
MOVE IN-REC TO WK-REC
MOVE IN-2 TO WK-KEYl
CALL "SOR$RELEASE_REC 11 USING BY DESCRIPTOR WK-REC-ALL
GIVING SORT-STATUS.

3-18 Calling SORT from User Programs

IF NOT SS-NORMAL
MOVE SORT-STATUS TO SHOW-STAT
DISPLAY "FAILURE DURING SOR$RELEASEt STATUS WAS " SHOW-STAT
PERFORM ABORT-JOB.

* * RECEIVE RECORDS AND WRITE THEM OUT.

* RETURN-RECS.
CALL "SOR$RETURN_REC" USING BY DESCRIPTOR WK-REC

BY REFERENCE LRL
GIVING SORT-STATUS.

IF SS-ENDOFFILE
MOVE "1" TO END-OF-FILE-SW.

IF NOT END-OF-FILE
MOVE SPACES TO OUT-REC

MOVE WK-REC TO OUT-REC
WRITE OUT-REC•

ABORT-JOB.
DISPLAY "ABNORMAL END OF JOB"•
CLOSE FILE-IN

FILE-OUT.
STOP RUN.

Calling SORT from User Programs 3-19

3. 7 Sample FORTRAN IV PLUS Program

c
c

PROGRAM CALLSORT

C THIS IS A SAMPLE FORTRAN IV PLUS PROGRAM THAT CALLS THE
C NATIVE SORT SUBROUTINE PACKAGE USING THE FILE I/O INTERFACE.
C THIS PROGRAM REQUESTS AN INDEX SORT OF FILE 'R010SQ.DAT'
C INTO THE FILE 'TEST.TMP'. THE KEY IS AN 80 BYTE CHARACTER
c ASCENDING KEY STARTING IN POSITION ONE OF EACH RECORD.
c
c
C DEFINE EXTERNAL FUNCTIONS AND DATA
c

c

CHARACTER*lO INPUTNAME
CHARACTER*B OUTPUTNAME
INTEGER*Z KEYBUF<5>
INTEGER*Z NUMWRK
INTEGER*Z ISRTTYP
INTEGER*4 SOR$PASS_FILES
INTEGER*4 SOR$INIT_SORT
INTEGER*4 SOR$SORT-MERGE
INTEGER*4 SOR$END-SORT
INTEGER*4 !STATUS

!INPUT FILE NAME
!OUTPUT FILE NAME
!KEY DEFINITION BUFFER
!NUMBER OF WORK FILES
!SORT PROCESS
!SORT FUNCTION NAMES

!STORAGE FOR SORT FUNCTION VALUE

C INITIALIZE DATA - FIRST THE FILENAMES THEN THE KEY BUFFER FOR
C ONE 80 BYTE CHARACTER KEY STARTING POSITION 1' 3 WORK FILES
C AND AN INDEX SORT PROCESS
c

c

DATA INPUTNAME,OUTPUTNAME/'R010SQ.DAT' ,'TEST.TMP'/
DATA KEYBUF,NUMWRK,ISRTTYP/1 ,1 ,0,1 ,90,3,3/

C CALL THE SORT EACH CALL IS A FUNCTION
c
c
C PASS SORT THE FILENAMES
c

c

IBTATUS = SOR$PASS_FILES<INPUTNAME,OUTPUTNAME>
IF <.NOT. !STATUS> GOTO 10

C INITIALIZE WORK AREAS AND KEYS
c

c

!STATUS= SOR$INIT_SORTCKEYBUF,,,NUMWRKtISRTTYP>
IF <.NOT. !STATUS> GOTO 10

C SORT THE RECORDS
c

c

!STATUS = SOR$SORT_MERGE< >
IF <•NOT. I STATUS) GOTO 10

C CLEAN UP WORK AREAS AND FILES
c

!STATUS= SOR$END-SORT<>
IF <.NOT. !STATUS> GOTO 10
STOP 'SORT SUCCESSFUL'

10 STOP 'SORT UNSUCCESSFUL'
END

3-20 Calling SORT from User Programs

Chapter 4
Error Conditions

You can encounter error conditions at three operating levels: first with the
VAXNMS DCL command interpreter, next with the SORT error messages,
and last with VAX-11 RMS messages.

SORT handles two basic types of errors; fatal and warning. Fatal errors (se
verity level F) cause SORT to halt processing; warning errors (severity level
W) cause a warning message to be output and allow sort processing to pro'."
ceed. Errors in both these categories are grouped into three classes:

• Errors caused by 1/0 or other system failures.

• Errors caused by misinformation passed to SORT as a parameter of a su
broutine call.

• Errors caused by invalid data in a key field.

For the SORT utility, errors of all types and classes are signaled to the sys
tem; this signal causes a message to be output. Execution is either stopped or
continued based on the severity of the error. Execution can be resumed only if
the severity level is W (that is, code = 0).

In summary, only invalid data errors and a few RMS errors cause warning
error messages. System or 1/0 failures and bad subroutine parameters are
fatal. For additional information regarding error condition handling, refer to
the VAX/VMS System Services Reference Manual.

4-1

4.1 Command Interpreter Error Messages

In interactive mode, when you enter a command line incorrectly, the com
mand interpreter issues a descriptive error message telling you what was
wrong. For example, if you specify more than one parameter for a command
that accepts a single parameter, you receive the message:

%DCL-W-MAXPARAMt maximum Parameter count exceeded

You must then retype the command line.

Other error messages may occur during execution of a command. These mes
sages can indicate such errors as a nonexistent file or a conflict in qualifiers.
Not all messages from the system indicate errors; other messages are informa
tive, or merely warn you of a particular condition.

The V AXNMS system messages have the general format:

%XXX-L-CODEt text

Lt t. Descriptive comment.
------- Shorthand code for the message text.
,------- Severity Level:

Example:

S =Success
W =Warning
E =Error
F =Fatal

Mnemonic for the operating system program
issuing the message.

%SORT-W-CLOSEOUTt error closin~ output CoutPut file-spec
ification)

Because these messages are descriptive, you can usually understand what you
need to do differently when you issue the command again. But, if you do not,
the VAX/VMS Messages and Recovery Procedures Manual lists all the possi
ble command interpreter error messages and describes what you can do to
correct a command interpreter error.

4.2 SORT Error Messages

The following VAX-11 SORT error messages are listed in alphabetic order.
All SORT error messages have the same format as command interpreter mes
sages, that is:

%SORT-<seueritY leuel>-<code) tCtext).

4-2 Error Conditions

The following descriptions of error messages observe the following
conventions:

• Only the (code), (text) part of the message is shown in the following list.

• (filespec) ind~cates a file specification. For example:
DB1:[153,101TEST.TMP;3

• (number) indicates the user entered numeric value.

• LRL means the longest record length (specified in bytes).

6AD,....ADR t inl.1alid descriptor address specified.

You passed the subroutine package an address for a descriptor, and the
descriptor was invalid format. Character string descriptors in VAX consist
of two longwords. The first word of the first longword contains the charac
ter string length in bytes. The second longword contains the address of the·
string.

User Action: See Section 3.4 and check character string format.

6ADFIELDt (filesPect or field text that is inl.1alid) field in
valid at (nur11ber>.

Bad data in key field or command. In this message, (number) indicates
the record number of the record containing bad data in hex.

User Action: Check key field data type and the starting positions and
lengths (See Section 2.6, Setting Up the Keys).

6AD_FILEt file size invalid.

You specified a negative file size or a zero file size. File size must be
greater than zero.

User Action: Specify a file size greater than zero.

6AD_KEYt invalid ~\e~· specification.

Either the key field size, position, data type, or order is incorrect within
the key definition. Positions start at one and cannot be greater than the
maximum record size. Size must be less than or equal to 255 for character
data, 1, 2, or 4 for binary data, and less than or equal to 31 for decimal.

User Action: See Section 2.6, Setting Up the Keys, and check the com
mand string key specifications.

Error Conditions 4-3

BAD-LENt outPut record lensth less than 18 bYtes for Mastape.

Magnetic tape requires record lengths to be at least 18 bytes and no
greater than 4096 bytes.

User Action: See Section 2.4.3, and check your output file block size
parameters.

BAD-LRL t inPut file (filespec).
,Record size sreater than specified LRL.

In reading the input file, SORT encountered a record longer than the
specified LRL. The record will be truncated to the LRL and sorted.

User Action: ·Re-execute SORT with a larger LRL.

BAO_SPECt invalid specification file record.
FIELD: (record specification>.

An incorrect field was specified in the specification file record. (record
specification) indicates bad record contents.

User Action: See descriptions of specification file record formats (Section
2.5.2) and change field specifications.

BAD_TYPEt invalid sort Process.

You passed the subroutine package a sort type code of less than 1 or
greater than 4 if file 1/0 or not equal to 1 if record 1/0, or an invalid key
word in command /PROCESS. Legal values are 1-4 for file 1/0, nothing
for record 1/0, and RECORD, TAG, INDEX, or ADDRESS for command
/PROCESS parameter.

User Action: Specify a different sorting process.

CLEAN_LJp, failed to reinitialize 1,,iork area and files.·

SORT was unable to deallocate the extra virtual memory, deassign work
file channels, or readjust working set size. For the SORT utility, this is a
warning of little importance. For the SORT subroutine packages, this
could mean a failure to be able to recall SORT from the same program
until it has exited. This is an internal error.

User Action: Exit from the user program before re-executing SORT.

CLOSEINt error closins (filesPec) as inPut.

An error occurred closing an inprtt file. This message is usually accompa
nied by an RMS message indicating the reason for the failure.

User Action: Take corrective action based on the associated message.

4-4 Error Conditions

CLOSEOUT terror closins (filespec) as output.

An error occurred closing an output file. This message is usually accompa
nied by an RMS message indicating the reason for the failure.

User Action: Take corrective action based on the accompanying message.

EXTENDt failed to extend i...1orK file.

SORT failed to extend a user's temporary work file. Either the device is
full, or the user does not have extend privilege.

User Action: See Section 2. 7 and reassign work files to a different
device with more space, and make sure you have extend privilege on that
directory.

INCONSISt inconsistent data in file (filesPec).

If you specified /OVERLAY plus other· output file qualifiers, SORT will
verify that the information in the existing file matches the information
you provided. If it does not, this error message is reported. Unless you
specifically want a verification, /OVERLAY should be used without other
qualifiers.

User Action: Check the command string output file qualifiers (See Section
2.4.3).

IND-OVRt indexed sequential outPut requires overlay quali

fier.

You specified indexed output file organization and did not specify /OVER
LAY.

User Action: You must create the indexed file first with RMS DEFINE
utility (or other). The primary key of the file should be the same as the
sort key for efficiency but is not required to be. Then you must specify
/OVERLAY in the SORT command string.

KE'1'-LENt •te}' lensth in\.1alid. Ke}' tHlf11ber (n1.u11ber)t size
Cn1.1mber>.

The key size is incorrect for the data type, or the total key size is greater
than 255.

User action: See Section 2.6, Setting Up the Keys, and specify correct key
field size. Size must be less than or equal to 255 for character data, 1, 2, or
4 for binary data, and less than or equal to 31 for decimal. Also, only
ascending or descending order is allowed.

Error Conditions 4-5

LRL_MISS t LRL rr1ust be specified•

If record 1/0 interface subroutine package is selected, the longest record
length (LRL) must be passed to SORT in the call.

User Action: See Section 3.4, and specify LRL.

MAP, failed to rr1aP 1,,1orR file.

This is an internal SORT failure.

User Action: Verify that the system parameter "maximum process sec
tions" has been set up at 10. If it has, then report this failure to a special
ist. Otherwise, set that system parameter to 10.

MISS_KEY t H.eY specification frlissins.

SORT did not find any key definition in either the command line or
specification file, or in the parameters to the subroutine package.

User Action: You must input at least one key definition in one of these
three areas.

NO_WRK t need 1,,1or•:. files cannot do SORT in rr1err1orY.

You specified /WORK-FILES=O indicating the data would fit in memory,
but the data was too large.

User Action: Either increase the working set quota, or allow SORT to use
two or more work files.

NUM_KEYt too man>' •:.e>'S specified.

Up to ten key definitions are allowed. Either too many have been speci
fied, or the NUMBER value is wrong.

User Action: See Section 2.6, Setting Up the Keys, and check your com
mand string key field specifications.

ONE_IN, onh· one inPut file allo1,,1ed.

SORT will take only one input file at a time.

User Action: You can concatenate files of the same organization and
record format using COPY, and then sort.

OPENINt error oPeninS' (filesPec> as inPut

An input file cannot be opened. This message is usually accompanied by
an RMS message indicating the reason for the failure.

User Action: Take corrective action based on the associated message.

4-6 Error Conditions

OPENOUTt error oPenins (filesPec> as output

An output file cannot be opened. This message is usually accompanied by
an RMS message indicating the reason for the failure.

User Action: Take corrective action based on the associated message.

READERRt error readins (filesPec>

An input file record specified cannot be read. This message is usually
accompanied by an RMS message indicating the reason for the failure.

User Action: Take corrective action based on the associated message.

SORT_ONt sort alread}' in Prosress.

You tried to call the SORT subroutine package with calls in the wrong
order, or to recall it before it finished running the previous sort.

User Action: Reorder the subroutine calls and then re-execute SORT.

VAR-FIXt cannot chanse variable lenSth records into fixed
lenath.

You specified variable length input records and requested fixed length
output.

User Action:Output records must be variable or controlled in this case.

t.JM_FAILt failed to Set rec:iuired virtual 1rle1r1orY (nurriber).

SORT could not get the amount of virtual memory required for the sort.
(number) indicates the number of bytes needed.

User Action: If the SORT utility is being run, decrease the working set
quota; if either SORT subroutine package is being run, either decrease the
quota or return some memory to the system inside the user's program
before calling SORT.

WORK_DEl.Jt 1,..1orH file (filespec)

det.iice specified not rando1r1 access or not local.

Work files must be specified for random access devices that are local to the
CPU the sort is being performed on (that is, not on node in a network).
Random access devices are disk devices.

User Action: See Section 2.7, Setting Up the Work Files, and specify the
correct device.

Error Conditions 4-7

WRITEERRt error 1A1ritins (filespec>

An output file record cannot be written. This message is usually accompa
nied by an RMS message indicating the reason for the failure.

User Action: Take corrective action based on the associated message.

ws_FAILt failed to Set rec:iuired IAfOrKins set space (n•.lfrlber).

SORT could not set the required amount of real memory space. A mini
mum 75 page working set is needed. (number) indicates number of pages
available.

User Action: Increase the working set quota.

4.3 VAX-11 RMS Error Codes

Listed below, in alphabetic order, are the VAX-11 RMS completion status
codes. This list includes both symbolic and hexadecimal codes for error mes
sages and success messages. These RMS codes are returned to your program
by the operating system.

All V AX-11 RMS error messages have the same format as command inter
preter messages, that is:

'X.RMS-<se,.ieritY level>-(code) tCtext).

For additional information refer to the VAX-11 Record Management Services
Reference Manual.

Valld Returns for Error Messages:

Symbolic Hex Value Meaning

RMS$_ACC 0001C002 File access error.

RMS$_ACT 0001825A File activity precludes operation.

RMS$_AID 000183F4 Bad area identification number field in allocation XAB.

RMS$_ALN 000183FC Invalid alignment boundary type in allocation XAB.

RMS$_ALQ 00018404 Incorrect allocation quantity in allocation XAB; the
value either exceeds the maximum allowed, or is equal
to zero for the extend service.

RMS$_ANI 0001840C Records in a magnetic tape file are not ANSI D format.

RMS$_AOP 00018414 Invalid allocation option in allocation XAB.

RMS$_ATR OOOlCOCC Read error on file header.

RMS$_ATW 0001COD4 Write error on file header.

RMS$_BKS 0001841C Invalid bucket size in FAB.

4-8 Error Conditions

Symbolic Hex Value Meaning

RMS$_BKZ 00018424 Invalid bucket size in the allocation XAB for relative
file.

RMS$_BLN 0001842C Invalid value in block length field.

RMS$_BOF 00018198 File is already at beginning of the file (backspace opera-
tion).

RMS$_BUG_J)DI 0001843C Invalid default directory. Internal VAX-11 RMS error;
no recovery possible - contact a software specialist.

RMS$_ CCR 00018494 Cannot connect RAB (only one record stream permitted
for sequential files).

RMS$_ CD A 0001COE4 Cannot deliver AST.

RMS$_CHN OOOlCOEC Channel assignment failure.

RMS$_COD 000184AC Invalid type code in XAB.

RMS$_CRE OOOlCOOA File create error.

RMS$_ CUR 000184B4 No current record; operation not immediately preceded
by a successful get or find service.

RMS$_DAC 0001C012 File deaccess error during a close service.

RMS$_DEL 00018262 Record accessed by RF A record access mode has been
deleted.

RMS$_DEV 000184C4 Bad device or inappropriate device type for operation.

RMS$_J)IR 000184CC Error in directory name.

RMS$_J)ME 000184D4 Dynamic memory exhausted; occurs only if the related
1/0 segment in the control region is full and the file is
either a direct access process permanent file, or the user
has disallowed the use of the program region for 1/0
buffers to VAX-11 RMS.

RMS$_J)NA 000184DC Error detected in the default file specification string.

RMS$_J)NF 0001826A Directory not found.

RMS$_J)NR 00018272 Device not ready.

RMS$_]) PE 0001C03A Device positioning error; applies only to magnetic tape.

RMS$_J)VI 000184F4 Invalid device identification in NAM block.

RMS$_ENT OOOlCOlA Error during file enter service.

RMS$_ENV 00018724 Environment error; the code necessary to support the
file organization or facility was not selected at system
generation.

RMS$_EOF 0001827A End of file.

RMS$_ESA 000184FC Invalid expanded string area in NAM block.

·RMS$_ESL 00018714 Invalid expanded string length in NAM block.

RMS$_ESS 00018504 Expanded string area too short.

RMS$_EXP 000182C2 File expiration date not yet reached.

RMS$_EXT 0001C022 File extend error.

RMS$_FAB 0001850C Invalid FAB; block indentifier field incorrect.

Error Conditions 4-9

Symbolic Hex Value Meaning

RMS$_FAC 00018514 Operation not allowed by the value set in the file access
field of the FAB.

RMS$_FEX 00018282 File already exists.

RMS$_FLK 0001828A File is locked and therefore not available.

RMS$_FNA 00018524 Invalid file specification string address in FAB.

RMS$_FND 0001C02A Files-11 find function failed.

RMS$_FNF 00018292 File not found.

RMS$_FNM 0001852C Syntax error in file name.

RMS$_FQP 0001853C Invalid file processing options.

RMS$_FSZ 00018534 Invalid fixed control area size in FAB (equal to 1 for
print files).

RMS$_FUL 00018544 Device full; cannot create or extend file.

RMS$_IFA 0001C124 Illegal file attributes; file header corrupted.

RMS$_IFI 00018564 Invalid internal file identifier in FAB; must be zero.

RMS$_IMX 0001856C More than one XAB of the same type is present for the
file.

RMS$_IOP 00018574 Illegal operation attempted:
1. block I/0 when not block I/0 access.
2. record I/O when block I/0 access.
3. rewind of process permanent file.
4. inappropriate device type or file organization.

RMS$_IRC 0001857C Illegal record in sequential file; invalid count field.

RMS$_ISI 00018584 Invalid internal stream identifier in RAB.

RMS$_KBF 0001858C Invalid key buffer address; not in access limits.

RMS$_KEY 00018594 Invalid record key for random operation to a relative
file.

RMS$_KSZ 000185A4 Key size not equal to 4 (relative file).

RMS$-1NE 000185BC Logical name error; resulted in duplicates.

RMS$_MBC 00018734 Invalid multi-block count; must not be greater than
127.

RMS$_MKD 0001C032 Files-11 ACP could not mark file for deletion.

RMS$_MRN 000185CC Illegal value for maximum record number.

RMS$_MRS 00018504 Illegal value for maximum record size.

RMS$_NAM 000185DC Invalid NAM block.

RMS$_NEF 000185E4 Attempt to use the put service to a sequential file when
not positioned to end of file.

RMS$_NMF 000182CA No more files for a search operation.

RMS$_NQD 000185F4 Node name error.

RMS$_0RG 0001860C Illegal file organization.

R.MS$_FBF 00018614 Invalid prompt buffer address.

4-10 Error Conditions

Symbolic Hex Value Meaning

RMS$_pLG 0001861C Error in file prologue; file is corrupted.

RMS$_pLV 0001872C Prologue version unsupported.

RMS$_pRV 0001829A Privilege violation; access denied.

RMS$_QUO 00018634 Error in quoted string.

RMS$_RAB 0001863C Not a valid RAB; block identifier field incorrect.

RMS$_RAC 00018644 Illegal value in record access mode field of RAB.

RMS$_RAT 0001864C Record attributes invalid in FAB.

RMS$_RBF 00018654 Invalid record address.

RMS$_RER 0001COF4 File read error.

RMS$_REX 000182A2 Record already exists; in a random access mode opera-
tion to a relative file, a record was found in the target
record cell.

RMS$_RFA 0001865C Invalid record's file address contained in RAB.

RMS$_RFM 00018664 Illegal record format.

RMS$_RHB 0001866C Invalid record header buffer.

RMS$_RLF 00018674 Invalid related file.

RMS$_RLK 000182AA Record locked by another task.

RMS$_RMV OOOlCOFC Files-11 remove function failed.

RMS$_RNF. 000182B2 Record not found.

RMS$_RNL 000181AO Record not locked.

RMS$_RPL 0001Cl04 Error while reading prologue.

RMS$_RSA 0001868C Record stream active; an attempt was made to issue a
record operation request in an asynchronous environ-
ment to a record stream that has a request outstanding.

RMS$_RSL 0001873C Resultant string length field of NAM block invalid.

RMS$_RSS 00018694 Resultant string area size field of NAM block is too
small.

RMS$_RST 0001869C Invalid resultant string area.

RMS$_RSZ 000186A4 Illegal record size.

RMS$_RTB 000181A8 Record too large for user buff er.

RMS$_SHR 000186B4 Invalid value in the file sharing field of FAB.

RMS$_SQO 000186C4 Operation not sequential.

RMS$_SYN 000186D4 Syntax error in file specification.

RMS$_SYS OOOlClOC Error in system QIO directive.

RMS$_TMO 000181BO Time-out period expired.

RMS$_TYP 000186E4 Error in file type.

RMS$_UBF 000186EC Invalid user record area address.

RMS$_USZ 000186F4 Invalid user record area size.

RMS$_ VER 000186FC Error in version number.

Error Conditions 4-11

Symbolic Hex Value Meaning

RMS$_WER 0001C114 File processor write error.

RMS$_WLK 000182BA Device is not write-locked.

RMS$_WPL OOOlCllC Error while writing prologue.

RMS$_WSF 0001871C Working set full.

RMS$-XAB 0001870C Not a valid XAB.

Valld Returns for Success Messages:

RMS$_CONTROLC 00010651 Operation completed under Control C.

RMS$_CON'I'ROLO 00010609 Operation completed under Control 0.

RMS$_CONTROL Y 00010611 Operation completed under Control Y.

RMS$_CREATED 00010619 File was created; not opened; used in conjunction with
the CIF option.

RMS$-KFF 00018031 Known file found.

RMS$_NORMAL 00010001 Operation successful (synonym for RMS$_SUC).

RMS$_0K-ALK 00018039 Record already locked.

RMS$_0K-1>EL 00018041 Deleted record accessed correctly.

RMS$_0K_RLK 00018021 Record locked but read anyway; locked set RLK bit in
ROP field.

RMS$_01L.RNF 00018049 Non-existent record accessed correctly.

RMS$____FENDING 00018009 Asynchronous operation not yet completed.

RMS$_SUC 00010001 Operation successful (synonym for RMS$_NORMAL).

RMS$_SUPERSEDE 00010631 Created file superseded an existing version.

4-12 Error Conditions

Chapter 5
Improving SORT Efficiency

Users who have special sorting requirements such as very large files, storage
media contraints, and processing time restrictions can modify SORT's behav
ior for optimum performance. Your ability to improve SORT's performance
depends on your understanding of SORT's operational characteristics de
scribed in this chapter.

This chapter discusses:

• How the SORT program functions in each phase of operation, and what
sequence of events occur during a sort run

• How a user can improve SORT's efficiency through the use of tuning
procedures

5.1 Functional Description

The SORT program consists of two basic parts: a control program called the
utility and a callable subroutine package (see Figure 5-1). The utility directs
the overall processing. The callable subroutine package serves as a collection
of subroutines that the utility uses during its processing. You can write your
own control program to take advantage of SORT's callable subroutines (see
Chapter 3).

There are eight phases of operation in the SORT utility. These are described
in more detail in Section 5.1.2. A sort run breaks down into three tasks.

First, SORT reads the command string and the specification file, if present,
decodes them, and then stores the qualifier values and parameters. Any errors
in the command string or specification file are reported at this point.

5-1

Figure 5-1: VAX-11 SORT Architecture, Main Functional Components

COMMAND
INTERPRETER
INTERFACE

VAX-11 SORT

F-MK-00024-00

UTILILTY

5-2 Improving SORT Efficiency

MAIN LINE

COMMAND

CALLABLE
SUBROUTINE PACKAGE

1/191 _ __,A'-'----..
I \

RMS
FILE 1/0

DCL
COMMAND

USER

Second, SORT begins the pre-sort operation. The control program calls
routines to open and read the input file and establish -the keys. Then the
SORT subroutine package is called to begin the initial sorting process. At this
point, the amount of available internal storage space becomes important to
the efficiency of the sort. If that space is not sufficient to hold all the records,
SORT builds strings of sorted records· and transfers them to work files on
temporary storage devices (disk). The SORT program normally provides for a
default of two work files. A qualifier in the command string can increase the
number of work files used.

Third, SORT rebuilds the intermediate work files into a merged file. If the
process is tag sort, another subroutine reads the records in the proper
sequence. The records are then written in the output file. If there· are no work
files to merge because main memory was sufficient to hold all the records, the
sorted records are written directly into the output file. After the last record is
written, the control program cleans up the work files and exits; SORT is then
ready to accept another job.

5.1.1 Sorting Processes

All four sorting processes can sort records of fixed or variable length, VFC, or
any valid VAX-11 RMS. Stream format is not supported. The size of the
records on a fixed-length format file is determined when the file is created.
The first word of a variable-length format record contains the size of the
record in bytes. This first word is used by the file system and is transparent to
SORT.

5.1.1.1 Record Sort - Record sort outputs all data records in a specified
sorted sequence. Each record is kept intact throughout the entire sorting
process. Since this process moves the whole record, it is relatively slow and
may require considerable· main memory or external storage work space for
large files.

5.1.1.2 Tag Sort - Tag sort produces the same kind of output file as record
sort, but it only handles record pointers and key fields. Since this process
moves a smaller amount of data than record sort, it may perform a faster sort
than record sort. The input file must be randomly re-accessed to create the
entire output file, which may be a lengthy process for large files.

Input Data Flies

A record is usually divided into several logical areas called data fields. The
data in each field may or may not be relevant to SORT. Each field may be
interpreted as a record identifier, key data, or general data related to the

Improving SORT Efficiency 5-3

SALES
RECORD

ORDER
RECORD

RESTOCK
RECORD

logical content of the record and not relevant to the sorting process. SORT
uses record identifiers to distinguish the various types of records in a file.
SORT uses the key fields in each record to reorder an input file. Any other
data field in a record may be retained in the output file or ignored by SORT.

Figure 5-2 shows three different types of input records, each with a different
format. The record identifiers· are the letters in position 1: S means sales
record, 0 means order record, and R means restock record. In this case, the
keys chosen for sorting the sales record types are the "item number code" in
positions 2 to 7, and the "number of items sold" in positions 8to13. The "total
amount of sale" is an example of a data field not relevant to the sorting
process.

If you request a sort in ascending order on the sales records as shown in Figure
5-2, the sort is based on the item number code first and then on the number of
each item sold within that item number. In order of decreasing significance,
the keys are:

1. Item number

2. Number of items sold

Figure 5-2: Sample Record Types

RECORD
IDENTIFIER

KEY FIELD KEY FIELD DATA FIELD

'--~........-~--"--~-.---''--'--.....-......_~--~......._~~-v---~--~-v~~~-----~~

ITEM
NUMBER

CODE

NUMBER UNIT PRICE
OF ITEMS CODE PER

SOLO UNIT

'-------...----·--··-____,.__--~-· -......,----____..._
OE SCRIPTION ITEM PRICE

ITEM
NO.

CODE

OF NO. OF
ITEM CODE ITEM

UN IT COST
CODE PER

UNIT

MINIMUM
STOCK

QUANTITY

TOTAL
AMOUNT
OF SALE

NUMBER
OF ITEMS
ORDERED

CUSTOMER
NO.

CODE

PURCHASE
ORDER

NO.

PRESENT
AMT.

REORDER
NUMBER

OF STOCK

DATE
OF

SALE

11-1520

5-4 Improving SORT Efficiency

Output Data Flies

The output file contains all sales records in the order shown in Table 5-1.

Table 5-1: Sorted Output File

Major Key: Item Number Minor Key: Quantity
~----i

Lowest item no. Lowest quantity

Next higher quantity

Lowest item no. Highest quantity

~------------ ----------------!
Next higher item no. Lowest quantity

Next higher quantity

Next higher item no. Highest quantity
-------------~

.,. ______________
Highest item no. Lowest quantity

Next higher quantity

Highest item no. Highest quantity

5.1.1.3 Address Sort - Address sort produces address files, which consist of
record's file addresses (RFAs), beginning at 1, and written in binary words.
These files can be used as a special index file to access randomly the data in
the original file. It is possible to maintain only one data file, but several
different index files as needed. Like tag sort, this process uses the minimum
amount of data necessary in the sorting process. Once the input phase is
completed, the input file is not read again. This means that address sort is the
fastest sorting method of the four SORT types.

NOTE:

Do not transfer an address index file to a device that cannot
handle binary data, such as a printer or terminal.

Improving SORT Efficiency 5-5

The address sort produces an output file consisting of record indices. Each
record index occupies one 6-byte record in the output file. Assume that you
are sorting a file consisting of. six records using the address sort process. If the
sequence of record indices corresponding to the sorted records is 5,1, 6,3,4,2
then the output file can be represented as shown in Figure 5-3.

Figure 5-3: Sample Address Sort Output File
•.. - ·-

Record's Fiie Address (RFA)

Block Number

LOW HIGH BYTE-IN-BLOCK
RECORD (2 bytes (2 bytes (2 bytes
NUMBER 16 bits) 16 bits) 16 bits)

.__.....

1 000001 000000 000162

2 000001 000000 000000

3 000001 000000 000236

4 000001 000000 000042

5 000001 000000 000132

6 000001 000000 000026
. ·-"""""

I
Number of Blocks per File

I
Number of Contiguous
Bytes per Block

Note:

Byte and Block numbers are shown here in hexadecimal, they are written to the actual output
file in binary.

5.1.1.4 Index Sort - Index sort produces an address file consisting of records
file addresses (RF As) in binary, and key fields in original form. This makes it
slightly slower than address sort. During processing this sort handles only the
RF As and two forms of the key fields. One form is used for sorting and the
other is left as it was in the original data.

Index sort p:coduces an output file consisting of record indices plus keys in
original form. Each record in the output file consists of a 6-byte record index
plus the key field.

NOTE:

Do not transfer an index sort output file to a device that cannot
handle binary data, such as a printer or terminal.

5-6 Improving SORT Efficiency

Assume that you are sorting a file consisting of six records using Index sort
process, and you are using a key size of four characters (bytes). The sequence
of record indices corresponding to the sorted record, is 5,1,6,3,4,2 as shown in
Figure 5-4.

Figure 5-4: Sainple Index Sort Output File

Record's Fiie Address 1RFA1
Block Number

LOW HIGH BYTE-IN-BLOCK
RECORD (2 bytes (2 bytes (2 bytes
NUMBER 18 bits) 16 bits) 16 bits) KEY IN ORIGINAL FORM

1 000001 000000 000162 A B c D

2 000001 000000 000000 A B c D

3 000001 000000 000236 A B c D

4 000001 000000 000042 A B c D

5 000001 000000 000132 A B c D

6 000001 000000 000026 A B c D

Notes:

1. ABCD represents the sorting keys In original format.

2. Byte and Block numbers are shown here In hexadecimal, they are written to the actual
output file In binary.

5.1.2 Internal Organization

SORT operates in eight phases (phase 0 through 7). Figure 5-5 summarizes
these phases.

Phase Function

0 Decode command line and specification file

1 Initialize SORT

2 Get records

3 Sort records

4 Initialize merge

5 lVlerge records

6 Output records

7 End SORT

Improving SORT Efficiency 5-7

The V AXNMS command interpreter calls the SORT utility at its main entry
point and Phase 0 is initiated. The initial process statistics are acquired from
the system and stored in a table. SORT calls the command interpreter to
parse and validate the command line. Then SORT validates this information
and stores it in various tables and buffers. If a specification file is present it is
opened, the records are read, the information validated and stored in various
tables and buffers, and the file is closed. Any errors up to this point are
reported by signaling the command interpreter. SORT opens the input file,
and creates the output file.

SORT begins Phase .1. The sorting process is initialized by filling in the key
comparison information, allocating the space needed for input and output
buffers and the sort tree, creating the work files and initializing the sort tree.

Phase 2 begins the sort proper. SORT either reads records from the input file,
or receives them from the caller.

At Phase 3, SORT builds the key from the record and inserts each record into
the tree by key. This process repeats until the sort tree is full or there are no
more records. SORT then outputs the records to the work files as a variable
number of strings each of which is a set of sorted records. Each time a record
is output from the tree a new one is input until there are no more records. The
rest of the records in the tree are output and that ends the initial sorting phase
(phases 1 through 3).

Phase 4 starts SORT's internal merging operation. The memory is redivided
at this point for the merge phase into one to ten input buffers and one output
buffer, depending on the number of initial strings. A different string is read
into each input buffer and the records are merged together into one string and
output to a work file. This process is repeated until the total number of strings
is less than ten.

Phase 5 performs the final merge pass and outputs the remaining string of
records, which is the final sorted file, to either the output file or the caller.

Phase 6 closes the input and output files, closes and deletes the work files, and
returns the me·mory.

Phase 7 acquires the final statistics and prints them, then exits SORT back to
the V AXNMS command interpreter.

Notes:

1. Phases 0 and 7 are part of the utility only.

2. The last part of phase 0 (opening the input file and creating the output
file) and phase 6 are used only by the file 1/0 subroutine package and the
utility.

3. Phases 1through5 are used by the utility and both the file 1/0 and record
1/0 subroutine packages.

5-8 Improving SORT Efficiency

4. Errors during phases 1 through 6 are signaled to the V AXNMS command
interpreter if the utility is running, or returned as a status code to the
caller if the subroutine package is running.

5. All signaled errors produce messages at the command interpreter level
(see Chapter 4).

Figure 5-5: V AX-11 SORT Operating Phases

PHASE 0

DCL SORT Command (via VAX/VMS command Interpreter).
Entry point to SORT.
Get Initial process statistics.
Call command line processor to decode command line.
If It was specified, call specification file decoder.
Open the Input file and create the output flle.

PHASE 1

Set up the key comparison buffer and validate key Information.
Get memory for sorting Initial phase, Input and· output buffers, and set up to read Input.
Create work flies and lnltlallze the sort.

PHASE 2

Read or get record from user and build key.

PHASE 3

Insert record by key Into sort tree.
Is sort tree full? (YES, continue /NO, go back to phase 2)
Output records to work flies as a number of strings of sorted records.
Output and Input until end of file and all records are output.

PHASE 4

Read In strings from work file and merge them until there are 10 or fewer strings left In the
work flies.

PHASE 5

Set up to output records to user or output file.
Do final merge pass outputting records to user files, not work files.

PHASE 6

Delete work files, return memory, close output and Input flies.

PHASE 7

Print statistics and exit.

Improving SORT Efficiency 5-9

5.1.3 Buff'er Allocation and Work Areas

The SORT utility and subroutine package are initially linked with a mini
mum of space allocated. When SORT is initialized, the work area manager
assigns as much virtual memory as the process needs, and adjusts the working
set size to the process maximum. This allows SORT to minimize page faults
during the sorting, and maximize the order of the merge. At the end of the sort
operation the limits are restored to the size they were at the entry to SORT,
returning the additional virtual memory to the system. SORT requires a
minimum of 75 pages of memory for the working set.

The V AXNMS memory management system service, create and map sec_tion,
allows a user to specify that a particular span of virtual addresses in the
program should be read from and written into a particular set of virtual blocks
within a file on disk, when referenced or paged-out by the entry of another
page. The actual 1/0 to and from the disk is all handled by the pager. SORT
maps the individual virtual addresses representing the work area onto specific
blocks within a work file. When a particular buffer is then referenced within
the work area, the pager automatically brings the correct blocks from the work
file into real memory, and writes the existing blocks back to the correct place
in the file.

5.1.4 Dynamic Memory Usage

Figure 5-6 shows the total address space used by SORT during each of its
eight phases of operation.

Figure 5-6: SORT Dynamic Memory Usage

T

A= User Limit. 'r-------, r--------1 ~
User Quota that· must

Unused I Output 1
B= Portion of 1 __ _B~f~r ___ I

be greater than or Code and I Input Buffer I
equal to 75 pag1~s of Data. I #10 I
real memory. ,-- - - r----1

AS= Total Address Space. ~ I
VM= Virtual Memory. I I
WS= Working Set. I I

Output : I
Buffer I I

TAS=WS+(=B) "~
I I
lvM= r

~Same as
VM(=3•B=3•WS) Phases 1,2,3

VM=3•WS(=B) 1Buffers(=3•WS=B)I
I J. I

Tree=1/2WS T
Input Buffer

Input Buffer= #1
Code and 1/4WS Code and

Data (fixed)
Code and Data (fixed)

Portion of Code
and Data needed Data

WS=A for Phases 1-3
WS=A WS=B TAS=A ~

WS=B
j TAS=A

Phases_.. 0 1,2,3 4,5 6,7 I
1--------~-----~~~~~---SORTRUN-------------------------~ .. ._1

H-MK-00025-00

5-10 Improving SORT Efficiency

5.1.5 1/0 Considerations

The input and output files 1/0 and the specification file 1/0 are all performed
under the control of VAX-11 RMS record 1/0 facilities. Multi-buffering is
used together with read ahead on unit record devices to optimize the 1/0
operations. The work files are processed by the V AXNMS memory manage
ment system service, create and map section.

Various devices can be used for input and output files. Figure 2-1 shows which
devices are allowed for each of the four sorting techniques. Use Figure 2-1 to
match the sorting process with the devices that best suit your processing
environment. Data may be stored in binary, ASCII, decimal, packed or zoned.

5.2 Tuning Procedure

All generalized sorts consider several factors such as: the memory environ
ment (large, small, virtual memory capability or not); the 1/0 devices to be
used for work files and their characteristics (speed, arm movement, seek time,
public or private units); type of files and data most likely to be sorted (large or
small files, large or small records and keys, random or ordered partially,
characters or numbers).

The algorithm must be very good for the cases occurring most often, and
reasonable on all other cases. V AX-11 SORT is designed for an environment
of: fairly large files 1 virtual memory capability, random access disk devices,
public and private, larger random character data files, medium size records
and keys.

There are three components of a sort that account for the majority of the
processing time:

• The number of key comparisons per record per sort.

• The number of merge passes needed to complete the sort.

• The amount of time spent waiting for and/or doing 1/0 to work files.

5.2.1 User Performance Considerations

This section discusses how you can determine the most efficient values for the
following SORT performance parameters.

• Working set quota

• Work file devices

• Number of work files

• Type of sort (process)

• File size

Improving SORT Efficiency 5-11

• Record size

• Key size

• System load

• System process parameters

5.2.1.1 Working Set Quota - For SORT to work efficiently the most import
ant parameter is the working set quota (or size) the user decides to choose.
The optimum working set quota is the smallest one for which the data can be
sorted in memory, that is with 0 merge passes.

To compute the appropriate working set quota size, perform the following
procedure:

Step 1. For any sort, take the size of the key fields added together in bytes.

Step 2. Then add 20.

Step 3. If the sorting process is record sort, add the number of bytes in the
longest record; otherwise add 6. Then multiply by the number of
records in the file. This is the total amount of data you have in
bytes.

Step 4. Divide that number by 512 to get the amount in blocks.

Step 5. Multiply by 2 to get the size of the working set quota you should
start with.

For most larger files the number computed will.be much to large to actually
use as a quota. In such cases, the largest reasonable size based on the system
load and scheduling considerations is the correct size to use. An individual
user's authorized quota is generally the largest reasonable size for the
particular system.

For example:

To sort a 1000 record file with 80-byte records and a total key field size of
80 bytes using the record process, compute the following:

1000 X (80+20+80) = 180,000 bytes of data

180,000/512 = 352 blocks of data

352 X 2 = 704 block working set quota

Answer: start with a working set quota of 700.

However, if the same type of a file contained 40,000 records, the total amount
of data would be 14,063 blocks. For most systems a quota of 28,000 blocks
(pages), or even 14,063 is unacceptable. Here the largest reasonable quota
should be used; for example 1024 pages.

5-12 Improving SORT Efficiency

5.2.1.2 Work Fiie Devices ~ Another important parameter is where the work
files are placed. The fuller the disk and the more activity on the disk contain
ing the work files, the less efficient SORT will be. The optimum configuration
would be to have each work file, and the input and output file all on separate
empty disks which are only being used by SORT during the sorting process.
However, this is seldom possible, so the next best configuration is to place
work files on available disks having the lowest activity. See Section 2.7, Set
ting up the Work Files.

5.2.1.3 Number of Work Flies - Because SORT does not depend on the num
ber of work files used to determine the order of the merge like SORT-11, the
advantage of using more than the default number of work files is limited.
There are two reasons for using more than the default of two work files: 1) to
spread the work files between more than two disks and/or 2) to have each
individual file be a smaller size in order to fit onto a smaller or fuller disk.

If you are using three or four disks, it will help the sort performance to use
three or four work files, one on each disk as discussed above. For example, if
you have a 100,000 block file to sort, using two work files would create two
150,000 block files. But, using four work files would create four 75,000 block
files that could be placed on disks with less free space.

5.2.1.4 Type of Sort - Although the type of sort used is often dictated more
by functionality. required than performance there are significant differences
between the sorts.

Address sort is the fastest and uses the least temporary disk space.

Index sort is only slightly slower than address sort but uses more tempory
storage.

Tag sort uses the same temporary storage as address sort, but is significantly
slower. For large records with small keys it is faster than record sort in smaller
memory sizes if the file is not large.

Record sort uses a larger amount of temporary storage and is the slowest.

5.2.1.5 Using SORT's Statistics -Analyze the sort statistics (Section 2.2.3) to
determine how to improve the sort's performance. The number of records in,
out, sorted if not all equal indicates that there were input or output errors, or
that there are null records in the file (that is, the number of records read was
greater than the number sorted or the number output). This condition can
also be caused by some records containing invalid data in the key fields (if less
than ten records are in error SORT will continue, otherwise SORT will stop
executing).

Longest record length value is obtained from either RMS or the user and can
be used to make sure the RMS value is correct.

Improving SORT Efficiency 5-13

The multl block and buffer counts indicate the amount of 1/0 optimization on
the input and output file. The larger the working set quota the more optimiza
tion possible. No optimization would show all these counts as 1. This should
not occur unless the file is huge compared to the working set quota. If it does,
raise the quota if possible.

The order of the merge is the number, less one, of merge buffers that the
working set is divided into for the merge phase.

Number of merge passes and the number of lnltlal runs shows you how close
the data is to fitting in memory. The higher these numbers are, particularly
the number of passes, the longer SORT takes and the further away the work
ing set size is from containing the data.

Virtual memory added is the amount of virtual memory SORT used for the
data.

Elapsed time is the total wall clock time in hours, minutes, seconds, and 1/100
seconds from start to end for the sort run.

The total of the two 1/0 counts are the number of disk hits to get and write data
and these will be higher if the multi block and buffer counts are lower. The
lower the better.

CPU time is the time spent actually processing data minus all 1/0 time. The
closer to the elapsed time the better optimization you are seeing in 1/0.

Page faults are also a good indication of how well the data did or did not fit
into memory. The higher the number of page faults, the less efficient the sort
is.

5.2.2 System Manager Performance Considerations

The system manager can determine the following SORT performance parame
ter values based on the overall system usage: number of users, types of process
most commonly run, and the amount of real memory available.

• System per process working set quota {WSMAX)

• System per process virtual page count (VIRTUALPAGECNT)

• System per process section count (PROCSECTCNT)

• System modified page writer cluster factor (MPW _ WRTCLUSTER)

The values recommended are based solely on sort considerations; it is up to
the system manager to integrate other system considerations with these in
determining the appropriate final values.

5-14 Improving SORT Efficiency

5.2.2.1 Working Set Quota -The maximum for this value should be set to the
largest size any sort job would ever require. For very large files, working sets of
500 to 1000 pages are not at all unreasonable, provided the system has enough
physical memory to accommodate them. Individual maximums, to prevent
users from monopolizing real memory, can be set on a per user basis by using
the authorization file. For information on how to determine an appropriate
working set for a particular sort job see Section 5.2.1.1. The general rule is, the
smaller the working set, relative to the files to be sorted, the slower the sort.

5.2.2.2 · Vlrtual Page Count - For this parameter the current value as well as
the maximum value should be set to a minimum of 3 to 4 times the value of
the working set quota maximum. When SORT initially starts executing it will
request 2 and 1/2 to 3 times the working set quota of virtual memory from the
system. If this value is too low SORT will be unable to run in certain cases.

5.2.2.3 Process Section Count - For working set quota maximums of 500 or
less this parameter may stay at a minimum level. However, for working set
quotas greater than 500 to 1000 a current value of 10 or greater is necessary. If
this parameter is set too low, SORT will be unable to run in larger working
sets due to internal mapping failures. The value should be increased as the
working set quota maximum increases.

5.2.2.4 Modified Page Writer Cluster Factor -The value of this parameter will
never cause SORT to fail, however it can cause a large difference in perform
ance. For any larger sorts (that is, using working sets of 250 pages or greater)
the larger this parameter, the better. Values of 64 and up are not too large. Be
sure to adjust MPW_HILIM and MPW_LOLIMIT·accordingly. For more
information refer to the SYSGEN procedures in the VAX-11 Software Instal
lation Guide.

Improving SORT Efficiency 5-15

Glossary

Alphanumeric Characters

The entire set of 128 ASCII characters (see Appendix B).

ASCII Character Set

Batch

BLISS

Block

The set of 128 eight-bit American Standard Code for Information Interchange charac
ters (see Appendix B).

A mode of processing in which all commands to be executed by the operating system
and, optionally, data to be used as input to the commands are placed in a file or
punched onto cards and submitted to the system for execution.

A high-level system implementation programming language. VAX-11 SORT is writ
ten in BLISS.

The smallest addressable unit of data that the specified device can transfer in an 1/0
operation (512 contiguous bytes for most disk devices).

Bucket

Buffer

Byte

Call

Caller

See File Bucket.

A temporary data storage area in a process address space used when performing input
or output operations.

The smallest addressable unit of information; eight bits. For example, an ASCII
character requires a single byte (see Appendix C for further definitions).

The operation of invoking a procedure.

The procedure that invoked this procedure by a Call. At the time of procedure
invocation, the invoking procedure is said to be the caller, and the invoked procedure
is the callee. Contrast with User.

Glossary-1

Character

The smallest addressable unit of usable data (byte). It is also a single letter, numeral,
punctuation mark, or other symbol (such as $ or %) , and is represented within the
computer as a unique combination of bits. Typically, a character code consists of
eight bits.

Character String Descriptor

CPU

A quadword data structure used for describing character data (strings). The first
word of the quadword contains the length of the character string. The second word
can contain type information. The remaining· longword contains the address of the
string.

The Central Processor Unit portion of a computer system.

Collating Sequence
The order into which characters are sorted based upon numeric values assigned to
each.

Command

An instruction, generally an English word, typed by the user at a terminal or in
cluded in a command. file, which requests the software monitoring a terminal or
reading a command file to perform some well-defined activity. For example, typing
the SORT command request the system to invoke the SORT utility.

Command Fiie

A file containing command strings. See also Command Procedure.

Command Interpreter

Procedure-based system code that executes in supervisor mode in the context of a
process to receive, syntax check, and parse commands typed by the user at a terminal
or submitted in a command file.

Command Parameter

The positional operand of a command delimited by spaces, such as a file specifica
tion, option, or constant.

Command Procedure

A file containing commands and data that the command interpreter can accept in
lieu of the user typing the commands individually on a terminal.

Glossary-2

Command String

A line (or set of continued lines), normally terminated by typing the carriage return
key, containing a command and, optionally, information modifying the command. A
complete command string consists of a command, its qualifiers, if any, and its
parameters (file specifications, for example), if any, and their qualifiers, if any.

Compatlblllty Mode

A mode of execution that enables the central processor to execute non-privileged
PDP-U instructions. The operating system supports compatibility mode execution
by providing an RSX-UM programming environment for an RSX-UM task image.
The operating system compatibility mode procedures reside in control region of the
process executing a compatibility mode image. The procedures intercept calls to the
RSX-UM executive and convert them to the appropriate operating system func
tions.

Contiguous Blocks

Physically adjacent and/or consecutively numbered blocks of data.

Data Fiie Record

A record containing user data.

Data Structure

Any table, list, array, queue, or tree whose format and access conventions are well
defined for reference by one or more images.

Data Type

DCL

In general, the way in which bits are grouped and interpreted. In reference to the
processor instructions, the data type of an operand identifies the size of the operand
and the significance of the bits in the operand. Operand data types include: byte,
word, longword, and quad-word integer, floating and double floating, character
string, packed decimal string, and variable-length bit field (see Appendix C).

Digital Command Language (DCL) is a set of English- like statements that a user
types to initiate and control system operations.

Default

An assumed value supplied to the system when a command qualifier does not specifi
cally override the normal command function; fields in a file specification that the
system fills in when the specification is not complete.

Descriptor

See Character String Descriptor.

Glossary-3

Device

The general name :for any physical terminus or link connected to the processor that is
capable of receiving, storing, or transmitting data. Card readers, line printers, and
terminals are examples of record-oriented devices. Magnetic tape devices and disk
devices are examples of mass storage devices. Terminal line interfaces and interpro
cessor links are examples .of communications devices.

Directory

A file used to locate files on a volume that contains a list of file names (including
extension and version number) and their unique internal identifications.

Directory Name

Fie Id

Fiie

The field in a file specification that identifies the directory file in which a file is
listed. The directory name is enclosed in brackets ([] or < >).

A logically distinguishable area within a record. Usually a logical unit of data.

A logically related collection of data on a volume such as disk or magnetic tape. A file
can be referenced by a name assigned by the user. A file normally consists of one or
more logical records.

Fiie Bucket

Within the RMS Relative File organization, a bucket is a storage structure of one to
32 blocks of data.

Fiie Header

A block in the index file describing a file on a FILES-11 disk structure. The file
header identifies the locations of the file's extents. There is a file header for every file
on the disk.

Fiie Organization

The particular file structure used to record the data constituting a file on a mass
storage medium. RMS file organizations are: Sequential, Relative, and Indexed.

Fiie Prologue

The first block in a relative or indexed file which contains header information for the
file.

File Specification

A unique name for a file on a mass storage medium. It identifies the node, the device,
the directory name, the file name, and the version number under which a file is stored
(see Appendix D for additional information).

Glossary-4

Fiie Structure

The way in which the blocks forming a file are distributed on a disk or magnetic tape
to provide a physical accessing technique suitable for the way the data in the file is
processed.

Fiie System

A method of recording, cataloging, and accessing files on a volume.

Fiie Type

The field in a file specification that is preceded by a period or dot(.) and consists of a
zero-to three-character type identification. By convention, the type identifies a gen
eric class of files that have the same use or characteristics, such as ASCII text files,
binary object files, etc.

Flles-11

The standard physical disk structure used by VAX-11 RMS.

Flies pee

Fi.le Specification that uniquely identifies a file by physical location (see Appendix
D).

Fiie, Input

See Input File.

Fiie, Output

See Output File.

Fiie, Work

See Work File.

Fixed Control Area

An area associated with a variable length record available for controlling or assisting
record access operations. Typical uses include line numbers and printer format con
trol information.

Fixed Position Fleld

An area associated with character position (or column numbers). Used in SORT-11
Specification Files.

Fixed Length Record Format

A file format in which all records have the same length.

Glossary-5

Format

The arrangement of any record or file; the order in which fields reside in a record.

Free Fields

Logically positioned fields separated by commas. Contrast with fixed position fields.

Home Block

Image

A block in the index file that contains the volume identification, such as volume label
and protection.

A file consisting of procedures and data that have been bound together by the linker.
There are three types of images: Executable, Shareable, and System.

Indexed Fiie Organization

A file organization in which a file contains records and a primary key index (and
optionally one or more alternate key indices) used to process the records sequentially
by index or randomly by index.

Index Fiie

The file on a Files-11 volume that contains the access information for all files on the
volume and enables the operating system to identify and access the volume.

Index Fiie Bit Map

A table in the index file of a Files-11 volume that indicates which file headers are in
use.

Index Fiie Record

A record of file system data that is invisible to the user.

Input File

The file containing the records you wish to sort.

Key, Key Fie Id

The data field containing the values chosen from a record to control the sort (see
section 2.6).

Key, Major

The most important field in the total key. If you were sorting a list by department,
salary and name, department would be the major key.

Glossary-6

Key, Minor

The least significant field in the total key. In the preceding example name is the
minor key.

Library

Line

A collection of commonly used files.

In this document, a line generally refers to a line in the SORT specifications form or a
record in the specification file.

Logical Name

A user-specified name for any portion or all of a file specification. For example, the
logical name INPUT can be assigned to a terminal devic_e from which a program
reads data entered by a user. Logical name assignments are maintained in logical
name tables for each process, each group, and the system. A logical name can be
created and assigned a value permanently or dynamically.

Longword

LRL

Merge

Four contiguous bytes (32 bits) starting on an addressable byte boundary (see Appen
dix C).

Longest Record Length (LRL) specified in bytes.

A process by which two or more ordered groups of records are put together record-by
record into a single identically ordered group.

Native Mode

Node

The processor's execution mode, in which the programmed instructions are inter
preted as byte-aligned, variable length instructions that operate on byte, word, long
word, quadword integ·er, floating and double floating, character string, packed deci
mal, and variable length bit field data. The instruction execution mode other than
compatibility mode.

An individual computer system in a network.

Output Fiie

The file created by running SORT. The output file may be either a data file or an
address file.

Glossary-7

Page

1). A set of 512 contiguous byte locations used as the unit of memory mapping and
protection. 2). The data between the beginning of file and a page mark~r, between
two markers, or between a marker and the end of a file.

Page Fault

Pager

An exception generated by a reference to a page which is not mapped into a working
set.

A set of kernel mode procedures that executes as the result of a page fault. The pager
makes the page for which the fault occurred available in physical memory so that the
image can continue execution. The pager and the image activator provide part of the
operating system's memory management functions.

Paging

The action of bringing pages of an executing process into physical memory when
referenced. When a process executes, all of its pages are said to reside in virtual
memory. Only the actively used pages, however, need to reside in physical memory.
In this system, a process is paged only when it references more pages than it is
allowed to have in its working set. When a process refers to a page not in its working
set, a page fault occurs. This causes the operating system's pager to read in the
referenced page fault if it is on disk (and optionally, other related pages depending on
a cluster factor), replacing the least recently faulted pages as needed. This system
only pages a process against itself.

Packed Decimal

Parse

A method for compact storage of numeric data; two digits are stored in each 8-bit
byte and the sign resides in the last byte of the low-order digit.

To break down into individual parts from a whole.

Physical Memory

The memory modules contained within the CPU. Also called main memory.

Procedure

A routine that follows the VAX-11 calling sequence standard. A procedure may
return values via the argument list and/or the standard value return registers. Con
trast with routine.

Process

The basic entity scheduled by the system software that provides the context in which
an image executes. A process consists of an address space and both hardware and
software context.

Glossary-8

Program

A program is the basic entity that is executed by the processor. Each program con
sists of a set of procedures and its execution represents a distinct activity that is
potentially concurrent with others in the system.

Prologue

See File Prologue.

Quadword

Eight contiguous bytes (64 bits) starting on an addressable byte boundary. See Ap
pendix C.

Quallfler

A portion of a command string that modifies a command verb or command parame
ter by selecting one of several options. A qualifier, if present, follows the command
verb or parameter to which it applies and is in the format: "/qualifier=option". For
example, in the command string "PRINT filename/ COPIES=3", the COPIES quali
fier indicates that the user wants three copies of a given file printed.

Random acces~ by record's flle address

The retrieval of a record by its unique address, which is provided to the program by
RMS. The· method of access can be used to randomly access a sequentially organized
file containing variable length records.

Random access by relative record number

The retrieval or storagE~ of a record by specifying its position relative to the beginning
of the file.

Real Memory

See Physical Memory.

Record

The unit of information in a file; a group of related fields treated as a logical unit.

Record Cell

A fixed length area in a relatively organized file that is used to contain one record.

Record Management Services (RMS)

A set of system procedures in the operating system that are called by programs to
p'rocess files and records within files. RMS allows programs to issue GET and PUT
requests at the record level (record 1/0) as well as read and write blocks (block 1/0).
RMS is an integral part of the system software. RMS procedures run in executive
mode.

Glossary-9

Record-oriented Device
A device such as a terminal, line printer, or card reader, on which the largest unit of
data that a program can access is the device's physical record.

Record's Fiie Address (RFA)
The unique address of a record in a file that allows records to be accessed randomly
regardless of file organization.

Record, Data Fiie

See Data File Record.

Record, Field Specification

See Section 2.5.2

Record, Header

See Section 2 .5 .2

Record, Index Fiie

See Index File Record.

Relative Fiie Organization

RMS

A file organization in which the file contains fixed length record cells. Each cell is
assigned a consecutive number that represents its position relative to the beginning of
the file. Records within each cell can be the same length or smaller than the cell.
Relative file organization permits sequential record access, random record access by
record number, and random record access by record's file address.

See Record Management Services (RMS).

Routine

A sequence of instructions that performs a well defined action. It may have multiple
entry points. For example, the SIN routine has SIN and COS entry points. A routine
that follows the VAX-11 calling sequence standard is termed a procedure.

Sequential Fiie Organization

A file organization in which records appear in the order in which they were originally
written. The records can be fixed length or variable length. Although one does not
speak of record cells with sequentially organized files, for purposes of comparison
with relatively organized files one can say that the record itself is the same as its
record cell, and its record number is the same as its relative cell number. Sequential
file organization permits sequential record access and random record access by
record's file address. Sequential file organization with fixed length records also per
mits random access by relative record number.

Glossary-IO

SORT Utlllty

A processing program that can be used to sort records by keys into a prescribed
sequence. To segregate items into groups according to some definite rules.

Sort Tree ,J

A data structure used to keep order of records by sort.

Subroutine

A procedure that does not return a known value in the value registers. If values are
returned, they are returned via the argument list. By convention, the function "value"
is unpredictable.

System Device

The device on which the Executive resides.

Terminal

The general name for those peripheral devices that have keyboards and video screen
or printers. Under program control, a terminal enables people to type commands and
data on a keyboard and receive messages on a video screen or printer. Examples of
terminals are the LA3H DECwriter (hard-copy terminal) and the VT52 video display
terminal (soft-copy terminal).

Unit Record Device

User

See Record-oriented Device.

The person who is directly using the computer, either via terminal or batch input.
Contrast with Caller.

Variable-length Record

A record format in which records need not be the same length.

Variable with fixed-length control (VFC) record

A record format in which records of variable length contain an additional fixed-length
control area. The control area may be used to contain file line numbers and/or print
format control characters.

Virtual Address

A 32-bit integer identifying a byte "location" in virtual address space. The memory
management hardware translates a virtual address to a physical address. The te'rm
virtual address may allso refer to the address used to identify a virtual block on a mass
storage device.

Glossary-11

Virtual Memory

The set of storage locations in physical memory and on disk that are ref erred to by
virtual addresses. From the programmer's viewpoint, the secondary storage locations
appear to be locations in physical memory. The size of virtual memory in any system
depends on the amount of physical memory available and the amount of disk storage
used for non-resident virtual memory.

Volume

A mass storage medium such as a disk pack or reel of magnetic tape.

Wiid card

Word

The asterisk character when used as a substitute parameter in file specification
indicates "all" for a given field.

Two contiguous bytes (16 bits) starting on an addressable byte boundary (see Appen
dix C).

Work Fiie

A collection of sortE~d records created during the processing cycle and released after
the sort is finished. (Sometimes called Scratch Files.)

Working Set

The set of pages in process address space to which an executing process can refer
without incurring a page fault. The working set must be resident in memory for the
process to execute. The remaining pages of that process, if any, are either in memory
and not in the process working set or they are on secondary storage.

Zoned Numeric Format

A specific ASCII coded decimal data type where the number sign and the least
significant digit are combined into a single hexadecimal code (see Appendix C).

Glossary-12

Appendix A
Octal/Hexadecimal/Decimal Conversion

A.1 Octal/Declmal Conversion

To convert a number from octal to decimal, locate in each column of the table
the decimal equivalent for the octal digit in that position. Add the decimal
equivalents to obtain the decimal number.

To convert a decimal number to octal:

1. locate the largest decimal value in the table that will fit into the decimal
number to be converted,

2. note its octal equivalent and column position,

3. find the decimal remainder.

Repeat the process on each remainder. When the remainder is 0, all digits will
have been generated.

85 84 83 82 81 go

0 0 0 0 0 0 0

1 32,768 4,096 512 64 8 1

2 65,536 8,192 1,024 128 16 2

3 98,304 12,228 1,536 192 24 3

4 31,072 16,384 2,048 256 32 4

5 163,840 20,480 2,560 320 40 5

6 16£1,608 24,576 3,072 384 48 6

7 22£1,376 28,672 3,584 448 56 7

A-1

A.2 Powers of 2 and 16

Powers of 2 Powers of 16

2**n n 16**n n

256 8 1 0
512 9 16 1

1024 10 256 2
2048 11 4096 3
4096 12 65536 4
8192 13 1048576 5

16384 14 16777216 6
32768 15 268435456 7
65536 16 4294967296 8

131072 17 68719476736 9
262144 18 1099511627776 10
524288 19 17592186044416 11

1048576 20 281474976710656 12
2094304 21 4503599627370496 13
4194304 22 72057594037927936 14
8388608 23 1152921504606846976 15

16777216 24

A.3 Hexadecimal to Decimal Conversion

For each integer position of the hexadecimal value, locate the corresponding
column integer and record its decimal equivalent in the conversion table A.5.
Add the decimal equivalent to obtain the decimal value.

Example:

D0500ADO Cl G > = ?< 10)

00000000 = 3,499,sso,920
500000 = 5,zaz,sso

AOO = 2 , 580
DO = 208

D0500ADO = 3,a9a,9oa,s7s

A.4 Decimal to Hexadecimal Conversion

1. Locate in the conversion table A.5 the largest decimal value that does not
exceed the decimal number to be converted.

2. Record the hexadecimal equivalent followed by the number of zeros (0)
that corresponds to the integer column minus one.

"
3. Subtract the table decimal value from the decimal number to be

converted.

4. Repeat steps 1-3 until the subtraction balance equals zero (0). Add the
hexadecimal equivalents to obtain the hexadecimal value.

A-2 Octal/Hexadecimal/Decimal Conversion

HEX

0
1
2
3
4
5
6
7
8
9
A
B
c
D
E
F

\

\

\

Example:

22t4GG (1 0)

20t480
1 t792

192
2

22t4GG

= ? (1 G >

= 5000
= 700
= co
= 2
=
= 57C2

22t4GG
-20t480

1 t98G
- 1 t 792

19£1
192

2
2

0

A.5 Hexadecimal Integer Columns

8 7 6 5 4
DEC HEX DEC HEX DEC HEX 1 DEC HEX DEC HEX

0 0 0 0 0 0 0 0 0 0
268,435,456 1 16,777,216 1,048,576 65,536 1 4,096 1
536,870,912 2 33,554,432 2 2,097,152 2 lill,072 2 8,192 2
805,306,368 3 50,331,648 3 3,145,728 3 196,608 3 12,288 3

1,073,741,824 4 67,108,864 4 4,194,304 4 262, 144 4 16,384 4
1,342, 177 ,280 5 83,886,080 5 5,242,880 5 :m,680 5 20,480 5
1,610,612, 736 6 100,663,296 6 6,291,456 6 ::193,216 6 24,576 6
1,879,048,192 7 117 ,440,512 7 7,340,032 7 458,752 7 28,672 7
2,147,483,643 8 134, 217' 728 8 8,338,608 8 fi24,288 8 32,768 8
2,415,919, 104 9 150,994,944 9 9,437,184 9 fi89,824 9 36,864 9
2,684,354,560 A 167,772,160 A 10,485,760 A . 6fifi,360 A 40,960 A
2,952, 790,016 B 184,549,376 B 11,534,336 B 720,896 B 45,056 B
3,221,225,472 c 201,326,592 c 12,582,912 c 786,432 c 49,152 c
3,489,660,928 D 218, 103,808 D 13,631,488 D 851,968 D 53,248 D
3, 758,096,384 E 234,881,024 E 14,680,064 E 917,504 E 57,344 E
4,026,531,840 F 251,658,240 F 15,728,640 F 983,040 F 61,440 F

I \ I \ v v v
BYTE BYTE BYTE

v- I \

WORD

=v
LONGWORD

3 2 1
DEC HEX DEC HEX DEC

0 0 0 0 0
256 1 16 1
512 2 32 2 2
768 3 48 3 3

1,024 4 64 4 4
1,280 5 80 5 5
1,536 6 96 6 6
1,792 7 112 7 7
2,048 8 128 8 8
2,304 9 144 9 9
2,560 A 160 A 10
2,916 B 176 B 11
3,072 c 192 c 12
3,328 D 208 D 13
3,584 E 224 E 14
3,840 F 240 F 15

I ' I v
BYTE

v I

WORD I

Octal/Hexadecimal/Decimal Conversion A-3

Appendix B
The ASCII Chara.cter Set Collating Sequence

ASCII ASCII
ASCII Hexadecimal 8--Bit ASCII Hexadecimal 8-Bit

Character Number Octal Decimal Character Number Octal Decimal

NUL 00 000 0 FS lC 034 28

SOH 01 001 1 GS 1D 035 29

STX 02 002 2 RS lE 036 30

ETX 03 003 3 us lF 037 31

EOT 04 004 4 SP 20 040 32

ENQ 05 005 5 ! 21 041 33

ACK 06 006 6 II 22 042 34

BEL 07 007 7 # 23 043 35

BS 08 010 8 $ 24 044 36

HT 09 011 9 % 25 045 37

LF OA 012 10 & 26 046 38

VT OB 013 11 27 047 39

FF oc 014 12 (28 050 40

CR OD 015 13) 29 051 41

so OE 016 14 * 2A 052 42

SI OF 017 15 + 2B 053 43

DLE 10 020 16
'

2C 054 44

DCl 11 021 17 - 2D 055 45

DC2 12 022 18 2E 056 46

DC3 13 023 29 I 2F 057 47

DC4 14 024 20 0 30 060 48

NAK 15 025 21 1 31 061 49

SYN 16 026 22 2 32 062 50

ETB 17 027 23 3 33 063 51

CAN 18 030 24 4 34 064 52

EM 19 031 25 5 35 065 53

SUB lA 032 26 6 36 066 54

ESC 1B 033 27 7 37 067 55

(continued on next page)

B-1

,,~' ·~-..tt.<'<·,jl;;;;o',,

ASCII ASCII

ASCII Hexadecimal 8-Bit ASCII Hexadecimal 8-Bit

Character Number Octal Decimal' Character Number Octal Decimal

8 38 070 56 \ 5C 134 92

9 39 071 57 1 50 135 93

: 3A 072 58 /\ 5E 136 94

j 3B 073 59 - 5F 137 95

< 3C 074 60 60 140 96

= 30 075 61 a 61 141 97

> 3E 076 62 b 62 142 98

? 3F 077 63 c 63 143 99

@ 40 100 64 d 64 144 100

A 41 101 65 e 65 145 101

B 42 102 66 f 66 146 102

c 43 103 67 g 67 147 103

0 44 104 68 h 68 150 104

E 45 105 69 i 69 151 105

F 46 106 70 j 6A 152 106

G 47 107 71 k 6B 153 107

H 48 110 72 l I 6C 154 108

I 49 111 73 m 60 155 109

J 4A 112 74 n 6E 156 110

K 4B 113 75 0 6F 157 111

L 4C 114 76 p 70 160 112

M 40 115 77 q 71 161 113

N 4E 116 78 r 72 162 114

0 4F 117 79 s 73 163 115

p 50 120 80 t 74 164 116

Q 51 121 81 u 75 165 117

R 52 122 82 v 76 166 118

s 53 123 83 w 77 167 119

T 54 124 84 x 78 170 120

u 55 125 85 y 79 171 121

v 56 126 86 z 7A 172 122

w 57 127 87 I 7B 173 123

x 58 130 88 I 7C 174 124

y 59 131 89 I 7D 175 125

z 5A 132 90 - 7E 176 126

[5B 133 91 DEL 7F 177 127 -·

B-2 Characters Set ASCII Collating Sequence

Appendix C
Data Types

C.1 Byte

C.2 Word

The data type refers to the way in which bits are grouped and interpreted. In
reference to the processor instructions, the data type of an operand identifies
the size of the eiperand and the significance of the bits in the operand. Data
types applicable to SORT and its associated V AXNMS programs are: sepa
rated into threE! classes; character, binary, and decimal. These classes can be
subdivided into data types of different sizes and formats such as; byte, word,
longword, quad.word, floating, double floating, character string, packed deci
mal string, and variable-length bit field.

A byte is 8 contiguous bits starting on an addressable byte boundary. The bits
are numbered from the right 0 through 7:

7 0

c __] :A

A byte is specified by its address A. When interpreted arithmetically, a byte is
a twos complement integer with bits of increasing significance going 0 through
6 and bit 7 the sign bit. The value of the integer is in the range -128 through
127. For the purposes of addition, subtraction, and comparison, VAX-11 in
structions also provide direct support for the interpretation of a byte as an
unsigned integer with bits of increasing significance going 0 through 7. The
value of the unsigned integer is in the range 0 through 255.

A word is 2 contiguous bytes starting on an arbitrary byte boundary. The bits
are numbered from the right 0 through 15:

1

5 0

[, __ _ :A

A word is specified by its address A, the address of the byte containing bit 0.
When interpreted arithmetically, a word is a twos complement integer with
bits of increasing significance going 0 through 14 and bit 15 the sign bit. The
value of the integer is in the range -32, 768 through 32, 767. For the purposes of

C-1

addition, subtraction and comparison, V AX-11 instructions also provide di
rect support for the interpretation of a word as an unsigned integer with bits of
increasing significance going 0 through 15. The value of the unsigned integer is
in the range 0 through 65,535.

C.3 Longword
A longword is 4 contiguous bytes starting on an arbitrary byte boundary. The
bits are numbered from the right 0 through 31:

3

0

'-----------·--~ :A

A longword is specified by its address A, the address of the type containing bit
0. When interpreted arithmetically, a longword is a twos complement integer
with bits of increasing significance going 0 through 30 and bit 31 the sign bit.
The value of the integer is in the range -2,147,483,648 through 2,147,483,647.
For the purposes of addition, subtraction, and comparison, VAX-11 instruc
tions also provide direct support for the interpretation of a longword as an
unsigned integer with bits of increasing significance going 0 through 31. The
value of the unsigned integer is in the range 0 through 4,294,967,295.

Note that the longword format is different from the longword format defined
by the PDP--11 FP-11. In that format, bits of increasing significance go from
16 through 31 and 0 through 14. Bit 15 is the sign bit. Most DIGITAL software
and in particular PDP-11 FORTRAN and COBOL use the VAX-11 longword
format.

C.4 Quadword
A quadword is 8 contiguous bytes starting on an arbitrary byte boundary. The
bits are numbered from the right 0 through 63:

3

0

E ~
:A

:A+4

6 3
3 2

A quadword is specified by its address A, the address of the byte containing
bit 0. When interpreted arithmetically, a quadword is a twos complement
integer with bits of increasing significance going 0 through 62 and bit 63 the
sign bit. The value of the integer is in the range -2**63 to 2**63--1. The quad
word data type is not fully supported by VAX-11 instructions.

C-2 Data Types

C.5 Floating
A floating datum is 4 contiguous bytes starting on an arbitrary byte boundary.
The bits are labelled from the right 0 through 31.

3 1 1 1

6 5 4 7 6 0

fraction Isl exp L_ -~raction] :A

A floating datum is specified by its address A, the address of the byte contain
ing bit 0. The form of a floating datum is sign magnitude with bit 15 the sign
·bit, bits 14:7 an excess 128 binary exponent, and bits 6:0 and 31:16 a normal
ized 24--bit fraction with the redundant most significant fraction bit not repre
sented. Within the fraction, bits of increasing significance go from 16 through
31and0 through 6. The 8-bit exponent field encodes the values 0 through 255.
An exponent value of 0 together with a sign bit ofO, is taken to indicate that
the floating datum has a value of 0. Exponent values of 1 through 255 indicate
true binary exponents of -127 through +127. An exponent value of 0, together
with a sign bit of 1, is taken as reserved. Floating point instructions processing
a reserved operand take a reserved operand fault (See Chapter 4 and 6). The
value of a floating datum is in the approximate range .29*10**-38 through
1. 7*10**38. The precision of a floating datum is approximately one part in
2**23, that is, typically 7 decimal digits.

C.6 Double Floating
A double floating datum is 8 contiguous bytes starting on an arbitrary byte
boundary. The bits are labelled from the right 0 through 63:

3

6
3

fraction

fraction

1 1 1

6 5 4

sJ exp

4 4

8 7

7 6 0

l ~
:A

fraction :A+4

3
2

A double floating datum is specified by its address A, the address of the byte
containing bit 0. The form of a double floating datum is identical to a floating
datum except for an additional 32 low significance fraction bits. Within the
fraction, bits of increasing significance go 48 through 63, 32 through 47, 16
through 31, and 0 through 6. The exponent conventions, and approximate
range of values is the same for double floating as floating. The precision of a
double floating datum is approximately one part in 2**55, that is, typically 16
decimal digits.

Data Types C-3

C. 7 Variable Length Bit Fleld

A variable bit field is 0 to 32 contiguous bits located arbitrarily with respect to
byte boundaries. A variable bit field is specified by 3 attributes: the address A
of a byte, a bit position P which is the starting location of the field with
respect to bit 0 of the byte at A, and a size S of the field. The specification of a
bit field is indicated by the following where the field is the shaded area.

P+S P+S-1 P P-1 0

_=1.:A
S-1 0

The position is in the range -2**31 through 2**31-1 and is conveniently
viewed as a signed 29-bit offset and a 3-bit bit-within-byte (BWB) field:

3

3 2 0

--~~------~~~b-y-te_of-fs_e_t _________ __, ____ ~ ____ I_ .. __ :~~

The sign extended 29-bit by~e offset is added to the address A and the result
ing address specifies the byte in which the field begins. The 3-bit bit-within
byte field encodes the starting position (0 through 7)· of the field within that
byte. The VAX-11 field instructions provide direct support for the interpreta
tion of a field as a signed or unsigned integer. When interpreted as a signed
integer, it is twos complement with bits of increasing significance going 0
through S-2; bit S-1 is the sign bit. When interpreted as an unsigned integer,
bits of increasing significance go from 0 to S-1. A field of size 0 has a value
identically equal to 0.

A variable bit field may be contained in 1to5 bytes. From a memory manage
ment point of view, only the minimum number of bytes necessary to contain
the field is actually referenced.

C-4 Data Types

C.8 Character String
A character string is a contiguous sequence of bytes in memory. A character
string is specified by 2 attributes: the address A of the first byte of the string,
and the length L of the string in bytes. Thus the format of a character string
is:

7 0

:A

:A+L-1

7 0

The address of a string specifies the first character of a string. Thus 11XYZ 11 is
represented:

"X" :A

"Y" :A+1

"Z" :A+2

The length L of a string is in the range 0 through 65,535.

C.9 Tralllng Numeric String
A trailing numeric string is a contiguous sequence of bytes in memory. The
string is specified by 2 attributes: the address A of the first byte (most signifi
cant digit) of the string, and the length L of the string in bytes.

All bytes of a trailing numeric string, except the least significant digit byte,
must contain an ASCII decimal digit character (0-9). The representation for
the high order digits is:

ASCII
digit decimal hex character

0 48 30 0
1 49 31 1
2 50 32 2
3 51 33 3
4 52 34 4
5 53 35 5
6 54 36 6
7 55 37 7
8 56 38 8
9 57 39 9

Data Types C-5

The highest addressed byte of a trailing numeric string represents an encoding
of both the least significant digit and the sign of the numeric string. The VAX
numeric string instructions support any encoding; however, there are 3 pre-
ferred encodings used by DIGITAL software. Thes~ are (1) unsigned numeric
in which there is no sign and the least significant digit contains an ASCII
decimal digit character, (2) zoned numeric, and (3) overpunched numeric.
Because the overpunch format has been used by compilers of many manufac-
turers over many years, and because various card encodings are used, several
variations in overpunch format have evolved. Typically, these alternate forms
are accepted on input. The valid representations of the digit and sign in each
of the later two formats is:

Representation of Least Significant Digit and Sign

Zoned Numeric Format Overpunch Format

ASCII ASCII char
digit decimal hex char decimal hex norm alt.

0 48 30 0 123 7B I [?
1 49 31 1 65 41 A a
2 50 32 2 66 42 B b
3 51 33 3 67 43 c c
4 52 34 4 68 44 D d
5 53 35 5 69 45 E e
6 54 36 6 70 46 F f
7 55 37 7 71 47 G g
8 56 38 8 72 48 H h
9 57 39 9 73 49 I i

-0 112 70 p 125 7D I] ! :
-1 113 71 q 74 4A J j
-2 114 72 r ~ 75 4B K k
-3 115 73 s 76 4C L 1
-4 116 74 t 77 4D M m
-5 117 75 u 78 4E N n
-6 118 76 v 79 4F 0 0

-7 119 77 w 80 50 p p
-8 120 78 x 81 51 Q q
-9 121 79 y 82 52 R r

The length L of a trailing numeric string must be in the range 0 to 31 (0 to 31
digits). The value of a 0 length string is identically 0. The address A of the
string specifies the byte of the string containing the most significant digit.
Digits of decreasing significance are assigned to increasing addresses. Thus
"123" is represented:

Zoned Format or Unsigned Overpunch Format

7 4 3 0 7 4 3 0

3 1 :A 3 1 :A

3 2 :A+1 3 2 :A+1

3 3 :A+2 4 3 :A+2

C-6. Data Types

and "-123" is represented:

Zoned Format Overpunch Format

7 43 0 7 43 0

3 1 :A 3 1 :A

3 2 :A+1 3 2

7 3 :A+2 4 c :A+2

C.10 Leading Separate Numeric String

A leading separate numeric string is a contiguous sequence of bytes in mem
ory. A leading separate numeric string is specified by 2 attributes: the address
A of the first byte (containing the sign character), and a length L, which is the
length of the string in digits and NOT the length of the string in bytes. The
number of bytes in a leading separate numeric string is L+l.

The sign of a separate leading numeric string is stored in a separate byte.
Valid sign bytes are:

Sign

+
+

decimal

43
32
45

hex

2B
20
2D

ASCII character

+
<blank>

The preferred representation for 11 +11 is ASCII "+". All subsequent bytes con
tain an ASCII digit character:

digit decimal hex ASCII character

0 48 30 0
1 49 31 1
2 50 32 2
3 51 33 3
4~ 52 34 4
e:· d 53 35 5
{; 54 36 6
7 55 37 7
8 56 38 8
H 57 39 9

The length L of a leading separate numeric string must be in the range 0 to 31
(0 to 31 digits). The value of a 0 length string is identically 0.

Data Types C-7

The address A of the string specifies the byte of the string containing the sign.
Digits of decreasing significance are assigned to bytes of increasing addresses.
Thus "+123" is: ·

7 4 3 0

2 B :A

3 1 :A+1

3 2 :A+2

3 3 :A+3

and "-123" is:

7 43 0

2 D :A

3 1

3 2

3 3

. C.11 Packed Decimal String
A packed decimal string is a contiguous sequence of bytes in memory. A
packed decimal string is specified by 2 attributes: the address A of the first
byte of the string and a length L which is the number of digits in the string
and NOT the length of the string in bytes. The bytes of a packed decimal
string are divided into 2 4-bit fields (nibbles) which must contain decimal
digits except the low nibble (bits 3:0) of the last (highest addressed) byte
which must contain a sign. The representation for the digits and sign is:

digit or sign decimal hex

0 0 0
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 8
9 9 9

+ 10,12,14, or 15 A,C,E, or F
11 .or 13 B, or D

C-8 Data Types

The preferred sign representation is 12 for 11 +11 and 13 for 11
-

11
• The length L is

the number of digits in the packed decimal string (not counting the sign) and
must be in th~~ range 0 through 31. When the number of digits is odd, the
digits and' the sign fit in L/2 (integer part only) + 1 bytes. When the number of
digits is even, it is required that an extra 110" digit appear in the high nibble
(bits 7:4) of the first byte of the string. Again the length in bytes of the string
is L/2 + 1.

The address A of the string specifies the byte of the string containing the most
significant digit in its high nibble. Digits of decreasing significance are as
signed to increasing byte addresses and from high nibble to low nibble within
a byte. Thus 11 +123" has length 3 and is represented:

7 4 3 0

CGJ:A
~:A+1

and 11-12 11 has length 2 and is represented:

7 4 3 0

0 1 :A

2 13 :A+1

Data Types · C-9

Appendix D
Data Structures and Basic Concepts

This Appendix. provides beginning users with additional information regard
ing the following topics:

• VAX-11 RMS data files, records, and structures

• File specification parameters

• Programming languages

D.1 Data Flies, Records, and Structures

D.1.1 Data Hierarchy

Four level data hierarchy (character, field, record, file) is shown in Figure D.1:

Figure D.1: Data Hierarchy

m character
I

I
I

Adams, Jotii!]J field .,,,,.., ,...,

Adams r638-36-100& / } $175 l record ---= ------

A file is a collection of related information. For example, a file might contain a
company's personnel information (employee names, addresses, and job titles).
Within this file, the information is divided into records. All the information on
a single employee might constitute a single record. Each record in the person
nel file would be subdivided into discrete pieces of information known as
fields. By specifying key fields (Keys) in a particular order, you can sort entire
records into any order. Using VAX-11 SORT you can retrieve records in
ascending or descending order by ordered key fields (that is, create sorted
data files); and you can create sorted address files for random record retrieval
by user programs.

D-1

8
bytes

D.1.2 Record Types

VAX-11 SORT processes three diff~rent types of records: Fixed, Variable, and
Variable with fixed-length control (VFC). Figure D.2 summarizes these record
types.

Figure D.2: Record Types (fixed, variable, VFC)

FIXED LENGTH 32-BYTE RECORDS

24
bytes

·------
\.._ ___ RECORD 1*----' \----RECORD 2* __ _./'-.~--RECORD 3* ---

*NOTE: VAX-11 RMS considers all 32 bytes to be used, even though they may not contain
useful Information In the eyes of the user.

VARIABLE LENGTH RECORDS ON MAGTAPE

4-Byte Count Fields

I 8
I
lbytes
I

16
bytes :~4 i bytes .

......... -------~~~--.......
'----./ '----1'- I
RECORD 1 RECORD 2 RECORD 3

VARIABLE LENGTH RECORDS ON DIS~·

2-Byte Count Fields

w--_____b_y_te_s__.,....!. ~
\..._/\ I\ I

RECORD 1 RECORD 2 RECORD 3

VARIABLE WITH FIXED-LENGTH CONTROL RECORD (VFC)

Count
field

Fixed control area
portion -===i

'""----RECORD 1 _____ /

D-2 Data Structures and Basic Concepts

F-MK-00026-00

D.1.3 VAX-11 RMS Fiie Organizations

1. Sequential Flies (see Figure D.3) Sequential files may contain the follow
ing record types:

a. Fixed LEmgth Records

b. Variable Length Records

c. Variable with Fixed-length Control (VFC) Records

The order of the records in a sequential file is determined by the order in
which the records were originally written to the file. The first record in the
file is the first record read; the second record next, and so on.Sequential
files are the only files permitted for magnetic tape and unit record devices.
They are also permitted for disk.

2. Relative Flies - Records may be any type (that is, fixed, variable, or VFC)
as long as the maximum record length is specified. Each record is
numbered 1 ton relative to the beginning of file (as shown in Figure D.4).

A relative file consists of record areas (cells) that are identified by relative
record numbers. The first record area in the file is record number 1, the
second is 2, and so on. Empty or null records are permitted. Relative files
can reside only on disk.

Relative file considerations:

• Most efficient random access in terms of speed and storage space over
head.

• Addresses of records (relative record numbers) must be known to process
file randomly.

• Requires storage space to contain all record positions from record num
ber one to highest record number stored in file.

• Records can span blocks, but cannot span buckets.

• Can be write shared.

3. Indexed FHes - Contain one or more indices, as well as data records.
Records can be of any type (that is, fixed, variable, or VFC) as long as the
maximum :record length is specified. To retrieve information, you ask for
the proper record by primary or alternate key. The system looks up the
key in the appropriate index and retrieves the record using the record
pointer associated with the key. Indexed files can reside only on disk.

The location of records in the indexed file organization is transparent to
the program. RMS completely controls the placement of records in an
indexed fih~. The presence of keys in the records of the file governs this
placement.

Data Structures and Basic Concepts D-3

A key is a field present in every record of an indexed file. The location and
length of this field are identical in all records. When creating an indexed
file, the user decides which field or fields in the file's records are to be a
key. Selecting such fields indicates to RMS that the contents (that is, key
value) of those- fields in any particular record written to the file can be
used by a program to identify that record for subsequent retrieval.

At least one key must be defined for an indexed file: the primary key.
Optionally, additional keys or alternate keys can be defined. An alternate
key value can also be used as a means of identifying a record for retrieval.

As programs write into an indexed file, RMS builds a tree-structured table
_ known as an index. An index consists of a series of entries containing a key
value copied from a record that a program wrote into the file. Stored with
each key value is a pointer to the location in the file of the record from
which the value was copied. RMS builds and maintains a separate index
for each key defined for the file. Each index is stored in the file. Thus,
every indexed file contains at least one index, the primary key index.
Figure D.5 shows an RMS indexed file organization with a primary key.
When alternate keys are defined, RMS builds and stores an additional
index for each alternate key.

Index file considerations:

• Multi-key indexed sequential capability.

• Most flexible in terms of how a record is accessed.

• A record is addressed by the contents of a field in the record (the key
field).

• Records can be retrieved sequentially in a collated order by key field.

• Requires the most storage overhead (that is, the RMS index tree
structure).

• Index records consist of block numbers, byte-in-block numbers and key.

• Can be write shared.

All VAX-11 RMS files have two additional blocks in the directory. These
additional blocks contain information relating the type of RMS file and the
record length.

D-4 Data Structures and Basic Concepts

Figure D.3: Sequential Files

END OF FILE~---

RECORD RECORD RECORD RECORD RECORD RECORD RECORD RECORD

Q-MK-00027-00

Figure D.4: Relative Files

CELL NO.

ABLE

L1 2 3 4 5 999 1000

RECORD
999

I ~ ... --------------------------BUCKET*------------------~--~-~1
*A bucket is a storage structure of 1 to 32 blocks.

Figure D.5: Indexed Files

KEY
DEFINITION

~--PRIMARY INDEX (EMPLOYEE NAME)~
L ABLE • • • • JONES • • • • SMITH

Q-M K-00028-00

ELM AV 24379] • • • JONES MAIN ST 19724 SMITH HOLT RD

"------~---------------------DATA RECORDS----------------~----------

Q-M K-00029-00

Data Structures and Basic Concepts D-5

D.2 Input and Output File Specification

An input or output file specification uniquely identifies a file by indicating its
physical location and a directory in which it is cataloged, as well as providing
a unique filename for that particular file within the directory. However, it is
not necessary to supply the physical location and directory for the file, since
the system uses the defaults set up during the log-in procedure when these
components are omitted from a file specification.

This section is only a summary. For a full description of defaults, wild cards,
logical names, and subdirectories, see the VAX/VMS Command Language
User's Guide.

The format of a file specification representing a physical file or device is:

node-naMe::deuice-naMe:[directoryJfilenaMe.file-tYPe;file-uersion

Node-name:: The individual computer system (or node) name within a net
work consists of 1-6 alphanumeric characters.

Example: BOSTON::

Device-name: The device name consists of three components: device type
[controller] [unit-number]:

[directory]

The maximum length of the device type and controller specifi
cation is 15 characters. The maximum unit number is 65535.
The default value for controller is A, and the default value for
unit is 0.

Physical device names are:

Mnemonic

CR
DB
DM
DR
DX
LP
MB
MT
NET
TT
XM

Device

Card Reader
RP04, RP05, RP06 Disk
RK06 Disk
RM03 Disk
Floppy Disk
Line Printer
Mailbox
TE16 Magnetic Tape
Network Communication Device
Interactive Terminal
DMC-11

Example: DB: is actually device name DBAO: by default.

The directory name or names must be inclosed in either
square brackets ([]) or angle brackets (< >). A directory with
out a directory name (for example, []) is not valid. The direc
tory types are:

• A 1- to 9-alphanumeric character string

• A two-part number in the format of a user identification
code (UIC)

D-6 Data Structures and Basic Concepts

Filename.

File type

• As subdirectories, in the format of name.name.name where
each name can consist of up to 9 alphanumberic characters;
each name represents a diretory level.

The file name is limited to nine ASCII characters.

The file type is limited to three ASCII characters. Some com
monly used file types are:

File type

B2S

CMD
COM

COB

DAT*
DIF
DIR
DMP
EXE
FOR

LIB
LIS

LOG
LST
MAC
MAP
MAR
MLB
OBJ
ODL
OLB
OPT
STB
TSK

Contents

Input source file for the PDP-11 BASIC-PLUS-2N AX com
piler
Compatibility mode indirect command file
Command procedure file to be executed with the @ (Execute
Procedure) command, or to be submitted for batch execution
with the SUBMIT command
Input file containing source statements for the PDP-11
COBOL-74N AX compiler
Input or output data file
Output listing created by the DIFFERENCES command
Directory file ·
Output listing created by the DUMP command
Executable program image
Input file containing source statements for the V AX-11
FORTRAN-IV-PLUS compiler
Library file
Listing file created by a language compiler or assembler;
default input file type for PRINT and TYPE commands
Batch job output file
Compatibility mode listing file
MACR0-11 source file
Memory allocation map created by the linker
VAX -11 MACRO source file
Macro library
Object file created by a language compiler or assembler
Overlay description file ·
Object module library
Options file for input to the LINK command
Symbol table file created by the linker
Compatibility mode task image

;File-version The file version number is automatically updated by the sys
tem each time the file is changed. Commands may optionally
use a period to delimit the file version number, but the docu
mentation will use a semicolon.

* indicates default file type for input files. Default file type for output files is whatever the
input file typu is.

Data Structures and Basic Concepts D-7

D.3 Programming Languages Supported

The following compilers produce native mode programs that can use VAX-11
SORT:

• VAX-11 FORTRAN IV-PLUS

• VAX-11 MACRO

• VAX-11 BLISS

• VAX-11 COBOL-74

VAX-11 FORTRAN IV-PLUS

FORTRAN IV-PLUS is an especially complete version of the leading lan
guage for scientific and engineering computation. It is a high-performance
superset of the American National Standard lnstitute's (ANSI) 1966 FOR
TRAN. It also implements many of the anticipated features of the forthcom
ing ANSI standard.

FORTRAN IV-PLUS supports character data types, an IF-THEN-ELSE
statement, long variable names, and the standard CALL facility for calling
system services.

The FORTRAN IV-PLUS compiler first optimizes user source code, then
translates it to take advantage of the VAX-11 instruction set, which can
compile whole FORTRAN IV-PLUS statements into single instructions. An
interactive symbolic debugger allows source-level debugging of FORTRAN
IV-PLUS programs.

VAX-11 MACRO

The VAX-11 MACRO assembly language allows the programmer to write
32-bit machine language instructions for special efficiency. The symbolic de
bugger can also be used with VAX-11 MACRO.

VAX-11 BLISS

BLISS is a medium level language designed for building system software;
such as compilers, real-time processors, and utilities.

VAX-11 COBOL-74

The VAX-11 COBOL-74 language is based on the 1974 ANSI standard.

D-8 Data Structures and Basic Concepts

Index

Address files, 2:...8, 2-11
Address sort, 1-1, 2-8, 5-5

sample output, 5-6
selection of, 2-7

ASCII character set collating sequence, B-1

Batch sessions, 2-17
BLISS, D-8
Bucket, D-5
Buffer allocation and work areas, 5-10
Byte, C-1

Call by reference, 3-6
Calling SORT subroutines, 3-1
Character, D-1
Character string, C-5
COBOL-74, D-8
Command, 1-1, 2-2

description, 2-17
summary, 2-3

Command description,
command name qualifiers, 2-18
input-file-specification qualifiers, 2-20
output-file-specification qualifiers, 2-21

Command format,
continuous command string, 2-1
using system prompts, 2-1

Command qualifier,
/KEY, 2-18
/PROCESS, 2-17
/RSXll, 2-19
/SPECIFICATION, 2-19
/WORK_FILES, 2-19

Command structure,
command name, 2-1
command parameters, 2-2
command qualifiers, 2-2
file qualifiers, 2-2
input-file-specification, 2-2
keywords, 2-2
output-file-specification, 2-2
subqualifiers, 2-2
values, 2-2

Command summary, 2-3
CPU time, 5-14

Data files, 2-11
input, 5-3
output, 5-4

Data hierarchy, D-1

Data types, C-1
byte, C-1
character string, C-5
double floating, C-3
floating, C-3
leading separate numeric string, C-7
longword, C-2
packed decimal string, C-8
quadword, C-2
trailing numeric string, C-5
variable length bit field, C-4
word, C-1

Decimal to hexadecimal conversion A-2
Decimal/Octal conversion, A-1 '
Descriptor, 3-5
Device name, D-6
DIGITAL command language (DCL) 1-1
Directory, D-6 '
Double floating datum, C-3
Dynamic memory usage, 5-10

Efficiency, 5-1
Elapsed time, 5-14
Error conditions,

fatal, 4-1
warning, 4-1

Error messages, 4-1
SORT, 4-2
VAX-11 RMS, 4-8
VAXNMS DCL command interpreter, 4-2

Fields, D-1
File,

I/0 considerations, 2-9
1/0 interface, 3-1
name, D-7
size, 3-6
type, D-7
version, D-7

File organizations,
1/0 flow, 2-10
indexed, D-3
indexed-sequential data files, 2-11
relative, D-3
relative data files, 2-11
Sequential, D-3
sequential address file, 2-11
sequential data files, 2-11

File specification format, D-6

Index-1

Files, D-1
Fixed length record sample, D-2
Floating datum, C-3
FORTRAN IV PLUS, D-8
Functionality, 1-2

Hexadecimal integer columns, A-3
Hexadecimal to decimal conversion, A-2

I/0 considerations, 2-8, 2-9, 5-11
1/0 counts, 5-14
Index sort, 1-1, 2-8, 5-6

sample output, 5-7
selection of, 2-7

Indexed files sample, D-5
Indexed-sequential data files, 2-11
Input and output, 1-2
Input and output file specificatiori, D.:...6
Input buffer, 5-10
Input data files, 5-3
Input file,

descriptor, 3-9
Input file format specifications,

file size, 2-21
record size, 2-20

Input file qualifiers,
/FORMAT, 2-20

Input record,
sample, 5-4
types, 5-4

Inputs to VAX-11 SORT, 2-·8, 2-9
Interactive mode, 2-1
Interactive samples, 2-12
Interactive sessions, 2-5

sample -#1, 2-13
sample -#2, 2-15

Invoking SORT, 2-5
Key, 2-31
Key area, 3-5
Key buffer,

address, 3-6
specifications, 3-6

Key comparison routine address, 3-6, 3-7
Key comparisons,

SORT's routine, 3-4
user's routine, 3-4

Key specifications,
ascending/descending, 2-19
data type, 2-18
leading/trailing sign, 2-19
number, 2-18
overpunched/separate sign, 2-19
position, 2-18
size, 2-18

Index-2

Keys,
ascending or descending order, 2-35
assigning a precedence number, 2-31
binary, 2-33
character, 2-33
data type, 2-32
decimal, 2-33
multiple, 2-34
NUMBER=n, 2-31
POSITION=n, 2-34
quick reference flowchart, 2-31
setting up, 2-31
signed numbers, 2-33
size restrictions, 2-35
SIZE=n, 2-34

Keywords, 2-2

Languages, D-8
Leading separate numeric string, C-7
Longest record length, 3-6, 5-13
Longword, C-2

MACRO, D-8
Mapping, 5-10
Multi-block and buffer counts, 5-14

Node name, D-6
Number of,

work files, 3-6
initial runs, 5-14
merge passes, 5-14

Octal/Decimal conversion, A-1
Order of the merge, 5-14
Output buffer, 5-10
Output data files, 5-4

sample, 5-5
Output file,

allocation, 3-9
bucket size, 3-9
descriptor, 3-9
file options, 3-9
maximum record size, 3-9
organization, 3-9
record format, 3-9

Output file format specifications,
block size, 2-22
record size, 2-21
record type, 2-21

Output file qualifiers,
/ALLOCATION, 2-22
/BUCKET _SIZE, 2-22
/CONTIGUOUS, 2-22
/FORMAT, 2-21
/INDEXED_SEQUENTIAL, 2-22

Output file qualifiers (Cont.)
/OVERLAY, 2-22
/RELATIVE, 2-22
/SEQUENTIAL, 2-22

Output record placement, 3-13
Outputs from VAX-11 SORT, 2-9
Overpunch format, C-6

Packed decimal string, C-8
Page faults, 5-10, 5-14
Paged-out, 5-10
Pager, 5-10
Parameters, 2-2
Phases of operation, 5-7
Powers of 2 and 16, A-2
Programming languages supported,

BLISS, D-8
COBOL-74, D-8
FORTRAN IV PLUS, D-8
MACRO, D-8

Quadword, C-2
Qualifiers, 2-2, 2-3

Real memory, 5-10
Record descriptor, 3-11, 3-13
Record I/0 interface, 3-2
Record sort, 1-1, 2-8, 5-3

selection of, 2-7
Record types,

Fixed, D-2
Variable, D-2
Variable with fixed-length control (VFC), D-2

Records, D-1
Re la ti ve data files, 2-11
Relative files sample, D-5
RMS,

completion status codes, 4-8
data files, D-1
data structures, D-1
file organizations, D-3
records, D-1

Running SORT, 2-1

Sample programs,
COBOL-74N AX, 3-17
FORTRAN IV PLUS, 3-20
MACRO, 3-15

Sequential,
address files, 2-11
data files, 2-11
files sample, D-5

SORT,
architecture, 5-2
definition of, 1-1

SORT (Cont.)
functional description, 5-1
internal organization, 5-7

Sort,
improving efficiency, 5-1
sample, 2-6
tree, 5-10
tuning, 5-1
type, 3-6
types, 1-1

Sort types,
address, 1-1, 2-7, 5-6
index, 1-1, 2-7,5-6
record, 1-1, 2-7, 5-3
selection of, 2-7
specification of, 2-17
tag, 1-1, 2-7, 5-3

SORT's four sorting processes, 2-8
Sorting processes, 2-8

functional descriptions, 5-3
See sort types, 1-1

Sorting sequence, 2-5
Specification file, 2-23

fixed position field,
format (SORT-11), 2-24
field record specfications, 2-27
header record specifications, 2-26
sample, 2-29
summary, 2-28

free field,
format (VAX-11 SORT), 2-24
field record specifications, 2-30
header record specifications, 2-30
sample, 2-31

methods of entering, 2-23
record formats for fixed position fields, 2-25
record formats for SORT-11 type files, 2-25
records, 2-24
VAX-11 SORT, 2-30

Specification form, 2-25
Statistics, 1-2

example of, 2-12
String descriptors, 3-6
Subqualifiers, 2-2, 2-3
Subroutines, 3-1

calls, 3-1
interfaces, 3-1
package, 1-1
parameters, definitions, and valid returns, 3-5
programming considerations, 3-2
set summary, 3-3
SOR$END_SORT, 3-14
SOR$INIT_SORT, 3-6
SOR$PASS_FILES, 3-9

Index-3

Subroutines (Cont.)
SOR$RELEASE-REC, 3-11
SOR$RETURN-REC, 3-13
SOR$SORT_MERGE, 3-12

Tag sort, 1-1, 2-8, 5-3
selection of, 2-7

Temporary storage, 2-8
Total key size, 3-6
Trailing numeric string, C-5
Tuning procedure, 5-11

system manager performance
considerations, 5-14

user performance considerations, 5-11
Tuning procedure parameters,

modified page writer clustel' factor, 5-15
number of work files, 5-13
process section count, 5-15
type of sort, 5-13
using SORT'S statistics, 5-13
virtual page count, 5-15
work file devices, 5-13
working set quota, 5-12, 5-15

Index-4

Utility, 1-1

Values, 2-2, 2-3
Variable length bit field, C-4
Variable length record samples, D-2
VAX-11 SORT,

definition of, 1-1
VAXNMS calling standards, 3-2
VFC records, D-2

sample, D-2
Virtual memory, 5-10
Virtual memory added, 5-14
VMS library, 3-2

Word, C-1
Work files, 2-8

default, 2-35
logical name of, 2-35
physical device codes, 2-35
setting up, 2-35

Working set, 5-10

Zoned numeric format, C-6

READER'S COMMENTS

VAX-11
SORT

User's Gulde
Order No. AA-D113A-TE

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify)---------------------------

Name Date-----------------

Organization---------------~------------------

Street-------------------------------------

CitY------------------ State------ Zip Code _______ _
or

Country

- - Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - -

Do Not Tear- Fold Here

111111

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS TW/A14

DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

No Postage
Necessary

if Mai led in thE
United States

