
VAX/VMS
Guide to Writing
a Device Driver

Order No . AA-H499B-TE

March 1980

This document explains how to write device drivers for devices that are not
supported by VAX/VMS, and how to load these drivers into the VAX/VMS
operating system.

VAX/VMS
Guide to ,Writing
a Device Driver

Order No. AA-H4998-TE

SUPERSESSION/UPDATE INFORMATION: This revised document supersedes
the VAX/VMS Guide to Writing a
Device Driver (Order No. AA-H499A-TE).

OPERATING SYSTEM AND VERSION: VAX/VMS V02

SOFTWARE VERSION: Not applicable

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

diaital eauioment corporation . maunard, massachusetts

First Printing, February 1979
Revised, March 1980

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
fo~ any erro,s that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright @) 1979, 1980 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last
document requests the user's critical evaluati-0n
preparing future documentation.

page of this
to assist us in

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DEC COMM
ASSIST-11
VAX
DECnet
DATATRIEVE

DECsystem-10
DECtape
DIBOL
EDU SYSTEM
FLIP CHIP
FOCAL
IND AC
LAB-8
DECSYSTEM-20
RTS-8
VMS
IAS
TRAX

MASS BUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-10
SBI
PDT

PREFACE

PART I

CHAPTER

CHAPTER

1

1.1
1.2
1.3
1.4
1.5
1. 5 .1
1.5.1.1
1.5.1.2
1.5.1.3
1.5.1.4
1.5.1.5
1.5.1.n
1. 5. 2
l.fi
i. n .1
l.n.2
l.n.3
1. 7
1. 7 .1
1. 7. 2
1. 7. 3
1.7.4
1.7.5
1.7.n
1. 7. 7
1.8
1.9
1.10
1.11
1.12

2

2.1
2.2
2.3
2.4
2.5
2.n
2.7
2.8
2.9
2.10

CONTENTS

INTRODUCTION TO DEVICE DRIVERS

ASYNCHRONOUS NATURE OF A DEVICE DRIVER
FORK PROCESSES
PROCESS CONTEXT AND INTERRUPT CONTEXT
DEVICE DEPENDENCE AND DEVICE INDEPENDENCE
THE I/O DATA BASE

Control Blocks in the I/O Data Base
Device Data Block
Unit Control Block
Channel Request Block
Interrupt Data Block
Adapter Control Block
Channel Control Block
I/O Request Packets

SYNCH RON I ZAT ION
Interrupt Priority Levels
Fork Queues
Resource Wait Queues

FUNCTIONS OF A DEVICE DRIVER
Initialization Routines
FDT Routines
Start I/O Routine
Interrupt Service Routine
Device Timeout Handler
Cancel I/O Routine
Error-Logging Routine

AN EXAMPLE OF A UNIBUS I/O REQUEST
THE UNIBUS
PROGRAMMED I/O AND DIRECT MEMORY ACCESS I/O
BUFFERED I/O AND DIRECT I/O
LOADABLE DRIVERS

DISCUSSION OF A LINE PRINTER QUEUE I/O
REQUEST

DRIVER CODE FOR THE LPll WRITE FUNCTION
A USER PROCESS'S I/O REQUEST
I/O PREPROCESSING BY VAX/VMS
I/O PREPROCESSING BY THE DRIVER
QUEUING THE I/O PACKET TO THE DRIVER
DRIVER DEVICE ACTIVATION
WAITING FOR A DEVICE INTERRUPT
INTERRUPT HANDLING
I/O COMPLETION PROCESSING BY THE DRIVER
I/O COMPLETION PROCESSING BY THE VAX/VMS
SYSTEM

iii

Page

xi

1-1

1-1
1-3
1-3
1-4
1-5
1-n
1-n
1-e)
1-h
1-n
1-7
1-7
l-7
1-7
1-7
1-8
1-8
1-9
1-10
1-10
1-10
1-11
1-11
1-11
1-11
1-11
1-13
1-15
1-15
1-ln

2-1

2-2
2-3
2-3
2-4
2-5
2-n
2-Fi
2-7
2-8

2-8

CHAPTER

CHAPTER

CHAPTER

3

3.1
3.1.1
3 .1. 2
3 .1. 3
3 .1.4
3 .1. 5
3 .1. 6
3 .1. 7

3 .1.8
3.1.8.1
3.1.8.2
3.1.8.3

3.1.8.4
3.1.8.5
3.1.9
3.1.9.l
3.1.9.2
3.1.9.3
3.1.9.4
3.1.9.5
3.1.10
3.1.11
3.1.11.1
3.1.11.2
3.1.11.3
3.1.11.4
3.2
3.2.1

3.3
3.3.1

4

4.1
4.2

4.2.1
4.2.1.1
4.2.1.2
4.2.1.3
4.2.1.4
4.2.1.5

5

5.1
5 .1.1
5 .1. 2

5.1.2.1
.5.1.2.2
5.1.2.3

CONTENTS

SYNCHRONIZATION OF I/O REOUEST PROCESSING

INTERRUPT PRIORITY LEVELS
IPLs Defined by VAX/VMS
IPLs Defined for the Hardware
Interrupt Service Routines
Raising IPL
Lowering IPL
Servicing Hardware Interrupts
Transferring Control to the Driver Fork
Process
IPL Use During I/O Processing
IPL$ ASTDEL (IPL 2)
IPL$-IOPOST (IPL 4)
Driver Fork Processing (IPLs 8 through
11)
Hardware Device Interrupts
IPL$ POWER
Additional IPLs
IPL$ SCHED
IPL$-QUEUEAST
IPL$-SYNCH and IPL$ TIMER
IPL$-MAILBOX
IPL$ XDELTA
overview of IPL Use
Modifying IPL in Driv~r Code
Set Interrupt Priority Level Macro
Disable Interrupts Macro
Enable Interrupts Macro
Software Interrupt Macro

FORK BLOCKS AND FORK DISPATCHING
Interrupt Service Routine for Fork
Dispatching

RESOURCE WAIT QUEUES
Competing for a Controller Data Channel

THE UNIBUS ADAPTER

READING AND WRITING DEVICE REGISTERS
MAPPING UNIBUS AND SB! ADDRESSES FOR DMA
TRANSFERS

UNIBUS Adapter Data Transfer Paths
Direct Data Path
Buffered Data Paths
Byte Offset Data Transfers
Purging a Buffered Data Path
Longword-Aligned 32-Bit Random Access Mode

OVERVIEW OF I/O PROCESSING

PREPROCESSING AN I/O REQUEST
Process I/O Channel Assignment
Locating a Device Driver in the I/O Data
Base
Unit Control Block (UCB)
Channel Request Block (CRB)
Interr~pt Data Block (IDB) and Device
Data Block (DDB)

iv

Page

3-1

3-1
3-1
3-2
3-2
3-3
3-3
3-4

3-4
3-n
3-n
3-7

3-7
3-7
3-7
3-8
3-8
3-8
3-8
3-9
3-9
3-9
3-11
3-11
3-11
3-12
3-12
3-12

3-13
3-14
3-15

4-1

4-2

4-2
4-3
4-4
4-5
4-7
4-7
4-7

5-1

5-1
5-3

5-3
5-3
5-5

5-5

PART II

CHAPTER

CHAPTER

CHAPTER

5 .1. 3
5 .1. 4
5 .1. 5
5 .1. n

5 .1. 7
5.2
5.2.1
5.2.2

5.2.3
5.2.4

5.2.5
5.3
5.3.1

CONTENTS

Validating the I/O Function
Checking Process I/O Request Quotas
Validating the I/O Status Block
Allocating and Setting Up an I/O Request
Packet
Function Decision Table Processing

HANDLING DEVICE ACTIVITY
Creating a Driver Fork Process to Start
Activating a Device and Waiting for an
Interrupt
Handling a Device Interrupt
Switching from Interrupt to Fork Process

Page

5-7
5-7
5-7

5-7
5-9
5-10

I/O 5-12

5-13
5-14

Context 5-14
Activating a Fork Process from a Fork Queue 5-15

COMPLETION OF AN I/O REQUEST 5-ln
I/O Postprocessing 5-17

TEMPLATE FOR AN I/O DRIVER h-1

n.l CODING CONVENTIONS ~-1

n.2 RESTRICTIONS ON DEVICE REGISTER I/O SPACE USE n-3

7

7.1
7 .1.1
7 .1. 2
7 .1. 3
7.2
7.2.1
7.2.2
7.3
7.3.1
7.3.2

7.3.3
7.3.4

8

8.1
8.2
8.3
8.3.1
8.3.2
8.4
8.4.1
8.5
8 • f)
8.n.1
8.n.2
8.6.3

8.7
8.71

CODING DEVICE DRIVER TABLES

DRIVER PROLOGUE TABLE (DPT)
DPTAB Macro
DPT STORE Macro
Example of DPTAB and DPT STORE Macro Use

DRIVER DISPATCH TABLE (DDT)
DDTAB Macro
Example of a DDTAB Macro

FUNCTION DECISION TABLE (FDT)
Defining Device-Specific Function Codes
Determining Those Functions that are
Buffered I/O
FUNCTAB Macro
Example of FUNCTAB Macro Use

CODING FDT ROUTINES

CONTEXT FOR FDT ROUTINE EXECUTION
REGISTERS PRESET FOR FDT ROUTINE EXECUTION
CONVENTIONS FOLLOWED BY FDT ROUTINES

Register Conventions
Process Context Conventions

TRANSFERRING INTO AND OUT OF AN FDT ROUTINE
Exit Methods

FDT ROUTINES FOR DIRECT I/O
FDT ROUTINES FOR BUFFERED I/O

Checking the User's Buffer
Allocating the System Buffer
Completion of Buffered I/O in I/O
Postprocessing

FDT ROUTINES PROVIDED BY VAX/VMS
EXE$0NEPARM

v

7-1

7-1
7-2
7-3
7-5
7-5
7-n
7-7
7-7
7-8

7-9
7-10
7-10

8-1

8-1
8-1
8-2
8-2
8-3
8-3
8-4
8-4
8-(-)
8-h
8-n

8-7
8-8
8-9

CHAPTER

CHAPTER

CHAPTER

8.7.2
8.7.3
8.7.4
8.7.5
8.7.6
8.7.7
8.8
8.8.1
8.8.2
8.8.3
8.8.4

9

9.1
9.2
9.3
9.3.l
9.3.2

9.3.3
9.3.4
9.3.5
9.3.6
9.3.7
9.3.8
9.3.9
9.3.10
9.4
9.4.1
9.4.2
9.4.3
9.5

10

10.1
10.1.1
10.1.2
10.1.3
10.1.4
10.1.5

10. 2
10.2.1
10.2.2
10.3
10.4
10.5
10.6
10.n.l
10.n.2
10.7

11

11.1
11.2
11.3

CONTENTS

EXE$READ
EXESSENSEMODE
EXE$SETCHAR
EXE$SETMODE
EXE$WRITE
EXE$ZEROPARM

EXIT ROUTINES IN THE VAX/VMS SYSTEM
EXESABORTIO
EXE$FINISHIO and EXESFINISHIOC
EXE$Q IODRVPKT
EXE$ALTQUEPKT

CODING THE START I/O ROUTINE

TRANSFERRING CONTROL TO START I/O
CONTEXT OF A DRIVER FORK PROCESS
ACTIVATING THE DEVICE

Obtaining Controller Access
Getting the I/O Function Code and
Converting the Code and Modifiers
Obtaining a Buffered Data Path
Loading Map Registers
Computing the Transfer Length
Computing the Transfer Start Address
Preparing the Device Activation Bit Mask
Blocking All Interrupts
Checking for Power Failure
Activating the Device

WAITING FOR AN INTERRUPT OR TIMEOUT
WFIKPCH and WFIRLCH Macro Formats
Expansion of WFIKPCH Macro
IOC$WFIKPCH Routine

RESPONDING TO AN EXPECTED DEVICE INTERRUPT

CODING FOR UNIBUS DMA TRANSFERS

REQUESTING A BUFFERED DATA PATH
Requesting a Buffered Data Path (with Wait)
Requesting a Buffered Data Path (No Wait)
Requesting a Permanent Buffered Data Path
Requesting the Direct Data Path
Mixed Direct and Buffered Data Path
Transfers

REQUESTING UBA MAP REGISTERS
Allocation of Map Registers
Permanent Allocation of Map Registers

LOADING THE UBA MAP REGISTERS
COMPUTING THE STARTING ADDRESS OF A TRANSFER
ACTIVATING THE DP.VICE
COMPLETION OF A DMA TRANSFER

Purging the Data Path
Releasing a Buffered Data Path

RELEASING UBA MAP REGISTERS

CODING INTERRUPT SERVICE ROUTINE

DELIVERING A DEVICE INTERRUPT TO A DRIVER
INTERRUPT CONTEXT
SERVICING A SOLICITED INTERRUPT

vi

Page

8-9
8-10
8-11
8-11
8-12
8-13
8-13
8-13
8-14
8-15
8-17

9-1

9-1
9-1
9-2
9-2

9-4
9-4
9-4
9-5
9-5
9-5
9-5
9-~

9-n
9-n
9-7
9-r7
9-7
9-8

10-1

10-2
10-2
10-3
10-3
10-3

10-3
10-4
10-4
10-4
10-5
10-n
10-n
10-7
10-7
10-8
10-8

11-1

11-1
11-3
11-4

CHAPTER

CHAPTER

CHAPTER

CHAPTER

11.4
11.4.1

12

12.1
12.1.1
12.1.2
12.1.2.1
12.1.2.2

12.1.2.3
12.2
12.2.1
12.2.2
12.2.3

13

13.1
13.1.1
13.1.2

13.1.3
13.2
13.2.1
13.2.2
13.2.3
13.2.4
13.3

14

14.1
14.2
14.2.1
14.2.2
14.2.3
14.2.4
14.3
14.3.1
14.3.2
14.3.3
14.3.4
14.3.5
14.3.6

15

15.1
15.2
15.3
15.4
15.5
15.fi
15.7
15.8
15.9

CONTENTS

SERVICING AN UNSOLICITED INTERRUPT
Examples of Unsolicited Input Handling

COMPLETING THE I/O REQUEST

I/O POSTPROCESSING
EXE$ IOFORK
Completing an I/O Request
Releasing the Controller
Saving Status, Count, and Device-Dependent
Status
Returning to the Operating System

TIMEOUT HANDLERS
Retrying the I/O Operation
Aborting the I/O Request
Sending a Message to the Operator

CODING INITIALIZATION, CANCEL I/O, AND
ERROR-LOGGING ROUTINES

INITIALIZATION ROUTINES
Initialization During Driver Loading
Initialization During Recovery from a
Power Failure
Initialization Context

CANCEL I/O ROUTINE
Context of a Cancel I/O Routine
Drivers that Need No Cancel I/O Routine
Device-Independent Cancel I/O Routine
Device-Dependent Cancel I/O Routines

ERROR LOGGING ROUTINES

LOADING A DEVICE DRIVER

IN PREPARATION FOR LOADING
LOADING THE DRIVER

LOAD Command
CONNECT Command
RELOAD Command
SHOW/DEVICE

AUTOCONFIGURATION
SYSGEN's Autoconfiguration
The SYSGEN Device Table
Floating Vector Address Calculation
Floating CSR Address Calculation
Rules for Configuration
Example of a UNIBUS Configuration

DEBUGGING A DEVICE DRIVER

BOOTSTRAPPING THE SYSTEM WITH XDELTA
LOADING THE DRIVER
INSERTING BREAKPOINTS IN THE SOURCE CODE
CALCULATING THE BASE OF DRIVER CODE
REQUESTING AN XDELTA SOFTWARE INTERRUPT
LOOKING AT THE VECTOR JUMP TABLE
SETTING AN XDELTA BASE REGISTER
DESTROYING REGISTER CONTENTS
EXAMINING UCB, IRP, and PSL

vii

Page

11-5
11-fi

1/.-1

12-1
12-1
12-2
1 /.-2

12-3
12-3
12-4
12-4
12-5
12-fi

13-1

13-1
13-2

13-2
13-3
13-4
13-5
13-5
13-5
13-fi
13-fi

14-1

14-1
14-2
14-2
14-3
14-5
14-fi
14-7
14-8
14-9
14-14
14-14
14-14
14-15

15-1

15-1
15-2
15-3
15-4
15-4
15-5
15-5
15-5
15-fi

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

GLOSSARY

INDEX

15.10
15.10.l
15.10.2
15.10.3
15.10.4
15.10.5
15.lO.n
15.10.7
15.10.8
15.10.9
15.10.10
15.10.11
15.10.12
15.10.13
15.10.14
15.10.15
15.10.lfi
15.10.17
15.10.18
15.10.19
15.10.20
15.10.21
15 .11
15.11.l
15.11.2

15.12
15.12.1
15.12.2
15.12.3
15.12.4

B

c

D

E

F
F.l
F.2
F.2.1
F.2.2
F.2.2.1
F.2.2.2
F.2.2.3
F.2.3
F.3
F.3.1
F.3.2

F.3.3

CONTENTS

XDELTA COMMANDS
values and Expressions
Special Symbols
Operators
Open and Display Command
Close and Display Next Location Command
Display Range Command
Indirect Command
Display Previous Location Command
Show Value Command
Step Instruction Command
Setting Breakpoints
Clearing Breakpoints
Displaying Breakpoint List
Setting Base Registers
Proceeding from Breakpoints
Loading PC and Continuing
Display Mode Control
The Execute String Command
Setting Complex Breakpoints
XDELTA Stored Commands
Stored Base Registers

DELTA
The EXIT Command
Examining and Modifying Locations in
Process Space

DEBUGGING TECHNIQUES
References to System Addresses
Opening Device Registers in XDELTA
Incorrect References to Device Registers
XDELTA and System Failures

VAX/VMS MACROS INVOKED BY DRIVERS

OPERATING SYSTEM ROUTINES

SAMPLE DRIVER FOR AN A-TO-D
CONVERTER

SAMPLE DRIVER FOR DRlls

MASSBUS ADAPTER
I/O DATA BASE FOR MASSBUS DEVICES
MBA CONSIDERATIONS FOR DRIVERS

Unit Initialization Routine
Start I/O Routine
Requesting a Controller Data Channel
Loading Map Registers
Releasing Controller Data Channel(s)
DPTAB Macro

INTERRUPT HANDLING FOR MASSBUS DEVICES
Looking for Another Request
Transferring Control to a Subcontroller's
Interrupt Service Routine
Handling Unsolicited Interrupts

Page

15-n
15-7
15-8
15-8
15-8
15-9
15-9
15-9
15-9
15-10
15-10
15-10
15-10
15-11
15-11
15-11
15-11
15-12
15-12
15-13
15-13
15-14
15-14
15-14

15-14
15-14
15-15
15-15
15-15
15-15

B-1

C-1

D-1

E-1

F-1
F-4
F-'1
F-fi
F-7
F-8
F-8
F-9
F-9
F-9
F-10

F-11
F-11

Glossary-I

Index-1

viii

FIGURE

TABLE

1-1
1-2
1-3
1-4
2-1
2-2
3-1
3-2
3-3
4-1
5-1
5-2
5-3

5-4
5-5
5-6
5-7
5-8
n-1
8-1

8-2

9-1
11-1
F-1
F-2

F-3
F-4
F-5
F-n

3-1
7-1
8-1

8-2
15-1

CONTENTS

FIGURES

VAX/VMS Calls to Driver Routines
The I/O Data Base
Processing a Sample I/O Operation
VAX-11 Hardware Configuration
A Line Printer Write Function
Locating a Function Decision Table
Servicing Hardware Interrupts
IPL Conventions During I/O Processing
IPL conventions During I/O Completion
UNIBUS to SB! Address Mapping
Sequence of Driver Execution
Locating the Target Device
I/O Data Structures for Three Devices
on One Controller
I/O Data Base for Two Controllers
Driver Function Decision Table
FDT Routines and I/O Preprocessing
Creating a Fork Process After an Interrupt
Reactivation of a Driver Fork Process
Driver Organization
Queue I/O Request Scan of a Function
Decision Table
Format of System Buffer for Buffered I/O
Read Operations
Driver Insertion into Channel Wait Queue
Interrupt Handling Flow
MASSBUS Configuration
Mapping of a Virtual Address to a Page
Frame Number
Location of MASSBUS Registers
I/O Data Base for MASSBUS Disk Unit

Page

1-2
1-5
1-12
1-14
2-2
2-4
3-5
3-10
3-10
4-3
5-2
5-4

5-5
5-f)
5-9
5-11
5-15
5-lh
')-2

8-4

8-7
9-3
11-2
F-1

F-2
F-3
F-4

Units F-5 I/O Data Base for MASSBUS Disk and Tape
I/O Data Structures Used in Dispatching an
Interrupt

TABLES

IPLs Defined by VAX/VMS
VAX/VMS I/O Function Codes
Registers Loaded by Queue I/O Request
Service
FDT Exit Methods
XDELTA Command Summary

; "

F-f;

3-2
7-8

8-2
8-5
15-7

PREFACE

The VAX/VMS Guide to Writing a Device Driver provides the information
needed to write a device driver that runs under VAX/VMS Version 2.0
and to load that driver into the operating system. VAX/VMS makes no
guarantee that drivers written for VAX/VMS Versions 1.0, 1.5 and 2.0
will execute without modification on subsequent versions of the
operating system. While the intent is to maintain the existing
interface, some unavoidable changes may occur as new features are
added. The use of internal executive interfaces other than those
described in this manual is discouraged.

INTENDED AUDIENCE

This manual is intended for system programmers who are already
familiar with the VAX-11 processor and the VAX/VMS operating system.
The manual focuses on writing drivers for devices attached to the
UNIBUS; however, Appendix F provides the additional information
needed to write a driver for a device attached to the MASSBUS.

STRUCTURE OF THIS DOCUMENT

This manual is organized into two parts. The first part consists of
the following chapters, which introduce VAX/VMS device drivers and
those aspects of the VAX-11 processor and the VAX/VMS system that are
essential to drivers:

• Chapter 1 introduces the main concepts associated with drivers
on VAX/VMS.

• Chapter 2 describes an example of a line printer driver
handling a data transfer.

• Chapter 3 discusses synchronization mechanisms: interrupt
priority levels, fork processes and fork queues, and resource
wait queues.

• Chapter 4 discusses UNIBUS considerations for direct memory
access (DMA) transfers.

• Chapter 5 provides an overview of I/O processing and discusses
the interaction between device drivers and VAX/VMS.

xi

The second part of this document is a series of "how to" chapters that
provide a sample approach to coding a device driver:

• Chapter n contains a template for coding a device driver.

• Chapter 7 details the macros that drivers invoke to create
necessary tables.

• Chapter 8 describes the coding of function decision routines.

• Chapter 9 describes the coding of a start I/O routine.

• Chapter 10 describes the UNIBUS considerations for a start I/O
routine.

• Chapter 11 describes the coding of an interrupt service
routine.

• Chapter 12 describes the coding of I/O completion and device
timeout routines.

• Chapter 13 describes the
initialization routines,
error-logging routines.

coding of unit
I/O cancellation

and controller
routines, and

• Chapter 14 describes the loading of a driver into the system.

• Chapter 15 describes the debugging tool XDELTA that you can
use to debug a device driver.

• Appendix A describes the I/O data base in detail. This is an
important appendix for the programmer of a device driver.

• Appendix B describes the VAX/VMS macros that drivers can
invoke.

• Appendix C describes the VAX/VMS routines that device drivers
can call.

• Appendix D contains a sample driver for an analog-to-digital
converter.

• Appendix E contains a sample driver for two connected DRlls.

• Appendix F contains information needed to write a device
driver for a device attached to the MASSBUS.

• The glossary at the end of this manual defines I/0-related and
driver-related terms.

ASSOCIATED DOCUMENTS

This document has the following prerequisites:

• I/0-related portions of the VAX/VMS System Services Reference
Manual

xii

• The appendix on naming conventions in the VAX-11 Guide to
Creating Modular Library Procedures

e VAX/VMS I/O User's Guide

The following documents are associated with this manual:

• VAX/VMS System Dump Analyzer Reference Manual

• VAX/VMS System Manager's Guide

CONVENTIONS USED IN THIS DOCUMENT

This manual describes code transfer operations in three ways.

1. The phrase "issues a system service call" implies the use of
a CALL instruction.

2. The phrase "calls a routine" implies the use of a JSB or BSB
instruction.

3. The phrase "transfers control to" implies the use of a BRB,
BRW, or JMP instruction.

xiii

SUMMARY OF TECHNICAL CHANGES

Please refer to the section on system programming in the
Release Notes (Version 2.0) for a detailed description
technical -Changes to VAX/VMS that affect device drivers.

xiv

VAX/VMS
of the

PART I

CHAPTER 1

INTRODUCTION TO DEVICE DRIVERS

Under the VAX/VMS operating system, a device driver is a set of
routines and tables that the system uses to process an I/O request for
a particular device type. In order to understand how drivers are used
by the VAX/VMS system, you must become familiar with the following
basic concepts:

• Asynchronous nature of a device driver

• Fork processes

• Process and interrupt context

• Device dependence and device independence

• I/O data base

• Synchronization mechanisms

The beginning sections of this chapter describe the concepts listed
above. The later sections describe the more concrete aspects of
drivers, such as the actual functions they perform.

1.1 ASYNCHRONOUS NATURE OF A DEVICE DRIVER

Normally, a device driver module consists of the following routines
and tables:

• An I/O preprocessing routine or routines that validate
device-specific parameters of an I/O request, format data,
allocate system buffers, and lock pages in memory

• A start I/O routine that activates the device

• An interrupt service routine that responds to interrupts from
the device unit

• An error recovery routine that retries I/O operations and
performs other error handling

• An error-logging routine that writes the contents of device
registers and other data into an error buffer for the system

• A cancel I/O routine that prevents further processing of an
I/O request

1-1

INTRODUCTION TO DEVICE DRIVERS

• An initialization routine that readies a device or controller
for operation when the system is bootstrapped or during power
failure recovery

• A driver prologue table that describes the driver and the
device type to the VAX/VMS procedure that loads drivers into
the system

• A driver dispatch table that lists the entry point addresses
of standard driver routines and records the size of diagnostic
and error-logging buffers for the device type

• A function decision table that lists all valid function codes
for the device and lists the addresses of I/O preprocessing
routines associated with each valid function

With a few exceptions, which are noted in Chapter 7, the order of the
various routines and tables within the driver module is not important.

Using the driver tables and other information maintained by the driver
and the operating system, the system determines which routines to
activate and when they should be activated, as illustrated in Figure
1-1. For example, when a user process issues a Queue I/O Request
system service, the system service calls various driver routines to
perform preprocessing of the I/O request. Likewise, if a user process
issues a Cancel I/O on Channel system service, the system service
activates the driver's cancel I/O routine.

CONTROLLER
INITIALIZATION

DEVICE
UNIT

INITIALIZATION

LOG
DEVICE

ERRORS

1/0
OPERATION

SETUP

START
1/0

OPERATION

SERVICE
DEVICE

INTERRUPT

CANCEL
1/0

OPERATION

MA-2420

Figure 1-1 VAX/VMS Calls to Driver Routines

1-2

INTRODUCTION TO DEVICE DRIVERS

A device driver does not run from start to end. The system calls
driver routines and suspends and resumes them; the central processor
interrupts and reactivates driver routines. Because little sequential
processing of driver code occurs, VAX/VMS must assume the
responsibility for synchronizing the execution of the various driver
routines and synchronizing the execution of all drivers in the system.
The VAX/VMS operating system synchronizes driver execution using fork
processes, interrupt priority levels, fork queues, and resource wait
queues, described in the following sections.

1.2 FORK PROCESSES

A fork process is a process that is created dynamically and has
minimal context. Fork processes execute entirely within the system
address space. The VAX/VMS operating system creates and schedules a
fork process by constructing a specialized control block called a fork
block, inserting the fork block in a fork queue, and requesting a
software interrupt. Fork queues and fork process dispatching are
described further in Section 1.6.2.

A driver fork process has the following context:

• Three general registers

• Program counter (PC)

• A unit control block in the I/O data base that describes the
target device of the I/O request

The unit control block also contains the driver's fork block. Section
1.5 describes the unit control block and other control blocks in the
I/O data base.

Like other processes, fork processes can be suspended and interrupted.
VAX/VMS places a driver fork process in a wait state when the process
requests an unavailable resource, for example, a controller data
channel. The processor interrupts a fork process when the processor
receives a request for an interrupt at a higher priority level.

Driver fork processes execute at raised interrupt priority levels to
minimize the number of interruptions. They can raise the priority
level to 31 to block all other interrupts, if necessary.

The system automatically
processes and restores
reactivated. The operating
because the fork block and
nonpaged system memory.

saves registers for interrupted fork
these registers when the process is
system does not swap fork processes

all data about the fork process reside in

1.3 PROCESS CONTEXT AND INTERRUPT CONTEXT

Because a device driver consists of a number of routines that are
activated by VAX/VMS, the operating system for the most part
determines the context in which the routines execute. As an example,
consider the following write request that occurs without error:

• A user process executing in user mode issues a write Queue I/O
Request system service.

• The Queue I/O Request system service gains control in user
process context but in kernel mode.

1-3

INTRODUCTION TO DEVICE DRIVERS

• The system service uses the driver's function decision table
to call the appropriate preprocessing routines. These
routines, called FDT routines, execute in full process context
in kernel mode.

• When preprocessing is complete, a VAX/VMS routine creates n
fork process to execute the driver's start I/O routine in
kernel mode.

• The start I/O routine activates the device unit and suspends
itself. At this point, VAX/VMS suspends the fork process
executing the start I/O routine and saves sufficient context
to reactivate the start I/O routine at the point of
suspension.

• When the device completes the data transfer, it issues an
interrupt. The interrupt causes the system to activate the
driver's interrupt service routine.

• The interrupt service routine executes to handle the device
interrupt. It then causes the start I/O routine to resume in
interrupt context.

• The start I/O routine regains control in interrupt context but
almost immediately issues a request to the operating system to
transform its context to that of a fork process. This action
dismisses the interrupt.

• When reactivated in fork process context, the start I/O
routine performs device-specific I/O completion and passes
control to the· system for additional I/O postprocessing.

• VAX/VMS I/O postprocessing performs processing at a software
interrupt priority level and then issues a kernel mode AST for
the user process requesting I/O.

• When the kernel mode AST is delivered, the AST routine
executes in full process context at kernel mode to deliver
data and status to the process. If the original request
specified a user mode AST, the kernel mode AST queues it.

• When the user process gains control, the user's AST routine
executes in full process context in user mode.

It is essential, however, that the various driver routines not attempt
to exceed the limitations of the context in which they execute. The
majority of driver routines execute in fork process context.
Execution context is mentioned throughout this document.

1.4 DEVICE DEPENDENCE AND DEVICE INDEPENDENCE

The VAX/VMS approach to I/O is that the operating system should
perform as much of the processing of an I/O request as possible and
that drivers should restrict themselves to the device-specific aspects
of I/O processing. To accomplish this, the VAX/VMS operating system
provides drivers with the following services:

• The Queue I/O Request system service preprocesses an I/O
request by performing those functions and checks that are
common to all devices; for example, it validates the
arguments in the I/O request that are not device specific.
This type of preprocessing is called device-independent
preprocessing.

1-4

INTRODUCTION TO DEVICE DRIVERS

• The VAX/VMS operating system includes a number of routines
that drivers can call to perform I/O preprocessing, allocate
and deallocate resources, and synchronize driver execution.

• VAX/VMS I/O postprocessing performs the device-independent I/O
postprocessing for all I/O requests.

Thus, drivers can leave the device-independent I/O processing to the
operating system and concentrate on the device-dependent aspects of a
device unit; that is, those aspects that vary from device type to
device type. In addition, drivers can call the VAX/VMS system to
perform many functions that are device specific but common to several
devices.

1.5 THE I/O DATA BASE

Because a driver and the operating system cooperate to process an I/O
request, they must have a common I/O data base. Under VAX/VMS, the
I/O data base consists of three main parts:

• Driver .tables that allow the system to load drivers, validate
device functions, and call drivers at their entry points

• Control blocks that describe every bus adapter, every device
type, every device unit, every controller, and every logical
path (channel) from a process to a device

• I/O request packets that define individual requests for I/O
activity

The three driver tables are defined in every driver. Section 1.1
lists these tables. Appendix A describes each of the control blocks
and the I/O request packet in detail. The use of this information in
driver processing is discussed throughout this manual.

Figure 1-2 illustrates some of the interrelationships among VAX/VMS
I/O routines, the I/O data base, and a device driver.

110 REQUEST
PACKET

DESCRIBES
1/0 REQUEST

DOB FOR
DEVICE
TYPE

DRIVER
FDT

ROUTINE

PROCESS
CONTROL BLOCK

DESCRIBES
REQUESTING

PROCESS

UCB
DESCRIBES

DEVICE

DDT
LOCATES
DRIVER

DRIVER
START 1/0
ROUTINE

CCB
DESCRIBES

LOGICAL PATH
TO DEVICE

CRB
SYNCHRONIZES
CONTROLLER

DRIVER
INTERRUPT

SERVICE
ROUTINE

IDB
DESCRIBES

CONTROLLER

DRIVER
CONTROLLER

INITIALIZATION
ROUTINE

Figure 1-2 The I/O Data Base

1-5

ADP
DESCRIBES

UBA

DEVICE
REGISTERS

INTRODUCTION TO DEVICE DRIVERS

1.5.1 Control Blocks in the I/O Data Base

Control blocks in the I/O data base permit access to and describe
peripheral hardware. The VAX/VMS operating system creates these
control blocks either at system start-up or at the time a user-written
driver is loaded into the system. Drivers refer to some or all of the
following control blocks:

• Device data block (DDB)

• Unit control block (UCB)

• Channel request block (CRB)

• Interrupt data block (IDB)

• Adapter control block (ADP)

• Channel control block (CCB)

1.5.1.1 Device Data Block - A device data block contains information
common to all devices of the same type that are connected to a
particular controller. It records the generic device name
concatenated with the controller designator, and the driver name and
location for those devices. In addition, the device data block
contains a pointer to the first unit control block for the device
units attached to the controller.

1.5.1.2 Unit Control Block - The system defines a unit control block
for each device attached to the system. A unit control block defines
the characteristics and current state of an individual device unit.
In addition, it contains the fork block used by the unit's device
driver and the listhead for the queue of pending I/O request packets
for the unit. Because drivers execute as fork processes that are
created for each I/O operation on a unit, the unit control blocks are
the focal point of the I/O data base. When a driver is suspended or
interrupted, the UCB fork block holds the driver's context.

1.5.1.3 Channel Request Block - The operating system creates a
channel request block for each controller. A channel request block
defines the current state of the controller and lists the devices
waiting for the controller's data channel. In addition, it contains
the code that dispatches a device interrupt to the interrupt service
routine for that unit's driver.

1.5.1.4 Interrupt Data Block - The system creates an interrupt data
block for each controller. An interrupt data block lists the device
units associated with a controller and points to the unit control
block of the device unit that the controller is currently servicing.
In addition, an interrupt data block points to device registers and
the controller's UNIBUS adapter.

1-n

INTRODUCTION TO DEVICE DRIVERS

1.5.1.5 Adapter Control Block - An adapter control block defines the
characteristics and current state of a UNIBUS or MASSBUS adapter. An
adapter control block for the UNIBUS adapter contains the queues and
allocation bit maps necessary to allocate adapter resources. VAX/VMS
provides routines that drivers can call to interface with their UNIBUS
adapter.

1.5.1.6 Channel Control Block - A channel is a logical path between a
process and the unit control block of a specific device unit. The
channel control block describes this path. Each process owns a number
of channel control blocks. When a process issues the Assign I/O
Channel system service, the system writes a description of the
assigned device to the channel control block. Unlike the data
structures mentioned earlier, a channel control block is not located
in nonpaged system space, but in the process's control region (Pl
space).

1.5.2 I/O Request Packets

The third part of the I/O data base is a list of I/O request packets
(IRPs). When a process requests I/O activity, the operating system
constructs a packet of data, called an I/O request packet, that
describes the I/O request in standard form.

The I/O request packet contains fields into which the system and
driver I/O preprocessing routines can write information, such as
device-dependent parameters specified in the call to the Queue I/O
Request system service. Later, the system sends the I/O request
packet to the device driver start I/O routine. The driver start I/O
routine uses the packet as its source of detailed instructions about
the operation to be performed. The packet includes buffer addresses,
a pointer to the target device, I/O function code, and further
pointers to the I/O data base.

1.6 SYNCHRONIZATION

The VAX/VMS operating system uses hardware and software interrupt
priority levels (IPLs) with their associated interrupts, fork queues,
and resource wait queues to synchronize the execution of all drivers
within the system and to synchronize execution of various routines
within a driver.

1.6.1 Interrupt Priority Levels

The VAX-11 processor defines 32 interrupt priority levels (0 through
31). The higher numbered IPLs are reserved for hardware interrupts,
for example, device interrupts. The operating system uses the lower
numbered IPLs. A higher IPL always takes precedence over a lower IPL.
The VAX-11/780 Hardware Handbook describes the VAX-11 processor's use
of IPLs. The following IPLs are of particular interest to drivers:

• Hardware device IPLs (20 through 23);
service routines execute at these IPLs.

driver interrupt

• Driver fork processing IPLs (8 through 11);
processes execute at these IPLs.

1-7

driver fork

INTRODUCTION TO DEVICE DRIVERS

• I/O completion IPL {IPL 4); VAX/VMS gains control to begin
its device-independent I/O postprocessing at this IPL.

• AST delivery IPL {IPL 2); VAX/VMS uses this IPL to coordinate
the delivery of an AST to a user process. The Queue I/O
Request system service also executes at this IPL.

When the processor grants a device interrupt while a driver fork
process is executing, the processor and the VAX/VMS interrupt
dispatcher save the driver fork process context. The processor pushes
the PC and PSL at the time of the interrupt onto the interrupt stack.
In addition, the interrupt dispatcher saves RO through RS on the
stack.

The interrupt service routine activated as a result of the interrupt
follows conventions to preserve all other context of the interrupted
process, as follows:

• Uses only RO through RS

• Cleans up the stack after use

When the interrupt has been serviced, the driver interrupt service
routine restores RO through RS from the stack. The processor restores
the previous PC and PSL of the interrupted code. The driver fork
process then resumes execution without any awareness of the
interruption.

1.6.2 Fork Queues

When an interrupt service routine completes the handling of a device
interrupt, it transfers control to the driver to complete
device-dependent processing of the I/O request. When the driver
regains control, it is executinq at device IPL. Almost immediately,
the driver should lower IPL to driver fork IPL so that it does not
block other device interrupts. A driver lowers IPL by invoking a
VAX/VMS macro that creates a fork process to execute at a lower IPL.

Each driver fork IPL has an associated fork queue. A VAX/VMS macro
queues the driver's fork block in the fork queue that corresponds to
the driver's fork IPL and issues a software interrupt request for that
IPL. When the software interrupt is granted, the VAX/VMS fork
dispatcher dequeues fork blocks from the driver fork queues and
reactivates the driver at the point following the macro invocation.

1.6.3 Resource Wait Queues

Drivers compete for the following shared resources:

• Central processor

• UNIBUS adapter mapping registers, if the nevice is a DMA
device

• UNIBUS adapter buffered data paths, if the device is a DMA
device

• The controller data channel if the device is attached to a
multiunit controller

1-8

INTRODUCTION TO DEVICE DRIVERS

When a driver fork process needs an unavailable resource, VAX/VMS
resource management routines perform the following steps:

• Save fork process context in the device's UCB fork block

• Insert the address of the UCB fork block in a resource wait
queue

• Suspend the driver fork process

When another driver fork process frees
VAX/VMS resource management routines
reactivate the next driver fork process:

the necessary resource, the
take the following steps to

• Remove the next UCB fork block from the resource wait queue

• Restore fork process context into the registers

• Reactivate the suspended driver fork process

The VAX/VMS resource management routines allow the driver fork process
to be unaware of its suspension and reactivation.

1.7 FUNCTIONS OF A DEVICE DRIVER

A VAX/VMS device driver controls I/O operations on a peripheral device
by performing the following functions:

• Defines the peripheral device for the rest of VAX/VMS

• Defines the driver for the system procedure that loads the
driver into system virtual address space and that creates the
driver's associated data structures

• Readies the device and/or its controller for operation at
system start-up and during recovery from a power failure

• Performs device-dependent I/O preprocessing

• Translates programmed requests for I/O
device-specific commands

• Activates the device

operations

• Responds to hardware interrupts generated by the device

• Responds to device timeout conditions

• Responds to requests to cancel I/O on the device

• Reports device errors to an error-logging program

into

• Returns status from the device to the process that requested
the I/O operation

The driver prologue table, described
first two functions listed above.
remaining functions.

1-9

in Section 7.1,
Driver routines

performs
perform

the
the

INTRODUCTION TO DEVICE DRIVERS

1.7.1 Initialization Routines

Most device controllers and device units require initialization when
the VAX/VMS driver loading procedure loads the driver into memory and
during recovery from a power failure. The amount and type of
initialization varies from device type to device type. Section 13.1
provides additional initialization information.

1.7.2 FDT Routines

Every driver contains a function decision table (FDT) that indicates
the I/O preprocessing routines that are to be executed for various
functions on the device. When a user process issues a Queue I/O
Request system service, the system service uses the I/O function code
specified in the request to select one or more FDT routines for
execution. FDT routines perform such functions as allocating buffers,
locking pages in memory, and validating device-dependent parameters
(Pl through P6) of the I/O request.

The driver contains FDT routines that are device-dependent. VAX/VMS
provides additional FDT routines that perform processing common to
many I/O functions, as described in Section 8.5. It is advisahle for
drivers to use FDT routines supplied by the operating system whenever
possible.

Because FDT routines are called by the Queue I/O Request system
service, they execute in full user process context. As a result, FDT
routines have access to user-specified buffers located in the process
address space; these buffers are not available to driver routines
executing in fork context.

1.7.3 Start 1/0 Routine

The start I/O routine executes in a driver fork process to perform the
following device-dependent functions:

• Translate the I/O function code into a device-specific command

• Transfer the details of the request from the I/O request
packet to the device's unit control block

• Obtain access to the controller if it is a
controller

• Obtain the necessary UNIBUS resources if the
direct memory access (DMA)

• Modify the device registers to activate the device

• Perform device-dependent I/O postprocessing after
occurs

multi unit

transfer is

the transfer

The start I/O routine may be forced to wait for the controller or
UNIBUS resources to become available. In either case, VAX/VMS
suspends the routine and reactivates it when the resources are free.
Section 1.6.3 describes the context that VAX/VMS saves for the
suspended routine.

After activating the device, the start I/O routine invokes the VAX/VMS
wait for interrupt macro. The wait for interrupt macro suspends the

1-10

INTRODUCTION TO DEVICE DRIVERS

driver. The driver remains suspended until the driver's interrupt
service routine handles the interrupt and returns control to the
driver. At that point, the driver performs device-dependent I/O
postprocessing and then transfers control to VAX/VMS for
device-independent I/O postprocessing.

1.7.4 Interrupt Service Routine

When a device interrupt occurs, VAX/VMS transfers control to the
device driver's interrupt service routine in interrupt context. The
interrupt service routine determines whether the interrupt was
expected or not and takes the appropriate action. Then the interrupt
service routine resumes the driver for I/O postprocessing.

1.7.5 Device Timeout Handler

As the result of an error condition or a device's being offline, it is
possible for a device to fail to complete a transfer in a reasonable
period of time. This condition is called device timeout. When a
start I/O routine invokes the wait for interrupt macro, it specifies
the time interval in which the device can complete a transfer without
timing out and the name of a timeout handler that the system is to
invoke in the case of a timeout. This information is recorded in the
device's unit control block.

Once every second, the VAX/VMS system timer checks all devices in the
system for device timeout. When it locates a device that has timed
out, it calls the timeout handler. Like the driver's I/O completion
function, the timeout handler gains control in interrupt context.

1.7.6 Cancel I/O Routine

VAX/VMS provides the Cancel I/O on Channel system service that user
processes can call to cancel I/O requests. The Cancel I/O on Channel
system service, in turn, calls the driver's cancel I/O routine.
VAX/VMS also calls the driver's cancel I/O routine when the device's
reference count goes to zero; that is, when all users that assigned
channels to the device have deassigned them.

1.7.7 Error-logging Routine

The driver's error-logging routine fills an error log buffer with
information about the error, for example, register contents. VAX/VMS
provides a routine that drivers can call to allocate an error log
buffer and transfer control to the register dump routine.

1.8 AN EXAMPLE OF A UNIBUS I/O REQUEST

Figure 1-3 illustrates how the VAX/VMS operating system and the device
driver process a user process request for a read I/O operation on a
DMA UNIBUS device.

1-11

INTRODUCTION TO DEVICE DRIVERS

USER
010 DRIVER

OPERATING DRIVER OPERATING

PROCESS
SERVICE READ

SYSTEM STARTS SYSTEM

REQUESTS f---tioi ROUTINE I---+ FUNCTION r---: CALLS ~ DEVICE ~ SAVES

1/0
VALIDATES VALIDATES

DRIVER
& WAITS FOR DRIVER

REQUEST REQUEST INTERRUPT STATE

DRIVER OPERATING
USER

DEVICE INTERRUPT DRIVER SYSTEM
GENERATES r-+ HANDLER I---+ COLLECTS ~ COPIES f---+ PROCESS

READS DATA
INTERRUPT RESTORES STATUS DATA AND

& STATUS
DRIVER STATE STATUS

MA-2410

Figure 1-3 Processing a Sample I/O Operation

The processing of the sample I/O request illustrated in Figure 1-3
occurs in the following steps:

• A process requests I/O operation. A user process requests
data from the device by issuing either of the following:

A VAX-11 RMS get record function call
in a Queue I/O request}

A Queue I/O Request system service

(which results

The user process specifies the target device, a read function
code, and the address of a buffer in which the data is to be
read.

• The operating system performs I/O preprocessing. The Queue
I/O Request system service validates the request and locates
I/O data base control blocks that describe the device and its
driver. The system service also allocates and initializes an
I/O packet to contain a description of the I/O request. The
system service then calls a read function routine in the
driver.

• The driver performs I/O preprocessing. The driver function
decision table routine verifies that the user buffer resides
in virtual memory pages that can be modified by the requesting
process, locks the buffer pages in memory, and adds details of
the I/O operation to the I/O request packet. The read FDT
routine then calls the operating system to send the I/O
request packet to the driver.

• VAX/VMS creates a driver fork process. A VAX/VMS routine
creates a fork process in which the device driver can execute.
The routine activates the driver fork process by transferring
control to the driver's start I/O routine.

• The driver readies the UNIBUS adapter. For DMA transfers, the
driver fork process calls VAX/VMS routines that control the
UNIBUS adapter hardware to map UNIBUS addresses into physical
addresses for the transfer.

• The driver activates the device. The fork process activates
the device by setting bits in device registers.

• The driver waits for an interrupt. A VAX/VMS routine saves
the context of the driver fork process and relinquishes the
processor until an interrupt occurs.

1-12

INTRODUCTION TO DEVICE DRIVERS

• The device requests an interrupt. When the data transfer is
complete, the device requests a hardware interrupt that causes
the system to dispatch to the driver's interrupt service
routine.

• The driver services the interrupt. The
service routine handles the interrupt
driver, which reads device registers
information about the transfer.

driver's interrupt
and reactivates the

to obtain status

• The operating system inserts the driver in a fork queue. The
driver requests that the process be reactivated at a lower
software interrupt priority level.

• The fork dispatcher reactivates the driver fork process. When
processor priority permits, the VAX/VMS fork dispatcher
reactivates the driver as a fork process.

• The driver completes the I/O operation. The driver fork
process completes device-dependent I/O processing of the I/O
request and returns the I/O status to VAX/VMS.

• VAX/VMS completes the I/O operation. The
postprocessing routines copy the I/O status
address space and/or general registers and return
the user process.

VAX/VMS I/O
into process
control to

Of the thirteen steps listed above, only four describe driver I/O
preprocessing and driver fork processing. The VAX/VMS I/O support
routines perform all I/O processing common to many or all I/O
requests. Even in device driver routines, driver coding is simplified
by the use of VAX/VMS routines that handle device-independent
functions.

The 13-step example condenses and simplifies the processing of an I/O
operation by ignoring such issues as the following:

• Association of a device with a process;
assignment

• Simultaneous I/O requests for one device

• Hardware interrupt priority levels

that is, device

• Driver competition for shared system and UNIBUS adapter
resources

• Driver competition for I/O activity through a multiunit
controller

• Driver recovery from device errors or power failure

Later chapters discuss each of these issues in relation to device
drivers.

1.9 THE UNIBUS

On a VAX-11 system, the internal processor bus (that is, the
synchronous back plane interconnect) connects the central processor to
memory. The internal processor bus also connects the UNIBUS adapter
and MASSBUS adapter (MBA) to memory and to the central processor.
Peripheral devices attach to either the UNIBUS, for UNIBUS devices, or
the MASSBUS, for MASSBUS devices, as illustrated in Figure 1-4.

1-13

INTRODUCTION TO DEVICE DRIVERS

DEVICE

CJ)

:::>

DEVICE
en
z UBA :::>

CPU

DEVICE

MEMORY
en
CJ)

MEMORY

DEVICE CJ)

:::>
en
CJ)

MBA CJ)

<!
~

DEVICE

Figure 1-4 VAX-11 Hardware Configuration

The VAX-11/780 Hardware Handbook describes the hardware components
diagrammed in FTgur·e --1=4~--- ---------

VAX/VMS provides device drivers
supported by DIGITAL. These
MASSBUS or the UNIBUS.

for a
devices

number of standard devices
are connected to either the

Nonstandard devices, that is, customer-supplied devices, normally are
connected to the UNIBUS, but can also be attached to the MASSBUS or to
the DR32 high bandwidth bus. DIGITAL supplies a device driver and an
application library for the DR32 bus; see the chapter on the DR32
Interface Driver in the VAX/VMS I/O User's Guide for further i n f o r ma t i o n • ·---~-- ------···- -·-- ... ~ .. -,. .. -.v·--······ ·-···-·-·--·-··--·- ·----

To activate a direct memory access (DMA) transfer on the UNIBUS, a
driver must first obtain mapping registers, and, optionally, a
buffered data path. The driver calls VAX/VMS routines that interface
with the UNIBUS adapter to allocate these resources on behalf of the
driver.

The direct data path maps each UNIBUS transfer to an SB! transfer.
For each UNIBUS transfer, there is one SRI transfer. Each SB!
operation transfers a single word or byte of data depending on the
device. A buffered data path, on the other hand, allows a quadword of
data to be assembled and transferred in one SB! operation. Up to
eight UNIBUS transfers occur for each SB! transfer.

1-14

INTRODUCTION TO DEVICE DRIVERS

Drivers performing nonDMA transfers are generally not concerned with
UNIBUS adapter operation.!

1.10 PROGRAMMED I/O AND DIRECT MEMORY ACCESS I/O

Devices transfer data using one of the following methods:

• Programmed I/O

• Direct memory access (DMA) transfers

Devices that perform programmed I/O transfer data as single words or
bytes using device registers. After each transfer completes, the
device notifies the central processor.

Devices that perform DMA transfers do not require the central
processor so frequently. Once the driver activates the device, the
device can transfer a large amount of data without requesting an
interrupt after each of the smaller amounts. Normally, the driver of
a DMA device allocates a UNIBUS buffered data path and UNIBUS map
registers for I/O transfers.

1.11 BUFFERED I/O AND DIRECT I/O

Drivers can perform I/O transfers using either of the following
methods:

• Buffered I/O

• Direct I/O

Buffered I/O allows data to be buffered in system address space. When
the transfer is complete, the data is transferred to the user
process's buffer. The driver can refer to the buffer in system space
using system virtual addresses. Often, a driver uses buffered I/O for
devices that perform programmed I/O, for example, line printers and
card readers.

Direct I/O allows data to be placed directly in the user process's
buffer. The driver must lock the pages containing the buffer in
physical memory and refer to them using page frame numbers (PFNs).
Normally, a driver uses direct I/O and a buffered data path for
devices that perform DMA transfers.

The trade-off between buffered I/O and direct I/O is the time required
to move the data into the user's buffer versus the time required to
lock the buffer pages in memory. Chapter 8 provides additional
information.

1. Instead of creating a complete device driver for a nonDMA oevice,
you can connect the process to the device interrupt vector to program
the device from a user process. For a description of how and when to
connect to an interrupt vector, consult the VAX/VMS Real-Time User's
Guide.

1-15

INTRODUCTION TO DEVICE DRIVERS

1.12 LOADABLE DRIVERS

The VAX/VMS operating system provides a procedure that allows a
suitably privileged user to load drivers into a running VAX/VMS
system. The SYSGEN utility, described in full in the VAX/VMS System
Manager.' __ s Gu_id~, supports commands that invoke the driver loading
procedure:

• LOAD to load a driver into the system

• CONNECT to create the I/O data base for additional devices
of the same type

• RELOAD -- to load a previously loaded driver

The driver loading procedure uses information provided in the LOAD
command and information contained in driver tables to load the driver
into virtual memory and create the associated data base. The driver
prologue table, which must be the first generated code in the driver
module, contains the information that the loading procedure needs.
Specifically, the driver prologue table contains the following:

• Address of the end of the driver; the loading procedure uses
this to determine the size of the driver

• Driver loader flags that indicate whether the device needs a
system page table entry and whether the driver can be reloaded

• The size of the unit control block

• Address of a routine to call if the driver is reloaded

• Name of the device driver module

The driver prologue table can be followed by two lists of fields that
require initialization:

• I/O data base fields to be initialized the first time the
driver is loaded

• Fields to be initialized every time the driver is reloaded,
that is, without an intervening bootstrap of the system

With the information provided in the driver prologue table and the two
lists of fields, the driver loading procedure can both load and reload
drivers and perform the initialization that is appropriate to either
situation.

1-lh

CHAPTER 2

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

The LPll is a buffered line printer. A user process can request the
following functions for this printer:

• Write data to the line printer

• Read the line printer's device characteristics

• Alter the line printer's device characteristics

This chapter describes the following aspects of line printer I/O
processing:

• The portions of the VAX/VMS device driver for an LPll line
printer that are used in servicing a write request

• The VAX/VMS components with which the driver interacts to
process the write request

The LPll was selected for this discussion because it is a simple
driver but still illustrates many driver principle$. Although the
LPll is usually spooled, for purposes of this discussion, assume that
it is not spooled.

The first-time reader of this document may not understand all of the
points made in this chapter; however, th~ chapter should provide some
insight into driver flow and I/O processi:1g.

Figure 2-1 illustrates the flow of execution through VAX/VMS routines
and the line printer driver to satisfy this I/O request.

The double-sided boxes in Figure 2-1 indicate processing performed by
driver subroutines. Boxes shown above the dotted line indicate
processing in the context of the user process. Boxes below the dotten
line indicate processing in fork or interrupt context.

2-1

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

010
VALIDATION

1
FDT

SUBROUTINE

KERNEL
MODE

AST

USER

---------f---- • CONTEXT ____ ___ _

DEVICE
GOES

INTO BUSY
STATE

]
SUSPEND
DRIVER

DEVICE
GENERATES
INTERRUPT

DELIVER
IRPTO

DRIVER

l
DRIVER

WRITE TO
DEVICE

OPERATING
SYSTEM

DISPATCHES
INTERRUPT

QUEUE
IRPTO
POST-

PROCESSOR

r
~:~~~~]
STATUS

I
INTERRUPT
HANDLER

1/0
POST

PROCESSOR

Figure 2-1 A Line Printer Write Function

2.1 DRIVER CODE FOR THE LPll WRITE FUNCTION

SYSTEM
CONTEXT

MA-2421

The VAX/VMS device driver for an LPll line printer implements a write
function using the following parts of the driver:

• An FDT routine that reformats the user-supplied data

• A driver start I/O routine that writes data to the device
print buffer until the printer enters a busy state to print
the contents of the buff er

• Code that modifies a device register to enable interrupts from
the line printer

2-2

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

• A driver interrupt service routine that returns control to the
driver fork process after a hardware interrupt from the line
printer

• Code that returns I/O status to a VAX/VMS I/O completion
routine

2.2 A USER PROCESS'S I/O REQUEST

A user process writes a line to the printer by issuing a Queue I/O
Request system service call that specifies the write virtual block
function code, as follows:

$QIO_S CHAN = CHANNEL NUMBER,
FUNC = #10$ WRlTEVBLK,
EFN = #6,- -
IOSB = STATUS BLOCK,
Pl BUFFER ADDRESS,
P2 #BUFFER SIZE,
P4 #~X30 -

The parameters Pl, P2, and P4 are device-dependent parameters.

2.3 I/O PREPROCESSING BY VAX/VMS

When called, the Queue I/O Request system service first validates that
the I/O request is correctly specified; that is, the I/O request must
meet the following criteria:

• The location CHANNEL NUMBER must contain a channel number that
serves as an index into the process I/O channel list. The
process must have previously assigned the line printer device
to this process channel using the Assign I/O Channel system
service.

During verification of the channel number, the Queue I/O
Request system service obtains the address of the line printer
driver's function decision table (FDT). Figure 2-2
illustrates the chain of pointers from the channel index
number to the FDT address. As a result of chaining through
the I/O data base, the Queue I/O Request system service also
determines what device is the target of the request.

• The line printer FDT must list IO$ WRITEVBLK as a valid
function for the device.

• The event flag number must be valid.

• The process buffered I/O request quota must permit the Queue
I/O Request system service to perform a buffered I/O request
without exceeding the process's quotas.

• The process must have write access to the user-specified
location to be used as an I/O status block.

2-3

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

CHANNEL
CONTROL ..

BLOCK -
(CCB) UNIT

CONTROL --BLOCK -
(UCB) DEVICE

DATA -BLOCK ...

(DOB) DRIVER
DISPATCH ----TABLE

(DDT) FUNCTION
DECISION

TABLE
(FDT)

MA-2419

Figure 2-2 Locating a Function Decision Table

If all of the checks described above succeed, the
system service creates an I/O request packet
address space. The service then writes all known
I/O request into the I/O request packet.

Queue I/O Request
in nonpaged system

details about the

If the target device for the I/O request is not file-structured, the
Queue I/O Request system service changes any virtual function code to
its logical equivalent when it builds the I/O request packet. Thus,
for a line printer device, 10$ WRITEVBLK is translated to
IO$ WRITELBLK. User-written drivers should check that virtual
function codes have corresponding logical codes.

2.4 I/O PREPROCESSING BY THE DRIVER

Once it has validated the I/O request, the Queue I/O Request system
service scans the function decision table for an entry that associates
the IO$ WRITELBLK function code with an FDT routine. The system
service calls the routine, which in the case of the line printer
driver is a device-specific routine located in the line print~r device
driver.

The FDT routine confirms that the requesting process has read access
to the buffer starting at BUFFER ADDRESS. Then, the FDT routine
buffers data from the process address-space into system address space
in the following steps:

• It calculates the length of the required system space buffer.

• If the process byte count quota for buffered I/O {BYTCNT)
permits, the routine allocates a buffer from system address
space, stores the address of the buffer in the I/O request
packet, and decreases the current process byte count quota.

2-4

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

• It then synchronizes with other possible subprocessesl to read
and write fields of the line printer's unit control block.

• It reads the description of the line printer's current line
and page position from the device's unit control block.

• It reformats the data from the process buffer into the system
buffer, adding carriage control characters, as specified in
the I/O request argument P4, before and after the data.

Formatting includes such functions as the replacement of
horizontal tabs with multiple spaces and the replacement of
lowercase characters with uppercase characters.

• It rewrites updated line and page positions into the device's
UCB. This information indicates what the current location on
the page being printed will be where the request completes.

• Finally, the routine transfers control to a VAX/VMS routine
that queues the I/O packet to the device driver.

All of the I/O processing described to this point occurs in the
context of the user's process. The user address space is mapped, and
the processor's interrupt priority level (IPL) is still low enough to
permit process scheduling and paging. Subsequent queuing of the
transfer request to the driver and all resulting driver processing
occur at higher interrupt priority levels that synchronize driver
handling of the device, as described in Chapter 3.

2.5 QUEUING THE I/O PACKET TO THE DRIVER

Before queuing the I/O request packet to the proper driver, the
VAX/VMS queuing routine raises the interrupt priority level to the
driver fork level (UCB$B FIPL) stored in the unit control block.
Raising IPL to fork Tevel synchronizes driver access to the unit
control block.

If the device is idle, that is, if the busy bit (UCB$V BSY) in the I/O
status word of the unit control block is clear, VAX/VMS can transfer
control to the driver. The driver dispatch table contains the entry
point to the driver's start I/O routine. To find the proper entry
point, the queuing routine chains throuqh the I/O data base to the
driver dispatch table, as follows:

UCB ~ DDB __._DDT ___. Entry point to start I/O routine

If the device unit is busy with another transfer, VAX/VMS inserts the
I/O request packet in a queue of packets waiting for the unit. The
unit control block contains the head of the queue. The packet's
position in the queue depends on the scheduling priority of the
process issuing the request.

1. For example, if a process allocates a printer, it is possible for
the process and any of its subprocesses to issue write requests to the
printer concurrently.

2-5

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

2.6 DRIVER DEVICE ACTIVATION

The LPll line printer controller accepts data into a device data
buffer until the print buffer is full or the drivar writes a carriage
control character into the print buffer. When either event occurs,
the line printer sets a busy bit in the device's control/status
register. Then a device driver sets the interrupt enable bit in the
device's control/status register and waits for the printer to
interrupt. When the line printer requests a hardware interrupt, the
driver can resume putting characters in the print buffer.

The line printer driver routine writes to the line printer data buffer
according to the following sequenca:

1. The driver locates the LPll device registers using a chain of
pointers starting at the device's unit control block (UCB).

UCB __.... CRB _,.._IDB ----- CSR address

In contrast to many other devices, such as disks, the LPll
line printer does not share a controller with other devices.
Therefore, no arbitration for ownership of the controller is
required. The CSR address is always the address of the line
printer control/status register, and all other device
registers are at fixed offsets from this address.

2. The driver examines the device's control/status register to
see if the device is ready to accept characters.

3. If the device is ready, the driver writes a byte of data into
the line printer data buffer and decreases the count of bytes
to transfer. It then repeats step 2.

4. If the device is not ready, that is, if the device's internal
buffer is full, the driver raises IPL to 31 to block out all
interrupts and sets the interrupt enable bit in the device's
control/status register.

After enabling interrupts, the driver invokes a VAX/VMS wait
for interrupt macro to suspend driver processing until the
line printer requests an interrupt or the device times out.

2.7 WAITING FOR A DEVICE INTERRUPT

The VAX/VMS wait for interrupt routine suspends the driver by
performing the following functions:

• Saving driver context (R3, R4, and the address of the next
instruction in the driver) in the device's unit control block

• Calculating the time at which the device will time out

• Setting bits in the device's unit control block to indicate
that the driver expects a device interrupt within a specified
time period

VAX/VMS then drops IPL back to driver fork level and returns control
to the caller of the driver's start I/O routine.

2-~

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

The driver remains in a suspended state until one of two events
occurs:

• The line printer requests a hardware interrupt.

• VAX/VMS reports a device timeout because the line printer did
not request a hardware interrupt within a specified period of
time.

Normally, the LPll prints the contents of its data buffer and requests
the interrupt.

2.8 INTERRUPT HANDLING

When the LPll line printer requests a hardware interrupt, the UNIBUS
adapter interrupt service routine gains control. The service routine
reads the device vector from a UNIBUS adapter register and passes the
interrupt to the LPll driver interrupt service routine.

The driver's interrupt service routine restores control to the driver,
as follows:

• Confirms that the interrupt was expected by examining bits in
the device's unit control block

• Restores the saved registers (R3 and R4) from the device's
unit control block

• Restores the address of the unit control block in RS

• Transfers control to the driver PC address stored in the
device's unit control block

Rather than execute in interrupt context, the reactivated driver
routine calls a VAX/VMS routine to create a driver fork process.
VAX/VMS again suspends driver processing by performing the following
steps:

• Saving driver context (R3, R4, and the driver PC address) in
the device's unit control block

• Inserting the UCB address in the appropriate fork queue

The driver suspension allows the operating system to reschedule driver
processing at a lower IPL. A VAX/VMS fork dispatcher reactivates the
driver when IPL drops to driver fork level.

After creating the fork process, the system returns control to the
driver's interrupt service routine. The service routine performs the
following steps:

• Restores registers saved at the time of the device interrupt

• Dismisses the interrupt

2-7

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

2.9 I/0 COMPLETION PROCESSING BY THE DRIVER

When the VAX/VMS fork dispatcher reactivates the driver fork process,
the driver code continues transferring characters into the line
printer data buffer until the transfer is complete. The driver code
performs the following steps to transfer characters:

• It obtains the number of characters left to transfer from the
unit control block.

• It transfers characters until the LPll again prints its data
buffer or all characters have been transferred.

• When all cha~acters have been transferred, the driver code
branches to driver I/O completion code.

The driver's I/O completion code stores the following information in
RO:

• A success status code

• The number of bytes transferred

Then, the driver code transfers control to VAX/VMS to complete the I/O
request.

2.10 I/O COMPLETION PROCESSING BY THE VAX/VMS SYSTEM

The operating system inserts the I/O request packet into an I/O
postprocessing queue. If another I/O request packet is in the wait
queue for the device unit, VAX/VMS dequeues that packet and calls the
driver start I/O routine to process it.

When IPL drops to IPL$ IOPOST, the processor grants the I/O
postprocessing interrupt -request. The I/O postprocessing dispatcher
dequeues the packet for the line printer I/O request and performs the
following steps:

• It increases the use count of the process's buffered I/O
requests since the current operation is complete. The use
count is maintained for accounting purposes.

• It deallocates the system buffer used for the reformatted user
data.

• It increases the process's current byte count quota.

• It sets an event flag to indicate that the I/O operation is
complete.

• It queues a kernel mode AST routine that deallocates the I/O
request packet and stores I/O status into the user's I/O
status block.

The user process examines the event flag or issues a Wait for Single
Event Flag system service call to determine that the I/O operation is
complete.

2-8

CHAPTER 3

SYNCHRONIZATION OF I/O REQUEST PROCESSING

The VAX/VMS operating system uses three mechanisms to synchronize I/O
processing:

• Hardware interrupt priority levels and interrupt service
routines

• Driver fork processes, fork blocks, and fork queues

• Resource wait queues

When programming a driver, you must observe the VAX/VMS conventions
that govern the use of interrupt priority levels and fork processes.
The VAX/VMS routines that grant resources to drivers enforce the use
of resource wait queues.

3.1 INTERRUPT PRIORITY LEVELS

The VAX-11 processor defines 32 levels of hardware priorities, called
interrupt priority levels (IPLs). IPL 0 has the lowest priority, and
IPL 31 has the highest. Interrupts can be requested either by
software (software interrupts) or by the hardware (hardware
interrupts). The system uses the various interrupt priority levels as
follows:

• User mode software runs at IPL O.

• Operating system routines and driver fork processes request
software interrupts at IPLs 1 through 15.

• Devices and error conditions generate hardware interrupts at
IPLs 16 through 31.

Many IPLs have an interrupt service routine associated with them. The
processor responds to both software and hardware interrupts by
transferring control to the appropriate interrupt service routine.
The interrupt service routine processes the interrupt and, when
finished, dismisses the interrupt with an REI instruction.

3.1.l IPLs Defined by VAX/VMS

Table 3-1 describes the uses that VAX/VMS defines for IPLs 0 through
15.

3-1

SYNCHRONIZATION OF I/O REQUEST PROCESSING

IPL

0

1

2

3

4

5

7

Symbolic
Name

IPL$ ASTDEL

IPL$ SCHED

IPL$ IOPOST

IPL$ XDELTA

IPL$ QUEUEAST

IPL$ SYNCH
IPL$-TIMER

8 - 11 UCB$B FIPL

Table 3-1
IPLs Defined by VAX/VMS

Use

User mode software

Reserved

AST delivery interrupt service routine

Scheduler interrupt service routine

I/O postprocessing interrupt service routine

XDELTA interrupt service routine

Fork level processing for queuing ASTs

System data base access and software timer
interrupt service routine

Fork level for driver execution

12 - 15 Reserved
-------·-----------~

3.1.2 IPLs Defined for the Hardware

Hardware interrupt levels are used for device interrupts (IPLs 20
through 23) and urgent conditions including power failure and serious
errors such as a machine check. The VAX-11/780 Hardware Handbook
provides additional information about hardware interrupt--Tevels.

3.1.3 Interrupt Service Routines

The VAX/VMS operating system uses interrupt service routines that gain
control at the preset IPLs described above. Using preset IPLs
guarantees that interrupts are processed according to the following
priorities:

• Device interrupts (highest priority)

• Device driver fork processes

• I/O postprocessing

• Process scheduling

• AST delivery (lowest priority)

For example, VAX/VMS completes the processing of an I/O request by
placing the I/O request packet in the I/O postprocessing queue and
requesting an interrupt at the I/O postprocessing IPL (IPL 4). When
the interrupt priority level drops below 4, the processor grants the
software interrupt by transferring control to the I/O postprocessing
service routine.

3-2

SYNCHRONIZATION OF I/O REQUEST PROCESSING

Interrupt service routines run in a reduced context. The stack is a
special stack used only during interrupt processing; it is the
interrupt stack. Of the register set, usually only RO through RS are
saved. The interrupt service routine must restore these registers
before it returns from an interrupt. If the service routine uses any
other registers, the routine must save the registers before use and
restore them after use. Using registers other than RO through RS is
not recommended.

When an interrupt occurs, the system transfers control to the driver
interrupt service routine with IPL set to the hardware device
interrupt level. Since code executing at IPLs 20 through 23 blocks
most other hardware interrupts and all software interrupts, driver
code lowers its IPL as soon as possible.

The operating system allows the creation of a fork process so
driver can continue execution without blocking other
interrupts. Section 3.2 discusses fork processes.

3.1.4 Raising IPL

that a
device

Code running in kernel mode can raise its IPL to lock out context
switching and block interrupts. VAX/VMS software interrupt service
routines perform some of their processing at IPLs higher than the IPL
at which the routines gain control. For example, the scheduler is an
interrupt service routine that gains control at IPL 3; however, it
raises IPL to 7 to read and modify the system data base. I/O drivers
typically raise IPL to check for a power failure, send a message to a
mailbox, and sometimes to access device registers. Driver code should
not raise IPL for more than a few instructions because so doing blocks
all interrupts at lower IPLs.

3.1.S Lowering IPL

Once an interrupt service routine has received the interrupt, it
transfers control to the main flow of driver code. At this point, the
driver is executing in the context of an interrupt service routine and
at device IPL.

When a driver gains control, it may execute a few instructions
high IPL; however, almost immediately a driver lowers IPL
IPL. A driver lowers IPL by invoking the VAX/VMS macro that
fork processes, IOFORK. As a result of invoking IOFORK,
performs the following functions for the driver:

at the
to fork
creates
VAX/VMS

• Consults the device's unit control block to determine fork IPL
for the driver

• Creates a driver fork process and queues it for execution at
the appropriate IPL

• Requests a software interrupt at that IPL

When the queued driver fork process is reactivated, it executes at the
lower fork IPL. Section 3.2 describes fork process dispatching in
greater detail.

Driver fork processes also can modify IPL by invoking certain VAX/VMS
macros; Section 3.1.11 describes these macros. Normally, a driver
uses these macros to raise IPL before initiating a transfer.

3-3

SYNCHRONIZATION OF I/O REQUEST PROCESSING

3.1.6 Servicing Hardware Interrupts

VAX-11 peripheral devices request interrupts at IPLs 20 through 23.
When a device requests an interrupt at one of these IPLs and the
processor is executing at a lower IPL, the processor performs the
following:

• Grants the interrupt

• Transfers control to an interrupt service routine for the
device

If the processor is executing at a higher or equal IPL, the interrupt
remains pending.

Transferring control to the interrupt service routine requires that
the processor first transfer control to the interrupt dispatcher for
the adapter (MASSBUS or UNIBUS) to which the device is attached. The
interrupt dispatcher is itself an interrupt service routine. The
dispatcher locates the channel request block (CRB) for the device and
transfers control to the dispatching field. The channel request block
contains a JSB instruction that, in turn, transfers control to the
driver's interrupt service routine. When the interrupt service
routine issues an REI instruction, the code executing prior to the
interrupt resumes unless interrupts occurred at levels between that of
the executing interrupt service routine and the interrupted code.

Figure 3-1 illustrates the steps performed by the hardware and VAX/VMS
to transfer control to a driver interrupt service routine after a
UNIBUS device interrupt.

3.1.7 Transferring Control to the Driver Fork Process

When a device driver receives an expected interrupt from a device, the
driver interrupt service routine executes in the context of an
interrupt; it is not executing in driver fork process context at that
point. Interrupt context has the following characteristics:

• IPL is elevated to the level at which the device requests
hardware interrupts.

• The stack is the interrupt stack.

• The top of the stack contains a pointer to the address of the
controller's interrupt data block (IDB), which contains the
address of the control/status register.

• The stack also contains saved RO through RS and the PC and PSL
of the interrupted code.

3-4

SYNCHRONIZATION OF I/O REQUEST PROCESSING

ERROR
HANDLING

ERROR

INTERRUPT

PROCESSOR CHANGES TO INTERRUPT
STACK, IF NECESSARY.

PROCESSOR PUSHES PSL AND PC OF
INTERRUPTED CODE ONTO THE
INTERRUPT STACK.

PROCESSOR TRANSFERS CONTROL TO AN
INTERRUPT DISPATCHING ROUTINE FOR
THE UNIBUS ADAPTER OF THE DEVICE
REQUESTING THE INTERRUPT.

UNIBUS ADAPTER INTERRUPT DISPATCHER
SAVES RO THROUGH R5.

INTERRUPT DISPATCHER GETS DEVICE
INTERRUPT VECTOR ADDRESS FROM
UNIBUS ADAPTER REGISTER.

INTERRUPT DISPATCKER USES VECTOR
ADDRESS AS AN INDEX INTO A TABLE OF
CHANNEL REQUEST BLOCK (CRB) ADDRESSES.

INTERRUPT DISPATCHER TRANSFERS CONTROL
TO THE CRB ADDRESS THAT CORRESPONDS TO
THE INTERRUPT VECTOR ADDRESS. THIS
ADDRESS CONTAINS A JSB INSTRUCTION.

THE FOLLOWING JSB INSTRUCTION IS EXECUTED:

JSB ADDRESS OF DRIVER'S INTERRUPT
SERVICE ROUTINE

THE DRIVER'S INTERRUPT SERVICE ROUTINE
GAINS CONTROL AND EITHER SERVICES THE
INTERRUPT OR DISMISSES IT.

REI

Figure 3-1 Servicing Hardware Interrupts

3-5

SYNCHRONIZATION OF I/O REQUEST PROCESSING

The interrupt occurs either because the device has completed an I/O
operation or because an error occurred during the I/O operation.
Driver interrupt service routines generally determine whether to
service the interrupt by examining the I/O data base. If the unit
control block for the device that currently owns the controller
indicates that the interrupt is expected, the service routine takes
the following steps to transfer control to the driver's start I/O
routine:

• Loads the UCB address into RS

• Restores the contents of two registers (R3 and R4) from the
UCB fork block

• Returns control to the saved PC in that fork block

The driver may need to execute a few instructions in the context of
the interrupt. For example, the driver may copy device status
information from device registers into the device's unit control
block. After executing these instructions at device IPL, the driver
completes the I/O processing at a lower priority by creating a fork
process, as described in Section 3.2.

3.1.8 IPL Use During I/O Processing

I/O processing occurs mainly at the following IPLs:

• IPL$ ASTDEL (IPL 2)

• IPL$ IOPOST (IPL 4)

• Driver fork processing IPLs {IPLs 8 through 11)

• Hardware device IPLs {IPLs 20 through 23)

• IPL$ POWER (IPL 31)

3.1.8.1 IPL$ ASTDEL (IPL 2) - IPL$ ASTDEL blocks the delivery of
asynchronous -system traps (ASTs). When a system service for which an
AST was specified completes, the system sarvice queues the AST and
causes a software interrupt to be requested at IPL$ ASTDEL. The AST
delivery interrupt service routine gains control when-IPL drops below
IPL$ ASTDEL. It delivers the AST to the process that is currently
scheduled.

Any driver routine that allocates or deallocates dynamic system pool
space while running in the context of a process {for example, an FDT
routine) must do so at an IPL of IPL$ ASTDEL or higher. The VAX/VMS
allocation routine records the address of the allocated system memory
in a register. If an AST that aborts the process were to occur, the
allocated memory would be lost from the pool. To block ASTs, I/O
preprocessing from the time that the Queue I/O Request system service
allocates an I/O request packet through the execution of the last FDT
routine occurs at IPLs no lower than IPL$ ASTDEL.

A process cannot incur page faults when IPL is above IPL$ ASTDEL. Any
code that executes at a higher IPL must refer only to nonpaged virtual
memory or pages that have been locked in virtual memory. A fatal
bugcheck occurs if a page fault is incurred above IPL$ ASTDEL.

3-6

SYNCHRONIZATION OF I/O REQUEST PROCESSING

In addition, some I/O postprocessing occurs in a kernel mode AST
service routine that also executes at IPL$ ASTDEL. Kernel mode ASTs,
running in the context of a process whose I/O completed, write status
information into I/O status blocks, copy buffered input into process
space, and deallocate system buffers.

3.1.8.2 IPL$ IOPOST (IPL 4) - I/O postprocessing includes all I/O
completion processing that can occur without reference to the device's
unit control block and, thus, can occur at an IPL lower than driver
fork IPL. To request I/O postprocessing, drivers call a VAX/VMS
routine that inserts I/O request packets in the postprocessing queue
and requests a software interrupt at IPL$_IOPOST.

I/O postprocessing runs at an IPL higher than IPL$ SCHED so that all
pending I/O completion processing is finished before the scheduler
looks for a new process to schedule. Whether a process is awaiting
I/O completion affects its ability to execute. Since I/O
postprocessing queues ASTs to processes, the scheduler may
preferentially reschedule a waiting process because of a pending AST
to the process.

The VAX/VMS operating system performs I/O postprocessing in the IPL 4
interrupt service routine. This routine adjusts process quota use,
queues a kernel mode AST to write status and data into the process's
address space, and deallocates system memory.

3.1.8.3 Driver Fork Processing (IPLs 8 through 11) - Driver fork
processing occurs at an IPL in the range 8 through 11 depending on the
contents of the unit control block field UCBSB FIPL. UCBSB FIPL
contains a value that is used as that device's fork IPL. All driver
routines, except for most FDT routines, execute at driver fork IPL or
higher. Usually driver routines should not read or alter fields of
the unit control block unless IPL is at fork level or higher.

A driver must never lower IPL below the IPL
caused the driver to be reentered unless
creating a fork process at the lower IPL.

of the
the

interrupt that
driver does so by

All devices on a single UNIBUS adapter share the same fork IPL if they
actively compete for shared UNIBUS adapter resources such as map
registers and data paths.

3.1.8.4 Hardware Device Interrupts - The UCB$B DIPL field in the
device's unit control block contains an IPL value at which the device
requests hardware interrupts. This IPL is in the range 20 through 23
because device interrupts usually need to interrupt most user and
VAX/VMS software functions. IPLs 20 through 23 correspond to UNIBUS
bus request (BR) levels 4 through 7. Device drivers sometimes raise
IPL to UCB$B DIPL or higher before reading and writing certain device
registers.

3.1.8.5 IPL$ POWER - The highest IPL, IPL$ POWER, locks out all other
interrupts. Many VAX/VMS routines and drivers raise IPL to IPL$ POWER
to execute code sequences that cannot tolerate interruption.- For
example, much of system initialization occurs at IPL$ POWER.

3-7

SYNCHRONIZATION OF I/O REQUEST PROCESSING

When a device driver needs to execute a series of instructions without
interruption, the driver raises IPL to IPL$ POWER. The driver never
should remain at IPL$ POWER for more than a few instructions. The
most common instance of a driver's raising IPL to IPL$ POWER is to
determine whether a power failure has occurred between the- time that
the driver writes set-up data into device registers and the time that
the driver starts the device by writing into the device control
register.

3.1.9 Additional IPLs

In addition to the IPLs described above, VAX/VMS defines the
following:

• IPL$_SCHED (IPL 3); never used by drivers

• IPL$_QUEUEAST (IPL n); very seldom used by drivers

• IPL$ SYNCH and IPL$ TIMER (IPL 7);
drivers

very seldom used by

• IPL$ MAILBOX (IPL 11); very seldom used by drivers

For debugging purposes, the
priority level IPL$ XDELTA
3.1.9.5.

VAX/VMS operating
(IPL ~); it is

system defines the
described in Section

3.1.9.1 IPL$ SCHED - When the system wishes to reschedule processes, a
VAX/VMS routine requests a software interrupt at IPL$ SCHED. The
scheduler interrupt service routine gains control at this IPL.

If a process raises IPL to ~r above IPL$ SCHED, the scheduler cannot
reschedule the processor. The process runs until an interrupt occurs
at a higher IPL or the process reduces IPL below IPL$ SCHED.

3.1.9.2 IPL$ QUEUEAST - IPL$ QUEUEAST is a fork level IPL. That is,
the interrupt service routine for IPL$ QUEUEAST is the fork dispatcher
that dequeues fork blocks and restores control to fork processes
needing to execute at IPL$_QUEUEAST.

To queue an AST, a driver creates a fork process at IPL$ QUEUEAST.
When the fork dispatcher restores control to the fork process, the
process can raise IPL to IPL$_SYNCH and queue the AST.

A driver that wishes to gain access to the system data base for any
reason can also create a fork process at IPL$ QUEUEAST. The fork
dispatcher restores control to the driver at IPL$-QUEUEAST, and the
driver can then raise IPL to IPL$ SYNCH (a nonfork-IPL) to gain access
to the system data base.

3.1.9.3 IPL$ SYNCH and IPL$ TIMER - IPL$ SYNCH is the system data base
synchronizatTon level. When a VAX/VMS subroutine or a driver needs to
modify or read a dynamic portion of the system data base, the routine
always executes at IPL$ SYNCH to ensure that the data base does not
change due to some interrupt service routine or process action. For
example, the driver loading procedure invoked by the SYSGEN utility

3-8

SYNCHRONIZATION OF I/O REQUEST PROCESSING

raises IPL to IPL$ SYNCH before adding control blocks to the I/O data
base.

A timer queue interrupt service routine fields interrupts requested at
IPL$ TIMER, which is also IPL 7. The hardware clock interrupt service
routTne requests a software timer interrupt at IPL$ TIMER when the
current process has exceeded its processor time quantum or when the
first entry in the timer queue is due. The timer interrupt service
routine dequeues the first timer queue entry and takes appropriate
action.

3.1.9.4 IPL$ MAILBOX - When a VAX/VMS or driver routine writes into a
mailbox, IPL must be at IPL$ MAILBOX to prevent other writers from
modifying incomplete data in the- mailbox, or readers from reading
invalid data.

IPL$ MAILBOX is the highest fork level;
IPL$-MAILBOX and write into a mailbox.

drivers can raise IPL to

3.1.9.5 IPL$ XDELTA - To stop the operating system for debugging
purposes, you can halt the operating system from the console terminal
and request a software interrupt at IPL$ XDELTA. The processor must
be executing below IPL 5 for the interrupt to have an effect. Chapter
15 describes the XDELTA debugging program.

3.1.10 Overview of IPL Use

Figure 3-2 illustrates the normal IPL flow during the processing of an
I/O request.

The user program, executing at IPL O, issues a Queue I/O Request
system service call. I/O processing by the system service and FDT
routines occurs mostly at IPL$ ASTDEL. Very rarely, an FDT routine
raises IPL to driver fork level to read or modify the device's unit
control block.

The start I/O routine executes as a fork process at fork IPL, but may
raise to device interrupt IPL or IPL$ POWER for short periods of time.
After the driver fork process activates the device, the driver calls a
VAX/VMS routine that saves the driver fork context, suspends driver
fork processing, and restores IPL to a previous level.

Figure 3-3 illustrates the completion of the I/O request from the
point of the device interrupt to the delivery of ASTs to the user
program. The device interrupts at a device IPL (in the range 20
through 23). VAX/VMS transfers control to the appropriate driver
interrupt service routine. The service routine reactivates the driver
fork process with IPL still at hardware device IPL.

The fork process briefly examines or saves the contents of device
registers, but soon requests that VAX/VMS insert a fork block
describing its context into one of the fork queues for driver fork
IPLs (8 through 11). When the driver fork process regains control at
driver fork IPL, the process analyzes the success of the I/O operation
and writes status into RO and Rl. Then, still at driver fork IPL,
VAX/VMS inserts the I/O request packet into the I/O postprocessing
queue and starts the next I/O request.

3-9

UCB$B_DIPL

SYNCHRONIZATION OF I/O REQUEST PROCESSING

DEVICE
GENERATES
INTERRUPT

DRIVER
ANALYZES
INTERRUPT

----------- --+---------------

UCB$B_FIPL

DRIVER
RETURNS
STATUS

o.s.
QUEUES
1/0 POST

START
NEXT

1/0

- - - - - - - ---------- - -+- - --------

IPL$_10POST

CLEAN UP
QIO QUEUE
KERNEL AST
TO PROCESS

-----------------~-------IPL$_ASTDE L

DELIVER
KERNEL
AST TO

PROCESS

-------------------- --------+-- -- ---- -0

Figure 3-2

IPL$_POWER

DELIVER USER
AST (IF ANY) TO

PROCESS

IPL Conventions During I/O Processing

START DEVICE -
SAVE

DRIVER
CONTEXT

- -- -- -- -- -- ---- -- --+--- -- - - -+ - - -- - -+- -

UCB$B_DIPL

SETUP
DEVICE

REGISTERS

-- -- -- - - -- -- - -- --+- -- -- -- ---+-- -- - -- --+--

UCB$B_FIPL

MODIFY & REAC
UCB

SETUP
DEVICE

REGISTERS

START
1/0

•
---- --+--+'- ---- -- -- - - - -- - - - -~ -

IPL$_ASTDEL

t

FDT
ROUTINE

010
SERVICE
ROUTINE

FDT
ROUTINE

------------- --1------- - ------+--
0

Figure 3-3

USER
ISSUES

010

IPL Conventions During I/O Completion

3-10

•
USER

PROGRAM
CONTINUES

SYNCHRONIZATION OF I/O REQUEST PROCESSING

The I/O postprocessing routine adjusts process quota usage and
deallocates system buffers for write functions at IPL$ IOPOST. The
routine also calls another VAX/VMS routine that raTses IPL to
IPL$ SYNCH to queue a kernel mode AST to the process that issued the
origTnal QIO request. The AST routine executes at IPL$ ASTDEL, and
may queue a user AST routine that eventually executes at-an IPL of O.
I/O postprocessing continues at IPL$ IOPOST until all entries in the
postprocessing queue have been servi~ed.

3.1.11 Modifying IPL in Driver Code

The interrupt priority level at which driver code executes changes as
a result of either of the following events:

• The driver's calling a VAX/VMS routine that raises or lowers
IPL

• The driver's invoking a VAX/VMS macro to request explicitly a
change in IPL

Subsequent chapters of this manual discuss the VAX/VMS routines that
change IPL; discussions include their expectation of IPL at entry and
their IPL setting at exit. The sections that follow describe the
macros that drivers can call to change IPL:

e SETIPL

• DSBINT

e ENBINT

e SOFTINT

3.1.11.1 Set Interrupt
Priority Level (SETIPL)
processor register.

Format

SETI PL [i pl]

ipl

Priority Level Macro - The Set Interrupt
macro moves the specified IPL into the IPL

The interrupt priority level. If no priority level is specified,
the macro moves the value 31 into the IPL register. Setting IPL
to 31 blocks all interrupts.

3.1.11.2 Disable Interrupts Macro - The Disable Interrupts (DSBINT)
macro saves the current IPL in the specified destination and moves the
specified IPL into the IPL processor register. Procedures invoke this
macro to raise IPL.

Format

DSBINT [ipl] [,dst]

3-11

ipl

dst

SYNCHRONIZATION OF I/O REQUEST PROCESSING

The interrupt priority level. The macro saves the current IPL on
the top of the stack (default) or in the specified destination
and moves the specified IPL into the IPL register. If IPL is not
specified, the macro moves the value 31 into the IPL processor
register; this blocks all interrupts.

The location in which the current IPL is to be saved. If this
argument is not specified, the current IPL is stored on the top
of the stack by default.

3.1.11.3 Enable Interrupts Macro - The Enable Interrupts (ENBINT)
macro restores an IPL value to the IPL processor register. Procedure~
invoke this macro to lower IPL to a previously saved level. If an
interrupt is pending at an intermediate IPL (that is, one lower than
the current IPL but higher than the specified IPL), restoring IPL
causes immediate interruption of the current procedure.

Format

src

ENBINT [src]

The location containing the IPL to be restored. If this argument
is not specified, the macro moves the IPL value contained on the
top of the stack into the IPL register.

3.1.11.4 Software Interrupt Macro - The Software Interrupt (SOFTINT)
macro moves the specified IPL into the software interrupt request
processor register to request a software interrupt. If the processor
is executing at a low IPL (for example, IPL 0) and detects a software
interrupt request at a higher IPL (1 through 15), the processor
immediately transfers control to a software interrupt service routine
for the appropriate IPL. If the processor is executing at or above
the specified IPL, the pro~essor does not transfer control to the
software interrupt service routine until IPL drops below the specified
IPL.

Format

ipl

SOFTINT ipl

The interrupt priority level at which the software interrupt is
being requested.

3.2 FORK BLOCKS AND FORK DISPATCHING

Device driver routines that activate a device and complete an I/O
operation after a device interrupt execute for relatively short
periods of time. Execution may be suspended to wait for a device
interrupt or shared resources. To ensure that the resulting context
switching is fast, VAX/VMS forces driver routines to execute in a very
minimal fork process context consisting of a device UCB, called a fork
block, and a few registers.

3-12

SYNCHRONIZATION OF I/O REQUEST PROCESSING

Driver fork processes are created in either of the
situations:

following

• Once the preprocessing of an I/O packet has been performed, a
VAX/VMS routine creates a fork process to execute the driver's
start I/O routine. If the driver is already busy, the VAX/VMS
routine queues the I/O packet for the driver to process later.

• Either the driver's interrupt service routine or
postprocessing routine creates a fork process
device-dependent I/O postprocessing.

the driver
to perform

When the system creates a driver fork process to execute the start I/O
routine, the newly created fork process can execute immediately
because the I/O packet has been preprocessed by the Queue I/O Request
system service and driver FDT routines, and the device is idle.

When the driver interrupt service routine or the driver postprocessing
routine creates a driver fork process, it does so to lower the IPL of
the driver code. Either the service routine or the driver invokes the
VAX/VMS macro IOFORK. IOFORK saves the context needed for the driver
to execute as a fork process, ,inserts the driver's UCB fork block in
the fork queue for the driver's IPL, and requests a software interrupt
for that IPL.

3.2.1 Interrupt Service Routine for Fork Dispatching

One interrupt service routine handles all fork process dispatching.
When the processor grants an interrupt at fork IPL, the fork
dispatcher saves RO through RS on the stack and processes the fork
gueue that corresponds to the IPL of the interrupt. To do so, it
removes an entry from the fork queue, restores the fork process
context, and reactivates the suspended fork process. When that fork
process completes, the dispatcher regains control, removes the next
entry, if any, from the queue, restores its fork process context, and
reactivates it. This sequence repeats until the fork queue is empty.
When the queue is empty, the fork dispatcher restores RO through RS
from the stack and dismisses the interrupt with an REI instruction.

Figure 3-4 illustrates the fork queue structure.

A newly activated driver fork process executes under the following
constraints:

• It cannot refer to the address space of the process initiating
the I/O request.

• It can use only RO through RS freely; it must save other
registers before use and restore them after use. Use of
registers other than RO through RS is strongly discouraged.

• It must clean up the stack after use; the stack must be in
its original state when the fork process relinquishes control
to any VAX/VMS routine.

• It must execute at IPLs between driver fork level and
IPL$ POWER; it must not lower IPL below driver fork level
except by creating a fork process at a lower IPL.

• When it returns control to the fork dispatcher, IPL must be
the same as it was when the driver fork process was activated.
The driver returns control to the fork dispatcher by invoking
the wait for interrupt macro or the request complete macro.

3-13

SYNCHRONIZATION OP I/O REQUEST PROCESSING

IPL 15 RESERVED
···----1

IPL 14 RESERVED
IPL 11 FORK
~ r---RESERVED

~ FORK QUEUE BLOCK IPL 13
···--··-...., LISTHEAD

IPL 12 RESERVED
-·- IPL 10

FORK LEVEL

Crl FORK QUEUE
- ··- LISTHEAD
FORK LEVEL

IPL 11

IPL 10

FORK LEVEL ru IPL 9
···-- FORK QUEUE

IPL 9

IPL 8 FORK LEVEL 1--- LISTHEAD

IPL 7 TIMER
···- IPL 8 - FORK QUEUE ~

FORK
~ FORK LEVEL t--i -~

BLOCK
LISTHEAD

IPL 6

IPL 5 XDELTA

1/0 POSTING FORK QUEUE FORK
~ LISTHEAD ~ BLOCK

IPL4

IPL3 PROCESS SCHEDULING

IPL 2 AST DELIVERY
""'"~

IPL 1 RESERVED
-~

IPL 0 PROCESS EXECUTION

Figure 3-4 Fork Dispatching Data Structure

3.3 RESOURCE WAIT QUEUES

The processing of an I/O request often requires shared system
resources such as memory and UNIBUS adapter map registers. The Queue
I/O Request system service and driver fork processes call VAX/VMS
routines to allocate and deallocate these resources. Since the
resources are limited, I/O processing may be delayed until unavailable
resources are released by other processes or drivers. Thus,
synchronization of access to these resources can have a substantial
impact on I/O request processing.

For example, the Queue I/O Request system service calls a VAX/VMS
routine to allocate nonpaged system space for an I/O request packet.
If the nonpaged pool is empty, the routine calls another VAX/VMS
routine to save the process context and change the process state to
resource wait mode (also called miscellaneous wait, or MWAIT).
Process states and the resources for which processes can wait are
described in the VAX/VMS Summary Description and Glossary. As a
result of waiting, the process is--aca_n_Cf12fciEe .. to--·5e-·swapped out of
memory. When nonpaged pool becomes available, the scheduler
reschedules the process.

During driver fork process execution at raised IPLs, driver context is
very small. At any point, the driver can obtain all details about an
I/O request by referring to the I/O data base. The driver needs only
the address of the device unit control block which is the key to the
rest of the data base. Therefore, VAX/VMS routines that control
driver resources, such as UBA map registers, use driver fork blocks

3-14

SYNCHRONIZATION OF I/O REQUEST PROCESSING

and resource wait queues to save minimal driver context.
in a queue consists of the following items:

Each entry

• The address of the UCB, which is also the contents of RS in
the driver fork process; the UCB also contains the driver
fork block

• R3, and normally R4, from the fork process

• A PC for the waiting fork process

When the awaited resource becomes available, the routine controlling
the resource performs the following steps:

• Restores the UCB address to RS

• Restores the saved registers R3 and R4

• Grants the resource

• Transfers control to the saved driver return PC address

Because the VAX/VMS routine that controls a particular resource places
the driver in a wait state when the driver requests an unavailable
resource, drivers are unaware of being suspended and subsequently
resumed. Drivers must not leave anything on the stack when calling a
routine that may suspend the driver.

3.3.1 Competing for a Controller Data Channel

A controller data channel is a VAX/VMS synchronization mechanism that
guarantees for multiunit controllers that one unit uses the controller
at a time. A device driver fork process can read and write a device's
registers whenever the device unit owns the controller data channel.

Devices that share a multiunit controller, such as disk units, own the
controller data channel only when a VAX/VMS routine assigns the
channel to the unit's driver fork process. In contrast, a single
device unit on a controller always owns the controller data channel.
Therefore, if VAX/VMS transfers control to such a driver's start I/O
routine, the driver can immediately address the device registers
without first obtaining the controller data channel.

An LPll line printer device, such as the one discussed in Chapter 2,
has a dedicated (single-unit) controller attached to the UNIBUS. When
VAX/VMS finds the device idle and creates a line printer driver fork
process to write data to the line printer data buffer, the controller
data channel is guaranteed not to be busy. Because the controller
data channel is not busy, the line printer start I/O routine can
execute the following simple sequence of events:

• Retrieve the virtual address of the data to be written ann the
number of bytes to transfer from the device's unit control
block

• Retrieve the virtual address of the device's control/status
register from the interrupt data block

3-lS

. .
SYNCHRONIZATION OF I/O REQUEST PROCESSING

Calculate the address
register by adding a
register address

of the line printer's data buffer
constant off set to the control/status

• Write data one byte at a time to the line printer's data
buffer until all bytes of data have been written

In contrast, a device unit on a multiunit controller must compete for
the controller data channel with other devices attached to that
controller.

An RK611 controller, for example, controls as many as eight RK0n/RK07
devices._ The disk driver fork process must gain control of the
controller data channel before starting an I/O operation on the unit
associated with the fork process. The disk driver's start I/O routine
uses the following sequence to start a seek operation on an RK07
device:

• The start I/O routine requests the controller data channel by
invoking a VAX/VMS channel arbitration routine.

• The VAX/VMS routine tests the CRB mask field to determine
whether the controller data channel is available.

• If the channel is available, the VAX/VMS routine allocates the
channel to the driver fork process and returns the address of
the device control/status register to the fork process.

If the channel is busy, the VAX/VMS routine saves the driver
fork context in the UCB fork block and inserts the fork block
address in the controller channel wait queue.

• When the driver fork process resumes execution, the process
owns the controllar channel. The fork process can then modify
device registers to activate the device.

• The driver's start I/O routine then requests VAX/VMS to
suspend driver processing in anticipation of an interrupt or
timeout and to release the channel.

• The VAX/VMS channel releasing routine assigns channel
ownership to the next driver fork process in the channel wait
queue, loads the control/status register address into a
general register, and reactivates the suspended driver fork
process.

• The reactivated fork process continues execution as though the
channel had been available in the first place.

The VAX/VMS channel arbitration routines keep track of controller
availability using a flag field in the channel request block. The
driver fork process must always request and release the controller
data channel by invoking these routines. Once the driver owns a
controller data channel, the driver is free to read and modify device
registers.

3-16

CHAPTER 4

THE UNIBUS ADAPTER

The UNIBUS adapter connects the UNIBUS, an asynchronous bidirectional
bus, to the synchronous backplane interconnect (SBI}. The adapter
performs the following functions:

• Arbitrates priority interrupts from UNIBUS devices

• Delivers interrupts from UNIBUS devices to the processor

• Allows drivers to gain access to UNIBUS device registers using
system virtual addresses

• Translates 18-bit UNIBUS addresses to 30-bit
addresses

SB! byte

• Provides a data transfer path to randomly ordered physical SB!
addresses, that is, to discontiguous pages

• Provides buffered data transfer paths
increasing physical SB! addresses

to consecutively

• Permits byte-aligned buffers for UNIBUS devices requiring
word-aligned buffer addresses

Together the UNIBUS adapter
drivers to exchange data
hardware. Because VAX/VMS

and the SB! permit devices and device
without much awareness of the intervening

routines handle the details of the
device drivers do not need to know the adapter/SB! interface, most

interface protocol.

The critical responsibility of UNIBUS device drivers that actively
compete for shared UNIBUS adapter resources is that they all execute
at the same fork IPL. This IPL convention synchronizes access to the
UNIBUS adapter data structures.

In general, device drivers use the UNIBUS adapter for the following
purposes:

• Reading and writing device registers

• Mapping UNIBUS addresses to SB! addresses and vice versa for
direct memory access (DMA} transfers

• Buffering data transfers

Drivers for UNIBUS devices that do not perform DMA transfers are
unaware of the presence of the UNIBUS adapter. The UNIBUS adapter
provides access to device registers using an address mapping scheme
that is invisible to the driver. However, drivers that handle DMA
transfers to and from UNIBUS devices must call VAX/VMS routines that
establish the appropriate mapping.

4-1

THE UNIBUS ADAPTER

4.1 READING AND WRITING DEVICE REGISTERS

Each I/O controller or device directly attached to the UNIBUS has a
set of control/status and data registers. These registers are
assigned addresses in a portion of the physical address space called
the UNIBUS address space. Device drivers obtain device status and
activate devices by reading and writing these registers.

Generally, a device driver can regard the addresses of device
registers as identical to all other virtual addresses. The driver can
read and write data to the device register as though the device
register were a location in memory. The driver must obey the
restrictions on instructions described in Section 6.2. The UNIBUS
adapter performs the actual mapping of virtual address to UNIBUS
addresses that correspond to device registers.

Before a driver for a multiunit controller can gain access to device
registers, it must first obtain a controller channel, as described in
Section 3.3.1.

4.2 MAPPING UNIBUS AND SBI ADDRESSES FOR OMA TRANSFERS

The UNIBUS address space consists of 256K bytes of memory, of which 8K
bytes are reserved for device control registers. UNIBUS OMA devices
read and write data from and to memory locations using 18-bit UNIBUS
addresses. The UNIBUS adapter translates the 18-bit UNIBUS addresses
into 30-bit SB! addresses. This translation allows the operating
system, I/O drivers, and UNIBUS devices to access the same physical
address space.

The UNIBUS adapter provides 496 map registers to translate UNIBUS
addresses to SB! addresses. Each map register represents one page of
the UNIBUS address space. A 21-bit field in the map register
identifies the SB! page frame number corresponding to the UNIBUS
address that the map register represents.

For example, VAX/VMS routines fill as many map registers with valid
SB! page addresses as needed for a DMA transfer. A OMA UNIBUS device
puts an address on the UNIBUS. The UNIBUS adapter receives the
address and translates it using the following information:

• The 9-bit UNIBUS page address field (bits 9 through 17 of the
UNIBUS address) identifies the UBA map register.

• The 21-bit SB! page frame number field (bits 0 through 20) in
the map register identifies bits 27 through 7 of the SBI
address.

• UNIBUS address bits 2 through 8 map directly to bits 0 through
6 of the SB! address.

The resulting 28-bit SB! address locates the SB! longword that is the
target of the transfer. The UNIBUS adapter identifies the byte
addressed within the longword by interpreting the low-order two bits
of the UNIBUS address.

Figure 4-1 illustrates the UNIBUS to SB! address mapping.

4-2

UNIBUS
ADAPTER

MAP
REGISTER

THE UNIBUS ADAPTER

18-BIT UNIBUS ADDRESS

MAP REGISTER NO.
LONGWORD

OFFSET

32-BIT MAP REGISTER

SBI PAGE ADDRESS

SBI PAGE ADDRESS
LONGWORD

OFFSET

28-BIT SBI LONGWORD ADDRESS

Figure 4-1 UNIBUS to SB! Address Mapping

Each UNIBUS adapter map register also contains a bit called the map
register valid bit. The UNIBUS adapter tests this bit every time the
map register is used. If the bit is not set, the UNIBUS adapter
aborts the UNIBUS transfer. The valid bit is zero whenever the
register is not mapped to an SB! address.

4.2.1 UNIBUS Adapter Data Transfer Paths

The UNIBUS adapter sends data through one of lo data paths for UNIBUS
devices performing DMA transfers. One data path, the direct data path
(DDP), allows UNIBUS transfers to randomly ordered SB! addresses. The
direct data path maps each UNIBUS transfer to an SB! transfer. Thus,
a single word or byte of data is transferred per SB! operation.

The other 15 data paths, the buffered data paths (BDPs), allow
sequential access devices on the UNIBUS to transfer to consecutively
increasing addresses much faster than through the direct data path.
The buffered data paths store data from the UNIBUS until a quadword of
data has been assembled. Then the UNIBUS adapter begins an SBI
transfer.

Buffered data paths also allow a UNIBUS device to transfer randomly
ordered, longword-aligned 32-bit data. The longword-aligned transfer
mode is discussed in Section 4.2.1.5.

When a UNIBUS device begins a DMA transfer by placing an address on
the UNIBUS, the UNIBUS adapter map register not only performs address
mapping but also provides the number of the data path to be used for
the transfer. Each UNIBUS adapter map register contains a 4-bit fielct
that describes the data path. Data path 0 is the direct data path,
and data paths 1 through 15 are the buffered data paths.

4-3

THE UNIBUS ADAPTER

The sequence below describes a UNIBUS device OMA transfer.

• The UNIBUS device puts an address on the UNIBUS.

• The UNIBUS adapter locates the UNIBUS adapter map register
that corresponds to the UNIBUS address.

• The UNIBUS adapter verifies that the map register has the map
register valid bit set.

• The UNIBUS adapter maps the UNIBUS address to an SBI page
frame number.

• The UNIBUS adapter extracts the number of the data path to be
used for the transfer from the map register.

• The data path translates the UNIBUS function to an SBI
function by reading the UNIBUS control lines.

• Sased on the UNIBUS function indicated by the UNIBUS control
lines, (DAT!, DATIP, DATO, or DATOB), the UNIBUS adapter
starts appropriate UNIBUS and SBI operations to transfer data
to or from the UNIBUS device.

4.2.1.1 Direct Data Path - Since the direct data path performs an SBI
transfer for every UNIBUS transfer, the data path can be used by more
than one UNIBUS device at a time. The UNIBUS adapter arbitrates
between devices that wish to use the direct data path simultaneously.
The device driver is unaware of this UBA arbitration.

The direct data path is slower than buffered data paths because each
UNIBUS transfer cycle corresponds to an SBI cycle. Throughput is one
word or byte transferred per SBI cycle, which is approximately a .8
megabyte per second maximum. The direct data path is also unable to
transfer a word of data to an odd SBI address. Therefore, an FDT
routine for a DMA device that uses the direct data path might check
that the specified buffer is on a word boundary.

UNIBUS devices that transfer data through the direct data path do so
in order to perform the following functions:

• Execute an interlock sequence to the SBI (DATIP-DATO/DATOB)

• Transfer to randomly ordered
consecutively increasing addresses

• Mix read and write functions

addresses instead of

The direct data path is the simplest data path to program. Since the
direct data path can be shared simultaneously by any number of I/O
transfers, the device driver need not allocate that data path. Once
the map registers are loaded, the device driver initiates the transfer
by setting appropriate device control register bits. The programming
sequence is as follows:

• Allocate a set of map registers.

• Load the map registers with SBI mapping data and the data path
number (0 for the direct data path).

4-4

THE UNIBUS ADAPTER

• Set the valid bit in every map register. The map register
adjacent to the last map register must have the valid bit
cleared.

• Load the starting address of the transfer in a device
register.

• Load the transfer byte or word count in a device register.

• Set bits in the device control register to initiate the
transfer.

The operating system performs the first three steps above. The driver
fork process simply calls VAX/VMS routines to allocate and load the
map registers.

4.2.1.2 Buffered Data Paths - In contrast to the direct data path,
the 15 buffered data paths transfer data much more efficiently between
the UNIBUS and the SB! by decoupling the UNIBUS transfer from the SB!
transfer. Buffered data paths read or write 32 or ~4 bits of data in
a transfer, and buffer the unrequested portions of the data in UBA
buffers. Thus, as many as four separate UNIBUS read functions can be
accommodated with a single SB! transfer.

Advantages that buffered data paths offer to UNIBUS devices include
the following:

• Fast DMA block transfers to or from consecutively increasing
addresses (maximum 1.39 megabyte per second transfer rate)

• Word-oriented block transfers that begin and end on an ood
byte of SB! memory; note, however, that these transfers can
be quite slow since the UNIBUS adapter may need to transfer
two quadwords to complete a 1-word transfer

• 32-bit data transfers from random
addresses

longword-aligned SB!

A buffered data path cannot be assigned to more than one active
transfer at a time. When a driver fork process is preparing to
transfer data to or from a UNIBUS device on a buffered data path, the
driver requests allocation of a free buffered data path and a set of
UBA map registers. A VAX/VMS I/O routine writes the number of the
data path into each of the assigned map registers.

A UNIBUS device transfer over a buffered data path has the following
restrictions:

• The driver must request the UNIBUS adapter to purge the
buffered data path after each block transfer (except for
error-free longword-aligned transfers).

• All addresses in a block transfer must be consecutively
increasing addresses.

• All transfers within a block must be of the same function type
(DAT! or DATO/DATOB).

A buffered data path buffers data from the UNIBUS until a quadword of
data has been transferred (except in longword-aligned transfer mode;
see below). Then, the UNIBUS adapter transfers the contents of the
buffer to the appropriate SB! address in a single SB! operation. The

4-5

THE UNIBUS ADAPTER

procedure for a UNIBUS write operation that transfers a quadword of
data to memory is broken into individual steps below.

• The UNIBUS device transfers one word of data to the buffered
data path.

• The buffered data path stores the word of data and completes
the UNIBUS cycle.

• The buffered data path sets its buffer-not-empty (BNE} bit to
indicate that the buffer contains valid data.

•

•

The UNIBUS device repeats the
UNIBUS address is the last
quadword.

first
byte

three steps
or word of

When the UNIBUS device addresses the last byte or
physical quadword, the UBA recognizes
data-gathering cycle.

until the
a physical

word in a
a complete

• The buffered data path requests an SBI extended write function
to write a quadword of data from the buffered data path to
memory.

• When the SBI transfer
clears its BNE bit
contains valid data.

is complete,
to indicate

the buffered data path
that the buff er no longer

The procedure for a UNIBUS read function using a buffered data path
includes a prefetch function. The prefetch automatically reads
another quadword of data from the SBI after the contents of a buffered
data path is transferred to the UNIBUS. The prefetch speeds up UNIBUS
reads from SBI memory. The steps of a UNIBUS read function are listed
below.

• The UNIBUS device initiates a read operation from a buffered
data path.

• The buffered data path checks to see if its buffers contain
valid data.

• If the buffers do not contain valid data, the buffered data
path initiates an SBI extended read function to fill the
buffers with a quadword of data. The SBI quadword transfer
completes before the UNIBUS adapter begins a UNIBUS transfer.

• The buffered data path transfers the requested bytes to the
UNIBUS. Bytes of data that were not transferred to the UNIBUS
remain in the buffer.

• The buffered data path sets its BNE bit to indicate that the
buffers contain valid data.

• When the UNIBUS device empties the buffers of the buffered
data path with a UNIBUS read function that accesses the last
word of a quadword-aligned group, the buffered data path
clears the BNE bit to indicate that the buffers no longer
contain valid data.

• The buffered data path then initiates an SBI extended read
function to prefetch a quadword of data from SBI memory.

• When the SBI transfer is complete, the buffered data path sets
the BNE bit to indicate that the buffers now contain valid
data.

4-6

THE UNIBUS ADAPTER

The pref etch may attempt to read data beyond the SB! page address
mapped by the final map register. To avoid a read to memory that does
not exist, the VAX/VMS map register allocation routine always
allocates one extra map register and clears its valid bit before
initiating the transfer. When the UNIBUS adapter notices that the map
register for the prefetch is invalid, the UNIBUS adapter simply aborts
the prefetch without reporting an error.

4.2.1.3 Byte Offset Data Transfers - The buffered data paths permit
UNIBUS devices that are restricted to transferring integral words of
data in word-aligned UNIBUS addresses to perform transfers to SB!
memory that begins and ends on an odd-byte address. A byte-offset bit
in the map registers indicates byte-aligned data to the hardware. If
the bit is set, the hardware increments SB! addresses. A VAX/VMS
subroutine that loads map registers determines whether the data is
word-or byte-aligned and sets the byte offset bit accordingly.

4.2.1.4 Purging a Buffered Data Path - Since prefetches may read more
data from SB! memory than the UNIBUS device wishes to read, driver
fork processes must ask the UNIBUS adapter to purge the buffered data
path when a transfer is complete. In addition, a transfer from a
device to the SB! can complete with some data (less than a quadword)
left in the buffer. The driver must purge the data path to complete
the transfer.

The purge guarantees that the data is not transferred to the next user
of the buffered data path. The driver fork process performs the purge
by calling a standard VAX/VMS subroutine that:

• Sets the BNE bit in the buffered data path register owned by
the fork process. For a UNIBUS read function, the adapter
simply clears the bit set by the subroutine. For a UNIBUS
write function, the adapter transfers any data left in ·the
data path buffer to VAX-11 memory, then clears the bit.

• Notifies the driver fork process of any error that occurs
during the purge.

The data path must be purged before the driver releases map registers
or the buffered data path register.

4.2.1.5 Longword-Aligned 32-Bit Random Access Mode - Another method
of transferring data over a buffered data path is in longword-aligned
32-bit random access mode. This mode permits a device that reads data
from or writes data to SB! memory in longword-aligned and
longword-multiples to use the buffered data path for random memory
access.

A longword-aligned transfer over a buffered data path is faster than a
direct data path transfer and somewhat slower than a normal buffered
data path transfer (maximum 1.17 megabyte per second transfer rate).

This longword-aligned use of the buffered data path disables the
prefetch and makes normal purging of the data path unnecessary. If,
however, the I/O transfer aborts, the driver must purge the data path.

4-7

THE UNIBUS ADAPTER

To transfer data in the longword-aligned 32-bit random access mode,
the driver fork process sets the longword-access-enable bit
(VEC$V_LWAE) in the channel request block {CRB) prior to loading the
map registers. The UNIBUS device can then perform a read {DAT!) or
write (DATO) function.

For a UNIBUS read, the function occurs as follows:

• The driver fork process initiates a read function on the
UNIBUS device.

• The UNIBUS adapter clears the BNE bit in the assigned buffered
data path.

• The UNIBUS adapter issues a read from SB! memory operation.

• The UNIBUS adapter stores the longword of data in the buffered
data path and sets the BNE bit.

• The UNIBUS adapter initiates two UNIBUS read operations to
transfer two words of data.

• When the two read operations are complete, the UBA clears the
BNE bit.

For a UNIBUS write, the function occurs as follows:

• The driver fork process initiates a write function on the
UNIBUS device.

• The UNIBUS adapter clears the BNE bit in the assigned buffered
data path.

• The UNIBUS adapter issues two write operations to transfer two
words of data from the UNIBUS device.

• The UNIBUS adapter stores the longword of data in the buffered
data path and sets the BNE bit.

• The UNIBUS adapter initiates an SB! write operation.

• When the SB! write operation is complete, the UNIBUS adapter
clears the BNE bit.

4-8

CHAPTER 5

OVERVIEW OF I/O PROCESSING

Under the VAX/VMS operating system, I/O processing occurs in three
major phases:

• I/O request preprocessing

• Device activation and subsequent handling of the device
interrupt

• I/O postprocessing

When a user process issues an I/O request, the Queue I/O Request
system service gains control. The system service coordinates the
preprocessing of the I/O request. The last driver FDT routine called
by the Queue I/O Request system service calls a VAX/VMS routine that
creates a driver fork process to execute the driver's start I/O
routine; this is the routine that activates the device. When the
transfer completes, the device requests an interrupt that results in
execution of the driver's interrupt service routine. This routine
handles the interrupt and requests creation of a driver fork process
to perform device-dependent I/O postprocessing. .The driver fork
process then transfers control to the system to perform
device-independent I/O postprocessing. Figure 5-1 illustrates the
sequence of events.

5.1 PREPROCESSING AN I/O REQUEST

The Queue I/O Request system service performs device-independent
preprocessing of an I/O request and calls driver FDT routines to
perform device-dependent preprocessing. To preprocess an I/O request,
the Queue I/O Request system service takes the following steps:

• Verifies that the requesting process has assigned a process
I/O channel to the target device

• Locates the device driver in the I/O data base

• Validates the I/O function code

• Checks process I/O request quotas

• Validates the I/O status block

• Allocates and sets up the I/O request packet

• Calls driver FDT routines
preprocessing

5-1

to perform device-dependent

USER PROCESS CONTEXT
USER STACK

USER PROCESS CONTEXT
KERNEL STACK

FORK PROCESS CONTEXT
KERNEL OR INTERRUPT
STACK

OVERVIEW OF I/O PROCESSING

USER PROCESS ISSUES $QIO ~

QUEUE 1/0 REQUEST SYSTEM SERVl~C
PERFORMS DEVICE-INDEPENDENT 1/.0
PREPROCESSING.

QUEUE 1/0 SYST. EM SERVICE CALLS DR~VER
FDT ROUTINE(S) TO PERFORM DEVICE
DEPENDENT PREPROCESSING.

LAST FDT ROUTINE CALLS VAX/VMS
ROUTINE TO QUEUE l/C REQUEST AND
CREATE A DRIVER FORK PROCESS.

ONCE ACTIVATED THE DRIVER FORK PROCESS
EXECUTES THE START 1/0 ROUTINE.

START 1/0 ROUTINE OBTAINS NECESSARY
RESOURCES (FOR EXAMPLE, CONTROLLER
CHANNEL. UBA MAP REGISTERS) AND
ACTIVATES THE DEVICE.

I
START 1/0 ROUTINE INVOKES A WAIT FOR
INTERRUPT MACRO THAT SAVES THE FORK
PROCESS CONTEXT AND SUSPENDS THE
START 1/0 ROUTINE.

________ HARDWARE INTERRUPT OCCURS WHEN ___________ _
REQUESTED BY DEVICE

INTERRUPT CONTEXT
INTERRUPT STACK

FORK PROCESS CONTEXT
INTERRUPT STACK

VAX/VMS LOCATES THE DRIVER'S INTERRUPT I
SERVICE ROUTINE AND ACTIVATES IT.

I
DRIVER'S INTERRUPT SERVICE ROUTINE
HANDLES THE INTERRUPT AND TRANSFERS
CONTROL TO THE DRIVER AT THE
INSTRUCTION FOLLOWING THE WAIT FOR
INTERRUPT INVOCATION.

1 ";;] THE DRIVER INVOKES IOFORK TO BE
RESCHEDULED AT FORK IPL AS A FORK PROCESS.

ONCE RESCHEDULED AS A FORK PROCESS,
THE DRIVER EXECUTES THE REST OF THE
DRIVER CODE THAT PERFORMS DEVICE
DEPENDENT 1/0 COMPLETION.

THE DRIVER THEN CALLS A VAX/VMS ROUTINE TO I
PERFORM DEVICE-INDEPENDENT 1/0 COMP~ETION.

----·-··-----~·---·-·-·---··-------------·---+--------------- --------
INTERRUPT CONTEXT
INTERRUPT STACK

USER PROCESS CONTEXT
KERNEL STACK

USER PROCESS CONTEXT
USER STACK

VAX/VMS QUEUES A KERNEL MODE AST TO
THE PROCESS THAT ORIGINALLY ISSUED
THE 1/0 REQUEST.

-------·------------------

ONCE DELIVERED, THE KERNEL MODE AST
ROUTINE RUNS IN USER PROCESS CONTEXT
TO READ DATA INTO THE USER'S BUFFER
FOR A BUFFERED 1/0 REQUEST, RETURN
RETURN FINALSTATUS,AND, IF REQUESTED,
QUEUE A USER MODE AST AND/OR SET AN
EVENT FLAG.

USER MODE AST

Figure 5-1 Sequence of Driver Execution

5-2

OVERVIEW OF I/O PROCESSING

5.1.1 Process I/O Channel Assignment

The first step in preprocessing an I/O request is to verify that the
I/O request specifies a valid process I/O channel. The process I/O
channel is an entry in a system-maintained process table that
describes a path of reference from a process to a peripheral device
unit. Before a program requests I/O to a device, the program
identifies the target device unit by issuing an Assign I/O Channel
system service call. The Assign I/O Channel system service performs
the following functions:

• Locates an unused entry in the table of process I/O channels

• Creates a pointer to the device unit in the table entry for
the channel

• Returns a channel index number to the program

When the program issues an I/O request, the Queue I/O
service verifies that the channel number specified is
a device and locates the portion of the I/O data base
the device. Figure 5-2 illustrates the path from a
number to the device's unit control block.

5.1.2 Locating a Device Driver in the I/O Data Base

Request system
associated with
that describes
process channel

Using information in the unit control block, a driver can find other
I/O data structures associated with the device, including the
following:

• Channel request blockl

• Interrupt data block

• Device data block

5.1.2.1 Unit Control Block (UCB) - The process channel number
indirectly points to the unit control block for the target device.
The unit control block contains the first in a chain of pointers into
the I/O data base. The pointer chain leads to the addresses of driver
tables and routines in the driver that services the target device.

A unit control block describing a device unit exists for each device
in the system. The unit control block indicates the current state of
the device unit by specifying such information as the following:

• Whether the device is active

• What I/O request is being processed

• Where transfer buffers are located

1. Channel request blocks (CRBs) and channel control blocks are two
completely separate data structures. It is sometimes helpful to think
of the channel request block as the "controller" request block because
it describes the hardware controller. The channel control block, on
the other hand, describes a logical path from a process to an
associated unit control block.

5-3

OVERVIEW OF I/O PROCESSING

Since drivers run as fork processes and cannot use process address
space to store additional context, drivers use the unit control block
for temporary data storage during I/O processing. Chapter 7 describes
how you can allocate additional UCB space for storing data or
device-dependent driver context.

The unit control block also holds the context of a driver fork process
when VAX/VMS I/O routines suspend the fork process to wait for an
asynchronous event such as a device interrupt.

CHANNEL
NUMBER

PROCESS
CHANNEL
CONTROL

BLOCKS (CCBs)

-..
UCB ----

DEVICE'S
UNIT

CONTROL
BLOCK
(UCB)

Figure 5-2 Locating the Target Device

5-4

OVERVIEW OF I/O PROCESSING

5.1.2.2 Channel Request Block (CRB) - All unit control blocks
describing device units attached to a particular controller contain a
pointer to a single channel request block. The channel request block
contains the following information:

• Code that transfers control to a driver interrupt service
routine

• Addresses of driver's unit and controller initialization
routines

• Reference to the device's UNIBUS adapter

• A pointer to the interrupt data block, which further describes
the controller

Controllers can be either multiunit or dedicated. A dedicated
controller has only one device unit. The VAX/VMS operating system
does not use the channel request block to synchronize I/O operations
for a dedicated controller. The channel request block still is
present and used by drivers and operating system routines.

For multiunit controllers, a VAX/VMS routine uses a field in the
channel request block to arbitrate driver requests for the controller.
When the system grants ownership of a multiunit controller data
channel to a driver fork process, the fork process can initiate an I/O
operation on a device attached to that controller.

The unit control blocks for devices attached to a multiunit controller
all contain pointers to the same channel request block; this allows
the operating system to manage the controller data channel. Figure
5-3 illustrates the data structures required to describe three devices
on a multiunit controller.

CRB

UCB UCB UCB

Figure 5-3 I/O Data Structures for Three Devices on One Controller

5.1.2.3 Interrupt Data Block (IDB) and Device Data Block (DDB) - The
channel request block also points to an interrupt data block. The
interrupt data base contains three critical data structure addresses:

• The address of the UCB of the device unit, if any, that
currently owns the controller data channel

• The address of the control/status register (CSR); it is the
key to access to device registers

• The address of the adapter control block (ADP) that describes
the UNIBUS adapter to which the controller is attached

5-5

OVERVIEW OF I/O PROCESSING

Finally, all unit controller blocks describing device units attached
to a single controller contain a pointer to a single device data block
(DDB). The device data block contains the following fields that
identify the device and its driver:

• The generic device/controller name

• The name of the device's driver as obtained from the driver
prologue table; see Chapters 7 and 14 for the use of the
driver name

• A pointer to a driver dispatch table that lists the addresses
of routines in the device driver

Figure 5-4 illustrates a pair of device data blocks describing a group
of equivalent devices on two separate controllers.

CRB

UCB UCB

DDT

UCB

CRB

Figure 5-4 I/O Data Base for Two Controllars

In Figure 5-4, one controller has a single device unit, and the other
controller has two device units. Each controller has its own device
data block. Devices on both controllers share the same driver code.

5-6

OVERVIEW OF I/O PROCESSING

5.1.3 Validating the I/O Function

Using the I/O data structures described above, the Queue I/O Request
system service locates the address of the driver's function decision
table by following a chain of pointers beginning in the UCB of the
target device for the I/O request, as follows:

UCB _._ DDB __..... DDT --.- FDT

The system service then uses data in the function decision table to
analyze the I/O function. The service confirms that the function
specified in the I/O request is a valid function for the device.

5.1.4 Checking Process I/O Request Quotas

The Queue I/O Request system service calls a routine that determines
whether the I/O request being readied will cause the process to exceed
its quota for outstanding direct or buffered I/O requests. If the
process remains under quota, the checking routine returns a success
status to the service, allowing it to continue I/O preprocessing.

In the case where quota is exceeded, the routine examines the system
service resource wait flag. If the flag is clear, the routine returns
a quota exceeded status to the Queue I/O Request system service, which
aborts the I/O request.

If the flag is set, the process is placed in a wait state until it
drops below quota, at which time the quota checking routine returns
success status to the service. Then, depending on the type of
function, the system service decreases the process quota of remaining
buffered or direct I/O operations.

5.1.5 Validating the 1/0 Status Block

If the I/O request specifies a quadword I/O status block to receive
final I/O status information, the Queue I/O Request system service
determines whether the process issuing the request has write access to
the status block locations specified. If the process has write
access, the system service fills the quadword with zeros. If the
process does not have write access, the system service terminates the
request with an error status.

5.1.6 Allocating and Setting Up an 1/0 Request Packet

If validation of the I/O request succeeds to this point, the Queue I/O
Request system service allocates a block of nonpaged system memory to
contain an I/O request packet.

Before the system service allocates an I/O request packet, it raises
the hardware IPL of the processor to IPL$ ASTDEL to block any other
asynchronous activity in the process. The new IPL prevents possible
termination of the process; process termination would result in the
operating system's losing track of the system memory allocated for the
I/O request packet.

The Queue I/O Request system service attempts to allocate an I/O
request packet from a linked list of preallocated I/O request packets.
If no preallocated packets exist, the service calls a VAX/VMS routine

5-7

OVERVIEW OF I/O PROCESSING

that allocates an I/O request packet from nonpaged pool. This
allocating routine synchronizes with the rest of the system so that it
can allocate the memory needed.

The Queue I/O Request system service continues I/O preprocessing by
writing the following description of the I/O request into the packet:

• Size in bytes of the I/O request packet

• A type field identifying the block as an I/O request packet

• Access mode of the process at the time of the I/O request

• Process identification of the requesting process

• If specified in the I/O request, the address of an AST routine
and its parameter

• If the device is file-structured, the address of a control
block that describes the physical location of part of the file
(window control block)

• Address of the target device's unit control block

• I/O function code;
reduced to their
value

read/write virtual block functions are
logical equivalents before storing a code

• Number of event flag to set when I/O processing is complete
for the I/O request

• Base software priority of the requesting process

• If specified in the I/O request, the address of an I/O status
block

• Process I/O channel number

• A flag indicating whether the I/O function is buffered or
direct I/O

• A flag indicating whether the I/O request is an input request

• A flag indicating whether the process has privilege to perform
logical or physical I/O functions

• A flag indicating whether the I/O function is a physical I/O
function

• If specified in the I/O request, the address and size of a
diagnostic buffer and a flag indicating that the buffer is
present

• If an AST routine is specified in the I/O request, a flag
indicating that the process quota for the use of ASTs has been
modified

The Queue I/O Request system service writes the above fields in the
I/O request packet because these fields contain device-independent
data. Driver routines or VAX/VMS common FDT routines must fill in the
device-dependent portions of the I/O request packet.

Appendix A illustrates the format of an I/O request packet.

5-8

OVERVIEW OF I/O PROCESSING

5.1.7 Function Decision Table Processing

The driver function decision
preprocessing of an I/O request.
a function decision table.

table drives the device-dependent
Figure 5-5 illustrates the format of

FUNCTION DECISION TABLE

2 LONGWORDS { VALIDl/0
f-----------

FUNCTIONS

2 LONGWORDS { BUFFERED 1/0
~----------

FUNCTIONS

3 LONGWORDS { 64-BIT
1------------

MASK .,_ ___________
ROUTINE ADDRESS

3 LONGWORDS { 64-BIT
1------------

MASK
r------------

ROUTINE ADDRESS

•
•
•
•
•

Figure 5-5 Driver Function Decision Table

The I/O function code specified in an I/O request is a 16-bit value
consisting of two fields:

• A 6-bit I/O function code (bits 0 through 5)

• A l~~bit I/O function modifier (bits 6 through 15)

The 6-bit function code field permits you to define 64 unique I/O
function codes for every device type. Chapter 7 describes how you can
define these function codes.

Because each driver can define up to 64 unique I/O function codes, the
first two entries of a function decision table are two longwords each;
that is, 64 bits each. The first entry is a bit mask of all valid I/O
function codes for the device. Each bit represents a unique function
code. The second entry is a bit mask of those valid codes that are
also buffered I/O functions. The Queue I/O Request system service
uses these two bit masks to determine whether the I/O function code is
valid and whether the operation is to be buffered or direct I/O.

The remaining entries of a function decision table are three longwords
each. The first two longwords form a bit mask of I/O function codes.
The third longword is the address of an I/O preprocessing routine to
be called for the I/O function codes whose corresponding bits are set
in the first two longwords.

5-9

OVERVIEW OF I/O PROCESSING

The Queue I/O Request system service uses the value of the low-order
six bits of the I/O function code to determine which bit to check in
each FDT bit mask. That is, if a function code has a value of 22, the
system service checks the 23rd bit (bit 22) of each bit mask.

Some of the preprocessing routines are present in the operating system
because they provide device-independent services. Chapter 8 describes
these routines. Other routines are in the driver because they perform
device-dependent services.

The Queue I/O Request system service uses the 3-longword entries in
the function decision table to call I/O preprocessing routines in the
driver or system, as follows:

• If the bit in the FDT entry corresponding to the value of the
function code is set, the system service calls the associated
preprocessing routine; that is, the routine whose address is
in the longword following the bit mask.

• If the bit corresponding to the I/O function code value is not
set, the Queue I/O Request system service advances to the next
FDT entry bit mask and repeats the step above.

• When the preprocessing routine completes its activity, the
routine either returns control to the system service or
transfers control to a VAX/VMS routine that queues the I/O
request packet or completes the request.

• If the Queue I/O Request system service regains control, the
routine advances to the next FDT entry and re~eats the first
step above.

• If all preprocessing for the I/O function is complete, the
preprocessing routine does not return to the Queue I/O Request
system service. Instead, the routine transfers control to
either a VAX/VMS routine that queues the I/O request for the
driver's start I/O routine or a VAX/VMS routine to complete or
abort the request.

Figure 5-6 illustrates the use of FDT routines in I/O preprocessing.

As illustrated in Figure 5-6, FDT routines are responsible for ending
the Queue I/O Request system service's scan of the function decision
table. For every valid I/O function code for a device, one FDT entry
must cause I/O preprocessing for the function to end.

FDT routines execute in the full process context of the process that
requested the I/O operation. Thus, FDT routines can gain access to
process virtual address space. Once all FDT preprocessing is
complete, however, the rest of the processing for the I/O request
continues in the limited context of a driver fork process or an
interrupt service routine.

5.2 HANDLING DEVICE ACTIVITY

When I/O preprocessing is complete, but the I/O operation is not yet
complete, an FDT routine transfers control to a VAX/VMS I/O packet
queuing routine that arbitrates device activity. The arbitration
routine ensures that it creates only one driver fork process at a time
for each device unit on the system. One fork process handles one I/O
request packet.

5-10

OVERVIEW OF I/O PROCESSING

QIO DETERMINES
FUNCTION

CODE VALUE

CHECK FOR
BUFFERED

1/0

ADVANCE
TO

NEXT
ENTRY

CALL
SUBROUTINE

SUBROUTINE PERFORMS
1/0 PREPROCESSING
AND RETURNS OR
CALLS TO QUEUE

PACKET OR TERMINATE

RETURN TO QIO

NO

NO

CALL TO VMS
ROUTINE TO

QUEUE PACKET
FOR DRIVER

CALL VAX/VMS
ROUTINE TO

COMPLETE OR
ABORT 1/0

TERMINATE
REQUEST AND

RETURN TO
USER

Figure 5-6 FDT Routines and I/O Preprocessing

5-11

OVERVIEW OF I/O PROCESSING

5.2.1 Creating a Driver Fork Process to Start I/O

The I/O packet queuing routine determines whether a driver fork
process exists for the target device, as follows:

• If the device is idle, no driver fork process exists for the
device; in this case, the queuing routine immediately creates
a driver fork process to execute the start I/O routine and
transfers control to it.

• If the device is busy, a driver fork process already exists
for the device; in this case, the queuing routine insarts the
I/O request packet into a queue of I/O request packets waiting
for the device unit. The routine queues the packet according
to the base priority of the caller. Within each priority,
packets are in first-in/first-out order.

In the latter case, by the time the driver's start I/O routine gains
control to dequeue the I/O packet, the originating user's process
context is no longer available. The driver must execute in the
reduced context of a driver fork process. Because the context of the
process initiating the I/O request is not guaranteed to a driver's
start I/O routine, the VAX/VMS I/O packet queuing routine always
initiates the driver's start I/O routine with a context that is
appropriate for a fork process. The driver fork process consists of
three registers (or fewer) and a PC. The I/O packet queuing routine
establishes this context in the following steps:

• It raises IPL to driver fork IPL.

• It loads the address of the I/O request packet into R3.

• It loads the address of the device's unit control block into
RS.

• It transfers control to the driver's start I/O routine entry
point using a JMP instruction.

The newly activated driver fork process executes under the following
constraints:

• It cannot refer to the address space of the process initiating
the I/O request.

• It can use only RO through RS freely. It must save other
registers before use and restore them after use.

• It must clean up the stack after use. The stack must be in
its original state when the fork process relinquishes control
to any VAX/VMS routine.

• It must execute at IPLs between driver fork level and
IPL$ POWER. It must not lower IPL below device fork except by
creating a fork process at a lower IPL.

Each driver fork process executes until one of the following events
occurs:

• Device-dependent processing of the I/O request is complete.

• A shared resource needed by the driver is unavailable, as
described in Section 3.3.

• Device activity requires the fork process to wait for a device
interrupt.

5-12

OVERVIEW OF I/O PROCESSING

S.2.2 Activating a Device and Waiting for an Interrupt

A device driver's start I/O routine examines the I/O request packet to
determine the type of I/O operation to perform and the I/O request
specification. Depending on the device type supported by the driver,
the start I/O routine performs some or all of the following steps:

• Analyzes the I/O function and branches to driver code that
prepares the unit control block and the device for that I/O
operation

• Copies I/O request packet fields into the unit control block

• Tests fields in the unit control block to determine whether
the device and/or volume mounted on the device are valid

• If the device is attached to a multiunit controller, obtains
the controller data channel

• If the I/O operation is a DMA transfer, obtains a UNIBUS
adapter data path and loads UNIBUS adapter map registers

• Loads all necessary device registers except for the device's
control/status register

• Raises IPL to IPL$ POWER and confirms that a power failure
that would invalidate the device operation has not occurred

• Loads the device's control/status register to activate the
device

• Invokes a VAX/VMS routine to suspend the driver fork process
until a device interrupt or timeout occurs

While the driver is suspended, the context saved for it consists of
the unit control block. The context contains the following
information:

• A description of the I/O request and the state of the device

• The contents of R3 and R4

• Implicit contents of RS as the address of the unit control
block

• A driver return address

• The address of a device timeout handler

• Time at which the device will time out

By convention, R4 often contains the address of the control/status
register (CSR); it permits the driver to examine device registers.
When the driver fork process regains control after interrupt
processing, RS contains the UCB address; it is the key to the rest of
the I/O data base that is relevant to the current I/O operation.

S-13

OVERVIEW OF I/O PROCESSING

5.2.3 Handling a Device Interrupt

Once the driver's start I/O routine initiates the transfer, the driver
invokes a VAX/VMS routine to wait for an interrupt. When the device
requests an interrupt, the processor dispatches the interrupt to the
UNIBUS adapter interrupt service routine. This routine determines
whether a device requested the interrupt or the UNIBUS adapter
requested the interrupt because of a UBA error condition. If a UNIBUS
adapter error caused the interrupt, the system handles the error.

If a device requested the interrupt, the UNIBUS adapter interrupt
service routine transfers control to the driver interrupt service
routine. The driver's interrupt service routine runs at a high
interrupt priority level so that the routine can service interrupts
quickly. A driver interrupt service routine usually performs the
following processing.

• For multiunit device controllers, determines which device unit
generated the interrupt

• Examines the unit control block for the device to confirm that
the driver fork process expects the interrupt

• Saves device registers

• Reactivates the suspended driver fork process

If necessary, the reactivated driver fork process executes at the high
IPL of the interrupt service routine for a few instructions. Very
soon, however, the driver lowers its execution priority so that it
does not block subsequent interrupts for other devices in the system.

5.2.4 Switching from Interrupt to Fork Process Context

To lower its priority, the driver calls a VAX/VMS fork process queuing
routine (IOFORK) that performs the following steps:

• Disables the timeout that was specified in the wait for
interrupt routine

• Saves R3 and R4; these are the registers needed to execute as
a fork process

• Saves the address of the instruction following the IOFORK
request in the UCB fork block

• Places the address of the UCB fork block from RS in a fork
queue for the driver's fork level

• Returns to the driver's interrupt service routine

The interrupt service routine then cleans up the stack, restores
registers, and dismisses the interrupt. Figure 5-7 illustrates the
flow of a driver to create a fork process after a device interrupt.

5-14

OVERVIEW OF I/O PROCESSING

DEVICE DRIVER
,.,, JSB _

GENERATES - INTERRUPT DRIVER ~REI SERVICE
-....

INTERRUPT -- ROUTINE

• JSB

•
RSB

IOFORK

Figure 5-7 Creating a Fork Process After an Interrupt

5.2.5 Activating a Fork Process from a Fork Queue

When no hardware interrupts are pending, the software interrupt
priority arbitration logic of the processor transfers control to the
software interrupt fork dispatcher. One interrupt service routine
handles all interrupts for fork process dispatching. When the
processor grants an interrupt at a fork IPL, the fork dispatcher
processes the fork queue that corresponds to the IPL of the interrupt.
To do so, the dispatcher performs the following steps:

• Removes a driver fork block from the fork queue

• Restores fork context

• Transfers control back to the fork process

Thus, the driver code calls VAX/VMS code that coordinates suspension
and restoration of a driver fork process. This convention allows
VAX/VMS to service hardware device interrupts in a timely manner and
reactivate driver fork processes as soon as no device requires
attention.

When a given fork process completes, the fork dispatcher removes the
next entry, if any, from the fork queue, restores its fork process
context, and reactivates it. This sequence repeats until the fork
queue is empty. When the queue is empty, the fork dispatcher restores
RO through R5 from the stack and dismisses the interrupt with an REI
instruction.

Figure 5-8 illustrates the reactivation of a driver fork process.

5-15

OVERVIEW OF I/O PROCESSING

DEVICE
GENERATES
INTERRUPT

DRIVER
SERVICES

INTERRUPT

DRIVER
FORKS

DRIVER
DISMISSES
INTERRUPT

IPL TO FORK LEVEL

SOFTWARE
INTERRUPT

OCCURS

FORK
DISPATCHER

CALLS DRIVER

DRIVER
COMPLETES

REQUEST

FORK
DISPATCHER

DISMISSES
INTERRUPT

Figure 5-8 Reactivation of a Driver Fork Process

5.3 COMPLETION OF AN I/O REQUEST

Once reactivated, a driver fork process completes the I/O request as
follows:

• Releases shared driver resources such as UNIBUS adapter and
map registers and ownership of the controller

• Returns status to the VAX/VMS I/O completion routine

The I/O completion routine performs the following steps to start
postprocessing of the I/O request and to start processing the next I/O
request in the device's queue:

• Writes return status from the driver into the I/O request
packet

• Inserts the finished I/O
postprocessing fork queue
IPL$ IOPOST

request packet
and requests an

in the I/O
interrupt at

• Creates a new fork process for the next I/O request packet in
the device's I/O request packet wait queue

• Activates the new driver fork process

5-Hi

OVERVIEW OF I/O PROCESSING

5.3.1 I/O Postprocessing

When processor priority drops below the I/O postprocessing IPL, the
processor dispatches to the I/O postprocessing interrupt service
routine. This VAX/VMS routine completes device-independent processing
of the I/O request.

Using the I/O request packet as a source of information, the I/O
postprocessing dispatcher executes the sequence below for each I/O
request packet in the postprocessing queue:

• Removes the I/O request packet from the queue

• If the I/O function was a direct I/O function, adjusts the
recorded use of the issuing process's direct I/O quota and
unlocks the pages involved in the I/O transfer

• If the I/O function was a buffered I/O function, adjusts the
recorded use of the issuing process's buffered I/O quota and,
if the I/O was a write function, deallocates the system
buffers used in the transfer

• Posts the event flag associated with the I/O request

• Queues a kernel mode AST routine to the image that issued the
Queue I/O Request system service call

The queuing of a kernel mode AST routine allows I/O postprocessing to
execute in the context of the user process but in a privileged access
mode. Process context is needed to return the results of the I/O
operation to the process's address space. The kernel mode AST routine
writes the following data into the process's address space:

• Data read in a buffered I/O operation

• If specified in the I/O request, the contents of the
diagnostic buffer

• If specified in the I/O request, tRe two longwords of I/O
status

If the I/O request specifies a user AST routine, the kernel mode AST
routine queues the user mode AST for the process. When VAX/VMS
delivers the. user mode AST, the system AST delivery routine
deallocates the I/O request packet. The first part of an I/O request
packet is the AST control block for user requested ASTs.

5-17

PART II

Device drivers consist of static tables, routines that perform I/O
preprocessing, and routines that handle the device and controller.
The chapters that follow desc~ibe how to code the following sections
of a driver:

• Static tables

• Function decision table routines

• Routines that start an I/O operation on the device and
complete the I/O operation

• Interrupt service routines

• Routines that request allocation of UNIBUS adapter· map
registers and data paths

• Routines that initialize devices and controllers

• Routines that cancel an I/O operation

• Error-logging routines

The "how to" chapters listed above are preceded by a chapter that
contains a driver template. The template illustrates the general
organization and coding of a driver.

NOTE

The "how to" chapters describe a common
approach to the coding of various driver
routines; they are examples. They do
not present the only approach that can
be taken to coding a driver.

CHAPTER 6

TEMPLATE FOR AN I/O DRIVER

The pages that follow describe conventions to be used by device
drivers and provide a template for a device driver. Drivers do not
necessarily need all of the routines indicated by the template, nor do
driver routines and tables need to follow the exact order of the
template. However, the VAX/VMS operating system does place a few
restrictions on the order and content of driver routines and tables.

Figure 6-1 illustrates the organization of a device driver. The first
item in a device driver is the driver prologue table. This table must
be the first generated code in a driver. The order of the remaining
tables and routines varies from driver to driver. However, the last
statement in every driver, except for the .END assembly directive,
must be a label marking the end of the driver. The address of this
label is stored in the driver prologue table. The driver loading
procedure uses this address to calculate the size of the driver. This
address allows the driver loading procedure to compute the size of the
driver. Chapter 14 describes the driver loading procedure.

Some drivers contain no device-dependent function decision table
routines. Other drivers need only minimal initialization procedures.
However, every driver normally contains static driver tables and a
start I/O routine or an interrupt service routine.

6.1 CODING CONVENTIONS

The driver loading procedure loads a device driver into a block of
nonpaged system memory whose location is chosen by the operating
system memory allocation routines. Therefore, the driver must consist
of position-independent code only.

In addition, the system may call a device driver repeatedly to process
I/O requests and interrupts. The driver often does not complete one
I/O operation before the system transfers control to the driver to
begin another on a different unit. For this reason, the code must be
reentrant.

6-1

TEMPLATE FOR AN I/O DRIVER

DRIVER ORGANIZATION

DRIVER
PROLOGUE

TABLE

DRIVER
DISPATCH

TABLE

FUNCTION
DECISION

TABLE

FDT
ROUTINES

DEVICE HANDLING
ROUTINES

END MARK

Figure 6-1 Driver Organization

The rules of position-independent and reentrant code are listed below.

• Code can branch only to relative addresses within the driver
and to global addresses listed in the VAX/VMS symbol table
(SYS.STB in SYS$SYSTEM:).

• Static tables can list only relative addresses within the
driver and global addresses.

• The driver cannot store temporary data in local driver tables
for dynamic driver context. All dynamic temporary_ storage
must be contained within the unit control block corresponding
to an I/O request or the current I/O request block.

• The driver refers to the I/O data base by loading the address
of a data structure into a general register and using
displacement addressing to the fields of the data structure.

Refer to the VAX-11 MACRO User's Guide for additional information
about posi tion-indep-enden_t_ and reentrant code.

n-2

TEMPLATE FOR AN I/O DRIVER

Device drivers must also restrict their use of general registers and
the stack:

• FDT routines can use RO through R2 and R9 through Rll as
scratch registers. The routines can use other registers by
saving the registers before use and restoring them before
exiting from the FDT routine.

• All other driver routines can use RO through RS as scratch
registers. The routines can use other registers, if
necessary, by saving and restoring them but are discouraged
from so doing.

• All driver routines can use the stack for temporary storage
only if the routines restore the stack to its previous state
before calling any VAX/VMS routines or executing RSB
instructions.

6.2 RESTRICTIONS ON DEVICE REGISTER I/O SPACE USE

The programmer of a device driver for a UNIBUS device must observe the
following restrictions on the use of a device registers:

• Drivers should always store the address of a device control
register in a general register and then gain access to the
driver indirectly through the general register. The example
below defines symbolic word offsets for each device register
and gains access to them using displacement mode addressinq
from R4.

Device register offsets

LP CSR 0
LP-DBR 2

MOVL UCB$L CRB(R5) ,R4
MOVL CRB$L-INTD+VEC$L IDB (R4) ,R4

TSTW LP_CSR(R4)

CSR offset
Buffer address offset

Get address of CRB
Get the address of
the device's CSR

; Is printer online?

• Floating, double, field, queue, or quadword operands are not
allowed in I/O address space, nor can an instruction obtain
the position, size, length, or base of an operand from I/O
space. For example, a driver cannot use a field instruction
to test a bit in a device register.

• Drivers cannot use string instructions because they are
restartable.

• Drivers can use only those instructions with a maximum of one
modify or write destination. The destination must be the last
operand.

n-3

TEMPLATE FOR AN I/O DRIVER

• Registers of devices connected to the SBI (for example, UNIBUS
adapter device registers and MASSBUS device registers) are
longwords. Registers of devices connected to the UNIBUS are
words. Instructions that refer to UNIBUS adapter registers
must use longword context. All driver instructions that
affect UNIBUS device registers must use word context, for
example, BISW, MOVW, and ADDW3, unless the register is
byte-addressable.

Some UNIBUS devices, such as the LPll, use byte-addressable
registers. When a device driver refers to this type of
register, it can use byte-context instructions (MOVB, BISB,
and so on).

• Unaligned references and references using a length attribute
other than the length of the register may produce
unpredictable results. For example, if an instruction makes a
byte reference to a word-addressable register, the byte
addressed may not be modified or supplied. If an instruction
makes a word reference to a UNIBUS adapter register, the
system signals a machine check exception.

• After an instruction refers to I/O space, it must not handle
an exception or interrupt. If the instruction is allowed to
restart, it will re-read the device register, which causes
undesirable device side-effects or data loss. This rule
applies to device driver instructions and instructions within
processes that have called the Create and Map Section system
service to map part of UNIBUS I/O space.

Also, if an instruction executes above IPL$ ASTDEL, it must
not incur an exception or a page faultT if it does, the
operating system signals a bugcheck.

• To access I/O space, use the instructions listed below. These
instructions are not interruptible unless they use
autoincrement deferred addressing mode or any of the
displacement deferred modes when specifying an operand.

ADAWI
ADD(B,W,L)2
ADD(B,W,L)3
ADWC
BIC(B,W,L)2
BIC(B,W,L)3
BICPSW
BIS(B,W,L)2
BIS(B,W,L)3
BISPSL
BISPSW
BIT(B,W,L)
CASE(B,W,L)
CHM(K,E,S,U)
CLR(B,W,L)
CMP(B,W,L)
CVT(BW,BL,WB,

WL,LB,LW)
DEC(B,W,L)
INC(B,W,L)

MCOM(B,W,L)
MFPR
MNEG(B,W,L)
MOV(B,W,L)
MOVA(B,W,L)
MOVAQ
MOVPSL
MOVZ(BW,BL,WL)
MTPR
PROBE(R,W)
PUSHA(B,W,L)
PUS HAQ
PUSHL
SBWC
SUB(B,W,L)2
SUB(B,W,L)3
TST(B,W,L)
XOR(B,W,L)2
XOR(B,W,L)3

o-4

TEMPLATE FOR AN I/O DRIVER

.TITLE TDRIVER - VAX/VMS TEMPLATE DRIVER

.!DENT 'V02-000'

;
·** ' ·* * ' ·* ' . * ' ·* ' ·* ' ·* ' ·* ' . * ' ·* ' ·* ' . * ' . * ' . * '

Copyright (c} 1978,1979,1980
by DIGITAL Equipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by DIGITAL Equipment

;* Corporation.
. * ' . * ' . * '

DIGITAL assumes no responsibility for the use or reliability
software on equipment which is not supplied by DIGITAL.

of its

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

·* * ' ·** '

;++

FACILITY:

VAX/VMS Template driver

ABSTRACT:

This module contains the outline of a driver:

Models of driver tables
Controller and unit initialization routines
An FDT routine
The start I/O routine
The interrupt service routine
The cancel I/O routine
The device register dump routine

AUTHOR:

s. Programmer ll-NOV-1979

REVISION HISTORY:

;--

V02 JHPOOl J. Programmer 2-Aug-1979 11:27
Remove BLBC instruction from CANCEL routine.

6-5

TEMPLATE FOR AN I/O DRIVER

.SBTTL External and local symbol definitions

External symbols

$CRBDEF
$DCDEF
$DDBDEF
$DEVDEF
$IDBDEF
$IODEF
$IPLDEF
$IRPDEF
$SSDEF
$UCBDEF
$VECDEF

Local symbols

Channel request block
Device classes and types
Device data block
Device characteristics
Interrupt data block
I/O function codes
Hardware IPL definitions
I/O request packet
System status codes
Unit control block
Interrupt vector block

Argument list (AP) offsets for device-dependent QIO parameters

Pl
P2
P3
P4
P5
P6

0
4
8
12
16
20

Other constants

TD DEF BUFSIZ
TD-TIMEOUT SEC
TD-NUM REGS

1024
= 10

4

First QIO parameter
Second QIO parameter
Third QIO parameter
Fourth QIO parameter
Fifth QIO parameter
Sixth QIO parameter

Default buffer size
10 second device timeout
Device has 4 registers

Definitions that follow the standard UCB fields

$DEF

$DEF

$DEF

$DEF

$DEF

$DEF

$DEFINI UCB

.=UCB$K LENGTH

UCB$W TD WORD

UCB$W TD STATUS

UCB$W TD WRDCNT

UCB$W TD BUFADR

UCB$W TD DATBUF

UCB$K TD UCBLEN

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

.BLKW 1

Start of UCB definitions

Position at end of UCB

A sample word

Device's CSR register

Device's word count register

Device's buffer address
register
Device's data buffer register

Length of extended UCB

Bit positions for device-dependent status field in UCB

n-6

TEMPLATE FOR AN I/O DRIVER

$VIELD UCB,O,<-
<BIT ZERO,,M>,
<BIT-ONE, ,M>,-
> -

$DEFEND UCB

Device register offsets from CSR address

$DEFINI TD

$DEF TD STATUS
.BLKW 1

Device status
First bit
Second bit

End of UCB definitions

Start of status definitions

Control/status

Bit positions for device control/status register

$DEF

$DEF

$DEF

>

VIELD TD STS,0,<
<GO, ,M> ,
<BITl, ,M> ,
<BIT2,,M>,
<BIT3,,M>,
<XBA,2,M>,
<INTEN, ,M>,
<READY , , M > , -
<BIT8, ,M> ,
<BIT9, ,M> ,
<BITlO,,M>,
<BITll,,M>,
<,l>,-
<A TTN , , M > , -
<NEX,,M>,
<ERROR,,M>,-

TD WRDCNT
.BLKW

TD BUFADR
.BLKW

TD DATBUF
.BLKW

$DEFEND TD

1

1

1

6-7

Control/status register
Start device
Bit one
Bit two
Bit three
Extended address bits
Enable interrupts
Device ready for command
Bit eight
Bit nine
Bit ten
Bit eleven
Disregarded bit
Attention bit;
Nonexistent memory flag
Error or external interrupt

Word count

Buff er address

Data buff er

End of device register
definitions.

TEMPLATE FOR AN I/O DRIVER

.SBTTL Standard tables

Driver prologue table

DP TAB
END=TD END,-
ADAPTER=UBA,
UCBSIZE=<UCB$K_TD_UCBLEN>,
NAME=TDDRIVER

DPT STORE !NIT

DPT STORE UCB,UCB$B FIPL,B,8
DPT-STORE UCB,UCB$B-DIPL,B,22
DPT STORE UCB,UCB$L-DEVCHAR,L,<-

DEV$M IDV!-
DEV$M-ODV>

DPT STORE UCB~UCB$B DEVCLASS,B,DC$ SCOM
DPT-STORE UCB,UCB$W-DEVBUFSIZ,W,- -

- TD DEF BUFSlZ

DPT STORE REINIT

DPT STORE DDB,DDB$L DDT,D,TD$DDT
DPT STORE CRB,CRB$L-INTD+4,D,

TD INTERRUPT
DPT STORE CRB,-

- CRB$L INTD+VEC$L INITIAL,
D,TD CONTROL !NIT

DPT STORE CRB,- -
- CRB$L INTD+VEC$L UNITINIT,

D,TD_ONIT_INIT -

DPT STORE END

Driver dispatch table

DD TAB
DEVNAM=TD,-
START=TD START,
FUNCTB=TD FUNCTABLE,
CANCEL=TD-CANCEL,
REGDMP=TD-REG DUMP

Function decision table

TD FUNCTABLE:
FUNCTAB ,

<READVBLK,
READLBLK,
READPBLK,
WRITEVBLK,
WRITELBLK,
WRITEPBLK,
SETMODE,
SETCHAR>

FUNCTAB ,
FUNCTAB +EXE$READ,-

6-8

DPT-creation macro
End of driver label
Adapter type
Length of UCB
Driver name
Start of load
initialization table
Device fork IPL
Device interrupt IPL
Device characteristics

input device
output device

Sample device class
Default buffer size

Start of reload
initialization table
Address of DDT
Address of interrupt
service routine
Address of controller
initialization routine

Address of device
unit initialization
routine

End of initialization
tables

DDT-creation macro
Name of device
Start I/O routine
FDT address
Cancel I/O routine
Register dump routine

FDT for driver
Valid I/O functions
Read virtual
Read logical
Read physical
Write virtual
Write logical
Write physical
Set device mode
Set device chars.
No buffered functions
FDT read routine for

TEMPLATE FOR AN I/O DRIVER

<READVBLK,
READLBLK,
READPBLK>

FUNCTAB +EXE$WRITE,
<WRITEVBLK ,
WRITELBLK,
WRITEPBLK>

FUNCTAB +EXE$SETMODE,
<SETCHAR,
SETMODE>

n-9

read virtual,
read logical,
and read physical.
FDT write routine for
write virtual,
write logical,
and write physical.
FDT set mode routine
for set chars. and
set mode.

TEMPLATE FOR AN I/O DRIVER

.SBTTL TD_CONTROL_INIT, Controller initialization routine

;++
TD CONTROL_INIT, Readies controller for I/0 operations

Functional description:

The operating system calls this routine in 3 places:

at system startup
during driver loading and reloading
during recovery from a power failure

Inputs:

R4 - address of the CSR (controller status register)
RS - address of the IDB (interrupt data block)
R6 - address of the DDB (device data block)
R8 - address of the CRB (channel request block)

Outputs:

The routine must preserve all registers except RO-R3.

;--

TD CONTROL !NIT:
RSB

0-10

Initialize controller
Return

TEMPLATE FOR AN I/O DRIVER

.SBTTL TD_UNIT_INIT, Unit initialization routine

;++
TD_UNIT_INIT, Readies unit for I/O operations

Functional description:

The operating system calls this routine after calling the
i controller initialization routine:

Inputs:

at system startup
during driver loading
during recovery from a power failure

R4 - address of the CSR (controller status register}
RS - address of the UCB (unit control block}

Outputs:

The routine must preserve all registers except RO-R3.

;--

TD UNIT !NIT:
-BISW

RSB

#UCB$M ONLINE, -
UCB$W_STS(R5}

n-11

Initialize unit

Set unit online
Return

TEMPLATE FOR AN I/O DRIVER

.SBTTL TD_FDT_ROUTINE, Sample FDT routine

t++
TD_FDT_ROUTINE, Sample FDT routine

Functional description:

SUPPLIED BY USER

Inputs:

RO-R2
R3
R4
RS
R6
R7
RB
R9-Rll
AP

Outputs:

- scratch registers
- address of the !RP (I/O request packet)
- address of the PCB (process control block)
- address of the UCB (unit control block)
- address of the CCB (channel control block)
- bit number of the I/O function code
- address of the FDT table entry for this routine
- scratch registers
- address of the 1st function dependent QIO parameter

The routine must preserve all registers except RO-R2, and
R9-Rll.

;--

TD FDT ROUTINE:
RSB

0-12

Sample FDT routine
Return

TEMPLATE FOR AN I/O DRIVER

.SBTTL TD_START, Start I/O routine

;++
TD START - Start a transmit, receive, or set mode operation

Functional description:

SUPPLIED BY USER

Inputs:

R3 - address of the !RP (I/O request packet)
RS - address of the UCB (unit control block)

Outputs:

RO - 1st longword of I/O status: contains status code and
number of bytes transferred

Rl - 2nd longword of I/O status: device-dependent

The routine must preserve all registers except RO-R2 and R4.

;--

TD START: ; Process an I/O packet

WFIKPCH TD_TIMEOUT,#TD_TIMEOUT_SEC

After a transfer completes successfully, return the number of bytes
transferred and a success status code.

IO FORK
INSV

MOVW

UCB$W BCNT{RS) ,#16,
#16 ,RO
#SS$_NORMAL,RO

Call I/O postprocessing.

COMPLETE IO:
REQCOM

Load number of bytes trans
ferred into high word of RO.
Load a success code into RO.

Driver processing is finished.
Complete I/O.

Device timeout handling. Return an error status code.

TD TIMEOUT:
SETI PL
MOVZWL
BRB

UCB$B FIPL(RS)
#SS$ TIMEOUT,RO
COMPLETE IO

n-13

Timeout handling
Lower to driver fork IPL
Return error status.
Call I/O postprocessing.

TEMPLATE FOR AN I/O DRIVER

.SBTTL TD_INTERRUPT, Interrupt service routine

;++
TD_INTERRUPT, Analyzes interrupts, processes solicited interrupts

Functional description:

The sample code assumes either

Inputs:

O(SP)

4(SP)
8(SP)

12(SP)
16(SP)
20(SP)
24(SP)
28(SP)
32(SP)

that the driver is for a single-unit controller, and
that the unit .initialization code has stored the
address of the UCB in the IDB; or

that the driver's start I/O routine acquired the
controller's channel with a REQPCHANL macro call, and
then invoked the WFIKPCH macro to keep the channel
while waiting for an interrupt.

- pointer to the address of the IDB (interrupt data
block)

- saved RO
- saved Rl
- saved R2
- saved R3
- saved R4
- saved RS
- saved PSL (program status longword)
- saved PC

The IDB contains the CSR address and the UCB address.

Outputs:

The routine must preserve all registers except RO-RS.

;--

TD INTERRUPT:
MOVL

MOVL

MOVL
BBCC

@(SP)+,R4

IDB$L_OWNER(R4),RS

IDB$L CSR(R4) ,R4
#UCB$V INT,-
UCB$W STS(RS),
UNSOL-INTERRUPT

This is a solicited interrupt. Save

Service device interrupt
Get address of IDB and remove
pointer from stack.
Get address of device owner's
UCB.
Get address of device's CSR.
If device does not expect
interrupt, dismiss it.

the contents of the device registers in the UCB.

MOVW

MOVW

MOVW

MOVW

TD STATUS(R4),
UCB$W TD STATUS(RS)
TD WRDCNT (R4) , -
UCB$W TD WRDCNT(RS)
TD BUFADR(R4) ,
UCB$W TD BUFADR(RS)
TD DATBUF(R4) ,
UCB$W_TD_DATBUF(RS)

6-14

Otherwise, save all device
registers. First the CSR.
Save the word count register.

Save the buff er address
register.
Save the data buffer register.

TEMPLATE FOR AN I/O DRIVER

Restore control to the main driver.

RESTORE DRIVER:
-MOVL UCB$L_FR3(R5) ,R3

JSB @UCB$L_FPC(R5)

Dismiss the interrupt.

UNSOL INTERRUPT:
POPR #~M<RO,Rl,R2,R3,R4,R5>
REI

6-15

Jump to main driver code.
Restore driver's R3 (use a
MOVQ to restore R3-R4).
Call driver at interrupt
wait address.

Dismiss unsolicited interrupt.
Restore RO-RS
Return from interrupt.

TEMPLATE FOR AN 1/0 DRIVER

.SBTTL TD_CANCEL, Cancel I/O routine

;++
TD_CANCEL, Cancels an I/O operation in progress

Functional description:

This routine calls IOC$CANCELIO to set the cancel bit in the
UCB status word if:

the device is busy,
the IRP's process ID matches the cancel process ID,
the IRP channel matches the cancel channel.

If IOC$CANCtLIO sets the cancel bit, then this driver routine
does device-dependent cancel I/O fixups.

Inputs:

R2 - negated value of the channel index number
R3 - address of the current IRP (I/O request packet)
R4 - address of the PCB (process control block) for the

process canceling I/O
RS - address of the UCB (unit control block)

Outputs:

The routine must preserve all registers except RO-R3.

The routine may set the UCB$M CANCEL bit in UCB$W STS.

;--

TD CANCEL:
JSB
BBC

GAIOC$CANCELIO
#UCB$V CANCEL,
UCB$W_STS (R5) ,10$

Cancel an I/O operation
Set cancel bit if appropriate.
If the cancel bit is not set,
just return.

Device-dependent cancel operations go next.

Finally, the return.

10$:
RSB Return

6-16

TEMPLATE FOR AN I/O DRIVER

.SBTTL TD_REG_DUMP, Device register dump routine

;++
TD_REG_DUMP, Dumps the contents of device registers to a buffer

Functional description:

Writes the number of device registers, and their current
contents into a diagnostic or error buffer.

Inputs:

RO - address of the output buffer
R4 - address of the CSR {controller status register)
RS - address of the UCB (unit control block)

Outputs:

;--

The routine must preserve all registers except Rl-R3.

The output buffer contains the current contents of the device
registers. RO contains the address of the next empty longword in
the output buffer.

TD REG DUMP: Dump device registers
MOVZBL
MOVZWL

MOVZWL

MOVZWL

MOVZWL

RSB

#TD NUM REGS,{RO)+
UCBSW TD STATUS(RS) ,
(RO)+- -
UCB$W TD WRDCNT(RS) ,
{RO)+- -
UCB$W TD BUFADR(RS) ,
(RO)+- -

UCB$W TD DATBUF(RS) ,
{RO)+- -

~-17

Store device register count.
Store device status register.

Store word count register.

Store buffer address register.

Store data buffer register.

Return

TEMPLATE FOR AN I/O DRIVER

.SBTTL TD_END, End of driver

;++
; Label that marks the end of the driver
;--

TD END: Last location in driver
.END

n-18

CHAPTER 7

CODING DEVICE DRIVER TABLES

Every device driver declares three static tables that describe the
device and driver:

• Driver prologue table that describes the device type, driver
name, and fields in the I/O data base to be initialized during
driver loading and reloading

• Driver dispatch table that lists some of the
points to wbich VAX/VMS transfers control;
request block and function decision table list
points

driver entry
the channel
other entry

• Function decision table that lists valid
driver and entry points to routines
preprocessing for each function

functions of the
that perform I/O

The VAX/VMS operating system provides macros that drivers can
to create the tables listed above. Descriptions of individual
in the sections that follow also contain descriptions of the
invoked to create the tables. All of the macros described
chapter are keyword macros; that is, parameter values
expressed in the following format:

PARAMETER=value

invoke
tables
macros

in this
can be

The VAX-11 MACRO Language Reference Manual describes the syntax rules
for keyword macros in detail. The sections that follow provide
examples of macro usage.

7.1 DRIVER PROLOGUE TABLE (DPT)

The driver prologue table is the first generated code in every device
driver. This table, along with parameters to the SYSGEN command that
requests driver loading, describes the driver to the driver loading
procedure. This procedure computes the size of the driver and loads
it into nonpaged system memory. The procedure also creates control
blocks in the I/O data base for new devices and writes values from the
driver prologue table into fields of these control blocks, as
described in Chapter 14.

To create a driver prologue table, the driver invokes the DPTAB macro,
described in Section 7.1.l.

When the DPTAB macro expands, it creates a control block that the
driver loading procedure uses to load the driver. The loading
procedure loads the driver prologue table and the driver together in
virtual memory. The loading procedure also links the new driver

7-1

CODING DEVICE DRIVER TABLES

prologue table into a list of all driver prologue tables known to the
system.

Most device drivers need to have certain other fields of the I/O data
base initialized when the driver and its hardware control blocks are
loaded. The driver lists these fields in DPT STORE macro invocations
immediately after the DPTAB macro invocation. The DPT STORE macro
accepts two lists of fields:

• Fields to be initialized when the control blocks are built
using the CONNECT command to SYSGEN

• Fields to be initialized when the driver is reloaded using the
RELOAD command to SYSGEN

The DPTAB macro stores the relative addresses of the two lists in the
driver prologue table. Section 7.1.2 describes the format of the
DPT STORE macro.

Drivers must use the DPT STORE macro to supply initialization data for
the following fields:

UCB$B FIPL

UCB$B DIPL

UCB$L DEVCHAR

Driver fork IPL

Hardware device IPL

Device characteristics (see
Appendix A)

The driver also must provide reinitialization data for the device data
block field DDB$L DDT and for any of the following routine addresses
in the channel request block:

DDB$L DDT

CRB$L INTD+4

CRB$L INTD+VEC$L INITIAL - -

CRB$L INTD+VEC$L UNITINIT

7.1.1 DPTAB Macro

Address of the driver
table

dispatch

Entry point to the driver interrupt
service routine, if one exists

Address of
initialization
exists

a controller
routine, if one

Address of a device unit
initialization routine, if one
exists. This entry point is used
by UNIBUS devices.

The DPTAB macro creates a driver prologue table.

Format

DP TAB end,adapter, [flags] ,ucbsize, [unload], [maxunits] ,name

end
The address of the end of the driver module.

7-2

CODING DEVICE DRIVER TABLES

adapter

flags

The adapter type.

UBA UNIBUS adapter
MBA MASSBUS adapter

The driver loader flags.

DPT$M SVP Indicates, when set, that the device requires a
permanently allocated system page. This flag
causes the driver loading procedure to allocate
a permanent system page table entry for the
device. The virtual address of the system page
table entry is written into the system page
field of the UCB (UCB$L SVPN) during creation
of the UCB. Disk drivers use this page table
entry during ECC error correction.

DPT$M NOUNLOAD Indicates, when set, that the driver cannot be
reloaded. A system bootstrap must occur before
the driver can be reloaded.

ucbsize
The size of each device unit control block in bytes. This
argument is required. This field, when used, allows drivers to
extend the unit control block to store device-dependent data
describing an I/O operation. Appendix A provides examples.
Driver routines and VAX/VMS ECC routines interpret fields in the
extended part of the unit control block. The amount that the
unit control block is extended is variable for each driver type.

unload
The address of
The driver
reinitializing
the driver.

a routine to call before the driver is reloaded.
loading procedure calls this routine before
all controllers and device units associated with

maxunits

name

The maximum number of units on a controller that this driver
supports. This field affects the size of the interrupt data
block created by SYSGEN's CONNECT command. If this field .is
omitted, the default is 8 units. You can override the maxunits
field by appending the /MAXUNITS qualifier to the CONNECT command
to SYSGEN.

The name of the device driver module. By convention, a driver
name is formed by appending the string DRIVER to the 2-
alphabetic character generic device name, for example, DBDRIVER.

7.1.2 DPT STORE Macro

The DPT STORE macro either declares an assembly language label or
describes a field to be initialized. When the macro declares a label,
the macro has format 1. When the DPT STORE macro describes a field to
be initialized, the macro has format 2.

Format 1

DPT STORE label-name

7-3

CODING DEVICE DRIVER TABLES

label-name
The name of the label to be declared.
following:

It can be one of the

!NIT

REIN IT

END

Format 2

DPT STORE

struc type

Indicates the start of fields to initialize
when the driver is loaded.

Indicates the start of
initialize when the
reloaded.

additional
driver is

Indicates the end of the two lists.

fields to
loaded or

struc type,struc offset,operation,expression,
[position], [sizeT

The type of I/O data base control block that contains the field
to be initialized. The type can be one of the following:

DOB
UCB
CRB
IDB

struc off set

device data block
unit control block
channel request block
interrupt dispatch block

The unsigned offset into the control block. The driver loading
procedure can initialize only the first 256 bytes of each data
structure. Unit and controller initialization routines can
initialize additional data fields.

operation
The type of operation to be performed. The type can be one of
the following:

B
w
L
D
v

write a byte value
write a word value
write a longword value
write an address relative to the driver
write a bit field

The V operation takes the following longword of data and the
position and size arguments as operands of an INSV instruction.

An at sign (@) preceding the operation parameter indicates that
the expression parameter that follows is the address of the
initialization data.

expression
An expression to be stored in the control block or, if an at sign
(@) is specified preceding the operation parameter, the address
of an expression. For example, the following macro indicates
that DEVICE CHARS is the address of the data to write into the
DEVCHAR field of the UCB.

DPT STORE UCB,UCB$L_DEVCHAR,@L,DEVICE_CHARS

7-4

CODING DEVICE DRIVER TABLES

position

size

The starting bit position within the specified field.
parameter is specified only for V operations.

This

The number of bits in the field.
only for V operations.

This parameter is specified

7.1.3 Example of DPTAB and DPT_STORE Macro Use

The following example invokes the DPTAB macro and DPT STORE macros to
describe a device driver and its data base.

DPTAB -
END=XX END,
ADAPTER=UBA,
UCBSIZE=l40,
NAME=XXDRIVER

DPT STORE !NIT

DPT STORE UCB,UCB$B FIPL,B,8
DPT-STORE UCB,UCB$L-DEVCHAR,L,

<DEV$M REC-
! DEV$M-AVL
!DEV$M-ODV>

DPT STORE UCB,UCB$B DEVCLASS,B,
DC$ XX -

DPT STORE UCB,UCB$B DEVTYPE,B,
XX$ XL7S

DPT STORE UCB,UCB$W DEVBUFSIZ,W,-
132 -

DPT STORE UCB,UCB$B_DIPL,B,22

Define DPT
End of driver
Adapter type
Size of UCB
Name of driver module
Start of control block
initialization values
Driver fork IPL
Device characteristics:
record-oriented
available
output device
Device class

Device type

Default buffer size

Device IPL

DPT STORE REINIT Start of control block
reinitialization values

DPT STORE CRB,CRB$L INTD+4,D,- Interrupt service
XX INTERRUPT ; routine address

DPT STORE CRB,CRB$L INTD+VEC$L UNITINIT,-
D,XX_XLi8_INIT - Unit initialization

routine address
DPT STORE DDB,DDBL_DDT,D,XXDDT Address of driver

dispatch table
DPT STORE END End of field

initialization

7.2 DRIVER DISPATCH TABLE (DDT)

The driver dispatch table lists some of the entry points for driver
routines to be called by VAX/VMS for I/O processing. Every driver
must create a driver dispatch table. The routines listed can reside
in the driver module or in a VAX/VMS module. Appendix A describes the
VAX/VMS device-independent routines that can be specified.
Device-dependent routines are normally located in the driver module.
The driver dispatch table contains relative addresses for routines
located in the driver module and absolute addresses for routines
located in the operating system.

7-5

CODING DEVICE DRIVER TABLES

The driver creates the driver dispatch table by invoking the macro
DDTAB. The driver loading procedure writes the address of the driver
dispatch table, as specified in a DPT STORE macro, into the device
data block.

7.2.1 DDTAB Macro

The DDTAB macro creates a driver dispatch table. The table has a
label of devnam$DDT. Just preceding the table, DDTAB generates a
program section with the following statement:

.PSECT $$$115 DRIVER

Format

DDTAB devnam,start, [unsolic] ,functb, [cancel], [regdmp], [diagbf],
[erlgbf], [unitinit], [altstart]

devnam
The generic name of the device driven by this device driver.

start
The address of the driver's start I/O routine.

unsolic
The address of the routine that services unsolicited interrupts
from the device. This field is used by MASSBUS devices.

f unctb
The address of the function decision table for this driver.

cancel
The address of the cancel I/O operation routine.

regdmp
The address of the routine that dumps the device registers to an
error log buffer or to a diagnostic buffer.

dlagbf
The length in bytes of the diagnostic buffer used for this
device.

erlgbf
The length in bytes of the error log buffer used for this device.

unitinit
The address of the device initialization routine, if one exists.
MASSBUS drivers should use this field rather than CRB$L INTO +
VEC$L UNITINIT. UNIBUS drivers may use either one.

altstart
The alternate start I/O routine. To initiate this routine, use
the VAX/VMS routine EXE$ALTQUEPKT instead of EXE$QIODRVPKT.

The DDTAB macro writes the address of the VAX/VMS routine IOC$RETURN
into routine address fields of the driver dispatch table that are not
supplied in the macro invocation. IOC$RETURN executes an RSB
instruction; for further information, refer to Appendix c.

7-n

CODING DEVICE DRIVER TABLES

7.2.2 Example of a DDTAB Macro

A sample invocation of the DDTAB macro follows.

DD TAB DEVNAM=XX,
START=STARTIO,
FUNCTB=FUNCTABLE,
CANCEL=+IOC$CANCELIO

Driver dispatch table
Start I/O operation
Function decision table
Cancel I/O

Notice that a plus sign (+) precedes the address of the entry point to
the cancel I/O routine. The plus sign indicates that the routine is
part of VAX/VMS. No plus sign precedes the address of the start I/O
routine because it is part of the driver module. Omitting a required
plus sign is a common bug in device drivers.

7.3 FUNCTION DECISION TABLE (FDT)

The function decision table lists codes for I/O functions that are
valid for the device; indicates whether the functions are buffered
I/O functions; and specifies routines to perform preprocessing for
particular functions. Every device driver must create a function
decision table containing three or more entries:

• The list of valid I/O function codes

• The list of buffered I/O function codes

• One or more entries, each of which specifies all or a subset
of I/O function codes and the address of a routine that
performs I/O preprocessing for those function codes

If no buffered I/O functions are defined for the device, the second
entry contains an empty list.

Taken together, the third through last entries in the function
decision table specify one or more FDT routines for each valid I/O
function code for the device. It is the responsibility of the FDT
routines to terminate the I/O preprocessing for each type of function
by transferring control out of the Queue I/O Request system service
and into a routine that queues the I/O request to a driver, inserts
the I/O request in the postprocessing queue, or aborts the I/O
request.

Refer to Chapter 8 for information on the coding of FDT routines.

Table 7-1 lists the physical, logical, and virtual I/O function codes
that a function decision table can specify.

7-7

CODING DEVICE DRIVER TABLES

Table 7-1
VAX/VMS I/O Function Codes

----~·---~··~·--·---------···---------------,.----------------------.

Type of Function Codes Defined
~-----------------------·---------+----------------------1

Physical codes 10$ DIAGNOSE
10$-DRVCLR
10$-ERASETAPE
10$-NOP
10$-0FFSET
10$-PACKACK
10$-READHEAD
10$-READPBLK
10$-READPRESET
10$-READTRACKD
10$-RECAL
10$-RELEASE
10$-RETCENTER
10$-SEARCH
10$-SEEK
10$-SENSECHAR
10$-SETCHAR
10$-SPACEFILE
10$-SPACERECORD
10$-STARTSPNDL
10$-UNLOAD
10$-WRITECHECK
10$-WRITECHECKH
10$-WRITEHEAD
10$-WRITEMARK
10$-WRITEPBLK
10$-WRITETRACKD

Logical codes 10$ READLBLK
10$-REWIND
10$-REWINDOFF
10$-SENSEMODE
10$-SETMODE
10$-SKIPFILE
10$-SKIPRECORD
10$-WRITELBLK
10$-WRITEOF

Virtual codes 10$ ACCESS
10$-ACPCONTROL
10$-CREATE
10$-DEACCESS
10$-DELETE
10$-MODIFY
10$-MOUNT
10$-READPROMPT
10$-READVBLK
10$-WRITEVBLK

Diagnose
Drive clear
Erase tape
No operation
Off set read heads
Pack acknowledge
Read header and data
Read physical block
Read in preset
Read track data
Recalibrate drive
Release port
Return to center line
Search for sector
Seek cylinder
Sense tape characteristics
Set device characteristics
Space files
Space records
Start spindle
Unload drive
Write check data
Write check header and data
Write header and data
Write tape mark
Write physical block
Write track data

Read logical block
Rewind tape
Rewind and set offline
Sense tape mode
Set mode
Skip files
Skip records
Write logical block
Write end of file

Access file
Miscellaneous ACP control
Create file
Deaccess file
Delete file
Modify file
Mount volume
Read terminal with prompt message
Read virtual block
Write virtual block

----······----····--·-···· -- -------~---------- _________ ____.

7.3.1 Defining Device-Specific Function Codes

You can also define device-specific function codes by equating the
name of a device-specific function with the name of a function that is
irrelevant to the device. The selected codes should, however, have a
type (logical, physical, or virtual) that is appropriate for the
function they represent. For example, the assembly code that follows
defines three device-specific physical I/O function codes.

7-8

CODING DEVICE DRIVER TABLES

IO$ STARTCLOCK=IO$ ERASETAPE
IO$-STOPCLOCK=IO$ OFFSET
I0$-STARTDATA=IO$-SPACEFILE - -

Start hardware clock
Stop hardware clock
Start data acquisition

The device driver creates a function decision table by invoking the
FUNCTAB macro. Each invocation of the FUNCTAB macro creates a 2- or
3-longword entry in the function decision table. The first two
-invocations create 2-longword entries because they specify only
function codes; they do not specify an accompanying action routine.

All subsequent invocations of the FUNCTAB macro must specify both
function codes and the address of an action routine that is to perform
preprocessing for those function codes. These invocations create
3-longword entries.

The Queue I/O Request system service processes entries in the order in
which they appear in the function decision table. When a function
code is present in more than one 3-longword entry, the system service
sequentially calls every action routine specified for the function
code until an action routine stops the scan by aborting, completing,
or queuing an I/O request.

7.3.2 Determining Those Functions that are Buffered I/O

The second entry in a function decision table indicates those
functions that are handled as buffered I/O operations. In selecting
the functions that are to be buffered, the you should take the
following information into consideration:

• Direct I/O is intended only for devices whose I/O operations
always complete quickly. For example, although terminal I/O
is fast, users can prevent the I/O operation from completing
by using CTRL/S to halt the operation indefinitely;
therefore, terminal I/O operations are buffered I/O.

• Use of direct I/O requires that the process pages containing
the buffer be locked in memory. Locking pages in memory
increases the overhead of swapping the process that contains
the pages.

• Use ·0f buffered I/O requires that the data be moved from the
system buffer to the user buffer. Moving data requires
additional time.

• Routines that manipulate data before delivering it to the user
(for example, a terminal interrupt service routine) cannot
gain access to the data if direct I/O is used. Therefore,
transfers that require data manipulation must be buffered I/O.

• VAX/VMS handles the quotas differently for direct I/O and
buffered I/O, as described in the VAX/VMS System Manager's
Guide.

• Generally, OMA devices use direct I/O, while programmed I/O
devices use buffered I/O.

Section 7.3.4 provides an example of the functions handled as buffered
I/O operations.

7-9

CODING DEVICE DRIVER TABLES

7.3.3 FUNCTAB Macro

The FUNCTAB macro creates the function decision table for a driver.

Format

FUNCTAB [act ion] , codes

action

codes

The address of an action routine to call during I/O preprocessing
of the specified action code or codes. An action routine is
specified only for the third through last entries of the table.
The list of valid I/O functions and the list of buffered I/O
functions have no associated action routine.

The list of I/O function codes. The macro expansion prefixes
each code specified with the string 10$_; for example, READVBLK
expands to 10$ READVBLK.

7.3.4 Example of FUNCTAB Macro Use

A sample function decision table follows:

XX FUNCTABLE:

FUNCTAB

FUNCTAB

FUN CT AB

FUNCTAB

FUNCTAB

' <READLBLK,-

>
'

READPBLK,
READVBLK,
SENSEMODE,
SENSECHAR,
SETMODE,
SETCHAR,-

<READLBLK,-

>

READPBLK,
READVBLK,
SENSEMODE,
SENSECHAR,
SETMODE,
SETCHAR,-

XX READ,
<READLBLK ,-

READPBLK,
READVBLK ,-

>
+EXE$SETMODE,
<SETCHAR,-

SETMODE,-
>
+EXE$SENSEMODE,-
<SENSECHAR,-

SENSEMODE,
>

Function decision table

Valid functions
Read logical block
Read physical block
Read virtual block
Sense reader mode
Sense reader characteristics
Set reader mode
Set reader characteristics

Buffered I/O functions
Read logical block
Read physical block
Read virtual block
Sense reader mode
Sense reader characteristics
Set reader mode
Set reader characteristics

Read functions
Read logical block
Read physical block
Read virtual block

Set mode/characteristics
Set reader characteristics
Set reader mode

Sense mode/characteristics
Sense reader characteristics
Sense reader mode

In the example above, the routine (named XX READ} called for a read
function is a driver routine. It appears Tater in the driver module.
The routines EXE$SETMODE and EXE$SENSEMODE, preceded by plus signs (+}
in the macro argument, are VAX/VMS routines that preprocess I/O
requests for the device's set characteristics and sense mode
functions.

7-10

CHAPTER 8

CODING FDT ROUTINES

The Queue I/O Request system service uses the driver's function
decision table to determine which FDT routines to call. These FDT
routines validate user-specified arguments in the I/O request.
VAX/VMS contains many device-independent FDT routines. Device drivers
contain device-dependent FDT routines.

A driver should call the VAX/VMS device-independent FDT routines
whenever possible. This practice encourages the use of well-debugged
routines and minimizes driver size.

8.1 CONTEXT FOR FDT ROUTINE EXECUTION

The Queue I/O Request system service calls all FDT routines in the
context of the process that requested the I/O operation.
Characteristics of process context at the time of a call to an FDT
routine are as follows:

• Virtual addresses are mapped according to the process page
tables. This mapping allows FDT routines access to
user-specified virtual addresses.

• The process is executing in kernel mode because the Queue I/O
Request system service call executes a Change Mode to Kernel
instruction.

• The process privileges remain unchanged.

• Interrupt priority level is set to
the process can be rescheduled
Paging can occur.

IPL$ ASTDEL.
but cannot

Therefore,
receive ASTs.

• FDT routines cannot call system services or VAX-11 RMS
services.

8.2 REGISTERS PRESET FOR FDT ROUTINE EXECUTION

The Queue I/O
registers for
the registers.

Request system service also sets up a series of
the FDT routines before calling them. Table 8-1 lists

8-1

CODING FDT ROUTINES

Table S-1
Registers Loaded by Queue I/O Request Service

Register Content
t-----------·-·-··--··-··- --·---·.

RO

R3

R4

RS

R6

R7

RS

AP

Address of the FDT routine being called

Address of the I/O request packet for the current
I/O request

Address of the process control block (PCB) of the
current process

Address of the unit control block of the device
assigned to the user-specified process I/O channel

Address of the channel control block that describes
the user-specified process I/O channel

Bit number of the user-specified I/O function code

Address of the current entry in the function
decision table

Address of the first function-dep~ndent parameter
specified in the user's request

S.3 CONVENTIONS FOLLOWED BY FDT ROUTINES

Because FDT routines are called by the Queue I/O Request system
service and return to it or, in turn, call another VAX/VMS routine,
they must follow certain conventions to preserve register content and
the expected process context.

S.3.1 Register Conventions

FDT routines are responsible for preserving the contents of R3 through
RS across subroutine calls. FDT routines can use RO through R2 and R9
through Rll without saving their previous contents. If an FDT routine
needs to use R3 through RS, the routine can use the push and pop
register instructions to save registers on the stack and later restore
them. The following is an example.

PUSHR #"M<R3,R4,RS> Save R3-RS on the stack

POPR #"M<R3 ,R4 ,RS> Restore R3-RS from the stack

8-2

CODING FDT ROUTINES

8.3.2 Process Context Conventions

The Queue I/O Request system service executes in the context of the
process that issues the I/O request, but in kernel mode and at
IPL$ ASTDEL. The Queue I/O Request system service expects FDT
routines to preserve this context. Therefore, an FDT routine observes
the following conventions:

• It does not lower IPL below IPL$_A$TDEL.

• If a routine raises IPL, it must lower IPL to IPL$ ASTDEL
before exiting.

• It does not alter the stack without restoring its original
state before exiting.

• It must not call system services or VAX-11 RMS services

• It must observe the register conventions described in the
previous section.

• It exits either by an RSB instruction to return control to the
system service, or it issues a JMP instruction to one of the
VAX/VMS routines described in Section 8.4.

8.4 TRANSFERRING INTO AND OUT OF AN FDT ROUTINE

To transfer control to an FDT routine, the Queue I/O Request system
service loads the address of the FDT routine into a register and
executes a jump to subroutine instruction, as follows:

JSB (RO)

Each FDT routine chooses an exit path based on the following factors:

• Whether another FDT routine needs to be called to perform
additional function-specific processing

• Whether an error is found in the I/O request

• Whether the operation is complete

• Whether the I/O operation require~ and is ready for device
activity

Figure 8-1 illustrates the FDT processing loop in the Queue I/O
Request system service.

As illustrated in Figure 8-1, the FDT routines are responsible for
transferring control out of the FDT processing loop and into a VAX/VMS
routine that queues an I/O request packet or completes an I/O request.
The Queue I/O Request system service does not know when to stop
scanning the function decision table. Therefore, you should ensure
that all valid function codes in a driver's function decision table
eventually call an FDT routine that does not return to the Queue I/O
Request system service.

8-3

CODING FDT ROUTINES

READ
NEXT

FDT ENTRY

CALL
FDT

ROUTINE

FDT ROUTINE
RETURNS

FDT ROUTINE EXITS

QUEUE IRP,
FINISH 1/0,

OR ABORT 1/0

Figure 8-1 Queue I/O Request Scan of a Function Decision Table

8.4.1 Exit Methods

An FDT routine can exit using any of the methods summarized in Table
8-2. The first method returns to the Queue I/O Request system
service. All other methods jump to VAX/VMS routines that take the
appropriate action.

8.5 FDT ROUTINES FOR DIRECT I/O

The VAX/VMS operating system provides two standard FDT routines that
are applicable for direct I/O operations: EXE$READ and EXESWRITE.

When called by the driver, these routines completely prepare a direct
I/O read or write request. Thus, a driver that uses these routines
eliminates the need for its own device-specific FDT routines.

EXE$READ and EXE$WRITE are described in 8.7.

8-4

Exit Method

RSB

JMP GAEXE$QIODRVPKT

or

JMP GAEXE$ALTQUEPKT

JMP

CODING FDT ROUTINES

Table 8-2
FDT Exit Methods

Result

Returns to the Queue I/O Request system
service. The FDT routine returns to the
system service because the routine knows
that the function decision table
contains a subsequent entry with the
same function code bit set. As a
result, the system service calls another
FDT routine.

Transfers control to a VAX/VMS routine
that queues an I/O packet to a driver.
The FDT routine uses this exit method if
all preprocessing is complete, if no
fatal errors are found in the
specification of an I/O request, and if
device activity is required to complete
the I/O request.

Once an FDT routine transfers control to
either of these routines, no driver code
that further processes the I/O request
can refer to the process virtual address
space.

EXE$QIODRVPKT is the standard method
used to queue an I/O request for device
activity. This routine initiates driver
action only if the device unit is
currently idle; that is, there is no
I/O request being processed. If the
device unit is busy, EXE$QIODRVPKT
queues the request to the unit so that
the driver will process it when the unit
becomes available.

In contrast, EXE$ALTQUEPKT initiates
driver action at a special driver entry
point without regard for the device
unit's activity status. This routine is
called by drivers that can handle two or
more I/O requests simultaneously.

Transfers control to a VAX/VMS routine
that writes a quadword of final I/O
status from RO and Rl into the I/O
status field of the I/O request packet
(IRP$L MEDIA and IRP$L MEDIA+4). The
routine then inserts the I/O request
packet in the I/O postprocessing queue.

An FDT routine that discovers a
device-dependent error should always
return status using EXE$FINISHIO or
EXESFINISHIOC. The routine returns to
the Queue I/O Request system service the
two longwords of status contained in the
I/O status block (if any) specified in
the Queue I/O Request.

(continued on next page)

8-5

CODING FDT ROUTINES

Table 8-2 (Cont.)
FDT Exit Methods

Exit Method Result

JMP G""EXE$FINISHIOC

JMP G"'EXE$ABORTIO

---------------------------------·

Transfers control to a routine that
performs the same functions as
EXE$FINISHIO except that this routine
always clears the second longword of the
final I/O status.

Transfers control to a VAX/VMS routine
that aborts an I/O request. An FDT
routine that discovers a
device-independent error in an I/O
request should always use this method of
exit. The routine stores a longword of
status in RO and returns this to the
system service. Inability to gain
access to a data buffer is an example of
a device-independent error.

Section 8.7 details the VAX/VMS routines summarized above.

8.6 FDT ROUTINES FOR BUFFERED I/O

Device drivers for buffered I/O
device-specific FDT routines.
perform the following steps:

operations must contain their own
An FDT routine for buffered I/O must

• Confirm either read or write access to the user's buffer

• Allocate a buffer in system space

8.6.1 Checking the User's Buffer

First the FDT routine calls EXE$READCHK or EXE$WRITECHK to confirm
write or read access, respectively, to the user's buffer. Both of
these routines write the transfer byte count into IRP$W BCNT.
EXE$READCHK also sets IRP$V FUNC in IRP$W STS to indicate that the
function is a read.

8.6.2 Allocating the System Buffer

Next, the FDT routine allocates a system buffer. First, it adds 12
bytes for a buffer header to the byte count passed in the P2 parameter
of the user's I/O request. This is the total system buffer size. The
FDT routine then calls EXE$BUFFRQUOTA to ensure that the user has
sufficient remaining resources. If EXE$BUFFRQUOTA returns with a
success code, the FDT routine calls EXE$ALLOCBUF which allocates the
buffer and writes the buffer's size and type into its third longword.

8-6

CODING FDT ROUTINES

Once the buffer is allocated, the FDT routine takes the following
steps:

• Loads the address of the system buffer into IRP$L_SVAPTE

• Loads the total size of the system buffer into IRP$W_BOFF

• Subtracts the system buff er
longword in the PCB points
Information Block (JIB).

size from JIB$L BYTCNT. A
to the location- of the Job

• Stores the starting address of the system buff er data area in
the first longword of the buffer header

• Stores the user's buffer address in the second longword of the
header

• Copies data from the user buffer to the system buffer if the
I/O request is a read operation

At this point, buffers are ready for the transfer.
illustrates the format of the system buffer.

SYSTEM BUFFER ~ADDRESS OF DATA AREA l
USER BUFFER ADDRESS ~ HEADER

TYPE l SIZE

BUFFER
DATA
AREA

USER
BUFFER

Figure 8-2

Figure 8-2 Format of System Buffer for Buffered I/O Read Operations

Appendix C provides additional information
EXE$WRITECHK, EXE$BUFFRQUOTA, and EXE$ALLOCBUF.

about

8.6.3 Completion of Buffered I/O in I/O Postprocessing

EXE$READCHK,

When the transfer finishes, the driver returns control to VAX/VMS for
completion of the I/O request. The driver writes the final count of
bytes transferred into the high-order word of RO and the final request
status in the low order words of RO and Rl. The driver must leave the
buffer header intact; I/O postprocessing relies on the header's

8-7

CODING FDT ROUTINES

accuracy. When VAX/VMS I/O postprocessing gains control, it performs
the following steps:

• Adds the value in IRP$W BOFF to JIB$L BYTCNT to update the
user's byte count quota-

• If IRP$L SVAPTE
allocated and
IRP$W STS

is nonzero, assumes a
checks to see whether

system buff er was
IRP$V FUNC is set in

• If IRP$V FUNC is clear, deallocates the system buffer used for
the write operation; if IRP$V FUNC is set, the kernel mode
AST copies the data to the user's buffer and then deallocates
the buffer in addition to performing other kernel mode AST
functions

The kernel mode AST performs the following steps to complete a
buffered read operation:

• Obtains the address of the system buffer from IRP$L_SVAPTE

• Obtains the number of bytes to write to the user's buffer from
IRP$W_BCNT (for a read operation)

• Obtains the address of the user's buffer from the second
longword of the system buff er header

• Checks for write accessibility on all pages of the user's
buffer (for a read operation)

• Copies the data from the system buffer to the process's buffer
(for a read operation)

• Deallocates the system buffer. Note that the system uses the
size listed in the buffer's header to deallocate the buffer.

8.7 FDT ROUTINES PROVIDED BY VAX/VMS

The VAX/VMS FDT routines perform I/O request validation that is common
to many devices. Whenever possible, drivers should take advantage of
these routines. Normally, if a VAX/VMS FDT routine is called, no
additional FDT processing is required. All of the VAX/VMS FDT
routines described here exit by transferring control to one of the
following VAX/VMS routines:

• EXE$QIODRVPKT

• EXE$ALTQUEPKT

• EXE$FINISHIO

• EXE$FINISHIOC

• EXE$ABORTIO

Once a VAX/VMS FDT routine is called, no subsequent FDT processing
occurs.

For information about additional FDT routines, see Appendix c.

8-8

CODING FDT ROUTINES

8.7.1 EXE$0NEPARM

EXE$0NEPARM processes an I/O function code that has one parameter
associated with it.

Exit Method

Queues the I/O request packet to the driver.

Description

Processes an I/O function code that requires only one parameter
that needs no checking; for example, the parameter does not have
to be checked for read or write accessibility. EXE$0NEPARM
stores the parameter, found at O(AP), in IRP$L MEDIA of the I/O
request packet. Then, it queues the I/O request- packet to the
driver.

8.7.2 EXE$READ

EXE$READ processes a logical or physical read
direct I/O operation. EXE$READ cannot be
operations.

Exit Method

function code for a
used for buffered I/O

Aborts the I/O request if an error occurs, or dismisses and
resubmits the I/O request if the user I/O buffers cannot be
locked in memory; otherwise, queues the I/O request packet to a
driver.

Description

Sets the I/O function bit in the status
IRP$W STS) of the I/O request packet.
the function is a read.

field (IRP$V FUNC in
This bit indicates that

EXE$READ writes the fourth parameter, located at 12(AP) into the
carriage control field (IRP$B_CARCON).

The routine replaces the logical function code IO$ RF.ADLBLK with
the physical function code IO$ READPBLK in the function code
field (IRP$W_FUNC) of the I/O request packet.

If the second parameter (the transfer byte count) is zero,
EXE$READ queues the I/O request packet to a device driver. The
second parameter is found at 4(AP). If the byte count is not
zero, EXE$READ uses the starting address of the transfer, found
at O(AP), and the transfer byte count as arguments to the routine
EXE$READLOCK.

The routine EXE$READLOCK calls EXE$READLOCKR, which immediately
calls EXE$READCHKR. This last subroutine determines whether the
caller's buffer permits write access.

If EXE$READCHKR finds that the buffer is accessible, it updates
the I/O request packet by writing the size in bytes of the
transfer to IRP$W BCNT and setting the read status bit in
IRP$W STS (IRP$V-FUNC). The maximum number of bytes that
EXE$READ can transfer is 6553n (128 pages).

8-9

CODING FDT ROUTINES

If the buffer does not allow write access, EXE$READCHKR returns
access violation status to its caller, EXE$READLOCKR, which
summons its caller (EXE$READLOCK) as a coroutine.

When EXE$READLOCK is called as a coroutine, it does not take any
error action. Instead, it passes control to EXE$READLOCKR, which
aborts the queue I/O request with access violation status.
EXE$READLOCK is called as a coroutine for the convenience of
drivers that call EXE$READLOCKR directly. See Appendix C for
more details.

After EXE$READCHKR confirms the buffer's write accessibility,
EXE$READLOCKR calls the routine MMG$IOLOCK to lock into memory
those pages that contain the buffer. MMG$IOLOCK, can return
success, page fault, or error status to EXE$READLOCKR.

If MMG$IOLOCK succeeds, EXE$READLOCKR stores the address of the
process page table entry (PTE) in the field IRP~L SVAPTE and
returns success status to EXE$READLOCK.

However, if MMG$IOLOCK reports a page fault, EXE$READLOCKR
adjusts direct I/O count and AST count to the values they held
before the I/O request, deallocates the I/O request packet and
restarts the request procedure at the Queue I/O Request system
service. This procedure is carried out so that the user process
can receive asynchronous system traps while it waits for the page
fault to complete. Once the page is faulted into memory, the
system service will resubmit the queue I/O request.

MMG$IOLOCK can report either of two errors: access violation
(SS$ ACCVIO) and insufficient working set limit (SS$ INSFWSL).

When-EXE$READLOCKR receives an error, it aborts the request with
error status.

After EXE$READLOCK returns to EXE$READ, the routine passes
control to the exit routine EXE$QIODRVPKT so that the request is
queued to the driver.

8.7.3 EXE$SENSEMODE

EXE$SENSEMODE processes the sense
function by reading fields of
activity occurs.

Exit Method

device mode and characteristics
the unit control block. No device

Transfers control to EXE$FINISHIO.

Description

Loads the device-dependent characteristics field
(UCB$L DEVDEPEND) of the unit control block into Rl.
EXE$SENSEMODE then loads a normal completion status (SS$ NORMAL)
into RO. Finally, it transfers control to EXE$FINISHIO to insert
the I/O request packet in the I/O postprocessing queue.

8-10

CODING FDT ROUTINES

8.7.4 EXE$SETCHAR

EXE$SETCHAR processes the set device mode and characteristics
function. If setting device characteristics requires no device
activity or requires no synchronization with fork processing, the
driver's FDT entry can specify EXE$SETCHAR; otherwise, it must
specify EXE$SETMODE.

Exit Method

Aborts the I/O request on error; otherwise, transfers control to
EXE$FINISHIO.

Description

Determines whether the process has read access to the quadword
that describes the new characteristics for the device. The first
parameter, found at O(AP), specifies the address of the quadword.
If the process does not have read access to the quadword,
EXE$SETCHAR aborts the request.

If the process has read access, EXE$SETCHAR stores the new
characteristics in fields of the device's unit control block. If
the function is IO$ SETCHAR, the device type and class fields
(UCB$B DEVCLASS and UCB$B DEVTYPE, respectively) of the unit
control block receive the fTrst word of data addressed by the
parameter.

For both the IO$ SETCHAR and IO$ SETMODE functions, the routine
writes the second word of data-into the UCB default buffer size
field (UCB$W DEVBUFSIZ) and the third and fourth words of data
into the device-dependent characteristics field
(UCB$L_DEVDEPEND).

Finally, EXE$SETCHAR stores the normal completion status
(SS$ NORMAL) in RO and transfers control to EXE$FINISHIO to
insert the I/O request packet in the I/O postprocessing queue.

8.7.5 EXE$SETMODE

EXE$SETMODE processes the set device mode
functions by activating the device.

Exit Method

and characteristics

Aborts the I/O request if an error occurs; otherwise, queues the
I/O request packet to the device driver.

Description

Determines whether the process has read access to the quadword
that describes the new characteristics for the device. The first
parameter, found at O(AP), specifies the address of the quadword.
If the process does not have read access to the quadword,
EXE$SETMODE aborts the request.

If the process has read access, EXE$SETMODE stores the new
characteristics in the media field (IRP$L MEDIA and
IRP$L MEDIA+4) of the I/O request packet. The routine then
transrers control to the exit routine EXE$QIODRVPKT, which queues
the request to the appropriate device driver.

8-11

CODING FDT ROUTINES

8.7.6 EXE$WRITE

EXE$WRITE processes a logical or physical write function code for a
direct I/O operation. EXE$WRITE cannot be used for buffered I/O
operations.

Exit Method

Aborts the I/O request if an error occurs, or dismisses the I/O
request if the user I/O buffers cannot be locked in memory;
otherwise, queues the I/O request packet to a driver.

Description

Writes the fourth parameter, found at 12(AP) into the I/O request
packet's carriage control field (IRP$B_CARCON).

EXE$WRITE replaces the logical function code IO$ WRITELBLK with
the physical function code IO$ WRITEPBLK in the function code
field of the I/O request packet (IRP$W_FUNC).

If the second parameter (the transfer byte count) is zero,
EXE$WRITE queues the I/O request packet to the driver. The
second parameter is found at 4(AP). If the byte count is not
zero, EXE$WRITE uses the starting address of the transfer, found
at O(AP), and the transfer byte count as arguments to the routine
EXE$WRITELOCK.

The routine EXE$WRITELOCK calls EXE$WRITELOCKR, which immediately
calls EXE$WRITECHKR. This last subroutine determines whether the
caller's buffer permits read access.

If EXE$WRITECHKR finds that the buffer is accessible, it updates
the I/O request packet by writing the size in bytes of the
transfer to IRP$W BCNT. EXE$WRITE can transfer a maximum of
65536 bytes (128 pages).

If the buffer does not allow read access, EXE$WRITECHKR returns
access violation status to its caller, EXE$WRITELOCKR, which
summons its caller (EXE$WRITELOCK) as a coroutine.

When EXE$WRITELOCK is called as a coroutine, it does not take any
error action. Instead, it passes control to EXESWRITELOCKR,
which aborts the queue I/O request with access violation status.
EXE$WRITELOCK is called as a ~oroutine for the convenience of
drivers that call EXE$WRITELOCKR directly. See Appendix C for
more details.

After EXESWRITECHKR confirms the buffer's read accessibility,
EXE$WRITELOCKR calls the routine MMG$IOLOCK to lock into memory
those pages that contain the buffer. MMG$IOLOCK can return
success, page fault, or error status to EXESWRITELOCKR.

If MMG$IOLOCK succeeds, EXE$WRITELOCKR stores the address of the
process page table entry (PTE) in IRP$L SVAPTE and returns
success status to EXE$WRITELOCK.

However, if MMG$IOLOCK reports a page fault, EXE$WRITELOCKR
adjusts direct I/O count and AST count to the values they held
before the I/O request packet and restarts the request .procedure
at the Queue I/O system service. The routine carries out this
procedure so that the user process can receive ASTs while it
waits for the page fault to complete. Once the page is faulted
into memory, the system service will resubmit the queue I/O
request.

8-12

CODING FDT ROUTINES

MMG$IOLOCK can report either of two errors: access violation
(SS$ ACCVIO) and insufficient working set limit (SS$ INSFWSL).
When-EXE$WRITELOCKR receives an error, it aborts the request with
error status.

After EXE$WRITELOCK returns to EXE$WRITE, the routine passes
control to the exit routine EXE$QIODRVPKT so that the request is
queued to the driver.

8.7.7 EXE$ZEROPARM

EXE$ZEROPARM processes an I/O function code that has no associated
parameters.

Exit Method

Queues the I/O request packet to the driver.

Description

Processes an I/O function code that describes an I/O operation
completely without any additional function-specific parameters.
The only FDT processing necessary for a zero parameter function
code is to zero-fill the field of the I/O request packet that
normally contains a user-specified parameter (IRP$L MEDIA). Then
EXE$ZEROPARM queues the I/O request packet to a devTce driver.

8.8 EXIT ROUTINES IN THE VAX/VMS SYSTEM

Ultimately, FDT processing must terminate by transferring control to
one of the following VAX/VMS routines: EXE$ABORTIO, EXE$FINISHIO,
EXE$FINISHIOC, EXE$ALTQUEPKT, or EXE$QIODRVPKT. Each of these
routines returns the system service status code to the user.

8.8.1 EXE$ABORTIO

When an FDT routine determines that an I/O request cannot be completed
because of an error in the specification of the request or in FDT
processing, the FDT routine transfers control to the VAX/VMS routine
EXE$ABORTIO to abort the request. EXE$ABORTIO gains control without
any change in the process context. Interrupt priority level is at
IPL$ ASTDEL; the process virtual space is mapped; and the process is
executing in kernel mode.

Required Register Contents

RO Queue I/O Request system service final status code
R3 Address of the current I/O request packet
R4 Address of the process control block of the current

process
RS Address of the unit control block of the device unit

assigned to the process I/O channel

R3 through RS always contain the I/O request packet, PCB, and UCB
addresses at the entry to an FDT routine. The FDT routine should
be careful not to destroy these values.

8-13

CODING FDT ROUTINES

Description

EXE$ABORTIO clears the address of the I/O status block in the I/O
request packet (IRP$L IOSB) so that no status will be returned
during I/O postprocessing. EXE$ABORTIO also clears the bit in
the I/O request packet (ACB$V QUOTA in the field IRP$B RMOD).
When set, this bit indicates that the requesting process
specified an AST routine. If necessary, the routine readjusts
the process's use of its AST quota.

Then EXE$ABORTIO inserts the I/O request packet in the I/O
postprocessing queue. If no other entries are in the queue,
EXE$ABORTIO requests a software interrupt at IPL$ IOPOST. This
interrupt causes postprocessing to occur before any other
instructions in the EXE$ABORTIO routine are executed.

When all I/O postprocessing has been completed, EXESABORTIO
regains control and finishes the I/O operation as follows:

• Lowers IPL to zero, which is the normal IPL for a process

• Changes mode back to the original processor access mode

• Returns from the system service to the code of the image that
originally requested the I/O operation. EXE$ABORTIO returns
RO, which contains the final status code saved when the exit
routine was called, to its caller.

As a result of this exit method, any ASTs specified when the
I/O request was issued will not be delivered, and any event
flags requested will not be set.

8.8.2 EXE$FINISHIO and EXE$FINISHIOC

Many I/O requests need no device activity to be completed. The FDT
routine(s) can complete the entire I/O request and immediately return
status concerning the operation to the process. However, the VAX/VMS
op~rating system provides two VAX/VMS I/O completion routines:
EXE$FINISHIO and EXE$FINISHIOC. EXE$FINISHIO returns a quadword of
I/O status. EXE$FINISHIOC returns a quadword of I/O status with the
second longword containing zero.

These routines gain control without any change in process context.
Interrupt priority level is at IPL$ ASTDEL; the process page tables
are mapped; and the process is executing in kernel mode.

Required Register Content

RO Value to be placed in the first longword of final I/O
status when the Queue I/O Request system service returns
final status

Rl Value to be placed in the second longword of final I/O
status (EXESFINISHIO only)

R3 Address of the current I/O request packet
R4 Address of the process control block of the current

process
RS Address of the unit control block of the device unit

assigned to the process I/O channel

R3 through RS always contain the I/O request packet, PCB, and UCB
addresses at the entry to an FDT routine. The FDT routine should
be careful not to destroy these values.

8-14

CODING FDT ROUTINES

Description

EXE$FINISHIO and EXE$FINISHIOC modify fields in the I/O data base
and then complete the I/O request in the following steps:

• Increase the number of I/O operations completed on the current
device in the operation count field of the unit control block
(UCB$L_OPCNT)

• Store the contents of RO and Rl in the media fields of the I/O
request packet (IRP$L_MEDIA and IRP$L_MEDIA+4)

• Insert the I/O request packet in the I/O postprocessing queue
and, if the queue is empty, request a software interrupt

The software interrupt occurs at IPL 3 so
interrupts EXE$FINISHIO or EXE$FINISHIOC.
EXE$FINISHIOC regains control, it completes
following steps:

that postprocessing
When EXE$FINISHIO or

processing in the

• Lowers IPL to zero, which is the normal IPL for a process

• Changes mode back to the original processor access mode

• Returns from the system service to the code of the image that
originally requested the I/O operation. The image receives
status SS$ NORMAL in RO, indicating that the queue I/O request
has completed without device-independent error.

8.8.3 EXE$QIODRVPKT

Some I/O functions require device activity, or at least access to
device registers, for the I/O operation to be completed. Common
examples are read and write functions. The FDT routines can perform
extensive preprocessing, such as determining whether user buffers are
accessible and reformatting data into buffers in the system address
space, but they should not access device registers because the device
might be active. By convention, FDT routines do not modify the unit
control block or device register contents for reasons of
synchronization. FDT routines do not execute at the proper IPL (fork
IPL) to make such modifications. As a result, they could crash the
system or cause their driver to execute incorrectly.

For this type of I/O function, the associated FDT routines perform all
preprocessing and then transfer control to the VAX/VMS routine
EXE$QIODRVPKT. It queues the I/O packet to a device driver and
attempts to transfer control to the device driver's start I/O routine.
If the device unit is busy, EXE$QIODRVPKT inserts the I/O request
packet in a priority-ordered queue of packets waiting for the unit.

Required Register Contents

R3 Address of the I/O request packet
R4 Address of the process control block of the current process
R5 Address of the unit control block for the device unit

assigned to the process I/O channel

8-15

CODING FDT ROUTINES

Description

EXE$QIODRVPKT calls EXE$INSIOQ, which first raises the interrupt
priority level of the process to the fork level of the driver
(UCB$B FIPL). Driver fork level is, by convention, the interrupt
priority level at which device drivers and VAX/VMS read and alter
critical portions of the device's unit control block. By
executing at fork level, EXE$INSIOQ ensures that, while it is
running, a driver fork process for the device unit cannot also be
running.

EXE$INSIOQ tests the UCB status word to see if the unit is busy.

If the device unit is not busy, EXE$INSIOQ calls the VAX/VMS
routine IOC$INITIATE to create a fork process context in which
the driver can process the I/O request. IOC$INITIATE creates
this context and activates the driver in the following steps:

• Sets the busy bit of the device's unit control
(UCB$V_BSY in UCB$W_STS)

block

• Stores the address of the current I/O request packet in the
UCB field UCB$L IRP

• Copies the transfer parameters contained in the I/O request
packet into the unit control block:

- Copies the
UCB$L SVAPTE

starting address from IRP$L SVAPTE to

- Copies the byte offset within the page from IRP$W BOFF to
UCB$W BOFF

- Copies the byte count from IRP$W BCNT to UCB$W_BCNT

• Clears the cancel I/O and timeout bits in the UCB status word
(UCB$V_CANCEL and UCB$V TIMOUT in UCB$W_STS)

• If the I/O request specifies a diagnostic buffer, as indicated
by the bit IRP$V DIAGBUF in IRP$W STS, stores the system time
in the buffer (IRP$L DIAGBUF); (tFie Queue I/O Request system
service has already allocated the buffer)

• Finds the entry point of the device driver's start I/O routine
using the following chain of pointers:

UCB ----DDB ----DDT --.-start I/O entry point

• Transfers control to the driver start I/O routine using a JMP
instruction

If, on the other hand, EXE$INSIOQ finds that the device is busy,
it inserts the I/O packet in the device unit's I/O request packet
wait queue for processing later. The I/O request packet wait
queue is ordered by two factors:

• The time that the entry is queued; that is, within any given
priority the queue is first-in/first-out

• The priority of the I/O request packet, which is derived from
the requesting process's base priority and stored in the field
IRP$B PR!

8-16

CODING FDT ROUTINES

EXE$INSIOQ calls the VAX/VMS routine EXE$INSERTIRP to insert the
I/O request packet in the unit's I/O request packet queue. Then,
EXE$INSIOQ reduces the interrupt priority level to the level at
the beginning of its execution; that is, to IPL$ ASTDEL.
EXE$INSIOQ returns control to EXE$QIODRVPKT. Finally,
EXE$QIODRVPKT returns from the Queue I/O Request system service
in the following steps:

• Loads a success status code (SS$ NORMAL) into RO -
• Reduces the interrupt priority level to 0

• Changes mode to the access mode of the process at the time of
the I/O request by issuing an REI instruction

• Returns from the system service call

The system sets and clears the busy bit in the UCB status word for the
device unit. This bit prevents the driver frorn being called to
service a device unit that is already engaged in another I/O request.

When a device driver's start I/O routine gains control, the process
that queued the I/O request may no longer be the mapped process.
Therefore, the driver must assume that all information regarding the
I/O request is in the unit control block or the I/O request packet and
that all buffer addresses in the unit control block are either system
addresses or page frame numbers that can be interpreted in any process
context. For direct I/O operations, FDT routines also must have
locked all user buffer pages in physical memory since paging cannot
occur at driver fork level and higher interrupt priority levels. The
process virtual address space is not guaranteed to be mapped again
until VAX/VMS delivers a kernel mode AST to the requesting process as
part of I/O postprocessing.

8.8.4 EXE$ALTQUEPKT

Special purpose drivers may want to use their own internal I/O queues
as well as the device unit I/O queue (UCB$L IOQFL) provided by
VAX/VMS. These internal queues allow the driver to handle I/O
requests even if the device is busy with another I/O operation.

EXE$ALTQUEPKT permits the driver to ignore unit I/O queue
synchronization. When called by an FDT routine, EXE$ALTQUEPKT gains
access to the driver at the alternate start I/O entry point specified
in the driver dispatch table (offset DDT$L ALTSTART). This entry
point bypasses the unit I/O queue and the device busy flag; thus, the
driver is activated regardless of whether the device unit is busy.

A driver that uses EXE$ALTQUEPKT becomes responsible not only for its
internal queues but also for any synchronization between those queues
and the unit I/O queue maintained by the operating system.

Drivers complete I/O request packets obtained from EXE$ALTQUEPKT by
calling the routine COM$POST. This routine places the I/O request
packet in a postprocessing queue and returns control to the driver.
The driver may then fetch another packet from an internal queue.

If a driver processes more than one I/O request packet at the same
time, separate fork blocks must be used.

Be aware that programming a device driver to process simultaneous I/O
requests requires detailed knowledge of VAX/VMS internal design.

8-17

CODING FDT ROUTINES

Required Register Contents

R3 Address of the I/O request packet
RS Address of the unit control block

You must assume that the contents of RO through RS are destroyed
upon return to the FDT routine.

Description

EXE$ALTQUEPKT performs the following steps:

• Saves the current interrupt priority level on the stack

• Raises interrupt priority level to
(UCB$B_FIPL).

driver fork level

• Finds the entry point of the alternate start I/O routine using
the following chain of pointers:

UCB -lll-DDB ---- DDT ----- alternate start I/O address.

• Calls the driver at alternate start I/O address.

When the alternate start I/O routine finishes, it returns control to
EXE$ALTQUEPKT by executing an RSB instruction. EXE$ALTQUEPKT restores
the interrupt priority level saved on the stack and then returns
control to the FDT routine that called it. The FDT routine then
executes a JMP instruction to the routine EXE$QIORETURN in order to
return control to the user process.

8-18

CHAPTER 9

CODING THE START I/O ROUTINE

A driver start I/O routine activates a device and then waits for a
device interrupt or timeout. This chapter describes the start I/O
routine. Chapter 12 describes the reactivation of the driver routine
that performs device-dependent I/O postprocessing. The start I/O
routine discussed in the following sections describes a DMA transfer
using a single-unit controller.

9.1 TRANSFERRING CONTROL TO START I/O

The start I/O routine of a device driver gains control from either of
two VAX/VMS routines: EXE$QIODRVPKT or IOC$REQCOM.

When FDT processing is complete for an I/O packet, the FDT routine
transfers control to EXE$QIODRVPKT. If the designated device is idle,
IOC$INITIATE is called to create a driver fork process. (This
procedure is detailed in Section 8.7.3.) The driver fork process then
gains control in the start I/O routine of the appropriate driver. If
the device is busy, EXE$QIODRVPKT queues the packet to a device unit's
I/O request packet wait queue.

After a device completes an I/O operation, the driver fork process
exits by transferring control to IOC$REQCbM. IOC$REQCOM inserts the
finished I/O packet in the postprocessing queue. It then dequeues the
next I/O request packet from the device unit's I/O request packet wait
queue and calls IOC$INITIATE to create a new driver fork process that
gains control at the entry point of the driver's start I/O routine.

9.2 CONTEXT OF A DRIVER FORK PROCESS

A start I/O routine does not run in the context of a user process.
Rather, it has the following context:

System mapping

Kernel mode

High IPL

Only system page tables are mapped.
Therefore, driver code cannot refer to
virtual addresses in process address space.

Execution occurs in the most privileged
access mode and can, therefore, change IPL.

The VAX/VMS routine that creates
fork process raises IPL to driver
before activating the driver. The
raise and lower IPL between driver
and IPL$ POWER.

9-1

a driver
fork level
driver can
fork level

Kernel or
interrupt stack

CODING THE START I/O ROUTINE

Execution occurs on the kernel or interrupt
stack. The driver must not alter the state
of the stack without restoring it to its
previous state before relinquishing control.

The start I/O routine executes on the kernel stack if the VAX/VMS
packet queuing routine activated the start I/O routine. It executes
on the interrupt stack if the VAX/VMS request complete routine
activates the start I/O routine.

In addition to the context described, the VAX/VMS packet queuing
routine sets up R3 and RS for a driver start I/O routine, as follows:

• R3 contains the address of the I/O request packet.

• RS contains the address of the unit control block for the
device.

All registers must be preserved except for RO, Rl, R2 and R4.

The packet queuing routine also copies the following I/O request
packet fields into the UCB:

• IRP$W BCNT

e IRP$W BOFF

e IRP$L SVAPTE

9.3 ACTIVATING THE DEVICE

The processing performed by a start I/O routine is device-speoific. A
start I/O routine normally contains elements to perform the following
functions:

• Analyze the I/O function

• Transfer the details of a transfer from the I/O request packet
into the unit control block

• Obtain and initialize the controller and, for DMA transfers,
UNIBUS adapter resources

• Modify device registers to activate the device

The start I/O routine elements listed above execute a series of steps
to activate the device. The sections that follow describe those steps
as performed for a sample DMA device such as a parallel communications
link; the details of processing, however, are specific to the
particular device. UNIBUS-related details of DMA transfers are
described in Chapter 10.

9.3.1 Obtaining Controller Access

If the device is attached to a multiunit controller, the start I/O
routine invokes the VAX/VMS macro REQPCHAN to assign the controller
data channel to the device unit. Single-unit controllers do not
require arbitration for the controller data channel. REQPCHAN calls
the VAX/VMS routine IOC$REQPCHANL that acquires ownership of the
controller data channel.

9-2

CODING THE START I/O ROUTINE

The transfer being controlled by the start I/O routine discussed here
requires no seek preceding the transfer. Disk I/O is an example of a
transfer that requires a seek first. To permit seeks to be overlapped
with transfers, invoke REQPCHAN with the argument PRI=HIGH.
Specifying PRI=HIGH inserts a request for a channel at the head of the
channel wait queue.

If the channel is not available, IOC$REQPCHANL suspends driver
processing by saving the driver's context in the UCB fork block and
inserting the fork block address in the channel wait queue.
IOC$REQPCHANL then returns control to the caller of the driver, that
is, to IOC$INSIOQ, as illustrated in Figure 9-1.

The UCB fork block now represents the entire context of the suspended
driver:

• Saved R3 containing the address of the I/O request packet

• Implicit saved RS containing the UCB address

• A return address in the driver

IOC$REQPCHANL does not save R4 since it writes R4 before returning
control to the driver.

010 FDT

JMP

USER
INSIOQ INITIATE

PROGRAM

JMP JMP

CHANNEL
RET

OIORETURN WAIT
QUEUE

JSB

UCB
--I

ADDRESS
,___R_ss ___ I REOCHAN ~

Figure 9-1 Driver Insertion into Channel Wait Queue

If the channel is available, IOC$REQPCHANL locates the interrupt data
block for the channel with a pointer in the unit control block:

UCB _._ CRB --.- IDB

The interrupt data block contains the address of the control/status
register for the channel (IDB$L CSR). IOC$REQPCHANL returns the
control/status register address in R4. The driver for a unit attached
to a single-unit controller must contain the code needed to load the
control/status address into R4.

9-3

CODING THE START I/O ROUTINE

IOC$REQPCHANL also writes the UCB address of the new channel owner in
the owner field of the interrupt data block (IDB$L OWNER). The driver
interrupt service routine later reads this IDB field to determine
which device unit owns the controller data channel. A driver for a
single-unit controller must fill the IDB$L OWNER field in its
controller or unit initialization routine.

The driver must maintain the stack in a known and consistent state for
the resource wait queue mechanism to work. When IOC$REQPCHANL gains
control, the top two items on the stack must be two return addresses:

• O(SP) -- Address of the next instruction to be executed in the
driver fork process

• 4(SP) -- Address of the next instruction to be executed in the
routine that called the driver start I/O routine

9.3.2 Getting the I/O Function Code and Converting the Code and Modifiers

The start I/O routine extracts the I/O function code and function
modifiers from the field IRP$W FUNC and translates them into
device-specific function codes to be loaded into the device's
control/status register or other control registers. The I/O routine
being described in this chapter sets up a bit mask that is to be
modified further in subsequent instructions and loaded into the
control/status register when the driver actually starts the device.
That is, the start I/O routine converts the function modifiers
contained in IRP$W FUNC into device-specific bit settings in the
general register (R3 in this case).

9.3.3 Obtaining a Buffered Data Path

If the device uses a buffered data path, the start I/O routine invokes
the VAX/VMS macro REQDPR to allocate the data path; Chapter 10
provides the details of interfacing with the UNIBUS adapter, including
a description of the REQDPR macro. REQDPR calls the VAX/VMS routine
IOC$REQDATAP, which allocates a data path if one is available.

If no buffered data path is available, IOC$REQDATAP suspends driver
processing by saving the driver's context in the UCB fork block and
inserting the fork block address in the data path wait queue.
IOC$REQDATAP then returns control to the caller of the driver.

If a buffered data path is available, IOC$REQDATAP writes the number
of the data path allocated to the driver into the channel request
block at CRB$L INTD+VEC$B DATAPATH. - -
If the device uses a direct data path, no data path allocation is
required. The direct data path is the default data path as long as no
code has ever written a nonzero value into the CRB data path field.

9.3.4 Loading Map Registers

The driver's start I/O routine invokes the VAX/VMS macro LOADUBA to
load the page frame numbers of the physical pages involved in the
transfer into the allocated map registers. The macro calls the
VAX/VMS routine IOC$LOADUBAMAP, as described in Chapter 10. Using the
byte offset and byte count fields of the unit control block

9-4

CODING THE START I/O ROUTINE

(UCB$W BOFF and UCB$W BCNT, respectively), IOC$LOADUBAMAP computes the
number-of map registers to load. It then obtains the number of the
first page frame number from the page table entry field of the unit
control block (UCB$L_SVAPTE).

In each map register, IOC$LOADUBAMAP sets the valid bit and fills in
the information needed for the transfer, that is, data path number,
physical page frame number, and an indication of whether the transfer
is word aligned. For further information, refer to Section 10.3.

9.3.5 Computing the Transfer Length

Because the device driven by this particular driver expects the
transfer as a word count, the start I/O routine computes the length of
the transfer in words by dividing the byte count field of the unit
control block (UCB$W BCNT) by 2. The routine loads the computed value
into the word count device register. One of the FDT routines that
processes the I/O request must ensure that the byte count for the
transfer is even. An odd byte count results in the user's not
receiving the last byte of data.

9.3.6 Computing the Transfer Start Address

The start I/O routine calculates the address of the transfer using the
byte offset field of the unit control block (UCB$W BOFF) and the
number of the starting map register (CRB$L INTD+VEC$W MAPREG). The
result is an 18-bit value representing an-address in-UNIBUS address
space. Section 10.4 details the calculation of the starting address
for a UNIBUS transfer.

The start I/O routine stores the low-order 16 bits of the computed
value in the buffer address device register. It stores the two
high-order bits of the computed value in the memory extension bits of
the bit mask set up in Section 9.3.2 to contain the device
control/status register data, in this case, R3.

9.3.7 Preparing the Device Activation Bit Mask

The start I/O routine prepares the device activation bit mask by
setting the interrupt enable and go bits in the general register used
previously (in this discussion, R3). The general register contains a
complete command to start the transfer at this point. When the start
I/O routine copies the contents of the register into the device's
control/status register, the device starts the transfer. However,
before activating the device, the start I/O routine should perform the
steps described in Sections 9.3.8 and 9.3.9.

9.3.8 Blocking All Interrupts

The start I/O routine invokes the VAX/VMS macro DSBINT to block all
interrupts. DSBINT raises IPL to IPL$ POWER and saves the previous
IPL setting, that is, driver fork IPL, on-the top of the stack.

9-5

CODING THE START I/O ROUTINE

9.3.9 Checking for Power Failure

The start I/O routine examines the powerfail bits in the UCB status
word (UCB$V POWER in UCB$W STS) to determine whether a power failure
has occurred-since the start-I/O routine gained control. If the bit
is not set, the transfer can proceed.

If the bit is set, a power failure may have occurred between the time
that the start I/O routine wrote the first device register and the
time that the start I/O routine is ready to activate the device. Such
a power failure could modify the already written device registers and
cause unpredictable device behavior if the device were to be started.

If the bit UCB$V POWER is set, the start I/O routine branches to an
error handler In the driver. The driver is responsible for clearing
UCB$V POWER before recovery or error procedures can be initiated.
Many -drivers clear this field and transfer to the beginning of the
start I/O routine, which restarts processing of the I/O request.

9.3.10 Activating the Device

If no power failure has occurred, the start I/O routine copies the
contents of the control mask (in this case, R3) into the device
control/status register. When the device notices the new contents of
the device register, the actual transfer begins.

9.4 WAITING FOR AN INTERRUPT OR TIMEOUT

Once the start I/O routine activates the device, the driver fork
process cannot proceed until one of two external events occurs:

• The device generates a hardware interrupt.

• The device does not generate a hardware interrupt within an
expected time limit; that is, a device timeout occurs.

Still executing at IPL$ POWER, the driver's start I/O routine asks
VAX/VMS to suspend the driver fork process by invoking one of the
following VAX/VMS macros:

WFIKPCH -- Wait for an interrupt or timeout and keep the
controller data channel

WFIRLCH -- Wait for an interrupt or timeout and release the
controller data channel

Both of these macros invoke routines that return IPL to the previous
level when they exit. These routines expect to find the return IPL on
the stack. Original IPL is normally saved on the stack by the DSBINT
macro, which the start I/O routine invokes before it checks for power
failure, as described in Section 9.3.9.

Drivers generally keep the controller data channel while waiting for
the interrupt or timeout. Some I/O operations, however, do not need
the controller after the operation is started, for example, a disk
seek operation.

Waiting for an interrupt or device timeout is the approach normally
taken by drivers.

9-n

CODING THE START I/O ROUTINE

9.4.1 WFIKPCH and WFIRLCH Macro Formats

A start I/O routine invokes either the WFIKPCH or WFIRLCH macro to
wait for device interrupt.

Formats

excpt

time

WFIKPCH excpt, [time]

WFIRLCH excpt, [time]

The address of the timeout routine for this device.

The number of seconds to wait before signaling a device timeout.
The number must be greater than or equal to 2. A minimum value
of 2 is required because the timeout mechanism is accurate only
to within one second. If no number is specified, the macro uses

.the value 65536 by default.

9.4.2 Expansion of WFIKPCH Macro

Because the WFIKPCH and WFIRLCH macros are similar, the description
that follows analyzes the expansion of WFIKPCH only.

If the driver specifies the time argument in the macro call, the macro
pushes the value of the argument into the stack. If the time argument
is not specified, the macro pushes the value 65536 onto the stack.

The VAX/VMS timer routine uses the time value to calculate the length
of time to wait before transferring control to a device timeout
handler.

WFIKPCH completes its expansion with the following two lines of code:

JSB GAIOC$WFIKPCH
.WORD EXCPT-.

The execution of the JSB instruction pushes the address following the
JSB onto the stack as the address to which the called routine would
normally return with an RSB instruction.

9.4.3 IOC$WFIKPCH Routine

The VAX/VMS routine IOC$WFIKPCH invoked by the macro WFIKPCH performs
the functions necessary for the driver fork process to wait for a
device interrupt or timeout. IOC$WFIKPCH first adds 2 to the address
on the top of the stack so that the top of the stack contains the
address of the next instruction in the driver after the macro
invocation. This address is where the driver processing actually
resumes as a result of an interrupt service routine JSB instruction.

IOC$WFIKPCH then saves the contents of R3, R4, and the driver return
address from the top of the stack in the first part of the unit
control block; that is, in the UCB fork block. The interrupt service
routine must restore RS to contain the address of the unit control
block after an interrupt. The interrupt service routine normally
obtains the address of the unit control block from the field
IDB$L_OWNER of the interrupt data block.

9-7

CODING THE START I/O ROUTINE

The VAX/VMS routine that detects a device timeout calculates the
address of the driver timeout routine by subtracting 2 from the saved
PC in the UCB fork block and calling indirectly through the result,
for example:

MOVL
CVTWL

ADDL

JSB

UCB$L FPC(RS) ,R2
-(R2)~-(SP)

(SP)+,R2

(R2)

Get saved PC
Get offset to timeout
handler
Add to relative driver
address to obtain relative
handler address
Call timeout handler

IOC$WFIKPCH sets bits in the unit control block (UCB$V INT and
UCB$V TIM in UCB$W STS) to indicate that interrupts and timeouts are
expected from the device. IOC$WFIKPCH also writes the device timeout
absolute time in the field UCB$L DUETIM. The absolute time is the
number of seconds since the operating system was bootstrapped plus the
number of seconds specified in the time argument to the macro.

Finally, IOC$WFIKPCH reenables interrupts by lowering IPL to its
previous level in the driver, that is, to driver fork level, and
returns control to the caller of the driver.

9.S RESPONDING TO AN EXPECTED DEVICE INTERRUPT

The only context saved for the driver is now in the unit control
block. It contains the following information:

• A description of the I/O request and the state of the device

• The contents of R3 and R4

• The implicit contents of RS, that is, the address of the UCB
fork block

• A driver return address

• The implicit address of a device timeout routine

By convention, R4 often contains the address of the control/status
register; it permits the driver to examine device registers. When
the driver fork process regains control after an interrupt processing,
RS contains the UCB address. It is the key to the I/O data base that
is relevant to the current I/O operation.

When a
analyzes
below:

device interrupts,
the interrupt, as

the driver interrupt service routine
detailed in Chapter 11 and summarized

• Identifies the UCB address of the device that generated the
interrupt

• Obtains device or controller status from the device registers,
if necessary, and stores the status in the unit control block

• Rest~res the driver fork process registers from the UCB fork
block, restores RS with the UCB address, and reactivates the
suspended driver at the PC stored in the UCB fork block

If, instead of requesting an interrupt, the device times out, a
VAX/VMS timer routine reactivates the suspended driver fork process at
the address of the timeout routine. Section 12.2 discusses device
timeout handling in detail.

9-8

CHAPTER 10

CODING FOR UNIBUS OMA TRANSFERS

A driver performing DMA transfers over the UNIBUS must take UNIBUS
operation into consideration. The VAX/VMS operating system and the
I/O data base handle most UNIBUS map register and data path resource
management for the device drivers. You must choose the type of data
path (either direct or buffered) appropriate to the device and ensure
that UCB fields are written to describe the virtual memory locations
to be read or written. Once these actions have been taken, the driver
fork process calls VAX/VMS routines to take care of the detailed
operation of the UNIBUS adapter.

The I/O data base contains an adapter control block (ADP) that
describes the UNIBUS adapter. This block contains allocation bit maps
for the UNIBUS adapter data paths and map registers. Each bit
represents one data path or one map register. When the bit is clear,
the data path or register is allocated to a device driver.

The adapter control block also contains the virtual address of the
UNIBUS adapter configuration register. All other adapter registers
are located at fixed offsets from the configuration register. The
VAX/VMS UNIBUS adapter-handling routines modify the UNIBUS adapter
data path and map registers according to request from driver fork
processes.

In general, driver fork processes do not access the UNIBUS adapter
control blocks. Instead, drivers call VAX/VMS routines that perform
adapter-related services, such as the following:

• Allocate a buffered data path

• Allocate map registers

• Load map registers

• Deallocate map registers

• Purge a buffered data path

• Deallocate a buffered data path

The system creates a driver fork process by calling the start I/O
routine in a device driver. The fork process takes some or all the
following steps to initiate an I/O transfer on a UNIBUS device:

• Requests buffered data path

• Requests map registers

• Loads map registers

10-1

CODING FOR UNIBUS DMA TRANSFERS

• Calculates starting UNIBUS address

• Activates device

• Waits for interrupt

When a hardware interrupt indicates that the I/O transfer is complete,
the driver fork process checks the success or failure of the transfer.
The driver then concludes with the following steps:

• Purges the buffered data path

• Releases the data path

• Releases the map registers

All of the steps above involve the UNIBUS adapter. VAX/VMS, however,
hides most of the UNIBUS interfacing from the driver.

10.l REQUESTING A BUFFERED DATA PATH

The system provides two macros that a driver can invoke to request a
buffered data path:

• REQDPR, which suspends the driver to wait for a buffered data
path if one is not available

• REQDATAPNW, which returns an error status if no buffered data
path is available

In addition, a driver can request the permanent allocation of a
buffered data path, as described in Section 10.1.3.

10.l.l Requesting a Buffered Data Path (with Wait)

A driver fork process requests a buffered data path by invoking the
VAX/VMS macro REQDPR. REQDPR calls a VAX/VMS routine named
IOC$REQDATAP that locates the UNIBUS adapter control block. To do
this, IOC$REQDATAP uses a series of pointers that begin in the curient
unit control block, as follows:

UCB --- CRB --..... ADP

The ADP data path bit map indicates the buffered data paths that are
available. IOC$REQDATAP allocates a data path to the driver by
storing the data path number in the channel request block and
indicating in the adapter control block (ADP) that the data path is in
use. Then, control returns to the driver fork process. Appendix A
describes the adapter control block.

If no data path is available, IOC$REQDATAP saves driver context {R3,
R4, and PC) in the UCB fork block and inserts the address of the fork
block, which is also the address of the unit control block and the
content of RS, in the ADP data path wait queue. The driver fork block
remains in the queue until both of the following conditions are met:

• A data path is available

• The driver fork block is the next entry in the data path wait
queue

10-2

CODING FOR UNIBUS OMA TRANSFERS

Then, the VAX/VMS routine IOC$RELDATAP allocates the data path to the
suspended driver and reactivates the driver fork process.

10.1.2 Requesting a Buffered Data Path (No Wait)

Instead of invoking REQDPR, the driver fork process can call the
subroutine IOC$REQDATAPNW by invoking the macro REQDATAPNW.

This routine immediately returns control to the driver fork process if
no data path is available. The low-order bit of RO is clear,
indicating that the request for allocation was unsuccessful.

If the data path is available, IOC$REQDATAPNW allocates the data path
and returns a normal status code (SS$_NORMAL) to the driver fork
process in RO.

10.1.3 Requesting A Permanent Buffered Data Path

A device driver also can permanently allocate a buffered data path
with code in a device unit initialization routine. The following
steps permanently allocate a buffered data path:

• Invoke the REQDPRNW macro or the REQDPR macro to allocate a
data path

• Set the path lock bit in the data path
channel request block
CRB$L_INTD+VEC$B_DATAPATH)

number field of
(VECSV_PATHLOCK

the
in

When the driver loading procedure loads or reloads the driver, the
procedure calls the unit initialization routine for each device unit
associated with the driver. At that time, the unit initialization
routine permanently allocates a buffered data path for each device
unit if the code described above has been included.

10.1.4 Requesting the Direct Data Path

Because the UNIBUS adapter arbitrates among devices that wish to use
the direct data path and because the CRB is initialized to 0
(0 =direct data path), drivers are not required to invoke the REQDPR
macro to request the direct data path.

When a word-aligned UNIBUS device uses the direct data path, the
driver must ensure that the specified buffer is on a word boundary,
since byte offset is not implemented on the direct data path.

10.1.5 Mixed Direct and Buffered Data Path Transfers

A device driver can use the buffered data path for certain operations,
then use the direct data path for other operations. To accomplish
this task, the driver should allocate a buffered data path for
buffered I/O. When the operation completes, the driver should then
purge and release the data path. The release automatically resets the
data path number to zero, which signifies a direct data path.
However, the driver should take care not to release the direct data
path, although it can purge the path if desired. (A purge of the
direct data path is a NOP and always yields success.)

10-3

CODING FOR UNIBUS DMA TRANSFERS

10.2 REQUESTING UBA MAP REGISTERS

The operating system allows a driver to allocate map registers as
needed or to allocate them permanently.

10.2.1 Allocation of Map Registers

A driver fork process requests a set of UNIBUS adapter map registers
by invoking the VAX/VMS macro REQMPR. This macro calls the routine
IOC$REQMAPREG. IOC$REQMAPREG calculates the number of map registers
needed for a transfer. The calculation is based on the transfer byte
count field and the byte offset field of the device's unit control
block (UCB$W_BCNT and UCBSW_BOFF).

The procedure for allocating map registers is similar to that used to
allocate a buffered data path. First, IOC$REQMAPREG locates the
adapter control block from a series of pointers that begin with the
current unit control block, as follows:

UCB --.- CRB __..... ADP

Then, the routine examines the map register allocation bit map to
locate the required number of contiguous map registers. If the
registers are not currently available, IOC$REQMAPREG saves the driver
context (R3, R4, and PC) in the UCB fork block and inserts the fork
block address (same as UCB address and the contents of RS) in the map
register wait queue.

When the map registers are available, IOC$REQMAPREG allocates them by
clearing the appropriate bits in the map register bit map of the ADP.
IOC$REQMAPREG then writes the number of the starting map register and
the number of map registers allocated into the channel request block
and returns control to the driver fork process.

10.2.2 Permanent Allocation of Map Registers

A device driver also can permanently allocate a set of UNIBUS adaptar
map registers with code in a unit or controller initialization
routine. You must ensure that the number of map registers permanently
allocated is sufficient for the longest possible transfer. The
following steps permanently allocate a set of map registers:

• Load the number of map registers required into R3.

• Call the VAX/VMS
instruction:

routine IOC$ALOUBAMAPN with a JSB

•

JSB GAIOC$ALOUBAMAPN

If IOC$ALOUBAMAPN successfully allocates the map registers, it
stores the number of map registers allocated and the starting
map register's number in the channel request block at
CRB$L INTD+VEC$B NUMREG and CRB$L INTD+VEC$W MAPREG,
respectively, and returns with the low-order bit set in RO.

Otherwise, it returns with the low-order bit of RO clear.

Set the map
(VEC$C MAPLOCK

lock bit in the channel
in CRB$L_INTD+VEC$W_MAPREG).

10-4

request block

CODING FOR UNIBUS DMA TRANSFERS

When the driver loading procedure loads or reloads the driver, the
procedure calls the unit or controller initialization routine for each
device unit or controller associated with the driver. At that time,
the initialization routines can permanently allocate map registers.

10.3 LOADING THE UBA MAP REGISTERS

Once a driver fork process has assigned a data path and allocated a
set of map registers, it can request VAX/VMS to load the map registers
with physical page frame numbers by invoking the VAX/VMS macro
LOADUBA. LOADUBA calls a VAX/VMS routine IOC$LOADUBAMAP that loads
each allocated map register with five data items:

• A bit setting to indicate whether the map register is valid.

• A bit setting to indicate whether the transfer is to start on
the odd or even byte within a word; this bit is set if the
low-order bit of UCB$W BOFF is a 1.

• The number of the data path to use for the transfer.

• The page frame number of a page in memory.

• A bit setting to indicate that the transfer operates in
longword-aligned random access mode; This bit is set when
VEC$V_LWAE is specified in VEC$B_DATAPATH.

IOC$LOADUBAMAP loads the page frame number of the first page of the
transfer into the first allocated map register, the page frame number
of the second page of the transfer into the second map register, and
so forth.

IOC$LOADUBAMAP sets the valid bit in every allocated map register
except the last. It clears the valid bit in the final map register to
stop a prefetch from an invalid page frame number.

To calculate the page frame number used in the I/O transfer,
IOC$LOADUBAMAP uses three fields that VAX/VMS has written into the
unit control block:

e UCB$W BOFF

• UCB$W BCNT

byte offset in the first page of the transfer

number of bytes to transfer

• UCB$L SVAPTE -- virtual address of the page table entry that
contaTns the page frame number of the first page of the
transfer

IOC$LOADUBAMAP determines the data path number, the number of the
first map register, the address of the first map register, and the
number of map registers from the channel request block and the UNIBUS
adapter control block, as follows:

UCB ~CRB --.-data path number

UCB --.-cRB --.-number of first map register

UCB ----cRB __._ADP __._virtual address of first map register

UCB ~CRB -..-number of map registers

10-5

CODING FOR UNIBUS DMA TRANSFERS

Drivers that handle byte-addressable UNIBUS devices call the routine
IOC$LOADUBAMAPA. This routine performs the same function as
IOC$h0ADUBAMAP, with one exception. When IOC$LOADUBAMAPA loads map
registers, it clears the byte offset bit even if the transfer begins
on an odd-byte address.

When IOC$LOADUBAMAP has loaded all the map registers and marked the
last map register invalid, it returns control to the driver fork
process.

10.4 COMPUTING THE STARTING ADDRESS OF A TRANSFER

The driver fork process must calculate the starting address of a
UNIBUS transfer and load this address into the appropriate device
register. The driver takes the following steps to make the
calculation:

• Writes the byte offset in page field of the UCB (UCB$W_BOFF)
into bits 0 through 8 of a register

• Gets the number of the starting map register for the transfer
from the channel request block; the number is a 9-bit value

• Writes bits O through 6 of the map register number into bits 9
through 15 of the register containing the byte offset field

• Writes bits 0 through 15 of the register into the buffer
address register for the device

• Writes bits 7 and 8 of the map register
extended memory bits of the appropriate
(usually the control/status register)

10.5 ACTIVATING THE DEVICE

number
device

into the
register

Because a driver fork process can address device registers as though
they were any other virtual address, the loading of the UNIBUS buffer
address register and control/status register both are simple
procedures. The driver locates the CSR address of the device in the
interrupt data block, as follows:

UCB ---- CRB ~ IDB ___..,... CSR address

The CSR address is the virtual address of a device register. All
other device registers are located at constant offsets from the CSR
address. If, for example, the control/status register is the first
device register and the device word ·count is the third device
register, the device driver can load the word count register with the
following sequence of instructions:

• Move the CSR address into R4

• Move the number of words to transfer with a MOVW instruction
that addresses 4(R4)

10-6

CODING FOR UNIBUS DMA TRANSFERS

10.6 COMPLETION OF A DMA TRANSFER

After a driver fork process activates a DMA UNIBUS device, the driver
waits for a device interrupt by invoking a VAX/VMS macro that suspends
the driver. When the UNIBUS device requests a hardware interrupt, a
VAX/VMS interrupt dispatcher gains control. The dispatcher saves RO
through RS and transfers control to code in the channel request block.

The CRB code calls a driver interrupt service routine. If the service
routine can match the interrupt with a suspended driver fork process,
the interrupt service routine reactivates the driver fork process at
the point that execution was suspended. The driver almost immediately
invokes the VAX/VMS macro IOFORK.

IOFORK calls the VAX/VMS routine EXE$IOFORK. EXE$IOFORK saves the
driver context (R3, R4, and PC) in the UCB fork block and inserts the
address of the fork block (RS) in the device's fork queue. EXE$IOFORK
then returns control to the driver's interrupt service routine, which
dismisses the interrupt.

When the fork dispatcher reactivates the driver fork process, the
driver performs any necessary UNIBUS adapter clean-up operations, such
as data path purging and deallocation of UNIBUS adapter resources used
in the DMA transfer.

10.6.1 Purging the Data Path

Driver fork processes that use buffered data paths must purge the data
path after the DMA transfer is complete. The driver invokes the macro
PURDPR, which in turn calls the VAX/VMS routine IOC$PURGDATAP. This
routine takes the foll~wing steps to purge the data path:

• Saves the contents of R4 on the stack

• Locates the channel request block as follows:

RS __.,.. UCB ~ CRB

• Obtains the starting address of UNIBUS adapter register space
and stores it in R2

• Extracts the number of the data path to be purged from the
channel request block and loads it into Rl

• Stores the address of the data path in R4

• Purges the data path (performed by the UNIBUS adapter). The
routine then modifies RO through R2 to contain the following
information:

RO Success/failure status. If the purge completes
without error, the routine sets SS$ NORMAL in this
register. If a data path error does occur, RO is
clear and the hardware is reset.

Rl Contents of the data path register

R2 Address of the first UNIBUS adapter map register

The address of the channel request block remains in R3. This
address, along with the information in Rl and R2, is used as
input to the error-logging routine in the event of a data
path error.

10-7

CODING FOR UNIBUS DMA TRANSFERS

• Restores the information stored on the stack to R4 and
returns to PURDPR.

If a data path error occurs during a data path purge, the driver
should retry the entire DMA transfer.

10.6.2 Releasing a Buffered Data Path

A driver fork process releases a
VAX/VMS macro RELDPR. RELDPR
that determines which data path
process and releases the data
must be executing at fork IPL.

buffered data path by invoking the
calls a VAX/VMS routine IOC$RELDATAP
was assigned to the driver fork

path to a waiting driver. The driver

The data path number is stored in the channel request block.
IOC$RELDATAP locates it as follows:

UCB __... CRB --- data path number

If the data path is permanently assigned to a device, IOC$RELDATAP
does not release the data path. Otherwise, the data path number in
the channel request block (CRB$L INTD + VEC$B DATAP) is zeroed. The
IOC$RELDATAP routine attempts to-dequeue a waTting driver fork process
from the data path wait queue stored in the adapter control block as
follows:

UCB --- CRB --- ADP ___....... data path wait queue

If another driver is waiting for a buffered data path, IOC$RELDATAP
grants that driver fork process the data path, restores its driver
context from its UCB fork block, and transfers control to the saved
driver PC. When IOC$RELDATAP can allocate no more data paths, the
routine returns to the driver that released the data path. This
diversion of driver processing is transparent to the driver fork
process.

If the data path wait queue is empty, IOC$RELDATAP marks the data path
as available in the I/O data base and returns control to the driver.

10.7 RELEASING UBA MAP REGISTERS

A driver fork process releases a set of UNIBUS adapter map registers
by invoking the VAX/VMS macro RELMPR. RELMPR calls the VAX/VMS
routine IOC$RELMAPREG that releases map registers in a manner similar
to that in which data paths are released. The channel request block
records the map register numbers assigned to the device. The number
of the first map register and the number of map registers are located
as follows. The driver must be executing at fork IPL.

UCB ---- CRB _..... number of the first map register

UCB ---- CRB __... number of map registers allocated

IOC$RELMAPREG releases the map registers by setting the corresponding
bits in the map register allocation bit map, which it locates as
follows:

UCB ____... CRB --- ADP _._ map register bit map

10-8

CODING FOR UNIBUS OMA TRANSFERS

Then, IOC$RELMAPREG attempts to dequeue a driver fork process from the
map register wait queue. If a suspended driver is found,
IOC$RELMAPREG takes the following steps:

• Dequeues the fork block and restores driver context

• Fills the map register request, if possible

• Reactivates the driver fork process at the
following the driver's request for map registers

• Returns to the driver fork process

instruction

If the map register wait queue is empty or if IOC$RELMAPREG still does
not have enough contiguous map registers for any of the waiting fork
processes, it returns control to the driver fork process that released
the map registers.

10-9

CHAPTER 11

CODING INTERRUPT SERVICE ROUTINES

The driver prologue table of most device drivers contains, in the
reinitialization section established using the DPT_STORE macro, the
address of one or more interrupt service routines. Each interrupt
service routine corresponds to an interrupt vector on the UNIBUS. You
specify the UNIBUS vector address in the CONNECT command to the SYSGEN
utility, as described in Chapter 14.

Most interrupt service routines in device drivers perform the
following functions:

• Locate the device's unit control block

• Determine whether the interrupt was solicited

• Reject or process unsolicited interrupts

• Activate the suspended driver to process solicited interrupts

Figure 11-1 illustrates the general flow of interrupt handling. The
rema1n1ng sections of this chapter describe the handling of solicited
and unsolicited interrupts in further detail.

11.1 DELIVERING A DEVICE INTERRUPT TO A DRIVER

When a UNIBUS device requests a hardware interrupt, the device puts a
vector address on UNIBUS lines and the vector address is loaded into a
UNIBUS adapter register. When the processor executes at an interrupt
priority level below the hardware interrupt level of the device, the
following sequence occurs:

• The processor saves the PC and PSL of the currently executing
code on the interrupt stack and transfers control to the
VAX/VMS UNIBUS adapter interrupt service routine.

• The UNIBUS adapter service routine then saves RO through RS on
the stack and, using a JMP instruction, transfers control to
executable code in the channel request block that the driver
loading procedure has associated with the interrupting vector.

11-1

CODING INTERRUPT SERVICE ROUTINES

INTERRUPT
SERVICE ROUTINE

DETERMINES
CAUSE OF

INTERRUPT

TAKES
APPROPRIATE

ACTION

INTERRUPT

VAX/VMS INTERRUPll
DISPATCHER

ACTIVATE THE
DEVICE UNIT'S

INTERRUPT
SERVICE ROUTINE

INTERRUPT SERVICE]
ROUTINE LOCATES

DEVICE'S UCB
USING IDB POINTER

ON INTERRUPT
STACK

NO

INTERRUPT
SERVICE ROUTINE

REJECTS INTERRUPT
AS SPURIOUS

YES

REACTIVATE
SUSPENDED

DRIVER

DRIVER
INVOKES
IOFORK
MACRO

IOFORK
CALLS

EXE$10FORK

EXE$10FORK
QUEUES DRIVER

FORK BLOCK
AND RETURNS
TO INTERRUPT

SERVICE ROUTINE

INTERRUPT
SERVICE ROUTINE

REMOVES IDB
POINTER FROM

STACK AND RESTORES
RO THROUGH R5

INTERRUPT
SERVICE ROUTINE

DISMISSES
INTERRUPT

WITH REI

Figure 11-1 Interrupt Handling Flow

11-2

CODING INTERRUPT SERVICE ROUTINES

The CRB interrupt dispatching field (CRB$L_INTD+2) contains the
following executable instruction:

JSB @#address-of-driver-isr

The driver loading procedure writes these instructions into each
channel request block as the procedure creates the control blocks.
The driver loading procedure obtains the address of the interrupt
service routine from the reinitialization portion of the driver
prologue table. If the device has two interrupt vectors, for example,
and its driver specifies two interrupt service routine addresses in
the DPT reinitialization section, the driver loading procedure creates
a channel request block with two interrupt dispatching fields.

Immediately following the JSB instruction in the channel request block
is the address of the interrupt data block associated with the CRB.
When the JSB instruction executes, a pointer to the address of the
interrupt data block is pushed onto the top of the stack as though it
were a return address. The driver interrupt service routine can use
this IDB address as a pointer into the I/O data base. Figure 11-2
illustrates the portion of a channel request block that contains the
interrupt service routine address.

CHANNEL REQUEST BLOCK: •
•

JSB @# l --
INTERRUPT SERVICE ROUTINE ADDRESS

INTERRUPT DATA BLOCK ADDRESS

•
•

Figure 11-2 Channel Request Block
Containing an Interrupt Service Routine Address

11.2 INTERRUPT CONTEXT

When the UNIBUS adapter interrupt service routine calls a driver
interrupt service routine, execution context is as follows:

• RO through RS are saved on the stack.

• System address space is mapped. The service routine can gain
access to appropriate control blocks in the I/O data base.

• IPL is at hardware device interrupt level.

• The processor is running in kernel mode.

• The processor is running on the interrupt stack.

11-3

CODING INTERRUPT SERVICE ROUTINES

The UNIBUS adapter interrupt service routine does not load any
registers for the driver interrupt service routine; however, the
stack contains the following information:

Stack Location

O(SP)

4(SP) through 24(SP)

28(SP)

32(SP)

Content

Pointer to the address
interrupt data block

Saved RO through RS

of

PC at the time of the interrupt

PSL at the time of the interrupt

11.3 SERVICING A SOLICITED INTERRUPT

the

When a driver fork process activates a device and expects to service a
device interrupt as a result, the driver suspends fork processing and
waits for an interrupt to occur. The suspended driver is represented
only by the contents of the device's unit control block, which
contains a description of the I/O request and the driv~r fork process.
When the driver regains control from the interrupt service routine,
only R3, R4, RS, and the PC address are restored to their previous
state by the interrupt service routine.

In the sequence below, a driver interrupt service routine returns
control to the waiting driver:

• First the interrupt service routine obtains the address of the
device's unit control block from the interrupt data block, as
follows:

O(SP) ----cRB ~IDB$L OWNER __._UCB for the device

• The service routine then tests the software interrupt expected
bit in the UCB status word (UCB$V INT in UCB$W STS). If the
bit is set, the driver is waiting for an interrupt from this
device.

• The interrupt service routine restores RS of the driver fork
process with the address of the UCB fork block. It restores
R3 and R4 of the driver process using two fields from the UCB
fork block, UCB$L_FR3 and UCB$L_FR4, respectively.

• Finally the interrupt service routine transfers control to the
driver PC address saved in the UCB fork block at UCB$L FPC by
issuing a JSB instruc~ion.

The restored driver can execute a few instructions in the context of
the interrupt, such as copying device status information from the
device registers into the device's UCB. Before completing the I/O
operation, however, the. driver routine creates a fork process to lower
its execution IPL to driver fork level instead of continuing execution
at hardware device interrupt IPL. The driver routine creates a fork
process by invoking the VAX/VMS macro IOFORK, as described in Section
12.1.1.

11-4

CODING INTERRUPT SERVICE ROUTINES

IOFORK calls the VAX/VMS routine EXE$IOFORK. EXE$IOFORK inserts the
UCB fork block describing the driver process in the appropriate fork
queue and returns control to the driver interrupt service routine.
The interrupt service routine then performs the following steps:

• Removes the IDB pointer from the stack

• Restores RO through RS

• Dismisses the interrupt with an REI instruction

11.4 SERVICING AN UNSOLICITED INTERRUPT

Devices request interrupts to indicate to a driver interrupt service
routine that the device has changed status. If a driver fork process
starts an I/O operation on a device, the driver expects to receive an
interrupt from the device when the I/O operation completes or an error
occurs.

Other changes of device status occur when the device has not been
a~tivated by a device driver. The device reports these changes by
requesting unsolicited interrupts. For example, when a user types on
a terminal that is not attached to a process, the terminal requests an
interrupt that is fielded by the terminal driver. As a result of the
interrupt, the terminal driver causes the login procedure to be
invoked for the user at the terminal.

Another example of an unsolicited interrupt is one that the unit
requests when an operator changes the volume on a disk drive. The
disk driver services the interrupt by altering volume and unit status
bits in the disk device's unit control block.

Devices request unsolicited interrupts because some external event has
changed the status of the device. A device driver can handle these
interrupts in two ways:

• Ignore the interrupt as spurious

• Examine the device registers and take action according to
their indications of changed status, and then poll for any
other changes in device status

The driver interrupt service routine decides whether an interrupt is
solicited or not by examining the software interrupt expected bit in
the UCB status word (UCB$V INT in UCB$W STS). If the interrupt is
unsolicited, the driver -can reject the interrupt with the following
code sequence:

• Remove the IDB pointer from the stack

• Restore RO through RS

• Dismiss the interrupt with an REI instruction

Rather than rejecting the interrupt, the driver may wish to handle it.
For example, the driver can send a message to the operator or the job
controller mailbox when an unsolicited interrupt occurs.

Drivers should avoid creating a fork process to handle unsolicited
interrupts from busy devices. The unit control block of a busy device
may contain the active fork block of a previously created driver fork
process. If an unsolicited interrupt service routine should create a
fork process to handle its request, it may destroy the driver fork

11-5

CODING INTERRUPT SERVICE ROUTINES

context currently stored there. Drivers should always handle this
type of unsolicited interrupt at hardware device IPL.

11.4.1 Examples Of Unsolicited Input Handling

A card reader device requests an unsolicited interrupt if any user
turns the reader online. Once the card reader driver interrupt
service routine determines that the interrupt is unsolicited, the
routine analyzes the interrupt, as in the following example:

• It obtains the address of the control/status register using
the interrupt data block pointed to by the address on the top
of the interrupt stack, as follows:

O(SP) __._CRB ----IDB ----csR address

• It confirms that the reader has just been placed online by
examining the online bit in the control/status register.

• It examines the reference count field of the device's unit
control block (UCB$W REFC) to determine whether a process has
assigned or allocated-the device. If the count is nonzero,
the interrupt service routine removes the IDB pointer from the
stack, restores RO through RS, and dismisses the interrupt
with an REI instruction.

• If the reference count is zero, the interrupt service routine
clears the status bit in the control/status register.

• It confirms that the joB controller has not received a message
about the device's being online by testing the job-attached
bit in the UCB status word (UCB$V_JOB in UCB$W_STS).

• If the job-attached bit is not set, it sets the job-attached
bit and creates a fork process that is to send a message to
the job controller. The VAX/VMS routine that creates the fork
process returns to the driver's interrupt service routine.

• Finally, the interrupt service routin~ removes the IDB pointer
from the stack, restores RO through RS, and dismisses the
interrupt with an REI instruction.

Another example of unsolicited interrupt processing occurs in a device
driver for a multiunit controller. When the operator removes a disk
volume, the disk drive requests an interrupt. The driver interrupt
service routine must determine what drive unit requested the
interrupt, obtain drive status from the drive's control/status
register, and then decide whether the interrupt was solicited. If the
interrupt is unsolicited, the driver service routine calls its
unsolicited interrupt routine. The routine checks the status of the
volume, as described in the following steps:

• It sets a bit in the unit control block to indicate that the
unit is online (UCB$V_ONLINE in UCB$W_STS).

• If the UCB volume valid bit is set (UCB$V VALID in UCB$W STS),
the routine tests the volume valid status bit in a aevice
register to determine whether the volume status has changed.
If the volume is no longer valid, the routine clears the UCB
volume valid bit.

• Finally, the routine returns to the normal driver interrupt
service routine.

11-6

CODING INTERRUPT SERVICE ROUTINES

The driver interrupt service routine then polls the other device units
on the controller to determine whether any other units requested
interrupts while the first interrupt was being processed. When no
unit requires interrupt servicing, the routine removes the IDB pointer
from the stack, restores registers RO through RS, and dismisses the
interrupt with an REI instruction.

11-7

CHAPTER 12

COMPLETING THE I/O REQUEST

Once a driver has activated the
interrupt macro, the driver
following events occurs:

device
remains

• The device requests an interrupt

• The device times out

and invoked the wait for
suspended until one of the

If the device requests an interrupt, the driver interrupt service
routine handles the interrupt and then reactivates the driver at the
instruction following the wait for interrupt macro. The reactivated
driver performs device-dependent I/O postprocessing.

If the device does not request an interrupt within the designated time
interval, the system transfers control to the driver's timeout
handler. The address of the timeout handler is specified as an
argument to the wait for interrupt macro invocation.

12.1 I/O POSTPROCESSING

Once the driver interrupt service routine has handled an interrupt, it
transfers control to the driver by issuing a JSB instruction. At this
point, the driver is executing in interrupt context. If the driver
were to continue executing in interrupt context, it would lock out
most other processing on the processor including the handling of
hardware interrupts. To restore the driver to the context of a driver
fork process., the driver invokes the VAX/VMS macro IOFORK. Once the
fork process has been created and dispatched for execution, it
executes the driver code that completes the processing of the I/O
request.

12.1.1 EXE$IOFORK

IOFORK is a macro that generates a call to the VAX/VMS routine
EXE$IOFORK. EXE$IOFORK converts the driver context from that of an
interrupt service routine to the context of a driver fork process in
the following steps:

• It disables software timeouts by clearing the timeout enable
bit in the UCB status word (UCB$V_TIM in UCB$W_STS}.

• It saves R3 and R4 of the current driver context in the UCB
fork block (UCB$L FR3 and UCB$L_FR4}.

12-1

COMPLETING THE I/O REQUEST

• EXE$IOFORK then saves the current driver PC in the UCB fork
block (UCB$L FPC). The driver PC is the first longword on the
stack upon entry to EXE$IOFORK as a result of the JSB
instruction.

• It obtains the fork IPL of the device from
(UCB$B_FIPL).

the UCB

• It inserts the address of the UCB fork block (RS) into the
fork queu~ corresponding to the driver fork IPL.

• Finally, if the fork block is the first entry in the fork
queue, EXE$IOFORK requests a software interrupt at driver fork
IPL.

The steps listed above move the critical driver fork process context
into the UCB fork block; that is, they save R3 through RS and the
driver PC address. The driver fork process resumes processing when
the VAX/VMS fork dispatcher dequeues the UCB fork block from the fork
queue and reactivates the driver at driver fork IPL.

12.1.2 Completing an I/O Request

When VAX/VMS reactivates a driver fork process by dequeuing the fork
block, the driver resumes processing of the I/O operation. If the
device has completed the I/O operation without errors, the driver fork
process for a DMA device proceeds as follows:

• Purges the buffered data path

• Releases the buffered data path

• Releases map registers

• Releases the controller

• Saves the status code, transfer count, and device-dependent
status that is to be returned to the user process in an I/O
status block

• Returns control to the operating system

Chapter 10 discusses the first three steps listed above because they
relate to UNIBUS DMA transfers. The sections that follow describe the
remaining three steps.

12.1.2.1 Releasing the Controller - To release the controller
channel, the driver code invokes the VAX/VMS macro RELCHAN. RELCHAN
calls the VAX/VMS routine IOC$RELCHAN. If another driver is waiting
for the controller channel, IOC$RELCHAN grants that driver fork
process the channel, restores its driver fork context from its UCB
fork block, and transfers control to the saved PC. When no more
drivers are awaiting the channel, IOC$RELCHAN returns control to the
driver fork process that released the channel. (The driver must be
running at fork IPL.)

12-2

COMPLETING THE I/O REQUEST

12.1.2.2 Saving Status, Count, and Device-Dependent Status - To save
the status code, transfer count, and device-dependent status, the
driver performs the following steps:

• It loads a success status code (SS$_NORMAL) into bits O
through 15 of RO.

• If the I/O operation performed by the device is a transfer
function, the driver loads the number of bytes transferred
into the high-order 16 bits of RO, that is, into bits ln
through 31.

• The driver then loads device-dependent status information, if
any, into Rl. RO and Rl are the status values that VAX/VMS
returns to the user process in the I/O status block specified
in the original Queue I/O Request system service. If the user
specifies no I/O status block, VAX/VMS makes no use of RO and
Rl.

12.1.2.3 Returning to the Operating System - Finally, the driver
returns to the system by invoking the VAX/VMS macro REQCOM to complete
the I/O request. REQCOM calls the VAX/VMS routine IOC$REQCOM.
IOC$REQCOM locates the address of the I/O request packet corresponding
to the I/O operation in the device's UCB (UCB$L IRP). It then writes
the two longwords of completion status contained in RO and Rl into the
media field of the I/O request packet (IRP$L_MEDIA and IRP$L_MEDIA+4).

IOC$REQCOM then inserts the I/O request
postprocessing queue. If the packet is
postprocessing queue, IOC$REQCOM requests a
IPL$ IOPOST so the postprocessing begins
IPL$-IOPOST.

packet
the only
software
when IPL

in the I/O
entry in the
interrupt at
drops below

If the error-logging bit is set in the device's unit control block
(UCB$V ERLOGIP in UCB$W STS), IOC$REQCOM obtains the address of the
error message buffer from-the unit control block (UCB$L EMB). It then
writes the following information into the error buffer:-

• Final device status (UCB$W_DEVSTS)

• Final error count (UCB$B_ERTCNT)

• Two longwords of completion status (RO and Rl)

To release the error message buffer, IOC$REQCOM calls ERL$RELEASEMB.

If any I/O request packets are awaiting driver processing, IOC$REQCOM
performs the following steps:

• Dequeues a packet

• Creates a new driver fork process

• Activates the driver at the driver's start I/O routine

Otherwise, IOC$REQCOM clears the unit busy bit
status word (UCB$V BSY in UCB$W STS) and
IOC$RELCHAN to release the controller channel
failed to do so.

in the device's UCB
transfers control to

in case the driver

The remaining steps in processing the I/O request are performed by
VAX/VMS I/O postprocessing.

12-3

COMPLETING THE I/O REQUEST

12.2 TIMEOUT HANDLERS

VAX/VMS transfers control to the driver's timeout handler if a device
unit does not request an interrupt within the time limit specified in
the wait for interrupt macro. The VAX/VMS timer routine scans device
unit control blocks once every second to determine whether a device
has timed out.

When the timer routine locates a device that has timed out, the
routine calls the device's timeout handler by performing the following
steps:

• It disables expected interrupt and timeout on the device by
clearing bits in the device's UCB status field (UCB$V_INT and
UCB$V TIM in UCB$W_STS).

• It sets the device timeout bit in the UCB status field
(UCB$V TIMOUT in UCB$W_STS).

• It sets IPL to hardware device interrupt IPL (UCB$B_DIPL).

• It restores the saved R3 and R4 of the driver fork process
from the UCB fork block (UCB$L FR3 and UCB$L_FR4).

• It restores RS (address of the UCB fork block).

• It computes the address of the driver's device timeout routine
from the saved PC in the UCB fork block (UCBSL_FPC).

• It calls the device timeout routine with a JSB instruction.

During power failure recovery, VAX/VMS forces a device timeout by
altering the timeout field (UCB$L DUETIM) of a unit control block if
the device UCB records that the unit is waiting for an interrupt or
timeout (UCB$V INT and UCB$V TIM set in UCB$W STS). The timeout
handler can perceive that a power failure recovery- is occurring by
examining the power bit (UCB$V_POWER in UCB$W_STS) in the unit control
block.

A timeout handler usually performs either of three functions:

• Retries the I/O operation unless a retry count is exhausted

• Aborts the I/O request

• Sends a message to an operator mailbox and resumes waiting for
a subsequent interrupt or timeout

12.2.1 Retrying the I/O Operation

Some devices may retry an I/O operation after a timeout. For example,
a disk driver might take the following steps after a transfer timeout:

• Set IPL to driver fork level.
drop below IPL$_TIMER, the
interrupts occur.

Note that
level at

this IPL must not
which interval timer

• Release map registers, data path, and controller data channel.

12-4

COMPLETING THE I/O REQUEST

• If a power failure occurred, load the I/O request packet
address into R3 and reload the following I/O request packet
fields into the corresponding UCB fields and branch to the
start I/O routine:

UCB$W BCNT
UCB$W-BOFF
UCB$L-SVAPTE

The above steps result in a total retry of the transfer.

• If no power failure has occurred and the device driver
supports error-logging, call ERL$DEVICTMO to log the device
timeout

• If the retry count is not exhausted, decrease the count, clear
the UCB timeout bit in UCB$W_STS, and retry the operation.

• If the retry count is exhausted, set the error code, perform a
normal abort I/O clean-up operation, and invoke REQCOM.

12.2.2 Aborting the I/O Request

A driver's timeout routine aborts the I/O request when it exhausts its
retry count, or when it determines, upon timeout, that a cancel I/O
was requested (UCB$V_CANCEL is set in UCB$W_STS).

A device driver timeout handler can abort the I/O request using the
following sequence of steps:

• If appropriate to the device and controller, the handler
clears the device control/status register.

• The handler then invokes the following VAX/VMS macro to lower
IPL to device fork level:

SETIPL UCB$B_FIPL(R5)

The resulting IPL must not drop below the interval timer IPL.

• The handler releases UNIBUS adapter resources
controller data channel, if necessary.

and

• It loads an error status code into the low word of RO.

the

• It clears bits 16 through 31 in RO to indicate that no data
was transferred.

• It invokes the VAX/VMS macro REQCOM, described in Section
12.1.2.3, to complete the I/O request processing.

Since the device can interrupt driver timeout processing at fork IPL,
the interrupt service routine should check the interrupt expected bit
(UCB$V INT) before handling the interrupt. The operating system
clears-this bit before it calls the driver's timeout routine.

12-5

COMPLETING THE I/O REQUEST

12.2.3 Sending a Message to the Operator

The following sequence describes a timeout handler that sends a
message to the operator mailbox and then goes back into a wait for
interrupt or timeout state:

• It invokes the following VAX/VMS macro to lower IPL to driver
fork level:

SETIPL UCB$B_FIPL(R5)

• It checks the cancel I/O bit in the UCB status
(UCB$V CANCEL in UCB$W_STS).

word

• If UCB$V CANCEL is set, the timeout handler performs the
following:

Loads the abort status code (SS$_ABORT) into the low word
of RO

Writes other status information into RO and/or Rl

Invokes the VAX/VMS macro REQCOM to complete the I/O
request processing

• If UCB$V CANCEL is not set, the timeout handler performs the
following:

Saves R3 and R4 on the stack

Loads an OPCOM message code, such as MSG$_DEVOFFLIN, into
R4

Loads the address of the operator mailbox (SYS$GL_OPRMBX)
into R3

Calls a VAX/VMS routine to place the message in the
operator mailbox, as follows:

JSB G~EXE$SNDEVMSG

Restores R3 and R4

• The timeout handler then invokes the VAX/VMS macro DSBINT to
raise IPL to IPL$ POWER, thereby locking out all interrupts
from software and hardware.

• Finally, the timeout handler invokes the VAX/VMS macro WFIKPCH
to wait for another interrupt or timeout.

12-6

CHAPTER 13

CODING INITIALIZATION, CANCEL I/O, AND ERROR-LOGGING ROUTINES

Drivers normally contain initialization, cancel I/O, and error-logging
routines. The driver prologue table specifies the address of
initialization routines. The driver dispatch table contains the
addresses of the cancel I/O and error-logging routines. Whether these
routines are required depends on the type of device.

13.1 INITIALIZATION ROUTINES

Most device controllers and device units require initialization under
the following circumstances:

• When the driver loading procedure loads a device driver for
the controller and device units

• During recovery from a power failure

Initialization routines ready controllers and device units for
operation. Depending on the device characteristics, initialization
routines perform any of the actions listed below:

• Enable controller interrupts

• Clear error status bits in device registers

• Initiate a device operation such as clearing a drive or
acknowledging a pack

• Store values in UCB fields that cannot be addressed with a
DPT STORE macro; that is, fields more than 256 bytes from the
start of the unit control block

• Permanently allocate UNIBUS adapter resources, as described in
Chapter 10

• Set the on line bit (UCB$V_ONLINE in UCB$W_STS) in the unit
control block

• Fill in IDB$L OWNER for sinqle-unit devices such as a line
printer

13-1

CODING INITIALIZATION, CANCEL I/O, AND ERROR-LOGGING ROUTINES

13.1.1 Initialization During Driver Loading

The driver loading procedurel loads and reloads drivers in the
following steps:

• It loads a driver into nonpaged system memory. If the
procedure is loading the driver for the first time since the
system was bootstrapped, it creates unit control blocks, a
channel request block, an interrupt data block, and a device
data block.

• According to the DPT STORE macro invocations in the driver,
the loading procedure writes the addresses of initialization
routines in the channel request block of the controller and
initializes other fields in other control blocks.

• It raises IPL to IPL$ POWER to block all interrupts.

• It calls the controller initialization routine, if one exists,
for every device controller associated with the driver.

• It calls the unit initialization routine, if one exists, for
every device unit associated with the driver.

13.1.2 Initialization During Recovery from a Power Failure

During powerfail recovery procedures, the operating system locates
every unit control block in the I/O data base. Each unit control
block points to a channel request block for the device's controller.
The channel request block contains the address of the controller
initialization routine, if one was specified. The system uses the
following chain of pointers to locate the address of the
initialization routine:

DDB __.....UCB -a- CRB __..controller initialization routine

The operating system calls the initialization routine
controller if one was specified in a DPT STORE macro
CRB$L INTD+VEC$L INITIAL of the channel request-block.

for
for

each
the

Next, the system checks for a device unit initialization routine.
First, the system examines the unit initialization field in the driver
dispatch table (DDT$L UNITINIT). If the field does not contain an
address, the system- checks the channel request block using the
following chain of pointers:

DDB ~UCB ~CRB __..device unit initialization routine

MASSBUS drivers store unit initialization routines only in the driver
dispatch table.

If either the channel request block or the driver dispatch table
contains a nonzero address for such a routine, the system calls the
routine to initialize the device unit.

1. The SYSGEN commands CONNECT and AUTOCONFIGURE call controller and
unit initialization routines once for each controller and device unit.
The LOAD command does not call controller or unit initialization
routines, whereas the RELOAD command calls only the controller
initialization routine.

13-2

CODING INITIALIZATION, CANCEL I/O, AND ERROR-LOGGING ROUTINES

13.1.3 Initialization Context

The VAX/VMS operating system always calls controller and unit
initialization routines with IPL raised to IPL$ POWER. The high IPL
prevents any interrupts from reaching the processor while
initialization is occurring. The initialization routines must not
lower IPL. The system calls initialization routines with a JSB
instruction; the routines return by executing an RSB instruction.

Controller initialization routines are device-dependent. For example,
a card reader controller initialization routine might enable
interrupts from the device by setting the interrupt enable bit in the
device's control/status register. A disk controller initialization
routine, on the other hand, might enable interrupts and initialize all
unit status registers.

If a device needs permanently allocated UNIBUS
controller initialization routine can call
resource management routines to allocate the
initialization routine can set bits in the CRB

adapter resources, a
VAX/VMS UNIBUS adapter

resources. Then, the
UNIBUS adapter resource

description fields (for example, VEC$V PATHLOCK in
CRB$L_INTD+VEC$B_DATAPATH}.

At the time of a call to a controller initialization routine, the
registers contain the following values:

Register

R4

RS

R6

R8

Value

Address of the control/status register

Address of the interrupt data block that describes
the controller

Address of the device data block associated with
the controller

Address of the channel request block for the
controller

Device unit initialization routines are useful for initializing
device-dependent fields in the unit control block. For example, disk
initialization routines can also set disk drive parameters (such as
number of cylinders} in the unit control block and wait for online
units to spiri' up to speed. Unit initialization routines must set the
online bit in the unit control block (UCBSV_ONLINE} to declare the
unit to be online.

At the time of a call to a device unit initialization routine, the
registers contain the following values:

Register

R3

R4

RS

Value

Address of the primary control/status register

Address of the secondary control/status register;
R4 is equal to R3 if there is no secondary CSR

Address of the device's unit control block

If driver initialization routines modify R4 through Rll, the routines
must save the contents of the registers before use and restore them
before returning to the operating system.

13-3

CODING INITIALIZATION, CANCEL I/O, AND ERROR-LOGGING ROUTINES

13.2 CANCEL I/O ROUTINE

VAX/VMS routines call the cancel I/O routine in a device driver under
the following circumstances:

• When a process issues a Cancel I/O on Channel system service

• When a process deallocates a device and no process I/O
channels are assigned to the device

• When a process deassigns a channel from a device

• When the command language interpreter performs cleanup
operations as part of image termination by canceling all
pending I/O requests for the image and closing all
image-related files open on process I/O channels

The VAX/VMS routine EXE$CANCEL locates the unit control block for the
device associated with a process I/O channel from a pointer in the
channel request block, as follows:

channel index number --..... CCB _....UCB address

EXE$CANCEL takes the following steps:

• Raises IPL to fork level

• Removes all I/O request packets associated with the process
from the device's I/O request packet wait queue

• Sets the status code SS$ CANCEL in IRP$L MEDIA

• For buffered I/O read operation, clears the buffered read
function bit (IRP$V_FUNC) in IRP$W_STS

• Inserts the I/O packets removed from the packet wait queue
into the I/O postprocessing queue

• If the I/O postprocessing queue is empty, requests a software
interrupt

Then, EXE$CANCEL calls the cancel I/O routine specified in the driver
dispatch table of the associated device driver. EXE$CANCEL locates
the routine using the following chain of pointers:

UCB _._ DDB __._DDT ---address of the cancel I/O routine

The cancel I/O routine gives the driver an opportunity to prevent
further device-specific processing of the I/O request currently being
processed on the device.

13-4

CODING INITIALIZATION, CANCEL I/O, AND ERROR-LOGGING ROUTINES

13.2.1 Context of a Cancel I/O Routine

When EXE$CANCEL calls the cancel I/O routine, IPL is at driver fork
IPL so that the routine can read and modify the device's unit control
block. Registers at the time of the call contain the following
values:

Register Value

R2 Negated value of the channel index number

R3 Address of the current I/O request packet

R4 Address of the process control block of the
process for which the Cancel I/O on Channel system
service is being performed

RS Address of the device's unit control block

13.2.2 Drivers That Need No Cancel I/O Routine

Some devices do not need any device-dependent processing performed for
an I/O request; you can omit the CANCEL argument from the DDTAB
macro. In this case, the DDTAB macro expansion loads the address of
the VAX/VMS routine IOC$RETURN into the appropriate position in the
driver dispatch table. The routine IOC$RETURN executes a single RSB
instruction.

13.2.3 Device-Independent Cancel I/O Routine

Drivers can specify the VAX/VMS routine IOC$CANCELIO as the value of
the CANCEL argument in the DDTAB macro invocation. IOC$CANCELIO
cancels I/O to a device in the following device-independent manner:

• It confirms that the device is busy by exam1n1ng the device
busy bit in the UCB status word (UCB$V_BSY in UCB$W_STS).

• It locates the process identification field in the I/O packet
currently being processed on the device using the following
chain of pointers:

UCB ~ I RP ~ process id en ti f i cat ion f i e 1 d

IOC$CANCELIO confirms that the field (IRP$L PID) contains the
same value as the corresponding field in the process control
block (PCB$L_PID).

• It confirms that the specified channel index number is the
same as the value stored in the I/O request packet channel
index field (IRP$W_CHAN).

• It sets the cancel I/O bit in the
(UCB$V_CANCEL in UCB$W_STS).

UCB status word

Other driver routines, such as the device timeout routine, check the
cancel I/O bit to determine whether to retry the I/O operation or
abort it.

13-5

CODING INITIALIZATION, CANCEL I/O, AND ERROR-LOGGING ROUTINES

13.2.4 Device-Dependent Cancel I/O Routines

Drivers that include their own cancel I/O routines must perform the
first three steps of IOC$CANCELIO listed in Section 13.2.3 to
determine whether the I/O request being processed originates from the
process canceling I/O on a channel. If the three checks succeed, the
cancel routine can proceed in a device-specific manner.

13.3 ERROR LOGGING ROUTINES

The operating system supplies two routines that drivers can call to
allocate and fill error-logging buffers after a device error or
timeout occurs:

e ERL$DEVICERR

• ERL$DEVICTMO

Both routines expect to find the address of the device
block Jn RS. Drivers must call them at fork IPL.
performs the following steps:

unit control
Each routine

• It allocates an error log buffer of the length specified in
the device's driver dispatch table. It uses the following
chain of pointers to locate the buffer length:

UCB --- DDB -..... DDT -... length of error log buffer

• It loads into the buffer fields from the unit control block,
the I/O request packet, and the device data block.

• It loads the address of the error message buffer location
where device register contents are to be stored.

• It calls a register dump routine in the device driver. It
locates the routine using the following chain of pointers:

UCB _...... DDB -.- DDT__._ register dump routine address

Specify the address of a register dump routine with the value of the
REGDMP argument to the DDTAB macro invocation.

The register dump routine can expect the following registers to be
loaded:

Register

RO

R4

RS

Content

Address of the buffer

Address of the control/status register if the
driver used the WFIKPCH macro to wait for an
interrupt or timeout

Address of the device's unit control block

The dump routine should save and restore R3 through Rll if the routine
requires their use.

13-6

CODING INITIALIZATION, CANCEL I/O, AND ERROR-LOGGING ROUTINES

The driver register dump routine should fill the buffer as follows:

• Write a longword value representing the number of device
registers to be written into the buffer

• Move device register longword values into the buffer following
the register count longword

The routine must store the contents of each device register to be
logged in a longword in the buffer. For example, the following
instruction stores the contents of the device register:

MOVZWL TD_STATUS(R4), (RO)+

A driver that supports error-logging must satisfy the following
prerequisites:

• It must use the error log extension to the unit control block.

• It must ensure that DDT$W ERRORBUF is
accommodate EMB$L DV REGSAV+4 plus one
register to be dumped-

large enough to
longword for each

• Its driver prologue table must set the device characteristic
DEV$V ELG in UCB$ DEVCHAR. - -

13-7

CHAPTER 14

LOADING A DEVICE DRIVER

You can load a user-written device driver any time after the system is
bootstrapped. If the driver contains an error and the error does not
crash or corrupt the operating system, you can correct the e~ror and
reload a new version of the driver.

14.1 IN PREPARATION FOR LOADING

To prepare a device driver for loading, take the following steps:

• Write the device driver in one or more source files. If the
driver comprises multiple source files, you must insert a
.PSECT directive before any generated code in all files except
the file that contains the DPTAB and DDTAB macro invocations.
The following .PSECT must be used:

.PSECT $$$115_DRIVER,LONG

If a single source file contains the driver, you must not
specify any .PSECT directives. The declaration of the DPTAB
and DDTAB macros establish driver program sections correctly.

• Assemble the source file(s) with the system macro library
(SYS$LIBRARY:LIB.MLB). For example:

$ MACRO MYDRIVER.MAR+SYSSLIBRARY:LIB+MLB/LIBRARY

• Link the object file with the VAX/VMS global symbol table,
which is located in SYS$SYSTEM and called SYS.STB. If the
driver consists of multiple source files, you must specify the
file that contains the driver prologue table as the first file
in the list. The linker options file must contain a BASE
statement specifying a zero base for the executable image.
The following is an example of the creation of the options
file and the LINK command used to link a driver:

S CREATE MYDRIVER~OPT
BASE::::O
(CTRL/Z)

$LINK /NOTRACE MYDRIVER1C,MYDRIVER2~ ••• J,
MYDRIVER+OPT/OPTIONS,
SYSSSYSTEM:SYS.STB/SELECTIVE_SEARCH

The resulting image must consist of a single image section.
The linker will report that the image has no transfer address.

14-1

LOADING A DEVICE DRIVER

14.2 LOADING THE DRIVER

Once the driver has linked correctly, it is ready to be loaded. To
load the driver into system virtual memory, run the SYSGEN utility
from the system manager's account or from an account having Change
Mode to Kernel and Change Mode to Executive privileges using the
following command:

$ RUN SYS$SYSTEM:SYSGEN

SYSGEN responds with a prompt and waits for further input:

SYSGEN>

The VAX/VMS System Manager's Guide describes the full set of SYSGEN
commands. The sections thaE--follow describe those commands SYSGEN
uses to load drivers:

• LOAD (requires Change Mode to Kernel (CMKRNL) and Change Mode
to Executive (CMEXEC) privileges)

• CONNECT (requires CMKRNL and CMEXEC privileges)

• RELOAD (requires CMKRNL and CMEXEC privileges)

e SHOW/DEVICE (requires CMEXEC privilege)

In addition, you should understand SYSGEN's automatic configuration
feature, as described in Section 14.3.

14.2.1 LOAD Command

To load a device driver and its data base, issue the LOAD command. If
the controller has only a single unit attached to it, issue the
CONNECT command.

Fo~mat

LOAD driver-file-spec

driver-file-spec
The file specification of the image file containing the I/O
driver to be loaded. If the driver file specification is the
same as the driver name of a loaded driver, the LOAD command has
no effect.

SYS$SYSTEM is the default device and directory name. EXE is the
default file type.

Description

The driver loading procedure compares the name field in the
driver prologue table of the driver being loaded with the name
field in the driver prologue tables of the drivers already loaded
into system memory. If no match is found, the procedure loads
the new driver into contiguous pages of nonpaged pool and links
the driver prologue table into the DPT linked list. If the
procedure finds a match, it takes no further action.

Example

SYSGEN> LOAD CRDRIVER

This command loads the card reader driver.

14-2

LOADING A DEVICE DRIVER

14.2.2 CONNECT Command

The CONNECT command creates I/O data base control blocks for devices.
The CONNECT command can also load the driver if it has not been
previously loaded into system memory.

Format

CONNECT device-name required-quals [optional-quals]

Command Qualifiers

/ADAPTER=tr-value
/CSR=csr-address
/VECTOR=vector-address
/DRIVERNAME=driver-name (optional)
/NUMVEC=number (optional)
/ADPUNIT=unit-number
/MAXUNITS=number

Parameter

device-name
The name of the device for which control blocks are to be added
to the I/O data base. Specify the device name in the following
format:

devcu

dev = device code (up to 9 alphabetic characters)
c controller designation (alphabetic)
u unit number (in the range of 0 through 7)

For example, LPAO specifies the line printer (dev) on controller
A (c) at unit 0 (u). When specifying the device name, do not
follow it with a colon (:).

The device code and controller specification must be a unique and
accurate device name and controller combination. If control
blocks for the specified device/controller already exist, the
driver loading procedure does not create any control blocks. If
the device/controller name does not accurately name a device, the
procedure will create spurious control blocks.

Required Qualifiers

/ADAPTER=tr-value
The number of the SB! arbitration priority to which the UNIBUS or
MASSBUS adapter is attached. The tr-value must be in the range
of O through 15. All numeric values are interpreted as decimal
unless they are preceded by a radix descriptor (%0 or %X).

/CSR=csr-address
The UNIBUS address of the control/status register for the device.
All numeric values are interpreted as decimal unless they are
preceded by a radix descriptor (%0 or %X).

/VECTOR=vector-address
The UNIBUS address of the interrupt vector for the device. All
numeric values are interpreted as decimal unless they are
preceded by a radix descriptor (%0 or %X). Section 14.3 provides
additional information on vector and CSR assignments.

14-3

Optional Qualifiers

/NUMVEC=number

LOADING A DEVICE DRIVER

The number of interrupt vectors for the device. If
qualitier is omitted, the number of vectors defaults to 1.
number specified by the /VECTOR qualifier is the address of
lowest vector. Vectors must be contiguous.

/DRIVERNAME=driver-name

this
The
the

The name of the driver as recorded in the driver prologue table.
If the driver is not loaded when the CONNECT command is issued,
CONNECT assumes the driver name is also the file name of an
executable image that is located in SYSSSYSTEM and contains a
driver for the device type.

Consult the SYSGEN device table in Section 14.3.2 for the driver
names of the devices supported by VAX/VMS.

/ADPUNIT=unit-number
The unit number of a device on the MASSBUS adapter. The unit
number for a disk drive is the number of the plug on the drive.
For magnetic tape drives, the unit number corresponds to the tape
controller number.

/MAXUNITS=number
The maximum number of units attached to the system. This number
determines the size of the UCB list appended to the interrupt
dispatch block. If specified, this value overrides the maximum
number of units designated in the driver prologue table. The
maximum number of units is stored in the IDB field IDB$W UNITS.

Description

The I/O data base contains a linked list of driver prologue
tables. The CONNECT command looks for a device driver by
comparing the specified or defaulted name with the driver names
in the driver prologue tables. If the driver is not present, the
driver loading procedure opens the driver image and loads the
file contents as it does for the LOAD command; see Section
14.2.1.

Then the loading procedure examines the I/O data base for control
blocks that support the specified device. The procedure creates
the following control blocks if they do not exist:

• Device data block -- the procedure creates a device data block
for the generic device name/controller string specified if
such a device data block does not exist.

When the procedure creates a device data block
device, it also creates a channel request
interrupt data block.

for a
block

UNIBUS
and an

• Unit control block -- the procedure creates a unit control
block if it has just created a device data block or if a unit
control block for the specified device does not exist.

After creating the control blocks, the driver loading procedure
initializes fields in the control blocks according to the driver
prologue table. Since the control blocks describe devices new to
the system, the procedure writes fields specified in both the
initialization and reinitialization portions of the driver
prologue table.

14-4

LOADING A DEVICE DRIVER

If the driver loading procedure just created a channel request
block and the driver specifies device unit and/or controller
initialization routine addresses in DPT STORE macro invocations
(CRB$L INTD+VEC$L INITIAL and CRB$L lNTD+VEC$L UNITINIT), the
driver-loading procedure calls these initialization routines for
units and controllers represented by newly created control
blocks. The procedure raises IPL to 31 before calling the
routines so that initialization is not interrupted.

You should specify CONNECT commands with extreme caution. The
driver and data base loading procedure does little error
checking. If the user specifies a vector that has already been
defined, the procedure rejects the CONNECT command. However, if
the CONNECT command specifies an incorrect CSR address, the I/O
data base is apt to become corrupted. The result is a system
failure.

If the CONNECT command specifies an existing controller and a new
device unit, the procedure creates a unit control block for the
new unit and calls a unit initialization routine for the unit.

A CONNECT command that specifies a device name with a new
controller causes the driver loading procedure to create a device
data block, channel request block, interrupt data block, and unit
control block and to call controller and unit initialization
routines.

Example

SYSGEN> CONNECT LPAO /ADAPTER=3 /CSR=%0777514 /VECTOR=%0200

This command loads the driver LPDRIVER, if it is not already
loaded, and creates the device data base (DDB, CRB, IDB, and UCB)
needed to describe LPAO.

14.2.3 RELOAD Command

The RELOAD command loads a driver and
version of that driver. The RELOAD
functions of LOAD, except that it loads
whether it is already loaded.

removes a previously-loaded
command provides all of the
the driver regardless of

If any of the units associated with the driver are busy, the driver
cannot be reloaded; SYSGEN issues an error message.

Format

RELOAD driver-file-spec

driver-file-spec
The file specification of the image file containing the driver to
be loaded.

Description

To reload the driver, the driver loading procedure compares the
name field in the driver prologue table of the driver being
loaded with the name field in the driver prologue tables of
drivers already loaded into system memory. If no match is found,
RELOAD loads the driver as described in Section 14.2.1.

14-5

LOADING A DEVICE DRIVER

If the procedure finds a match, it first confirms that the
current driver can be replaced by the new driver in the following
steps:

• Confirms that the DPTSM NOUNLOAD flag in the driver prologue
table of the current drTver is not set

• Calls the current driver's unload routine, if one exists, and
confirms that the returned status is a success code

• Ensures that no devices that use the current driver are busy,
as indicated by the UCB$V BSY bit set in UCB$W STS

If these checks succeed, the procedure replaces the current
driver with the new driver. The procedure loads the new driver
into contiguous pages of nonpaged system memory and searches the
I/O data base for references to the driver. If any device data
block refers to the driver being reloaded, the procedure
reinitializes fields of the device and controller control blocks
according to the reinitialization instructions in the new
driver's prologue table; Chapter 7 describes the DPT
reinitiBlization fields.

Fields that must be reinitialized when a driver is reloaded
include those that contain relative addresses within the driver:

• Addresses of driver interrupt service routines

• Addresses of device unit and
routines

controller initialization

• Address of the driver dispatch table

Once the loading procedure has reinitialized fields, it calls the
driver controller initialization routine. (It does not call the
unit initialization routine.) The procedure then removes the
newly replaced driver from the DPT list and deallocates the
nonpaged system space the old driver occupied. Finally, the
loading procedure links the address of the new driver prologue
table into the DPT list.

14.2.4 SHOW/DEVICE

The SHOW/DEVICE command displays the location of a driver and the
data base describing its devices in system virtual memory.
command requires Change Mode to Executive privilege; Change Mode
Kernel will not suffice.

Format

SHOW/DEVICE [=driver-name]

driver-name

I/O
This

to

Name of the driver for which the information is to be displayed.
If a driver name is not specified, the command displays
information about all drivers and devices known to the system.

14-n

LOADING A DEVICE DRIVER

Description

The SHOW/DEVICE command displays the following information:

• Name of the driver

• The driver's starting and ending virtual addresses; the
starting address is the address of the driver prologue table

• The generic device/controller name associated with the driver

• The addresses of the device data block, channel request block,
and interrupt data block for the generic device/controller
supported by the driver

• The unit numbers and UCB addresses for each device unit
associated with the driver

Example

SYSGEN> SHOW/DEVICE=TMDRIVER

__ DRIVER ___ START ____ END ___ DEV ___ DDB ______ CRB ______ IDB _______ UNIT ___ UCB

TMDRIVER 8009DFOO 8009F020

14.3 AUTOCONFIGURATION

MTA 800BA660 800BA6CO 800BA360
0 BOO<;>FO~.~O

:t. 8009FOCO

The standard VAX/VMS system start-up file runs the SYSGEN utility to
create and initialize an I/O data base that describes all supported
DIGITAL peripherals in the configuration. The following command
requests the SYSGEN utility to prepare a data base for all supported
DIGITAL devices attached to every UNIBUS and MASSBUS:

SYSGEN> AUTOCONFIGURE ALL

To configure devices attached to the UNIBUS, SYSGEN goes through the
steps described in subsequent sections of this chapter.

DIGITAL-supported devices are attached to the UNIBUS according to a
table found in Appendix A of the PDP-11 Peripherals __ H9_!!~~<)Qk. The
basic rules follow:

• A device of type A is always at a fixed and predefined CSR
address; the device always interrupts at a fixed and
predefined vector address; only one example of device A can
be configured in each system.

• A device of type B is identical to type A except that l
through n examples can be configured in a single system.
Examples 2 through n are also located at fixed and predefined
CSRs and vector addresses.

• Devices of type C (1 through n of them) are always at fixed
and predefined CSR addresses; however, the interrupt vector
addresses vary according to what other devices are present on
the system.

• Devices of type D (1 through n of them) are at CSR addresses
and vector addresses that vary according to what other devices
are present on the system.

14-7

LOADING A DEVICE DRIVER

The CSR and vector addresses that vary are called floating addresses.
The devices must be located in floating CSR and vector space according
to the order in which the devices appear in the SYSGEN device table.
This table, shown in Section 14.3.2, lists all the type A and type B
devices supported by VAX/VMS. It also lists the type C and type D
devices that are recognized by SYSGEN's autoconfiguration procedure.

The base of floating vector space is 300 (octal).
floating CSR space is 760010 (octal).

14.3.1 SYSGEN's Autoconfiguration

The base of

The SYSGEN utility automatically configures a UNIBUS adapter as
follows:

• It initializes the base of floating space to 300 (octal) and
760010 (octal) for vectors and CSRs, respectively.

• It tests fixed and floating CSR address space for all known
DIGITAL devices.

• When a device is found at a CSR, SYSGEN reserves floating CSR
and vector space for that device, if necessary. Then, if the
device is supported by VAX/VMS, SYSGEN creates and initializes
an I/O data base for that supported device and loads the
driver for that device.

The SYSGEN utility uses a table that lists the characteristics of all
DIGITAL devices. This table indicates the following information for
each device type:

• The device controller name

• The name of the device driver, and whether it is supported

• The name of the device recognized by VAX/VMS

• The interrupt vector

• The number of interrupt vectors per controller

• The ~ddress of the first device register for each controller
recognized by SYSGEN (the first register is usually, but not
always, the CSR)

• The number of registers per controller

14-8

I-'
~

I
\.0

14.3.2 The SYSGEN Device Table

Currently, the SYSGEN device table lists the following devices:

Name Vector

CRll 230

RK611 210

LPll 200
170
174
270
274

RL211 160
(controller A)

TSll 224
(controller A)

RX211 264

DCll float

Vector
IVectors Alignment

2 4

CSR/Rank

777160

777440

777514
764004
764014
764024
764034

774400

772520

777170

774000
774010
774020
774030

(maximum of
32 units)

Driver VAX/VMS
tRegisters Support Device Code

CRDRIVER CR

DMDRIVER DM

LPDRIVER LP t""'
0
>
0
1-4
z
~

>
0 DLDRIVER DL tlJ
<
1-4
(")

TSDRIVER MS tlJ

0
:0
1-4

DYDRIVER DY <
tlJ
:0

no

Vector
Name Vector #Vectors Alignment

KLll or float 2 4
DLllA/B
(controllers
B,C, •••)

DNll float 1 4

~

~

I
~

0

DMBll float 1 4

DRllA or float 2 8
DRllC

CSR/Rank

776500
776510
776520

. .
(maximum of
lo units)

775200
775210
775220

. .
(maximum of
16 units)

770500
770510
770520

(maximum of
H5 uni ts)

767noo
7Fi7570
767560

(maximum of
16 units)

#Registers
Driver VAX/VMS
Support Device Code

no
no

l:"1
no 0

>
l:j
t-4
z
Cl

>
l:j
CSl
<
1-1
n
CSl

no l:j
::a
1-1

<
CSl
::a

no

Vector Driver VAX/VMS
Name Vector IVectors Alignment CSR/Rank IRegisters Support Device Code

PR611 float 1 8 772600 no
772604
772610 . . .
(maximum of
8 units)

PP611 float 1 8 772700 no
772704

t"' 772710 0
>
0
:z:

(maximum of
Cl

....... 8 units) >

.0. 0
I tliJ

....... < DTll float 2 8 774200 no
774202 n

tliJ
774204

0
:0
<

(maximum of
tll
:0

8 units)

DXll float 2 8 776200 no
776240
776300
776340

DLllC/D/E float 2 8 775610 no
775620
775630 . . .
(maximum of
28 units)

Vector Driver VAX/VMS
Name Vector f:Vectors Alignment CSR/Rank f:Registers Support Device Code

DJll float 2 8 float 4 no

DHll float 2 8 float 8 no

GT40 float 4 8 772000 no
772010

LPSll float 6 8 770400 no

DQll float 2 8 float 4 no
l""

KWllW float 2 8 772400 no 0
)II
0

DVll 1-4
float 2 8 float 4 no :z:

Cl

....... DVPll float 2 8 float 4 no)ill

~ 0 I
DVll tllJ float 3 8 775000 no < ~

775040 1-4
n

775100 t'.llJ

775140 0

" LKll t-t
float 2 8 float 4 no <

t'.llJ

" DMCll float 2 8 float 4 XMDRIVER XM

DZll float 2 8 float 4 DZDRIVER TT

KMCll float 2 8 float 4 no

LPPll float 2 8 float 4 no

VMV21 float 2 8 float 4 no

VMV31 float 2 8 float 8 no

DWR70 float 2 8 float 4 no

Vector Driver VAX/VMS
Name Vector #Vectors Alignment CSR/Rank fRegisters Support Device Code

RLZll float 1 4 float 4 DLDRIVER DL
(controllers
B,C, •••)

TSll float 1 4 772524 TSDRIVER MS
(controllers 772530 I:""'

0
B,C, •••) 772534 >

0
LPAll float 2 8 770460 LADRIVER LA z

Cl
float 2 8 float 8 LADRIVER LA

>
~ KWllC float 2 8 float 4 0
I no 1:13 < w

CSR Position 17, Reserved, 4 Registers n
1:13

RXll float 1 4 float 4 no 0
(RXOl) ::0

<
DRll float 1 4 float

1:13
4 no ::0

DRllB 124 772410
float 1 8 772430 no
float 1 8 float 4 no

LOADING A DEVICE DRIVER

Devices not listed in the SYSGEN device table include:

• Non-DIGITAL-supplied devices with fixed CSR and vector
addresses. These devices have no effect on autoconfiguration.
Customer-built devices should be assigned CSR and vector
addresses beyond the floating address space reserved for
DIGITAL-supplied devices.

• Those DIGITAL-supplied, floating vector devices that the
AUTOCONFIGURE command does not recognize. Use the CONNECT
command to attach these devices to the system.

14.3.3 Floating Vector Address Calculation

To calculate the floating vector address of a device, the SYSGEN
utility rounds the current floating vector base (CFVB) up to the next
valid vector address boundary for the next device in the table.

If a device is present, SYSGEN reserves floating vector space for the
device by computing a new CFVB:

CFVS + (4 * number_of_vectors) -.-CFVB

14.3.4 Floating CSR Address Calculation

To calculate the floating CSR address of a device, SYSGEN rounds the
current floating CSR base (CFCB) up to the next valid floating CSR
address. Floating CSR addresses must fall on an 8-byte boundary.

SYSGEN tests the CSR address (CFCB) for the next device in the device
table by executing a test word (TSTW) instruction on the address and
noting whether there is a response at that address.

If the device is present, SYSGEN reserves floating CSR address space
for the device by computing a new CFCB:

CFCB + bytes_in_register_set ---cFCB

When all devices of a particular type have been located and their
floating CSR space reserved, SYSGEN reserves an extra block of CSR
space to indicate a change to a new device type:

CFCB + 8 --- CFCS

If the device is not present, SYSGEN reserves an extra block of CSR
space to indicate a change to a new device type:

CFCS + 8 __...,. CFCS

14.3.5 Rules for Configuration

The equations described in Sections 14.3.3 and 14.3.4 reduce to the
following maxims:

• Devices with fixed CSR addresses and
must be attached according to
settings.

14-14

fixed vector addresses
the SYSGEN device table

LOADING A DEVICE DRIVER

• Devices with floating CSR or vector addresses must be attached
in the order in which they are listed in the SYSGEN device
table.

• An 8-byte gap must be reserved between each different type of
device that· is located in floating CSR address space.

• An 8-byte gap must be reserved in floating CSR address space
for each device type that has no controller in its
configuration.

• An extra 8-byte gap must be reserved between the KWllC and the
RXll in floating CSR address space.

14.3.6 Example of a UNIBUS Configuration

This example shows the correct configuration for UNIBUS devices with
floating CSR and vector addresses. Controllers flagged with an
asterisk (*) are not supported by DIGITAL.

Controller

1 DNll *

1 DUll *

1 DVll *

1 DMCll

2 DZlls

2 TSlls

3 DRllBs*

1 customer
device

Vector(s)

300

310

320

340

350
360

224
370

124
400
410

420
(or higher)

CSR (first register)

775200

760040

775000

760100

760120
760130

772520
772524

772410 (CSR is third register)
772430
760260

760320
(or higher)

When assigning floating vector addresses and registers to devices not
supplied by DIGITAL, be sure to leave a qenerous gap between these
addresses and those of DIGITAL devices, since subsequent VAX/VMS
maintenance updates may add new devices to the SYSGEN device table.

14-15

CHAPTER 15

DEBUGGING A DEVICE DRIVER

DELTA and XDELTA are debugging tools that can be used to monitor the
execution of user programs and the VAX/VMS operating system. When you
link DELTA with a user image that runs in a nonprivileged process,
DELTA is a user-mode debugging tool. When run in a privileged
process, however, DELTA acts as a multimode debugger; it allows you
to debug in user mode or to change to kernel mode for debugging.
DELTA does not support debugging at elevated IPLs.

XDELTA is syntactically identical to DELTA but also allows you to
debug code that executes at an elevated IPL. XDELTA is used for
stand-alone debugging of driver code and the executive.

In the command syntaxes and dialogues contained in this chapter, red
ink indicates the commands typed by the user and black ink indicates
the system prompts and responses.

15.1 BOOTSTRAPPING THE SYSTEM WITH XDELTA

Under VAX/VMS, drivers are part of the operating system. You normally
bootstrap the system with two boot flags set to allow you to debug
with XDELTA. One flag causes the bootstrapping procedure to include
XDELTA in the system. The other boot 'flag indicates a stop at a
breakpoint in VAX/VMS initialization. Execution of the breakpoint
instruction causes control to transfer to a fault handler located in
XDELTA.

In addition to the normal system bootstrap command files, the VAX/VMS
console floppy diskette contains two command files that bootstrap the
system with XDELTA:

• DMAXDT

• DBAXDT

To bootstrap the system with XDELTA, follow the procedures in the
VAX-11 Software Installation Guide with two exceptions:

• Deposit the unit number of the device in R3.

• Specify one of the command files listed above instead of the
command files listed in the installation guide.

The dialogue in Figure 15-1 is an example of bootstrapping the system
with XDELTA.

15-1

DEBUGGING A DEVICE DRIVER

>>>DEPOSIT R3 0

>>>@DMAXDT

SYSBOOT> USE 16USER+PAR

SYSBOOT> SET BUGREBOOT 0

SYSBOOT> CONTINUE

Deposit the unit number in R3.

Boot the system from DMAO. The
procedure boots the processor and
prompts the user from SYSBOOT.

Specify a parameter file for the
system.

Request an XDELTA breakpoint after a
system bugcheck.

Continue with the booting operation.

Figure 15-1 Bootstrapping the System with XDELTA

After being bootstrapped, the system displays its welcoming message
and halts in XDELTA, as follows:

1 BRK AT nnnnnnnn

XDELTA is waiting for input. (XDELTA never issues explicit prompts.)
Usually, you proceed from this point with the following command:

All of the XDELTA commands are described in Section 15.10.

If the operating system halts with a fatal bugcheck, the system prints
the bugcheck information on the console terminal. Then, because the
system parameter BUGREBOOT was set to zero, XDELTA prompts. Bugcheck
information consists of the following:

• Type of bugcheck

• Register values

• Dump of one or more stacks

PC and stack content indicate how an experimental driver crashed the
system. You can then examine the system state further by issuing
XDELTA commands.

15.2 LOADING THE DRIVER

Once the system is running, you can log in to the system as the system
manager and load the experimental driver.

To load the driver, run the SYSGEN utility and issue the appropriate
LOAD and CONNECT commands. Figure 15-2 provides a sample dialogue.

The first SHOW command in Figure 15-2 causes the SYSGEN utility to
display the locat~on of the device driver in system memory. You then
define the device to the operating system. The second SHOW command
causes SYSGEN to display the driver's location and the addresses of
the device's DDB, CRB, IDB, and UCB.

15-2

DEBUGGING A DEVICE DRIVER

S RUN SYSSSYSTEM:SYSGEN
SYSGEN> LOAD DMAO:[YOUR+DIRECTORYJYRDRIVER.EXE

SYSGEN> SHOW /DEVICE=YRDRIVER
__ Driver _____ start ____ End ____ Dev ___ DDB ______ CRB ______ JDB _____ Unit __ uce ___ _
YRDRIVER 80060E50 80061070

SYSGEN> CONNECT YR /ADAP=3/VEC=%0274/CSR=%0776240

SYSGEN> SHOW /DEVICE=YRDRIVER
__ Driver _____ Start ____ End ____ Dev ___ DDB ______ CRB ______ ID8 _____ Unit __ UCB ___ _
YRDRIVER 80060E50 80061070

YRA 8005FDCO 80060870 8005FEOO
0 80060880

SYSGEN> EXIT

Figure 15-2 Loading a Driver

15.3 INSERTING BREAKPOINTS IN THE SOURCE CODE

The SYSGEN command CONNECT calls controller initialization and unit
initialization routines. To begin debugging the driver, you should
ensure that the kernel mode debugging utility XDELTA gains control of
the driver before these routines execute. This is accomplished by
placing calls to the special system routine INI$BRK within the source
code of either the controller or unit initialization routines. To
call INI$BRK, give the following instruction:

The INI$BRK routine contains two instructions:

BPT
RSB

When the processor executes the BPT instruction, XDELTA gains control
and reports the address of the breakpoint:

1 BRK AT nnnnnnnn

You can use INI$BRK as a debugging tool and place calls to it within
any part of the driver source code.

To determine the last driver PC before the breakpoint, examine the
kernel stack. The stack register is register RE (hexadecimal format):

RE/address /address

Display RE to find the address of the current top of stack. Another
display command (/) reveals the contents of the stack top, that is,
the return address to the driver that called INI$BRK.

15-3

DEBUGGING A DEVICE DRIVER

15.4 CALCULATING THE BASE OF DRIVER CODE

Before you debug the driver, it is a good idea to calculate the base
address of driver code, as follows:

• Run the SYSGEN utility and issue the SHOW/DEVICE command. The
resulting display lists the location in nonpaged pool at which
SYSGEN loaded the driver.

• Consult the load map for the driver (obtained at driver link
time). The driver resides in two program sections (PSECTs):

$$$105 PROLOGUE

$$$115 DRIVER

driver prologue table

driver code

The locations given in the driver code listing are offsets
from $$$115 DRIVER. Thus, you can calculate the base address
of the driver by adding the address at which the driver was
loaded to the offset associated with the PSECT $$$115 DRIVER
shown in the map.

If you do not have the load map, consult the driver prologue table in
the driver listing. Look for the address of DPT STORE END, which
generates a 2-byte entry that terminates the DPT. T~ get- the base
address of driver code, add the address of DPT STORE END + 2 to the
address at which the driver was loaded. You -can set an XDELTA
relocation register to the base of driver code; Section 15.7
describes this procedure.

15.5 REQUESTING AN XDELTA SOFTWARE INTERRUPT

Once the controller and unit initialization routines complete
execution, you will need to set breakpoints in order to debug the
driver. You can set a breakpoint in the driver source code by
inserting calls to INI$BRK, as described in Section 15.3. You can
also invoke XDELTA to set breakpoints interactively by requesting an
XDELTA software interrupt. At the console termirial, issue the
following commands:

$ (G_Tf!b/PJ

>>>HALT
>>>DEPOSIT/I 14 5
>>>CONTINUE

The above proaedure issues a software interrupt to the processor at
IPL 5. The IPL 5 interrupt service routine handles the interrupt by
calling the routine INI$BRK, which in turn executes the first XDELTA
breakpoint. XDELTA then issues the message:

1 BRK AT nnnnnnnn

15-4

DEBUGGING A DEVICE DRIVER

15.6 LOOKING AT THE VECTOR JUMP TABLE

To gain experience in looking around the I/O data base, you may wish
to look for the address of the location in the channel request block
that contains a JSB instruction to the driver's interrupt service
routine. You can do this at a controller initialization breakpoint
because one of the inputs is the IDB address:

RS/IDB-address QtC/ADP-address
Qf 10/vector-table-address
Qtvector-address-in-hex/address-of-JSB-instruction-in-CRB
Q/ JSB-instruction

Finding the driver interrupt service routine address at the expected
vector does not guarantee that an interrupt from the device will
dispatch to the driver's interrupt service routine. If the device's
physical vector is set to some other address, an interrupt from the
device may dispatch to some other interrupt service routine, or
dispatch to an unassigned vector.

See the SYSGEN device table shown in Chapter 14 for a list of vectors.
Consult field service for help with any problem similar to the one
described above.

15.7 SETTING AN XDELTA BASE REGISTER

During a driver debugging session, you can use an XDELTA relocation
register as a base from which to examine driver code and set
breakpoints within the driver. Use one of the methods outlined in
Section 15.3 to determine the base address of driver code, then set a
relocation register by issuing the following command:

1 BRK AT nnnnnnnn
driver-base-address,o;x

This command sets relocation register XO to ~he base of driver code.
Now you can examine offsets into the code using XO as a base:

XO + of fset/nnnnnnnn

To set breakpoints in driver code, give the command:

XO + offset;B

To display a driver instruction, add the instruction's offset to the
base register, for example:

XOtlC/instruction o;B

The last XDELTA command sets a breakpoint at the displayed location.
See Section 15.10 for a detailed discussion of XDELTA commands.

15.8 DESTROYING REGISTER CONTENTS

Since much driver code calls VAX/VMS I/O routines, you must be careful
to anticipate the register usage of these routines. Most VAX/VMS
common I/O support routines use RO through R3 freely. A frequent
driver bug is to load a value into R3 and expect to find it intact
after a call to allocate or load UNIBUS adapter resources.

15-5

DEBUGGING A DEVICE DRIVER

Other VAX/VMS I/O routines write into R4. In some cases, the use of
R4 is obvious; for example, IOC$REQSCHANL writes the device's CRB
address into R4. In other cases, you might not anticipate the use of
R4.

For example, EXE$IOFORK saves the calling code's R4 in a fork block,
and then writes the device's IPL into R4. Since the normal flow of
events is that an interrupt service routine restores a driver with a
JSB instruction and the driver then calls EXE$IOFORK which returns to
the interrupt service routine, the instructions following the JSB in
the interrupt service routine can only assume RS is still untouched.
The coding sequence is as follows:

Restore R3-R4.
JSB @UCB$L_FPC(R5) Restore the driver process.

Between these instructions, the interrupt service routine can make no
assumptions about the contents of RO through R4

POPR
REI

#MA<RO,Rl,R2,R3,R4,R5>

15.9 EXAMINING UCB, IRP, AND PSL

Restore interrupt registers.
Return from the interrupt.

In addition to using XDELTA to debug drivers, you also can examine the
contents of the unit control block and the associated I/O request
packet.

It also is useful to examine the contents of the PSL at the time of a
system failure. The PSL, for example, indicates the IPL at the time.
When the system fails it prints the PSL and other register contents on
the console terminal.

While the system is running, the following command can be used to
examine the PSL in XDELTA:

RF+4/

That is, the PSL location is stored in the longword following the PC.

15.10 XDELTA COMMANDS

Table 15-1 summarizes XDELTA commands.
detail the commands.

15-n

The sections that follow

DEBUGGING A DEVICE DRIVER

Table 15-1
XDELTA Command Summary

.-----------..-------------·--·-----------------------~

Command

+

space
*
@

%

Q
Rn
Xn
Pn
G
H

s
;P
;B
;E
;G
;X
[B
[W
[L

"
'string'

Function

Open location
Close current location
Close cu~rent location; open next
Open location specified by current value
Display previous location
Display value of expression; set Q

Add
Subtract
Add
Multiply
Shift
Divide
Field separator
Last quantity displayed
Register n
Base register n
Processor register n
Add AX80000000 to subsequent or preceding value
Add AX7FFEOOOO to subsequent or preceding value
Current location

Execute one instruction
Proceed from breakpoint
Set/clear/display breakpoint
Execute command string
Go to location and proceed
Set base register
Set byte mode
Set word mode
Set longword mode
Set ASCII mode
Deposit string at current dot, autoincrementing dot.
A single quote terminates the string; any IBITJs and
t:rn s typed will be stored.

15.10.1 Values and Expressions

All numeric values are interpreted in hexadecimal radix. Expressions
are strings of alternating values and binary operators, where the
first and last items in the string are always values, as in the
following example:

G4A~32 + 24 ·-· t

Trailing operators are ignored.

15-7

DEBUGGING A DEVICE DRIVER

15.10.2 Special Symbols

XDELTA defines the following special symbols:

Q

xo_....:xF

RO__....RF

PO---Pnn

RF+4

G

H

15.10.3 Operators

Current location;
operations

set by slash (/) and

Last quantity displayed

Base registers; used for remembering values

General register names

Internal processor registers

PSL

AX80000000; prefix for system space addresses;
for example, G2E is equivalent to AX8000002E

AX7FFEOOOO; prefix for control region prefix; for
example, H2E is equivalent to AX7FFE002E

XDELTA recognizes the following operators:

+ or space add

negate, subtract

* multiply

% divide

@ shift (arithmetic)

Evaluation of expressions is left to right with no precedence.

15.10.4 Open and Display Command

Syntax

address_expression/old_value [new_value_expression] ~

You can type an address expression followed by a slash (/) character.
XDELTA displays the contents of the location (old value above)
followed by a space character. You can change the value at the
location by typing a new value followed by return (~). If you
type a carriage return not preceded by a value, the old contents
remain unchanged.

The display and the value deposited default to longword hexadecimal
values. The length can be changed to byte or word with the set mode
commands.

15-8

DEBUGGING A DEVICE DRIVER

A slash preceded by a null address expression uses the displayed value
(Q) as the address value. This feature is convenient for following
address linked chains.

address_expression/old value /old value /old value

15.10.5 Close and Display Next Location Command

Syntax

Press the line feed key (C®) • XDELTA closes the current open
location, then opens and displays the value in the next location
according to the current display mode. Next location is calculated to
be the current location counter increased by the current data width
(byte, word, or longword).

15.10.6 Display Range Command

Syntax

start_addr_expression,end_addr_expression/contents_of_stnrt

Type two address expressions separated by a comma and followed by a
slash (/) character. XDELTA displays the range of addresses
specified; the location counter is increased by the current display
width; the contents of each location is displayed in the current data
type.

15.10.7 Indirect Command

Syntax

Press the CT@ key. XDELTA uses the result of the last display
operation (Q) as an address and displays the contents of that address
according to the current display width and data type.

15.10.8 Display Previous Location Command

Syntax

(§9

Press the @9 key. XDELTA decreases the location counter by the
current display width, and displays the contents of the resulting
address according to the current display width and data type.

15-9

DEBUGGING A DEVICE DRIVER

15.10.9 Show Value Command

Syntax

expression=value_of_expression

Type an expression followed by an equal sign (=). The expression can
be composed of a series of values and operators from the set of
operators listed in the command summary. XDELTA shows the value of
the expression according to the current display data type. The last
quantity (Q) is set to the value of the computed expression.

15.10.10 Step Instruction Command

Syntax

s

Type an s. XDELTA causes one instruction to be executed and then
displays the address of the next instruction and its contents at the
current display width and data type.

15.10.11 Setting Breakpoints

Syntax

address-expression; B ~!

Specify an address followed by a semicolon (;) the letter B, and
return (~). XDELTA sets a breakpoint at the specified location
and assigns it the first available breakpoint number.

Alternate syntax:

address-expression,n;B (fl@

Specify an address, followed by a comma, a single digit between 2 and
8, a semicolon (;), the letter B, and return (~) • XDELTA sets a
breakpoint at the specified location and assigns it the specified
breakpoint number. Breakpoint 1 is reserved for INI$BRK.

15.10.12 Clearing Breakpoints

Syntax

O,n;B (f!;j)

Type zero (0), followed by a comma, a single digit between 2 and 8, a
semicolon (;), the letter B, and return (~). XDELTA clears the
specified breakpoint. Never clear breakpoint 1.

15-10

DEBUGGING A DEVICE DRIVER

15.10.13 Displaying Breakpoint List

Syntax

;B

Type a semicolon (;) followed by the
current setting of all breakpoints.
displays the following information:

letter
For

B. XDELTA shows the
each breakpoint, XDELTA

• Breakpoint number

• Address at which the breakpoint is set

• Display address (for co~plex breakpoints;
15.10.19)

• Command string address (for complex breakpoints)

15.10.14 Setting Base Registers

Syntax

address-expression,n;X

see Section

Type an expression followed by a comma (,),a single digit between O
and D (hexadecimal), a semicolon (;), and the letter X. XDELTA
assigns the specified expression to the base register selected by n.
Base registers E and F are preassigned as described in Section
15.10.20.

XDELTA confirms that the base register is set by displaying the
expression deposited in the base register.

15.10.15 Proceeding from Breakpoints

Syntax

; p IBD)

Type a semicolon (;) followed by the letter P and return
XDELTA continues executing at the current PC.

15.10.16 Loading PC and Continuing

Syntax

address_expression;G IBru

rui) •

Type an address, a semicolon, and G and then press return. XDELTA
loads the address into PC and continues executing at the new PC.

15-11

DEBUGGING A DEVICE DRIVER

15.10.17 Display Mode Control

Syntax

[B
[W
[L
II

Byte width
Word width
Longword width
ASCII display (using current width)

Type a left square bracket ([) followed by one of the letters B, W, or
L to change the current display width to byte, word, or longword
respectively. The default value is longword. The setting remains in
effect until another display mode control command is given. For
example, the following command displays the least significant byte
contained at the specified address and deposits the new value to that
byte only.

address_expression [B/ old value new value ~

You can display contents of memory locations in ASCII characters by
typing an address expression followed by a double quotation mark (").

address_expression" old_value in_ASCII

A line feed (@) command displays the next location in ASCII.

The display mode remains set to
command. At this point, the
Width remains unchanged.

ASCII until the next slash (/)
display mode reverts to hexadecimal.

15.10.18 The Execute String Command

Syntax

address_expression;E ~

Type an address expression followed by a semicolon, the letter E, and
C8fiJ This command executes the ASCII commands found at the
specified address expression. If you terminate the ASCII commands
with a semicolon followed by the letter P, XDELTA will proceed with
program execution. If you terminate the string with null (1 byte of
O), XDELTA waits for a new command.

To create command strings, open the address of the start of the string
and deposit ASCII text as follows:

address/old-contents 'XDELTA-command' ~

You can use any XDELTA command, including ~ @ , and CT@

To terminate the string with a null, follow the above command with:

• /old-contents O IBD)

You can deposit command strings into nonpaged system patch space. To
determine the size of patch space and its starting address, locate the
symbol PAT$A NONPGD in the system map file (SYS$SYSTEM:SYS.MAP). This
symbol contains a descriptor of the address and size of patch space
remaining in the system, as shown below:

PAT$A NONPGD: :

.LONG

.LONG
size-in-bytes
patch-space-start-address

15-12

DEBUGGING A DEVICE DRIVER

You can also preassemble command strings with your experimental
driver. Locate the addresses of these strings as you would any other
address within your driver.

15.10.19 Setting Complex Breakpoints

Syntax

address-expression,n,display_address-expression,cornmand string address;B

Type an address expression, followed by a comma, a single digit
between 2 and 8, another address expression, and the address of a
command string. The first address is the breakpoint address; the
digit equals the breakpoint number. XDELTA shows the contents of the
display address in the current display mode when the breakpoint is
reached. The command string address specified in the last command
parameter executes after automatic display.

15.10.20 XDELTA Stored Commands

XDELTA contains two predefined command strings whose addresses are
contained in base registers XE and XF. You can use these commands
during general system debugging as well as driver debugging; they
perform the following functions:

XE Use the value of base reqister XO as a page frame number
and display the PFN data base for that page.

XF Set base register XO to the value (PFN) in RO and perform
the same function as XE

You must initialize the
registers they use (X6-XD).

XEvE .~
XFYE ~

stored commands to set the
Issue the following commands:

Now you can use the stored commands to obtain the
information about a page frame number:

• Specified physical page number (PFN)

• PFN state

• PFN type

• PFN reference count

• PFN backward link/working set list index

• PFN forward link/share count

• Page table entry (PTE) pointer to PFN

• PFN backing store address

• Virtual block number in process swap image

15-13

relocation

followinq

DEBUGGING A DEVICE DRIVER

lS.10.21 Stored Base Registers

XDELTA defines two base registers useful in system debugging: X4 and
XS. Base register X4 corresponds to the global symbol SCH$GL CURPCB.
This symbol contains the address of the current process's software
process control block (PCB). Base register XS corresponds to the
global symbol SCH$GL PCBVEC, which contains the starting address of
the list of PCB slots.

lS .11 DELTA

DELTA is a debugging tool that can be linked with a user program to
examine that program's execution. To link and run DELTA, issue the
following commands:

s LINK program-name
$ DEFINE LIBSDEBUG SYSSLIBRARY:DELTA
S RUN/DEB program-name

DELTA accepts all the XDELTA commands, plus two additional commands
described in the following sections.

lS.11.l The EXIT Command

Syntax

EXIT

Typing EXIT causes DELTA to return control to the command interpreter.

lS.11.2 Examining and Modifying Locations in Process Space

Syntax

process_id:address_expression/old_contents

DELTA displays the current contents at the specified address
expression within the specified process. The modify flag controls the
ability to modify locations opened by this command. To examine the
flag, type:

Modify access is inhibited by default (M=O).

To open, examine and change a location, type the commands:

UM (REl)
process_id:address_expression/old contents new contents (5fil:)

lS.12 DEBUGGING TECHNIQUES

The following sections discuss errors commonly made during debugging
sessions and describe additional debugging techniques.

15-14

DEBUGGING A DEVICE DRIVER

15.12.1 References to System Addresses

References by drivers to system addresses within the executive must
use general addressing (GA) mode. For example, use

JSB GAINI$BRK

15.12.2 Opening Device Registers in XDELTA

References to 16-bit device registers must be word instructions;
references to 8-bit device registers must be byte instructions. These
restrictions apply to the XDELTA EXAMINE command; therefore, be sure
to set the correct mode control before examining device registers.
For example, if the address of the device CSR is in R4, give the
following command:

R4/csr address CW/csr contents

15.12.3 Incorrect References to Device Registers

A common driver error is to access a nonexistent device register or to
access the correct register with an instruction of incorrect word
length. On the VAX-11 processor these references cause a UNIBUS
adapter error interrupt. Normally, the system logs the error and
continues. When debugging a device driver, it is a good idea to catch
this type of driver error as early as possible. Set an XDELTA
breakpoint at the place in the system where it detected a UNIBUS
adapter error interrupt. Follow the steps outlined below:

• Consult the system map file. Read the value of EXESDW780 INT.

• Enter XDELTA and set a breakpoint at the address of
EXE$DW780 INT. when a UNIBUS adapter error interrupt occurs,
XDELTA executes the breakpoint at EXE$DW780 INT.

• Examine the stack as follows:

RE/current stack pointer/saved R2 @
- - saved-R3 @

saved-R4 @
saved-RS @
saved-PC ITTJ
saved-PSL

In many cases, the saved PC on the stack is the address of the
instruction that caused the error. In other cases (for example, when
the offending instruction is executed at IPL 31), the saved PC is not
the address of this instruction but an address some number of
instructions later, when the system actually services the interrupt.

15.12.4 XDELTA and System Failures

Driver bugs can cause the operating system to suspend activity in such
a way that you cannot invoke XDELTA. In this case, the only recourse
is to induce a system failure. Follow the procedure described in the
VAX/VMS System Dump Analyzer Reference Manual; the system will signal
a fatal bugcheck.

15~15

DEBUGGING A DEVICE DRIVER

To gain control in XDELTA following a fatal bugcheck, stop in SYSBOOT
while initializing the system and set the BUGREBOOT parameter to zero.
The system will stop in XDELTA, thereby allowing you to examine the
device unit control block and other driver data to determine the
driver error.

Another, more thorough, way to determine the cause of a system failure
is t-0 leave the BUGREBOOT parameter set to 1, allow the system to
reboot, and then invoke the System Dump Analyzer (SDA) to examine the
condition of the I/O data structures at the time of the fatal
bugcheck. The VAX/VMS System Dump Analyzer Beference~~~!lua! provides
detailed information on fatal bugcheck stack format and how SDA can
help debug a device driver.

15-H

APPENDIX A

THE I/O DATA BASE

The I/O data base is a collection of
nonpaged system memory. This data
information:

control blocks
base provides

allocated in
the following

• I/O request packets describing in-progress I/O requests

• Device characteristics of each device type

• Number and type of each device unit

• Current activity on each device unit

• External entry points to all device drivers

• Entry points for controller and device unit initialization
routines

• Interrupt vector dispatch code

• Addresses of device registers

• UNIBUS adapter map register bit map and data path bit map

Much of this I/O data base is created and used only by VAX/VMS
routines. Other parts are the primary source of data for the device
drivers. The sections that follow identify all I/O data base control
blocks and describe their fields. Field descriptions are in the order
in which they appear in the control blocks. Driver code must consider
fields flagged with asterisks (*) as read-only fields. Fields marked
by "spare" or "unused" are reserved for future use by DIGITAL unless
otherwise specified.

The data structures described in this appendix are defined in source
modules SYSDEF.MDL and STARDEF.MDL.

A.l I/O REQUEST PACKET (IRP)

When a user process queues a valid I/O request by issuing a Queue I/0
Request or Queue I/O Request and Wait system service, the service
(EXE$QIO) creates an I/O request packet. This packet contains a
description of the request and receives the status of the I/O
processing as it proceeds.

The fields of an I/O request packet are illustrated in Figure A-1 and
detailed in Table A-1.

A-1

THE I/O DATA BASE

I RP$L_ IQQF L
!------------- -------·----------------«··----------.:

IRP$L_IQQBL

IRP$8-RMOD* 1 IRP$B~~:;;;~ J IRP$W_SIZE*

IRP$L_PID* /"
---- ------,

IRP$L_AST* lo
1-------···--'·~-···,-·--··----·-----····~---·--~·-·--··--------'

IRP$L_ASTPRM I ~
1-------------- ------·-------·--------------------------'

IRP$L_WIND I 't
!--------------------------------------- ·--------------

IRP$L_UCB* I c,

.... ,____1_R_P_$_s ___ P_~--~---~I--_' R_~_;_s ~--~ ~~-:]=~~~~~~----_,-~~$~~ Fu~_c _____ ~ 'O

IRP$L_IQSB

IRP$W_STS l IRP$W_CHAN*

IRP$L_SVAPTE

IRP$W_BCNT IRP$W_BOFF

IRP$L_IOST1 or IRP$L_MEDIA
1---

IRP$L_IOST2 or IRP$L_MEDIA+4 or IRP$B_CARCON
1------------------------.----

1 1-----------------,.----------------L------------1
I RP$W_OBCNT IRP$W_ABCNT

I RP$L_SEGVBN

IRP$L_DIAGBUF

IRP$L_SEQNUM
!------------------- -----------~

IRP$L_EXTEND

IRP$L_ARB

SPARE

SPARE

Figure A-1 I/O Request Packet

A-2

Field Name

IRP$L IOQFL

IRP$L IOQBL

IRP$W SIZE*

IRP$B TYPE*

IRP$B RMOD*

IRP$L PID*

IRP$L AST*

IRP$ L ASTPRM

THE I/O DATA BASE

Table A-1
Contents of an I/O Request Packet

Contents

I/O queue forward link. EXESINSERTIRP reads and
writes this field when the routine inserts I/O
packets into an I/O request packet wait queue.
IOC$REQCOM reads and writes this field when the
routine dequeues I/O packets from an I/O request
packet wait queue in order to send the packet to
a device driver.

I/O queue backward link. EXESINSERTIRP and
IOC$REQCOM read and write these fields.

Size of the I/O request packet. EXESQIO writes
the symbolic constant, IRP$C LENGTH, into this
field when the routine allocates and fills an
I/O packet.

Type of control block. EXESQIO writes the
symbolic constant DYNSC IRP into this field when
the routine allocates and fills an I/O packet.

Access mode of the process at the time of the
I/O request. EXESQIO obtains the processor
access mode from the PSL and writes the value
into this field.

Process identification of the process that
issued the I/O request. EXESQIO obtains the
process identification from the process control
block and writes the value into this field.

Address of the AST routine specified by the user
in the I/O request. If the process specifies an
AST routine address in the QIO call, EXESQIO
writes the address in this field.

During I/O postprocessing, the kernel mode AST
routine queues a user mode AST to the requesting
process if this field contains the address of an
AST routine.

Address of a parameter to be sent as an argument
to the AST routine specified by the user in the
I/O request. If the process specifies an AST
routine and a parameter to that AST routine in
the QIO call, EXESQIO writes the parameter in
this field.

During I/O postprocessing, the kernel mode AST
routine queues a user mode AST if the IRPSL AST
field contains an address, and passes the value
in IRPSL ASTPRM to the AST routine as an -argument.

(continued on next page)

A-3

Field Name

IRP$L WIND

IRP$L UCB*

IRP$W FUNC

IRP$B EFN*

IRP$B PR!*

THE I/O DATA BASE

Table A-1 (Cont.)
Contents of an I/O Request Packet

Contents

Address of a window block describing the file
being accessed in an I/O request. EXE$QIO
writes this field if the I/O request refers to a
file-structured device. The ACP reads this
field.

When a process gains access to a file on a
file-structured device or creates a logical link
between a file and a process I/O channel, the
device ACP creates a window control block (WCB)
that describes the virtual-to-logical mapping of
the file data on the disk. EXE$QIO stores the
address of this WCB in the IRP$L WIND field.

Address of the unit control block for the device
assigned to the process I/O channel. EXE$QIO
copies this value from the channel control
block.

I/O function code that identifies the function
to be performed for the I/O request. The I/O
request call specifies an I/O function code;
EXE$QIO and driver FDT routines map the code
value to its most basic level (virtual _...
logical _.,... physical) and copy the reduced value
into this field.

Based on this function code, EXE$QIO calls FDT
action routines to preprocess an I/O request.
Six bits of the function code describe the basic
function. The remaining 10 bits modify the
function.

Event flag number and group specified in the I/O
request. If the I/O request call does not
specify an event flag number, EXESQIO uses event
flag 0 by default. EXESQIO writes this field.
The I/O postprocessing routine calls SCH$POSTEF
to set this event flag when the I/O operation is
complete.

Base priority of the process when the I/O
request was issued. EXE$QIO obtains a value for
this field from the process control block.
EXE$INSERTIRP reads this field to insert an I/O
request packet into a priority-ordered I/O
request packet wait queue.

'-------~-----'-·-·----·--·-··---··--------·-·---··--·--·-·--·-·--·-- --------------··-----'
(continued on next page)

A-4

Field Name

IRP$L IOSB

IRP$W CHAN*

IRP$W STS

THE I/O DATA BASE

Table A-1 (Cont.)
Contents of an I/O Request Packet

Contents

Virtual address of the process I/O status block
that receives the final status of the I/O
request at I/O completion. EXESQIO writes a
value into this field if the I/O request call
specifies an IOSB address. The I/O
postprocessing kernel mode AST routine writes
two longwords of I/O status into the IOSB block
after the I/O operation is complete.

When an FDT routine aborts an I/O request by
calling EXE$ABORTIO, EXESABORTIO zeroes the
IRP$L IOSB field so that I/O postprocessing does
not write status into the block.

Index number of the process I/O channel for the
request. EXE$QIO writes this field.

Status of the I/O request. EXE$QIO initializes
this field to o. EXE$QIO, FDT routines, and
driver fork processes modify this field
according to the current status of the I/O
request. I/O postprocessing reads this field to
determine what sort of postprocessing is
necessary (for example, deallocate system
buffers and adjust quota usage).

Bits in the IRP$W STS field describe the type of
I/O function, as follows:

IRP$V BUFIO
IRP$V-FUNC
IRPSV-PAGIO
IRP$V-COMPLX

IRP$V VIRTUAL
IRP$V-CHAINED

!RP $V SWAP IO
IRP$V-DIAGBUF
IRP$V-PHYSIO
IRP$V-TERMIO

IRP$V MBXIO
IRP$V-EXTEND

IRP$V FILACP

A-5

Buffered I/O function
Read function
Paging I/O function
Complex buffered I/O
function
Virtual I/O function
Chained buffered I/O
function
Swapping I/O funtion
Diagnostic buff er is present
Physical I/O function
Terminal I/O (for priority
increment calculation)
Mailbox I/O function
An extended !RP is linked to
this !RP
File ACP I/O

(continued on next pag~)

THE I/O DATA BASE

Table A-1 (Cont.)
Contents of an I/O Request Packet

.----------....----~----·~"""·-· ..• ·-· ··----·----··-·--·--··· -·· .. -----·--·-- -·-·-----·-·--·-- ------.. -·-----

Field Name Contents
i-----------+--------···-··-·-----------------·--·---·--·-·· ----·

IRP$L SVAPTE

IRP$W BOFF

IRP$W BCNT

IRP$ L IOSTl
(also - called
IRP$ L_ MEDIA)

For a direct I/O operation, specifies the
virtual address of the first page table entry
(PTE) of the I/O transfer buffer. FDT routines
that lock pages in memory for a direct I/O
transfer write the PTE address in this field.

For a buffered I/O operation, specifies the
address of the buffer in system address space.
FDT routines that allocate system buffers for a
buffered I/O transfer write this field.

IOC$INITIATE copies the field into the device
unit control block field UCB$L SVAPTE before
transferring control to a device -driver start
I/O routine.

Byte offset in first page of a direct I/O
transfer. FDT routines calculate this offset
and write the field.

For buffered I/O operations, FDT routines must
write the number of bytes to be charged to the
process in this field because these bytes are
being used for a system buffer.

IOC$INITIATE copies the field into the device
unit control block field UCB$W BOFF before
calling a device driver start I/O routine.

I/O postprocessing uses IRP$W ROFF in
conjunction with IRPSW BCNT and IRPSL SVAPTE to
unlock pages locked for direct r7o. For
buffered I/O, I/O postprocessing adds the value
of IRP$W_BOFF to the process byte count quota.

Byte count of I/O transfer. FDT routines
calculate the count value and write the field.
IOC$INITIATE copies the field into the devic~
unit control block field UCB$W BCNT before
calling a device driver start I/O routine.

For a buffered I/O read function, I/O
postprocessing uses IRP$W BCNT to determine how
many bytes of data to write to the user's
buffer.

First I/O status longword. IOC$REQCOM and
EXESFINISHIO(C) write the contents of RO
into this field. The I/O postprocessing routine
copies the contents of this field into the user
I/O status block.)

EXE$ZEROPARM copies a 0 and EXE$0NEPARM copies
Pl into this field. This field is a good place
to put a Queue I/O Request argument (Pl through
P~) or a computed value.

(continued on next page)

A-fi

Field Name

IRP$L IOST2
(also called
IRP$L MEDIA+4
or IRP$B_CARCON)

IRP$W ABCNT

IRP$W OBCNT

IRP$L SEGVBN

IRP$L DIAGBUF*

IRP$L_SEQNUM*

IRP$L EXTEND

THE I/O DATA BASE

Table A-1 (Cont.)
Contents of an I/O Request Packet

Contents

Second I/O status longword. IOC$REQCOM and
EXE$FINISHIO(C) write the contents of Rl into
this field. The I/O postprocessing routine
copies the contents of this field into the user
I/O status block.

IRP$B CARCON contains carriage control
instructions to the driver. EXESREAD and
EXE$WRITE copy the contents of P4 of the user's
I/O request into this field.

Accumulated bytes transferred in a virtual I/O
transfer. Read and written by IOC$IOPOST after
a partial virtual transfer.

Original transfer byte count in a
transfer. Read by IOC$IOPOST
whether a virtual transfer is
whether another I/O request is
transfer the remaining bytes.

virtual I/O
to determine
complete, or

necessary to

Virtual block number of the current segment of a
virtual I/O transfer. Written by IOC$IOPOST
after a partial virtual transfer.

Address of a diagnostic buffer in system address
space. If the I/O request call specifies this
address, and if a diagnostic buffer length is
specified in the driver dispatch table, and if
the process has diagnostic privilege, EXESOIO
copies the buffer address into this field.

EXE$QIO allocates a diagnostic buffer in system
address space to be filled by IOC$DIAGBUFILL
during I/O processing. During I/O
postprocessing, the kernel mode AST routine
copies diagnostic data from the system buffer
into the process diagnostic buffer.

I/O transaction sequence number. If an error is
logged for the request, this field contains the
universal error log sequence number.

Address of the I/O request packet extension
linked to this packet. FDT routines write an
extension address to this field when a device
requires more context than the I/O request
packet can accommodate. This field is read by
IOC$POST. IRP$V EXTEND in IRP$W STS is set if
this extension adaress is used. -

(continued on next page)

A-7

THE I/O DATA BASE

Table A-1 (Cont.)
Contents of an I/O Request Packet

Field Name Contents

IRP$L ARB Address of the access rights block. This block
is located in the process control block and
contains the process privilege mask and UIC,
which are set up as follows:

ARB$Q_PRIV

SPARE$L

ARB$L UIC

Quadword containing process
privilege mask

Unused longword

Longword containing process
UIC

A.2 DEVICE DATA BLOCK (DOB)

The device data block is a variable-length block that identifies the
generic device/controller name and driver name for a set of devices
attached to a single controller. The driver loading procedure creates
a device data block for each controller during autoconf iguration at
system startup and dynamically creates additional device data blocks
for new controllers as they are added to the system using SYSGEN
CONNECT commands. The procedure initializes all fields in the device
data block. VAX/VMS routines and device drivers refer to the device
data block.

Fields of the device data block are illustrated in Figure A-2 and
described in Table A-2.

,--------------.. ---- - --·-··-·-·-···-···--·-····---··-

OOB$L_LIN K *

OOB$L_UC8*
--·-·····-- -······- .. [.. .. - ... -·

unused 008$8_ TYPE
------- ---···· ... -----·-···-··-

OD8$W_SIZE *

008$L_OOT

008$L_ACPO
··------··----··-· ·-------- - ---·-------··-···-·--·- ·-···-·

··-------~-~8~~=~-~~-~~:.:~:characters)* --·-- ---{

008$T_ORVNAME (upto15characters)* "'1'
,__ ________ ···-·--···· ······-··--·····-·-.. ················--··-· ---~_J

Figure A-2 Device Data Block

A-8

THE I/0 DATA BASE

Table A-2
Contents of Device Data Block

Field Name Contents
!-----------+---------~----------· --·- -----------<

DDB$ L LINK*

DDB$L UCB*

DDB$W SIZE*

DDB$B TYPE*

DDB$L DDT

DDB$L ACPD

DDB$T_NAME*

DDB$T_DRVNAME*

Address of the next DDB. A zero indicates that
this is the last DDB in the DDB chain.

Address of the unit control block for the first
unit attached to the controller.

Size of the DDB.

Type of control block. The driver loading
procedure writes the constant DYN$C DDB into
this field when the procedure creates tne DDB.

Address of the driver dispatch table. VAX/VMS
can transfer control to a device driver only
through addresses listed in the DDT, the CRB,
and the UCB fork block. The driver prologue
table of every device driver must specify a
value for this field.

Name of the default ACP for the controller. If
the devices on the controller are
file-structured devices, this field contains the
first four letters of the name of an ACP that
controls access to the devices. The driver
prologue table specifies a value for this field
if it is applicable.

Generic name of the devices attached to the
controller. The first byte of this field is the
number of characters in the generic name. The
remainder of the field consists of a string of
up to 15 characters in length that, suffixed by
a device unit number, identifies devices on the
controller.

Name of the device driver for the controller.
The first byte of this field is the number of
characters in the driver name. The remainder of
the field contains a string of up to 15
characters in length taken from the driver
prologue table in the driver.

A-9

THE I/O DATA BASE

A.3 UNIT CONTROL BLOCK (UCB)

The unit control block is a variable-length block that describes a
single device unit. Each device unit on the system has its own unit
control block. The block describes or provides pointers to the device
type, controller, driver, device status, and current I/O activity.

During autoconfiguration, the driver loading procedure creates one
unit control block for each DIGITAL-supported device unit in the
system configuration. A privileged syatem user can request the driver
loading procedure to create unit control blocks for additional devices
with the CONNECT command to SYSGEN as described in Chapter 14. The
procedure creates unit control blocks of the length specified in the
driver prologue table of the device's driver. The driver uses UCB
storage located beyond the standard UCB fields for device-specific
data and temporary driver storage.

The driver loading procedure initializes some static unit control
block fields when it creates the block. VAX/VMS and device drivers
can read and modify all nonstatic fields of the unit control block.

The fields of the unit control block that are present for all devices
are illustrated in Figure A-3 and described in Table A-3, on pages
A-10 and A-11.

A-10

THE I/O DATA BASE

UCB$L_FQFL*

UCB$L_FQBL*

UCB$B_FIPL * l UCB$B_ TYPE* UCB$W_SIZE*

-
UCB$L_FPC

··-
UCB$L_FR3

_ ____,
UCB$L_FR4

UCB$W_ VPROT* UCB$W_BUFQUO
·---1

UCB$L_QWNUIC*

UCB$L_CRB*

UCB$L_OOB*

UCB$L_PID* ·-UCB$L_LINK *

UCB$L_VCB*

·-
UCB$L_OEVCHAR

UCB$W_OEVBUFSIZ lucB$8-DEVTYPE I ucB$B---~E~c~~:~-
UCB$L_OEVDEPEND

UCB$L_IQQFL

UCB$L_ IQQB L

UCB$W_CHARGE UCB$W_UNIT*

-
UCB$L_IRP

UCB$B_AMOD* 1 UCB$B_OIPL * UCB$W_REFC*

UCB$L_AMB*

UCB$W_OEVSTS UCB$W_STS

UCB$L_OUETIM*

UCB$L_QPCNT*

·-
UCB$L_SVPN*

UCB$L_sv APTE *

UCB$W_BCNT UCB$W_BOFF

UCB$W_ERRCNT UCB$B_ERTMAX l UCB$B_ERTCNT

Figure A-3 Unit Control Block

A-11

Field Name

UCB$L_FQFL*

UCB$L_FQBL*

UCB$W SIZE*

UCB$B TYPE*

UCB$B FIPL*

UCB$L FPC

THE I/O DATA BASE

Table A-3
Contents of Unit Control Block

Contents

Fork queue forward link. The link points to the
next entry in the fork queue. EXE$IOFORK and
VAX/VMS resource management routines write this
field. The queue contains addresses of UCBs
that contain driver fork process context of
drivers waiting to continue I/O processing.

Fork queue backward link. The link
the previous entry in the
EXE$IOFORK and VAX/VMS resource
routines write this field.

points to
fork queue.

management

Size of the UCB. The driver prologue table of
every driver must specify a value for this
field. The driver loading procedure uses the
value to allocate space for a UCB and stores the
value in each UCB created. Extra space beyond
the standard bytes in a UCB (UCB$K LENGTH) is
for device-specific data and temporary storage.

Type of the control block. The driver loading
procedure writes the constant DYN$C UCB into
this field when the procedure creates the UCB.

Fork interrupt priority level (IPL) at which the
driver of the device usually executes. The
driver prologue table of every driver must
specify a value for this field. The driver
loading procedure writes the value in the UCB
when the procedure creates the UCB.

VAX/VMS creates a driver fork process that gains
control in a driver start I/O routine at this
IPL. When the driver creates a fork process
after an interrupt, VAX/VMS inserts the fork
block into a fork queue based on this IPL. A
VAX/VMS fork dispatcher executing at UCB$B FIPL
dequeues the fork block and restores control to
the suspended driver fork process.

All devices that are attached to one UNIBUS
adapter and actively compete for shared UNIBUS
adapter resources and/or a controller data
channel must specify the same value for the fork
IPL field.

Fork process driver PC address. When a VAX/VMS
routine saves driver fork context in order to
suspend driver execution, the routine stores the
address of the next driver instruction to be
executed in this field. A VAX/VMS routine that
reactivates a suspended driver transfers control
to the saved PC address.

(continued on next page)

A-12

Pield Name

THE I/O DATA BASE

Table A-3 (Cont.)
Contents of Unit Control Block

Contents
!-------------+--------------- ----

UCB$L FPC
(Cont:-)

UCB$L FR3

UCB$L FR4

UCB$W_BUFQUO*

UCB$W VPROT*

UCB$L OWNUIC*

UCB$L CRB*

VAX/VMS routines that suspend driver processing
include EXE$IOFORK, IOC$REQxCHANx IOCSREQMAPREG,
IOC$REQDATAP, and IOC$WFIKPCH. Routines that
reactivate suspended drivers include
IOC$RELCHAN, IOC$RELMAPREG, IOC$RELDATAP,
EXE$FORKDSPTH, and driver interrupt service
routines.

When a driver interrupt service routine
determines that a device is expecting an
interrupt, the routine restores control to the
saved PC address in the device's UCB.

Value of R3 at the time that a VAX/VMS routine
suspends a driver fork process. The value of R3
is restored just before a suspended driver
regains control.

Value of R4 at the time that an operating system
routine suspends a driver fork process. The
value of R4 is restored just before a suspended
driver regains control.

Buffered I/O quota if this UCB represents a
mailbox.

Description of the volume protection if a volume
is mounted on this device. . This field is
written by the MOUNT command when a volume is
mounted. It is read by EXESOIO to check logical
or physical access to a device and by the
device's ACP. It' is written by the SET
PROTECTION/DEVICE command.

User identification code of volume owner. This
field is written by the MOUNT command when a
volume is mounted. It is read by EXE$QIO to
check logical or physical access to a device and
by the device's ACP. It is also written by the
SET PROTECTION/DEVICE command.

Address of the primary channel request block
associated with the device. The driver loading
procedure writes this field after it creates the
associated CRB. Driver fork processes read this
field to gain access to device registers.
VAX/VMS routines use UCB$L CRB to locate
interrupt dispatching code and- initialization
routine addresses.

!----------~--------- -------·· ----- ------------.. ------ ----
(continued on next page)

A-13

.Field Name

UCB$L DDB*

UCB$L PID*

UCB$L LINK*

UCB$L VCB*

UCB$L DEVCHAR

THE I/O DATA BASE

Table A-3 (Cont.)
Contents of Unit Control Block

Contents

Address of the device data block associated with
the device. The driver loading procedure writes
this field when the procedure creates the
associated UCB. VAX/VMS routines generally read
the DDB field in order to locate device driver
entry points, the address of a driver function
decision table, or the ACP associated with a
given device.

Process identification code of the process that
has allocated the device. Written by the
device's ACP.

Address of the next UCB in the chain of UCBs
attached to a single controller and associated
with a device data block. The driver loading
procedure writes this field when the procedure
adds the next UCB. Any VAX/VMS routines that
examine the status of all devices on the system
read this field. Such routines include
EXE$TIMEOUT, IOC$SEARCHDEV, and power failure
recovery routines.

Address of the volume control block (VCB) that
describes the volume mounted on the device.
This field is written by the device's ACP and
read by EXE$QIOACPPKT and ACPs.

Device characteristics bits. The driver
prologue table of every driver should specify
symbolic constant values (defined by the $DEVDEF
macro) for this field. The driver loading
procedure writes the field when the procedure
creates the UCB. The Queue I/O Request system
service reads the field to determine whether a
device is spooled, file-structured, shared, has
a volume mounted, and so on.

The system defines
characteristics:

the following device

DEV$V REC
DEV$V-CCL
DEV$V-TRM
DEV$V-DIR
DEV$V-SDI

DEV$V_SQD

DEV$V SPL
DEV$V-NET
DEV$V-FOD

A-14

Record-oriented device
Carriage control device
Terminal device
Directory-structured device
Single directory-structured
device
Sequential block-oriented
device (e.g., magtape)
Device is being spooled
Network device
Files-oriented device (e.g.,
disk and magtape)

(continued on next page)

Field Name

UCB$L DEVCHAR
(Cont:-)

UCB$B DEVCLASS

THE I/O DATA BASE

Table A-3 (Cont.)
Contents of Unit Control Block

DEV$V SHR

DEV$V GEN
DEV$V-AVL
DEV$V-MNT
DEV$V-MBX
DEV$V-DMT
DEV$V-ELG

DEV$V ALL
DEV$V-FOR

DEV$V SWL
DEV$V-IDV

DEV$V ODV

DEV$V RND
DEV$V-RTM
DEV$V-RCK

DEV$V WCK

Contents
------·---- ·-·--· _______ ,,_ .. __ --·

Shareable device (used by more
than one program
simultaneously)
Generic device
Device is available for use
Device is mounted
Mailbox device
Device is marked for dismount
Error-logging is enabled on
device
Device is allocated
Device is mounted foreign
(i.e., non-file-structured)
Device is software write-locked
Device is capable of providing
input
Device is capable of providing
output
Device allows random access
Real time device
Read-checking is enabled on
device
Write-checking is enabled on
device

Device class. The driver prologue table of
every driver should specify a symbolic constant
(defined by the $DCDEF macro) for this field.
The driver loading procedure writes this field
when the UCB is created.

Drivers with set mode and device characteristics
functions rewrite the value in this field with
data supplied in an I/O request.

The VAX/VMS system defines the following device
classes:

DC$ DISK
DC$-TAPE
DC$-SCOM

DC$ CARD
DC$-TERM
DC$-LP
DC$-REALTIME
DC$-MAILBOX

Disk device
Tape device
Synchronous communications
device
Card reader device
Terminal device
Line printer device
Real time device
Mailbox device

Note that the definition of a device as realtime
is somewhat subjective; it implies no special
treatment by VAX/VMS •

..__ ________ __,_ ____________ ·--------··-·-
(continued on next page)

A-15

Field Name

UCB$B DEVTYPE

UCB$W DEVBUFSIZ

UCB$L DEVDEPEND

UCB$L_IOQFL*

THE I/O DATA BASE

Table A-3 (Cont.)
contents of Unit Control Block

Contents
--------------------~-- ---------------------------------!

Device type. The driver prologue table of every
driver should specify a symbolic constant
(defined by the $DTDEF macro) for this field.
The driver loading procedure writes the field
when the procedure creates the UCB.

Drivers with set mode and device characteristics
functions rewrite the value in this field with
data supplied in an I/O request.

Default buffer size. The driver prologue table
can specify a value for this field if relevant.
The driver loading procedure writes the field
when the procedure creates the UCB.

Drivers with set mode and device
functions rewrite the value in

characteristics
this field with

data supplied in an I/O request.
used by VAX-11 RMS for
non-file-oriented devices.

This field is
record I/O on

Device-dependent
descriptive data
interpret. The
specify a value
loading procedure
procedure creates

data. Contains device-
that only the device driver can
driver prologue table can

for this field. The driver
writes this field when the
the UCB.

Drivers with set mode and device characteristics
functions rewrite the value in this field with
data supplied in an I/O request.

I/O queue listhead forward link. The queue
contains the addresses of I/O request packets
waiting for processing on a device.
EXE$INSERTIRP inserts I/O request packets into
the I/O request packet wait queue when a device
is busy. IOC$REQCOM dequeues I/O request
packets when the device is idle.

The queue is a priority queue that has the
highest priority packets at the front of the
queue. Priority is determined by the base
priority of the requesting process. Packets
with the same priority are processed
first-in/first-out.

(continued on next page)

A-lh

Field Name

UCB$L_IOQBL*

UCB$W UNIT*

UCB$W CHARGE*

UCB$L IRP

UCB$W REFC*

UCB$B DIPL

UCB$B AMOD*

UCB$L AMB*

UCB$W STS

THE I/O DATA BASE

Table A-3 (Cont.)
Contents of Unit Control Block

Contents

I/O queue listhead backward link. EXESINSERTIRP
and IOC$REQCOM modify the I/O request packet
wait queue.

Number of the physical device unit. Stored as a
binary value. The driver loading procedure
writes a value into this field when the UCB is
created. Drivers for multiunit controllers read
this field during unit initialization to
identify a unit to the controller.

Mailbox byte count quota charge, if the device
is a mailbox.

Address of the I/O request packet currently
being processed on the device unit by a driver
fork process. IOC$INITIATE writes an I/O
request packet address into this field before
the routine creates a driver fork process to
handle an I/O request. A driver fork process
obtains the address of the I/O request packet
being processed from this field.

The value contained in this field is valid if
the UCB$V BSY bit in UCB$W STS is set.

Reference count of processes that currently have
process I/O channels assigned to the device.
Incremented by the $ASSIGN and SALLOC system
services. Decremented by the SDASSGN and
$DALLOC system services.

Device interrupt priority level at which the
device requests hardware interrupts. The driver
prologue table of every driver must specify a
value for this field. The driver loading
procedure writes the field when the procedure
creates the UCB.

Some device drivers raise IPL to this value
before reading or writing device registers.

If the device unit is allocated, the access mode
at which the allocation occurred. Written by
the $ALLOC and $DALLOC system services.

Associated mailbox UCB pointer. This field is
used for spooled devices and mailboxes.

Device unit
IOC$REQCOM,
IOC$WFIKPCH,
EXESTIMEOUT.
Queue I/O
IOC$REQCOM,

status. Written by drivers,
IOC$CANCELIO, IOCSINITIATE,

IOC$WFIRLCH, EXE$INSIOQ, and
This field is read by drivers, the

Request system service routines,
IOC$INITIATE, and EXE$TIMEOUT.

(continued on next page)

A-17

Field Name

UCB$W STS
(Cont.)

UCB$W DEVSTS

UCB$L DUETIM*

UCB$L OPCNT*

THE I/O DATA BASE

Table A-3 (Cont.)
Contents of Unit Control Block

Contents

This status word includes the following bits:

UCB$V TIM
UCB$V-INT
UCB$V-ERLOGIP
UCB$V-CANCEL.
UCB$V-ONLINE
UCB$V-POWER

UCB$V TIMOUT
UCB$V - INTTYPE
UCB$V-BSY
UCB$V-MOUNTING
UCB$V-DEADMO

UCB$V VALID

UCB$V UNLOAD
UCB$V-TEMPLATE

Timeout enabled
Interrupts expected
Error log in progress
Cancel I/O on unit
Device is online
Power has failed while
unit was busy
Unit is timed out
Receiver interrupt
Unit is busy
Device is being mounted
Deallocate device at
dismount
Software believes volume
is valid
Unload volume at dismount
Template unit control
block from which other
UCBs for this device are
made. The $ASSIGN system
service checks this bit in
the requested UCB and, if
the bit is set, creates a
UCB from the template.
The new UCB is assigned
instead.

Device-dependent status. Read and written by
device drivers.

Due time for I/O completion. Stored as the
low-order 32-bit absolute time (time in seconds
since the operating system was booted) at which
the device will timeout. IOC$WFIKPCH and
IOC$WFIRLCH write this value when they suspend a
driver to wait for an interrupt or timeout.

EXE$TIMEOUT examines this field in each
the I/O data base once per second.
timeout has occurred and timeouts are
for the device, EXESTIMEOUT calls a
timeout handler in the device driver.

UCB in
If the

enabled
device

Count of operations completed on the device unit
since VAX/VMS was booted. IOCSREQCOM writes
this field every time the routine inserts an I/O
request packet in the I/O postprocessing queue.

(continued on next page)

A-18

Field Name

UCB$L SVPN*

UCB$L SVAPTE

UCB$W BOFF

UCB$W BCNT

THE I/O DATA BASE

Table A-3 (Cont.)
Contents of Unit Control Block

Contents

Virtual address of a page table entry
permanently allocated to the device by the
driver loading procedure. This field is used
for ECC error correction by disk drivers.

If a driver prologue table specifies DPT$M SVP
in the flags argument to the DPTAB macro,-the
driver loading procedure allocates a page of
nonpaged system memory to the device. The
procedure writes the virtual address of the page
table entry into UCB$L SVPN when the procedure
creates the UCB.

For a direct I/O operation, the virtual address
of the system page table entry (PTE) for the
first page that is to be used in an I/O
transfer. For a buffered I/O operation, the
address of the system buffer used in the
transfer. This field is used only in transfer
operations.

I/O postprocessing uses this field to deallocate
the system buffer for a buffered I/O operation
or to unlock pages locked for a direct I/O
operation.

IOC$INITIATE writes this field from IRPSL SVAPTE
before calling a driver start I/O routine.
Drivers read this value to compute the starting
address of a transfer.

For direct I/O operations, byte offset in first
page of the transfer buffer. For buffered I/O
operations, the number of bytes charged to a
process for a transfer. IOC$INITIATE copies
this field from the I/O request packet.

Drivers read the field in calculating the
starting address of a DMA transfer. If only
part of a DMA transfer succeeds, the driver
adjusts the value in this field to be the byte
offset in the first page of the data that was
not transferred.

Count of bytes in I/O transfer. IOC$INITIATE
copies this field from the I/O request packet.
Drivers read this field to determine how many
bytes to transfer in an I/0 operation.

(continued on next page)

A-19

THE I/O DATA BASE

Table A-3 (Cont.)
Contents of Unit Control Block

Field Name Contents

UCB$B ERTCNT

UCB$B ERTMAX

UCB$W ERRCNT

Error retry count of current I/O transfer. The
driver sets this field to the maximum retry
count each time it begins I/O processing.
Before each retry, the driver decreases the
value in this field. If error-logging is
occurring, IOC$REQCOM copies the value into the
error message buffer.

Maximum error retry count allowed for a single
I/O transfer. The driver prologue table of some
drivers specifies a value for this field. The
driver loading procedure writes the field when
the procedure creates the UCB. If error-logging
is occurring, IOC$REQCOM copies the value into
the error message buffer.

Number of errors that have occurred on the
device since the system was bootstrapped. The
driver loading procedure initializes the field
to o when the procedure creates the UCB.
ERL$DEVICERR and ERL$DEVICTMO increment the
value in the field and copy the value into an
error message buffer. The DCL command SHOW
DEVICE displays in its error count column the
value contained in this field.

Unit control blocks are variable length depending on the type of
device and whether the driver performs error-logging for the device.
The error log UCB extension, if present, appears directly after the
UCB$W ERRCNT field of the standard UCB.

The fields in the UCB error log extension are illustrated in Figure
A-4 and described in Table A-4.

UCB$L_EMB*

UCB$W_FUNC unused

UCB$L_DPC

Figure A-4 UCB &rror Log Extension

A-20

THE I/O DATA BASE

Table A-4
UCB Error Log Extension

Field Name Contents
!-----------+-------- -- ---------- -- ·----- . -- ----------1

UCB$B SLAVE*

UCB$B SPR

UCB$B FEX

UCB$B CEX

UCB$L EMB*

UCB$W FUNC

UCB$L DPC

Unit number of slave controller.

Spare byte. This field is reserved for driver
use. MBA drivers use this field to store a
fixed offset to the MBA registers for the unit.

Device-specific field. This field is reserved
for driver use.

Device-specific field. This field is reserved
for driver use.

Address of the error message buffer. If error
logging is enabled and a device/controller error
or timeout occurs, the driver calls ERLSDEVICERR
or ERL$DEVICTMO to allocate an error message
buffer and copy the buffer address into this
field. IOC$REQCOM writes final device status,
error counters, and I/O request status into the
buffer specified by this field.

I/O function modifiers. This field is read and
written by drivers that log errors.

Device-specific field. This field is reserved
for driver use.

Another extension of the unit control block is the disk extension
block. This UCB extension is -present for all disk devices. It
follows the error log extensiqn. A driver that supports a disk must
allow space in the UCB for both the error· log and disk extensions.

Disk drivers use three bits in UCB$W DEVSTS as follows:

UCB$V ECC
UCB$V-DIAGBUF
UCB$V-NOCNVRT

ECC correction made
Diagnostic buffer specifed
No logical block number to
media address conversion

The fields are illustrated in Figure A-5 and described in Table A-5.

UCB$L_MAXBLOCK

UCB$W_OFFSET UCB$W_DIRSEO
--~----

UCB$L_MEDIA

UCB$W_EC2 UCB$W_EC1
---·--·-··

UC~$8 _0 FF R;~[UCB$B_OF FN~ UCB$W_BCR

Figure A-5 UCB Disk Extension

A-21

Field Name

UCB$L MAXBLOCK

UCB$W_DIRSEQ

UCB$W OFFSET

UCB$L MEDIA

UCB$W ECl

UCB$W EC2

UCB$B OFFNDX

UCB$B OFFRTC

UCB$W BCR

THE 1/0 DATA BASE

Table A-5
UCB Disk Extension

Contents

Maximum number of logical blocks on a random
access device. This field is written by a disk
driver during unit initialization and power
recovery.

This field is a parameter of
unit and must be reset to
whenever the disk is started.

Directory sequence number.

the disk device
a standard value

Current offset register contents.

Media address.

ECC position register. This field records the
starting bit number of an error burst. Disk
driver register dump routines copy the contents
of this field into an error-logging or
diagnostic buffer.

The VAX/VMS correction routine IOC$APPLYECC
reads the contents of this field to locate the
beginning of an error burst in a disk block.

ECC position register. Records the exclusive OR
correction pattern. Disk driver register dump
routines copy the contents of this field into an
error logging or diagnostic buffer.

The VAX/VMS ECC correction routine IOC$APPLYECC
reads the contents of this field to correct disk
data.

Current offset table index. When a disk driver
transfer ends in an error, the disk driver can
retry the error a number of times with different
offsets of the disk head from the centerline.
This field is an index into a driver table of
offset positions.

Current offset retry count. This field records
the number of times to try a particular offset
setting in a disk transfer retry.

Byte count register. Some disk drivers use this
field as an internal count of the number of
bytes left to be transferred in an I/O request.

A.4 CHANNEL REQUEST BLOCK (CRB)

The activity of each controller in a configuration is described in a
channel request block. This control block contains pointers to the
wait queue of drivers ready to gain access to a device through the
controller. It also stores the entry points to the driver's interrupt
service routines and device/controller initialization routines.

A-22

THE I/0 DATA BASE

The fields of the channel request block are illustrated in Figure A-n
and described in Table A-n.

Field Name

CRB$L_WQFL*

CRB$L_WQBL*

CRB$W SIZE*

CRB$B TYPE*

CRB$L_WQFL

CRB$L_WQBL

unused CRB$B_ TYPE* CRB$W_SIZE*
1--------------1 ----

unused CRB$B_MASK CRB$W_REFC*

CRB$L_LINK*

CRB$L_INTD*
,__ _________ (ni_ne_longwo_rd_sl _______ _

CRB$L__INTD2*
,__ _________ (n_ine_longwords)

Figure A-6 Channel Request Block

Table A-n
Contents of Channel Request Block

Contents

Controller data channel wait queue forward link.
IOC$REQxCHANx and IOC$RELxCHAN insert and remove
driver fork block addresses in this field.

A channel wait queue contains addresses of
driver fork blocks that record the context of
suspended drivers waiting to gain control of a
controller data channel. If a channel is busy
when a driver requests access to the channel,
IOC$REOxCHANx suspends the driver by saving the
driver's context in the device's UCB fork block
and inserting the fork block address in the
channel wait queue.

When a driver releases a channel because an I/O
operation no longer needs the channel,
IOC$RELxCHAN dequeues a driver fork block,
allocates the channel to the driver, and
reactivates the suspended driver fork process.
If no drivers are awaiting the channel,
IOC$RELxCHAN clears the channel busy bit.

Controller channel
IOC$REQxCHANx and
this field.

wait queue backward link.
IOC$RELxCHAN read and write

Size of the CRB. The driver loading procedure
writes this field when the procedure creates the
CRB.

Type of control block. The driver loading
procedure writes the symbolic constant DYN$C CRB
into this field when the procedure creates -the
CRB.

(continued on next page)

A-23

Field Name

CRB$W REFC*

CRB$B MASK*

CRB$L LINK*

CRB$L INTD*

CRB$L INTD2*

THE I/O DATA BASE

Table A-n (Cont.)
Contents of Channel Request Block

Contents

Unit control block reference count. The driver
loading procedure increases the value in this
field each time the procedure creates a UCB for
a device attached to the controller.

Mask that describes the status of the
controller. At present, only one bit,
CRB$V BSY, is defined in this field.
IOC$REQxCHANx reads the busy bit to determine
whether the controller is free and sets this bit
when it allocates the controller data channel to
a driver. IOC$RELxCHAN clears the busy bit if
no driver is waiting to acquire the channel.

Address of secondary CRB (for MASSBUS devices
only). This field is written by the driver
loading procedure and read by IOC$REQSCHANx and
IOC$RELSCHAN.

Interrupt transfer vector. The driver prologue
table in every driver for an interrupting device
specifies the address of a driver interrupt
service routine. The driver loading procedure
writes two inst~uctions in this field:

PUS HR
JSB

#AM<RO,Rl,R2,R3,R4,R5>
~#Adriver isr address - -

When a UNIBUS device generates an interrupt on
the VAX-11 processor, a VAX/VMS UNIBUS adapter
interrupt service routine transfers control to
the JSB instruction in a CRB. The UNIBUS
adapter service routine determines the
appropriate CRB address from the vector address
of the device interrupt.

The CRB$L INTD field is nine longwords long.
Figure A=7 and Table A-7 describe the contents
of the rest of block.

Second interrupt transfer vector for devices
with multiple interrupt vectors. If the driver
prologue table in a device driver specifies the
address of a second driver interrupt service
routine, the driver loading procedure creates a
CRB long enough to contain two INTDx fields of
nine longwords each.

The first two longwords of the CRB$L INTD2 field
contain a PUSHR and JSB instruction to the
second driver interrupt service routine.

There are as many interrupt transfer vector blocks as there are device
vectors. The number of device vectors is determined by the value
specified in the /NUMVEC= qualifier to the SYSGEN CONNECT command.

A-24

THE I/O DATA BASE

The interrupt transfer vector blocks contained in the CRB store
executable code, driver entry points, and UNIBUS adapter information.
The fields of the CRB$L INTD block are illustrated in Figure A-7 and
described in Table A-7.-

VEC$Q_DISPATCH*

-·- - ____,
VEC$L_IDB*

n-~e-' ·~-~ ---

VEC$L_INITIAL *

VEC$B_DATAPATH1 VEC$B_NU-MREG [VEC$W_MAPREG

VEC$L_ADP*

VEC$L_LJNITINIT*

spare longword

----- ---·~ ·-
spare longword

Figure A-7 Contents of CRB$L INTD

Table A-7
Fields of CRB$L INTD

--- --!

---1

.-------------~-------------- ---------------------.
Field Name

VEC$Q_DISPATCH*

VEC$L IDB*

VEC$L INITIAL*

Contents

Contains the two
instructions described
field. This field is
loading procedure.

interrupt dispatching
above in the CRB$L INTD

written by the driver

Address of the interrupt data block for the
controller. The driver loading procedure
creates an IDB for each CRB and loads the
address of the IDB in this field. Device
drivers use the IDB address to obtain the
virtual addresses of device registers.

When a driver interrupt service routine gains
control, the top of stack contains a pointer to
the IDB.

Address of the controller initialization
routine. If a device controller requires
initialization at driver loading time and during
recovery from a power failure, the driver
specifies a value for this field in the driver
prologue table.

The driver loading procedure calls this routine
each time the procedure loads the driver. The
VAX/VMS powerfail recovery procedure also calls
this routine to initialize a controller after a
power failure.

,___ _________ _,__ _____ -------

(continued on next page)

A-25

Field Name

VEC$W MAPREG

VEC$B NUMREG

VEC$B DATAPATH

THE I/O DATA BASE

Table A-7 (Cont.)
Fields of CRB$L INTD

Contents

Number of the first UNIBUS adapter map register
allocated to the driver that owns the controller
data channel. IOC$REQMAPREG writes this field
when the routine allocates a set of map
registers to a driver fork process for a DMA
transfer. IOC$RELMAPREG reads the field to
deallocate a set of map registers. If the high
bit (VEC$V MAPLOCK) of this field is set, the
map register set is permanently allocated.

Device drivers read this field to calculate the
starting address of a UNIBUS transfer.

Number of UNIBUS adapter map registers allocated
to a driver. IOC$REQMAPREG writes this field
when the routine allocates a set of map
registers. IOC$RELMAPREG reads this field to
deallocate a set of map registers.

The data path specifier. The bits that make up
this field are used as follows:

0 ~ 4 The number of the data path
used in a DMA transfer.
The routine IOC$REQDATAP
sets this field when a
buffered data path is
allocated and clears the
field when the data path is
released.

The routine IOC$LOADUBAMAP
copies the contents of this
field into the UNIBUS
adapter map registers.
These bits also serve as
implicit input to the
IOC$PURGDATAP routine.

VEC$V LWAE Longword access enable
(LWAE) bit. Drivers set
this bit when they wish to
limit the data path to
longword-aligned random
access mode. The routine
IOC$LOADUBAMAP copies the
value in this field to the
UNIBUS adapter map
registers.

n Reserved to DIGITAL.

VEC$V PATHLOCK Buffered data path

A-2'i

allocation indicator.
Drivers set this bit to
specify that the buffered
data path is permanently
allocated.

(continued on next page)

Field Name

THE I/O DATA BASE

Table A-7 (Cont.)
Fields of CRB$L INTD

Contents
!-----------+------------- ------------

VEC$L ADP*

VEC$L UNITINIT*

Address of the UNIBUS adapter control block
(ADP). The CONNECT command to SYSGEN must
specify the nexus number of the UNIBUS adapter
used by a controller. The driver loading
procedure writes the address of the ADP for the
specified UBA into the VEC$L ADP field.

IOC$REQMAPREG and IOC$RELMAPREG read and write
fields in the ADP to allocate and deallocate
UNIBUS adapter map registers.

Address of the device unit initialization
routine. If a device unit requires
initialization at driver loading time and during
recovery from a power failure, the driver
specifies a value for this field in the driver
prologue table.

The driver loading procedure calls this routine
for each device unit each time the procedure
loads the driver. The VAX/VMS powerfail
recovery procedure also calls this routine to
initialize device units after a power failure.

MASSBUS drivers that support mixed device types
must not use this field. Instead, they should
specify unit initialization in the
(DDT$L UNITINIT) unit initialization field of
the drTver dispatch table. Other drivers may
use either field.

A.5 INTERRUPT DATA BLOCK (IDB}

The interrupt data block records controller characteristics. The
driver loading procedure creates and initializes this block when the
procedure creates a channel request block. The interrupt data block
points to the physical controller by storing the virtual address of
the control/status register. This register is the indirect pointer to
all device unit registers.

The fields of the interrupt data block are illustrated in Figure A-8
and detailed in Table A-8.

A-27

THE I/O DATA BASE

IDB$L_CSR*

IDB$L_QWNER

~-sP_-;_~:~=]~~-~~-~~~~* _____ 1o_s_$_w ___ s1_z_E_* __ _

Field Name

------·-··-------

IDB$L CSR*

IDB$L OWNER

IDB$W SIZE*

IDB$B TYPE*

SPARE IDB$W_UNITS

·--···----··---·-····-.------·---...L-------~--------1

IDB$L_ADP*
··------·--·-··--· .. ----·--···""'----------------!

I DB$L_UCB LST*
(max units longwords)

Figure A-8 Interrupt Data Block

Table A-8
Contents of Interrupt Data Block

Contents
..... __ .. ·-·-- ···-·-- .. -----------------------t

Address of the control/status register (CSR).
The CONNECT command to SYSGEN must specify the
address of a device's control/status register.
The driver loading procedure writes the system
virtual equivalent of this address into the
IDB$L CSR field.

Device drivers set and clear bits in device
registers by referencing all device registers at
fixed offsets from the CSR address.

Address of the unit control block of the device
that owns the controller data channel.
IOC$REQxCHANx writes a UCB address into this
field when the routine allocates a controller
data channel to a driver. IOC$RELxCHAN confirms
that the proper driver fork process is releasing
a channel by comparing the driver's UCB with the
UCB stored in the IDB$L OWNER field. If the UCB
addresses are the same, IOCSRELxCHAN allocates
the channel to a waiting driver by writing a new
UCB address into the field. If no driver fork
processes are waiting for the channel,
IOC$RELXCHAN clears the field.

If the controller is a single-unit controller,
the unit or controller initialization routine
should write the UCB address of the single
device into this field.

Size of the IDB. The driver loading procedure
writes the constant IDB$K LENGTH into this field
when the procedure creates the IDB.

Type of control block. The driver loading
procedure writes the symbolic constant DYN$C IDB
into this field when the procedure creates -the
IDB.

(continued on next page)

A-28

Field Name

IDB$W_UNITS*

IDB$L ADP*

IDB$L UCBLST*

THE I/O DATA BASE

Table A-8 (Cont.)
Contents of Interrupt Data Block

Contents

Maximum number of units connected
controller. The maximum number of
specified in the driver prologue table
be overridden at driver loading time.

to the
units is
and may

Address of the UNIBUS adapter control block
(ADP) • The CONNECT command to SYSGEN must
specify the nexus number of the UNIBUS adapter
used by a device. The driver loading procedure
writes the address of the ADP for the specified
UNIBUS adapter into the IDP$L ADP field.

List of UCB addresses. The size of this field
is the maximum number of units supported by the
controller, as defined in the driver prologue
table. The maximum specified in the DPT can be
overridden at driver load time. The driver
loading procedure writes a UCB address into this
field every time the routine creates a new UCB
associated with the controller.

···----------'

A.6 ADAPTER CONTROL BLOCK (ADP)

Each MASSBUS and UNIBUS adapter configured in the system is
represented to VAX/VMS and driver routines by an adapter control
block. The adapter control block stores adapter-specific static and
dynamic data such as the adapter CSR address and map register wait
queues.

The fields of the ADP are illustrated in Figure A-9 and described in
Table A-9.

ADP$L_CSR*

ADP$L_LINK*

ADP$8-NUMBER*1 ADP$8_ TYPE* ADP$W_SIZE*

ADP$W_ADPTYPE* ADP$W_TR*

ADP$L_VECTOR*orADP$L_CRB

ADP$L_DPOF L
··-I

ADP$L_DPOBL
--1

ADP$L_MROFL

ADP$L_M ROB L

v ADP$W_MRBITMAP ADP$W_DPBITMAP

1 (31 words)

ADP$L_INTD* J;
(512 longw_o_rd_sl __________ ___,f

Figure A-9 Adapter Control Block

A-29

THE I/O DATA BASE

Table A-9
Contents of Adapter Control Block

Field Name Contents

ADP$L CSR*

ADP$L LINK*

ADP$W SIZE*

ADP$B TYPE*

ADP$B NUMBER*

ADP$W TR*

ADP$W ADPTYPE*

Virtual address
register. The
field.

of the adapter configuration
CPU initialization sets this

The configuration register marks the base of
adapter register space, an area that contains
data path registers, map registers, or any other
registers appropriate to the implementation of
the adapter.

Address of next ADP. The CPU initialization
routine writes this field. A value of O
indicates that this is the last ADP.

Size of the ADP control block. The CPU
initialization routine writes this field when
the routine creates the ADP. For the UNIBUS
adapter, this includes the UNIBUS interrupt
.service code and device vector table.

Type of control block. The CPU initialization
routine writes the symbolic constant DYN$C ADP
into this field when the routine creates -the
ADP.

Number of this type of adapter (for example, the
number for a third MASSBUS adapter is 2). The
CPU initialization routine writes this field
when the routine creates the ADP.

Nexus number of the adapter. The CPU
initialization routine writes this field when
the routine creates the ADP. The driver loading
procedure compares the nexus number specified in
a CONNECT command with this field of each ADP in
the system to determine to which adapter a
device is attached.

Type of adapter. The CPU initialization routine
writes the symbolic constant AT$ UBA into this
field when the routine creates an ADP for a
UNIBUS adapter. AT$ MBA is the type code for a
MASSBUS adapter. -

(continued on next page)

A-30

THE I/0 DATA BASE

Table A-9 (Cont.)
Contents of Adapter Control Block

~---------~-----------"-

Field Name

ADP$L VECTOR*

ADP$L CRB

ADP$L DPQFL*

ADP$L_DPQBL*

ADP$L_MRQFL*

Contents

Address of vector table. The table is 512 bytes
of longword vectors. The CPU initialization
routine allocates portions of nonpaged pool to
create this table. Each longword in the vector
table that corresponds to a vector in use
contains the address of the controller's
interrupt dispatcher (CRB$L INTD) plus 2. When
the UNIBUS adapter interrupts on the behalf of
its UNIBUS devices, the UNIBUS adapter service
routine saves RO through RS, then determines the
vector of the interrupting device, indexes into
the vector table, and executes the instruction
at CRB$L INTD+2.

Longwords in this table that correspond to
unused vectors contain the address of an
unexpected UNIBUS interrupt routine.

Address of the MASSBUS adapter's channel request
block. The CPU initialization routine sets this
address when it creates the CRB and the adapter
control block.

Data path wait queue forward link. IOC$REQDATAP
and IOC$RELDATAP read and write this field.
When a driver fork process requests a buffered
data path and none is currently available,
IOC$REQDATAP saves driver context in the
device's UCB fork block, inserts the fork block
address in the data path wait queue, and
suspends the driver fork process.

When another driver calls IOC$RELDATAP to
release a buffered data path, the routine
dequeues a UCB fork block address from the data
path wait queue, allocates a data path to the
driver, and reactivates that driver fork
process.

Data path
IOC$REQDATAP
this field.

wait·
and

queue backward link.
IOC$RELDATAP read and write

Map register wait queue forward link.
IOC$REQMAPREG and IOC$RELMAPREG read and write
these fields. When a driver fork process
requests a set of map registers and the set is
not currently available, IOC$REQMAPREG saves
driver fork context in the device's UCB fork
block, inserts the fork block address in the map
register wait queue, and suspends the driver
fork process.

(continued on next page)

A-31

THE I/O DATA BASE

Table A-9 (Cont.)
Contents of Adapter Control Block

-----------~--- -----~ .• --.-----~-----

Field Name
I-------··---···----·--······-·

ADP$L MRQFL*
(Cont":-)

ADP$L_MRQBL*

ADP$W DPBITMAP*

ADP$W MRBITMAP*

ADP$L INTD*

Contents

When another driver calls IOC$RELMAPREG to
release a set of map registers, the routine
dequeues a UCB fork block address from the map
register wait queue, allocates the requested set
of map registers to the driver, and reactivates
that driver fork process.

Map register
IOC$REQMAPREG
this field.

wait queue backward link.
and IOC$RELMAPREG read and write

Data path allocation bit map. IOC$REQDATAP and
IOC$RELDATAP read and write this field. The CPU
initialization routine sets the bit map to show
as available all the buffered data paths
supported by the UNIBUS adapter. The VAX-11
UNIBUS adapter supports fifteen buffered data
paths.

The state of each of the available buffered data
paths (whether in use or available) is recorded
in the data path allocation bit map. One data
path corresponds to each bit in the field. If a
bit is clear, the related data path is currently
allocated to a driver fork process.

Map register allocation bit map. The field is
31 words long. IOC$REQMAPREG and IOC$RELMAPREG
read and write this field.

The state of each of the 49~ map registers
(whether in use or available) is stored in the
map register bit map. One map register
corresponds to each bit in the field. If a bit
is clear, the related map register is currently
allocated to a driver fork process.

Interrupt transfer vector. When a device
attached to the UNIBUS adapter requests a
hardware interrupt, the processor transfers
control to the ADP$L INTD field of the UNIBUS
adapter's control block. The field contains
code that dispatches the interrupt to the proper
driver interrupt service routine. The interrupt
transfer vector is only used for UNIBUS adapters
that directly generate interrupts.

A.7 DRIVER DISPATCH TABL~ (DDT)

Each device driver contains a driver dispatch table. The table lists
entry points in the driver that various VAX/VMS routines call. An
example is the entry point for the driver routine that starts an I/O
operation on a device.

A-32

THE I/O DATA BASE

A device driver creates a driver dispatch table by invoking the
VAX/VMS macro DDTAB. The fields in the driver dispatch table are
illustrated in Figure A-10 and described in Table A-10.

Field Name

DDT$L START

DDT$L UNSOLINT

DDT$L FDT

DDT$L_START

DDT$L_UNSOLINT
-

DDT$L_FDT

DDT$L_CANCEL
_ ___,

DDT$L_REGDUMP

I
--1

DDT$W_ERRORBUF DDT$W_DIAGBUF

DDT$L_UN ITI NIT

DDT$L_ALTSTART

Figure A-10 Driver Dispatch Table

Table A-10
Contents of Driver Dispatch Table

Contents

~ntry point to the driver start I/O routine.
Every driver must specify this field with the
value of the START argument in the DDTAB macro
invocation.

When a device unit is idle and an I/O request is
pending for that unit, IOC$INITIATE transfers
control to the address contained in this field.

Entry point to the driver unsolicited interrupt
service routine. The driver specifies this
field with the value of the UNSOLIC argument in
the DDTAB macro invocation.

This field contains the address of a routine
that analyzes unexpected interrupts from a
device. The standard driver interrupt service
routine, the address of which is stored in the
CRB, determines whether an interrupt was
solicited by a driver. If the interrupt is
unsolicited, the service routine may call the
unsolicited interrupt service routine.

Address of the driver's function decision table.
Every driver must specify this field with the
value of the FUNCTB argument in the DDTAB macro
invocation.

(continued on next page)

A-33

Field Name

DDT$L FDT
(Cont:-)

DDT$L CANCEL

DDT$L REGDUMP

DDT$W DIAGBUF

DDT$W ERRORBUF

THE I/O DATA BASE

Table A-10 (Cont.)
Contents of Driver Dispatch Table

Contents

EXE$QIO refers to the FDT to validate I/O
function codes, decide which functions are
buffered, and call FDT action routines
associated with function codes.

Entry point to the driver cancel I/O routine.
The driver specifies this field with the value
of the CANCEL argument in the DDTAB macro
invocation.

Some devices require special clean-up processing
when a process or a VAX/VMS routine cancels an
I/O request before the I/O operation completes
or when the last channel is deassigned. The
$DASSGN, $DALLOC, and $CANCEL system services
cancel I/O requests.

Entry point to the driver register dump routine.
The driver specifies this field with the value
of the REGDMP argument in the DDTAB macro
invocation.

IOC$DIAGBUFILL, ERLSDEVICERR, and ERLSDEVICTMO
call the address contained in this field to
write device register contents into a diagnostic
or error-logging buffer.

Size of the diagnostic buffer. The driver
specifes this field with the value of the DIAGBF
argument in the DDTAB macro invocation. The
value is the size in bytes of a diagnostic
buffer for the device.

When EXE$QIO preprocesses an I/O request, the
routine allocates a system buffer of the size
recorded in this field if the user process has
diagnostic privileges, specifies a diagnostic
buffer in the I/O request, and this field of the
DDT contains a nonzero value. IOC$DIAGBUFILL
fills the buffer after the I/O operation
completes.

Size of the error log buffer. The driver
specifies this field as the value of the ERLGBF
argument in the DDTAB macro invocation. The
value ·is the size in bytes of an error-logging
buffer for the device.

If error logging is enabled and an error occurs
during an I/O operation, the driver calls
ERLSDEVICERR or ERLSDEVICTMO to allocate and
write error-logging data into the error message
buffer. IOC$INITIATE and IOC$REQCOM write
values into the error message buffer if an error
has occurred.

(continued on next page)

A-34

Field Name

DDT$L UNITINIT

DDT$L ALTSTART

THE I/O DATA BASE

Table A-10 {Cont.)
Contents of Driver Dispatch Table

Contents

Address of the device unit initialization
routine, if one exists. Drivers for MASSBUS
devices use this field rather than
CRB$L INTD+VEC$L UNITINIT. Drivers for UNIBUS
devices may use either field.

Address of the alternate start I/O routine. The
VAX/VMS routine EXE$ALTQUEPKT initiates the
alternate start I/O routine at this address.

'-------------'----------~------------ -- ---------

A.8 DRIVER PROLOGUE TABLE (DPT)

When loading a device driver and its data base into virtual memory,
the driver loading procedure finds the basic description of the driver
and its device in a driver prologue table. This table provides the
length, name, adapter type, and loading and reloading specifications
for the driver.

A device driver creates a driver prologue table by invoking the
VAX/VMS macros DPTAB and DPT STORE. The fields of the DPT are
illustrated in Figure A-11 and described in Table A-11.

DPT$L_FLINK*
-- -···---

DPT$L_BLINK*

DPT$B_REFC* l ---y---- -

DPT$B_ TYPE DPT$W_SIZE
---1

DPT$W_UCBSIZE DPT$8-F LAGS lDPT$B_AD~T~PE
DPT$W_REINITTAB DPT$W_INITTAB

--
DPT$W_MAXUN ITS DPT$W_UN LOAD

SPARE DPT$W_ VERSION

SPARE
DPT$T_NAME

(up to 15 characters)

l
Figure A-11 Driver Prologue Table

A-35

Field Name__ __________ , __ _
DPT$L FLINK*

DPT$L BLINK*

DPT$W SIZE

DPT$B TYPE

DPT$B REFC*

DPT$B ADPTYPE

DPT$B FLAGS

THE I/O DATA BASE

Table A-11
Contents of Driver Prologue Table

Contents

Forward link to the next DPT. The driver
loading procedure writes this field. The
procedure links all driver prologue tables in
the system in a doubly linked list.

Backward link to the previous DPT. The driver
loading procedure writes this field.

Size in bytes of the device driver. The DPTAB
macro writes this field by subtracting the
address of the beginning of the DPT from the
address specified as the END argument in the
invocation of the DPTAB macro. The driver
loading procedure uses this value to determine
the space needed in nonpaged system memory to
load the driver.

Type of control block.
writes the symbolic
this field.

The DPTAB macro always
constant, DYN$C_DPT, into

Number of device data blocks that refer to this
driver. The driver loading procedure increments
the value in this field each time the procedure
creates another DDB that points to the driver's
DDT.

Type of adapter used by devices driven by this
driver. Every driver must specify the string
"UBA" or "MBA" as value of the argument ADAPTER
in the invocation of the DPTAB macro. The macro
writes the value AT$ UBA or AT$ MBA in this
field. -

Driver loader flags. The driver can specify any
of a set of flags as the value of the argument
FLAGS in the invocation of the DPTAB macro. The
driver loading procedure modifies the loading
and reloading algorithm followed based on the
settings of these flags.

Flags defined in the flag field include the
following:

DPT$M SUBCNTRL

DPT$M SVP

DPT$M NOUNLOAD

A-36

Device is a subcontroller

Device requires permanent
sys tern page; al located
during driver loading

Driv~r cannot be reloaded

(continued on next page)

Field Name

DPT$W UCBSIZE

DPT$W INITTAB

DPT$W REINITTAB

THE I/O DATA BASE

Table A-11 (Cont.)
Contents of Driver Prologue Table

Contents

Size in bytes of unit control blocks created for
device units driven by this driver. Every
driver must specify a value for this field as
the value of the argument UCBSIZE in the
invocation of the DPTAB macro.

The driver loading procedure allocates blocks of
nonpaged system memory of the specified size
when creating UCBs for devices associated with
the driver.

Offset to driver initialization table. Every
driver must specify a list of control block
fields and values to be written into the fields
at the time that the driver loading procedure
creates the control blocks.

The driver invokes the VAX/VMS macro DPT STORE
to specify these fields and their values. Every
driver must specify the following fields:

UCB$B FIPL

UCB$B DIPL

Fork interrupt priority
level
Device interrupt priority
level

Other commonly initialized fields are:

UCB$L DEVCHAR
UCB$B-DEVCLASS
UCB$B-DEVTYPE
UCB$W-DEVBUFSIZ
UCB$L-DEVDEPEND

Device characteristics
Class of device
Type of device
Default buffer size
Device-dependent
'par ame te rs

Offset to driver reinitialization table. Every
driver must specify a list of control block
fields and values to be written into fields at
the time that the driver loading procedure
creates the control blocks or loads the driver.

The driver invokes the VAX/VMS macro DPT STORE
to specify these fields and their values. Every
driver must specify the following field:

DDB$L DDT Driver dispatch table

Other commonly initialized fields are:

CRB$L INTD+4
CRB$L-INTD2+4

VEC$L INITIAL

VEC$L UNITINIT

Interrupt service routine
Second interrupt service
routine
Controller initialization
routine
Unit initialization
routine

,__ ________ __._ __________ ---· --- -----__ ___.

(continued on next page)

A-37

Field Name

DPT$W UNLOAD

DPT$W VERSION

DPT$T NAME

THE I/O DATA BASE

Table A-11 (Cont.)
Contents of Driver Prologue Table

Contents
. . --------.,.,.,_., .,. --··· ___ .,__________________ ··-········· ····-····""""""""-·

Relative address of a driver action routine to
be called when a driver is reloaded. The driver
specifes this field with the value of the UNLOAD
argument in the invocation of the macro DPTAB.

If the driver requires special clean-up
processing such as buffer or map register
deallocation before the driver can be reloaded,
the driver must specify this field. The driver
loading procedure calls the driver unloading
routine before reinitializing all device units
associated with the driver.

The DPTAB macro
current version
checked at driver
value.

fills this
of VAX/VMS.

load time

field with the
This field is

for the correct

Name of the device driver. Field is 12 bytes in
length. One byte records the length of the name
string; the name string can be up to 11
characters in length. Drivers specify this
field as the value of the NAME argument in the
invocation of the DPTAB macro.

The driver loading procedure compares the name
of a driver to be loaded with the values in this
field in all DPTs already loaded into system
memory. If the procedure finds a match, the
procedure unloads the old driver and replaces it
with the new driver. Otherwise, the procedure
adds a new DPT to the DPT linked list and then
loads the new driver.

A.9 CHANNEL CONTROL BLOCK (CCB)

When a process assigns an I/O channel to a device unit with the Assign
I/O Channel system service, EXE$ASSIGN locates a free block among the
process's preallocated channel control blocks. EXE$ASSIGN then writes
a description of the device attached to the channel in the CCB.

The fields of a channel control block are illustrated in Figure A-12
and described in Table A-12.

CCB$L_LJCB*

CCB$L_WIND*
~----------·-------·

CCB$W_IQC*
-------- _r_ --- -_--_--------------------- --------

L~CB$8-AMOD *

CCB$L_DIRP

Figure A-12 Channel Control Block

A-38

THE I/O DATA BASE

Table A-12
Contents of Channel Control Block

..------------.-----·- ·--- ·--··-·

Field Name

CCB$L UCB*

CCB$L WIND*

CCB$B STS*

CCB$B AMOD*

CCB$W IOC*

CCB$L DIRP*

Contents

Address of the unit control block of the
assigned device unit. EXE$ASSIGN writes a value
into this field. EXE$QIO reads this field to
determine that the I/O request specifies a
process I/O channel assigned to a device and to
obtain the device's UCB address.

Address of window control block for a
file-structured device assignment. This field
is written by an ACP and read by EXESOIO.

A file-structured device's ACP creates a window
control block when a process accesses a file on
a device assigned to a process channel. The
window control block maps the virtual block
numbers of the file to a series of physical
locations on the device.

Channel status.

Access mode plus 1 of the process at the time of
the channel assignment. EXE$ASSIGN writes the
process access mode value into this field.

Number of outstanding I/O requests on the
channel. EXE$QIO increases this field when it
begins to process an I/O request that specifies
the channel. During I/O postprocessing, the
kernel mode AST routine decrements this field.
Some FDT routines and EXE$DEASSIGN read this
field.

Address of deaccess I/O request packet. A
number of outstanding I/O requests can be
pending on the same process I/O channel at one
time. If the process that owns the channel
issues an I/O request to deaccess the device,
EXESQIO holds the deaccess request until all
other outstanding I/O requests are processed.

A.10 I/O REQUEST PACKET EXTENSION (IRPE)

I/O request packet extensions hold additional I/O request information
for devices that require more context than the standard I/O request
packet can accommodate. !RP extensions are also used when more than
one buffer (region) must be locked into memory for a direct I/0
operation, or when a transfer requires a buffer that is larger than
64K bytes. An IRPE provides space for two buffer regions, each with a
32-bit byte count.

FDT routines allocate IRPEs by calling EXE$ALLOCIRP. Driver routines
link· the !RP extension to the I/O request packet by storing the
extension's address in two fields within the packet: IRP$V EXTEND in
IRP$W STS and IRP$L EXTEND. The FDT routine initializes the contents
of the IRPE. Any fields within the extension not described in Table
A-13 can store driver-dependent information.

A-39

THE I/O DATA BASE

If the !RP extension specifies additional buffer regions, the FDT
routine must use those buffer locking routines that perform coroutine
calls back to the driver if the locking procedure fails
(EXE$READLOCKR, EXESWRITELOCKR, and EXE$MODIFYLOCKR). If an error
occurs during the locking procedure, the driver must unlock all
previously locked regions and deallocate the I/O request packet
extension before returning to the buffer locking routine.

IOC$IOPOST automatically unlocks the pages in region 1 (if defined)
and region 2 (if defined) for all the IRP extensions linked to the
packet being completed. IOC$IOPOST also deallocates all the IRPEs.

The fields of the I/O request packet extension are illustrated in
Figure A-13 and described in Table A-13.

spare longword

spare longword

spare byte IRP$8_ TYPE IRP$W_SIZE

·--·--·---···--------!
spare longword

spare longword

spare longword

spare longword

spare longword

spare longword

spare longword

IRP$W_STS

IRP$L_SVAPTE1

spare word I RP$W_BOFF 1

!-------------·----'---·-····---· -·-··--------·
IRP$L_BCNT1

I RP$L_SV APTE2

spare word IRP$W_BOFF2

_.....__, ----··--·. ·------
I RP$L_BCNT2

spare longword

L-----·-·--------·----------------4

spare longword

IRP$L_EXTEND
'-------·········-·---···-·-"'·--·-----

Figure A-13 I/O Request Packet Extension

A-40

THE I/O DATA BASE

Table A-13
Contents of the I/O Request Packet Extension

Field Name

IRPE$W SIZE

IRPE$B TYPE

IRPE$W STS

IRPE$L SVAPTEl

IRPE$W BOFFl

IRPE$L BCNTl

IRPE$L SVAPTE2

IRPE$W BOFF2

IRPE$L BCNT2

Contents

Size of the I/O request packet extension.
EXE$ALLOCIRP writes the constant IRP$C LENGTH to -this field.

Type of control block. EXE$ALLOCIRP writes the
constant DYN$C IRP to this field.

IRP extension status field. Bits in the status
field describe the following conditions:

IRPE$V EXTEND Another IRPE is linked
to this one

System virtual address of the page table entry
mapping the start of region 1. FDT routines
write this field. If the region is not defined,
this field is zero.

Byte offset of region 1.
this field.

FDT routines wtite

Size in bytes of region 1. FDT routines write
this field.

System virtual address of the page table entry
mapping the start of region 2. Set by FDT
routines. This field contains a value of zero
if region 2 is not defined.

Byte offset of region 2. This field is set by
FDT routines.

Size in bytes of region 2. FDT routines write
this field.

A-41

APPENDIX B

VAX/VMS MACROS INVOKED BY DRIVERS

This appendix contains an alphabetical listing of macros that drivers
invoke. Default values are provided where applicable.

CASE

SRC
DI SP LIST

TYPE=W
LIMIT=#O
NMODE=S""#

DDTAB

DEVNAM
START=O
UNSOLIC=O

FUNCTB
CANCEL=O
REGDMP=O
DIAGBF=O
ERLGBF=O
UNITINIT=O
ALTSTART=O

DP TAB

END
ADAPTER
FLAGS=O

UCBSIZE
[UNLOAD]

MAXUNITS=8
NAME

Generates a CASE instruction and CASE table

Source of CASE index value
List of destinations for each case (destl, dest2,
dest3)
Data type (B, W, L)
Lower limit of CASE value
Address mode for number of table entries; the
short literal default is good for up to n3 entries

Generates a driver dispatch table named devnam$DDT

Generic device name
Address of start I/O routine
Address of unsolicited interrupt service routine
for MASSBUS drivers
Address of function decision table
Address of cancel I/O routine
Address of error-logging register dump routine
Length in bytes of diagnostic buffer
Length in bytes of error logging buffer
Device unit initialization routine
Alternate start I/O routine

Generates a driver prologue table
$$$105 PROLOGUE

Address of the end of the driver
Type of adapter (UBA or MBA)

in PSECT

Driver loading flags (DPT$M SVP and
DPT$M NOUNLOAD)
Size In bytes of each device UCB
Optional address of a routine to call if the
driver is to be unloaded
Maximum number of units that can be connected
Driver name

B-1

DPT STORE

STR TYPE

STR OFF
OPER

EXP
POS
SIZE

DSBINT

[IPL]

[DST]

ENBINT

[SRC]

FORK

FUNCTAB

[ACTION]

CODES

IFNORD

SIZ
ADR
DEST

MODE=#O

IFNOWRT

SIZ
ADR
DEST

MODE=#O

VAX/VMS MACROS INVOKED BY DRIVERS

Generates a table containing initialization values
for fields in the I/O data base

Type of control block (DDB, UCB, CRB, IDB); or
table marker (!NIT, REINIT, END)
Offset into control block
Type of initialization operation (B=byte, W=word,
L=long, D=address relative to driver, V=bit
field); if an at sign (@.) precedes the OPERATION,
then the EXPRESSION argument is the address of the
initialization data
Initialization value to be stored in control block
Bit position for OPERATION=V
Field size for OPERATION=V

Disables interrupts by raising IPL

IPL value to be loaded into the IPL processor
register PR$ IPL (defaults to 31)
Location for-old IPL value (defaults to top of
stack)

Enables interrupts by restorinq a saved IPL

Location in which an IPL is saved (defaults to top
of stack)

Calls EXE$FORK to create a fork process

Generates a function decision table consisting of
two 64-bit entries of function codes, and n 9n-bit
entries of function codes and action routine
addresses

Address of an FDT routine to call for the function
codes listed
A list of I/O function codes

Branches if a range of addresses is not readable

Number of bytes in range
Address of first byte in range
Location to branch to if the ranqe of addresses is
not readable
Access mode at which to probe (defaults to USER)

Branches if a range of addresses is not writeable

Number of bytes in range
Address of first byte in range
Location to branch to if the range of addresses is
not writeable
Access mode at which to probe (defaults to USER)

B-2

I.FRO

SIZ
ADR
DEST

MODE=#O

IO FORK

LOADUBA

PU RD PR

RELCHAN

RELDPR

RELMPR

REL SCHAN

REQDPR

REQMPR

REQPCHAN

[PRI]

REQSCHAN

[PRI]

VAX/VMS MACROS INVOKED BY DRIVERS

Branches if a range of addresses is readable

Number of bytes in range
Address of first byte in range
Location to branch to if the range of addresses is
readable
Access mode at which to probe (defaults to USER)

Calls EXE$IOFORK to create a device driver fork
process

Calls IOC$LOADUBAMAP to load a preallocated set of
UNIBUS adapter map registers

Calls IOC$PURGDATAP to purge a data path

Calls IOC$RELCHAN to release all controller data
channels that are allocated by the driver

Calls IOC$RELDATAP to release a
UNIBUS adapter data path

preallocated

Calls IOCSRELMAPREG to release a preallocated set
of UNIBUS adapter map registers

Calls IOC$RELSCHAN to release all secondary
controller data channels that are allocated by the
driver

CallslltM~ji to complete an I/O request after
driver processing is finished

Calls IOC$REQDATAP to request a UNIBUS adapter
data path

Calls IOC$REQMAPREG to request a set of UNIBUS map
registers

Calls IOC$REQPCHANH or IOC$REQPCHANL to request a
primary controller data channel

Priority of
IOC$REQPCHANH;

request; if PRI=HIGH, calls
otherwise calls IOC$REQPCHANL

Calls IOC$REQSCHANH or IOC$REQSCHANL to request a
secondary controller data channel

Priority of
IOC$REQSCHANH;

request; if PRI=HIGH calls
otherwise calls IOC$REQSCHANL

B-3

SAVI PL

DST=-(SP)

SETI PL

[IPL]

SOFT INT

IPL

I
EXCPT

[TIME]

WFIRLCH

EXCPT

[TIME]

VAX/VMS MACROS INVOKED BY DRIVERS

Saves the current IPL value as recorded in the
processor register PR$_IPL

Location in which to save the
(defaults to a new top of stack)

Sets IPL to a new value

New IPL value (defaults to 31)

Initiates a software interrupt

current IPL

IPL value of the interrupt; loads IPL into the
processor register PR$ SIRR

Calls an executive subroutine to
interrupt or a device timeout
controller data channel

wait for
and keep

an
the

Relative address of a device timeout handling
routine; writes the address into the two bytes
following the call to the executive routine.
Number of seconds to allow before a device timeout
(defaults to 65536 seconds)

Calls an executive subroutine to
interrupt or a device timeout
controller data channel

wait for an
and release the

Relative address of a device timeout handling
routine; writes the address into the two bytes
foilowing the call to the executive routine.
Number of seconds to allow before a device timeout
(defaults to n553n seconds)

B-4

APPENDIX C

OPERATING SYSTEM ROUTINES

This appendix describes the VAX/VMS operating system routines that are
used by device drivers. The information given in this section follows
the conventions listed below:

• Fields used for both input and output are not specified.

• Registers are assumed preserved unless otherwise specified.

• IPL at execution refers to the interrupt priority level at
which the routine executes, not the IPL at which it is called.

COM$DELATTNAST in module COMDRVSUB

Driver fork processes call this routine to deliver all the AST control
blocks linked to the specified AST list.

INPUT TO ROUTINE

Registers Contents

R4 Address of specified listhead

RS Address of the unit control block

Fields Contents

IPL at execution: caller's IPL

This routine removes all AST blocks from the specified list and
schedules an IPL$_QUEUEAST level fork process to queue each AST to its
process.

OUTPUT FROM ROUTINE

Registers Contents

Fields Contents

Specified listhead 0

IPL at exit: caller's IPL

C-1

OPERATING SYSTEM ROUTINES

COM$DRVDEALMEM in module COMDRVSUB

Drivers use this routine to deallocate system dynamic memory.
COM$DRVDEALMEM can be called from any interrupt pri~rity level.

INPUT TO ROUTINE

Registers Contents

RO Address of the block to be deallocated

Fields Contents

IRP$W SIZE Size of the block in bytes

IPL at execution: caller's IPL and IPLS_QUEUEAST

If the block size is smaller than 24 bytes
properly aligned, a system bugcheck occurs.
SCH$RAVAIL to mark the resource free.

IPL at exit: caller's IPL

COM$FLUSHATTNS in module COMDRVSUB

or the block is not
This routine also calls

Driver FDT and fork routines call this routine to flush an attention
AST list. Drivers use this routine during cancel I/O operations.

INPUT TO ROUTINE

Registers Contents

R4 Address of the current PCB

R5 Address of the UCB

Rn Number of the assigned channel

R7 Address of the AST control block listhead

Fields Contents

UCB$B DIPL Device IPL

PCB$L PID Process's ID

PCB$W ASTCNT ASTS remaining in quota

IPL at execution: device IPL (UCB$B_DIPL)

COM$FLUSHATTNS locates all the control blocks whose channel number and
process identification match those specified as input to the routine,
removes them from the specified list and deallocates them. This
routine exits by returning to its caller.

C-2

OUTPUT FROM ROUTINE

Registers

RO

Rl

R2

R7

Fields

PCB$W ASTCNT

Specified listhead

OPERATING SYSTEM ROUTINES

Contents

SS$ NORMAL

Destroyed

Destroyed

Destroyed

Contents

Number of ACBs flushed (added to previous
contents)

Updated

IPL at exit: caller's IPC

COM$POST in module COMDRVSUB

Drivers call this routine after they have completed all
device-dependent I/O postprocessing for an I/O request. This routine
inserts the I/O request packet into the I/O postprocessing queue and
returns to the driver fork process. COM$POST operates independently
of the device unit; it does not attempt to dequeue another packet nor
does it change the busy status of the device.

Drivers can use this routine to complete I/O request packets initiated
by the routine EXE$ALTQUEPKT.

INPUT TO ROUTINE

Registers Contents

R3 Address of the I/O request packet

RS Address of the unit control block

Fields Contents

IRP$L MEDIA Data to be copied into the I/O status block

IRP$L MEDIA+4 Data to be copied to the I/O status block

IPL at execution: caller's IPL (driver fork level or above)

This routine places the I/O request packet into the queue headed by
IOC$GL PSBL.

C-3

OPERATING SYSTEM ROUTINES

OUTPUT FROM ROUTINE

Registers Contents

RO Destroyed

Rl Destroyed

Fields Contents

UCB$L OPCNT Incremented by 1

IPL at exit: caller's IPL

COM$SETATTNAST in module COMDRVSUB

Driver FDT routines call this routine to enable or disable attention
ASTs, depending upon the contents of the queue I/O parameter Pl. To
enable an AST, Pl contains the address of an AST routine. The routine
allocates a control block that can double as an AST control block when
the AST is delivered.

This control block contains the following information:

• The address of the specified AST routine

• The specified AST parameter

• The specified access mode

• The channel number

• The process identification of the requesting process

COM$SETATTNAST links the control block to the start of the specified
linked list of AST control blocks located in the unit control block
extension area.

If Pl is clear, the routine disables ASTs by searching through the
linked list, extracting each entry, and deallocating it.

INPUT TO ROUTINE

Registers Contents

R3 Address of the IRP

R4 Address of the current PCB

RS Address of the UCB

Rn Address of the assigned channel control block

R7 Address of the specified AST control block
listhead

AP Address of the QIO parameter list

C-4

OPERATING SYSTEM ROUTINES

Fields Contents

IRP$W CHAN I/O request channel number

UCB$B_DIPL Device IPL

PCB$W ASTCNT Number of ASTs remaining in process quota

PCB$L PID Process identification

O(AP) Process AST address

4(AP) AST parameter

8(AP) Access mode for AST

IPL at execution: caller's IPL and device IPL

If the process exceeds buffered I/O or AST quotas, or if there is no
memory available to allocate an AST control block, this routine
transfers control to EXE$ABORTIO with error status.

If Pl is clear, the routine transfers control to COM$FLUSHATTNS to
remove the identified AST control block.

This routine exits to its caller.

OUTPUT FROM ROUTINE

Registers

RO

Rl

R2

R3

RS

R6

R7

R8

Fields

DCB$W ASTCNT

Specified listhead

Contents

SSS NORMAL (success)
SS$-EXQUOTA
SS$-INSFMEM

Destroyed

Destroyed

Address of the IRP

Address of the UCB

Destroyed

Destroyed

Destroyed

Contents

Decreased by 1

Updated

IPL at exit: caller's IPL

C-5

OPERATING SYSTEM ROUTINES

ERL$DEVICERR in module ERRORLOG

Logs a controller and/or device error. This routine allocates an
error messagB buffer and writes data from the I/O request packet and
unit control block. It also calls the driver register dump routine
for device registers.

INPUT TO ROUTINE

Registers Contents

RS Address of unit control block

ERL$DEVICERR sets the error type code to device error. This routine
uses fields in the UCB, DDB, DDT, and I/O request packet. It also
assumes that the driver contains a register dump routine. It uses the
DDT to calculate the address of the register dump routine and then
calls it.

If you do not specify a dump routine in the
DDTAB supplies the address of IOCSRETURR.
it is a NOP.

DDTAB macro invocation,
IOC$RETURN simply returns;

OUTPUT FROM ROUTINE

Registers Contents

Fields Contents

UCB$L EMB Address of the error message buffer

UCB$W STS Shows error log ih progress

ERL$DEVICTMO in module ERRORLOG

Logs a device timeout. This routine performs the same functions and
uses the same input and output as ERL$DEVICERR with one exception:
the error type code is device timeout.

ERL$RELEASEMB in module ERRORLOG

Wakes the error log process to write the contents of an error message
buffer into the error logging file.

INPUT TO ROUTINE

Registers

R2

Fields

ERL$V TIMER
(in ERLSGB_BUFFLAG)

IPL at execution:

Contents

Address of error message buff er

Contents

Determines whether a timer is running on the
buff er

caller's IPL

C-n

OPERATING SYSTEM ROUTINES

OUTPUT FROM ROUTINE

Registers Contents

RO Destroyed

Fields Contents

Busy message count Decreased by 1
(in ERL$B_BUSY)

Complete message Incremented by 1
count (in error message
buffer header)

If ERL$B MSGCNT is greater than the maximum message count, this
routine wakes the error logger.

IPL at exit: caller's IPL

EXE$ABORTIO in module SYSQIOREQ

FDT routines jump to this routine to finish an I/O operation without
returning final I/O status in the IOSB. This routine zeroes the IOSB
field of the I/O request packet, clears a bit to prevent a user mode
AST, and inserts the I/O request packet in the I/O postprocessing
queue.

INPUT TO ROUTINE

Registers Contents

RO First longword of status for I/O status block

R3 Address of I/O request packet

R4 Address of current PCB

RS Address of UCB

Fields Contents

ACB$V_QUOTA Set to 1 (when an AST is specified)
(in IRP$B_RMOD)

IPL at execution: IPL$ ASTDEL

OUTPUT FROM ROUTINE

Registers Contents

None written

Fields Contents

ACB$V QUOTA
(in IRP$B_RMOD)

Cleared to zero (if field previously set)

IRP$L IOSB Zero

C-7

OPERATING SYSTEM ROUTINES

PCB$W ASTCNT Incremented if ACB$V_QUOTA was set

EXE$ABORTIO places the I/O request packet into the I/O postprocessing
queue headed by IOC$GL PSBL.

IPL at exit: 0 (normal process IPL)

EXE$ALLOCBUF in module MEMORYALC

FDT routines call this routine to allocate a buffer for a buffered I/O
operation from the nonpaged system pool. This routine can place the
process in a resource wait state if sufficient memory is not
available, and the process has resource wait mode enabled. The caller
must adjust process quotas.

INPUT TO ROUTINE

Register

Rl

R4

Fields

PCB$V SSRWAIT

Contents

Size of requested buffer in bytes

Address of current PCB

Contents

One or zero. Determines whether process
should wait, if no memory available for
requested buffer. If this field is set,
resource wait mode is disabled.

IPL at execution: caller's IPL, IPL 11, and IPL$ SYNCH

OUTPUT FROM ROUTINE

Registers

RO

Rl

R2

R3

Fields

IRP$W SIZE
(in allocated buffer)

IRP$B TYPE
(in allocated buffer)

IPL at exit: IPL$ ASTDEL

Contents

SS$ NORMAL (success)
SS$-INSFMEM

Size of allocated buffer (requested size is
rounded up to next ln-byte multiple)

Address of allocated buffer

Destroyed

Contents

Buffer size in bytes

DYN$C BUFIO

C-8

OPERATING SYSTEM ROUTINES

EXE$ALLOCIRP in module MEMORYALC

This routine allocates an I/O request packet from nonpaged dynamic
memory. It performs the same functions and has the same input and
output as EXE$ALLOCBUF, with the following exceptions:

• The caller does not specify a buffer size

• The allocated buffer is IRP$C LENGTH bytes long

• The buffer size is set to IRP$C LENGTH

• The buffer type is set to DYN$C IRP

EXE$ALONONPAGED in module MEMORYALC

Driver fork processes use this routine to allocate a block of memory
from the nonpaged system pool.

The block header is not initialized.

INPUT TO ROUTINE

Registers Contents

Rl Requested block size in bytes

Fields Contents

none

IPL at execution: caller's IPL and IPL 11

OUTPUT FROM ROUTINE

Registers Contents

RO Status code (0 or 1)

Rl Size of allocated buffer (requested size
rounded up to next lo-byte multiple)

R2 Address of allocated block

R3 Destroyed

Fields Contents

IPL at exit: caller's IPL

EXE$ALTQUEPKT in module SYSQIOREQ

Driver FDT routines and fork processes call this routine to send an
I/O request packet to a driver's alternate start I/O routine so that
it bypasses the I/O request queue for the device's unit control block.
EXE$ALTQUEPKT passes the address of the I/O request packet to the
driver without regard for the status of the device unit.

C-9

OPERATING SYSTEM ROUTINES

INPUT TO ROUTINE

Registers Contents

R3 Address of the I/O request packet

RS Address of the unit control block

Fields Contents

DDT$L ALTSTART Address of the alternate start I/O routine

UCB$B FIPL Driver fork IPL

UCB$L DDB Address of unit's DDB

DDB$L DDT Address of the driver dispatch table

IPL at execution: UCB$L FIPL

EXE$ALTQUEPKT calls the alternate start I/O routine and returns to its
caller.

OUTPUT FROM ROUTINE

Registers Contents

RO Destroyed

Rl Destroyed

R2-R5 Destroyed

IPL at exit: caller's IPL

EXE$BUFFRQUOTA in module EXSUBROUT

FDT routines call this routine to determine whether a process's
buffered byte count quota usage permits the process to be granted
additional buffered I/O. This routine may place the process in a
resource wait state if quota usage is too large, and the process has
resource wait mode enabled.

INPUT TO ROUTINE

Registers Contents

Rl Number of requested bytes

R4 Address of PCB

C-10

Fields

PCB$V SSRWAIT

IOC$GW MAXBUF

OPERATING SYSTEM ROUTINES

Contents

When process exceeds quota, determines
whether process should wait. If this field
is set, resource wait mode is disabled.

Maximum number of buffered I/O bytes that
system allows to any process

JIB$L BYTLM Process's byte count limit

JIB$L BYTCNT Process's byte count usage quota

IPL at execution: caller's IPL and IPL$ SYNCH

OUTPUT FROM ROUTINE

Registers Contents

RO SS$ NORMAL (success)
SS$=EXQUOTA

R3 Destroyed

Fields Contents

IPL at exit: IPL$ ASTDEL

EXE$BUFQUOPRC in module EXSUBROUT

EXE$BUFQUOPRC performs the same function and has the same input and
output as EXE$BUFFRQUOTA with the following exception: EXESBUFQUOPRC
does not check the field IOC$GW MAXBUF.

EXE$DEANONPAGED in module MEMORYALC

Deallocates a block of memory to the nonpaged system pool.

This routine performs the same functions and has the same input and
output as the routine COM$DRVDEALMEM, with the following exceptions:

• R3 is destroyed

• The caller's IPL must be at IPL$_QUEUEAST or lower

C-11

OPERATING SYSTEM ROUTINES

EXE$FINISHIO in module SYSQIOREQ

FDT routines transfer control to this routine to finish an I/O
operation and return a quadword of final I/O status to the requesting
process. This routine writes final I/O status into the I/O request
packet and inserts the I/O request packet in the I/O postprocessing
queue.

INPUT TO ROUTINE

Registers

RO

Rl

R3

R4

RS

OUTPUT FROM ROUTINE

Registers

RO

Fields

IRP$L MEDIA

IRP$L MEDIA+4

UCB$L OPCNT

Contents

First longword of status for the I/O status
block

Second longword of status for the I/O status
block

Address of the I/O request packet

Address of the current process control block

Address of the UCB

Contents

SS$ NORMAL

Contents

First longword of I/O status (RO)

Second longword of I/O status (Rl)

Incremented by 1

This routine places the I/O request packet into the I/O postprocessing
queue headed by IOC$GL PSBL.

EXE$FINISHIOC in module SYSQIOREQ

This routine performs the same functions and has the same input and
output as EXE$FINISHIO with the following exception: EXE$FINISHIOC
clears the contents of Rl before storing RO and Rl in the I/O request
packet.

EXE$FORK in module FORKCNTRL

This routine performs the same functions as EXE$IOFORK except that
this routine does not disable timeouts by clearing UCB$V TIM in the
UCB$W STS field of the unit control block.

C-12

OPERATING SYSTEM ROUTINES

EXE$FORKDSPTB in module FORKCNTRL

The interrupt service routine that dispatches fork processes in a fork
queue. This routine gains control when the processor grants a
software interrupt at IPLs 6 and 8 through 11. When EXE$FORKDSPTH
gains control the stack contains the following information:

• O(SP) contains the PC at the time of the interrupt

• 4(SP) contains the PSL at the time of the interrupt

RO through RS at the time of the interrupt are also saved by
EXE$FORKDSPTH.

SWI$GL FQFL indexed by the current IPL contains the address of the
head of the fork queue for this IPL. Each entry in the fork queue is
the address of a fork block that contains R3, R4, a PC, and implicitly
RS; RS is the address of the fork block.

If the queue is empty when the interrupt occurs, EXESFORKDSPTH
dismisses the interrupt without error.

EXE$FORKDSPTH empties the fork queue corresponding to the IPL of the
interrupt. For each queue entry, it restores R3 and R4 from the fork
block, saves the dispatch address and IPL on the stack, and executes a
JSB to the saved PC address. When the queue is empty, it dismisses
the interrupt.

The IPL on return from each fork process must equal the IPL at which
the process was called. If IPL does not match, EXE$FORKDSPTH signals
the fatal bugcheck BADFORKIPL.

EXE$INSERTIRP in SYSQIOREQ.MAR

Inserts an I/O request packet according to the base priority of the
I/O request packet's originating process into the I/O request packet
wait queue of a unit control block.

INPUT TO ROUTINE

Register

R2

Contents

Address of the I/O queue list head for the
device

R3 Address of the I/O request packet

Fields Contents

IPL at execution: caller's IPL (fork level or higher)

OUTPUT FROM ROUTINE

Register Contents

Rl Destroyed

C-13

OPERATING SYSTEM ROUTINES

This routine places the I/O request packet in the queue and sets the z
condition code in the PSL as follows:

1 indicates that the entry is first in the queue.

O indicates that at least one entry was already in the queue.

IPL at exit: caller's IPL

EXE$INSIOQ in SYSQIOREQ•MAR

Examines the unit control block. If the device is idle, this routine
calls IOC$INITIATE; if the device is busy, it calls EXESINSERTIRP.

INPUT TO ROUTINE

Registers Contents

R3 Address of the I/O request packet

RS Address of the UCB

Fields Contents

UCB$B FIPL Driver fork IPL

UCB$V BSY Determines whether device is busy
(in UCB$W_STS)

UCB$L_IOQFL Address of device I/O queue listhead

IPL at execution: driver fork level

OUTPUT FROM ROUTINE

Registers Contents

RO Destroyed

Rl Destroyed

R2 Destroyed

Additional registers used by the driver start I/O routine will be
destroyed if the start I/O routine is called.

Fields Contents

UCB$V BSY Set to 1
(in UCBSW_STS)

IPL at exit: original IPL

C-14

OPERATING SYSTEM ROUTINES

EXE$IOFORK in module FORKCNTRL

Saves the contents of R3 and R4 in the fork block specified by RS.
This routine pops the return PC off the top of stack and saves the PC
value in the fork block. It inserts the fork block address into the
fork queue corresponding to the IPL stored in the fork block.

INPUT TO ROUTINE

Register

RS

O(sp}

4(sp}

Fields

FKB$B FIPL
(in fork block}

Contents

Address of the fork block (usually the UCB}

Return address of caller

Return address of caller's caller

Contents

Fork IPL

IPL at execution: caller's IPL

OUTPUT FROM ROUTINE

Registers Contents

R3 Destroyed

R4 FKB$B FIPL

Fields Contents

UCB$V TIM Zero
(in UCB$W_STS}

FKB$L FR3 R3
(in UCB}

FKB$L FR4 R4
(in UCB}

FKB$L FPC O(SP}
(in UCB}

The routine queues the UCB address to the list headed by SWI$GL FQFL.
If the queue is empty, requests a software interrupt at fork IPL7

IPL at exit: caller's IPL

C-15

OPERATING SYSTEM ROUTINES

EXE$MODIFY in module SYSQIOFDT

FDT routines transfer control to this device-independent routine that
validates and readies a user buffer for a OMA read/write op~ration.
Use EXE$MODIFY instead of EXE$READ when you wish your driver to read
and write to a buffet. EXESMODIFY disables a paging mechansim used
during write-only operations.

This routine performs the following functions:

• Translates read logical functions to read physical functions

• Transfers queue I/O parameters to the I/O request packet

• Verifies that the caller has access to the specified buffer

• Locks the buffer's pages into physical memory. If a page
fault occurs during this step, the routine returns control to
the Queue I/O Request system service, which repeats the
request.

INPUT TO ROUTINE

Registers

R3

R4

RS

R6

R7

R8

AP

Contents

Address of the I/O request packet

Addr~ss of the current PCB

Address of the UCB assigned to the device
unit

Address of the CCB for the channel assigned
to the device unit

Bit number of the I/O function code

FDT entry address

Address of the first function-dependent QIO
parameter (Pl)

Fields Contents

O(AP) Virtual address of buffer (Pl)

4(AP) Number of bytes in transfer (P2)

12(AP) Carriage control byte (P4)

IRP$W FUNC I/O function code

IPL at execution: caller's IPL (IPL$_ASTDEL)

If this routine
EXE$QIODRVPKT.
EXE$ABORTIO.

completes successfully,
If EXESMODIFY fails,

C-ln

it
it

transfers
transfers

control
control

to
to

OUTPUT FROM ROUTINE

Registers

RO, Rl, R2

Fields

IRP$B CARCON

IRP$V FUNC
(in IRP$W_STS)

IRP$L SVAPTE

OPERATING SYSTEM ROUTINES

Contents

Destroyed

Contents

P4

Set to 1 (indicates a read function)

Address of page table entry that maps the
first page of the buffer

IRP$W BCNT Size of the transfer in bytes

IPL at exit: caller's IPL

EXE$MODIFYLOCK in module SYSQIOFDT

FDT routines call EXE$MODIFYLOCK to perform buff er processing on a DMA
transfer. This routine:

• Determines whether the caller has write access to the buffer

• Locks the buffer's pages into memory. If a page fault occurs
during this process, the routine returns control to the Queue
I/O Request system service, which resubmits the request.

Use EXE$MODIFYLOCK instead of EXE$READLOCK when you expect your driver
to read and write to a buffer. EXE$MODIFYLOCK disables a paging
mechanism used in write-only operations.

INPUT TO ROUTINE

Registers Contents

RO Starting address of buffer

Rl Size of transfer in bytes

R3 Address of the I/O request packet

R4 Address of current PCB

Rn Address of the CCB

Fields Contents

IPL at execution: caller's IPL (IPL$_ASTDEL)

C-17

OPERATING SYSTEM ROUTINES

If EXE$MODIFYLOCK fails, it transfers control to EXE$ABORTIO. If the
routine completes successfully, control passes to EXESQIODRVPKT.

OUTPUT FROM ROUTINE

Registers

RO

Rl

R2

R3

Fields

IRP$L SVAPTE

Contents

SS$ NORMAL

Address of the PTE that maps the first page
of the buffer

Destroyed

Address of the !RP

Contents

Address of the PTE that maps the first page
of the buffer

IRP$W BCNT Size of the transfer in bytes

IRP$V FUNC A value of 1 {indicating a read function)
{in IRP$W_STS)

IPL at exit: caller's IPL

EXE$MODIFYLOCKR in module SYSQIOFDT

This routine determines whether a process has write access to the
buffer pages it requested, then, if access is permitted, it locks the
pages into memory. If the access check or page locking procedure
fails, the routine calls the driver to clean up QIO bookkeeping.
Drivers typically use EXE$MODIFYLOCKR when they must lock multiple
areas into memory for one I/O request, and then need to unlock
previously locked areas after a QIO is aborted.

INPUT TO ROUTINE

Registers Contents

RO Starting address of buffer

Rl Length of the buffer in bytes

R3 Address of the IRP

R4 Address of the current process's PCB

R6 Address of the channel control block

Fields Contents

C-18

OPERATING SYSTEM ROUTINES

EXE$MODIFYLOCKR may fail for a number of reasons:

• The buffer access check fails. In this case, the routine
returns SS$ ACCVIO to the driver in RO.

• The caller process has an insufficient ~orking set limit to
lock all the buffer pages into memory. The routine returns
SS$ INSFWSL in RO.

• A page fault occurs while the routine is locking pages into
memory. The status returned in RO in this case is zero.

If any of the above errors occur, the routine calls back the driver as
a coroutine with error status in RO and all other registers preserved.
The driver performs necessary qu~ue I/O cleanup, that is, it carries
out any procedures that the system does not perform as part of the
normal QIO abort processing.

The driver must preserve all registers, including RO and Rl.

When the driver returns by executing an RSB instruction,
EXE$MODIFYLOCKR aborts the I/O request if RO contains an error status,
then performs processing that results in the I/O request's being
resubmitted to the driver. For example:

JSB
BLBS

BUF LOCK FAIL:

BUF LOCK OK:

G~EXE$MODIFYLOCKR

BUF LOCK OK

<clean up this QIO bookkeeping>
RSB

<continue this QIO>

If the subroutine is successful, it returns control to its caller.

OUTPUT FROM ROUTINE

Registers

RO

Rl

R2

R3

Fields

IRP$L SVAPTE

IRP$W BCNT

IRP$M FUNC
(in IRP$W_FUNC)

Contents

SS$ NORMAL (1)

Address of the PTE that maps the first page
of the buffer

Function indicator (set to 1)

Address of the !RP

Contents

Address of the PTE that maps the first page
of the buff er

Size of the transfer in bytes

Set to 1

IPL at exit: caller's IPL

C-19

OPERATING SYSTEM ROUTINES

EXE$0NEPARM in module SYSQIOFDT

Device-independent FDT routine that copies a single QIO parameter into
the I/O request packet and calls EXE$QIODRVPKT.

INPUT TO ROUTINE

Registers

R3

R4

RS

R6

R7

R8

AP

Fields

OUTPUT FROM ROUTINE

Contents

Address of the I/O request packet for the
current I/O request

Address of the process control block of the
current process

Address of the unit control block of the
device assigned to the user-specified process
I/O channel

Address of the
describes the
channel

channel control
user-specified

block
process

that
I/O

Bit number of the user-specified I/O function
code

Address of FDT entry

Address of the first function-dependent
parameter specified in the user's request

Contents

Registers Contents

Fields Contents

IRP$L MEDIA Pl
(of IRP)

IPL at exit: caller's IPL

This routine exits to EXE$QIODRVPKT.

Chapter 8 provides more information about this routine.

EXE$QIODRVPKT in module SYSQIOREQ

FDT routines call this routine to send an IRP to a driver start I/O
routine. This routine calls EXESINSIOQ and then transfers control to
EXE$QIORETURN.

C-20

OPERATING SYSTEM ROUTINES

INPUT TO ROUTINE

Registers Contents

R3 Address of the I/O request packet

R4 Address of the process control block

RS Address of the unit control block

Fields Contents

UCB$B FIPL Driver fork IPL

UCB$V BSY Unit busy flag
(in UCB$W_STS)

UCB$L_IOQFL Address of unit I/O queue listhead

EXE$QIORETURN in module SYSQIOREQ

Sets a success status code in RO, lowers IPL to O, and returns to the
system service dispatcher.

OUTPUT FROM ROUTINE

Registers Contents

RO SS$ NORMAL

IPL at exit: 0

This routine returns by issuing a RET instruction.

EXE$READ in module SYSQIOFDT

Device-independent FDT routine that validates and readies a user
buffer for a DMA read operation. This routine performs the same
functions and has the same input and output as EXE$MODIFY, with a
single exception noted in the description of EXE$MODIFY.

EXE$READCHK in module SYSQIOFDT

Checks pages for write accessibility by a process. This routine
writes the total byte count of a transfer into the I/O request packet.

If pages do not allow write access, the routine transfers control to
EXE$ABORTIO, which terminates the request with access violation
status. If EXE$READCHK completes successfully, control returns to its
caller.

C-21

OPERATING SYSTEM ROUTINES

INPUT TO ROUTINE

Registers Contents

RO Address of buffer

Rl Size of the transfer 1n bytes

R3 Address of the I/O request packet

Fields Contents

IPL at execution: caller's IPL

OUTPUT FROM ROUTINE

Registers Contents

RO Address of buffer (success)

Rl Size of transfer in bytes

R2 Value of 1 (to indicate a read)

R3 Address of !RP

Fields Contents

IRP$W BCNT Size of transfer in bytes

IRP$V FUNC Value of 1 (indicates a read function)
(in IRP$W_STS)

IPL at exit: caller's IPL

EXE$READCHKR in module SYSQIOFDT

This routine performs the same function as EXE$READCHK, except that,
upon error, it calls the driver FDT routine back as a coroutine to
clean up QIO bookkeeping. See the description of error procedures in
EXE$MODIFYLOCKR for further information.

EXE$READLOCK in module SYSQIOFDT

FDT routines call this routine to check buffer accessibility and lock
the user buffer in memory for a DMA read transfer. This routine
performs the same functions and has the same input and output as
EXE$MODIFYLOCK, except that it is used when the driver performs only a
read I/O function.

EXE$READLOCKR in module SYSQIOFDT

This subroutine determines whether a process has write access to
requested buffer pages and, if access is permitted, it locks those
pages into memory. EXESREADLOCKR performs the same functions and has
the same input and output as EXE$MODIFYLOCKR.

C-22

OPERATING SYSTEM ROUTINES

EXE$SENSEMODE in module SYSQIOFDT

Device-independent FDT routine that copies device-dependent
characteristics from the device's UCB into Rl. This routine writes a
success code into RO and transfers control to EXE$FINISHIO.

INPUT TO ROUTINE

Registers

R3

R4

RS

R6

R7

Contents

Address of the I/O request packet for the
current I/O request

Address of the PCB of the current process

Address of the UCB of the device assigned to
the user-specified process I/O channel

Address of the CCB that describes the
user-specified process I/O channel

Bit number of the user-specified I/O function
code

R8 Address of function decision table dispatch

AP Address of the first function-dependent
parameter specified in the user's request

Fields Contents

UCB$L DEVDEPEND Device-dependent status

IPL at execution: caller's IPL

OUTPUT FROM ROUTINE

Registers

RO

Rl

Contents

SS$ NORMAL

Device-dependent characteristics copied from
UCB$L_DEVDEPEND

Fields Contents

IPL at exit: caller's IPL

This routine exits to EXE$FINISHIO.

For additional information, refer to Chapter 8.

C-23

OPERATING SYSTEM ROUTINES

EXE$SETCHAR in module SYSQIOFDT

Device-independent FDT routine that writes a quadword whose address is
QIO parameter Pl into the device's unit control block. Writes a
success code into RO and transfers control to EXE$FINISHIO.

INPUT TO ROUTINE

Registers Contents

R3 Address of the IRP for the current I/O
request

R4 Address of the current PCB

RS Address of the UCB of the assigned device

R6

R7

R8

unit

Address of the CCB that describes
specified process I/O channel

Bit number of the I/O function code

Address of the FDT dispatcher

the

AP Address of the first function-dependent QIO
parameter

Fields Contents

O{AP) Address of new device characteristics {Pl)

IPL at execution: caller's IPL

If this routine fails because the user lacks read access to the
characteristics quadword, control transfers to EXE$ABORTIO with access
violation status.

If EXE$SETCHAR completes successfully, it transfers control to
EXE$FINISHIO.

OUTPUT FROM ROUTINE

Registers

RO

Fields

UCB$B DEVCLASS

UCB$B DEVTYPE

UCB$W DEVBUFSIZ

UCB$L DEVDEPEND

Contents

SS$ NORMAL {success)
SS$ ACCVIO {failure)

Contents

Byte O of quadword

Byte l of quadword

Bytes 2 and 3 of quadword

Bytes 4 through 7 of quadword

IPL at exit: caller's IPL

Refer to Chapter 8 for additional information on this routine.

C-24

OPERATING SYSTEM ROUTINES

EXE$SETMODE in module SYSQIOFDT

Device-independent FDT routine that writes a quadword whose address is
a QIO parameter into the I/O request packet and calls EXE$QIODRVPKT.

INPUT TO ROUTINE

Registers

R3

R4

RS

R6

R7

R8

AP

Fields

PO(AP)

Contents

Address of the I/O request packet for the
current I/O request

Address of the PCB of the current process

Address of the UCB of the device assigned to
the user-specified process I/O channel

Address of the CCB that describes the
user-specified process I/O channel

Bit number of the I/O function code

Address of the FDT entry

Address of the first function-dependent QIO
parameter

Contents

Address of a quadword of device
characteristics

IPL at execution: caller's IPL

If the user lacks read access to the device characteristics quadword,
the routine transfers control to EXE$ABORTIO with access violation
status. If EXE$SETMODE completes successfully, it normally exits to
EXE$QIODRVPKT.

OUTPUT FROM ROUTINE

Registers

RO

Fields

IRP$L MEDIA

IRP$L MEDIA+4

Contents

SS$ NORMAL (success)
SS$-ACCVIO

Contents

First longword of device characteristics
quadword

Second longword of device characteristics
quadword

IPL at exit: caller's IPL

For more information about this routine, refer to Chapter 8.

C-25

OPERATING SYSTEM ROUTINES

EXE$SNDEVMSG in module MBDRIVER

Driver fork processes call this routine to send messages to system
processes such as OPCOM. This routine constructs a message on the
stack and calls EXE$WRTMAILBOX to send the message to a mailbox.

INPUT TO ROUTINE

Registers Contents

R3 Address of the mailbox UCB

R4 Message type

RS Address of the UCB

Fields Contents

UCB$W !NIT Device unit number

UCB$L DDB Address of device DDB

DDB$T NAME Device controller name

Mailbox UCB fields

IPL at execution: caller's IPL and IPL$ MAILBOX

This routine can fail for one of the following reasons:

• The message is too large for the mailbox

• The message mailbox is full of messages

• The system is unable to allocate memory for the message

If any of the above conditions occur, EXE$SNDEVMSG returns error
status to the caller.

If EXE$SNDEVMSG completes successfully, it exits with
instruction.

OUTPUT FROM ROUTINE

Registers

RO

Rl

R2

R3

R4

RS

Contents

SS$ NORMAL (success)
SS$MBTOOSML
SS$MBFULL
SS$INSFMEM

Destroyed

Destroyed

Destroyed

Destroyed

Destroyed

C-2n

an RSB

OPERATING SYSTEM ROUTINES

Fields Contents

IPL at exit: caller's IPL

EXE$WRITE in module SYSQIOFDT

Device-independent FDT routine that validates and readies a user
buffer for a DMA write operation. This routine performs the same
steps as EXE$MODIFY, and has the same input and output.

EXE$WRITECHK in module SYSQIOFDT

Checks pages for read accessibility by a process and writes the total
byte count of a transfer into the I/O request packet. If pages do not
allow read access, the routine transfers control to EXESABORTIO, which
terminates the request with access violation status. If EXE$WRITECHK
completes successfully, it exits to its caller.

INPUT TO ROUTINE

Registers Contents

RO Address of buff er

Rl Size of the transfer in bytes

R3 Address of the I/O request packet

IPL at execution: caller's IPL

OUTPUT FROM ROUTINE

Registers Contents

RO Buff er address (success)

Rl Size of the transfer in bytes

R2 Cleared (indicates a write function)

R3 Address of the I/O request packet

Fields Contents

IRP$W BCNT Contains transfer size in bytes

IPL at exit: caller's IPL

EXE$WRITECHKR in module SYSQIOFDT

This routine performs the same functions as EXESWRITECHK, except that,
upon error, it calls the driver FDT routine back as a coroutine to
clean up QIO bookkeeping.

See the description of error procedures in EXESMODIFYLOCKR for more
information about coroutine cleanup.

C-27

OPERATING SYSTEM ROUTINES

EXE$WRITELOCK in module SYSQIOFDT

FDT routines call this routine to determine whether the caller has
read access to the buffer and to lock the buffer in memory for a DMA
write transfer.

INPUT TO ROUTINE

Register Contents

RO Starting address of I/O buffer

Rl Length of transfer in bytes

R3 Address of the I/O request packet

R4 Address of the PCB

R6 Address of the CCB

Fields Contents

IPL at execution: caller's IPL {IPL$_ASTDEL)

This routine calls EXE$WRITECHK and MMG$IOLOCK. MMG$IOLOCK locks
pages in memory. If EXE$WRITELOCK fails because a page fault occurs
during the locking procedure, it transfers control to the Queue I/O
Request system service, which repeats the I/O request. It exits to
EXE$ABORTIO if it cannot complete successfully. If the routine does
complete without error, it exits to EXE$QIODRVPKT.

OUTPUT FROM ROUTINE

Registers

RO

Rl

R2

R3

Fields

IRP$L SVAPTE

Contents

SS$ NORMAL

Address of the PTE that maps the first page
of the buffer

Destroyed

Address of the IRP

Contents

Address of the PTE that maps the first page
of the buff er

IRP$W BCNT Size of the transfer in bytes

IRP$V FUNC A value of 0 {indicating a write function)
{in IRP$W_STS)

IPL at exit: caller's IPL

C-28

OPERATING SYSTEM ROUTINES

EXE$WRITELOCKR in module SYSQIOFDT

This routine determines whether the process has read access to the
requested buffer pages, and, if access is permitted, it locks those
pages into memory. EXE$WRITELOCKR performs the same functions as
EXE$MODIFYLOCKR, with the following exceptions:

• R2, on output, contains a zero to indicate a write function.

• IRP$M FUNC (in IRP$W_FUNC) is clear (zero) to indicate a write
f unctTon)

EXE$ZEROPARM in module SYSQIOFDT

Device-independent FDT routine that clears the parameter field of the
!RP and calls EXE$QIODRVPKT.

INPUT TO ROUTINE

Register

R3

R4

RS

R6

R7

Contents

Address of the I/O request packet for the
current I/O request

Address of the process control block of the
current process

Address of the unit control block of the
device assigned to the user-specified process
I/O channel

Address of the
describes the
channel

channel control
user-specified

block
process

that
I/O

Bit number of the user-specified I/O function
code

RB Address of FDT entry

AP Address of the first function-dependent
parameter specified in the user's request

Fields Contents

IPL at execution: caller's IPL

This routine exits by transferring control to EXE$QIODRVPKT.

OUTPUT FROM ROUTINE

Registers Contents

Fields Contents

IRP$L MEDIA Zero

C-29

OPERATING SYSTEM ROUTINES

IPL at exit: caller's IPL

For additional information, refer to Chapter 8.

IOC$ALOUBAMAP(N) in module IOSUBNPAG

This routine searches the map register bit map in the adapter control
block to allocate a set of contiguous map registers to a driver fork
process.

INPUT TO ROUTINE

Registers

R3

RS

Fields

UCB$W BCNT

UCB$W BOFF

UCB$L CRB

CRB$L INTD+
VEC$CADP

VEC$V MAPLOCK
(in CRB$L INTD
+VEC$W_MAPREG)

ADP$W MRBITMAP

IPL at execution:

Contents

Number of map registers to allocate (if entry
is IOC$ALOUBAMAPN)

Address of the UCB

Contents

Transfer byte count (if entry is
IOC$ALOUBAMAP)

Byte offset in page (if entry is
IOC$ALOUBAMAP)

Address of the CRB

Address of the device's adapter control block

Bit that indicates whether map registers are
permanently allocated to this controller

Determines which map registers are available

caller's IPL

If map registers are already permanently allocated to the controller,
this routine exits successfully without allocating any map registers.
Otherwise, the routine searches the map regist~r bit map for the
required number of contiguous map registers, calls IOCSALTUBAMAP, and
exits by issuing an RSB instruction.

OUTPUT FROM ROUTINE

Registers Contents

RO 1 (success)
0 (insufficient contiguous map registers)

Rl Destroyed

R2 Destroyed

C-30

OPERATING SYSTEM ROUTINES

Fields Contents

CRB$L INTD+ Number of map registers allocated
VEC$B-NUMREG

CRB$L INTD+ Starting map register number
VEC$W-MAPREG

ADP$W MRBITMAP Bits for allocated map registers set to zero.

IPL at exit: caller's IPL

IOC$ALTUBAMAP in module IOSUBPAG

Clears or sets a field of bits in the UNIBUS adapter map register
allocation bit map.

Register Contents

RO Alternation bit mask (zeros to clear bits,
ones to set bits)

Rl Address of the channel request block

R2 Address of the adapter control block

R4 Number of the starting map register

Fields Contents

CRB$L INTD+ Number of map registers needed
VEC$B-NUMREG

IPL at execution: caller's IPL

OUTPUT FROM ROUTINE

Registers Contents

R3 Destroyed

R4 Destroyed

Fields Contents

ADP$W MRBITMAP Bits describing available map registers

IPL at exit: caller's IPL

C-31

OPERATING SYSTEM ROUTINES

IOC$APPLYECC in module IOSUBRAMS

Disk drivers call this routine to apply an ECC correction to data
transferred from a device into memory. This routine corrects the data
by exclusive ORing a correction pattern from the unit control block.
It also sets a UCB bit to indicate that an ECC correction has been
made.

INPUT FROM ROUTINE

Register

RO

RS

Fields

UCBSW BCNT

UCB$W ECl

UCB$W EC2

UCB$L SVPN

UCB$L SVAPTE

Contents

Number of bytes of data that have been
transferred, not including the block to be
corrected; this must be a multiple of 512
bytes

Address of the unit control block

Contents

Length of transfer in bytes

Starting bit number of the error burst

Exclusive OR correction pattern

Address of the system page table entry of a
page that is available for use by driver

System virtual address of the page table
entry that maps the transfer

IPL at execution: caller's IPL

OUTPUT FROM ROUTINE

Registers

RO

Rl

R2

Fields

UCB$V ECC
(in UCB$W_DEVSTS)

Contents

Destroyed

Destroyed

Destroyed

Contents

Set to l to show that an ECC correction
was made

IPL at exit: caller's IPL

C-32

OPERATING SYSTEM ROUTINES

IOC$CANCELIO in IOSUBNPAG.MAR

Device-independent cancel I/O routine that sets a cancel I/O bit in
the unit control block if the I/O request packet being currently
processed on the device originates from the current process on the
specified channel and the unit is busy.

INPUT TO ROUTINE

Register

R2

R3

R4

RS

Fields

IRP$L PID

IRP$W CHAN

PCB$L PID

Contents

Negative of the channel number

Address of the I/O request packet

Address of the current PCB

Address of the unit control block

Contents

Process identification of the process that
queued the I/O request

Negative of the channel number

Process identification of the process that
requested cancellation

UCB$V BSY Device busy flag
(in UCB$W_STS)

IPL at execution: caller's IPL

OUTPUT FROM ROUTINE

Registers Contents

Fields Contents

UCB$V CANCEL Set if I/O request should be cancelled
(in UCB$W_STS)

IPL at exit: caller's IPL

IOC$DIAGBUFILL in module IOSUBNPAG

Driver fork processes call this routine to fill a diagnostic buffer,
if the QIO specifies such a buffer. This routine writes completion
time and final error counters into buffer. It also calls the driver
register dump routine to fill the remainder of buffer.

C-33

INPUT TO ROUTINE

Registers

R4

RS

Field

UCB$L IRP

IRP$V DIAGBUF
(in IRP$W_STS)

IRP$L DIAGBUF

UCB$B ERTCNT

UCB$L DDB

DDB$L DDT

DDT$L REGDUMP

EXE$GQ_SYSTIME

OPERATING SYSTEM ROUTINES

Contents

Address of
register

the device's control/status

Address of the unit control block

Contents

Address of the current IRP

Determines whether diagnostic buffer is
present. If set, one exists.

Address of the diagnostic buffer, if one is
present

Final error retry count

Address of the device data block

Address of the driver dispatch table

Address of the driver register dump routine

Current system time (time at I/O request
completion)

DDT$L R£GDUMP Address of the driver register dump routine

IPL at execution: caller's IPL

This routine saves the system time and final error count in the
diagnostic buffer. It then calls the driver register dump routine,
and exits with an RSB instruction.

OUTPUT FROM ROUTINE

Registers Contents

RO Destroyed

Rl Destroyed

R2 Address of the DDT

R3 Address of the I/O request packet

R4 Device CSR register

RS Address of the unit control block

Fields Contents

IPL at exit: caller's IPL

C-34

OPERATING SYSTEM ROUTINES

IOC$INITIATE in module IOSUBNPAG

Starts a driver fork process to process an I/O request packet. This
routine writes the I/O request packet address and I/O request packet
transfer parameters into the unit control block. It also clears
device status bits. If the QIO specifies a diagnostic buffer, this
routine writes system time into the buffer. It also executes a JMP
instruction to transfer control to the driver start I/O routine.

INPUT TO ROUTINE

Register

R3

RS

Fields

IRP$L SVAPTE

IRP$W BOFF

IRP$W SIZE

IRP$V _DIAGBUF
(in IRP$W_STS)

IRP$ L DIAGBUF

EXE$GQ_SYSTIME

Contents

Address of the I/O request packet

Address of the unit control block

Contents

Address of system buff er (buffered
address of PTE that maps process
(direct I/O).

Byte offset of start of buffer

Size in bytes of transfer

I/O) or
buff er

Determines whether a diagnostic buffer is
present. This field is set if one exists.

Address of the diagnostic buffer, if one is
present

Current system time (when I/O processing
began)

UCB$L DDB Address of DDB

UCB$L DDT Address of DDT

DDT$L START Address of driver start I/O routine

IPL at execution: caller's IPL

IOC$INITIATE exits by jumping to the driver start entry specified in
the driver dispatch table.

OUTPUT FROM ROUTINE

Registers Contents

RO Destroyed

Rl Destroyed

C-35

Fields

UCB$L IRP

UCB$L SVAPTE

UCB$W_BOFF

UCB$W BCNT

UCB$V CANCEL
(in UCB$W_STS)

UCB$V TIMOUT
(in UCB$W_STS)

diagnostic buffer

OPERATING SYSTEM ROUTINES

Contents

Address of the start of the I/O request
packet

IRP$L SVAPTE

IRP$W BOFF

IRP$W BCNT

Zero

Zero

Current system time (first quadword)

IPL at exit: caller's IPL

IOC$IOPOST in module IOCIOPOST

Interrupt service routine that processes I/O request packets in an I/O
postprocessing queue. This routine gains control when the processor
grants a software interrupt at IPLS IOPOST. For each queue entry, it
adjusts quota use and unlocks pages or deallocates write buffers. It
queues a kernel mode AST to copy final I/O status to the IOSB, to copy
buffered read data, and to deallocate read buffers. The AST kernel
mode routine code is located in module IOCIOPOST. The kernel mode AST
routine queues a user mode AST if specified in the QIO. When the
postprocessing queue is empty, IOC$IOPOST dismisses the interrupt.

INPUT TO ROUTINE

Registers Contents

Fields Contents

IOC$GL PSFL Head of the I/O postprocessing queue. This
routine uses this field to locate fields in
the IRP.

IRP$L PID Process identification of the process that
initiated the I/O request. This routine uses
this field to locate the PCB.

IPL at execution: IPL$ IOPOST, IPLS_ASTDEL

IOC$IOPOST generates different results for direct and buffered I/O.
For direct I/O, the routine unlocks the pages locked for the I/O
request and sets the Queue I/O event flag. The pages unlocked include
any pages defined in the IRP extension area descriptors (if an IRPE
exists). For buffered I/O read functions, the routine copies the data
from the system buffer to the process buffer, then releases the system
buffer. It also sets a Queue I/O event flag, if one was requested.

C-3n

OPERATING SYSTEM ROUTINES

For both direct and buffered I/O, IOC$IOPOST performs the following
functions:

• Copies the diagnostic buffer from system to process space and
releases the system buffer

• Copies I/O completion status (if requested) from the I/O
request packet to the process's I/O status block

• Queues an AST to the process, if one was requested

• Deallocates the !RP and any !RP extensions

Note that kernel mode ASTs handle much of the processing described
above.

IOC$LOADUBAMAP(A) in module LOADMREG

Driver fork processes for DMA transfers call this routine to load
UNIBUS map registers required by the current transfer with a
frame number, the data path number, possibly the byte offset bit,
possibly the longword access enable bit. This routine confirms
enough map registers have been allocated and sets the last
register invalid to stop a wild transfer.

the
page

and
that

map

INPUT TO ROUTINE

Registers Contents

RS Address of unit control block

The data path and map registers are already allocated.

Field

UCB$W BOFF

UCB$W BCNT

UCB$L CRB

CRB$L INTD+
VEC$B-DATAPATH

VEC$V LWAE
(in CRB$L INTD+
VEC$B_DATAPATH)

CRB$L INTD+VEC$L NUMREG - -
CRB$L INTD+VEC$L ADP - -
UBA$L MAP

UCB$L SVAPTE

Contents

Offset to the first byte in the first page of
the transfer

Number of bytes in the transfer

Address of the controller's channel request
block

Number of the data path to be allocated

Determines length of buffering.
Set if longword buffering used (instead of
quadword buffering)

Number of map registers allocated

Address of the adapter control block

Address of the first UNIBUS map register

Address of the page table entry for the first
page of the transfer

C-37

OPERATING SYSTEM ROUTINES

OUTPUT FROM ROUTINE

Registers Contents

RO Destroyed

Rl Destroyed

R2 Destroyed

Fields Contents

Allocated map registers Byte offset is set for entry IOCSLOADUBAMAP
(never set for IOCSLOADUBAMAPA)

IPL at exit: caller's IPL

IOC$PURGDATAP in module LIOSUB

Device drivers using buffered data paths call this subroutine after a
data transfer. IOCSPURGDATAP purges the UNIBUS adapter buffered data
path as well as checking for and clearing purge errors.

INPUT TO ROUTINE

Registers Contents

RS Address of the UCB

Fields Contents

IPL at execution: caller's IPL

This routine obtains the start of UNIBUS adapter register space using
the following chain of pointers:

UCB$L CRB ==> CRB$L INTD+VEC$L ADP ==> ADPSL CSR - - -
This routine extracts the caller's data path number (buffered or
direct) from the channel request block. The routine then purges the
data path and stores the contents of the data path register in Rl.
IOC$PURGDATAP clears any purge errors in the data path register. It
also sets the appropriate status in RO, computes the base of UNIBUS
map registers, and writes the base into R2.

A purge of data path 0 is legal and a NOP;
success status.

it always results in

IOC$PURGDATAP alters RO through R3 but preserves all other registers.

C-38

OUTPUT FROM ROUTINE

Registers

RO

Rl

OPERATING SYSTEM ROUTINES

Contents

Low bit set (success)
Low bit clear (failure)

Contents of data path after purge
register dump routine)

(for

R2 Address of the start of UNIBUS map registers
(for the register dump routine)

R3 Address of the CRB

Fields Contents

IPL at exit: caller's IPL

IOC$RELCHAN in module IOSUBNPAG

Driver fork processes call this routine to release controller data
channels assigned to a device. If the channel wait queue contains
waiting fork processes, this routine dequeues a process, assigns the
channel to that process, restores R3 through RS, and reactivates the
suspended process.

INPUT TO ROUTINE

Register

RS

Fields

UCB$L CRB

CRB$L LINK

CRB$V BSY
(in CRB$B_MASK)

CRB$L_INTD+VEC$L_IDB

IDB$L OWNER

CRB$L_WQFL

Contents

Address of the unit control block

Contents

Address of the channel request block

Address of the secondary CRB

Set if the channel is busy

Address of the interrupt data block

Channel's owner UCB address

Head of the queue of waiting UCBs

IPL at execution: caller's IPL

C-39

OUTPUT FROM ROUTINE

Registers

RO

Rl

R2

Fields

IDB$L OWNER

CRB$V BSY

OPERATING SYSTEM ROUTINES

Contents

Destroyed

Destroyed

Destroyed

Contents

Clear (if no driver is waiting for the
channel)

Clear (if no driver is waiting for the
channel)

IPL at exit: caller's IPL

IOC$RELDATAP in module IOSUBNPAG

Driver fork processes call this routine to release a UNIBUS adapter
buffered data path. This routine performs no operation if a data path
is permanently allocated to the controller. If the data path wait
queue contains waiting fork processes, it dequeues a process,
allocates the data path to that process, restores R3 through RS, and
reactivates the suspended process. This routine should not be called
unless the driver owns a buffered data path.

INPUT TO ROUTINE

Registers

RS

Fields

UCB$L CRB

CRB$L INTD+VEC$L ADP

CRB$L INTD+
VEC$B-DATAPATH

VEC$V PATHLOCK

Contents

Address of unit control block

Contents

Address of the channel request block

Address of the adapter control block

Data path specifier

Set to 1 to indicate that the data path is
permanently allocated to the controller

ADP$L_DPQFL Head of the adapter data path wait queue

IPL at execution: caller's IPL

If the bit map is corrupted, this routine signals a bugcheck with
message code INCONSTATE. After IOC$RELOATAP completes successfully,
it exits with an RSB instruction.

C-40

OUTPUT FROM ROUTINE

Registers

RO

Rl

R2

Fields

ADP$W DPBITMAP

bits 0 through 4
(in CRB$L INTD+
VEC$B_DATAPATH)

OPERATING SYSTEM ROUTINES

Contents

Destroyed

Destroyed

Destroyed

Contents

Data path is set to free if not allocated to
another driver fork process

Clear

IPL at exit: caller's IPL

IOC$RELMAPREG in module IOSUBNPAG

Driver fork processes call this routine to release a set of UNIBUS
adapter map registers. This routine performs no operation if map
registers are permanently allocated to the controller. If the map
register wait queue contains waiting fork processes, it dequeues a
process and attempts to allocate the required set of map registers.
If successful, it restores R3 through RS and reactivates the suspended
process. If not successful, it reinserts the fork process in the map
register wait queue and dequeues the next process. This routine
assumes that the caller is the current owner of the controller data
channel.

INPUT TO ROUTINE

Registers

RS

Fields

UCB$L CRB

VEC$V MAPLOCr<
(in CRB$L INTD+
VEC$W_MAPREG)

CRB$L INTD+VEC$L ADP - -
CRB$L INTD+
VEC$W-MAPREG

CRB$L INTD+
VEC$B-NUMREG

ADP$ L _ MRQFL

Contents

Address of unit control block

Contents

Address of the CRB

If set, indicates that map registers are
permanently allocated to the controller

Address of the adapter control block

Number of the starting map register

Number of map registers to release

Head of the queue of waiting drivers

IPL at execution: caller's IPL

IOC$RELMAPREG calls IOC$ALTUBAMAP and IOC$ALOUBAMAP. It exits with an
RSB instruction.

C-41

OPERATING SYSTEM ROUTINES

OUTPUT FROM ROUTINE

Registers Contents

RO Destroyed

Rl Destroyed

R2 Destroyed

Fields Contents

ADP$W MRBITMAP Map registers set to free

IPL at exit: caller's IPL

IOC$RELSCHAN in module IOSUBNPAG

This routine releases a secondary controller's data channel; that is,
the MBA controller data channel. For more information, refer to
Appendix F.

This routine has the same inputs and outputs as IOCSRELCHAN.

IOC$REQCOM in module IOSUBNPAG

Driver fork processes call this routine after a device I/O operation
and all device-dependent processing of an I/O request are complete.
This routine writes RO and Rl into the I/O request packet status
field. It then inserts the I/O request packet into the I/O
postprocessing queue. If error logging is occurring, it writes final
status into the error message buffer and calls ERL$RELEASEMB. If the
I/O request packet wait queue contains entries, it dequeues an I/O
request packet and calls IOC$INITIATE. Otherwise, it clears a unit
control block busy status bit to indicate that the device is idle.

INPUT TO ROUTINE

Registers

RO

Rl

RS

Fields

UCB$V ERLOGIP
(in UCB$W_STS)

UCB$W STS

UCB$B ERTCNT

UCB$L EMB

IPL at execution:

Contents

First longword of I/O status

Second longword of I/O status

Address of unit control hlock

Contents

Set or clear. Determines whether error
logging should be performed

Final device status

Final error counters

Address of the error log message buff er

caller's IPL

C-42

OPERATING SYSTEM ROUTINES

This routine places the I/O request packet in the queue headed by
IOC$GL PSBL. If UCB$L IOQEL has a packet queued to it, IOC$REQCOM
sends the packet to IOC$INITIATE. This routine exits by branching to
IOC$RELCHAN.

OUTPUT FROM ROUTINE

Registers Contents

R2 Destroyed

R3 Destroyed

If IOC$INITIATE is called, other registers will be destroyed.

Fields Contents

IRP$L MEDIA I/O status (RO)

IRP$L MEDIA+4 I/O status (Rl)

EMB$Q_IOSB I/O status (RO and Rl)

UCB$L OPCNT Incremented by 1

EMB$B ERTCNT UCB$B ERTCNT

EMB$B ERTCNT+l UCB$B ERRCNT

EMB$W DV STS UCB$W STS

UCB$V BSY Clear (if no more packets in queue)
(in UCB$W_STS)

IPL at exit: caller's IPL

IOC$REQDATAP(NW) in module IOSUBNPAG

Driver fork processes call this routine to request a UNIBUS adapter
buffered data path for a DMA transfer. This routine performs no
operation if a data path is permanently allocated to the controller.
This routine locates a free data path and writes the data path number
in the CRB. If no data paths are free, it saves R3 and R4 in the UCB
fork block, inserts the fork block address in a data path wait queue,
and suspends the driver fork process.

INPUT TO ROUTINE

Register

RS

O(SP)

4(SP)

Contents

Address of unit control block

Caller's return address

Return address of the caller's caller

C-43

Fields

UCB$L CRB

VEC$V PATHLOCK
(in CRB$L INTD+
VEC$B_DATAPATH)

CRB$L INTD+VEC$L ADP - -
ADP$W DPBITMAP

OPERATING SYSTEM ROUTINES

Contents

Address of the channel request block

If set, indicates that the data path already
is allocated

Address of the adapter control block

Indicates what data paths are available

IPL at execution: caller's IPL

If IOC$REQDATAP cannot allocate a data path, and NW is not specified,
the routine saves process context by placing the contents of R3, R4
and the PC in the UCB fork block and placing R5 in the data path wait
queue (ADP$L DPQBL). If, however, NW is specified, the routine does
not suspend tEe process to wait for the data path.

OUTPUT FROM ROUTINE

Registers Contents

RO SS$ NORMAL (success}
o (Yailure)

Fields Contents

CRB$L INTD+ Data path number
VEC$B-DATAPATH

ADP$W DPBITMAP Bit for allocated data path clear

IPL at exit: caller's IPL

IOC$REQMAPREG in module IOSUBNPAG

Driver fork processes call this routine to request a set of UNIBUS
adapter map registers for a DMA transfer. This routine performs no
operation if map registers are permanently allocated to the
controller.. This routine locates the required number of map registers
and writes the number of registers and the number of the first
register into the CRB. If sufficient map registers are not available,
it saves R3 and R4 in the UCB fork block, inserts the fork block
address in a map register wait queue, and suspends the driver fork
process.

INPUT TO ROUTINE

Registers

RS

O(SP)

4(SP}

Contents

Address of unit control block

Return address of caller

Return address of the caller's caller

C-44

OPERATING SYSTEM ROUTINES

Fields Contents

UCB$W BCNT Transfer byte count

UCB$W BOFF Byte offset into page of start of buffer

UCB$L CRB Address of CRB

CRB$L INTO+ Address of the adapter control block
VEC$L-ADP

VEC$V MAPLOCK Determines status of map lock bit
(in CRB$L INTO+
VEC$W_MAPREG)

ADP$W MRBITMAP Adapter map register allocation bit map

IPL at execution: caller's IPL

If registers are not available, this routine suspends the process by
saving the following context:

• R3 and R4 are saved in UCB$L FR3 and UCB$L_FR4, respectively.

• PC is saved in UCB$L FPC.

• RS is saved in ADP$L_MRQBL, which is the adapter's map
register wait queue.

OUTPUT FROM ROUTINE

Registers

RO

Rl

R2

Fields

CRB$L INTD+
VEC$W=MAPREG

CRB$L INTO+
VEC$B-NUMREG

ADP$W MRBITMAP

IPL after execution:

Contents

SS$ NORMAL (success)

Destroyed

Destroyed

Contents

Starting map register number of those
allocated

Number of map registers allocated

Allocated map registers

caller's IPL

IOC$REQPCHANH in IOSUBNPAG.MAR

Driver fork processes call this routine to request a channel on the
primary controller with high priority. If the controller data channel
is idle, this routine writes the UCB address in the interrupt data
block and returns the CSR address in R4. Otherwise, it saves R3 in
the UCB fork block, inserts the fork block address at the front of the
channel wait queue, and suspends the driver fork process.

C-45

INPUT TO ROUTINE

Registers

RS

O(SP)

4(SP)

Fields

UCB$L CRB

CRB$L LINK

CRB$L INTD+VEC$L IDB

CRB$V BSY
in CRB$B MASK

IDB$L CSR

OPERATING SYSTEM ROUTINES

Contents

Address of unit control block

Return address of the caller

Return address of the caller's caller

Contents

Address of the channel request block

Address of the secondary channel request
block

Interrupt data block address

Set or clear. If set, indicates that the
channel is busy

Address of device CSR

IPL at execution: caller's IPL

If the channel is busy, this routine saves driver context by storing
the contents of R3 and R4 in UCB$L FR3 and UCB$L FR4, respectively,
storing O(SP) in UCB$L FPC and placing the contents-of RS in the CRB
wait queue {CRB$W_WQFL).

IOL$REQPCHANH exits by issuing an RSB instruction.

OUTPUT FROM ROUTINE

Registers Contents

RO Destroyed

Rl Destroyed

R2 Destroyed

R4 IDB$L CBR

Fields Contents

IDB$L OWNER RS

IPL at exit: caller's IPL

IOC$REQPCHANL in module IOSUBNPAG

Driver fork processes call this routine to request a channel on the
primary controller with low priority. This routine performs in the
same manner as IDL$REQPCHANH, except that, should driver have to wait
for the channel, IOC$REQPCHANL places the UCB at the end of the
channel wait queue.

C-4fi

OPERATING SYSTEM ROUTINES

IOC$REQSCHANH in module IOSUBNPAG

Driver fork processes call this routine to request a channel on the
secondary controller with high priority.

The input to and output from this routine are the same as for
IOC$REQPCHANH, except that the secondary controller data channel is
assigned.

IOC$REQSCHANL in module IOSUBNPAG

Driver fork processes call this routine to request a channel on the
secondary controller with low priority.

The input to and output from this routine are the same as for
IOC$REQPCHANH, except that the secondary controller data channel is
assigned.

IOC$RETURN in module IOSUBNPAG

This routine merely returns by issuing an RSB instruction. It has no
input requirements and produces no output.

IOC$WFIKPCH in module IOSUBNPAG

Driver fork processes call this routine to suspend driver processing
to wait for an interrupt or device timeout and still retain the
controller data channel. This routine saves R3, R4, and the driver's
return PC from top of stack in the UCB fork block. It sets UCB bits
to indicate that an interrupt or a timeout is expected and sets the
timeout time in the unit control block. It clears the UCB bit that
indicates that the unit is timed out and lowers IPL back to the IPL
saved on top of stack. Then, it returns to the caller of the driver
fork process.

The two bytes following the JSB to IOC$WFIKPCH contain the relative
offset to the timeout routine.

INPUT TO ROUTINE

Register

RS

O(SP)

4 (SP)

8(SP)

Contents

Address of unit control block

Address following the JSB to IOC$WFIKPCH

Timeout value in seconds

IPL to which to lower before returning to the
caller's caller

12(SP) Return address of the caller's caller

Field Contents

EXE$GL ABSTIM Absolute time. used to compute time at which
device times out

IPL at execution: Fork a device IPL (caller's IPL)

C-47

OPERATING SYSTEM ROUTINES

This routine removes O(SP) through ll(SP) from the stack explicitly
and 12(SP) through 15(SP) implicitly by exiting with an RSB
instruction, which returns to the caller's caller.

OUTPUT FROM ROUTINE

Registers

Fields

UCB$L DUETIM

UCB$V INT

UCB$V TIM

UCB$V TIMOUT

Contents

Contents

Sum of timeout value and EXE$GL ABSTIM

Set to indicate that interrupts are expected
on the device

Set to indicate that timeouts are expected on
the device

Cleared to indicate that unit is not timed
out

UCB$L FR3 R3

UCB$L FR4 R4

UCB$FPC O(SP)+2

IPL at exit: IPL specified in 8(SP)

IOC$WFIRLCH in IOSUBNPAG

Driver fork processes call this routine to suspend
to wait for an interrupt or device timeout
controller data channel.

driver processing
first releasing the

The input to and output from this routine are the same as IOC$WFIKPCH
except that IOC$WFIRLCH exits to IOC$RELCHAN, which releases the
controller dates channel.

C-48

APPENDIX D

SAMPLE DRIVER FOR AN A-TO-D CONVERTER

This appendix contains the source listing of a driver for an
analog-to-digital converter.

D-1

SAMPLE DRIVER FOR AN A-TO-D CONVERTER

.TITLE ADDRIVER - VAX/VMS ADll-K DRIVER

.!DENT 'V02-000'
;
·** I

; *
. * I

. * I

. * I

. * I

; *
. * I

; *
; *
; *
. * I

. * I

. * I

. * I

. * I

. * I

. * I

; *

Copyright (c) 1978,1979,1980
by DIGITAL Equipment Corporation, Maynard, Mass.

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

*
*
*
*
*
*
*
*
*
*
*

The information in this software is subject to change without notice *
and should not be construed as a commitment by DIGITAL Equipment *
Corporation. *

DIGITAL assumes no responsibility for the use or reliability of
software on equipment which is not supplied by DIGITAL.

its
*
*
*
*

;**

;++

FACILITY:

VAX/VMS ADll-K I/O DRIVER

ABSTRACT:

DEVICE TABLES AND DRIVER CODE FOR THE ADll-~ ANALOGUE
TO DIGITAL CONVERTER WITH OPTIONAL AMll-K MULTIPLEXER.

AUTHOR:

S. PROGRAMMER, SEPTEMBER 1978.

MODIFIED BY:

D-2

SAMPLE DRIVER FOR AN A-TO-D CONVERTER

.SBTTL FUNCTIONAL DESCRIPTION OF DRIVER
;+

;-

THE DRIVER SUPPORTS A/D SAMPLING ON GROUPS OF CHANNELS VIA QIO
READ REQUESTS. NO EXTERNALLY TRIGGERED SAMPLING (I.E., CLOCK
OVERFLOW OR SCHMITT TRIGGER) IS SUPPORTED. THE AMll-K MULTIPLEXER
MAY BE PRESENT, BUT NO AUTOMATIC RANGING AMPLIFICATION IS
DONE AT DRIVER LEVEL. THE BUILT-IN DAC MAY BE USED FOR.TESTING VIA
A LOOPBACK QIO FUNCTION DEFINED ESPECIALLY FOR THIS DEVICE.

THE QIO FUNCTIONS AVAILABLE ARE:

IO$ READVBLK
IO$-READLBLK
IO$-READPBLK
IO$-LOOPBACK

-READ VIRTUAL BLOCK
-READ LOGICAL BLOCK
-READ PHYSICAL BLOCK=IO$ LOOPBACK
-WRITE DAC, READ RESULTS; REQUIRES

PHYSICAL I/O PRIVILEGE

THE STANDARD QIO PARAMETERS ARE:

Pl=BUFFER ADDRESS
P2=BUFFER BYTE COUNT
P3=SPECIFIER OF CHANNELS TO SAMPLE:

BIT 0-7/INITIAL CHANNEL # (0-n3)
BIT 8-15/TOTAL # OF CHANNELS TO SAMPLE (l-n4)
BIT ln-23/CHANNEL INCREMENT (0-n3)
BIT 24-31/IGNORED

P4=DAC VALUE, USED FOR LOOPBACK ONLY:
BIT 0-7/8 BIT DAC VALUE
BIT 8-31/IGNORED

P5,P6 ARE NOT USED

IN ADDITION TO THE STANDARD STATUS CODES THAT CAN BE RETURNED FOR
A QIO, THE FOLLOWING DEVICE-SPECIFIC I/O STATUS VALUES ARE DEFINED:

SS$ DATAOVERUN

SS$ BADPARAM
SS$-BUFFEROVF

-ERROR BIT SET IN CSR; SAMPLING ABORTED
WITH LAST GOOD SAMPLE IN BUFFER

-INVALID CHANNEL SPECIFIER; NO SAMPLES TAKEN
-USER BUFFER OVERRUN; AS MANY CHANNELS AS WILL

FIT ARE SAMPLED

THE SAMPLES ARE RETURNED IN THE CALLER'S BUFFER PACKED ONE SAMPLE
PER WORD, BITS 0-11. THE BYTE COUNT RETURNED IN THE SECOND WORD OF
THE I/O STATUS BLOCK ALWAYS REFLECTS THE # OF BYTES ACTUALLY FILLED
WITH SAMPLE DATA. THE NUMBER OF SAMPLES IS ONE HALF THE RETURNED
BYTE COUNT.

EXAMPLE: SWEEP THROUGH 32 INPUTS CONNECTED IN DIFFERENTIAL MODE
(ADll-K AND AMll-K) :

SWEEPBUF:
NUMINPUT:
CHANSPEC:

.BLKW

.LONG

.BYTE

$QIO_S

32
32
0,32,2 ;START WITH CHANNEL O;

; SAMPLE CHANNELS 0,2,4, ••• ,h2

CHAN=X,FUNC=IO$ READVBLK,
Pl=SWEEPBUF,P2=NUMINPUT,P3=CHANSPEC

D-3

SAMPLE DRIVER FOR AN A-TO-D CONVERTER

.SBTTL MACRO LIBRARY CALLS

EXTERNAL SYMBOLS (LIB/LIB):

$CRBDEF
$DDBDEF
$IDBDEF
$IODEF
$IPLDEF
$IRPDEF
$UCBDEF
$VECDEF
$JIBDEF

;CHANNEL REQUEST BLOCK
;DEVICE DATA BLOCK
;INTERRUPT DATA BLOCK
;I/O FUNCTION CODES
;HARDWARE IP DEFINITIONS
;I/O REQUEST PACKET
;UNIT CONTROL BLOCK
;INTERRUPT VECTOR BLOCK
;JOB INFORMATION BLOCK

USER DEFINED EXTERNAL SYMBOLS ARE CONTAINED IN A USER LIBRARY
THE CONTENTS OF THIS LIBRARY CAN BE MERGED WITH THE SYSTEM LIBRARY
TO ALLOW USER PROGRAMS TO USE EXTENDED FUNCTION CODES WITHOUT HAVING
TO DEFINE THEM LOCALLY.
THIS DRIVER MUST BE ASSEMBLED WITH A USER LIBRARY TO DEFINE $XIODEF.

$XIODEF

D-4

;EXTENDED QIO FUNCTIONS.THIS MACRO
;CONTAINS THE DEFINITIONS FOR
;IO$_LOOPBACK

SAMPLE DRIVER FOR AN A-TO-D CONVERTER

.SBTTL LOCAL DEFINITIONS

LOCAL DEFINITIONS:

QIO ARGUMENT LIST OFFSETS:

Pl=O
P2=4
P3=8
P4=12
P5=16
P6=20

DEVICE PARAMETERS:

DAC TIMER=20
MAX-INLCHN=63
MAX-NUMCHN=64
MAX-INCCHN=63
ADC-TIMER=2

DEVICE REGISTER DEFINITIONS:

$DEF

$DEF
.=.-2
$DEF

$DEFINI AD

AD CSR .BLKW 1

VIELD AD CSR,O,<
(GO,,M> ,- -
<,3>,-
<EXT, ,M>,-
<COV, ,M> ,-
<IE, ,M> ,-
<DON, ,M> ,-
<MUX, 6 ,M> ,-
<,l>,-
<ERR, ,M>,-
>
AD DBR .BLKW 1

AD DAC .BLKW 1

$DEFEND AD

DEVICE DEPENDENT UCB EXTENSIONS:

$DEFINI UCB

.=UCB$K LENGTH

$DEF UCB$B AD CURCHN .BLKB 1
$DEF UCB$B AD NUMCHN .BLKB 1
$DEF UCB$B-AD-INCCHN .BLKB 1

.BLKB 1
$DEF UCB$W AD CSR .BLKW 1

D-5

;FIRST,
SECOND,
THIRD,
FOURTH,
FIFTH,
AND SIXTH PARAMETERS

;20 USEC TIMER FOR DAC SETTLE
;MAXIMUM INITIAL CHANNEL #,
; NUMBER OF CHANNELS,
; AND CHANNEL INCREMENT
;A/D CONVERSION TIMEOUT=2 SEC

;CONTROL/STATUS REGISTER

;DEFINE CSR FIELDS: AD CSR M XXX
START A/D CONVERSION- - -
3 UNUSED BITS
EXTERNAL START ENABLE
CLOCK OVERFLOW ENABLE
INTERRUPT ENABLE
CONVERSION DONE FLAG
n BIT MUX CHANNEL #
BIT 14 IS UNUSED

; ERROR FLAG
;END OF CSR FIELDS
;A/D DATA BUFFER REGISTER
;DATA BUFF REG=DAC BUFF REG
;DAC DATA BUFFER REF

;END OF A/D REGISTER DEFNS

;STEP TO END OF STANDARD UCB
;NOTE: NEXT 4 BYTES ASSUMED
; ADJACENT
;CURRENT MUX CHANNEL #
;# CHANNELS LEFT TO SAMPLE
;CHANNEL INCREMENT
;SPARE BYTE
;SAVED CSR

SAMPLE DRIVER FOR AN A-TO-D CONVERTER

VIELD UCB$W_CSR,l,<
<BFO, ,M>,-
>

UCB$K ADLENGTH=.

$DEFEND UCB

:BORROW UNUSED CSR BIT
: FOR USER BUFFER OVERRUN

:LENGTH OF A/D UCB

:END OF UCB EXTENSIONS

A/D DRIVER USE OF TEMPORARY !RP STORAGE:
:
IRP$L CHSPEC=IRP$L MEDIA
IRP$L-DACVAL=IRP$L-MEDIA+4 - -

D-n

:CHANNEL SPECIFIER(P3)
:OPTIONAL DAC VALUE(P4)

SAMPLE DRIVER FOR AN A-TO-D CONVERTER

.SBTTL DRIVER PROLOGUE AND DISPAT~H TABLES

DRIVER PROLOGUE TABLE:

DPT AB ;DEFINE DRIVER PROLOGUE TABLE:
END=AD_END,- END OF DRIVER,
ADAPTER=UBA,- , UNIBUS ADAPTER,
UCBS I Z E=IJCRSK AD LENGTH, - ; SIZE OF ,\/D UCB,
NAME=ADDRIVER- DRIVER NAME

DPT STORE
DPT-STORE
OPT-STORE
DPT-STORE

DPT STORE
DPT STORE

DPT STORE

DPT STORE

DPT STORE

DPT STORE

DRIVER DISPATCH TABLE:

DDT AB

!NIT
UCR,UCBSB FIPL,B,8
UCB,UCB$B-DIPL,B,22
UCB,UCB$L-DEVCHAR,L,
<DEV$M AVL-
! DEV$M-IDV-
! DEV$M-RTM>

REIN IT
CRB,CRB$L INTD+4,D,
AD INTERRUPT

;
;VALUES TO BE SET ON LOAD
;DEVICE FORK IPL
;ADll HARDWARE IPL
;ADll DEVICE CHARACTERISTICS:
; AVAILABLE,
; INPUT DEVICE,
; REALTIME DEVICE
;
;VALUES TO SFT ON RELOAD
;INTERRUPT SERVICE ADDR

CRB,- ;ADDR OF CONTROLLER
CRB$L INTD+VECSL INITIAL,- ; INITIALIZATION
D,AD_~TLINIT -
CRB,- ;ADDR OF UNIT
CRB$L INTD+VEC$L UNITINIT,- ; INITIALIZATION
D,AD_UNITINIT -
DDB,DDB$L DDT,D,- ;ADDR OF DRIVER
ADSDDT - ; DISPATCH TABLE

;
END ;END DRIVER PROLOGUE

DEVNAM=AD,
START=AD STARTIO,
FUNCTB=AD FUNCTABLE

;DDT CREATION MACRO
;NAME OF DEVICE
;ADDR OF START I/O ROUTINE
;ADDR OF FDT

D-7

SAMPLE DRIVER FOR AN A-TO-D CONVERTER

.SBTTL ADll-K FUNCTION DECISION TABLE

ADll FUNCTION DECISION TABLE:

AD FUNCTABLE:
FUN CT AB

FUN CT AB

,
<LOOPBACK,
READPBLK,
READLBLK,
READVBLK>
,
<LOOPBACK,
READPBLK,
READLBLK,
READVBLK>

FUNCTAB -
AD READ,
<LOOPBACK,
READPBLK,
READLBLK,
READVBLK>

D-8

;FUNCTION DECISION TABLE START
;LEGAL FUNCTIONS:
; LOOPBACK READ FROM DAC
; READ PHYSICAL BLOCK
; READ LOGICAL BLOCK
; READ VIRTUAL BLOCK
;BUFFERED I/O FUNCTIONS:
; LOOPBACK READ FROM DAC
; READ PHYSICAL BLOCK
; READ LOGICAL BLOCK
; READ VIRTUAL BLOCK
;PREPROCESSING ROUTINES:
;CALL SINGLE PREPROCESSOR FOR:

LOOPBACK READ FROM DAC
READ PHYSICAL BLOCK
READ LOGICAL BLOCK
AND READ VIRTUAL BLOCK

;+

;-

AD

SAMPLE DRIVER FOR AN A-TO-D CONVERTER

.SBTTL AD READ: READ FUNCTION PROCESSING

AD READ - READ FUNCTION PREPROCESSING

THIS ROUTINE IS CALLED FROM THE FUNCTION DECISION TABLE DISPATCHER
TO PROCESS A READ PHYSICAL, READ LOGICAL, READ VIRTUAL, OR LOOPBACK
I/O FUNCTION.

AD READ FIRST VERIFIES THE CALLER'S PARAMETERS, TERMINATING THE
REijUEST WITH IMMEDIATE SUCCESS OR ERROR IF NECESSARY. P3 AND
P4 ARE STORED IN THE !RP. A SYSTEM BUFFER IS ALLOCATED AND
ITS ADDRESS IS SAVED IN THE IRP. THE CALLER'S QUOTA IS UPDATED,
AND THE READ REQUEST IS QUEUED TO THE DRIVER FOR STARTUP.

INPUTS:

RO,Rl,R2 = SCRATCH
R3 IRP ADDRESS
R4 ADDR OF PCB FOR CURRENT PROCESS
RS DEVICE UCB ADDRESS
R6 ADDRESS OF CCB
R7 I/O FUNCTION CODE
RS FDT DISPATCH ADDR
R9-Rll = SCRATCH
AP = ADDR OF FUNCTION PARAMETER LIST

OUTPUTS:

READ:

RO,Rl,R2 = DESTROYED
R3-Rll,AP = PRESERVED
IRP$L CHSPEC{R3) CHANNEL SPECIFIER {P3)
IRP$L-DACVAL{R3) = OPTIONAL DAC VALUE {P4)
IRP$L-SVAPTE{R3) = ADDR OF ALLOCATED SYSTEM BUFFER
IRP$W=BOFF{R3) REQUESTED BYTE COUNT

SYSTEM BUFFER:

.ENABL

MOVZWL
BEQL

MOVZWL
MOVAL
CMPB
BGTRU
TSTB
BEQL
CMPB
BGTRU
CMPB
BGTRU
MOVQ

MOVL
JSB

PUS HR
ADDL

LONGWD O/ADDR OF START OF DATA=BUFF ADDR+l2
LONGWD l/ADDR OF USER BUFFER
LONGWD 2/DATA STRUCTURE BOOKKEEPING

LSB

P2 {AP) , R 1
10$

#SS$_BADPARAM,RO
P 3 {AP) , R 2
{R2)+,#MAX_INLCHN
20$
{R2)
10$
{R2)+,#MAX NUMCHN
20$ -

{ R2) , #MAX_ INCCHN
20$
P3{AP) ,IRP$L_CHSPEC{R3)

Pl {AP) , RO
G'"'EXE$READCHK

#"M<RO ,R3>
#12,Rl

D-9

;READ FUNCTION PREPROCESSING
;GET USER BYTE COUNT
;BRANCH IF READ OF 0 BYTES
; {=INSTANT SUCCESS)
;ASSUME CHANNEL SPEC ERROR
;GET ADDR OF CHANNEL SPEC
;INITIAL CHAN # TOO LARGE?
;BRANCH IF SO
;# CHANNELS = O?
;BRANCH IF SO {SUCCESS)
;# CHANNELS TO SAMPLE TOO LARGE?
;BRANCH IF SO
;CHANNEL INCREMENT TOO LARGE?
;BRANCH IF SO
;STORE P3 AND P4 {OPTIONAL DAC)
; IN IRP UNTIL REQUEST EXECUTION
;GET ADDR OF USER BUFFER
;VERIFY THAT CALLER HAS
; WRITE ACCESS TO BUFFER
;SAVE USER BUFF ADDR, !RP ADDR
;ADD 12 BYTES TO REQUESTED BUFF

JSB

BLBC
JSB
BLBC
POPR
MOVL
MOVW
MOVZWL
MOVL
SUBL

MOVAB

MOVL

JMP

SAMPLE DRIVER FOR AN A-TO-D CONVERTER

G"'EXE$BUFFRQUOTA

R0,30$
G"EXE$ALLOCBUF
R0,30$
#"'M<RO,R3>
R2,IRP$L SVAPTE(R3)
Rl,IRP$W=BOFF(R3)
Rl,Rl
PCB$L JIB(R4) ,R4
Rl,JIB$L_BYTCNT(R4)

12(R2),(R2)+

RO,(R2)

G "'EXE$QIODRVPKT

; SIZE FOR BUFF HEADER
;VERIFY BUFFER SPACE LEFT
; IN CALLER'S QUOTA
;BRANCH IF INSUFFICIENT QUOTA
;ALLOCATE A SYSTEM BUFFER
;BRANCH IF NONE AVAILABLE
;RESTORE USER BUFFER, IRP ADDR
;SAVE ADDR OF SYSTEM BUFFER
; AND REQUESTED BYTE COUNT
;CONVERT TO LONGWORD
;GET JOB INFORMATION BLOCK ADDRESS
;DEDUCT REQUESTED BYTE COUNT
; FROM PROCESS' QUOTA
;SAVE ADDR OF START OF USER DATA
; IN lST LONGWD OF SYSTEM BUFFER
;SAVE USER BUFFER ADDR IN
; 2ND LONGWD
;QUEUE I/O PKT TO DRIVER

COME HERE IF USER REQUESTED READ OF 0 BYTES OR 0 CHANNELS.
THIS IS ALWAYS SUCCESSFUL AND DOES NO DEVICE I/O:

10$:
20$:

MOVZWL #SS$ NORMAL,RO
JMP G"'EXE$FINISHIOC

;SET NORMAL COMPLETION STATUS
;COMPLETE I/O REQUEST

COME HERE TO ABORT I/O REQUEST WITH EXCEPTION STATUS IN RO:

30$: POPR #"'M<R2,R3>

JMP G "'EXE$ABORTIO

.DSABL LSB

D-10

;CLEAR BUFFER ADDR; RESTORE IRP
; ADDR
;COMPLETE I/O REQUEST

;+

;-

SAMPLE DRIVER FOR AN A-TO-D CONVERTER

.SBTTL AD STARTIO: PERFORM A/D CONVERSIONS

AD STARTIO - START I/O OPERATION ON ADll-K A/D CONVERTER.

THIS ROUTINE IS ENTERED WHEN THE ASSOCIATED UNIT IS IDLE AND A
PACKET IS AVAILABLE FOR PROCESSING.

TO PREPARE FOR SAMPLING, AD_STARTIO PERFORMS THESE STEPS:

1. SET UP UCB WITH CHANNEL SPECIFIER AND ADDRESS IN SYSTEM
BUFFER TO HOLD FIRST SAMPLE.

2. IF LOOPBACK WAS SPECIFIED, THE DAC IS SET WITH THE CALLER
SPECIFIED VALUE.

THE DRIVER THEN LOOPS FROM AD NXTSAMPLE TO AD ENDSAMPLE
COLLECTING SAMPLES UNTIL ALL SAMPLES HAVE BEEN COLLECTED,
OR AN ERROR OCCURS. AN INTERRUPT IS RECEIVED FOR EACH SAMPLE,
BUT, TO SAVE TIME, THE DRIVER NEVER FORKS UNTIL TIME TO
COMPLETE THE I/O REQUEST.

INPUTS:

R3 ADDR OF !RP
RS ADDR OF DEVICE UNIT UCB

OUTPUTS:

RO,Rl,R2 = DESTROYED
OTHER REGISTERS ARE PRESERVED

.ENABL LSB

AD START IO: ; START NEXT QIO
MOVL

MOVL

MOVL
MOVL
BICB3

CMPB
BNEQ
MOVZBW

MFPR
ADDL
BLSS

MOVAW

10$: MFPR
CMPL
BLSS

AD NXTSAMPLE:
MOVZBW

INSV

DSBINT
BBSC

IRP$L CHSPEC(R3) ,- ;COPY CHANNEL SPEC FROM
UCB$B-AD CURCHN(RS) ; !RP TO UCB
@IRP$L SVAPTE(R3) ,- ;SET ADDR OF START DATA
UCB$L_SVAPTE (RS) ; IN UCB
UCB$L CRB(RS) ,R4 ;GET CRB ADDRESS,
@CRB$L INTD+VEC$L IDB(R4) ,R4 ; THEN CSR ADDRESS
#~C<IOSM FCODE>,-- ;GET THE I/O
IRP$W FUNC(R3) ,RO ; FUNCTION CODE
R0,#!0$ LOOPBACK ;LOOPBACK?
AD NXTSAMPLE ;BRANCH IF NOT
IRP$L DACVAL(R3) ,- ;SET DAC VALUE IN
AD DA~(R4) ; DAC BUFFER REGISTER
S~#PR$ ICR,Rl ;GET CURRENT INTERVAL COUNTER (USEC)
#DAC TTMER,Rl ; +DAC SETTLE TIME IN USEC
10$ - ;BRANCH IF COUNTER DOESN'T

-10000 (Rl) ,Rl

S~#PR$ ICR,RO
RO,Rl -
10$

; OVERFLOW
;ELSE CALCULATE COUNTER
; FOR NEXT INTERVAL
;READ INTERVAL COUNTER NOW
;REACHED SETTLE TIME YET?
;BRANCH IF NOT

;START NEXT SAMPLE
#AD CSR M IE!AD CSR M GO,RO ;SET INTERRUPT ENABLE AND

- - ; START A/D CONVERSION
UCB$B AD CURCHN(RS) ,- ;SET MUX CHAN #
#8,#6~RO- ; FOR CSR

;DISABLE INTERRUPTS (IPL=IPL$POWER)
#UCB$V POWER,- ;BRANCH IF POWER FAILURE
UCB$W_STS(RS) ,AD_POWERFAIL ; AND CLEAR POWER FAIL SIGNAL

D-11

MOVW
WFIKPCH
MOVW
BLSS
MOVW

ADDL
SUBL
DECB
BEQL
CMPW
BLSSU
BICW

ADDB

BICB

AD ENDSAMPLE:
BRB

SAMPLE DRIVER FOR AN A-TO-D CONVERTER

RO,AD CSR(R4) ;SET CSR
AD TIMEOUT,#ADC TIMER ;WAIT FOR INTERRUPT, OR TIMEOUT
AD-CSR(R4) ,UCB$W AD CSR(R5) ;SAVE CSR IN UCB
AD-CSRERROR - - ;BRANCH IF ERROR
AD-DBR(R4) ,@UCB$L SVAPTE(R5) ;COPY A/D VALUE INTO

- - ; SYSTEM BUFFER
#2,UCB$L SVAPTE(R5) ;STEP BUFFER POINTER
#2,UCB$W-BCNT(R5) ;DECREASE # BYTES LEFT IN REQUEST
UCB$B AD-NUMCHN(R5) ;DECR # CHANNELS LEFT TO SAMPLE
AD DONE - ;BRANCH IF NONE
UCB$W BCNT(R5) ,#2 ;AT LEAST 2 BYTES LEFT IN BUFFER?
AD BUFFEROVF ;BRANCH IF NOT
#UCB$W CSR M BFO,- ;ELSE CLEAR BUFFER OVERRUN
UCB$W AD CSR(R5) ; BIT IN CSR COPY
UCB$B-AD-INCCHN(R5} ,- ;NEXT CHANNEL # =
UCB$B-AD-CURCHN(R5) ; CURRENT CHANNEL+INCREMENT
#~C<MAX NUMCHN-1>,- ; MODULO MAXIMUM
UCB$B_AD_CURCHN(R5) ; CHANNEL #

AD NXTSAMPLE
;THIS SAMPLE COMPLETE
;GO START NEXT SAMPLE

.DSABL LSB

D-12

AD

AD

SAMPLE DRIVER FOR AN A-TO-D CONVERTER

.SBTTL I/O REQUEST COMPLETION

COME HERE TO COMPLETE I/O REQUEST WITH NORMAL OR ERROR STATUS.

USER BUFFER OVERRUN, I.E., NO MORE SAMPLES CAN BE COLLECTED:

.ENABL LSB

BUFFEROVF: ;
BISW #UCB$W CSR M BFO,- ;SET BUFFER OVERRUN BIT

UCB$W_AD_CSR(R5) ; IN CSR COPY

CSR ERROR BIT WAS SET:

CSRERROR:
TSTW AD DBR(R4) ;CLEAR ERROR
BRB AD-DONE ;JOIN COMMON I/O COMPLETION

DEVICE TIMED OUT DUE TO EITHER A REAL TIMEOUT OR TO A
POWER FAILURE. BOTH CAUSES ARE HANDLED THE SAME.

AD TIMEOUT: ;
CLRW
TSTW
SETI PL
BRB

AD CSR(R4)
AD-DBR (R4)
UCB$B FIPL(R5)
10$ -

;CLEAR INTERRUPT ENABLE,
; PENDING CONVERSION, INT, OR ERROR
;LOWER PRIORITY TO DEVICE LEVEL
;JOIN COMMON CODE TO

TERMINATE REQUEST

POWER FAILURE DETECTED WHILE ATTEMPTING TO INITIATE A READ OR
LOOPBACK REQUEST. TERMINATE REQUEST THE SAME AS IF IT OCCURRED
DURING THE QIO.

AD POWERFAIL: ;
ENBINT

10$: MOVZWL #SS$ TIMEOUT,RO
BRB 20$ -

;LOWER IPL BACK TO FORK IPL
;SET STATUS TO TIMED OUT
;JOIN COMMON CODE TO TERMINATE
; REQUEST

NORMAL STATUS, CANCEL I/O, AND GENERAL I/O REQUEST COMPLETION:

AD DONE: ;
CLRW AD_CSR(R4) ;CLEAR INTERRUPT ENABLE
IO FORK ;REQUEST RESUMPTION AS FORK PROCESS
MOVZWL #SS$ DATAOVERUN,RO ;ASSUME CSR ERROR
BBS #AD CSR V ERR,- ;BRANCH IF SO

UCBSW AD CSR(R5) ,20$;
MOVZWL #SS$ BUFFEROVF,RO ;ASSUME BUFFER OVERRUN
BBS #UCBSW CSR V BFO,- ;BRANCH IF SO

UCB$W AD CSR(R5) ,20$;
MOVZWL #SS$_NORMAL,RO ;ELSE, STATUS IS NORMAL

D-13

20$:

SAMPLE DRIVER FOR AN A-TO-D CONVERTER

SUBW3 UCB$W BCNT(R5) ,-
IRP$W-BCNT(R3) ,Rl

INSV Rl,#lh,#16,RO
CLRL Rl
REQCOM

.DSABL LSB

D-14

;GET # BYTES REQUESTED
; -# BYTES NOT XFERRED
; =# BYTES XFERRED
;CLEAR SECOND I/O STATUS LONGWD
;REQUEST I/O COMPLETION

SAMPLE DRIVER FOR AN A-TO-D CONVERTER

.SBTTL AD INTERRUPT: ADll-K A/D CONVERTER INTERRUPT SERVICE
;+

;-

AD INTERRUPT - A/D CONVERTER INTERRUPT SERVICE

THIS ROUTINE IS ENTERED VIA A JSB INSTRUCTION WHEN AN
INTERRUPT OCCURS ON AN ADll A/D CONVERTER. INTERRUPT SERVICE
GETS THE ADDRESS OF THE UCB OF THE INTERRUPTING DEVICE, RESTORES
THE REMAINING CONTEXT OF THE DRIVER FORK PROCESS WHICH INITIATED
THE DEVICE ACTIVITY, AND CALLS THE DRIVER FORK PROCESS.

INPUTS:

ALL GENERAL REGISTERS = RANDOM
SP/ INTERRUPT STACK
O(SP) = ADDR OF IDB ADDR
4(SP) =SAVED RO
8(SP) =SAVED Rl
12(SP) SAVED R2
16(SP) SAVED R3
20(SP) SAVED R4
24(SP) SAVED RS
28(SP) SAVED PC
32(SP) SAVED PSL
IPL/ HARDWARE DEVICE LEVEL

OUTPUTS AT CALL TO DRIVER FORK:

R3 RESTORED FROM DRIVER FORK PROCESS (!RP ADDR)
R4 RESTORED FROM DRIVER FORK PROCESS (CSR ADDR)
RS UCB ADDR
STACK IS SAME AS ABOVE, BUT IDB POINTER POPPED
IPL/ HARDWARE DEVICE LEVEL

.ENABL LSB

AD INTERRUPT: ;A/D CONVERTER INTERRUPT SERVICE
;GET IDB ADDR MOVL

MOVQ
BBCC

MOVL

JSB

@(SP)+,R3
IDB$L CSR(R3) ,R4
#UCB$V INT I -

UCB$W STS(RS) ,AD UNSOL
UCB$L=FR3(RS) ,R3-

@UCB$L_FPC(RS)

;GET DEVICE CSR AND UCB ADDR
;BRANCH IF INT UNEXPECTED,
; AND CLEAR EXPECTED BIT
;RESTORE REMAINING DRIVER
; CONTEXT: R3; (R4 ALREADY SET)
;CALL DRIVER FORK PROCESS
;

10$: MOVQ (SP)+,RO
(SP)+,R2
(SP)+,R4

;RESTORE REGISTERS
MOVQ
MOVQ
REI ;

AD UNSOL: ;HANDLE UNSOLICITED INTERRUPT
;DISMISS SPURIOUS INTERRUPT
;READ DATA BUFFER TO CLEAR ERROR
;JOIN INTERRUPT RESTORE

;+

CLRW
TSTW
BRB

AD CSR(R4)
AD-DBR(R4)
10$

.DSABL LSB

.SBTTL AD CTLINIT: ADll-K CONTROLLER INITIALIZATION

AD CTLINIT - ADll-K CONTROLLER INITIALIZATION

THIS ROUTINE IS CALLED AT SYSTEM STARTUP AND AFTER A POWER
FAILURE.

THE CSR IS CLEARED TO DISABLE INTERRUPTS. THIS WILL FORCE THE
LAST SAMPLE (IF ONE IS IN PROGRESS) TO TIME OUT IN CASE INITIALIZATION

D-15

;-

AD

SAMPLE DRIVER FOR AN A-TO-D CONVERTER

IS THE RESULT OF A POWER FAILURE. THE TIMEOUT WILL OCCUR IN 0-1
SECONDS.

THE DATA BUFFER REGISTER IS READ TO CLEAR A PENDING CONVERSION,
INTERRUPT, OR ERROR FOR DEVICE INITIALIZATION.

INPUTS:

R4
RS
Rn
RB

OUTPUTS:

ALL

CTLINIT:
CLRW
TSTW

RSB

ADll CSR ADDRESS
IDB ADDRESS OF DEVICE UNIT
ADDR OF DDB
ADDR OF CRB

REGISTERS PRESERVED

AD CSR(R4)
AD=DBR(R4)

o-in

;
;CLEAR CSR (IE IN PARTICULAR)
;CLEAR ANY PENDING CONVERSION,

INTERRUPT, OR ERROR

;+

;-

SAMPLE DRIVER FOR AN A-TO-D CONVERTER

.SBTTL AD UNITINIT: ADll-K UNIT INITIALIZATION

AD UNITINIT - ADll-K UNIT INITIALIZATION

THIS ROUTINE IS CALLED AT SYSTEM STARTUP AND AFTER A POWER
FAILURE. THE UCB AND IDB ARE INITIALIZED.

INPUTS:

RS ADDRESS OF DEVICE UCB

OUTPUTS:

RO = IDB ADDRESS
OTHER REGISTERS ARE PRESERVED
UCB$W STS(R5), ONLINE BIT IS SET
IDB$L=OWNER(RO) = ADDRESS OF OWNING UCB

AD UNITINIT:

AD END:

BISW

MOVL
MOVL
MOVL
RSB

.END

#UCB$M ONLINE,- ;SET UNIT ONLINE
UCB$W STS(R5)
UCB$L-CRB(R5) ,RO ;GET CRB ADDRESS
CRB$L-INTD+VEC$L IDB(RO) ,RO ;GET IDB ADDR
R5,IDB$L_OWNER(RO) ;SET UCB ADDR OF OWNING UNIT

;
;END OF DRIVER LABEL

D-17

APPENDIX E

SAMPLE DRIVER FOR DRlls

This appendix contains the source listing of a driver for two
connected DRlls.

E-1

SAMPLE DRIVER FOR DRlls

.TITLE XADRIVER - VAX/VMS DRll DRIVER

.!DENT 'V02-005'
;
;**
;*
. * ' . * ' . * ' ;*
;*
;*
. * ' ;*
; *
; *
;*
;*
;*
;*

Copyright (c) 1979, 1980
by DIGITAL Equipment Corporation, Maynard, Mass •

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by DIGITAL Equipment
Corporation.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

;* DIGITAL assumes no responsibility for the use or reliability of
;* software on equipment which is not supplied by DIGITAL.

its *
*

; * *
;**
;
;++

FACILITY:

VAX/VMS Executive, I/O Drivers

ABSTRACT:

This module contains the DRll driver:

ENVIRONMENT:

Tables for loading and dispatching
Controller initialization routine
FDT routine
The start I/O routine
The interrupt service routine
Device-specific cancel I/O
Error-logging register dump routine

Kernel Mode, Nonpaged

AUTHOR:

S. PROGRAMMER JANUARY 1979

MODIFIED BY:

;--

E-2

SAMPLE DRIVER FOR DRlls

.SBTTL External and local symbol definitions

External symbols

$ACBDEF
$CRBDEF
$DDBDEF
$DPTDEF
$EMBDEF
S!DBDEF
$IODEF
$IPLDEF
$ IRPDEF
$PRDEF
$PRIDEF
$UCBDEF
$VECDEF
$XADEF

Local symbols

AST control block
Channel request block
Device data block
Driver prologue table
EMB off sets
Interrupt data block
I/O function codes
Hardware IPL definitions
I/O request packet
Interhal processor registers
Scheduler priority increments
Unit control block
Interrupt vector block
Define device specific characteristics

Argument list (AP) offsets for device-dependent QIO parameters

Pl
P2
P3
P4
PS
P6

0
4
8
12
16
20

; Other constants

XA DEF TIMEOUT
XA-DEF-BUFSIZ
XA-RESET DELAY - -

10
65535
2

First QIO parameter
Second QIO parameter
Third QIO parameter
Fourth QIO parameter
Fifth QIO parameter
Sixth QIO parameter

10 second default device timeout
Default buffer size
Delay N microseconds after RESET

DRll definitions that follow the standard UCB fields
*** N 0 T E *** ORDER OF THESE UCB FIELDS IS ASSUMED

$DEF

$DEF

$DEF

$DEF

$DEF

$DEF

$DEF

$DEF

$DEF

$DEF

$DEF

$DEF

$DEFINI UCB
.=UCB$L DPC+4
UCB$L XA ATTN

7BLKL 1
UCB$W XA CSRTMP

- 7BLKW 1
UCB$W XA BARTMP

7BLKW 1
UCB$W XA CSR

- 7BLKW 1
UCB$W XA EIR

7BLKW 1
UCB$W XA IDR

- :sLKW 1
UCB$W XA BAR

- :BLKW 1
UCB$W XA WCR

- :BLKW 1
UCB$W XA ERROR

- :BLKW 1
UCB$L XA DPR

- :sLKL 1
UCB$ L XA FMPR

- :-sLKL 1
UCB$L XA PMPR

Attention AST listnead

Temporary storage of CSR image

Temporary storage of BAR image

Saved CSR on interrupt

Saved EIR on interrupt

Saved IDR on interrupt

Saved BAR register on interrupt

saved WCR register on interrupt

Saved device status flag

Data Path Register contents

Final Map Register contents

Previous Map Register contents

E-3

SAMPLE DRIVER FOR DRlls

$DEF
.BLKL

UCB$W_XA DPRN
-:-sLKW

1

1
Saved Datapath Register Number
And Datapath Parity error flag

Bit positions for device-dependent status field in UCB

$VIELD UCB,O,<
<ATTNAST, , M>, -
<UNEXPT,,M>,-
>

UCB$K SIZE=.
- $DEFEND UCB

UCB device-specific bit definitions
ATTN AST requested
Unexpected interrupt received

Device register offsets from CSR address

$DEFINI XA Start of DRll definitions
$DEF XA WCR Word count

.BLKW 1
$DEF XA BAR Buffer address

.BLKW 1
$DEF XA CSR Control/status

; Bit positions for device control/status register

$DEF

$EQULST XA$K ,,O,l,<
<FNCTl,2>
<FNCT2,4>
<FNCT3,3>
<STATUSA,2048>
<STATUSB ,1024>
<STATUSC,512>-

>

$VIELD XA CSR,O,<
<GO, ,M>,
<FNCT,3,M>,
<XBA,2,M>,
<IE, ,M> ,
<RDY, ,M> ,-

>
XA EIR

<CYCLE, ,M> ,
<STATUS,3,M>,
<MAINT, ,M>,
<ATTN,,M>,
<NEX, ,M> ,
<ERROR, ,M> ,-

Define CSR FNCT bit values

Define CSR STATUS bit values

Control/status register
Start device
CSR FNCT bits
Extended address bits
Enable interrupts
Device ready for command
Starts slave transmit
CSR STATUS bits
Maintenance bit
Status from other processor
Nonexistent memory flag
Error or external interrupt

Error information register

; Bit positions for error information register

$DEF

$VIELD XA EIR,O,<
<REGFLG,, M> ,
<SPARE, 7 ,M> ,
<BURST,,M>,
<DLT, ,M> ,
<PAR, ,M> ,
<ACLO, ,M> ,
<MULTI,,M>,
<ATTN, ,M> ,
<NEX, ,M> ,
<ERROR, ,M> ,-

>
.BLKW 1

XA !DR

Error information register
Flags whether EIR or CSR is accessed
Unused - spare
Burst mode transfer occurred
Timeout for successive burst transfer
Parity error during DATI/P
Power fail on this processor
Multicycle request error
ATTN - same as in CSR
NEX - same as in CSR
ERROR - same as in CSR

Input Data Buffer register

E-4

$DEF XA ODR
.BLKW

$DEFEND XA

SAMPLE DRIVER FOR DRlls

Output Data Buffer register
1

End of DRll definitions

E-5

'

SAMPLE DRIVER FOR DRlls

.SBTTL Device Driver Tables

Driver prologue table

DPT AB DPT-creation macro
End of driver label
Adapter type

END=XA END,
ADAPTER=UBA,
FLAGS=DPT$M SVP,-
UCBSIZE=UCBSK SIZE,
NAME=XADRIVER-

Allocate system page table
UCB size

DPT STORE !NIT
Driver name
Start of load
initialization table

DPT STORE UCB,UCB$B FIPL,B,8 Device fork IPL
DPT-STORE UCB,UCB$B-DIPL,B,22 Device interrupt IPL
DPT STORE UCB,UCB$L-DEVCHAR,L,<- Device characteristics

DEV$M RTM!-- Real time device
DEV$M-ELG!- Error logging enabled
DEV$M-IDV!- input device
DEV$M-ODV> ; output device

DPT STORE ucs-;ucB$B DEVCLASS,B,DC$ REALTIME ; Device class
DPT-STORE UCB,UCB$B-DEVTYPE,B,DT$ DRllW Device Type
DPT-STORE UCB,UCB$W-DEVBUFSIZ,W,-- Default buffer size

- XA DEF BUFSlZ
DPT STORE REINIT

DPT STORE DDB,DDB$L DDT,D,XA$DDT
DPT-STORE CRB,CRB$L-INTD+4,D,-

Start of reload
initialization table
Address of DDT

- XA INTERRUPT ;
Address of interrupt
service routine
Address of controller
initialization routine
End of initialization
tables

DPT STORE CRB,CRB$L INTD+VEC$L INITIAL,-;
- D,XA CONTROL !NIT -

DPT STORE END -

Driver dispatch table

DDT AB
DEVNAM=XA,-
START=XA START,-
FUNCTB=XA FUNCTABLE,
CANCEL=XA-CANCEL,
REGDMP=XA-REGDUMP,
DIAGBF=<<I3*4>+<<3+5+1>*4>> ,
ERLGBF=<<l3*4>+<1*4>+<EMB$L DV

Function decision table

DDT-creation macro
Name of device
Start I/O routine
FDT address
Cancel I/O routine
Register dump routine

; Diagnostic buffer size
REGSAV>> ; Error log buffer size

XA FUNCTABLE: ; FDT f o r d r iv e r
FUN CT AB

FUN CT AB
FUN CT AB

FUN CT AB
FUN CT AB
FUN CT AB
FUNCTAB

, ; Valid I/O functions
<READPBLK,READLBLK,READVBLK,WRITEPBLK,WRITELBLK,WRITEVBLK,
SETMODE,SETCHAR,SENSEMODE,SENSECHAR>
, ; No buffered functions
XA READ WRITE,- ; Device-specific FDT
<READPBLK,READLBLK,READVBLK,WRITEPBLK,WRITELBLK,WRITEVBLK>
+EXE$READ,<READPBLK,READLBLK,READVBLK>
+EXE$WRITE,<WRITEPBLK,WRITELBLK,WRITEVBLK>
XA SETMODE,<SETMODE,SETCHAR>
+EXE$SENSEMODE,<SENSEMODE,SENSECHAR>

E-6

SAMPLE DRIVER FOR DRlls

.SBTTL XA_CONTROL_INIT, Controller initialization

;++
XA CONTROL INIT, Called when driver is loaded, system is booted, or
power failure recovery.

Functional Description:

1) Allocates the direct data path permanently
2) Assigns the controller data channel permanently
3) Clears the Control and Status Register
4) If power recovery, requests device timeout

Inputs:

R4 address of CSR
R5 address of IDB
R6 address of DDB
R8 address of CRB

Outputs:

VEC$V PATHLOCK bit set in CRB$L INTD+VEC$B DATAPATH
UCB address placed into IDB$L_OWNER -

;--

XA CONTROL INIT: - -
MOVL
MOVL
BISW

IDB$L UCBLST(R5) ,RO ; Address of UCB
RO,IDB$L OWNER(R5) ; Make permanent controller owner
#UCBM_ONLINE,UCBW_STS(RO)

; Set device status "on-line"

If powerfail has occurred and device was active, force device timeout.
The user can set his own timeout interval for each request. Timeout
is forced so a very long timeout period will be sho~t-circuited.

10$:

BBS

BISB

BSBW
RSB

#UCB$V POWER,UCB$W STS(RO) ,10$
- - ; Branch if powerfail

#VEC$M PATHLOCK,CRB$L INTD+VEC$B DATAPATH(R8)
- - Permanently allocate direct datapath

XA DEV RESET Reset DRll
Done

~-7

SAMPLE DRIVER FOR DRlls

.SBTTL XA_READ_WRITE, FDT for device data transfers

;++
XA_READ_WRITE, FDT for READLBLK,READVBLK,READPBLK,WRITELBLK,WRITEVBLK,

WRITEPBLK

Functional description:

1) Rejects QUEUE I/Os with odd transfer count
2) Rejects QUEUE I/Os for BLOCK MODE request to UBA Direct Data

path on odd-byte boundary
3) Stores request timeout count specified in P3 into IRP
4) Stores FNCT bits specified in P4 into IRP
S) Stores word to write into ODR from PS into IRP
n) Checks block mode transfers for memory modify access

Inputs:

R3 Address of IRP
R4 Address of PCB
RS Address of UCB
R6 Address of CCB
RB Address of FDT routine
AP Address of Pl

Pl Buffer Address
P2 Buffer size in bytes
P3 Request timeout period (conditional on IOSM TIMED)
P4 Value for CSR FNCT bits iconditional on IOSR SETFNCT)
PS Value for ODR (conditional on IOSM S~TFNCT) -
Pn Address of Diagnostic Buffer -

Outputs:

RO = Error status if odd transfer count
IRP$L MEDIA = Timeout count for this request
IRPSL-SEGVBN = FNCT bits for DRll CSR and ODR image

XA READ WRITE:
-BLBC

2$: MOVZWL
S$: JMP
10$: MOVZWL

MOVL
BBS
MOVL

1S$: BBC

20$:

EXTZV
CMPB

BEQL
CMPB
BEQL
MOVZWL
BRB
EXTZV
ASHL
MOVW

P2(AP) ,10$ Branch if transfer count even
#SS$ BADPARAM,RO Set error status code
GAEXESABORTIO Abort request
IRPSW FUNC(R3) ,Rl Fetch I/O function code
P3(AP),IRP$L MEDIA(R3) Set request specific timeout count
#IOSV TIMED,Rl,1S$; Branch if time-out specified
#XA DEF TIMEOUT,IRP$L MEDIA(R3)

- - - ; Else set default timeout value
#IO$V DIAGNOSTIC,Rl,20$; Branch if not maintenance request
#IO$V-FCODE,#IO$S FCODE,Rl,Rl ; AND out all function modifiers
#IO$ READPBLK,Rl - ; If maintenance function, must be

- ; physical I/O read or write
20$
#IO$ WRITEPBLK,Rl
20$ -
tsss NOPRIV,RO ; No privilege for operation
S$ - ; Abort request
to, 13, P4 (AP) ,RO ; Get value for FNCT bi ts
IXA CSR$V FNCT,RO,IRP$L SEGVBN(R3) ; Shift into position for CSR
PS(XP) ,IRP$L_SEGVBN+2(Rj) ; Store ODR value for later

E-8

SAMPLE DRIVER FOR DRlls

If this is a block mode transfer, check buffer for modify access
whether or not the function is read or write. The DRll does
not decide whether to read or write, the user's device does.
For word mode requests, return to read check or write check.

If this is a BLOCK MODE request and the UBA Direct Data Path is
in use, check tne data buffer address for word alignment. If buffer
is not word aligned, reject the request.

25$:
30$:

BBS

BBS

BLBS
JMP
RSB

tIO$V WORD,IRP$W FUNC{R3) ,30$
- - ; Branch if word mode transfer

tXA$V DATAPATH,UCB$L DEVDEPEND{R5) ,25$
- - Branch if Buffered Data Path in use

Pl{AP) ,2$ DDP, branch on bad alignment
G~EXE$MODIFY Check buffer for modify access

Return

E-9

SAMPLE DRIVER FOR DRlls

.SBTTL XA_SETMODE, Set Mode, Set characteristics FDT

;++
XA_SETMODE, FDT routine to process SET MODE and SET CHARACTERISTICS

Functional description:

If IO$M ATTNAST modifier is set, queue attention AST for device
If IO$M-DATAPATH modifier is set, queue packet.
Else, fTnish I/O.

Inputs:

R3 I/O packet addr~ss
R4 PCB address
RS UCB address
R6 CCB address
R7 Function code
AP QIO Paramater list address

Outputs:

If IO$M ATTNAST is specified, queue AST on UCB attention AST list.
If IO$M-DATAPATH is specified, queue packet to driver.
Else, use exec routine to update device characteristics

XA SETMODE:
MOVZWL IRP$W FUNC(R3) ,RO
BBC #IO$V=ATTNAST,R0,20$

Get entire function code
Branch if not an ATTN AST

Attention AST request

10$:

PUS HR
MOVAB
JSB
POPR
BLBC
BISW

BBC

BSBW
JMP

#AM<R4,R7>
UCBSL XA ATTN(RS) ,R7
GACOMSSETATTNAST
#AM<R4,R7>

Address of ATTN AST control block list
Set up attention AST

R0,50$; Branch if error
tUCB$M_ATTNAST,UCB$W_DEVSTS(R5)

; Flag ATTN AST expected.
tUCB$V UNEXPT,UCB$W DEVSTS(RS) ,10$

- - Deliver AST if unsolicited interrupt
DEL ATTNAST
GAEXE$FINISHIO ; That's all for now

E-10

SAMPLE DRIVER FOR DRlls

If modifier I0$M DATAPATH is set,
queue packet. Tlie data path is changed at driver level to preserve
order with other requests.

20$: BBS

JMP

SA#IO$V_DATAPATH,R0,30$

GAEXESSETCHAR

If BDP modifier set, queue packet

Set device characteristics

; This is a request to change data path usage, queue packet

30$: CMPL
BNEQ
JMP

#IO$ SETCHAR,R7
45$ -
GAEXE$SETMODE

Error, abort IO

45$:
50$:

MOVZWL
CLRL
JMP

#SS$ NOPRIV,RO
Rl -
G AEXE$ABORTIO

E-11

Set characteristics?
No, must have the privilege
Queue packet to start I/O

No priv for operation

Abort I/O on error

SAMPLE DRIVER FOR DRlls

.SBTTL XA_START, Start I/O routines
;++

XA START - Start a data transfer, set characteristics, enable ATTN AST.

Functional Description:

This routine has two major functions:

1) Start an I/O transfer. This transfer can be in either word
or block mode. The FNCTN bits in the DRll CSR are set. If
the transfer count is zero, the STATUS bits in the DRll CSR
are read and the request completed.

2) Set Characteristics. If the function is change data path, the
new data path flag is set in the UCB.

Inputs:

R3 Address of the I/O request packet
RS Address of the UCB

Outputs:

RO = final status and number of bytes transferred
Rl = value of CSR STATUS bits and value of input data buffer register
Device errors are logged
Diagnostic buffer is filled

.ENABL LSB

XA START:

Retrieve the address of the device CSR

ASSUME IDB$L CSR EQ 0
MOVL UCB$L-CRB(R5) ,R4 ; Address of CRB
MOVL @CRB$L INTD+VEC$L IDB (R4) ,R4 -

; Address of CSR

Fetch the I/O function code

MOVZWL IRP$W FUNC(R3) ,Rl ; Get entire function code
MOVW Rl,UCB$W FUNC(R5) ; Save FUNC in UCB for error logging
EXTZV #IOSV_FCITDE,#I0$S_FCODE,Rl,R2 ; Extract function field

Dispatch on function code. If this is SET CHARACTERISTICS, we will
select a data path for future use.
If this is a transfer function, it will either be processed in word
or block mode.

;++

CMPB
BNEQ

UO$ SETCHAR,R2
3$ -

Set characteristics?

SET CHARACTERISTICS - Process Set Characteristics QIO function

INPUTS:

XA DATAPATH bit in Device Characteristics specifies which data path
to-use. If bit is a one, use buffered data path. If zero, use
direct datapath.

E-12

SAMPLE DRIVER FOR DRlls

OUTPUTS:

;--

2$:

CRB is flagged as to which datapath to use.
DEVDEPEND bits in device characteristics are updated

XA DATAPATH 1 -> buffered data path in use
XA=DATAPATH = 0 -> direct data path in use

MOVL
MOVQ
BISB

BBC
BICB

CLRL
MOVZWL
REQCOM

UCB$L CRB(R5) ,RO ; Get CRB address
IRP$L-MEDIA(R3) ,UCB$B DEVCLASS(R5) ; Set device characteristics
#VEC$M PATHLOCK,CRB$L-INTD+VEC$B DATAPATH(RO)

- - ; Assume direct datapath
#XA$V DATAPATH,UCB$L DEVDEPEND(R5) ,2$; Were we right?
#VEC$M_PATHLOCK,CRB$L_INTD+VEC$B_DATAPATH(RO) ; Set buffered datapath

Rl
#SS$_NORMAL,RO

; Return Success

; If subfunction modifier for device reset is set, do one here

3$: BBC
BSBW

SA#IO$V RESET,Rl,4$
XA DEV RESET

; Branch if not device reset
; Reset DRll

This must be a data transfer function - i.e. READ OR WRITE
Check to see if this is a zero length transfer.
If so, only set CSR FNCT bits and return STATUS from CSR

4$:

5$:

6$:

7$:

TSTW
BNEQ
BBC
DSBINT
MOVW

MOVZWL
BICW
BISW
MOVW
BBC
BICW3

ENBINT

BSBW
BLBS
JSB
JSB
MOVL
MOVZWL
BISB
REQCOM

UCB$W BCNT(R5)
10$ -
SA#IO$V_SETFNCT,Rl,~$

Is transfer count zero?
No, continue with data transfer
Set CSR FNCT specified?

IRP$L_SEGVBN+2(R3) ,XA_ODR(R4)
; Store word in ODR

XA CSR(R4) ,RO
#<XA CSR$M FNCT!XA CSR$M ERROR>,RO
IRP$L SEGVBN(R3) ,RO
RO,XA-CSR(R4)
#XA$V-LINK,UCB$L DEVDEPEND(R5) ,5$
#XA$K=FNCT2,RO,XA_CSR(R4)

; Link mode?
Make FNCT bit 2 a pulse

XA REGISTER
R0-;7$
GAERLSDEVICERR
GAIOC$DIAGBUFILL
UCB$W XA CSR(R5) ,Rl
UCB$W-XA-ERROR(R5) ,RO
#XA_CSRSM_IE,XA_CSR(R4)

Fetch DRll registers
If error, then log it
Log a device error
Fill diagnostic buffer if specified
Return CSR and EIR in Rl
Return status in RO
Enable device interrupts
Request done

; Build CSR image in RO for later use in starting transfers

10$:
DIVW3

MOVZWL
BICW
BISW
BBC
BICW
BISB

#2,UCB$W_BCNT(R5) ,UCB$L XA DPR(R5)
Make byte count into word count

XA CSR(R4),RO
#AC<XA CSR$M FNCT>,RO
#XA CSR$M IE-;Ro
SAtIO$V SETFNCT,Rl,20$
t<XA CSR$M FNCT>,RO
IRP$L_SEGVBN(R3) ,RO

Set Interrupt Enable
Set FNCT bits in CSR?
Yes, Clear previous FNCT bits
OR in new value

E-13

20$: BBC
BISW

SAMPLE DRIVER FOR DRlls

SAtIO$V DIAGNOSTIC,Rl,23$
fXA_CSRSM_MAINT,RO

; Check for maintenance function
Set maintenance bit in CSR image

; Is this a word mode or block mode request?

23$: MOVW
BBC
BRW

RO,UCB$W XA CSRTMP(RS) ; Save CSR image in UCB
sfttIO$V WORD,Rl,BLOCK MODE ; Check if word or block mode
WORD_MODE - ; Branch to handle word mode

E-14

SAMPLE DRIVER FOR DRlls

;++
BLOCK MODE -- Process a Block Mode (OMA) transfer request

FUNCTIONAL DESCRIPTION:

;--

This routine takes the buffer address, buffer size, function code,
and function modifier fields from the IRP. It calculates the UNIBUS
address, allocates the UBA map registers, loads the DRll device
registers and starts the request.

; Set up UBA
; Start transfer

BLOCK MODE:

; If IO$M CYCLE subfunction is specified, set CYCLE bit in CSR image

BBC
BISW

#I0$V CYCLE,Rl,25$; Set CYCLE bit in CSR?
#XA_CSR$M_CYCLE,IJCB$W_XA CSRTMP(R5) ; If yes, or into CSR image

Allocate UBA data path and map registers

25$:
REQDPR
REQMPR
LOADUBA

Request UBA data path
Request UBA map registers
Load UBA map registers

Calculate the UNIBUS transfer address for the DRll from the UBA
map register address and byte offset.

MOVZWL
MOVL
INSV

EXTZV
ASHL
BISW
BISW
BICW3

BICW3
MOVW

UCB$W BOFF(R5) ,Rl ; Byte offset in first page of transfer
UCB$L-CRB(R5) ,R2 ; Address of CRB
CRB$L-INTD+VEC$W MAPREG(R2) ,#9,#9,Rl

- - Insert page number
#l~,#2,Rl,R2 Extract bits 17:lh of bus address
#XA CSRSV XBA,R2,R2 Shift extended memeroy bits for CSR
#XA-CSR$M-GO,R2 Set "GO" bit into CSR image
R2,UCB$W XA CSRTMP(R5) ; Set into CSR image we are building
#<XA CSRSM GO!XA CSR$M CYCLE> ,UCB$W XA CSRTMP.(R5) ,RO

- ; CSR image-leis "GO" and "CYCLE"
#XA$K FNCT2,UCBSW XA CSRTMP(R5) ,R2 ; CSR image less FNCT bit 2
Rl,UCB$W_XA_BARTMP(RS) ; Save BAR for error-logging

At this juncture:
RO CSR image less "GO" and "CYCLE"
Rl = low l~ bits of transfer bus addresg
R2 = CSR image less FNCT bit 2
UCB$L XA DPR(R5) = transfer count in words
UCB$W=XA=CSRTMP(R5) = CSR image to start transfer with

Set DRll registers and start transfer
Note that read-modify-write cycles are NOT performed to the DRll CSR.
The CSR is always written directly into. This prevents inadvertently setting
the EIR select flag (writing bit 15) if error happens to become true.

DSBINT ; Disable interrupts (powerfail)
MNEGW UCB$L XA DPR(R5) ,XA WCR(R4)

- ; Load negative of transfer count
MOVW Rl,XA BAR(R4) ; Load low lfi bits of bus address
MOVW RO,xA:csR(R4) ; Load CSR image less "GO" and "CYCLE"
BBC #XA$V LINK,UCB$L DEVDEPEND(R5) ,2fi$; Link mode?
MOVW R2,XA=CSR(R4) - Yes, load CSR image less "FNCT" bit 2

; Only if link mode in dev characteristics

E-15

SAMPLE DRIVER FOR DRlls

26$:

; Wait for transfer complete interrupt, powerfail, or device timeout

WFIKPCH XA_TIME_OUT;IRP$L_MEDIA(R3) ; Wait for interrupt

Device has interrupted, FORK

IO FORK ; FORK to lower IPL

Handle request completion, release UBA resources, check for errors

27$:

28$:

MOVZWL
CLRW
PU RD PR
BLBS
MOVZWL
INCB
MOVL
EXTZV

MOVB
EXTZV
EXTZV
INSV
CMPW
BGTR
MOVL
CLRL
DECL
CMPV

BGTR
MOVL
RELMPR
RELDPR

#SS$ NORMAL,-(SP)
UCBSW_XA_DPRN(RS)

Assume success, store code on stack
Clear DPR number and DPR error flag
Purge UBA buffered data path

R0,27$ Branch if no datapath error
#SS$ PARITY,(SP) Flag parity error on device
UCB$W XA DPRN+l(RS) Flag PDR error for log
Rl,UCB$L-XA DPR(RS) Save data path register in UCB
#VEC$V_DATAPATH,- Get datapath register no.
#VEC$S DATAPATH,- ; For error log
CRB$L lNTD+VEC$B DATAPATH(R3) ,RO
RO,UCB$W XA DPRN(RS) ; Save for later in UCB
#9,#7,UCB$W-XA BAR(RS) ,RO ; Low bits, final map register no.
#4,#2,UCB$W-XA-CSR(R5) ,Rl ; High bits of map register no.
Rl,#7,#2,RO- - Entire map register number
R0,#496 Is map register number in range?
28$; No, forget it - compound error
(R2) [RO] ,UCB$L XA FMPR(RS) ; Save map register contents
UCB$L XA PMPR(RS)- ; Assume no previous map register
RO - - ; Was there a previous map register?
#VEC$V MAPREG,#VEC$S MAPREG,-
CRBSL INTD+VECSW MAPREG(R3) ,RO
28$ - - ; No if greater
(R2) [RO] ,UCBSL XA FMPR(RS) ; Save previous map register contents

- - ; Release UBA resources

Check for errors and return status

TSTW UCB$W_XA_WCR (RS) All words transferred?
BEQL 30$ Yes
MOVZWL #SS$ OPINCOMPL,(SP) ; No, flag operation not complete

30$: BBC #XA CSR$V ERROR,UCB$W XA CSR(RS) ,35$; Branch on CSR error bit
MOVZWL UCBSW XA ERROR(RS) ,(SP) Flag for controller/drive error status
BSBW XA DEV RESET Reset DRll

35$: BLBS (SP) ,40$ Any errors after all this?
JSB G"ERL$DEVICERR Yes, log them

40$: BSBW DEL ATTNAST Deliver outstanding ATTN AS Ts
JSB G"IOC$DIAGBUFILL Fill diagnostic buffer
MOVL (SP)+,RO Get final device status
MULW3 t2,UCB$W XA WCR(RS) ,Rl Calculate final transfe,r count
ADDW UCB$W BCNT(RS) ,Rl
INSV Rl,U6,Un,RO Insert into high byte of IOSB
MOVL UCB$W XA CSR(RS) ,Rl Return CSR and EIR in IOSB
BISB fXA_CSR$M_IE,XA_CSR(R4) Enable interrupts
REQCOM Finish request in exec

.DSABL LSB

E-Hi

SAMPLE DRIVER FOR DRlls

;++
WORD MODE -- Process word mode (interrupt per word) transfer

FUNCTIONAL DESCRIPTION:

;--

Data is transferred one word at a time with an interrupt for each word.
The request is handled separately for a write (from memory to DRll
and a read (from DRll to memory).
For a write, data is fetched from memory, loaded into the ODR of the
DRll and the system waits for an interrupt. ·For a read, the system
waits for a DRll interrupt and the IDR is transferred into memory.
If the unsolicited interrupt flag is set, the first word is transferred
directly into memory withou waiting for an interrupt.

.ENABL LSB
WORD MODE:

Dispatch to separate loops on READ or WRITE

;++

CMPB
BEQL

#IO$ READPBLK,R2
30$ -

; Check for read function

WORD MODE WRITE -- Write (output) in word mode

FUNCTIONAL DESCRIPTION:

10$:

15$:

Transfer the requested number of words from user memory to
the DRll ODR one word at a time, wait for interrupt for each
word.

BSBW
DSBINT

MOVW
MOVW
BBC
BICW3

MOVFRUSER Get two bytes from user buffer
Lock out interrupts
Flag interrupt expected

Rl,XA ODR(R4) ; Move data to DRll
UCB$W-XA CSRTMP(R5) ,XA CSR(R4) ; Set DRll CSR
#XA$V-LINK,UCB$L DEVDEPEND(R5) ,15$; Link mode?
#XA$K-FNCT2,UCB$W XA CSRTMP(R5) ,XA CSR(R4) ; Clear interrupt FNCT bit 2

- - - ; Only if Tink mode specified

; Wait for interrupt, powerfail, or device timeout

WFIKPCH XA_TIME_OUTW,IRP$L_MEDIA(R3)

Check for errors, decrement transfer count, and loop until complete

IOFORK ; Fork to lower IPL
BITW #XA EIR$M NEX!-

XA EIR$M MULTI!
XA-EIR$M-ACLO!-
XA-EIR$M-PAR!-
XA-EIR$M-DLT, UCB$W XA EIR(R5) ; Any errors?

BEQL 20$ - - - No, continue
BRW 40$ Yes, abort transfer.

20$: DECW UCB$L XA DPR(R5) ; All words transferred?
BNEQ 10$ - - No, loop until finished.

Transfer is done, clear interrupt expected flag and FORK
All words read or written in WORD MODE. Finish I/O.

E-17

SAMPLE DRIVER FOR DRlls

RETURN STATUS:

22$:

;++

JSB
BSBW
MOVZWL
MULW3
SUBW3
INSV
MOVL
BISB
REQCOM

GAIOC$DIAGBUFILL
DEL ATTNAST
tssl NORMAL,RO
t2,U~B$L XA DPR(R5),Rl
Rl,UCB$W-BCNT(R5),Rl
Rl, U6, tf6 ,RO
UCB$W XA CSR(R5),Rl
IXA_CSR$M_IE,XA_CSR(R4)

Fill diagnostic buffer if present
Deliver outstanding ATTN ASTs
Complete success status
Calculate actual by~es transferred
From requested number of bytes

.; And place in high word of RO
Return CSR and EIR status
Enable device interrupts
Finish request in executive

WORD MODE READ -- Read (input) in word mode

FUNCTIONAL DESCRIPTION:

;--

30$:

Transfer the requested number of words from the DRll !DR into
user memory one word at a time, wait for interrupt for each word.
If the unexpected (unsolicited) interrupt bit is set, transfer the
first (last received) word to memory without waiting for an
interrupt.

SETIPL UCB$B_DIPL(R5) ; Lock out interrupts

If an unexpected (unsolicited) interrupt has occurred, assume it
is for this READ request and return value to user buffer without
waiting for an interrupt.

BBSC #UCB$V UNEXPT,UCB$W DEVSTS(RS),37$
- ; Branch if unexpected interrupt

DSBINT
35$:

; Wait for interrupt, powerfail, or device timeout

WFIKPCH XA_TIME_OUTW,IRP$L_MEDIA(R3)

; Check for errors, decrement transfer count and loop until done

37$:
IO FORK

BITW #XA EIR$M NEX!
XA EIR$M MULTI!
XA-EIR$M-ACLO!
XA-EIR$M-PAR!-

; Fork to lower IPL

XA-EIR$M-DLT, UCB$W XA EIR(R5) ; Any errors?
BNEQ 40$ - - ; Yes, abort transfer.
BSBW MOVTOUSER ; Store two bytes into user buffer

Send interrupt back to sender. Acknowledge we got last word.

38$:

DSBINT
MOVW
BBC
BICW3

DECW
BNEQ
ENBINT
BRB

UCB$W XA CSRTMP(R5) ,XA CSR(R4)
fXA$V-LINK,UCB$L DEVDEPEND(R5),38$; Link mode?
IXA$K=FNCT2,UCB$W_XA_CSRTMP(R5),XA_CSR(R4) ; Yes, clear FNCT 2

UCB$L XA DPR(RS)
35$ - -

RETURN STATUS

Decrement transfer count
Loop unUl all words transferred

rinlsh request in co1Dmon code

E-18

SAMPLE DRIVER FOR DRlls

; Error detected in word mode transfer

40$:
BSBW
BSBW
JSB
JSB
MOVZWL
BRW

DEL ATTNAST
XA DEV RESET
G"'IOC$DIAGBUFILL
G"'ERL$DEVICERR
UCB$W XA ERROR(R5) ,RO
22$ - -

.DSABL LSB

Deliver ATTN AST's
Error, reset DRll
Fill diagnostic buffer if present
Log device error
Set controller/drive status in RO

MOVFRUSER - Routine to fetch two bytes from user buffer.

INPUTS:

RS UCB address

OUTPUTS:

Rl = Two bytes of data from users buffer
Buffer descriptor in UCB is updated •

• ENABL LSB
MOVFRUSER:

MOVAL
MOVZBL
JSB
MOVL
BRB

- (SP) ,Rl
#2,R2
G"' IOC$MOVFRUSER
(SP)+,Rl
20$

Address of temporary stack loc
Fetch two bytes
Call exec routine to do the deed
Retreive the bytes
Update UCB buffer pointers

MOVTOUSER - Routine to store two bytes into users buffer.

INPUTS:

RS = UCB address
UCB$W_XA_IDR (RS) Location where two bytes are saved

OUTPUTS:

Two bytes are stored in user buffer and buffer descriptor in
UCB is updated.

MOVTOUSER:

20$:

30$:

MOVAB
MOVZBL
JSB

ADDW
BICW
BNEQ
ADDL

RSB

UCB$W XA IDR(RS) ,Rl
#2,R2- -
G"' IOC$MOVTOUSER

Address of internal buffer

Call exec
Update buffer pointers in UCB

#2,UCB$W_BOFF(R5) Add two to buffer descriptor
#"'C<"'X01FF>,UCB$W BOFF(R5) ; Modulo the page size
30$ - ; If NEQ, no page boundary crossed
#4,UCB$L_SVAPTE(R5) ; Point to next page

.DSABL LSB

.PAGE

E-19

SAMPLE DRIVER FOR DRlls

.SBTTL DRll DEVICE TIMEOUT
;++

DRll device TIMEOUT
If a OMA transfer was in progress, release UBA resources.
For OMA or WORD mode, deliver ATTN ASTs, log a device timeout error,
and do a hard reset on the controller.

Clear DRll CSR
Return error status

Power failure will appear as a device timeout

.ENABL LSB
XA TIME OUT: Timeout for OMA transfer

SETIPL UCB$B_FIPL(R5)
PU RD PR

Lower to FORK IPL
Purge buffered data path in UBA
Release UBA map registers
Release UBA data path

RELMPR
RELDPR

XA TIME OUTW:

MOVL
MOVL
BSBW
JSB
JSB
BSBW
BSBW
MOVZWL
CLRL
CLRW
BICW

REQCOM
.DSABL
.PAGE

Timeout for WORD mode transfer

UCB$L CRB(R5) ,R4 ; Fetch address of CSR
@CRB$L INTD+VEC$L IDB (R4) ,R4
XA REGISTER - Read DRll registers
GAIOC$DIAGBUFILL Fill diagnostic buffer
GAERL$DEVICTMO Log device timeout
DEL ATTNAST And deliver the ASTs
XA DEV RESET Reset controller
#SS$ TIMEOUT,RO Error status
Rl -
UCB$W DEVSTS(R5) ; Clear ATTN AST flags
#<UCBSM TIM!UCB$M INT!UCB$M TIMOUT1UCB$M CANCELIUCB$M POWER>,-
UCB$W_STS(R5) - ; ciear unit status flags -

; Complete I/O in exec
LSB

E-20

SAMPLE DRIVER FOR DRlls

.SBTTL XA_INTERRUPT, Interrupt service routine for DRll
;++

XA_INTERRUPT, Handles interrupts generated by DRll

Functional description:

This routine is entered whenever an interrupt is generated
by the DRll. It checks that an interrupt was expected.
If not, it sets the unexpected (unsolicited) interrupt flag.
All device registers are read and stored into the UCB.
If an interrupt was expected, it calls the driver back at its Wait
For Interrupt point.
Deliver ATTN ASTs if unexpected interrupt.

Inputs:

OO(SP)
04(SP)
08(SP)
12(SP)
lh (SP)
20(SP)
24(SP)
28(SP)
32(SP)

Pointer to address of the device IDB
saved RO
saved Rl
saved R2
saved R3
saved R.4
saved RS
saved PSL
saved PC

Outputs:

;--

The driver is called at its Wait For Interrupt point if an
interrupt was expected.
The current value of the DRll CSRs are stored in the UCB.

XA INTERRUPT: Interrupt service for DRll
Address of IDB and pop SP
CSR and UCB address from IDB

MOVL
MOVQ

@(SP)+,R4
(R4) ,R4

Read the DRll device registers (WCR, BAR, CSR, EIR, IDR) and store
into UCB.

BSBW XA REGISTER ; Read device registers

Check to see if device transfer request active or not
If so, call driver back at Wait for Interrupt point and
Clear unexpected interrupt flag.

20$: BBCC #UCB$V INT,UCB$W STS(R5) ,25$
- - ; If clear, no interrupt expected

Interrupt expected, clear unexpected interrupt flag and call driver
back.

BICW

MOVL
JSB
BRB

#UCB$M UNEXPT,UCB$W DEVSTS(RS)
- - Clear unexpected interrupt flag

UCB$L FR3(R5) ,R3 Restore drivers R3
@UCB$L FPC(R5) Call driver back
30$ -

E-21

SAMPLE DRIVER FOR DRlls

; Deliver ATTN ASTs if no interrupt expected and set unexpected
1 interrupt flag.

25$:
BISW
BSBW
BISB

tUCB$M UNEXPT,UCB$W DEVSTS(RS) ; Set unexpected interrupt flag
DEL ATTNAST - ; Deliver ATTN ASTs
fXA=CSR$M_IE,XA_CSR(R4) ; Enable device interrupts

Restore registers and return from interrupt

30$:
POPR
REI
.PAGE

fftM<RO,Rl,R2,R3,R4,R5> Restore registers
Return from interrupt

E-22

SAMPLE DRIVER FOR DRlls

.SBTTL XA REGISTER - Handle DRll CSR transfers
;++

XA REGISTER - Routine to handle DRll register transfers

INPUTS:

R4 - DRll CSR address
RS - UCB address of unit

OUTPUTS:

CSR, EIR, WCR, BAR, IDR, and status are read and stored into UCB.
The DRll is placed in its initial state with interrupts enabled.

;' RO - .true. if no hard error
.false. if hard error (cannot clear ATTN)

If the CSR ERROR bit is set and the associated condition can he cleared, then
the error is transient and recoverable. The status returned is SSS DRVERR.
If the CSR ERROR bit is set and cannot be cleared by clearing the CSR, then
this is a hard error and cannot be recovered. The returned status is
SS$ CTRLERR.

RO,Rl - destroyed, all other registers preserved.

XA REGISTER:

55$:

60$:

MOVZWL
MOVZWL
MOVW
BBC
MOVZWL
BICW
BISB
MOVW
MOVW
MOVW
BBC
MOVZWL
MOVW
MOVW
MOVW
MOVW
RSB

#SS$ NORMAL,RO Assume success
XA CSR(R4) ,Rl Read CSR
Rl~UCB$W XA CSR(R5) Save CSR in UCB
#XA CSR$V ERROR,Rl,55$ Branch if no error
#SS~ DRVERR,RO Assume "drive" error
#AC<XA CSR$M FNCT>,Rl ; Clear all uninteresting bits for later
#<XA CSR$M ERROR/25fi>,XA CSR+l(R4) ; Set EIR flag
XA ElR(R4)~UCB$W XA EIR(R5) ; Save EIR in UCB
Rl~XA CSR(R4) - - ; Clear EIR flag and errors
XA CS~(R4) ,Rl ; Read CSR back
#X~ CSR$V ATTN,Rl,h0$; If attention ~till set, hard error
#SS~ CTRL~RR,RO ; Flag hard controller error
XA IDR(R4) ,UCB$W XA IDR(R5) ; Save IDR in UCB
XA-BAR(~4) ,UCB$W-XA-BAR(R5)
XA-WCR(R4) ,UCB$W-XA-WCR(R5)
RO~UCB$W_XA_ERROR(RS) ; Save status in UCB

E-23

SAMPLE DRIVER FOR DRlls

.SBTTL XA_CANCEL, Cancel I/O routine
;++

XA_CANCEL, Cancels an I/O operation in progress

Functional description:

Flushes attention AST queue for the user.
if transfer in progress, do a device reset to DRll and finish the
request.
clear interrupt expected flag.

Inputs:

R2 negated value of channel index
R3 address of current IRP
R4 address of the PCB requesting the cancel
RS address of the device's UCB

Outputs:

XA CANCEL: ; Cancel I/O

BBCC #UCB$V ATTNAST,UCB$W DEVSTS(R5) ,20$
- ; ATTN AST enabled?

Finish all ATTN ASTs for this process.

PUS HR
MOVL
MOVA13
JSB
POPR

#"'M<R2,Rfi,R7>
R2,R6
UCB$L XA ATTN(R5) ,R7
G"'COMSFLUSHATTNS
#"'M<R2,Rf;,R7>

Set up channel number
Address of listhead
Flush ATTN ASTs for process

Check to see if a data transfer request is in progress
for this process on this channel

20$:
SETI PL
JSB
BBC

UCB$B DIPL(R5)
G"'IOCSCANCELIO
#UCBV_CANCEL,UCBW_STS(R5) ,30$

Lock out device interrupts
Check if transfer going
Branch if not for this guy

If BLOCK mode DMA request in progress, release UBA resources
If transfer is in progress, do a device reset to DRll

BBC
BBS
PUS HR
MOVL
MOVL
BSBW
PU RD PR
RELMPR
RELDPR
POPR

#UCB$V INT,UCB$W STS(R5) ,25$
#IOSV WORD,IRP$W-FUNC(R3) ,25$
#"'M<R2,R3,R4> -
UCB$L CRB(R5),R4
@CRB$L INTD+8(R4) ,R4
XA DEV-RESET

#"'M<R2,R3,R4>

E-24

Branch if transfer not in proqress
Branch if not BLOCK mode transfer
Save some registers
Get CRB address
Get pointer to CSR in IDB
Reset DRll
Purge UBA buffered data path
Release UBA map registers
Release UBA data path register

25$:

30$:

SAMPLE DRIVER FOR DRlls

MOVZWL #SS$ CANCEL,RO ; Status is request canceled
CLRL Rl -
CLRW UCB$W DEVSTS(R5) ; Clear unexpected interrupt flag
BICW #<UCBSM TIM!UCB$M BSY!UCB$M CANCEL!UCB$M INT!UCB$M TIMOUT>,-

UCB$W_STS(R5) - ; Clear unit status flags
REQCOM Jump to exec to finish I/O

SETIPL UCB$B_FIPL(R5)
RSB
.PAGE

E-25

Lower to FORK IPL
Return

SAMPLE DRIVER FOR DRlls

.SBTTL DEL_ATTNAST, Deliver ATTN ASTs
;++

DEL_ATTNAST, Deliver all outstanding ATTN ASTs

Functional description:

This routine is used by the DRll driver to deliver all of the
outstanding attention ASTs. It is copied from COMSDELATTNAST in
the exec. In addition, it places the saved value of the DRll CSR
and Input Data Buffer Register in the AST paramater.

Inputs:

R5 UCB of DRll unit

Outputs:

RO,Rl,R2 Destroyed
R3,R4,R5 Preserved

DEL ATTNAST:
BBCC #UCB$V ATTNAST,UCB$W DEVSTS(R5) ,30$

- - Any ATTN ASTs expected?
PUS HR #~M<R3,R4,R5> Save R3,R4,R5

10$: MOVL 8 (SP) ,Rl Get address of UCB
MOVAB
MOVL
BEQL
BICW
MOVL
MOVW

UCB$L XA ATTN(Rl) ,R2 Address of ATTN AST listhead
(R2) ,R5 - Address of next entry on list
20$ No next entry, end of loop
#UCB SM UN EX PT, UCB SW DEVSTS (Rl) ; Clear unexpected interrupt flag
(R5),(R2) - ; Close list
UCBSW_XA_IDR(Rl) ,ACB$L_KAST+n(R5)

; Store IDR in AST paramater
MOVh' UCBSW_XA_CSR(Rl) ,ACBSL_KAST+4 (RS)

Store CSR in AST paramater
PUSHAB BA10$ Set return address for FORK
FORK FOR~ for this AST

AST fork procedure

MOVQ

MOVB
MOVL
CLRL
MOVZBL
JMP

20$: POPR
30$: RSB

. PAGE

ACB$L KAST(R5) ,ACBSL_AST(RS)
; Rearrange

ACB$L KAST+8(R5) ,ACB$B RMOD(R5)
ACB$CKAST+l2(R5) ,ACB$L PID(R5)
ACB$CKAST(R5) -

entries

#PRI$-IOCOM,R2
GASCHSQAST

Set up priority increment
Queue the AST

M<R3,R4,R5> Restore registers
Return

E-2fi

SAMPLE DRIVER FOR DRlls

.SBTTL XA REGDUMP - DRll register dump routine
;++

XA REGDUMP - DRll Register dump routine.

This routine is called to save the controller registers in a specified
buffer. It is called from the device error-logging routine and from the
diagnostic buffer fill routine.

Inputs:

RO - Address of register save buffer
R4 - Address of Control and Status Register
RS - Address of UCB

;
1
0utputs:

;

;--

The controller registers are saved in the specified buffer.

CSRTMP - The last command written to the DRll CSR by
by the driver.

BARTMP - The last value written into the DRll BAR by
the driver during a block mode transfer.

CSR - The CSR image at the last interrupt
EIR - The EIR image at the last interrupt
IDR - The IDR image at the last interrupt
BAR - The BAR image at the last interrupt
WCR - Word count register
ERROR - The system status at request completion
PORN - UBA Datapath Register number
DPR - The contents of the UBA Data Path register
FMPR - The contents of the last UBA Map register
PMRP - The contents of the previous UBA Map register
DPRF - Flag for purge datapath error

O = no purge datapath error
1 = parity error when datapath was purged

Note that the values stored are from the last completed transfer
operation. If a zero transfer count is specified, then the
values are from the last operation with a nonzero transfer count.

XA REGDUMP:

10$:

20$:

MOVZBL
MOVAB
MOVZBL
MOVZWL
SOBGTR
MOVZBL
MOVZBL
MOVL
SOBGTR
MOVZBL
RSB
.PAGE

#11,(RO)+
UCB$W XA CSRTMP(RS) ,Rl
#8,R2- -
(Rl)+,(RO)+
R2,10$
UCB$W XA DPRN(RS) ,(RO)+
#3,R2- -
(Rl)+,(RO)+
R2,20$
UCB$W_XA_DPRN+l(R5) ,(RO)+

Eleven registers are stored
Get address of saved register images
Return' 8 registers here

Move them all
Save datapath register number
And 3 more here
Move UBA register contents

; Save Datapath Parity Error Flag

E-27

SAMPLE DRIVER FOR DRlls

.SBTTL XA DEV RESET - Device reset DRll:.
;++

XA DEV RESET - DRll Device reset routine

This routine raises IPL to device IPL, performs a device reset to
the required controller, and re-enables device interrupts.

Inputs:

R4 - Address of Control and Status Register
RS - Address of UCB

Outputs:

Controller is reset, controller interrupts are enabled

;--

XA DEV RESET:

5$:
10$:

XA END:

PUSHR #~M<RO,Rl,R2> ; Save some registers
DSBINT ; Raise IPL to lock all interrupts
MOVB #<XA CSR$M MAINT/25n>,XA CSR+l(R4)
CLRB XA_C~R+l(R4) -

Must delay here depending on reset interval

MOVZBL
MFPR
MFPR
CMPL
BEQL
SOBGTR

#XA RESET DELAY,R2
#PRS ICR,RO
#PR$-ICR,Rl
RO,RT
10$
R2,5$

MOVB #XA_CSR$M_IE,XA CSR(R4)
ENBINT
POPR #~M<RO,Rl,R2>

RSB

.END

E-28

No. of microsecs to wait
Read interval clock
Read it again
Compare both clock readings
Repeat until they differ
Do this the specified no. of tim

Re-enable device interrupts
Restore IPL
Restore registers

End of driver label

APPENDIX F

MASSBUS ADAPTER

The MASSBUS links devices to physical memory. The MASSBUS adapter
performs the following functions that allow communication between
devices and memory:

• Mapping of virtual addresses to physical page frame numbers

• Buffering of data for transfers from main memory to the
MASSBUS and vice versa

• Dispatching interrupts from MASSBUS devices to the SBI

A MASSBUS adapter supports any combination of mass storage devices.
Each magnetic tape controller supports up to eight tape drives. Each
disk controller supports a single disk drive. The DR70 is a general
purpose interface that acts as a controller for one or more
non-standard devices. Only one controller can transfer data at a
time. Figure F-1 illustrates a possible MASSBUS configuration.

TAPE
CONTROLLER

(TM03)

A
(UNIT O)

B

UNIT 1

SUB-UNIT
0

SUB-UNIT
1

SUB-UNIT SUB-UNIT
2 3

c

UNIT 2

Figure F-1 MASSBUS Configuration

DR70

NON-DIGITAL
DEVICE

This appendix describes the data structures and macros used hy DIGITAL
for its standard magnetic tape and disk products. Customers using the
DR70 should use equivalent techniques.

The MASSBUS adapter has two sets of registers:

• Internal registers for the MASSBUS adapter;
registers

that is, MBA

• External registers for each device on the MASSBUS;
device registers

F-1

that is,

MASSBUS ADAPTER

External registers are device-dependent.

The MASSBUS contains 256 map registers. The driver for a MASSBUS
device must obtain ownership of the MBA controller before loading map
registers.

Each map register is a longword. Bits 21 through 30 of each register
are reserved; they cannot be written. Use of MBA map registers is
analogous to use of UBA map registers with the following exceptions:

• MBA map registers do not contain a byte offset field; the MBA
virtual address register (VAR) contains the byte offset.

• MBA map registers do not contain a data path field;
has a single data path.

the MBA

Figure F-2 illustrates the mapping of a virtual address to a page
frame number.

VIRTUAL
ADDRESS
REGISTER

31 17 16 9 8 2 1 0

I MAP POINTER I LONG WORD ''BYTE!

\ ----1 \ "" I
INDEX INTO MAP REGISTERS T

MAP REGISTERS

31 30 21 20 0

V RESERVED PHYS. PAGE ADDRESS

"-...... ----~-----/

DIRECT
TRANSFER

--~~~~~~~~-~-----~~~~~--_ ___ ~
r 21 1 r 6 o"

!~1DRESS l _____ P_H_v_s_l~AL ;AGE AD~;;;;-~-=-r==J

Figure F-2 Mapping of a Virtual Address to a Page Frame Number

F-2

MASSBUS ADAPTER

Each MASSBUS adapter has a 2048-longword physical address space. For
the MASSBUS adapter, bits 10 and 11 of a longword address indicate the
part of the MBA nexus address space to which the address refers.
Addresses can refer to the MBA internal registers, external registers,
or map registers with the following encodings of bits 10 and 11.

Bits 11 and 10 Meaning

0 0 MBA internal registers

0 1 MBA external registers
Bits 0 through n select the register.
Bits 7 through 9 select the unit or
subcontroller.

1 0 Map register
Bits 0 through 9 specify the map
register index.

Bits 13 through 16 of the address specify the nexus position (tr
number) of the MASSBUS adapter. The address of the nexus position is
the address of the start of MBA registers. The address of the start
of MBA space depends on the tr number at which the MASSBUS adapter is
installed. For examples in this appendix, 20014000 is used as the
starting address of the MBA registers for the MBA at tr number O;
refer to Figure F-3. The programmer of a driver under VAX/VMS uses
only virtual addresses; physical addresses are visible only during
the debugging of the driver.

20014000

20014400

20014480

20014500

20014580

20014780

20014800

"" ,..

MASS BUS
INTERNAL
REGISTERS

UNIT 0
DEVICE REGISTERS

UNIT 1
DEVICE REGISTERS

UNIT 2
DEVICE REGISTERS

• • •
UNIT 7

DEVICE REGISTERS

MAP REGISTERS

>'

Figure F-3 Location of MASSBUS Registers

F-3

8K BYTES

MASSBUS ADAPTER

Thus, to address a map address register in the MASSBUS adapter at tr
10, the driver constructs the following address:

20014800 + map register index

20014000 indicates tr 10.

800 indicates a map register (bits 10 and 11).

To address a device register, the driver constructs the following
address:

20014400 .OR. device .OR. register select

400 indicates a device reqister (bits 10 and 11).

F.l I/O DATA BASE FOR MASSBUS DEVICES

In the simple case (that is, a single-unit controller like a disk
attached to the MASSBUS), the driver loading procedure constructs a
channel request block for the MASSBUS adapter. The MASSBUS adapter is
the device controller for all devices attach~d to the MASSBUS. Figure
F-4 illustrates the I/O data base for a single-unit controller (disk)
attached to the MASSBUS.

HARDWARE
CONFIGURATION

MBA

I
I
I

t"'-
',1

'
I
I

RP06 f--- -1-
1

I
I
I

' '

~

'

ASSOCIATED
DATA BASE

' ' ~
UCB

_..
~-

ADP

'
CRB

IDB

Figure F-4 I/O Data Base for MASSBUS Disk Unit

In the case of a multiunit controller, however, the I/O data base
created varies slightly from the I/O data base for a UNIBUS
configuration. Multiunit controllers (for example, magnetic tape
drives on a TM03 formatter), have two levels of channel request blocks
and interrupt data blocks. When multiple units are attached to a
controller that is attached to the MASSBUS, the driver loading
procedure creates one CRB and IDB for the MASSBUS adapter and one
additional CRB and one additional IDB for each multiunit controller
attached to the MASSBUS. Figure F-5 illustrates the I/O data base
created for a disk unit and two tape units attached to the MASSBUS.

F-4

MASSBUS ADAPTER

Before a driver can activate a transfer
multiunit controller, the driver must
controller (the TM03 controller) and the
MASSBUS adapter).

on a unit attached to a
request both the primary
secondary controller (the

Nontransfer functions do not require the MASSBUS adapter. For
example, tape positioning functions require only the magnetic tape
controller and the unit; the MASSBUS controller is free for other
operations (for example, data transfers on other units).

MBA

HARDWARE
CONFIGURATION

UNIT
0

UNIT
1

UCB

UCB

UCB

ASSOCIATED
DATA BASE

ADP

CRB

CRB

Figure F-5 I/O Data Base for MASSBUS Disk and Tape Units

IDB

IDB

VAX/VMS defines two levels of interrupt data blocks to dispatch
interrupts from MASSBUS devices to the corresponding device driver.
When an interrupt occurs, the VAX/VMS MBA interrupt dispatcher locates
the channel request block for the MASSBUS adapter. The channel
request block contains a pointer to the interrupt data block for the
MASSBUS adapter.

The interrupt data block contains one entry for each controller
attached to the MASSBUS. In the case of a single-unit controller, the
interrupt data block contains a pointer to the unit control block for
the device. Given the UCB address, the MBA interrupt dispatcher can
restore the driver.

In the case of a solicited interrupt for a multiunit controller,
however, the interrupt data block contains a pointer to the channel
request block for the multiunit controller. The pointer addresses an
instruction that transfers control to the controller's own interrupt
service routine to determine which unit requested the interrupt. The
second CRB, in turn, contains the pointer to the second interrupt data

F-5

MASSBUS ADAPTER

block. The interrupt data block contains n pointer to the unit
control block for each unit attached to the multiunit controller.
Figure F-6 illustrates the data base for the hardware configuration
illustrated in Figure F-5.

If the field IDB$L OWNER contains a zero (not filled), the VAX/VMS
interrupt dispatcher also uses the MBA's Attention Summary register to
determine the unit requesting the interrupt, as described in Section
F.3.

.......-------·-----·~-···----~~-·~·---- ------·-------~

L CRB FOR MBA

CRB IDB
---------·--

.___ _________ _

CRB FOR TM03
.--~---·--·-·--

I--·---··-·---·---··-
....._ LINK

------·---··-· -·····-

INTD+1

ADP
-------·---

IDB FOR MBA

MBA CONFIG. REG

MBA UNIT 0 (DISK)

1-- ,-- MBA UNIT 1 (TAPE)

IDB FOR TM03

ADP CSR

'-- ADP

UCB 0 1--
t-------------

UCB1 ~

DISK
UCB 0

CRB

TAPE
UCB 0

CRB

TAPE
UCB 1

CRB

Figure F-6 I/O Data Structures Used in Dispatchinq an Interrupt

F.2 MBA CONSIDERATIONS FOR DRIVERS

MASSBUS adapter considerations affect a driver's device unit
initialization routine, start I/O routines and, for subcontrollers
only (magnetic tape), the driver's DPTAB macro. MBA considerations
also affect interrupt handling as described in Section F.3.

F.2.1 Unit Initialization Routine

In order to perform unit initialization, the driver must refer to the
device registers for the unit. The address of the unit initialization
routine is specified in a field within the driver dispatch table

F-n

MASSBUS ADAPTER

(DDT$L UNITINIT). For a single-unit controller, a driver obtains the
information needed to refer to device registers in the following
steps:

• Extracts the unit number from UCB$W UNIT and stores the unit
number in UCB$B SLAVE

• Multiplies the slave number by 32 to derive the longword
offset to the device registers for the drive and stores the
result in UCB$B SLAVE+l; refer to the descriptions of these
fields in Appendix A

• Assuming that the offset to the device registers is in R3, the
driver loads the address of the device registers into a
general register with the following instruction:

MOVAL MBA$L_ERB(R4) [R3] ,R3

MBA$L ERB is a fixed offset to the start of the external
registers.

R4 contains the address of the MBA configuration register. The
configuration register is the first register in the MBA nexus space.

For a multiunit controller, a driver uses the following registers that
were set up by the driver loading procedure:

R3 Address of the TM03 device registers
R4 Address of the MBA configuration register
RS Address of unit control block

With this information, the driver locates the device registers in the
following steps:

• Computes the MBA unit number of the TM03 controller by using
R3 to determine the number of bytes from the start of the MBA
external address space to the TM03 device registers and
dividing the result by 128; st9res the final result in
UCB$B SLAVE

• Stores the drive offset constant (slave value multiplied by
32) in UCB$B SLAVE+l

• Performs initialization functions.

F.2.2 Start I/O Routine

The I/O data base contains the following information needed by a
MASSBUS device driver start I/O routine:

• For a single-unit controller, the interrupt data block
contains the address of the adapter's configuration register.
For a multiunit controller, the interrupt data block contains
the address of the controller's control/status register; that
is, the first MBA external reqister for this controller.

• The unit control block contains the unit number in UCB$B SLAVE
and the index to the address of the first device register in
UCB$B SLAVE+l.

F-7

MASSBUS ADAPTER

The start I/O routine for a MASSBUS device performs the following
basic functions:

• Requests controller data channel(s} as described in Section
F.2.2.1

• Clears errors on the MASSBUS adapter by setting -1 in the MBA
Status Register; this is a write-ones-to-clear register
(MASSBUS device registers and MBA registers are a longword}.

• Calls the LOADMBA macro to load map registers as described in
Section F.2.2.2

• Sets up sector, track, and cylinder addresses (disk only}

• Clears drive errors and, if the medium is on line, starts the
function

• Waits for device interrupt or timeout

• Releases controller data channel(s} as described in Section
F.2.2.3

• Finishes the request like other drivers

F.2.2.1 Requesting a Controller Data Channel - For single-unit
controllers, the MASSBUS adapter is the primary controller. For
multiunit controllers, the subcontroller (device controller} is the
primary controller, and the MBA is the secondary controller. Drivers
for single-unit controllers must request the primary controller (MBA
controller} data channel before they can load MBA map registers.
Drivers request the primary controller channel by invoking the
REQPCHANL macro.

Drivers for units attached to a subcontroller must request both the
primary controller data channel and the secondary controller dat~
channel before they can load map registers. A tape driver requests
both channels in the following steps:

• Invokes the REQPCHANL macro to obtain the primary data channel

• Invokes the REQSCHANL or REQSCHANLH macro to obtain the
secondary data channel

When a driver is performing a nontransfer function such
positioning operation, it does not require the MBA channel.
channel is required only for data transfer operations.

as tape
The MBA

F.2.2.2 Loading Map Registers - MASSBUS device drivers invoke the
LOADMBA macro just prior to a transfer to load the MBA map registers.
Drivers cannot modify these registers while a transfer is taking
place.

LOADMBA expects the following register contents:

• R4 contains the address of the MBA configuration register.

• R5 contains the address of the unit control block

LOADMBA preserves the contents of R3. It uses RO through R2.

F-8

MASSBUS ADAPTER

LOADMBA performs the following steps:

• Moves the negative value of
(UCB$W BCNT) into MBA$L BCR,
counter register -

the transfer byte count
which is the internal MBA byte

• Moves the byte offset in the first page (UCR$W BOFF) of the
transfer into MBA$L_VAR, which is the internal MBA virtual
address register

• Extracts a 21-bit page frame number from a page table entry,
loads the page frame number into each map register needed, and
sets the register's valid bit

• Loads a final map register as invalid so that a hardware fault
does not modify memory

• Returns to the start I/O routine

F.2.2.3 Releasing Controller Data Channel(s) - A driver releases the
controller data channels by invoking the RELCHAN macro. RELCHAN
releases all controller channels (both primary and secondary) for the
device. To release only the secondary controller channel, a driver
can invoke the RELSCHAN macro.

F.2.3 DPTAB Macro

The device driver for a MASSBUS device attached to a subcontroller
must set the DPT$M SUBCNTRL bit in the FLAGS argument of the DPTAB
macro. Setting this bit causes the driver loading procedure to create
a second interrupt data block to describe the subcontroller and to
hold the address of the subcontroller's control/status register. It
also causes creation of the second channel request block.

F.3 INTERRUPT HANDLING FOR MASSBUS DEVICES

The VAX/VMS MASSBUS interrupt handling routine (MBASINT) performs two
functions:

• For single-unit controllers, it handles the interrupt and
restores the driver in interrupt context at the instruction
following the wait for interrupt

• For multiunit controllers, it calls the interrupt service
routine for the subcontroller; for example, it calls the tape
driver's interrupt service routine

MBA$INT only preserves the contents of R2 through R5. Drivers wishinq
to use RO and Rl must save and restore them.

F-9

MASSBUS ADAPTER

MBA$INT handles interrupts in the following steps:

1. It obtains the address of the MBA interrupt data block from
the stack.

2. From the interrupt data block, it obtains the field
IDB$L OWNER. IDB$L OWNER contains either zeros or a UCB
address. If it contains zeros, MBA$INT proceeds as described
in steps l through 4 of Section F.3.1.

If IDB$L OWNER contains a UCB address, it indicates the owner
of the MBA controller.

3. MBA$INT determines whether the device is expecting an
interrupt. If it is not, MBASINT proceeds as described in
steps l through 4 of Section F.3.1. If the interrupt status
bit is set, MBASINT clears the bit to indicate that an
interrupt has occurred.

4. If the interrupt is expected by the driver of the device that
owns the channel, MBA$INT takes the following steps:

a. Clears the Attention Summary bit for the MBA slave unit;
that is, for the device or subcontroller that requested
the interrupt. This bit is not cleared for
subcontrollers; the drivers must clear it.

b. Obtains from the MBA IDB field IDB$L UCBLST (in which
there are eight entries) the value stored for this
device; this value is either a UCB address or the
address of an instruction that transfers control to a
subcontroller's interrupt service routine

If the value is not a UCB address, MBA$INT proceeds as
described in steps 1 through 3 of Section F.3.2.

5. If the value is a UCB address, MBASINT determines whether the
interrupt is expected. If the interrupt is not expected,
MBA$INT proceeds as described in steps 1 through 3 of Section
F.3.3.

6. If the interrupt is expected, MBASINT restores R3, R4, and PC
and reactivates the driver. When the restored driver invokes
IOFORK, control returns to this point.

7. MBA$INT proceeds as described in steps 1 through 4 of Section
F.3.1.

F.3.1 Looking for Another Request

Control transfers to this portion of MBASINT as a result of one of the
following events:

• An interrupt was requested when no unit owned the MBA
controller; that is, IDB$L OWNER was zero

• An interrupt occurred when the owner of the MBA controller was
not expecting an interrupt

• When a driver has invoked IOFORK and that fork results in the
execution of an RSB instruction that returns control to
MBA$INT

F-10

MASSBUS ADAPTER

MBA$INT performs the following steps to dismiss the interrupt or
handle the next request:

1. Clears the MBA status register

2. Examines the Attention Summary register for
requesting attention

a device

3. If no device is requesting attention, dismisses the interrupt

4. If a device is requesting attention, goes ·to step 4 above in
Section F.3

The reason that MBA$INT always checks the attention summary register
when an interrupt service routine returns is to determine whether
another device on the MASSBUS requested an interrupt while the MASSBUS
owner device was transferring data or while this interrupt was being
processed. Data transfer functions block the interrupts from
nontransfer functions until the data transfer completes.

F.3.2 Transferring Control to a Subcontroller's Interrupt Service Routine

Control transfers to this portion of MBA$INT when the device value for
a MBA slave unit stored in IDB$L UCBLST is the address of an
instruction that transfers control to a subcontroller's interrupt
service routine, for example, a tape controller's interrupt service
routine. MBA$INT performs the following steps:

1. Moves the PSL onto the top of the stack

2. Executes a JSB instruction to the dispatch field of the
subcontroller's CRB; the dispatch field contains a PUSHR
instruction that saves R2 through RS and a JSB instruction to
the subcontroller's interrupt service routine

3. The interrupt service routine executes, and after the driver
forks, the interrupt service routine removes R2 through RS
from the stack and executes an REI instruction. The REI
instruction removes the PSL and MBA$INT's return address from
the stack and returns control to MBA$INT. MBA$INT proceeds
as described in steps 1 through 4 of Section F.3.1.

F.3.3 Handling Unsolicited Interrupts

When MBA$INT finds that an unsolicited interrupt occurred (step 5 of
Section F.3), it performs the following steps:

1. Obtains the address of the driver's unsolicited interrupt
routine from the driver dispatch table

2. Calls the routine at that address

3. When the driver invokes IOFORK, MBA$INT proceeds as described
in steps 1 through 4 of Section F.3.1

F-11

GLOSSARY

ACP
See Ancillary Control Process.

adapter control block (ADP)
A structure in the I/O data base that describes either a UNIBUS or
MASSBUS adapter.

ADP
See adapter control block.

allocate a device
To reserve a particular device unit for exclusive use. A user process
can allocate a device only when that device is not allocated by any
other process.

Ancillary Control Process (ACP)
A process that acts as an interface between user software and an I/O
driver. An ACP provides functions supplemental to those performed in
the driver, such as file and directory management. Three examples of
ACPs are: the Files-11 ACP (FllACP), the magnetic tape ACP (MTAACP),
and the networks ACP (NETACP) •

assign a channel
To establish the necessary software linkage between a user process and
a device unit before a user process can communicate with that device.
A user process requests the system to assign a channel and the system
returns a channel number.

AST
See Asynchronous System Trap.

ASTLVL
See Asynchronous System Trap Level.

Asynchronous System Trap (AST)
A software-simulated interrupt to a user-defined service routine.
ASTs enable a user process to be notified asynchronously with respect
to its execution of the occurrence of a specific event. If a user
process has defined an AST routine for an event, the system interrupts
the process and executes the AST routine when that event occurs. When
the AS'r routine exits, the system resumes the process at the point
where it was interrupted.

Glossary-1

Asynchronous System Trap Level (ASTLVL)
A value kept in an internal processor register that is the highest
access mode for which an AST is pending. The AST does not occur until
the current access mode drops in privilege (rises in numeric value) to
a value greater than or equal to ASTLVL. Thus, an AST for an access
mode will not be serviced while the processor is executing in a more
privileged access mode.

base register
A general register used to contain the address of the first entry in a
list, table, array, or other data structure.

buffered data path
A UNIBUS adapter data path that transfers 32 or n4 bits of data in a
single SBI transfer. The UNIBUS adapter has 15 buffered data paths
and one direct data path.

buffered I/O
See system buffered I/O.

bug check
The operating system's internal diagnostic check. The system logs the
failure and crashes the system.

call instructions
The processor instructions CALLG (Call Procedure with General Argument
List) and CALLS (Call Procedure with Stack Argument List).

CCB
See channel control block.

channel
A logical path connecting a user process to a physical device unit. A
user process requests the operating system to assign a channel to a
device so the process can communicate with that device. See also
controller data channel.

channel control block (CCB)
A structure in the I/O data base maintained by the Assign I/O channel
system s~rvice to describe the device unit to which a channel is
assigned.

channel request block (CRB)
A structure in the I/O data base that
particular controller. The channel
contains pointers to the wait queue of
device through the controller.

configuration register

describes the activity on a
request block for a controller
drivers ready to access a

A control/status register for an adapter, for example a UNIBUS
adapter. It resides in the adapter's I/O space.

Glossary-2

connect-to-interrupt
A function by which a process connects to a device interrupt vector.
To perform a connect-to-interrupt, the process must map to the program
I/O space containing the vector.

console
The manual control unit integrated into the central processor. The
console includes a serial line interface connected to a hard-copy
terminal. This enables the operator to start and stop the system,
monitor system operation, and run diagnostics.

console terminal
The hard-copy terminal connected to the central processor console.

context
The environment of an activity. See also process context, hardware
context, and software context.

controller data channel
A logical path to which a driver for a device on a multiunit
controller must be granted access before it can activate a device.

control/status register (CSR)
A control/status register for a device or controller. It resides in
the processor's I/O space.

CRB
See channel request block.

CSR
See control/status register.

data base
(1) All the occurrences of data described by a data base management

system.

(2) A collection of related data structures.

data structure
Any table, list, array, queue, or tree whose format and access
conventions are well-defined for reference by one or more images.

DOB
See device data block.

DDT
See driver dispatch table.

device data block (DOB)
A structure in the I/O data base that identifies the generic
device/controller name and driver name for a set of devices attached
to the same controller.

Glossary-3

device interrupt
An interrup~ received on interrupt priority levels 20 through 23.
Device interrupts can be requested only by devices, controllers, and
memories.

device register
A location in device controller logic used to request device functions
(such as I/O transfers) and/or report status.

device unit
One drive and its controlling logic, for example, a disk drive or
terminal. Some controllers can have several device units connected to
a single controller; for example, mass storage controllers.

diagnostic
A program that tests hardware, firmware, peripheral operation, logic,
or memory and·reports any faults it detects.

direct data path
A UNIBUS adapter data path that transfers lfi bits of data in a single
SB! transfer. The UNIBUS adapter has one direct data path and 15
buffered data paths.

direct I/O
An I/O operation in which VAX/VMS locks the pages containing the
associated buffer in physical memory for the duration of the I/O
operation. The I/O transfer takes place directly from the process
buffer. Contrast with system buffered I/O.

DPT
See driver prologue table.

drive
The electromechanical unit of a mass storage device system on which a
recording medium (disk cartridge, disk pack, or magnetic tape reel) is
mounted.

driver
The set of code and tables that handles physical I/O operations to a
device.

driver dispatch table ·(DDT)
A table in the I/O driver that lists the entry point addresses of
standard driver routines and the sizes of diagnostic and error logging
buffers for the device type.

driver fork level
The interrupt priority levels at which a driver fork process executes,
that is, IPLs 8 through 11. Every unit control block indicates the
driver fork level for its unit.

Glossary-4

driver prologue table (DPT)
A table in the driver that describes the driver and the device type to
the VAX/VMS procedure that loads drivers into the system.

driver start I/O routine
See start I/O routine.

ECC
Error Correction Code.

error logger
A system process that empties the error log buffers and writes the
error messages into the error file. Errors logged by the system
include memory system errors, device errors and timeouts, and
interrupts with invalid vector addresses.

exception
An event detected by the hardware or software (other than an interrupt
or jump, branch, case, or call instruction) that changes the normal
flow of instruction execution. An exception is always caused by the
execution of an instruction or set of instructions (whereas an
interrupt is caused by an activity in the system independent of the
current instruction). There are three types of hardware exceptions:
traps, faults, and aborts. Examples are: attempts to execute a
privileged or reserved instruction, trace traps, compatibility mode
faults, breakpoint instruction execution, and arithmetic traps.

executive
The generic name for the collection of procedures included in the
operating system software that provide the basic control and
monitoring functions of the operating system.

FDT
See function decision table.

FDT routines
Driver routines called by the Queue I/O Request system service to
perform device-dependent preprocessing of an I/O request.

fork block
That portion of a unit control block that contains a driver's context
while the driver is waiting for a resource. A driver awaiting the
processor resource has its fork block linked into the fork queue.

fork dispatcher
A VAX/VMS interrupt service routine that is activated by a software
interrupt at a fork interrupt priority level. Once activated, it
dispatches driver fork processes from a driver fork queue until no
processes remain in the queue for that IPL.

Glossary-5

fork process
A fork process is a minimal context process that executes code under a
series of constraints: it executes at raised interrupt priority
levels; it uses RO through RS only (other registers must be saved and
restored); it executes in system virtual address space; it is only
allowed to refer to and modify static storage that is never modified
by higher interrupt priority level code. VAX/VMS uses software
interrupts and fork processes to synchronize executive operations.

fork queue
A queue of driver fork blocks that are awaiting activation at a
particular IPL by the VAX/VMS fork dispatcher.

function code
See I/O function code.

function decision table (FDT)
A table in the driver that lists all
device and lists the addresses
associated with each valid function.

valid function codes
of I/O preprocessing

for the
routines

function modifier
See I/O function modifier.

generic device name
A device name that identifies the type of device but not a particular
unit; a device name in which the specffic controller and/or unit
number is omitted. When discussing device drivers, the generic device
name contains neither the controller designation nor the unit number,
for example, DB.

hardware context
The values contained in the following registers while a process is
executing: the PC; the PSL; the 14 general registers (RO through
Rl3); the four processor registers (POBR, POLR, PlBR and PlLR) that
describe the process virtual address space; the SP for the current
access mode in which the processor is executing; plus the contents to
be loaded in the SP for every access mode other than the current
access mode. While a process is executing, its hardware context is
continually being updated by the processor. While a process is not
executing, its hardware context is stored in its hardware PCB.

hardware process control block (hardware PCB)
A data structure known to the processor that
context when a process is not executing.
resides in its process header (PHD).

IDB
See interrupt data block.

Glossary-6

contains the hardware
A process's hardware PCB

interrupt
An event other than an exception or branch, jump, case, or call
instruction that changes the normal flow of instruction execution.
Interrupts are generally external to the process executing when the
interrupt occurs. See also device interrupt, software interrupt, and
urgent interrupt.

interrupt data block (IDB)
A structure in the I/O data base that describes the characteristics of
a particular controller and points to devices attached to that
controller.

interrupt priority level (IPL)
The interrupt level at which a software or hardware interrupt is
generated. There are 32 possible interrupt priority levels: IPL O is
lowest, 31 is highest. The levels arbitrate contention for processor
service. For example, a device cannot interrupt the processor if the
processor is currently executing at an interrupt priority level
greater than the interrupt priority level of the device's interrupt
service routine.

interrupt service routine (ISR)
A routine executed when a device interrupt occurs.

interrupt stack (IS)
The system-wide stack used when executing in interrupt service
context. At any time, the processor is either in a process context
executing in user, supervisor, executive, or kernel mode, or in
system-wide interrupt service context operating in kernel mode, as
indicated by the interrupt stack and current mode bits in the PSL.
The interrupt stack is not context switched.

interrupt stack pointer (ISP)
The stack pointer for the interrupt stack. Unlike the stack pointers
for process context stacks, which are stored in the hardware PCB, the
interrupt stack pointer is stored in an internal processor register.

interrupt vector
See vector.

I/O data base
A collection of data structures that describes I/O requests,
controllers, device units, volumes, and device drivers in a VAX/VMS
system. Examples are the driver dispatch table, driver prologue
table, device data table, unit control block, channel request block,
I/O request packet,· and interrupt data block.

I/O driver
See driver.

I/O function
An I/O operation interpreted by the operating system and typically
resulting in one or more physical I/0 operations.

Glossary-7

I/O function code
A 6-bit value specified in a Queue I/O Request system service that
describes the particular I/O operation to be performed (such as, read,
write, rewind).

I/O function modifier
A 10-bit value specified in a Queue I/O Request system service that
modifies an I/O function code (for example, read terminal input no
echo).

I/O lockdown
The state of a page such that it cannot be paged or swapped out of
memory.

I/O request packet (IRP)
A structure in the I/O data base that describes an individual I/O
request. The Queue I/O Request system service creates an I/O request
packet for each I/O request. VAX/VMS and the driver of the target
device use information in the I/O request packet to process the
request.

I/O rundown
An operating system function in which the system cleans up any I/O in
progress when an image exits.

I/O space
The regions of physical address space that contain
registers, and device control/status and data
regions are physically discontiguous.

I/O status block (IOSB}

the configuration
registers. These

A data structure associated with the Queue I/O Request system service.
This service optionally returns a status code, number of bytes
transferred, and device/function-dependent information in an I/O
status block. The information returned is not returned from the
service call, but filled in by VAX/VMS when the I/O request completes.

IPL
See interrupt priority level.

IRP
See I/O request packet.

ISP
See interrupt stack pointer.

ISR
See interrupt service routine.

Glossary-8

limit
The size or number of given items requiring system resources (such as
mailboxes, locked pages, I/O requests, or open files) that a job is
allowed to have at any one time during execution, as specified by the
system manager in the user authorization file. See also quota.

locking a page in memory
Making a page in an image ineligible for either paging or swapping. A
page stays locked in physical memory until VAX/VMS specifically
unlocks it.

logical I/O function
A set of I/O operations (for example, read and write logical block)
that allow restricted direct access to device level I/O operations
using logical block numbers.

mailbox
A software data structure that is treated as a record-oriented device
for general interprocess communication. Communication using a mailbox
is similar to other forms of device-independent I/O. Senders write to
a mailbox; the receiver reads from that mailbox. Some system-wide
mailboxes are defined: the error logger and OPCOM read from
system-wide mailboxes.

MBA
MASSBUS Adapter.

offset
A fixed displacement from the beginning of a data structure. System
offsets for items within a data structure normally have an associated
symbolic name used instead of the numeric displacement. Where symbols
are defined, programmers always reference the symbolic names for items
in a data structure instead of using the numeric displacement.

page frame number (PFN)
The high-order 21 bits of the physical address of a page in physical
memory.

page table entry (PTE)
The data structure that identifies the physical location and status of
a page of virtual address space. When a virtual page is in memory,
the PTE contains the page frame number needed to map the virtual page
to a physical page. When it is not in memory, the page table entry
contains the information needed to locate the page on secondary
storage (disk).

PCB
See Process Control Block.

PFN
See page frame number.

Glossary-9

physical address
The address used by hardware to identify a location in physical memory
or on directly-addressable secondary storage devices such as a disk.
A physical memory address consists of a page frame number and the
number of a byte within the page. A physical disk block address
consists of a cylinder or track and sector number.

physical address space
The set of all possible 30-bit physical addresses that can be used to
refer to locations in memory (memory space) or device registers (I/O
space).

physical I/O functions
A set of I/O functi-0ns that allows access to all device level I/O
operations except maintenance mode.

PIO
See process identification.

process
The basic entity scheduled by the system software that provides the
context in which an image executes. A process consists of an address
space and both hardware and software context.

process context
The hardware and software contexts of a process.

process control block (PCB)
A data structure used to contain process context. The hardware PCB
contains the hardware context. The software PCB contains the software
context, which includes a pointer to the hardware PCB.

process identification (PIO)
A 32-bit binary value that uniquely identifies a process.
process has a process identification and a process name.

process I/O channel
See channel.

process page tables
The page tables used to describe process virtual memory.

process priority

Each

The priority assigned to a process for scheduling purposes. The
operating system recognizes 32 levels of process priority, where 0 is
low and 31 high. Levels ln through 31 are used for real-time
processes. The system does not modify the priority of a real-time
process (although the system manager or process itself may). Levels O
through 15 are used for normal processes. The system may temporarily
increase the priority of a normal process based on the activity of the
process.

Glossary-10

program section (psect)
A portion of a program with a given protection and set of storage
management attributes. Program sections that have the same attributes
are gathered together by the linker to form an image section.

PTE
See page table entry.

QIO
Queue I/O Request system service. The VAX/VMS system service that
services $QIO and $QIOW requests. The Queue I/O Request system
servic~ prepares an I/O request for processing by the driver and
performs device-independent preprocessing of the request. This system
service also calls driver FDT routines.

quota
The total amount of a system resource, such as CPU time, that a job is
allowed to use in an accounting period, as specified by the system
manager in the user authorization file. See also limit.

return status code
See status code.

SBI
See Synchronous Backplane Interconnect.

small process
A system process that has no control region in its virtual address
space and has an abbreviated context. Examples are the working set
swapper and the null process. A small process is scheduled in the
same manner as user processes, but must remain resident until it
completes execution; that is, it cannot be swapped.

software context
The context maintained by VAX/VMS to describe a process. See software
process control block (PCB).

software interrupt
An interrupt generated on interrupt priority level 1 through 15, which
can be requested by software.

software process control block (software PCB)
The data structure used to contain a process's software context. The
operating system defines a software PCB for every process when the
process is created. The software PCB includes the following kinds of
information about the process: current state; storage address if it
is swapped out of memory; unique identification of the process; and
address of the process header (which contains the hardware PCB). The
software PCB resides in system region of virtual address space. It is
not swapped with a process.

start I/O routine
The routine in a device driver that
necessary resources, for example,
activating the device unit.

is responsible for obtaining
the controller data channel, and

Glossary-11

status code
A longword value that indicates the success or failure of a specific
function. For example, system services always return a status code in
RO upon completion.

SVA
See system virtual address.

Synchronous Backplane Interconnect (SBI)
The part of the hardware that interconnects the processor, memory
controllers, MASSBUS adapters, the UNIBUS adapter.

system buffered I/O
An I/O operation, such as terminal or mailbox I/O, in which an
intermediate buffer from the system buffer pool is used instead of a
process-specified buffer. Contrast with direct I/O.

System Page Table (SPT)
The data structure that maps the system virtual addresses, including
the addresses used to refer to the process page tables. The SPT
contains one PTE for each page of system virtual memory. The physical
base address of the SPT is contained in a processor register called
SBR.

system virtual address (SVA)
A virtual address identifying a location mapped to an address in
system space.

timeout
The expiration of the time limit in which a device is to complete an
I/O transfer. The driver's wait for interrupt request specifies the
timeout limit.

timer
A system process that maintains the time of day and the date. It also
scans for device timeouts and performs time-dependent scheduling upon
request. The timer interrupt service routine creates the timer
process.

UBA
UNIBUS Adapter.

UCB
See unit control block.

unit control block (UCB)
A structure in the I/O data base that describes the characteristics of
and current activity on a device unit. The unit control block also
holds the fork block for its unit's device driver; the fork block is
a critical part of a driver fork process. The UCB also provides a
static storage area for the driver.

Glossary-12

unit initialization routine
The routine that readies controllers and device units for operation.
Controllers and device units require initialization after a power fail
and during the driver loading procedure.

urgent interrupt
An interrupt received on interrupt priority levels 24 through 31.
These can be generated only by the processor for the interval clock,
serious errors, and power fail.

vector
(1) An interrupt or exception vector is a storage location known to

the system that contains the starting address of a routine to be
executed when a given interrupt or exception occurs. The system
defines separate vectors for each interrupting adapter and for
classes of exceptions. Each system vector is a longword.

(2) For the purpose of exception handling, users can declare up to
two software exception vectors (primary and secondary) for each
of the four access modes. Each vector contains the address of a
condition handler.

(3) A one-dimensional array.

virtual I/O functions
A set of I/O functions that must be interpreted by an ancillary
control process.

wait for interrupt request
A request made by a driver's start I/O routine after it activates a
device. The request causes the driver fork process to be suspended
until the device requests an interrupt or the device times out.

XDELTA
A tool for debugging operating systems and drivers.

Glossary-13

INDEX

A

Aborting I/O after timeout, 12-5
Activating a fork process from

fork queue, 5-14
Activating the device, 5-12, 9-2,

9-6, 10-6
Adapter control block {ADP), 1-7,

10-1, A-27
Address mapping for DMA transfers,

4-2
ADP$B NUMBER, A-30
ADP$B-TYPE, A-30
ADP$L-CRB, A-31
ADP$L-CSR, A-30
ADP$L-DPQBL, A-31
ADP$L-DPQFL, A-31
ADP$L-INTD, A-32
ADP$L-LINK, A-30
ADP$L-MRQBL, A-32
ADP$L-MRQFL, A-31
ADP$L-VECTOR, A-31
ADP$W-ADPTYPE, A-30
ADP$W-DPBITMAP, A-32
ADP$W-MRBITMAP, A-32
ADP$W-SIZE, A-30
ADP$W-TR, A-30
Allocation of an I/O request

packet, 5-7
Allocation of map registers, 10-4
Assembling driver sources, 14-1
Assigning an I/O channel, 5-3
Asynchronous system traps {ASTs) ,

kernel mode, 5-17
user mode, 5-17

Autoconfiguration, 14-7
AUTOCONFIGURE command, 14-7

B

Base registers,
setting, 15-11

Blocking interrupts, 9-6
Bootstrapping the system with

XDELTA, 15-1
Breakpoints,

clearing, 15-10
displaying, 15-11
inserting in the source code,

15-3
proceeding from, 15-11
setting, 15-10
setting complex, 15-13

Buffered data path, 4-5
permanent allocation of, 10-3

Buffered data path, {Cont.)
purging, 4-7, 10-7
release of, 10-8
requesting with no wait, 10-3
requesting with wait, 10-2

Buffered I/O functions,
selection of, 7-9

Buffered I/O operations, 1-15
FDT routines for, 8-6
implications for I/O post

processing, 8-7
kernel mode AST for read, 8-8

Byte offset data transfers, 4-7

c
Calculating the base of driver

code, 15-4
Cancel I/O on Channel system

service, 13-4
Cancel I/O routine, 1-11, 13-4

context for, 13-5
CASE macro, B-1
CCB$B AMOD, A-39
CCB$B-STS, A-39
CCB$L-DIRP I A-39
CCB$L-UCB, A-39
CCB$L-WIND, A-39
CCB$W-IOC, A-39
channel,

process I/O channel vs. con
troller data channel, 5-5

requesting the controller data
channel, 9-3

Channel arbitration routine, 3-16
Channel assignment,

process, 5-3
Channel control block {CCB) ,

1-7, A-38
Channel request block {CRB), 1-6,

5-5, A-22
for MASSBUS devices, F~4

Checking for power failure, 9-6
Checking process I/O request

quotas, 5-7
Clearing breakpoints, 15-10
Close and Display Next Location

command, 15-9
Coding conventions, 6-1
Coding DMA transfers, 10-1
Coding driver tables, 7-1
Coding FDT routines, 8-1
Coding ·interrupt service routines,

11-1
Coding start I/O routines, 9-1
COM$DELATTNAST, C-1

Index-1

INDEX

COM$DRVDEALMEM, C-2
COM$FLUSHATTNS, C-2
Command files for booting with

XDELTA,
DBAXDT, 15-1
DMAXDT, 15-1

Competing for controller data
channel, 3-15

COM$POST, 8-17, C-3
COM$SETATTNAST, C-4
Completing the I/O request, 5-ln,

12-1
Computing starting address of

transfer, 10-n
Computing transfer length, 9-5
Configuration rules, 14-14
CONNECT command, 14-3, 15-2
Constraints for fork process

execution, 3-14
Context,

for cancel I/O routine, 13-5
for FDT routine execution, 8-1,

8-2
for fork process, 1-4
for initialization routine,

13-3
for interrupt, 1-3, 11-3
for start I/O routine, 9-1

Controller data channel,
competing for, 3-15
releasing after transfer, 12-2
requesting, 9-3
requesting for MASSBUS device,

F-8
Controller initialization routine,

13-1
Conventions,

coding, n-1
followed by FDT routines, 8-2
register usage, 6-3
register usage in I/O space,

5-3
terminology, xiii

CRB$B MASK, A-24
CRB$B-TYPE, A-23
CRB$L-INTD, 7-2, 9-5, 10-3, 10-4,

lU-7, 13-2, 14-5, A-24
CRB$L INTD+2, 11-3, A-24
CRB$L-INTD+4, 7-2
CRB$L-LINK, A-24
CRB$CWQBL, A-23
CRB$L-WQFL, A-23
CRB$W-REFC, A-24
CRB$W-SIZE, A-23
CreatTng a driver fork process

for start I/O, 5-10
CSR addresses,

fixed and floating, 14-7

D

Data channel, see controller data
channel

Data path, 4-3 to 4-8
buffered data paths, 4-5
byte offset data transfers, 4-7
direct data path, 4-4
longword-aligned 32-bit random

access mode, 4-7
purging buffered data paths,

4-7
DBAXDT command file, 15-1
DDB$B TYPE, A-9
DDB$L-ACPD, A-9
DDB$L-DDT, 7-2, A-9
DDB$L-LINK, A-9
DDB$L-UCB, A-9
DDB$T-DRVNAME, A-9
DDB$T-NAME, A-9
DDB$W-SIZE, A-9
DDTAB-macro, 7-6
DDT$L ALTSTART, A-35
DDT$L-CANCEL, A-34
DDT$L-FDT, A-33
DDT$L-REGDUMP, A-34
DDT$L-START, A-33
DDT$L-UNITINIT, A-35
DDT$L-UNSOLINT, A-33
DDT$W-DIAGBUF, A-34
DDT$W-ERRORBUF, A-34
Debugging a device driver, 15-1

techniques, 15-14
Defining device-specific function

codes, 7-7
DELTA debugging utility, 15-1

commands, 15-14
linking with user programs,

15-14
Destroying register contents,

15-5
Device activation, 2-n, 5-12,

9-2, 9-6, lO-n
Device activation bit mask, 9-5
Device configuration, 14-9

example of a UNIBUS conf ig
uration, 14-15

rules, 14-14
Device data block {DOB), 1-6

5-5, A-8
Device dependence, 1-4
Device-dependent cancel I/O

routine, 13-5
Device-dependent I/O post

processing, 12-3
Device driver,

functions of, 1-9

Index-2

INDEX

Device independence, 1-4
Device-independent cancel I/O

routine, 13-5
Device interrupt,

delivering to a driver, 11-1
handling of, 5-13
responding to, 9-8
unsolicited, 11-5
waiting for, 9-6

Device IPLs, 3-6
Device registers,

incorrect references to, 15-15
opening with XDELTA, 15-15
reading and writing, 4-2

Device-specific function codes,
7-7

Device table for SYSGEN, 14-9
Device timeout,

wait for interrupt or, 9-6
Device timeout handler, 1-11,

12-4
Direct data path, 4-4

requesting a, 10-3
Direct I/O functions, 7-9
Direct I/O operations, 1-15

FDT routines for, 8-6
Direct memory access (DMA), 1-15
Direct memory access transfers,

4-1
Dispatching fork processes, 3-12
Displaying breakpoint list, 15-11
Display Range command, 15-9
DMA, see Direct memory access
DMAXDT command file, 15-1
DPTAB macro, 7-1
DPT$B ADPTYPE, A-36
DPT$B-FLAGS, A-36
DPT$B-REFC, A-36
DPT$8-TYPE, A-36
DPT$L-8LINK, A-36
DPT$ L-FL INK·, A-3 n
DPT$M-NOUNLOAD, 7-3
DPT$M:svP, 7-3
DPT STORE macro, 7-3, 8-2
DPTST NAME, A-38
DPT$W-INITTAB, A-37
DPT$W-REINITTAB, A-37
DPT$W-SIZE, A-36
DPT$W-UCBSIZE, A-37
DPT$W-UNLOAD, A-38
DPT$W-VERSION, A-38
Driver debugging, 15-1
Driver dispatch table (DDT),

7-1, A-33
creation of, 7-5

Driver fork IPLs (8 through 11),
3-7

Driver fork process, 1-3
context of, 9-1
creation for start I/O routine,

5-11

Driver linking, 14-1
Driver loading, 14-1, 15-2

initialization during, 13-2
Driver program sections, 14-1
Driver prologue table (DPT),

7-1, A-35
Driver routines,

cancel I/O routine, 1-11, 13-4
device timeout handler, 1-11,

12-4
error logging routine, 1-11,

13-n
FDT routines, 1-10, 8-1
initialization routines, 1-10

13-1
interrupt service routine,

1-11, 11-1
I/O completion, 12-1
start I/O routine, 1-10, 9-1

Driver source assembly, 14-1
Driver tables,

coding of, 7-1
Driver template, 6-1, n-5
DS8INT macro, 12-n, 8-2

format of, 3-11
Dump routines (register), 13-6

E

ENBINT macro, 3-11, 8-2
format of, 3-12

ERL$DEVICERR, 13-6, C-6
ERL$DEVICTMO, 13-6, C-6
ERL$RELEASEMB, 12-3, C-6
Error logging routine, 1-11,

13-6
Examining the vector jump table,

15-4
Examining UCB, IPR, and PSL,

15-n
Example of bootstrapping the

system with XDELTA, 15-2
Example of unsolicited interrupt

handling, 11-n
Examples of table-generating

macro invocations,
DDTAB macro, 7-n
DPTAB macro, 7-5
DPT STORE macro, 7-5
FUNCTAB macro, 7-10

EXE$ABORTIO, 8-6, 8-8, 8-13, C-7
EXE$ALLOCBUF, C-8

use for buffered I/O, 8-6
EXE$ALLOCIRP, C-9
EXE$ALONONPAGED, C-9
EXE$ALTQUEPK, 8-5, 8-17, C-9
EXE$BUFFRQUOTA, C-10
EXE$BUFQUOPRC, C-11
EXE$CANCEL, 13-4

Index-3

Execute string command to XDELTA,
15-12

EXE$DEANONPAGED, C-11
EXE$FINISHIO, 8-5, 8-14, C-12
EXE$FINISHIOC, 8-5, 8-6, 8-14,

C-12
EXE$FORK, C-12
EXE$FORKDSPTH, C-13
EXE$INSERTIRP, C-13
EXE$INSIOQ, 8-1~, C-14
EXE$IOFORK, 10-7, 11-5, 15-n,

C-15
function of, 12-1

EXE$MODIFY, C-ln
EXE$MODIFYLOCK, C-17
EXE$MODIFYLOCKR, C-18
EXE$0NEPARM, 8-9, C-20
EXE$QIODRVPKT, 8-5, 8-13, C-20
EXE$QIORETURN, C-21
EXE$READ, 8-9, C-21

use for buffered I/O, 8-4
EXE$READCHK, 8-9, C-21

use for buffered I/O, 8-n
EXE$READCHKR, C-22
EXE$READLOCK, 8-9, C-22
EXE$READLOCKR, C-22
EXE$SENSEMODE, 8-10, C-23
EXE$SETCHAR, 8-11, C-24
EXE$SETMODE, 8-11, C-25
EXE$SNDEVMSG, C-2f)
EXE$WRITE, 8-12, C-27
EXE$WRITECHK, 8-12, C-27

use for buffered I/O, 8-~

EXE$WRITECHKR, C-27
EXE$WRITELOCK, 8-12, C-28
EXE$WRITELOCKR, C-29
EXE$ZEROPARM, 8-13, C-29
EXIT command to DELTA, 15-14
Exiting from FDT routines, 8-4
External registers (MBA), F-1

F

FDT bit mask, 5-9
FDT entry, 5-9
FDT processing, 5-8
FDT routines, 1-10, 9-1

coding of, 8-1
conventions followed by, 8-2
execution context, 8-1
exit methods, 8-5
registers preset for, 8-1
transferring to and from, 8-3

FDT routines for buffered I/O,
8-6

FDT routines for direct I/O,
8-6

INDEX

FDT routines provided by VAX/VMS,
8-8

Floating CSR and vector address
calculation, 14-14

Floating CSR and vector space,
14-8

Fork blocks, 1-3, 3-12
Fork dispatcher, 5-15
Fork dispatching,

interrupt service routine for,
3-13

Fork IPL, 5-15
FORK macro, B-2
Fork process,

activation from a fork queue,
5-15

definition of, 1-3
execution constraints, 3-14
transferring control to, 3-4

Fork process context, 5-14
Fork process dispatching, 3-13
Fork queues, 1-8, 5-15
FUNCTAB Macro, 7-10, B-2
Function codes,

definition of device-specific
codes, 7-8

Function decision table (FDT),
1-2, 5-9, 7-1, 7-7

Functions of a device driver,
1-9

Functions of Queue I/O Request
system service, 5-1

H

Hardware device IPLs, 3-8
Hardware interrupts,

servicing of, 3-4
Hardware IPLs, 3-2

IDB$B TYPE, A-28
IDB$W-UNITS, A-29
IDB$L-ADP, A-29
IDB$L-CSR, 9-3, A-28
IDB$ L - OWNER , 9 - 4 , 9 - 7 , 11- 4 ,

13-1, A-28, F-10
IDB$L UCBLST, A-29, F-10
IDB$W-SIZE, A-28
IFNOWRT macro, B-2
IFNORD macro, B-2
IFRD macro, B-3
Incorrect references to device

registers, 15-15

Index-4

INDEX

Indirect command, 15-9
IN I $ B RK , 1 5- 3
Initialization data, 7-2
Initialization during driver

loading, 13-2
Initialization during powerfail

recovery, 13-2
Initialization routines·, 1-10,

13-1
execution context for, 13-3

Inserting breakpoints in driver
code, 15-3

Internal registers (MBA), F-1
Interrupt,

delivering to a driver, 11-1
requesting with XDELTA, 15-4
responding to, 9-8
solicited, 11-4
unsolicited, 11-5
waiting for an, 5-13, 9-n

Interrupt context, 1-3, 5-13,
11-3

switching to fork process
context from, 5-13

Interrupt data block (IDB), 1-n,
5-5, A-27

for MASSBUS devices, F-5, F-n
Interrupt handling, 2-7, 11-4
Interrupt priority levels (IPLs),

1-7
conventions used during I/O

postprocessing, 3-10
defined by VAX/VMS, 3-1
for device interrupts, 3-7
for driver fork processes, 3-7
hardware IPLs, 3-2
IPL$ ASTDEL, 3-6
IPL$-IOPOST, 3-7
IPL$-MAILBOX, 3-9
IPL$-POWER, 3-7
IPL$-QUEUEAST, 3-8
IPL$-SCHED, 3-8
IPL$-SYNCH, 3-8
IPL$-TIMER, 3-8
IPL$-XDELTA, 3-9
lowering IPL, 3-3
modification of, 3-11
overview of use, 3-9
raising IPL, 3-3
software IPLs, 3-1
used during I/O processing,

3-6
Interrupts,

blocking, 9-5
for MASSBUS devices, F-9
handling device interrupts,

5-14
Interrupt service routine for

fork dispatching, 3-13

Interrupt service routines, 1-11,
3-2' 11-1

IOC$ALOUBAMAP(N), 10-4, C-30
IOC$ALTUBAMAP, C-31
I/O cancellation routine, 13-4
IOC$APPLYECC, C-32
IOC$CANCELIO, 13-5, C-33
IOC$DIAGBUFILL, C-33
IOC$INITIATE, 8-ln, C-35
IOC$IOPOST, C-36
IOC$LOADUBAMAP(A), 10-5, 10-6,

C-37
I/O completion, see I/O post-

processing
IOC$PURGDATAP, C-38
IOC$RELCHAN, C-39
IOC$RELDATAP, 10-8, C-40
IOC$RELMAPREG, 10-8, C-41
IOC$RELSCHAN, C-42
IOC$REQCOM, C-42

function of, 12-3
IOC$REQDATAP(NW), 10-2, C-43
IOC$REQMAPREG, 10-4, C-44
IOC$REQPCHANH, C-45
IOC$REQPCHANL, C-46
IOC$REQSCHANH, C-47
IOC$REQSCHANL, 15-6, C-47
IOC$RETURN, 13-5, C-47
IOC$WFIKPCH, 9-7, C-47
IOC$WFIRLCH, C-48
I/O data base, 1-5, A-1

control blocks in, 1-6
for MASSBUS devices, F-4
locating a driver in, 5-3

IOFORK macro, 10-7, 11-4, B-3,
F-10, F-11

functions of, 5-14
I/O function,

validation of, 5-7
I/O function code, 5-9

conversion, 9-4
obtaining, 9-4

I/O function modifier, 5-9
I/O operations,

buffered vs. direct, 1-15
I/O postprocessing, 5-17

by driver, 2-8, 12-1
by VAX/VMS, 2-8, 12-3
implications for buffered I/O,

8-7
I/O postprocessing dispatcher,

5-17
I/O preprocessing, 5-1

by Queue I/O Request system
service, 2-3

by the driver, 2-4
I/O request packet (IRP), 1-7,

5-16, A-1
allocation of, 5-7

Index-5

I/O request packet extension
(IRPE), A-39

I/O status block,
validation of, 5-7

IPL$ ASTDEL, 3-6, 8-3, 8-13
IPL$-IOPOST, 3-7, 8-14
IPL$-MAILBOX, 3-9
IPL$-POWER, 3-7, 9-1, 9-5,

l2-6' 13-2
IPL$ QUEUEAST, 3-8
IPL$-SCHED, 3-8
IPL$-SYNCH, 3-8
IPL$-TIMER, 3-8
IPL$-XDELTA, 3-9
IRP$B CARCON, 8-9, 8-12, A-7
IRP$B-EFN, A-4
IRP$B-PRI, A-4
IRP$B-RMOD, A-3
IRP$B-TYPE, A-3
IRPE$B TYPE, A-41
IRPE$L-BCNT1, A-41
IRPE$L-BCNT2, A-41
IRPE$L-SVAPTE1, A-41
IRPE$L-SVAPTE2, A-41
IRPE$W-BOFF1, A-41
IRPE$W-BOFF2, A-41
IRPE$W-SIZE, A-41
IRPE$W-STS, A-41
IRP$L ARB, A-8
IRP$L-AST, A-3
IRP$L-ASTPRM, A-3
IRP$L-DIAGBUF, A-7
IRP$L-EXTEND, A-7
IRP$CIOQBL, A-3
IRP$CIOQFL, A-3
IRP$L-IOSB, 8-14, A-5
IRP$L-IOST1, A-n
IRP$L-IOST2, A-7
IRP$L-MEDIA, 8-5, 8-9, 8-11,

8=13, 8-15, 12-3, A-n
IRP$L MEDIA+4, 8-5, 8-11, 8-15,

12-3, A-7
IRP$L PID, 13-5, A-3, C-14
IRP$L-SEGVBN, A-7
IRP$L-SEQNUM, A-7
IRP$L-SVAPTE, 8-7, 8-8, 8-10,

9=2, A-6
IRP$L UCB, A-4
IRP$L-WIND, A-4
IRP$W-ABCNT, A-7
IRP$W-BCNT, 8-6, 8-8, 8-9, 9-2,

A=6
IRP$W BOFF, 8-7, 8-8, 8-16,

9::2, A-6
IRP$W CHAN, 13-5, A-5
IRP$W-FUNC, 8-9, 9-4, A-4
IRP$W-OBCNT, A-7
IRP$W-SIZE, A-3
IRP$W=STS, 8-6, 8-8, 8-9, A-5

INDEX

J

JIB$L BYTCNT, 8-7
Job information block, 8-7

K

Kernel mode AST, 5-17
for buffered I/O read opera

tions, 8-8

L

Linking a driver, 14-1
LOAD command, 14-2, 15-2
Loading a driver, 1-16, 14-1,

15-2
Loading PC and Continuing

(XDELTA), 15-11
Loading MBA map registers, F-8
Loading UBA map registers, 9-4,

10-5
LOADMBA macro, F-8
LOADUBA macro, 10-5, B-3
Longword-aligned 32-bit transfer

mode, 4-7
Lowering IPL, 3-3

M

Macros

Index-6

CASE, B-1
DDTAB, 7-n, B-1
DPTAB, 7-2, B-1
DPT STORE, 7-3, B-2
DSBINT, 3-11, B-2
ENBINT, 3-12, B-2
FORK, B-2
FUNCTAB, 7-10, B-2
IFNORD, B-2
IFNOWRT, B-2
IFRD, B-3
IOFORK, B-3
LOADUBA, B-3
PURDPR, 1-7
RELCHAN, B-3
RELDPR, B-3
RELMPR, B-3
RELSCHAN, B-3
REQCOM, B-3
REQDPR, B-3
REQMPR, B-3

INDEX

Macros, (Cont.)
REQPCHAN, B-3
REQSCHAN, B-3
SAVIPL, B-4
SETIPL, 3-11, B-4
SOFTINT, 3-12, B-4
WFIKPCH, 9-7, B-4
WFIRLCH, 9-7, B-4

Mapping addresses for DMA trans
fers, 4-2

Map registers, 4-2
allocation of, 10-4
loading, 9-5, 10-5
loading for MBA transfers,

F-8
permanent allocation of, 10-4
releasing, 10-8

Map registers for MBA, F-2
MASSBUS adapter, F-1
MASSBUS device interrupt handling,

F-9
MASSBUS devices,

I/O data base for, F-4
MBA$INT, F-9 to F-11
MBA map registers, F-2
MBA registers,

external, F-1
internal, F-1

Message to operator, 12-6
Mixed direct and buffered data

path transfers, 10-3
MMG$IOLOCK routine, 8-10, 8-12
Modifying IPL, 3-11

0

Obtaining the I/O function code,
9-4

Open and Display command, 15-8
Opening device registers in

XDELTA, 15-15
Operator,

sending a message to, 12-6
Options file, 14-1

p

Powerfail recovery,
initialization during 1 13-2

Power failure,
checking for, 9-6

Preprocessing an I/O request,
5-1

Proceeding from breakpoints,
15-11

Process channel assignment, 5-3

Process context, 1-3
Process context conventions for

FDT routines, 8-3
Programmed I/O, 1-15
Program sections in drivers,

14-1
PSL {program status longword) ,

15-n
PURDPR macro, 10-7
Purging buffered data paths,

4-7, 10-7

Q

Queue I/O Request system service,
functions of, 5-1

Queuing an I/O request packet,
2-5

R

Raising IPL, 3-3
Reading device registers, 4-2
References to system addresses,

15-15
REGDMP macro, 13-n
Register content,

destruction of, 15-5, 15-6
Register conventions for FDT

routines, 8-2
Regist~r dump routine, 13-6
Registers preset for FDT

routines, 8-1
Register use conventions,

for FDT routines, 6-3
for other driver routines,

6-3
in I/O space, 6-3

Reinitialization data, 7-2
RELCHAN macro, B-3
RELDPR macro, 10-8, B-3
Releasing a buffered data path,

10-8
Releasing MBA map registers, F-9
Releasing the controller, 12-2
Releasing UBA map registers,

10-8
RELMPR macro, 10-8, B-3
RELOAD command, 14-5
RELSCHAN macro, B-3
REQCOM macro, 12-3, B-3
REQDPR macro, B-3
REQMPR macro, B-3
REQPCHAN macro, B-3
REQSCHAN macro, B-3

Index-7

Requesting a buffered data path,
10-3

Requesting a direct data path,
10-3

Requesting an XDELTA interrupt,
15-4

Requesting the controller data
channel, 9-2

Resource wait queues, 1-8, 3-14
Responding to a device interrupt,

9-8
Restrictions on register use in

I/O space, fi-3
Retrying I/O operations, 12-4
Routines provided by VAX/VMS

COM$DELATTNAST, C-1
COM$DRVDEALMEM, C-2
COM$FLUSHATTNS, C-2
COM$POST, C-3
COM$SETATTNAST, C-4
ERL$DEVICERR, C-fi
ERL$DEVICTMO, C-6
ERL$RELEASEMB, C-fi
EXE$ABORTIO, 8-13, C-7
EXE$ALLOCBUF, C-8
EXE$ALLOCIRP, C-9
EXE$ALONONPAGED, C-9
EXE$ALTQUEPKT, 8-5, 8-17, C-9
EX$BUFFRQUOTA, C-10
EXE$BUFQUOPRC, C-11
EXE$DEANONPAGED, C-11
EXE$FINISHIO, 8-14, C-12
EXE$FINISHIOC, 8-14, C-12
EXE$FORK, C-12
EXE$FORKDSPTH, C-13
EXE$INSERTIRP, C-13
EXE$INSIOQ, C-14
EXE$IOFORK, 12-1, C-15
EXE$MODIFY, C-lfi
EXE$MODIFYLOCK, C-17
EXE$MODIFYLOCKR, C-18
EXE$0NEPARM, 8-9, C-20
EXE$QIODRVPKT, 8-15, C-20
EXE$QIORETURN, C-21
EXE$READ, 8-9, C-21
EXE$READCHK, C-21
EXE$READCHKR, C-22
EXE$READLOCK, C-22
EXE$READLOCKR, C-22
EXE$SENSEMODE, 8-10, C-23
EXE$SETCHAR, 8-11, C-24
EXE$SETMODE, 8-11, C-25
EXE$SNDEVMSG, C-2fi
EXE$WRITE, 8-12, C-27
EXE$WRITECHK, C-27
EXE$WRITECHKR, C-27
EXE$WRITELOCK, C-28
EXE$WRITELOCKR, C-29
EXE$ZEROPARM, 8-13, C-29
IOC$ALOUBAMAP(N), C-30

INDEX

Routines provided by VAX/VMS, (Cont.)
IOC$ALTUBAMAP, C-31
IOC$APPLYECC, C-32
IOC$CANCELIO, 13-5, C-33
IO C $DI AG BU FI LL , C- 3 3
IOC$INITIATE, C-35
IOC$IOPOST, C-3fi
IOC$LOADUBAMAP(A), C-37
IOC$PURGDATAP, 10-7, C-38
IOC$RELCHAN, C-39
IOC$RELDATAP, C-40
IOC$RELMAPREG, C-41
IOC$RELSCHAN, C-42
IOC$REQCOM, 12-3, C-42
IOC$REQDATAP(NW), C-43
IOC$REQMAPREG, C-44
IOC$REQPCHANH, C-45
IOC$REQPCHANL, C-4fi
IOC$REQSCHANH, C-47
IOC$REQSCHANL, C-47
IOC$RETURN, C-47
IOC$WFIKPCH, 9-7, C-47
IOC$WFIRLCH, C-48

Rules for device configura
tions, 14-14

Running SYSGEN, 14-2

s
SAVIPL macro, B-4
SB! addresses,

mapping to UNIBUS, 4-2
Sending a message to the opera

tor, 12-fi
SETIPL macro, B-4

format of, 3-11
Setting an XDELTA base register,

15-5, 15-11
Setting base registers, 15-11
Setting breakpoints, 15-10
Setting complex breakpoints,

15-13
SHOW/DEVICE command, 14-fi, 15-3
Show Value command, 15-10
SOFTINT macro, B-4

format of, 3-12
Software IPLs, 3-1
Solicited interrupt,

servicing an, 11-4
Start I/O routine, 1-10, 5-12

coding an, 9-1
execution context, 9-1
for MASSBUS device, F-7

Status,
saving, 12-3

Step Instruction command, 15-10
Synchronization, 1-7

fork queues, 1-8

Index-8

Synchronization, (Cont.)
interrupt priority levels, 1-7
resource wait queues, 1-8

SYSGEN, 14-2
SYSGEN commands,

AUTOCONFIGURE, 14-7
CONNECT, 14-3
LOAD, 14-2
RELOAD, 14-5
SHOW/DEVICE, 14-6

SYSGEN device table, 14-9
SYSGEN's autoconfiguration, 14-8
System buffer,

allocation of, 8-6

T

Tables in drivers, 7-1
Template for a driver, 6-1,

n-5
Timeouts,

waiting for interrupt or, 9-n
Transfer length,

computation of, 9-5
Transferring control to a driver

fork process, 3-4
Transferring to and from FDT

routines, 8-3

u
UBA interrupt service routines,

5-13
UBA map registers,

loading, 10-5
releasing, 10-8

UCB$B AMOD, A-17
UCB$B-CEX, A-21
UCB$B-DEVCLASS, 8-11, A-15
UCB$B-DEVTYPE, 8-11, A-ln
UCB$B-DIPL, 7-2, 12-4, A-17
UCB$B-ERTCNT, 12-3, A-20, C-15
UCB$B-ERTMAX, A-20
UCB$B-FEX, A-21
UCB$B-FIPL, 7-2, 8-ln, 12-2,

A=12
UCB$B OFFNDX, A-22
UCB$B-OFFRTC, A-22
UCB$B-SLAVE, A-21, F-7
UCB$8-SPR, A-21
UCB$B-TYPE, A-12
UCB disk extension, A-21
UCB error log extension, A-20
UCB$L AMB, A-17
UCB$L-CRB, A-13
UCB$(~DDB, A-14

INDEX

UCB$L DEVCHAR, 7-2, A-14
UCB$L-DEVDEPEND, 8-10, A-ln
UCB$L-DPC, A-21
UCB$L-DUETIM, 12-4, A-18
UCB$L-EMB, 12-3, A-21
UCB$L-FPC, 11-4, 12-2, 12-4,

A=12
UCB$L FQBL, A-12
UCB$CFQFL, A-12
UCB$L-FR3, 11-4, 12-4, A-13
UCB$L-FR4, 11-4, 12-4, A-13
UCB$L-IOQBL, A-17
UCB$L-IOQFL, A-ln
UCB$L-IRP, 8-16, 12-3, A-17
UCB$L-LINK, A-14
UCB$L-MAXBLOCK, A-22
UCB$L-MEDIA, A-22
UCB$L-OPCNT, A-18
UCB$L-OWNUIC, A-13
UCB$L-PID, A-14
UCB$L-SVAPTE, 9-5, 10-5, 12-5,

A=l9
UCB$L SVPN, 7-3, A-19
UCB$L-VCB, A-14
UCB$W-BCNT, 9-5, 10-4, 10-5,

12-5, A-19
UCB$W_BCR, A-22
UCB$W BOFF, 9-5, 10-4 to 10-n,

12-5, A-19, F-9
UCB$W BUFQUO, A-13
UCB$W-CHARGE, A-17
UCB$W-DEVBUFSIZ, 8-11, A-16
UCB$W-DEVSTS, 12-3, A-18
UCB$W-DIRSEQ, A-22
UCB$W-EC1, A-22
UCB$W-EC2, A-22
UCB$W-ERRCNT, A-20
UCB$W-FUNC, A-21
UCB$W-OFFSET, A-22
UCB$W-REFC, 11-n, A-17
UCB$W-SIZE, A-12
UCB$W-STS, A-17
UCB$W-UNIT, A-17, F-7
UCB$W-VPROT, A-13
UNIBUS, 4-1, 10-1
UNIBUS adapter, 4-1, 10-1
UNIBUS device configuration,

an example, 14-15
Unit control block (UCB), 1-n,

5-3, 15-n, A-10
Unit initialization routines,

13-1
for MASSBUS devices, F-6, F-7

Unsolicited interrupt handling,
11-5

and busy devices, 11-5
example of, 11-n

User buffer,
validation of user buffer for

buffered I/O, 8-6

Index-9

v
Validating an I/O function, 5-7
Validating the I/O status block,

5-7
Vector jump table,

examining the, 15-5

w
Waiting for an interrupt, 2-~,

5-13, 9-n
Wait queues,

for resources, 3-14
WFIKPCH macro, 12-n, B-4

format of, 9-7
function of, 9-7

WFIRLCH macro, B-4
format of, 9-7

Writing device registers, 4-2

x

XDELTA,
and system failures, 15-5
booting the system with, 15-1

INDEX

XDELTA base registers,
setting, 15-5

XDELTA commands,
Clearing Breakpoints, 15-10
Close and Display Next Location,

15-9
Displaying Breakpoint List,

15-11
Display Previous, 15-9
Display Range, 15-9
Indirect, 15-9
Loading PC and Continuing,

15-11
Open and Display, 15-8
Proceeding from Breakpoint,

15-11
Setting Base Registers, 15-11
Setting Breakpoints, 15-10
Setting Complex Breakpoints,

15-13
Show Value, 15-10
Step Instruction, 15-10
summary of, 15-7

XDELTA display mode control,
15-12

XDELTA interrupt,
requesting an, 15-4

XDELTA operators, 15-8
XDELTA special symbols, 15-8
XDELTA stored commands, 15-13
XDELTA values and expressions,

15-7

Index-10

.
~
c

m
c
0
c

READER'S COMMENTS

VAX/VMS Guide
to Writing a

Device Driver
AA-H499B-TE

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR} service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement •

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced}

[] User with little programming experience

[] Student programmer

[] Other (please specify>~~~~~~~~~~~~~~~~~~~

CitY~~~~--~~~~~~~~--State------~~---Zip Code~----------
or

Country

- - Do Not Tear - Fold Here and Tape

Do Not Tear - Fold Here

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS TW/A14

DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

II No Postage
Necessary

if Mai led in the
United States

