
VAX/VMS
Real-Time User's Guide

Order No. AA-H784A-TE

March 1980

This manual discusses VAX/VMS features of interest to real-time users. It also
provides programming examples illustrating certain important or complex
features.

VAX/VMS
Real-Time User's Guide

Order No. AA-H784A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this release.

OPERATING SYSTEM AND VERSION: VAX/VMS V02

SOFTWARE VERSION: VAX/VMS V02

To order additional copies :~~~~~c.~ment, contact the Software Distribution I
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

- --··-··"·'" ___ -- .,. ._,,_._._

digital equipment corporation . maynard, massachusetts

First Printing, March 1980

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright @) 1980 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last
document requests the user's critical evaluation
preparing future documentation.

page of this
to assist us in

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DEC COMM
ASSIST-11
VAX
DECnet
DATATRIEVE

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
IND AC
LAB-8
DECSYSTEM-20
RTS-8
VMS
IAS
TRAX

MASS BUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-10
SBI
PDT

PREFACE

CHAPTER

CHAPTER

CHAPTER

l

1.1
l. 2
l. 2 .1
l. 2. 2
l. 2. 3
l. 2. 4
l. 2. 5
l. 3
1.4
l. 4 .1
1.5
l. 5 .1
l.n
l.fi.l
i. n. 2

2

2.1
2. l. l
2.1.2

2. l. 3
2.1.4
2.2
2.2.l
2.2.2
2.2.3
2.2.4

3

3.1
3. l. l
3 .1. 2
3. l. 3
3.2
3.2.l
3.2.2
3.2.3
3.3
3.3.l

3.3.2
3.4
3.4.l

CONTENTS

REAL-TIME NEEDS AND VAX/VMS FEATURES
OTHER VAX/VMS TOOLS

Condition Handling
Device Allocation
SYSGEN Parameter Selection
User Authorization File Entries
Networks

REAL-TIME DEVICES
USER PRIVILEGES FOR REAL-TIME APPLICATIONS

Privilege Masks
PROCESS QUOTAS

Resource Wait Mode
PROCESS PRIORITY

Significance of Process Priority
Adjusting the Base Priority

CONTROLLING THE PROGRAM EXECUTION
ENVIRONMENT

PROCESS CREATION
Subprocesses and Detached Processes
Real-Time Uses of Detached Processes
and Subprocesses
Create Process System Service
RUN (Process) Command

PHYSICAL MEMORY CONTROL
Adjusting the Working Set Limit (SADJWSL)
Keeping Pages in the Working Set ($LKWSET)
Keeping Pages in Memory ($LCKPAG)
Keeping the Process in Memory ($SETSWM)

COMMUNICATING AND SHARING BETWEEN PROCESSES

COMMON EVENT FLAGS
Creating and Associating with Clusters
Setting Event Flags
Waiting for Event Flags

MAILBOXES
Creating a Mailbox
Other Mailbox Services
Example Using a Mailbox

ASYNCHRONOUS SYSTEM TRAP SERVICE ROUTINES
System Services with AST Service Routine
Arguments
Access Modes and AST Delivery

HIBERNATION AND SUSPENSION
Example 1: Wakeups as Needed

iii

Page

vii

1-1

1-2
1-4
1-4
1-4
1-5
1-5
1-5
1-5
1-'1
1-7
1-7
1-9
1-9
1-10
1-11

2-1

2-2

2-3
2-3
2-4
2-5
2-n
2-n
2-7
2-8

3-1

3-2
3-3
3-3
3-4
3-4
3-5
3-n
3-7
3-8

3-8
3-8
3-9
3-10

CHAPTER

CHAPTER

3.4.2
3.5
3.5.l
3.5.2
3.6

4

4.1
4 .1.1
4 .1. 2
4 .1. 3
4.1.4
4.2
4.2.1

4.3
4.4
4.5
4.5.1
4.5.2

4.6
4.6.1
4.6.2
4.6.3
4.6.4
4.6.5

4.6.6
4.6.7
4.n.8

4.6.9
4.6.10
4.6.11
4.n.12
4.6.12.1
4.6.12.2

4.n.12.3

5

5.1
5.2
5.3
5.4

5.5
5. f)
5.7
5.8
5.8.1

CONTENTS

Example 2: Wakeups at Fixed Intervals
GLOBAL SECTIONS

Creating and Mapping a Global Section
Other Section-Related System Services

SHAREABLE IMAGES

PERFORMING I/O OPERATIONS

OVERVIEW OF THE VAX/VMS I/O SYSTEM
Queue I/O Request System Service
Ancillary Control Processes
Device Drivers
I/O Posting Routine

USER INTERFACE TO THE I/O SYSTEM
VAX-11 RMS Features of Interest to
Real-Time Users

USING THE QUEUE I/O REQUEST SYSTEM SERVICE
INTERRUPT-GENERATED I/O
MAPPING I/O SPACE

Page Frame Number (PFN) Mapping
Programming Conventions for Addressing
Device Registers

CONNECTING TO AN INTERRUPT VECTOR
Interrupt Priority Levels
Performing the Connect-To-Interrupt
The Connect-To-Interrupt Driver
The Interrupt and AST Service Routines
Queue I/O Request System Service for
Connect-To-Interrupt
Conventions for Process-Specified Routines
Programming Language Constraints
Process-Specified Device Initialization
Routine
Process-Specified Start I/O Routine
Process-Specified Interrupt Service Routine
Process-Specified Cancel I/O Routine
Real-Time Applications Examples
Example 1: KWll-W Watchdog Timer
Example 2: ADll-K, AMll-K; A/D Converter
with Multiplexer Connected to the UNIBUS
Example 3: KWll-P Real Time Clock and
ADll-K Converter Connected to the UNIBUS

USING SHARED MEMORY

Page

3-11
3-12
3-14
3-15
3-15

4-1

4-1
4-1
4-2
4-2
4-3
4-3

4-4
4-5
4-f)
4-7
4-8

4-10
4-11
4-11
4-12
4-13
4-14

4-15
4-18
4-19

4-20
4-20
4-21
4-21
4-22
4-23

4-24

4-2()

5-1

PREPARING MULTIPORT MEMORY FOR USE 5-1
PRIVILEGES REQUIRED FOR SHARED MEMORY USE 5-2
NAMING FACILITIES IN SHARED MEMORY 5-2
ASSIGNING LOGICAL NAMES AND LOGICAL NAME
TRANSLATION 5-3
HOW VAX/VMS FINDS FACILITIES IN SHARED MEMORY 5-5
USING COMMON EVENT FLAGS IN SHARED MEMORY 5-5
USING MAILBOXES IN SHARED MEMORY 5-f)
USING GLOBAL SECTIONS IN SHARED MEMORY 5-7

Create and Map Section System Service 5-8

iv

CHAPTER

CHAPTER

APPENDIX

APPENDIX

APPENDIX

APPENDIX

INDEX

FIGURE

6.1
6 .1.1
6 .1. 2

6.1.3
6.1.4
6.2
6.2.l

6.3
() • 4
6.5

7

7.1
7 .1.1
7 .1. 2
7.1.2.1
7.1.2.2
7.1.2.3
7.1.2.4
7 .1. 3
7 .1. 4
7.2

A

A. l
A.1.1
A.2
A.2.1

B

B.l
B.2
B.3

c

D

3-1
3-2
4-1
5-1
5-2
()-1

CONTENTS

PRIVILEGED SHAREABLE IMAGES

CODING THE PRIVILEGED SHAREABLE IMAGE
Change-Mode Vector
Entry Point to the Privileged Shareable
Image
Kernel-Mode br Executive-Mode Dispatcher
Enabling and Disabling User Privileges

LINKING THE PRIVILEGED SHAREABLE IMAGE
Specifying Protection for the Image or
Clusters

INSTALLING THE PRIVILEGED SHAREABLE I~AGE

USING THE PRIVILEGED SHAREABLE IMAGE
PROGRAM LI STINGS

PROGRAM EXAMPLES

DATA ACQUISITION AND MANIPULATION
Application Overview
LABIO System Details
Shared Data Base
Common Event Flag Clusters
Mailboxes
Connecting to an Interrupt Vector
Typical LABIO User Program Loqic
Program Listings

AIRLINE RESERVATION SYSTEM

Page

n-1

()-1
6-2

t;-3
n-3
6-3
11-4

n-4
<1-5
fi-5
6-5

7-1

7-1
7-1
7-3
7-3
7-3
7-4
7-4
7-4
7-5
7-45

LOCKING A RESOURCE A-1

USING AN EVENT FLAG A-2
Shared Memory Considerations A-4

USING A QUEUE A-4
Shared Memory Considerations A-n

LPAll-K CONSIDERATIONS B-1

RESOURCES, CONFIGURATION, AND PERFORMANCE B-1
THROUGHPUT AND RESPONSE-TIME REQUIREMENTS B-2
PARAMETERS FOR DATA ACQUISITION CALLS B-3

VAX-11 BLISS-32 PROGRAM EXAMPLE C-1

REAL-TIME OPTIMIZATION CHECKLIST D-1

FIGURES

Using a Mailbox to Communicate
Access Modes and AST Delivery
Physical Address
Two VAX-ll/780s Attached to an MA780
Using a Shared Memory Mailbox
Change-Mode Vector Format

v

Index-1

3-7
3-9
4-7
5-1
5-7
n-2

FIGURE

TABLE

A-1
A-2
A-3
A-4

1-1
1-2
2-1
3-1

3-2
3-3
3-4
3-5
A-1

CONTENTS

FIGURES (Cont.)

Event Flag Lock Logic
Event Flag Lock Example
FIFO Queuing Policy
LIFO Queuing Policy

TABLES

Real-Time Needs and VAX/VMS Features
Summary of Process Quotas
Subprocess versus Detached Process
Features for Communication, Synchronization,
and Sharing
Summary of Event Flag Clusters
Temporary versus Permanent Mailboxes
Hibernation versus Suspension
Global Sections versus VAX-11 RMS
Two Methods of Creating a Lock

vi

Page

A-2
A-3
A-5
A-7

1-3
1-8
2-2

3-1
3-2
3-5
3-10
3-13
A-1

PREFACE

MANUAL OBJECTIVES

The VAX/VMS Real-Time User's Guide describes VAX/VMS features of
interest to real-time application programmers. It describes in
general terms functions common to a variety of real-time applications
and explains the specific VAX/VMS feacures available to perform these
functions. This manual also contains numerous examples, including
coding segments and complete programs, to illustrate certain important
or complex features.

INTENDED AUDIENCE

This manual is intended for programmers writing real-time
applications. You are assumed to have substantiaJ programming
experience and some knowledge of basic VAX/VMS concepts (see
"Associated Documents" in this preface).

The programming examples are in VAX-11 MACRO and VAX-11 FORTRAN. Each
example, however, is designed to be as meaningful as possible for
programmers using any other VAX-11 language.

STRUCTURE OF THIS DOCUMENT

This manual covers a variety of topics, usually proceeding from less
complex to more complex material. Wherever appropriate, this manual
relates a topic to other topics discussed elsewhere in the manual.

Chapter 1 introduces the manual. It summarizes the real-time features
covered in the manual, describes other features of possible interest
and refers to appropriate documentation, and explains some significant
concepts.

Chapter 2 discusses ways to control the program execution environment,
including creating subprocesses and detached processes and affecting
the allocation of physical memory.

Chapter 3 covers mechanisms for communicating between cooperating
processes, synchronizing their activities, and sharing data and code.

Chapter 4 discusses real-time I/O, including mapping I/O space and
connecting to a device interrupt vector.

Chapter 5 discusses the use of software facilities located in
multiport (shared) memory -- specifically common event flag clusters,
mailboxes, and global sections.

vii

Chapter 6 explains privileged shareable images, a vehicle that allows
you, in effect, to write your own system services.

Chapter 7 provides sevfrral complete proqramminq
accompanying explanations.

examples with

The appendixes present supplementary information. Appendix A shows
how to use a common event flag or a queue as a mutual exclusion
{mutex} semaphore to lock a resource. Appendix B discusses
programming and design considerations for users of the Laboratory
Peripheral Accelerator (LPAll-K}. Appendix C provides a programming
example in VAX-11 BLISS-32. Appendix D is a checklist of optimization
techniques for real-time users.

ASSOCIATED DOCUMENTS

The following manuals explain the VAX/VMS concepts
prerequisite knowledge for readers of this manual:

that ;:ire

• The VAX/VMS §umn.:i9fl _____ g~~-C::-~ i pt ion ___ _ll_r]_cL__g__J.os~9.;:_y explains the

•

major components of the VAX/VMS system and defines significant
terms.

The VAX-11/780 Technical Summary
de SC r i bes--the ___ maJo·r- -componerlfs
system.

(order number EA-159n3-20)
and features of the VAX/VMS

The following manuals provide more detailed treatment of major
concepts and features described in this manual:

• The VAX/V~_§ ____ §y_~-~~-~---fvli!.!::19.~l:-~.5-___ Q_~J~t~ discusses the system
generation (SYSGEN} utility, the user authorization file
(UAF), system tuning, and the DISPLAY utility.

• The VA?YY.1':1_§_ ~ystem $_e~v1 .. £e:_~_ Re~~r-~_r:i~e _Mcinual provides tutorial
chapters on many topics covered in-- TfiTs manual. It also
explains the format and requirements for each system service.

• The VAX/VMS I/O User's Guide discusses I/O programming in
detail, --rn-clud:i.ng ch·a-pte-rs --c;-11· several real-time devices.

• The VAX/VMS Guide ~o Writinq ~_Devi~e Driver explains how to
write your owncrevic_e __ d-river_a.nCf ___ Incfucfes- detailed information
on VAX/VMS I/O.

The user's guide for each programming language provides information on
using VAX/VMS features and capabilities with that language.

The following handbooks provide information on VAX-11 architecture and
hardware:

• The VAX-11 Architecture Handbook {order number EB-17580-18)
introduceS _____ vl\·x::1-1~·-sy-sTem·---~-a-rC-hi tecture, exp la ins addressing
modes, and presents the native-mode instruction set.

• The VAX-11/780 Hardware Handbook (order number EB-17835-18)
e xpla i n_s ____ vAx--=r1 ha rd ware ---eTemen ts I inc ludi nq the high-speed
synchronous backplane interconnect (SBI), the central
processor unit, intelligent console subsystem, MASSBUS and
UNIBUS subsystems, main memory, and memory management. This
handbook also includes an appendix explaining restrictions on
program references to I/O space.

viii

CONVENTIONS USED IN THIS DOCUMENT

The system
consistent
Manual:

Convention

UPPERCASE

lowercase

[]

service formats and coding example conventions are
with those used in the VAX/VMS_§_y!?te~ __ _§_ervices Reference

Meaning

Uppercase letters in a system service format show
material that must be entered as shown.

Lowercase letters in a system service format show
variable data.

Brackets in a system service format indicate an
optional argument.

Horizontal ellipsis in a coding example indicates
that additional arguments necessary for the system
service call but not pertinent to the example are
not shown.

Vertical ellipsis in a coding example indicates
that lines of code not pertinent to the example
are not shown.

ix

CHAPTER 1

INTRODUCTION

"Real-time" is a term whose meaning varies with specific applications.
However, in most scientific, industrial, and commercial real-time
applications, one or both of the followinq are critical needs:

• High throughput

• Fast response

Applications for which high throughput is essential require the
continuous processing of large amounts of data. An example of a
throughput-intensive application is signal processing, which is used
in speech research, electrocardiogram and electroencephalogram
research, vibration analysis, and music synthesis. As another
example, a stream of data points is required for many of the
qualitative and quantitative methods used in gas and liquid
chromatography, mass spectrometry, automatic titration, and
colorometry.

In all of these throughput-intensive applications, the primary
requirement is to obtain some number of data points equally spaced in
time. Some further computation is done, perhaps later, on the data
collected.

In other real-time applications, fast response to individual events is
the most critical requirement. A typical example that requires fast
response is a closed-loop control system. In such a case, some event
must be identified as soon as possible; a decision is then made and
an output variable is updated. For example, before a jet engine is
tested, sensing instruments connected to a processor running a control
program might be placed on and near the engine. After the engine is
started, the control program must be able to detect, analyze, and
correct any abnormality within a few milliseconds -- for instance, by
shutting off the engine before an explosion occurs. Applications for
which response time is a critical factor include process monitoring
and control, synchronous communications, and stimulus-response testing
in biological and psychological research.

If response time is critical, the designer must ensure that the
application has all the resources it needs immeoiately whenever it
needs them. These resources include:

• CPU time, the availability of which is affected by process
priority and, perhaps, interrupt latency

• Memory, which can be controlled by several system services
(see Chapter 2)

• I/O bandwidth, which
configuration

is

1-1

determined by the hardware

INTRODUCTION

These two real-time requirements, high throuqhput and responsiveness,
are sometimes interrelated. For example, if your application must
collect large amounts of data quickly and if the data acquisition is
to be triggered by an external event, you need both fast response and
high throughput.

Specific real-time applications might involve the following types of
programming activities:

• Controlling the program's execution environment, which might
require communicating between programs and creating
subprocesses or detached processes

• Using the Queue I/O Request system service directly, to
achieve faster response and gr~ater throughput

• Coordinating programs running on multiple processors,
including the sharing of multiport memory units

Real-time users often employ sophisticated means to
respond best to their special processinq needs.
provides tools to meet these needs.

L 1 REAL-TIME NEEDS AND VAX/VMS FEATURES

make the system
The VAX/VMS system

From its inception, the VAX/VMS system has heen designed to meet the
real-time processing needs of a wide user base. The VAX-11
architecture provides the necessary hardware foundation with its high
I/O bandwidth, interrupt · responsiveness, 32-bit processinq
capabilities, and real-time peripheral interfaces. These
architectural features are described in the hardware documentation for
your system (see the Preface). This manual will focus on software
features. Its approach is to identify functions common to a variety
of real-time applications, discuss these functions conceptually, and
show how specific VAX/VMS features can be used to perform these
functions.

You are assumed to be familiar with basic VAX/VMS concepts, which are
defined in the '{_AX_{VM~ ____ _§~~~---p~_f3_9._:1'.:JPt:i()n _?Q_<:l_ __ g~oS§.?_r:y. Do not,
however, confuse the VAX/VMS term "process" (the program image and the
software context in which it executes) with "process" in its generic
sense (a sequence of events), as in "industrial process-control
applications." Most instances of the word "process" in this manual
refer to the image and its context; any other use will be clearly
identified.

Table 1-1 summarizes common real-time needs and the features or
capabilities available with VAX/VMS to meet these needs. Each feature
listed is documented in the VAXjV~S __ §_y~!_-~m_.§..E:_!'."_Y_Lc;:es__ B_~[~_r __ e_n_9._~----~9.D~9.J_
unless another manual is specified. The goal of the present manual is
to organize and highlight aspects of special interest to real-time
users.

1-2

INTRODUCTION

Table 1-1
Real-Time Needs and VAX/VMS Features

Real-Time Need

Perform an operation
with or after another
operation

Change the availability
of a process for
scheduling

Keep critical code or
data highly accessible

Perform I/O quickly or
for special purposes

Synchronize a process
with an external event
or program

VAX/VMS Feature

Use the Create
service to create
detached process

Process ($CREPRC)
a subprocess or

Use the RUN command to create a
subprocess or detached process (see the
VAX/VMS_Command L9-nquage User's Guide)

Use the Set Priority ($SETPRI) service

Use the Adjust Working Set ($ADJWSL)
system service to adjust the amount of
physical memory a process is entitled to
use

Use the Lock Pages in Memory ($LCKPAG)
system service to keep paqes in physical
memory

Use the Lock Pages in Working Set
($LKWSET) system service to keep pages
in physical memory as long as the
process is in memory

Use the Set Process Swap Mode ($SETSWM)
system service to keep all or part of a
process in physical memory

Use the Create and Map Section ($CRMPSC)
system service to map a file into
process address space

Use the Queue I/O Request
system service

Map I/O
service)
interrupt
service)

space
and/or

vector

(usinq the
connect to

(using

($QIO)

a
the

$CRMPSC
device

$QIO

Write your own device driver (see the
VAX/VMS G uJ__q~ ______ !:_C?_~ __ Wr it i ng __ ~ ___ pevi ce
Driver)

Set and wait for event flags

Code and declare asynchronous system
trap (AST} service routines

Connect to a device interrupt vector

Cause processes to hibernate or suspend,
and to awaken when needed

(continued on next page)

1-3

INTRODUCTION

Table 1-1 (Cont.}
Real-Time Needs and VAX/VMS Features

Real-Time Need

Share code or data
between processes

Send messages to other
processes

Use multiport memory
(memory shared by
multiple processors}

Use special-purpose
system services

VAX/VMS Feature

Use the Create and Map Section
($CRMPSC} system service to create and
map a global section

Use shareable images (see the VAX-11
Linker Reference Manual}

Use mailboxes ($CREMBX system service
creates mailbox; RMS or I/O system
services read and write messages}

Use common event flag clusters, global
sections, and mailboxes located in a
shared memory unit

Write privileged shareable
(see Chapter 6}

images

-------~-----------·----··---·--------------'

1.2 OTHER VAX/VMS TOOLS

There are other VAX/VMS tools which may be of interest to some
real-time users, but which are outside the scope of this manual.
Brief descriptions of these tools follow, with references to other
manuals for detailed information.

1.2.1 Condition Handling

A condition handler is a procedure that is given control when an
exception occurs. An exception is an event that is detected by the
hardware or software and that interrupts the execution of an image.
Examples of exceptions include arithmetic overflow or underflow and
reserved opcode or operand faults.

If you want to handle any or all exceptions yourself, you must code
and declare a condition handler. Information on condition handling is
available in the VAX/VMS Syste~~_rvices Reference Manual, the VAX-11
Run-Time Library Reference Manual, and the language user's guides.

1.2.2 Device Allocation

You can allocate and deallocate devices from within your program with
the Allocate Device (SALLOC) and Deallocate Device (SDALLOC) system
services. Allocating a device reserves it for exclusive use by the
requesting process. The VA~/VMS System Services Reference Manual
explains the $ALLOC and $DALLOC system services.

1-4

INTRODUCTION

1.2.3 SYSGEN Parameter Selection

There are a number of parameters to the SYSGEN utility whose values
affect the paging, swapping, and scheduling operations of the system.
All of these parameters have default values that DIGITAL has selected
as suitable for a wide range of users; however, real-time users may
wish to modify certain parameters or experiment with different
combinations of parameters. The VAX/VMS System Manager's g~ide
discusses major SYSGEN parameters and provides some guidelines for
selecting their values. That manual also discusses a number of
parameters in relation to system tuning.

1.2.4 User Authorization File Entries

The user authorization file (SYSUAF.DAT) includes entries within each
record to determine the base priority (PRIORITY), initial working set
limit (WSDEFAULT), maximum working set limit (WSQUOTA), and privileges
for that user's processes. The VAX/VMS System Manager's Guide
explains the user authorization file entries.

1.2.5 Networks

A VAX/VMS system can be connected in a communications network to other
DIGITAL processors with the same or different operating systems. The
family of software products supporting these networks is called
DECnet. You can use DECnet to share files and communicate between
programs on different processors; however, for faster performance you
can use one of the real-time devices mentioned in Section 1.3. For
information on the use of DECnet, see the DECnet-VAX User's Guide and
the DECnet-VAX System Manager's Guide.

1.3 REAL-TIME DEVICES

The following
applications:

devices are especially suited

• Laboratory Peripheral Accelerator (LPAll-K)

• Parallel Communications Link (PCL)

• 32-bit Parallel SBI Interface (DR780)

for

• Synchronous Communications Line Interface (DMCll)

• Multiport Memory (MA780)

real-time

This section discusses several of these devices only briefly. For
detailed information on using the MA780, see Chapter 5. For
information on the other devices, see the VAX/VMS I/O User's Guide and
the appropriate hardware documentation.

The LPAll-K controls analog-to-digital (A/D) and digital-to-analog
(D/A) converters, digital I/O registers, and real-time clocks.
Appendix B discusses programming and design considerations for LPAll-K
users.

The DR780 can be used to link user devices to a processor or
processors to each other. The DR780 provides a very high-speed 32-bit
wide interface to the VAX-11 Synchronous Backplane Interconnect (SBI).

1-5

INTRODUCTION

The DMCll and the MA780 are used primarily to link processors. The
MA780 offers memory-access speed and greater capabilities, but the
DMCll is suited for data transmission between processors separated by
a great distance. The DIGITAL Data Communications Message Protocol
(DDCMP) programmed into the DMCll's microprocessor ensures data
integrity.

1.4 USER PRIVILEGES FOR REAL-TIME APPLICATIONS

To protect the integrity of the system, VAX/VMS restricts certain
functions or operations to processes with the appropriate user
privileges. Each process starts with a set of privileges established
in one of the following ways:

• For each user who logs in, privileges are designated by the
system manager in the user's entry in the user authorization
file.

• For each created process, privileges are specified or
defaulted in the PRVADR argument to the Create Process
($CREPRC) system service or the /PRIVILEGES qualifier to the
RUN command.

You can change a process's privileges in two ways: at the command
level with the SET PROCESS/PRIVILEGES command and at the program level
with the Set Privileges ($SETPRV) system service.

Most timesharing users need and are given only a limited set of
privileges. Real-time users, however, are normally given considerably
more privileges, because they need them to perform certain functions.
Any privileges required for functions discussed in this manual are
documented here or in the VAX/VMS System Serv_~£~~--~~_!erence_ Manual.

Some of the privileges of special interest to real-time users are as
follows:

Privilege

ALTPRI

BYPASS
CMEXEC
CMKRNL
EX QUOTA
GROUP
GRPNAM
LOG IO
OPER
PFNMAP
PHY IO
PRMCEB
PRMGBL
PRMMBX
PSWAPM
SETPRV

SHMEM

SYSNAM

SYSPRV

WORLD

Meaning

Set process base priority higher than user's own base
priority
Bypass all UIC-based protection checks
Change mode to executive
Change mode to kernel
Exceed certain quotas
Control processes in user's own group
Place entries in qroup logical name table
Perform logical I/O operations
Perform operator functions
Map to section by physical page frame number
Perform physical I/O
Create permanent common event flag clusters
Create permanent global sections
Create permanent mailboxes
Change process swap mode
Grant process privileges other than own current
privileges
Perform certain functions in memory shared by multiple
processors
Place entries in system logical name table and create
system-wide qlobal sections
Access resources as if you have a system user
identification code (UIC)
Control any process in the system

1-6

INTRODUCTION

The VAX/VMS System ... ~~-!1-9.9_~r 's Guide explains these and the other
privileges in greater detail.

1.4.1 Privilege Masks

User privileges are stored in a quadword (~4-bit) mask, in which
specific bits correspond to specific privileges. The operating system
actually maintains four separate privilege masks for each process:

• AUTHPRIV - Privileges that the process is authorized to
enable, as designated by the system manager or the process
creator. The AUTHPRIV mask never changes during the life of
the process.

• PROCPRIV - Privileges that are designated as permanently
enabled for the process. The PROCPRIV mask can be modified by
the Set Privileges ($SETPRV) system service or the SET
PROCESS/ PRIVILEGES command.

• IMAGPRIV - Privileges that the current image is installed
with.

• CURPRIV - Privileges that are currently enabled. The CURPRIV
mask can be modified by the Set Privileges ($SETPRV) system
service or the SET PROCESS/PRIVILEGES command.

When a process is created, its AUTHPRIV, PROCPRIV, and CURPRIV masks
have the same contents. Whenever a system service must check the
process's privileges, it checks the CURPRIV mask. When a process runs
a known image, the privileges that the image was installed with are
enabled in the CURPRIV mask. Whenever an image exits, the PROCPRIV
mask is copied to the CURPRIV mask.

1.5 PROCESS QUOTAS

To prevent a process from monopolizinq or overusinq certain resources,
VAX/VMS enforces a number of quotas (limits) on each process. These
quotas can be adjusted for each process. The system manager can set
quotas for each user in the user authorization file (UAF), and the
creator of a detached process or subprocess can specify quotas with
the QUOTA argument to the Create Process ($CREPRC) system service (see
Section 2.1.3) or with qualifiers to the RUN command (see Section
2.1.4). Default values are used for any quotas not specified.

Each quota is deductible, pooled, or nondeductible:

• A deductible quota value is subtracted from its creator's
current value when a subprocess is created and returned to the
creator when the subprocess is deleted.

• A pooled quota is shared by a detached process ana all its
descendent subprocesses. Charges against a pooled quota value
are subtracted from the current available total as the
resource is used and are added back to the total when the
resource is not being used.

• A nondeductible quota is established and maintained separately
for each detached process and subprocess.

The VAX/VMS System Services Reference Manual contains more detailed
information on process ·quotas:-

1-7

INTRODUCTION

Table 1-2 lists each process quota, its function, the defaults used
for the user authorization file (UAF) and for process creation, and
the minimum value. The table also indicates whether the quota is
deductible, pooled, or nondeductible.

Quota

AST queue
limit (ASTLM)

Limi
sche
can
one

Buffered I/O count Limi
limit (BIOLM) atio

buff

Buffered I/O byte Limi
count limit (BYTLM) the

buff

CPU time limit
(CPUTIME)

Direct I/O count
limit (DIOLM)

CPU
(0 m

Li mi
atio
buff
spac

Open file limit Lirni
(FILLM) the

time

Paging file Limi
quota (PGFLQUOTA) the

pagi

Subprocess creation Limi
limit (PRCLM) that

Timer queue entry Limi
limit (TQELM) entr

even
proc

Default working set Sets
size (WSDEFAULT) size

Working set size
limit (WSQUOTA)

Limi
proc
be e

Table 1-2
Summary of Process Quotas

UAF Process
Default Creation Min.

Functionl Value Default Value

ts the sum of AS Ts and 10 fi 2
du led wake-up requests that
be pending for a process at
time (N)

ts the number of I/O oper- fi fi 2
ns that the process can have
ered in system memory (N)

ts the number of bytes that 409(.) 8192 1024
process can use for system
ered I/O operations (P)

time limit in mi 11 i seconds 0 0 0
eans no limit) (D)

ts the number of I/O op er- h fi 2
ns that the process can have
ered in process address
e (N)

ts the number of files thC'lt 20 10 2
process Ci'ln hnve open at. one

(P)

ts the number of pages that 10000 20Ll8 25f-\
process can use in the system
nq file (P)

ts the number of subprocesses R 8 0
the process can create (P)

ts the sum of timer queue 10 8 0
ies and temporary common
t flag clusters that the
ess can have at one time (P)

the initial working set 150 100 50
for the process (N)

ts the size to which the 200 120 50
ess's working set size can
xpanded (N)
- -- ---- ""------------ -----------~-~--- -----L. _______ --------J....__ ___________ ,_, ___

1. After each "Function" description is a letter in parentheses
indicating whether the quota is deductible (D), pooled (P), or
nondeductible (N).

1-8

INTRODUCTION

1.5.l Resource Wait Mode

By default, a process enters resource wait mode whenever it needs but
cannot obtain system dynamic memory or a resource controlled by any of
the following quotas:

• Direct I/O limit (DIOLM)

• Buffered I/O limit (BIOLM)

• Buffered I/O byte count limit (BYTLM)

(If any other resource controlled by a quota is unavailable, the
process receives the SS$ EXQUOTA error status code.) Resource wait
mode places the process in a wait state until the resource becomes
available.

In a real-time environment, however, it may not be practical or
desirable for a program to wait. In these cases, you can choose to
disable resource wait mode for the process, so that when a required
resource is unavailable, control returns immediately to the calling
program with an error status code. You can disable resource wait mode
with the Set Resource Wait Mode (SSETRWM) system service.

How a program responds to the unavailability of a resource depends
very much on the application and the particular system service that is
being called. In some instances, the program may be able to continue
execution and retry the service call later. In other instances, it
may be necessary only to note that the program is beinq required to
wait.

l.n PROCESS PRIORITY

At any given time, each process has a priority that affects how it
runs relative to other processes in the system. Process priorities
can range from 0 through 31, with O through 15 designated as
timesharing priorities and ln through 31 designated as real-time
priorities.

The "base priority" of a process refers to its minimum priority. You
can adjust a process's base priority with the Set Priority system
service or the SET PROCESS/PRIORITY command. The priority that
affects process operations is its current priority (or simply,
priority), which the system dynamically adjusts for timesharing
processes.

The system handles timesharing and real-time priorities in different
ways. For processes with timesharing base priorities (0 through 15),
the system dynamically adjusts the priority accordinq to the process's
state and other factors. The actual priority of a timesharing process
at any given time might be as much as 7 higher than its base priority.
However, the system will never raise a priority in the timesharing
range to a real-time level. Furthermore, the system does not alter
the priority of a process with a real-time base priority (lo through
31) •

1-9

INTRODUCTION

When you log in, your initial base priority is determined by a value
in your record in the user authorization file. When you create a
subprocess or detached process, its initial base priority is
determined by the specified or default value for the BASPRI argument
to the Create Process ($CREPRC) system service or for the /PRIORITY
qualifier on the RUN command. To find out the base priority of your
process, you can use the SHOW PROCESS command.

1.6.l Significance of Process Priority

The priority of a process can affect

• How quickly it is scheduled (that is, becomes the current
process) after it becomes executable

• Whether it will be interrupted by the scheduling of another
process

• Whether it will be swapped out of the balance set if the
system needs the physical memory for another process

• How quickly its queued I/O requests are serviced by a device
driver

The VAX/VMS scheduler always selects the highest-priority process from
among those that are eligible to execute, that is, processes that are
"computable" (process state) and in the balance set. (Conditions that
can cause a process not to be executable include waiting for an event
flag to be set or a resource to become available, or being in a state
of hibernation or suspension.) If a lower-priority process is
executing and a higher-priority process becomes executable, the
lower-priority process is interrupted and the higher-priority process
receives control of the processor.

If the working set requirements of all processes in the balance set
exceed the system's available physical memory, the VAX/VMS swapper
process is activated to "outswap" one or more processes: that is, to
save certain information and the working set of each process to be
swapped out and to free its memory pages for use by other processes.
A real-time process requiring fast response, however, should not be
swapped out. In selecting a process for outswapping, VAX/VMS
considers the process's state and quantum value in addition to its
priority. Therefore, if you must guarantee that a real-time process
will not be swapped out, disable swapping for the process with the Set
Process Swap Mode ($SETSWM) system service (see Section 2.2.4).

The VAX/VMS system also uses process priority as the basis for
ordering I/O requests queued to a driver. That is, the system
initiates a queued I/O request issued by a higher-priority process
before it initiates one for the same device issued by a lower-priority
process.

Because the VAX/VMS operating system's own processes normally have
priorities of 16 or lower, real-time users must ensure that one of
these system processes is not blocked from execution if its operation
is needed by a real-time process. For example, if several real-time
processes are in the system, a priority-22 process performing disk
file I/O can be blocked by a compute-bound priority-17 process that is
preventing the disk ACP (which might be priority 11) from executing.
If an operating system process needs to perform functions for a
real-time process, you might have to raise the priority of the
system's process.

1-10

INTRODUCTION

1.6.2 Adjusting the Base Priority

Raising process priority can decrease the time required for a program
to run to completion. Programs running in real-time processes have
more predictable execution times, because the process usually waits
only for the completion of requests that it initiates; it does not
spend time wating for lower-priority processes to execute.

The higher the process's priority is set, the less likely it is the
process will have to wait. However, you must use discretion in
raising priorities, because as you increase the number of real-time
processes executing concurrently, you potentially decrease the
effectiveness of each priority designation.

User privileges are required to set the priority of any process other
than your own or to raise the priority of any process (including your
own) higher than your own base priority. The following user
privileges enable you to perform the indicated functions:

• The GROUP privilege allows you to change the priority of other
processes in your group.

• The WORLD privilege allows you to change the priority of any
other processes in the system.

• The ALTPRI privilege allows you to set the priority of any
process whose priority you have privilege to change (see GROUP
and WORLD privilege explanations) higher than your own base
priority. If you do not have the ALTPRI privilege, you can
set the priority of any process whose priority you have
privilege to set only equal to or lower than your own base
priority.

There are two ways to change the base priority of a process:

• At the command level with the command:

$ SET PROCESS/PRIORITY=n

• At the program level with the Set Priority ($SETPRI) system
service

The Set Priority system service is probably more useful to real-time
programmers than the SET PROCESS/PRIORITY command, because the system
service enables you to set process base priorities dynamically
according to the program's logic. This service has the following
general formats:

MACRO Format

$SETPRI [pidadr], [prcnam], pr i, [prvpr i]

High-Level Language Format

SYS$SETPRI ([pidadr], [prcnam], pri, [prvpri])

The V AX/V~~---~~-1:-~.!!]_----~-~! v i_~_~_§_ __ _R~J~_~..!!_g_~-- _r.1i!JJQ9 l
explanation of the Set Priority system service.

1-11

has a detailed

CHAPTER 2

CONTROLLING THE PROGRAM EXECUTION ENVIRONMENT

The VAX/VMS system gives you considerable control over the execution
context of your applications, provided you have suitable user
privileges. Each application runs in the context of one or more
processes and can control that context in the following ways:

• Create processes (subprocesses or detached processes) to
divide the work into related segments

• Set each process's base priority to
responsiveness

achieve

• Control each process's use of physical memory

real-time

You can use these features to
real-time application receive
memory when they need them.

ensure
adequate

that all components of a
processor time and physical

Process base priority is discussed in Section 1.6. Process creation
and control of physical memory are discussed in this chapter.

The DISPLAY utility allows you to monitor system activity, and thus to
obtain information that can guide you in usinq features discussed in
this chapter. The VAX/VMS System~··· Manag~r's Gui_de__ explains the
functions and operation of the DISPLAY utility.

The Get llob/Process Information ($GET.JP!) system service can also be
used to obtain information about one or more processes. The VAX/VMS
System Services Reference Manual explains the Get Job/Process
Information system service, including the "wild card" process
searching capability.

2.1 PROCESS CREATION

Real-time applications are often divided into a number of programs.
Each program might run concurrently with one or more others, and each
might run conditionally (for example, only when certain events occur).

The VAX/VMS system allows you to create processes to run these
programs. These created processes can be subprocesses or detached
processes, depending on your purpose and user privileges.

You can create either type of process with the Create Process
($CREPRC) system service or with the RUN command, although real-time
applications frequently create subprocesses with the SCREPRC system
service and detached processes with the RUN command (often within a
command procedure at the start of the application). Section 2.1.3
discusses the $CREPRC system service, and Section 2.1.4 discusses the
RUN (Process) command.

2-1

CONTROLLING THE PROGRAM EXECUTION ENVIRONMENT

2.1.1 Subprocesses and Detached Processes

Subprocesses and detached processes are treated the same by the
scheduling and swapping components of the operating system. For
example, each process of either type has a base priority that the
system uses in scheduling processes, allocating CPU time, and deciding
which process to swap out if necessary. Both types of process are
shown in the displays generated by the SHOW SYSTEM command and the
DISPLAY utility.

Subprocesses and detached processes differ, however, in their degree
of independence from their creator and in the privileges and quotas
required to use them. Table 2-1 summarizes the major differences
between a subprocess and a detached process.

Table 2-1
Subprocess versus Detached Process

-----------·------·----

Subprocess

1. Shares creator's resources
and its deductible and
pooled quotas

2. Must terminate before its
creator; automatically
terminated when its
creator is deleted

3. No privilege required to
create a subprocess

4. Number of subprocesses
is limited by creator's
PRCLM quota

5. Can access devices allocated
by its creator

Detached Process

1. Has own
quotas

resources and

2. Termination is independent
of its creator's

3. DETACH privilege
to create a
process

required
detached

4. Number of detached proces
ses is limited only by the
system's maximum total
process count (SYSGEN
parameter MAXPROCESSCNT)

5. Must allocate devices it
needs to reserve for
exclusive use

A process does not need GROUP privileqe to use system services or
commands that affect any subprocess it creates (for example, to change
the subprocess's priority). A process does need GROUP or WORLD
privilege, however, to affect a detached process (GROUP if the
detached process is in its group, otherwise WORLD).

2-2

CONTROLLING THE PROGRAM EXECUTION ENVIRONMENT

2.1.2 Real-Time Uses of Detached Processes and Subprocesses

Real-time applications often create detached processes to perform
highly privileged functions and subprocesses to perform functions
requiring little or no privilege. Isolating privileged code as a
detached process makes it easier to debug and affords greater
protection for the system as a whole. Once it is created, a detached
process is more insulated than a subprocess from any errors its
creator may incur, because a detached process terminates independently
of its creator's termination, whereas a subprocess is automatically
deleted under the following conditions:

• If the subprocess was created by a process that is using the
command interpreter (for example, by the process created for
you at login time), the subprocess is deleted when its
creating process logs out.

• If the subprocess was created by a process that is not using
the command interpreter (for example, by another subprocess or
a detached process executing a single image), that subprocess
is deleted when its creator is deleted.

A process can explicitly delete itself or, if it has suitable
privilege, another process by using the Delete Process ($DELPRC)
system service. The WORLD privilege allows you to delete any process
in the system; the GROUP privilege allows you to delete other
processes in your own group.

2.1.3 Create Process System Service

The Create Process ($CREPRC) system service gives you program-level
control over the creation of subprocesses and detached processes. For
example, you might simply create a process at the beginning of the
program and control that created process's activity through the
hibernation or suspension mechanisms (see Chapter 3). On the other
hand, you might need to test values within your program or wait for
some external event before creating another process. In any case,
process creation is relatively ti~e consuming, and therefore should be
used prudently in real-time programs •.

The Create Process system service has the following general formats:

MACRO Format

$CREPRC [pidadr], [image], [input], [output], [error],
[prvadr], [quota], [prcnam], [baspri], [uic],
[mbxun t] , [s tsflg]

High-Level Language Format

SYS$CREPRC ([pidadr], [image], [input], [output], [error],
[prvadr], [quota], [prcnam], [baspri], [uic],
[mbxunt], [stsflg])

The following arguments to $CREPRC are of special interest to
real-time users:

• UIC - Determines whether the created process is a
(no UIC specified -- UIC same as creator) or
process (UIC specified).

2-3

subprocess
a detached

CONTROLLING THE PROGRAM EXECUTION ENVIRONMENT

• PRVADR - Allows you to specify privileges for the created
process. To give the created process any privilege the
creator does not have, you must have the SETPRV privilege.

• BASPRI - Allows you to specify a base priority for the created
process. To assign the created process a base priority higher
than the creator's own, you must have the ALTPRI privilege.

• STSFLG - Allows you to specify various options for the created
process.

For a detailed explanation of the Create Process system service, see
the VAX/Vf'1.§_§_y~_:t._~!fl Send ces Re~ere__nce ~-~!1~-~-~.

2.1.4 RUN (Process) Command

The RUN command creates a subprocess or detached process to run a
specified program if you enter any of the process-related command
qualifiers (that is, any qualifier other than /DEBUG or /NODEBUG).
The general format for the RUN command to create a subprocess or
detached process is listed as follows:

$ RUN/command-qualifiers program-file-spec

Each of the process-related command qualifiers is optional, although
you must enter at least one. The presence of the /UIC command
qualifier determines whether the created process is a detached process
(qualifier specified) or a subprocess (qualifier not specified). The
process-related command qualifiers and their default values are listed
below.

Qualifier

/[NO]ACCOUNTING
/AST LIMIT=quota
/[NOTAU+i'HORIZE
/BUFFER LIMIT=quota
/DELAY=delta time
/ERROR=file-spec
/FILE LIMIT=quota
/INPUT=file-spec
/INTERVAL=delta-time
/IO BUFFERED=quota
/IO-DIRECT=quota
/MAILBOX=unit
/MAXIMUM WORKING SET=quota
/OUTPUT=file-spec
/PRIORITY=n
/PRIVILEGES=privilege-list
/PROCESS NAME=process-name
/QUEUE LIMIT=quota
/[NO]RESOURCE WAIT
/SCHEDULE=absolute-time
/[NO]SERVICE FAILURE
/SUBPROCESS LIMIT=quota
/[NO]SWAPPING
/TIME LIMIT=limit
/UIC=uic
/WORKING_SET=default

Default (if applicable)

/ACCOUNTING
10 (outstanding ASTs)

10240 (bytes)

20 (files)

~ (outstanding requests)
fi (outstanding requests)

200 (pages)

(same as creator)
(same as creator)
(null name)
8 (outstanding timer que~e requests)
/RESOURCE_WAIT

/NOSERVICE FAILURE
8 (subprocesses)
/SWAPPING
O (that is, no limit)

200 (pages)

2-4

CONTROLLING THE PROGRAM EXECUTION ENVIRONMENT

The /UIC, /PRIVILEGES, and /PRIORITY qualifiers serve the same
purposes as the UIC, PRVADR, and BASPRI arguments to the Create
Process system service (see Section 2.1.3).

The VAX/VMS Command Language User's Guide has a complete explanation
of the RUN command and the process-related qualifiers.

You may want to include RUN commands for process creation in command
procedures. The following example shows a command procedure that
prompts for information and then creates a subprocess.

$INQUIRE DEVICE "Device name" !Specify input device
$INQUIRE TEST "Test name" !Specify program to be run
$INQUIRE INTERVAL "How often should it be reported? (O:mm:ss)"
$RUN/PROCESS NAME='TEST'/PRIORITY=l9/INPUT='DEVICE'/OUTPUT=OPA0:-

/INTERVAL='INTERVAL' 'TEST'

2.2 PHYSICAL MEMORY CONTROL

Physical memory is one of the ~ost valuable system resources to a
real-time user. Programs execute faster when the code and data they
need at any given instant are already in memory and do not need to be
retrieved from disk storage.

In brief, VAX/VMS memory management operates in the following way.
The pages of a process that are currently in physical memory (usually
a subset of all the process's pages) constitute that process's working
set. The maximum number of physical memory page frames a process can
occupy is determined by its current working set limit. When the
number of page frames in use reaches the working set limit and the
process needs additional pages, the system pages the process against
itself. That is, the system releases pages in the working set
(placing each one on the free page list or the modified page list) and
then reads the pages it needs from disk or finds them in memory (on
the free page list or the modified page list). If and when the
working set requirements of all processes in the balance set (that is,
processes currently in memory) exceed the available physical memory,
one or more lower-priority processes are swapped out (temporarily
removed from the balance set) and their page frames are made available
for use by other processes. For more detailed information on VAX/VMS
memory management, see the VAX/VMS Summary Description apd Glossary or
the VAX-11/780 Technical Summa_I..Y. For information on parameters to
the SYSGEN utility affecting memory management, see the VAX/VMS System
Manager's Guide.

Several system services allow you to control the operating system's
allocation of physical memory to the process. The following services
are most pertinent to real-time manipulation of physical memory:

• Adjust Working Set Limit ($ADJWSL)

• Lock Pages in Memory ($LCKPAG)

• Lock Pages in Working Set {$LKWSET)

• Set Process Swap Mode {$SETSWM)

The subsections that follow give brief descriptions and general
formats for these services. For more detailed information, see the
VAX/VMS System Services Reference Manual.

2-5

CONTROLLING THE PROGRAM EXECUTION ENVIRONMENT

2.2.1 Adjusting the Working Set Limit ($ADJWSL)

The Adjust Working Set Limit ($ADJWSL) system service allows you to
increase or decrease the maximum number of physical memory pages your
process can occupy. You can also use this system service to find your
current working set limit. (You can change and find out your working
set limit at the command level with the SET WORKING SET and SHOW
WORKING SET commands.)

The VAX/VMS system normally performs automatic working set adjustment.
However, automatic working set adjustment is inhibited for all
processes if you specified WSINC=O to the SYSGEN utility, and
automatic working set adjustment is inhibited for a given process if
the process has a real-time priority (Hi through 31) or if the
process's working set default value is equal to its working set quota
(maximum) value. The VAX/VMS System Manager's . Guide explains
automatic working set adjustment a-nd the--SYSGEN parameters-that affect
its operation.

One of the simplest forms of memory management is to change the
working set limit at different points in your program. Large programs
usually proceed in phases; for example, a program might perform a
heavily I/0-bound setup phase, then settle into localized
compute-bound processing, then do discontiguous array processing, and
so forth. If your code has definable phases, you may want to call the
$ADJWSL system service at logical points to increase or decrease the
working set limit.

Another use of this system service is to prevent the excessive paging
activity that occurs when a program runs in too small a working set.

You should avoid excessive use of this system service, however,
because it incurs overhead for your process and perhaps for other
processes in the system.

No user privilege is required to use the $ADJWSL system service.
However, you cannot set a process's working set limit lower than the
system's minimum limit (determined by the SYSGEN parameter MINWSCNT)
or higher than the process's maximum working set size (determined by
its WSQUOTA entry in the UAF or specified when the process was
created).

The Adjust Working Set Limit system service has the following general
formats:

MACRO Format

$ADJWSL [pagcnt], [wsetlm]

High-Level Language Format

SYS$ADJWSL([pagcnt], [wsetlm))

2.2.2 Keeping Pages in the Working Set ($LKWSET)

The Lock Pages in Working Set ($LKWSET) system service allows you to
specify that a page or range of pages should not be replaced in the
working set, perhaps because these pages are heavily used or because
the code in them must gain control and execute quickly whenever it is
needed. If the specified pages are not already in the working set,
they are brought into memory if necessary and locked in the working
set. Pages locked in the working set remain so until they are
unlocked by the Unlock Pages from Working Set ($ULWSET) system
service.

2-fi

CONTROLLING THE PROGRAM EXECUTION ENVIRONMENT

Pages locked in the working set can be removed from physical memory,
however, if their process is swapped out (that is, if the process's
working set is removed from the balance set). To prevent this from
happening, use the Set Process Swap Mode ($SETSWM) system service to
disable swapping (see Section 2.2.4).

Locking pages in the working set is normally sufficient to guarantee
that their contents are accessible, especially if swapping is disabled
for the process. However, in a few cases you may need to lock the
pages in memory using the Lock Pages in Memory ($LCKPAG) system
service (see Section 2.2.3), to guarantee that the physical location
of the contents never changes. These cases include the following:

• The process must lock pages for a routine that will execute at
an elevated interrupt priority level (IPL). Section 4.n.l
discusses interrupt priority levels.

• The process is not using the VAX/VMS I/O system and must lock
pages for direct I/O operations.

If you use the $LKWSET system service, be careful not to lock so many
pages that the remaining pages in the working set incur too many page
faults. If excessive page faulting occurs, you may need to increase
the working set limit with the Adjust Working Set Limit ($ADJWSL)
service (see Section 2.2.1).

The Lock Pages in Working Set system service has the following general
formats:

MACRO Format

$LKWSET inadr, [retadr], [acmode]

High-Level Language Format

SYS$LKWSET(inadr, [retadr], [acmode])

The general format of the Unlock Pages from Working Set system service
is the same as the above, except that SULWSET or SYS$ULWSET is used
instead of $LKWSET or SYS$LKWSET.

2.2.3 Keeping Pages in Memory ($LCKPAG)

The Lock Pages in Memory ($LCKPAG) system service locks a virtual page
or range of virtual pages in physical memory. If the specified
virtual pages are not already in memory, they are brought into the
working set and then locked in memory. Locked pages are not available
for page replacement until they are unlocked by the Unlock Pages from
Memory ($ULKPAG) system service or until the program terminates
(locked pages are unlocked automatically at image exit). You must
have the PSWAPM user privilege to lock pages in memory.

It is usually not necessary to lock pages in memory; locking them in
the working set is often sufficient. (Section 2.2.2 discusses cases
in which pages should be locked in memory.) Use caution, however,
because locking any pages in memory reduces by that number the pages
that VAX/VMS memory management can allocate among other processes in
the system.

2-7

CONTROLLING THE PROGRAM EXECUTION ENVIRONMENT

Locked pages remain in memory even if their process is swapped out.
To prevent the process from being swapped out, use the Set Process
Swap Mode {$SETSWM) system service to disable swapping (see Section
2.2.4).

The Lock Pages in Memory system service has the following general
formats:

MACRO Format

$LCKPAG inadr, [retadr], [acmode]

High-Level Language Format

SYS$LCKPAG{inadr, [retadr], [acmode])

The general format of the Unlock Pages in Memory system service is the
same as the above, except that $ULKPAG or SYS$ULKPAG is used instead
of $LCKPAG or SYSSLCKPAG.

2.2.4 Keeping the Process in Memory ($SETSWM)

The Set Process Swap Mode ($SETSWN) system service enables you to
prevent your process from being swapped out of memory or to allow it
to be swapped out of memory. You must have the PSWAPM user privilege
to alter process swap mode.

An example of real-time use of setting process swap mode is a process
running an image that must respond quickly to some external event
(such as an interrupt), but has nothing to do until the event occurs.
After it is activated, the image can lock critical pages in its
working set (see Section 2.2.2), disable swapping for the process, and
hibernate. (It is important to disable swapping, because being in a
hibernate state normally makes a process a good candidate for
outswapping.) When the event occurs, an AST service routine (see
Section 3.3) can awaken the process.

The Set Process Swap Mode system service has the following general
formats:

MACRO Format

$SETSWM [swpflg]

High-Level Language Format

SYS$SETSMW([swpflg])

The SWPFLG argument can be a value of 0 (the default, to allow
swapping) or 1 (to inhibit swapping).

2-8

CHAPTER 3

COMMUNICATING AND SHARING BETWEEN PROCESSES

Real-time applications often consist of related programs running as
several processes. These processes may be detached processes, or they
may be a detached process with one or more subprocesses. These
processes usually need to communicate with each other and to share
common code or data. Interprocess communication often consists of
event notification (for example, that an I/O operation is complete),
although it can also involve transmission of messages or other data.
Processes within the application can synchronize their operations
through effective communication. Processes can also share code or
data to reduce the application's physical memory requirements.

Table 3-1 lists several VAX/VMS features that can be used to
communicate between user processes, synchronize their operations, or
share code and data.

Table 3-1
Features for Communication, Synchronization, and Sharing

Feature

Common event flags

Mailboxes

AST service routines

Hibernation and
suspension

Global sections

Shareable images

Main Use

Notify process of event completion;
synchronize access to a resource

Pass messages or other data
processes

between

Execute desired routine in response to an
external event, regardless of when the
event occurs

Activate subprocesses and detached pro
cesses only when they are needed

Share data or code

Share data or code

Each feature listed in Table 3-1 is often used with one or more other
features. For example, an AST service routine executing at I/O
completion might write a message to a mailbox to be read by another
process or might set an event flag for which another process is
waiting.

3-1

COMMUNICATING AND SHARING BETWEEN PROCESSES

3.1 COMMON EVENT FLAGS

Common event flags provide a simple and
notificAtion. Cooperating processes
flags in a common event flag cluster.

convenient means for event
can set, clear, and wait for

Common event flags can be used to synchronize access to a resource by
multiple processes. Appendix A discusses and illustrates the use of a
common event flag as a mutual exclusion (mutex) semaphore to lock a
resource.

Event flags are status-posting bits maintained by VAX/VMS for general
programming use. Each process can manipulate up to 128 event flags,
numbered 0 through 127. The event flags are qrouped into four
clusters of 32 flag bits each; however, whenever you set, clear, or
wait for an event flaq, you specify the flag number, not a cluster
number or name. (The significance of the cluster name for common
event flag clusters is discussed later in this section.)

The first two clusters, flags O through 31 and 32 through n3, are
called local event flags because they are available only to a single
process. Two additional clusters, flags n4 through 95 and 9n through
127, are called common event flag clusters because they can be used by
cooperating processes. Table 3-2 summarizes local and common event
flag clusters.

Event
Flag Numbers

0-23
32-63

64-95
96-127

Table 3-2
Summary of Event Flag Clusters

Description

Local event flag
clusters for
general use by
a process

Common event
flag clusters

Restriction

Event flags 24
throuqh 31 are
reserved for
system use

Must be associated
before use

Common event flag clusters are either temporary or permanent
(depending on the PERM argument value in the Associate Common Event
Flag Cluster system service call).

Temporary common event flag clusters:

• Do not require any special user privilege, but do use part of
the calling process's timer queue entries (TQELM) quota.

• Are deleted when all processes associated with the cluster
have disassociated from it. A process can disassociate
explicitly using the Disassociate Common Event Flaq Cluster
($DACEFC) service, or it can disassociate implicitly at image
exit.

3-2

COMMUNICATING AND SHARING BETWEEN PROCESSES

Permanent common event flag clusters:

• Require the creating process to have the
privilege.

PRMCEB user

• Continue to exist until they are explicitly marked for
deletion with the Delete Common Event Flag Cluster ($DLCEFC)
service and no processes are associated with them.

This section will present general formats and
pertinent to real-time applications. Chapter
considerations for common event flag clusters in
memory.

focus on aspects
5 discusses special
shared (multiport)

The VAX/VMS System Services Reference Manual has a chapter on event
flag usage and detailed description of event flag services.

3.1.l Creating and Associating with Clusters

To create or associate with a common event flag cluster, use the
Associate Common Event Flag Cluster ($ASCEFC) system service, which
has the following general formats:

MACRO Format

$ASCEFC efn, name, [prot], [perm]

High-Level Language Format

SYS$ASCEFC(efn,name, (prot], [perm])

The first process specifying a given name creates the cluster and
associates with it; any other processes specifying this name
associate with the existing cluster. All processes associating with
the same common event flag cluster must specify the same name, but
they do not have to specify event flag numbers in the same 32-bit
grouping. You can allow any other process in your group to associate
with the cluster (the default) or restrict association to processes
with your UIC (by specifying a PROT argument value of 1). You can
make the cluster temporary (the default) or permanent (by specifying a
PERM argument value of 1).

3.1.2 Setting Event Flags

You can set event flags in a variety of ways. The following system
services accept an optional EFN argument, which specifies an event
flag to be set when the operation is completed:

• Queue I/O Request ($QIO and $QIOW forms, $INPUT and $OUTPUT
macros)

e Set Timer ($SETIMR)

• Update Section File on Disk ($UPDSEC)

• Get Job/Process Information ($GETJPI)

Note that each of the above system services clears the specified event
flag before it begins the requested operation.

3-3

COMMUNICATING AND SHARING BETWEEN PROCESSES

You can also set an event flag using the Set Event Flag ($SETEF)
system service. To clear an event flag, use the Clear Event Flag
($CLREF) system service. Both the $SETEF and $CLREF system services
accept only one argument: EFN, a value indicating the flag to be set·
or cleared.

3.1.3 Waiting for Event Flags

If a process needs to be activated only in response to one or more
events, you can use one of the following system services to pl~ce the
process in a wait state until it must execute:

• $WAITFR - The Wait for Single Event Flag system service places
the process in a wait state until a single specified event
flag has been set.

• $WFLOR - The Wait for Logical OR of Event Flags system service
places the process in a wait state until any one of a
specified group of event flags has been set.

• $WFLAND - The Wait for Logical AND of Event Flags system
service places the process in a wait state until all of a
specified group of event flags have been set.

During this wait state the process can still receive asynchronous
system trap (AST) interrupts, but after the AST service routine
completes, the process automatically reexecutes the "Wait for ••• "
service call.

After the flag or flags have been set and the process has responded to
the event(s), the process can reenter the wait state by looping back
to the appropriate system service call.

3.2 MAILBOXES

A mailbox is a record-oriented virtual I/O device that cooperating
processes can use to send messages, status information, return codes;
or other data to each other. A mailbox must be created using the
Create Mailbox and Assign Channel ($CREMBX) system service. Any other
process that needs to use the mailbox simply assiqns an I/O channel to
the mailbox using the $CREMBX system service or the Assign I/O Channel
($ASSIGN) system service. Actual data transfer (reading and writing)
involving the mailbox is accomplished by using I/O system services,
RMS, or high-level language I/O statements.

Mailboxes are suited to sending messages that cannot be conveyed by
the simpler and faster operations of setting and clearing event flags.
Mailboxes can hold multiple messages, which are read on a first-in
first-out (FIFO) basis, whereas with an event flag you cannot
determine from a flag's current status how many times it has been set
or cleared. Some overhead is involved, however, with the use of
mailboxes. Therefore, to pass and read messages faster you can use a
global section (see Section 3.5) to hold the messages and common event
flags to notify processes that messages are ready to be read.

3-4

COMMUNICATING AND SHARING BETWEEN PROCESSES

A special use of a mailbox is as a process termination mailbox, which
receives a process termination message for the creating process when a
subprocess or detached process is deleted. Process termination
mailboxes are discussed in the VAX/VMS System Services Reference
Manual.

Mailboxes are either temporary or permanent. Table 3-3 contrasts the
two types.

Table 3-3
Temporary versus Permanent Mailboxes

Temporary

1. TMPMBX user privilege
required to create

2. Creating process's buffered
I/O byte count (BYTLM)
quota is reduced (see
Section 3.2.1)

3. Logical name entered in
group logical name table

4. Automatically deleted when
no more channels are
assigned to it

Permanent

1. PRMMBX user privilege
required to create

2. No process quotas affected

3. Logical name
system logical

entered in
name tnble

4. Must be explicitly marked
for deletion with the
Delete Mailbox ($DELMBX)
service

Chapter 5 discusses mailboxes in shared (multiport) memory. The
chapter on the mailbox driver in the VAX/VMS I/O Us~!._~E._~G_uid~ contains
information on the use of mailboxes and a programming example.

3.2.1 Creating a Mailbox

The Create Mailbox and Assign Channel system service creates a mailbox
or, if the specified mailbox already exists, assigns a channel to it.
This service has the following general formats:

MACRO Format

$CREMBX [prmflg], ch an, [maxmsg], [bufquo], [promsk],
[acmode], [lognam l

High-Level Language Format

SYS$CREMBX([prmflg] ,chan, [maxmsg], [bufquo], [promskl,
[acmode] , [lognam])

The PRMFLG argument determines whether the mailbox is temporary (the
default) or permanent (value of 1). If the mailbox is temporary, the
process's buffered I/O byte count (BYTLM) quota is reduced by the sum
of the following until the mailbox is deleted:

• The number of bytes of system dynamic memory that can be used
to buffer messages sent to the mailbox

• The size of the mailbox unit control block

3-5

COMMUNICATING AND SHARING BETWEEN PROCESSES

The PROMSK argument allows you to restrict access to the mailbox by
setting specific bits in a protection mask. This mask contains four
4-bit fields:

15 11 7 3 0

ERLD J GR~UP I OW~E~~TEM I
The bits are read from right to left in each field and indicate, when
they are set, that read, write, execute, and delete acce~s (in that
order) are denied to the particular category of user. Only read and
write access, however, are meaningful for mailbox protection. The
default setting of 0 (all bits cleared) indicates that all user~ have
read and write access to the mailbox.

The ACMODE argument allows a process executing at a more privileged
access mode to associate a less privileged access mode with the
channel assigned to the mailbox. (Kernel mode is the highest; user
mode is the lowest.) The access modes and their corresponding values
are listed below. The symbolic names for the values are defined by
the $PSLDEF macro.

Access Mode Value Symbolic Name

Kernel 0 PSL$C KERNEL

Executive 1 PSL$C EXEC

Supervisor 2 PSL$C SUPER

User 3 PSL$C USER

Any ACMODE value you specify is maximized with your current access
mode; that is, the channel is associated with the less privileged of
the specified mode and your current mode.

The LOGNAM argument allows you to specify the logical name associated
with the mailbox. Processes using a mailbox must specify the same
logical name to identify that mailbox. When the mailbox is created,
the logical name is entered in the group logical name table if the
mailbox is temporary and in the system logical name table if the
mailbox is permanent.

3.2.2 Other Mailbox Services

To use an existing mailbox, your process must assign it an I/O channel
using the Create Mailbox system service or the Assign I/O Channel
system service. (A high-level language program, however, need only
issue an OPEN statement specifying the logical name of the mailbox.)
The Assign I/O Channel system service has the following general
formats:

MACRO Format

$ASSIGN devnam,chan, [acmode), [mbxnam]

High-Level Language Format

SYS $ASSIGN (devnam, ch an, [a cmode] , [mbxnam))

3-6

COMMUNICATING AND SHARING BETWEEN PROCESSES

The DEVNAM argument must specify the mailbox logical name. The ACMODE
argument has the same meaning as in the Create Mailbox service. The
VAX{yMe__~-~IJl _ _§_e.__r._yl_c:_~§ __ _B.ef ~renc_~_ Manual describes the Assign I/O
Channel system service in detail.

To delete a permanent mailbox, you must mark it for deletion using the
Delete Mailbox ($DELMBX) system service. Actual deletion occurs,
however, when all processes have deassigned the I/O channels
connecting them to the mailbox or closed the file in a high-level
language program. To deassign the I/O channel, use the Deassign I/O
Channel ($DASSGN) system service.

3.2.3 Example Using a Mailbox

Figure 3-1 is a simple illustration of cooperating processes using a
mailbox.

PROGRAM MASTERPROC
INTEGER*4 SYS$CREMBX,SYS$CREPRC,STATUS,CHAN

c-- Create a mailbox and call it BOX'

0 STATUS= SYS$CREMBX(,CHAN,,,,, 'MAILBOX')
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

C-- Create a subprocess running program 'SUBPROC' and assign its input to be
C-- the mailbox and its output to be our terminal

f} STATUS= SYS$CREPRC(,'SUBPROC' ,'MAILBOX' ,'TTDh:' ,,,,,%VAL(2) ,,,)
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

C-- Send the subprocess a message (in this case the number 12345)

Q OPEN(UNIT=l,NAME='MAILBOX',STATUS='NEW')
WRITE(l,*) 12345
END

PROGRAM SUBPROC

c-- Read the message from the mailbox and, in this case, just display it

0 ACCEPT *,MESSAGE
TYPE 10,MESSAGE

10 FORMAT(' The message was: ',IS)
END

Figure 3-1 Using a Mailbox to Communicate

Notes on Figure 3-1:

0 One process creates a mailbox.

8 The process creates a subprocess.

8 The creating process writes a message to the mailbox.

e The subprocess reads the message.

3-7

COMMUNICATING AND SHARING BETWEEN PROCESSES

3.3 ASYNCHRONOUS SYSTEM TRAP SERVICE ROUTINES

An asynchronous system trap (AST) is a software-simulated interrupt
used for event notification within a process. An AST service routine
is a user-written routine that receives control when an AST is
"delivered" after being queued to the process. The AST is delivered
to the process (that is, interrupts the process execution flow) as
soon as no higher-priority process is executable, unless specific
conditions temporarily prevent it from being delivered (see Section
3.3.2). When the AST service routine completes, the current image
continues executing from the point at which it was interrupted. ASTs
are thus a mechanism to allow asynchronous operations.

3.3.1 System Services with AST Service Routine Arguments

Several system services allow you to specify an AST service routine to
be executed when the requested operation is completed. The call to
the service initiates the request, and an AST is queued to the process
when the request is completed. These services are as follows:

• Queue I/O Request ($QIO)

• Update Section File on Disk ($UPDSEC)

• Get Job/Process Information ($GETJPI)

The Set Timer (SSETIMR) system service allows you to specify (1) an
absolute or delta time for an AST to be queued to the process, and (2)
the address of an AST service routine.

The Set Power Recovery AST ($SETPRA) system service specifies the
address of an AST service routine to receive control after a power
recovery is detected.

The Declare AST ($DCLAST) system service allows a process to queue An
AST for itself at the same or a less privileged access mode and to
specify an AST service routine. This service is particularly useful
for testing an AST service routine and for initiating actions that
must be performed in an AST service routine.

The VAX/VMS System Services Reference Manual contains a chapter on AST
services, including. a aTscussTon on-wr1Trng-an AST service routine.

3.3.2 Access Modes and AST Delivery

ASTs are queued for a process by access mode. An AST for a more
privileged access mode always takes precedence over one for a less
privileged access mode; that is, an AST will interrupt any AST
service routine executing at a less privileged mode. Normally, AST
service routines that you specify execute at user access mode;
however, the process can receive ASTs from more privileged access
modes (for example, a kernel-mode AST at I/O completion).

Figure 3-2 shows a program interrupted by a user-mode AST, and the
user-mode AST service routine interrupted by a kernel-mode AST.

3-8

COMMUNICATING AND SHARING BETWEEN PROCESSES

Program

Legend:

j User-mode AST service
AST routine

'~: '-~ -----i Kerr;:~;ode AS~:~~::~:~~:tine

Execution
flow

',, !~~-=-------!
......

'-...' '- Return_ - - ' - Return

Transfer of
control

--~

Figure 3-2 Access Modes and AST Delivery

An AST cannot be delivered to a process, however, while any of the
following conditions are true:

• An AST service routine is currently executing at the same or a
more privileged access mode.

• The current image is executing at a more privileged access
mode than the mode for which the AST is declared.

• You have explicitly disabled AST delivery using the Set AST
Enable ($SETAST) system service.

• The process is suspended (see Section 3.4).

3.4 HIBERNATION AND SUSPENSION

Hibernation and suspension are two synchronization mechanisms that
allow a process to control when it or another process becomes active.
Hibernation and suspension both temporarily halt the execution of a
process; however, there are differences in how the mechanisms
operate. Table 3-4 contrasts hibernation and suspension.

3-9

COMMUNICATING AND SHARING BETWEEN PROCESSES

Table 3-4
Hibernation versus Suspension

------··------·------
Hibernation Suspension

1. Process can cause only
itself to hibernate

2. Interruptible; ASTs can
be delivered to the process

3. Reversed by $WAKE system
service

4. Process can wake itself or
be awakened by another process

5. Process can schedule wakeup at
absolute time or fixed time
interval ($SCHDWK service)

6. Hibernate/wake complete
quickly and require
little system overhead

l. Process
itself
process,
privilege

can suspend
or another
depending on

2. Not interruptible; ASTs
can be queued but not
delivered

3. Reversed by $RESUME
system service

4. Process cannot cause
itself to resume;
another process must
cause resumption

5. Process cannot schedule
resumption

n. $SUSPEND service uses
system dynamic memory;
resumption takes longer

The next two subsections provide coding examples illustrating two
common uses of hibernate/wake:

• Activating a process as needed

• Activating a process at fixed intervals

Note that in both examples the process to be awakened is identified by
process identification number rather than by process name. Either
method is acceptable; however, when a process is identified by
process identification number, the system service executes slightly
faster, because it does not have to search the process name table.

3.4.l Example 1: Wakeups as Needed

PROCESSl creates PROCESS2 as a subprocess or detached process, but
wants the created process to run only when certain events occur or
certain conditions are true. Therefore, PROCESSl sets bit 5 in the
STSFLG argument to the Create Process system service call, causing
PROCESS2 to hibernate immediately after it is created. PROCESS2 is
activated only when PROCESSl so requests, and PROCESS2 returns to
hibernation immediately after it does whatever the specific
application requires (for example, writinq information to a mailbox
used by both processes).

3-10

COMMUNICATING AND SHARING BETWEEN PROCESSES

PROCESS 1 Wakes PROCESS2 whenever necessary

PROCESS2 ID: .BLKL l ;RECEIVE ID OF CREATED PROCESS
PROCESS2-NAME: .ASCID /PROCESS2/ ;NAME OF CREATED PROCESS

PROCESS2

$CREPRC S PIDADR=PROCESS2_ID,- ;CREATE PROCESS2

BSBW

$WAKE S
BSB~

$WAKE S
BSBW

PCRNAM=PROCESS2 NAME,- ;SPECIFY NAME
STSFLG=#ABlOOOO~- ;PROCESS2 STARTS IN HIBERNATION

; (OTHER ARGUMENTS, AS NEEDED)

ERROR ;BRANCH TO ERROR-CHECKING ROUTINE

P IDADR=PROCESS 2 ID ; WAKE PROCP.SS 2
ERROR ;BRANCH TO ERROR-CHECKING ROUTINE

PIDADR=PROCESS2 ID ;WAKE PROCESS2
ERROR - ;BRANCH TO ERROR-CHECKING ROUTINE

Awakens, performs functions, then goes back to sleep

.ENTRY START,O ;IMAGE ENTRY POINT & MASK

; (PERFORM FUNCTIONS)

RET ;BACK TO HIBERNATION

3.4.2 Example 2: Wakeups at Fixed Intervals

PROCESSl, a process with a priority in the timesharinq range, creates
PROCESS2 as a subprocess or detached process with a real-time base
priority. PROCESS2 will run only at a fixed interval, in this case
every hour, although its priority helps to ensure that when it does
run it will run without interruption.

PROCESS2 hibernates immediately after it is created. PROCESSl used
the Schedule Wakeup ($SCHDWK) system service to schedule a wakeup for
PROCESS2 in one hour (DAYTIM argument) and every hour thereafter
(REPTIM argument). Wh~n PROCESS2 is activated, it performs its tasks
and returns to a state of hibernation.

3-11

COMMUNICATING AND SHARING BETWEEN PROCESSES

PROCESS! Process with timesharing priority

PROCESS2 ID: .BLKL 1 ;RECEIVE ID OF CREATED PROCESS
PROCESS2-NAME: .ASCID /PROCESS2/ ;NAME OF CREATED PROCESS
AlHOUR: :ASCID
BlHOUR: .BLKQ

/0 01:00:00.00/ ;ONE HOUR (DELTA TIME) IN ASCII
1 ;QUADWORD TO HOLD BINARY TIME VALUE

PROCESS2

SLEEP:

.
;CREATE PROCESS2 $CREPRC S PIDADR=PROCESS2 ID, ••• -

,PCRNAM:PROCESS2 NAME,
BASPRI=#l7, ••• - ;REAL-TIME PRIORITY

;BRANCH TO ERROR-CHECKING ROUTINE
;CONVERT TIME TO BINARY

BSBW ERROR
$BINTIM S TIMBUF=AlHOUR,

TIMADR=BlHOUR
BSBW ERROR
$SCHDWK S PIDADR=PROCESS2 ID,

DAYTIM=BlHOUR,-
REPTIM=BlHOUR

;BRANCH TO ERROR-CHECKING ROUTINE
;SCHEDULE WAKEUP FOR PROCESS2

IN ONE HOUR,
AND EVERY HOUR THEREAFTER

;BRANCH TO ERROR-CHECKING ROUTINE BSBW ERROR

; (CONTINUE PROGRAM EXECUTION)

High priority real-time process

.ENTRY START,O
$HIBER S
BSBW ERROR

BRW SLEEP

;IMAGE ENTRY POINT & MASK
;SLEEP TILL NEX~ SCHEDULED ~~KEUP
;BRANCH TO ERROR-CHECKING ROUTINE

; (PERFORM HIGH-PRIORITY TASKS)

;BACK TO SLEEP (FOR ONE HOUR)

A specific application of this example might involve a routine that
needs to run periodically to gather and process status information.
The routine might run for only a very short time, for example, a few
seconds every hour. To prevent the routine from beinq interrupted,
you can assign its process a real-time base priority and use any of
the other methods discussed in Chapter 2.

3.5 GLOBAL SECTIONS

A global section is an area of memory containing data or code that can
be shared by cooperating processes. One process "creates" the
section; subsequent processes establish their right to use the
section by "mapping" to it. The data or code in the section can be
from a disk file (disk file section) or in physical memory or I/O
space (page frame section). This section discusses disk file
sections. Physical page frame sections are treated in Chapter 4 in
the discussion of connecting to an interrupt vector.

3-12

COMMUNICATING AND SHARING BETWEEN PROCESSES

In many real-time applications, such as data acquisition or industrial
process-control, response time is so critical that control variables
and data readings must remain in memory. Frequently, many different
processes must use this data simultaneously. Global sections provide
a convenient mechanism for fast access to the data and for the rapid
passing of data from one process to another.

Global sections can be temporary or permanent. Temporary sections are
deleted when no processes are mapped to them, but permanent sections
must first be explicitly marked for deletion with the Delete Global
Section ($DGBLSC} system service. Most global sections that you
create from within your programs should be temporary, so that the
system resources associated with the section can be freed as soon as
they are no longer needed. Temporary global sections in real-time
applications usually contain data rather than code. Permanent global
sections, on the other hand~ usually contain routines common to
several programs. In fact, most of the permanent global sections in
the system are shareable images installed by the system manager as
known images. (Shareable images are discussed in Section 3.n. The
INSTALL utility is explained in the VAX/VMS_ Syste~~_.91}_9_9er_'s Guide.}

VAX-11 Record Management Services (VAX-11 RMS}, with its file-sharing
capabilities, provides an alternative to global sections in some cases
as a mechanism for sharing disk file data. Each method has its
advantages; however, global sections provide the faster access that
many real-time applications require. Table 3-5 shows the trade-offs
involved in choosing between a global section and VAX-11 RMS for
sharing disk file data.

Table 3-5
Global Sections versus VAX-11 RMS

Global Sections

1. Faster access to data

2. More programming effort
required; user must define
and keep track of service
arguments and other data

3. Greater burden on the
user to protect data
and synchronize access

4. Especially suited for
small files

VAX-11 RMS
----------------~---------!

1. Access to data slowed by
file-system overhead

2. Programming simplified by
VAX-11 RMS or high-level
language macros; most
internal operations and
data structures transparent
to the user

3. Automatic file protection
and synchronization of
access, based on parameters
supplied by user

4. Especially suited for large
files

Chapter 5 discusses qlobal sections in shared (multiport) memory.

3-13

COMMUNICATING AND SHARING BETWEEN PROCESSES

3.5.1 Creating and Mapping a Global Section

The Create and Map Section ($CRMPSC) system service creates a section
or maps to an existing section. The VAX/VMS _§_y§__t~~--S~rvJces Reference
Man_ua.} has a detailed description of this service and a lengthy
discussion of sections in general. The present manual gives only the
general format for calling the service and discusses a few arguments
especially significant to real-time users.

The Create and Map Section system service has the following general
formats:

MACRO Format

$CRMPSC [inadr]; [retadr], [acmode], [flags], [qsdnaml, [ident]
, [relpag], [chan], [pagcnt], [vbnJ, [prot], [pfc]

High-Level Language Format

SYS$CRMPSC ([inadr], [retadr], [acmode], [flags], [gsdnam), [ident]
, [relpag], [chan], [pagcnt], [vbn], [prot], [pfc])

The FLAGS argument specifies a mask defining the section type and
characteristics. This mask is the logical OR of the flag bits you
want to set. (The $SECDEF macro defines the symbolic names for the
flag bits in the mask.) To specify a global section, you must set the
SEC$M GBL flag bit. You can set additional flag bits as needed. The
flag -bit meanings and the default values they override are listed
below.

Flag

SEC$M GBL

SEC$M CRF

SEC$M DZRO

SEC$M EXPREG

SEC$M WRT

SEC$M PERM

SEC$M PFNMAP

SEC$M SYSGBL

Meaning

Global section

Pages are copy-on-reference

Pages are demand-zero pages

Map into first available
space

Read/write section

Permanent

Physical page frame section

System global section

Default Attribute

Private section

Pages are shared

Pages are not zeroed
when copied

Map into range speci
fied by INADR argument

Read-only section

Temporary

Disk file section

Group global section

The PROT argument specifies a numeric value representing the
protection mask to be applied to the section. To deny read or write
access to the section to one or more types of user, you must specify
the appropriate protection mask. If you do not specify this arqument,
all users have read and write access to the section.

1-14

COMMUNICATING AND SHARING BETWEEN PROCESSES

The protection mask has four 4-bit fields:

15 11 7 3 0

WORLD GROUPENE~~~ST~

Bits are read from right to left in each field and indicate, when they
are set, that read, write, execute, and delete access (in that order)
are denied for that particular category of user. However, the
following considerations apply to any protection mask you specify:

• Only read
protection.

and write access are meaningful for section
Denying execute or delete access has no effect.

• For group global sections the "World" field has no effect,
because only members of the creator's group are permitted to
map to the section. The "World" field does apply, however, to
system global sections.

For example, to allow the owner of a group global section to read and
write to the section but allow other members of the group only to read
the section (that is, to deny them write access), specify a protection
mask of 0200 (hexadecimal).

3.5.2 Other Section-Related System Services

The following system services are often used with global sections:

• Map Global Section
section.

($MGBLSC). Maps an existing global

• Update Section File on Disk ($UPDSEC). Writes the modified
pages of a section back to the disk file. This system service
is especially useful for periodically updating a data base
that is being modified by multiple processes.

• Delete Virtual Address Space ($DEL'l'VA). "Unmaps" a global
section by deleting the process's virtual addresses into which
the section was mapped.

• Delete Global Section ($DGBLSC). Marks a global section for
deletion. Actual deletion occurs when no processes are mapped
to the section.

3.6 SHAREABLE IMAGES

Shareable images can be used to share frequently used code or data
among multiple processes. A shareable image might contain routines
that are common to several programs. If a shareable image is
installed in the system as a permanent global section (as is normally
the case), other programs can share its contents by linking with it.
The benefits of using shareable images include reductions in disk
storage space, physical memory use, and system paqing activity. The
VAX-11 Linker Reference Manual explains the benefits and uses of
shareable images in detail. -

3-15

COMMUNICATING AND SHARING BETWEEN PROCESSES

In the airline reservation example in Chapter 7, the reservation data
base is a shareable image.

To use a shareable image effectively, you must create the shareable
image and then permit other programs to use it.

To create a shareable image, you must perform the following steps:

1. Code the program containing the routine or data to be shared.
Design this program to meet the needs of all other programs
that will be using it (that is, all programs that will be
linked to the shareable image). Follow the programming
conventions discussed in the chapter on shareable images in
the VAX-11 Linker Reference Manual.

-------~--,··--··· '", .. ,~·~-· --------

2. Assemble or compile the program containina the shareable code
or data. For example:

$ MACRO SHCODE

This command generates the object module SHCODE.OBJ in your
default directory (assume that this is DBl: [SMITH] for this
and the remaining steps).

3. Link the object module to produce a shareable image, using
the /SHAREABLE command qualifier. For example:

$ LINK/SHAREABLE SHCODE

This command generates the shareable image SHCODE.EXE in your
default directory.

To permit other programs to use the shareable image, you must perform
the following steps:

1. Create a linker options file. Identify the shareable image
to be used with the /SHAREABLE file qualifier. For example,
create a file named A.OPT containing the following line:

2.

DBl: [SMITH]SHCODE/SHAREABLE

Link each
identifying
qualifier.

program that
the linker

For example:

will use the shareable image,
options file with the /OPTIONS file

$LINK PROGRAMl,A/OPTIONS

This command generates an executable image named PROGRAMl
that is linked with the shareable image SHCODE.

To permit multiple processes to use the same copy of the shareable
image, install it as a known image, using the INSTALL utility. (The
VAX/VMS System Manager's Guide explains the INSTALL utility.) It is
recommencre<r -"th-atyou ____ copy the shareable image file to the directory
identified by the logical name SYS$SHARE (which by default is [SYSLIB]
on the system disk), and then run INSTALL:

$ RUN SYS$SYSTEM:INSTALL
INSTALL>SYS$SHARE:SHCODE/OPEN/SHARED

The example above designates the shareable image as a permanent global
section, that is, a permanently open section potentially available to
all users of the system.

1-10

COMMUNICATING AND SHARING BETWEEN PROCESSES

Note that the VAX/VMS image activator assumes that shareable images
linked with the executable image being run are located in SYS$SHARE.
To have the image activator look for a shareable image in a different
location, define the shareable image file name as a logical name with
the file specification as the equivalence name before running the
executable image. For example:

$ DEFINE SHCODE DBl: [SMITH]SHCODE

3-17

CHAPTER 4

PERFORMING I/O OPERATIONS

A real-time VAX/VMS process can use the VAX/VMS I/O system to perform
I/O operations, or it can bypass most of the I/O system by
manipulating device registers and responding to device interrupts
directly. Before you can optimize I/O operations for a real-time
application, however, you must understand the components that form the
VAX/VMS I/O system and how they interact.

4.1 OVERVIEW OF THE VAX/VMS I/O SYSTEM

The VAX/VMS I/O system has the following major components:

• The Queue I/O Request system service

• Device drivers

• Ancillary control processes (ACPs)

• The I/O posting routine

The following subsections describe the main functions of these
components.

4.1.1 Queue I/O Request System Service

Every I/O request issued by a process under VAX/VMS results directly
or indirectly in the invocation of the Queue I/O Request system
service. For example, both a FORTRAN READ statement and a VAX-11 RMS
$GET request from a VAX-11 MACRO program cause the Queue I/O Request
system service to be called.

You can call the Queue I/O Request system service specifying one of
three types of function code: physical, logical, or virtual. The
service validates the device-independent portions of the I/O request.
The device driver or ancillary control process (ACP) performs any
necessary validation of the device-dependent portions of the I/O
request.

The VAX/VMS I/O User's Guide lists the valid function codes for each
device driver or ACP and provides guidelines for choosing among
function codes when alternatives are available.

4-1

PERFORMING I/O OPERATIONS

4.1.2 Ancillary Control Processes

An ancillary control process (ACP) is a VAX/VMS process that performs
I/O-related functions associated with file structures and protocol,
rather than functions related to the actual transfer of data. VAX/VMS
supplies at least five ACPs:

• Two or more ACPs for Files-11 structured disk devices

• One ACP for ANSI magnetic tapes

• NETACP for network functions

• REMACP for remote terminal I/O functions

The use of ACPs is normally transparent to your programs. VAX-11 RMS
issues the necessary Queue I/O Request system services for virtual
functions on your behalf. You can, however, issue Queue I/O Request
system service calls directly for Files-11 disk and magnetic tape ACPs
to request such functions as the following:

• File creation

• File access

• Reading and writing of virtual blocks

• File deletion

The VAX/":{MS ~l_Q __ User 's Guide describes the use of ACPs by user
processes.

When a user process or VAX-11 RMS issues a Queue I/O Request system
service for an ACP function, the Queue I/O Request system service
passes the request to the appropriate ACP. The ACP processes the
request (if necessary), converts the function from virtual to logical
(if necessary), and queues the request to the appropriate device
driver. The driver performs the transfer, as described in Section
4.1.3.

4.1.3 Device Drivers

Device drivers are responsible for taking the information that the
Queue I/O Request system service provides about an I/O request and
performing the I/O operation. To accomplish these tasks, a driver
contains the following main routines:

• Device activation routine

• Interrupt service routine

• I/0 completion routine

Drivers also contain other routines to handle request validation and
such contingencies as power failure and device timeout, as described
in the VAX[~~~_q_u._!_9_~ __ t:<? Writ i n_g___ a ___ _pe'{!_<::_~~rAv~!:.

4-2

PERFORMING I/O OPERATIONS

The device activation routine obtains the device controller resources
needed to perform the transfer (for example, the controller data
channel), sets up device registers in I/O space, and initiates the
transfer. Once the transfer is initiated, the device activation
routine issues a wait request that temporarily suspends the device
driver.

When the transfer is complete, the device requests an interrupt and
the system activates the driver's interrupt service routine to handle
the interrupt. (Section 4.6 discusses interrupt handling.) In
addition to handling the interrupt, the interrupt service routine may
program the device for another transfer or may activate the I/0
completion routine in the driver to perform device-dependent I/0
completion. The driver's I/O completion routine, in turn, passes
control to the VAX/VMS I/O posting routine.

4.1.4 I/O Posting Routine

Once the
the I/O
consists
request,
queuing a
request.

device driver has finished the device-dependent portions of
request, it calls the I/O posting routine. I/O posting

of completing the device-independent portions of the I/0
setting a designated event flag (flag 0 by default), and
kernel mode AST for the process that initiated the I/0

The next time the system schedules this process for execution, the
kernel mode AST routine executes. This routine completes the I/O
request by performing the following functions:

• If requested, writes the status of the I/O request into a
user-specified I/O status block.

• If requested, queues an AST at the access mode of the Queue
I/O request for the process to execute a user-specified
routine.

• For read requests that were buffered in system space, copies
the data from system space into the user's buffer. Device
drivers determine whether the data is read directly into the
user buffer (direct I/O) or buffered first in system space
(buffered I/O).

The driver's I/O posting routine has a lower priority than the
driver's start I/O routine. Therefore, if a new I/O request is queued
for the device before the existing I/O request is completed, the new
I/O is started. This method of operation keeps the device as busy as
possible.

4.2 USER INTERFACE TO THE I/O SYSTEM

The design of the VAX/VMS I/O system allows user-written programs to
interface with the system at a number of levels:

• VAX-11 Common Run-Time Procedure Library routines

• VAX-11 Record Management Services (VAX-11 RMS)

• Queue I/O Request system service for a device or ACP function

• Connecting to a device interrupt vector

4-3

PERFORMING I/O OPERATIONS

In addition, users can write device drivers to support devices not
supported by VAX/VMS and incorporate those devices into the system.

Programs written in VAX-11 MACRO can interface with the I/O system by
using VAX-11 RMS, by using the Queue I/O Request system service, or by
mapping to I/O space and connecting to a device interrupt vector.
Programs written in a high-level language can interface with the I/O
system using the same methods as a VAX-11 MACRO program, or they can
issue the I/O statements specific to that language. In the latter
case, the program interfaces with the I/O system by means of the
VAX-11 Common Run-Time Procedure Library.

The following steps occur when a high-level lnngunqe program, in this
case VAX-11 FORTRAN, issues a read request under VAX/VMS:

• When the program executes, the read statement results in a
call to the Run-Time Library read procedure to initiate the
read operation. To initiate the read, the procedure issues a
VAX-11 RMS $GET request.

• VAX-11 RMS gains control and, in turn, issues the appropriate
Queue I/O Request system service.

• The Queue I/O Request system service processes the request (as
described in Section 4.1.l) and queues it to the driver or
ACP.

• Once the driver activates the device and completes the I/O
operation, it calls the VAX/VMS I/O posting routine.

• The VAX/VMS I/O posting routine then performs
device-independent I/O completion, returns status to the user
program, and, if requested, queues an AST or sets an event
flag.

A user program can interface with the I/O system at one of several
levels, depending on its requirements. At each level, the user
program makes trade offs between ease of use and execution speed. As
a general rule, the closer to the VAX/VMS executive that a user
program interfaces, the less overhead is involved in the I/O
operation. This manual focuses on the following lower levels of
interface: the Queue I/O Request system service, the Create and Map
Section system service, and the connect-to-interrupt capability.

4.2.l VAX-11 RMS Features of Interest to Real-Time Users

VAX-11 Record Management Services has several features that may permit
certain applications to take advantage of VAX-11 RMS and still meet
their throughput and response requirements. Listed below are
descriptions of these features, with the VAX-11 RMS mechanism
associated with each feature. Complete descriptions of the features
and mechanisms are given in the VAX-11 Record Management Services
Reference Manual.

4-4

Mechanism

$FAB ALQ=quantity

$FAB FAC=BIO

$FAB FOP=CTG

$RAB MBF=buff ers

$RAB ROP=RAH
$RAB ROP=WBH

$RAB MBC=blocks

PERFORMING I/O OPERATIONS

Feature

Preallocation of enough blocks to hold the
entire file. Avoids time-consuming file
extensions and ACP window turns; prevents
discontiguous file extensions.

Block I/O (for $PUT operations).
because no RMS buffer is used.

Faster I/O

Contiguous files. Faster access, especially for
random access and/or files with many segments.

Multibuffering. Improves throughput.

Read-ahead and write-behind. Improve throughput
(done by default by certain high-level language
compilers).

Multiblock I/O. Reduces number of disk accesses
for record operations.

4.3 USING THE QUEUE I/O REQUEST SYSTEM SERVICE

The Queue I/O Request ($QIO) system service gives programmers in any
supported language a low-level, flexible interface with the VAX/VMS
I/O system. You must first assign an I/O channel to the device using
the Assign I/O Channel ($ASSIGN) system service. Your call to the
Queue I/O Request system service must specify this channel and a
function code identifying the operation to be performed. The optional
arguments to the Queue I/O Request service allow you to do the
following:

• Perform asynchronous ($QIO form) or synchronous ($QIOW form)
I/O

• Set an event flag at I/O completion (EFN arqument)

• Receive the final completion status (IOSB argument)

• Specify an AST service routine (ASTADR argument)
executed when the I/O completes and pass a parameter
argument) to that routine

to be
(ASTPRM

• Specify function-specific or device-specific parameters (Pl,
P2, etc.)

There are two forms of this service: Queue I/O Request ($QIO) and
Queue I/O Request and Wait for Event Flag ($QIOW). The $QIO form
returns control to the program immediately after queuing the I/O
request and without waiting for the I/O to be completed; this form
allows your program to perform asynchronous I/O. The SQIOW form waits
until the I/O is completed before returning control to your program.
(The $INPUT and $OUTPUT macros are special forms of $QIOW.)

4-5

PERFORMING I/O OPERATIONS

The Queue I/O Request system service has the following general
formats:

MACRO Format

$QIO[W] [efn] ,chan,func, [iosb], [astadr], [astprm],
[pl] I [p2] I [p3] I [p4] I [p5] I (p~l

High-Level Language Format

SYS$QIO[W] ([efn] ,chan,func, [iosb], [astadr], [astprm),
[plJ, [p2J, [p3J, [p4J, [pSJ, [pnJ)

The VAX/VMS System Services Reference Manual has additional general
informatic)"i1·---on this sysEem service and some examples of its use. The
VAX/VMS I/O User's Guide has specific information and examples of this
system- ser-vTc-e--Ior-ea-ch-of the device drivers it discusses.

4.4 INTERRUPT-GENERATED I/O

A process with suitable privileges can connect to a device interrupt
vector and/or map the processor's I/O space into process virtual
address space. Connecting to a device interrupt vector allows your
process to respond to interrupts from the device with minimal
overhead. Mapping processor I/O space allows your process to access
device registers from the main program or from an AST service routine.

A process normally uses these features for devices that do not have
VAX/VMS drivers. These devices must not be direct memory access (DMA}
devices, and they must be attached to the UNIBUS. Examples of such
devices are the ADll-K the DRll-B, and the KWll-P.

You can use the Queue I/O Request ($QIO) system service with an
appropriate function code to connect to a device interrupt vector and
to specify a user-supplied routine, called an interrupt service
routine (!SR), that VAX/VMS executes when the designated device
interrupts. Connecting to a device interrupt vector allows you to do
the following:

• Respond to an interrupt within a very short time

• Preempt other system processing to handle a real-time event,
for example, a clock interrupt

• Buffer data from a device in real time and return the data to
the process at a later time

• Set an event flag or queue an AST to your process after
receiving the interrupt

The effect of user-written interrupt service routines is to allow you
to perform some of the functions normally done by a device driver, but
without requiring that you write a full device driver and without
requiring that the routine be loaded into the VAX/VMS operating system
(device drivers are part of VAX/VMS).

4-n

PERFORMING I/O OPERATIONS

If you must access device registers from user mode {that is, from the
main program or a user-mode AST service routine), you must use the
Create and Map Section {$CRMPSC) system service to map I/O space,
specifying page frame number (PFN) mapping. The service creates a
global or private section that maps the specified I/O pages into your
process's virtual address space. The process can then gain access to
I/O space using virtual addresses.

You do not need to map I/O space to access device registers from any
of the following routines specified in the $QIO call connecting to an
interrupt vector: device initialization routine, start I/O routine,
interrupt service routine, and cancel I/O routine. These routines
execute in system space and thus can access UNIBUS I/O space, which is
mapped as part of system space.

The sections that follow explain how to map the VAX-11 processor's I/O
space and how to connect to a device interrupt vector.

4.5 MAPPING I/O SPACE

On a VAX-11/780 processor, I/O space is assigned physical address
locations of 20000000 (hexadecimal) and higher. I/O space contains
device registers that a driver or user process can read and write to
control a device. Each device controller has an associated
control/status register in I/O space. Device registers for each
device are located at an offset from the device's control/status
register {CSR).

The $I0780DEF macro defines the following symbols describing the
layout of VAX-11/780 I/O space:

Symbol

I0780$AL IOBASE
I0780$AL-UBOSP

Meaning

Start of I/O space
Start of address space for
first UNIBUS

These symbols are contained in SYS$LIBRARY:LIB.MLB.

Hexadecimal
value

20000000
20100000

The number of registers and their locations vary for different
devices. The PDP-11 Peripherals Handbook provides the necessary
information for devices supplied by DIGITAL. The VAX-11/780 Hardware
Handbook contains information about the layout of I/O space.

On a VAX-11 processor, the address of a physical memory location has
the format illustrated in Figure 4-1.

t_ __ 30 ! 29 ~~
I

ol
I

918
I
I

page frame number byte

Figure 4-1 Physical Address

The page frame number (bits 9 through 29) specifies the number of a
physical page in memory. Bit 29 is clear to indicate a physical
memory address and set to indicate an address in I/O space. Bits 0
through 8 specify the byte address within the page.

4-7

PERFORMING I/O OPERATIONS

For a process to gain access to I/O space or to any page of physical
memory, it must map that page into its virtual address space. When
your VAX/VMS process maps a page by specifying its page frame number,
it completely bypasses VAX/VMS memory management and creates its own
window to the page. As a result, the protection functions that
VAX/VMS normally performs are not performed for mapping by page frame
number:

• No checks are performed to ensure that no other VAX/VMS
processes are mapped to the page and modifying it.

• No reference count is maintained. A process can delete a
global section mapped by page frame numbers when other
processes are still using it; this is not the case when
VAX/VMS performs the mapping.

Modifying pages mapped by page frame numbers can have unpredictable
results and can adversely affect system operation, especially if the
operating system is also using these pages. Because of the
unprotected nature of mapping by page frame numbers, you must have the
PFNMAP user privilege to use this capability.

4.5.1 Page Frame Number (PFN) Mapping

When used for mapping by page frame number, the Create and Map Section
system service designates the specified page(s) as a global or private
section and maps the section into the requesting process's virtual
address space. The pages can be located anywhere in the VAX-11
processor's local memory, or in MA780 memory (if a multiport memory
unit is connected to the system), or in I/O space.

The format and conventions for mapping by page frame number (that is,
mapping a physical page frame section) are similar to those for
mapping a disk file section. The Create and Map Section system
service has the following general formats:

MACRO Format

$CRMPSC [inadr] , [retadr] , [acmode) , [flags] , [gsdnamJ , [ident]
, [relpag] , [chan] , [pagcnt] , [vbn] , [prot] , [pfc]

High-Level Language Format

SYS $ C RM PS C ([i n ad r] , [r e tad r J , [a c mode J , [fl a g s] , [g s d n am] , [i den t J
, [relpag] , [chan] , [pagcnt] , [vbn] , [prot] , [pfc])

The RELPAG, CHAN, and PFC arguments are not applicable in mapping by
page frame number. The INADR, RETADR, ACMODE, GSDNAM, !DENT, and PROT
arguments have the same functions regardless of whether you specify
page frame number mapping; these arguments are described in the
VAXlYM~--~_y st em ~Ev i c e~ __ f3_~f i: re n c e -~~£l~a 1 •

The following arguments are affected by PFN mapping:

flags

Mask defining the section type and characteristics. This mask is
the logical OR of the flag bits you want to set. The $SECDEF
macro defines symbolic names for the flag bits in the mask.

4-8

PERFORMING I/O OPERATIONS

The SEC$M PFNMAP flag bit must be set to indicate mapping by page
frame numner. The SEC$M PFNMAP flag setting identifies the memory
for the section as startTng at the page frame number specified in
the VBN argument and extending for the number of pages specified
in the PAGCNT argument.

If appropriate, the following flags can also be set:

Flag

SEC$ GBL
SEC$M WRT
SEC$M-PERM
SEC$M-SYSGBL
SEC$M-EXPREG

Meaning

Global section
Read/write section
Permanent section
System global section
Expand the process's
virtual address space
as needed to contain
the section.

Default

Private section
Read-only section
Temporary section
Group global section
Map into range
specified by
INADR argument

Neither the SEC$M CRF (copy-on-reference) nor the SECSM DZRO
(demand-zero) bit can be set when mapping by page frame number.

The VAX/VMS 8-_~~-~m s.er_yL~.~-?.--~~ef e __ renc~-- Manual provides add it iona 1
information about the use of the flag settings.

pagcnt

vbn

Notes

Number of pages in the section; the value of this argument must
not be zero.

Page frame number of the first page to be mapped (as opposed to
this argument's normal usage identifying the starting virtual
block number within a disk file). When you are mapping more than
one page with a single Create and Map Section system service
request, the pages are physically contiguous starting with the
specified page.

1. An error in mapping UNIBUS I/O space or a reference to a
nonexistent UNIBUS address causes a UNIBUS adaptor error.
However, this error does not cause a system failure. Rather,
an entry is made in the system error log file and the user
program continues executing (probably with erroneous results).
The process is not notified of the UNIBUS adapter error.

2. If a power failure occurs on the UNIBUS, the system continues
to run. However, if a user process accesses UNIBUS I/O space
from user mode during a UNIBUS power failure, the process
receives a machine check exception. To handle this condition,
the process must have a condition handler to deal with machine
check exceptions. The VAX/VMS System Services Reference
Man u a 1 di s cusses con di t ion hand fe_r_s-Tn ___ (J"eTaTf-: _H ________________ ·-

3. During recovery from a UNIBUS adaptor power failure, the
processor spends a considerable amount of time (perhaps 10 to
60 milliseconds) at interrupt priority level (IPL) 31. This
action blocks user processes from executing during the
recovery.

4-9

PERFORMING I/O OPERATIONS

4. 5. 2 Programming Conventions for Addressing Device .Registers

Once you have mapped to I/O space, you can read data from a device data
buffer register or enable interrupts by setting a bit in a
control/status register, because the device registers are now
addressable as part of your process's virtual memory. The UNIBUS
adapter performs the actual mapping of VAX-11 virtual addresses to
18-bit UNIBUS addresses that correspond to device registers.

Because UNIBUS devices are one word (lo bits) long, all instructions
referring to these registers must be word-context instructions (for
example, BISW, MOVW, and ADDW3), unless the register is byte
addressable. Instructions referring to byte-addressable registers
should be byte-context instructions, such as BISB and MOVB. Unaligned
references and references using a length attribute other than the
length of the register may produce unpredictable results; for
example, a byte reference to a word-addressable register does not
necessarily respond by supplying or modifying the byte ad~ressed. A
longword reference to a UNIBUS location causes a machine check.

Instructions that use a UNIBUS device register as a source operand
must not be ihterruptible instructions. In some cases when a device
register is being copied, interrupting and restarting an instruction
may cause a character to be lost. To guarantee a noninterruptible
sequence, use only the instructions listed in Appendix C of the
VAX-11/780 Hardware Handbook, and do not use autoincrement deferred
addressTng ·;n·0ae or_a_n_yOfthe displacement deferred addressing modes.
You should always store the address of a device control register in a
general register and then gain access to the device indirectly through
the general register.

The example below defines symbolic word offsets for each device
register and gains access to them using displacement mode addressing
from R4.

Device register offsets

MOVL

TSTW

0
2

CSR_VA,R4

LP_CSR(R4)

CSR offset
Buff er address off set

Get CSR address

; Is printer online?

The following restrictions also apply to instructions addressing
device registers:

• Operand types of floating, double, field, queue, or quadword
are not allowed, nor can the position, size, length, or base
of an operand be from I/O space. For example, a field
instruction cannot be used to test a bit in a device register.

• You cannot have more than one modify or write destination, and
this modify or write destination must be the last operand.

• Instructions referring to I/O space must not cause an
exception after the first I/O space reference. This
restriction includes deferred references to I/O space.

4-10

PERFORMING I/O OPERATIONS

4.6 CONNECTING TO AN INTERRUPT VECTOR

On a VAX-11 processor, peripheral devices have interrupt vectors
associated with them. When a device interrupt occurs, the action
taken by the processor depends on the interrupt priority level (IPL)
associated with the device.

Connecting to an interrupt vector differs from the standard method of
programming a peripheral device. Programming a peripheral device is
normally a 3-step loop:

1. The device driver starts the device and enables interrupts
from the device.

2. The device generates an interrupt.

3. The device driver fields the interrupt, collects status and
data, and clears the interrupt condition.

Under the VAX/VMS operating
I/O by means of a Queue
device driver, executing as
responds to the device.
requesting user process.

system, a user program normally requests
I/O Request ($QIO) system service call. A
part of the operating system, controls and

The driver returns status and data to the

However, real-time application programmers can connect to an interrupt
vector to control and respond to a device without writing a full VMS
device driver, and without issuing $QIO calls for each device
interaction. Instead, you issue a connect-to-interrupt $QIO call that
specifies code to be executed to control the device, and a data area
that the program and the device control code can share. You
subsequently control and respond to the device without additional SQIO
calls.

The timings involved in different system activities associated with
connecting to an interrupt vector are as follows:

• The time between when the device generates an interrupt and
when the process's interrupt service routine receives control
depends upon the IPL of the processor at the time of the
interrupt. If the processor is executing at an IPL below that
of the device (as is the usual case), the interrupt service
routine gains control within a few microseconds. However, if
the processor is executing at an IPL above that of the device,
the interrupt service routine does not gain control until the
executing code lowers the IPL below the device IPL. (Section
4.6.1 discusses IPLs.)

• The time from the user interrupt service routine's exit to the
execution of the AST routine specified in the $QIO call
depends on the priority of the process and whether a context
switch is required.

4.6.1 Interrupt Priority Levels

VAX-11 processors define 32 hardware interrupt priority levels. These
interrupt priority levels establish the order in which peripheral
devices, error condition reporting, and various components of VAX/VMS
gain access to the processor; that is, interrupt priority levels are
a synchronization mechanism. (Interrupt priority is not related to

4-11

PERFORMING I/O OPERATIONS

process priority, which
VAX-11 processors assign
follows:

is
the

discussed
interrupt

in Section l.n.) VAX/VMS and
priority levels (IPLs) as

•
•

User mode programs run at IPL O; this is the lowest IPL •

VAX/VMS routines and device driver processes request
interrupts at IPLs 1 throuqh 15. (Device drivers execute as
fork processes under VAX/VMS, as described in the VAX/V~~

~l:1_!_9_~-- to Writin_g a Devi.Ce Driv_~r.)

• Peripheral devices generate interrupts at IPLs ln through 19.
UNIBUS peripherals generate interrupts of IPLs 20 through 23
(corresponding to UNIBUS BR levels 4 through 7).

• Processor error conditions and the system clock generate
interrupts at IPLs 20 through 31.

Because of the way in which priority levels are assigned, device
interrupts almost always receive immediate service from the processor
and VAX/VMS.

A VAX-11 processor always executes the code associated with the
highest IPL for which an interrupt has been requested. For example,
if the processor is executing a driver process and a device requests
an interrupt, the processor stops executing the driver, saves the
driver's context for subsequent reactivation, and activates the
interrupt service routine for the interrupting device. When that
interrupt service routine terminates, VAX/VMS activates the code
associated with the next lower IPL for which an interrupt has been
requested. The routine activated can be either of the following:

• A routine that had already started execution
interrupted by a higher level interrupt

but was

• A routine for which an interrupt has been pending while the
processor executed at a higher IPL but which had not been
executed previously

4.6.2 Performing the Connect-To-Interrupt

Connecting to a device interrupt vector allows your program to receive
notification of an interrupt from a designated device by any
combination of the following means:

• By execution of a user-supplied interrupt service routine

• By the setting of an event flag

• By execution of an AST routine that is to qain control in
process context

In addition, you can specify a cancel routine that is to be executed
when the process disconnects from the interrupt vector or is deleted.

Before your program can run, the system manager must have done the
following at system generation time:

e Specify the REALTIME SPTS parameter to the SYSGEN utility,
reserving system paqe table entries for use by real-time
processes. These system page table entries are use~ to map
process-specified buffers in system space (see the Pl argument

4-12

PERFORMING I/O OPERATIONS

description in Section 4.6.5). The REALTIME SPTS parameter
value must be greater than or equal to the number of pages in
buffers specified by processes connected to interrupt vectors.

• Configure the real-time device by issuing a CONNECT command to
the SYSGEN utility. This command names the device; its
vector, register, and adapter addresses; and a skeletal
driver (CONINTERR) for the device.

The CONNECT command to the SYSGEN utility is explained in the VAX/V~J?:
System Manager's Gu~de.

At run time the process calls the $ASSIGN system service to associate
a channel with the device. The process can also map the page in
UNIBUS I/O space containing the device registers (see Section 4.5).
To connect to the device interrupt vector, the process issues a $QIO
call specifying the IO$ CONINTREAD or IO$ CONINTWRITE function code
and as many of the following as are appropriate:

• An interrupt service routine to be executed when the device
generates an interrupt

• A buffer containing code to be executed in system context
and/or data (This buffer must be contiguous in the process's
address space.)

• An AST service routine to execute and/or an event flag to be
set after the interrupt service routine (if any) completes (If
an AST service routine is specified, an AST parameter may also
be specified.)

• A device initialization routine

• A start I/O routine

• A cancel I/O routine

A nonprivileged process (that is, lacking the CMKRNL privileqe) can
also connect to an interrupt vector, but it can only specify an AST
service routine to be executed or an event flag to be set (or both)
when an interrupt is generated. Section 4.n.5 explains the SQIO
format for connecting to an interrupt vector.

4.6.3 The Connect-To-Interrupt Driver

The VAX/VMS connect-to-interrupt driver (CONINTERR) provides a driver
interface to the system on behalf of the process. CONINTERR connects
the process to the device by executing the following steps:

1. Validates the $QIO system service parameters, such as the
process's access to the specified buffer, and the number of
the optional event flag.

2. Locks the physical pages of the buffer into physical memory,
and maps the pages using system page table entries allocated
by the REALTIME_SPTS parameter to the SYSGEN utility.

3. Constructs argument lists and calling interfaces to the
process-specified routines by storing values in the device's
unit control block (UCB).

4-13

PERFORMING I/O OPERATIONS

4. Allocates the specified number of AST control blocks to the
process, and inserts each block in a queue in the device's
UCB.

5. Transfers control to VAX/VMS to queue the connect to
interrupt I/O packet to CONINTERR start I/O routine.

When the CONINTERR start I/O routine gains control, it passes control,
by means of a user-specified JSB or CALLS interface, to the
process-specified start-device routine. This routine usually
initializes the device and may also start activity on the device.

When the device generates an interrupt, the interrupt service routine
in CONINTERR gains control. This routine transfers control to the
process-supplied interrupt service routine.

4.6.4 The Interrupt and AST Service Routines

The interrupt service routine that you specify, like those supplied by
VAX/VMS, has the following characteristics:

• It is mapped in system space.

• It executes on the interrupt stack.

• It executes at the IPL of the device that requested the
interrupt.

Because of these characteristics, the interrupt service routine
executes as part of the VAX/VMS operating system rather than in the
context of your user process. As part of the operating system, the
interrupt service routine has access to system data bases not
available to user processes. However, because an interrupt service
routine has these capabilities and executes at a raised IPL, you must
code it carefully to avoid disrupting the system. Section 4.n.9
discusses conventions for process-specified interrupt service routine.

The interrupt service routine that you specify usually performs one or
more of the following steps:

1. Copies data from a device register

2. Writes to a device register to clear the interrupt condition

3. Restarts the device, or returns an offset, a byte count, or
actual data as an AST parameter

4. Returns an interrupt status to the VAX/VMS
connect-to-interrupt driver (CONINTERR)

Depending on the interrupt status, the CONINTERR interrupt service
routine queues a fork process to run 0t a lower IPL. Then the
interrupt service routine exits from the interrupt with an REI
instruction. When the CONINTERR fork process gains control, it queues
an AST or posts an event flag to the process (or both).

The AST service routine that you specify gains control in process
context. This routine usually performs one or more of the followinq
steps:

1. Reads or writes device registers if the process mapped I/O
space (see Section 4.5).

4-14

PERFORMING I/O OPERATIONS

2. Interprets data. Use caution, however, because any
processing done by the AST service routine can be interrupted
by a device interrupt, which might store more data or modify
the buffer's contents.

3. Calls the Cancel I/O on Channel ($CANCEL) system service to
disconnect the process from the interrupt.

4.6.5 Queue I/O Request System Service for Connect-To-Interrupt

The format of the Queue I/O Request ($QIO) system service to connect
to an interrupt vector is given below. The explanation is limited to
connecting to an interrupt vector. For a detailed description of the
$QIO system service, see the VAX/VMS Syst~~ Service_~ .. ~~ference_~_~nu~l •

MACRO Format

$QIO [efn] , [chan] ,func , [iosb] , [astadr] , [astprm]
,[pl] ,[p2] ,[p3] ,[p4] ,[p5] ,[p6]

High-Level Language Format

SYS$QIO([efn] , [chan] ,func , [iosb] , [astadr] , [astprm]
,[pll ,[p2] ,[p3] ,[p4] ,[p5] ,[phl)

efn
iosb
astadr
astprm

f unc

pl

p2

These arguments apply to the $QIO system service completion, not
to device interrupt actions. For an explanation of these
arguments, see the $QIO service description in the VAX/VMS System
Services Reference Manual.

Function code of IO$ CONINTREAD or IO$ CONINTWRITE. The
IO$ CONINTWRITE function code allows locations in the buffer
pointed to by the Pl argument to be modified; the IOS CONINTREAD
function code makes the buffer contents read-only.

Address of a descriptor for the buffer containing code and/or
data. The first longword records the number of bytes in the
buffer; the second longword records the address of the buffer.
(Note: The buffer size must not exceed 64K bytes.)

Address of an entry point list. The list consists of four
longwords that contain offsets into the buffer (specified in the
Pl argument) of entry points of process-specified routines.
These longwords and their contents are as follows:

CIN$L INIDEV
CIN$L-START
CIN$L-ISR
CIN$L-CANCEL

Offset to device initialization routine
Offset to start device routine
Offset to interrupt service routine
Offset to cancel I/O routine

Note: Symbols starting with CIN$ are defined by the $CINDEF
macro. The definitions are in the library SYSSLIBRARY:LIB.MLB.

4-15

p3

p4

p5

pn

PERFORMING I/O OPERATIONS

Longword containing flags and an optional event flag number
specification. The low-order word contains the logical OR of
flags describing options to the connect-to-interrupt facility.
The flags and their meanings are as follows:

CIN$M EFN
CIN$M-USECAL

CIN$M REPEAT

CIN$M INIDEV

CIN$M START

CIN$M ISR

CIN$M CANCEL

Set event flag on interrupt
Use CALL interface to process-specified
routines (default is JSB interface)
Leave process connected to the interrupt
vector until the connection is canceled
Process-specified device initialization
routine is in the buffer specified in the Pl
argument
Process-specified start I/O routine is in
buff er
Process-specified interrupt service routine
is in buffer
Process-specified cancel I/O routine is in
buff er

The high-order word specifies the number of the event flag to be
set when an interrupt occurs. This number is expressed as an
offset to CIN$V EFNUM.

For example, to specify that your interrupt service routine is in
the buffer and to set event flag 4, code P3 as follows:

P3 = CIN$M ISR!CIN$M EFN!4@CIN$V EFNUM>

See the "Notes" later in this section for additional information
on the flags.

Address of the entry mask of an AST service routine to be called
as the result of an interrupt.

AST parameter to be passed to the AST completion routine (used as
the AST parameter only if the process-supplied interrupt service
routine does not overwrite the value).

Number of AST control blocks to preallocate in anticipation of
fast, recurrent interrupts from the device.

Return Status

SS$ NORMAL

System service successfully completed.

SS$ ACCVIO

The caller does not have the appropriate access to the buffer
specified in the Pl arqument or to the entry point list specified
in the P2 argument.

4-16

PERFORMING I/O OPERATIONS

SS$ BADPARAM

The size of the buffer specified in the Pl argument exceeds 64K
bytes, or the number of preallocated AST control blocks specified
in the P6 argument exceeds 65767.

SS$ DISCONNECT

A connection is already outstanding for the device, or a
condition described in note 2.b (see "Notes") has occurred.

SS$_EXQUOTA

The process has exceeded its direct I/O limit quota or its AST
limit quota.

SS$ ILLEFC

An illegal event flag number was specified.

SS$ INSFMEM

Insufficient system dynamic memory is available to complete the
system service.

SS$ INSFSPTS

Insufficient system page table entries are available to double
map the process buffer. (The value of the REALTIME SPTS
parameter to the SYSGEN utility must be increased.)

SS$ NOPRIV

The process does not have the CMKRNL privilege. This privilege
is only required if the user specifies a buffer to be used by the
process and the process-specified kernel mode routines.

SS$ UNASEFC

The process is not associated with the cluster containing the
specified event flag.

Privilege Restrictions

The connect-to-interrupt $QIO call does not require privileges if
no shared buffer is specified. If the request specifies a buffer
descriptor argument, the process must have the CMKRNL privilege.

Resources Required/Returned

A connect-to-interrupt request updates the process quota values
as follows:

• Subtracts the number of preallocated AST control blocks in the
P6 argument from the number of outstanding ASTs remaining for
the process (ASTCNT)

• Subtracts 1 (for the $QIO) from the direct I/O count (DIOCNT)

4-17

Notes

PERFORMING I/O OPERATIONS

1. After the $QIO call is issued, the operation is not completed
until the process or the connect-to-interrupt driver cancels
I/O on the channel.

2. The connect-to-interrupt driver can cancel I/O on the channel
for a number of reasons, including the following:

a. The driver cannot set the specified event flag, perhaps
because the process disassociated from the common event
flag cluster after requesting that a flag in that
cluster be set.

b. The driver cannot reallocate AST control blocks quickly
enough. This condition can occur because not enough AST
control blocks (P6 argument) were specified, because not
enough pool space is available for the requested AST
control blocks, or because the process ASTCNT quota is
exhausted.

c. The driver cannot queue the AST to the process.

3. If no event flag setting was requested in the P3 argument and
if no AST service routine was specified in the P4 argument,
Po if ignored and no AST control blocks are preallocated. If
you requested an event flag be set and/or an AST service
routine but did not preallocate any AST control blocks (that
is, Po is zero), one AST control block is automatically
preallocated, because the system needs one control block to
set any event flag or to deliver any ASTs.

If you request an event flag and/or an AST service routine
and if you preallocate any AST control blocks, the
CIN$M REPEAT bit is set automatically in the longword
speciried in the P3 argument. Thus, as long as you
preallocate any AST control blocks, your process will
automatically remain connected to the interrupt vector to
receive repeated interrupts until the process is disconnected
from the interrupt vector.

If the CIN$M REPEAT flag is not
disconnected from the interrupt
successful interrupt, and a status
returned.

set,
vector

code

the process is
after the first

of SS$ NORMAL is

4.6.6 Conventions for Process-Specified Routines

Any routines that the process specifies in the connect-to-interrupt
call are double-mappe0, once in process space and once in system
space. Each routine executes in kernel mode at an appropriate IPL:

• Device initialization routine after power recovery - IPL 31
(IPL$ POWER)

e Start-I/O routine - IPL h (IPL$ QUEUEAST)
• Interrupt service routine - devTce IPL (assumed to be IPL 22)
• Cancel routine - IPL 6 (IPL$ QUEUEAST)

The process must have the CMKRNL user privilege.

4-18

PERFORMING I/O OPERATIONS

Each routine must:

• Be position independent
• Follow the rules for accessing I/O space (see Section 4.5.3)
• Access only data within the buffer or non-pageable locations

in system space
• Perform any necessary synchronization of access to data in the

shared buff er
• Save any registers it uses (unless otherwise noted in the

remaining sections of this chapter)
• Exit properly
• Not incur exceptions
• Not perform lengthy processing
• Not dispatch to code outside the buffer specified in the Pl

argument to the Queue I/O Request call

Sections 4.6.8 through 4.6.11 discuss conventions for specific process
specified routines. Section 4.6.12 describes several program examples
of connecting to an interrupt vector.

The VAX/VMS Guide to Writing a Device Driver explains how to write a
device initialization routine, a start I/O routine, an interrupt
service routine, and a cancel I/O routine. That manual also discusses
the I/O data structures used by these routines.

4.6.7 Programming Language Constraints

Only VAX-11 MACRO or VAX-11 BLISS-32 should be used to code
process-specified routines in system space (see Section 4.n.n) or any
references to I/O space. There is no assurance that the code
generated by compilers for other languages will satisfy all the
constraints described in this section.

The following
system space
the $QIO call
vector):

constraints apply to process-specified routines in
(that is, in the buffer specified in the Pl argument to
that establishes the connection to the interrupt

• The compiler must generate position independent code for the
routines.

• The generated code and data must be contiguous in virtual
space.

• No calls can be made to any procedure outside the buffer.
(This restriction includes calls to routines in the VAX-11
Common Run-Time Procedure Library.)

For any references to I/O space, the generated code must follow the
rules for accessing I/O space (see Section 4.5.2). Device reqister
access from high-level languages usually requires that the variable
equivalent to the register be a ln-bit integer data type. You may
need to check the assembly-language code generated by compilers for
languages other than VAX-11 MACRO or VAX-11 BLISS-32 to determine
whether it follows all necessary conventions.

4-19

PERFORMING I/O OPERATIONS

4.6.8 Process-Specified Device Initialization Routine

During recovery from a power failure, VAX/VMS calls the
connect-to-interrupt driver's device initialization routine. This
routine marks the device as online in the UCB$W STS field, stores the
UCB address in the IDB$L OWNER field, and then transfers control to
the process-specified device initialization routine. The
process-specified routine executes in system context at IPL 31
(IPL$_ POWER) •

If the process specified a JSB interface, the process routine gains
control with the following register settings:

RO address of the unit control block (UCB)
R4 address of the device status register (CSR)
RS address of the interrupt dispatch block (IDB)
R6 address of the device data block (DDB)
R8 address of the channel request block (CRB)

If the process specified a CALL interface, the process routine gains
control with an argument list pointed to by AP:

O(AP) argument count of s
4(AP) address of the device status register (CSR)
8(AP) address of the interrupt dispatch block (IDB)

12(AP) address of the device data block (DDB)
16(AP) address of the channel request block (CRB)
20(AP) address of the unit control block (UCB)

The process-specified
However, it must not
except RO through R3.

routine may initialize device registers.
lower IPL, and it must preserve all registers

The routine exits with an RSB instruction (for a JSB interface) or a
RET instruction (for a CALL interface). The stack must be as it was
when the routine was entered.

4.6.9 Process-Specified Start I/O Routine

The process-specified start I/O routine executes in system context at
IPL 6 (IPL$ QUEUEAST). It is entered from the connect-to-interrupt
driver's star~ I/O routine. The input to the process-specified start
I/O routine is as follows:

R2
R3
RS

O(AP)
4 (AP)
8{AP)

12(AP)
16(AP)

address of the counted argument list
address of the I/O requ~st packet (IRP)
address of the unit control block (UCB)

argument count of 4
system-mapped address of the process buff er
address of the I/O request packet (IRP)
system-mapped address of the device's CSR
address of the unit control block (UCB)

The process-specified start I/O routine may set up device registers.
It can raise IPL but must not lower it below n, and must exit at IPL
6. It must preserve all registers except RO through R4.

The routine exits with an RSB instruction (for a JSB interface) or a
RET instruction (for a CALL interface). The stack must be as it was
when the routine was entered.

4-20

PERFORMING I/O OPERATIONS

4.6.10 Process-Specified Interrupt Service Routine

A process-specified interrupt service routine is entered when an
interrupt from the device occurs. This routine executes in system
context at device IPL. The input to the process-specified interrupt
service routine is as follows:

R2 address of the counted argument list
R4 address of the interrupt dispatch block (IDB)
R5 address of the unit control block (UCB)

O(AP)
4(AP)
8(AP)

argument count of 5
system-mapped address of the process buff er
address of the AST parameter

12(AP)
16(AP)
20(AP)

system-mapped address of the device status register (CSR)
address of the interrupt dispatch block (IDB)
address of the unit control block (UCB)

This routine is responsible for clearing the interrupt condition (by
writing to some device register, for example) if such an operation is
required for the device. In addition, the routine may copy the
contents of device registers into the shared buffer or into the AST
parameter. The routine must also follow these conventions:

• Maintain an IPL equal to or higher than device IPL (If the IPL
is raised, the current IPL should first be saved on the stack
for later use in restoring IPL.)

• Save and restore all registers other than RO through R4 used
in the routine

• Restore the stack to its oriqinal state before exiting

• Place one of the following status values in RO before exiting:

low bit clear -- dismiss interrupt (process is not notified of
interrupt)

low bit set set event flag if CIN$M EFN bit is set in P3
argument, and queue AST if P4 specifies an
AST service routine

• Exit with a RET instruction
instruction (JSB interface)

(CALL

4.n.11 Process-Specified Cancel I/O·Routine

interface) or RSB

When the user process issues a cancel I/O request for a device
connected to the process, the connect-to-interrupt driver's cancel I/O
routine first checks to determine whether the process can indeed
cancel I/O for this device. If it can, the process-specified cancel
I/O routine is given control. This routine executes in system context
at IPL 8 (IPL$_FORK).

If a JSB interface was specified for the process-supplied cancel I/O
routine, the following registers are inputs:

R2 negated value of the channel index number
R3 address of the current I/O request packet (IRP)
R4 address of the process control block (PCB) for the process

canceling the I/O
R5 address of the unit control block (UCB)

4-21

PERFORMING I/O OPERATIONS

If a CALL interface was specified, the argument list is as follows:

O(AP)
4(AP)
8(AP)

12(AP)

16(AP)

argument list count of 4
negated value of the channel index number
address of the current I/O request packet (IRP)
address of the process control block (PCB) for the process
canceling the I/O
address of the unit control block (UCB)

The process-specified cancel I/O routine must not lower IPL below ~
and must exit at IPL 6. It may clear device registers. It must
preserve all registers except RO and R3, and must place a completion
status in RO-Rl (which VAX/VMS will place in the 1/0 status block
associated with the connect-to-interrupt $QIO call).

The process-specified cancel I/O routine should not rely on the
channel index number unless it checks the UCB$M BSY bit in UCB$W STS
to confirm that the process is still connected to the device. -The
routine may set the UCB$M CANCEL bit in UCB$W STS.

The routine exits with an RSB instruction (for a JSB interface) or a
RET instruction (for a CALL interface). The stack must be as it was
when the routine was entered.

4.6.12 Real-Time Applications Examples

To understand how the connect-to-interrupt facility is useful for
programming real-time devices, consider devices used in three types of
real-time applications:

1. Asynchronous event reporting without datn: devices that
generate an interrupt as the result of an external event not
initiated by a programmed request.

2. Program-driven data collection: devices that generate an
interrupt as the result of a programmed request, and make the
result of the request available as data in a device register
at the time of the interrupt.

3. Asynchronous event reporting with data: one device triggers
another device by generating an interrupt that causes a
programmed request to be sent to the other device, which in
turn generates an interrupt.

Examples of these three types of real time applications and models of
programs to handle the devices follow.

NOTE

The configurations described in the
examples in this section are not
officially supported; DIGITAL does not
provide device driver, UETP, or
diagnostic support for certain devices
mentioned. The examples are provided
merely as possible models for users who
wish to design real-time applications
using unsupported devices or
configurations.

4-22

PERFORMING I/O OPERATIONS

Chapter 6 contains a program example illustrating data definitions and
coding used to connect to a device interrupt vector.

4.6.12.1 Example 1: KWll-W Watchdog Timer - This type of device
reports asynchronous external events: it generates an interrupt as a
result of an external event not initiated by a programmed request.
The only data of interest to be passed to the user process is the
occurrence of the external event. Such devices include contact and/or
solid state interrupts, and clocks or. counters. The program may need
to initiate clock and counter devices by means of a programmed
request, but any subsequent interrupts are the result of external
events only.

In this example, a dual-processor system uses two KWll-W watchdog
timers connected back-to-back to monitor CPU failures. Each processor
must arm its timer at regular intervals to prevent the timer from
operating a relay that outputs an alarm signal. The alarm output of
each timer is connected to the receive input of the other watchdog.
If processor A fails and its watchdog times out, the alarm output
generates an interrupt on processor B via the second watchdog timer.

The watchdog control program on each processor simply addresses the
timer at regular intervals. If the interval passes without the timer
being addressed, the timer operates an output relay that generates an
interrupt to the second CPU. For this example, assume that the
interval is 5 seconds (Example 3 later in this section addresses the
problem of a much smaller time interval).

The watchdog control program on processor A executes as follows:

1. Assigns a channel to the device

2. Calls $CRMPSC to map to the I/O page in order to address the
device registers

3. Issues a connect-to-interrupt $QIO call to connect the
program to the watchdog timer for processor B; specifies the
addresses of an interrupt service routine and an AST routine

4. Writes a value to a device register to start the timer

5. Calls SSETIMR to request that an event flag be set after a
specified interval (for example, 5 seconds)

6. Calls $WAITFR to wait for the event flag

7. When the event flag is set, writes a value to a device
register to reset the timer

8. Loops to step 5

The same control program runs on processor B except that it connects
to the watchdog timer for processor A. If either processor fails, the
watchdog timer generates an interrupt on the other processor.

The standby processor that receives the interrupt gains control in the
VAX/VMS connect-to-interrupt driver (CONINTERR), which calls a
process-supplied interrupt service routine (defined in step 3 above)
that handles the interrupt as follows:

1. Sets the KWll-W switch relay register to clear the timer
interrupt condition

4-23

PERFORMING I/O OPERATIONS

2. Sets a status flag that will cause an AST to be delivered to
the control program that connected to the interrupt

3. Returns to CONINTERR

CONINTERR completes the interrupt handling as follows:

1. Schedules a fork process at a lower IPL. This fork process,
when it gains control, will queue an AST to the user program.

2. Executes an REI instruction to return from the interrupt

The timer control program on the standby processor regains control in
an AST routine. This routine responds to the other processor's
failure by switching over and assuminq control of the other
processor's tasks (or whatever is appropriate).

4.6.12.2 Example 2: ADll-K, AMll-K; A/D Converter with Multiplexer
Connected to the UNIBUS - This type of device provides program-driven
data collection: it generates an interrupt as the result of a
programmed request to the device, and makes the result of the request
available as data in a device register. Typical devices include A/D
converters and digital I/O registers.

The data collection operation is usually repetitive for such
applications. Therefore, the interrupt service routine must be
capable of buffering data from the device in order to ensure that no
data is lost due to the high speed data transfer rate. A typical
buffer size for this sampling technique might be 32 ln-bit words.

In this example, a user program controls an ADll-K/AMll-K combination
that accepts analog data from thermocouples. The ADll-K converts
analog data to digital data and returns the data in a device register.
Every 10 seconds, the program samples 16 to 32 out of n4 channels at
gain settings that may vary based on the thermocouple type and
previous samplings.

To collect data efficiently, the program buffers data in a
process-specified interrupt service routine, and requests delivery of
an AST to the user process when all the requested channels have been
sampled. To perform variable sampling, the program passes parameters
to the interrupt service routine.

The program establishes a protocol to communicate between the program
and the interrupt service routine. The protocol defines a data area
shared by the main program, the interrupt service routine, and the AST
routine. The data area contains parameters from the program and data
from the ADll-K. The data area is a 98-word array used as follows:

1. Elements 1-2 of the data area contain an index to the next
buffer location to be filled, and a count indicating the
nuMber of samplings still to be taken. The main program
initializes these values before starting the device. The
interrupt service routine reads and modifies these values in
the process of copying data and determining when to stop
sampling.

2. Elements 3-66 of the data area are reserved for interrupt
service routine parameters. Each pair of elements contains
the number of a channel, and a qain value. The main program
loads these parameters before starting the device.

4-24

PERFORMING I/O OPERATIONS

3. Elements 67-98 of the data area receive the data that the
interrupt service routine reads from the ADll-K data buffer
register. The AST routine later reads data from this part of
the buffer.

The program sets up for the sampling as follows:

1. Assigns a channel to the device

2. Calls $CRMPSC to map to the I/O page in order to address the
device registers

3. Initializes the data area by writing a n7 (the index to the
next buffer location to be filled) into element 1, and the
number of samples to take into element 2 of the data area;
zeroes elements 3-98 of the data area

4. Writes channel numbers and gain values into the parameter
section of the data area

5. Issues a connect-to-interrupt SQIO call to connect the
process to the A/D converter; specifies the addresses of the
area to be double mapped, an offset to the ISR, and an AST
routine

6. Sets the start and interrupt enable bits in the ADll-K status
register to start the A/D converter

7. Calls $HIBER to place the process in a wait state

As soon as the ADll-K has converted the first sample, the device
generates an interrupt. The VAX/VMS CONINTERR routine calls the
process-specified interrupt service routine. This process-specified
routine executes as follows:

1. Computes the next location to be written in the buffer by
reading the first element in the data area

2. Reads 12 bits of data from the A/D buffer register into the
next location in the buff er

3. Updates the buffer offset and count elements at the beginning
of the data area

4. If all requested samples have been collecte<l, writes the
address of the data area into the AST parameter, sets a
status flag that will cause an AST to be delivered to the
control program, and returns to the CONINTERR routine

5. Otherwise, sets the start bit in a device register to restart
the device and returns to the CONINTERR routine with a status
flag requesting no AST delivery or event flag setting

Based on the interrupt status from the process-specified interrupt
service routine, the CONINTERR routine completes the interrupt
processing by queuing a fork process that will queue an AST to the
user process. When the process gains control in the AST service
routine, this routine processes the samples in the following steps:

1. Clears the interrupt enable bit in the device status register

2. Examines the data collected in order to adjust channel
selection and/or gain values for the next sampling

4-25

PERFORMING I/O OPERATIONS

3. Copies the data to a file

4. Reinitializes the data area

5. Calls $SCHDWK to wake the process after a short interval (for
example, 10 seconds)

6. Returns

When the time interval elapses, the process regains control. The
program can then restart the sampling process by again setting the
start and interrupt enable bits in the ADll-K status register.

4.6.12.3 Example 3: KWll-P Real Time Clock and ADll-K Converter
Connected to the UNIBUS - This type of device reports asynchronous
external events by collecting data: one device triggers another
device by generating an interrupt that causes a programmed request to
be sent to the other device, which in turn generates an interrupt. A
typical example is a clock-driven A/D operation for precise time
sampling as required in signal processing. This processing technique
is often used in laboratories. The amount of data collected in such a
timed sampling might typically be 200 to 1000 16-bit words.

In this example, the main program sets up the real-time clock to
generate interrupts periodically. At regular intervals, the clock
interrupt triggers a programmed request for an A/D conversion
operation. The ADll-K collects a sample, and interrupts the CPU with
a "done" interrupt and 12 bits of data. The ADll-K interrupt service
routine buffers the data and, if the buffer is full, causes an AST to
be delivered to the process. The process, gaining control in an AST
routine, copies the buffered data to another buffer or to disk.

Programming these device functions is slightly more complicated than
the previous example. The main program must specify a large buffer to
be used in ring fashion to guarantee that data is not lost between
clock-driven samplings. In addition, the program must connect to two
device interrupts one for the clock and one for the A/D converter.

The protocol used by the main program, the interrupt service routine,
and the AST routine is similar to the previous example. The data area
is larger: 4K words of buffer area follow the parameter area. The
A/D converter interrupt service routine and the AST routine treat the
4K-word buffer as four buffer sections of lK words per section. The
first element in each lK buffer section is a flaq indicating whether
the section is in use. The AST resets the flag value after copying
the contents of the buffer. The interrupt service routine uses a
buffer section only if the section's flag value indicates that the
buffer has been emptied.

The main program starts the sampling with the following steps:

1. Assiqns channels to the clock and to the A/D converter.

2. Calls $CRMPSC to map to the I/O page in order to address the
device registers.

3. Initializes the data buffer by writing a ~7 (the index to the
next buffer location to be filled) into element 1, and the
number of samples to take into element 2 of the data area;
zeroes elements 3-409n of the data area; flags each page of
the buffer as available.

4-2fi

PERFORMING I/O OPERATIONS

4. Writes channel numbers and gain values into the parameter
segments of the data area.

5. Issues a connect-to-interrupt $QIO call
process to the clock, and specifies the
interrupt service routine.

to connect the
address of an

6. Issues a connect-to-interrupt $QIO call to connect the
process to the A/D converter; and specifies the addresses of
the area to be double mapped, an offset to the interrupt
service routine and an AST routine.

7. Sets the sampling interval by writing a 16-bit value into the
KWll-P count set buffer register.

8. Starts the clock by setting the run, mode, rate selection,
and interrupt enable bits in the KWll-P control and status
register. Setting the mode bit causes repeated interrupts
generated at a rate specified in the time interval.

9. Calls $HISER to place the process in a wait state.

The clock interrupts when zero (underflow) occurs during a count-down
from the preset interval count. The VAX/VMS CONINTERR routine calls
the process-specified clock interrupt service routine. This
process-specified routine starts the A/D conversion as follows:

1. Starts the A/D converter by setting the start and interrupt
enable bits in the ADll-K status register

2. Sets interrupt status that prevents AST delivery or event
flag setting as a result of this interrupt

3. Returns to CONINTERR

Starting the A/D converter results in an interrupt from the ADll-K,
and control passes, via CONINTERR, to the ADll-K interrupt service
routine. This routine executes as follows:

1. If this sample is the first sample for a new buffer
(indicated by a flag in the data area), the routine moves to
the next buffer section (branches to error handling if the
buffer is still full), and sets up the first two elements of
the data area to indicate the buffer section to be written
next. Then, it sets the flag at the start of the new buffer
section and sets a flag in the data area to indicate that
sampling is occurring.

2. The routine computes the next location to be written in the
buffer by reading the first location in the data area.

3. The routine reads 12 bits of data from the A/D buffer
register into the next location in the buffer.

4. The routine updates the buffer offset and count values in the
data area.

5. If this sample fills the data sector, the routine writes the
offset of the filled sector from the start of the 4K-word
buffer into the AST parameter, sets a status flag that will
cause an AST to be delivered to the control proaram, and sets
a. flag indicating that a new data section is to be starteo.

6. The routine returns to CONINTERR.

4-27

PERFORMING I/O OPERATIONS

The AST routine copies and zeroes the next buffer section to indicate
that the section is again available to the interrupt service routine.
When the next clock interrupt occurs, the data can be written to the
next buffer section, even if the AST routine has not yet emptied the
previous buffer section.

4-28

CHAPTER 5

USING SHARED MEMORY

The MA780 is a multiport memory unit that can be attached to
VAX-11/780 processors. Each VAX-11/780 processor can support up to
two MA780s. Each MA780 has four ports, thereby allowing up to four
VAX-11/780 processors to be attacheo to it. Figure 5-1 illustrates
two VAX-11/780 processors attached to an MA780.

LOCAL
MEMORY

MBA

SBI

USA

VAX
11/780

MA780
PORT

MA780
MULTIPORT

MEMORY

VAX
11/780

MA780
PORT

SBI

USA

LOCAL
MEMORY

MBA

Figure 5-1 Two VAX-ll/780s Attached to an MA780

Using one or more multiport memory units, an application can consist
of multiple processes running on different VAX-11/780 processors.
Regardless of the processor on which they are running, these processes
can communicate the completion of an event, send messages, ano share
common data and code by means of the shared memory.

5.1 PREPARING MULTIPORT MEMORY FOR USE

Before an application using multiport memory can execute under
VAX/VMS, the system manager must activate the VAX/VMS operating system
in processors connected to the multiport memory unit and initialize
that memory. The VAX/VMS System Manager's Guide explains the system
management responsibilities ___ associated withamultiport memory unit;
the present section summarizes the system management functions for the
benefit of the application programmer.

First, the system manager activates the VAX/VMS operating system in a
VAX-11/780 and initializes the multiport memory unit. These actions
cause the following to occur:

• The uninitialized shared memory is connected to the VAX/VMS
system running in the processor.

5-1

USING SHARED MEMORY

• A name is defined that all processes running in all processors
can use to refer to the shared memory (see Section 5.3)

• Limits are set for the following resources in this multiport
memory unit:

Common event flag clusters: the total number that can
be created, and the number that can be created by
processes runninq on this processor

Mailboxes: the total number that can be created, and
the number that can be created by processes running on
this processor

Global sections: the total number
created, and the number that can
processes runninq on this processor

that can
be created

be
by

Then the system manager activates the VAX/VMS operating system in
other processors connected to the multiport memory unit. The system
manager then connects the initialized shared memory to the VAX/VMS
system running in each of these processors and sets limits for the
number of common event flag clusters, global sections, and mailboxes
that processes on each processor can create in the multiport memory.

The system manager can also install global sections in shared memory
just as they are installed in local memory. The INSTALL utility can
be used to create shared memory global sections for known files. Once
the global sections are installed, a process runninq in any processor
connected to the multiport memory can map to the section, if the
process has the appropriate privilege. The process can qain access to
the global section either by using a logical name defined by the
system manager or by using the section name specified when the global
section was created. In the latter case, the section name must be
unique on this processor.

5.2 PRIVILEGES REQUIRED FOR SHARED MEMORY USE

To use facilities in memory shared by multiple processors, you must
have all of the user privileges required to use the equivalent
facility in local memory. For example, to create a permanent global
section, you must have the PRMGBL privileqe, and to create a temporary
or permanent mailbox, you must have the TMPMBX or PRMMBX privilege,
respectively.

In addition to any other required privileges, you must have the SHMEM
privilege to create or delete a common event flag cluster, mailbox, or
global section in memory shared by multiple processors. However, you
do not need the SHMEM privilege to use an existing cluster, mailbox,
or global section in multiport memory.

5.3 NAMING FACILITIES IN SHARED MEMORY

To allow access to facilities in memory shared by multiple processors,
the system manager and application programmers define names that
application programs use to refer to individual shared memory units.
During system installation, the system manager defines the name that
processes on that particular processor use to refer to the shared
memory itself. Application programs define the names that they use to
refer to common event flag clusters, global sections, and mailboxes
located in the shared memory.

5-2

USING SHARED MEMORY

By convention, facilities in shared memory have a name string in the
following format:

[memory-name:]facility-name

memory-name

Name assigned by the system manager during system installation to
the shared memory containing the facility. VAX/VMS requires the
memory name when you specify a common event flag cluster or
mailbox. The colon is recognized as a delimiter separating the
two parts of the name string.

facility-name

Logical name assigned to the event flag cluster, global section,
or mailbox. The name must contain 15 or fewer characters, and
can consist only of alphabetic characters, numeric characters,
the dollar sign ($),and the unJerline (_).

Examples of facility names are:

SHRMEM:GS DATA

SHRMEM:MAILBX

Identifies the global section GS DATA in the
shared memory named SHRMEM

Identifies the mailbox MAILBX in the same
shared memory

5.4 ASSIGNING LOGICAL NAMES AND LOGICAL NAME TRANSLATION

You can define a logical name for a shared memory facility with the
DEFINE or ASSIGN command or the Create Loqic~l Name ($CRELOG) system
service. Application programs can then refer to the facility using
the logical name; for example, a process can invoke the Create
Mailbox and Assign Channel ($CREMBX) system service specifying the
logical name for an existing mailbox to which a channel is to be
assigned.

When translating a logical name for a shared memory facility, the
VAX/VMS operating system uses a slightly different approach from that
used for other logical names. The purpose of this approach is to
allow programmers to specify either the complete name (memory name and
facility name) or a logical name that the system will translate to the
complete name. If you define logical names properly, a program that
uses a given facility in local memory can be run without chanqe to use
the facility in shared memory.

Whenever VAX/VMS encounters the name of a common event flag cluster,
mailbox, or global section, it performs the following special logical
name translation sequence:

1. Inserts one of the following prefixes to the name (or to the
part of the name before the colon if a colon is present):

CEF$ for common event flag clusters
MBX$ for mailboxes
LIB$ for global sections

5-3

USING SHARED MEMORY

2. Subjects the resultant string to logical name translation.
If translation does not succeed (that is, the original name
did not use a logical name), passes the original name string
to the system service. If translation does succeed, goes to
step 3.

3. Appends the part of the original string after the colon (if
any) to the translated name.

4. Repeats steps l to 3 (up to nine more times, if
until logical name translation fails. When
fails, passes the string to the system service.

necessary)
translation

For example, assume that you have made the following logical name
assignment:

$DEFINE MBX$CHKPNT SHRMEM$l:CHKPNT

Assume also that your program refers to the mailbox name as CHKPNT in
a system service argument. The following loqical name translation
takes place:

1. MBX$ is prefixed to CHKPNT.

2. MBX$CHKPNT is translated to SHRMEM$l:CHKPNT.

3. No further translation is successful; therefore, the string
SHRMEM$l:CHKPNT is passed to the system service.

The logical name definition in the preceding example allows a program
that used a mailbox named CHKPNT in local memory to run usinq the
mailbox in shared memory, without being recompiled or relinked.

Note that if a process creates one or more subprocesses and they use a
mailbox or common event flag cluster in shared memory, the creator
should place the logical name in the group logical name table (for
example, specify the /GROUP qualifier with the DEFINE command). If
the name is defined in the process logical name table (the default),
the subprocesses will not receive the correct equivalence name,
because each subprocess has its own process logical name table.

There are two exceptions to the logical name translation method
discussed in this section:

• If the facility name starts with an underline (), the VAX/VMS
system strips the underline and considers the resultant string
to be the actual name (that is, no further translation is
performed).

• If the facility is a global section with a name in the format
name nnn, VAX/VMS first strips the underline and the digits
(nnnT, then translates the resultant name according to the
sequence discussed in this section, and finally reappends the
underline and digits. The system uses this method with known
images and shared files installed by the system manager.

5-4

USING SHARED MEMORY

5.5 HOW VAX/VMS FINDS FACILITIES IN SHARED MEMORY

After the VAX/VMS system performs the logical name translation
described in Section 5.4, the final equivalence name must be the name
of a facility in either the processor's local memory or in shared
memory. If the equivalence name specifies the name of a shared memory
(that is, the name is in the format name:facility-name), VAX/VMS
searches for the facility in the appropriate data base of the
specified memory.

If the equivalence name specifies a common event flag cluster or
mailbox and does not specify a memory name, VAX/VMS searches through
the common event flag cluster data base or the mailbox data base until
it locates the specified cluster or mailbox. Absence of a memory name
as part of a common event flag cluster name or mailbox name indicates
that the facility is located in local memory.

If the equivalence name specifies a global section and does not
specify a memory name, VAX/VMS looks for the section as follows:

1. First, it searches the global section tables for sections in
the processor's local memory.

2. Then, it searches the global section tables for each
initialized shared memory connected to the processor in the
order in which they were connected and recognized by the
processor.

The result of searching in this order is that global sections in the
processor's local memory take precedence over those in shared
memories. Thus, absence of a memory name as part of a global section
name is not used as an indication of where the global section is
located.

5.6 USING COMMON EVENT FLAGS IN SHARED MEMORY

Under VAX/VMS, any process can associate with up to two common event
flag clusters (event flag numbers n4 through 95 and 9n through 127).
These clusters can be located in shared memory or in local memory. To
create and associate with a common event flag cluster in shared memory
and manipulate flags in the cluster, you use the same steps as you
would to associate with a common event flag cluster in local memory:

1. Issue the Associate Common Event Flag Cluster ($ASCEFC)
system service to create the cluster or to associate with an
existing cluster.

2. Issue any of the services that set, clear, and wait for
designated event flags, as appropriate.

As with local memory clusters, the first process among cooperating
processes to issue the Associate Common Event Flag Cluster ($ASCEFC)
system service causes the cluster to be created. Any other process
calling this service and specifying the same cluster associates with
that cluster. VAX/VMS implicitly qualifies cluster names with the
group number of the creator's UIC; therefore, other cooperatinq
processes must belong to the same group.

5-5

USING SHARED MEMORY

All of the event flag system services, with the exception of Associate
Common Event Flag Cluster and Disassociate Common Event Flag Cluster,
function identically regardless of whether they are used with local or
shared memory clusters. The only difference with the associate and
disassociate system services is that to specify a cluster in shared
memory, you must provide the memory name as well as the cluster name.
That is, after VAX/VMS performs logical name translation of the name
argument, the cluster name must have the following format:

memory-name:cluster-name

Section 5.3 describes the name format, and Section 5.4 explains the
logical name translation performed by the system.

Section 3.1 discusses common event flags and related system services.
The VAX/VMS System Services Reference Manual describes all of the
event flag services in detail.

5.7 USING MAILBOXES IN SHARED MEMORY

The first process on each processor to refer to a shared memory
mailbox must use the Create Mailbox and Assign Channel ($CREMBX)
system service to create the mailbox and assign a channel to it. Any
$CREMBX system service call referring to a shared memory mailbox must
specify a mailbox name that has or translates to the following format
(Section 5.4 explains the logical name translation procedure):

memory-name:mailbox-name

When the mailbox is created, the $CREMBX system service also creates
the mailbox-name portion of the name string as a logical name with an
equivalence name in the format MBn. For example, if the complete name
string is SHMEM:MAILBOX, the system service will create MAILBOX as a
logical name with an equivalence name of, for example, MBB005.

The Assign I/O Channel ($ASSIGN) and Deassign I/O Channel ($DASSGN)
system services require that you specify only the mailbox-name portion
of a shared memory mailbox name string. Likewise, any high-level
language program statements that open, close, read from, or write to a
shared memory mailbox must specify only the mailbox-name portion.

Figure 5-2 shows two VAX-11 FORTRAN programs using
mailbox. The memory-name in this example is SHMEM.
running in processes on separate processors.

5-6

a shared memory
The programs are

USING SHARED MEMORY

PROGRAM ONE
INTEGER*4 SYS$CREMBX,STATUS,CHAN

STATUS= SYS$CREMBX(,CHAN,,,,, 1 SHMEM:MAILBOX')
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

C-- Open the mailbox using the mailbox-name; write a message.

OPEN (UNIT=l,NAME='MAILBOX',STATUS='NEW'}
WRITE (l,*) MESSAGE

END

PROGRAM TWO
INTEGER*4 SYS$CREMBX,STATUS,CHAN

STATUS= SYS$CREMBX(,CHAN,,,,, 'SHMEM:MAILBOX')
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

C-- Open the mailbox using the mailbox-name; read the message.

OPEN (UNIT=l,NAME='MAILBOX',STATUS='OLD')
READ (l,*) MESSAGE

END

Figure 5-2 Using a Shared Memory Mailbox

A mailbox in shared memory cannot be used as process termination
mailbox.

Section 3.2 discusses mailboxes and related system services, and
includes a programming example.

5.8 USING GLOBAL SECTIONS IN SHARED MEMORY

Under VAX/VMS, processes can map global sections located in local
memory or in shared memory. A global section in shared memory can be
mapped to an image file or a data file, just like a global section in
local memory. To create a global section in shared memory, you
perform the same steps a? you would to create a global section in
local memory:

1. Using VAX-11 RMS, open the file to be mapped.

2. Issue the Create and Map Section ($CRMPSC) system service.

The file to be mapped must reside on a disk device attached to the
local processor. Once the section is created, however, processes on
all processors attached to the shared memory can map the section.

5-7

USING SHARED MEMORY

To map an existing global section in shared memory, you issue
Global Section ($MGBLSC) system service specifying the name
section. Once the section is mapped, processes gain access to
memory global sections in the same manner as they do to local
sections. VAX/VMS thus makes use of the shared memory
transparent to the process.

a Map
of the
shared
memory

unit

VAX/VMS treats the pages of a global section in shared memory
differently from pages in local memory. When a process creates a
shared-memory global section, VAX/VMS brings all of the pages of the
mapped image or data file into memory. Any process mapped to that
global section can gain access to those pages without incurring a page
fault because the pages are already in physical memory. Unlike
process pages in local memory, global section pages in shared memory
are not included in the working sets of the processes that map the
section.

Because no paging occurs, VAX/VMS never writes the contents of shared
memory global section pages back to their disk file. For read/write
global sections in which you want to maintain an updated file while
the application executes, you must issue an Update Section File on
Disk ($UPDSEC) system service. The process issuing the update request
must execute on the same processor as the process that created the
global section. You can update the disk file periodically during
execution of the application as a checkpoint precaution. The disk
file is automatically updated when the section is deleted.

Each process that has mapped a global section in shared memory can
unmap the section in either of the following ways:

• Issue a Delete Virtual Address Space ($DELTVA) system service
to delete the process's virtual address space that maps the
section.

• Terminate the current image, thereby causing VAX/VMS to unmap
the process from the section automatically.

Deleting a global section in shared memory requires an explicit
deletion request, because all global sections in shared memory must be
permanent sections. The deletion request can be either a Delete
Global Section ($DGBLSC) system service issued by the application or a
deletion request issued by the system manager. In either case,
VAX/VMS does not perform the actual deletion until all processes that
have mapped the section unmap it.

The VAX/VMS System Services Reference Manual provides information on
the use o(tfi~ VAX/VMS system services used with global sections, that
is, memory management system services. Section 5.8.l of the present
manual provides information specifically related to creatinq and
mapping a global section in shared memory. The $CRMPSC, $MGBLSC,
$DGBLSC, and $UPDSEC system services are the only memory management
system services for which the shared memory has any direct
implications.

5.8.1 Create and Map Section System Service

The Create and Map Section System Service has the following qeneral
formats when issued to create and/or map a global section in multiport
memory.

5-8

USING SHARED MEMORY

MACRO Format

$CRMPSC [inadr],
, [ident],

[retadr],
[relpag,],

[a c mode] , [fl a g s] ,
[chan], [pagcnt),

gsdnam
[vbn), [prot]

High-Level Language Format

SYS$CRMPSC ([inadr], [retadr], [acmode], [flags], gsdnam
, [id en t] , [re 1 pa g] , [ch an] , [pa g c n t] , [vb n] , [pro t])

With the exception of the FLAGS, GSDNAM, and PFC arguments, the
arguments of this service are not affected by MA780 considerations.

flags

Mask defining the section type and characteristics. Of the flags
defined, the following two must be set.

Flag

SEC$M GBL
SEC$M-PERM

Meaning

Global section
Permanent section

That is, sections in shared memory must be permanent global
sect ions.

If appropriate, the following flags also can be set.

Flag

SEC$M DZRO

SECSM WR'r

SEC$M SYSGBL

SEC$M EXPREG

Meaning

Pages are demand
zero pages

Read/write section

System global
section

Map section
into the
first free range
of virtual
addresses large
enough to hold
the section

Default

Pages are not zeroed
when copied

Read-only

Group global section

Map section according
to the INADR argument

Neither SEC$M CRF (copy-on-reference) nor SEC$M PFNMAP (page
frame number -mapping) can be set when using the Create and Map
Section system service to create global sections in shared
memory. If SEC$M CRF is set, VAX/VMS places the global section
in local memory.

gsdnam

Address of a character string descriptor pointing to the text
name string for the global section. This argument is required
for creating sections in shared memory.

The string can be either the name of a global section or the
logical name of a global section. VAX/VMS performs logical name
translation as described in Section 5.4.

5-9

pf c

USING SHARED MEMORY

VAX/VMS implicitly qualifies global section names with an
identification. For group global sections, the section name is
also implicitly qualified by the group number of the process
creating the global section.

Page fault cluster size for local memory sections. This argument
is ignored for global sections in shared memory, because VAX/VMS
reads the file into memory when it creates the section and does
not allow paging for sections in shared memory.

5-10

CHAPTER n

PRIVILEGED SHAREABLE IMAGES

A privileged shareable image is a shareable image containing one or
more routines that nonprivileged users can call to perform privileged
functions. The creator of the privileged shareable image codes,
compiles or assembles, links, and installs the routine; other users
can then call this routine in their programs using the standard CALL
interface, provided they have linked their object module(s) with the
privileged shareable image. Privileged shareable images thus provide
a vehicle for users, in effect, to write and use their own system
services.

Because privileged shareable images can be written for any purpose,
their use is not limited to real-time applications. However,
privileged shareable images can provide real-time users with a
suitable vehicle for special-purpose routines that nonprivileged
processes in applications can use.

6.1 CODING THE PRIVILEGED SHAREABLE IMAGE

The following requirements must be met in coding a privileged
shareable image:

• It must contain a special change-mode vector identifying a
kernel-mode and/or executive-mode dispatcher.

• Its entry point must be followed by a CHMK or CHME instruction
with a negative operand.

• Any kernel-mode or executive-mode dispatcher pointed to in the
change-mode vector must validate the CHMK or CHME operand, and
must be followed by one or more routines that perform the
desired function(s).

• The privileged shareable image (or each routine in it) must
enable any necessary user privileges and disable them when
they are no longer needed. The Set Privileqes ($SETPRV)
system service is used to enable and disable user privileges.

Each of the preceding considerations is discussed in the following
sections.

~-1

PRIVILEGED SHAREABLE IMAGES

6.1.1 Change-Mode Vector

One of the program sections in a privileged shareable image must start
with a change-mode vector. The purpose of this vector is to point (by
means of self-relative offsets) to the start of the kernel-mode or
executive-mode dispatch routine within the privileged shareable image.

The program section containing the change-mode vector must be assigned
the VEC attribute. {See the VAX-11 MACRO Language Reference Manual or
the VAX-11 Linker Reference Manual for a discussion of program section
attributes.)

The change-mode vector must have the format shown in Figure 6-1. The
offsets from the base of the vector to specific items are expressed by
symbols starting with PLV$L • These symbols are defined by the
$PLVDEF macro and are contained in SYS$LIBRARY:LIB.MLB.

Vector Type Code
(PLV$C_ TYP _CMOD) PLV$L_TYPE

~-

System Version Number
(SYS$K __ VERSION) PL V$L_ VERSION

Kernel Mode Dispatcher Offset PLV$L_KERNEL

Exec Mode Entry Offset PLV$L_EXEC

Reserved

Reserved
I-----·- ----

RMS Dispatcher Offset PLV$L_RMS

Address Check PLV$L_CHECK
-

Figure n-1 Change-Mode Vector Format

The significant offsets in the change-mode vector and their contents
are as follows:

• PLV$L TYPE - Contains the type code
identTfying this as a change-mode vector.

PLVSC_TYP_CMOD,

• PLV$L VERSIUN - Contains the system version number (expressed
by tlie value SYSSK VERSION). When the privileged shareable
image is linked, the Tinker inserts the value of SYSSK VERSION
into this location. Before the privileged shareable Image is
used at run time, the VAX/VMS image activator compares this
value with the current version number of SYS.EXE; and if the
two do not match, the privileged shareable image is not used
and an error status is returned.

• PLV$L KERNEL - Contains a self-relative pointer to the
user-iupplied kernel-mode dispatcher. ("Self-relative" means
relative to the start of the longword field.) A zero value
indicates there is no kernel-mode dispatch~r.

• PLV$L EXEC - Contains a self-relative pointer to
user-iupplied executive-mode dispatcher. A zero
indicates there is no executive-mode dispatcher.

fi-2

the
value

PRIVILEGED SHAREABLE IMAGES

• PLV$ RMS - Contains a self-relative pointer to the dispatcher
for -VAX-11 RMS services. A zero value indicates there is no
user-supplied VAX-11 RMS dispatcher. Only one privileged
shareable image should specify the VAX-11 RMS vector, because
only the last value will be used. This field is intended for
use only by DIGITAL.

• PLV$L CHECK - Contains a value to verify that a privileged
shareable image that is not position independent is located at
the proper virtual address. If the image is position
independent, this field should contain zero. If the image is
not position independent, this field should contain its own
address.

6.1.2 Entry Point to the Privileged Shareable Image

The entry point of a privileged shareable image must be an entry mask
followed by a CHMK (change mode to kernel) or CHME (change mode to
executive) instruction, depending on whether you want control
transferred to a kernel-mode or executive-mode dispatcher (specified
in the vector). The operand of the CHMK or CHME instruction must be a
negative value, because positive values are reserved for callinq
system services supplied by DIGITAL.

6.1.3 Kernel-Mode or Executive-Mode Dispatcher

The kernel-mode or executive-mode dispatch code that you write must:

• Validate the CHMK or CHME operand, handling any invalid
operands.

• Transfer control to the appropriate coding segment if the
privileged shareable image contains functionally separate
coding segments. The CASE instruction in VAX-11 MACRO or a
computed GO-TO-type statement in a high-level language
provides a convenient mechanism for determining where to
transfer control.

• Precede the coding segment(s) performing the function(s) the
privileged shareable image was designed to perform.

6.1.4 Enabling and Disabling User Privileges

A privileged shareable image must enable any privileges that it needs
but that the nonprivileged user of the privileged shareable image
lacks. The privileged shareable image must also disable any such
privileges before the nonprivileged user receives control again.

6-3

PRIVILEGED SHAREABLE IMAGES

To enable or disable a set of privileges, use the Set Privileges
($SETPRV) system service. The following example shows the operator
(OPER) and physical I/O (PHY_IO) privileges being enabled.

PRVMSK: • LONG
.LONG

<l@PRV$V OPER>!<l@PRV$V PHY IO> ;OPERAND PHY IO
0 ;QUADWORD MASK REQUIRED. NO BITS SET IN

;HIGH-ORDER LONGWORD FOR THESE PRIVILEGES.

$SETPRV S ENBFLG=#l,
PRVADR=PRVMSK

;l=enable, O=disable
;Identifies the privileges

Any code executing in executive or kernel mode is granted an implicit
SETPRV privilege.

The VAX/VMS ~t~!!l f?_~ry_ic::_~§_Ji~terence Manual contains an explanation
of the Set Privileges ($SETPRV) system service.

6.2 LINKING THE PRIVILEGED SHAREABLE IMAGE

The following conventions apply when you link (that is, create) a
privileged shareable image:

• Use the /SHAREABLE command qualifier to identify the image to
be created as shareable.

• Use the /PROTECT command qualifier or the PROTECT= option to
identify the entire image or specific clusters, respectively,
as protected aqainst user-mode or supervisor-mode write access
(see Section n.2.1 for further information).

• Define the privileged shareable image's entry point as a
universal symbol, using the UNIVERSAL= option.

The listings in Section 6.5 include the LINK command and linker
options file used to create the sample privileged shareable image.

6.2.1 Specifying Protection for the Image or Clusters

The VAX-11 Linker allows you to protect all or part of a privileged
shareable image from write access by code executing in user or
supervisor mode. The /PROTECT command qualifier causes all image
sections to be so protected. The PROTECT= option in a linker options
file permits you to specify protection for individual clusters, thus
allowing privileged shareable images to contain parts into which the
nonprivileged user can write.

The linker option takes the form PROTECT=YES or PROTECT=NO and
precedes the specifications for clusters that are to be protected or
unprotected, respectively. The following example shows the linker
options file entries to designate clusters A, B, and D as protected,
and cluster C as unprotected.

PROTECT=YES
CLUSTER=A,,,MODULE1,MODULE2
CLUSTER=B,,,MODULE3,MODULE4,MODULE5
PROTECT=NO
CLUSTER=C,,,MODULEn,MODULE7
PROTECT= YES
CLUSTER=D,,,MODULE8,MODULE9

PRIVILEGED SHAREABLE IMAGES

The VAX-11 Link~r Reference Manual discusses linker options files and
explains each available option.

6.3 INSTALLING THE PRIVILEGED SHAREABLE IMAGE

To make a privileged shareable image usable by nonprivileged programs,
you must install it as a protected permanent global section. The
following procedure is recommended:

1. Move the privileged shareable image to a protected directory,
such as SYS$SHARE.

2. Run the INSTALL utility, specifying the /PROTECT, /OPEN, and
/SHARED qualifiers. You can also specify the
/HEADER RESIDENT qualifier. The following entry could be
used to install the privileged shareable image presented in
Section 6.5 (the image name is USS):

$ RUN SYS$SYSTEM:INSTALL
INSTALL>SYS$SHARE:USS/PROTECT/OPEN/SHARED/HEADER_RES

The INSTALL utility is discussed in the VAX/VMS System
Manager's Guide.

6.4 USING THE PRIVILEGED SHAREABLE IMAGE

To the nonprivileged user of a privileged shareable image there is no
difference between using it and using an ordinary shareable image. To
use a privileged shareable image, the user must:

• Call the privileged shareable image.

• Link the privileged shareable image into the executable image
being created. Note: If the shareable image was installed as
writeable, you cannot link it into an executable image. You
must link an uninstalled copy of the writeable shareable image
into the executable image.

6.5 PROGRAM LISTINGS

The rest of this chapter contains listings of modules in a privileged
shareable image and of a module that calls the privileged shareable
image.

6-5

.J'\
I
~

USSDISP .LIS

USER SYS DISP
Tabl; of-contents

(1)
(1)
(1)
(1)
(1)
(1)
(l)
(1)

108
177
214
262
318
371
395
427

USER SYS DISP
Vl.0

- Example of user system service dispatc 10-MAR-1980 15:48:30 VAX-11 Macro V02.42

Declarations and Equates
Transfer Vector and Service Definitions
Change Mode Dispatcher Vector Block
Kernel Mode Dispatcher
Executive Mode Dispatcher
Get Time of Day Register Value
Set Page Fault Cluster Factor
Null Service

Page 0

- Example of user system service dispatc 10-MAR-1980 15:48:30
10-MAR-1980 15:48:21

VAX-11 Macro V02.42 Page 1

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

_DBB2: [HUSTVEDT.USS]USSDISP.MAR;23(1)

1 .TITLE USER SYS DISP - Example of user system service dispatcher
2 .IDENT /Vl.O/ -
3
4 Copyright (C) 1980
5 Digital Equipment Corporation, Maynard, Massachusetts 01754
h
7
8
9

10
11
12
13
14
15
ln
17
18
19
20
21
22

This software is furnished under a license for use only ~n a single
computer system and may be copied only with the inclusion of the
above copyright notice. This software, or any other copies thereof,
may not be provided or otherwise made available to any other person
except for use on such system and to one who agree to these license
terms. Title to and ownership of the software shall at all times
remain in DEC.

The information in the software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.

DEC assumes no responsibility for the use or reliability of its
software on equipment which is not supplied by DEC.

23 ; Facility: Example of User Written System Services
24 ;++
25 ; Abstract:
26 ; This module contains an example dispatcher for user written
27 ; system services along with several sample services. It is a
28 ; template intend to serve as the starting point for implementing
29 ; a privileged shareable image containing your own services. When
30 ; a template, the definitions and code for the sampl~ services
31 : should be removed.

used as

"" ::0
H

<
H
C"1
Cs:J
G1
Cs:J
tj

ti)

::c
>
::0
Cs:J
>
Cl
C"1
Cs:J

H
3:
>
G1
Cs:J
ti)

O"I
I

-....]

USER SYS DISP
Vl.0

0000 32
0000 33
0000 34
0000 35
0000 36
0000 37
0000 38
0000 39
0000 40
0000 41
0000 42
0000 43
0000 44
0000 45
0000 46
0000 47
0000 48
0000 49
0000 50
0000 51
0000 52
0000 53
0000 54
0000 55
0000 56
0000 57

Overview:
User written system services are contained in privileged shareable
images that are linked into user program images in exactly the
same fashion as any shareable image. The creation and installation
of a privileged, shareable image is slightly different from that
of an ordinary shareable image. These differences are:

1. A vector defining the entry points and providing other
control information to the image activator. This vector
is a the lowest address in an image section with the VEC
attribute.

2. The shareable image is linked with the /PROTECT option
that marks all of the image sections so that they will
protected and given EXE~ mode ownership by the image
activator.

3. The shareable imaqe MUST be installed /SHARE /PROTECT
with the INSTALL utility in order for the image activator
to connect the privileged shareable image to the change mode
dispatchers.

A privileaed shareable imaqe implementing user written system services is
comprised,of the followinq major components:

- Example of user system service dispatc 10-MAR-1980 15:48:30
10-MAR-1980 15:48:21

VAX-11 Macro V02.42 Page 2
_DBB2: [HUSTVEDT.USS]USSDISP.MAR;23{1)

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

58
59
60
61
62
fi3
64
65
66
67
fi8
69
70
71
72
73
74
75
7fi
77

1. A transfer vector containing all of the entry points and
collecting them at the lowest virtual address in the shareable
image. This formalism enables revision of the shareable
image without necessitating the relinking of images that
use it.

2. A Privileged Library Vector in a PSECT with the VEC attribute
that describes the entry points for dispatching EXEC and
KERNEL mode services along with validation information.

3. A dispatcher for kernel mode services. This code will
be called by the VMS change mode dispatcher when it
fails to recognize a kernel mode service request.

4. A dispatcher for executive mode services. This code will
be called by the VMS change mode dispatcher when it fails
to recognize an executive mode service request.

5. Service routines to perform the various services.

.,,
::c
H

<
H
t""
trl
G'l
trl
t='

en
::c
> ::c
trl
>
°' t""
trl

H
3
>
G'l
trl
en

C'I
I

co

USER SYS DISP
Vl.0

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
ge:;
97
98
99

100
101
102
103
104
105
106

The first four components are contained in this template and are
most easily implemented in MACRO, while the service routines can
be implemented in BLISS or MACRO. Other languages may be usable
but are not recommended -- particularly if they require runtime
support routines or are extravagant in their use of stack or are
unable to generate PIC code.

This example is position-independent (PIC) and it is good practice
to implement shareable images this way whenever possible.

Link Command File Example:

$
$ Command file to link User System Service example.
$
$ LINK/PROTECT/NOSYSSHR/SHARE=USS/MAP=USS/FU,LL SYS$INPUT/OPTIONS

Options file for the link of User System Service example.

SYS$SYSTEM:SYS.STB/SELECTIVE

Create a separate cluster for the transfer vector.

CLUSTER=TRANSTER VECTOR,,,SYS$DISK: []USSDISP
! -

GSMATCH=LEQUAL,1,1

- Example of user system service dispatc 10-MAR-1980 15:48:30
Declarations and Equates 10-MAR-1980 15:48:21

VAX-11 Macro V02.42 Page 3
_DBB2: [HUSTVEDT.USS]USSDISP.MAR;23(1)

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

.SBTTL Declarations and Equates

Include Files

.LIBRARY "SYS$LIBRARY:LIB.MLB" Macro library for system structure
definitions

Macro Definitions

DEFINE SERV1CE - A macro to make the appropriate entries in several
different PSECTs required to define an EXEC or KERNEL
mode service. These include the transfer vector,
the case table for dispatching, and a table containing
the number of required arguments.

DEFINE SERVICE Name,Number_of_Arguments,Mode

.,,
::c
H

<
H
t""
CZl
G')
CZl
0

Ul
:c
> ::c
CZl
>
to
t""
CZl

H
3:
>
G')
CZl
Ul

0000 125
0000 126
0000 127
0000 128
0000 129
0000 130
0000 131
0000 132
0000 133
0000 134
0000 135
0000 136
0000 137
0000 138
0000 139
0000 140
0000 141
0000 142
0000 143
0000 144
0000 145
0000 14n
0000 147
0000 148
0000 149
0000 150
0000 151

0) 0000 152
I 0000 153

l.D 0000 154
0000 155
0000 151)
0000 157
0000 158
0000 159
0000 160
0000 161
0000 lfi2
0000 163

00000000 0000 164

.MACRO DEFINE SERVICE,NAME,NARG=O,MODE=KERNEL

.PSECT $$$TRANSFER VECTOR,PAGE,NOWRT,EXE,PIC

.ALIGN QUAD - ; Align entry points for speed and style

.TRANSFER NAME ; Define name as universal symbol for entry

.MASK NAME ; Use entry mask defined in main routine

.IF IDN MODE,KERNEL
CHMK #<KCODE BASE+KERNEL COUNTER> ; Chanqe to kernel mode and execute
RET - - ; Return
KERNEL_COUNTER=KERNEL_COUNTER+l ; Advance counter

.PSECT KERNEL NARG,BYTE,NOWRT,EXE,PIC

.BYTE NARG - ; Define number of required arguments

.PSECT USER KERNEL DISPl,BYTE,NOWRT,EXE,PIC

.WORD 2+NAME-KCASE BASE ; Make entry in kernel mode CASE table

.IFF
CHME #<ECODE BASE+EXEC COUNTER> ; Change to executive mode and execute
RET - - ; Return
EXEC COUNTER=EXEC COUNTER+l ; Advance counter

.PSECT EXEC NARG,BYTE,NOWRT,EXE,PIC

.BYTE NARG- ; Define number of required arguments

.PSECT

.WORD

.ENDC

.ENDM

USER EXEC DISPl,BYTE,NOWRT,EXE,PIC
2+NAME-ECASE_BASE ; Make entry in exec mode CASE table

DEFINE SERVICE

Equated Symbols

SPHDDEF
$PLVDEF
SPRDEF

Define process header offsets
Define PLV offsets and values
Define processor register numbers

Initialize counters for change mode dispatching codes

KERNEL COUNTER=O ; Kernel code counter

.,,
::c
1-1

<
1-1
C'"1
tz:I
Cl
tz:I
t:l

tn
::c
> ::c
tz:I
>
O::I
C'"1
tz:I

1-1
3
>
Cl
tz:I
tn

O"I
I

1--'
0

USER SYS DISP
Vl.0- -

USER SYS DISP
Vl .O- -

- Example of user system service dispatc 10-MAR-1980 15:48:30
Declarations and Equates 10-MAR-1980 15:48:21

VAX-li Macro V02.42 Page 4
_DBB2: [HUSTVEDT.USS]USSDISP.MAR;23(1)

00000000 0000
0000
0000
0000
0000

00000000
0000
0000

00000000
0000
0000

lfi 5
Hin
Hi7
168
lfi9
170
171
172
173
174
175

EXEC COUNTER=O ; Exec code counter

Own Storage

.PSECT KERNEL NARG,BYTE,NOWRT,EXE,PIC
KF.RNEL NARG: - ; Base of byte table containing the

- ; number of required arguments.
.PSECT EXEC NARG,RYTF.,NOWRT,EXE,PIC

EXEC NARG: - : Base of byte table containing the
numher of required arguments.

- Example of user system service dispatc 10-MAR-1980 15:48:30
Transfer Vector and Service Definitions 10-MAR-1980 1S:48:21

VAX-11 Macro V02.42 Page 5
_DBB2: [HUSTVEDT.USS]USSDISP.MAR;23(1)

0000 177
0000 178
0000 179
0000 180
0000 181
0000 182
0000 183
0000 184
0000 18 5
0000 186
0000 187
0000 188
0000 189
0000 190
0000 191
0000 192
0000 193
0002 194
0002 195
0004 196
0004 197
0002 198
0002 199
0002 200
0002 201
0002 202
0002 203
0002 204
0002 205
0002 206
0002 207
0002 208

0002 209
0002 210

FFFFFCOO 0002 211
FFFFFCOO 0002 212

.SPTTL Trcnsfer Vector and Service Definitions
;++

The use of transfer vectors to effect entry to the user written system services
enables some updatinq of the shareable image containing them without necessitating
a re-link of all proqrams that call them. The PSECT containinng the transfer
vector will be positioned at the lowest virtual address in the shareable image
and so lonn as the transfer vector is not re-ordered, programs linked with
one version of the shareable image will continue to work with the next.

Thus as additional services are added to a privileged shareable image, their
definitions should be added to the end of the following list to ensure that
programs usinq previous versions of it will not need to be re-linked.
To completely avoid relinking existing programs the size of the privileged
shareable image must not change so some padding will be required to provide
the opportunity for future growth.

DEFINE SERVICE USER_GET_TODR,l,KERNEL ; Service to get value of time
; of day register

DEFINE SERVICE USER_SET_PFC,2,KERNEL ; Service to set value of process
; default pagefault cluster

DEFINE SERVICE USER_NULL,O,EXEC : Null exec service

The base values used to generate the dispatching codes should be negative for
user services and must be chosen to avoid overlap with any other privileged
shareable images that will be used concurrently. Their definition is
deferred to this point in the assembly to cause their use in the preceding
macro calls to be forward references that guarantee the size of the change
mode instructions to be four bytes. This satisfies an assumption that is
made by for services that have to wait and be retried. The PC for retrying
the change mode instruction that invokes the service is assumed to be 4 bytes
less than that saved in the change mode exception frame. Of course, the

particular service routine determines whether this is possible.

KCODE BASE=-1024
ECODE-BASE=-1024

Base CHMK code value for these services
Base CHME code value for these services

"'O
::c
1-f

<
1-f
t""
tZl
Cl
tZl
0

tJ)

:c
> ::c
tZl
>
°' t""
tZl

1-f
~
>
G')
tZl
tJ)

O'\
I

I-'
I-'

USER SYS DISP
Vl.0- -

- Example of user system service dispatc 10-MAR-1980 15:48:30
Change Mode Dispatcher Vector Block 10-MAR-1980 15:48:21

VAX-11 Macro V02.42 Page 6
_DBB2: [HUSTVEDT.USS]USSDISP.MAR;23(1)

0002 214
0002 215
0002 2Hi
0002 217
0002 218
0002 219
0002 220
0002 221
0002 222
0002 223
0002 224
0002 225
0002 226
0002 227
0002 228
0002 229
0002 230
0002 231
0002 232
0002 233
000.2 234
0002 235
0002 236
0002 237
0002 238
0002 239
0002 240
0002 241
0002 242
0002 243
0002 244
0002 245
0002 246
0002 247
0002 248
0002 249
0002 250

00000000 251
0000 252

00000001 0000 253

00000000' 0004 254
00000005' 0008 255
00000001' oooc 256
00000000 0010 257
00000000 0014 258
00000000 0018 259
00000000 OOlC 260

.SBTTL Change Mode Dispatcher Vector Block
;++

This vector is used by the image activator to connect the privileged shareable
image to the VMS change mode dispatcher. The offsets in the vector are self
relative to enable the construction of position independent images. The system
version nuMber will be used by the image activator to verify that this shareable
image was linked with the symbol table for the current system.

Change Mode Vector Format

+--+
Vector Type Code
(PLV$C TYP CMOD)

+-------------------=---=------------------+
System Version Number

(SYSSK VERSION)
+-------------------=----------------------+

Kernel Mode Dispatcher Offset

+--+
Exec Mode Entry Offset

+--+
Reserved

+--+
Reserved

+--+
RMS Dispatcher Offset

+--+
Address Check

+--+

.PSECT USER_SERVICES,PAGE,VEC,PIC,NOWRT,EXE

PLV$L TYPE

PLV$L_VERSION

PLV$L KERNEL

PLVSL_EXEC

PLV$L_RMS

PLV$L_CHECK

.LONG PLV$C TYP CMOD Set type of vector to change mode
dispatcher

.LONG

.LONG

.LONG

.LONG

.LONG

.LONG

.LONG

SYS$K VERSION
KERNEL DISPATCH-.
EXEC DISPATCH-.
0 -

0
0
0

Identify system version
Offset to kernel mode dispatcher
Offset to executive mode dispatcher
Reserved.
Reserved.
No RMS dispatcher
Address check - PIC image

.,,
:::c
H

<
H
L'
tr.I
G)
tr.I
0

CJ)

::c
> :::c
tr.I
>
°' L'
tr.I

H
3:
>
G)
tr.I
CJ)

O"\
I

I-'
N

USER SYS DISP
Vl.0- -

51

50 0000'8F

50 OOOO'BF

51 0400 co
F8

02 51
F3

51 OOOO'CF41
00000004 9F41

0400'CF40 fiC
Dl
50

01 FCOO SF

- Example of user system service dispatc 10-MAR-1980 15:48:30
Change Mode Dispatcher 10-MAR-1980 15:48:21

VAX-11 Macro V02.42 Page 7
_DBB2: [HUSTVEDT.USS]USSDISP.MAR;23(1)

0020 21i2
0020 263
0020 264
0020 2'>5
0020 2fif1
0020 267
0020 268
0020 269
0020 270
0020 271
0020 272
0020 273
0020 274
0020 275
0020 27Fi
0020 277
0020 278
0020 279

00000000 280
0000 281

3C 0000 282
04 0005 28 3

0006 284
3C 0006 285
04 0008 28f'
05 oooc 287

OOOD 288
OOOD 289

9E OOOD 290
19 0012 291
Bl 0014 292
lE 0017 293

0019 294
0019 295
0019 2%
0019 297
0019 298

9A 0019 299
DE OOlF 300

0027 301
91 002D 302
lF 0033 303
AF 0035 304

0037 305
0037 30"
0037 307
0038 308
0038 309
003B 310
003R 311
003B 312
003B 313

00000000 314
05 0000 315

0001 311)

.SRTTL Kernel Mode Dispatcher
;++

Input Parameters:

(SP) - Return ~ddress if bad chanqe mode value

RO - Chnnne mode argument value.

R4 - Current PCB Address. <Therefore R4 must be specified in all
register save masks for kernel routines.)

AP - Argument pointer existing when the change
mode instruction was executed.

FP - Address of minimal call frame to exit
the change mode dispatcher and return to
the original mode.

.PSECT
KACCVIO:

MOVZWL
RP.T

KINSFARG:
MOVZWL
RET

KNOTME: RSB

USER KERNEL DISPO,BYTE,NOWRT,EXE,PIC
- - ; Kernel access violation

#SSS ACCVIO,RO ; Set access violation status code
- and return

Kernel insufficient arguments.
#SSS INSFARG,RO ; Set status code and

- return
RSB to forward request

KERNEL DISPATCH:: Entry to dispatcher
- MOVAB WA-KCODE BASE(RO) ,Rl Normalize dispatch code value

Branch if code value too low
Check high limit

BLSS KNOTME -
CMPW Rl,#KERNEL COUNTER
BGEQU KNOTME - Branch if out of range

The oispatch code has now been verified as being handled by this dispatcher,
now the argument list will be prohed and the required number of arguments
verified.

MOVZRL
MOVAL
T F!\!ORD
CMPB
BLSSU
CASEW

KCASE RASE:

WAKER!\!EL NARG[Rll,Rl ; Get required argument count
0#4[Rl],Rl ; Compute hyte count including arg count
Rl, (AP) ,KACCVIO ; Branch if arglist not readable
(AP) ,WA<KERNEL NARG-KCODE BASE>[RO] ; Check for required number
KINSFARG - ;- of arguments
RO,- ; Case on change mode

#KCODE BASE,
#<KERNEL COUNTER-1>

argument value
Base value
Limit value (number of entries)
Case table base address for DEFINE SERVICE

Case table entries are made in the PSECT USER KERNEL DISPl by
invocations of the DEFINE SERVICE macro. The-three PSECTS,
USER_KERNEL_DISP0,1,2 wilI be abutted in lexical order at link-time.

.PSECT USER KERNEL DISP2,RYTE,NOWRT,EXE,PIC
RSB - - ; Return to reject out of

; range value

"tJ
::0
1-t

<
1-t
r
C1l
C)
C1l
0

(/)

:c
>
::0
C1l
>
°' r
C1l

1-t
3
>
C)
C1l
(/)

I'\
I
.J

USER SYS DISP'
Vl.0- -

51

50 0000'8F

50 0000'8F

51 0400 co
F8

01 51
F3

51 OOOO'CF41
00000004 9F41

0400'CF40 6C
Dl
50

00 FCOO 8F

- Example of user system service dispatc 10-MAR-1980 15:48:30
Executive Mode Dispatcher 10-MAR-1980 15:48:21

VAX-11 Macro V02.42 Page 8
_DBB2: [HUSTVEDT.USS]USSDISP.MAR;23(1)

0001 318
0001 319
0001 320
0001 321
0001 322
0001 323
0001 324
0001 325
0001 32fi
0001 327
0001 328
0001 329
0001 330
0001 331
0001 332

00000000 333
0000 334

3C 0000 335
04 0005 336

0006 337
3C 0006 338
04 0008 339
05 oooc 340

OOOD 341
OOOD 342

9E OOOD 343
19 0012 344
Bl 0014 345
lE 0017 34fi

0019 347
0019 348
0019 349
0019 350
0019 351

9A 0019 352
DE OOlF 353

0027 354
91 002D 355
lF 0033 356
AF 0035 357

0037 358
0037 359
0037 360
0038 3fil
0038 362
0038 363
0038 364
0038 365
003B 366

00000000 367
05 0000 368

0001 369

.SBTTL Executive Mode Dispatcher
;++

Input Parameters:

(SP) - Return address if bad change mode value

RO - Change mode argument value.

AP - Argument pointer existing when the change
mode instruction was executed.

FP - Address of minimal call frame to exit
the change mode dispatcher and return to
the original mode.

.PSECT
EACCVIO:

MOVZWL
RET

EINSFARG:
MOVZWL
RET

ENOTME: RSB

EXEC DISPATCH::

USER EXEC DISPO,BYTE,NOWRT,EXE,PIC
- - ; Exec access violation

#SS$ ACCVIO,RO ; Set access violation status code
- and return

Exec insufficient arguments.
#SS$ INSFARG,RO ; Set status code and

- return
RSB to forward request

Entry to dispatcher
MOVAB WA-ECODE BASE(RO) ,Rl Normalize dispatch code value

Branch if code value too low
Check high limit

BLSS ENOTME -
CMPW Rl,#EXEC COUNTER
BGEQU ENOTME - Branch if out of range

The dispatch code has now been verified as being handled by this dispatcher,
now the argument list will be probed and the required number of arguments
verified.

MOVZBL
MOVAL
IFNORD
CMPB
BLSSU
CASEW

ECASE BASE:

WAEXEC NARG[Rl],Rl ; Get required argument count
@#4[Rl],Rl ; Compute byte count including arg count
Rl, (AP) ,EACCVIO ; Branch if arglist not readable
(AP),WA<EXEC NARG-ECODE BASE>[RO] ; Check for required number
EINSFARG - -; of arguments
RO, - ; Case on change mode.

#ECODE BASE,
#<EXEC-COUNTER-1>

argument value
Base value
Limit value (number of entries)
Case table base address for DEFINE SERVICE

Case table entries are made in the PSECT USER EXEC DISPl by
invocations of the DEFINE SERVICE macro. The-three PSECTS,
USER_EXEC_DISP0,1,2 will be abutted in lexical order at link-time.

.PSECT USER EXEC DISP2,BYTE,NOWRT,EXE,PIC
RSB - - ; Return to reject out of

; range value

.,,
::0
1-4

<
1-4
r
tZl
G')
tZl
0

ti)

:c
>
::0
tZl
>
°' r
tZl

1-t
3
>
G')
tZl
ti)

O"\
I

f-'
.i::.

USER SYS DISP
Vl .O- -

USER SYS DISP
Vl.0- -

50

55

50

51 04 AC

fil 18
00000000'8F

50 0000'8F

00000000'9F
51 08 AC

QA

61 34 A5
7F SF 04 AC

04
50 7F 8F
34 A5 50

00000000'8F

- Example of user system service dispatc 10-MAR-1980 15:48:30
Get Time of Day Register Value 10-MAR-1980 15:48:21

VAX-11 Macro V02.42 Page 9
_DBB2: [HUSTVEDT.USS]USSDISP.MAR;23(1)

0001 371
0001 372
0001 373
0001 374
0001 375
0001 376
0001 377
0001 378
0001 379
0001 380
0001 381
0001 38 2
0001 383
0001 384

OOlC 0001 385
DO 0003 386

0007 387
DB OOOD 388
DO 0010 389
04 0017 390

0018 391
3C 0018 392
04 OOlD 393

.SBTTL Get Time of Day Re9ister Value
;++

Functional Description:
This routine reads the content of the hardware time of day
processor register and stores the resulting value at the
specified address.

Input Parameters:
04(AP) - Address to return time of day value
R4 - Address of current PCB

Output Parameters:

10$:

RO - Completion Status Code

.ENTRY
MOVL
I FNO\A1RT
MFPR
MOVL
RET

MOVZWL
RET

USER GET TODR,AM<R2,R3,R4>
4(AP),Rl- ; Get address to store time of day register
#4,(Rl),10$; Branch if not writable
#PR$ TOOR, (Rl) ; Return current time of day register
#SSS-NORMAL,RO ; Set normal completion status

- and return

#SS$_ACCVIO,RO Indicate access viol~tion

- Example of user system service dispatc 10-MAR-1980 15:48:30
Set Page Fault Cluster Factor 10-MAR-1980 15:48:21

VAX-11 Macro V02.42 Page 10
_DBB2:[HUSTVEDT.USS]USSDISP.MAR;23(1)

0030
DO
DO
13

9A
91
lB
90
90
DO
04

OOlE
OOlE
OOlE
OOlE
OOlE
OOlE
OOlE
OOlE
OOlE
OOlE
OOlE
OOlE
OOlE
OOlE
OOlE
OOlE
0020
0027
002B
002D
0033
0037
003C
003E
0042
0046
004D

395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
4 21

.SBTTL Set Page Fault Cluster Factor
;++

Functional Description:
This routine sets the page fault cluster to the specified value
and returns the previous value.

Input Parameters:
04(AP) - New value for Page Fault Cluster factor
08(AP) - Address to return previous value

(0 means none)
R4 - PCB address of current process

Output Parameters:

10$:

20$:

RO - Completion Status code

.ENTRY
MOVL
MOVL
BEQL
IFNOWRT
MOVZBL
CMPB
BLEQU
MOVB
MOVB
MOVL
RET

USER SET PFC,AM<R4,R5>
@#CTLSGL-PHD,R5
8(AP) ,Rl-
10$
#4, (Rl) ,30$
PHD$B DFPFC(R5), (Rl)
4 (AP)-;-#127
20$
#127 ,RO
RO,PHD$B DFPFC(R5)
#SSS_NORMAL,RO

Get address of process header
Get address to store previous value
Branch if none
Branch if not writable
Return current value
Check for legal value
Branch if legal
Set to maximum value
Set new value into PHD
Set normal completion status

and return

"'C
:xi
1-4

<
1-4
t'""
[':l
Cl
[':l

0

en
:c
>
:xi
[':l

>
°' t'""
[':l

1-4
3:
>
Cl
[':l
en

O"\
I

1--'
V1

USER SYS DISP
Vl .O- -

50 0000'8F

50 0000 I BF·

004E
3C 004E
04 0053

0054

422
423 30$:
424
425

MOVZWL #SSS ACCVIO,RO Indicate access violation
RET -

Example of user system service dispatc 10-MAR-1980 15:48:30 VAX-11 Macro V02.42 Page 11
Null Service 10-MAR-1980 15:48:21 _DBB2: [HUSTVEDT.USS]USSDISP.MAR;23(1)

0054 427
0054 428
0054 429
0054 430
0054 431
0054 432
0054 433
0054 434
0054 435
0054 43n

0000 0054 437
3C 0050 438
04 0058 439

005C 440
005C 441

.SBTTL Null Service
;++
; Functional Description:
;
; Input Parameters:
;
; Output Parameters:

,

.ENTRY USER NULL, AM<>
MOVZWL #SSS=NORMAL,RO
RET

.END

Entry definition
Set normal completion status

and return

"tJ ::c
H

<
H
1:-1
CZl
G')
CZl
0

(fl

::c
> ::c
CZl
>
°' 1:-1
CZl

H
3:
>
G')
tZl
(fl

USER SYS DISP - Example of user system service dispatc 10-MAR-1980 15:48:30 VAX-11 Macro V02.42 Page 12
symbol table 10-MAR-1980 15:48:21 DBB2: [HUSTVEDT.USS]USSDISP.MAR;23(1) -
BIT ••• = 00000000 PHD$L Rl3 OOOOOOB8 PHD$W WSQUOTA 00000018
CTL$GL PHO ******** x oc PHD$L-R2 0000008C PLV$C-TYP CMOD = 00000001
EACCVIO 00000000 R OB PHD$L-R3 00000090 PLV$C-TYP-MSG = 00000002
ECASE BASE 0000003B R OB PHD$L-R4 00000094 PLV$L-CHECK OOOOOOlC
ECODE-BASE = FFFFFCOO PHD$L-R5 00000098 PLV$L-EXEC oooooooc
EINSFARG 00000006 R OB PHD$L-Rfi 0000009C PLV$L-KERNEL 00000008
ENOTME OOOOOOOC R OB PHD$L-R7 OOOOOOAO PLV$L-MSGDSP 00000008
EXEC COUNTER = 00000001 PHD$L-R8 OOOOOOA4 PLV$L-RMS 00000018
EXEC-DISPATCH 00000000 RG OB PHD$L-R9 OOOOOOA8 PLV$L-TYPE 00000000

~

EXEC-NARG 00000000 R 04 PHD$L-REFERFLT 00000014 PLV$L-VERSION 00000004
GBL .7. = 00000000 PHD$L-RESLSTH OOOOOOFO PR$S SID ECO = 00000008
KACCVIO 00000000 R 09 PHDSL-SPARE 0000013C PR$S-SID-PL = 00000004
KCASE BASE 0000003B R 09 PHD$L-SSP 0000007C PR$S-SID-SN = oooooooc
KCODE-BASE = FFFFFCOO PHD$L-TIMREF 00000100 PR$S-SID-TYPE = 00000008
KERNEL COUNTER = 00000002 PHD$L-USP 00000080 PR$V-SID-ECO = 00000010

'ti KERNEL-DISPATCH 00000000 RG 09 PHD$L-WSL 00000180 PR$V-SID-PL = oooooooc ::c KERNE'L-NARG 00000000 R 03 PHD$M-DALCSTX = 00000002 PR$V-SID-SN = 00000000
KINSFARG 00000006 R 09 PHD$M-PFMFLG = 00000001 PR$V-SID-TYPE = 00000018 <
KNOTME OOOOOOOC R 09 PHD$M-WSPEAKCHK= 00000004 PR$ ACCR - = 00000029
PHD$B ASTLVL OOOOOOCB PHD$Q-AUTHPRIV OOOOOOOC PR$-ACCS = 00000028 r

CZ]
PHD$B-CPUMOOE 0000005C PHO$Q-IMAGPRIV OOOOOOE4 PR$-ASTLVL = 00000013 G')
PHD$B-OFPFC 00000034 PHO$Q-PRIVMSK 00000000 PR$-CADR = 00000025 CZ]

PHD$B-PAGFI L OOOOOOlF PHD$S-ASTLVL = 00000008 PR$-CAER = 00000027 0
PHD$B-PGTBP FC 00000035 PHO$S-POLR = 00000018 PR$-CM IE RR = 00000017 CJ) O"'I PHD$C-LENGTH 00000180 PHD$V-ASTLVL = 00000018 PR$-CS RO = 00000010 ::c I

t-' PHD$C-PHDPAGCTX= 00000008 PHOSV-OALCSTX = 00000001 PR$-CSRS = OOOOOOlC >
O"'I PHD$K-LENGTH 00000180 PHD$V-POLR = 00000000 PR$-CSTO = OOOOOOlF ::c

PHD$L-BIOCNT 00000054 PHD$V-PFMFLG = 00000000 PR$-CSTS = OOOOOOlE CZ]

> PHD$L-CPULIM 00000058 PHD$V-WSPEAKCHK= 00000002 PR$-ESP = 00000001

°' PHD$L-CPUTIM 00000038 PHO$W-ASTLM 00000040 PRS-ICCS = 00000018 r
PHD$L-DIOCNT 00000050 PHO$W-BAK 00000044 PR$-ICR = OOOOOOlA CZ]

PHD$L-ESP 00000078 PHD$W-CWSLX OOOOOOOA PRS-IPL = 00000012
H PHD$L-FREPOVA 00000028 PHD$W-DFWSCNT OOOOOOlA PRS-ISP = 00000004 3: PHD$L-FREP1VA 00000030 PHD$W-EMPTPG 00000004 PR$-KSP = 00000000 >

PHD$L-FREPTECNT 0000002C PHO$W-EXTDYNWS 00000072 PR$-MAPEN = 00000038 G')

PHD$L-IMGCNT OOOOOOF4 PHO$W-FLAGS 00000030 PRS-MCESR = 00000026 CZ]
CJ) PHD$L-KSP 00000074 PHO$W-PHVINOEX 00000042 PR$-NICR = 00000019

PHD$L-POBR OOOOOOC4 PHO$W-PRCLM 0000003E PR$-POBR = 00000008
PHD$L-P0LRASTL OOOOOOC8 PHO$W-PST 00000020 PRS-POLR = 00000009
PHD$L-PlBR oooooocc PHD$W-PSTBASMAX 00000046 PRS-PlBR = OOOOOOOA
PHD$L-PlLR 00000000 PHO$W-PSTFREE 00000026 PR$-PlLR = OOOOOOOB
PHD$L-PAGEFLTS 00000048 PHO$W-PSTLAST 00000024 PRS-PCBB = 00000010
PHD$L-PAGFI L OOOOOOlC PHO$W-PTCNTACT OOOOOOnC PRS-PME = 00000030
PHD$L-PC OOOOOOBC PHD$W-PTCNTLCK 00000068 PR$-RXCS = 00000020
PHD$L-PCB 00000074 PHO$W-PTCNTMAX OOOOOOnE PR$-RXOB = 00000021
PHO$L-PFLREF OOOOOOFC PHD$W-PTCNTVAL 0000006A PR$-SBIER = 00000034
PHD$L-PFLTRATE OOOOOOF8 PHO$W-QUANT 0000003C PRS-SBIFS = 00000030
PHD$L-PGFLTIO 0000004C PHD$W-REQPGCNT 00000008 PR$-SBIMT = 00000033
PHD$L-PSL ooooooco PHD$W-RESPGCNT OOOOOODfi PRS-SBIQC = 00000036
PHD$L-PSTBASOFF 00000020 PHD$W-WSAUTH OOOOOOOA PRS-SBIS = 00000031
PHD$L-PTWSLELCK 00000060 PHO$W-WSDYN OOOOOOOE PR$-SBISC = 00000032
PHD$L-PTWSLEVAL 000000fi4 PHO$W-WSFLUID 00000070 PRS-SBITA = 00000035
PHD$L-RO 00000084 PHO$W-WSLAST 00000012 PR$-SBR = oooooooc
PHD$L-Rl 00000088 PHD$W-WSLIST 00000008 PR$-SCBB = 00000011
PHD$L-Rl0 OOOOOOAC PHO$W-WSLOCK oooooooc PR$-SID = 0000003E
PHD$L-Rll OOOOOOBO PHOSW-WSLX 00000046 PR$-SID TYP750 = 00000002
PHD$L=Rl2 OOOOOOB4 PHO$W-WSNEXT 00000010 PRS-SID-TYP780 = 00000001

()\

I
I-'
-i

!)SER SYS DISP
symbol table

PR$ SID TYP7ZZ
PR$-SID-TYPMAX
PR$-SIRR
PR$-SISR
PR$-SLR
PR$-SSP
PR$-TBDR
PR$-TBIA
PR$-TBIS
PR$-TODR
PR$-TXCS
PR$-TXDB
PR$-UBRESET
PR$-USP
PR$-WCSA
PR$-WCSD
SS$-ACCVIO
SS$-INSFARG
SS$-NORMAL
SYS"S'K VERSION
USER GET TODR
USER-NULL
USER-SET PFC

PSECT name

ABS
BLANK

ABS
KERNEL NARG
EXEC NARG

00000003
00000003
00000014
00000015
OOOOOOOD
00000002
00000024
0000003~
0000003,\
OOOOOOlB
00000022
00000023
00000037
00000003
0000002C
0000002D

00000001 RG
00000054 RG
OOOOOOlE RG

$$$TRANSFER VECTOR
USER KERNEL-DISPl
USER-EXEC DISPl
USER-SERVICES
USER-KERNEL DISPO
USER-KERNEL-DISP2
USER-EXEC DISPO
USER-EXEC-DISP2

x
x
x
x

- Example of user system service dispatc 10-MAR-1980 15:48:30 VAX-11 Macro V02.42 Page 13
10-MAR-1980 15:48:21 _DBB2: [HUSTVEDT.USS]USSDISP.MAR;23{1)

09
09
oc
08
QC
oc
oc

+----------------+
! Psect synopsis !
+----------------+

Allocation PSECT No. Attributes
---------- --------- ----------
00000000 { 0.) 00 { 0.) NOP IC USR CON ABS LCL NOSHR NOEXE NORD NOWRT NOVEC BYTE
00000000 { 0.) 01 (1.) NOP IC USR CON REL LCL NOSHR EXE RD WRT NOVEC BYTE
00000184 { 388.) 02 { 2.) NOP IC USR CON ABS LCL NOSHR EXE RD WRT NOVEC BYTE
00000002 (2.) 03 (3.) PIC USR CON REL LCL NOSHR EXE RD NOWRT NOVEC BYTE
00000001 (1.) 04 (4.) PIC USR CON REL LCL NOSHR EXE RD NOWRT NOVEC BYTE
00000017 (23.) 05 (5.) PIC USR CON REL LCL NOSHR EXE RD NOWRT NOVEC PAGE
00000004 { 4.) 06 (fi.) PIC USR CON REL LCL N03HR EXE RD NOWRT NOVEC BYTE
00000002 (2.) 07 (7.) PIC USR CON REL LCL NOSHR EXE RD NOWRT NOVEC BYTE
00000020 (32.) 08 (8.) PIC USR CON REL LCL NOSHR EXE RD NOWRT VEC PAGE
00000038 (59.) 09 (9.) PIC USR CON REL LCL NOSHR EXE RD NOWRT NOVEC BYTE
00000001 (1.) OA (10.) PIC USR CON REL LCL NOSHR EXE RD NOWRT NOVEC BYTE
0000003B (59.) OB (11.) PIC USR CON REL LCL NOSHR EXE RD NOWRT NOVEC BYTE
0000005C (92.) oc (12.) PIC USR CON REL LCL NOSHR EXE RD NOWRT NOVEC BYTE

+------------------------+
! Performance indicators !
+------------------------+

Phase Page faults CPU Time Elapsed Time
----------- -------- -----------

Initialization 8 00:00:00.04 00:00:00.18
Command processing 13 00:00:00.18 00:00:00.4fi
Pass 1 306 00:00:06.fi4 00 00 09.97
Symbol table sort 7 00:00:00.25 00 00 00.41
Pass 2 200 00:00:01.49 00 00 02.00
Symbol table output 27 00:00:00.12 00 00 00.15
Psect synopsis output 5 00:00:00.011 oo oo 00.011

"' :::0
H

<
H
L1
Cz:I
Cl
Cz:I
0

(/)

:c
>
:::0
Cz:I
>
to
L1
Cz:I

H
3:
>
Cl
Cz:I
(/)

O'\
I

I-'
00

USER SYS DISP
VAX-Tl Macro Run Statistics

Cross-reference output
Assembler run totals

- Example of user system service dispatc 10-MAR-1980 15:48:30
10-MAR-1980 15:48:21

0
567

00:00:00.00
00:00:08.78

00:00:00.00
00:00:13.24

The working set limit was 293 pages.
27596 bytes {54 pages) of virtual memory were used to buffer the intermediate code.
There were 10 pages of symbol table space allocated to hold 194 non-local and 4 local symbols.
441 source lines were read in Pass 1, producing 41 object records in Pass 2.
17 pages of virtual memory were used to define 15 macros.

Macro library name

DRAS:[SYSLIB]LIB.MLB;l
-DRAS:(SYSLIB]STARLET.MLB;l
TOTALS {all libraries)

14

427 GETS were required to define 14 macros.

+--------------------------+
! Macro library statistics !
+--------------------------+

Macros defined

0
14

There were no errors, warnings or information messages.

USSDISP/LIS

VAX-11 Macro V02.42 Page 14
_DBB2: [HUSTVEDT.USS]USSDISP.MAR;23{1)

.,,
:::c
H

<
H
t""
tz:I
Cl
tz:I
0

Cll
::c
> :::c
tz:I
>
°' t""
tz:I

H
3
>
Cl
tz:I
CJ)

°' I
!--'
l..O

US ST EST
Table of contents

(1)

US ST EST
Vl.0

45

USSTEST.LIS

10-MAR-1980 15:12:23 VAX-11 Macro V02.42 Page 0

Sample invocation of user written system

0000 1
0000 2
0000 3
0000 4
0000 5
0000 fi
0000 7
0000 8
0000 9
0000 10
0000 11
0000 12
0000 13
0000 14
0000 15
0000 16
0000 17
0000 18
0000 19
0000 20
0000 21
0000 22
0000 23
0000 24
0000 25
0000 2fi
0000 27
0000 28
0000 29
0000 30
0000 31
0000 32
0000 33
0000 34
0000 35
0000 36
0000 37
0000 38
0000 39
0000 40
0000 41
0000 42

00000000 0000 43

.TITLE USSTEST

.!DENT /Vl.O/

10-MAR-1980 15:12:23
10-MAR-1980 15:02:5fi

VAX-11 Macro V02.42 Page 1
_DBB2:(HUSTVEDT.USS]USSTEST.MAR;5 (1)

Copyright (C) 1980
Digital Equipment Corporation, Maynard, Massachusetts 01754

This software is furnished under a license for use only on a single
computer system and may be copied only with the inclusion of the
above copyright notice. This software, or any other copies thereof,
may not be provided or otherwise made available to any other person
except for use on such system and to one who agree to these license
terms. Title to and ownership of the software shall at all times
remain in DEC.

The information in the software is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.

DEC assumes no responsibility for the use or reliability of its
software on equipment which is not supplied by DEC.

Facility: Example of User Written System Services
;++

Abstract:
This module contains an example of a program that invokes a sample
user-written system service that is contained in a privileged
shareable image. The module USSDISP contains the sample service
and associated dispatching code being invoked by this simple test
program.

Link Command File:

BUF:

$
$! Link Command file for USSTEST
s !
$ LINK USSTEST/MAP/FULL,SYS$INPUT/OPTIONS

.LONG

Options file for USSTEST
USS.EXE/SHARE

0 Location to receive TOOR contents

.,,
" H

<
H
t"'
tZl
G')
tZl
0
CJ)
::c
>
" tZl
> .,,
t"'
tZl

H
3
>
G')
tZl
CJ)

O"I
I

!'-.)

0

USSTEST
Vl.O

US ST EST
Symbol table

BUF
USER GET TODR
USSTEST -

PSECT name

ABS
• BLANK •

F7 AF

OOOOOOOO'EF 01

00000000 R
******** x
00000004 RG

10-MAR-1980 15:12:23
Sample invocation of user written system 10-MAR-1980 15:02:56

VAX-11 Macro V02.42 Page 2
_DBB2: [HUSTVEDT.USS]USSTEST.MAR;5 (1)

0004
0004
0004
0004
0004
0004
0004
0004
0004
0004
0004
0004
0004
0004

0000 0004
9F 0006

0009
FB 0009

0010
04 0010

0011
0011

01
01
01

Allocation

00000000
00000011

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

.SBTTL Sample invocation of user written system service
;++

Functional Description:
This routine shows an invocation of the example user system service that
will read the contents of the time of day register.

As can be seen by this example, the privileged nature of the code used
to implement the reading of the TODR is not visible to the caller.
For coding convenience and better maintainability, the code can be
generated by macros patterned on the standard VMS system service macros.

.ENTRY USSTEST,~M<>
PUSHAB BUF

CALLS #1,USER_GET TOOR

RET

.END USSTEST

Entry mask and definition
Build argument list - set address for

return value
Invoke routine in privileged sh. image
to get value from Time-of-day register

10-MAR-1980 15:12:23 VAX-11 Macro V02.42 Page 3
10-MAR-1980 15:02:56 _DBB2:[HUSTVEDT.USS]USSTEST.MAR;5 (1)

+----------------+
! Psect synopsis !
+----------------+

PSECT No. Attributes

O.) 00
17.) 01

0.) NOPIC
1.) NOP IC

USR
USR

CON
CON

ABS
REL

LCL NOSHR NOEXE NORD NOWRT NOVEC BYTE
LCL NOSHR EXE RD WRT NOVEC BYTE

+------------------------+
! Performance indicators !

+------------------------+
Phase Page faults CPU Time Elapsed Time

Initialization
Command processing
Pass l
Symbol table sort
Pass 2
Symbol table output
Psect synopsis output
Cross-reference output
Assembler run totals

9
14
33

0
35

0
2
0

95

00:00:00.05
00:00:00.18
00:00:00.23
00:00:00.00
00:00:00.14
00:00:00.01
00:00:00.02
00:00:00.00
00:00:00.63

00:00:00.16
00:00:00.98
00:00:01.11
00:00:00.00
00:00:00.21
00:00:00.01
00 00:00.02
00 00:00.00
00 00:02.49

"'O
::0
H
<:
H
r
tzl
G)
tzl
l:j

(/)

::c
>
::0
tzl
>
°' r
tzl

H
3:
>
G)
tzl
(/)

°' I
rv
I-'

The working set limit was 200 pages.
673 bytes (2 pages) of virtual memory were used to buffer the intermediate code.
There were 10 pages of symbol table space allocated to hold 3 non-local and 0 local symbols.
66 source lines were read in Pass 1, producing 13 object records in Pass 2.
0 pages of virtual memory were used to define 0 macros.

+--------------------------+
! Macro library statistics !
+--------------------------+

Macro library name Macros defined

_DRA5: [SYSLIB]STARLET.MLB;l 0

0 GETS were required to define 0 macros.

There were no errors, warnings or information messages.

USSTEST/LIS

USSLNK.COM

$
$ Command file to link User System Service example.
$
$ LINK/PROTECT/NOSYSSHR/SHARE=USS/MAP=USS/FULL SYS$INPUT/OPTIONS

Options file for the link of User System Service example.

SYS$SYSTEM:SYS.STB/SELECTIVE

Create a separate cluster for the transfer vector.

CLUSTER=TRANSTER VECTOR,,,SYS$DISK: [lUSSDISP
! -
GSMATCH=LEQUAL,1,1

USSTSTLNK.COM

$
$! Link Command file for USSTEST
$!
$ LINK USSTEST/MAP/FULL,SYS$INPUT/OPTIONS

Options file for USSTEST
USS.EXE/SHARE

"'C
:::c
H

<
H
t"1
Cz:I
Cl
Cz:I
0

C/)

:::c
> :::c
Cz:I
>
°' t"1
Cz:I

H
3:
>
Cl
Cz:I
C/)

~

I
N
N

USS.MAP

USS

Module Name

USER SYS DISP
SYS - -
SYSVECTOR

I dent

Vl.O
.STB;l
0221

_DBB2: [HUSTVEDT.USSJUSS.EXE;l9

Bytes
--
275 -0 -

0 -

10-~AR-1980 15:48 LINKER V02.42 Page

! Object Module Synopsis !

File Creation Date Creator
----- ------------- -------

0882: [HllSTVEDT. USS] USSOISP .OB,J; 18 10-MAR-1980 15:48 VAX-11 Macro V02.42
DRA5: fSYSEXE]SYS.STB;l 5-MAR-19RO 20:17 LINK-32 V02.42
ORAS: [SYSLIB]STARLET.OLR;l 5-MAR-1980 00: 11 VAX-11 Macro V02.42

lC-MAR-1980 15:4R LINKER V02.42 Page 2

! Image Section Synopsis !

Cluster Type Pages Base Addr Disk VBN PFC Protection and Paqinq G1ohal Sec. Name Match Major id Minor id

TRANSTER VECTOR 4
4

_DBB2:[HUSTVEDT.USSJUSS.EXE;l9

Psect Name Module Name

BLANK
SYSVECTOR

$$$TRANSFER VECTOR
- USER SYS DISP

BLANK
USER SYS DISP

EXEC NARG
USER SYS DISP

KERNEL NARG
USER SYS DISP

USER EXEC DISPO
USER SYS DISP

USER EXEC DISPl
USER SYS DISP

USER EXEC DISP2
USER SYS DISP

USER KERNEL DISPO - - USER SYS DISP

00000200
00000400

2
3

0 READ ONLY
0 RF.AD ONLY

10-MAR-1980 15:48 LINKER V02.42 Page 3

! Program Section Synopsis

Base End Length

00000000 00000000 00000000
00000000 00000000 00000000

00000200 00000210 00000017
00000200 00000210 00000017

00000200 00000200 00000000
00000200 00000200 00000000

00000217 00000217 00000001
00000217 00000217 00000001

00000218 00000219 00000002
00000218 00000219 00000002

0000021A 00000254 00000038
0000021A 00000254 00000038

00000255 00000250 00000002
00000255 00000256 00000002

00000257 00000282 0000005C
00000257 000002B2 0000005C

00000283 000002ED 0000003B
000002B3 000002ED 0000003B

Align Attr-ibutes

0.) BYTE 0 NOPIC,USR,CON,REL,LCL,NOSHR,
0.) BYTE 0

EXE, RD, WRT,NOVEC

23.) PAGE 9
23.) PAGE 9

PIC,USR,CON,REL,LCL,NOSHR, EXE, RD,NOWRT,NOVEC

O.) BYTE 0 NOPIC,USR,CON,REL,LCL,NOSHR,
0.) BYTE 0

EXE, RD, WRT,NOVEC

l.) BYTE 0
l.) BYTE 0

2.) BYTE 0
2.) BYTE 0

59.) BYTE 0
59.) BYTE 0

2.) BYTE 0
2.) BYTE 0

92.) BYTE 0
92.) BYTE 0

59.) BYTE 0
59.) BYTE 0

PIC,USR,CON,REL,LCL,NOSHR, EXE, RD,NOWRT,NOVEC

PIC,USR,CON,REL,LCL,NOSHR, EXE, RD,NOWRT,NOVEC

PIC,USR,CON,REL,LCL,NOSHR, EXE, RD,NOWRT,NOVEC

PIC,USR,CON,REL,LCL,NOSHR, EXE, RD,NOWRT,NOVEC

PIC,USR,CON,REL,LCL,NOSHR, EXE, RD,NOWRT,NOVEC

PIC,USR,CON,REL,LCL,NOSHR, EXE, RD,NOWRT,NOVEC

"'C
:::0
H

<
H
l:"1
tZl
C)
tZ3
0

ti)
:c
>
:::0
tZ3
>
°' l:"1
tZl

H
3:
>
C)
tZl
ti)

O'\
I

N
w

USER KERNEL DISPl 000002EE 000002Fl 00000004 (4.) BYTE 0
- - USER SYS DISP 000002EE 000002Fl 00000004 (4.) BYTE 0

USER KERNEL DISP2 000002F2 000002F2 00000001 (l.) BYTE 0
- - USER SYS DISP 000002F2 000002F2 00000001 (l.) BYTE 0

USER SERVICES 00000400 0000041F 00000020 (32.) PAGE 9
USER SYS DISP 00000400 0000041F 00000020 (32.) PAGE 9

_DBB2: [HUSTVED7.USS]USS.EXE;l9 10-MAR-1980 15:48

Symbol

CTL$GL PHD
EXEC DlSPATCH
KERNEL DISPATCH
SS$ ACCVIO
SS$-INSFARG
SS$-NORMAL
SYS°S'K VERSION
USER GET TODR
USER-NULL
USER-SET PFC

Value

7FFEFE88
00000227-R
000002CO-R
oooooooc
00000114
00000001
35503058
00000258-RU
000002AB-RU
00000275-RU

_DBB2:[HUSTVEDT.USS]USS.EXE;l9

Symbol

+-----------------+
! Symbols By Name !
+-----------------+

Value Symbol

10-MAR-1980 15:48
+------------------+
! Symbols By Value !
+------------------+

Value Symbols •••
-----,
00000001
oooooooc
00000114
00000227
00000258
00000275
000002AB
000002CO
35503058
7FFEFE88

SS$ NORMAL
SS$-ACCVIO
SS$-INSFARG

R-EXEC DISPATCH
R-USER-GET TODR
R-USER-SET-PFC
R-USER-NULL
R-KERNEL DISPATCH

SYS$K VERSION
CTL$GL PHD

Key for special characters above:
+------------------+
! * - Undefined

U - Universal
R - Relocatable
WK - Weak

+------------------+

PIC,USR,CON,REL,LCL,NOSHR, EXE, RD,NOWRT,NOVEC

PIC,USR,CON,REL,LCL,NOSHR, EXE, RD,NOWRT,NOVEC

PIC,USR,CON,REL,LCL,NOSHR, EXE, RD,NOWRT, VEC

LINKER V02.42 Page 4

Value Symbol Value
----- -----

.,,
" H

<
H
C""'
Cz:l
G)
Cz:l
0

(/)

LINKER V02.42 Page 5 :I:
>
" Cz:l
>
°' C""'
Cz:l

H
3
>
G)
Cz:l
(/)

C"I
I

N
.i:::.

_DBB2:[HUSTVEDT.USS]USS.EXE;l9 10-MAR-1980 15:48 LINKER V02 .42 Page
+----------------+
! Image Synopsis !
+----------------+

Virtual memory allocated: 00000200 000005FF 00000400 (1024. bytes, 2. pages)
Stack size:
Image header virtual block limits:
Image binary virtual block limits:
Image name and identification:
Number of files:
Number of modules:
Number of program sections:
Number of global symbols:
Number of image sections:

O. paqes
1.
2.

USS .STB;
3.
3.

18.
9.
4.

1.
3.

1. block)
2. blocks)

Image type:
Map format:

PIC, SHAREABLE. Global section match = "LESS/EQUAL",
FULL in file " DBB2: [HUSTVEDT.USS]USS.MAP;l9"

Estimated map length: 43. blocks -

Performance Indicators

Command processing:
Pass 1:
Allocation/Relocation:
Pass 2:
Map data after object module synopsis:
Symbol table output:

Total run values:

+---------------------+
! Link Run Statistics !
+---------------------+

Page Faults

9
31

7
3

17
0

F,7

CPU Time

00:00:00.08
00:00:01.00
00:00:00.05
00:00:00.22
00:00:00.25
00:00:00.04
OO:OO:Ol.n4

Elapsed Time

00:00:00.12
00:00:01.79
00:00:00.19
00:00:00.72
00:00:00.70
00:00:00.33
00:00:03.85

Using a working set limited to 200 pages and 14 pages of data storage (excluding image)

Total number object records read (both passes): 272
of which 51 were in libraries and 2 were DEBUG data records containing 414 bytes

Number of modules extracted explicitly = 0
with 1 extracted to resolve undefined symbols

0 library searches were for symbols not in the library searched

A total of 4 global symbol table records was written

/PROTECT/NOSYSSHR/SHARE=USS/MAP=USS/FULL SYS$INPUT/OPTIONS

Ready

G.S. !dent, Major=l, Minor=l

6

"'C ,,
H

<
H
r
CZ]
G1
CZ]

0

ti)

::c
> ,,
CZ]

>
°' r
CZ]

H
3
>
G1
CZ]
ti)

CHAPTER 7

PROGRAM EXAMPLES

This chapter presents applications that use many of the features
discussed in this manual. Each application is explained, and the
program listings are given. The programs are in VAX-11 FORTRAN,
although some routines are in VAX-11 MACRO.

The following applications are included in this chapter:

• An analog-to-digital (A/D) data acquisition and manipulation
system

• An airline reservations system

7.1 DATA ACQUISITION AND MANIPULATION

This system, called LABIO, allows multiple users to receive and
manipulate analog-to-digital (A/D) data in real time. In this
example, a 16-channel A/D converter, such as the ADll-K, is shared by
1 to 16 independent users. This example demonstrates the real-time
use of many VAX/VMS system services and features (described in
Sections 7.1.2 and 7.1.3). However, because each real-time
application is unique, this example does not show the only, or
necessarily the most efficient, use of these features. It is meant
only as a guideline for possible implementations.

7.1.1 Application Overview

In the LABIO system the In-channel A/D converter is to be used
independently by up to 16 users; that is, each user must be able to
specify collection parameters and collect data from one or more A/D
channels without conflicting with other users. This independence is
achieved by placing a single "privileged" process (LABIO_DATA_ACQ) in
control of the ADll-K.

The LABIO DATA ACQ process collects data from the ADll-K and stores
the data in -buffers in a shared data array. The process runs at a
real-time priority and uses the VAX/VMS connect-to-interrupt
capability to process interrupts from a dedicated KWll-K real-time
-clock. On every clock overflow, data from the ADll-K is taken and
stored in the shared data array. The process uses control information
stored in the shared data array to determine how much data is to be
collected for each A/D channel. To protect users from other users
(and from themselves), the shared data array is read-only for the
users.

7-1

PROGRAM EXAMPLES

To store control information in the control block, each user
communicates with a second "privileged" process, LABIO CONNECT. The
LABIO CONNECT process receives, validates, and acknowledges each user
request, and modifies the data base accordingly. Simultaneous
requests from different users are serialized through the use of
mailboxes. The mailbox that receives user requests has the logical
name LABIO CONNECT. Users can issue four types of request:

• CONNECT

e ALLOCATE

• DISCONNECT

• DEALLOCATE

The first user request must be CONNECT. This request makes the user
known to the LABIO system. The user also passes the logical name of a
mailbox, which the LABIO CONNECT process will use to ackowledge the
user's requests.

After a CONNECT request is completed, the user can issue ALLOCATE and
DEALLOCATE requests. The ALLOCATE request is used to gain ownership
of a specific A/D channel; once a channel is allocated by a user, no
other users can allocate it until the owner specifies it in a
DEALLOCATE request. Four parameters are associated with the ALLOCATE
request:

• Channel number

• Sample rate

• Buffer size

• Buffer count (number of buffers to be acquired)

A user can allocate any number of A/D channels. The ALLOCATE request
can also be used to change collection parameters for a channel a user
already owns.

When finished with a channel, a user issues a DEALLOCATE request for
the channel; and when finished altogether, a user issues a DISCONNECT
request. The DISCONNECT request removes a user from the LABIO system
and implicitly deallocates any channels still allocated to the user.

Once connected to the LABIO system and allocated channels, a user
communicates with the data acquisition process (LABIO DATA ACQ) using
event flags. Each channel has three flags associated ~ith Tt:

• ACTIVITY flag

• NOTIFY flag

• STATUS flag

The ACTIVITY flag determines whether data collection is enabled (flag
set by user) or disabled (flag cleared). The user process tells the
LABIO DATA ACQ process to check the ACTIVITY flag by setting the
NOTIFY flag; that is, when the NOTIFY flag is set, the LABIO DATA ACQ
process checks the state of the corresponding ACTIVITY Ilag -and
enables or disables the channel. When a data buffer is ready for user
processing, the LABIO DATA ACQ process sets the STATUS flag for the
channel. When the user process detects that the STATUS flag is set,
it clears the flag and processes the data buffer.

7-2

PROGRAM EXAMPLES

There is one utility program associated with the LABIO system:
LABIO STATUS, which displays the status of each of the A/D channels on
a VT52-compatible video terminal.

7.1.2 LABIO System Details

The LABIO system uses a number of VAX/VMS features described
manual. The following sections describe the major
illustrated in this system.

in this
features

7.1.2.l Shared Data Base - The processes share data by using global
sections. The LABIO DATA ACQ process creates the global section using
the Create and Map Section ($CRMPSC) system service. A VAX-11 MACRO
routine (GBL SECTION UFO) is used to open the data file to be
associated with the global section. This global section is read/write
for processes with the same UIC (that is, LABIO DATA ACQ and
LABIO CONNECT), but read-only for other processes in the- group (that
is, the processes running the user programs). The global section is
not accessible by any processes outside the group. Other processes
map the global section using the Map Global Section ($MGBLSC) system
service, specifying the global section name LABIO_COMMON.

Because global sections are mapped by pages, it is important to ensure
that the data arrays are page aligned. To ensure this alignment, the
VAX-11 FORTRAN named-common and block-data features are used with the
VAX-11 Linker cluster option.

The shared data region contains three arrays:

• AD BLOCK, containing ln control blocks, one for each A/D
channel

• CONNECT BLOCK, containing ln control blocks, one for each
process- that can be connected to the system (each process is
identified by its process identification)

• DATA_BUFFER, the array into which the A/D data is stored

7.1.2.2 Common Event Flag Clusters - Two common event flag clusters
are used in the LABIO system:

• LAB IO EF_NOTIFY, containing In NOTIFY flags -
• LABIO EF STATUSJ containing l~ ACTIVITY flags and ln STATUS - -flags

The LABIO DATA ACQ process waits for the logical OR of the ln NOTIFY
flags; that is, the process is activated whenever any of the flags is
set. Each user process normally waits for the logical OR of the
STATUS flags for the channels it has allocated. Each user process
must set and clear the ACTIVITY flags as appropriate, and must set the
corresponding NOTIFY flag if it wants the LABIO DATA ACQ process to
check the ACTIVITY flag. The LABIO DATA ACQ process sets the STATUS
flag when a buffer is ready and stores-the buffer index in AD BLOCK.
The user process is then responsible for clearing the STATUS flag.

7-3

PROGRAM EXAMPLES

7.1.2.3 Mailboxes - The LABIO CONNECT process creates a mailbox with
the logical name LABIO CONNECT. All user processes write their
requests to this mailbox. Each user process must also create a
mailbox, and must specify the mailbox's logical name in the CONNECT
request. If the LABIO CONNECT process accepts the CONNECT request, it
opens the user's mailbox and acknowledges the request by returning the
user request line preceded by a 2-character code:

• Zero to indicate a positive acknowledgment

• Nonzero to indicate a negative acknowledgment (the specific
code corresponds to the field containing the error)

7.1.2.4 Connecting to an Interrupt Vector - The actual
analog-to-digital I/O is performed by an interrupt service routine
specified in the connect-to-interrupt $QIO call. The process connects
to the interrupt vector for the KWll-K real-time clock, which
generates an interrupt every millisecond. On each interrupt, the
interrupt service routine does the following for each active ADll-K
channel (all control information is stored in AD_BLOCK):

1. Decrements the timer for the current channel

2. If the timer overflows, takes an A/D reading and stores the
result in DATA BUFFER

3. If the data buffer is full, switches to the next buffer

4. If the last buffer has been acquired, deactivates the channel

If any buffer was filled, an AST is requested and bits 0 to 15 of the
AST parameter word are set to indicate those channels that had a
buffer filled. The AST service routine SET EF AST sets the STATUS
event flags corresponding to the channels that had buffers filled.

7.1.3 Typical LABIO User Program Logic

A typical program running in a user process in the LABIO system would
contain the following logical steps:

1. Map the global section LABIO COMMON

2. Associate with the common event flag clusters LABIO EF NOTIFY
and LABIO EF STATUS

3. Open the mailbox LAB! o __ CONNECT

4. Create a mailbox to receive acknowledgments
LABIO_CONNECT process

from

5. Issue a CONNECT request and wait for an acknowledgment

the

6. Allocate channels using ALLOCATE requests and wait for
acknowledgments

7. Start data acquisition by setting the ACTIVITY and NOTIFY
event flaqs

8. Wait for buffer(s) to be filled by waiting for STATUS event
f laqs to be set

7-4

PROGRAM EXAMPLES

9. Process the contents of the buffers

10. Repeat steps 8 and 9 until finished

7.1.4 Program Listings

This section lists the files needed to create and use the laboratory
data acquisition application. Three programs that make up the system
and three sample programs that use the system are presented first,
followed by modules used by all or some of the programs. The
remaining files are used to activate the system and to compile and
link the program.

The files are presented in the following order:

1. Three programs that make up the system. The modules in each
program are as follows (LABIOCOM.FOR, listed later, is common
to all three programs) :

a. LABIOACQ.FOR, GBLSECUFO.MAR, LABIOCIN.MAR

b. LABIOCON.FOR

c. LABIOSTAT.FOR

2. Three sample programs to use the system. The modules in each
program are as follows (LABIOCOM.FOR, listed later, is common
to all three programs):

a. LABIOPEAK.FOR, PEAK.FOR

b. LABIOSAMP.FOR

c. TESTLABIO.FOR

3. Modules used by all or some programs

a. LABIOCOM.FOR (common routines)

b. LABMBXDEF.FOR (mailbox format)

c. LABCHNDEF.FOR (common data structures)

d. LABIOSEC.FOR (common data definitions)

4. Command procedures to activate the system

a. CONNECT.COM

b. LABIOSTRT.COM

5. Files to compile and link the programs

a. LABIOCOMP.COM

b. LABIOLINK.COM

c. LABIO.OPT

d. LABIOCIN.OPT

7-5

PROGRAM EXAMPLES

lFilel LABIOACQ,FOR
Program LABIO.DATA.ACQ

This is the program that acQuires data for the LABlO system
It uses the connect•to•interrupt feature of VMS to acquire
via a user written 1/0 routine. The actual I/O routine is
written in MACRO, The mein program monitors tne event flags
and •~ables and disables data acavisition for eac~ channel,
It also notifies users via event flags w"en e buffer is ful I,

Define the LABIO data base

Include 'LABCHNDEF,FoR·

Local Variables
Logiea1*4 S~CTIO~.FLAGS, SECTI0~4PROT

System Services
Lo91ea1*" SYS$ASCEFC,SYS~MGBLSC,SYS~ASSIGN,SYS$Ql0
Logical*~ SYS!C~REF

External constants

Misc,

External SEC,M.GBL,SEClM.wRT,SSS 4 CRtATEO,SS$.wASSET
External SET.tf .AST

Create the Global Section for the data buffer
This data buffer will be REAJ/wRITE for the owner, READ only for the G~C

First see if t~e global s~ction already exists, if it
does Just map to it, ano set the restart +lag.

If not, Open the Data File. Tnis can not be opened
via FORTRAN since we need the V~S channel nu~ber,

SECTlONCl) = XLocC LABio.euFFf~.S) !Start address of seetio~
SECTIONC2) : ~Loe(LABlo.~uFFtR.E) • 1 1En1 address

Page count for the section
SECTlON~SIZE : C SECT10N(2) • SECTIUN(ll)/512 + 1

FLAGS for Section are GLOBAL1SHAREO,NON~ZE~OED,READ/~RITE,TE~P

SECTION~FLAGS : %Loe(5tC$M.GBL) + Y.Loc(SEC$M.wRT)

Trv Just maoPing to the global sect;on
SUCCESS: SYSSMGBLSCC SECTION,,,~Va1CSECT10N~FLAGS),•LABIOCOMMON',,

11(SUCCESS) T~en
RtSTART : ,T~UE, lSueces, t~;s is a restart

Else
SUCCESS : GBL.SECTION.UFOC SECT!ON 4 SIZE, 'LA6IO.SEC.FILt',

StCTION~CHANNEL l
If C ,not. SUCCESS)

Call fATAL~E~RORCSJCCESS,'Opentng Glooal Sectio~ File')

7-6

30

31
32

33

PROGRAM EXAMPLES

PROTECTION is OWNER : READ/WRITE, GROUP : READ, SYSTEM/WORLD : none

S~CTION~PROT = 'F E 0 r•x LProtection for section

Create and Map the Section

SUCCESS: SYS$CRMPSCC SECTION,,,%ValCSECTION.FLAGS),'LABIOCOMMON',
1 ,,%Va1CSECTION.CHANN€l),%Va1CSECTION.SIZE),,
1 XVa1CSECTION 4 PROTJ,%ValCSECT!ON.SIZE))

If C ,not, SUCCESS)
Ca11 FATAL~ERROR(SUCCESS,'Creating Global Section')
RESTA~T = ,FALSE. £We ere not restarting

End If

If this is not a restart, elear the data structures

If (,~ot, RESTART l Then
Do 32 I = 1, MAX.AD.C~ANNE~

Do 3IO J: 11 U:>
AD.6LOCK(J,I) : ~

Do 31 K : lr BUFFER.COUNT
Oo 31 J : 1, MAX.BUF.SIZE

DATA.BUFFER(J,K,Il : J
Continue
Do 33 1 : 1, MAX.PIO

Do 33 J : 1 r 2
CONNtCT.bLOCKCI,J) : 0

El"ld IF

1Clear AO""'BLOCK

lClear Data buffers

1Clear Process connect o1oek

Create event flag cluste~ EF~NOTIFV and associate with event flags ~Q•95
These are used to not1fy the Data Acauis1tion orocess.

SUCCESS : SYSSASCEFCC XVALCEF.NOTIFV.ll,EF 4 NOTIFV 4 CLSTR,,)
If C ,not. SUCCESS)
1 Call FATAL~tRRQR(SUCCESS, 'CREATI~G ~VENT FLAG CLUSTtR')

Create event flag cluster EF'.STATUS and associate witn event flags 96•127
These ere used to ~otify and report the status of the user buffers

SUCCESS : SYS$ASCEFCC %VALCEF 4STATUS~l),EF~STATUS.CLSTR,,)
If C ,not, SUCCESS)
1 Call FATAL~ERRORC SUCCESS, 'CREATING EVtNT FLAG CLUSTER')

Make sure that ~e can•t be swepped

Call SYS$SETSWM(ZVa1Cl))

Set·~P the Connect•to•InterruPt
First ass1gn a VMS channel for the device
Then cal1 the connect•to•interrupt setup routine,

succtss : SYS$ASS1GN('LAblO~AD',Cl~~CHANN~~,,
If (,not, SUCCESS)
1 Call FATAL~ERROR(SUCC~SS, 'assigl"li"g A/D aevice'

succ~ss = AD.CIN~SETU~(C!N~CHANNtL,Stl.EF~AST)
If t ,not, SUCCESS)
1 Call FATAL.tRROK(SUCC~SS, 'connectinq•to•;nterrupt')

7-7

PROGRAM EXAMPLES

End Of Initialization, Notify other processes by setting EF+DATA~ACQ

Call SYS$5ETEFC ~Val(EF.DATA.ACQ))

Wait for an event flag in the EF.NOTIFY cluster
Then reed the EF.NOTIFY CLUSTER and EF.STATUS~CLUSTER

10 Call SYS$WFLORC %Va1CEF 4 NOTIFY.1) , %ValC'FFFF'X)

' l Look for the flag(s) set in EF.NOTIFV
l If the corresponding activity flag is set, activate the channel,
1 otherwise deactivate it, Also check tne buffer status flag, if clear
1 clear the buffer index,
l

Do 20 I : 1 db
If(SYSSCLREFC %Va1CEF.NOTIFY~OFF + Ill ,eq, %LocCSS$~WASSET)l Then

lfC AD.BLOCK(1,I) ,ne, 0) Then
If(SYS$RtADEFC %Val(~F4ACTIVITY 4 0FF + IJ,EF 4 5TATE

,eq, XLoccsss.wASSET l l Then
A0 4 BLOCK(l,Il : ACTIVE

Else
AD 4 8LOCK(1,!) : INACTIVE

El"IO it
If(SY5$RtADEF(%Val(f:F.STATuS.OFF + !),EF.STATE)

1 ,ea, %Loe(SS$~WASCLR)) AD.B~OCK(7,l) = ~
End If'

End It
20 Continue

Go To 10

Eno
Subroutine SET.Ef~ASTC ~vENT~fLAGS l

This is a AST routine which is ;nvokea oy t~e
Iriterrupt serv1ce routine, Tnis routine sets
tne event flags indicated by tne ISR,

Iriclude 'LABCHNDEF,FOR'
Integer EVENT.FLAGS

The Event flags are set in cluster EF~STATUS~CLSTR

Do 1~1 I::; lilt
lf(CEVE~T.FLAGS ,an~. blTC!)) ,ne, ~
1 Call SYSiSf:TEFC %Va1CEF.,,.,STAlUS..,OFF +I))

10 Coritinue
Return

Erio
lLEnd of FileJ

7-8

PROGRAM EXAMPLES

,TITLE GBLSECUFO Global Section UFO (User File Open)
JTh1e routine opens a file to be used as a global section
;An RMS OPEN 1s performed with t~e file ootions CFQP) of
1U1er File Open (UFO), The calli~g routine specifies the
Jfilt na~e and number of blocksf this routine returns the
;channel number on wh1eh t~e f11e ~~•opened,
1tf the specified file does not exist, the file is created
J
JThe calling seQuence is

J
J

Whtl't

JEumpl ea

blkcnt :> Number of blocks in t~e file
file•name => filename descriotor block
ehan => channel opened

1 Integer*~ CrlANNEL
1 I

I
1 Call GBL.SECTION.uFoc10,'LABIO ... DATA,DAT',CHANNEL
,SBTT~ GBL.SEC.UFO

J RMS FAB for a SCRE.ATE

GBLFABs SFAB

NUM~ARG

,ENTRY

MOVL.
Ct-iP~

BLSS

MOVL
MOV8
"10VL

MOVL

!>CREATE.

MOVL

EX IT: RU

• t.NO

FAC=PUT,•
FOP=<UFQ,CIF,C~T>

= 3

#SS$.a.INSFARG,R0
CAP), #NU"1..,.ARG
Ex IT

~(b.P),Rl

(~1) 1 G8LFAB+FA8$8 4FNS
4(R1),G8L~A~+FAB$L~FNA

sNu~ber of arguments

JAssume bad arg count
JCl'lecl< erg coul'lt
7Too few

JGet file name address string descriptor
JStor~ string length 11'1 FAB
:And file name

04(AP),GdLFA8+FABSL.a.ALQ :Number of blocks to alloeate

FAd:GbLFAB ;Open data file, Create it if
;if ;t does not e•ist

G~LFAB+FA~,L.STV,~12(AP):Store channel number

7-9

PROGRAM EXAMPLES

Kw ... HIST : 1
.TITLE LABI0 4 CIN • LABIO Connect•to•Inter~u~t Module
.IDENT /\101/

:++

FACILITY I

LABIO demonstation system

ABSTRACTS

This module contains the I/O code for ~endling
an AOll•K. It is an examole of a connect•to interrupt
routine, This module contains code to oerform tMe following

The start I/O routine
The interruot service routine
The e~ncel I/O rout1rte

AUTHOR:

P. Programmer

:··
.s~TTL DATA STRUCTURES

,PScCT LABIU.SECTION

The following data structures are also oef1ned Dy a
FORTRAN INCLUDE file, These definitions must aqree.

; AD.a.BLOCK AID Control dlocl<

MAX.a.AD ... CHANNEL : lb JNumDer of A/D c~annels
AD ... BLOCK 4 SLOTS = lb rnumoer of entries in one block
AD ... BLOCK.S!ZE = MAX~AD~CHANNEL•AD~~LOCK~SLUTS

:AD ... BLOC~ offsets (long woros)

AD 4 STATUS = 0
ACTIVE.._L: 2
lNACTIVf: L :

PIO
TICS ... SAMPlE
BUFFER.SIZE
BUFFER.COUNT
8Uf FER ... ACQ
VALID ... BUF .._IND
VALI0 4 BUF ...,COUNT
CUR 4 BUF.IND
CUR.,..BUF 4 COUNT
TI cs ... REMA IN I NG
CUR ... ACQ..,.OFF'
AD...,BLOCK.JNO

A0 4 BLOCK:

= l.l
= 8
= 12
= 1 b
= 20
: 2/J
: ~f.!.

: 32
: "Sb
= 4v.)
= 4l.1
= b4

,8LKL

:STATUS (Unknown, inactive, or active)
ACTIVE
INACTIVE
PID of connected process
~ate ;n tics/sa~ole
user soecified ouffer s;ze

1 vser soec,fieo buffer count
Number of buffers acquired
l~d~x of current vel id data buffer
N~moer of data oo1~ts in lest buffer
Inoex to current acq. buffer
Number of ~eta ooi~ts in last ouffer
Tics remaininq to next sample
Offset to aco point
Offset to eno of e block

AD.._BLOCK.S IZE

: DATA,..t3UFFER Data buffers for LAHlO

MAX.._BUF.._COUNT : 2
MAX.BUF 4 SIZE : 512

J~um~er buffers/channel
JMaxi~um ouffer size (wOkOS)

7-10

PROGRAM EXAMPLES

BUFFER,._E.NO
DA TA ... BUF ..,.5 I ZE

= MAX~HUF.COUNT•MAX ... 8UF~SIZE•? J Size of o"e set of buffer•
: MAX~AD..,CHANNEL•MAX..,BUF.._SIZE*~AX4BUF.COUNT

DATA ... BUFFERa ,BLK~ OATA.BUF.._SIZE

DATA ... BUFFER~OFF : OATA..,.6UFFER•AD~BLOCK JOffset to data buffer from
Jbeginning of data structure

: CONNECT,,.BLOCK

MAX ... PID : 16

Process Co~~ect COntro1 block

:Ma~ number of processes connected

CONNECT.SIZE : MAX.PID*2

CONNECT.BLOCK: ,BLKL C ONNEC ·r ..,.SIZE

,SBTTL I/0 DEVICES

:This section def;nes tMe constants asocc1ated with the KW11•K cloc~
:and the AD11-~ AID converter

JKW11•K Clock
;CSR bit assignments
KW11$M..,GO: •01
KW11$M ... RATE : •02
KW11$M ... JNTENB : •0100
KW11$M ... REAOV : ·02~0
KW11$M ... REPINT = •0400

:GO b;t
J r< a t e = b i t s 2 - LI

1Interrupt enable
JReady tiit
irepeateo interwuPts

~w11.csR ... CONS ; KW11SM ... REPlNTlKW11$M.INTE~Bl<1*K~11$M~RATt>
~RP.oeated ;nterrupts,1nterruot enable
: R a t e = 1 ~H'i z

KW11 PRESET = 1~00, :Preset => Interrupt rate of 1 KHz

KW11.A,..6UfFt~ : •02
KWlt A ... COUNTEP : •024

:AD11•K AID converter

AD11.a.OFFSET = - i~
AD11 ... dUF = 2

AD11 ... GO =
AD11.a.MUX ... INCR = •otHH-'
ADl 1 ... CSR,..CONS = AD11..,.GO

:Limit for stopoinq IS~ loop

;Offset to cloc~ A oreset buffer
JOffset to clock A counter

1 Offset to the ADll fro~ t~r K~ll clock CSR,
1 AD11 cuffer offset fron ADll CSR

Go bit
: N1ux incr h.it

Jrdtial CSR value

A D 11,,,. L 0 0 p L I M IT = A () l 1 ,...., u x ... I N c R * < ~'I A x ... A D""" c H A I Jt·..i t L - 1 > 1 A l) 1 1 ,,a. c s R ... c 0 t--; s

:++

$ I080t F
$UC6Df.F
$100EF
.'f.CINDE.F
$CRBDEF
$Vf.CDEF
,SB TTL

uefinition tor LIO drivers
Data st,.ucturs
l/O functio~ codes
Connect•to•;nterr~pt

C~B stuff
1 mo re

LABIO~CIN~START, St~rt l/C routine

LABIO~CIN~START - Starts tne K~11-K . ,
: Functional descr1Pt1on:

7-11

PROGRAM EXAMPLES

This rout~ne starts the KW11•K
Rate = 1 Knz
RePeated f nterruot

Inputs:

0(R2)
4(R2)
8(R2)
12CR2)
lb(R2)

- arg count o" tJ
• Address of the process huf fer
• Address of the !RP (1/0 request D3Cket)
• Address o., the device's CSR
• Address of the UCB (Unit control block)

Outputs:
none

The routine must preserve all registers eieept R~·R2 and R4,

:--
,PSECT LA8IO ... CIN

LABIO.CIN 4 START::

; ++

MOVL 12(~2),R3 Get ad~ress of the KW11 CSR
Clear the Clock CLRW (1-rn)

MNEGw

MOVW

~ovw

RS t;
,SB TTL

#K~11 4PRESET,• Preset count ouffer
~~11.A.~UFFERCR~)
~K~11.csA.CONS+K~11sM.GQ,(R~) , Set the bits for

Repeated interrupt
Interrupt Enable
GU L

#SSi.NOR~AL,~~ Load a success code into R0,
J Return

LASIO~C!N~J~TE~RUPT, Interrupt service routine

LA8IO.CIN.INTERRUPT
Functional description:

Inputs:

0(R2)
4(R2)
8CRt?)
12CR2)
lb(~2)

b:l(R2)

Outputs:

• arq count of 5
- Address of the orocess buffer
• Aodress of t~e AST Parameter
• Address of the Oevice•s CS~
• Aa~ress of t~e 108 (interruot ~ispatc~ block)
- Addreas o" t"• UCci (Unit control olock)

Sets those hits in the AST parameter for those
cnannels who hed a buffe~ fi11eo

:--
C!N...,BUF.ADD : 4
AST.a.PARM : ~

CIN.a.CSR,..ADD : 12

7-12

;Address of CIN buffer
;Offset to ~ST oer~eter aadress
:Ad<1ress of CSP

J
AD ... LOOP..,OATAa
1$1 TSTB

BGEQ
,IF NOF
MOVW
,ENDC

CR~)

1$
Kw.,HIST

PROGRAM EXAMPLES

J~ait for A/0 conversion ,
AD11 ... BUFCR4),CR1) [R~J

JTim~ h1stoQram donrt store actual det1
1store oata point in buffer,

JAll done w1tk thia channel, setup for the ne•t
1
AD.d,.OOP ,..NEXT I

ADDL
ADDI..
ADDW
AOBLSS

1S I

routine •
MOVL
BEQI.
MOVL
POPR
RSB

uo ... eLOCK..,ENO, RS
#BUFFER ENO,Rl
#AD11 ... MUX.INCR,Ro
s•#MAX ... AD ... CHANNEl,R3,•
AD ... t..QOP

JNeMt c~annel block
JP\le)(t buffer
Jlner A/O MUX
JNext Cl'laruiel
J8!" if not done

If any buffer overflowed, queue an AST
•AST ... PARM(R2),R~ Jlf any bit 11"'1 the AST peremeter
1$ Jis set we ~ust aueue an •ST
#l,R0 J 1 means Queue the AST, 0 means don•t
•·~<R5,Ro> 1 Restore RS,Ro ,

,SBTTL 1.ABIO..,CIN.CANCEL, Cancel IIO routine

J++
J LABIO ... CIN ... CANCEL1 Cancels an 110 operation in orogress

Functional descr1Pt1ons

This routine turns off the K~11•K

Input11
RS

Outputsa

Addr of the UCB

The routine must preserve all registers except R0•Rl,

1··

LABIO...,CIN ... CNCLll
MOVL UCBSL ... CRBCRS),~0
MOVL CP~$L ... INTD+VEC$L.ID~CR0),R0
MOVL ID6$L,..CSRCR0),~~
Cl..RW (R0)
MOVW ~SS$.NORMAL 1 R0
RSB
,SBTTL LABIO,..CI~.E~D, End of Module

;++
; Label that mar~s the end of the module
;••

; Get Adoress of tne CRB
;Address of t~e IDB

Get eddr of l<W11
Turn of tl'le K~ll
And return

LABIO ... CIN,..END:
.SBTTL AD,..CIN,..SETUP

: Last location ;,, module
Set•uo routine for LABIO connect•to•interrupt

:+
; Tn;s routinP. issYes tne ~10 to connect to tne AD11/KW11 ;nterrupts,

7-13

PROGRAM EXAMPLES

LABIO..,CIN .. INT11
- PUSHR #•M<RS,R6> rServ1ce device iMterrupt, 11ve R5,R6

JAddreas of the KW11 CSR

AD..,LOOP1

MOVL.
MOVL

MOVAL
MOVAL

MOVW
CLRL.
CLRL

CMPL.
BL.SS

CIN..,CSR .. ADDCR2),R4
CIN.BUF 4 ADDCR2l,R5

OATA..,BUFFER .. OFFCRS),R1
A011..,0FFSETCR4lrR4

#AD11..,CSR .. CONS,Rb
UST.PARMCR2)
R3

CRS),S.#ACTIVE .. L
AD .. LOOP..,NEXT

JAddre11 of AD..,BLOCK, contro1 block
Jtor each AID C"1nnel
,oet1 Buffer•
JAddre11 of the AD11 CSR

JAD11 CSR b1t1, GO b1t on
rZero the AST parameter

1I1 tn1• channel actf veT
JNo, try next cManntl

SOBGTR TICS..,REMAININGCRS),AD.LOOP .. NEXT

MOVW
,IF OF
MOVZWL
AOOW
INCW
,ENDC

rDecr t"• t1m1r for tn1• channel
JBI" 1f ~o conver11on l"tQU11"td

R&,(R4) 1Start eonver11on, whf le that'• oofng o
KW.HIST JT1me histogram, 1tored fn d•t• bufftr

KW11..,A .. COUNTER•AD11..,0FFSETCR4),R0 1Get CUl"l"tnt clock content•
#KWt1 .. PRESET,R0 1Celc tfme from 1ntgerru~t
CRl) [R0] JAdd o"e to that time bin

While the AID 11 convert1Mg, t~e tfc counter for this channel,
get the off1et to the date oo1nter, and update ft, Take •PPl"OPl"1ate
actfon ff we have buffer overflow,

MOVl. TICS..,SAMPLECRS),•
TICS..,REMAININGCR5)

MOVL CUR.ACQ .. OFFCRS),R0
INCL CUR.ACQ,..OFFCR5)
AOBLSS BUFFER..,SIZECR5),•

CUR..,BUF,..COUNTCR5),•
AO,,.,L.OOP,..OATA

1Re1et t1~er tor thf 1 channel

rGet index to next date point
, AdVll"ICt 1t
JU~d•t• current data count
,a~ if no buffer overflow

JBufftl" overflo~ed, re1et date pof"ter, reset buffer pof nter
11ncrem1nt acquired buffer count, term1mete channel I/O ff done

U:

2S:

MOVL

MOVL

MULL3

CLRL
AOBLEQ

MOVL
CLRL
INSV
AOBLSS

TSTL
BEQL
MOVL

cuR .. BUF ... INO(RS),•
VALID ... BUF...,INOCRSl
CUR .. BUF.COUNTCRS),•
VALID,..BUF...,COUNTCRS)
CUR,..BUF 4 INO(R5),•
#MAX..,BUF...,SIZE,•
CUR,..ACQ.._OFFCRS)
cuR ... BUF.COUNTCR5)
#MAX ... BUF 4 COUNT,•
CuR ... BuF ... INDCRS),1$
#1rCuR ... BUF ... INO(R5)
CUR ACQ .. OFFCRS)
#1rR3,~1,•AST 4PARM(R2)
BUFFER ... COUNT(P.5),•
6UFFER ACQCRS),2l
BUFFER ... COUNT(RS)
2$
#IN ACT I \IE ..,.L, C.R 5)

7-14

sValid deta buf available for u••~

JNumber of pof nts f n buffer

JOf fset to next date oo1nt

JReset data count
JNext buffer index

J~raP•around, ~eset ou1fer index
sAnd buffer offset
rSet bit in 4ST Para~eter word
1Incr buffer count
1Done with all ouffers?
Jlf original count was zero
1Don"t stop
iDeact;vate channel

PROGRAM EXAMPLES

It takas care of the internals associated with the eon~ect•to•interrupt
QIO, Input parameters the VMS channe1 and the AST service routine address,
The connect•to•;nterrupt QIO condition coae is returMed,

,PSECT AD ... C!N...,SETUP

AD CIN ... SETUP1:
,WORD
MOVL

AD ... CIN...,QIO:
$QI o,,,,s

RE.T

AD ... CIN...,BUF.,..DESC:

~

8(APl,USER,..AST

CHAN:(l!t.1(AP) 1 •

FUNC:#l0$~CONI~T~RITE,•

IOSB:AD..,.CIN.._IOSB,•
Pt:AD,,,,CIN.BUF.DESC,•
P2:#AD.CIN ... ENTRY,•
P3=#AD ... CIN MAS~,.
P 4: #A LJ..,. CI r~ AST, •
P6=# 1 "1

;Get tMe user AST routi~e aodr

7Channe1
sA11ow writing to the data b~ffer
:IIO status Block
J8uffer descriptor
:Entry list
JStatus bits,etc
rAST service routine
JPreal1ocate some AST control blocks
;Returl"I to cal 1 er

,LONG LABIO~CIN~END•AD.BLOCK
JBuf fer descriptor for CIN
~Size of buffer and CIN ha~dler
:Address of buffer ,LONG AD.._BL.OCK

AD..,.CIN.E.NTRY:
,LONG
,LONG
,LONG
,LONG

AD.._CIN.a.IOSB:
,LONG

: Contro1 mask

AD,,.CIN..,.AST

~ JNo 1nit eode
LABIO~CIN.START·AD~BLOCK;Start coae
LA8IO.CIN.INT•AD.BLOCK Jll"lterrupt service routine
LABIO~CIN~C~CL•AO.dLOCK :IIO cancel routine

IIO Status Blocl<

This AST routine calls the user AST routine. Tne user routi~e
can not be called directly because the AST carameter its~lf
not its address is returned via tne connect•to•;nterrupt routine,
Th;s routil"le simply calls the user rout;~e with the ADDRESS of
the AST parameter,

AD..,.ClN..,.AST::
.wORD
PUSH A~
CALLS
RET

USER,...AST:
, L.Ot>.JG

0
4(AP)
tt.\,OU5E:..R...,A$T

7-15

:Get the AST cara~ete~ aa~r

:Call tne USER rout1ne

:Ador of the user AST routit"le

PROGRAM EXAMPLES

IFilel LABIOCON,FOR

Program LABIO.CONNECT

Define Lab;o date structures
Include '~ABCHNDEF,FOR'

Mailbox Definit;ons

Include 'LA8HbXDEF,FOR'

System Service Definitions

Logice1-4 SYS$CREM8X,SYS$ASSIGN
Log;ca1*4 SUCCESS
External 55$.tNDOFFILE

!Defines Mailbox Date Structures

Integ~r CONNECT,OISCONNECT,ABORT,A~LOCATE,OEALLOCATE
Integer READ4 MAILBOX,~RlTE.MAILBOx,LA8IO.LOG,ACKNO~LEDGE
Integer CHECK~PID,RETU~N.CODE

Commana Data Str~ctures

Parameter MAX 4 COMHAND : S
Character*15 co~~AND,COMMAND.TAbLE(MAX.CO~MA~D)
Data COMMAND.TABLE l'CONNfCl',
1 'DISCON~Ecr·,
1 'A80~T',

1 'ALLOCATE',
1 'DEALLOCATE'/

Map to the Glooal Data Section 'LABIO.COMMON'
And Define the Commom Event Flag Clusters
Reauest write access to the data base.

Cal 1 LABIO~INIT C 1)

See if ma;lbox LA8IO.C0NNtC1 exists Oy attempt;ng to assign it, ;f
;t does not e~ist, create ;t. This mail~ox is used to commun;eete with
other LABIO Processes, Restrict it to orocesses ~ithin this group,

SUCCE58 : SYSiASSIGN('LABIO.CONNECT',MBX.CrlANNEL,,)
If (,not, SUCC~SS l T~en

SUCCESS= SYSIC~E~BX(,MBx.CHANNtL,,,%Va1C'FD00'~),,'LAB!O~CQNNECT
If c.~ot, SUCCESS)

1 Call FATAL4f~ROR(SUCCtSS, 'Cresting mailbox')
End If

Tell other processes tnat we're reaay to qo,

Ca l l SYS.:}) SE TE:. F ('Z v a 1 C E F .c 0 ~ i •,j EC T)

£ Get a command fro~ e reauesting processes

7-16

' 10

PROGRAM EXAMPLES

Ca11 READ 4 MAILBOX
Ca1l CONNECT.CHECK

!Get a message
ICheek the database to clear
1eny deleted processes.

lf I/O status is EOf then process has term;nated, ABORT it,

If (MBX~IO~STATUS ,eQ, %Loccsss.ENDOFFILE)) Go To 23

Decode characters as a comm.and

If c MBX.MESSAGE.L ,eQ. 0.) Go To 10
Decode (MBX.MESSAGE.L,100,MBX.MESSAGE,ERR:10) COMMAND

Search Command Table for Com~and

Do 11 COMMAND.INDEX : 1,MAX.COM~AND
If (COMMAND ,eo, COMMAND~TA~LE(COMMA~D~INDE~l) Go To 12

11 Continue

Go lo 13 1I11ega1 command

D1speteh to correct rout;ne

l
I If we get here, it~s an unknown command

13 Cal 1 LABIO..,.LOG(•l)

l
l CONNECT command
1

21 RETUHN ... CODE : CON~~CT (MBX.PID)
Call ACKNO~LEOGE(RtTURK.COUE)
Cal, LAaIO""'L.0(; (Rf;,TIJRN.._COOE.)

Disconnect if was bad connect

IAcknowleage the reouest
1~og the aek!'lowleogement

I f c R E:.T u R N .. c 0 l) E • !'I e • ~~) c a l 1 () l s c 0 N N t:. c T (.. l)
Go To U1

DISCONNtCT Com~ano

22 R E T u R i~ .. c o c· E = o I s c c ~n 1 E c r (t.I\ ~ x., P 10)
Call LA8IO.,..LOG C RElUkN.CODE)
Go To iv1

ABORT commana

23 RE:.TUkN.,..CODE: Ad()iiT (•--H).X,..Pli;)
Go To 4fl1

7-17

lLog the acknowledgement

24

25

PROGRAM EXAMPLES

ALLOCATE command

RETURN.CODE = Al.L.OCATE C MBX 4 P ID)
Go To 40

DEALLOCATE command

RETURN..,.CODE ;: DEALLOCATE (MBX.a.PID)
Go To 40

Return status 1n first cnaract~r Position

Call ACKNOWLEDGE(RETURN~CODE
Call LABIO.LOGC RETU~N4CODE)
Go To 10

Forrnets

LAcknowledge the reQuest
1Log the acknowledgement

100 Format CA)

Erid
Subroutine CONNECT.CHECK

This routine checks to make sure all processes
connected Cin CONNECT.BLOCK) actually exist.
If a process has been de1eted, this routine
removes it from the database by calling ABORT

Include 'LA8CHNDEF.FOR'

Logical•4 SYSSGETJPI

Do 10 1 : 11 MAX.PIO
PIO: CONNECT.~LOCKCI,ll
If C PID ,ne, 0) Then

I'fC ,not. SYS$GETJPl(::(ValC2),P!D,,~,,,)) Call ABORT(P!I))
Ef"ld It

10 Contil"lue

Return

End
Logical•U Function REA0 4 MAILBOX

This routine ~eads the LABIO.CON~EtT mailbox
Returns when a messaqe is reedy

External I0$~RcADVBLK
Include 'LABMBXDEF.FOR'
Logica1*4 SYSSQIO~,SuCCESS

7-18

PROGRAM EXAMPLES

Read for a message f rQm another process

MBX.READ=%~0CCIOS.READVBLK)
MBX~MESSAGEC1) : ' '

REA0 4 MAILBOX : SVS$QI0W(,XVa1(MBX.CHANNEL),%ValCMBX.READ),
1 MBX.ro.sTATUS,,,MBX.MESSAGE,
1 %Va1(MAX 4 MESSAGE),,,,)
Return

End
Log1ce1•4 Function WRITE4MAILBOXCMBX.CHAN,MESSAGE,MESSAGE4~ENGTH)

This routine writes a message to a mai1box
Input are tne MBX channel, the message, and message length

External l0$.WR!TEVBLK,I0$M 4 NQW
Logical SYSiQIO

Write response buffer of MBX

MBX.wRITE =XLocCIO$.WRITEVBLK)+XLocC!O$M.NQW)

WRITE.MAILBOX: SYS$QlO(,XVa1CMBX 4CHAN) 1 %Ve1CM6X~WRITE),,,,
1 ~ESSAGE,XValCMESSAGt4LENGTH),,,,)

qq Return

End
Logieel*4 Function OPEN.MAJLBOX(MAILBOX~CHAN,MAILBOX.NAME)

This routine opens mailbox 1nd1ceteQ bv MA!LBOX 4 NAME. It returns
tne VMS cha~nel number assigned to it, The mailbo~ name een be
padded on the right with blanks,

Character•(*) MAILBOX.NAME
Integer MAIL~ox.CHAN
Logical*Q SYSSASSIGN,SUCCESS

Determine 1enqth of maf lbo~ name string

MAILBOX.NAME~L=Index(M~1LBOX 4NAME,' 'l•l
If C~AILBOX~NAME~L ,lt. ~) MAlLBOX.NAM~4L:Len(MAIL~OX~NAMEl

Assign a channel to mailbox
Return status to C$ller

Return

End
Svbrouti~e ACKNOWLEDGE (~CK.CODE)

Tnis routine ac~nowlegdes a reQuest of process, by retur~ the
command string the process sent us. The string 1s oreceded

7-19

PROGRAM EXAMPLES

en acknowledge code (ACK.CODE), The acknowledgement 1s sent
vie the mailbox the the sending processes had created,
If that process hes not connected to us, we do nothing,

Include 'LA8CHNDEF,FoR•

Log1ca1*4 WRITE.MAILBOX

Include ·LABMBXOEF,FOR'
Integer CONNECT.INDEX,CHECK.PIO,AC~~CODE

If process is not in CONN~CT.BLOCK, do not respond,

CONNECT.INDEX : CHECK.PIDCMBX.PIO)

If CCONNECT.INOEX ,ne, 0) Then
Encode(MBX.RESPONSE.L,1~0,MBX.RESPONSE) ACK 4 CODE
MAI~SOX : CONNECT.BLOCKCCONNECT.INDEX12l
C$ll ~RITE.MAILBOX(~AILBOX, MBX~RESPONSE,

1 M6X.MESSAGE.L t MBX.~ESPONSE.L
End If

Return

100 Format C I2)

End

Subroutine LABIO.LOGC CODE J

This routine logs a measage that has been proeessed, The message
1s written to the log file, along with the time, process IO, IO status
word and the message length, This routine coens the log file
if it hasn't been opened.

Charaeter•24 TIME
Logical LOG.OPEN
Integer CODE

Data LOG.OPtN/,false./

Call SVSS~SCTIMC,TI~E,,) 1Get the date a~d time

Open Log file if this is the first time thru

If C ,not, LOG.OPEN) Then
Open CUnit = 1, Na~e='LABIO.LOG', lype:'Unknown', Access = 'Apoenc
LOG.OPEN : ,True,
~riteCl,100) TIME,' Labio Log Opened'

End If

10 Write(1,200) TIME,MBX.?ID,M8X.IO~STATUS,~BX4MESSAGE.L1
1 CODE 1 (M8X~MESSAG~CilrI:1,MoX.,MESSAGE 4L)

Return

100 Format(2A)

7-20

PROGRAM EXAMPLES

200 Formate A,Z10,z10,110113,128A1 >

End

Integer F~nction CONNECTCREQ.PID)

Include 'LABCHNDEF,FOR•

Include 'LABMBXDEF,FOR'
Character*o3 MAILBOX.NAME

Integer•4 REQ.PIO,CHECK.PID
Logiea1*4 OPEN.M~ILBOX

CONNECT =
Find an empty CONNECT.BLOCK slot

Do 10 I : 11 MAX 4 PID
If C CONNECT ... BLOCKCid) 1 eQ, O) Go To 20

10 Continue

We should never get here, s;~ce the last slot of
the CONNECT.BLOCK is a spare for sending message
disa1lowing a connect&

Go To qq

Ope~ user specified MAILBOA

20 Decode (MBX.McSSAGE~L,100,M8X.MESSAGE) MAIL60X.NA~E
If(.not, OPEN.MAILBOX(MAIL80X~CHA~,MAIL80X~NAME) Go To qq

Allocate the eon~eet block, if it is not a duplicate
PIO, store the PIO and mailbo~ channel in CONNECT~BLOCK
If it is a duolicate, store tne PIO as •1,

If C CHECK.PIDCREQ.P!Ol
CONNECT ... BLOCK(l,1) :
CUNNECT : 0
Else

,eo, v.i l Tnen
fH C~ ... PI D

CONNECT 4 BLOCKCI,1) : •1 1Dupl1cate PID1 we will DiseonMeet
lAfter Ac~nowledging reouest

If C I ,ge. MAX.PIO) CONNECT : 1 lNo room for process£

qq Ret1Jrn

10~ FormatClSX,A)

f.nd
Integer Function DlSCONNECTCHE~~PlD)

Tnis routine disconnects a process from tne LA8IO system,
If it is a valid process, all CManriels still allocated are

7-21

PROGRAM EXAMPLES

deallocated, the reouest is ae~nowledged, t~e channel assigned
to the mailbox is oeessigned, and the CONNECT.B~OCK ent~y is removed,

Include •LABCHNOEF,FOR'
Integer•4 REQ 4 PIO,CHECK.PID

DISCONNECT : 1

F1~d index into connect block

CONNECT 4 INDEX : CHECK.PIDCREQ.PlO)
If CCONNECT.INOEX ,eq, ~) Go To qq 1Not connected

Deallocate all AID cnennels

Acknowledge DISCONNECT reouest

Call ACKNO~LEDGE(0)

Close the mailbox, and zero CONNECT.~LOCK

Call SYS$0ASSG~(XValCCONNECT~BLOC~CCO~NECT~INDEX,2l)
CONNECT.BLOCKCCONNECT.INDEX,1) : ~ .
CONNECT.BLOCKCCONNfCT.INDEX,2) : 0
DISCONNECT =~

qq Return

l~teger Function A80RTCRtQ 6 PlDl

Call DISCONNECT(REQ.PID)

Return

End
Integer Funct;on ALLOCATECREQ.PID>

This rout1nes allocates an A/D channel to a specific orocess.
The process request a channels by numoer (1•1o), specifing
the aeemple rate in tics/samole, tne buffer size in ~ords, ano
tne number of buffers to acquire C 0: tnfinity), The user can
default the rate to 1 t1c/samole, Default the ouffer size to
t~e maximum, and the buffer count to 0, If the user reallocates
the channel, tne aefaults are the previous values allocated,
The channel must been INACTIVE if it is reallocated,

Inelude 'L4BCHNDEF,FOR'
lncluoe 'LA8M8XDEF,FOR'

I"teger•4 REQ~PIO 1PlD of reQuesting proe•ss
Integer*4 PA~M(Q) l4 input parameters
Integer•2 CONNECT 4I~DEX,CHECK.PID
Integer•4 RE~.•o.CHAN,RtQ.TICS,REQ .. 8uF.SilE,REQ.BUF.COUNT

7-22

PROGRAM EXAMPLES

~ogical

Get 1ndex into CONNECT.BLOCK tor REQ.PID
If iMde~ is not > 0 , ignore request

AL~OCATE : 1 £Checking first field

CONNECT.INDEX : CHECK.PIDCREQ.PID)
If ~ CONNECT.INDEX .le. 0) Go To qq £ReQ, Proc not conneetedl

Decode message into four fields

REQ.AD.CHAN : PARM(l)
REQ.TICS : PARM(2)
REQ~6UF.SIZE: PARM(3)
REQ~BUF.COUNT:PARM(4)

1Reouested AID channel is first p~rm
1T1es/sample is 2nd
1Huffer s;ze is 3rd
.Nu~ber of cuffers is 4th

ALLOCATt = 2 lCheck next Parameter (channel number)

1 Valid channel numbers are l•lb

Requested c~annel must not allocated, or
allocated to the requesting Process

If (AD.BLOCKC2,REQ~AO~CHAN) ,ne, 0 ,and,
1 AD.6LOCKC2 1 REQ.AD.CHAN) ,ne, REG.PIO

1 The channel must not be active
If CAD.BLOCKCl,REQ~AD.CrlAN) ,gt, INACTIVE

Go To 99

Go To 99

A~LOCATE : 3 1Cneck1ng ~ext parm (Tics/sample)

Tics/sample must be between 1 and 2·31•1

If(,not, CHtCK.PARMCREQ~TICS,AD~BLDCKC3,REQ~AD.CHAN),
1 11'7FFFFFFF'X,1)) Go To qq

ALLOCATE : 4 lCMeck;ng parmeter (Buffer size)

Buffer size between 1 ano MAX.tiUF.S!ZE

If(.not, CHEC~ 4PARMCREG.~Uf.SIZE,AD~BLOCK(4,REQ~A04CHAN),
1 1,MAX.BUF.SlZE,~Ax.auF~SIZE)) Go To qq

ALLOCATE : 5 £ Check1n.g ne~t parameter (number of buffers)

Number of buffers to acquire must be between 1 and 2·31•1, or
zero to inoicate no 1;m;t

If C ,not, CHECK~PARM(REQ~BUF~CGUNT,AD~6~0CK(5 1 REQ.AO~CHAN),11
1 '7FFFFFFF'x,~)) Go To qq

ALLOCATE : 0

Enter info into AO.BLOCK

7-23

qq

PROGRAM EXAMPLES

ILock tne date base

Clear associated event flag$

Ca11 SYS$CLREFCXValC EF 4 NOTIFY.OFF +REG.AD.CHAN))
Call SYS$CLREFCXVe1(~F.ACTIVITY.OFF + REQ4AD~CHAN))
Call SYS$CLREF(XValC EF 4 STATUS 4 0FF + REQ4AO~CHAN))

AD 4 BlOCKC2,REQ 4 AD.CHAN) : REQ 4 PIO
AD.BLOCK(l,REQ 4 AD.CHAN) : REQ 4 TICS
A046LOCKC4,REQ 4AD~CHAN) : REQ 4 6UF.SIZE
AD 4 BLOCK(S,REQ.AO.CHAN) : REQ.SUF.COUNT
AD4BLOCKC6,REQ4 AD~CHAN) : 0
AD4BLOCKC7,REQ4AD4CHA~) : 0
AD4BLDC~(8,REQ4AD~CHAN) r 0
A04 8LOCK(Q,REQ 4 A0 4 CHAN) : 1
AD 4 BLOCKC10,RtQ 4 AD.CHAN) : 0
AD.BLOCKCll1REQ.A0 4 CHAN) : 1
A0 4 BLOCKC121REQ.A04 CHAN) : 0
A0 4 BLOCK(t,REQ4 AD.CHAN) : INACTIVE
Return

Error returri

Return 1Returl"! to caller

!Requesting PIO
llics/semple
1Reauested buffer size
1Number of buffers to acQui
1No buffers acQuired
£No oete buffer available
£Number elements in last bu
!Current buffer index
!Current buffer count
1Tics remaining
lOffset to next data Point
!Channel is inactive

100 FormatClSX,41)

End
Integer Function DEALLOCATECREQ.PlDl

Tnis routine deallocates a cnannel prev;ously allocateo by
a process. The channel must be INACTIVE when deallocated,

Include 'LAHCHNOEF,FOR'
Incluoe 'LABMSXOEF,FOR'

Integer•4 RtG.PID lPlD of reQuesting process
Integer*2 CONNECT.INOEX,CHECK 4 PID
Integer•4 REG.AD.CHAN

Get index into CONN~CT~BLCCK for REQ 4 PJO
If index 1s not > 0 , ignore reauest

OEALLOCATE : l

CONNECT.IND~X : CHECK.PIDCPID)
If (CONNECT~INOEX .le. 0) Go lo 99

Of.ALLOCATE : 2

1 Valid c~annel nu~bers are 1•16

1 Does reauesting Drocess own the chan~el?
DEALLOCATE : 21

7-24

PROGRAM EXAMPLES

l Is t~e channel inactive, clear the channel parameters
DEALLOCATE : 22

If C AD.BLOCKC1 1 REQ.AD.CHAN) ,ne. !~ACTIVE) Go to 99

Cell AO~CANCELCREQ.AO.CHAN)

DEALLOCATE : 0 lEverything OK

Ret u l"r'I

ERROR retur!'I

qq Retu,.n

T~is entry point is used to deallocate a11 channels
allocated toe spec1fic process,

Entry DEALLOCATE.ALLCREQ.P!D)

DEALLOCATE : 1

1 Valid PIO?

CONNECT.INDEX : CHECK.PIDCPID)
If C CONNECT.INDEX ,ne, 0) T~en

Look for all AID c~anne1s allocated to Process
and eeneel all I/O unconditionally,

Do 10 A04CHA~ : 1 , MAX~AD.CHANNEL
If C AD 4 BLOCKC21AD.CHAN) ,eq, REQ.PIO) Call AD~CANCELCAO.CHAN)

10 Continue
DtALLOCATE4 A~L : 0

El"ld If

Return
100 Fo,.matC15X,I15)

10

E!"ld

Clears the paramete,. table associated w;th A/O channel

ll"lclude ·LABCHNDEF,FOR·
!l"lteger CHANNE:.L

AD.CANCEL : 1

Legal ct-1anne1 numbers a,.e 1•1t.>

1 Assul'l'le erro,.

Zero the AD.BLOCK for t~is c~a~nel

Do 10 J : 1 , 16
AO~BLOCK(J, CHANNEL
AO,,.,CANCEL : 0

E.Md IF

7-25

lC:lear everth1ng

Hverythfng 01c

PROGRAM EXAMPLES

Clear a11oc1ated event flaQs

Call SYStCLR~f(XValC EF 6 NOTIFY.OFF +CHANNEL)
Call SYS$CLREFCXVa1C EF 4 ACTIVITY 4 0FF +CHANNEL
Call SYS$CLREFCXVel(EF 4 STATUS.OFF +CHANNEL)

qq Retul"n

End
Logical Function CHECK.PARM(IVAL,OVAL,~IN,MAX,OEFAULT)

This routine validates and defaults an 1nPut parameter CIVAL)
If IVAL is not 0, it comPares it to MIN end MAX, returning TRUE or FALSE,
It IVAL 1 s 0, ar1d OVAL is riot zero, !VAL : OVAL
If IVAL is 0, and OVAL ;s zero, !VAL : DEFAULT

CHECK 4 PARM = ,false, lassume the worst

If CIVAL ,ne, 0) Then
If(!VAL ,lt, MIN ,or, JVAL .gt. MAX) Go To qq

Else
If (OVAL ,ne, 0) Then

!VAL : OVAL
E 1 se

!VAL : DE.FAULT
End If

End IF

qq Return

END
Integer Function CHECK 4 Pl0(Pl0)

Th1s l"OUtine checks to see if a PIO is in CONNECT 4 8LOCK
If it is, t~e INDEX into CO~~ECT~BLOCK is returned, If
it isn't, 0 is returned

Include •LA8CHNDEF.FOR'
Integer•4 PIO

Assume PIO is not in d8tabase
CHECK ... PID : 0

1 If PID is fou~d, return inoe~.

Do 1'1 I : 1 , r-1AX Pl0
If(CONNECT~aLOCKCI1ll .ea. PIO) CHfCK4PIO = I

10 Continue

Return
t 1"1 d

7-26

PROGRAM EXAMPLES

&File& LABIOSTAT,FOH
Program LABIO.STATUS

1 This is a utility routine for the LABIO system, It displays
l the status of all lb channels of the AID, It assumes that
l the terminal 1s a VT52 or an equ;velent, e,g VT10~ in VT52 mode,
I The display 1s update once every l•q seconds, Default is
1 one second, There are S commands assoc1ateo with the program

' ' ' ' ' ' ' ' ' ' '

C •display status of lb channels
P • display status by process PIO
H • d;sPlaY help frame (timeouts after 1 m;n,)
E • Exit to VMS DC~
Dig1tC1•9) Change cycle ti~e,

The key pad cen also be used to enter commands, T"e special function
Keys on the Vl52 or VT100 correspono to the first 4 commands (3 on VT52),

Typing ANY key will cause a display refresn,

Include '~ABCHNOEF,FOR'

Character•10 STATUSC4)
Character•8 XTlME
Cnaracter*q XDATE
Parameter COMMAND.MAX : 4
Charaeter*l COMMAND,COMMAND.TABLECCO~MAN04MAX,2),ESCAPE,TERMINATOR
Character•b3 COMMAND~DEV

External sss.NOTRAN,SSi4NORMAL,SS5.PAR1ESCAPE
External !0$M.CVTLOW,1U,M4NOECHO,IOS~.TIMEO,IO$.READV8LK,l0$M•PURGE

Logical SUCCESS,SYSiQlOW,SYS!ASSIGN
Integer CHANNEL,OISPLAY.FLAG,ULD~OISPLAY,COMMAND~CHAN
Integer DEF~TIME.OUT,TlME~OUT
Byte ERASE 4SCREENC2),HOME(2),ERASE.LINEC2),VT~24MODEC7l
Integer*2 !O~STATUS(UJ,CHAR.COUNT
Equivalence (~SCAPE,rl01E),(CrlAR~COUNT,IO.STATUSC2J)

VTS2 control ESCAPE Sequences

Data HOME,ERASE.SCREEN,tRASE 4 LlNE
1 1'33'0r'H','33'0,'J','33'0,'K'I

VT100 control ESCAP~ sequences
This ESC sea Places a VT100 in VT52 mode

Data STATUS/'Unknown ','!~active',' Active ',' 'I
Data COMMAND~TABLE/'C','P','E','H','P','Q','S','R'/
Data OISPLAY.FLA~,tRASE.FLAG 11,,TRUf,/
Data DEF.TI~t.OUT 111

Map to the GLO~AL DATA sectio~ created by the IIO program

Cell LA6IO.INIT(0)

7-27

'

PROGRAM EXAMPLES

Place VT100's in VT52 mode

Type 500, VTS2.MOOE

Initialize Command inout channel
We will read the comma~d via a QIO~ w~th a 1 se~ timeout
Comma~ds are single character, to simplify ~atters we will
read witn no echo and convert lo~er to upper ease.

Call SYS$ASSIGN('TT',COMMANO.CHAN,,,)
QIO.REAO = r.Loc(I0$M.NOECH0) + %LocC10$M.CVTLOw) + %LocCl0$M.TJMED)
1 + %Loc(IOS.HEAD~8LK)
TT.PURGE = %LoeCI0$M.PuRGE)
Go To 25 1 Display Something

£ Get a command fro~ the user, but onlY wait a short time (TIME.OUT)
1 so we can update the screen. The input buffer is purged if e command
1 was decode on the last read, CPreve~ts unnecessary erase loops)

' 20 OISPLAY 4 FLAG : OLD 4 01SPLAY £Default is last display
TI~E.OUT : DE~.TIME.OUT 1Defeult time out

21 TABLE.INDEX : 1 LAssume no escape seQuence

22 Call SYS$QIOWC,%ValCC0MHANO•CHAN),%Val(QIO.REAO+PURGElr
1 ro.sTATus,,,%RefCCOM~~~D),r.Va1(1),%Va1CTIME.OUT),,,,)
PURGE : ~

If escape seq., set command table poi~ter to seco~d table and
get Character following escape,

TERMINATOR = Cha~c IO~STAfU5(3))
If(TERMINATOR ,ne. ESCAPE) Go To 23
TABLE 4 INDEX : 2
Go To 22 1Get c~ar following escape

23 If (CHAR.COUNT ,ne. 0) Then l Char count not 0
1 Check tor enar l•q

If(COMMANC ,ge. '0' .and, COMMAND ,le. •q•) Then
DEF~TIME.OUT : Ic~ar C COM~AND J • lchar('0')

L Not 1•9 try a commend,
Else

ERASE.FLAG : ,true, 1 Screen erase
Do 24 I : 1,COM~AND.~AX

lfC CUMMANU ,ea. C0MMANO~TA8Lt(I,TABLE~lNOEX)) DISPLAY.FLA~: I
24 Continue

Eno If
PURGE = TT.PURGE IPurge the ;~put buffer next t;me

End If

1 Get date and time, then dispatch to aisolav routine
1
25 Call OAT~ CXDATt)

Call TIME CXTIME)

Go to CS~,b0,99,4~) DISPLAY.FLAG
1
I Refresh the screen (~rase an~ Red;solay)
1
3~ DISPLAY.FLAG : OLD 4DIS~LAY

E~ASE.FLAG : .true.

7-28

P~OGRAM EXAMPLES

Go To 25

' I Df 1pl1y the HELP frame, 1et tne temporary t1me•out to 1 minute

' 40

'

Type &00, HOME,ERASE.SCREEN
TIME.OUT a b0
DISPLAY.FLAG s OLD.DISPLAY
ERASE.~LAG • ,true,
Go To Z1

&Disp1ay the help fr1me
1Give the user 1 minute to reed 1t
IWhe~ 1t times out, d1f1ult old

I Ge"er1te the Statue Line for each AID ch1~nel

' 50

Si

'

If C ERASE.FLAG) Type 300, HOME,ERASE.SCREEN
Type 100, HOMf,XTIME,XDATE
CHANNEL.COUNT • 0
Do 51 CHANNEL • 11 MAX.AD.CHANNEL
lf(AD.BLOCKCZ,CHANNEL> ,ne, 0) Then 1If el located, d11pl1y 1nfo

Type 200,CHANNEL, STATUSCAD.BLOCKC1,CHANNEL)+1),
1 CAD.BLOCKCJ,CHANNEL), J • 2,b)

CHANNEL4 COUNT • CHANNEL+COUNT + 1
El•• 1If not alloc1ted, ••Y 10

Type q00, CHANNEL·•<Unused>•,ERASE.LINE
End lf
Continue
PIO COUNT • 0
Do S2 PIO.INDEX s 1, MAX.PIO
PIO• CONNECT+BLOCKCPID.INDEX11)
If C PIO ,ne, 0) PIO.COUNT • PIO.COUNT + 1
Continue

Type 400,ERASE.LINE, PID.COUNT,CHANNEL.COUNT
OLD.DISP~AY • DISPLAY.FLAG
ERASE.FLAG • ,fel11,
Go to 20

& St1tu1 d11pl1y v11 proce11 CPID>

' 00

b2

bl

If C ERASE.FLAG) Tyoe 300, HOME,ERASE.SCREEN
Type 100, HOME,XTIME,XDATE
PIO.COUNT • 0
CHANNEL.COUNT • 0
Do bl PIO.INDEX s 11 MAX.PIO
PIO• CONNECT.BLOCKCPID.INDEX,1)
If C PIO ,ne, 0) Tnen
PIO.COUNT = PIO.COUNT + 1
OLD~COUNT • CHANNEL.COUNT

Number of connected proce11e11
Number of allocated channels

Do o2 CHANNEL = 1, MAX.AD.CHANNEL
If(AD 4 BLOCK(2,CHANNEL) ,eQ, PIO) Then llf right PIO, d11play info

Type 2~0, CHANNEL, STATUSCA0 4 6LOCK(1,CHANNEL)+1),
(A0 4 BLOCKCJ,CHANNEL), J = 2,o)
CHANNEL 4 COUNT = CHANNEL.COUNT + 1

End IF
Continue

If COLD.COUNT ,eq, CHANNEL.COUNT) Tv.pe 80~, '<None>',PIO,ERASE.LINE
End IF
Cont;nue
Type ~00,ERASE.LINE,PID.COUNT,CHANNEL.COuNT,ERASE.SCREEN
OLD 4 DISPLAV : DISPLAY.FLAG
ERASE.FLAG : ,false,
Go to 2~

7-29

Ex it

qq Cal 1 Exit

1
1 Format Statments
1

PROGRAM EXAMPLES

100 FormatC1X,2Al,' Lab IO Status as of ',A,' ',A//
1' Channel Status PID Tics/Sample 8uffer Size
1 Buffers '/)

200 FormatCIS,Sx,A8,Z10,4I12l

300 Format(' ',4A1)

400 Format(' '2A1/' Totals: '1!21' Processes connected '1121' C~annel
1 allocated'/' <Type an H for helo>'2A1~)

500 Format(' '7Al)

b00 Format(' '4Al/
1' Tne following comm.ands ere available:'//
1' VT100 VT52 anv'/
1' •••••• •••• •••'I
1' PFl red C Channel Display'/
1' PF2 blue P Process OisP1$Y'I
1' PF3 grey H Help Cisplay'/
1' ?F4 n/a t tx1t'//
1' To change disoley t;me1 type a digit 0-q for the desireo t1me'//

700 Format CA)

q00 formatCIS15~,A8,2A1)

End
1LEnd of FileJ

lfi1e: LABIOPEAK,FOR

Program ~ABIO~?EAK
This routine continuously samples channel ut search for peaks,
Tl'le sample rate is 1/TIC. It reports the PEt.K height end oosition
to logical chal"\nel "L.AtHO..,.l'EAK4DATA"

Parameter MBX~NA~E = 'LABIO.PtAK'
Character*130 RETJR~
Cnaracter*15 COM~ANO
Character*24 DATE 4TI~E
Loqical*~ SUCCESS,SYS~CkE~Bx

Parameter AD 4 CHANNEL : 1

7-30

L Channel Number

PROGRAM EXAMPLES

Parameter AO.RATE = 1
Parameter AD 4 bUF.SIZE : 512

Parameter MAX.PEAKS : 10

Rate
Suffer S1ze

Integer*4 ITABLEC10),INLAST1I~PTR10UTPUT(2,MAX.PEAKS),IDI~O,NPEAKS
Integer*2 INPUTCAD.BUF~SIZE*2)

o~~a ITABLE/10•01
Data INLAST,INPTR,IOI~O,NPEAKS/0,0,MAX.PEA~S,0/

Map To the Global Oata Base and the event f1egs

Call LA8IO.INITC0)

Open Ma1lbox to LA8I0 4 CONNECT

Open C Unit : 1, Name = 'LABIO.CONNECT' , Type : 'OLD' l

Create Mailbox for response from LAB!O~CONNECT

SUCCESS: SYSSCREM8X(,MSX.CHANN£L,,,%Va1('fD~0'~),,MBX.NAME)
If C.not. S0CCfSS) Call FATAL.ERROR(SUCCESS, 'CREATING MAILBOX')

Open via FORTRAN

Open C Unit : 2, Name = ~ax~NA~E, Type = 'OLD'

Deassign t~e channel assigned when we created 1t

Call SYSiOASSGN(~VelCMBX.CHA~N~L))

Open A Data File

Connect to t~e LABIO system

COMMAND = 'CO~NECT'
Write(l,1~0) COMMAND.~ijX4NAME

wait for Response from LABIO system

Read(2,200) RETUR~~CODE,RETURN
lf (RETURN.CODE ,ne, 0) Go To 99

Allocate Channel AD 4 CHANNEL
Rate : AO~RATE
Buffer size : A0 4BUF~SIZt

COMMAND : 'ALLOCATE'

1Fa11ed to co~~ectl

~rite(l,400) CO~~AND,A0~CHANNtL,AO.RATE,4D~&UF~SlZE 1 0
Read(2,200) RtTU~~.CODE,R~TUR~

If(RETUR~.COOE .~e, 0) Go lo 99 1Failed to allocatel

Enable deta acqusition by setting event fla9 ACTIVITY ena NOTIFY

Cell SYS$SETEF(%Va1CEF~ACTIVITY~QFF+AO~CHANNEL))
Call SYSSSETEF(JVelCEF~NOTIFY.OFF+AO.cHA~NEL))

l Now, wait for buffer to oe fi11eo, event flag STATUS will be set

7-31

PROGRAM EXAMPLES

when data e~e ready

5 Call SYSSWAITfRC XVa1CEF 4 STATUS+OFF+AD.CHANNEL)

Buffer is filled, get the buffer ;ndex

INDEX : AO~BLOCKC7,AD.CHANNEL)

Move data from data buffer to ceak proeessi~g buffe~

Do 10 I = 1, AD.auF.SIZE
10 INPUTCI+INLAST) : DATA 48UFFER(I,INO~X,AD4CHANNEL)

INLAST : INLAST + AD 48UF~SIZE

1 Clear the STATUS event flag and notify the I/O Process
1

Call SYSSCLREFC XValCEF~STATUS~OFF+AD 4CHANNEL))
1COEBUG) only
1 Write (3,6~0) COATA.BUFFER(I,INDEX,AC.cH4NNEL),I:1,AD4BUF4SIZE)
1
I Call the peak orocessing routf~e
1
15 Call PEAKCITABLE,I~PUT,INLAST,INPTR,OUTPUT,MAX 4PEAKS,NPEAKS)

Report tne oeak ;nfo

1Rememte~ the peak switch

If (NPEA~S .ne. 0) Then 1we have some peaks
If(NPEAKS .1t. 0) NPEAKS : MAX~PEAKS 1~E have the max
Do 20 I : 1, NPEAKS

TOTAL 4 PEAKS : TOT4L 4 PEAKS + 1 !One ~ore
2~ Write(3,500J TOTAL.PEAKS,(OuTPUT(J,I), J = 1,2)

E"'d I1

NPEAKS = 0 !Reset the pointer
If(PEA~4SWlTCH .lt, ~) Go To 15 1More oeaks to find

Move any u~orocessed data to the ~egi"'n;ng of the input array

If C C!NPTR ,gt. 0) .a"d• CINPTR .lt. INLAST)) Then
Do 30 I : 11 !NLAST·I~PTR

30 INPUTCI) : INPUT(INPTR+l) 1Move the data
IN~AST = l llast element stored

Else
INLAST: ~~

Er"d If

Ir-.PTR : 0

Go wa;t for more data
Go ro 5

1 All done, Call the exit routine

99 Cal! EXIT(ll ! Ex i t

100 Format(' •,A,A)
2~0 formatCI2,A)
400 Format(' ',A,uJ)

7-32

1Last element processed

PROGRAM EXAMPLES

500 Form1tC3I10)
b00 Formet(IS)

End
ICEnd of File]

&File PEAK,FOR

Subroutine PEAKCITABL~1INPUT,INLAST,INPTR,OUTPUT1lDIMO,NPEAKS)
IA tr1v1e1 Peek•p1ck1ng routine, The ca111Mg sequence 1• patterned
&•fter the LSPLIB routine PEAK,

Integer•~ ITABLEC10),0UTPUTC21IDIMQ),INLAST,INPTR,IDIM0,NPEAK
lnteoer•2 INPUTC1)
Perimeter NOISE ~ 5 1No1se value = 5 A/D units

&ln1t1e11ze some p1rameter1, if necesary
lfC NPEAKS ,lt, ~) NPEAKS = 0
lfC INPTR ,lt, 0) INPTR : 0

&F1rat time thru?
IfC INPTR ,lt, INLAST ,and, ITA6LEC1) ,eq, 0) Then

lNPTR s lNPTR + 1
ITABLEC1) a 1 &Assume we're ria1ng
ITABLEC2) : 1 &first point
ITABLE(3) a INPUTCIN?TR)

End If
IAny date to process?

If(INPTR ,1t, INLAST) Then
Do 10 I • INPTR+1 1 lNLAST

IfC ITABLEC1) ,gt, 0) Then 1we're rising, look for a fell
lfC INPUTCl) ,lt, ITABLEC3)•NOISE) Then &we found a pe1k

If(NPEAKS ,lt, lDlMO) Tnen lAMy room to store it?
NPEAKS m NPEAKS + 1
OUTPUTC11NPEAKS) : ITABLEC3)
OUTPUTC2,NPEAKS) : ITA8LEC2l
ITABLE(l) : •1

Else lNo, tell user
INPTR : I • 1
NPEAKS : •lDIMO
Return

End If
End If

~lse 1~e're falling, see if we found e valley
lfC INPUTCIJ ,gt. ITA8L~C5)+NOISE) ITA8L~(l) : 1

End If
ITABLE(3) : JNPUTCil

10 ITABLEC2l : JTABLEC2) ~ 1
End If

INPTR : •1
Return

1Nor~a1 e~it ell data processed,

7-33

PROGRAM EXAMPLES

1Ff lei LABIOSAMP,FOR

This program samples channel #2 once every 10 aeconds,
It aeQuires 10 ooints at 1/tic, averages them and then
RePort• tne date, t1me, and average value o~ logcia1 device
LABI0 4 SAMPLE.DATA

Include 'LABCHNDEF,FOR'

Parameter ~BX.NA~E = 'LA8IO~SAMPLE'
Charaeter•130.RETURN
Cnaracter•lS COM~AND
Character•24 DATE.TIME
Logiea1•4 SUCCESS,SYS$CREM6X
lnteger•4 DELTA~TIMEC2),NEXT~TIMEC2l
lnteger•4 AVER~GE

Parameter AU 4 CHANNEL : 2
Parameter AD 4 RATE = 1
Param~ter AD4bUF~SIZE : 1~
Parameter SAMPLE 4 RATE : '0 ~sH:10'
Parameter ~AX 4SAMPLE : 10 0~~

Map To the Global Oata Base and the event flags

Cell LABIO.INITCJ)

Open Mailbox to LAdIO.CONNECT

Channel

Maximum # samples

Open C Unit : 11 Name : 'LAB!O~CONN~CT' , Type : 'OLD')

Create ~a11bo¥ for response from LA2l0 4 CONNECT

SUCCESS= SYS$CREMBX(,MBX.C~A~NEL,,,xval('FD00'x),,~sx~NAMf)
If C.not, SUCCESS) Call FATAL.~RRORC SUCCESS, 'CREATING MAILBOX')

Open vie FORTRAN

Open (U~it : 2, Name : MBX.NAME, Type : 'Old'

Oeassig~ the channel assigne~ when we createo ;t

Call SYS$DASSGN(%~al(M8X~CHA~~EL))

Open A Data File

Open(Unit : 31 Name : 'LAB.SAMPLE.DATA', Type : 'N~w')

Connect to the LABIO system

COMMAND = 'CONNECT'
~rite(l,100) COMMAND,MBX~NAME

Wait for ~esponse from LA~IO system

7-34

PROGRAM EXAMPLES

ReadC21200l RETURN~CODE,RETURN
If C RETURN.CODE ,ne. 0) Go To qq

Allocate Channel AO.CHANNEL
Rate = AD.RATE
8uffe~ s1ze : AD.BUF.SIZ~
Collect 1 buffer at a time

COMMAND = •ALLOC~TE•

1failed to connect&

Write(l,400) COMMANO,AO.CHANNEL,AD~RATE,AD.BUF~SIZE11
If(RETURN~CODE ,ne, 0) Go To qq 1F•11ed to allocate&

Every SAMPLE.RATE secs, we ~111 collect one buffer of data

Co~vert ASCII delta time to binary
Ce11 SVS$BINTJM(SAMPLE.RATE, DELTA.TIMt

Schedule wake•ups every delt time interval
But first cancel any previous wake•ups

Call SYS$CANWAK(,)
Cel1 SYSSSCHD~Kc,,DELTA.TIME,D~LTA~TIME)

1 Wait for scheduleo time interval
10 Call SVS$HIBER()

Enable data aequsition by setting event flag ACTIVITY and NOTIFY

Cell SYSSSETEFC%Va1CEF~ACTIVlTY.OFF+AD~CHANNEL))
Call SVSSSETEFC%ValCEF~NOTIFV~OFF+AO~CHA~NELl)
Call SYSSASCTIMC,DATE•T!ME,,)

Now, wait for buffer to be fil1ed, event flag STATUS will be set
when data are reedy

Cell SYS$~AITFR(%Ve1CEF~STATUS.OFF+AD~C~AN~EL)

Buffer 1s f1lled, get the buffer 1~oex
IN.DE~ = AD.e~OCK(7,Av.CHANNEL)

Clear the STATUS event fle9 and ~otify t~e I/O process
Call SYSiCLREFC ZVal(tF.STATUS~OFF+AD~CH-NNELJ
Cal1 SYSlSETEFC %Va1CEF.NGTlFY~OFF+AO.CnA~NEL)

Average the points
AVERAGE : 0
Do 20 I : 1, AD.BUF~SllE

20 AVERAGE: AVERAGE+ DATA~~0FFERCI,INDEX 1 AU~CHANNEL)
AVERAGE : AV£RAGE/AD.BUF.SIZE

~rite out average with the aco, datelt;me
Write(3,U00) DATE~T!Mt,AVERAG~

If we•re a11 done, close files and ex;t
If(AD~BLOCK(b1AO~CHANN~~) ,lt, MAX~S4MPLE) Go To 10

1 All done, Ca11 tMe exit routine

qq Call EX1T(1)

100 formate• ',A,A)

7-35

200 FormatCI2,A)
400 Format(' ',A,41)

End
l[End of File]

&file: TESTLABIO,FOR
1

PROGRAM EXAMPLES

1 Tests the LABIO system by el locating upto lo cManners
1 Enter the number of channels, rate, end buffer size

l

Include 'LABCHNDEF,FOR'

Parameter MBX~NAME : 'TEST 4 LAbl02'
Character*130 RETURN
Character•lS CO~~AND
C~eraeter*24 DATE.TIME
Logice1*4 SUCCESS,SYSlCREMBX
Integer•4 TEST~CrlAN,TEST.RATE,TEST.BUF4SIZE

Mao To the Global Deta Base and the event flags

Call LABI04 !NJTC0)

Open Mailbox to LABI0 4 CONNECT

Open C Unit : 1, Name : 'LA8IO.CO~NECT' , Type = 'OLD')

Create Mailbox for resoonse from LABIO.CONNECT

SUCCESS: SYS,CRE~8X(,~8X.CHANNEL,,,tVel('FD00'xJ,,MBX 4NAMEJ
If (,not, SUCCE.SS) Cal 1 FATAL._E.RRORC SUCCE.SS, "CREATING MAIL.BOX';

Ope~ via FORTRAN

Deassign the channel assigne1 w~en we created it

Cal 1 SYS$DASSGN(%Ve1 ("18X._CH4NNfL)

Connect to the LABIO svstem

COM~AND : 'CONNECT'
Write(l,100) COM~A~O,~dX~NA~E

Wait for Resoonse f~om LA6IO svstP,m

Read(2,2~0) R~TURN~CODE,RtTUR~
!f (RETURN~CUOE ,ne, 0) Go To qq 1Fai1ed to conr1ectl

1 Get parameters from ooerator

' 10 LAST 4 TEST.CHAN:TEST 4 CHAN

7-36

PROGRAM EXAMPLES

Type 000,' Enter number of channels, rateC1n tics), and buffer size•
Accept 700, TEST.CHAN,TEST 4 RATE,TEST 4 BUf.SIZE
If C TEST.CHAN ,eQ, 0) CAll EwitC1l

Deallocate Channels from last time

Do 20 AD 4 CHANNEL=11LAST.TEST.CHAN

Call SYS$CLREfC%Va1CEF~ACTIVlTY.OFF+AD.CHANNEL)) 1Stop Acq,
Ca11 SYS$SETEFC%Va1CEF~NOTIFV.OFF+AD.CHANNEL))

COMMAND : 'DEALLOCATE'
Wr1te(1,400) COMMANO,AD.CHANN~L
Read(2,20~) RETURN.CODE,RETURN
If (RETURN 4 CODE ,ne, 0)
1 Type 500, 'Oeellocation failure',RETURN.CODE,RtTURN

20 Continue
1
I Allocate Channe1s

' Do 30 AD 4 CHANNEL;1,TEST.CHAN

COMMAND : 'ALLOCATE'
Wr1te(1,~00) COMMANO,AD.CHANNEL,TEST.R6TE,TEST.BUF.sizE,0
ReadC2,200) RETURN.COOE,RETURN
lf C RETURN.CODE ,ne, 0)
1 Type 500, ' Allocation failure',RETURN.CODE 1 RETURN

Enable data ecaus1tion by setting event flag ACTIVITY and NOTIFY

Ca11 SYS$SETEFC%VelCEF 4ACTIVITY~OFF+AD~CHANNEL))
30 Cell SYS$SETEF(%Val(EF~NOTIFY 40FF+AO.CHANNEL))

Go To 10
l
1 Co~nect Failure
1
qq Type 500, 'Connect failure',RETURN.CODE,RETURN

Go To 10

100 Format(' ',A,A)
200 FormatCI2,A)
4~0 Formate• •,A,~I)
500 Formet(A/' •,12,A)
600 Format(Al
700 Format(3I10)

End

1F11e: LA8IOCOM,FOR
Logical Funct1on LA81U.IN!f (PRIVIL~GE)

This routine is used to attach a LASlO user program to the
LABIO system, It associated the two event flag clusters end
meps to the LABIO global data section,

INPUT: PRIVILEGE• Privileged LA~IO users can set this

7-37

PROGRAM EXAMPLES

to 1 to allow write access to the data base,
All others must set this to 0,

OUTPUT I None• CurreMtly will always return with success code,
lf an error occurs, FATALERR is ce11ed to display
th.e error messaqes and STOP THE PROCESS!

Include 'LABCHNDEF,FOR'
Logica1*4 SYS$ASCEFC,SYS$MG8LSC,SUCCESS,SYS$WAITFR
External SEC$M4 wRT

Create event flag cluster EF.NOTIFY and essoci~te with. event flags b4•qs
These are used to MOtify the Data AcouisitioM ~rocess,

SUCCESS : SVS$ASCEFCC ZVALCEF~NOTIFY~l)1EF~NOTIFY.CLSTR,,)
If C ,not, SUCCESS)
1 Call FATAL.ERRQRC succtss, ·ckEATING EVENT FLAG CLUSTER')

Create event flag cluster EF.STATUS and associate wftM event flags 9b•12'
These are used to Motify and report the status of the user buffers

SUCCESS : SYS$ASCEFCC %VALC~F STATUS~l)1EF.STATUS..._CLSTR,,)
If C ,not, SUCCtSS)
1 Call FATAL4ER~ORC SUCCESS, 'CREATING EVENT FLAG CLUSTER')

Map to the GLOBAL DA.TA section created bv the I/O o~oqram
wait for event fla9 EF 4 CONNcCT Cno~·or1vileqed) or
Ef 4 DATA.ACQ Cor;vileged) before attemoting maoPi~g,

SECTION(l) = XLoeCLABl0~8uFFER4S)
SECTIO~C2) : XLocCLABIO.BUFf ER 6~) • 1

SECTION 4 FLAGS : ~

If(PRIVILEGE ,ne, 0) Then
SECTION~FLAGS:XLoc(SEC$M~~RT)

H~efault flags

Cal 1 SYS$WA!TFRC %Val (t.F OATA..._ACC))
Else

Cal 1 SYS$w.AITFRC %Val (t.F,...CO~hECT))
E.nd If

SUCCESS: SYS$MGBLSCC SECTION,,,IVelCSECTI0~4FLAGS),'LABlOCOMMQN•,,
lfC •"ot, SUCCESS) Call FATAL~ERRO~CSUCCESS,'mapoin9 data section'

LABIO.INIT : SUCCESS

Retur"'

EP'ld
FATAL"'"ERROR FATAL ERROR HANDL~R

This routine is used to reoort a fatal error and exit t~e image

INPUT: ERROR.CODE • SYSTtM EPROR coot TO REPORT
ERROR~MESSAGE • ERROR MESSAGE TO HE PRINTED

OUTPUT: NOr..IE

7-38

PROGRAM EXAMPLES

>>>> THIS ROUTINE DOES NOT RETURN <<<<<

FUNCTIONS TYPEs the message

'Process name•FATAL ERROR • error.message•

Then Prints system message corresponding to ERROR.CODE

Finally, oits 1mege by calling Ll8$STOP

Subroutine FATAL.ERRORCerror.code,error.message)

Integer•4 ERROR*COOE
Character ERROR~MESSAGE*(*)
Logica1•4 SUCCESS,SYS!CREMBX,SYS!GETJPI
Integer*2 JP12(8),PROCESS..,NAME.L
Integer•4 JP14C4)
Charaeter•15 PROCESS.NAME
Equivalence CJPI2,JPI4)
Parameter JP1$.PRCNAM:'31C'X

Get the Process name

JPI2C1) = 15
Jl'I2C2) = JP U..,PRCNAM
JPI4C2) = %Loe(PROCESS.NAME)
JPI4C3) = %Loc(PROCESS~NAME.Ll
JPI4(4) = QI

Call SV5$GETJPI(,,,JPI4,,,)

1Number of elements in name
lWant process name
1Adoress of orocess ~ame
1Address of process name le~gth

1 lermi P'lete 1; st

Pr1nt the process name and error message

Print the error message correspono;ng to tRROR.CODE and exit

Cal 1 Ll~$STOP(XVal CERRO~,,_CODE)

10~ Format(' 'A,' - FATAL ER~OR ',A)

Stop

END
llEnd of FileJ

IFile1 LABMBXDcF,FOR
1Define mailbox olock for ~AB.IO

Parameter MAX.MESSAGE = 128 1Max1mum message length
Parameter MBX~RESPUNSE.L = 2 &Response Length
Parameter MBx.AcK.L : ~AX~MESSAGt+MBX~R~SPONS~~L

7-39

PROGRAM EXAMPLES

Integer•4 Max.Pro
Byte MBX.RESPONSECM8X 4 RESPONSE 4 L)
Byte M8X 4 MESSAGE(MAX,..MESSAGE)

Co~mon /MKX 4 BLOCK/ M6X 4CHANNE~, M8X 4 lO.STATUS, MBX...,MESSAGE.L 1

1 MBX.PIO, MBx.RESPONSE, MBX ... MESSAGE

> MBX.BLOCK < ~ ~ ~
1 - MBX.CHANNEL ' Word 1•2

····--·-·----------------------------1 MBX ... MESSAGE,..L 1 MBX.,.IO.STATUS

-----------·--·--·-····-··-------·--·
-------------------·-····-···--------MBX...,RESPONSE.

-----------------------------------··
MBX.MESSAGE

I •••••••••••••••••••••••••••••••••••••
1
1LEnd of File]

1File: LABCHNOEF,rOR
1

lAD...,CHANNEL STATUS BL9CK
1with eaeh AID c~anne1

defined tne parameters associated

1
lfor
l 1)
1 2)
1 3)
1 4)
1 5)
1 b)
1 7)

' 1 8)

each A/D channel:
Status of tne cnanne1 CACTIVE or INACTivE)
PIO of t~e connected orocess al located tne channel
Ties/sample (time between sample in tics)
Buffer size in woras
Buffer cou"t C0 if no limit)
Buffers acqu; red
Index to tne last full buffer containing val;d aata

0 =>No buffer availaole
Number of data points in the last full buffer

The following elements are use~ by the oata ac~uisition interrupt service
routine, In general, t~ey will not te used bY an application process,

9) Index to the cur~ent data acautsition buffer
10) Number of data points in the current oata acQuis1tion buffer
11) Number of tics until tne next sam.ple
12) Offset to t~e next data ooint to oe acouired Cwrst buffer #l)

(NOTE: Offset ; Index • 1)

Parameter
Pa,..ameter
Parameter

r.UX..._AO._CHANt~E.L : lo
MAX.duF.SIZE = 512
INACTIVE : 1

7-40

lMaximum number of channels
1Maximum buffer size
JStatus values +or AD 4 BLOCK

PROGRAM EXAMPLES

Pel"ametel" ACTIVE s 2

Oet• buf fe1"1

Periemeter BUFF ER..,.COUNT : 2 & Numbel" of buf fer1/eh1nne1

&T~1• module defines the common deta structures
&fori the priv11eoed LABIO processes,

&CONNECT BLOCK used to identify processes
&connected to the LABIO proceas,

curreritly

' &Fol" each proce11 CONNECT 4 6LOCK contains:

' '
Proce11 ID CPID)
Internal VMS I/O channel of t~e connected processes me1lbox

Peremetel"
IMteger•4

MA~.PID = 1b &Maximum number of pl"oce11e1
CONNECT.BLOCKCMAX 4 PID12)

DATA COMMON SECTION
Th11 w111 be mapped•• e global date section

Common ILABIO.SECTION/ AD.BLOCK, DATA.BUFFER, CONNECT.BLOCK
Common /LABl04 SECTION/ LABIO.BUFFER.E lLast element of DATA 1ecti~n
E~u1va1ence CAD.BLOC~ 1 LABIO.BUFFER.S) 1F1rst element of DATA 1ect1on
Integer•4 SECT10N(2l,SECTION.SIZE

Define Global Event Flag Cluster ~ames and numbers

EF 4 NOTIFY.CLUSTER 1s used to notify the or1ve1eged LABIO process
tn•t cha~ge of status ~as oceured, 1,e. cnenne1 nea
become ACTIVE or INACTIVE, or a buffer nas been freed,
F11g1 0•15 of the cluster correspond to CHANNELS 1•1b
F11gs 16•31 are not used,

Parameter EF.._NOTIFY.CLSTR ; •LABIO.~F.NOTIFY'
First flag of notify

Parameter EF.._NOTIFY.,..1 : o4.
Ofhet to Notify

Parameter EF.._NOTIFV.OFF ; b3
Event F1eg EF.DATA.._ACQ is set when LABI0 4 UATA.ACQ nas completed in1t1a1ization

Parameter EF.._OATA~ACQ = EF.NOTIFY.1+17

7-41

PROGRAM EXAMPLES

Event Flag EF.CO~NECT is set when LABI04 CONNECT Mal completed in1t11li11tion
P1r1meter EF.CONNECT : EF 4 NOT1FY 4 1+18

E~.STATUS i• u1ed to notf fy a applfcat1on1 proce~s
that •buffer f1 available, and used by en application
~roc111 to inieate the 1tatu1 (ACTIVE or INACTIVE) of
a ch•""'1•

Flega 0•15 of the cluster are the ACTIVITY f1191
if 11t Cby the aPP11catfon proee11l1 the correapond1no
ch1nn11Cl•lb) 11 active. If clear, the channel fs inactive.
When a change of atate 1• made the correapond1ng flag mu1t
1110 be 1et in Clu1ter EF.NOTIFY.CLUSTER.

F11g1 lb•31 are the buffer 1tatu1 flag1, w~en aet,
a buffer for the corre1pondfng channel C1•16) 11 1v1il1b1e,
The 1polie1t1on proc111 mu1 clear the fleg and set the correapond1ng
f11; 1n EF.NOTIFY.CLUSTER when ft 11 finished with the buffer,

Parameter EF.STATUS.CLSTR s •LABIO.EF.STATUS•
IF1rat event flag in Act1v1tv end Status

Parameter EF4 ACTIVITV.1 • 9b
Parameter EF.STATus.1 • EF.ACTIVITv.1 + 16

IOffaet to Actfvitv aMd Status
Pe~amete~ EF.ACTIVITY OFF • 95
P•r•m•t•~ EF.STATus_o,F • EF.ACTIVITY.OFF + 16

I BIT 1rray, BITCI) • ha1 b1t I 11t C I • 1 to 32

'

I"teoer•4
Oat• BIT/
1
1
1
1
1
l

BITC32)
•1•x,•2•x,•4•x,•a•x,•10•x,•20•x,•40•x,'e0•x,
'100•x,•200•x,•400•x,•a00•x,•1000•x,•~000•x,
•4000•x,•e000•x,•10~00•x,•20000•x,•40000•x,
•e0000•x,•100000•x,·2~0000•x,•400000•x,
•e00000•x,•1000000•x,•2000000•x,•4000000•x,
•e000000•x,•10000000•x,•20000000•x,•40000000•x,
•e0000000•x1

ICEnd of Ffl•l

IFf 111 LABIOSEC.FOR
I Block D1t1 Routine to Pleet tMt LABIO.SECTION Common
& on• P•O• boundary, Thf1 ie nece111rv beceuae we w111
I rem1p ft, We could have u1ed • MACRO program to
I dec1ere the PSECT LABIO.SECTION to bt paged aligned,
I but the LINKer would then give ua • warning me11ao1,

Block Date LABIO.SECTION
Common /LABIO.SECTION/ AD.BLOCK
E"d .

' llEnd of FfleJ

7-42

PROGRAM EXAMPLES

IFILE1CONNECT.COM
I This command fi1e loads the connect•to•interrupt ~andler CCONINT~RR) and
I then connects the KW11•K to to it.

' S R SYSSSYSTEMaSYSGEN
L.OAD CONINTERR
CONNECT KWA0 /ADAPTER:3/CSR:X077~444/VEC:XQ404/DRIVER:CONINTERR
S E>d t

1F11el LABIOSTRT,COM

' &St•rt• up the LABIO SYSTEM
&Run1 the data ecQu1s1t1on ~rocess and connect process
&11 detached tasks, T"•n runs the status ~rogrem,

' &Mike the 1og1ce1 name e1signment1
IA11fgn/Group L.ABIO,LOG LABIO.LOG
SA11f gn/Group LABIO,OAT LABIO~SEC.FILE
IA11i;n/Group KWA~I LABIO.AO -
SSet Noon
s
S&Run the date 1cqu111tion orogram
s
SRun/Uic•
/A1t,..L.1m1t•
/Output •
/Priority•
IP roce11,..nu\e•
/Prh11egea•

L.ABIOACQ
s

'FSUSERC)'•
20•
LABIOACQ,DAT•
17•
LAB I o.o• u ... ACQ•
SAME•

l&Run the connect program
s
S RUN/U1c•
/Output•
/Pr1or1tya
/Prh11•o••
/Proce11.,..n1rne•

LAB I OCON
s

"FSUSER() '•
L.ABIOCON,DAT•
15•
SAME•
LABIO.,,.CONNECT•

S&Run the atetua program
SRun L.ABIOSUT
SS.t On

1~11•1 LABIOCOMP,COM

&Log file
1G1obal Section F11e
IConnect•to•lnteru~t device 11 KW•11
lDo~'t abort if we can't run 1 program
llt 11 probably 11reedy running&

lRun •• a deetcned ~roc111
1we need • 11rge AST Quote
lSYSSOUTPUT
lHigh, Reel•Time priority
1Name of Proce11
1Same i:>riv11egea
1 I ruoe to ru"

1Run es • detached proce11
1SVSSOUTPIJT
IGive 1t • "1gh but not m1ontv i:>r1or1tv

lNeme of the proceas

Comm1nd procedure to eomc11e and assemble
the module• of tne LABIO system,

S Fortran L.ABIOACQ,LABIOCON,LABIOSTAT,LABIOCOM,LABIOSEC
S Macro/Lilt LABIOC1N+Syt$L1orary:LIB.MLB/L1brary
s Mecro/~11t GBLSECUFO

7-43

PROGRAM EXAMPLES

$£ Demo Programs
s Fortran LABIOSAMP,LABIOPEAK,PEAK,TESTLA8IO

&file: LABIOLINK,COM
1 Command procedyre to LINK tne LABIO system
$ Link/Map LABIOACQ,G~LSECUF01LA0IOCOM,LABIOCIN/Option
$ L;nk/Map LABIOCQN,LABIO/Opt;on
$ Link/Map LABIOSTAT,LABIO/Optio~
51 Demo Programs
S Link/Map LABIOPEAK,PtAK,LABIO/Opt
$ Link/Map LAbIOSAMP,LABIO/Opt
S Link/Map TESTLAtiIO,LABIO/OPt

&File: LABIO,OPT
&Linker OPTIO~ file for linking any process to be usea wit~ ~ABIO
LABIOCOM
Cluster = LABID.CLUSTER,,,LABIOSEC

lFileJ LABIOCIN,OPT
&Linker OPTION f;le for linking LABIO.DATA.ACQ
Cluster = Lab10.cluster,,,Labioc;n

7-44

PROGRAM EXAMPLES

7.2 AIRLINE RESERVATION SYSTEM

This example shows a series of programs to make and cancel airline
reservations. This is not a "real-time" example in the same sense as
the data acquisition and manipulation example in Section 7.1.
However, the airline reservation system does show a shareable image
data base, access to which is synchronized by the use of common event
flags. It also shows the use of a shared memory common event flag
cluster.

The following commands define the logical names and install the global
section for the airline reservation system (FORTRAN program examples).
The shared memory is named SHM.

$ COPY DATABASE.EXE SYS$SHARE:DATABASE.EXE !PUT IT IN LIBRARY
$ DEFINE GBL$DATABASE SHM:DATABASE !LOGICAL NAME DEF. FOR SECTION
$ RUN SYS$SYSTEM:INSTALL
INSTALL> SYS$SHARE:DATABASE/OPEN/HEADER RESIDENT/SHARED
INSTALL> [CTRL/Z] -
$ DEFINE/SYSTEM CEF$CEFN1 SHM:CEFNl !LOG. NAME DEF. FOR CLUSTER
$ RUN [desired program in the reservation system]

7-45

c
c
c
c
c
c
c
c
c
c
c
c

c

c

c

c

c

c

c

c

c

c

PROGRAM EXAMPLES

DATADESC.FOR

VMS AIRLINE RESEVATION SYSTEM

BEING A SIMPLE DEMONSTRATION OF THE USE OF A GLORAL
DATABASE AS A SHAREABLE IMAGE UNDER VAX/VMS.

DISCLAIMER: THIS SOFTWARE IS FOR DEMONSTRATION PURPOSES
ONLY. NO AIRLINE IS EXPECTED TO HONOUR THESE
RESERVATIONS. FURTHER, IT IS INTENDED ONLY TO
DEMONSTRATE SOME OF THE TECHNIQUES AVAILARLE
WITH VAX/VMS AND VAX-11 FORTRAN.

PARAMETER NDESTS = 4
PARAMETER NDAYS = 3
PARAMETER NSEATS = 10
PARAMETER ITOTSEATS = NDESTS*NDAYS*NSEATS*2

CHARACTER DESTINS(NDESTS)*6,SEATS(NSEATS,2,NDESTS,NDAYS)*20
CHARACTER DAYS(NDAYS)*3

INTEGER HOWPAID(ITOTSEATS)

COMMON /FLIGHTDATA/SEATS,DAYS,DESTINS
COMMON /PAIDDATA/HOWPAID

BLOCK DATA DATABASE

INCLUDE 'DATADESC.FOR'

DATA DESTINS/'BOSTON', 'SYDNEY','LONDON', 'MADRID'/
DATA DAYS/' MON', 'TUE','WED'/
DATA SEATS/ITOTSEATS* I I I

END

SUBROUTINE LOCKFLIGHT(IDEST,IDAY)

INCLUDE 'DATADESC.FOR'

EXTERNAL SS$ WASSET
INTEGER PREVSTATE,EVFLAG
INTEGER SYS$SETEF,SYS$CLREF,SYS$ASCEFC

EVFLAG = 63 + NDAYS*(IDEST - l) + !DAY
IF (.NOT. SYS$ASCEFC(%VAL(EVFLAG) ,%DESCR('FLIGHTLOCKS'),,)) GO TO 900

10 PREVSTATE = SYS$SETEF(%VAL(EVFLAG))
IF (PREVSTATE .EQ. %LOC(SS$ WASSET)) THEN

ELSE

END IF

GO TO 10 -

IF (.NOT. PREVSTATE) GO TO 900
RETURN

ENTRY UNLOCKFLIGHT
IF (.NOT. SYS$CLREF(%VAL(EVFLAG))) GO TO 900
RETURN

900 TYPE 910
910 FORMAT(' **** EVENT FLAG SERVICE FAILURE ****')

END

7-46

c

c

c

c

c

c

c
1000
1010
1020
1030
1040

1
1

1050
1060

c
10

20
c

c

PROGRAM EXAMPLES

PROGRAM DISPLAY

INCLUDE 'DATADESC.FOR'

CHARACTER DESTIN*6,DAY*3,HOMERASE*4,BLANKS*6,SMOKE*l
CHARACTER TIMEDELAY*l3,TOPOFSCREEN*6

INTEGER SYS$BINTIM,SYS$SETIMR,SYS$WAITFR,SYS$CLREF,DELAY(2)

BYTE CTLERASE(4),CTLTOS(4)

EQUIVALENCE (HOMERASE,CTLERASE(l)), (TOPOFSCREEN,CTLTOS(l))

DATA CTLERASE/'lB'X,'H' ,'lB'X,'J'/,BLANKS/' '/
DATA TIMEDELAY/'0 00:00:10.00'/
DATA CTLTOS/'lB'X,'Y' ,'22'X,'20'X/

FORMAT(' Enter flight destination: ',$)
FORMAT(A)
FORMAT(' There are no flights to ',A)
FORMAT(' On what day? ',$)
FORMAT(' ',A, 'DESTIN DAY SEAT PASSENGER NAME CREDIT

CARD NO. (0 IF CASH) I , I, I ------ --- ---- --------------

---------------' ,/)
FORMAT (I + I , A , I I , A , I I , A , I 2 , I I , A , I 1 0 , I)
FORMAT (I I ,A)

TYPE 1000
ACCEPT 1010, DESTIN
DO 20 !DEST = l,NDESTS
IF (DESTIN(l:2) .EQ. DESTINS(IDEST)(l:2)) GO TO 40
CONTINUE

TYPE 1020, DESTIN
GO TO 10

40 TYPE 1030

c

c

c

c

ACCEPT 1010, DAY
DO 60 !DAY = l,NDAYS
IF (DAY(l:2) .EQ. DAYS(IDAY) (1:2)) GO TO 80

60 CONTINUE
IF (DAY(l:3) .EQ. 'ALL') THEN

!DAY = -1

END IF
GO TO 40

80 CONTINUE

GO TO 80

IF (!DEST .EQ. -1) THEN
JD EST 1

ELSE

END IF

KDEST NDESTS

JD EST
KDE ST

!DEST
!DEST

IF (!DAY .EQ. -1) THEN
JDAY 1

ELSE

END IF

KDAY NDAYS

JDAY IDAY
KDAY IDAY

TYPE 1040, HOMERASE
90 LINES = 0

DO 500 !DEST = JDEST,KDEST
ILOOP = 0

DO 400 IDAY = JDAY,KDAY
JLOOP = 0

DO 300 !SEAT = l,2*NSEATS
ILOOP = !LOOP + l
JLOOP = JLOOP + 1
IF (ISEAT .LE. NSEATS) THEN

SMOKE = 'N'

ELSE

END IF

!SMOKE = 1
JSEA'f I SEAT

SMOKE = 'S'
!SMOKE = 2
JSEAT !SEAT - NSEATS

LSEAT = !SEAT+ (IDEST-1)*2*NSEATS + (IDAY-l)*NDESTS

7-47

c

c

99
100

120
140

150
160

180
200

PROGRAM EXAMPLES

IF (LINES) 100,100,99
IF (!LOOP - 2) 100,120,140
DESTIN= DESTINS(IDEST)
GO TO 140
DESTIN = BLANKS
CONTINUE

IF (LINES) 160,160,150
IF (JLOOP - 2) 160, 180, 200
DAY = DAYS(IDAY)
GO TO 200
DAY = BLANKS
CONTINUE
IF (SEATS(JSEAT,ISMOKE,IDEST,IDAY) (1:4) .EQ. I

IF (!SEAT .NE. 1) THEN
GO TO 300
END IF

END IF

I) THEN

TYPE 1050, DESTIN,DAY,SMOKE.ISEAT,SEATS(JSEAT,ISMOKR,IDEST,IDAY),
1 HOWPAID(LSEAT)

LINES = LINES + 1
IF (LINES .GE. 19) THEN

END IF

TYPE lOnO, TOPOFSCREEN
LINES = 0

300 CONTINUE
400 CONTINUE
500 CONTINUE

c

c

c

c
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130

c
10

END

PROGRAM RESERVATION

INCLUDE 'DATADESC.FOR'

CHARACTER DESTIN*6,DAY*3,SMOKE*3,PAYMENT*4

FORMAT (' Enter destination: ',$)
FORMAT(A)
FORMAT(' There are no fliqhts to ',A)
FORMAT(' On what day? ',$)
FORMAT(' Do you want a smoking area seat? ',$)
FORMAT(' The flight to ',A,' is full on ',A)
FORMAT(' No smoker seats left. Is non-smoking acceptible ?',$)
FORMAT(' Non-smoking is full. Is smoking area acceptible ?',$)
FORMAT(' Your seat is number ',I4,' on the ',A,' flight next ',A)
FORMAT(' Enter passenger name: ',$)
FORMAT(' Payment by cash or credit card? ',$)
FORMAT(' Enter credit card number: ',$)
FORMAT (Il 0)
FORMAT(' *** INVALID CREDIT CARD NUMBER ***')

TYPE 1000
ACCEPT 1010, DESTIN
DO 20 !DEST = l,NDESTS
IF (DESTIN(l:2) .EQ. DESTINS(IDEST)(l:2)) THEN

GO TO 40
END IF

20 CONTINUE
c

TYPE 1020, DESTIN
GO TO 10

7-48

c

PROGRAM EXAMPLES

40 TYPE 1030
ACCEPT 1010, DAY
DO 60 !DAY = l,NDAYS
IF (DAY(l:2) .EQ. DAYS(IDAY) (1:2)) THEN

GO TO 80
END IF

60 CONTINUE
GO TO 40

c

c

c

c

c

80 TYPE 1040
ACCEPT 1010, SMOKE
IF (SMOKE(l:l) .EQ. 'Y') THEN

!SMOKE = 1
ELSE IF (SMOKE(l:l) .EQ. 'N') THEN

!SMOKE = 0
ELSE

GO TO 80
END IF

CALL LOCKFLIGHT(IDEST,IDAY)

DO 100 !SEAT = l,NSEATS
IF (SEATS(ISEAT,ISMOKE+l,IDEST,IDAY) (1:4) .EQ. I

GO TO 200

100
END IF
CONTINUE
JSMOKE = !SMOKE .XOR. 1
DO 110 !SEAT = l,NSEATS
IF (SEATS(ISEAT,JSMOKE+l,IDEST,IDAY) {1:4) .EQ. I

GO TO 150
END IF

110 CONTINUE
TYPE 1050, DESTINS(IDEST) ,DAYS(IDAY)

120 CALL UNLOCKFLIGHT
GO TO 900

150 IF {!SMOKE .EQ. 1) THEN
TYPE 1060
GO TO 170

ELSE
TYPE 1070

END IF
170 ACCEPT 1010, SMOKE

IF {SMOKE(l:l) .EQ. 'N') THEN
GO TO 120

END IF
!SMOKE = JSMOKE

200 JSEAT = !SEAT + (NSEATS*ISMOKE)
KSEAT = JSEAT + (IDEST-1)*2*NSEATS + (IDAY-l)*NDESTS
TYPE 1080, JSEAT,DESTINS{IDEST) ,DAYS{IDAY)
TYPE 1090
ACCEPT 1010, SEATS(ISEAT,ISMOKE+l,IDEST,IDAY)

220 TYPE 1100
ACCEPT 1010, PAYMENT
IF (PAYMENT(l:2) .EQ. 'CA') THEN

HOWPAID(KSEAT) = 0
ELSE IF (PAYMENT(l:2) .NE. 'CR') THEN

GO TO 220
ELSE

240 TYPE 1110

END IF
260 CONTINUE

ACCEPT 1120, HOWPAID(KSEAT)
IF (HOWPAID(KSEAT) .NE. 0) GO TO 260
TYPE 1130
GO TO 240

GO TO 120
900 CONTINUE

END

7-49

I) THEN

') THEN

c

c

c

c
1000
1010
1020
1030
1040
1050

c

l'
1090

PROGRAM EXAMPLES

PROGRAM CANCEL

INCLUDE 'DATADESC.FOR'

CHARACTER DESTIN*6,DAY*3,NAME*20,BLANKS*20

DATA BLANKS/'

FORMAT(' Enter destination: ',$)
FORMAT(A)

'/

FORMAT(' There are no flights to ',A)
FORMAT(' On what day? ',$)
FORMAT(' ',A' does not hold a seat to ',A,' on ',A,'
FORMAT(' Seat number ',I4,' cancelled on the ',A,
flight next ',A)
FORMAT (' Enter passenger name: ', $)

TYPE 1090
ACCEPT 1010, NAME

l 0 TYPE 1000

c

c

c
c

ACCEPT 1010, DESTIN
DO 20 IDEST = l,NDESTS
IF (DESTIN(l:2) .EQ. DESTINS(IDEST)(l:2)) THEN

GO TO 40
END IF

20 CONTINUE

TYPE 1020, DESTIN
GO TO 10

4 0 'I'Y PE 1 0 3 0
ACCEPT 1010, DAY
DO 60 IDAY = l,NDAYS
IF (DAY(l:2) .EQ. DAYS(IDAY) (1:2)) THEN

GO TO 80
END IF

60 CONTINUE
GO TO 40

80 ISMOKE = 0
90 DO 100 ISEAT = l,NSEATS

flight')

IF (SEATS(ISEAT,ISMOKE+l,IDF.ST,IDAY) (1:10) .EQ. NAME(l:lO)) THEN
CALL LOCKFLIGHT(IDEST,IDAY)

c

GO TO 200
END IF'

100 CONTINUE
IF (!SMOKE .EQ. 0) THEN

ISMOKE = 1

ELSE

END IF'

GO TO 90

TYPE 1040, NAME, DESTIN, DAY
GO TO 900

200 JSEAT = !SEAT + (NSEATS*ISMOKF.)
KSEAT = JSEAT + (IDEST-1)*2*NSEATS + (IDAY-l)*NDESTS
TYPE 1050, JSEAT,DESTINS(IDEST) ,DAYS(IDAY)
SEATS(ISEAT,ISMOKE+l,IDEST,IDAY) (1:20) = 8LANKS(l:20)
HOWPAID(KSEAT) = 0
CALL UNLOCKFLIGHT

900 CONTINUE
END

7-50

c

c

c

c

c

c

c
1000
1010
1020
1030
1040

1
1

1050
1060

c
10

20
c

c

PROGRAM EXAMPLES

PROGRAM MONITOR

INCLUDE 'DATADESC.FOR'

CHARACTER DESTIN*6,DAY*3,HOMERASE*4,BLANKS*~,SMOKE*l
CHARACTER TIMEDELAY*l3,TOPOFSCREEN*~

INTEGER SYS$BINTIM,SYS$SETIMR,SYSSWAJTFR,SYS$CLRP.F,nELAY(2)

BYTE CTLERASE(4) ,CTLTOS(~)

EQUIVALENCE (HOMERASE ,CTLF:RASF. (1)), (TOPOFSCRP.P.N ,C'I'LTOS (l))

DATA CTLERASE/'lB'X,'H','lR'X,'J'/,RLANKS/' '/
DATA TIMEDELAY/'O 00:00:10.00'/
DATA CTLTOS/'lB'X, 'Y', '22'X, '20'X, 'lR'X, 'J'/

FORMAT(' Enter flight destinc1tion: ',$)
FORMAT(A)
FORMAT(' There are no flights to ',A)
FORMAT(' On what day? ',$)
FORMAT(' ',A,'DESTIN DAY SEAT PASSENGER NAME CREDIT

CARD NO. (0 IF CASH) I,/, I ------ --- ---- --------------
---------------' ,/)

FORMAT('+',A,' ',A,' ',A,I2,' ',A,IlO,/)
FORMAT(' ',A)

TYPE 1000
ACCEPT 1010, DESTIN
DO 20 IDEST = l,NDESTS
IF (DESTIN(l:2) .EQ. DESTINS(IDEST)(l:2)) THEN

GO TO 40
END IF
CONTINUE

IF (DESTIN(l:3) .EQ. 'ALL') THEN
ID EST -1
GO TO 40

END IF
TYPE 1020, DESTIN
GO TO 10

40 TYPE 1030

c

c

ACCEPT 1010, DAY
DO 60 IDAY = l,NDAYS
IF (DAY(l:2) .EQ. DAYS(IDAY) (1:2)) THEN

GO TO 80
END IF

60 CONTINUE
IF (DAY (l: 3) • EQ. I ALL I) THEN

IDAY = -1
GO TO 80

END IF
GO TO 40

80 CONTINUE
IF (IDEST .EQ. -1) THEN

JDEST
KDEST NDESTS

ELSE
JD EST IDE ST
KDEST ID EST

END IF
IF (IDAY .EQ • -1) THEN

JDAY l
KDAY NDAYS

ELSE
JDAY IDAY
KDAY IDAY

END IF

TYPE 1040, HOMERASE
90 LINES = 0

DO 500 IDEST = JDEST,KDEST
ILOOP = 0

7-51

c

c

PROGRAM EXAMPLES

DO 400 IDAY = JDAY,KDAY
JLOOP = 0

DO 300 ISEAT = l,2*NSEATS
ILOOP = ILOOP + l
JLOOP = JLOOP + l
IF (ISEAT .LE. NSEATS) THEN

SMOKE = 'N'

ELSE

END IF

ISMOKE = l
JSEAT = ISEAT

SMOKE = 'S'
ISMOKE = 2
JSEAT ISEAT - NSEATS

LSEAT = ISEAT + (IDEST-1)*2*NSEATS + (IDAY-l)*NDESTS
c

99
100

120
140

c

150
160

180
200

IF (LINES) 100,100,99
IF (ILOOP - 2) 100,120,140
DESTIN = DESTINS(IDEST)
GO TO 140
DESTIN = BLANKS
CONTINUE

IF (LINES) HiO,H0,150
IF (JLOOP - 2) 160, 180, /.00
DAY = DAYS(IDAY)
GO TO 200
DAY = BLANKS
CONTINUE
IF (SEATS(JSEAT,ISMOKE,IDEST,IDAY) (1:4) .EQ. I

IF (ISEAT .NE. 1) THEN
GO TO 300
END IF

END IF

I) THEN

TYPE 1050, DESTIN,DAY,SMOKE,ISEAT,SEATS(JSEAT,ISMOKE,IDEST,IDAY),

c

c

l HOWPAID(LSEAT)
LINES = LINES + l
IF (LINES .GE. 19) THEN

END IF
300 CONTINUE
400 CONTINUE
500 CONTINUE

IX= SYS$BINTIM(%DESCR(TIMEDELAY) ,DELAY)
IF (,NOT. IX) GO TO 900
IX= SYS$CLREF(%VAL(l))
IF (.NOT. IX) GO TO 900
IX= SYS$SETIMR(%VAL(l) ,DELAY,,)
IF (.NOT. IX) GO TO 900
IX= SYS$WAITFR(%VAL(l))
IF (,NOT. IX) GO TO 900
TYPE 10h0, TOPOFSCREEN
LINES = 0

IX = SYS$BINTIM(%DESCR(TIMEDELAY) ,DELAY)
IF (.NOT. IX) GO TO 900
IX= SYS$CLREF(%VAL(l))
IF (.NOT. IX) GO TO 900
IX= SYS$SETIMR(%VAL(l),DELAY,,)
IF (.NOT. IX) GO TO 900
IX= SYS$WAITFR(%VAL(l))
IF (.NOT. IX) GO TO 900
TYPE lOnO, TOPOFSCREEN
GO TO 90

900 CALL LIB$SIGNAL(%VAL(IX))
END

7-52

PROGRAM EXAMPLES

$
$
$
$
$
$

BLDVMSAIR.COM

COMMAND FILE TO REBUILD FROM SOURCE
THE AIRLINE RESERVATION SYSTEM WHICH IS
A DEMO OF SHAREABLE IMAGES

$ FORTRAN/LIST/MACHINE CODE DATABASE
$ FORTRAN/LIST/MACHINE-CODE INTERLOCK
$ FORTRAN/LIST/MACHINE-CODE RESERVE
$ FORTRAN/LIST/MACHINE-CODE DISPLAY
$ FORTRAN/LIST/MACHINE-CODE CANCEL
$ FORTRAN/LIST/MACHINE-CODE MONITOR
$ LINK/SHAREABLE/MAP/FULL/CROSS DATABASE,INTERLOCK,DATABASE/OPTIONS
$ LINK/MAP/FULL/CROSS RESERVE,GETSHRIMG/OPTIONS
$ LINK/MAP/FULL/CROSS DISPLAY,GETSHRIMG/OPTIONS
$ LINK/MAP/FULL/CROSS MONITOR,GETSHRIMG/OPTIONS
$ LINK/MAP/FULL/CROSS CANCEL,GF.TSHRIMG/OPTIONS
$ PURGE *·*

DATABASE. OPT

LINK TIME OPTIONS DESCRIPTION FILE TO BUILD
THE SHARABLE IMAGE CONTAINING THE DATA BASE AND
THE INTERLOCK ROUTINE

UNIVERSAL=LOCKFLIGHT,UNLOCKfLIGHT

GSMATCH=LEQUAL,0,0000

GETSHRIMG.OPT

MAKE ROUTINE ENTRY POINTS
ACCESSIBLE TO USER PROGRAMS
SET GLOBAL SECTION MATCH CONTROL

LINK TIME OPTIONS FILE TO ACQUIRE THE SHARED
DATABASE AND INTERLOCKING ROUTINE.

DATABASE/SHARE=NOCOPY MAPPED INTO ADDRESS SPACE

7-53

APPENDIX A

LOCKING A RESOURCE

A semaphore is a metering device that provides the capability of
controlling access to a set of resources. A semaphore that controls
access to a single resource is called a mutex (mutual exclusion) or,
more commonly, a lock.

You can perform two operations on a mutual exclusion semaphore (lock):

• Lock - Test to see if the resource is free •
take (use) it and proceed with execution.
not free, execution is stalled until the
available.

If it is, then
If the resource is

resource becomes

• Unlock - Give the resource back (make it available to others)
when it is no longer needed. If any other processes are
stalled waiting for the resource, they are awakened.

Locking and unlocking must be interlocked operations, so that no race
conditions result. An example of a race condition is as follows: in
the middle of the first process's test for a resource's availability,
the resource is returned by another process, but the return goes
unnoticed by the first process.

Two methods of creating a lock are (1) using a common event flag or
(2) using a queue. In selecting either method, you must consider how
you want to service requests for the resource, how important is ease
of use, and how quickly the method must execute. Table A-1 contrasts
the two methods.

Table A-1
Two Methods of Creating a Lock

Event Flag

1. Requests serviced according
to process priority

2. Easy to use

3. Uses time manipulating
the event flag

A-1

Queue

1. Requests serviced on a
first-in first-out (FIFO)
or a last-in first-out
(LIFO) ba sis

2. More complicated to use
(requires a global sec
tion and special data
structures)

3. Executes at hardware
instruction speed when no
conflict occurs

LOCKING A RESOURCE

A.l USING AN EVENT FLAG

Cooperating processes can control access to a resource by using a
common event flag as a lock. The procedure is as follows:

1. An initialization process is run to create a permanent common
event flag cluster and to set the initial state of all J2
flags to 1. This provides 32 individual locks.

2. Each cooperating process must associate with the common event
flag cluster.

3. Before any
particular
Figure A-1.

process uses the resource represented by a
event flag, it must execute the logic shown in

Yes

Proceed to
access
resource

Clear event flag

Wait for event
flag

5$:

10$:

$CLREF_S EFN=#G5

CMPL R01#SS$_WASSET
BEQL 10$

$WA ITFR S EFN=#G5
BRW 5$

;Proceed

$SETEF_S EFN=#G5

Figure A-1 Event Flag Lock Logic

Because the initial state of the event flag is 1, only one process at
a time will be able to clear the event flag and find its previous
state to be a 1. All subsequent processes will find the previous
state to be O, and thus will wait until the owner process sets the
flag. (This occurs when the owner process is finished with the
resource and returns it.)

A-2

LOCKING A RESOURCE

Setting the event flag causes all the waiting processes to awaken and
compete for CPU time according to their process priority (unless an
outstanding I/O request or some other factor prevents a
higher-priority process from becoming computable). However, only one
waiting process will be able to clear the event flag and find its
previous state to be a 1. (Note: Clearing an event flag is an
interlocked operation implemented by VAX/VMS.)

Figure A-2 is a VAX-11 FORTRAN example using a common event flag as a
lock. Note that in Figure A-2 it is not necessary to run an
initialization process (step 1 at the beginning of this section),
because the program logic prevents a race condition from occurring
during lock initialization.

INTEGER*4 SYS$ASCEFC,SYS$SETEF,SYS$CLREF,SYS$WAITFR,STATUS
EXTERNAL SS$_WASSET,SS$_WASCLR

c-- Associate with a common event flag cluster to be used as a mutual exclusion
c-- semaphore. If the cluster does not exist, it is created. The first two
C-- flags are used to avoid any race conditions during initialization.

STATUS= SYS$ASCEFC{%VAL{64} ,'MUTEX' ,,}
IF {.NOT. STATUS} CALL LIB$STOP{%VAL{STATUS}}
IF {SYS$SETEF{%VAL{64}} .EQ. %LOC{SS$ WASCLR}} THEN

CALL SYS$SETEF{%VAL{66}} -
CALL SYS$SETEF{%VAL{65)}

ELSE
CALL SYS$WAITFR{%VAL{65}}

END IF

C-- Perform any other program initialization

CONTINUE

If creator
Init mutex
Set initialized

Initialized wait

C-- Obtain exclusive access to the mutex to make sure no other process
C-- will execute its critical section while we do. If the mutex cannot be
c-- obtained, wait for it to be released.

50 STATUS= SYS$CLREF{%VAL{66}}
IF {STATUS .EQ. %LOC{SS$ WASSET}} GOTO 100
STATUS= SYS$WAITFR{%VAL(66}}
GOTO 50

c-- Execute the critical section of the program

100 CONTINUE

C-- Release the mutex and unblock any other processes that might have
C-- been waiting. If more than one is waiting, the first one to obtain the
C-- the mutex will get it, and the others will fail and wait again.

CALL SYS$SETEF{%VAL{66})

GOTO 50

END

Figure A-2 Event Flag Lock Example

A-3

LOCKING A RESOURCE

A.1.1 Shared Memory Considerations

You can use an event flag in a shared memory common event flag cluster
to guarantee that only one process uses a resource at a time.
However, because of potential differences in the speeds and workloads
of the processors connected to the shared memory, there is no
assurance that the highest-priority waiting process will get the
resource each time it becomes available.

A.2 USING A QUEUE

Cooperating processes can use a queue to lock a resource and, after
unlocking, make the resource available on either a first-in first-out
(FIFO) or last-in first-out (LIFO) basis. (Queues and the queue
instructions are explained in the VAX-11 Architecture Handbook.) The
procedure is as follows.

1. An initialization process must be run to create a permanent
global section and initialize a queue header.

2. To use the resource represented by the queue header, each
process must map the global section. Each process must also
create a 3-longword description with the following format in
the global section:

Forward link

Backward link

Process ID
"--------------------'

3. Before any process uses the resource represented by the queue
header, it must execute the logic shown in Figure A-3.
(Figure A-3 shows a FIFO queuing policy. Figure A-4 later in
this appendix shows a LIFO policy.)

A-4

Yes

Yes

LOCKING A RESOURCE

Insert its description
into queue at tail

Yes

Access resource

Remove its description
from queue at head

Wake first process
in queue

Proceed with
execution

Figure A-3

INSQUE DESC1@HEADER+4

BEOL 10$

5$: $HIBER_S

No CMPL DESC, HEADER
BNEQ 5$

10$:

REMQUE @HEADER,RO

BEQL 20$

MOVL HEADER1Rl
$WAKE_S PIDADR=8(R1l

20$:

FIFO Queuing Policy

Because the initial state of the queue is empty, only one process will
be able to insert its entry in the queue and find it to be the first
entry. Each subsequent process will find more than one entry after
inserting itself, and thus will hibernate.

A-5

LOCKING A RESOURCE

When the owner process is finished using the resource, it simply
removes its description from the head of the queue. If the queue is
then empty, no process is waiting. If the queue is not empty, the
process whose ID is first in the queue is awakened, and that process
can now use the resource. (Note: The queue instructions are
interlocked operations implemented by the VAX-11 processor.)

Figure A-3 and its explanation described a FIFO queuing policy.
Figure A-4 shows the logic for a LIFO queuing policy.

A.2.1 Shared Memory Considerations

The logic and coding in Section A.2 cannot be used with a queue in
shared memory for the following reasons:

• The Wake ($WAKE) system service cannot be used to wake a
process running on another processor.

• The interlocked queue instructions must be used
INSQTI, REMQHI, REMQTI).

(INSQHI,

To use a queue in shared memory, you must devise a more complicated
mechanism. (Such a mechanism is beyond the scope of this manual.)

A-n

Yes

Yes

LOCKING A RESOURCE

Insert its description
into queue at tail

Yes

Access resource

Remove entry from
queue at tail

Insert that entry in
queue at head
Remove its own entry
from queue
Wake entry moved to
head of queue

Proceed with
execution

No

INSQUE DESC,@HEADER+a

BEQL 10$

5$: $HIBER_S

10$:

20$:

CMPL DESC1HEADER
BNEQ 5$

REMQLJE @HEADER+a,Ri

BEQL 20'1i

REMQLJE @HEADER1RO
I NSQUE (R 1) ,@HEADER
$WAKE_S PIDADR=81R1l

A-4 LIFO Queuing Policy

A-7

Users should
Laboratory
application:

consider
Peripheral

APPENDIX B

LPAll-K CONSIDERATIONS

three factors
Accelerator

in selecting and
(LPAll-K) for a

using the
real-time

• The effect on performance of resource availability and
hardware configuration

• Throughout and response-time requirements of the application

• The LPAll-K driver's use of parameters in data acquisition
calls

The remainder of this appendix discusses each of these considerations.

B.l RESOURCES, CONFIGURATION, AND PERFORMANCE

One factor that determines the performance of the LPAll-K is its
interaction with other devices and applications in the system. The
LPAll-K is designed as a real-time device. Its function is to sample
data synchronously with a real-time clock. However, if for any reason
the LPAll-K cannot maintain this synchronous transfer of data, a
nonretriable error is generated. This method of operation contrasts
with that of a disk, which can perform a retry because the original
data is still available (in memory for a write or on disk for a read).
In a real-time application, however, after the event of interest has
passed it may no longer be of interest.

Therefore, the resources needed to carry out an application in real
time must be guaranteed to be available. Some of the resources that
must be available to use the LPAll-K in real time are UNIBUS adaptor
map registers to map the buffers, UNIBUS adaptor data path, UNIBUS
direct memory access (DMA) transfer bandwidth, processor interrupt
response time, memory in the working set for data buffers, and CPU
execution time for the application program. If the application
buffers the data for storage on disk, the following resources must
also be available: the disk controller and drive, -and sufficient
bandwidth and adaptors for the MASSBUS or UNIBUS (depending on where
the disk is interfaced).

The VAX/VMS system gives the application program control over many
system resources, to guarantee their availability when these resources
are needed. Processes can lock critical pages, thus ensuring the
availability of that memory. Processes can adjust their priority to
guarantee access to CPU execution time and to mass storage
controllers.

B-1

LPAll-K CONSIDERATIONS

In other areas, however, control over resources is difficult, often
because the resources are being used concurrently and involve
interrupt handling and contention for bandwidth on I/O buses. In
fact, several studies have concluded that the major impact on LPAll-K
performance is UNIBUS I/O bandwirlth contention.

The LPAll-K detects two classes or errors associated with real-time
performance:

• Buffer overrun/underrun -- deals with the ability of the
application program to supply new memory buffers fast enough
(for example, to process data at least as fast as it is coming
in)

• Data overrun/underrun -- deals with the ability of the device
to arbitrate for UNIBUS cycles and to transfer data to and
from main memory

Buffer overrun/underrun errors often reflect inadequate application
control over resources; data overrun/underrun errors are usually
caused by I/O contention.

The first class of errors, buffer overrun/underrun, is a function of
the application. The application must run at a priority high enough
to guarantee it sufficient CPU time. It must also have a working set
large enough to hold in physical memory the data buffers and the code
that performs computation on the data, to prevent excessive paging (or
perhaps to prevent any paging at all). However, if these control
measures have been taken and the buffers are large enough, and if
buffer overrun/underrun errors still occur repeatedly, then the data
rate is too fast for the work that needs to be done. In this case,
the solution might be to buffer the data to intermediate mass storage
for future processing.

The second class of errors, data overrun/underrun, is a function of
UNIBUS and memory I/O contention. As other OMA devices on the UNIBUS
become concurrently active, the effective throughput rate of the
LPAll-K can be significantly reduced. If LPAll-K throughput falls
below the application's requirements, an additional UNIBUS adaptor may
be needed.

B.2 THROUGHPUT AND RESPONSE-TIME REQUIREMENTS

The LPAll-K and its support under VAX/VMS are tailored primarily for
throughput-intensive applications. This device can recognize a simple
event, such as a single digital signal, and start data acquisition
when the event occurs. However, if the application must respond
quickly to events represented by the contents of the data being
acquired, the LPAll-K might not be suitable for two reasons:

• The LPAll-K samples analog or digital data and stores it in
large data buffers in main memory, generating an interrupt
only when a buffer is full. Thus, if the application must
detect a particular data value and respond quickly, it might
have to wait for an entire buffer to be filled before it could
start searching for the value.

• VAX/VMS is designed to manage LPAll-K data buffers
transparently for application programs. This buffer
management involves some software overhead. Thus, if data
buffers were made very small (the smallest beinq one data
point per buffer) in an effort to access data points sooner,
the software overhead would grow considerably.

B-2

LPAll-K CONSIDERATIONS

B.3 PARAMETERS FOR DATA ACQUISITION CALLS

The LPAll-K uses parameters in some data acquisition procedures. For
example, assume that an application must acquire a stream of analog
data from several points at a specific rate per point, store the
digitized data in memory, and stop when enough data has been taken.

To accomplish these goals, you must specify the following parameters:
analog-to-digital conversion, the analog data channels to sample, the
sample rate, the place in memory to store the data, and the amount of
data to be taken. At the start of each data acquisition session, the
application provides these values as parameters to the LPAll-K driver.

Data acquisition calls using parameters have the advantages of
isolating the application from the actual hardware and simplifying the
programming: the application programmer does not need to write
interrupt service routines in assembly language or microcode.
However, this approach might not be adequate for certain complicated
applications requiring a sophisticated sampling algorithm or complex
interactions between multiple data acquisition streams. If the
application requires capabilities not provided by the LPAll-K
parameters, other devices should be investigated.

B-3

APPENDIX C

VAX-11 BLISS-32 PROGRAM EXAMPLE

This appendix shows a VAX-11 BLISS-32 program using
connect-to-interrupt capability. The functions performed by
program are described in the "Abstract" near the beginning of
listing and in comments throughout the program. This program is
a simple illustration of connecting to an interrupt vector and
not reflect a typical real-time situation {for example, the
printer is not a real-time device).

MODULE lpmultast(%TITLE'line printer driver' MAIN=lp_main, IDENT='X02')=

COPYRIGHT (c) 1980 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

++

FACILITY:

A sample program that illustrates the use of the connect to
interrupt facility.

ABSTRACT:

This program assigns a channel to a line printer device, and
then connects to the device via the connect to interrupt
facility. The program then requests the name of a file from
the user, and outputs that file on the line printer.

%SBTTL 'External and local symbol definitions'
BEGIN

LIBRARY 'SYS$LIBRARY:LIB'; ! Get important definitions

PSECT

C-1

the
the
the

only
does
line

VAX-11 BLISS-32 PROGRAM EXAMPLE

!+
! Define some PSECTs which we will need to refer to later
!-
OWN=
OWN=

sharedata(ALIGN(9),WRITE),
data;

LINKAGE
intrupt= JSB(REGISTER=2, REGISTER=4, REGISTER=5):

cancel=
NOPRESERVE(O,l,2,3,4) NOTUSED(o,7,8,9,10,11),

JSB(REGISTER=2, REGISTER=3, REGISTER=4, REGISTER=5):
NOTUSED(o,7,8,9,10,11);

FORWARD ROUTINE
lp interrupt:
lp-cancel: NOVALUE
lp-main,
lp-isr ast,
lp:=ioclone_ast;

intrupt PSECT(sharedata),
cancel PSECT(sharedata),

Interrupt server
Cancel I/O

Static Definitions

LITERAL

OWN

true 1,
false = O,

io _page count = 1, Pages needed in UNIBUS I/O space

io_space_base %x'20100000', Physical address of UBA 0 space
for VAX-11/780. Other processors
need different magic number .••

unibus lp_addr= %0'777514', 18-bit addr of LPll CSR

Calculate the page-frame number to map to get the physical address
that the unibus is mapped on.

io_page _ _Pfn = (io_space_base + unibus lp_addr)/512,

lp_csr_offset %0'514', ! Offset to printer CSRs.

filename_length

record bufsiz
prompt:=length

lpchan: WORD,

filename buffer:
file descr:
fdlen:

record buffer:

file fab: $fab(

100,

256,
28;

! Line printer channel number.

VECTOR[filename length,BYTE],
VECTOR[2] INITIAL(filename length, filename_buffer),
WORD, -

VECTOR[record_bufsiz,BYTE),

! Input file fab

C-2

VAX-11 BLISS-32 PROGRAM EXAMPLE

Functional description:

This routine services an interrupt from the line printer
device. If the interrupt was expected, the routine disables
output interrupts. The disable is an optimization to prevent one
interrupt per character. With output interrupts disabled, the
line printer buffers characters until the device needs to output
the characters. Then the main program enables output interrupts
only for the period of time necessary for the device to empty
the buffer.

Then the interrupt service routine loads a success status into
RO and returns.

If the interrupt was not expected, the routine just loads
an error status into RO to prevent delivery of an AST to the
owning process and returns.

Inputs:

R2 - address of a counted argument list
R4 - address of the IDB
RS - address of the UCB

The counted argument list is as follows:

- count of arguments (4) 0 (R2)
4 (R2)
8 (R2)

- the system-mapped address of the user buffer
- the system-mapped address of the device's CSR

Outputs:

12 (R2)
16(R2)

- the IDB address
- the UCB address

The routine must preserve all registers except RO-R4.

BEGIN
MAP

BIND

arglist:
ucb:
idb:

REF VECTOR[,LONG],
REF BLOCK[,BYTE],
REF BLOCK[,BYTE];

bufadr arglist [l]: REF BLOCK FIELD(buf); System adr of buffer

BUI LTIN
TESTBITCC;

IF TESTBITCC(bufadr[buf$l_flags]
THEN

RETURN O;

(.idb[idb$l_csr])<0,16>

ss$ normal
END;

O;

No interrupt expected, no AST wanted

Disable the output interrupt

%SBTTL 'LP_CANCEL, Cancel I/O on Line Printer'

ROUTINE lp_cancel(chan_idx, irp, pcb, ucb): NOVALUE cancel PSECT(sharedata)=
!++

Functional description:

This routine disables output interrupts from the line printer.

C-3

VAX-11 BLISS-32 PROGRAM EXAMPLE

BIND

!+

file rab:

fac=get,
fna=filename_buffer,
org=seq,
rfm=var,
dnm='TEST.LIS'),

$rab(
fab=file_fab,
rac=seq,
ubf=record buffer,
usz=record=bufsiz),

io_page limits: VECTOR [2)
INITIAL(200,

200);

onesecond delta=
UPLIT(-10*1000*1000,-1);

Addresses of process-mapped
UNIBUS I/O paqe. 200 tells $CRMPSC
to map pages in PO space

Delta time format for one
second.

! Define offsets into the buffer that will be shared by the user
! process and the process routines that execute in kernel mode.
!-

FIELD
buf=

lp=

SET
bu f $1 flags=

buf$v int=
[0,0,32,0),
[O, 0, 1,0),

buf$w charcount=[4,0,16,0),
buf$1-startdata=[8,0,32,0J
TES, -

SET
lp csr= [0,0,16,1),
lp-dbr= [2,0,8,0J
TES;

%SBTTL 'Double Mapped Page Buffers'

OWN

Flags longword.
Interrupt expected

Number of chars in buffer
Start of data in buffer.

Offset to line printer CSR
Offset to line printer data

output_buffer: BLOCK[512,BYTE) FIELD(buf) PSECT(sharedata);

PSECT
OWN=
PLIT=

sharedata,
sharedata;

The routines to be executed in kernel mode must follow directly
after this allocation of bytes to hold output data.

%SBTTL 'LP_INTERRUPT, Interrupt service routine'

ROUTINE lp_interrupt(arglist, idb, ucb): intrupt PSECT(sharedata}=
!++

C-4

VAX-11 BLISS-32 PROGRAM EXAMPLE

Inputs:

R2 - negated value of the channel index number
R3 - address of the current !RP {I/O request packet)
R4 - address of the PCB {process control block) for the

process canceling I/O
RS - address of the UCB {unit control block)

Outputs:

none

BEGIN
MAP

irp: REF BLOCK[,BYTE],
pcb: REF BLOCK[,BYTE],
ucb: REF BLOCK[,BYTE];

BIND
crb= .ucb[ucb$l_crb]: BLOCK[,BYTE];

LOCAL
csr: REF BLOCK[,BYTE] FIELD{lp); UNIBUS addr.

csr = •• {crb[crb$l_intd] + BLOCK(O, vec$l_idb;O,BYTEJ); ! Addr of CSR

csr [lp csr] = 0
END; -

! Disable output interrupts.

%SBTTL 'LP_MAIN, the main routine'

ROUTINE lp main: PSECT{$CODE$)=
•++ -

LP_MAIN, the routine that controls the others

Functional description:

1. Assign a channel to the line printer.
2. Map the process to the I/O page.
3. Issue a connect to interrupt QIO to get the line printer.
4. Prompt the user for a file name.
5. Open and connect to the file.
6. Write the contents of the file to the line printer.

Inputs:

none

Outputs:

RO

BEGIN
PSECT

- status code
SS$ NORMAL
RMS-code

SS$ DEVOFFLINE

- success
- error in opening or reading

the file
- error is writing to printer

C-5

OWN

VAX-11 BLISS-32 PROGRAM EXAMPLE

OWN= OWN;

buffer desc: VECTOR[2] INITIAL(
512+512,
output_buffer),

entry_list: VECTOR[4] INITIAL(
o,
O,
lp interrupt-output buffer,
lp=cancel-output_buifer);

Descriptor of buffer shared
by process and kernel mode
process routines.

List of offsets to kernel
mode routines: init device;

start device;
interrupt servicing;
cancel I/O.

LOCAL
csr: REF BLOCK[,BYTEl FIELD(lp) VOLATILE,
status;

EXTERNAL ROUTINE
lib$get_input;

Assign a channel to the line printer.

status $assign (
devnam=$DESCRIPTOR('LPAO'),
chan=lpchan);

Assign channel to line
printer

IF NOT .status THEN RETURN .status;

Map the UNIBUS I/O page to the process so that the line printer's
device registers are accessible.

status $crmpsc(Map I/O page to process.
inadr=io page limits,
retadr=io page limits,
flags=secSm wrt OR sec$m pfnmap OR sec$rn_expreg,
pagcnt=io paqe count, -
vbn=io_page_pfn);

IF NOT .status THEN RETURN .status;

Issue a connect to interrupt QIO to the line printer device. This
connection will allow the program to control and handle interrupts
from the device.

status $gio(Connect the process to the
chan=.lpchan, line printer device.
func=io$ conintread, Specify a read only buffer.
astadr=lp iodone ast, Specify an AST routine.
pl=buffer-desc, - Specify a shared buffer.
p2=entry list, Specify routine entry points.
p3=cin$m=isr OR cin$m cancel,

- Specify ISR, cancel routines.
p4=lp isr ast,
p6=sJT -

Specify an interrupt AST.
Specify an AST count.

IF NOT .status THEN RETURN .status;

C-fi

VAX-11 BLISS-32 PROGRAM EXAMPLE

Ask user what file to print.

status lib$get_input(file descr,
$descriptor('Name of file to be printed: '),
file_descr[O]);

IF NOT .status THEN RETURN .status;

Open and connect file.

file_fab[fab$b_fns] = .file_descr[O];

status= $open(fab=file_fab);

IF NOT .status THEN RETURN .status;

status= $connect(rab = file_rab);

IF NOT .status THEN RETURN .status;

Length of spec.

Open file.

Connect file.

Get a record at a time until end of file. Surround record's contents
with a linefeed and a carriage return.

WHILE status
BEGIN
LOCAL

inp,
outp;

$get(rab=file_rab) DO

outp =output buffer[buf$1 startdata];
CH$WCHAR_A(%CHAR(%X'A'), outp);

inp = record_buffer;

Target for first character
Start with a line-feed

Load length of this output buffer in the buffer header. Then copy
the contents of the input buffer to the output buffer. Translate all
lower case alphabetics to upper case characters.

output_buffer[buf$w_charcount] = .file_rab[rab$w_rsz] + 2;

DECR i FROM .file rab[rab$w rsz]-1 TO 0 DO
BEGIN - -
LOCAL

char;

char= CH$RCHAR A(inp);
SELECTONE .char-OF

SET
[%C 'a ' TO %C' z '] :
TES;

CH$WCHAR_A(.char, outp)

char .char - %X'20';

C-7

Upcase

VAX-11 BLISS-32 PROGRAM EXAMPLE

END;

CH$WCHAR_A(%CHAR(%X'OD'), outp); I Put CR at end.

Send characters one at a time to the line printer. Before sending a
character, see if the line printer is still in ready state. If not,
set a timer to go off in one second, and go to sleep. When an AST
occurs -- either because of a line printer interrupt, or because
the timer runs out, the AST routine will wake the process up again.

If the line printer is still in ready state, just send the next
character.

outp =output buffer[buf$1 startdata];
csr = .io_page_limits + lp:csr_offset;

! Addr of output string
! Addr of LP's CSR

DECR i FROM .output buffer[buf$w charcount)-1 TO 0 DO

END;

WHILE 1 DO - -
BEGIN
BIND

devbits= csr[lp_csr]: VOLATILE SIGNED WORD;

CASE SIGN(.devbits) FROM -1 TO 1 OF
SET

[-1): RETURN ssS_devoffline; Paper problem, maybe

[l]: BEGIN
csr[lp dbr]
EXITLOOP
END;

CH$RCHAR_A(outp);
Output a character

Back for next char

[O]: !+

TES
END

Line printer is not ready. See whether it's in
trouble, or just busy. If it's in trouble, stop
program with error status. Otherwise, just wait
until it comes ready again.

!-
BEGIN
output buffer[bufSv int] =true;
csr[lp-csr] = .csr[Ip csr] OR %X'40';
status-= $setimr(-

daytim=onesecond delta,
astadr=lp_isr_ast);

IF NOT .status THEN RETURN .status;

Interrupt expected
Enable LP interrupts
Set a one second timer.

Shiber;
$cantim ()
END

Go to sleep.
Cancel timer request

End $GET loop

IF .status NEQ ss$_endoffile
THEN

RETURN .status;

C-8

APPENDIX D

REAL-TIME OPTIMIZATION CHECKLIST

This appendix lists suggestions that usually improve real-time program
performance. There is no guarantee, however, that any suggestion is
appropriate for all applications. You must consider the needs of each
application and the overall system activity when you evaluate any
suggestion.

1. Avoid costly operations in time-critical code.
operations include:

a. File opens or extensions

b. Mailbox creation

c. Common event flag cluster creation

d. Device allocation

e. Error reporting

2. Avoid window turns on critical files. Suggestions:

a. Use contiguous files

b. Specify a large window size

Costly

3. Inhibit system paging. Specify parameter values to the
SYSGEN utility to:

a. Disable system code paging (SYSPAGING = 0)

b. Disable paging of pageable dynamic pool (POOL_PAGING 0)

c. Specify a large system working set (SYSMWCNT)

However, before adjusting any of the parameter values, read
the explanation of the parameter and any cautions in the
VAX/VMS System Manag_~~--~ Q~<_!~.

4. Use the Queue I/O Request ($QIO) system service directly for
I/O.

a. Setting an event flag is the fastest means of signalling
I/O completion

b. Using an AST is more time-consuming

D-1

REAL-TIME OPTIMIZATION CHECKLIST

5. Global sections provide the
interprocess communication.

lowest-overhead means of

6. Waiting for an event flaq and usinq hibernate/wake provide
the fastest methods of interprocess signalling.

D-2

INDEX

A
Accessing device registers, 4-10
ACP (ancillary control process),

4-2
Adjust Working Set Limit

($ADJWSL) system service, 2-6
Airline reservation system

(example), 7-45 to 7-53
Allocation, device, 1-4
Ancillary control process (ACP),

4-2
Associate Common Event Flag Clus

ter ($ASCEFC) system service,
3-3

Asynchronous system trap (AST),
3-8

conditions preventing delivery,
3-9

effect of access mode on deli
very, 3-8, 3-9

service routine, 3-8, 3-9

B

Balance set, 2-5
lock working set in, 2-8

Base priority (process), 1-9, 1-11
BLISS-32 example, C-1 to C-8

c
Change-mode vector, 6-2, 6-3
Common event flags, 3-2 to 3-4

associating with a cluster, 3-3
creating a cluster, 3-3
mutex use, A-2 to A-4
shared memory, 5-5, 5-~

permanent clusters, 3-3
setting, 3-3, 3-4
temporary clusters, 3-2
waiting for, 3-4

Condition handling, 1-4
CONINTERR, 4-13, 4-14
Connect-to-interrupt capability,

AST service routine, 4-14 to
4-16

benefits, 4-6, 4-7
cancel I/O routine, 4-21, 4-22
conventions for user routines,

4-18 to 4-22
device initialization routine,

4-20
disconnecting, 4-15, 4-18, 4-21,

4-22
driver, 4-13, 4-14

Connect-to-interrupt
capability, (Cont.)

examples, 4-22 to 4-28, 7-6 to
7-44, C-1 to C-11

interrupt service routine,
4-14, 4-15, 4-16, 4-18,
4-19, 4-21

IPL, significance of, 4-11,
4-12

language constraints, 4-19
overview, 4-11
performing, 4-12, 4-13, 4-15

to 4-18
$QIO format, 4-15 to 4-18
start I/O routine, 4-20
timings, 4-11

Create Mailbox and Assign Channel
($CREMBX) system service,

3-5, 3-6
Create Process ($CREPRC) system

service, 2-3, 2-4

D

Data acquisition example,
explanation, 7-1 to 7-5
listings, 7-5 to 7-44

Deductible quotas, 1-7, 1-8
Detached process, 2-1 to 2-5

contrasted with subprocess,
2-2, 2-3

creating, 2-3 to 2-5
real-time programming uses, 2-3

Device allocation, 1-4
Device drivers, 4-2, 4-3

connect-to-interrupt, 4-13, 4-14
Device registers, 4-10
DMCll, 1-6
Drivers, 4-2, 4-3

connect-to-interrupt, 4-13,
4-14

E

Event flags, common (see "Common
event flags")

Examples,
accessing device register, 4-10
airline reservation system,

7-45 to 7-53
BLISS-32, C-1 to C-8
connect-to-interrupt, 4-22 to

4-28, 7-6 to 7-44, C-1 to
C-11

create process, 2-5, 3-7
event flaq, A-3

Index-1

INDEX

Examples, (Cont.)
hibernate/wake, 3-11, 3-12
LABIO system, 7-n to 7-44
lock (resource), A-3, A-5, A-7
mailbox, 3-7, 5-7
multiple features, 7-n to 7-44,

7-45 to 7-53
mutex, A-3, A-5, A-7
privileged shareable image,

6-5 to 6-24
queue (for mutex), A-5, A-7
RUN (process), 2-5
scheduled wakeups, 3-11, 3-12

G

Global sections, 3-12 to 3-15
advantages in using, 3-13, D-2
contrasted with VAX-11 RMS,

3-13
creating, 3-12, 3-14, 3-15
deleting, 3-15
mapping, 3-12, 3-14, 3-15
permanent, 3-13
shared memory, 5-7 to 5-10
temporary, 3-13
updating, 3-15

H

Hibernation, 3-9 to 3-12
contrasted with suspension, 3-10
examples, 3-10 to 3-12

I

I/O posting routine, 4-3
I/O space, 4-7, 4-8

accessing, 4-8 to 4-10
Interrupt priority level (IPL),

4-11, 4-12
Interrupt service routine (user

specified), 4-14, 4-15, 4-18,
4-21

L

LABIO system (example),
explanation, 7-1 to 7-5
listings, 7-5 to 7-44

Laboratory Peripheral Accelerator
(LPAll-K), 1-5, B-1 to B-3

Lock (resource), A-1 to A-7
shared memory considerations,

A-4, A-fi
using a queue, A-4 to A-7
using an event flag, A-2 to A-4

Lock Pages in Memory ($LCKPAG)
system service, 2-7, 2-8

Lock Pages in Working Set ($LKWSET)
system service, 2-6, 2-7

Logical name translation (shared
memory facilities), 5-3,

5-4
LPAll-K (Laboratory Peripheral

Accelerator), 1-5, B-1 to B-3

M

MA780 (See "Shared (multiport)
memory")

Mailboxes, 3-4 to 3-7
creating, 3-5
examples, 3-7, 5-7
permanent, 3-5
process termination, 3-5
shared memory, 5-6, 5-7
temporary, 3-5

Memory,
lock pages in, 2-7, 2-8
lock process working set in,

2-8
Memory management, 2-5 to 2-8

overview, 2-5
system services, 2~5 to 2-8

Multiport memory (see "Shared
(multiport) memory")

Mutex, A-1 to A-7
shared memory considerations,

A-4, A-n
using a queue, A-4 to A-7
using an event flag, A-2 to A-4

N

Name string format (shared memory
facilities), 5-3

Networks, 1-5
Nondeductible quotas, 1-7, 1-8

0
Optimization checklist, D-1, D-2

p

Page frame number (PFN) mapping,
4-8 to 4-10

Permanent event flag clusters, 3-3
Permanent global sections, 3-13
Permanent mailboxes, 3-5
PFN mapping, 4-8 to 4-10
Physical memory control, 2-5 to

2-8

Index-2

INDEX

Pooled quotas, 1-7, 1-8
Priority, 1-9 to 1-11

adjusting base priority, 1-11
base, 1-9, 1-11
privileges required to adjust,

1-11
significance, 1-10
timesharing vs. real-time, 1-9

Privileged shareable image,
change-mode vector, n-2, n-3
coding, 6-1 to 6-4
dispatcher, 6-3
example, 6-5 to 6-24
installing, 6-5
linking, 6-4, 6-5
purpose, n-1
using, 6-5

Privileges, 1-6, 1-7
masks, 1-7
partial listing, 1-6
setting, 6-3, 6-4

Process creation, 2~1 to 2-5
Process ID (programming sugges-

tion), 3-10
Process priority (See "Priority")
Process quotas (See "Quotas")
Process swap mode, 2-8
Program examples (see "Examples")
Programming suggestions, 3-10,

D-1 I D-2
Protection (privileged shareable

image), 6-4, 6-5

Q

Queue I/O Request ($QIO) system
service, 4-1, 4-5, 4-6

connect-to-interrupt format,
4-15 to 4-18

Quotas, 1-7 to 1-9
deductible, 1-7
nondeductible, 1-7
pooled, 1-7
resource wait mode, effect on,

1-9
s u mm a r y , 1 - 8

R

Real-time application needs, 1-1
to 1-4

responsiveness, 1-1, 1-2
throughput, 1-1, 1-2
VAX/VMS features, 1-2 to 1-4

REALTIME SPTS parameter, 4-12,
4-13-

Registers (device), 4-10
Reservation system (example) ,

7-45 to 7-53

Resource wait mode, 1-9
Response time (real-time need),

1-1, 1-2
RMS (see VAX-11 RMS)
RUN -(process) command, 2-4, 2-5

example, 2-5

s
Scheduled wakeups, 3-10 to 3-12
Sections, global (see "Global

sections")
Semaphore (mutex), A-1 to A-7

shared memory considerations,
A-4, A-6

using a queue, A-4 to A-7
using an event flag, A-2 to A-4

Set Priority ($SETPRI) system
service, 1-11

Set Privileges ($SETPRV) system
service, 6-3, 6-4

Set Process Swap Mode ($SETSWM)
system service, 2-8

Setting event flags, 3-3, 3-4
Shareable images, 3-15 to 3-17

privileged, 6-1 to 6-16
Shared (multiport) memory, 5-1

to 5-10
common event flag clusters,

5-5, 5-6
global sections, 5-5, 5-7 to

5-9
logical name translation, 5-3,

5-4
mailboxes, 5-5 to 5-7
mutex considerations, A-4, A-6
name, 5-2, 5-3
preparing for use, 5-1, 5-2
privileges required to use,

5-2
search for facilities in, 5-5

Subprocess, 2-1 to 2-5
contrasted with detached pro

cess, 2-2, 2-3
creating, 2-3 to 2-5
real-time programming uses,

2-3
Suspension, 3-9, 3-10

contrasted with hibernation,
3-10

Swap mode (process), 2-8
SYSGEN utility,

parameter selection, 1-5, D-1
REALTIME SPTS parameter, 4-12,

4-13-
System services (see individual

service names),
user-written (see "Privileged

shareable image")

Index-3

INDEX

T
Temporary event flag clusters,

3-2
Temporary global sections, 3-13
Temporary mailboxes, 3-5
Throughput, 1-1, 1-2

u
UNIBUS,

access errors, 4-9
power failure, 4-9

User Authorization File (UAF),
1-5

User privileges (See "Privileges")
User-written system services (see

"Privileged shareable image")

v
VAX-11 BLISS-32 example, C-1 to

C-8
VAX-11 RMS,

contrasted with global section
use, 3-13

features of real-time interest,
4-4, 4-5

opening section file, 5-7

w
Waiting for event flags, 3-4
Waking a process, 3-10 to 3-12
Working set, 2-5

adjusting the limit, 2-6
locking pages in, 2-6, 2-7

Index-4

,,

::>
)

l> ,,
)
l>

READER'S COMMENTS

VAX/VMS
Real-Time

User's Guide
AA-H784A-TE

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply .and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

·----··--·------------·

Did you find errors in this manual? If so, specify the error and the
page number.

·-----------· ----·-······ - .. ----··---

Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Other (please specify)

Name ___________________ ·-·--·-- Date ____ .

Organization _______ ~~· -------·---·-·-·-------

City ________________ State _______ . ___ Zip Code ______ _
or

Countrv

- - Do Not Tear - Fold Here and Tape - - - - - - - - - - - -

Do Not Tear - Fold Here

[uslNE-SS-REPLY~MA1L
ST CLASS PERMIT N0.33 MAYNARD MASS.
- ---- ~--~- -.~--- _. _,, __ ,,,, ~ - -- ~ ~ _________ ,,_ _ __ ,

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS TW/A 14

DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

No Postag1
Necessary

if Mai led in 1

United Stat1

