

March 1980

This document describes how the VAX/VMS System Dump Analyzer works and how to use it.

VAX/VMS System Dump Analyzer Reference Manual

Order No. AA-J526A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this release.

OPERATING SYSTEM AND VERSION: VAX/VMS V02

SOFTWARE VERSION:

VAX/VMS V02

To order additional copies of this document, contact the Software Distribution Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard, massachusetts

The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (C) 1980 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this document requests the user's critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL	DECsystem-10	MASSBUS
DEC	DECtape	OMNIBUS
PDP	DIBOL	OS/8
DECUS	EDUSYSTEM	PHA
UNIBUS	FLIP CHIP	RSTS
COMPUTER LABS	FOCAL	RSX
COMTEX	INDAC	TYPESET-8
DDT	LAB-8	TYPESET-11
DECCOMM	DECSYSTEM-20	TMS-11
ASSIST-11	RTS-8	ITPS-10
VAX	VMS	SBI
DECnet	IAS	PDT
DATATRIEVE	TRAX	

CONTENTS

. ÷.

Page

PREFACE			v
CHAPTER	1	INTRODUCTION TO SDA	1-1
CHAPTER	2	THE SYSTEM DUMP FILE	2-1
	2.1 2.2	SETTING THE SYSTEM DUMP FILE SIZE SAVING SYSTEM DUMP FILES	2-1 2-2
CHAPTER	3	RUNNING SDA	3-1
	3.1 3.2 3.3 3.4 3.5 3.6	INVOKING SDA WITH THE RUN COMMAND INVOKING SDA AS A FOREIGN COMMAND EXAMINING THE RUNNING SYSTEM READING THE SYSTEM DUMP FILE BUILDING THE SDA SYMBOL TABLE INVOKING SDA IN THE SITE-SPECIFIC START-UP PROCEDURE	3-1 3-2 3-2 3-2 3-3 3-3
CHAPTER	4	SDA COMMAND STRINGS	4-1
	4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5	Unary Operators	$\begin{array}{r} 4-1 \\ 4-2 \\ 4-2 \\ 4-2 \\ 4-3 \\ 4-3 \\ 4-3 \\ 4-3 \end{array}$
CHAPTER	5	SDA COMMANDS COPY DEFINE EVALUATE EXAMINE EXIT FORMAT HELP READ REPEAT SET OUTPUT SET PROCESS SHOW CRASH SHOW DEVICE SHOW PAGE TABLE SHOW PFN DATA SHOW POOL SHOW PROCESS SHOW STACK SHOW SYMBOL	5-1 5-2 5-3 5-5 5-6 5-10 5-11 5-14 5-15 5-17 5-18 5-19 5-21 5-24 5-29 5-33 5-36 5-39 5-46 5-49 5-51

CONTENTS

CHAPTER	6	ANALYZING SYSTEM FAILURES GUIDELINES AND EXAMPLES	6-1
	6.2.1 6.2.2 6.3 6.3.1 6.3.2 6.3.3 6.3.3.1 6.3.3.2 6.3.4 6.3.4.1	Illegal Page Faults DEBUGGING A SYSTEM FAILURE AN EXAMPLE Identifying the Bugcheck Identifying the Exception Locating the Source of the Exception Finding the Driver Using the DPT List Calculating the Offset into the Driver Finding the Problem within the Routine Stepping through the Routine Checking the Values of Key Variables	6-1 6-2 6-5 6-6 6-6 6-9 6-10 6-12 6-12 6-13 6-15
CHAPTER	7	SDA ERROR MESSAGES	7-1
	7.1 7.2	INITIALIZATION ERROR MESSAGES OPERATIONAL ERROR MESSAGES	7-1 7-1

INDEX

Index-1

Page

FIGURES

Figure	5-1	System Region Memory	5-9
	5-2	System Crash Information	5-23
	5-3	Device Data Block List for Dn Devices	5-27
	5-4	Controller Data Structures for DB Devices	5-27
	5-5	Device Unit Data Structures for Device DBA1	5-28
	5-6	System Page Table	5-32
	5-7	PFN Data Base	5-35
	5-8	Paged Dynamic Storage Pool	5-38
	5-9	Process Information	5-42
	5-10	Working Set List	5-43
	5-11	Process Section Table	5-44
	5-12	Program Region Memory	5-45
	5-13	Current Operating Stack (Kernel)	5-48
	5-14	Summary of Active Processes	5-50
	5-15	Global Symbols	5-52
	6-1	Interrupt Stack and Vectors	6-6
	6-2	Page Table Display Showing Invalid Location	
		80069E00	6-8
	6-3	Linked List of Driver Proloque Tables	6-9
	6-4	Location of Instruction in Driver Routine	6-11
	6-5	Location of Defective Code in Driver Routine	6-14

TABLES

Table	5-1	Summary of	SDA Commands	5-1
-------	-----	------------	--------------	-----

PREFACE

MANUAL OBJECTIVES

The VAX/VMS System Dump Analyzer Reference Manual contains information useful in determining the cause of a VAX/VMS operating system failure.

INTENDED AUDIENCE

This reference manual is intended for users who possess extensive knowledge of VAX/VMS data structures. It assumes that the audience for this manual includes VAX/VMS developers and DIGITAL Software Support Specialists, as well as DIGITAL customers familiar with VAX/VMS internal design.

In addition, system programmers who are writing device drivers may need to use SDA. The system manager should also become familiar with SDA, usually to produce SDA listings after each crash and, more importantly, to save the system dump file for later analysis.

STRUCTURE OF THIS DOCUMENT

This reference manual consists of seven chapters:

- Chapter 1 provides an introduction to SDA and summarizes SDA operations.
- Chapter 2 describes the system dump file that SDA analyzes.
- Chapter 3 explains how to run SDA to analyze a dump file or examine the running system.
- Chapter 4 details the SDA command format.
- Chapter 5 describes the SDA commands, in alphabetical order.
- Chapter 6 gives guidelines for analyzing system failures and steps through a sample system crash.
- Chapter 7 lists and explains the messages related to SDA operation.

ASSOCIATED DOCUMENTS

This document has the following prerequisites:

VAX-11/780 Hardware Handbook VAX/VMS Summary Description and Glossary

The following documents are associated with this manual:

VAX-11 Run-Time Library Reference Manual VAX/VMS Guide to Writing a Device Driver VAX/VMS System Manager's Guide VAX/VMS System Services Reference Manual

For a complete list of all VAX-11 documents, including brief descriptions of each, see the VAX-11 Information Directory and Index.

CONVENTIONS USED IN THIS DOCUMENT

The following conventions are used in this document.

Convention	Meaning
SHOW CRASH	Uppercase words and letters, used in examples, indicate that you should type the word or letter exactly as shown.
symbol-name	Lowercase words and letters, used in format examples, indicate that you are to substitute a word or value of your choice.
[]	Square brackets indicate that the enclosed argument is optional, except for brackets used in directory specifications.
SET PROCESS { /INDEX = nn /SYSTEM	Braces are used to enclose lists from which one element is to be chosen.
•	A vertical ellipsis indicates that not all of the statements in an example or figure are shown.
SHOW SYMBOL TEN TEN = 00000010	In examples of commands you enter and SDA responses, all output lines and prompting characters that SDA prints or displays are shown in black letters. All the lines you type are shown in red letters.
Æ	A symbol with a l- to 3-character abbreviation indicates that you press a key on the terminal.

CHAPTER 1

INTRODUCTION TO SDA

The System Dump Analyzer (SDA) is a VAX/VMS utility that aids in determining the cause of an operating system failure.

When an internal error occurs that interferes with normal operations, the operating system writes information concerning its status at the time of the system failure to a predefined system dump file. SDA examines and formats the contents of this file.

With the help of the SDA commands, you can display parts of the formatted system dump file on a video display terminal, or you can create hard copy listings.

SDA performs the following operations:

- Assigns a value to a symbol
- Examines memory of any process
- Formats block of data
- Displays device data structures
- Displays memory management structures
- Displays a summary of all processes on the system
- Displays the SDA symbol table
- Copies the system dump file
- Sends output to a file or device
- Reads symbols from any object module

In addition to analyzing the system dump file, SDA can perform the operations listed above on a running system without interrupting that system's operation.

While SDA provides a great deal of information, it does not analyze all the various control blocks and data contained in memory. Therefore, in the event of system failure, it is extremely important that customers send a copy of the system dump file to DIGITAL along with a Software Performance Report (SPR).

CHAPTER 2

THE SYSTEM DUMP FILE

Before the VAX/VMS operating system can write information to the system dump file, the system parameter DUMPBUG must be set. Normally, this parameter is enabled by default; to reset DUMPBUG, as well as other system parameters, consult the VAX/VMS System Manager's Guide.

If the DUMPBUG parameter is set and the operating system fails, the system writes the contents of the error log buffers, processor registers, and physical memory to the contiguous file SYSDUMP.DMP. SDA analyzes this file and produces formatted displays of its contents.

SYSDUMP.DMP is furnished as an empty file in the VAX/VMS software distribution kit. It is located in the system directory [SYSEXE] and its file size is initially small.

2.1 SETTING THE SYSTEM DUMP FILE SIZE

To preserve the continuity of the error log file and save all of physical memory, it is important to make sure that the dump file's size in blocks matches the individual system configuration.

To change the size of SYSDUMP.DMP, the system manager (or a user with similar privileges) runs a command procedure in the directory [SYSUPD] called SWAPFILES.COM. The command line is:

% @ESYSUPDISWAPFILES

The command procedure prompts you for paging, swapping, and dump file sizes. You can enter a new file size or simply press (ED). If you enter a new file size, the command procedure creates a new system dump file. This new file will not be used by the operating system until after a system reboot.

To calculate the correct dump file size for your configuration, use the formula:

blocks = physical-memory-size-in-pages + 4

The four additional blocks store hardware context and error log buffers. You can also use the table provided in the VAX/VMS System <u>Manager's Guide</u> to find the correct size. This table lists recommended sizes for the three files affected by the SWAPFILES command procedure. The system manager's guide also gives detailed information on SWAPFILES.COM and on changing dump file size.

2.2 SAVING SYSTEM DUMP FILES

Every time the operating system writes information to SYSDUMP.DMP, it writes over whatever was previously stored in the file. For this reason, the system manager should save the contents of SYSDUMP.DMP after a system failure has occurred. One way to accomplish this is to copy the file to another directory. Use the DIGITAL Command Language (DCL) command COPY, as shown in the following example:

\$ COPY SYS\$SYSTEM:SYSDUMP.DMP;1 ESYSERRISAVEDUMP.DMP

SDA also provides a COPY command. This command can be included in the series of SDA commands in the site-specific start-up procedure. Section 3.6 discusses the start-up procedure in more detail. The COPY command is explained in Chapter 5.

CHAPTER 3

RUNNING SDA

SDA can analyze a dump file or examine the running system. To make it possible for SDA to read the dump file, you need:

- Read access to SYSDUMP.DMP
- Read access to a copy of the system symbol table
- Enough virtual space for SDA to map the entire system dump file

To ensure that SDA has the correct amount of virtual address space, the running system must have the system parameter VIRTUALPGCNT equal to the size of the dump file plus 1000 pages. In addition, your page file quota (PGFLQUOTA in the user's authorization record created by running the User Authorization Program) must be at least the size of the dump file plus 1000 pages. See the VAX/VMS System Manager's Guide for information on system parameters and the User Authorization Program (AUTHORIZE).

3.1 INVOKING SDA WITH THE RUN COMMAND

If the above conditions are satisfied, you can invoke SDA by typing the following DCL command:

\$ RUN SYS\$SYSTEM:SDA

When you issue this command, SDA will prompt for the name of the system dump file you want to examine:

Enter name of dump file >

To examine the most recent system dump (SYS\$SYSTEM:SYSDUMP.DMP), press MED in response to the prompt. SDA will search the system directory (logical name SYS\$SYSTEM) for SYSDUMP.DMP. To examine an older dump file, enter its file specification:

Enter name of dump file > CWIZARDIACPCRASH.DMP

The default file specification for the system dump file is SYS\$DISK:[default-dir]SYSDUMP.DMP where SYS\$DISK and [default-dir] represent, respectively, the device and directory specified by the last SET DEFAULT command. (See the <u>VAX/VMS Command Language User's</u> Guide for a description of the SET DEFAULT command.)

If you want to examine the running system, type an asterisk (*) in response to the dump file prompt. See Section 3.3 for further details.

3.2 INVOKING SDA AS A FOREIGN COMMAND

You can also invoke SDA as a foreign command by using the DCL assignment statement:

\$ SDA := \$SDA

A foreign command is a command not known to the command interpreter that can be executed by entering a command string.

The dollar sign (\$) indicates to DCL that the expression is a foreign command. Now you can specify a file or the asterisk as a parameter to the SDA command:

\$ SDA EDUMPSIBADUCB

Defining SDA as a foreign command abbreviates SDA initialization because it eliminates the need to respond to the dump file prompt. For further information on the foreign command feature of DCL, see Appendix A of the VAX/VMS Command Language User's Guide.

You can also invoke SDA from the site-specific start-up procedure; Section 3.6 describes this method of calling SDA.

3.3 EXAMINING THE RUNNING SYSTEM

Occasionally, VAX/VMS encounters an internal problem that hinders system performance without generating a system failure. By allowing you to examine the running system, SDA provides the means to search memory for the solution to the problem without disturbing the operating system.

To examine the running system, invoke SDA as described in Section 3.1. SDA automatically sets the process context to your process. (See the description of the SET PROCESS command in Chapter 5 for a discussion of process context.)

To analyze the system dump file, SDA maps the entire file. By contrast, when SDA examines a running system, it retrieves only the information necessary to process a given command.

Because of the system's dynamic nature, use extreme caution when examining the running system. Although you can safely reference most locations, accessing certain portions of memory, such as I/O address space or nonresident process header pages that the current process does not own, causes the system to fail.

3.4 READING THE SYSTEM DUMP FILE

When you invoke SDA and specify the name of a dump file (or press (MET)) SDA gathers the data needed to create the displays from that dump file. Under certain conditions, the contents of general purpose or processor registers may not be saved in SYSDUMP.DMP. For example, during console restart bugchecks, such as HALT, the VAX-11 LSI-11 console program destroys the contents of all the general purpose registers except the program counter and the processor status longword. SDA indicates in the SHOW CRASH display that the registers were wiped out by the console.

Processor registers may also be lost if the error log buffers in memory are full. When the operating system writes data to SYSDUMP.DMP, it creates an error log entry in the error log buffer that stores the contents of the processor registers. If the buffers are full, the contents of the registers are lost because the operating system cannot create an error log entry for them. Again, SDA prints a message in the SHOW CRASH display indicating that an error log entry for the registers does not exist.

Although the system dump file must be contiguous for the operating system to write information to it successfully, the file need not be contiguous for SDA to read it. Thus, if your copy of the system dump file is not contiguous, you will still be able to run SDA.

3.5 BUILDING THE SDA SYMBOL TABLE

After locating and reading the system dump file, SDA next attempts to read the system symbol table file. This file, named SYS.STB, contains all the global symbols used by the operating system. SDA's ability to read global symbols makes it easier to analyze a dump because you can examine locations by symbol rather than by virtual address.

SDA first looks for SYS.STB in the directory and device containing the system dump. If the file is not there, SDA looks for it in the system directory SYS\$SYSTEM. Once SDA finds SYS.STB, it copies the file's contents to the SDA symbol table. If SDA cannot find the system symbol table file, it will not run.

When SDA finishes building its symbol table, it prints out a message identifying itself and the immediate cause of the crash:

VAX/VMS System dump analyzer

Dump taken on 28-Feb-1979 01:22:58.43 MTXCNTNONZ, Mutex count nonzero at system service exit

SDA>

The SDA> prompt indicates that the utility is ready to accept SDA commands. You can now use SDA interactively, send selected information to a file, or print selected information on a line printer. Refer to the description of the SET OUTPUT command in Chapter 5 for directions on setting up output files.

3.6 INVOKING SDA IN THE SITE-SPECIFIC START-UP PROCEDURE

Because an SDA listing is an important tool in determining the general nature of a system failure, it is a good idea to make sure that one is produced after every crash. The system manager can ensure the creation of an SDA listing by modifying the SYSTARTUP.COM file in [SYSMGR] to invoke SDA when the system is booted.

RUNNING SDA

When called by the start-up procedure, SDA scans the system dump file for a flag that indicates whether SDA has processed the file. This flag is cleared each time the operating system writes to SYSDUMP.DMP, except in the case of an emergency shutdown (OPCCRASH.EXE). If the flag is clear, SDA executes the commands designated in the command procedure and sets the flag. If, however, SDA finds that the dump file flag is set, it exits without performing any of the specified commands. Thus, SDA will execute only if the system just failed.

To allow you to run SDA from the site-specific start-up procedure, the system parameter PQL DPGFLQUOTA must equal the size of the system dump file plus 1000 pages. See the VAX/VMS System Manager's Guide for more information on system parameters.

The example below shows commands that might be added to the site-specific start-up procedure to produce an SDA listing after each crash.

\$! \$! Print dump listing if system just failed \$! \$ RUN SYS\$SYSTEM:SDA SYS\$SYSTEM: SYSDUMP.DMP COPY SYS\$SYSTEM: SAVEDUMP.DMP ! Save dump file SET OUTPUT LPA0:SYSDUMP.LIS ! Create listing file SHOW CRASH ! Display crash ! information SHOW STACK ! Show current stack ! List all active SHOW SUMMARY ! processes ! Display current process SHOW PROCESS/PCB/PHD/REG SHOW SYMBOL/ALL ! Print system symbol ! table

EXIT

CHAPTER 4

SDA COMMAND STRINGS

The following sections describe the SDA command format and the types of expressions SDA uses within commands.

4.1 GENERAL FORMAT

SDA uses a command string format similar to that of the DIGITAL Command Language (DCL) interpreter. You issue commands in the general format:

command [parameter] [/qualifier] [!comment]

command

The name of an SDA command that tells the utility to perform a certain function. Commands can consist of one or more words, and can be abbreviated to the number of characters that make the command unique. For example, SH stands for SHOW and SE stands for SET.

parameter

Default

The target of the command. For example, SHOW PROCESS GORK tells SDA to display the process GORK.

When a parameter is a file specification, the current default device and directory are represented as listed below.

Meaning

SYS\$DISK	Device specified in the SET DEFAULT command	most recent
	SHI BHROHI COmmand	

[default-dir] Directory specified in the most recent SET DEFAULT command

See the VAX/VMS Command Language User's Guide for a description of the DCL command SET DEFAULT.

/qualifier

The name of a command qualifier that modifies the action of an SDA command. A qualifier is always preceded by a slash (/). Multiple qualifiers can follow a single parameter but must be delimited by slashes. Qualifiers can be abbreviated as long as they remain unique.

!comment

A comment. SDA ignores the exclamation point and all characters appearing after it on the same line.

4.2 EXPRESSIONS

Certain SDA commands allow expressions as command parameters. To create expressions, you can use:

- Radix operators
- Unary operators
- Binary operators
- Special operators
- Symbols

4.2.1 Radix Operators

Radix operators determine which base SDA uses to evaluate expressions. You can use one of three radix operators to specify the radix for a numeric value.

Operator	Radix	Example
^x	Hexadecimal	^X10
^ 0	Octal	^ 030
^D	Decimal	^D16

The default radix is hexadecimal. SDA displays hexadecimal values with leading zeros and decimal values with leading spaces.

4.2.2 Unary Operators

SDA recognizes the following unary operators:

Operator	Function
+ - @ G H	Assigns positive value Assigns negative value Uses contents of location Adds 80000000 to value Adds 7FFE0000 to value

The unary operator G corresponds the first virtual address in system space, while the unary operator H corresponds to a convenient base address in a process's control region.

4.2.3 Binary Operators

SDA performs integer arithmetic on 32-bit operands. The characters indicating arithmetic operations are:

Operator	Function
+	Addition
-	Subtraction
*	Multiplication
/	Division
0	Arithmetic shift

SDA carries out multiplication, division, and arithmetic shift before addition and subtraction. In division, SDA does not round integers, nor does it retain a remainder.

4.2.4 Special Operators

SDA uses parentheses as special operators. Expressions enclosed in parentheses are evaluated first. In the case of nested parenthetical expressions, SDA evaluates from innermost to outermost.

4.2.5 Symbols

Symbols are composed of 1 to 31 alphanumeric characters that can include the special characters dollar sign (\$) and underline(_).

SDA copies symbols into its symbol table from the SYS.STB file. They can also be created by the DEFINE and READ commands.

In addition, SDA provides the following special symbols:

Symbol

Meaning

•	Current location
G	8000000
н	7FFE0000
R0-R11	General purpose registers
AP	Argument Pointer
FP	Frame Pointer
KSP	Kernel Mode Stack Pointer
ESP	Executive Mode Stack Pointer
SSP	Supervisor Mode Stack Pointer
USP	User Mode Stack Pointer
POBR	Program Region Base Register
POLR	Program Region Length Register
PlBR	Control Region Base Register
PllR	Control Region Length Register
PC	Program Counter
PSL	Processor status longword

The register symbols correspond to the registers saved in the hardware context of the current process (see the description of the SET PROCESS command in Chapter 5). For example,

SDA> EXAMINE @USP

This command displays the first longword on the user mode stack.

CHAPTER 5

SDA COMMANDS

Table 5-1 lists the SDA commands and gives a brief explanation of their functions. The underlined characters represent command abbreviations.

Command	Function	
COPY	Copies the dump file	
DEFINE	Defines symbols and their values	
EVALUATE	Performs computations	
EXAMINE —	Examines memory locations	
EXIT	Exits from the display or from SDA	
FORMAT	Formats data blocks	
HELP	Prints help files	
READ	Copies object module symbols	
REPEAT	Repeats the last command	
SET OUTPUT	Sets output to the device or file specification	
SET PROCESS	Sets the process context to a specific process	
SHOW CRASH	Displays crash information	
SHOW DEVICE	Displays I/O data structures	
SHOW PAGE_TABLE	Displays the system page table	
SHOW PFN_DATA	Displays the PFN data base	
SHOW POOL	Displays dynamic memory	
SHOW PROCESS	Displays specific process information	
SHOW STACK	Displays process/interrupt stacks	
SHOW SUMMARY	Displays a summary of all processes	
SHOW SYMBOL	Displays the symbol table	

Table 5-1 Summary of SDA Commands

COPY

Each time the system fails, new information is written over the contents of SYSDUMP.DMP. The COPY command allows you to preserve the contents of SYSDUMP.DMP by copying it to another file. (The resulting copy does not have to be a contiguous file; see Section 3.4.)

In most cases, the system manager will include the COPY command in the SYSTARTUP.COM command procedure so that each time the system fails, SDA will copy the system dump file to another file.

Format

COPY output-file-spec

Qualifiers Defaults None None

Parameters

output-file-spec

The device, directory, and file name to which SDA copies the system dump file. The default file specification is SYS\$DISK:[default-dir]SYSDUMP.DMP. See the <u>VAX/VMS Command</u> Language User's Guide for more information about file specifications.

Examples

1. SDA> COPY SYS\$SYSTEM: SAVEDUMP

The COPY command takes the SYSDUMP.DMP file and copies it to the system device and directory SYS\$SYSTEM under the file name SAVEDUMP.DMP.

DEFINE

The DEFINE command assigns a value to a symbol. SDA evaluates the expression before assigning it to the symbol. If the symbol is already defined, the new value simply replaces the old one.

Although both DEFINE and EVALUATE perform computations, DEFINE adds symbols used for temporary computations to the SDA symbol table, while EVALUATE simply performs the computation.

Format

DEFINE symbol $\begin{cases} = \\ \$ \end{bmatrix}$ expression

Qualifiers Defaults

None None

Parameters

symbol

A 1- to 31-alphanumeric character symbol you designate to represent a value. See Section 4.2.5 for a discussion of valid SDA symbols.

expression

An expression to be defined by the symbol. You can separate the expression from the symbol by a space or by an equal sign. See Section 4.2 for a discussion of SDA expressions.

Examples

1. SDA> DEFINE BEGIN = 80058E00 SDA> DEFINE END = 80058E60 SDA> EXAMINE BEGIN:END

In this example, DEFINE delimits a range of address space. A subsequent EXAMINE command can then easily examine that section of memory locations. The symbols serve as reference points in memory.

2. SDA> DEFINE NEXT = @PC
SDA> EXAMINE NEXT
00000454 : 1FDAF812 *....*

The temporary symbol NEXT defines the address contained in the program counter. SDA represents nonprinting characters by a period (.) and puts quotation marks around ASCII text. Refer to Section 4.2.5 for a discussion of SDA symbols.

3. SDA> DEFINE VEC SCH\$GL_PCBVEC

A symbol VEC has been assigned to a global symbol. Now you can access the memory location or value represented by the global symbol by specifying the symbol VEC. 4. SDA> DEFINE COUNT = 4
SDA> DEFINE RESULT = COUNT*COUNT
SDA> EVALUATE RESULT
Hex = 00000010 Decimal = 16

The value 4 is symbolically defined and then used in an arithmetic expression.

EVALUATE

The EVALUATE command computes the value of any SDA expression and displays the results in hexadecimal and decimal format.

Format

EVALUATE expression

Qualifiers Defaults

None None

Parameters

expression

The expression to be evaluated. See Section 4.2 for a description of valid SDA expressions.

Examples

1. SDA> EVALUATE -1 Hex = FFFFFFFF Decimal = -1

EVALUATE prints the values of negative 1 in hexadecimal and decimal.

2. SDA> DEFINE TEN = A SDA> EVALUATE TEN Hex = 0000000A Decimal = 10

> EVALUATE computes and displays the value of the symbol TEN. In this example, the character "A" could also be a symbol. When SDA encounters a quantity that can either be a symbol or a hexadecimal expression, SDA first treats the quantity as a symbol and looks for it in the symbol table. If SDA cannot locate the quantity in the symbol table, it evaluates the quantity as a hexadecimal expression.

3. SDA> EVALUATE ((TEN*6)+(-1/4))+(2+4) Hex = 00000042 Decimal = 66

> The EVALUATE command evaluates a complex expression and prints the result as hexadecimal and decimal values. See Sections 4.2.2 through 4.2.5 for a discussion of the expressions used in this example.

EXAMINE

The EXAMINE command displays the contents of a location or range of locations in physical memory.

You can use location parameters to examine specific locations or you can use qualifiers to display entire process and system regions. There are two ways to examine a range of locations: 1) designate starting and ending locations separated by a colon, for example, 80000040:80000200; or 2) specify a location and a byte length, separated by a semicolon, for example, 80000400;16.

If at any time you omit the location parameter from the EXAMINE command, SDA takes the location you last examined, increases it by 4 (one longword) and examines the resulting location.

Examining Specific Locations

A location can be represented by any valid SDA expression. When you use the EXAMINE command to look at a location, SDA displays the location, its symbolic representation (if possible), and its contents, in hexadecimal and ASCII formats.

SDA initially sets the current location to -4 (decimal) in the program region (P0) of the process. To examine memory locations in other processes, you must use the SET PROCESS command.

Examining Memory Regions

You can dump an entire region of virtual memory by adding one or more qualifiers to the EXAMINE command.

SDA formats the dump into columns of longwords, 4 for an 80-column device and 8 for a 132-column device, and prints the ASCII value of the longwords on the right side of the display. The final column contains the address of the first longword in each line. You read the dump display from right to left.

If a series of virtual addresses does not exist in physical memory, SDA prints a message specifying the range of addresses that were not translated:

Virtual locations locl : loc2 are not in physical memory

In this message, loc1 and loc2 represent the starting and ending addresses of the range. This message also appears if you try to examine a single location that has not been mapped into physical memory.

If a range of virtual locations contains only zeros, SDA prints the message:

Zeros suppressed from loc1 to loc2

Format

EXAMINE	{[location]	[:location] [;length]	
Qualifiers		Defaults	
/P0 /P1 /SYSTEM /ALL		None	

Parameters

location

Expression that specifies the address in virtual memory at which data is stored.

length

Expression that specifies the number of bytes you want to display.

Qualifiers

/P0

Prints the entire program region for a given process. The default for this qualifier is the P0 region of the current process; you must use the SET PROCESS command to examine other processes' P0 regions.

/P1

Prints the entire control region for a given process. The default for this qualifier is the Pl region of the current process; use the SET PROCESS command to examine different Pl regions.

/SYSTEM

Prints portions of the writeable system region.

/ALL

Prints both the entire program and control regions for a given process, and portions of the writeable system region.

Examples

1. SDA> EXAMINE 80000200 SYS\$SETEF : 8FBC003C *<...*

The system virtual address is defined by a global symbol. The information stored at this address is given in hexadecimal and in ASCII formats. SDA represents nonprinting characters by a period (.) and puts quotation marks (" ") around ASCII text.

SDA examines the program counter and the address contained in the program counter.

3. SDA> EXAMINE 80000008;11

SDA displays a range of bytes starting at address 80000008 and ending at 80000027. SDA displays byte ranges in units of 16 (decimal) bytes. In this case, SDA displays two lines of 16 bytes even though a value of 17 (11 hexadecimal) was given.

4. SDA> EXAMINE/SYSTEM

Figure 5-1 shows a portion of the display produced by this command.

21-MAY-1979 14:37:16.88

VAX/VMS 2.0 -= System Dump Analysis System region memory

000000000	20000003	00000009	00000003	00000010	0000000A	00004328	00027393	. . + C	80960809
80056800	80000848	равиараз	7FFEEAF4	00000008	00000011	000000002	abea001A	H	8000820
41424403	02313146	80060408	20262034	80000870	80000948	80001046	80069090	FH;4F11DBA	80000840
80003948	PARABARA	00000052	45564952	44424408	0000000	00000000	00000000		80000860
80056820	00010001	00000000	80017800	80017000	80060868	081000CC	80003948	.9	80000880
800708EC	@32F1316	02000501	10404008	80062942	80068EB0	00000000	80000848	H/	80000840
				03150024				Ø	80000800
80000563	NAGCABAA	80003880	PCPCPPPP	00350808	06000000	80114020	NUPPEPCD		800008E0
88846666	299999999	00002000	00200100	анаадааа	ØØFFOFOA	10000000	2005328F	.2	80000900
				00000000					80000920
				80000970					80000940
				45504F08				OPERATOR	80000960
				MAGSARAD				.9	80000980
				000000000				нв	800009A0
				00140000				Ø	80000900
				RANADARP				······	800009E0
				APOPFFFF				`g.,.{	80000A00
				000000000					80000A20
				200000000					80000A40
									80000A60
				00000000				.?	
				BUDUAABC					80000480
				44584428				DXDRIVER	80000440
				ипоренар				.9(*m/	80000AC0
				863955043				· · · · · · · · · · · · · · · · · · ·	80000AE0
				a31400a0				····* • • • • • • • • • • • • • • • • •	80000B00
				66666888					80000820
				pagagaga				d	80000840
				ESESESES					80000B60
				ESESESES					80000880
ESESESES	ESESESES	ESESESES	F5E5E5E5	ESESESES	ESESESES	ESESESES	ESESESES		80000BA0
ESESESES	ESESESES	ESESESES	ESESESES	ESESESES	ESESESES	ESESESES	ESESESES		80000800
000 000000	41424023	AGANANAA	80201270	00069034	80000090	80000078	ESESESES	×	80000BE0
80000010	03000136	NOOHOOON	AUNU4052	45564952	44424008	00000000	30000000		80000000
80000EFC	00010001	RARAFFFF	00000014	00020000	00000000	08100074	80000C1C	t	80000C20
800V0C5C	NONAPAGA	01000040	08150091	NUNANANA	80000090	99000000	AQUOOBE4		80000C40
300000000	44000000	00010010	000000000	COOBBOOC1	100033000	0000000	80000050	····	80000060
800224000	0B10.3074	8,0000090	80003690	оналевае	00000000	00030000	20002000		80000080
				00010004				*******	80000CA0
				anagagag					80000CC0
				00000000					80000CE0
				08100074				· · · · · · · · · · · · · · · · · · ·	80000D00
				00000000				· · · · · · · · · · · · · · · · · · ·	80000D20
				00000002				DD t	80000D40
				00000000				4	80000D60
				414C4E03				4NLANLD	80000080
				20020300				RIVER	80000DA0
				BOOODEFC				·····	80000DC0
				80000EFC					80000DE0
				000000000				•••••••	80000E00
				80001648				*2X	80000E20
				00001640				NETDRIVER	80000E40
				00000245					80000E60
								· · · · · · · · · · · · · · · · · · ·	80000E80
				00102000					80000EA0
				00000000				* * * * * * * * * * * * * * * * * * * *	80000EC0
RARLANAG	мараниса	NNKUKNNN	NNNNNKNN	00000000	N0N0N000	*******	NGNNNNNN	*****************************	SNORAELS

Figure 5-1 System Region Memory

.

EXIT

The EXIT command performs two functions: it discontinues SDA displays and exits from the utility. During interactive sessions, if a display has more than one page and is being shown on a video display terminal such as a VT100, SDA will issue the following message each time it reaches the bottom of a page:

Press RETURN for more. SDA>

If you want to discontinue the current display, type EXIT at the prompt. (On hard copy terminals, SDA does not prompt at the bottom of each page.) If you do not type EXIT at the screen overflow prompt and simply execute another command, SDA will accept the command as if you had exited from the display.

To stop SDA, type EXIT in response to the SDA prompt.

Format

.

EXIT	
------	--

Qualifiers Defaults

None None

Parameters

None

FORMAT

The FORMAT command displays a formatted list of the contents of a specific block. It attempts to:

- Characterize a range of locations as a block
- Assign a symbol to each item of data within the block

Most VAX/VMS blocks contain a byte that indicates the block type. This byte is stored at offset 10 (decimal) from the first address of the block. The FORMAT command examines the byte stored at this offset as a block type. If the byte represents a valid block type, SDA tries to find its corresponding symbols. If the byte does not represent a valid block type, SDA issues the message:

invalid block type in specified block

Not every block contains a block type byte at offset 10. If this byte is absent, you must designate a block type at command level by using the qualifier /TYPE in order to format the block.

The display produced by FORMAT shows, from left to right, the virtual address of each item within the block, its symbolic name, and its hexadecimal representation.

Format

FORMAT location

Qualifiers Defaults

/TYPE= None

Parameters

location

The starting location of the block you want to format. The location can be any valid SDA expression.

Qualifiers

/TYPE=block-type

The symbolic prefix that corresponds to the type of block structure you want to format. SDA finds all symbols containing the specified prefix in the form:

block-type\$field-type field-name

The field types accepted by SDA are:

- L longword
- W word
- B byte
- Q quadword
- T counted ASCII string (0 through 31 characters)
- C constant

You can define your own block types and use the READ command to include them in the SDA symbol table. Thus, a valid block type is one that SDA can find in the symbol table. If SDA cannot find the symbols associated with the block type you have indicated, it will issue the message:

No "block-type" symbols found to format this block

Examples

1. SDA> FORMAT @SCH\$GL_CURPCB

80069550	PCB\$L_SQFL	80002F48
800.69554	PCB\$L_SQBL	80002F48
80069558	PCB\$W_SIZE	007C
8006955A	PCB\$B_TYPE	OC .
	•	
	٠	

SDA takes the address pointed to by the global symbol, obtains the block type, and formats the block.

2. \$ RUN SYS\$SYSTEM:SDA

SDA> READ GLOBALS.STB

SDA> FORMAT @IOC\$GL_DEVLIST

80000848	DDB\$LLINK	80000948
8000084C	DDB\$LUCB	8000087C
80000850	DDB\$W_SIZE	0034
80000852	DDB\$B_TYPE	06
80000853		00
80000854	DDB\$L_DDT	80060408
80000858	DDB\$L_ACPD	02313146
8000085C	DDB\$TNAME	" DBA "
80000860		00000000
80000864		00000000
80000868		00000000
8000084C	DDB\$T_DRVNAME	"DBDRIVER"
SDA> FORMAT	. 6.	
•		

SDA> REPEAT

This example illustrates the use of SDA commands to format a list of blocks. The steps followed in the example are listed below:

- Invoke SDA.
- Use the READ command to read the DDB symbol definitions from GLOBALS.STB into the SDA symbol table. For a further discussion of object module files, see the description of the READ command.
- Use the FORMAT command to format the location pointed to by the global symbol IOC\$GL_DEVLIST. When SDA finishes formatting this block, it sets the current location to the first byte of the block.

- Use the FORMAT command again to format the next block in the device list. Most blocks contain a pointer to the next block in a linked list. This pointer is usually the first longword in the block. In this step, the FORMAT command causes SDA to format the contents of the current location (the first longword of the block).
- Repeat the FORMAT command to format the next entry in the list. In this way, you can step through the entire device list, formatting each block.
- 3. SDA> READ SYMDEF

SDA> FORM	1AT G1	.0AC00/	ТҮРЕ≔РНО
-----------	--------	---------	----------

8010AC00 PHD\$Q_PRIVMSK 00308D08 8010AC04 0000000 8010AC08 PHD\$W_WSLIST 0046 8010AC0A PHD\$W_WSUTH 042D 8010AC0A PHD\$W_WSUTH 042D 8010AC0C PHD\$W_WSUCK 0051 8010AC0E PHD\$W_WSNEXT 0051 8010AC12 PHD\$W_WSLAST 0000000 8010AC14 PHD\$W_WSQUOTA 042D 8010AC14 PHD\$W_WSQUOTA 042D 8010AC16 PHD\$W_WSQUOTA 042D 8010AC12 PHD\$W_PSTENSENT 00B 8010AC12 PHD\$W_PSTENSENT 00B 8010AC20 PHD\$W_PSTENSENT 0000 8010AC22 0000 0000 8010AC24 PHD\$W_PSTEREE 0000 8010AC25 PHD\$W_PSTEREE 0000 8010AC26 PHD\$W_FSTEREE 0000 8010AC27 PHD\$L_FREPTECNT 0027082D 8010AC38 PHD\$L_FREPTENT 0027082D 8010AC34 PHD\$W_BCBTFE 02			
8010AC08 PHD\$W_WSLIST 0046 8010AC0A PHD\$W_WSAUTH 042D 8010AC0C PHD\$W_WSDYN 0051 8010AC0E PHD\$W_WSDYN 0051 8010AC10 PHD\$W_WSDYN 0051 8010AC12 PHD\$W_WSNEXT 00008 8010AC14 PHD\$W_WSNEXT 0000000 8010AC13 PHD\$W_WSQUTA 042D 8010AC14 PHD\$W_SCNT 00DB 8010AC12 PHD\$W_WSQUTA 042D 8010AC13 PHD\$W_PSTCNT 00DB 8010AC20 PHD\$W_PST 00000 PHD\$L_PAGFIL 03000000 PHD\$L_PSTBASOFF 0000 8010AC22 0000 8010AC24 PHD\$W_PSTLAST FFD8 8010AC25 PHD\$L_FREPTCNT 00001978 8010AC30 PHD\$L_FREPTCNT 00001978 8010AC34 PHD\$L_FREPTCNT 0022082D 8010AC35 PHD\$B_DFFC 02 8010AC36 PHD\$W_WANT FFF7 8010AC37 PHD\$W_MAL_FLAGS	8010AC00	PHD\$QPRIVMSK	00308008
8010AC0A PHD\$W_WSAUTH 042D 8010AC0C PHD\$W_WSLOCK 0051 8010AC0E PHD\$W_WSDYN 0051 8010AC10 PHD\$W_WSNEXT 0000 8010AC12 PHD\$W_WSLAST 000B 8010AC13 PHD\$W_WSLAST 0000000 8010AC14 PHD\$W_WSQUOTA 042D 8010AC15 PHD\$W_DFWSCNT 00DB 8010AC16 PHD\$W_DFWSCNT 00DB 8010AC17 PHD\$W_PAGFIL 03000000 8010AC12 PHD\$W_PST 0600 8010AC20 PHD\$W_PST 0600 8010AC22 0000 0000 8010AC24 PHD\$W_PSTFREE 0000 8010AC25 PHD\$L_FREPTECNT 00001978 8010AC26 PHD\$L_FREPTECNT 00001978 8010AC30 PHD\$L_FREPTECNT 00001978 8010AC34 PHD\$L_FGFLCNT 0022082D 8010AC35 PHD\$L_FGFLCNT 0022082D 8010AC36 PHD\$W_WART FFF7 8010AC37 PHD\$W_MASTLM 00	8010AC04		00000000
8010AC0C FHD\$W_WSLOCK 0051 8010AC0E FHD\$W_WSDYN 0051 8010AC10 FHD\$W_WSNEXT 00C9 8010AC12 FHD\$W_WSLAST 00DB 8010AC14 FHD\$W_WSLAST 00DB 8010AC18 FHD\$W_WSQUDTA 042D 8010AC1A FHD\$W_FWSCNT 00DB 8010AC1C FHD\$W_FWSCNT 00DB 8010AC20 FHD\$W_FST 0600 FHD\$W_FST 0600 0000 8010AC22 0000 0000 8010AC22 0000 8010AC24 FHD\$W_FSTFREE 0000 8010AC24 FHD\$W_FSTFREE 0000 8010AC26 FHD\$W_FSTFREE 00001978 8010AC25 FHD\$L_FREPTECNT 00001978 8010AC30 FHD\$L_FREPTECNT 00270B2D 8010AC30 FHD\$L_FREPTECNT 00270B2D 8010AC34 FHD\$L_FGTBFFC 02 8010AC34 FHD\$L_FGTBFFC 02 0006 8010AC32 FHD\$L_FTM 00022471 8010AC35 FHD\$L_CPUTIM 00022471 8010AC44 FHD\$W_WANT FFF7 8010AC44 FHD\$W_AST	8010AC08	PHD\$W_WSLIST	0046
8010AC0E PHD\$W_WSDYN 0051 8010AC10 PHD\$W_WSNEXT 00C9 8010AC12 PHD\$W_WSLAST 00DB 8010AC14 PHD\$W_WSQUOTA 042D 8010AC15 PHD\$W_WSQUOTA 042D 8010AC16 PHD\$W_WSQUOTA 042D 8010AC17 PHD\$W_PAGFIL 03000000 8010AC10 PHD\$W_PAGFIL 03000000 8010AC20 PHD\$W_PST 0600 8010AC22 0000 8010AC24 8010AC24 PHD\$W_PSTFREE 0000 8010AC25 PHD\$L_FREPTECNT 00001978 8010AC26 PHD\$L_FREPTECNT 00001978 8010AC30 PHD\$L_FREPTECNT 00270B2D 8010AC34 PHD\$L_PGFLCNT 00270B2D 8010AC35 PHD\$L_PGFLCNT 00220471 8010AC36 PHD\$W_WANT FFF7 8010AC37 PHD\$W_WANT FFF7 8010AC40 PHD\$W_WANT FFF7 8010AC42 PHD\$W_WANT FFF7 8010AC44 PHD\$W_WANT FFF7 8010AC44 PHD\$W_BAK 0526	8010AC0A	PHD\$WWSAUTH	0420
8010AC10 PHD\$W_WSNEXT 00C9 8010AC12 PHD\$W_WSLAST 00DB 8010AC12 PHD\$W_WSQUOTA 042D 8010AC13 PHD\$W_WSQUOTA 042D 8010AC14 PHD\$W_DFWSCNT 00DB 8010AC12 PHD\$W_DFWSCNT 00DB 8010AC12 PHD\$W_PAGFIL 03000000 PHD\$L_PAGFIL 03000000 PHD\$L_PSTBASOFF 8010AC20 PHD\$W_PSTLAST FFD8 8010AC22 0000 8010AC26 PHD\$W_PSTFREE 0000 8010AC23 PHD\$W_PSTFREE 0000 8010AC20 8010AC20 8010AC24 PHD\$W_PSTFREE 0000 8010AC20 8010AC20 8010AC25 PHD\$L_FREPTECNT 00001978 8010AC30 PHD\$L_FREPTVA 7FFD9000 8010AC34 PHD\$L_PGFLCNT 00270B2D 8010AC33 PHD\$L_PGFLCNT 00270B2D 8010AC33 PHD\$B_LPGTBFFC 02 2 7F 8010AC34 PHD\$W_WFLAGS 0006 8010AC42 8010AC44 8010AC44 8010AC44	8010AC0C	PHD\$W_WSLOCK	0051
8010AC12 PHD\$W_WSLAST 00DB 8010AC14 PHD\$L_REFERFLT 00000000 8010AC18 PHD\$W_WSQUOTA 042D 8010AC1A PHD\$W_DFWSCNT 00DB 8010AC1C PHD\$W_PAGFIL 03000000 PHD\$L_PAGFIL 03000000 PHD\$L_PAGFIL 03000000 PHD\$L_PSTBASOFF 0600 8010AC20 PHD\$W_PSTLAST FFD8 8010AC22 0000 000A220 8010AC23 PHD\$L_FREPOVA 000AA200 8010AC24 PHD\$L_FREPTECNT 00001978 8010AC25 PHD\$L_FREPTECNT 00001978 8010AC30 PHD\$L_FREPTECNT 00270B2D 8010AC34 PHD\$L_PGFLCNT 00270B2D 8010AC35 PHD\$L_PGFBFFC 02 8010AC34 PHD\$L_PGFBFFC 02 8010AC35 PHD\$L_PGFBFFC 02 8010AC44 PHD\$W_PCLM 00006 8010AC42 PHD\$W_PASTLAST 60006 8010AC44 PHD\$W_PASTLAST 0000F 8010AC44 <td>8010AC0E</td> <td>PHD\$WWSDYN</td> <td>0051</td>	8010AC0E	PHD\$WWSDYN	0051
8010AC14 PHD\$L_REFERFLT 0000000 8010AC18 PHD\$W_WSQUOTA 042D 8010AC1A PHD\$W_DFWSCNT 00DB 8010AC1C PHD\$L_PAGFIL 03000000 PHD\$L_PAGFIL 03000000 PHD\$L_PSTBASOFF 0600 8010AC20 PHD\$W_PST 0600 8010AC22 PHD\$W_PSTLAST FFDS 8010AC24 PHD\$W_PSTLAST FFDS 8010AC26 PHD\$L_FREPOVA 000A200 8010AC27 PHD\$L_FREPTECNT 00001978 8010AC30 PHD\$L_FREPTECNT 00001978 8010AC34 PHD\$L_FREPTVA 7FFD9000 8010AC35 PHD\$L_FREPTVA 7FFD9000 8010AC34 PHD\$L_PGFLCNT 00270B2D 8010AC35 PHD\$B_PGTBFFC 02 8010AC31 PHD\$W_FLAGS 0006 8010AC42 PHD\$W_QUANT FFF7 8010AC42 PHD\$W_QUANT FFF7 8010AC44 PHD\$W_ASTLM 0000F 8010AC44 PHD\$W_NSLX 0500	8010AC10	PHD\$WWSNEXT	0009
8010AC18 PHD\$W_W\$QUOTA 042D 8010AC1A PHD\$W_DFWSCNT 00DB 8010AC1C PHD\$L_PAGFIL 03000000 PHD\$L_PAGFIL 03000000 B010AC20 PHD\$L_PST 0600 PHD\$L_PSTBASOFF 0000 8010AC22 PHD\$W_PSTLAST FFDS 8010AC24 PHD\$W_PSTLAST FFDS 8010AC26 PHD\$L_FREPOVA 000A200 8010AC27 PHD\$L_FREPOVA 0000A200 8010AC28 PHD\$L_FREPTECNT 00001978 8010AC30 PHD\$L_FREPTECNT 00001978 8010AC34 PHD\$L_FGFLCNT 00270B2D 8010AC35 PHD\$B_PGTBFFC 02 8010AC31 PHD\$W_FLAGS 0006 8010AC32 PHD\$W_QUANT FFF7 8010AC42 PHD\$W_QUANT FFF7 8010AC42 PHD\$W_ASTLM 0000F 8010AC44 PHD\$W_PRCLM 0000F 8010AC44 PHD\$W_PSTBASMAX 0500 8010AC44 PHD\$W_BAK 0500 80	8010AC12		OODB
8010AC1A PHD\$W_DFWSCNT 00DB 8010AC1C PHD\$L_PAGFIL 03000000 PHD\$L_PAGFIL 03000000 8010AC20 PHD\$W_PST 0600 PHD\$L_PSTBAS0FF 0000 8010AC22 0000 8010AC22 0000 8010AC22 0000 8010AC24 PHD\$W_PSTLAST FFDS 8010AC26 PHD\$L_FREPOVA 000A200 8010AC28 PHD\$L_FREPOVA 00004200 8010AC20 PHD\$L_FREPTECNT 00001978 8010AC30 PHD\$L_FREPTECNT 00001978 8010AC34 PHD\$L_PGFLCNT 00270B2D 8010AC35 PHD\$B_PGTBFFC 02 8010AC31 PHD\$W_FLAGS 0006 8010AC42 PHD\$W_QUANT FFF7 8010AC42 PHD\$W_QUANT FFF7 8010AC42 PHD\$W_ASTLM 0010 8010AC44 PHD\$W_ASTLM 0000F 8010AC44 PHD\$W_BAK 0500 8010AC44 PHD\$W_BAK 0500 8010	8010AC14	PHD\$L_REFERFLT	00000000
8010AC1C PHD\$L_PAGFTL 0300000 PHD\$B_PAGFTL 0300000 8010AC20 PHD\$L_PST 0600 PHD\$L_PSTBASDFF 0600 8010AC22 0000 8010AC22 0000 8010AC22 0000 8010AC22 0000 8010AC24 PHD\$W_PSTLAST FFDS 8010AC26 PHD\$L_FREPOVA 000A200 8010AC28 PHD\$L_FREPOVA 00001978 8010AC30 PHD\$L_FREP1VA 7FFD9000 8010AC30 PHD\$L_FREP1VA 7FFD9000 8010AC34 PHD\$L_PGFLCNT 00270B2D 8010AC35 PHD\$B_PGTBFFC 02 8010AC31 PHD\$B_PGTBFFC 02 8010AC42 PHD\$W_QUANT FFF7 8010AC42 PHD\$W_QUANT FFF7 8010AC42 PHD\$W_ASTLM 0000F 8010AC44 PHD\$W_PRCLM 000F 8010AC44 PHD\$W_BAK 0500 PHD\$W_PSTBASMAX 0500 8010AC44 PHD\$W_SL_AGEFLTS 0	8010AC18	PHD\$W_WSQUOTA	0420
PHD\$B_PAGFIL 0600 8010AC20 PHD\$W_PST 0600 PHD\$L_PSTBASOFF 0000 8010AC22 0000 8010AC24 PHD\$W_PSTLAST FFDS 8010AC26 PHD\$W_PSTFREE 0000 8010AC26 PHD\$L_FREPOVA 000A200 8010AC28 PHD\$L_FREPOVA 00001978 8010AC20 PHD\$L_FREPTECNT 00001978 8010AC30 PHD\$L_FREP1VA 7FFD9000 8010AC34 PHD\$L_FGFLCNT 00270B2D 8010AC35 PHD\$B_PGFBC 7F 8010AC36 PHD\$B_PGTBFFC 02 8010AC37 PHD\$B_PGTBFFC 02 8010AC32 PHD\$U_QUANT FFF7 8010AC40 PHD\$W_QUANT FFF7 8010AC42 PHD\$W_ASTLM 0000F 8010AC44 PHD\$W_PRCLM 000F 8010AC44 PHD\$W_BAK 0500 8010AC44 PHD\$W_BAK 0500 9HD\$W_PSTBASMAX 0500 8010AC44 PHD\$W_STBASMAX 0500	8010AC1A	PHD\$WDFWSCNT	OODB
8010AC20 PHD\$W_PST PHD\$L_PSTBASOFF 0600 8010AC22 0000 8010AC22 0000 8010AC22 PHD\$W_PSTLAST FFD8 8010AC24 PHD\$W_PSTLAST FFD8 8010AC26 PHD\$W_PSTFREE 0000 8010AC28 PHD\$L_FREPOVA 000A200 8010AC20 PHD\$L_FREPOVA 00001978 8010AC30 PHD\$L_FREP1VA 7FFD9000 8010AC30 PHD\$L_FREP1VA 7FFD9000 8010AC33 PHD\$L_PGFLCNT 00270B2D 8010AC34 PHD\$L_PGFLCNT 00270B2D 8010AC35 PHD\$B_PGTBFFC 02 8010AC31 PHD\$W_FLAGS 0006 8010AC42 PHD\$W_QUANT FFF7 8010AC42 PHD\$W_QUANT FFF7 8010AC44 PHD\$W_ASTLM 0010 8010AC44 PHD\$W_PSTBASMAX 0500 8010AC44 PHD\$W_WSLX 0500 910\$W_PSTBASMAX 0500 8010AC4C PHD\$W_WSLX 0500 910\$W_PSTBASMAX <	8010AC1C	PHD\$L_PAGFIL	03000000
PHD\$L_PSTBASOFF 0000 8010AC22 0000 8010AC24 PHD\$W_PSTLAST FFD8 8010AC26 PHD\$W_PSTFREE 0000 8010AC26 PHD\$L_FREPOVA 000A200 8010AC28 PHD\$L_FREPOVA 00001978 8010AC20 PHD\$L_FREPTECNT 00001978 8010AC30 PHD\$L_FREP1VA 7FFD9000 8010AC30 PHD\$L_FREP1VA 7FFD9000 8010AC33 PHD\$L_PGFLCNT 00270B2D 8010AC34 PHD\$L_PGFLCNT 00270B2D 8010AC35 PHD\$B_PGTBFFC 02 8010AC31 PHD\$W_FLAGS 0006 8010AC32 PHD\$W_QUANT FFF7 8010AC40 PHD\$W_QUANT FFF7 8010AC42 PHD\$W_ASTLM 0010 8010AC44 PHD\$W_ASTLM 0000F 8010AC44 PHD\$W_BAK 0526 8010AC44 PHD\$W_WSLX 0500 PHD\$W_PSTBASMAX 0500 8010AC4C PHD\$U_DIOCNT 000064511C 8010AC50 PH		PHD\$B_PAGFIL	
8010AC22 0000 8010AC24 PHD\$W_PSTLAST FFD8 8010AC26 PHD\$W_PSTFREE 0000 8010AC28 PHD\$L_FREPOVA 000A200 8010AC20 PHD\$L_FREPOVA 000A200 8010AC20 PHD\$L_FREPTECNT 00001978 8010AC30 PHD\$L_FREP1VA 7FFD9000 8010AC30 PHD\$L_FREP1VA 7FFD9000 8010AC34 PHD\$L_PGFLCNT 00270B2D 8010AC35 PHD\$B_PGTBFFC 02 8010AC31 PHD\$W_FLAGS 0006 8010AC32 PHD\$L_CPUTIM 00022471 8010AC40 PHD\$W_QUANT FFF7 8010AC42 PHD\$W_QUANT FFF7 8010AC42 PHD\$W_ASTLM 0010 8010AC44 PHD\$W_ASTLM 0000F 8010AC44 PHD\$W_BAK 0526 8010AC44 PHD\$W_BAK 0500 PHD\$W_PSTBASMAX 0500 8010AC4C PHD\$L_DIOCNT 000064511C 8010AC50 PHD\$L_BIOCNT 00005631 8010AC54 PHD\$L_BIOCNT 00009C28	8010AC20	PHD\$WPST	0600
8010AC24 PHD\$W_PSTLAST FFD8 8010AC26 PHD\$W_PSTFREE 0000 8010AC28 PHD\$L_FREPOVA 000A200 8010AC20 PHD\$L_FREPOVA 0000A200 8010AC22 PHD\$L_FREPTECNT 00001978 8010AC30 PHD\$L_FREP1VA 7FFD9000 8010AC30 PHD\$L_FREP1VA 7FFD9000 8010AC31 PHD\$L_PGFLCNT 00270B2D 8010AC32 PHD\$B_PGTBFFC 02 8010AC31 PHD\$W_FLAGS 0006 8010AC32 PHD\$U_QUANT FFF7 8010AC40 PHD\$W_QUANT FFF7 8010AC42 PHD\$W_ASTLM 00008 8010AC44 PHD\$W_ASTLM 0010 8010AC45 PHD\$W_PRCLM 000F 8010AC44 PHD\$W_BAK 0526 8010AC45 PHD\$W_BAK 0500 PHD\$W_PSTBASMAX 0500 8010AC4C PHD\$L_PAGEFLTS 0006451C 8010AC50 PHD\$L_BIOCNT 00005631 8010AC54 PHD\$L_BIOCNT 00009C28 <		PHD\$L_PSTBASOFF	
8010AC26 PHD\$W_PSTFREE 0000 8010AC28 PHD\$L_FREPOVA 000AA200 8010AC20 PHD\$L_FREPTECNT 00001978 8010AC20 PHD\$L_FREPTECNT 00001978 8010AC30 PHD\$L_FREP1VA 7FFD9000 8010AC30 PHD\$L_FREP1VA 7FFD9000 8010AC34 PHD\$L_PGFLCNT 00270B2D 8010AC38 PHD\$L_PGFLCNT 00270B2D 8010AC39 PHD\$B_PGTBFFC 02 8010AC31 PHD\$W_FLAGS 0006 8010AC32 PHD\$W_QUANT FFF7 8010AC40 PHD\$W_QUANT FFF7 8010AC42 PHD\$W_ASTLM 00008 8010AC44 PHD\$W_ASTLM 0010 8010AC45 PHD\$W_BAK 0526 8010AC46 PHD\$W_BAK 0526 8010AC47 PHD\$W_PSTBASMAX 0500 8010AC4C PHD\$L_PAGEFLTS 0006451C 8010AC50 PHD\$L_DIOCNT 00005631 8010AC54 PHD\$L_BIOCNT 00009C28	8010AC22		0000
8010AC28 PHD\$L_FREPOVA 000AA200 8010AC2C PHD\$L_FREPTECNT 00001978 8010AC30 PHD\$L_FREPTVA 7FFD9000 8010AC30 PHD\$L_FREP1VA 7FFD9000 8010AC30 PHD\$L_FREP1VA 7FFD9000 8010AC34 PHD\$L_PGFLCNT 00270B2D 8010AC38 PHD\$L_PGFLCNT 00270B2D 8010AC39 PHD\$B_PGTBFFC 02 8010AC31 PHD\$L_CPUTIM 00022471 8010AC32 PHD\$L_CPUTIM 00022471 8010AC40 PHD\$W_QUANT FFF7 8010AC42 PHD\$W_QUANT FFF7 8010AC44 PHD\$W_ASTLM 0010 8010AC45 PHD\$W_PRCLM 000F 8010AC44 PHD\$W_BAK 0526 8010AC45 PHD\$W_BAK 0500 PHD\$W_PSTBASMAX 0500 8010AC4C PHD\$L_PAGEFLTS 0006451C 8010AC50 PHD\$L_DIOCNT 00005631 8010AC54 PHD\$L_BIOCNT 00009C28	8010AC24	PHD\$WPSTLAST	FFD8
8010AC2C PHD\$L_FREFTECNT 00001978 8010AC30 PHD\$L_FREF1VA 7FFD9000 8010AC30 PHD\$L_FREF1VA 7FFD9000 8010AC34 PHD\$L_FGFLCNT 00270B2D 8010AC38 PHD\$L_PGFLCNT 00270B2D 8010AC38 PHD\$L_PGFLCNT 00270B2D 8010AC38 PHD\$L_PGFLCNT 002 8010AC39 PHD\$B_PGTBFFC 02 8010AC31 PHD\$W_FLAGS 0006 8010AC32 PHD\$U_CPUTIM 00022471 8010AC40 PHD\$W_QUANT FFF7 8010AC42 PHD\$W_QUANT FFF7 8010AC42 PHD\$W_ASTLM 0010 8010AC44 PHD\$W_ASTLM 0000F 8010AC45 PHD\$W_BAK 0526 8010AC46 PHD\$W_BAK 0500 PHD\$W_PSTBASMAX 0500 8010AC4C PHD\$L_PAGEFLTS 0006451C 8010AC50 PHD\$L_DIOCNT 00005631 8010AC54 PHD\$L_BIOCNT 00009C28	8010AC26	PHD\$WPSTFREE	0000
8010AC30 PHD\$L_FREP1VA 7FFD9000 8010AC34 PHD\$L_PGFLCNT 00270B2D 8010AC38 PHD\$B_DFPFC 7F 8010AC39 PHD\$B_PGTBFFC 02 8010AC31 PHD\$B_PGTBFFC 02 8010AC32 PHD\$B_PGTBFFC 02 8010AC31 PHD\$B_PGTBFFC 02 8010AC32 PHD\$L_CPUTIM 00022471 8010AC40 PHD\$U_QUANT FFF7 8010AC42 PHD\$W_PRCLM 0008 8010AC44 PHD\$W_ASTLM 0010 8010AC45 PHD\$W_PRCLM 000F 8010AC46 PHD\$W_PSTBASMAX 0500 8010AC47 PHD\$U_PSTBASMAX 0500 8010AC4C PHD\$L_PAGEFLTS 0006451C 8010AC50 PHD\$L_DIOCNT 00005631 8010AC54 PHD\$L_BIOCNT 00009C28	8010AC28	PHD&LFREPOVA	000AA200
8010AC30 PHD\$L_FREP1VA 7FFD9000 8010AC34 PHD\$L_PGFLCNT 00270B2D 8010AC38 PHD\$B_DFPFC 7F 8010AC39 PHD\$B_PGTBFFC 02 8010AC31 PHD\$B_PGTBFFC 02 8010AC32 PHD\$B_PGTBFFC 02 8010AC31 PHD\$B_PGTBFFC 02 8010AC32 PHD\$L_CPUTIM 00022471 8010AC40 PHD\$U_QUANT FFF7 8010AC42 PHD\$W_PRCLM 0008 8010AC44 PHD\$W_ASTLM 0010 8010AC45 PHD\$W_PRCLM 000F 8010AC46 PHD\$W_PSTBASMAX 0500 8010AC47 PHD\$U_PSTBASMAX 0500 8010AC4C PHD\$L_PAGEFLTS 0006451C 8010AC50 PHD\$L_DIOCNT 00005631 8010AC54 PHD\$L_BIOCNT 00009C28	8010AC2C	PHD&L_FREPTECNT	00001978
8010AC38 PHD\$B_DFPFC 7F 8010AC39 PHD\$B_PGTBPFC 02 8010AC31 PHD\$B_PGTBPFC 02 8010AC31 PHD\$L_CPUTIM 00022471 8010AC32 PHD\$L_CPUTIM 00022471 8010AC40 PHD\$W_QUANT FFF7 8010AC42 PHD\$W_PRCLM 0008 8010AC44 PHD\$W_ASTLM 0010 8010AC45 PHD\$W_PRCLM 000F 8010AC46 PHD\$W_PRCLM 000F 8010AC46 PHD\$W_PSTBASMAX 0500 8010AC47 PHD\$W_PSTBASMAX 0500 8010AC47 PHD\$L_PAGEFLTS 0006451C 8010AC46 PHD\$L_PAGEFLTS 0006451C 8010AC47 PHD\$L_DIOCNT 00009C28		PHD\$L_FREP1VA	7FFD9000
8010AC39 PHD\$B_PGTBFFC 02 8010AC31 PHD\$W_FLAGS 0006 8010AC31 PHD\$W_FLAGS 0006 8010AC32 PHD\$L_CPUTIM 00022471 8010AC40 PHD\$W_QUANT FFF7 8010AC42 PHD\$W_PRCLM 0008 8010AC44 PHD\$W_ASTLM 0010 8010AC46 PHD\$W_PRCLM 000F 8010AC46 PHD\$W_PNDEX 000F 8010AC48 PHD\$W_BAK 0526 8010AC4A PHD\$W_BAK 0500 PHD\$W_PSTBASMAX 0500 8010AC4C PHD\$L_PAGEFLTS 0006451C 8010AC50 PHD\$L_DIOCNT 00005631 8010AC54 PHD\$L_BIOCNT 00009C28	8010AC34	PHD&LPGFLCNT	00270820
8010AC31 PHD\$W_FLAGS 0006 8010AC3C PHD\$W_FLAGS 00022471 8010AC3C PHD\$W_QUANT FFF7 8010AC40 PHD\$W_QUANT FFF7 8010AC42 PHD\$W_PRCLM 0008 8010AC44 PHD\$W_ASTLM 0010 8010AC46 PHD\$W_ASTLM 000F 8010AC48 PHD\$W_BAK 0526 8010AC4A PHD\$W_BAK 0500 PHD\$W_PSTBASMAX 0500 8010AC4C PHD\$L_PAGEFLTS 0006451C 8010AC50 PHD\$L_DIOCNT 00005631 8010AC54 PHD\$L_BIOCNT 00009C28	8010AC38	PHD\$B_DFPFC	7F
8010AC3C PHD\$L_CPUTIM 00022471 8010AC40 PHD\$L_QUANT FFF7 8010AC42 PHD\$W_QUANT FFF7 8010AC42 PHD\$W_PRCLM 0008 8010AC44 PHD\$W_ASTLM 0010 8010AC44 PHD\$W_ASTLM 0010 8010AC44 PHD\$W_BAK 000F 8010AC48 PHD\$W_BAK 0526 8010AC4A PHD\$W_BAK 0500 PHD\$W_PSTBASMAX 0500 8010AC4C PHD\$L_PAGEFLTS 0006451C 8010AC50 PHD\$L_DIOCNT 00005631 8010AC54 PHD\$L_BIOCNT 00009C28	8010AC39	PHD\$B_PGTBPFC	02
8010AC40 PHD\$W_QUANT FFF7 8010AC42 PHD\$W_PRCLM 0008 8010AC42 PHD\$W_ASTLM 0010 8010AC44 PHD\$W_ASTLM 0010 8010AC44 PHD\$W_PHVINDEX 000F 8010AC46 PHD\$W_BAK 0526 8010AC48 PHD\$W_WSLX 0500 PHD\$W_PSTBASMAX 0500 8010AC4C PHD\$L_PAGEFLTS 0006451C 8010AC50 PHD\$L_DIOCNT 00005631 8010AC54 PHD\$L_BIOCNT 00009C28	8010AC31	PHD\$W_FLAGS	0006
8010AC42 PHD\$W_PRCLM 0008 8010AC44 PHD\$W_ASTLM 0010 8010AC44 PHD\$W_ASTLM 0010 8010AC44 PHD\$W_PHVINDEX 000F 8010AC48 PHD\$W_BAK 0526 8010AC4A PHD\$W_WSLX 0500 PHD\$W_PSTBASMAX 0500 8010AC4C PHD\$L_PAGEFLTS 0006451C 8010AC50 PHD\$L_DIOCNT 00005631 8010AC54 PHD\$L_BIOCNT 00009C28	8010AC3C	PHD\$L_CPUTIM	00022471
8010AC44 PHD\$W_ASTLM 0010 8010AC44 PHD\$W_ASTLM 000F 8010AC46 PHD\$W_PHVINDEX 000F 8010AC48 PHD\$W_BAK 0526 8010AC4A PHD\$W_WSLX 0500 PHD\$W_PSTBASMAX 0500 8010AC4C PHD\$L_PAGEFLTS 0006451C 8010AC50 PHD\$L_DIOCNT 00005631 8010AC54 PHD\$L_BIOCNT 00009C28	8010AC40	PHD\$WQUANT	FFF7
8010AC46 PHD\$W_PHVINDEX 000F 8010AC48 PHD\$W_BAK 0526 8010AC4A PHD\$W_WSLX 0500 PHD\$W_PSTBASMAX 0500 8010AC4C PHD\$L_PAGEFLTS 0006451C 8010AC50 PHD\$L_DIOCNT 00005631 8010AC54 PHD\$L_BIOCNT 00009C28	8010AC42	PHD\$WPRCLM	0008
8010AC48 PHD\$W_BAK 0526 8010AC4A PHD\$W_WSLX 0500 PHD\$W_PSTBASMAX 0500 8010AC4C PHD\$L_PAGEFLTS 0006451C 8010AC50 PHD\$L_DIOCNT 00005631 8010AC54 PHD\$L_BIOCNT 00009C28	8010AC44	PHD\$W…ASTLM	0010
8010AC4A PHD\$W_WSLX 0500 PHD\$W_PSTBASMAX 90006451C 8010AC4C PHD\$L_PAGEFLTS 0006451C 8010AC50 PHD\$L_DIOCNT 00005631 8010AC54 PHD\$L_BIOCNT 00009C28	8010AC46	PHD\$W_PHVINDEX	000F
PHD\$W_PSTBASMAX 8010AC4C PHD\$L_PAGEFLTS 0006451C 8010AC50 PHD\$L_DIOCNT 00005631 8010AC54 PHD\$L_BIOCNT 00009C28	8010AC48	PHD\$W_BAK	0526
8010AC4C PHD\$L_PAGEFLTS 0006451C 8010AC50 PHD\$L_DIOCNT 00005631 8010AC54 PHD\$L_BIOCNT 00009C28	8010AC4A	PHD\$W_WSLX	0500
8010AC50 PHD\$L_DIOCNT 00005631 8010AC54 PHD\$L_BIOCNT 00009C28		PHD\$W_PSTBASMAX	
8010AC54 PHD\$L_BIDCNT 00009C28	8010AC4C	PHD&L_PAGEFLTS	00064510
	8010AC50		00005631
8010AC58 FHD\$L_CPULIM 00000000	8010AC54	PHD\$L_BIOCNT	00009028
•	8010AC58	PHD\$L_CPULIM	00000000
•		*	
		*	

٠

This example shows the use of the qualifier /TYPE=. The READ command is issued to move PHD symbols to SDA's symbol table (see the description of the READ command for details on command syntax). Then, the FORMAT command can identify the process header block that starts at location 8010AC00.

HELP

The HELP command lists information about the SDA utility, its operation, and its command format. HELP has three command parameters. If you do not specify a parameter, HELP gives a brief description of SDA operations and lists SDA commands.

Format

HELP	[command [EXPRESS [OPERATI	-name] ION] ON]
Quali	fiers	Defaults
None		None

Parameters

command-name

Specifies the SDA command for which you need information.

EXPRESSION

Prints a description of SDA expressions.

OPERATION

Describes how to operate SDA at your terminal and through the site-specific start-up procedure.

READ

The READ command lets you extract global symbols from any object module file and insert the definitions automatically into SDA's symbol table.

The object module file can be the output of a compiler or assembler or the output of the linker qualifier /SYMBOL TABLE.

It is important to note that the READ command recognizes global symbols but ignores local symbols; hence, only global symbols are copied into the SDA symbol table.

The program below shows some sample definitions of global symbols.

.TITLE GLOBALS, GLOBAL SYMBOLS FOR SYSTEM DUMP ANALYZER

; I/O REQUEST PACKET

; Note: the macros in this program must use the ; argument GLOBAL. This argument defines them as ; globals so that they will be automatically carried ; into the object file. Without the GLOBAL argument, ; the macros would be local and SDA would not be : able to read them. ; ; \$PHDDEF GLOBAL ; PROCESS HEADER DEFINITIONS \$DDBDEF GLOBAL ; DEVICE DATA BLOCK \$UCBDEF GLOBAL ; UNIT CONTROL BLOCK ; VOLUME CONTROL BLOCK \$VCBDEF GLOBAL \$ACBDEF GLOBAL ; AST CONTROL BLOCK

- ; (more macros can be inserted here)

. END

\$IRPDEF GLOBAL

Use the following DCL command to generate an object module file with the file type STB that contains the global symbols defined in the sample program GLOBALS.MAR, as shown above:

\$ MACRO GLOBALS+SYS\$LIBRARY:LIB/LIBRARY /OBJECT=GLCBALS.STB

Now you can invoke SDA and use the READ command to copy the symbols into the SDA symbol table, as shown in Example 1 below.

Format

READ file-spec

Qualifiers	Defaults	
None	None	

Parameters

file-spec

The device, directory, and file name of the file whose symbols you want copied to SDA. The default file specification for this parameter is SYS\$DISK:[default-dir]filename.STB.

Examples

1. SDA> READ GLOBALS

SDA searches for the file specification GLOBALS.STB in the current device and directory.

REPEAT

The REPEAT command repeats execution of the last command issued. This command is primarily used to step through a linked list of data structures or to examine a sequence of memory locations. On terminal devices, you can use the escape key ((SC)) to perform the same function as the REPEAT command; (SC) provides a faster means of executing the command.

Format

REPEAT

Qualifiers	Defaults

None None

Parameters

None

Examples

1. SDA> FORMAT @SCH\$GQ_LEFWQ

800631E0	PCB\$L_SQFL	80062080
800631E4	PCB\$L_SQBL	80003000
800631E8	PCB\$W_SIZE	0070
800631EA	PCB\$B_TYPE	oc
800631EB	PCB\$B_PRI	18
00003155		.a. (.)
	٠	
	•	
	•	
SDA> FORMAT @.		
80062080	PCB\$L_SQFL	80062FB0
80062084	PCB\$L_SQBL	800631E0
	PCB\$W_SIZE	0070
80062088		00
80062D8A	PCB\$B_TYPE	16
80062D8B	PCB\$BPRI	1.0
	*	
	۵	
	*	
SDA> REPEAT		
80062FB0	PCB\$L_SQFL	80003000
80062FB4	PCB\$L_SQBL	80062080
80062FBB	PCB\$W_SIZE	007C
80062FBA	PCB\$B_TYPE	oc
80062FBB	PCB\$B_PRI	15
M M M M M Ku F - A. 9 A. 9	•	1 1 317
	٠	

In this example, the FORMAT command is used to examine the local event flag wait queue. The first process control block (PCB) in the wait queue is formatted, then the rest of the queue can be examined by using REPEAT (or by pressing (BC)).

SET OUTPUT

The SET OUTPUT command writes the output of SDA commands to a file or device of your choice. If you set output to a file, SDA creates a table of contents that identifies the displays you selected.

When you set SDA output to a file or device, SDA stops displaying commands at your terminal. If you finish directing SDA commands to an output file and wish to return to interactive display, you can issue another SET OUTPUT command using your terminal device as the file specification. You can also exit from SDA and then recall the utility.

Format

SET OUTPUT file-spec

```
Qualifiers Defaults
```

None None

Parameters

file-spec

The device, directory, and file to which SDA output will be written. The default file specification is SYS\$DISK:[default-dir]SYSDUMP.LIS.

Examples

1. SDA> SET OUTPUT BROKEN SDA> SHOW CRASH SDA> SHOW PROCESS/ALL SDA> SHOW SUMMARY SDA> EXIT

> SDA stores the displays produced by the commands following SET OUTPUT on the current device and directory in a file called BROKEN.LIS.

SET PROCESS

The SET PROCESS command moves process context to a specific process. This command allows you to examine the data structures associated with any given process.

When you invoke SDA and specify a dump file, process context, that is, the virtual memory you will see upon executing SDA commands, defaults to the process that was executing when the system failed. If you are examining the running system, process context defaults to your process.

When you issue a SET PROCESS command, process context changes to the process you specify. Many of the SDA commands, for example, EXAMINE, SHOW PROCESS and SHOW STACK, operate on the current process, that is, the context of the process specified in the last SET PROCESS command.

SET PROCESS locates the information needed for the particular process but produces no output.

You must specify one of the three SET PROCESS parameters or SDA will generate a syntax error.

Format

SET PROCESS	name /INDEX=nn /SYSTEM
Qualifiers	Defaults
None	None

,

、

Parameters

name

A 1 to 31 character alphanumeric string assigned to the process. The dollar sign (\$) and underline (_) characters can be included in the string.

/INDEX=nn

The index to the software process control block (PCB). The index number (nn) is composed of the last four hexadecimal digits of the process identification (PID).

/SYSTEM

The system process control block. The system PCB and process header (PHD) are dummy structures that are located in system space and contain the system working set, global section table, global page table, and other system-wide data.

Examples

1. SDA> SET PROCESS/INDEX=43 SDA> EXAMINE/PO

SDA locates the process by means of the index number and displays the contents of its program region.

2. SDA> SET PROCESS SMITH SDA> SHOW STACK

Setting the process to SMITH causes the SHOW STACK command to default to SMITH rather than to the currently executing process.

SHOW CRASH

The SHOW CRASH command displays fundamental information concerning the operating system and the currently executing process. The display can be divided into three sections:

- Operating system and process information
- General and special register contents
- Processor and hardware maintenance register contents

Operating System and Process Information

The first section of SHOW CRASH lists:

- Date and time of the crash
- Name and version number of the operating system
- Name of the currently executing process
- File specification of the image executing in the process context (left blank if no image is executing)
- Interrupt Priority Level (in decimal) of the processor

General and Special Register Contents

The second section of the SHOW CRASH display lists the contents of the general purpose and special registers.

- R0 through R11
 Argument Pointer (AP)
- Frame Pointer (FP) Stack Pointer (SP)
- Program Counter (PC)
 Processor Status Longword (PSL)

Process and Hardware Maintenance Register Contents

The third section of the SHOW CRASH display lists the contents of three sets of registers. The first set includes registers that store the vital statistics of the currently executing process, as well as registers that contain information used by the operating system. The second set of registers are the stack pointers for the processor access modes plus the interrupt stack. The third set of registers are used in hardware maintenance.

The process and system registers are:

POBR	Program Region Base Register
POLR	Program Region Length Register
PlBR	Control Region Base Register
PlLR	Control Region Length Register
SBR	System Region Base Register
SLR	System Region Length Register
PCBB	Process Control Block Base Register
SCBB	System Control Block Base Register
ASTLVL	Asynchronous System Trap Level
SISR	Software Interrupt Summary Register

The stack pointers are:

ISP	Interrupt Stack Pointer
KSP	Kernel Mode Stack Pointer
ESP	Executive Mode Stack Pointer
SSP	Supervisor Mode Stack Pointer
USP	User Mode Stack Pointer

The hardware maintenance registers are:

ICCS ICR TODR	Interval Clock Control/Status Register Interval Count Register Time-of-Day Register
ACCS	Accelerator Control and Status Register
SBIFS	SBI Fault/Status Register
SBISC	SBI Silo Comparator Register
SBIMT	SBI Maintenance Register
SBIER	SBI Error Register
SBITA	SBI Timeout Address Register
SBIS	SBI Silo Register

Format

SHOW CRASH

Qualifiers Defaults

None None

Parameters

None

Examples

1. SDA> SHOW CRASH

Figure 5-2 shows the display produced by this command.

VAX/VMS 2.0 -- System Dump Analysis System crash information

Time of system crash: 21-MAY-1979 10:57:48.99

Version of system: VAX/VMS VERSION 1.50

Reason for BUGCHECK exception: PGFIPLHI, Pagefault with IPL too high

Process currently executing: GALCHER

Current image file name: DB2:[F4V2.TOOL]BLISS32.EXE;43

Current IPL: 7 (decimal)

General registers:

R0	=	0019CCAB	Rl	=	00000000	R2	=	00008600	R3	=	8010C50C
R4	=	8006BAC0	R5	=	7FFDFE00	R6	=	001FFFBC	R7	=	00000200
R8	=	7FFDB998	R9	=	0001910B	R10	=	0000255C	R11	=	7FFE6C10
AP	=	7FFEEBC4	FΡ	=	7FFEEB7C	SP	=	7FFEEB38	PC	=	80006074
PSL	=	00070000									

Processor registers:

POBR POLR P1BR P1LR SBR SLR	= 8010C400 = 000003EE = 7F914400 = 001FFEC9 = 001FC000 = 00001000	PCBB = 0012C SCBB = 001D6 ASTLVL = 00000 SISR = 00180 ICCS = 80000 ICR = FFFFF	A00SBIFS004SBISC000SBIMT0C1SBIER88FSBITA	= 00008001 = 00040000 = 00000000 = 00200200 = 00008002 = 00075CD8
ISP KSP ESP SSP USP	= 8007C200 = 7FFEEB38 = 7FFEF000 = 7FFEF828 = 7FFDB65C	TODR = 58554	OBA SBIS	= 00000000

Figure 5-2 System Crash Information

SHOW DEVICE

The SHOW DEVICE command displays a formatted list of all data structures associated with a device. The display for each device is divided into three sections:

- Device data block lists
- Controller data structures
- Device unit data structures

For a detailed explanation of I/O data structures displayed by SDA, consult Appendix A of the VAX/VMS Guide to Writing a Device Driver.

Device Data Block (DDB) List

The DDB list shows information common to all devices associated with a single controller. It shows:

- Address of the controller status register (CSR)
- Name of the controller
- Name of the ancillary control process (ACP)
- Name of the I/O driver
- Address of the driver prologue table (DPT)
- Length of the I/O driver and DPT

Controller Data Structures

SDA displays the contents of the following four data structures associated with each controller:

- Device Data Block (DDB) -- points to the driver dispatch table, the channel request block, and the first unit control block connected to the controller
- Channel Request Block (CRB) -- stores information used to arbitrate requests between devices attached to a single controller
- Interrupt Dispatch Block (IDB) -- contains controller status information used to dispatch interrupts to the proper driver
- Driver Dispatch Table (DDT) -- points to routines that process the I/O request

Device Unit Data Structures

The final section of the SHOW DEVICE display itemizes the contents of the Unit Control Block (UCB) for each device. If the device is handling file-structured requests, the display lists the Volume Control Block (VCB) and the ACP queue as well. Unit Control Block (UCB) - SDA organizes the data stored in the UCB into a list of items. Heading the list are the address of next UCB, the status of the device, and the longword whose bits express various characteristics of the device. Following the heading, SDA lists pointers to other block types: I/O Request Packet (IRP) address Channel Request Block (CRB) address Volume Control Block (VCB) address The next six items on the list concern the fork block for the device driver: Fork Queue Forward Link (FQFL) Fork Queue Backward Link (FQBL) Fork Interrupt Priority Level (IPL) Fork PC, R3, and R4 The UCB contains device status information: Device class Device type Device buffer size (DEVBUFSIZ) Device dependent data (DEVDEPEND) longword Device status (DEVSTS) longword Device TPL Reference count Operations count The final items detailed concern mailboxes and information obtained from the I/O request packet: Associated Mail Box (AMB) address System Virtual Page Number (SVPN) System Virtual Address of Page Table Entry (SVAPTE) Byte Offset (BOFF) Byte Count (BCNT) Error Retry Count (ERTCNT) Error Retry Maximum (ERTMAX) Error Count (ERRCNT) Owner UIC Process Identification (PID) SDA also formats all the I/O request packets queued to the UCB. The packet currently being processed is flagged by an asterisk (*). Information contained in each I/O request packet is listed in the following order across the page: Channel number (CHAN) Function value (FUNC) Window Control Block (WCB) Event flag number (EFN) Asynchronous system trap (AST) I/O status block (IOSB) Status flags (STATUS) If the request queue is empty, SDA issues the message:

*** I/O request queue is empty ***

SDA COMMANDS

.

Volume Control Block and ACP Queue - If a volume was mounted on the device SDA reads and displays the contents of the volume control block (VCB) and the ancillary control process queue block (AQB). The VCB identifies the volume and contains counts and quotas concerning files on that volume.

The ACP queue block contains information about the ancillary control process (ACP) associated with the volume. SDA reads the AQB and lists its contents in readable format.

If the request queue is empty, SDA prints the message:

*** ACP request queue is empty ***

Format

SHOW DEVICE [device-name]

Qualifiers	Defaults
None	None

Parameters

device-name

The name of a device whose data structures you want to display. The device name takes the form:

devcu

where

dev = 2-alphabetic character device code
c = 1-alphabetic character controller designator
u = 1- or 2-digit device unit number

You can display information about several devices by specifying a device code or a device code and controller. For example, SHOW DEVICE D lists all devices with device code Dn, where n corresponds to the second letter of the device code. SHOW DEVICE DBA lists all devices with device code DB and controller A. To display a single unit, specify the entire device name: SHOW DEVICE DBAI displays the device associated with device name DBA1. If you do not specify a device name, SDA lists the data structures of every device on the system.

Examples

1. SDA> SHOW DEVICE D

Figure 5-3 is a sample Device Data Block list of all the devices attached to the system whose device codes start with D. This is an example of the first section of the display produced by SHOW DEVICE.

VAX/VMS 2.0 -- System Dump Analysis I/O data structures 18-DEC-1979 11:38:52.76

DDB list					
Address	Controller	ACP	Driver	DPT I	OPT size
80000848	DRA	FILACP	DRDRIVER	80080410	0814
8009A4C0	DMA	FILACP	DMDRIVER	800821E0	0814 08F0
8009AD00	DYA	FIIACP	DYDRIVER	80082EC0	06F0
8009C560	DBA	FIIACP	DBDRIVER	80087640	06F0
8009C620	DBB	Fllacp	DBDRIVER	80087640	06F0

Figure 5-3 Device Data Block List for Dn Devices

2. SDA> SHOW DEVICE DBA

Figure 5-4 shows information on the data structures associated with DB device controller A. This is an example of the second section of the display produced by SHOW DEVICE.

VAX/VMS 2.0 -- System Dump Analysis I/O data structures 16-AUG-1979 16:34:54.81

Controller: DBA

Device Data Block (DDB):	
DDT address	80060408
First UCB address	8000087C
CRB address	8005EB20
Channel Request Block (CRB):	
UCB reference count	11
Channel allocation mask	00
Secondary CRB address	00000000
IDB address	80075E40
Controller init, routine	80001271
Unit init. routine	800609DE
Unit start routine	00000000
Unit disconnect routine	
onie disconnese rodeine	00000000
Interrupt Dispatch Block (IDB):	
CSR address	80017800
Owner UCB address	00000000
Number of units	8
ADP address	8005EB60
Defense Diseastate matter (DDM)	
Driver Dispatch Table (DDT):	
Start I/O routine	00000102
Unsol. interrupt routine	00000637
Function Decision table	0000007A
Cancel I/O routine	8000A869
Register dump routine	00000592
Diagnostic buffer size	0080
Error buffer size	00AE

Figure 5-4 Controller Data Structures for DB Devices

3. SDA> SHOW DEVICE DBA1

Figure 5-5 shows an example of the last section of the display produced by SHOW DEVICE. The display lists the UCB, VCB, and AQB for the device DBA1.

VAX/VMS 1.0 -- System Dump Analysis I/O data structures

15-AUG-1979 17:10:06.68

DBA1

D	CB address: evice status: haracteristics:	80074B30 1810 online, 1C4D4008	valid,unload		
IRP addre	ss 80089350	Device class	01	SVPN	00000217
CRB addre	ss 8006B520	Device type	05	SVAPTE	8009835C
VCB addre	ss 80076140	DEVBUFSIZ	512	BOFF	0000
FQFL	80003A48	DEVDEPEND	032F1316	BCNT	0200
FQBL	80003A48	DEVSTS	0000	ERTCNT	8
Fork IPL	8	Device IPL	21	ERTMAX	8
Fork PC	80074831	Reference count	0	ERRCNT	1
Fork R3	80019C80	Operation count	83765	Owner UIC	[1, 1]
Fork R4	80019800	AMB address	00000000	PID	00000000

*** I/O request queue is empty ***

Volume: VMSWORK2 Status: 80 system

AQB address	8006E4A0	Cluster size	3
Rel. Volume #	2	Reserved files	9
Transactions	3	Maximum files	25000
Mount count	1	Free blocks	19791
Window size	7	Record size	0
Default extension	5	RVT address	8008C820

ACP for volume: DRA5ACP

PID	00010042	
ACP type	3	
ACP class	0	
Status	04	defsys
Mount count	7	-
AQB linkage	00000000	

*** ACP request queue is empty ***

Figure 5-5 Device Unit Data Structures for Device DBA1

SHOW PAGE_TABLE

The SHOW PAGE TABLE command displays a formatted list of system page table entries which are used to map virtual pages to physical pages.

The display can be divided into left and right sections. The left section contains virtual page information. The right section contains physical page information.

Virtual Page Information

The left section of the display describes virtual pages using information contained in the system page table. Each line of this display lists characteristics of a particular virtual page as well as locations needed for address translation. The values listed are:

- ADDRESS -- system virtual address that marks the base of a virtual page
- SVAPTE -- system virtual address of the page table entry that maps this virtual page
- PTE -- page table entry; longword that describes a system virtual page
- Type -- type of virtual page; there are seven types:

VALID	Valid page (in main memory)
TRANS	Transitional page (between main
	memory and page lists)
DZERO	Demand-allocate-zero-fill page
PGFIL	Paging file page
STX	Section table index page
GPTX	Global page table index page
IOPAGE	I/O address space page

- PROT -- protection; a code derived from bits in the PTE that designate the type of access (read and/or write) granted to processor access modes (Kernel, Executive, Supervisor, or User).
- Bits -- letter(s) representing the value of a bit or a combination of bits in the PTE; indicates certain aspects of a page. The bit codes are:

M	Modify bit
L	Locked into working set
K,E,S or U	Access mode of owner of page
	(only one letter will appear)

Physical Page Information

If the virtual page has been mapped to a physical page, the right section of the display includes information from the Page Frame Number (PFN) data base. Otherwise, the section is left blank. SDA organizes the 18 bytes of PFN data into nine categories:

• PAGTYP -- type of physical page; there are six page types:

PROCESS	Process page
SYSTEM	System page
GLOBAL	Global section page
PPGTBL	Process page table page
GPGTBL	Global page table page
GBLWRT	Global writeable section page

• LOC -- location of page in system; there are eight locations:

ACTIVE In working set MDFYLST In modified page list FREELST In free page list In bad page list BADLST Release pending RELPEND RDERROR Read error PAGEOUT Paging out PAGEIN Paging in

- STATE -- byte that describes the state of the physical page.
- TYPE -- byte that describes the type of virtual page (see PAGTYP).
- REFCOUNT -- reference count; word indicating the presence of a reference to this PFN. If the value of REFCOUNT is non-zero, the page is used in at least one working set. If the value is zero, the page is not used in any working set.
- BAK -- backing store address; location on a disk device to which pages can be written
- SVAPTE -- virtual address associated with this page frame. The two SVAPTEs indicate a valid link between physical and virtual address space.
- FLINK -- forward link within PFN data base; also acts as the share count of a global section.
- BLINK -- backward link within PFN data base; also acts as an index to the working set list.

SDA indicates pages that cannot be accessed with the message:

----- n NULL PAGES

where n represents the number of inaccessible pages.

Format

SHOW PAGE TABLE

Qualifiers	Defaults
/GLOBAL	
/SYSTEM	
/ALL	/ALL

Parameters

None

Qualifiers

/GLOBAL

Lists the global page table.

/SYSTEM

Lists the system page table.

/ALL

Lists both the global and system page tables. This is the default for the command.

Examples

1. SDA> SHOW PAGE_TABLE/SYSTEM

Figure 5-6 shows one page of the display produced by this command.

ADDRESS	SVAPTE PTE	TYPE P	PROT BI	TS	PAGTYP	LOC STATE	TYPE	REFCNT	BAK	SVAPTE	FLINK	BLINK
8000D000	801F91A0 78000B7A	TRANS L	IR	к	SYSTEM	FREELST 00	01	0	0040FFF8	801F91A0	01E5	0742
8000D200	801F91A4 F80004E9	VALID U			SYSTEM	ACTIVE 07	òî	1	0040FFF8	801F91A4	0000	0046
8000D400	801F91A8 78000134	TRANS L			SYSTEM	FREELST 00	01	ō	0040FFF8	801F91A8	053E	0654
8000D600	801F91AC F80009E5	VALID U			SYSTEM	ACTIVE 07	01	ĩ	0040FFF8	801F91AC	0000	0062
8000D800	801F91B0 F8000DB2	VALID U			SYSTEM	ACTIVE 07	01	1	0040FFF8	801F91B0	0000	0058
8000DA00	801F91B4 F80001DD	VALID U			SYSTEM	ACTIVE 07	01	1	0040FFF8	801F91B4	0000	0057
8000DC00	801F91B8 F80001E9	VALID U			SYSTEM	ACTIVE 07	01	1	0040FFF8	801F91B8	0000	00A6
8000DE00	801F91BC F8000257	VALID U	JR	K	SYSTEM	ACTIVE 07	01	1	0040FFF8	801F91BC	0000	007C
8000E000	801F91C0 F800098E	VALID U	JR	K	SYSTEM	ACTIVE 07	01	1	0040FFF8	801F91C0	0000	007D
8000E200	801F91C4 F8000A5B	VALID U			SYSTEM	ACTIVE 07	01	1	0040FFF8	801F91C4	0000	00A3
8000E400	801F91C8 F800049A	VALID U			SYSTEM	ACTIVE 07	01	1	0040FFF8	801F91C8	0000	004E
8000E600	801F91CC F8000844	VALID U			SYSTEM	ACTIVE 07	01	1	0040FFF8	801F91CC	0000	0094
8000E800	801F91D0 F8000075	VALID U			SYSTEM	ACTIVE 07	01	1	0040FFF8	801F91D0	0000	0068
8000EA00	801F91D4 78000088	TRANS (SYSTEM	FREELST 00	01	0	0040FFF8	801F91D4	0DB9	0394
8000EC00	801F91D8 F800020A	VALID U			SYSTEM	ACTIVE 07	01	1	0040FFF8	801F91D8	0000	005C
8000EE00	801F91DC F8000270	VALID U			SYSTEM	ACTIVE 07	01	1	0040FFF8 0040FFF8	801F91DC 801F91E0	0000	005B 006D
8000F000	801F91E0 F8000A4C	VALID U			SYSTEM	ACTIVE 07 FREELST 00	01	1 0			0909	0585
8000F200	801F91E4 78000096	TRANS U			SYSTEM		01	1	0040FFF8 0040FFF8	801F91E4 801F91E8	0000	0072
8000F400 8000F600	801F91E8 F800067B 801F91EC 780001E5	VALID U TRANS U			SYSTEM SYSTEM	ACTIVE 07 FREELST 00	01 01	0	0040FFF8	801F91E8	0000	0072 0B7A
8000F800	801F91EC 780001E5 801F91F0 F800031A	VALID U			SYSTEM	ACTIVE 07	01	1	0040FFF8	801F91EC	0000	006C
8000FA00	801F91F0 F800031A 801F91F4 F800029A	VALID U			SYSTEM	ACTIVE 07	01	i	0040FFF8	801F91F0	0000	000C
8000FC00	801F91F4 F800029A	TRANS U			SYSTEM	FREELST 00	01	0 0	0040FFF8	801F91F8	02BA	0159
8000FE00	801F91FC 7C40FFF8		UR	ĸ	313160	FREELSI (0	01	0	00401110	00119110	02DA	0155
80010000	801F9200 F80002DC	VALID U			SYSTEM	ACTIVE 07	01	1	0040FFF8	801F9200	0000	0087
80010200	801F9204 78000159	TRANS U			SYSTEM	FREELST 00	01	ō	0040FFF8	801F9204	098C	094D
80010400	801F9208 7C40FFF8		JR	ĸ	DIDIEN	INEBEDI OU	01	Ū	00401110	00119204	0,000	0,942
80010600	801F920C 7C40FFF8		JR	ĸ								
80010800	801F9210 7C40FFF8		JR	ĸ								
80010A00	801F9214 7C40FFF8		JR	ĸ								
80010C00	801F9218 7C40FFF8		JR	к								
80010E00	801F921C F80009F7	VALID U	JR	к	SYSTEM	ACTIVE 07	01	1	0040FFF8	801F921C	0000	0083
27	NULL PAGES											
80014600	801F928C 94100010	IOPAG P	KW M	к								
80014800	801F9290 94100030	IOPAG H		ĸ								
80014A00	801F9294 90100031	IOPAG H		ĸ								
80014C00	801F9298 90100032	IOPAG B		ĸ								
80014E00	801F929C 90100033	IOPAG H		ĸ								
80015000	801F92A0 94100034	IOPAG H		ĸ								
80015200	801F92A4 94100035	IOPAG K		ĸ								
80015400	801F92A8 90100036	IOPAG K		ĸ								
80015600	801F92AC 90100037	IOPAG M		ĸ								
80015800	801F92B0 941009F0	IOPAG K		к								
80015A00	801F92B4 901009F1	IOPAG K		ĸ								
80015C00	801F92B8 901009F2	IOPAG H		к								
80015E00	801F92BC 901009F3	IOPAG K	KW	К								
80016000	801F92C0 941009F4	IOPAG M	KW M	K								
80016200	801F92C4 901009F5	IOPAG M	KW	K								
80016400	801F92C8 901009F6	IOPAG M	KW	К								
80016600	801F92CC 901009F7	IOPAG K	KW	к								

Figure 5-6 System Page Table

SHOW PFN_DATA

The SHOW PFN DATA command displays a formatted list of values contained in the page lists and in the PFN data base that can be used to translate physical pages to virtual pages.

There are four data structures concerned with the management of physical memory:

- Free Page List -- pages available for use
- Modified Page List -- pages to be written to disk
- Bad Page List -- pages containing data errors
- PFN Data Base -- all pages in physical memory

To display a particular physical page, specify its page frame number (PFN). To list the pages of one or more data structures, use the qualifiers. If you do not specify a parameter or a qualifier, SDA will dump all the page lists and the entire PFN data base.

The format used to display physical page data is the same for each data structure. Figure 5-7 shows a page of the display produced by the command SHOW PFN DATA/SYSTEM. SDA organizes the information for each page under the following headings:

- PFN -- page frame number; the absolute page number within physical memory
- PTE ADDRESS -- Page Table Entry address; the virtual address of the Page Table Entry (see the description of the SHOW PAGE TABLE command for more details).
- BAK -- backing store address; location on a disk device to which pages can be written
- REFCNT -- reference count; a word whose value signals whether a page is part of a working set
- FLINK -- forward link; forward link within the PFN data base (also used as share count of a global section)
- BLINK -- backward link; backward link within the PFN data base (also used as an index to the working set list)
- TYPE -- type of page that was mapped into physical memory (see the description of the SHOW PAGE_TABLE command for a list of the different types)
- STATE -- current state of the page in the system (see the description of the SHOW PAGE_TABLE command for a list of states)

Format

SHOW PFN_DATA [number] Qualifiers Defaults /FREE /MODIFIED /BAD /SYSTEM /ALL /ALL

Parameters

number

The number of the physical page you want to display.

Qualifiers

/FREE

Displays the free page list.

/MODIFIED

Displays the modified page list

/BAD

Displays the bad page list.

/SYSTEM

Displays the PFN data base in order of PFN starting at page frame zero.

/ALL

Displays all of the above memory management data structures. This is the default for the command.

Examples

1. SDA> SHOW PFN_DATA/SYSTEM

Figure 5-7 shows one page of the display produced by this command.

VAX/VMS 2.0 -- System Dump Analysis PFN data base

PFN	PTE ADDRESS	BAK	REFCNT	FLINK	BLINK	TYPE	STATE
0000	00000000	00000000	0		OAAF	00 PROCESS	00 FREELST
0001	800A3C10	03000000	1		0053	00 PROCESS	87 ACTIVE
0002	80174EA0	03000000	1		007C	00 PROCESS	87 ACTIVE
0003	8010CEE0	033FFFFF	1		01A2	00 PROCESS	87 ACTIVE
0004 0005	801F7F70 8010CEB4	03000000 033FFFFF	1		00C9 018D	00 PROCESS 00 PROCESS	07 ACTIVE 87 ACTIVE
00005	80174CAC	03000000	1		018D 00CE	00 PROCESS	07 ACTIVE
0007	8016D200	0300E351	0		0498	00 PROCESS	00 FREELST
0008	8010CE2C	0300E2DE	ő		095F	00 PROCESS	81 MDFYLST
0009	801C0C58	03000000	ĩ		00DB	00 PROCESS	07 ACTIVE
000A	801FB890	03000000	ī		0054	04 PPGTBL	07 ACTIVE
000B	801FC6BC	03000000	1	0000	004B	04 PPGTBL	87 ACTIVE
000C	00000000	00000000	0	0566		00 PROCESS	00 FREELST
000D	801FD3E0	0040FFB8	1		0000	02 GLOBAL	07 ACTIVE
000E	801FD474	0040FFA0	0	03FB	0D11	02 GLOBAL	00 FREELST
000F	8010CF1C	033FFFFF	1	0000	0084	00 PROCESS	87 ACTIVE
0010	80101040	033FFFFF	1	0000	008C	00 PROCESS	87 ACTIVE
0011	801FD524	0040FF90	1	0002	0000	02 GLOBAL	07 ACTIVE
0012	8017C9D0	03000000	1	0000	0047	00 PROCESS	07 ACTIVE
0013	80113F88	0300E2C6	1	0000	014B	00 PROCESS	07 ACTIVE
0014	8011F480	03000000	1	0000	00B8	00 PROCESS	07 ACTIVE
0015	801F0464	03000000	1	0000	006B	00 PROCESS	07 ACTIVE
0016	8010C610	0040FFE8	0		0195	00 PROCESS	00 FREELST
0017	8016D3BC	03000000	1		00FE	00 PROCESS	07 ACTIVE
0018	800B50D8	03000000	1		005D	00 PROCESS	07 ACTIVE
0019	8016D338	03000000	1		0143	00 PROCESS	07 ACTIVE
001A	801FB774	03000000	1		004E	04 PPGTBL	87 ACTIVE
001B	8016D254	033FFFFF	0		0634	00 PROCESS	81 MDFYLST
001C 001D	801D20D8	033FFFFF	1	0000		00 PROCESS	87 ACTIVE
001D 001E	801FD5F0 8010A8D8	0040FF90 03005305	1 1	0002	0000 0175	02 GLOBAL	07 ACTIVE
001E 001F	801FD6DC	0040FF70	1			00 PROCESS	87 ACTIVE
0020	8011D848	033FFFFF	1	0000	0000 00D2	02 GLOBAL 00 PROCESS	07 ACTIVE 87 ACTIVE
0020	8010CFE0	033FFFFF	1		00D2 00DC	00 PROCESS	87 ACTIVE
0022	801B59D4	03000000	1		0046	00 PROCESS	07 ACTIVE
0023	00000000	00000000	0		025B	00 PROCESS	00 FREELST
0024	80174CA4	03000000	ĩ		00CC	00 PROCESS	07 ACTIVE
0025	00000000	00000000	ō		08CB	00 PROCESS	00 FREELST
0026	8010CE34	0300E2E0	ŏ		0423	00 PROCESS	81 MDFYLST
0027	801FCB6C	03000000	ĩ		004F	04 PPGTBL	87 ACTIVE
0028	8010CA28	0040FFE8	1	0000		00 PROCESS	07 ACTIVE
0029	8010CC98	033FFFFF	ō	0A25		00 PROCESS	81 MDFYLST
002A	801601F4	03008FF2	1	0000	0058	00 PROCESS	87 ACTIVE
002B	8010C604	0040FFE8	0	07AC	ODLE	00 PROCESS	00 FREELST
002C	8016D348	03000000	1	0000		00 PROCESS	07 ACTIVE
002D	8016D204	0300E352	0	04D1	0007	00 PROCESS	00 FREELST
002E	801A2838	0300861C	1	0000	00D7	00 PROCESS	87 ACTIVE
002F	00000000	00000000	0	0840		00 PROCESS	00 FREELST
0030	801FD2E8	0040FFD0	1	0003		02 GLOBAL	07 ACTIVE
0031	00000000	00000000	0		08CD	00 PROCESS	00 FREELST
0032	8010C7C4	0040FFE8	1	0000	017A	00 PROCESS	07 ACTIVE

Figure 5-7 PFN Data Base

SHOW POOL

The SHOW POOL command displays the contents of the I/O Request Packet (IRP) pool, the nonpaged dynamic storage pool, and the paged dynamic storage pool. This data is organized into blocks; SDA attempts to identify each block by its block type. SHOW POOL displays only allocated blocks, that is, blocks that are (or were) currently in use by the system.

The information contained in each of the three pools is shown in the same format. From left to right, the contents of the display are:

- Block type -- the type of information contained in the block. SDA tries to define the block type. If it is unable to do so, the message UNKNOWN is printed instead of the name of the block type.
- Starting address -- the virtual address that marks the start of the block.
- Block size -- the number (decimal) of bytes of nonpaged memory allocated to the block. The block size is fixed at 80 in the IRP pool and is variable in the paged and nonpaged pools.
- Contents (hexadecimal) -- the contents of the block in longwords. The contents are arranged four columns across.
- Contents (ASCII) -- the contents of the block in ASCII format.

Format

SHOW POOL

Qualifiers Defaults

/IRP /NONPAGED /PAGED /SUMMARY /ALL /ALL

Parameters

None

Qualifiers

/IRP

Prints the I/O request packet pool. Formats all blocks currently allocated (in use) within this pool.

/NONPAGED

Prints the nonpaged dynamic storage pool currently in use by the system.

/PAGED

Prints the paged dynamic storage pool currently in use by the system.

/SUMMARY

Prints a summary of the pools selected by the above qualifiers. /SUMMARY displays the different block types present and lists the total number and bytes used of each in decimal. This qualifier also prints the total number of bytes used in each pool.

/ALL

Prints IRP, nonpaged, and paged dynamic storage pools. This is the default for the command.

Examples

1. SDA> SHOW POOL/PAGED

Figure 5-8 shows a page of the display produced by this command.

	MS 2.0 Sys dynamic stor			is			21-MAY-1
GSD	80056FA0	48					
			00010004	00150028	80056FD0	80056B10	.ko (
			5F424D53	5452500A	80056870	FFC8A000	phPRTSMB
GSD	80056FD0	48	00000000	00000000	00000000	00313030	001
GSD	80036FD0	40	00010004	00150028	80057000	80056FA0	.op(
			59414C50	5349440B	80056970	FFC0A000	piDISPLAY
			00000000	00000000	00000000	3130305F	_001
GSD	80057000	48					
					80057320 80056970		.o s(piDISPLAY
					000000000		002
KFH	80057030	240	00000000	00000000	00000000	52.505051	
							.qpi&. .(.
							8.D0201
					00000000		
					0000373E		>7"
					0000001D		
					59414C50		.DISPLAY
					00000000 008644D4		.01
					00864404		.J
					000000002		
					00000000		
					000A0010		
					000B0010		
			FD00000C	003FFFEC	0014000C	00000012	?
			00000000	00000000	00000000	FFFF0000	
KFI	80057120	64	00240000	04100040	80057160	80056080	.i`q@4.
					00020387		.1qe
					00108001		.t
					4F485304		qSHOW
KFI	80057160	64					
					800571A0		qq4.
					00008001		
					00000000		
KFI	800571A0	64	00000000	00000000	50495003	000000000	PIP
KFI	0003/1A0	04	00340000	04180040	800571E0	80057160	`aa@4.
					00018205		
					00000000		
					534F5303		.qSOS
KFI	800571E0	64					
					80057220		.q r@4.
					00010307		P/
					00000000		. x
KFI	80057000	64	00000000	00000000	58535203	800571E0	.qRSX
KF1	80057220	64	00340000	04180040	80057260	80057150	.q`r@4.
					00010307		.y4.
					00000000		. Z
					43414209		rBACKTRANS
KFI	80057260	64					
			00340000	04180040	800572A0	80057220	rr4.

Figure 5-8 Paged Dynamic Storage Pool

SHOW PROCESS

The SHOW PROCESS command displays the software and hardware context of any process in the balance set.

Format

SHOW PROCESS { [name] [/INDEX=nn] { [/SYSTEM] }

Qualifiers

Defaults

/PCB

/PCB /PHD /REGISTERS /WORKING_SET /PROCESS_SECTION_TABLE /PAGE_TABLES /ALL

Parameters

name

A 1- to 15-character alphanumeric string assigned to the process. The name can include the symbols underline (_) and dollar sign (\$).

/INDEX=nn

The index to the software PCB; nn consists of the last four hexadecimal digits of the Process Identification (PID).

/SYSTEM

The system process control block. The system PCB and process header (PHD) are dummy structures that are located in system space and contain the system working set, global section table, global page table, and other system-wide data. When you specify this parameter, SDA displays the system PCB rather than a given process.

If no parameter is specified, the command displays the current process. See the description of the SET PROCESS command for the definition of the current process.

Qualifiers

/PCB

Produces a formatted list of the data contained in the software process control block (PCB). The software PCB is the central control mechanism for process swapping and scheduling.

The display produced by the /PCB qualifier lists:

- Software context for the process
- Condition handling information
- Interprocess communication data
- Counts and quotas

/PCB is the default display for the command.

/PHD

Lists information included in the process header. The process header contains a process's vital statistics and is swapped into memory when a process becomes part of the balance set. Each item listed by the /PHD qualifier gives a quantity, count, or limit for the process concerning:

- Process memory
- Pager
- Scheduler
- Asynchronous system traps
- I/O activity
- CPU activity

/REGISTERS

Lists the process's hardware context. When a process executes, its hardware context is saved in the processor registers (see the description of the SHOW CRASH command). If the process is not executing, its hardware context is stored in the hardware PCB, which is part of the process header. The /REGISTERS qualifier organizes the saved process registers into:

- General-purpose registers
- Stack pointers
- Special-purpose registers
- Base and length registers

/WORKING SET

Displays the working set list for the process. The working set list is a table for all virtual pages residing in physical memory that the process can access without a page fault. The values exhibited by this command are:

- INDEX -- index used in PFN data base to access the entry
- ADDRESS -- address of a virtual page in the process address space
- STATUS -- a 3-part section that lists the location of the page in physical memory, the type of page (see the description of the SHOW PAGE TABLE command), and whether the page is locked into the working set

When SDA locates an unused working set entry, it issues the message:

---- n empty entries

The value of n is the number (in decimal) of unused entries that SDA has found.

/PROCESS SECTION TABLE

Lists data within the process section table. The process section table contains information needed to locate a page in a process section. SDA notes the boundary of the Process Section Table in the "Process Section Table Information" section of the listing and then displays the actual process section table in readable format. The parts of the process section table are:

- INDEX -- the word that locates the corresponding process section table entry
- ADDRESS -- the virtual address in the program region that marks the location of a process section table page
- PAGES -- the length of a process section in pages
- WINDOW -- the mapping window that translates virtual block numbers to logical block numbers
- VBN -- virtual block number; the number of a block on a mass storage device (the block number is relative to a file rather than to a device)
- CLUSTER -- the cluster factor used when faulting pages in the corresponding process section
- CHANNEL -- the channel number connecting a process section to a device unit
- REFCNT -- a number that indicates whether the page is part of a working set
- FLINK -- the forward link word in the PST list
- BLINK -- the backward link word in the PST list
- FLAGS -- the flags that describe the process section during process execution

/PAGE TABLES

Displays the program and control region page tables. /PAGE TABLES produces a list in the same format as the SHOW PAGE TABLE command.

/ALL

Displays the information produced by the /PCB, /PHD, /REGISTERS, /WORKING_SET, /PROCESS_SECTION_TABLE, and /PAGE_TABLES qualifiers.

Examples

1. SDA> SHOW PROCESS/PCB

The top portion of Figure 5-9 shows the display produced by this command.

2. SDA> SHOW PROCESS/PHD

The middle portion of Figure 5-9 shows the display produced by this command.

3. SDA> SHOW PROCESS/REGISTERS

The bottom portion of Figure 5-9 shows the display produced by this command.

VAX/VMS 2.0 -- System Dump Analysis Process 2B dump: ELDRIDGE

3-JAN-1980 16:54:45.57

Process status: 00040001 RES, PHDRES

PCB address	8008BD20	JIB address	8009DB80
Master PID	0004002B	Creator PID	0000000
PID	0004002B	Subprocess count	0
PHD address	80180A00	Swapfile disk address	0000000
State	LEF	Termination mailbox	0000
Current priority	9	AST's enabled	KESU
Base priority	4	AST's active	NONE
UIC	[011,013]	AST's remaining	14
Mutex count	0	Buffered I/O count/limit	5/6
Waiting EF cluster	0	Direct I/O count/limit	6/6
Starting wait time	00000000	BUFIO byte count/limit	12056/12336
Event flag wait mask	F7FFFFF	# open files allowed left	10
Local EF cluster 0	4000031B	Timer entries allowed lef	t 10
Local EF cluster l	80000041	Active page table count	0
Global cluster 2 pointe:	r 00000000	Process WS page count	235
Global cluster 3 pointe:	r 00000000	Global WS page count	14

Process header

First free PO address	0002C800	Accumulated CPU time	00001446
Free PTEs between PO/Pl	7478	CPU since last quantum	0031
First free Pl address	7FFD3200	Subprocess quota	8
Free page file pages	25252	AST limit	16
Page fault cluster size	127	Process header index	0018
Page table cluster size	2	Backup address vector	03A5
Flags	0002	WSL index save area	0380
Direct I/O count	727	PTs having locked WSLs	2
Buffered I/O count	4958	PTs having valid WSLs	б
Limit on CPU time	00000000	Active page tables	7
Maximum page file count	25600	Maximum active PTs	7
Total page faults	7154	Guaranteed fluid WS pages	20
File limit	16	Extra dynamic WS entries	360
Timer queue limit	10	Locked WSLE counts array	0FB8
Paging file index	03000000	Valid WSLE counts array	0FF8

Saved process registers

R0	=	08000000	R1	=	00000000	R2	=	80001AD0	R3	=	8008BD70
R4	=	8008BD20	R5	=	00000000	R6	=	000008DC	R7	=	00000003
R8	=	7FFD5A58	R9	=	7FFDC120	R10	=	7FFDC008	R11	Ŧ	7FFDBA8C
AP	=	7FFD590C	FP	=	7FFD5914	PC	=	80000328	PSL	=	03C00000
KSP	Ξ	7 FFEE4 00	ESP	=	7FFEF000	SSP	=	7FFEF878	USP	=	7FFD590C
POBR	=	80181C00	POLR	=	00000164	PlBR	≖	7F989C00	PllR	-	001FFE9A

Figure 5-9 Process Information

4. SDA> SHOW PROCESS/WORKING_SET

Figure 5-10 shows the display produced by this command. The size of the working set and its boundaries are listed at the head of the display. The actual working set list follows this information.

VAX/VMS 2.0 -- System Dump Analysis Process 34 dump: GROVE 21-MAY-1979 15:19:08.57

Working set information

First WSL entry	0046	Current authorized working set size	1000
First locked entry	0051	Default (initial) working set size	350
First dynamic entry	0052	Maximum working set allowed (quota)	1000
Last entry replaced	015A		
Last entry in list	01A3		

Working set list

INDEX	ADDRESS	STATUS		
INDEX	ADDRESS	SIAIUS		
0046	7 FF EEA00	VALID	PROCESS	WSLOCK
0047	7FFEE800	VALID	PROCESS	WSLOCK
0048	7FFEE600	VALID	PROCESS	WSLOCK
0049	7FFEFE00	VALID	PROCESS	WSLOCK
004A	8010AC00	VALID	PPGTBL	WSLOCK
004B	8010AE00	VALID	PPGTBL	WSLOCK
004C	8010B000	VALID	PPGTBL	WSLOCK
004D	8010C000	VALID	PPGTBL	WSLOCK
004E	8010C200	VALID	PPGTBL	WSLOCK
004F	80113E00	VALID	PPGTBL	WSLOCK
0050	80114000	VALID	PPGTBL	WSLOCK
0051	8010B200	VALID	PPGTBL	WSLOCK
0052	00054400	VALID	PROCESS	
0053	00054A00	VALID	PROCESS	
0054	00055400	VALID	PROCESS	
0055	00054E00	VALID	PROCESS	
0056	00054C00	VALID	PROCESS	
0057	00055000	VALID	PROCESS	
0058	00055200	VALID	PROCESS	
0059	00063E00	VALID	PROCESS	
005A	00056600	VALID	PROCESS	
005B	00055600	VALID	PROCESS	
005C	00068E00	VALID	PROCESS	
005D	00055C00	VALID	PROCESS	
005E	0005BE00	VALID	PROCESS	
005F	00069000	VALID	PROCESS	
0060	00056200	VALID	PROCESS	
0061	00056400	VALID	PROCESS	
0062	00069200	VALID	PROCESS	
0063	00056A00	VALID	PROCESS	
0064	00069400	VALID	PROCESS	
0065	00056C00	VALID	PROCESS	
0066	00056E00	VALID	PROCESS	
0067	00064000	VALID	PROCESS	
0068	00069600	VALID	PROCESS	
0069	0005C400	VALID	PROCESS	
006A	00057200	VALID	PROCESS	
006B 006C	00057400 00059200	VALID VALID	PROCESS	
006C 006D	00059200	VALID	PROCESS	
0000	00059000	VALID	FRUCE35	

Figure 5-10 Working Set List

5. SDA> SHOW PROCESS/PROCESS_SECTION_TABLE

Figure 5-11 shows the display produced by this command.

VAX/VMS 2.0 -- System Dump Analysis Process 34 dump: GROVE

21-MAY-1979 15:29:24.56

Process section table information

Last entry allocated FFE0 First free PST entry 0000

Process section table

INDEX	ADDRESS	PAGES	WINDOW	VBN	CLUSTER	CHANNEL	REFCNT	FLINK	BLINK	FLAGE
FFF8	00000200	0000000F	8006B980	00000002	0	7FFE1DE0	0	FFE8	FFE8	
FFFO	00076600	80000008	80078050	00000002	0	7FFE1D90	7	FFFO	FFFO	
FFE8	00003C00	00000188	8006B980	00000013	0	7FFE1DE0	355	FFF8	FFF8	
FFEO	00077600	00000033	80079220	0000019C	0	7FFE1D60	51	FFEO	FFEO	

Figure 5-11 Process Section Table

6. SDA> SHOW PROCESS/PAGE_TABLES

Figure 5-12 shows a portion of the display produced by this command.

22-MAY-1979 10:40:52.99

VAX/VMS 2.0 -- System Dump Analysis Process Ol dump: SWAPPER

P0 page table

ADDRESS	SVAPTE	с рте	TYPE	PROT	BITS	PAGTYP	LOC	STATE	TYPE	REFCNT	BAK	SVAPTE	FLINK	BLINK
00000000	8005EE30	D0000B6D	VALID	SRKW	к	PPGTBL	ACTIVE	87	04	1	03000000	801FA7D8	0000	004A
00000200	8005EE34		VALID			PPGTBL	ACTIVE		04	1	03000000	801FA900	000F	0050
00000400	8005EE38	D40009DD	VALID			PROCESS			00	1	03000000	800C81FC	0000	0049
00000600	8005EE3C	D0000075	VALID	SRKW	F	PROCESS	ACTIVE	87	00	1	03000000	800C803C	0000	0051
00000800	8005EE40	D0000B77	VALID	SRKW	F	PROCESS	ACTIVE	87	00	1	03000000	800C80C8	0000	0052
00000A00	8005EE44	D0000B73	VALID	SRKW	P	PROCESS	ACTIVE	07	00	1	03000000	800C81D4	0000	0046
00000C00	8005EE48	D00005FB	VALID	SRKW	F	PROCESS	ACTIVE	: 07	00	1	03000000	800C81D0	0000	0047
00000E00	8005EE4C	D4000C4C	VALID	SRKW	MP	PROCESS	ACTIVE	07	00	1	03000000	800C81CC	0000	0048
00001000	8005EE50	D00009DD	VALID	SRKW	F	PROCESS	ACTIVE	07	00	1	03000000	800C81FC	0000	0049
00001200	8005EE54	D0000075	VALID	SRKW	F	PROCESS	ACTIVE	87	00	1	03000000	800C803C	0000	0051
00001400	8005EE58	D0000B77	VALID	SRKW	F	PROCESS	ACTIVE	: 87	00	1	03000000	800C80C8	0000	0052
00001600	8005EE5C	D4000290	VALID	SRKW	MB	PPGTBL	ACTIVE	87	04	1	03000000	801FA7E0	0000	004C
00001800	8005EE60	D4000397	VALID	SRKW	MP	PPGTBL	ACTIVE	87	04	1	03000000	801FA7DC	0000	004B
	1 NULL PAGES	3												
00001C00	8005EE68	D0000AA6	VALID	SRKW	F	PROCESS	FREELS	т 00	00	0	00000000	00000000	05E4	0288
00001E00	8005EE6C		VALID			PROCESS			00	Ō	00000000	00000000	01C9	OOAE
00002000	8005EE70	D00001CB	VALID		F	PROCESS	FREELS	т 00	00	0	00000000	00000000	0271	0456
00002200		D0000D04	VALID			PROCESS			00	0	00000000	00000000	0BC1	0C32
00002400	8005EE78		VALID			PROCESS			00	0	00000000	00000000	0596	0523
00002600	8005EE7C	D0000271	VALID	SRKW	F	PROCESS	FREELS	т 00	00	0	00000000	00000000	0331	01CB
00002800	8005EE80	D0000BC7	VALID	SRKW	ŀ	PROCESS	FREELS	T 00	00	0	00000000	00000000	049E	OBCA
00002A00	8005EE84	D0000066	VALID			PROCESS			00	0	00000000	00000000	06DF	0384
00002C00	8005EE88		VALID			PROCESS			00	0	00000000	00000000	00CB	09F0
00002E00	8005EE8C	D0000C32	VALID	SRKW	F	PROCESS	FREELS	T 00	00	0	00000000	00000000	0D04	080C
00003000	8005EE90	D000080C	VALID	SRKW	F	PROCESS	FREELS	T 00	00	0	00000000	00000000	0C32	0539
00003200	8005EE94	D0000539	VALID	SRKW	F	PROCESS	FREELS	ST 00	00	0	00000000	00000000	080C	0038
00003400	8005EE98	D0000BC1	VALID	SRKW	F	PROCESS	FREELS	ST 00	00	0	00000000	00000000	0456	0D04
00003600	8005EE9C	D00006AA	VALID	SRKW	F	PROCESS	FREELS	T 00	00	0	00000000	00000000	0DD8	0B24
00003800	8005EEA0	D0000DE9	VALID	SRKW	F	PROCESS	FREELS	ST 00	00	0	00000000	00000000	0DD1	0C8C
00003A00	8005EEA4	D0000A9B	VALID	SRKW	F	PROCESS	FREELS	ST 00	00	0	00000000	00000000	09A7	0044
00003C00	8005EEA8	D0000012	VALID	SRKW	۴	PROCESS	FREELS	т 00	00	0	00000000	00000000	0779	08BA
00003E00	8005EEAC	D000094D	VALID	SRKW	F	PROCESS	FREELS	т 00	00	0	00000000	00000000	04E7	03FC
00004000	8005EEB0	D0000448	VALID	SRKW	F	PROCESS	FREELS	ST 00	00	0	00000000	00000000	0763	0839
00004200	8005EEB4	D00007E5	VALID	SRKW	F	PROCESS	FREELS	т 00	00	0	00000000	00000000	0557	0AC3
00004400	8005EEB8	D0000456	VALID	SRKW	K	PROCESS	FREELS	00 T	00	0	00000000	00000000	01CB	0BC1
00004600	8005EEBC	D000006F	VALID	SRKW	F	PROCESS	FREELS	т 00 т	00	0	00000000	00000000	0952	ODE8
00004800	8005EEC0	D0000DCC	VALID	SRKW	F	GLOBAL	FREELS	T 00	02	0	0040FF08	801FE2E4	054C	075E
00004A00	8005EEC4	D0000DB9	VALID	SRKW	ŀ	PROCESS	FREELS	т 00	00	0	00000000	00000000	070F	OOCE
00004C00	8005EEC8	D0000234	VALID	SRKW	F	PROCESS	FREELS	т 00	ÓÓ	0	00000000	00000000	0 A 8 B	067B
00004E00	8005EECC	D0000A59	VALID	SRKW	F	PROCESS	FREELS	T 00	00	0	00000000	00000000	009A	0557
00005000	8005EED0	D000074B	VALID	SRKW	F	PROCESS	FREELS	т 00	00	0	00000000	00000000	0407	040A
00005200	8005EED4		VALID	SRKW		PROCESS			00	0	00000000	00000000	0050	0522
00005400	8005EED8		VALID	SRKW		GLOBAL	FREELS		02	0	004CFFD0	801FD34C	074D	08E0
00005600	8005EEDC		VALID			PROCESS			00	0	00000000	00000000	086A	0DB9
00005800	8005EEE0	D00002CB	VALID	SRKW	F	PROCESS	FREELS	ST 00	00	0	00000000	00000000	0511	0889

Figure 5-12 Program Region Memory

SHOW STACK

The SHOW STACK command displays the location and contents of the four stacks used by a given process as well as the system-wide interrupt stack.

Each qualifier displays one of four stacks that correspond to the four VAX/VMS processor access modes for a specific process. The /INTERRUPT qualifier displays the system-wide interrupt stack. The default for SHOW STACK is the stack that is currently being used or that was in use when the system failed.

Figure 5-13 shows the display produced by the SHOW STACK command. The display is the same for each stack, and is composed of four sections:

• Stack Pointer -- the stack pointer identifies the top of the stack. The display indicates the stack pointer by the symbol:

SP => 7FFEF868 00000001

- Stack address -- SDA lists all the virtual addresses allocated to the stack by the operating system. The stack addresses are listed in a column which increases by 4 (one longword).
- Stack contents -- SDA lists the contents of the stack in a column next to the stack addresses.
- Global symbols -- SDA attempts to display the contents of a location symbolically using a symbol and an offset. For example:

7FFEF868 7FFEE200 MMG\$HDRBUF 7FFEF86C 7FFEE208 MMG\$HDRBUF+08

If the value is not within range of any existing symbols, the field will be left blank.

If a stack is empty, the stack pointer will point to the message:

SP => (THE STACK IS EMPTY)

SDA will display only five pages of any stack.

Format

SHOW STACK	
Qualifiers	Defaults
/INTERRUPT	Stack currently in use (running system) or in use when system failed
/KERNEL	
/EXECUTIVE	
/SUPERVISOR	
/USER	
/ALL	

Parameters

None

Qualifiers

/INTERRUPT

Displays the interrupt stack. This stack is always resident in memory and is used during hardware interrupt processing.

/KERNEL

Displays the kernel stack for the current process.

/EXECUTIVE

Displays the executive stack for the current process.

/SUPERVISOR

Displays the supervisor stack for the current process.

/USER

Displays the user stack for the current process.

/ALL

Displays all the stacks described above.

Examples

1. SDA> SHOW STACK/KERNEL

Figure 5-13 shows a portion of the display produced by this command.

VAX/VMS 2.0 -- System Dump Analysis Current operating stack

Current operating stack (KERNEL):

21-MAY-1979 15:34:40.49

	7FFEEB18 7FFEEB1C 7FFEEB20 7FFEEB24 7FFEEB28 7FFEEB2C 7FFEEB30 7FFEEB34	00001000 7FFEEB20 7FFEF000 7FFEF828 7FFD865C 8007C200 80006074 00070000	CTL\$GL_KSTKBAS+520 CTL\$GL_KSPINI+400 CTL\$GL_KSPINI+C28 EXE\$SWAPINIT+9F8
SP =>	7FFEEB38 7FFEEB3C 7FFEEB40	8006BAC0 7FFDFE00 00000000	
	7FFEEB44 7FFEEB48 7FFEEB4C 7FFEEB50 7FFEEB54	801F1868 80007814 00070000 00000000 00000002	MMG\$EXTRADYNWS+164
	7FFEEB58 7FFEEB5C 7FFEEB60 7FFEEB64	00020004 8000C4DF 8000C487 3FFFFFFF	EXE\$DELTVA+0AA EXE\$DELTVA+052
	7FFEEB68 7FFEEB6C 7FFEEB70 7FFEEB74 7FFEEB78	00000000 8000771F 00000000 00000000 00000000	MMG\$EXTRADYNWS+06F
	7FFEEB7C 7FFEEB80 7FFEEB84	00000000 00000000 7FFEEBC4	CTL\$GL_KSTKBAS+5C4
	7FFEEB88 7FFEEB8C 7FFEEB90 7FFEEB94	7FFEEB98 8000B4E3 80000116 00800000	CTL\$GL [–] KSTKBAS+598 EXE\$CMODEXEC+0D3 SYS\$DELTVA+006
	7FFEEB98 7FFEEB9C 7FFEEBA0	00000000 20FC0000 7FFEF854	CTL\$GL_KSPINI+C54
	7FFEEBA4 7FFEEBA8 7FFEEBAC 7FFEEBB0	7FFEEBE4 8000BBF7 7FFEEBD4 7FFE1DF0	CTL\$GL_KSTKBAS+5E4 MMG\$IMGRESET+030 CTL\$GL_KSTKBAS+5D4 CTL\$GL_CCB
	7FFEEBB4 7FFEEBB8 7FFEEBBC 7FFEEBC0	8006BAC0 7FFDFE00 FFFFFFFF 00000003	-
	7FFEEBC4 7FFEEBC8 7FFEEBCC 7FFEEBD0	00000003 7FFEEBD4 00000000 00000000	CTL\$GL_KSTKBAS+5D4
	7FFEEBD4 7FFEEBD8 7FFEEBDC	3FFFFFFF 00000000 00000000	
	7FFEEBEO 7FFEEBE4	80008E38 00000000	EXE\$RUNDWN+04E

Figure 5-13 Current Operating Stack (Kernel)

SHOW SUMMARY

The SHOW SUMMARY command displays a formatted list of all active processes. The display shows the values used in swapping and scheduling for these processes. Figure 5-14 is an example of the display produced by the SHOW SUMMARY command. The information listed in the display includes:

- PID -- the 32 bit quantity that uniquely identifies the process
- PROCESS NAME -- the name assigned to the process
- IMAGE NAME -- the VAX/VMS file specification of the image currently executing in the process's context
- STATE -- the condition of the process (see the VAX/VMS System Manager's Guide for a description of possible states)
- PRI -- the current scheduling priority of the process
- UIC -- User Identification Code
- WKSET -- the total number (in decimal) of pages currently in the working set

If the process has been swapped out of the balance set, this message appears in the "Image Name" column:

---- SWAPPED OUT ----

Format

Qualifiers Defaults

None None

Parameters

None

Examples

1. SDA> SHOW SUMMARY

Figure 5-14 shows the display produced by this command.

VAX/VMS 2.0 -- System Dump Analysis Current process summary

21-MAY-1979 15:36:26.03

PID	PROCESS NAME	IMAGE NAME	STATE	PRI	UIC	WKSET
00010000	NULL		сом	0	[000,000]	0
00010001	SWAPPER		HIB		1000,000	
	TTA3:	DBA0: [SYSEXE] VMOUNT.EXE;	LEF		[017,022]	
0003001A	TTF7:	DBA0: [SYSEXE] MAIL.EXE;	COM		[320,100]	
0005001B	MANDERLEY	DBA0: [SYSEXE] RSX.EXE;	LEF		[360,007]	
000B001C	TTA1:	DBA0: [SYSEXE] LOGINOUT.EXE;	LEF	4	[010,040]	39
0014001D	KAREN		LEF	4	[361,006]	41
000C001E	CRAIG	DBA0: [SYSEXE] BACKTRANS.EXE;	LEF	4	[320,111]	70
0001001F	DERF		LEF	8	[320,114]	41
000B0020	USER		LEF	7	[304,003]	150
00100021	NOAH	DBA0: [SYSEXE] LOGINOUT.EXE;	LEF	7	[361,002]	67
00050022	LYNN	DBA0: [SYSEXE] SUBMIT.EXE;8	LEF	4	[320,110]	68
001E0023	LAMONT	DBA0: [SYSEXE] SHOW.EXE;	LEF	4	[360,003]	61
00170024	OZZIE	DBA0: [SYSEXE] TYPE.EXE; 31	LEF	4	[360,002]	70
00060025	CLEO	DBA0: [SYSEXE] DELETE.EXE;4	LEF	4	[361,004]	68
00020026	MAJA	DBA0: [SYSEXE] COPY.EXE;	LEF	4	[304,002]	55
00170027	BOUSQUET	DBA0: [SYSEXE] TALK.EXE;	LEF	4	[011,016]	53
00020028			LEF	7	[360,016]	45
00040029	WIZARD	DBA0: [SYSEXE] BACKTRANS.EXE;	LEF		[017,022]	
000F002A	BOUFFON		COM	4	[300,041]	300
000B002B	HARLEY	DBA0: [SYSEXE] SHOW.EXE;	LEF		[017,022]	
0018002C	DAVIDSON	DBA0: [SYSEXE] BACKTRANS.EXE;	LEF	8	[361,013]	43
000F002D	RMS	DBA0: [SYSEXE] COPY.EXE;	LEF	4	1011.0161	70
0007002E	TTG4:	DBA0: [SYSEXE] DISPLAY.EXE;	LEF	7	[311,001]	39
0013002F	KURT	SWAPPED OUT	LEFO	4	[361,003]	61
000F0030	MEYERS		LEF		[360,005]	
000F0031	EDWIN		LEF		[360,001]	
00040032	TTG3:	SWAPPED OUT	LEFO		(311,001)	
00090033	WOODROW	DBA0: [SYSEXE] USERS.EXE;	LEF	4	[201,201]	50
00200034	FRED	DB2: [F4V2.TOOL] BLISS32.EXE;43	CUR	5	1320,100	338
00190035	REID	SWAPPED OUT	LEFO	7	1361,010	106
00160036	LOWELL		LEF	5	301,021	45
00210037	OPPENHEIM	SWAPPED OUT	LEFO	4	[360,023]	43
00010038	NETACP		HIB		[001,001]	
00010039	PRTSYMB4	DBA0:[SYSEXE]PRTSMB.EXE;	HIB		[001,004]	
0001003A	PRTSYMB3	DBA0: [SYSEXE] PRTSMB.EXE;	HIB		[001,004]	
0001003B	PRTSYMB2	DBA0: [SYSEXE] PRTSMB.EXE;	HIB	8	[001,004]	41
0001003C	PRTSYMB1	DBA0: [SYSEXE] PRTSMB.EXE;	HIB	8	[001,004]	41
0001003D	DBA2ACP	DBA0: [SYSEXE] F11BACP.EXE;	HIB	11	[001,003]	104
0031003E	GUITAR		HIB		[361,010]	
0001003F	ERRFMT		HIB		[001,006]	
00010040	OPCOM		LEF		[001,004]	
00010041	JOB CONTROL		HIB	13	[001,004]	100
00010042	DBAOACP		HIB	11	[001,003]	100
00020043	DBA1ACP	DBA0:[SYSEXE]F11BACP.EXE;	HIB		[001,003]	

Figure 5-14 Summary of Active Processes

SHOW SYMBOL

The SHOW SYMBOL command displays a local or global symbol and the value associated with it. If the value is a valid memory location, SDA examines that address and displays its contents.

Format

SHOW SYMBOL symbol-name

Qualifiers Defaults

/ALL None

Parameters

symbol-name

Specifies an SDA symbol that corresponds to an SDA expression. See Section 4.2.5 for more information on SDA symbols.

Qualifiers

/ALL

Displays two lists of the entire SDA symbol table. The first list organizes the local and global symbols in alphabetical order. The second list organizes these symbols by their values, starting at the lowest value. If the value represents an address, the contents of the memory location will be displayed:

TTY\$A_CTRLZ 80002A12 => 000D5A5E

If you specify a symbol name and the /ALL qualifier, SHOW SYMBOL displays a list of all the symbols that begin with the specified symbol name. For example, SHOW SYMBOL IOC\$GL displays all the symbols with starting characters IOC\$GL.

Examples

1. SDA> SHOW SYMBOL BUG\$FATAL BUG\$FATAL = 80008256 : 08309F9E

In this example, the global symbol, its system virtual address, and the value stored at the address are shown.

2. SDA> DEFINE START = 00000000 SDA> SHOW SYMBOL START START = 000000000 : 009A029A

> In this example, a local symbol is defined. See the description of the DEFINE command for more information about symbol definition.

3. SDA> SHOW SYMBOL/ALL

Figure 5-15 shows a page of the listing produced by this command.

IO\$M FCODE	000003F			IOC\$REQCOM	8000A6B3 =>	>	534CA5D0	MMG\$AL PGDCOD	8000B400 =>	D	500CF31
IO\$ LOGICAL	0000002F			IOC\$REQDATAP	8000A762 =>	>	A5D001DD	MMG\$AL PGDCODEN	80011000		
10\$ PHYSICAL	000001F			IOC\$REODATAPNW	8000A75E =>	>	021100DD	MMG\$AL SBICONF	80003264 =>	00	0000000
IO\$ READLBLK	00000021			IOC\$REOMAPREG	8000A7D3 =>	>	50E83210	MMG\$AL SYSPCB	800038D8 =>	80	00038D8
IO\$ READPBLK	000000C			IOC\$REOPCHANH	8000A67F =>	>	5020A5D0	MMG\$A ENDVEC	80000600 =>	00	000007A
IOS READVBLK	00000031			IOC\$REOPCHANL	8000A688 =>			MMG\$A PAGFIL	800031D8 =>		
IOS WRITELBLK	00000020			IOC\$REQSCHANH	8000A66B =>			MMG\$A SYSPARAM	80004400 =>		
IO\$ WRITEPBLK	0000000B			IOC\$REQSCHANL	8000A675 =>			MMG\$CRECOM1	8000C39F =>		
IO\$ WRITEVBLK	00000030			IOC\$RETURN	8000A869 =>			MMG\$CRECOM2	8000C3A7 =>		
IOCSALOUBAMAP	8000A807	=>	A53C38BB	IOC\$SEARCHDEV	8000B8D6 =>			MMG\$CREPAG	8000C51D =>		
IOC\$ALOUBAMAPN	8000A803	=>	151138BB	IOC\$SEARCHGEN	8000B8DB =>			MMG\$CRETVA	8000C380 =>		
IOC\$ALTUBAMAP	8000A7E5			IOC\$UNLOCK	8000B9F9 =>			MMG\$DALCPAGFIL	800070C4 =>		
IOC\$APPLYECC	8000A8AC			IOCSUPDATRANSP	8000A9C8 =>			MMG\$DALCSTX	8000BD1E =>		
IOCSCANCELIO	8000A551			IOC\$VERIFYCHAN	8000BA0B =>			MMG\$DALCSTXSCN	8000BCA5 =>		
IOC\$CREATE UCB	8000B7F6			IOC\$WAKACP	800053F4 =>			MMG\$DALLOCPFN	80006D23 =>		
IOC\$CVTLOGPHY	8000A920			IOC\$WFIKPCH	8000A86A =>			MMG\$DECPHDREF	80006B2C =>		
IOCSCVT DEVNAM	8000B87A			IOC\$WFIRLCH	8000A88A =>			MMG\$DECPHDREF1	80006B30 =>		
IOC\$DELMBX	8000A568			IPL\$ ASTDEL	00000002	·	12020200	MMG\$DECPTREF	80006AC5 =>		
IOC\$DIAGBUFILL	8000A5EE			IPL\$ HWCLK	00000018			MMG\$DECSECREF	8000712E =>		
IOC\$DIRPOST1	80005544			IPL\$ IOPOST	00000004			MMG\$DELCONPFN	80006B97 =>		
IOCSDISMOUNT	8000B665			IPL\$ MAILBOX	0000000B			MMG\$DELGBLSEC	80007963 =>		
IOC\$FFCHAN	8000B8AF			IPL\$ POWER	0000001F			MMG\$DELGBLWCB	8000D639 =>		
IOC\$FILSPT	8000A3C0			IPL\$ OUEUEAST	00000006			MMG\$DELGBEWCD	80006C8C =>		
IOC\$GL ADPLIST	8000083C			IPL\$ SCHED	00000003			MMG\$DELWSLEPPG	800069B9 =>		
IOC\$GL AQBLIST	80003A10			IPL\$ SYNCH	00000007			MMG\$DELWSLEX	80006995 =>		
IOCSGL DEVLIST	80000838			IPL\$ TIMER	00000007			MMG\$DGBLSC1	8000D518 =>		
IOC\$GL DIALUP	80003A1C			KFI\$GL F11AACP	80003B40 =>	、	80056830	MMG\$EXTRADYNWS	800076B0 =>		
IOC\$GL DPTLIST	80000840			LIB\$CVT DTB	8000F03E =>			MMG\$FREWSLE	8000682F =>		-
IOC\$GL IRPBL	80003A0C			LIB\$CVT_HTB	8000F04C =>			MMG\$FREWSLX	800067E7 =>		
IOC\$GL_IRPFL	80003A08			LIB\$CVT_OTB	8000F04C =>			MMG\$FRSTRONLY	80004800 =>		
IOC\$GL_MUTEX	80003B28			LOG\$AL DISKLOG	80011A08	·	00000000	MMG\$GETPTIPAG	80007A12 =>		
IOC\$GL PSBL	80003A04			LOG\$AL_LOGTBL	800039C8 =>		90003959	MMG\$GL CRDCNT	80003FB0 =>		
IOC\$GL_PSFL	80003A00			LOG\$AL_MUTEX	800039C8 =>			MMG\$GL_CTLBASVA			
IOC\$GQ BRDCST	80003A20			LOG\$DELETE	8000BA3E =>			MMG\$GL_FRESVA	80004558 =>		
IOC\$GO MOUNTLST				LOG\$GL SLTFL	800039E8 =>			MMG\$GL_GPTBASE	80004530 =>		
IOC\$GW MAXBUF	80004466			LOG\$INSLOGN	8000BA60 =>			MMG\$GL_GPTE	80004540 =>		
IOC\$GW MBXBFQUO				LOG\$LOCKR	8000BAA7 =>			MMG\$GL_GFTE	80002E84 =>		
IOC\$GW MBXMXMSG				LOGŞLOCKW	8000BAAD =>			MMG\$GL MAXGPTE	80004554 =>		
IOC\$GW MBXNMMSG				LOGSEOCRU	8000BAC8 =>			MMG\$GL MAXOFIL	80004584 =>		
IOC\$INITDRV	800126FF		00100010	LOG\$TRNSLOGNAME				MMG\$GL_MAXSYSVA			
IOC\$INITIATE	8000A6F4	=>	40455300	LOG\$UNLOCK	8000BAB3 =>			MMGSGL NPAGEDYN			
IOC\$IOPOST	80005078			MBSDDT	8000127C =>			MMG\$GL PAGEDYN	80004580 =>	-	
IOC\$LOADMBAMAP	8000AA04			MB\$DPT	80000F34 =>			MMG\$GL PAGEDIN			
IOC\$LOADUBAMAP	8000AA4E			MB\$GL DDB	80000BE4 =>			MMG\$GL PFNLOCK	80003218 =>		
IOC\$MAPVBLK	8000A947			MB\$GL_DDB MB\$GL_UCB1	80000C90 =>			MMG\$GL_PHYPGCNT			
IOC\$MOVFRUSER	8000A388			MB\$GL_UCB1 MB\$GL_UCB2	800000004 =>			MMG\$GL RMSBASE	8000445E =>		
IOC\$MOVTOUSER	8000A3A4			MB\$UCB0							
IOC\$PTETOPFN	8000A3A4			MBASINITIAL	80000ClC => 80001271 =>			MMG\$GL SBR	80004578 =>		
IOC\$QNXTSEG	800053C0			MBAŞINITIAL	80001271 =>			MMG\$GL_SPTBASE	8000455C =>		
IOC\$ONXTSEG1	800053CC			MMG\$ALCPAGFIL	80001200 =>			MMG\$GL_SPTLEN	80004560 =>		
IOC\$REINITDRV	80012705	-/	JU44A4D/	MMG\$ALCPAGFIL				MMG\$GL_SYSPHD	80004564 =>		
IOC\$RELCHAN	8000A628	->	50203500		8000BD5E =>				80004568 =>		
IOC\$RELDATAP	8000A828			MMG\$ALCSTX	8000BD35 =>			MMG\$GSDMTXULK	8000D503 =>		
IOC\$RELDATAP	8000A729			MMG\$ALLOCPFN	80006B82 =>			MMG\$GSDSCN	8000D599 =>		
IOC\$RELSCHAN	8000A799 8000A61E			MMG\$AL_BEGDRIVE	00001200 =>	(MMG\$IMGACTBUF	7FFEDA00 =>		
TOCAURTOCHUN	COUNCIE	-/	JUZUNJUU	MMG\$AL_ENDDRIVE	00002200 =)	/	UTYD0202	MMG\$IMGHDRBUF	7FFEE200 =>	1	FF66208

Figure 5-15 Global Symbols

CHAPTER 6

ANALYZING SYSTEM FAILURES -- GUIDELINES AND EXAMPLES

This chapter discusses how VAX/VMS handles internal errors and suggests procedures that can aid in determining the cause of these errors. The final sections of the chapter illustrate, through detailed analysis of a sample system failure, how SDA helps you find operating system problems.

6.1 GENERAL PROCEDURE FOR SOLVING SYSTEM FAILURES

When the VAX/VMS operating system detects an internal error so severe that normal operation cannot continue, it signals a condition known as a fatal bugcheck and shuts itself down. A bugcheck describes the error discovered by the system; each error is associated with a particular bugcheck code.

To resolve the condition, you must find the reason for the bugcheck. You generally need the VAX/VMS source code to locate the error, unless the error exists in a driver that is not supplied by DIGITAL. If this is the case, you may simply need the driver listings.

The best way to start the search for the error is to locate the line of code that signaled the bugcheck. The address of this instruction is usually contained in the Program Counter register (PC). Invoke SDA and give the SHOW CRASH command. The display SDA produces gives the contents of the PC.

Next, examine the system map file SYS\$SYSTEM:SYS.MAP. This file lists the addresses of each VAX/VMS module that resides in system space (the part of the operating system that performs basic system services and scheduling). Compare the address in the PC with the addresses in the system map file to locate the module that uses the instruction pointed to by the PC.

If you do not have the system map file, you can use SDA's symbol table. All the system global symbols that appear in SYS.MAP also exist in the SYS.STB file that SDA reads during the initialization process. To determine the offset from the closest global symbol, issue the command:

SDA> EXAMINE @PC

Once you have narrowed the search to a particular module, subtract the module's starting address from the address in the PC to get the offset into the code.

Now, to determine the general cause of the system failure, examine the code that signaled the bugcheck.

6.2 FATAL BUGCHECK CONDITIONS

If a bugcheck is signaled, it is usually caused by one of two conditions:

- A fatal exception
- An illegal page fault

6.2.1 Fatal Exceptions

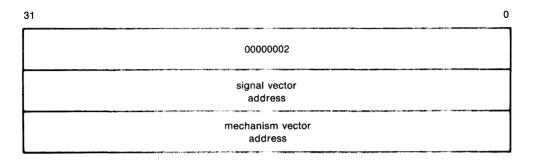
A fatal exception is an event that causes VAX/VMS to signal a fatal bugcheck. An exception is fatal when it occurs while a process is:

- Using the interrupt stack
- Executing above IPL 2 (IPL\$ ASTDEL)
- Executing in a privileged (kernel or executive) processor access mode

When the system fails, it lists the immediate cause of the failure on the LSI-11 console. For fatal exceptions, the messages appear as follows:

FATALEXCPT, Fatal executive or kernel mode exception

INVEXCEPTN, Exception while above ASTDEL or on interrupt stack


Although there are several possible exception conditions, the type that most commonly occurs is the access violation. The rest of this section discusses the access violation in detail. For more information on other kinds of exceptions, see the <u>VAX-ll Run-Time</u> Library Reference Manual.

When an access violation is detected by the VAX-ll hardware, information useful in finding the cause of the violation is pushed onto the current operating stack, that is, the stack that the process was using when the access violation occurred. This information is described by three structures, referred to as vectors. A vector is structured as follows:

31		0
	longword	
	series of	
	longwords	

The first longword in the vector shows the number of longwords that follow. Each longword in the series contains information describing conditions at the time of the exception.

The first vector that appears on the stack gives the addresses of the next two vectors:

The mechanism vector follows the first vector. This structure describes the process that was executing when the exception occurred. The diagram below illustrates the sequence of longwords in a mechanism vector:

The values contained in this vector are:

- 00000004 -- the number of longwords that follow. In a mechanism vector, this value is always four.
- Frame -- the address of the stack frame.
- Depth -- the stack depth.
- R0 -- the contents of R0 at the time of the exception.
- Rl -- the contents of Rl at the time of the exception.

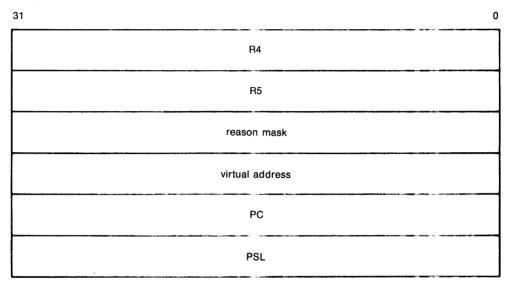
The next vector created on the stack is the signal vector. For access violations, the signal vector is set up as follows:

31		0
	0000005	
	000000C	
	reason mask	
	virtual address	
	PC	
	PSL	

The parameters shown in the above diagram are:

- 00000005 -- the number of longwords that follow. For access violations, this value is always five.
- 0000000C -- the exception code. This value is C (hexadecimal) to represent an access violation.
- Reason mask -- the longword whose lowest three bits, if set, indicate that the instruction caused a length violation (bit 0), referenced the process page table (bit 1), and attempted a read/modify operation (bit 2).
- Virtual address -- the virtual address that the system tried to reference.
- PC -- the Program Counter. The PC contains the address of the instruction that signaled the exception.
- PSL -- the processor status longword at the time of the exception.

Signal vectors differ in length, depending on the kind of exception the system detects. See the <u>VAX-11 Run-Time Library Reference Manual</u> for details.


If VAX/VMS encounters a fatal exception, you can find the code that signaled it by examining the PC placed in the signal vector. Issue the SHOW STACK command to display the current operating stack, then locate the vectors. Once you obtain the PC, which points to the instruction that signaled the exception, you can identify the module by the procedure outlined in Section 6.1.

6.2.2 Illegal Page Faults

VAX/VMS also signals a bugcheck when a page fault occurs while the Interrupt Priority Level (IPL) is greater than two (IRP\$ ASTDEL). When VAX/VMS fails because of an illegal page fault, it issues the following message on the console:

PGFIPLHI, Page fault with IPL too high

In this case, information is pushed on the stack as longwords in the following sequence:

The longwords pushed on the stack are:

- R4 -- the contents of R4 at the time of the bugcheck.
- R5 -- the contents of R5 at the time of the bugcheck.
- Reason mask -- see Section 6.2.1.
- Virtual address -- the virtual address that caused the page fault.
- PC -- the Program Counter. The PC contains the address of the instruction that was executing when the page fault was issued.
- PSL -- the processor status longword at the time of the bugcheck.

If the operating system detects a page fault while the IPL is higher than two, you can obtain the faulting instruction by examining the PC pushed on the current operating stack. Follow the steps outlined in Section 6.1 to determine which module issued the instruction.

6.3 DEBUGGING A SYSTEM FAILURE -- AN EXAMPLE

This section steps through the analysis of a system failure. The events that lead up to this failure are:

- The line printer goes offline for three hours.
- The line printer comes back online.
- The operating system signals a bugcheck, writes information to the system dump file, and shuts itself down.

6.3.1 Identifying the Bugcheck

Invoke SDA to analyze the system dump file. The initialization message indicates the type of bugcheck signaled:

VAX/VMS System dump analyzer Dump taken on 31-JUL-1979 20:43:13.32 INVEXCEPTN, Exception while above ASTDEL or on interrupt stack

SDA>

VAX/VMS encountered an exception that caused it to signal a bugcheck. Signal and mechanism vectors are created on the current operating stack.

6.3.2 Identifying the Exception

Issue the SHOW STACK command to display the current operating stack, which, in this case, is the interrupt stack. Figure 6-1 shows the interrupt stack and highlights the three vectors.

Current operating stack (INTERRUPT)

	8006A378	8000844B	ACP\$WRITEBLK+0A0
	•		
	•		
	•		
SP ≕>	8006A398	7FFDC340	
	8006A39C	8006A3A0	
	8006A3A0	80004E7D	EXE\$RELECT+0D4
	8006A3A4	04080009	
	8006A3A8	00000004	
mechanism	8006A3AC	7FFDC368	
vector	8006A3B0	FFFFFFFD	
	80066384	8001774E	
	8006A3B8	0000074F	
	8006A3BC	00000005	
	8006A3C0	00000000	
signal	8006A3C4	00000000	
vector	8006A3C8	80069E00	
	8006A3CC	80050003	
	8006A3D0	04080000	
	8006A3D4	80009604	EXE\$FORKDSPTH+01C
	•		
	٠		
	*		

Figure 6-1 Interrupt Stack and Vectors

Examination of the signal vector shows that:

- The exception code is C (hexadecimal) which means that an access violation occurred.
- The reason mask is zero, which means that the instruction generated a protection violation (instead of a length violation) when it tried to read the location (rather than write to it).
- The virtual address is 80069E00 and is the address that the instruction tried to reference.
- The PC is 8005D003 and is the address of the instruction that signaled the exception.
- The IPL was eight at the time of the exception (shown by bits 16 through 20 of the PSL).
- The current operating stack was the interrupt stack (bit 26 of the PSL is set to 1).
- The process was executing in kernel mode at the time of the exception (shown by bits 24 and 25 of the PSL).

Use the SHOW PAGE TABLE command to display the system page table, as shown in Figure 6-2. The page containing location 80069E00 is not available to any access mode (a null page); thus, the virtual address is not valid.

ADDALOU	OT AF 11		1166	- NOI	011	O FAGIIF	200 0	STATE	THE	ALL CHI	DAN	OTAFIL	1. 2. 2. 440	DETHK
Weitzont s	-	1												
ALL ROUGHT AND VALUE	1 NULL PAGE													
8006A000	80000340	B00005ED	VALID	ERKW		ĸ								
8006A200		840005EE	VALID		м	ĸ								
-														
	1 NULL PAGE													
80064600	809CD34C	D4000389	VALID	SRKW	м	K PPGTBL	ACTIVE	87	84	1	03000000	800CD34C	8888	004A
8906A800	80000350	D4000144	VALID	SRKW	м	K PPGTBL	ACTIVE	87	A 4	1	03000000	800CD350	0000	0048
80064400	800CD354	D4000928	VALID			K PPGTBL	ACTIVE	87	24	i	03000000	800CD354	0020	904C
	3 NULL PAGE	s												
80068200	80000364	D4000047	VALID	SRKW	м	K PPGTBL	ACTIVE	87	04	1	03000000	800CD364	0000	884D
80068400		D4000446	VALID			K PPGTBL	ACTIVE	87	04	i	0300242A	800CD368	0035	ØØEØ
80068600		040004AB	VALID			K PPGTRL	ACTIVE	87	04	i	033FFFFF	800CD36C	0021	00E3
80068800		DANANSES	VALID			K PPGTBL	ACTIVE	87	24	1	0300264B	80000370	0000	8882
80068400		50000000	DZERO			ĸ		• •	0.1	•				0.00
82368090	870CD378	50000000	DZERO			к								
8006BE00	8J0CD37C	50000000	DZERD			ĸ								
89660988	80000380	50000000	DZERO	SRKW		ĸ								
82360239	800CD384	500000000	DZERO			ĸ								
80060400	840CD388	50000000	DZERO			ĸ								
83060600	800CD38C	50000000	DZERO	SRKW		к								
80066807	800CD390	50000000	DZERO	SRKW		ĸ								
8006CA00	800CD394	50000000	OZERO	SRKW		ĸ								
82060000	809CD398	50000000	OZERO	SRKW		ĸ								
8006CE00	800CD39C	500000000	DZERO	SAK4		ĸ								
8036D330	8/40CD340	500000000	DZERO	SRKW		ĸ								
89060200	800CD3A4	50022022	DZEPO	SRKW		ĸ								
80060400	800CD3A8	50000000	DZERO	SRKW		ĸ								
8006D600	BUOCDJAC	Sabbande	DZEPO			ĸ								
8006D800		50000000	DZERO	SRKW		ĸ								
8006DA00		200300 10	DZERO			ĸ								
8060000		50000000	DZERU			ĸ								
8006DE00		50000000	DZERO	SRKW		ĸ								
8006E00n		Sqaqaaqq	DZERD			ĸ								
8006E200		50000960	DZERO			ĸ								
9306E400		500000000	DZERO			ĸ								
8006E600		50000000	DZERO			ĸ								
8649E895		500000000	DZERO			ĸ								
8006EA00		50000000	DZERO			ĸ								
8006EC00		50000000	OZERO			к								
8006EE00		D40002E9	VALID			K PPGTBL	ACTIVE	87	04	1	033FFFFF	800CD3DC	0003	0085
8006F300		04000353	VALID		м	K PEGTBL	ACTIVE	87	04	1	33000000	800CD3E0	0040	004E
8006F200		Sebenand	DZERO			ĸ								
8006F400		D4000194	VALID			K PPGTBL	ACTIVE	87	34	1	03000000	800CD3E8	2000	004A
8006F60U		D400065D	VALID			K PPGTBL	ACTIVE	87	Ø4	1	03000000	800CD3EC	0000	004B
8006F800	800CD3F0	D4000122	VALID	SRKW	м	K PPGTBL	ACTIVE	87	Ø4	1	03000000	800CD3F0	0000	Ø04C

10-DEC-1979 19:21:00.32

BAK

LOC STATE TYPE REPONT

Page 17

SVAPTE FLINK BLINK

Figure 6-2 Page Table Display Showing Invalid Location 80069E00

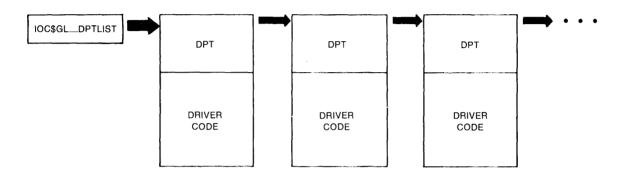
VAX/VMS 1.0 == System Dump Analysis System page table

---- S NULL PAGES

SVAPTE

PTE

TYPE PROT BITS PAGTYP


ADDRESS

ANALYZING SYSTEM FAILURES -- GUIDELINES AND EXAMPLES

6.3.3 Locating the Source of the Exception

Because the line printer went offline and then online, the problem may exist in the driver code. To determine which driver might contain the faulty code, take the address contained in the PC on the stack and compare it with the bounds of each driver.

6.3.3.1 Finding the Driver Using the DPT List - The Driver Prologue Table (DPT) is a data structure that describes each driver. All the driver prologue tables form a linked list; each DPT is followed directly by driver code. The location IOC\$GL DPTLIST contains the address of the first DPT. Figure 6-3 illustrates the linked structure of the driver prologue tables.

Figure 6-3 Linked List of Driver Prologue Tables

Use the FORMAT command and specify the contents of IOC\$GL_DPTLIST as a parameter:

SDA> FORMAT010C\$GL_DPTLIST

80060500	DFT\$L_FLINK	8005F400
80060504	DPT\$L_BLINK	80000000
80060508	DPT#W_STZE	O7FO
8006050A	DPT\$B.TYPE	1. E
8006050B	DPT\$B_REFC	01
8006050C	DPT\$B…ADPTYPE	01
8006050D	DPT\$B_FLAGS	02
8006050E	DPT\$W_UCBSIZE	00F0
80060510	DPT\$WINITTAB	001F
80060512	DPT\$W_REINITTAB	0062
80060514	DPT\$WUNLOAD	0000
80060516	DPT\$TNAME	"DPDRIVER"
SDA>		

The formatted display identifies the size of the driver by the symbol DPT\$W SIZE.

Calculate the end of the driver by adding the value of DPT\$W SIZE to the starting address of the DPT for the driver. The driver code begins just after the DPT.

Next, determine whether the address in the PC falls within the range of addresses that contain the driver code. If the address is not part of the driver you are examining, continue on to the next driver by stepping through the linked list with the FORMAT command (see the description of the FORMAT command in Chapter 5 for an example of the commands used to step through a linked list of data structures).

In this example, the instruction that caused the exception falls within the range of addresses that contain the line printer driver code.

6.3.3.2 Calculating the Offset into the Driver - Once you have identified the driver, you can locate the instruction in the source code by subtracting the starting address of the driver prologue table from the address contained in the PC. Match the resulting offset with the offsets in the driver code listing.

After you have located the routine that caused the exception, you should examine memory to make sure that the instruction in the routine matches the instruction that signaled the exception.

6.3.4 Finding the Problem within the Routine

Examine the line printer driver code. The instruction that caused the exception is MOVB (R3)+,(R0), as shown in Figure 6-4. To check the contents of R3, use the SHOW CRASH command. The invalid virtual address 80069E00 is indeed stored in R3.

				029F 029F	480 481		START NI	EXT OUTP	UT SEQUENCE	
				029F	482					
50	54	02	C1	029F	483	10\$		DL3		;CALCULATE ADDRESS OF DATA BUFFER REGISTER
51		Α5	3C	02A3	484			ZWL	UCBSW_BOFF(R5),R1	GET NUMBER OF CHARACTERS REMAINING
52	8080	8 F	в0	02A7	485		MON		#^X8080,R2	;GET CONTROL REGISTER TEST MASK
		80	11	02AC	486		BRI		25\$;
	64	52	В3	02AE	487	20\$			R2,(R4)	PRINTER READY OR HAVE PAPER PROBLEM?
	Control (1995) (Single or State (1995))	08	15	02B1	488		BLI		30\$; IF LEO NOT READY OR PAPER PROBLEM
	60		90	02B3	489		MOT		(R3)+, (R0)	;OUTPUT NEXT CHARACTER
	F5	51	F4	02B6	490	25\$		BGEQ	R1,20\$; ANY MORE CHARACTERS TO OUTPUT?
		70	11	02B9	491		BRI	3	70\$;
				02BB	492					
				02BB	493					
				02BB	494	;	PRINTER	IS NOT	READY OR HAS PAPER PROBL	EM
				02BB	495	;				
				02BB	496					
		21	12	02BB	497	30\$:	BNEQ	40\$;IF NEQ PAPER PROBLEM
	51	01	Al	02BD	498			ADDW3	#1,R1,UCB\$W_BOFF(R5)	;SAVE NUMBER OF CHARACTERS REMAINING
	6C	A5		02C0						
	.	_		02C2	499		DSBINT			;DISABLE INTERRUPTS
	64 40	8 F	88	02C8	500			BISB	#^X40,LP_CSR(R4)	;SET INTERRUPTS
				02CC	501				40\$,#12	;WAIT FOR INTERRUPT
				02D6	502			IOFORK		;CREATE A FORK PROCESS
		C1	11	02DC	503			BRB	10\$;
				02DE	505					
				02DE	506	;	PRINTER	HAS PAP	ER PROBLEM	
	_	_		02DE	508					
	7A		94	02DE	509	40\$:	CLRB	UCB\$B_LP_OFLCNT(R5)	;CLEAR OFFLINE COUNTER
	51		Al	02E1	510			ADDW3	#1,R1,UCB\$W_BOFF(R5)	;SAVE NUMBER OF CHARACTERS REMAINING
	6C			02E4						
		64	в4	02E6	511	50\$:	CLRW	LP_CSR(R4)	;DISABLE PRINTER INTERRUPT
				02E8	512			SETIPL	UCB\$B_FIPL(R5)	;LOWER TO FORK LEVEL
		64	В5	02EC	513			TSTW	LP $CSR(R4)$ 10\$;PRINTER STILL HAVE PAPER PROBLEM?
		AF	14	02EE	.1			BGTR	10\$; IF GTR NO
3 E	58 A5	03	EO	02F0	515			BBS	#UCB\$V_CANCEL,UCB\$W_STS	(R5),80\$;IF SET, CANCEL I/O OPERATION
	01	0 F	9D	02F5	516			ACBB	#15,#1,UCB\$B_LP_OFLCNT(R5),80\$;SKIP UNTIL TIMEOUT
	0017 7A			02F8						
	7A		94	02FC	517			CLRB	UCB\$B_LP_OFLCNT(R5)	;RESET COUNTER
		18	BB	02FF	518			PUSHR	#^M <r3,r4></r3,r4>	;SAVE REGISTERS
-	54	05	9A	0301	519			MOVZBL	#MSGS_DEVOFFLIN,R4	;SET UP MESSAGE TYPE
C	0000000		9 E	0304	520			MOVAB	G^SYS\$GL_OPRMBX,R3	;ADDRESS TARGET MAILBOX
		53		030A						

Figure 6-4 Location of Instruction in Driver Routine

.

6.3.4.1 Stepping through the Routine - The MOVB instruction is part of a routine that reads characters from a buffer and writes them out to the line printer. The routine executes the following steps for each character in the buffer:

- The driver gets a character from the buffer, moves it to the device data register (pointed to by R0 in this example), and autoincrements.
- The preceding step is repeated until the byte count is exhausted or the printer signals that it is NOT READY.
- If the printer gives the NOT READY signal, the driver waits for an interrupt from the printer.
- When the printer becomes READY, it interrupts the driver and the loop is resumed.

Examine the code to determine which variables control the loop. In this case, the byte count (BCNT) is the number of characters in the buffer. This value controls the number of times the loop is executed. (BCNT is set by a Function Decision Table (FDT) routine to the number of characters in the buffer.) The number of characters left to be printed is represented by the byte offset (BOFF).

Because the exception is an access violation, you can infer that R3 is outside the range of the buffer. It seems likely that the MOVB instruction has executed too many times, that is, a number of times greater than BCNT. To prove this theory, you must examine BOFF and BCNT.

6.3.4.2 Checking the Values of Key Variables - If you examine the code, you can see that R5 contains the address of the Unit Control Block (UCB) of the device that was active when the system failed. If you use the FORMAT command to display the contents of R5, SDA will display the values of BCNT and BOFF:

SDA> FORMAT @R5

8005D160	UCB\$LRQFL	800039A8
	UCB\$LFQFL	
80050164	UCB\$L_RQBL	800039A8
	UCB\$LFQBL	
8005D168	UCB\$W_SIZE	0080
8005D16A	UCB\$BTYPE	10
8005D16B	UCB\$B_FIPL	08
	•	
	*	
	•	
8005D1C8	UCB\$L_SVAPTE	80062720
8005D1CC	UCB\$WBOFF	0795
8005D1CE	UCB\$W_BCNT	006D
80050100	UCB\$B_ERTONT	00
8005D1D1	UCB\$BERTMAX	00
8005D1D2	UCB\$WERRCNT	0000
	•	
	•	
	٠	

SDA>

If you have only one line printer in your system configuration, you need not use the FORMAT command. Issue the SHOW DEVICE command with device code LP as the parameter; since there is only one line printer device connected to the VAX-11 processor there is only one line printer UCB to display.

The output produced by the FORMAT @R5 command shows that BOFF contains a value greater than BCNT, when it should be the reverse. This means that an illegal value is being stored in BOFF. Thus, the value of BOFF is not the number of remaining characters in the buffer but some meaningless number that eventually causes the system to fail when it tries to access a null page (unreadable to all access modes).

6.3.4.3 Identifying and Fixing the Defective Code - Examine the line printer driver code again to locate all instructions that modify BOFF. The value changes in two important places.

- 1. Immediately after the driver detects that the printer is not ready.
- 2. When the wait for interrupt (WFIKPCH) routine timeout count of 12 seconds is exhausted. At this time, R1+1 is stored in BOFF.

The second modification to BOFF should not be made because R4 and R5 are the only registers that retain their values after the WFIKPCH routine is executed. To correct the problem, change the WFIKPCH line to transfer control to 50\$ rather than 40\$ (see Figure 6-5) if the timeout count expires.

				029F 029F	480 ; 481 ;	START N	EXT OUTP	UT SEQUENCE	
				029F	482				
50	54	02	Cl	029F	483 10	\$: AD	DL3	#LP DBR,R4,R0	;CALCULATE ADDRESS OF DATA BUFFER REGISTER
5	1 6C	Α5	3C	02A3	484		VZWL	UCBŞW BOFF(R5),R1	GET NUMBER OF CHARACTERS REMAINING
52	8080	8 F	BO	02A7	485	MO		#^x8080,R2	GET CONTROL REGISTER TEST MASK
•		08	11	02AC	486	BR		25\$:
	64	52	B3	02AE	487 20			R2, (R4)	PRINTER READY OR HAVE PAPER PROBLEM?
		08	15	02B1	488	BL		30\$	IF LEO NOT READY OR PAPER PROBLEM
	60	83	90	02B3	489	MO		(R3) + (R0)	OUTPUT NEXT CHARACTER
	F5	51	F4	0286	490 25		BGEO	R1,20\$	ANY MORE CHARACTERS TO OUTPUT?
		70	11	02B9	491	BR		70\$	
				02BB	492				,
				02BB	493 ;				
				02BB	494 ;	PRINTER	IS NOT	READY OR HAS PAPER PROBL	EM
				02BB	495				
				02BB	496				
		21	12	02BB	497 30	\$:	BNEQ	40\$; IF NEQ PAPER PROBLEM
	51	01	Al	02BD	498		ADDW3	#1,R1,UCB\$W BOFF(R5)	SAVE NUMBER OF CHARACTERS REMAINING
	6C	Α5		02C0				_	
				02C2	499	DSBINT			;DISABLE INTERRUPTS
	64 40	8F	88	02C8	500		BISB	$\frac{\#^{X}40}{LP}$ CSR(R4)	;SET INTERRUPTS
				02CC	501		WFIKPCH	40\$,#12	;WAIT FOR INTERRUPT
				02D6	502		IOFORK_		CREATE A FORK PROCESS
		C1	11	02DC	503		BRB	10\$;
				02DE	505 ;r		I		
				02DE	506 ;	PRINTER	HAS PAP	ER PROBLEM	
				02DE	508 🕴				
		Α5	94	02DE	509 40	\$:	CLRB	UCB\$B_LP_OFLCNT(R5)	CLEAR OFFLINE COUNTER
	51		Al	02E1	510		ADDW3	#1,R1,UCB\$W_BOFF(R5)	;SAVE NUMBER OF CHARACTERS REMAINING
	6C	A5		02E4			1		
		64	В4	02E6	511 50	\$:	CLRW	LP_CSR(R4)	;DISABLE PRINTER INTERRUPT
				02E8	512		SETIPL	UCB\$B_FIPL(R5)	;LOWER TO FORK LEVEL
		64	В5	02EC	513		TSTW	$\frac{LP CSR(R4)}{10S}$	PRINTER STILL HAVE PAPER PROBLEM?
		AF	14	02EE	.1		BGTR		; IF GTR NO
3 E	58 A5	03	EO	02F0	515		BBS	#UCB\$V_CANCEL,UCB\$W_STS	(R5),80\$;IF SET, CANCEL I/O OPERATION
	01	0 F	9D	02F5	516		ACBB	#15,#1,UCBSB_LP_OFLCNT()	R5),80\$;SKIP UNTIL TIMEOUT
	0017 7A			02F8					
	7A	A5	94	02FC	517		CLRB	UCB\$B_LP_OFLCNT(R5)	;RESET COUNTER
		18	BB	02FF	518		PUSHR	#^M <r3,r4></r3,r4>	;SAVE REGISTERS
	54	05	9A	0301	519		MOVZBL		;SET UP MESSAGE TYPE
(00000000		9 E	0304	520		MOVAB	G^SYS\$GL_OPRMBX,R3	;ADDRESS TARGET MAILBOX
		53		030A					

Figure 6-5 Location of Defective Code in Driver Routine

6.4 INDUCING A SYSTEM FAILURE

If the operating system is not performing well and you want to create a system dump file so that you can examine it later, you can induce a system failure by typing the following commands at the console:

- \$ CTRL/P
- >>> HALT
- >>> EXAMINE PSL
- >>> DEPOSIT PC = -1
- >>> DEPOSIT PSL = 1F0000
- >>> CONTINUE

The system responds to the HALT command by displaying the PC; it responds to the EXAMINE PSL command by displaying the PSL. Immediately after you type this command sequence, the system signals a fatal bugcheck, writes information to SYSDUMP.DMP, shuts itself down, and automatically reboots.

Make a note of the PC and PSL displayed on the console before you perform the procedure outlined above. When you induce a system failure, the values you deposit into these registers destroy their previous contents, and you will need the pre-failure values contained in the PC and PSL when you begin to examine the system dump file, as described in Section 6.1.

CHAPTER 7

SDA ERROR MESSAGES

SDA error messages can be divided into messages that occur during SDA initialization and messages that occur during SDA operation. Messages that appear before SDA is initialized indicate problems encountered by SDA as it tries to run. SDA prints the message but does not execute. Messages that appear when SDA is operating concern problems encountered during command execution.

7.1 INITIALIZATION ERROR MESSAGES

The dump file contains no valid dump

This message appears if SDA cannot read the contents of the system dump file. The file may be unreadable because the data is bad or because the file is empty.

The dump only contains n pages of physical memory

This message occurs if the system dump file is not large enough to accommodate all of physical memory. The number of physical pages SDA can analyze is represented by n. To change the size of the system dump file, see Section 2.1.

Symbol symbol-name not found in SDA symbol table

This message appears if SDA cannot find a symbol in the SYS.STB file which is vital to its initialization.

7.2 OPERATIONAL ERROR MESSAGES

Invalid block type in specified block

This message appears if SDA is unable to identify the block type of a particular block. The invalid block type message most usually occurs when the FORMAT command tries to identify a block type using a byte offset. See the description of the FORMAT command in Chapter 5 for further information about byte offsets.

No "block-type" symbols found to format this block

This message appears if SDA cannot locate the symbols needed to format a block as a particular block type.

You may need to use the READ command to include the specific block type symbols in the SDA symbol table.

No such process

This message occurs if the process name specified in a SHOW PROCESS or SET PROCESS command refers to a process that does not exist.

Process swapped out

This message occurs if the process name specified in a SHOW PROCESS or SET PROCESS command represents a process that was swapped out of the balance set when the system failed.

Unable to access location location

This message indicates that SDA is unable to read a certain location. The inaccessible location may be an implied reference to memory made during the execution of an SDA command.

Unknown symbol symbol-name

This message occurs if SDA cannot identify a specified symbol.

Unknown type of GSD entry: GSD

This message occurs when SDA encounters a type of global symbol that it does not recognize, either in the SYS.STB file or in a file specified in the READ command. The type of global symbol definition GSD is represented by a byte. This message can occur during either initialization or operation of SDA, and usually means that the file being read has been corrupted.

INDEX

A

Abbreviated commands, 4-1 Access violation, 6-2 ACP queue, 5-26 Active processes, displayed, 5-49 Add symbols to table, 5-3 Analyzing system failures, 6-1 Ancillary control process queue block (AQB), 5-26 Arithmetic operations, 4-3 ASCII text, and quotation marks, 5-3 Assigning values to symbols, 5-3 Asterisk (*), to examine running system, 3-2

В

С

Channel Request Block (CRB), 5-24 Characters, in arithmetic operations, 4-3 Colon (:), in EXAMINE command, 5-6 Command format, 4-1. See also HELP command Commands, COPY, 5-2 DEFINE, 5-3 EVALUATE, 5-5 EXAMINE, 5-6EXIT, 5-10 FORMAT, 5-11 HELP, 5-14 optional, to produce SDA listing, 3-4 READ, 5-15 REPEAT, 5-17 SET OUTPUT, 5-18 SET PROCESS, 5-19 SHOW CRASH, 5-21 SHOW DEVICE, 5-24 SHOW PAGE TABLE, 5-29

Commands, (Cont.) SHOW PFN DATA, 5-33 SHOW POOL, 5-36 SHOW PROCESS, 5-39 SHOW STACK, 5-46 SHOW SUMMARY, 5-49 SHOW SYMBOL, 5-51 Compute, value of expression, 5-5 Conditions, and fatal bugcheck, 6-2 Contents, location displayed, 5-6 Controller data structures, 5-24 Copy command, 5-2 Creating, symbols, 4-3 Current process, 5-19

D

Decimal, values displayed, 4-2 Debugging system failure, 6-6 Default file specification, for system dump file, 3-1 Default radix, 4-2 Defective code, identifying and fixing, 6-13 DEFINE command, 5-3 Device Data Block (DDB), 5-24 Device data structures displayed, 5-24 Device status information, 5-25 Device unit data structures, 5-24 Discontinue display, 5-10 Displayed, active processes, 5-49 contents of location, 5-6 formatted block, 5-11 global page table, 5-31 hardware process context, 5-39 IRP pool, 5-36 nonpaged dynamic storage pool, 5-36 paged dynamic storage pool, 5-36 PFN data base, 5-33 physical page, 5-33 process regions, 5-6 process working set list, 5-40 software process control block, 5-39 stacks, 5-46 system regions, 5-6 system-wide interrupt stack, 5-46 Dollar sign (\$), to indicate foreign command, 3-2 Driver dispatch table (DDT), 5-24

Driver, finding, using DPT list, 6-9 calculating end of, 6-10 calculating offset into, 6-10 Driver Prologue Table (DPT), 6-9 DUMPBUG parameter, 2-1 Dump file, copy of, 5-2 flag, 3-4

Ε

Equal sign (=), in expression, 5-3 Error messages, initialization, 7-1 operational, 7-1 Escape key (<ESC>), and REPEAT command, 5-17 EVALUATE command, 5-5 Evaluating expressions, 5-5 EXAMINE command, 5-6 Examine, data structures, 5-19 location contents, 5-6 memory regions, 5-6 running system, 3-2 sequence of memory locations, 5-17 Exceptions, fatal, 6-2 EXIT command, 5-10 Expressions, as command parameters, 4-2 as parameter to the DEFINE command, 5-3

F

Fatal bugcheck, 6-1 conditions, 6-2 Finding problem in routine, 6-10 Fixing, and identifying defective code, 6-13 Flag, dump file and SDA command execution, 3-4 Foreign command, invoking SDA with, 3-2 Fork block, 5-25 FORMAT command, 5-11 Formatting blocks, 5-12 lists of blocks, 5-12 lists of blocks, 5-12 linked lists, 5-12 Free page list, 5-33

G

General purpose registers, contents, 5-21

Global page table, 5-31 Global symbols, 3-4 and DEFINE command, 5-3 and READ command, 5-15 copying to symbol table, 5-15 displayed, 5-51 symbol table, 5-51 value displayed, 5-51

Η

I

Identifying, and fixing defective code, 6-13 bugcheck, 6-6 exception, 6-6 Illegal page faults, 6-5 Index number, 5-19 Inducing system failure, 6-15 Initialization error message, 7-1 Interrupt Dispatch Block (IDB), 5-24 I/O request packet, 5-25 I/O request packet pool, 5-36 Invoking SDA, 3-1 as a foreign command, 3-2

Κ

Key variables, checking values of, 6-12

L

Line of code, and bugcheck, 6-1 Linked lists, formatting, 5-12 Linked structure of DPT, 6-9 List, data structures, 5-24 process's hardware context, 5-40 Local symbol, displayed, 5-51 Local symbol value, displayed, 5-51 Location, contents displayed, 5-6 examine by symbol, 3-4 parameters, 5-6

Μ

Mechanism vector, 6-3
Modified page list, 5-33
Moving process context to specific
 process, 5-19
Multiple qualifiers, 4-1

Ν

Nested parenthetical expressions, 4-3 Nonpaged dynamic storage pool, 5-36 Nonprinting characters, represented by period, 5-3

0

Object module file, 5-15 extracting global symbols from, 5-15 Offset, into code, 6-1 Omitted location parameter, 5-6 Operational error messages, 7-1 Operating system information, in SHOW CRASH command, 5-21

Ρ

Paged dynamic storage pool, 5-36 Page faults, illegal, 6-5 Page file quota, 3-1 /PAGE_TABLE, in SHOW PROCESS command, 5-41 Page table entries, displayed, 5-29 Parameter, as file specification, 4-1 expressions as, 4-2 Parentheses, as special operators, 4 - 3Period (.), as nonprinting characters, 5-3PFN data base, displayed, 5-33 Physical page, displayed, 5-33 information, 5-30 /PO, as EXAMINE qualifier, 5-7 /Pl, as EXAMINE qualifier, 5-7 Preserving a system dump file, 5-2 Printing, both program and control regions, 5-7 control region, 5-7 I/O request packet pool, 5-36

Printing, (Cont.) nonpaged dynamic storage pool, 5-36 paged dynamic storage pool, 5-37 program region, 5-7 summary of the pools, 5-37 writeable system region, 5-7 Problem, finding, in routine, 6-10 Process, context, 5-19 control block (PCB), 5-19 header (PHD), 5-19 identification (PID), 5-19 information, in SHOW CRASH command, 5-21 regions, displayed, 5-6 register contents, 5-21 Processor registers, loss of contents during SYS\$DMP.DMP, 3-2, 3-3

Q

Qualifier, 4-1 abbreviated, 4-1 multiple, 4-1 Quotation marks (" "), around ASCII text, 5-3

R

Radix operators, 4-2 Radix, specifying SDA use, 4-2 READ command, 5-15 to create symbols, 4-3 Reading dump file, prerequisites for, 3-1 Register contents, 5-21 REPEAT command, 5-17 Return to interactive display, in SET OUTPUT command, 5-18 Routine, finding problem in, 6-10 stepping through, 6-12 RUN command, invoking SDA with, 3-1 Running system, examination of, 3-2

S

Sample crash analysis, 6-9
Screen overflow prompt, and exit
 command, 5-10
SDA, definition, 1-1
 command format, 4-1
 in site-specific start-up
 procedure, 3-4

SDA, definition, (Cont.) operation. See HELP command utility. See HELP command SET PROCESS command, 5-19 SHOW CRASH command, 5-46 SHOW CRASH display, 3-3 SHOW DEVICE command, 5-24 SHOW PAGE TABLE command, 5-29 SHOW PFN DATA command, 5-33 SHOW POOL command, 5-36 SHOW PROCESS command, 5-39 SHOW STACK command, 5-46 SHOW SUMMARY command, 5-49 SHOW SYMBOL command, 5-51 Signal vector, 6-4 Signal vector, examination, 6-7 Slash (/), used with qualifier, 4-1 Software process context, 5-39 Space, in expression, 5-3 Special characters, 4-3 Special operators, 4-3 Special register contents, 5-21 Special symbols, 4-3. See also DEFINE and READ commands Stack configuration for illegal page faults, 6-5 Stacks, displayed, 5-46 Stepping through routine, 6-12 Step through linked list, 5-17 Stopping SDA, 5-10 SWAPFILES command procedure, 2-1 SYS\$DISK default, 3-1 Symbol evaluation, 5-5 Symbols, add to table, 5-3 assign value to, 5-3 defined, 4-3 global, 5-3 Symbol table, displayed, 5-51 System dump file, 2-1 calculating size of, 2-1 creating new, 2-1 default file specification, 3-1 reading, 3-1 saving, 2-1

System failure, 1-1 debugging, 6-6 causes while examining running system, 3-2 inducing, 6-15 solving, 6-1 System map file, SYS\$SYSTEM:SYS.MAP, 6-1 System parameter. See parameter System process control block, 5-39 System region, displayed, 5-6 System-wide interrupt stack, displayed, 5-46

Т

Table of contents, SDA creates, 5-18

U

Unary operators, 4-2 Underline (__), 4-3 Unit control block, 5-25

V

Values, checking, of key variables, 6-12 Vectors, 6-2 mechanism, 6-3 signal, 6-4 Violation, access, 6-2 Virtual memory, and SET PROCESS command, 5-19 Virtual page information, 5-29 Volume control block, 5-26

W

Writing output to a file, 5-18

VAX/VMS System Dump Analyzer Reference Manual AA-J526A-TE

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the company's discretion. If you require a written reply and are eligible to receive one under Software Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the

page number.

Please indicate the type of reader that you most nearly represent.

	Assembly	language	programmer
--	----------	----------	------------

- Higher-level language programmer
- Occasional programmer (experienced)
- User with little programming experience
 - Student programmer

	Other	(please	specify)	
--	-------	---------	----------	--

Name		Date	
Organization			
Street			***
City	State	Zip Code	
		or	

Please cut along this line.

- Do Not Tear - Fold Here and Tape -

No Postage Necessary if Mailed in the United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS TW/A14 DIGITAL EQUIPMENT CORPORATION 1925 ANDOVER STREET TEWKSBURY, MASSACHUSETTS 01876

Do Not Tear - Fold Here

Here _____