
VAX/VMS
System Dump Analyzer

Reference Manual
Order No. AA-J526A-TE

March 1980

This document describes how the VAX/VMS System Dump Analyzer works
and how to use it.

VAX/VMS
System Dump Analyzer

Reference Manual
Order No. AA-J526A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this release.

OPERATING SYSTEM AND VERSION: VAX/VMS V02

SOFTWARE VERSION: VAX/VMS V02

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation . maynard, massachusetts

First Printing, March 1980

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright @ 1980 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last
document requests the user's critical evaluation
preparing future documentation.

page of this
to assist us in

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL OS/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DEC COMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS PDT
DATATRIEVE TRAX

PREFACE

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

1

2

2.1
2.2

3

3.1
3.2
3.3
3.4
3.5
3.6

4

4.l
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5

5

CONTENTS

INTRODUCTION TO SDA

THE SYSTEM DUMP FILE

SETTING THE SYSTEM DUMP FILE SIZE
SAVING SYSTEM DUMP FILES

RUNNING SDA

INVOKING SDA WITH THE RUN COMMAND
INVOKING SDA AS A FOREIGN COMMAND
EXAMINING THE RUNNING SYSTEM
READING THE SYSTEM DUMP FILE
BUILDING THE SDA SYMBOL TABLE
INVOKING SDA IN THE SITE-SPECIFIC START-UP
PROCEDURE

SDA COMMAND STRINGS

GENERAL FORMAT
EXPRESSIONS

Radix Operators
Unary Operators
Binary Operators
Special Operators
Symbols

SDA COMMANDS
COPY
DEFINE
EVALUATE
EXAMINE
EXIT
FORMAT
HELP
READ
REPEAT
SET OUTPUT
SET PROCESS
SHOW CRASH
SHOW DEVICE
SHOW PAGE TABLE
SHOW PFN DATA
SHOW POOL
SHOW .PROCESS
SHOW STACK
SHOW SUMMARY
SHOW SYMBOL

iii

Page

v

1-1

2-1

2-1
2-2

3-1

3-1
3-2
3-2
3-2
3-3

3-3

4-1

4-1
4-2
4-2
4-2
4-3
4-3
4-3

5-1
5-2
5-3
5-5
5-6
5-10
5-11
5-14
5-15
5-17
5-18
5-19
5-21
5-24
5-29
5-33
5-3n
5-39
5-46
5-49
5-51

CHAPTER

CHAPTER

INDEX

Figure

Table

6

6.1
6.2
6.2.1
6.2.2
6.3
6.3.1
6.3.2
6.3.3
6.3.3.1
6.3.3.2
6.3.4
6.3.4.1
6.3.4.2
6.3.4.3
6.4

7

7.1
7.2

5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
6-1
6-2

6-3
6-4
6-5

5-1

CONTENTS

Page

ANALYZING SYSTEM FAILURES -- GUIDELINES AND
EXAMPLES 6-1

GENERAL PROCEDURE FOR SOLVING SYSTEM FAILURES 6-1
FATAL BUGCHECK CONDITIONS 6-2

Fatal Exceptions 6-2
Illegal Page Faults 6-5

DEBUGGING A SYSTEM FAILURE AN EXAMPLE 6-6
Identifying the Bugcheck 6-6
Identifying the Exception 6-6
Locating the Source of the Exception 6-9
Finding the Driver Using the DPT List n-9
Calculating the Offset into the Driver 6-10
Finding the Problem within the Routine 6-10
Stepping through the Routine 6-12
Checking the Values of Key Variables 6-12
Identifying and Fixing the Defective Code 6-13

INDUCING A SYSTEM FAILURE 6-15

SDA ERROR MESSAGES 7-1

INITIALIZATION ERROR MESSAGES 7-1
OPERATIONAL ERROR MESSAGES 7-1

FIGURES

System Region Memory
System Crash Information
Device Data Block List for Dn Devices
Controller Data Structures for DB Devices
Device Unit Data Structures for Device DBAl
System Page Table
PFN Data Base
Paged Dynamic Storage Pool
Process Information
Working Set List
Process Section Table
Program Region Memory
Current Operating Stack (Kernel)
Summary of Active Processes
Global Symbols
Interrupt Stack and Vectors
Page Table Display Showing Invalid Location
80069EOO
Linked List of Driver Prologue Tables
Location of Instruction in Driver Routine
Location of Defective Code in Driver Routine

TABLES

Summary of SDA Commands

iv

Index-1

5-9
5-23
5-27
5-27
5-28
5-32
5-35
5-38
5-42
5-43
5-44
5-45
5-48
5-50
5-52
n-6

6-8
6-9
n-11
6-14

5-1

PREFACE

MANUAL OBJECTIVES

The VAX/VMS System Dump Analyzer Reference Manual contains information
useful in determining the cause of a VAX/VMS operating system failure.

INTENDED AUDIENCE

This reference manual is intended for users who possess extensive
knowledge of VAX/VMS data structures. It assumes that the audience
for this manual includes VAX/VMS developers and DIGITAL Software
Support Specialists, as well as DIGITAL customers familiar with
VAX/VMS internal design.

In addition, system programmers who are writing device drivers may
need to use SDA. The system manager should also become familiar with
SDA, usually to produce SDA listings after each crash and, more
importantly, to save the system dump file for later analysis.

STRUCTURE OF THIS DOCUMENT

This reference manual consists of seven chapters:

• Chapter 1 provides an introduction to SDA and summarizes SDA
operations.

• Chapter 2 describes the system dump file that SDA analyzes.

• Chapter 3 explains how to run SDA to analyze a dump file or
examine the running system.

• Chapter 4 details the SDA command format.

• Chapter 5 describes the SDA commands, in alphabetical order.

• Chapter n gives guidelines for analyzing system failures and
steps through a sample system crash.

• Chapter 7 lists and explains the messages related to SDA
operation.

v

ASSOCIATED DOCUMENTS

This document has the following prerequisites:

VAX-11/780 Hardware Handbook
VAX/VMS S~-~marx_P~-5-~E_!pt~_?.~~-and Glossa

The following documents are associated with this manual:

VAX-11 Run-Time Library Reference Manual
VAX/VMS Guide to Writing a Device Driver
VAX/VMS system Manager 'sGliTae··-----
VAX/vMs sys~m-~er-~ce=~~=~~:ference Manual

For a complete list of all VAX-11 documents, including brief
descriptions of each, see the VAX-11 Information Dir_:_ec_~~¥. .. -~~9 ___ !_nd~~·

CONVENTIONS USED IN THIS DOCUMENT

The following conventions are used in this document.

Convention

SHOW CRASH

symbol-name

SET PROCESS lname !
/INDEX = nn
/SYSTEM

SHOW SYMBOL TEN
TEN :::: 000000:1.0

Meaning

Uppercase words and letters, used
in examples, indicate that you
should type the word or letter
exactly as shown.

Lowercase words and letters, used
in format examples, indicate that
you are to substitute a word or
value of your choice.

Square brackets indicate
enclosed argument is
except for brackets
directory specifications.

that the
optional,
used in

Braces are
from which
chosen.

used to enclose lists
one element is to be

A vertical ellipsis indicates that
not all of the statements in an
example or figure are shown.

In examples of commands you enter
and SDA responses, all output lines
and prompting characters that SDA
prints or displays are shown in
black letters. All the lines you
type are shown in red letters.

A symbol with a 1- to 3-character
abbreviation indicates that you
press a key on the terminal.

vi

CHAPTER 1

INTRODUCTION TO SDA

The System Dump Analyzer (SDA) is a VAX/VMS utility that aids in
determining the cause of an operating system failure.

When an internal error occurs that interferes with normal operations,
the operating system writes information concerning its status at the
time of the system failure to a predefined system dump file. SDA
examines and formats the contents of this file.

With the help of the SDA commands, you can display parts of the
formatted system dump file on a video display terminal, or you can
create hard copy listings.

SDA performs the following operations:

• Assigns a value to a symbol

• Examines memory of any process

• Formats block of data

• Displays device data structures

• Displays memory management structures

• Displays a summary of all processes on the system

• Displays the SDA symbol table

• Copies the system dump file

• Sends output to a file or device

• Reads symbols from any object module

In addition to analyzing the system dump file, SDA can perform the
operations listed above on a running system without interrupting that
system's operation.

While SDA provides a great deal of information, it does not analyze
all the various control blocks and data contained in memory.
Therefore, in the event of system failure, it is extremely important
that customers send a copy of the system dump file to DIGITAL along
with a Software Performance Report (SPR).

1-1

CHAPTER 2

THE SYSTEM DUMP FILE

Before the VAX/VMS operating system can write information to the
system dump file, the system parameter DUMPBUG must be set. Normally,
this parameter is enabled by default; to reset DUMPBUG, as well as
other system parameters, consult the VAX/VMS System Manager's Guide.

If the DUMPBUG parameter is set and the operating
system writes the contents of the ~rror log
registers, and physical memory to the contiguous
SDA analyzes this file and produces formatted
contents.

system fails, the
buffers, processor
file SYSDUMP.DMP.
displays of its

SYSDUMP.DMP is furnished as an empty file in the VAX/VMS software
distribution kit. It is located in the system directory [SYSEXE] and
its file size is initially small.

2.1 SETTING THE SYSTEM DUMP FILE SIZE

To preserve the continuity of the error log file and save all of
physical memory, it is important to make sure that the dump file's
size in blocks matches the individual system configuration.

To change the size of SYSDUMP.DMP, the system manager (or a user with
similar privileges) runs a command procedure in the directory [SYSUPD]
called SWAPFILES.COM. The command line is:

S @[SYSUPDJSWAPFILES

The command procedure prompts you for paging, swapping, and dump file
sizes. You can enter a new file size or simply press ~ • If you
enter a new file size, the command procedure creates a new system dump
file. This new file will not be used by the operating system until
after a system reboot.

To calculate the correct dump file size for your configuration, use
the formula:

blocks = physical-memory-size-in-pages + 4

The four additional blocks store hardware context and error log
buffers. You can also use the table provided in the VAX/VMS System
Manager's Guide to find the correct size. This table lists
recommended sizes for the three files affected by the SWAPFILES
command procedure. The system manager's guide also gives detailed
information on SWAPFILES.COM and on changing dump file size.

2-1

THE SYSTEM DUMP FILE

2.2 SAVING SYSTEM DUMP FILES

Every time the operating system writes information to SYSDUMP.DMP, it
writes over whatever was previously stored in the file. For this
reason, the system manager should save the contents of SYSDUMP.DMP
after a system failure has occurred. One way to accomplish this is to
copy the file to another directory. Use the DIGITAL Command Language
(DCL) command COPY, as shown in the following example:

$ COPY SYSSSYSTEM:SYSDUMP+DMP;l [SYSERRJSAVEDUMP.DMP

SDA also provides a COPY command. This command can be included in the
series of SDA commands in the site-specific start-up procedure.
Section 3.6 discusses the start-up procedure in more detail. The COPY
command is explained in Chapter 5.

2-2

CHAPTER 3

RUNNING SDA

SDA can analyze a dump file or examine the running system. To make it
possible for SDA to read the dump file, you need:

• Read access to SYSDUMP.DMP

• Read access to a copy of the system symbol table

• Enough virtual space for SDA to map the entire system dump
file

To ensure that SDA has the correct amount of virtual address space,
the running system must have the system parameter VIRTUALPGCNT equal
to the size of the dump file plus 1000 pages. In addition, your page
file quota (PGFLQUOTA in the user's authorization record created by
running the User Authorization Program) must be at least the size of
the dump file plus 1000 pages. See the VAX/VMS System Manager's Guide
for information on system parameters and the User Author1zat1ori
Program (AUTHORIZE).

3.1 INVOKING SDA WITH THE RUN COMMAND

If the above conditions are satisfied, you can invoke SDA by typing
the following DCL command:

$ RUN SYSSSYSTEM:SDA

When you issue this command, SDA will prompt for the name of the
system dump file you want to examine:

Enter name of dump file >

To examine the most recent system dump (SYS$SYSTEM:SYSDUMP.DMP), press
~ in response to the prompt. SDA will search the system directory
(logical name SYS$SYSTEM) for SYSDUMP.DMP. To examine an older dump
file, enter its file specification:

Enter name of dump file > CWIZARDJACPCRASH.DMP

The default file specification for the system dump file is
SYS$DISK: [default-dir]SYSDUMP.DMP where SYS$DISK and [default-dir]
represent, respectively, the device and directory specified by the
last SET DEFAULT command. (See the VAX/VMS Command Language User's
Guide for a description of the SET DEFAULT command.)

3-1

RUNNING SDA

If you want to examine the running system, type an asterisk (*) in
response to the dump file prompt. See Section 3.3 for further
details.

3.2 INVOKING SDA AS A FOREIGN COMMAND

You can also invoke SDA as a foreign command by using the DCL
assignment statement:

t SDA := SSDA

A foreign command is a command not known to the command interpreter
that can be executed by entering a command string.

The dollar sign ($) indicates to DCL that the expression is a foreign
command. Now you can specify a file or the asterisk as a parameter to
the SDA command:

$ SDA [DUMPSJBADUCB

Defining SDA as a foreign command abbreviates SDA initialization
because it eliminates the need to respond to the dump file prompt.
For further information on the foreign command feature of DCL, see
Appendix A of the VAX/VMS Command Language User's Guide.

You can also invoke SDA from the site-specific start-up procedure;
Section 3.6 describes this method of calling SDA.

3.3 EXAMINING THE RUNNING SYSTEM

Occasionally, VAX/VMS encounters an internal problem that hinders
system performance without generating a system failure. By allowing
you to examine the running system, SDA provides the means to search
memory for the solution to the problem without disturbing the
operating system.

To examine the running system, invoke SDA as described in Section 3.1.
SDA automatically sets the process context to your process. (See the
description of the SET PROCESS command in Chapter 5 for a discussion
of process context.)

To analyze the system dump file, SDA maps the entire file. By
contrast, when SDA examines a running system, it retrieves only the
information necessary to process a given command.

Because of the system's dynamic nature, use extreme caution when
examining the running system. Although you can safely reference most
locations, accessing certain portions of memory, such as I/O address
space or nonresident process header pages that the current process
does not own, causes the system to fail.

3.4 READING THE SYSTEM DUMP FILE

When you invoke SDA and specify the name of a dump file (or press
~) SDA gathers the data needed to create the displays from that
dump file. Under certain conditions, the contents of general purpose
or processor registers may not be saved in SYSDUMP.DMP.

3-2

RUNNING SDA

For example, during console restart bugchecks, such as HALT, the
VAX-11 LSI-11 console program destroys the contents of all the general
purpose registers except the program counter and the processor status
longword. SDA indicates in the SHOW CRASH display that the registers
wer~ wiped out by the console.

Processor registers may also be lost if the error log buffers in
memory are full. When the operating system writes data to
SYSDUMP.DMP, it creates an error log entry in the error log buffer
that stores the contents of the processor registers. If the buffers
are full, the contents of the registers are lost because the operating
system cannot create an error log entry for them. Again, SDA prints a
message in the SHOW CRASH display indicating that an error log entry
for the registers does not exist.

Although the system dump file must be contiguous for the operating
system to write information to it successfully, the file need not be
contiguous for SDA to read it. Thus, if your copy of the system dump
file is not contiguous, you will still be able to run SDA.

3.5 BUILDING THE SDA SYMBOL TABLE

After locating and reading the system dump file, SDA next attempts to
read the system symbol table file. This file, named SYS.STE, contains
all the global symbols used by the operating system. SDA's ability to
read global symbols makes it easier to analyze a dump because you can
examine locations by symbol rather than by virtual address.

SDA first looks for SYS.STE in the directory and device containing the
system dump. If the file is not there, SDA looks for it in the system
directory SYS$SYSTEM. Once SDA finds SYS.STE, it copies the file's
contents to the SDA symbol table. If SDA cannot find the system
symbol table file, it will not run.

When SDA finishes building its symbol table, it prints out a message
identifying itself and the immediate cause of the crash:

VAX/VMS Shlstem dumP analszer

Dump taken on 28-Feb-1979 01:22:58+43
MTXCNTNONZY Mutex count nonzero at s~stem service exit

SDA>

The SDA> prompt indicates that the utility is ready to accept SDA
commands. You can now use SDA interactively, send selected
information to a file, or print selected information on a line
printer. Refer to the description of the SET OUTPUT command in
Chapter 5 for directions on setting up output files.

3.6 INVOKING SDA IN THE SITE-SPECIFIC START-UP PROCEDURE

Because an SDA listing is an important tool in determining the general
nature of a system failure, it is a good idea to make sure that one is
produced after every crash. The system manager can ensure the
creation of an SDA listing by modifying the SYSTARTUP.COM file in
[SYSMGR] to invoke SDA when the system is booted.

3-3

RUNNING SDA

When called by the start-up procedure, SDA scans the system dump file
for a flag that indicates whether SDA has processed the file. This
flag is cleared each time the operating system writes to SYSDUMP.DMP,
except in the case of an emergency shutdown (OPCCRASK.EXE). If the
flag is clear, SDA executes the commands designated in the command
procedure and sets the flag. If, however, SDA finds that the dump
file flag is set, it exits without performing any of the specified
commands. Thus, SDA will execute only if the system just failed.

To allow you to run SDA from the site-specific start-up procedure, the
system parameter PQL DPGFLQUOTA must equal the size of the system dump
file plus 1000 pages-:- See the VAX/VMS Syste_~t:1_9_!!.~~-~-.r' s Guide for more
information on system parameters.

The example
site-specific
crash.

below shows commands that might be added to the
start-up procedure to produce an SDA listing after each

$
$
$

Print dump listing if system just failed

$ RUN SYS$SYSTEM:SDA
SYS$SYSTEM:SYSDUMP.DMP

COPY SYS$SYSTEM:SAVEDUMP.DMP
SET OUTPUT LPAO:SYSDUMP.LIS
SHOW CRASH

SHOW STACK
SHOW SUMMARY

SHOW PROCESS/PCB/PHO/REG
SHOW SYMBOL/ALL

EXIT

3-4

Save dump file
Create listing file
Display crash
information
Show current stack
List all active
processes
Display current process
Print system symbol
table

CHAPTER 4

SDA COMMAND STRINGS

The following sections describe the SDA command format and the types
of expressions SDA uses within commands.

4.1 GENERAL FORMAT

SDA uses a command string format similar to that of the DIGITAL
Command Language (DCL) interpreter. You issue commands in the general
format:

command [parameter] [/qualifier] [!comment]

command

The name of an SDA command that tells the utility to perform a
certain function. Commands can consist of one or more words, and
can be abbreviated to the number of characters that make the
command unique. For example, SH stands for SHOW and SE stands
for SET.

parameter

The target of the command. For example, SHOW PROCESS GORK tells
SDA to display the process GORK.

When a parameter is a file specification, the current default
device and directory are represented as listed below.

Default

SYS$DISK

[default-dir]

Meaning

Device specified in the most recent
SET DEFAULT command

Directory specified in the
recent SET DEFAULT command

most

See the VAX/VMS Command Language User's Guide for a description
of the DCL command SET DEFAULT.

/qualifier

The name of a command qualifier that modifies the action of an
SDA command. A qualifier is always preceded by a slash (/).
Multiple qualifiers can follow a single parameter but must be
delimited by slashes. Qualifiers can be abbreviated as long as
they remain unique.

4-1

SDA COMMAND STRINGS

!comment

A comment. SDA ignores the exclamation point and all characters
appearing after it on the same line.

4.2 EXPRESSIONS

Certain SDA commands allow expressions as command parameters. To
create expressions, you can use:

• Radix operators

• Unary operators

• Binary operators

• Special operators

• Symbols

4.2.l Radix Operators

Radix operators determine which base SDA uses to evaluate expressions.
You can use one of three radix operators to specify the radix for a
numeric value.

Operator Radix

Hexadecimal
Octal
Decimal

Example

"'XlO
"'030
"'Dl6

The default radix is hexadecimal. SDA displays hexadecimal values
with leading zeros and decimal values with leading spaces.

4.2.2 Unary Operators

SDA recognizes the following unary operators:

Operator Function

+ Assigns positive value
Assigns negative value

@ Uses contents of location
G Adds 80000000 to value
H Adds 7FFEOOOO to value

The unary operator G corresponds the first virtual address in system
space, while the unary operator H corresponds to a convenient base
address in a process's control region.

4-2

SDA COMMAND STRINGS

4.2.3 Binary Operators

SDA performs integer arithmetic on 32-bit operands.
indicating arithmetic operations are:

Operator

+

*
I
@

Function

Addition
Subtraction
Multiplication
Division
Arithmetic shift

The characters

SDA carries out multiplication, division, and arithmetic shift before
addition and subtraction. In division, SDA does not round integers,
nor does it retain a remainder.

4.2.4 Special Operators

SDA uses parentheses as special operators. Expressions enclosed in
parentheses are evaluated first. In the case of nested parenthetical
expressions, SDA evaluates from innermost to outermost.

4.2.5 Symbols

Symbols are composed of l to 31 alphanumeric characters that can
include the special characters dollar sign ($) and underline(_).

SDA copies symbols into its symbol table from the SYS.STB file. They
can also be created by the DEFINE and READ commands.

In addition, SDA provides the following special symbols:

Symbol

G
H
RO-Rll
AP
FP
KSP
ESP
SSP
USP
POBR
POLR
Pl BR
Pl LR
PC
PSL

Meaning

Current location
80000000
7FFEOOOO
General purpose registers
Argument Pointer
Frame Pointer
Kernel Mode Stack Pointer
Executive Mode Stack Pointer
Supervisor Mode Stack Pointer
User Mode Stack Pointer
Program Region Base Register
Program Region Length Register
Control Region Base Register
Control Region Length Register
Program Counter
Processor status longword

The register symbols correspond to the registers saved in the hardware
context of the current process (see the description of the SET PROCESS
command in Chapter 5). For example,

SDA> EXAMINE @USP

This command displays the first longword on the user mode stack.

4-3

CHAPTER 5

SDA COMMANDS

Table 5-1 lists the SDA commands and gives a brief explanation of
their functions. The underlined characters represent command
abbreviations.

Table 5-1
Summary of SDA Commands

~----------~-----------------·--··-,,·-------,.----

Command Function
~-----------+----------- -------------··-····-

COPY

DEFINE

EVALUATE

EXAMINE

EXIT

FORMAT

HELP

READ

REPEAT

SET OUTPUT

SET PROCESS

SHOW CRASH

SHOW DEVICE

SHOW PAGE TABLE

SHOW PFN DATA

SHOW POOL

SHOW PROCESS

SHOW STACK

SHOW SUMMARY

SHOW SYMBOL

Copies the dump file

Defines symbols and their values

Performs computations

Examines memory locations

Exits from the display or from SDA

Formats data blocks

Prints help files

Copies object module symbols

Repeats the last command

Sets output to
specification

the device or file

Sets the process context to a specific
process

Displays crash information

Displays I/O data structures

Displays the system page table

Displays the PFN data base

Displays dynamic memory

Displays specific process information

Displays process/interrupt stacks

Displays a summary of all processes

Displays the symbol table
!.-__________ _..__ __________________ -·· --

5-1

SDA COMMANDS

COPY

Each time the system fails, new information is written over the
contents of SYSDUMP.DMP. The COPY command allows you to preserve the
contents of SYSDUMP.DMP by copying it to another file. {The resulting
copy does not have to be a contiguous file; see Section 3.4.)

In most cases, the system manager will include the COPY command in the
SYSTARTUP.COM command procedure so that each time the system fails,
SDA will copy the system dump file to another file.

Format

COPY output-file-spec

Defaults

None None

Parameters

output-file-spec

The device, directory, and file name to
system dump file. The default
SYS$DISK: [default-dir]SYSDUMP.DMP. See
Language __ fL~~!.' ~ -·· __ G~-~~~- for more
specifications.

Examples

1. SDA> COPY SYSSSYSTEM:SAVEDUMP

which SDA copies the
file specification is
the VAX/VMS CQ~ma~J!

information about file

The COPY command takes the SYSDUMP.DMP file and copies it to the
system device and directory SYS$SYSTEM under the file name
SAVEDUMP.DMP.

5-2

SDA COMMANDS

DEFINE

The DEFINE command assigns a value to a symbol. SDA evaluates the
expression before assigning it to the symbol. If the symbol is
already defined, the new value simply replaces the old one.

Although both DEFINE and EVALUATE perform computations, DEFINE adds
symbols used for temporary computations to the SDA symbol table, while
EVALUATE simply performs the computation.

Format

DEFINE symbol l = l expression
@~

Qualifiers Defaults

None None

Parameters

symbol

A 1- to 31-alphanumeric character symbol you designate to
represent a value. See Section 4.2.5 for a discussion of valid
SDA symbols.

expression

An expression to be defined by the symbol. You can separate the
expression from the symbol by a space or by an equal sign. See
Section 4.2 for a discussion of SDA expressions.

Examples

1. SDA> DEFINE BEGIN = 80058EOO
SDA> DEFINE END = 80058E60
SDA> EXAMINE BEGIN:END

2.

In this example, DEFINE delimits a range of address space. A
subsequent EXAMINE command can then easily examine that section
of memory locations. The symbols serve as reference points in
memory.

SDA> DEFINE NEXT = @PC
SDA> EXAMINE NEXT
00000454 : 1FDAF812 ••• +

The temporary symbol NEXT defines the address contained in the
program counter. SDA represents nonprinting characters by a
period (.) and puts quotation marks around ASCII text. Refer to
Section 4.2.5 for a discussion of SDA symbols.

3. SDA> DEFINE VEC SCHSGL_PCBVEC

A symbol VEC has been assigned to a global symbol. Now you can
access the memory location or value represented by the global
symbol by specifying the symbol VEC.

5-3

SDA COMMANDS

4. SDA> DEFINE COUNT = 4
SDA> DEFINE RESULT = COUNT*COUNT
SDA> EVALUATE RESULT
Hex = 00000010 Decimal = 16

The value 4 is symbolically defined and then used in an
arithmetic expression.

5-4

SDA COMMANDS

EVALUATE

The EVALUATE command computes the value of any SDA expression and
displays the results in hexadecimal and decimal format.

Format

EVALUATE expression

Qualifiers Defaults

None None

Parameters

expression

The expression to be evaluated. See Section 4.2
description of valid SDA expressions.

for a

Examples

1. SDA> EVALUATE :J.
Hex :::: FFFFFFFF Dc·:·~c :i. ma 1 :::: :I.

EVALUATE prints the values of negative 1 in hexadecimal and
decimal.

2. SDA> DEF I NE TEN :::: A
SDA> EVALUATE TEN
He~·{ :::: OOOOOOOA Dc·~c i ma 1 ==== :I. 0

EVALUATE computes and displays the value of the symbol TEN. In
this example, the character "A" could also be a symbol. When SDA
encounters a quantity that can either be a symbol or a
hexadecimal expression, SDA first treats the quantity as a symbol
and looks for it in the symbol table. If SDA cannot locate the
quantity in the symbol table, it evaluates the quantity as a
hexadecimal expression.

3. SDA> EVALUATE (<TEN*6>+<·-1/4) >+<2+4>
Hex = 00000042 Decimal = 66

The EVALUATE command evaluates a complex expression and prints
the result as hexadecimal and decimal values. See Sections 4.2.2
through 4.2.5 for a discussion of the expressions used in this
example.

5-5

SDA COMMANDS

EXAMINE

The EXAMINE command displays the contents of a location or range of
locations in physical memory.

You can use location parameters to examine specific locations or you
can use qualifiers to display entire process and system regions.
There are two ways to examine a range of locations: 1) designate
starting and ending locations separated by a colon, for example,
80000040:80000200; or 2) specify a location and a byte length,
separated by a semicolon, for example, 80000400;16.

If at any time you omit the location parameter from the EXAMINE
command, SDA takes the location you last examined, increases it by 4
(one longword) and examines the resulting location.

Examining Specific Locations

A location can be represented by any valid SDA expression. When you
use the EXAMINE command to look at a location, SDA displays the
location, its symbolic representation (if possible), and its contents,
in hexadecimal and ASCII formats.

SDA initially sets the current location to -4 (decimal) in the program
region (PO) of the process. To examine memory locations in other
processes, you must use the SET PROCESS command.

Examining Memory Regions

You can dump an entire region of virtual memory by adding one or more
qualifiers to the EXAMINE command.

SDA formats the dump into columns of longwords, 4 for an 80-column
device and 8 for a 132-column device, and prints the ASCII value of
the longwords on the right side of the display. The final column
contains the address of the first longword in each line. You read the
dump display from right to left.

If a series of virtual addresses does not exist in physical memory,
SDA prints a message specifying the range of addresses that were not
translated:

Virtual locations locl : loc2 are not in Ph~sical memor~

In this message, locl and loc2 represent the starting and ending
addresses of the range. This message also appears if you try to
examine a single location that has not been mapped into physical
memory.

If a range of virtual locations contains only zeros, SDA prints the
message:

Zeros suppressed from locl to loc2

5-6

SDA COMMANDS

Format

l[location]
EXAMINE

Qualifiers

/PO
/Pl
/SYSTEM
/ALL

[:locationll
[;length] \

Defaults

None

Parameters

location

Expression that specifies the address in virtual memory at which
data is stored.

length

Expression that specifies the number of bytes you want to
display.

Qualifiers

/PO

/Pl

Prints the entire program region for a given process. The
default for this qualifier is the PO region of the current
process; you must use the SET PROCESS command to examine other
processes' PO regions.

Prints the entire control region for a
default for this qualifier is the Pl
process; use the SET PROCESS command to
regions.

given process. The
region of the current

examine different Pl

/SYSTEM

/ALL

Prints portions of the writeable system region.

Prints both the entire program and control regions for a given
process, and portions of the writeable system region.

Examples

1. SDA> EXAMINE 80000200
SYS$SETEF : 8FBC003C
The system virtual address is defined b¥ a global symbol. The
information stored at this address is given in hexadecimal and in
ASCII formats. SDA represents nonprinting characters by a period
(.) and puts quotation marks (" ") around ASCII text.

5-7

2. SDA> EXAMINE PC
PC : 80008E22
SI:tA> EXAMINE @F'C
EXE$FWNDWN+o~·59 :

SDA COMMANDS

•• • • •

6l.l'72065 •e wa•

SDA examines the program counter and th~ address contained in the
program counter.

3. SDA> EXAMINE 80000008;11

SDA displays a range of bytes starting at address 80000008 and
ending at 80000027. SDA displays byte ranges in units of lo
{decimal) bytes. In this case, SDA displays two lines of lo
bytes even though a value of 17 {11 hexadecimal) was given.

4. SDA> EXAMINE/SYSTEM

Figure 5-1 shows a portion of the display produced by this
command.

5-8

U1
I

'°

~AX/VHS 2.0 •• Svatem Dump Ana1vais
Svatem ~eQion memorv

0P~0P000 P0~0~?03 ~~e~e~~q P0~~0?~3 ~0?0~012 ~PPPP~PA 0~~~4328 00e213q3
8P05f8eP 80PP0848 ~00~0PP~ 7FFEEAF4 ~00P00P8 0~~0P011 000~0002 ~000001A
4t4244P3 02313146 8~0b0408 ~0060~34 8~00087C 8p00pq48 80001~46 80~6q0q~
8P0~3qA8 r~P0~000 ~~~"0~52 4556Uq52 44424408 ~PP000~0 0~000000 00000000
8P05EH2P ~0~1~0r1 0~000000 800178~0 8P017C00 8006~868 0a1000cc 80003qA8
800P~PfC 032F1316 ~2P~0501 1C4040~8 80062qAP 80068EB0 00000~00 80000848
0P026h!7 pppqqqFq ~~00181~ P0~0~000 03150P2A 80078230 000~0000 800008BC
8~0bVSC3 ~~~C?~P0 8~n~3B8C 7-CPC~rPP PP3~~8~8 nb00P000 8P11402C ~~00e0co
000~~~00 ~~P00P0~ P0~~20~P ~P~0~1~r 0~0~00~0 0PEE~FAA 1PPP0P0P 0P0532BE
~P0~vPVP p~n0pp~p ~~prppp~ r~PP~~~p 0P0PP00P 0PP?P0P0 0n030p0r e0000000
4tS~gF~3 ~P0P~P0P 80~~2Q~4 ~gPb?P34 8P0PnQ7C 8Pa00A88 00000000 ~0000000
80003qA8 ~pp~~VP~ P~P~0P52 aFsaa1s2 455P4FP8 P0P3P0Pn P~0~PP0P 00P0PP0P
800P~A2~ ~0~1}0~1 ~JP~0~P~ 02~~PV1Q ~P0PP?Pn sn~P2420 081~PeAC 8PP03qAp
a000~q8(~8PP~2A~ 0P842042 ~Cr4~V07 p~~~~~0e 0~P0P00? 00PP~00e ~0~0pqa8
~~0~r~2~ rPPQ9477 ~~~~~~!~ ~P?PPF0~ 0~1a~00r 80~7A030 000PPP00 Are00qac
0~0~P~V0 pp~pr~0~ 8~er2Apq ~02r~r~p 0~0P~0~P VP250001 8~06B6C0 0PP0P~~0
000~rP~b rP~~?00~ v~000rbC P0~V~P~r P?0~FFFF 0PP27BBA 8007~7PP 8P06F160
EF1b3FFP ?P?PP000 ppprp~r,1 rPPS~vaa 0P~P0~~0 ~0P~r0PP 0aer.p?Ae A00e8420
8~~eJbEE ~rr0111F 8~001606 ~PP00e~r r00rrr0r 80r01cC0 8~0PPAbC 0PP00CAB
800ieq7r 0rr010r0 02P9PPIC 0PPP~P?P ~r0~er~r ~rr0rAbC 000P0C~3 EF163FBB
4t5844P3 03313146 p~~~2A4~ rr"6PV34 A~~~PABC 8~r0eBEU 8~P~~AAC 80e00A8C
BP~~3qA5 ~r~prer~ ~~er~rs2 a5564q52 ua584a~s Pe~00000 0P0~0n0e 0P00e000
8000~A2~ ~~~~~e2~ FFF~pp~~ 80~P2C6D ~~0P0~P? 80~02AA7 ~810~128 800~3qAe

8P00~AFC ?eaor11A ~2~rer~1 \C?Daera 8~?62CAr ~0~~PAA0 0~PA0~00 ~P00~A88
~0~~kP?A r0~r~022 ~004181~ ?e~~~P0P 03140000 ~0~78820 000~0001 80~00AFC
000~~~vr ~~~~~Pr~ ~0r~~~~p ~e~~er~0 r0e~P8~8 ~~rP~PAC 8PAAD418 ~P0PP0CC
0P~~P1E5 8P~Pieca 8,•r~eB&U ~7PP0PPP 0P~PP00~ ?~~1P0PF 0~P~PPP0 0?P001EE
E5ESE5t5 E5E5t5f5 E5E5E5E5 E5~5ESE5 fSE5E5ES f5ESESES E5ESESES 00e0e000
E5ESF5f5 f5f5F5ES F5E5E5F5 ~5E5F5E5 f5E5F5F5 FSF5ESE5 E5E5E5E5 ESESESE5
E5E5t5E5 f5E5E5E5 f5ESE5E5 F5ESE5E5 F5E5E5E5 E5F5ESES E5E5E5E5 E5E5ESES
F5ESE5E5 F5E5E5F5 E5E5E5E5 E5E5F.~E5 E5E5E5E5 E5F5F5f5 E5ESE5E5 F.5ESESES
000~00~0 414?40?3 ~P0~~V0~ ~0?P127C PA06~A34 8P00?Cqp 8P000D78 ESE5ESE5
8000~c1c r~00013~ ~0P~PP00 ~~~H0P52 45Sbaq52 444240?8 000~0000 ~00000~0
8P~~eEFC 00?1~P~1 eAP~FF.FF ,0P0PP14 eP~?V0AP 00000000 0R10?~7U 8P000c1c
800~pC5C ~000?0~~ ~lP~epA~ 081S~P?1 ~~000000 8000pCQ0 0~0n0000 ~e~rPBEU
~00e~0P? ~~0~~A00 P~010~1~ 0AP~PP~P P~P~PPPl ~000~0P0 0~0P0P0P @e000csc
000?~0F~ 0810J074 8~000CQ0 R??e~(qp PH~?rA~P 0000r0e0 000d~000 ?000?000
800~PDP4 ~r~0~0er A000eBE4 Rrr00fFC 0r010004 FFPFFFFF 0000001u 0000000~
8007PD?? ~~~~P?A1 A00rrCD~ R0?rrrD0 0000000~ 0100p0A0 PCtS0~e1 00000000
00B~r~~c 0AP000r~ 00000000 PA00~6FA Ae0r0000 A0A10110 00~00000 00080~06
FF~FFFFF v.~00r.01a 00PP00A~ 0P~A~~0A 08100074 80?00004 80000004 ~0000000
~t0~0~Ap ~c1s~0v1 0~00~00~ ~er~2P5r. ~000000r ~~~00RE4 8~0~0EFC 00P10004
~001r11P 00~~0000 ~~080002 ~~r7742P 000P00~2 80000044 A00e0n4u 00e00000
8P0PPDAC 8000r.E20 ~00~0?0? PeC00r00 00000000 0?0000~0 0~0PP434 0000000A
444C4Er8 ~nr.00200 n,0P?0er0 ~~~00err 414r4E03 00000000 80001608 00000034
~00~rz00 00v0000r. 0a1~e01a 0?r.00r00 e0000~00 0000~000 00000052 45S6aqs2
000~e0~0 P0V000AA 0~0~0P0~ 8~00PD78 80000EFC 00P1P0~1 0pn00000 00000000
3008r0e1 00~0~0n0 R~P0000~ 8~P~0DEC 8~~~~DEC V000~000 00~a00A0 0C1s~001
0~0~v~rr 000~00PP 00P000~P P0~00?0e 0P0~P~0Q ~0000000 0000~010 r0r~0000

000~~~~~ ~0P~000P 544S4E03 0054454E 8~001648 00060034 80000E58 80~e3260
0000r0~0 00V0~P~0 P00000C8 ~PP000ee 00005245 S&aq5244 S4454E0q 00000000
8000~EZ~ a0~00EFc 0~010001 eee00rr0 000~0000 0000p000 000e0000 08100080
800~tEq8 8Pe0efQA ~0000P0~ 00000000 0c1c2~~0 80r&AC30 000~0000 0~000000
000e.000e 0P~0000r 0~0~0000 0~00001r 000~0000 ~000~001 000P0000 00000000
000000~0 V.00~00C0 A0P~0000 00000~00 00000000 00000000 00000000 00000000

21-~AV•1q7q 1413711& 0 88

• I •• +C ••••• I ••• I •••••••• I •• I. I ••

••••• ' •••••••••••••••••• H •• I ••••

0001 F 101 H,,,1 1 •• 4., 11100 F11 00 0BA
•••••••••••••OBORIVER 10001010 q 01

,q,,,,,,k,,,.1 •••••••••••••• •••
H,,,,,,,,, 1 , 1),,,•,..,,, 11 ,,l, 1 , 1 ,

•••••••• 0 ••• * •••••••••••••••• f,,
•••• , •••••• ,.,> •••••• , ••••••••••
. 2...................
,,,,,,,,,,,,1,,,4,,,d),,,,,,,QPA
•••••••••••••O?ERATQR 11000010 q 00

,Q,,,,,.-s •••••••••••••••••• c •••
H •,, • •,,,, •, •,,,,,, 1 B , , •,, •,., •
et et 1 1 t t 0 t t t et t t t It t t et f Wt t t (It t

I e e I I I I I 8 8 x I I et 1 I I t I,.. It I I I I I I I I

'I I I I 91 t I (I I I I I I I It t, It I I I I I' t I I I

I It I I I I It I I I I I IQ I I I It I I I I I 8 I? I I ,
.?, ••••• 1 ••••••••••••••••••• 1 •••
••••••••••••••••"•••'*•1F1t,,DXA
•••••••••••••OXDRIVER, 011 , 01 ,q, 0

• q •• c •••• * •••••• ""'...... • •• c •••
••••••••••••• , •••••• ' ••••• M •• I •• "
································ •••••••••••• -•••••• ,,d,.,d ••• ••••
I It e It It I I I e I I I I I t t t I It I I I It I It I

,,,,:w:,,,,,,,4,,,t,,,, •• ,.~BA,,,,
011101000 MBDRIVER 0 6,, 001 6 1 • 1010 •

t e 1 t t t t t t t e I I e t I I I I I I I I I I I I I I I I I ' ' .. .
\
•••••••••••••••••••••••• t • ••••••
e e I et I I I I I 8 I I e I I t I e I I I I I I I t e •I I I ..
ltfltlllllllttt••ea11tll911tlt1S

············'··················· • • '• • • • • • '• • • ' ' • P+ •' •' • • • •' • • • ' '
• t It 0 t It 0 t t 1 et t t t t t t I It t t It t It I '*............
u,,, 11 , 11 ,, 1 ,NLA,.,,,, 1 , 1 1,.,NLD
RIVER,,,, 1 ,,,,,,.,,,t, 11 ,,,,,,,,

I It I It t I I I I t It e I 1C I et• t I I I t I I t I I I

I I I I I I I I It e It I I It et I I I It I I I t I It I
~2 •• x ••• a ••• H •• ,NET,,NET ••••••••
01100 NETORIVER 01001111 • 11111 , 011

1 1 I I I I• I I f I I I I I I I I It I It I t I e I It I

1 t t t t tat 0 I It t t t • t t t t I It I I It t It I '
t t t t I I I I I I I I et e I t '1 It e I I I I I I I I I I I

Figure 5-1 System Region Memory

80000800
80000820
80000840
80000800
80000880
800008&0
800008C0
800008E0
80000q00
80000q20
80000q40
80000qo0
80000qe0
80000qA0
80000qc0
8000iitqE0
800ei0A00
80000A20
80000A41i!!
80000A60
8121000•80
811100000
80000AC0
80000AE0
8l'!000B00
80000820
80000640
80000B60
8111000080
80000BA0
80000BC0
B0000BE0
8000111C00
8111000c20
80000C40
80000C60
80000C80
80000CA0
80000cc0
80000CE0
80000000
80000020
80000040
800000&0
80000080
8011100040
800111eJOC0
80000DE0
8Ql000E00
80000E20
8011100E411l
80000!60
80000E80
80000E40
80000EC0

C/)

0
>
(")
0
3
3
> z
0
C/)

SDA COMMANDS

EXIT

The EXIT command performs two functions: it discontinues SDA displays
and exits from the utility. During interactive sessions, if a display
has more than one page and is being shown on a video display terminal
such as a VTlOO, SDA will issue the following message each time it
reaches the bottom of a page:

Press RETURN for more~

If you want to discontinue the current display, type EXIT at the
prompt. (On hard copy terminals, SDA does not prompt at the bottom of
each page.) If you do not type EXIT at the screen overflow prompt and
simply execute another command, SDA will accept the command as if you
had exited from the display.

To stop SDA, type EXIT in response to the SDA prompt.

Format

EXIT

Qualifiers Defaults

None None

Parameters

None

5-10

SDA COMMANDS

FORMAT

The FORMAT command displays a formatted list of the contents of a
specific block. It attempts to:

• Characterize a range of locations as a block

• Assign a symbol to each item of data within the block

Most VAX/VMS blocks contain a byte that indicates the block type.
This byte is stored at offset 10 (decimal) from the first address of
the block. The FORMAT command examines the byte stored at this offset
as a block type. If the byte represents a valid block type, SDA tries
to find its corresponding symbols. If the byte does not represent a
valid block type, SDA issues the message:

invalid block t~Pe in sPecified block

Not every block contains a block type byte at offset 10. If this byte
is absent, you must designate a block type at command level by using
the qualifier /TYPE in order to format the block.

The display produced by FORMAT shows, from left to right, the virtual
address of each item within the block, its symbolic name, and its
hexadecimal representation.

Format

FORMAT location

Qualifiers Defaults

/TYPE= None

Parameters

location

The starting location of the block you want to format. The
location can be any valid SDA expression.

Qualifiers

/TYPE=block-type

The symbolic prefix that corresponds to the type of block
structure you want to format. SDA finds all symbols containing
the specified prefix in the form:

block-type$field-type_field-name

The ~ield types accepted by SDA are:

L longword
W word
B byte
Q quadword
T counted ASCII string (0 through 31 characters)
C constant

5-11

SDA COMMANDS

You can define your own block types and use the READ command to
include them in the SDA symbol table. Thus, a valid block type
is one that SDA can find in the symbol table. If SDA cannot find
the symbols associated with the block type you have ~ndicated, it
will issue the message:

No "block-type" s~mbols found to format this block

Examples

1. SDA> FORMAT @SCH$GL_CURPCB

aoo6<1~.=;~;o

800695~)4
B0069~5~:;a

B006<.»::5~iA

PCB!l>L SC~FI...
PCB$1 SC~BI...
PCB$W SIZE
PCB!~B TYPE

BOOO~!F4B

80002F4B
OO'?C

oc

SDA takes the address pointed to by the global symbol, obtains
the block type, and formats the block.

2. $ HUN SYS$SYSTEM: SDA

SDA> 1:~EAD GLOBALS. STB

SDA> FOl=<MAT (~I OC!~GL ... DEVL.. I ST

BOOOOf:MB
BOOOOB4C
B00008::=iO
nooooa::52
800008~;;]

B00008::=;4
B00008:58
800008~iC

00000860
00000064
00000868
8000086C

DDB$L I... INK
DDB$1... UCB
DDB$W S I ZE
DDB!l>B TYPE

DDB~>l... DDT
DDB$l.. ACF'D
DDB!I> T NAME

DDB$ T n1:~vNAME
SDA> FOFmAT fd.

SDA> r~EPEAT

B0000</4B
flOOOOB'lC

()() :54
Of.>

()()

BOOf.,040B
02~5:1.:5:1.46
II DBA u

() () () () () () () ()

()()()()()()()()
()()()()0000
H DBDI:~ I VE!=~ ff

This example illustrates the use of SDA commands to format a list
of blocks. The steps followed in the example are listed below:

• Invoke SDA.

• Use the READ command to read the DOB symbol definitions
from GLOBALS.STB into the SDA symbol table. For a
further discussion of object module files, see the
description of the READ command.

• Use the FORMAT command to format the location pointed to
by the global symbol TOC$GL DEVLIST. When SDA finishes
formatting this block, it sets the current location to
the first byte of the block.

5-12

SDA COMMANDS

• Use the FORMAT command again to format the next block in
the device list. Most blocks contain a pointer to the
next block in a linked list. This pointer is usually the
first longword in the block. In this step, the FORMAT
command causes SDA to format the contents of the current
location (the first longword of the block).

• Repeat the FORMAT command to format the next entry in the
list. In this way, you can step through the entire
device list, formatting each block.

3. SDA> READ SYMDEF
SDA> FORMAT G10ACOO/TYPE=PHD

80 :I. OACOO PHD~>C~ PI:~ I VMSI'\ 00:3osnos
8010AC04 00000000
80 :I. OACOB PHD~t>W WSI... I ST 0046
BO :I. OACOA PHD~~W WSAUTH 042[1
80 :I. OACOC PHD~~W WSl...OCI'\ ()()~::;:I.

BO :I. OACOE PHD~l>W WSDYN 00~:5 :I.
BO:l.OAC:l.O PHD~t>W WSNEXT OOC9
80:1.0r~C:l.2 PHD$W WSl...r~~:;T OODB
BO :I. OAC :I. 4 PH D ii> 1 1:(E FE F(FI... T 00000000
00:1.0AC:l.B PHD~~W V.JSC~UOTA 04211
BO :I. OAC :l.1~ PHD~~W DFW~:>CNT OODB
no :1. or.~c :1. c PHD~t>l... PAGF I 1 ... 0:·3 ()()() 0 ()()

PHD~t>B PAGF I 1...
BO :I. OAC20 PH:O~~W P~:>T 0600

PHD~l>l... Pf>TBA~:>OFF
B010AC22 ()()()()
BO:l.OAC24 PHD~t>W PSTl ... AST FFDfl
BO :I. OAC26 PH D ~t> t,..J P ~:; T F 1:;: EE ()()()()

BO :I. OAC:?B PHD~t>l... FF~EPOlJA 000Ar~200

BO :I. OAC2C PH r:i ~I> I... FF~ E PT EC NT 0000 :I. 9"7B
BO :I. OAC:-30 PHD~l>l... Fl:~EP :I. l.,JA /FFD9000
BO:l.OAC34 PHD~>l... PGFl...CNT 002/0B2D
no :I. OAC3B PHD~l>B DFPFC ?F
BO :I. OAC3<r PHD~l>B PGTBPFC 02
00:1.0AC::~l PHD~t>W Fl...r.~GS 0006
no :I. OAC3C PHD$1... CPUT IM 000224/:1.
80 :I. OAC40 PHD~>W C~l.JANT FFF/
n 0 :I. 0 AC 4 2 PHD!l>W Pl:~Cl...M 0008
BO :I. OAC44 PHD~t>W ASTl...M 00:1.0
BO :I. OAC4t.) PHD$W PHV INDEX OOOF
BO :I. OAC4B PHD!l>W BAK o~:i26
BOlOAC4A PHD~~W WSL.X o~=rno

PHD$W PSTBASMAX
BO:I. OAC4C PHDil>L PAGEFLTS 00064~'.) :I. c
BO :L OAC~:50 PHD$1... D I OCNT 0 0 0 0 ~.=; 6 ;·5 :I.
80 :I. OAc:=.)4 PHDi~L. B I DCNT 00009C2B
80 l oAc:=m PHD$1... CPUI... IM 0000000()

This example shows the use of the qualifier /TYPE=. The READ
command is issued to move PHD symbols to SDA's symbol table (see
the description of the READ command for details on command
syntax). Then, the FORMAT command can identify the process
header block that starts at location 8010ACOO.

5-13

SDA COMMANDS

HELP

The HELP command lists information about the SDA utility, its
operation, and its command format. HELP has three command parameters.
If you do not specify a parameter, HELP gives a brief description of
SDA operations and lists SDA commands.

Format

!
[command-name]!

HELP [EXPRESSION]
[OPERATION]

Qualifiers Defaults
--~.--........ --.........

None None

Parameters

command-name

Specifies the SDA command for which you need information.

EXPRESSION

Prints a description of SDA expressions.

OPERATION

Describes how to operate SDA at your terminal and through the
site-specific start-up procedure.

5-14

SDA COMMANDS

READ

The READ command lets you extract global symbols from any object
module file and insert the definitions automatically into SDA's symbol
table.

The object module file can be the output of a compiler or assembler or
the output of the linker qualifier /SYMBOL_TABLE.

It is important to note that the READ command recognizes global
symbols but ignores local symbols; hence, only global symbols are
copied into the SDA symbol table.

The program below shows some sample definitions of global symbols •

• TITLE GLOBALS, GLOBAL SYMBOLS FOR SYSTEM DUMP ANALYZER

Note: the macros in this program must use the
argument GLOBAL. This argument defines them as
globals so that they will be automatically carried
into the object file. Without the GLOBAL argument,
the macros would be local and SDA would not be
able to read them.

$PHDDEF GLOBAL
$DDBDEF GLOBAL
$UCBDEF GLOBAL
$VCBDEF GLOBAL
$ACBDEF GLOBAL
$IRPDEF GLOBAL

PROCESS HEADER DEFINITIONS
DEVICE DATA BLOCK
UNIT CONTROL BLOCK
VOLUME CONTROL BLOCK
AST CONTROL BLOCK
I/O REQUEST PACKET

(more macros can be inserted here)

.END

Use the following DCL command to generate an object module file with
the file type STB that contains the global symbols defined in the
sample program GLOBALS.MAR, as shown above:

$ MACRO GLOBALS+SYS$LIBRARY:LIB/LIBRARY /OBJECT=GLCBALS.STB

Now you can invoke SDA and use the READ command to copy the symbols
into the SDA symbol table, as shown in Example 1 below.

Format

READ file-spec

Qualifiers Defaults

None None

Parameters

file-spec

The device, directory, and file name of the file whose symbols
you want copied to SDA. The default file specification for this
parameter is SYS$DISK: [default-dir]filename.STB.

5-15

SDA COMMANDS

Examples

1. SDA> READ GLOBALS

SDA searches for the file specification GLOBALS.STB in the
current device and directory.

s-10

SDA COMMANDS

REPEAT

The REPEAT command repeats execution of the last command issued. This
command is primarily used to step through a linked list of data
structures or to examine a sequence of memory locations. On terminal
devices, you can use the escape key (~:§:Cl) to perform the same
function as the REPEAT command; ®Q provides a faster means of
executing the command.

Format

REPEAT

Qualifiers Defaults

None None

Parameters

None

Examples

1. SDA> FORMAT @SCH$(3Q_LEFWQ

800631EO
800631E4
800631E8
800631EA
800631EB

SDA> FOF~MAT @.

800621:18()
80062Df.M
80062[188
80062DBA
80062I:tf.lB

SDA> REPEAT

80062FBO
80062FEi4
B0062FBB
B0062FBA
8001.>2FBB

PCE1$L-~mFL.
PCB$L SC~BI...
F'CB$W SIZE
F'CB$B. ... TYF'E
PCB$B Pl:~I

PCB~l>l... SC:~FL..
PCB$1 SC:~BI...
PCB~>W S I ZE
PCB~t>B TYPE
PCB~>B PF~ I

PCB~l>l... S(~FI...
PCB~l>l... S(~BI...
PCB~l>~J S I :Z.E
PCB~t>B TYPE
PCB~t>B PI:~ I

80062[18()
8()0()30[1()

007C
oc

:1.8

80062FBO
B006:5 :I. EO

007C
oc

aooo:·5ono
noo6::.~riao

007C
oc

In this example, the FORMAT command is used to examine the local
event flag wait queue. The first process control block (PCB) in
the wait queue is formatted, then the rest of the queue can be
examined by using REPEAT (or by pressing ~) •

5-17

SDA COMMANDS

SET OUTPUT

The SET OUTPUT command writes the output of SDA commands to a file or
device of your choice. If you set output to a file, SDA creates a
table of contents that identifies the displays you selected.

When you set SDA output to a file or device, SDA stops displaying
commands at your terminal. If you finish directing SDA commands to an
output file and wish to return to interactive display, you can issue
another SET OUTPUT command using your terminal device as the file
specification. You can also exit from SDA and then recall the
utility.

Format

SET OUTPUT file-spec

Qualifiers Defaults

None None

Parameters

file-spec

The device, directory, and file to which
written. The default file
SYS$DISK: [default-dir]SYSDUMP.LIS.

Examples

1. SDA> SET OUTPUT BROKEN
SDA> SHOW CRASH
SDA> SHOW PROCESS/ALL
~:>DA> SHOW SUMMARY
SDA> EXIT

SDA output will
specification

be
is

SDA stores the displays produced by the commands following SET
OUTPUT on the current device and directory in a file called
BROKEN. LIS.

5-18

SDA COMMANDS

SET PROCESS

The SET PROCESS command moves process context to a specific process.
This command allows you to examine the data structures associated with
any given process.

When you invoke SDA and specify a dump file, process context, that is,
the virtual memory you will see upon executing SDA commands, defaults
to the process that was executing when the system failed. If you are
examining the running system, process context defaults to your
process.

When you issue a SET PROCESS command, process context changes to the
process you specify. Many of the SDA commands, for example, EXAMINE,
SHOW PROCESS and SHOW STACK, operate on tRe current process, that is,
the context of the process specified in the last SET PROCESS command.

SET PROCESS locates the information needed for the particular process
but produces no output.

You must specify one of the three SET PROCESS parameters or SDA will
generate a syntax error.

Format

SET PROCESS J;~:~EX=nnl
l/SYSTEM

Qualifiers Defaults

None None

Parameters

name

A 1 to 31 character alphanumeric string assigned to the process.
The dollar sign ($) and underline () characters can be included
in the string.

/INDEX=nn

The index to the software process control block (PCB). The index
number (nn) is composed of the last four hexadecimal digits of
the process identification (PID).

/SYSTEM

The system process control block. The system PCB and process
header (PHD) are dummy structures that are located in system
space and contain the system working set, global section table,
global page table, and other system-wide data.

5-19

SDA COMMANDS

Examples

1. SDA> SET PROCESS/ I NDEX=4:3
SDA> EXAMINE/f:•o

SDA locates the process by means of the index number and displays
the contents of its program region.

2 • SDA> SET PROCESS SM I TH
SDA> SHOW STACK

Setting the process to SMITH causes the SHOW STACK command to
default to SMITH rather than to the currently executing process.

5-20

SDA COMMANDS

SHOW CRASH

The SHOW CRASH command displays fundamental information concerning the
operating system and the currently executing process. The display can
be divided into three sections:

• Operating system and process information

• General and special register contents

• Processor and hardware maintenance register contents

Operating System and Process Information

The first section of SHOW CRASH lists:

• Date and time of the crash

• Name and version number of the operating system

• Name of the currently executing process

• File specification of the image executing in the process
context (left blank if no image is executing)

• Interrupt Priority Level (in decimal) of the processor

General and Special Register Contents

The second section of the SHOW CRASH display lists the contents of the
general purpose and special registers.

• RO through Rll • Argument Pointer (AP)

• Frame Pointer (FP) • Stack Pointer (SP)

• Program Counter (PC) • Processor Status Longword (PSL)

Process and Hardware Maintenance Register Contents

The third section of the SHOW CRASH display lists the contents of
three sets of registers. The first set includes registers that store
the vital statistics of the currently executing process, as well as
registers that contain information used by the operating system. The
second set of registers are the stack pointers for the processor
access modes plus the interrupt stack. The third set of registers are
used in hardware maintenance.

The process and system registers are:

POBR
POLR
PlBR
PlLR
SBR
SLR
PCBB
SCBB
ASTLVL
SISR

Program Region Base Register
Program Region Length Register
Control Region Base Register
Control Region Length Register
System Region Base Register
System Region Length Register
Process Control Block Base Register
System Control Block Base Register
Asynchronous System Trap Level
Software Interrupt Summary Register

5-21

SDA COMMANDS

The stack pointers are:

ISP Interrupt Stack Pointer
KSP Kernel Mode Stack Pointer
ESP Executive Mode Stack Pointer
SSP Supervisor Mode Stack Pointer
USP User Mode Stack Pointer

The hardware maintenance registers are:

recs
!CR
TOOR
ACCS
SB IFS
SBISC
SB I MT
SBIER
SB I TA
SBIS

Format

SHOW CRASH

Qualifiers

None

Parameters

None

Examples

Interval Clock Control/Status Register
Interval Count Register
Time-of-Day Register
Accelerator Control and Status Register
SB! Fault/Status Register
SB! Silo Comparator Register
SB! Maintenance Register
SB! Error Register
SBI Timeout Address Register
SBI Silo Register

Defaults

None

1. SDA> SHOW CRASH

Figure 5-2 shows the display produced by this command.

5-22

VAX/VMS 2.0 -- System Dump Analysis
System crash information

SDA COMMANDS

Time of system crash: 21-MAY-1979 10:57:48.99

Version of system: VAX/VMS VERSION 1.50

21-MAY-1979 14:42:49.46

Reason for BUGCHECK exception: PGFIPLHI, Pagefault with IPL too high

Process currently executing: GALCHER

Current image file name: 082: [F4V2.TOOL]BLISS32.EXE;43

Current IPL: 7 (decimal)

General registers:

RO 0019CCAB
R4 8006BACO
R8 7FFDB998
AP 7FFEEBC4
PSL 00070000

Processor registers:

POBR
POLR
Pl BR
PlLR
SBR
SLR

8010C400
000003EE
7F914400
001FFEC9
OOlFCOOO
00001000

ISP 8007C200
KSP 7FFEEB38
ESP 7FFEFOOO
SSP 7FFEF828
USP 7FFDB65C

Rl
R5
R9
FP

00000000
7FFDFEOO
00019108
7f'FEEB7C

PCBB
SCBB
ASTLVL
SISR
recs
ICR
TODR

Figure 5-2

R2
Rfi
RlO
SP

0012C678
001D6AOO
00000004
00180000
800000Cl
FFFFF88F
585540BA

000081100
OOlFFFBC
0000255C
7FFEEB38

ACCS
SB IFS
SB I SC
SBIMT
SElI ER
SB I TA
SBIS

R3 8010CSOC
R7 00000200
Rll 7FFEfiC10
PC 80006074

00008001
00040000
00000000
00200200
00008002
00075CD8
00000000

System Crash Information

5-23

SDA COMMANDS

SHOW DEVICE
The SHOW DEVICE command displays a
structures associated with a device.
divided into three sections:

formatted list of all data
The display for each device is

• Device data block lists

• Controller data structures

• Device unit data structures

For a detailed explanation of I/O data structures displayed by SDA,
consult Appendix A of the VAX/VMS Guide to ~-E.!_ting __ ~ _ _I?~vi __ ce Driver.

Device Data Block (DOB) List

The DDB list shows information common to all devices associated with a
single controller. It shows:

• Address of the controller status register (CSR)

• Name of the controller

• Name of the ancillary control process (ACP)

• Name of the I/O driver

• Address of the driver prologue table (DPT)

• Length of the I/O driver and DPT

Controller Data Structures

SDA displays the contents of the following four data structures
associated with each controller:

• Device Data Block (DDB) points to the driver dispatch

•

table, the channel request block, and the first unit control
block connected to the controller

Channel Request Block (CRB)
arbitrate requests between
controller

stores information
devices attached to

used to
a single

• Interrupt Dispatch Block (IDB) -- contains controller status
information used to dispatch interrupts to the proper driver

• Driver Dispatch Table (DDT) -- points to routines that process
the I/O request

Device Unit Data Structures

The final section of the SHOW DEVICE display itemizes the contents of
the Unit Control Block (UCB) for each device. If the device is
handling file-structured requests, the display lists the Volume
Control Block (VCB) and the ACP queue as well.

5-24

SDA COMMANDS

Unit Control Block (UCB) - SDA organizes the data stored in the UCB
into a list of items. Heading the list are the address of next UCB,
the status of the device, and the longword whose bits express various
characteristics of the device.

Following the heading, SDA lists pointers to other block types:

I/O Request Packet (IRP) address
Channel Request Block (CRB) address
Volume Control Block (VCB) address

The next six items on the list concern the fork block for the device
driver:

Fork Queue Forward Link (FQFL)
Fork Queue Backward Link (FQBL)
Fork Interrupt Priority Level (IPL)
Fork PC, R3, and R4

The UCB contains device status infor~ation:

Device class
Device type
Device buffer size (DEVBUFSIZ)
Device dependent data (DEVDEPEND) longword
Device status (DEVSTS) longword
Device IPL
Reference count
Operations count

The final items detailed concern mailboxes and information obtained
from the I/O request packet:

Associated Mail Box (AMB) address
System Virtual Page Number (SVPN)
System Virtual Address of Page Table Entry (SVAPTE)
Byte Off set (BOFF)
Byte Count (BCNT)
Error Retry Count (ERTCNT)
Error Retry Maximum (ERTMAX)
Error Count (ERRCNT)
Owner UIC
Process Identification (PID)

SDA also formats all the I/O request packets queued to the UCB. The
packet currently being processed is flagged by an asterisk (*).
Information contained in each I/O request packet is listed in the
following order across the page:

Channel number (CHAN)
Function value (FUNC)
Window Control Block (WCB)
Event flag number (EFN)
Asynchronous system trap (AST)
I/O status block (IOSB)
Status flags (STATUS)

If the request queue is empty, SDA issues the message:

*** I/O reauest aueue is emPtw ***

5-25

SDA COMMANDS

Volume Control Block and ACP Queue - If a volume was mounted on the
device SDA reads and displays the contents of the volume control block
(VCB) and the ancillary control process queue block (AQB). The VCR
identifies the volume and contains counts and quotas concerning files
on that volume.

The ACP queue block contains information about the ancillary control
process (ACP) associated with the volume. SDA reads the AQB and lists
its contents in readable format.

If the request queue is empty, SDA prints the message:

*** ACP reGuest Gueue is empt~ ***
Format

SHOW DEVICE [device-name]

Qualifiers Defaults

None None

Parameters

device-name

The name of a device whose data structures you want to display.
The device name takes the form:

devcu

where

dev = 2-alphabetic character device code
c I-alphabetic character controller designator
u = 1- or 2-digit device unit number

You can display information about several devices by specifying a
device code or a device code and controller. For example, SHOW
DEVICE D lists all devices with device code Dn, where n
corresponds to the second letter of the device code. SHOW DEVICE
DBA lists all devices with device code DB and controller A. To
display a single unit, specify the entire device name: SHOW
DEVICE DBAl displays the device associated with device name DBAl.
If you do not specify a device name, SDA lists the data
structures of every device on the system.

Examples

1 • S DA> SHOW ItEV I CE [I

Figure 5-3 is a sample Device Data Block list of all the
attached to the system whose device codes start with D.
an example of the first section of the display produced
DEVICE.

5-26

devices
This is

by SHOW

VAX/VMS 2.0 -- System Dump Analysis
I/O data structures

SDA COMMANDS

DOB list

Address Controller

80000848
8009A4CO
8009ADOO
8009C560
8009Cfi20

DRA
OMA
DYA
OBA
DBB

ACP

1"11ACP
FllACP
FllACP
FllACP
FllACP

Driver

DRDRIVER
DMDRIVER
DYDRIVER
DBDRIVER
DBDRIVER

DPT

80080410
800821EO
80082ECO
80087640
800871140

DPT size

0814
08FO
011FO
OliFO
OfiFO

18-DEC-1979 11:38:52.7ti

Figure 5-3 Device Data Block List for Dn Devices

2. SDA> SHOW DEVICE DBA

Figure 5-4 shows information on the data structures associated
with DB device controller A. This is an example of the second
section of the display produced by SHOW DEVICE.

VAX/VMS 2.0 -- System Dump Analysis
I/O data structures

Controller: OBA

Device Data Block (DOB):
DDT address
First UCB address
CRB address

Channel Request Block (CRB) :
UCB reference count
Channel allocation mask
Secondary CRB address
IDB address
Controller init. routine
Unit init. routine
Unit start routine
Unit disconnect routine

Interrupt Dispatch Block (IDB):
CSR address
Owner UCB address
Number of units
ADP address

Driver Dispatch Table (DDT):
Start I/O routine
Unsol. interrupt routine
Function Decision table
Cancel I/O routine
Register dump routine
Diagnostic buffer size
Error buffer size

800fi0408
8000087C
8005EB20

11
00

00000000
80075E40
80001271
800609DE
00000000
00000000

80017800
00000000

8
8005EBl10

00000102
00000637
0000007A
8000A869
00000592

0080
OOAE

ln-AUG-1979 lfi:34:54.81

Figure 5-4 Controller Data Structures for DB Devices

5-27

SDA COMMANDS

3. SDA> SHOW DEVICE DBAl

Figure 5-5 shows an example of the last section of the display
produced by SHOW DEVICE. The display lists the UCB, VCB, and AQB
for the device DBAl.

VAX/VMS 1.0 -- System Dump Analysis
I/O data structures

DB Al

UCB address: 80074830
Device status: 1810 online,valid,unload
Characteristics: 1C4D4008

IRP address 80089350 Device class 01
CRB address 80068520 Device type 05
VCB address 80076140 DEVBUFSIZ 512
FQFL 80003A48 DEVDEPEND 032Fl3Hi
FQBL 80003A48 DEVSTS 0000
Fork IPL 8 Device IPL 21
Fork PC 80074831 Reference count 0
Fork R3 80019C80 Operation count 837f!i5
Fork R4 80019800 AMB address 00000000

*** I/O request queue is empty ***

Volume: VMSWORK2
Status: 80 system

AQB address
Rel. Volume #
Transactions
Mount count
Window size
Default extension

800f!iE4AO
2
3
1
7
5

ACP for volume: DRASACP

PID
ACP type
ACP class
Status
Mount count
AQB linkage

00010042
3
0

04
7

00000000

def sys

Cluster size
Reserved files
Maximum files
Free blocks
Record size
RVT address

*** ACP request queue is empty ***

SVPN
SVAPTE
BOFF
BCNT
ERTCNT
ERTMAX
ERRCNT
Owner
PID

3
9

25000
19791

0
8008C820

15-AUG-1979 17:10:0n.n8

00000217
8009835C

0000
0200

8
8
l

UIC [1, 11
00000000

Figure 5-5 Device Unit Data Structures for Device DBAl

5-28

SDA COMMANDS

SHOW PAGE_TABLE

The SHOW PAGE TABLE command displays a formatted list of system page
table entries-which are used to map virtual pages to physical pages.

T'h e d i s p 1 a y can be d iv i de d i n to 1 e ft and r i g ht sect i on s • The 1 e ft
section contains virtual page information. The right section contains
physical page information.

Virtual Page Information

The left section of the display describes virtual pages using
information contained in the system page table. Each line of this
display lists characteristics of a particular virtual page as well as
locations needed for address translation. The values listed are:

• ADDRESS -- system virtual address that marks the base of a
virtual page

• SVAPTE -- system virtual address of the page table entry that
maps this virtual page

• PTE -- page table entry; longword that describes a system
virtual page

• Type -- type of virtual page; there are seven types:

VALID
TRANS

DZ ERO
PG FIL
STX
GPTX
IOPAGE

Valid page (in main memory)
Transitional page (between main
memory and page lists)
Demand-allocate-zero-fill page
Paging file page
Section table index page
Global page table index page
I/O address space page

• PROT -- protection; a code derived from bits in the PTE that
designate the type of access (read and/or write) granted to
processor access modes (Kernel, Executive, Supervisor, or
User).

• Bits -- letter(s) representing
combination of bits in the PTE;
a page. The bit codes are:

the value of a bit or a
indicates certain aspects of

M
L
K,E,S or U

Modify bit
Locked into working set
Access mode of owner of page
(only one letter will appear)

5-29

SDA COMMANDS

Physical Page Information

If the virtual page has been mapped to a physical page, the right
section of the display includes information from the Page Frame Number
(PFN) data base. Otherwise, the section is left blank. SDA organizes
the 18 bytes of PFN data into nine categories:

• PAGTYP -- type of physical page; there are six page types:

PROCESS
SYSTEM
GLOBAL
PPGTBL
GPGTBL
GBLWRT

Process page
System page
Global section page
Process page table page
Global page table page
Global writeable section page

• LOC -- location of page in system; there are eight locations:

ACTIVE
MDFYLST
FREEL ST
BADLST
REL PEND
RD ERROR
PAGEOUT
PAGE IN

In working set
In modified page list
In free page list
In bad page list
Release pending
Read error
Paging out
Paging in

• STATE -- byte that describes the state of the physical page.

• TYPE -- byte that describes the type of virtual page (see
PAGTYP).

• REFCOUNT -- reference count; word indicating the presence of
a reference to this PFN. If the value of REFCOUNT is
non-zero, the page is used in at least one working set. If
the value is zero, the page is not used in any working set.

• BAK -- backing store address; location on a disk device to
which pages can be written

• SVAPTE -- virtual address associated with this page frame.
The two SVAPTEs indicate a valid link between physical and
virtual address space.

• FLINK -- forward link within PFN data base; also acts as the
share count of a global section.

• BLINK backward link within PFN data base; also acts as an
index to the working set list.

SDA indicates pages that cannot be accessed with the message:

-------- n NULL PAGES

where n represents the number of inaccessible pages.

5-30

Format

SHOW PAGE TABLE

Qualifiers

/GLOBAL
/SYSTEM
/ALL

Parameters

None

Qualifiers

/GLOBAL

SDA COMMANDS

Defaults

/ALL

Lists the global page table.

/SYSTEM

/ALL

Lists the system page table.

Lists both the global and system page tables.
default for the command.

Examples

1. SDA> SHOW PAGE-TABLE/SYSTEM

This is the

Figure 5-6 shows one page of the display produced by this
command.

5-31

ADDRESS SVAPTE PTE TYPE PROT BITS PAGTYP LOC STATE TYPE REFCNT BAK SVAPTE FLINK BLINK

8000DOOO 801F91AO 78000B7A TRANS UR K SYSTEM FREELST 00 01 0 0040FFF8 801F91AO 01E5 0742
8000D200 801F91A4 F80004E9 VALID UR K SYSTEM ACTIVE 07 01 1 0040FFF8 801F91A4 0000 0046
8000D400 801F91A8 78000134 TRANS UR K SYSTEM FREELST 00 01 0 0040FFF8 801F91A8 053E 0654
8000D600 801F91AC F80009E5 VALID UR K SYSTEM ACTIVE 07 01 1 0040FFF8 801F91AC 0000 0062
8000D800 801F91BO F8000DB2 VALID UR K SYSTEM ACTIVE 07 01 1 0040FFF8 801F91BO 0000 0058
8000DAOO 801F91B4 F80001DD VALID UR K SYSTEM ACTIVE 07 01 1 0040FFF8 801F91B4 0000 0057
8000DCOO 801F91B8 F80001E9 VALID UR K SYSTEM ACTIVE 07 01 1 0040FFF8 801F91B8 0000 OOA6
8000DEOO 801F91BC F8000257 VALID UR K SYSTEM JI.CT IVE 07 01 1 0040FFF8 801F91BC 0000 007C
8000EOOO 801F91CO F800098E VALID UR K SYSTEM ACTIVE 07 01 1 0040FFF8 801F91CO 0000 007D
8000E200 801F91C4 F8000A5B VALID UR K SYSTEM ACTIVE 07 01 1 0040FFF8 801F91C4 0000 OOA3
8000E400 801F91C8 F800049A VALID UR K SYSTEM ACTIVE 07 01 1 0040FFF8 801F91C8 0000 004E
8000E600 801F91CC F8000844 VALID UR K SYSTEM ACTIVE 07 01 1 0040FFF8 801F91CC 0000 0094
8000E800 801F91DO F8000075 VALID UR K SYSTEM ACTIVE 07 01 1 0040FFF8 801F91DO 0000 0068
8000EAOO 801F91D4 78000088 TRANS UR K SYSTEM FREELST 00 01 0 0040FFF8 801F91D4 ODB9 0394
8000ECOO 801F91D8 F800020A VALID UR K SYSTEM ACTIVE 07 01 1 0040FFF8 801F91D8 0000 005C
8000EEOO 801F91DC F8000270 VALID UR K SYSTEM ACTIVE 07 01 1 0040FFF8 801F91DC 0000 0058
8000FOOO 801F91EO F8000A4C VALID UR K SYSTEM ACTIVE 07 01 1 0040FFF8 801F91EO 0000 0060
8000F200 801F91E4 78000096 TRANS UR K SYSTEM FREELST 00 01 0 0040FFF8 801F91E4 0909 0585
8000F400 801F91E8 FA00067B VALID UR K SYSTEM ACTIVE 07 01 1 0040FFF8 801F91E8 0000 0072
8000F600 801F91EC 780001E5 TRANS UR K SYSTEM FREELST 00 01 0 0040FFF8 801F91EC 0000 OB7A
8000F800 801F91FO F800031A VALID UR K SYSTEM ACTIVE 07 01 1 0040FFF8 801F91FO 0000 006C
8000FAOO 801F91F4 F800029A VALID UR K SYSTEM ACTIVE 07 01 1 0040FFF8 801F91F4 0000 OOA9 C/)
8000FCOO 801F91F8 7800098C TRANS UR K SYSTEM FREELST 00 01 0 0040FFF8 801F91F8 02BA 0159 0
8000FEOO 801F91FC 7C40FFF8 STX UR K >
80010000 801F9200 F80002DC VALID UR K SYSTEM ACTIVE 07 01 1 0040FFF8 801F9200 0000 0087 n U'I 80010200 801F9204 78000159 TRANS UR K SYSTEM FREELST 00 01 0 0040FFF8 801F9204 098C 094D

I 0
w 80010400 801F9208 7C40FFF8 STX UR K 3
!\..) 80010600 801F920C 7C40FFF8 STX UR K 3

80010800 801F9210 7C40FFF8 STX UR K >
80010AOO 801F9214 7C40FFF8 STX UR K z

0
80010COO 801F9218 7C40FFF8 STX UR K (/)

80010EOO 801F921C F80009F7 VALID UR K SYSTEM ACTIVE 07 01 1 0040FFF8 801F921C 0000 0083

-------- 27 NULL PAGES

80014600 801F928C 94100010 IOPAG KW M K
80014800 801F9290 94100030 IOPAG KW M K
80014AOO 801F9294 90100031 IOPAG KW K
80014COO 801F9298 90100032 IOPAG KW K
80014EOO 801F929C 90100033 IOPAG KW K
80015000 801F92AO 94100034 IOPAG KW M K
80015200 801F92A4 94100035 IOPAG KW M K
80015400 801F92A8 90100036 IOPAG KW K
80015600 801F92AC 90100037 IOPAG KW K
80015800 801F92BO 941009FO IOPAG KW M K
80015AOO 801F92B4 901009Fl IOPAG KW K
80015COO 801F92B8 901009F2 IOPAG KW K
80015EOO 801F92BC 901009F3 IOPAG KW K
80016000 801F92CO 941009F4 IOPAG KW M K
80016200 801F92C4 901009F5 IOPAG KW K
80016400 801F92C8 901009F6 IOPAG KW K
80016600 801F92CC 901009F7 IOPAG KW K

Figure 5-6 System Page Table

SDA COMMANDS

SHOW PFN_DATA
The SHOW PFN DATA command displays a formatted list of values
contained in the page lists and in the PFN data base that can be used
to translate physical pages to virtual pages.

There are four data structures concerned with the management of
physical memory:

• Free Page List -- pages available for use

• Modified Page List -- pages to be written to disk

• Bad Page List pages containing data errors

• PFN Data Base all pages in physical memory

To display a particular physical page, specify its page frame number
(PFN). To list the pages of one or more data structures, use the
qualifiers. If you do not specify a parameter or a qualifier, SDA
will dump all the page lists and the entire PFN data base.

The format used to display physical page data is the same for each
data structure. Figure 5-7 shows a page of the display produced by
the command SHOW PFN DATA/SYSTEM. SDA organizes the information for
each page under the following headings:

• PFN -- page frame number; the absolute page number within
physical memory

• PTE ADDRESS -- Page Table Entry address; the virtual address
of the Page Table Entry (see the description of the SHOW
PAGE_TABLE command for more details).

• BAK -- backing store address; location on a disk device to
which pages can be written

• REFCNT reference count; a word whose value signals whether
a page is part of a working set

• FLINK -- forward link; forward link within the PFN data base
(also used as share count of a global section)

• BLINK -- backward link; backward link within the PFN data
base (also used as an index to the working set list)

• TYPE -- type of page that was mapped into physical memory (see
the description of the SHOW PAGE TABLE command for a list of
the different types)

• STATE ~- current state of the page in
description of the SHOW PAGE TABLE
states)

5-33

the system (see the
command for a list of

SDA COMMANDS

Format

SHOW PFN DATA [number]

Qualifiers

/FREE
/MODIFIED
/BAD
/SYSTEM
/ALL

Defaults

/ALL

Parameters

number

The number of the physical page you want to display.

Qualifiers

/FREE

Displays the free page list.

/MODIFIED

Displays the modified page list

/BAD

Displays the bad page list.

/SYSTEM

/ALL

Displays the PFN data base in order of PFN starting at page frame
zero.

Displays all of the above memory management data structures.
This is the default for the command.

Examples

1. SDA> SHOW F'FN DATA/SYSTEM

Figure 5-7 shows one page of the display produced by this
command.

5-34

SDA COMMANDS

VAX/VMS 2.0 -- System Dump Analysis 21-MAY-1979 15:00:04.82
PFN data base

PFN PTE ADDRESS BAK REFCNT FLINK BLINK TYPE STATE
----------- -------- ---------- ----------

0000 00000000 00000000 0 0895 OAAF 00 PROCESS 00 FREEL ST
0-001 800A3Cl0 03000000 1 0000 0053 00 PROCESS 87 ACTIVE
0002 80174EAO 03000000 1 0000 007C 00 PROCESS 87 ACTIVE
0003 8010CEEO 033FFFFF 1 0000 01A2 00 PROCESS 87 ACTIVE
0004 801F7F70 03000000 1 0000 OOC9 00 PROCESS 07 ACTIVE
0005 8010CEB4 033FFFFF 1 0000 018D 00 PROCESS 87 ACTIVE
0006 80174CAC 03000000 1 0000 OOCE 00 PROCESS 07 ACTIVE
0007 8016D200 0300E351 0 0020 0498 00 PROCESS 00 FREEL ST
0008 8010CE2C 0300E20E 0 0006 095F 00 PROCESS 81 MDFYLST
0009 801COC58 03000000 1 0000 OOOB 00 PROCESS 07 ACTIVE
OOOA 801FB890 03000000 1 0000 0054 04 PPGTBL 07 ACTIVE
OOOB 801FC6BC 03000000 1 0000 004B 04 PPGTBL 87 ACTIVE
oooc 00000000 00000000 0 05n6 08Bl 00 PROCESS 00 FREEL ST
0000 801F03EO 0040FFB8 1 0002 0000 02 GLOBAL 07 ACTIVE
OOOE 801F0474 0040FFAO 0 03FB ODll 02 GLOBAL 00 FREEL ST
OOOF 8010CF1C 033FFFFF 1 0000 0084 00 PROCESS 87 ACTIVE
0010 80101040 033FFFFF 1 0000 008C 00 PROCESS 87 ACTIVE
0011 801FD524 0040FF90 1 0002 0000 02 GLOBAL 07 ACTIVE
0012 8017C900 03000000 1 0000 0047 00 PROCESS 07 ACTIVE
0013 80113F88 0300E2C6 1 0000 014B 00 PROCESS 07 ACTIVE
0014 8011F480 03000000 1 0000 0088 00 PROCESS 07 ACTIVE
0015 801F0464 03000000 1 0000 OOnB 00 PROCESS 07 ACTIVE
OOH 80-lOCfilO 0040FFE8 0 0001 0195 00 PROCESS 00 FREELST
0017 801'503BC 03000000 1 0000 OOFE 00 PROCESS 07 ACTIVE
0018 80085008 03000000 1 0000 0050 00 PROCESS 07 ACTIVE
0019 80160338 03000000 1 0000 0143 00 PROCESS 07 ACTIVE
OOlA 801FB774 03000000 1 0000 004E 04 PPGTBL 87 ACTIVE
0018 80160254 033FFFFF 0 018E 0634 00 PROCESS 81 MDFYLST
OOlC 801020D8 033FFFFF 1 0000 0084 00 PROCESS 87 ACTIVE
0010 801F'D5FO 0040FF90 1 0002 0000 02 GLOBAL 07 ACTIVE
OOlE 8010A808 03005305 1 0000 0175 00 PROCESS 87 ACTIVE
OOlF 801F060C 0040FF70 1 0001 0000 02 GLOBAL 07 ACT IVS
0020 80110848 033FFFFF 1 0000 0002 00 PROCESS 87 ACTIVE
0021 8010CFEO 0 33FFF1''F 1 0000 OODC 00 PROCESS 87 ACTIVE
0022 801B59D4 03000000 1 0000 0046 00 PROCESS 07 ACTIVE
0023 00000000 00000000 0 020C 025B 00 PROCESS 00 FREEL ST
0024 80174CA4 03000000 1 0000 oocc 00 PROCESS 07 ACTIVE
0025 00000000 00000000 0 0A2E 08CB 00 PROCESS 00 FREEL ST
0026 8010CE34 0300E2EO 0 0590 0423 00 PROCESS 81 MDFYLST
0027 801FCB6C 03000000 1 0000 004F 04 PPGTBL 87 ACTIVE
0028 8010CA28 0040FFE8 1 0000 DOCS 00 PROCESS 07 ACTIVE
0029 8010CC98 033FFFFF 0 OA25 occs 00 PROCESS 81 MDFYLST
002A 801601F4 03008FF2 1 0000 0058 00 PROCESS 87 ACTIVE
002B 8010C604 0040FFE8 0 07AC ODIE 00 PROCESS 00 FREEL ST
002C 8016D348 03000000 1 0000 0135 00 PROCESS 07 ACTIVE
0020 80160204 0300E352 0 0401 0007 00 PROCESS 00 FREEL ST
002E 801A28 38 0300861C 1 0000 0007 00 PROCESS 87 ACTIVE
002F 00000000 00000000 0 0840 OB03 00 PROCESS 00 FREEL ST
0030 801FD2E8 0040FFDO 1 0003 0000 02 GLOBAL 07 ACTIVE
0031 00000000 00000000 0 093A 08CD 00 PROCESS 00 FREEL ST
0032 8010C7C4 0040FFE8 1 0000 017A 00 PROCESS 07 ACTIVE

Figure 5-7 PFN Data Base

5-35

SDA COMMANDS

SHOW POOL

The SHOW POOL command displays the contents of the I/O Request Packet
(IRP) pool, the nonpaged dynamic storage pool, and the paged dynamic
storage pool. This data is organized into blocks; SDA attempts to
identify each block by its block type. SHOW POOL displays only
allocated blocks, that is, blocks that are (or were) currently in use
by the system.

The information contained in each of the three pools is shown in the
same format. From left to right, the contents of the display are:

• Block type -- the type of information contained in the block.
SDA tries to define the block type. If it is unable to do so,
the message UNKNOWN is printed instead of the name of the
block type.

• Starting address -- the virtual address that marks the start
of the block.

• Block size -- the number (decimal) of bytes of nonpaged memory
allocated to the block. The block size is fixed at 80 in the
IRP pool and is variable in the paged and nonpaged pools.

• Contents (hexadecimal) the contents of the block in
longwords. The contents are arranged four columns across.

• Contents (ASCII) -- the contents of the block in ASCII format.

Format

SHOW POOL

Qualifiers

/!RP
/NON PAGED
/PAGED
/SUMMARY
/ALL

Defaults

/ALL

Parameters

None

Qualifiers

/!RP

Prints the I/O request packet pool. Formats all blocks currently
allocated (in use) within this pool.

/NON PAGED

Prints the nonpaged dynamic storage pool currently in use by the
system.

5-36

SDA COMMANDS

/PAGED

Prints the paged dynamic storage pool currently in use by the
system.

/SUMMARY

/ALL

Prints a summary of the pools selected by the above qualifiers.
/SUMMARY displays the different block types present and lists the
total number and bytes used of each in decimal. This qualifier
also prints the total number of bytes used in each pool.

Prints IRP, nonpaged, and paged dynamic storage pools.
the default for the command.

This is

Examples

1. SDA> SHOW POOL/PAGED

Figure 5-8 shows a page of the display produced by this command.

5-37

SDA COMMANDS

VAX/VMS 2.0 -- System Dump Analysis 21-MAY-1979 16:21:47.68
Paged dynamic storage pool

GSD 80056FAO 48
00010004 00150028 80056FDO 80056810 • k ••• o •• (•••••••
5F424D53 5452500A 80056870 FFC8AOOO •••• ph ••• PRTSMB
00000000 00000000 00000000 00313030 001 •••••••••••• -:

GSD 80056FDO 48
00010004 00150028 80057000 80056FAO .o ••• p •• (•••••••
59414C50 53494408 80056970 FFCOAOOO •••• pi ••• DISPLAY
00000000 00000000 00000000 3130305F 001 ••••••••••••

GSD 80057000 48 -
00010004 00150028 80057320 80056FDO .o •• s •• (•••••••
59414C50 53494408 80056970 FFB8AOOO •••• pi ••• DISPLAY
00000000 00000000 00000000 3230305F 002 ••••••••••••

KFH 80057030 240 -
0028007C 002600E4 80056970 80057114 .q •• pi •••• &. I. (.
00000101 31303230 00000000 00440038 8.D ••••• 0201 ••••
02000000 00000000 00000000 00000000
00000000 00002285 0000373E 00000000 •••• >7 ••• "
00000002 00000000 00000010 00000000
00000000 00000000 59414C50 53494407 • DISPLAY ••••••••
00000000 00000000 00000000 00313002 • 01 •••••••••••••
00003032 2E313005 00864404 064AOE20 .J •• D ••• 01.20 ••
00000001 00040010 00000000 00000000
00000005 00020010 00000002 00000000
00800007 0005000C 00000006 OOOOOOOA
00000000 oooooooc OOOAOOlO oooooooc
OOOOOOOA 00000016 OOOBOOlO 00000008
FDOOOOOC 003FFFEC 0014000C 00000012 • • • • • • • • • • ? •••••
00000000 00000000 00000000 FFFFOOOO

KFI 80057120 64
00340000 04180040 80057160 800569FO • i •• q •• @ ••••• 4.
800630CO 00000233 00020387 00000001 •••••••• 3 •••• 0 ••
00000001 00000000 00108001 800574FC .t
00000000 00000057 4F485304 80057120 q ••• SHOW •••••••

KFI 80057160 64
00340000 04180040 800571AO 80057120 q ••• q • • @ •••• • 4.
800630FO 00000400 00008001 00000001 ••••••••••••• o ••
00000000 00000000 00000000 00000000
00000000 00000000 50495003 00000000 ••••• PIP ••••••••

KFI 800571AO 64
00340000 04180040 800571EO 80057160 q ••• q •• @ ••••• 4.
80063120 OOOOOOAO 00018205 00000001 1 ••
00000001 00000000 00000000 00000000
00000000 00000000 534F5303 800571AO • q ••• sos ••••••••

KFI 800571EO 64
00340000 04180040 80057220 800571AO .q •• r •• @ ••••• 4.
80062F50 000002F5 00010307 00000001 • • • • • • • • •• • .P/ • •
00000001 00000000 00000000 800578DC .x ••••••••••••••
00000000 00000000 58535203 800571EO .q ••• RSX ••••••••

KFI 80057220 64
00340000 04180040 80057260 800571EO .q •• r •• @ ••••• 4.
80062F80 000004El 00010307 00000001 / ..
00000001 00000000 00000000 80057AOC • z •••••••••••.•••
0000534E 41525448 43414209 80057220 r ••• BACKTRANS ••

KFI 80057260 64
00340000 04180040 800572AO 80057220 r ••• r •• ra ••••• 4.

Figure 5-8 Paged Dynamic Storage Pool

5-38

SDA COMMANDS

SHOW PROCESS

The SHOW PROCESS command displays the software and hardware context of
any process in the balance set.

Format

SHOW PROCESS [/INDEX=nn] ![name] l
[/SYSTEM]

Qualifiers

/PCB
/PHD
/REGISTERS
/WORK ING SET
/PROCESS-SECTION TABLE
/PAGE TABLES -
/ALL -

Defaults

/PCB

Parameters

name

A 1- to 15-character alphanumeric string assigned to the process.
The name can include the symbols underline (_) and dollar sign
($) •

/INDEX=nn

The index to the software PCB; nn consists of the last four
hexadecimal digits of the Process Identification (PID).

/SYSTEM

The system process control block. The system PCB and process
header (PHD) are dummy structures that are located in system
space and contain the system working set, global section table,
global page table, and other system-wide data. When you specify
this parameter, SDA displays the system PCB rather than a given
process.

If no parameter is specified, the
process. See the description of
definition of the current process.

command displays the current
the SET PROCESS command for the

Qualifiers

/PCB

Produces a formatted list of the data contained in the software
process control block (PCB). The software PCB is the central
control mechanism for process swapping and scheduling.

5-39

/PHD

SDA COMMANDS

The display produced by the /PCB qualifier lists:

• Software context for the process

• Condition handling information

• Interprocess communication data

• Counts and quotas

/PCB is the default display for the command.

Lists information included in the process header. The process
header contains a process's vital statistics and is swapped into
memory when a process becomes part of the balance set. Each item
listed by the /PHD qualifier gives a quantity, count, or limit
for the process concerning:

• Process memory

• Pager

• Scheduler

• Asynchronous system traps

• I/O activity

• CPU activity

/REGISTERS

Lists the process's hardware context. When a process executes,
its hardware context is saved in the processor registers (see the
description of the SHOW CRASH command). If the process is not
executing, its hardware context is stored in the hardware PCB,
which is part of the process header. The /REGISTERS qualifier
organizes the saved process registers into:

• General-purpose registers

• Stack pointers

• Special-purpose registers

• Base and length registers

/WORKING_SET

Displays the working set list for the process. The working set
list is a table for all virtual pages residing in physical memory
that the process can access without a page fault. The values
exhibited by this command are:

• INDEX -- index used in PFN data base to access the entry

• ADDRESS -- address of a virtual page in the process
address space

• STATUS -- a 3-part section that lists the location of the
page in physical memory, the type of page (see the
description of the SHOW PAGE TABLE command), and whether
the page is locked into the working set

5-40

SDA COMMANDS

When SDA locates an unused working set entry, it issues the
message:

---- n empty entries

The value of n is the number (in decimal) of unused entries that
SDA has found.

/PROCESS_SECTION TABLE

Lists data within the process section table. The process section
table contains information needed to locate a page in a process
section. SDA notes the boundary of the Process Section Table in
the "Process Section Table Information" section of the listing
and then displays the actual process section table in readable
format. The parts of the process section table are:

• INDEX -- the word that locates the corresponding process
section table entry

• ADDRESS -- the virtual address in the program region that
marks the location of a process section table page

• PAGES -- the length of a process section in pages

• WINDOW -- the mapping window that translates virtual
block numbers to logical block numbers

• VBN -- virtual block number; the number of a block on a
mass storage device (the block number is relative to a
file rather than to a device)

• CLUSTER -- the cluster factor used when faulting pages in
the corresponding process section

• CHANNEL the channel number connecting a process
section to a device unit

• REFCNT -- a number that indicates whether the page is
part of a working set

e FLINK the forward link word in the PST list

e BLINK the backward link word in the PST list

• FLAGS the flags that describe the process section
during process execution

/PAGE_TABLES

/ALL

Displays the program
/PAGE TABLES produces a
PAGE TABLE command.

and
list

control
in the

region page tables.
same format as the SHOW

Displays the information produced by the /PCB, /PHD, /REGISTERS,
/PAGE_TABLES /WORKING SET, /PROCESS SECTION TABLE, and

qualifiers. - -

5-41

SDA COMMANDS

Examples

1. SDA> SHOW PROCESS/PCB

The top portion of Figure 5-9 shows the display produced by this
command.

2. SDA> SHOW p1:mcESS/PH[I

The middle portion of Figure 5-9 shows the
this command.

display produced by

3. SDA> SHOW PFWCESS/REG:CBH'.RS

The bottom portion of Figure 5-9 shows the
this command.

display produced by

VAX/VMS 2.0 -- System Dump Analysis
Process 2B dump: ELDRIDGE

3-JAN-1980 16:54:45.57

Process status: 00040001 RES,PHDRES

PCB address
Master PIO
PIO
PHO address
State
Current priority
Base priority
UIC
Mutex count
Waiting EF cluster
Starting wait time
Event flag wait mask
Local EF cluster 0
Local EF cluster 1
Global cluster 2 pointer
Global cluster 3 pointer

Process header

First free PO address
Free PTEs between PO/Pl
First free Pl address
Free page file pages
Page fault cluster size
Page table cluster size
Flags
Direct I/O count
Buffered I/0 count
Limit on CPU time
Maximum page file count
Total page faults
File limit
Timer queue limit
Paging file index

Saved process registers

RO 08000000 Rl
R4 8008BD20 RS
RB 7FFDSA58 R9
AP 7FFD590C FP
KSP 7FFEE400 ESP
POBR 80181COO POLR

8008BD20
0004002B
0004002B
80180AOO

LEF
9
4

[011,0131
0
0

00000000
F7FFFFFF
4000031B
80000041
00000000
00000000

0002C800
7478

7FFD3200
25252

127
2

0002
727

4958
00000000

25600
7154

lfi
10

03000000

00000000
00000000
7FFDC120
7FFD5914
7FFEFOOO
00000164

JIB address
Creator PIO
Subprocess count
Swapfile disk address
Termination mailbox
AST's enabled

8009DB80
00000000

0

AST's active

00000000
0000
KESU
NONE

AST's remaining
Buffered I/O count/limit
Direct I/O count/limit
BUFIO byte count/limit
open files allowed left
Timer entries allowed left
Active page table count
Process WS page count
Global WS page count

Accumulated CPU time
CPU since last quantum
Subprocess quota
AST limit
Process header index
Backup address vector
WSL index save area
PTs having locked WSLs
PTs having valid WSLs
Active page tables
Maximum active PTs
Guaranteed fluid WS pages
Extra dynamic WS entries
Locked WSLE counts array
Valid WSLE counts array

R2 80001ADO R3
R6 000008DC R7
RlO 7FFDC008 Rll
PC 80000328 PSL
SSP 7FFEF878 USP
Pl BR 7F989COO PlLR

14
5/6
fi/6

1205'1/12336
10
10

0
235

14

0000144fi
0031

8
lfi

0018
03A5
0380

2
fl
7
7

20
3f.i0

OFB8
OFFS

8008BD70
00000003
7FFDBA8C
03COOOOO
7FFD590C
001FFE9A

Figure 5-9 Process Information

5-42

SDA COMMANDS

4. SDA> SHOW PROCESS/WORKING_SET

Figure 5-10 shows the display produced by this command. The size
of the working set and its boundaries are listed at the head of
the display. The actual working set list follows this
information.

VAX/VMS 2.0 -- System Dump Analysis
Process 34 dump: GROVE

Working set information

First WSL entry
First locked entry
First dynamic entry
Last entry replaced
Last entry in list

Working set list

INDEX ADDRESS

0046 7FFEEAOO
0047 7FFEE800
0048 7FFEE600
0049 7FFEFEOO
004A 8010ACOO
0048 8010AEOO
004C 80108000
004D 8010COOO
004E 8010C200
004F 80113EOO
0050 80114000
0051 80108200
0052 00054400
0053 00054AOO
0054 00055400
0055 00054EOO
0056 00054COO
0057 00055000
0058 00055200
0059 00063EOO
005A 00056600
0058 00055600
005C 00068 EOO
005D 00055COO
005E 00058EOO
005F 00069000
0060 00056200
0061 00056400
0062 00069200
0063 00056AOO
0064 00069400
0065 00056COO
0066 00056EOO
0067 00064000
0068 00069600
0069 0005C400
006A 00057200
0068 00057400
006C 00059200
006D 00059000

0046
0051
0052
015A
01A3

STATUS

VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID
VALID

Current authorized working set size
Default (initial) working set size
Maximum working set allowed (quota)

PROCESS WSLOCK
PROCESS WSLOCK
PROCESS WSLOCK
PROCESS WSLOCK
PPGT8L WSLOCK
PPGT8L WSLOCK
PPGT8L WSLOCK
PPGT8L WSLOCK
PPGT8L WSLOCK
PPGT8L WSLOCK
PPGT8L WSLOCK
PPGT8L WSLOCK
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS
PROCESS

Figure 5-10 Working Set List

5-43

21-MAY-1979 15:19:08.57

1000
350
1000

SDA COMMANDS

5. SDA> SHOW PROCESS/PROCESS_SECTION_TABLE

Figure 5-11 shows the display produced by this command.

VAX/VMS 2.0 -- System Dump Analysis
~rocess 34 dump: GROVE

21-MAY-1979 15:29:24.5~

Process section table information

Last entry allocated FFEO
First free PST entry 0000

Process section table

INDEX

FFF8
FFFO
FFE8
FFEO

ADDRESS PAGES

00000200 OOOOOOOF
00076600 00000008
00003COO 00000188
00077600 00000033

WINDOW

80068980
80078050
80068980
80079220

VBN

00000002
00000002
00000013
0000019C

CLUSTER CHANNEL REFCNT FLINK BLINK FLAG~

0
0
0
0

7FFE1DEO
7FFE1D90
7FFE1DEO
7FFE1D60

0
7

355
51

FFE8
FFFO
FFF8
FFEO

FFE8
FFFO
FFF8
FFEO

Figure 5-11 Process Section Table

6. SDA> SHOW PROCESS/PAGE-TABLES

Figure 5-12 shows a portion of the display produced by this
command.

5-44

VAX/VMS 2.0 -- System Dump Analysis 22-MAY-1979 10:40:52.99
Process 01 dump: SWAPPER

PO page table

ADDRESS SVAPTE PTE TYPE PROT BITS PAGTYP LOC STATF.: TYPE REFCNT BAK SVAPTE FLINK BLINK

00000000 8005EE30 DOOOOB6D VALID SRKW K PPGTBL ACTIVE 87 04 1 03000000 801FA7D8 0000 004A
00000200 8005EE34 D000066E VALID SRKW K PPGTBL ACTIVE 87 04 1 03000000 801FA900 OOOF 0050
00000400 8005EE38 D40009DD VALID SRKW M K PROCESS ACTIVE 07 00 1 03000000 800C81FC 0000 0049
00000600 8005EE3C D0000075 VALID SRKW K PROCESS ACTIVE 87 00 1 03000000 800C803C 0000 0051
00000800 8005EE40 DOOOOB77 VALID SRKW K PROCESS ACTIVE 87 00 1 03000000 800C80C8 0000 0052
OOOOOAOO 8005EE44 DOOOOB73 VALID SRKW K PROCESS ACTIVE 07 00 1 03000000 800C81D4 0000 0046
ooooocoo 8005EE48 D00005FB VALID SRKW K PROCESS ACTIVE 07 00 1 03000000 800C81DO 0000 0047
OOOOOEOO 8005EE4C D4000C4C VALID SRKW M K PROCESS ACTIVE 07 00 1 03000000 800C81CC 0000 0048
00001000 8005EE50 D00009DD VALID SRKW K PROCESS ACTIVE 07 00 1 03000000 800C81FC 0000 0049
00001200 8005EE54 D0000075 VALID SRKW K PROCESS ACTIVE 87 00 1 03000000 800C803C 0000 0051
00001400 8005EE58 DOOOOB77 VALID SRKW K PROCESS ACTIVE 87 00 1 03000000 800C80C8 0000 0052
00001600 8005EE5C D4000290 VALID SRKW M K PPGTBL ACTIVE 87 04 1 03000000 801FA7EO 0000 004C
00001800 8005EE60 D4000397 VALID SRKW M K PPGTBL ACTIVE 87 04 1 03000000 801FA7DC 0000 004B

-------- NULL PAGES
(/)

OOOOlCOO 8005EE68 DOOOOAA6 VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 05E4 0288 0
> OOOOlEOO 8005EE6C D0000960 VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 01C9 OOAE

U'1 00002000 8005EE70 DOOOOlCB VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 0271 0456 n
I 00002200 8005EE74 DOOOOD04 VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 OBCl OC32 0
~ 00002400 8005EE78 D00005AO VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 0596 0523 3
U'1 00002600 8005EE7C D0000271 VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 0331 OlCB 3'

> 00002800 8005EE80 DOOOOBC7 VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 049E OBCA z
00002AOO 8005EE84 D0000066 VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 06DF 0384 0
00002COO 8005EE88 D0000076 VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 OOCB 09FO (/)

00002EOO 8005EE8C DOOOOC32 VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 OD04 080C
00003000 8005EE90 D000080C VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 OC32 0539
00003200 8005EE94 D0000539 VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 080C 0038
00003400 8005EE98 DOOOOBCl VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 0456 OD04
00003600 8005EE9C D00006AA VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 ODDS OB24
00003800 8005EEAO DOOOODE9 VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 ODDl ocac
00003AOO 8005EEA4 DOOOOA9B VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 09A7 0044
00003COO 8005EEA8 D0000012 VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 0779 08BA
00003EOO 8005EEAC D000094D VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 04E7 03FC
00004000 8005EEBO D0000448 VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 0763 0839
00004200 8005EEB4 D00007E5 VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 0557 OAC3
00004400 8005EEB8 D0000456 VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 OlCB OBCl
00004600 8005EEBC D000006F VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 0952 ODES
00004800 8005EECO DOOOODCC VALID SRKW K GLOBAL FREELST 00 02 0 0040FF08 801FE2E4 054C 075E
00004AOO 8005EEC4 DOOOODB9 VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 070F OOCE
00004COO 8005EEC8 D0000234 VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 OA8B 067B
00004EOO 8005EECC DOOOOA59 VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 009A 0557
00005000 8005EEDO D000074B VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 0407 040A
00005200 8005EED4 D000083B VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 0050 0522
00005400 8005EED8 D0000900 VALID SRKW K GLOBAL FREELST 00 02 0 004CFFDO 801FD34C 074D 08EO
00005600 8005EEDC D000070F VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 086A ODB9
00005800 8005EEEO D00002CB VALID SRKW K PROCESS FREELST 00 00 0 00000000 00000000 0511 0889

Figure 5-12 Program Region Memory

SDA COMMANDS

SHOW STACK

The SHOW STACK command displays the location and contents of the four
stacks used by a given process as well as the system-wide interrupt
stack.

Each qualifier displays one of four stacks that correspond to the four
VAX/VMS processor access modes for a specific process. The /INTERRUPT
qualifier displays the system-wide interrupt stack. The default for
SHOW STACK is the stack that is currently being used or that was in
use when the system failed.

Figure 5-13 shows the display produced by the SHOW STACK command. The
display is the same for each stack, and is composed of four sections:

• Stack Pointer -- the stack pointer identifies the top of the
stack. The display indicates tte stack pointer by the symbol:

SF' => 7FFEF868 00000001

• Stack address -- SDA lists all the virtual addresses allocated
to the stack by the operating system. The stack addresses are
listed in a column which increases by 4 (one longword).

• Stack contents -- SDA lists the contents of the stack in a
column next to the stack addresses.

• Global symbols -- SDA attempts to display the
location symbolically using a symbol and
example:

7FFEF868
7FFEF86C

7FFEE200 MMG$HDRBUF
7FFEE208 MMG$HDRBUF+08

contents of a
an offset. For

If the value is not within range of any existing symbols, the
field will be left blank.

If a stack is empty, the stack pointer will point to the message:

SP :::> <THE STACK IS EMPTY>

SDA will display only five pages of any stack.

Format

SHOW STACK

Qualifiers

/INTERRUPT

/KERN SL
/EXECUTIVE
/SUPERVISOR
/USER
/ALL

Parameters

None

Defaults

Stack currently in use (running system)
or in use when system failed

5-46

SDA COMMANDS

Qualifiers

/INTERRUPT

Displays the interrupt stack. This stack is always resident in
memory and is used during hardware interrupt processing.

/KERNEL

Displays the kernel stack for the current process.

/EXECUTIVE

Displays the executive stack for the current process.

/SUPERVISOR

Displays the supervisor stack for the current process.

/USER

Displays the user stack for the current process.

/ALL

Displays all the stacks described above.

Examples

1. SDA> SHOW STACK/KERNEL

Figure 5-13 shows a portion of the display produced by this
command.

5-47

SDA COMMANDS

VAX/VMS 2.0 -- System Dump Analysis 21-MAY-1979 15:34:40.49
Current operating stack

Current operating stack (KERNEL):

7FFEEB18 00001000
7FFEEB1C 7FFEEB20 CTL$GL KSTKBAS+520
7FFEEB20 7FFEFOOO CTLSGL-KSPINI+400
7FFEEB24 7FFEF8 28 CTLSGL-KSPINI+C28
7FFEEB28 7FFDB65C
7FFEEB2C 8007C200
7FFEEB30 8000fi074 EXESSWAPINIT+9F8
7FFEEB34 00070000

SP => 7FFEEB38 8006BACO
7FFEEB3C 7FFDFEOO
7FFEEB40 00000000
7FFEEB44 801F18fi8
7FFEEB48 80007814 MMGSEXTRADYNWS+lfi4
7FFEEB4C 00070000
7FFEEB50 00000000
7FFEEB54 00000002
7FFEEB58 00020004
7FFEEB5C 8000C4DF EXESDELTVA+OAA
7FFEEB60 8000C487 EXE$DELTVA+052
7FFEEBfi4 3FFFFFFF
7FFEEBfi8 00000000
7FFEEB6C 800077 lF MMGSEXTRADYNWS+06F
7FFEEB70 00000000
7FFEEB74 00000000
7FFEEB78 00000000
7FFEEB7C 00000000
7FFEEB80 00000000
7FFEEB84 7FFEEBC4 CTL$GL KSTKBAS+5C4
7FFEEB88 7FFEEB98 CTL$GL-KSTKBAS+598
7FFEEB8C 8000B4E3 EXESCMODEXEC+OD3
7FFEEB90 80000116 SYS$DELTVA+006
7FFEEB94 00800000
7FFEEB98 00000000
7FFEEB9C 20FCOOOO
7FFEEBAO 7FFEF854 CTLSGL KSPINI+C54
7FFEEBA4 7FFEEBE4 CTL$GL-KSTKBAS+5E4
7FFEEBA8 8000BBF7 MMGSIMGRESET+030
7FFEEBAC 7FFEEBD4 CTLSGL KSTKBAS+5D4
7FFEEBBO 7FFE1DFO CTLSGL-CCB
7FFEEBB4 8006BACO
7FFEEBB8 7FFDFEOO
7FFEEBBC FFFFFFFF
7FFEEBCO 00000003
7FFEEBC4 00000003
7FFEEBC8 7FFEEBD4 CTL$GL_KSTKBAS+5D4
7FFEEBCC 00000000
7FFEEBDO 00000000
7FFEEBD4 3FFFFFFF
7FFEEBD8 00000000
7FFEEBDC 00000000
7FFEEBEO 80008E38 EXE$RUNDWN+04E
7FFEEBE4 00000000

Figure 5-13 Current Operating Stack (Kernel)

5-48

SDA COMMANDS

SHOW SUMMARY

The SHOW SUMMARY command displays a formatted list of all active
processes. The display shows the values used in swapping and
~cheduling for these processes. Figure 5-14 is an example of the
display produced by the SHOW SUMMARY command. The information listed
in the display includes:

• PID -- the 32 bit quantity that uniquely identifies the
process

• PROCESS NAME -- the name assigned to the process

• IMAGE NAME -- the VAX/VMS file specification of the image
currently executing in the process's context

• STATE -- the condition of the process (see the VAX/VMS System
Manager's Guide for a description of possible states)

e PR! the current scheduling priority of the process

• UIC User Identification Code

• WKSET -- the total number (in decimal) of pages currently in
the working set

If the process has been swapped out of the balance set, this message
appears in the "Image Name" column:

--- SWAPPED OUT ---

Format

Qualifiers Defaults

None None

Parameters

None

Examples

1. SDA> SHOW SUMMARY

Figure 5-14 shows the display produced by this command.

5-49

SDA COMMANDS

VAX/VMS 2.0 -- System Dump Analysis
Current process summary

PID PROCESS NAME

00010000 NULL
00010001 SWAPPER
00010019 TTA3:
0003001A -TTF7:
0005001B MANDERLEY
OOOBOOlC TTAl:
00140010 KAREN
OOOCOOlE CRAIG
0001001F DERF
OOOB0020 USER
00100021 NOAH
00050022 LYNN
001E0023 LAMONT
00170024 OZZIE
00060025 CLEO
00020026 MAJA
00170027 BOUSQUET
00020028 BACH
00040029 WIZARD
OOOF002A BOUFFON
OOOB002B HARLEY
0018002C DAVIDSON
OOOF002D RMS
0007002E TTG4:
0013002F KURT
OOOF0030 MEYERS
OOOF0031 EDWIN
00040032 TTG3:
00090033 WOODROW
00200034 FRED
00190035 REID
00160036 LOWELL
00210037 OPPENHEIM
00010038 NETACP
00010039 PRTSYMB4
0001003A PRTSYMB3
0001003B PRTSYMB2
0001003C PRTSYMBl
0001003D DBA2ACP
0031003E GUITAR
0001003F ERRFMT
00010040 OPCOM
00010041 JOB CONTROL
00010042 DBAOACP
00020043 DBAlACP

IMAGE NAME

DBAO: [SYSEXE]VMOUNT.EXE;
DBAO: [SYSEXE]MAIL.EXE;
DBAO: [SYSEXE]RSX.EXE;
DBAO: [SYSEXE]LOGINOUT.EXE;

DBAO: [SYSEXE]BACKTRANS.EXE;

DBAO:[SYSEXE]LOGINOUT.EXE;
DBAO:[SYSEXE]SUBMIT.EXE;8
DBAO: [SYSEXE]SHOW.EXE;
DBAO:[SYSEXE]TYPE.EXE;31
DBAO: [SYSEXE]DELETE.EXE;4
DBAO:[SYSEXE]COPY.EXE;
DBAO: [SYSEXE]TALK.EXE;

DBAO: [SYSEXE]BACKTRANS.EXE;

DBAO: [SYSEXE]SHOW.EXE;
DBAO:[SYSEXE]BACKTRANS.EXE;
DBAO:[SYSEXE]COPY.EXE;
DBAO: [SYSEXE]DISPLAY.EXE;

SWAPPED OUT

--- SWAPPED OUT ---
DBAO: [SYSEXE]USERS.EXE;
DB2:[F4V2.TOOL]BLISS32.EXE;43

SWAPPED OUT

--- SWAPPED OUT ---

DBAO: [SYSEXE]PRTSMB.EXE;
DBAO: [SYSEXE]PRTSMB.EXE;
DBAO: [SYSEXE]PRTSMB.EXE;
DBAO: [SYSEXE]PRTSMB.EXE;
DBAO: [SYSEXE]FllBACP.EXE;

DBAO: [SYSEXE]FllBACP.EXE;

21-MAY-1979 15:36:2fi.03

STATE PRI UIC

COM
HIB
LEF
COM
LEF
LEF
LEF
LEF
LEF
LEF
LEF
LEF
LEF
LEF
LEF
LEF
LEF
LEF
LEF
COM
LEF
LEF
LEF
LEF
LEFO
LEF
LEF
LEFO
LEF
CUR
LEFO
LEF
LEFO
HIB
HIB
HIB
HIB
HIS
HIB
HIS
HIB
LEF
HIB
HIB
HIB

0 [000 ,000)
Hi (000,000]

4 [017,022)
4 [320,100]
7 [3fi0,007]
4 [010,0401
4 [3fil,006]
4 [320,111]
8 [320,114]
7 [304,003]
7 [3fil,002]
4 [320,110]
4 [360,003)
4 [3fi0,002]
4 [361,004]
4 [304,002)
4 [011,0lfi]
7 [3fi0,016]
5 [017 ,022]
4 [300,041)
4 [017 ,022)
8 [3fil,013]
4 [011,0lfi]
7 [311,001)
4 [3fil,003]
4 [360,005)
8 [3150,001)
4 [311,001)
4 [201,201)
5 [320,100)
7 [361,010)
5 [301,021)
4 [3fi0,023]
9 [001,001)
8 [001, 004]
8 [001,004)
8 [001,004)
8 [001,004)

11 [001,003)
7 [3fil,010]
9 [001,006]
8 [001,004]

13 [001,004]
11 [001,003]
10 [001,003]

WK SET

0
0

59
74

148
39
41
70
41

150
67
68
fil
70
68
55
53
45

149
300

58
43
70
39
fil
65

150
45
50

338
106

45
43
54
41
41
41
41

104
32
30
38

100
100
105

Figure 5-14 Summary of Acti~e Processes

5-50

SDA COMMANDS

SHOW SYMBOL

The SHOW SYMBOL command displays a local or global symbol and the
value associated with it. If the value is a valid memory location,
SDA examines that address and displays its contents.

Format

SHOW SYMBOL symbol-name

Qualifiers Defaults

/ALL None

Parameters

symbol-name

Specifies an SDA symbol that corresponds to an SDA expression.
See Section 4.2.5 for more information on SDA symbols.

Qualifiers

/ALL

Displays two lists of the entire SDA symbol table. The first
list organizes the local and global symbols in alphabetical
order. The second list organizes these symbols by their values,
starting at the lowest value. If the value represents an
address, the contents of the memory location will be displayed:

TTYSA_CTRl...Z 80002A12 => OOOD5A5E

If you specify a symbol name and the /ALL qualifier, SHOW SYMBOL
displays a list of all the symbols that begin with the specified
symbol name. For example, SHOW SYMBOL IOC$GL displays all the
symbols with starting characters IOC$GL.

Examples

1. !:>DA> SHOW SYMBOL Bl.JG~~FATAI...
BUGSFATAI... = 80008256 08309F9E

In this example, the global symbol, its system virtual address,
and the value stored at the address are shown.

2. BDA> DEFINE ~3TART :::: 00000000
SDA> SHOW SYMBOi... BTAl:~T
START = 00000000 009A029A

In this example, a local symbol is defined. See the description
of the DEFINE command for more information about symbol
definition.

3. SDA> SHOW SYMBOL/ALI ...

Figure 5-15 shows a page of the listing produced by this command.

5-51

VAX/VMS 2.0 -- System Dump Analysis 21-MAY-1979 16: 04 s 51."71
System global symbols by name

IO$M FCOOE 0000003F IOC$REQCOM 8000A6B3 •> 534CA500 MMG$AL PGOCOO 80008400 •> 0500CF31
IO$ LOGICAL 0000002F IOC$REQOATAP 8000A762 => A5000100 MMG$AL-PGOCOOEN 80011000
IO$-PHYSICAL OOOOOOlF IOC$REQOATAPNW 8000A75E => 02110000 MMG$AL-SBICONF 80003264 ~> 00000000
IO$-REAOLBLK 00000021 IOC$REQMAPREG 8000A703 => 50E83210 MMG$AL-SYSPCB 80003808 => 80003808
IO$-REAOPBLK oooooooc IOC$REQPCHANH 8000A67F => 5020A500 MMG$A ENOVEC 80000600 •> 0000007A
IO$-REAOVBLK 00000031 IOC$REQPCHANL 8000A688 => 5020A500 MMG$A-PAGFIL 80003108 => 80060B7C
IO$-WRITEL8LK 00000020 IOC$REQSCHANH 8000A668 => 5020A500 MMG$A-SYSPARAM 80004400 => EOBECC20
IO$-WRITEP8LK 00000008 IOC$REQSCHANL 8000A675 => 5020A500 MMG$CRECOM1 8000C39F => 54705510
IO$-WRITEV8LK 00000030 IOC$RETURN 8000A869 => 6E02C005 MMG$CRECOM2 8000C3A7 => OAOOEE30
IOCSALOUBAMAP 8000A807 => A53C3888 IOC$SEARCHOEV 80008806 => 11520200 MMG$CREPAG 8000C510 => lEElSOOD
IOC$ALOU8AMAPN 8000A803 => 15113888 IOC$SEARCHGEN 80008808 => 88520100 MMG$CRETVA 8000C380 => AC9A01FC
IOC$ALTUBAMAP 8000A7E5 => 5326Al9A IOC$UNLOCK 8000B9F9 => EFOOSOOO MMG$0ALCPAGFIL 800070C4 => 4FOF4100
IOC$APPLYECC 8000A8AC => C53Cl888 IOC$UPOATRANSP 8000A9C8 => 6EA550A2 MMG$0ALCSTX 8000B01E => 5520A5Cl
IOC$CANCELIO 8000A551 => 58A508El IOC$VERIFYCHAN 8000BA08 => 13500FAA MMG$0ALCSTXSCN 8000BCA5 => 3AA501E7
IOC$CREATE UCB 800087F6 => 5108A53C IOC$WAKACP 800053F4 => OA7El208 MMG$0ALLOCPFN 80006023 => 40855204
IOC$CVTLOGPHY 8000A920 => 34A35000 IOC$WFIKPCH 8000A86A => 706E02CO MMG$0ECPHOREF 8000682C => 5146A53C
IOC$CVT OEVNAM 8000887A => 007E5070 IOC$WFIRLCH 8000A88A => 706E02CO MMG$0ECPHOREF1 80006830 => 280F41B7
IOC$0ELM8X 8000A568 => 5024A500 IPL$ ASTOEL 00000002 MMG$0ECPTREF 80006AC5 => 531509EF
IOC$0IAG8UFILL 8000A5EE => 534CA500 IPL$-HWCLK 00000018 MMG$0ECSECREF 8000712E => 5520A5Cl
IOC$0IRPOST1 80005544 => 5024A500 IPL$-IOPOST 00000004 MMG$0ELCONPFN 80006897 => F80F4000
IOC$0ISMOUNT 80008665 => A60028B8 IPL$-MAILBOX 00000008 MMG$0ELGBLSEC 80007963 => 501CA300
IOC$FFCHAN 800088AF => 463BEFC1 IPL$-POWER OOOOOOlF MMG$0ELGBLWC8 80000639 => 6409FFOF Cll
IOC$FILSPT 8000A3CO => 04C55300 IPL$-QUEUEAST 00000006 MMG $OELPFNLST 80006C8C => 10889610 tj
IOC$GL AOPLIST 8000083C => 8005E800 IPL$-SCHED 00000003 MMG$0ELWSLEPPG 80006989 => A4870710 >
IOC$GL-AQ8LIST 80003Al0 => 80063310 IPL$-SYNCH 00000007 MMG$0ELWSLEX 80006995 => 52654100 n U1 IOC$GL-DEVLIST 80000838 => 80000848 IPL$-TIMER 00000007 MMG$DGBLSC1 80000518 => 071100FC I 0

U1 IOC$GL-OIALUP 80003AlC => 800688AO KFI$GL FllAACP 80003840 => 80056830 MMG$EXTRAOYNWS 80007680 => A56CA5A3 3
('..) IOC$GL-OPTLIST 80000840 => 80069090 LIB$CVT OT8 8000F03E => OA00003C MMGSFREWSLE 8000682F => EF327E7C 3

IOC$GL-IRPBL 80003AOC => 80078390 LI8$CVT-HTB 8000F04C => l000003C MMG$FREWSLX 800067E7 => 7E7COlOO >
IOC$GL-IRPFL 80003A08 => 80076F70 LIB$CVT-OTB 8000F045 => 0800003C MMG$FRSTRONLY 80004800 => El56220B 2:

tj
IOC$GL-MUTEX 80003828 => OOOOFFFF LOG$AL DISKLOG 80011A08 MMG$GETPTIPAG 80007Al2 => 007El20B Cll
IOC$GL-PSBL 80003A04 => 80003A00 LOG$AL -LOGTBL 800039C8 => 800039E8 MMG$GL CROCNT 80003F90 => 00000001
IOC$GL-PSFL 80003AOO => 80003A00 LOG$AL-MUTEX 80003904 => OOOOFFFF MMG$GL-CTL8ASVA 80004540 => 7FFOFEOO
IOC$GQ-BRDCST 80003A20 => 80003A20 LOG$0ELETE 8000BA3E => 0050610F MMG$GL-FRESVA 80004558 => 80200000
IOC$GQ-MOUNTLST 80003Al4 => 80056A60 LOG$GL SLTFL 800039E8 => 80056A30 MMG$GL-GPTBASE 8000454C => 801F9000
IOC$GW-MAXBUF 80004466 => 04000400 LOG$INSLOGN 8000BA60 => 530BA59A MMG$GL-GPTE 80004550 => 801FOOOO
IOC$GW-MBXBFQUO 80004468 => 01000400 LOG$LOCKR 80008AA7 => OF64CF9F MMG$GL-IACLOCK 80002E84 => 00000000
IOC$GW-MBXMXMSG 8000446A => 00100100 LOG$LOCKW 8000BAAO => OF44CF9F MMG$GL-MAXGPTE 80004554 => 80200000
IOC$GW-MBXNMMSG 8000446C => 00100010 LOG$SEARCHLOG 8000BAC8 => 00608FBB MMG$GL-MAXPFN 80004584 => OOOOOE17
IOC$ INlTORV 800126FF LOG$TRNSLOGNAME 80008814 => 1350613C MMG$GL-MAXSYSVA 80004558 => 80200000
IOC$ INITIATE 8000A6F4 => 4CA55300 LOG$UNLOCK 80008AB3 => OFB7CF9F MMG$GL-NPAGEOYN 8000457C => 8005E800
IOC$IOPOST 80005078 => 707E5470 MB$OOT 8000127C => 00000318 MMG$GL-PAGEOYN 80004580 => 80056800
IOC$LOADMBAMAP 8000AA04 => A53C5300 MB$0PT 80000F34 => 80001046 MMG$GL-PAGSWPVC 80003218 => 8000322C
IOC$LOADU8AMAP 8000AA4E => 3C7E5370 MB$GL 008 80000BE4 => 80000078 MMG$GL-PFNLOCK 80002E88 => 40000000
IOC$MAPV8LK 8000A947 => 120AA291 MB$GL-UC81 80000C90 => 80000C90 MMG$GL-PHYPGCNT 8000445E => 00004000
IOC$MOVFRUSER 8000A388 => A5A83610 M8$GL-UCB2 80000004 => 80000004 MMG$GL-RMS8ASE 800032A4 => 80019COO
IOC$MOVTOUSER 8000A3A4 => A5A81Al0 M8$UCBO 80000ClC => 80000ClC MMG$GL-SBR 80004578 => OOlFCOOO
IOC$PTETOPFN 8000AAB7 => 00008FCA MBA$ INITIAL 80001271 => 04A40100 MMG$GL-SPTBASE 8000455C => 801F9000
IOC$QNXTSEG 800053CO => 5218A3DO MBA$INT 80001200 => 5300BEOO MMG$GL-SPTLEN 80004560 => 00001000
IOC$QNXTSEG1 800053CC => 3044A4B7 MMG$ALCPAGFIL 80006FFO => 160F4100 MMG$GL-SYSPHO 80004564 => 801F8400
IOC$REINITORV 80012705 MMG$ALCPHD 8000B05E => 5024A53i MMG$GL-SYSPHOLN 80004568 => OOOOOCOO
IOC$RELCHAN 8000A628 => 5020A500 MMG$ALCSTX 80008035 => 5126A532 MMG$GSDMTXULK 80000503 => 5ClBEFOO
IOC$RELOATAP 8000A729 => 5020A500 MMG$ALLOCPFN 80006882 => 92305204 MMG$GSOSCN 80000599 => 5105527C
IOC$RELMAPREG 8000A799 => 5120A500 MMG$AL BEGORIVE 80001200 => 5300BEOO MMG$IMGACTBUF 7FFEDA00 => 00000000
IOC$RELSCHAN 8000A61E => 5020A500 MMG$AL=ENOORIVE 80002EOO => 01AD0983 MMG$IMGHOR8UF 7FFEE200 => 7FFEE208

Figure 5-15 Global Symbols

CHAPTER 6

ANALYZING SYSTEM FAILURES -- GUIDELINES AND EXAMPLES

This chapter discusses how VAX/VMS handles internal errors and
suggests procedures that can aid in determining the cause of these
errors. The final sections of the chapter illustrate, through
detailed analysis of a sample system failure, how SDA helps you find
operating system problems.

6.1 GENERAL PROCEDURE FOR SOLVING SYSTEM FAILURES

When the VAX/VMS operating system detects
that normal operation cannot continue, it
a fatal bugcheck and shuts itself down.
error discovered by the system; each
particular bugcheck code.

an internal error so severe
signals a condition known as

A bugcheck describes the
error is associated with a

To resolve the condition, you must find the reason for the bugcheck.
You generally need the VAX/VMS source code to locate the error, unless
the error exists in a driver that is not supplied by DIGITAL. If this
is the case, you may simply need the driver listings.

The best way to start the search for the error is to locate the line
of code that signaled the bugcheck. The address of this instruction
is usually contained in the Program Counter register (PC). Invoke SDA
and give the SHOW CRASH command. The display SDA produces gives the
contents of the PC.

Next, examine the system map file SYS$SYSTEM:SYS.MAP. This file lists
the addresses of each VAX/VMS module that resides in system space (the
part of the operating system that performs basic system services and
scheduling). Compare the address in the PC with the addresses in the
system map file to locate the module that uses the instruction pointed
to by the PC.

If you do not have the system map file, you can use SDA's symbol
table. All the system global symbols that appear in SYS.MAP also
exist in the SYS.STB file that SDA reads during the initialization
process. To determine the offset from the closest global symbol,
issue the command:

SDA> EXAMINE @PC

Once you have narrowed the search to a particular module, subtract the
module's starting address from the address in the PC to get the offset
into the code.

Now, to determine the general cause of the system failure, examine the
code that signaled the bugcheck.

6-1

ANALYZING SYSTEM FAILURES -- GUIDELINES AND EXAMPLES

6.2 FATAL BUGCHECK CONDITIONS

If a bugcheck is signaled, it is usually caused by one of two
conditions:

• A fatal exception

• An illegal page fault

6.2.1 Fatal Exceptions

A fatal exception is an event that causes VAX/VMS to signal a fatal
bugcheck. An exception is fatal when it occurs while a process is:

• Using the interrupt stack

• Executing above IPL 2 (IPL$_ASTDEL)

• Executing in a privileged (kernel or executive) processor
access mode

When the system fails, it lists the immediate cause of the failure on
the LSI-11 console. For fatal exceptions, the messages appear as
follows:

FATALEXCPT' Fatal executive or kernel mode exception

INVEXCEPTN' Exception while above ASTDEL or on interrupt stack

Although there are several possible exception conditions, the type
that most commonly occurs is the access violation. The rest of this
section discusses the access violation in detail. For more
information on other kinds of exceptions, see the VAX-11 Run-Time
L i bra r y f3._~-~-~-~ ~!!~-~---r.1anua1 •

When an access violation is detected by the VAX-11 hardware,
information useful in finding the cause of the violation is pushed
onto the current operating stack, that is, the stack that the process
was using when the access violation occurred. This information is
described by three structures, referred to as vectors. A vector is
structured as follows:

31 0
r-------·-···--····-·~····~·"'------------------------

.,..__ _____ , _______ _

longword

series of
longwords

------··-··.,···---··--·-··-··- ----------~- --~~---·------------------·-

6-2

ANALYZING SYSTEM FAILURES -- GUIDELINES AND EXAMPLES

The first longword in the vector shows the number of longwords that
follow. Each longword in the series contains information describing
conditions at the time of the exception.

The first vector that appears on the stack gives the addresses of the
next two vectors:

31
------------···------·-·--·-···-

00000002

signal vector
address

mechanism vector
address

0

The mechanism vector follows the first vector. This structure
describes the process that was executing when the exception occurred.
The diagram below illustrates the sequence of longwords in a mechanism
vector:

31 0
--------------~-~-~-~ -------------

00000004

-------------··-·-·"
frame

depth

RO

R1

The values contained in this vector are:

• 00000004 -- the number of longwords that follow. In a
mechanism vector, this value is always four.

• Frame the address of the stack frame.

• Depth the stack depth.

• RO the contents of RO at the time of the exception.

• Rl the contents of Rl at the time of the exception.

n-3

ANALYZING SYSTEM FAILURES -- GUIDELINES AND EXAMPLES

The next vector created on the stack is the signal vector. For access
violations, the signal vector is set up as follows:

31 0

00000005

oooooooc

reason mask

'---------·----·--·--·---1
virtual address

···-"•"• -·---- .. ---·-··---,··-·---...... ,--.------------1
PC

!----------·------·----.-----------· ------------.....
PSL

The parameters shown in the above diagram are:

• 00000005 -- the number of longwords that follow.
violations, this value is always five.

For access

• OOOOOOOC -- the exception code. This value is C (hexaaecimal)
to represent an access violation.

• Reason mask -- the longword whose lowest three bits, if set,
indicate that the instruction caused a length violation (bit
0), referenced the process page table (bit 1), and attempted a
read/modify operation (bit 2).

• Virtual address -- the virtual address that the system tried
to reference.

• PC -- the Program Counter. The PC contains the address of the
instruction that signaled the exception.

• PSL -- the processor status longword at the time of the
exception.

Signal vectors differ in length, depending on the kind of exception
the system detects. See the VAX-11 Run-Time Library 13_efe~~ence_Manual
for details.

If VAX/VMS encounters a fatal exception, you can find the code that
signaled it by examining the PC placed in the signal vector. Issue
the SHOW STACK command to display the current operating stack, then
locate the vectors. Once you obtain the PC, which points to the
instruction that signaled the exception, you can identify the module
by the procedure outlined in Section 6.1.

6-4

ANALYZING SYSTEM FAILURES -- GUIDELINES AND EXAMPLES

6.2.2 Illegal Page Faults

VAX/VMS also signals a bugcheck when a page fault occurs while the
Interrupt Priority Level (IPL) is greater than two (IRP$ ASTDEL).
When VAX/VMS fails because of an illegal page fault, it issues the
following message on the console:

PGFIPLHI, Pase fault with IPL too hish

In this case, information is pushed on the stack as longwords in the
following sequence:

The

31 0

R4

RS

reason mask

virtual address

PC

----------------·-··- -··---··--------·-·-·-·· ---~
PSL

longwords pushed on the stack are:

• R4 the contents of R4 at the time of the bugcheck.

• RS the contents of RS at the time of the bugcheck.

• Reason mask -- see Section 6.2.1.

• Virtual address -- the virtual address that caused the page
fault.

• PC -- the Program Counter. The PC contains the address of the
instruction that was executing when the page fault was issued.

• PSL -- the processor status longword at the time of the
bugcheck.

If the operating system detects a page fault while the IPL is higher
than two, you can obtain the faulting instruction by examining the PC
pushed on the current operating stack. Follow the steps outlined in
Section 6.1 to determine which module issued the instruction.

6-S

ANALYZING SYSTEM FAILURES -- GUIDELINES AND EXAMPLES

6.3 DEBUGGING A SYSTEM FAILURE -- AN EXAMPLE

This section steps through the analysis of a system failure. The
events that lead up to this failure are:

• The line printer goes offline for three hours.

• The line printer comes back online.

• The operating system signals a bugcheck, writes information to
the system dump file, and shuts itself down.

6.3.1 Identifying the Bugcheck

Invoke SDA to analyze the system dump file.
message indicates the type of bugcheck signaled:

The initialization

VAX/VMS S~stem dump analwzer
Dump taken on 31-JUL-1979 20:43:13.32
INVEXCEPTN, ExcePtion while above ASTDEL or on interrupt stack

SDA>

VAX/VMS encountered an exception that caused it to signal a bugcheck.
Signal and mechanism vectors are created on the current operating
stack.

6.3.2 Identifying the Exception

Issue the SHOW STACK command to display the current operating stack,
which, in this case, is the interrupt stack. Figure 6-1 shows the
interrupt stack and highlights the three vectors.

Current oPeratin~ stack <INTERRUPT>

BP ::::)

mechanism
vector

signal
vector

8006A378 8000844B

8006A:'598
BOObA3<.»C
!3006A:3AO
8006A:3A4
~1006A:3A8
'1:t006A~lAC
J~OC>6A3~0
BOOl.>A:3B4
B006A3B8
8006A3I{C
Boo6A~~co
:~~006A3C4
i90()6A3C~:~

BC>06A:3CC
800·6A:m<>
BOObA:3D4

'7FFDC340
8006A~5AO

80004E7D
04080009
000000.04
1r1::·1:1c3.6e
1::-1:='(:~ FF Ft: r1·
8001774E
00000f4F
0000000!5
()OOOOOOC
00000000·
tW()69EOO

. 800~)t100:·5 ..
04()~100()()

nooo9c'>04

ACPtWRITEBLK+OAO

EXE$liEl ... ECT +OD4

EXESFORKDSPTH+OlC

Figure 6-1 Interrupt Stack and Vectors

6-6

ANALYZING SYSTEM FAILURES --· GUIDELINES AND EXAMPLES

Examination of the signal vector shows that:

• The exception code is C (hexadecimal) which means that an
access violation occurred.

• The reason mask is zero, which means
generated a protection violation
violation) when it tried to read the
write to it).

that the instruction
(instead of a length
location (rather than

• The virtual address is 80069EOO and is the address that the
instruction tried to reference.

• The PC is 80050003 and is the address of the instruction that
signaled the exception.

• The IPL was eight at the time of the exception (shown by bits
16 through 20 of the PSL) •

• The current operating stack was the interrupt stack (bit 26 of
the PSL is set to 1).

• The process was executing in kernel mode at the time of the
exception (shown by bits 24 and 25 of the PSL).

Use the SHOW PAGE TABLE command to display the system page table, as
shown in Figure- 6-2. The page containing location 80069EOO is not
available to any access mode (a null page); thus, the virtual address
is not valid.

6-7

VAX/VMS 1,0 •• Syatem Oymp Ane1Yl11 10•DEC•1979 t91211ee,32 Page 17
Syetem page teble

ADDRESS SVAPTE PTE TYPE PROT BITS PAGTVP L.OC STATE TVPE REFCNT BAK SVAPTE l'L.INK BL.INK

;,.:,,..;,,.,..;.iit. 1 NUl.L PAGE > z
800bA000 800CD340 B0000~ED VAL.ID ERKW I(>
8~0&A20Cll R00CD344 81.10005EE VAL.IO ERl<W M I(c-i

t-<
NUL.L PAGE N

-------· l 1-1
z

800&Ab'1llil 8~CllC034C D400038q VALID SRKl>I M K PPGTBL. ACTIVE 87 01.1 1 0300111000 800C034C 0000 Pl04A G"l
80!0bA800 8~~C0350 040~~144 VAL.ID SRK..i M K ?F'GTBL ACTIVE 87 Cll4 1 0300.,,00QI 800CD.35111 0000 00/.IB
8Qli11bA400 80~CD354 0400~Ql28 VALID SRKW M K PPGT~L ACTIVE 87 ;!14 1 030'1!0000 800CD351.1 00e0 1'10/.IC (/)

t-<
•••••••• 3 MILL PAGES

(/)

""'3

8~"1&9200 800C03&4 D40000A7 VAL.ID SRKW M K PPGTBL ACTIVE 87 0!4 1 0301?-0000 800CD3&1.1 0000
tZl

0Ql4D 3:
61110&8404.'\ 8~~CD3&8 0400041.16 VAL.ID SRKW M K .,PGT6L ACTIVE 87 ~4 1 030Ql242A 800CD3&8 0035 00E0
1100&6Mh1 B~~C03bC D40004A8 VALif> SRKill M K PPGTRL ACTIVE 87 04 1 033FFF'FF 800CD3bC 011121 00E3 l'Z]

Afi110&A80VI 8~0C0370 Ofi'l00~2FS vALID SRKW K PPGT8L ACTIVE 87 [,llJ 1 03"1!02&4B 80"'CD370 "1001ll 0082 >
1-1

8~''11bAA0~ 8~0C0374 500000~~ OZERO SRK"4 i(
c-i ai:;,0Bc1rn 8~0CD378 5000000~ DZERn SRKW K c

800bBf.0~ 8~0CD37C 5000000fi'I OZE~O SRKW I(::0
81"1'.lbC':!lbi1' 8~fi'ICD3e0 5000~00P DZEF<'O SRKW K tZl
8!il00C200 8~~C0384 50000~~0 l..)ZfRO SRKW I((/)

~ ae0bCa0~ BM~CD388 5000~0fi'l0 D'lERO SRKw K
I 8:i'fi'lbCbi"~l 80fi'IC038C 5000~0~0 11ZERO SRK"I K I

00
BJ..,bC8~~ e~0co39~ s0a0~00~ ()ZfRn SRKW K I
8?-0bCA00 R~0CD391.1 500~00~~ !)ZERO SRKW I< C>
8~0bCC00 8~~CD39A 50~0~111J0 iJZERQ SRKW I(c
IH110bCE'l0 q~0CD39C 5000~~~1" DZERO SRl<tl K 1-1
l'<'tJbD~0111 8~0COJA0 50B~~~J~ OZE.RO SRKw j(0
8-'0bD200 R~0CD3A4 S00~00V? l)ZEPO SRKW K tZl
R0~bl"'400 8~0CD3A8 500~0~~0 DZERO SR1<.i I<. c-i

1-1
A0t>,bD&~0 ~i.;,,COJAC 5(10?,~c..i.'!• DZERD SRI011 K z
80@b080~ a~rCD3BVl 50~~00Ar DZERO SRIOI K tZl
Blll!ObDAli'l(ll 81i'llllC03Bl.I 50~~~~'~ f'lZE"RO SRKW I((/)

811i~bDC0CI! 8~~CD3B8 S0Vl0~~0P DZERiJ SRI<'" K

81/!l-lt>!"lE00 8d0CDJ9C 500~~•0~ DZEl<>l) SRK>'I K >
8e:0oEl1'0Vl 8~VlC03C0 50~01i'lli'l0P J)ZE.Rt) $Rl(;1 K z
801i'lt>E2QI~' 8~0CD3C4 50~1i'l~~~~ <:>ZE.R!') SRKW K 0

i:i~0eE1.10~ 8~~C03C8 50~0~~0~ DZERO SRK'>I K tZl
81/!0&Eo0v, 8~~CD3CC 5001i'lli'l~?CI! vZE.RO SRKW K :><
8l'li'lbE80~ 8~0CD300 5000~~~0 ~ZERO SRKW K >
8Vl~bEA00 e~~CD3Dl.I SC11000~0~ OZERO SRKW I(3:
800bFC00 800C0308 5000..,000 OZERO SRl(W I("'O

c-i
8~~oEE00 800CD3DC D4001i'l2E9 VALID SRKl!i M K i:>PGT~L ACT IVE 87 I'll.I 1 ;,,J3FFFFF 800CD3DC 0003 01485 t2l
8~1i'lbFill00 A~li'ICD3E0 04000353 ¥AL.ID SRKiol M I(P"i,T8L ACTIVE 87 04 1 a3000000 800CD3E0 0040 004E (/)
801<'bF200 8~?CD3E4 5001i'l~li'l~~ OZERO SRKW I(

80it!bF400 e00CD3E8 oa00a1q1.1 VALlO SRKW M K. J:)?G TBL ACTIVE 87 i214 1 030001i'l00 800CD3E8 01d00 1111'1!4A
800bFo0i'.I 800C03EC 04000050 VALID SRKl'I M I<: P?GTBL. ACTIVE 87 01.1 1 0300"'"'00 800CD3EC 0000 004B
8o:l0bF80'11 800C03F0 04000122 oJALIO SRKW "' I< PPGTBL ACTIVE 87 04 1 03~00000 800CD3F0 111000 0~'1C

•••••••• j ~UL.L PAGES

Figure 6-2 Page Table Display Sh9wing Invalid Location 800n9EOO

ANALYZING SYSTEM FAILURES -- GUIDELINES AND EXAMPLES

6.3.3 Locating the Source of the Exception

Because the line printer went offline and then online, the problem may
exist in the driver code. To determine which driver might contain the
faulty code, take the address contained in the PC on the stack and
compare it with the bounds of each driver.

6.3.3.1 Finding the Driver Using the DPT List - The Driver Prologue
Table (DPT) is a data structure that describes each driver. All the
driver prologue tables form a linked list; each DPT is followed
directly by driver code. The location IOC$GL DPTLIST contains the
address of the first DPT. Figure 6-3 illustrates-the linked structure
of the driver prologue tables •

IOC$GL_DPTLIST

DPT

DRIVER
CODE

....
DPT

DRIVER j
L CODE

---·-·-

DPT

DRIVER
CODE

Figure 6-3 Linked List of Driver Prologue Tables

... ...

Use the FORMAT command and specify the contents of IOC$GL DPTLIST as a
parameter:

SDA> FORMAT@IOCSGL_DPTLIST

00060~.)()()

80060!:.:;oA
f:l0060!:50B
noo6o!:_:;oc
f:!()()6()~.)()[I

B006 O!'.)OE
B0060~5 l 0
80060~.:; :I.::?.
B0060!7i :l 4
80060~5 :I. 6
SDA>

DF'T!l>L. FI... INK

DPT$B TYPE
DPT~>B l:~EFC
DPT!l>B ADPTYPE
DPTSB Fl ... AGB
DPT$W l.JCBS I ZE
DPT!~W IN I TTAB
DPT$W F~EINITTAB
DPTSW UNLOAD
DPT$T NAME

6-9

BOO!'.)F 400

:l.E
():I.

o::?.
():I.

OOFO
00:1.F

0062
0000

• DF'Dl=i::t:VEF~"

ANALYZING SYSTEM FAILURES -- GUIDELINES AND EXAMPLES

The formatted display identifies the size of the driver by the symbol
DPT$W SIZE.

Calculate the end of the driver by adding the value of
the starting address of the DPT for the driver.
begins just after the DPT.

DPT$W SIZE to
The driver code

Next, determine whether the address in the PC falls within the range
of addresses that contain the driver code. If the address is not part
of the driver you are examining, continue on to the next driver by
stepping through the linked list with the FORMAT command (see the
description of the FORMAT command in Chapter 5 for an example of the
commands used to step through a linked list of data structures).

In this example, the instruction that caused the exception falls
within the range of addresses that contain the line printer driver
code.

6.3.3.2 Calculating the Offset into the Driver - Once you have
identified the driver, you can locate the instruction in the source
code by subtracting the starting address of the driver prologue table
from the address contained in the PC. Match the resulting offset with
the offsets in the driver code listing.

After you have located the routine that caused the exception, you
should examine memory to make sure that the instruction in the routine
matches the instruction that signaled the exception.

6.3.4 Finding the Problem within the Routine

Examine the line printer driver code. The instruction that caused the
exception is MOVB (R3)+,(RO), as shown in Figure 6-4. To check the
contents of R3, use the SHOW CRASH command. The invalid virtual
address 80069EOO is indeed stored in R3.

6-10

°' I
I-'
I-'

so
Sl

S2

3E

029F 480 START NEXT OUTPUT SEQUENCE
029F 481
029F 482

S4 02 Cl 029F 483 10$: ADDL3 #LP DBR,R4,RO ;CALCULATE ADDRESS OF DATA BUFFER REGISTER
6C AS 3C 02A3 484 MOVZWL UCBSW BOFF(RS) ,Rl ;GET NUMBER OF CHARACTERS REMAINING

8080 8F BO 02A7 48S MOVW #AX80SO,R2 ;GET CONTROL REGISTER TEST MASK
08 11 02AC 486 BRB 2S$;

64 S2 B3 02AE 487 20$: BITW R2,(R4) ;PRINTER READY OR HAVE PAPER PROBLEM?
. 08 lS. 02Bl 488 BLEQ 30$;IF LEQ NOT READY OR PAPER PROBLEM

';~~~11~J{;.~:1;,:~;~\k.%'.1,'.:\~J~i~1'tJ;:1[;;;XJrJ(t~Jil:,l:10;;:r:\;~L:t~~;\;.,\:;i;.~~;~~;. \·;~'t~;~:i;;:~v~;;;~\;'.j{'.:h:\:;!,~'.;,'].'(g~)::.+::·i:::~~() .):r.t;,,·.;.:~.,:~:c~;X'rj~'~l:~'.\'.%:l~{~;Zt~h;;J~t1;~~\:l;'+'·)~'t'J E '5.'.r CitA;gZ\.crT ER
FS Sl F4 02B6 490 2S$: SOBGEQ Rl,20$;ANY MORE CHARACTERS TO OUTPUT?

70 11 02B9 491 BRB 70$

64

21
Sl 01

6C AS

40 8F

Cl

7A AS
Sl 01

6C AS
64

64
AF

S8 AS
01

0017 7A
7A

03
OF
AS
AS
18

S4 OS

B4

12
Al

88

11

94
Al

BS
14
EO
9D

94

02BB 492
02BB 493
02BB 494
02BB 49S
02BB 496
02BB 497 30$:
02BD 498
02CO
02C2
02C8
02CC
0206
02DC
02DE
02DE
02DE
02DE
02El
02E4
02E6
02E8
02EC
02EE
02FO
02FS
02F8

499
soo
SOl
S02
S03
S05
S06
S08
S09
SlO

Sll
Sl2
Sl3

.1
SlS
Sl6

40$:

SO$:

PRINTER IS NOT READY OR HAS PAPER PROBLEM

DSBINT

BNEQ
ADDW3

40$
#1,Rl,UCBSW_BOFF(RS)

BISB #AX40,LP CSR(R4)
WFIKPCH 40$,#12 -
IOFORK
BRB 10$

;IF NEQ PAPER PROBLEM
;SAVE NUMBER OF CHARACTERS REMAINING

DISABLE INTERRUPTS
SF.T INTERRUPTS
WAIT FOR INTERRUPT
CREATE A FORK PROCESS

PRINTER HAS PAPER PROBLEM

CLRB
ADDW3

CLRW
SET IPL
TSTW
BGTR
BBS
ACBB

CLRB
PUS HR

UCB$B LP OFLCNT(RS)
#l,Rl~UCB$W_BOFF(RS)

;CLEAR OFFLINE COUNTER
;SAVE NUMBER OF CHARACTERS REMAINING

LP CSR(R4) ;DISABLE PRINTER INTERRUPT
UCB$B FIPL(RS) ;LOWER TO FORK LEVEL
LP CSR(R4) ;PRINTER STILL HAVE PAPER PROBLEM?
lOS ; IF GTR NO
#UCB$V CANCEL,UCB$W STS(RS) ,80$;IF SET, CANCEL I/O OPERATION
#1S,#l~UCB$B_LP_OFLCNT(RS) ,80$;SKIP UNTIL TIMEOUT

UCBSB LP OFLCNT(RS)
rM<RJ ,R4>

;RESET COUNTER
;SAVE REGISTERS

OOOOOOOO'GF
53

BB
9A
9E

02FC
02FF
0301
0304
030A

517
518
Sl9
520

MOVZBL
MOVAB

#MSGS DEVOFFLIN,R4
GASYSSGL_OPRMBX,R3

;SET UP MESSAGE TYPE
;ADDRESS TARGET MAILBOX

Figure 6-4 Location of Instruction in Driver Routine

~
>
t1
i<
N
H
z
Cl

en
i<
en
i-3
Cz:I
3:

"z:1
>
H
t1
c:
::0
Cz:I
Cf)

I
I

Cl
c:
H
0
Cz:I
t1
H
z
Cz:I
en

~
0

Cz:I
><
>
3:
l"O
t1
ts:1
en

ANALYZING SYSTEM FAILURES -- GUIDELINES AND EXAMPLES

6.3.4.l Stepping through the Routine - The MOVB instruction is part
of a routine that reads characters from a buffer and writes them out
to the line printer. The routine executes the following steps for
each character in the buffer:

• The driver gets a character from the buffer, moves it to the
device data register (pointed to by RO in this example), and
auto increments.

• The preceding step is repeated until the byte count is
exhausted or the printer signals that it is NOT READY.

• If the printer gives the NOT READY signal, the driver waits
for an interrupt from the printer.

• When the printer becomes READY, it interrupts the driver and
the loop is resumed.

Examine the code to determine which variables control the loop. In
this case, the byte count (BCNT) is the number of characters in the
buffer. This value controls the number of times the loop is executed.
(BCNT is set by a Function Decision Table (FDT) routine to the number
of characters in the buffer.) The number of characters left to be
printed is represented by the byte offset (BOFF).

Because the exception is an access violation, you can infer that R3 is
outside the range of the buffer. It seems likely that the MOVB
instruction has executed too many times, that is, a number of times
greater than BCNT. To prove this theory, you must examine BOFF and
BCNT.

6.3.4.2 Checking the Values of Key Variables - If you
code, you can see that RS contains the address of the
Block (UCB) of the device that was active when the system
you use the FORMAT command to display the contents of
display the values of BCNT and BOFF:

SDA> FORMAT @R5

8005D160

8005[1164

8005[1:1.68
8005Dl.6A
8005D16B

800~3D1C8

EtO()$~•fcc·•····•·
ao.<>,~snJ¢F{ ,.
800~5D :I. DO
800~iD1D:L
800~5[11 [12

SDA>

UCB$L_RQFL
UCB$L_FQFL
LJCB$L._RQBL
UCB$L._FQBL
UCB$W_SIZE
UCB$B TYF'E
UCB$R.SIF'L

UCB$l.. SVAPTE

.,:; ;:Q~£!,~~n~~~~FJ::: ..
~ .~lf.;I1~l4Jr. ~C~f'{L,.

UCB!t>B El~TCNT
UCB$B El:~TMAX
UCB$W E1:~1~CNT

6-12

800039A8

800039A8

()8

0080
10

()()

()()

() ()()()

examine the
Unit Control
failed. If
RS, SDA will

ANALYZING SYSTEM FAILURES -- GUIDELINES AND EXAMPLES

If you have only one line printer in your system configuration, you
need not use the FORMAT command. Issue the SHOW DEVICE command with
device code LP as the parameter; since there is only one line printer
device connected to the VAX-11 processor there is only one line
printer UCB to display.

The output produced by the FORMAT @R5 command shows that BOFF contains
a value greater than BCNT, when it should be the reverse. This means
that an illegal value is being stored in BOFF. Thus, the value of
BOFF is not the number of remaining characters in the buffer but some
meaningless number that eventually causes the system to fail when it
tries to access a null page (unreadable to all access modes).

6.3.4.3 Identifying and Fixing the Defective Code - Examine the line
printer driver code again to locate all instructions that modify BOFF.
The value changes in two important places.

1. Immediately after the driver detects that the printer is not
ready.

2. When the wait for interrupt (WFIKPCH) routine timeout count
of 12 seconds is exhausted. At this time, Rl+l is stored in
BOFF.

The second modification to BOFF should not be made because R4 and RS
are the only registers that retain their values after the WFIKPCH
routine is executed. To correct the problem, change the WFIKPCH line
to transfer control to 50$ rather than 40$ (see Figure 6-5) if the
timeout count expires.

6-13

029F 480 ; START NEXT OUTPUT SEQUENCE
029F 481 ;
029F 482

so S4 02 Cl 029F 483 10$: ADDL3 #LP DBR,R4,RO ;CALCULATE ADDRESS OF DATA BUFFER REGISTER
Sl 6C AS 3C 02A3 484 MOVZWL UCBSW BOFF(RS) ,Rl ;GET NUMBER OF CHARACTERS REMAINING

S2 8080 8F BO 02A7 48S MOVW #"X80SO ,R2 ;GET CONTROL REGISTER TEST MASK
08 11 02AC 486 BRB 2S$

' >
64 S2 B3 02AE 487 20$: BITW R2,(R4) ;PRINTER READY OR HAVE PAPER PROBLEM? z

> 08 lS 02Bl 488 BLEQ 30$;IF LEQ NOT READY OR PAPER PROBLEM I:""'
60 83 90 0283 489 MOVB (R3)+, (RO) ;OUTPUT NEXT CHARACTER i<

FS Sl F4 02B6 490 2S$: SOBGEQ Rl,20$;ANY MORE CHARACTERS TO OUTPUT? N
H

70 11 02B9 491 BRB 70$; z
02BB 492 Cl

02BB 49 3 ; 00
02BB 49 4 ; PRINTER IS NOT READY OR HAS PAPER PROBLEM i<
02BB 49S ; 00

""'3
02BB 49fl trJ

21 12 02BB 497 30$: BNEQ 40$;IF NEQ PAPER PROBLEM 3:

Sl 01 Al 02BD 498 ADDW3 #1,Rl,UCBSW_BOFF(RS) ;SAVE NUMBER OF CHARACTERS REMAINING l'Zj

6C AS 02CO >
1-1

02C2 499 DSBINT ;DISABLE INTERRUPTS I:""'
64 40 8F 88 02C8 soo BISB #AX40,LP CSR(R4) ; SET INTERRUPTS c:

02CC SOl WFIKPCH l4,$l,#12 - ;WAIT FOR INTERRUPT ::0
trJ

°" 02Dl1 S02 IO FORK ;CREATE A FORK PROCESS 00
I

....... Cl 11 02DC S03 BRB

.ti. 02DE SOS ; r--------
02DE SOfi ; I PRINTER HAS PAPER PROBLEM Cl
02DE S08 t c:

7A AS 94 02DE S09 40$: CLRB UCB$B LP OFLCNT(R5) ;CLEAR OFFLINE COUNTER H

Sl 01 Al 02El SlO ADDW3 #l,Rl~UCB$W_BOFF(RS) ;SAVE NUMBER OF CHARACTERS REMAINING 0
trJ

6C AS 02E4
ICLRW

I:""'
64 B4 02E6 Sll SO$: .. LP CSR(R4) ;DISABLE PRINTER INTERRUPT 1-1

z
02E8 Sl2 SET IPL UCB$B FIPL(RS) ;LOWER TO FORK LEVEL trJ

64 BS 02EC Sl3 TSTW LP CSR (R4) ;PRINTER STILL HAVE PAPER PROBLEM? 00

AF 14 02EE .1 BGTR lOS ; IF GTR NO >
3E S8 AS 03 EO 02FO SlS BBS #UCB$V CANCEL,UCB$W STS(RS) ,80$;IF SET, CANCEL I/O OPERATION z

01 OF 90 02FS Sl5 ACBB #lS,#l~UCBSB_LP_OFLCNT(RS) ,80$;SKIP UNTIL TIMEOUT 0

0017 7A AS 02F8 trJ
7A AS 94 02FC Sl7 CLRB UCB$B LP OFLCNT(RS) ;RESET COUNTER >C

> 18 BB 02FF Sl8 PUS HR rM<R} ,R4> ;SAVE REGISTERS 3:
S4 OS 9A 0301 Sl9 MOVZBL #MSG$ DEVOFFLIN,R4 ;SET UP MESSAGE TYPE

.,,
r OOOOOOOO'GF 9E 0304 S20 MOVAB GASYSSGL_OPRMBX,R3 ;ADDRESS TARGET MAILBOX trJ

S3 030A 00

Figure 6-5 Location of Defective Code in Driver Routine

ANALYZING SYSTEM FAILURES -- GUIDELINES AND EXAMPLES

6.4 INDUCING A SYSTEM FAILURE

If the operating system is not performing well and you want to create
a system dump file so that you can examine it later, you can induce a
system failure by typing the following commands at the console:

.> .> .> EXAM I NE P ~;;I...

>>> DEPOSIT PC = -1

>>> DEPOSIT PSI... = 1FOOOO

>>> CONTINUE

The system responds to the HALT command by displaying the PC; it
responds to the EXAMINE PSL command by displaying the PSL.
Immediately after you type this commans sequence, the system signals a
fatal bugcheck, writes information to SYSDUMP.DMP, shuts itself down,
and automatically reboots.

Make a note of the PC and PSL displayed on the console before you
perform the procedure outlined above. When you induce a system
failure, the values you deposit into these registers destroy their
previous contents, and you will need the pre-failure values contained
in the PC and PSL when you begin to examine the system dump file, as
described in Section 6.1.

6-15

CHAPTER 7

SDA ERROR MESSAGES

SDA error messages can be divided into messages that occur during SDA
initialization and messages that occur during SDA operation. Messages
that appear before SDA is initialized indicate problems encountered by
SDA as it tries to run. SDA prints the message but does not execute.
Messages that appear when SDA is operating concern problems
encountered during command execution.

7.1 INITIALIZATION ERROR MESSAGES

The dump file contains no valid dumP

This message appears if SDA cannot read the contents of the
system dump file. The file may be unreadable because the data is
bad or because the file is empty.

The dump onlhl contains n Pases of Phhlsical memorhl

This message occurs if the system dump file is not large enough
to accommodate all of physical memory. The number of physical
pages SDA can analyze is represented by n. To change the size of
the system dump file, see Section 2.1.

Shlmbol swmbol-name not found in SDA shlmbol table

This message appears if SDA cannot find a symbol in the SYS.STB
file which is vital to its initialization.

7.2 OPERATIONAL ERROR MESSAGES

Invalid block thlPe in specified block

This message appears if SDA is unable to identify the block type
of a particular block. The invalid block type message most
usually occurs when the FORMAT command tries to identify a block
type using a byte offset. See the description of the FORMAT
command in Chapter 5 for further information about byte offsets.

No "block-twpe• swmbols found to format this block

This message appears if SDA cannot locate the symbols needed to
format a block as a particular block type.

You may need to use the READ command to include the specific
block type symbols in the SDA symbol table.

7-1

SDA ERROR MESSAGES

No such Process

This message occurs if the process name specified in a SHOW
PROCESS or SET PROCESS command refers to a process that does not
exist.

Process swapped out

This message occurs if the process name specified in a SHOW
PROCESS or SET PROCESS command represents a process that was
swapped out of the balance set when the system failed.

Unable to access location location

This message indicates that SDA is unable to read a certain
location. The inaccessible location may be an implied reference
to memory made during the execution of an SDA command.

Unknown symbol s~mbol-name

This message occurs if SDA cannot identify a specified symbol.

Unknown twPe of GSD entry: GSD

This message occurs when SDA encounters a type of global symbol
that it does not recognize, either in the SYS.STB file or in a
file specified in the READ command. The type of global symbol
definition GSD is represented by a byte. This message can occur
during either initialization or operation of SDA, and usually
means that the file being read has been corrupted.

7-2

INDEX

A
Abbreviated commands, 4-1
Access violation, 6-2
ACP queue, 5-26
Active processes, displayed, 5-49
Add symbols to table, 5-3
Analyzing system failures, 6-1
Ancillary control process queue

block (AQB), 5-26
Arithmetic operations, 4-3
ASCII text, and quotation marks,

5-3
Assigning values to symbols, 5-3
Asterisk (*), to examine running

system, 3-2

B
Bad page list, 5-33
Base, specification of numeric,

4-2
Binary operators, 4-3
Block type, 5-11

byte, 5-11
symbols, 5-12

Blocks, formatted, 5-12
Byte ranges, displayed as, 5-8
Bugcheck, fatal, 6-1

identifying, 6-6

c
Channel Request Block (CRB), 5-24
Characters, in arithmetic opera

tions, 4-3
Colon (:), in EXAMINE command, 5-6
Command format, 4-1. See also

HELP command
Commands,

COPY, 5-2
DEFINE, 5-3
EVALUATE, 5-5
EXAMINE, 5-6
EXIT, 5-10
FORMAT, 5-11
HELP, 5-14
optional, to produce SDA

listing, 3-4
READ, 5-15
REPEAT, 5-17
SET OUTPUT, 5-18
SET PROCESS, 5-19

·SHOW CRASH, 5-21
SHOW DEVICE, 5-24
SHOW PAGE_TABLE, 5-29

Commands, (Cont.)
SHOW PFN DATA, 5-33
SHOW POOL, 5-36
SHOW PROCESS, 5-39
SHOW STACK, 5-46
SHOW SUMMARY, 5-49
SHOW SYMBOL, 5-51

Compute, value of expression, 5-5
Conditions, and fatal bugcheck,

6-2
Contents, location displayed, 5-6
Controller data structures, 5-24
Copy command, 5-2
Creating,

symbols, 4-3
Current process, 5-19

D
Decimal, values displayed, 4-2
Debugging system failure, 6-6
Default file specification, for

system dump file, 3-1
Default radix, 4-2
Defective code, identifying and

fixing, 6-13
DEFINE command, 5-3
Device Data Block (DDB), 5-24
Device data structures displayed,

5-24
Device status information, 5-25
Device unit data structures, 5-24
Discontinue display, 5-10
Displayed,

active processes, 5-49
contents of location, 5-6
formatted block, 5-11
global page table, 5-31
hardware process context, 5-39
IRP pool, 5-36
nonpaged dynamic storage pool,

5-36
paged dynamic storage pool,

5-36
PFN data base, 5-33
physical page, 5-33
process regions, 5-6
process working set list, 5-40
software process control block,

5-39
stacks, 5-46
system regions, 5-6
system-wide interrupt stack,

5-46
Dollar sign ($), to indicate

foreign command, 3-2
Driver dispatch table (DDT), 5-24

Index-1

INDEX

Driver, finding, using DPT list, 6-9
calculating end of, 6-10
calculating offset into, ~-10

Driver Prologue Table (DPT) , 6-9
DUMPBUG parameter, 2-1
Dump file,

copy of, 5-2
flag, 3-4

E
Equal sign (=) , in expression, 5-3
Error messages,

initialization, 7-1
operational, 7-1

Escape key (<ESC>), and REPEAT
command, 5-17

EVALUATE command, 5-5
Evaluating expressions, 5-5
EXAMINE command, 5-6
Examine,

data structures, 5-19
location contents, 5-6
memory regions, 5-6
running system, 3-2
sequence of memory locations, 5-17

Exceptions, fatal, 6-2
EXIT command, 5-10
Expressions,

as command parameters, 4-2
as parameter to the DEFINE

command, 5-3

F
Fatal bugcheck, 6-1

conditions, 6-2
Finding problem in routine, 6-10
Fixing, and identifying defective

code, 6-13
Flag, dump file and SDA command

execution, 3-4
Foreign command, invoking SDA

with, 3-2
Fork block, 5-25
FORMAT command, 5-11
Formatting blocks, 5-12

lists of blocks, 5-12
linked lists, 5-12

Free page list, 5-33

G

General purpose registers,
contents, 5-21

Global page table, 5-31
Global symbols, 3-4

and DEFINE command, 5-3
and READ command, 5-15
copying to symbol table, 5-15
displayed, 5-51
symbol table, 5-51
value displayed, 5-51

H
Hardware maintenance register

contents, 5-21
Hardware process context, 5-39
HELP command, 5-14
He.xadecimal expression, how SDA

evaluates, 5-5
Hexadecimal values displayed, 4-2

Identifying,
and fixing defective code, 6-13
bugcheck, 6-6
exception, 6-6

Illegal page faults, 6-5
Index number, 5-19
Inducing system failure, 6-15
Initialization error message, 7-1
Interrupt Dispatch Block (IDB),

5-24
I/O request packet, 5-25
I/O request packet pool, 5-36
Invoking SDA, 3-1

as a foreign command, 3-2

K
Key variables, checking values of,

6-12

L
Line of code, and bugcheck, ~-1
Linked lists, formatting, 5-12
Linked structure of DPT, 6-9
List,

data structures, 5-24
process's hardware context, 5-40

Local symbol, displayed, 5-51
Local symbol value, displayed,

5-51
Location,

contents displayed, 5-6
examine by symbol, 3-4
parameters, 5-6

Index-2

INDEX

M
Mechanism vector, 6-3
Modified page list, 5-33
~oving process context to specific

process, 5-19
Multiple qualifiers, 4-1

N
Nested parenthetical expressions,

4-3
Nonpaged dynamic storage pool,

5-36
Nonprinting characters, represented

by period, 5-3

0
Object module file, 5-15

extracting global symbols from,
5-15

Offset, into code, 6-1
Omitted location parameter, 5-6
Operational error messages, 7-1
Operating system information, in

SHOW CRASH command, 5-21

p

Paged dynamic storage pool, 5-36
Page faults, illegal, 6-5
Page file quota, 3-1
/PAGE TABLE, in SHOW PROCESS

command, 5-41
Page table entries, displayed,

5-29
Parameter,

as file specification, 4-1
expressions as, 4-2

Parentheses, as special operators,
4-3

Period (.),as nonprinting charac
ters, 5-3

PFN data base, displayed, 5-33
Physical page,

displayed, 5-33
information, 5-30

/PO, as EXAMINE qualifier, 5-7
/Pl, as EXAMINE qualifier, 5-7
Preserving a system dump file,

5-2
Printing,

both program and control
regions, 5-7

control region, 5-7
I/O request packet pool, 5-36

Printing, (Cont.)
nonpaged dynamic storage pool,

5-36
paged dynamic storage pool, 5-37
program region, 5-7
summary of the pools, 5-37
writeable system region, 5-7

Problem, finding, in routine, 6-10
Process,

context, 5-19
control block (PCB), 5-19
header (PHD), 5-19
identification (PID), 5-19
information, in SHOW CRASH

command, 5-21
regions, displayed, 5-6
register contents, 5-21

Processor registers, loss of
contents during SYS$DMP.DMP,
3-2' 3-3

Q
Qualifier, 4-1

abbreviated, 4-1
multiple, 4-1

Quotation marks (" "),around
ASCII text, 5-3

R
Radix operators, 4-2
Radix, specifying SDA use, 4-2
READ command, 5-15

to create symbols, 4-3
Reading dump file, prerequisites

for, 3-1
Register contents, 5-21
REPEAT command, 5-17
Return to interactive display,

in SET OUTPUT command, 5-18
Routine, finding problem in, 6-10

stepping through, 6-12
RUN command, invoking SDA with,

3-1
Running system, examination of,

3-2

s
Sample crash analysis, 6-9
Screen overflow prompt, and exit

command, 5-10
SDA, definition, 1-1

command format, 4-1
in site-specific start-up

procedure, 3-4

Index-3

INDEX

SDA, definition, (Cont.)
operation. See HELP command
utility. See HELP command

SET PROCESS command, 5-19
SHOW CRASH command, 5-46
SHOW CRASH display~ 3-3
SHOW DEVICE command, 5-24
SHOW PAGE TABLE command, 5-29
SHOW PFN DATA command, 5-33
SHOW POOL command, 5-36
SHOW PROCESS command, 5-39
SHOW STACK command, 5-46
SHOW SUMMARY command, 5-49
SHOW SYMBOL command, 5-51
Signal vector, 6-4
Signal vector, examination, 6-7
Slash (/), used with qualifier,

4-1
Software process context, 5-39
Space, in expression, 5-3
Special characters, 4-3
Special operators, 4-3
Special register contents, 5-21
Special symbols, 4-3. See also

DEFINE and READ commands
Stack configuration for illegal

page faults, 6-5
Stacks, displayed, 5-46
Stepping through routine, 6-12
Step through linked list, 5-17
Stopping SDA, 5-10
SWAPFILES command procedure, 2-1
SYS$DISK default, 3-1
Symbol evaluation, 5-5
Symbols,

add to table, 5-3
assign value to, 5-3
defined, 4-3
global, 5-3

Symbol table, displayed, 5-51
System dump file, 2-1

calculating size of, 2-1
creating new, 2-1
default file specification, 3-1
reading, 3-1
saving, 2-1

System failure, 1-1
debugging, 6-6
causes while examining running

system, 3-2
inducing, 6-15
solving, 6-1

System map file,
SYS$SYSTEM:SYS.MAP, 6-1

System parameter. See parameter
System process control block, 5-39
System region, displayed, 5-6
System-wide interrupt stack,

displayed, 5-46

T
Table of contents, SDA creates,

5-18

u
Unary operators, 4-2
Underline (), 4-3
Unit controY-block, 5-25

v
Values, checking, of key variables,

6-12
Vectors, 6-2

mechanism, 6-3
signal, 6-4

Violation, access, 6-2
Virtual memory, and SET PROCESS

command, 5-19
Virtual page information, 5-29
Volume control block, 5-26

w
Writing output to a file, 5-18

Index-4

.
~
c

rn
c
0
0

READER'S COMMENTS

VAX/VMS
System Dump Analyzer

Reference Manual
AA-J526A-TE

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement •

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Other (please specify)~~~~~~~~~~~~~~~~~~

CitY~~~~~~~~~~~~~~State~~~~~~-Zip Code~~~~~~
or

- - DoNotTear-FoldHereandTape - - - - - - - - - -

~nmnomn 11111

Do Not Tear - Fold Here

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS TW/A14

DIGITAL EQUIPMENT CORPOR.ATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

No Postage
Necessary

if Mai led in the
United States

