

VAX/VMS Supplemental
Information, Version 4. 7

Order Number: AA-KX21 A-TE

December 1987

This document contains information that supplements the VAX/VMS
documentation set.

Revision/Update Information: This is a new manual.

Operating System and Version: VAX/VMS Version 4. 7

digital equipment corporation
maynard, massachusetts

December 1987

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1987 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT
DECUS RSTS

~urnooelo TM DECwriter RSX

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA 8r. PUERTO Rico* CANADA INTERNATIONAL

ZK4586

Digital Equipment Corporation Digital Equipment
P.O. Box CS200B of Canada Ltd.

Digital Equipment Corporation
PSG Business Manager

Nashua, New Hampshire 100 Herzberg Road
03061 Kanata, Ontario K2K 2A6

Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska. and Hawaii call 603-884-6660.
In Canada call 800-267-6215.
*

c/o Digital's local subsidiary
or approved distributor

Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).
Internal orders should be placed through the Software Distribution Center (SOC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use
DIGITAL-supported devices, such as the LN03 laser printer and PostScript@
printers (PrintServer 40 or LN03R ScriptPrinter), to produce a typeset-quality
copy containing integrated graphics.

@ PostScript is a trademark of Adobe Systems, Inc.

Contents

PREFACE

CHAPTER 1 SUPPLEMENTAL INFORMATION FOR GENERAL
USERS

1.1 VAX/VMS DCL CONCEPTS MANUAL - CORRECTIONS

1.2 GUIDE TO USING DCL AND COMMAND PROCEDURES ON
VAX/VMS - CORRECTIONS

1.3 VAX/VMS MAIL UTILITY REFERENCE MANUAL -
ADDITION

1.4 VAX/VMS USER'S MANUAL - CORRECTION

1.5 SET HOST/DTE/DIAL COMMAND -ADDITIONAL MODEMS
SUPPORTED

1.6 SUPPORT FOR VT300-SERIES TERMINALS

1.7 TERMINAL DRIVER LINE EDITING - CLARIFICATION

1.8 NEW HARDWARE CONFIGURATION FOR VAX 8200/8300/8350
SYSTEMS

CHAPTER 2 SUPPLEMENTAL INFORMATION FOR SYSTEM
MANAGERS

2.1

2.2

2.3

SET TIME COMMAND - /[NO]CLUSTER QUALIFIER

VAX/VMS DECNET TEST SENDER/DECNET TEST RECEIVER
UTILITY REFERENCE MANUAL - CORRECTION

VAX/VMS NETWORK CONTROL PROGRAM REFERENCE
MANUAL - CORRECTIONS

xiii

1-1

1-1

1-1

1-2

1-2

1-3

1-3

1-3

1-4

2-1

2-1

2-1

2-1

v

Contents

vi

2.3.1
2.3.2
2.3.3
2.3.4

. 2.4

2.5

2.6
2.6.1

2.6.2
2.6.3
2.6.4
2.6.5
2.6.6

CONNECT NODE Command - Use VIA Parameter
X.25 Packet level Events Numbered Incorrectly
DTE State Tables Corrected
SHOW CIRCUIT Command Changes

VAX/VMS NETWORKING MANUAL - CORRECTIONS

GUIDE TO VAX/VMS SOFTWARE INSTALLATION
CORRECTION

AUTOGEN ENHANCEMENTS
OLDSITE Parameter-Passing Mechanism Becoming
Obsolete
New WSMAX Check
Current Parameter Values Saved
Specifying an Alternate Startup Command Procedure
QUORUM Value Calculated
Page and Swap File Handling - Improvements

2-2
2-2
2-2
2-5

2-5

2-5

2-6

2-6
2-6
2-6
2-7
2-7
2-7

2.7 PRIMARY PAGE AND SWAP FILES ON DISKS OTHER THAN THE
SYSTEM DISK 2-8

2.8 LOCKDIRWT SYSGEN PARAMETER 2-9

2.9 MONITOR UTILITY SUPPORTS MONITORING OF ADDITIONAL
NODES 2-9

2.10 VAX/VMS SYSTEM MANAGER'S REFERENCE MANUAL -
CORRECTIONS 2-10

2.10.1 Setting Up Queues for Spooled Line Printers 2-10
2.10.2 Bootstrapping a VAX 8200/8300/8350 from an HSC-Controlled

Disk 2-10
2.10.3 Alternate, Nonstop, Bootstrap Procedure for a VAX

8200/8300/8350 2-12

2.11 CREATING A COMMAND PROCEDURE TO BOOT STANDALONE

2.12

BACKUP FROM AN ALTERNATE SYSTEM ROOT 2-13

USE VMSINSTAL TO INSTALL OPTIONAL SOFTWARE
PRODUCTS 2-13

2.13

2.14

2.14.1
2.14.2
2.14.3
2.14.4
2.14.5
2.14.6

USING VOLUME SHADOWING ON A VAX
8800/8700/8530/8550/PROCESSOR

VAX/VMS AUTHORIZE UTILITY REFERENCE MANUAL -
CORRECTIONS AND ADDITIONS
Error Messages
New /ATTRIBUTES Keyword
Enhanced /ACCESS Qualifier
/DEFPRIVILEGES and /PRIVILEGES Qualifiers
Secondary Passwords - Change
New AUTOLOGIN Flag

Contents

2-13

2-14
2-15
2-25
2-25
2-25
2-25
2-26

2.15 GUIDE TO MULTIPROCESS/NG ON VAX/VMS - SETTING UP A
VAX-11/782 2-26

2.1 5.1 Building Multiprocessing Console Diskettes 2-26
2. 15. 1. 1 Determining the Memory Configuration • 2-27
2.15.1.2 Executing BOOTBLDR.COM • 2-31
2.15.2 Shutting Down the System 2-34
2.15.3 Booting the VAX-11 /782 System 2-35
2.15.4 Editing SYSTARTUP.COM 2-35

2.16

2.17

2.18

2.18.1
2.18.2
2.18.3
2.18.4

2.19

2.20

2.21

VAX/VMS VERIFY UTILITY REFERENCE MANUAL -
CORRECTION

VAX/VMS DEVELOPER'S GUIDE TO VMSINSTAL -
CORRECTION

VAX/VMS INSTALL UTILITY REFERENCE MANUAL -
ADDITIONS AND CORRECTIONS
New Method of Invoking INSTALL
Enhanced LIST/GLOBAL/FULL Command
/SUMMARY Qualifier
Corrections to Text

VAX/VMS ACCOUNTING UTILITY REFERENCE MANUAL -
CORRECTIONS

VAX/VMS MOUNT UTILITY REFERENCE MANUAL -
ADDITION

IMAGE ACTIVATION, SEARCH LISTS, AND KNOWN
IMAGES

2-35

2-36

2-36
2-36
2-36
2-36
2-37

2-37

2-37

2-37

vii

Contents

2.22 VAX/VMS SYSTEM GENERATION UTILITY REFERENCE
MANUAL - CORRECTIONS 2-38

2.23 GUIDE TO VAX/VMS SYSTEM SECURITY- CORRECTIONS 2-39
2.23.1 Defining Ownership Privileges 2-39
2.23.2 Establishing and Changing File Ownership 2-40
2.23.3 Default ACL Protection 2-40
2.23.4 Example Change 2-40
2.23.5 System Passwords Incompatible with LAT Terminal

Servers 2-41

2.24 TMPJNL AND PRMJNL PRIVILEGES REMOVED 2-41

CHAPTER 3 SUPPLEMENTAL INFORMATION FOR APPLICATION
PROGRAMMERS 3-1

3.1 VAX/VMS LINKER REFERENCE MANUAL - CORRECTION 3-1

3.2 DEBUGGER 3-1
3.2.1 Predefined Breakpoints 3-2
3.2.2 CALL from an Exception Breakpoint 3-2
3.2.3 STEP from an Exception Breakpoint 3-2
3.2.4 Nonstatic Watchpoints 3-3

3.3 VAX PASCAL RUN-TIME LIBRARY- CHANGES 3-3
3.3.1 DEC and UDEC Built-in Routine 3-3
3.3.2 KEY Attribute Enhanced 3-4
3.3.3 New Default RECORD_LENGTH for TEXT Files 3-4
3.3.4 Use of EXTEND, REWRITE, and TRUNCATE 3-4

3.4 PL/I RUN-TIME LIBRARY SUPPORTS VAX PL/I
VERSION 3.0 3-4

3.5 VAX ADA RUN-TIME LIBRARY - UNHANDLED
EXCEPTIONS 3-5

3.6 VAX C RUN-TIME LIBRARY-CHANGES 3-7
3.6.1 Printf Function Restrictions Removed 3-7
3.6.2 File Sharing Now Supported 3-7
3.6.3 Stream 1/0 Facilities 3-7

viii

Contents

3.7 VAX/VMS RUN-TIME LIBRARY ROUTINES REFERENCE
MANUAL - CORRECTION 3-7

3.8 VAX/VMS COMMAND DEFINITION UTILITY REFERENCE
MANUAL - EXAMPLE CORRECTION 3-8

3.9 VAX TEXT PROCESSING UTILITY REFERENCE MANUAL -
ADDITIONS 3-8

3.9.1 GET_INFO - Restriction 3-8
3.9.2 VAX BLISS - VAXTPU Example 3-9

3.10 ERROR LOG UTILITY - N-EW FEATURES AND CHANGES 3-12
3.10.1 Enhancements to the User Interface 3-12
3.10.2 /EXCLUDE Qualifier Added 3-13

CHAPTER 4 SUPPLEMENTAL INFORMATION FOR SYSTEM
PROGRAMMERS 4-1

4.1 VAX/VMS SYSTEM SERVICES REFERENCE MANUAL -
CORRECTION 4-1

4.1.1 New Nullarg Argument 4-1
4.1.2 SGETSYI Service - New Item Codes 4-2
4.1.3 $GETSYI Service - Changed Item Code 4-3
4.1.4 $QIO and $QIOW System Services 4-3

4.2 SYSTEM DUMP ANALYZER - NEW COMMAND 4-3
SHOW CALL_FRAME 4-4

4.3 ETHERNET/802 DEVICE DRIVERS 4-7
4.3.1 IEEE 802 Response Packets 4-7
4.3.2 802 User-Supplied Services 4-7
4.3.3 Protocol Type Validation 4-7

4.4 WRITING A DEVICE DRIVER FOR VAX/VMS -
CORRECTIONS 4-7

4.4.1 IFNORD, IFNOWRT, IFRD, and IFWRT Macros 4-7
4.4.2 Bootstrapping with XDEL TA 4-8
4.4.3 EXE$QIODRVPKT Executive Routine 4-8

EXE$QIODRVPKT 4-9
4.4.4 $DEF Macro 4-10

ix

Contents

4.5 VAX/VMS 1/0 USER'S REFERENCE MANUAL: PART II - DR32
MICROCODE LOADER 4-10

4.6 VAX MACRO AND INSTRUCTION SET REFERENCE MANUAL -
CYCLIC REDUNDANCY CHECK (CRC) 4-10

APPENDIX A GENERIC VAXBI DEVICE SUPPORT IN VAX/VMS A-1

A.1 OVERVIEW A-1

A.2 V AXBI CONCEPTS A-2
A.2.1 V AXBI Address Space A-3
A.2.2 Backplane Interconnect Interface Chip (BllC) A-8

A.3 INITIALIZATION PERFORMED BY VAX/VMS A-8
A.3.1 Data Structures A-9
A.3.2 System Control Block A-11

A.4 INITIALIZATION PERFORMED BY THE VAXBI DEVICE
DRIVER A-12

A.4.1 Examining BllC Self-Test Status A-13
A.4.2 Clearing BllC Errors, Setting Interrupts, and Enabling

Interrupts A-13
A.4.2.1 Clearing the Bus Error Register • A-14
A.4.2.2 Loading the Interrupt Destination Register• A-14
A.4.2.3 Setting Interrupt Vectors • A-14
A.4.2.4 Enabling Error Interrupts • A-15
A.4.2.5 Enabling BllC Options• A-15
A.4.3 Mapping Window Space A-15
A.4.4 Forking from a Driver Initialization Routine A-16

A.5 OMA TRANSFERS A-17
A.5.1 Example: DMB32 Asynchronous/Synchronous Multiplexer - A-19

A.6 REGISTER-DUMPING ROUTINE A-21

A.7 LOADING A VAXBI DEVICE DRIVER A-21

A.8 REFERENCE MATERIAL A-22
A.8.1 BllC Register Definitions A-23

x

A.8.2

INDEX

EXAMPLES
3-1

FIGURES
A-1

A-2

A-3

A-4

A-5

A-6
A-7

A-8

TABLES
2-1

2-2

2-3

2-4

2-5

A-1

A-2

A-3

IOC$ALLOSPT

IOC$ALLOSPT A-32

Sample VAX BLISS Template for Callable VAXTPU __

VAX 8200, VAX 8300, and VAX 8350 Systems

VAX 8530, VAX 8550, VAX 8700, and VAX 8800
Systems

V AXBI Address Space

Description of V AXBI 1/0 Space

Physical Addresses in V AXBI 1/0 Space

VAXBI Device Vectors

Page Table Entry

Backplane Interconnect Interface Chip (BllC) Registers

DTE States and Substates

DTE State Transitions

Values to Deposit in R3 in the Bootstrap Command
Procedures

Configuration Register Physical Addresses

Adapter Type Codes

Contents of the BllC Registers

Input

Output

Contents

A-31 ..

3-9.

A-2

A-3
A-4

A-:6
A-7~-

A-11

A-1°8

A-23

2-.3.

2-3

2-13.

2-28

2-28

A-24

A-32

A-32

xi

Preface

Intended Audience
This manual is for all users of the VAX/VMS operating system.

Document Structure

Conventions

This manual contains the following four chapters and one appendix:

• Chapter 1 contains information for general users of the VAX/VMS
operating system.

• Chapter 2 contains information for system managers.

• Chapter 3 contains information for application programmers.

• Chapter 4 contains information for system programmers.

• Appendix A contains information for users who need to write and load a
device driver for a non-DIGITAL-supplied device attached to the VAXBI
bus.

Convention

CTRL/C

$SHOW TIME
05-JUN-1988 11 :55:22

$ TYPE MYFILE.DAT

Meaning

In examples, a key name (usually abbreviated)
shown within a box indicates that you press
a key on the keyboard; in text, a key name is
not enclosed in a box. In this example, the key
is the RETURN key. (Note that the RETURN
key is not usually shown in syntax statements
or in all examples; however, assume that you
must press the RETURN key after entering a
command or responding to a prompt.)

A key combination, shown in uppercase with a
slash separating two key names, indicates that
you hold down the first key while you press the
second key. For example, the key combination
CTRL/C indicates that you hold down the key
labeled CTRL while you press the key labeled C.
In examples, a key combination is enclosed in a
box.

In examples, system output (what the system
displays) is shown in black. User input (what
you enter) is shown in red.

In examples, a vertical series of periods, or
ellipsis, means either that not all the data that
the system would display in response to a
command is shown or that not all the data a
user would enter is shown.

xiii

Preface

xiv

Convention

input-file, ...

[logical-name]

quotation marks
apostrophes

Meaning

In examples, a horizontal ellipsis indicates
that additional parameters, values, or other
information can be entered, that preceding
items can be repeated one or more times, or
that optional arguments in a statement have
been omitted.

Brackets indicate that the enclosed item is
optional. (Brackets are not, however, optional
in the syntax of a directory name in a file
specification or in the syntax of a substring
specification in an assignment statement.)

The term quotation marks is used to refer
to double quotation marks ("). The term
apostrophe (·) is used to refer to a single
quotation mark.

1 Supplemental Information for General Users

This chapter contains supplemental information for general users of the
VAX/VMS operating system.

1 .1 VAX/VMS DCL Concepts Manual- Corrections
The following corrections apply to the VAX/VMS DCL Concepts Manual:

• Page 1-8. Disregard the note in Section 1.7.4. Applications are not
affected by the SET TERMINAL/LINE_EDIT command.

• Page 2-4. The character "T" is no longer a valid abbreviation for the
TYPE command. You must now enter "TY".

• Page 2-12, list item 4. Replace the /OUTPUT with the /OBJECT
qualifier.

• Page 3-1. In Section 3.1, the syntax given for a full file specification is
incorrect. It should appear as follows:

node: :device:[directory]filename. type;version

• Page 3-5. In Section 3.3.2, the list of special ANSI "a" characters that can
be used in a magnetic tape file specification is incorrect. This list should
contain the following characters:

!"%'()•+,-./:;> = <?

In order to use ANSI "a" characters in the file specification for a magnetic
tape, the volume name must be enclosed in quotation marks.

• Page 4-14. In Section 4.7.1, replace the /PARENT qualifier with the
/PARENT_ TABLE qualifier.

1 .2 Guide to Using DCL and Command Procedures
on VAX/VMS- Corrections

The following corrections apply to the Guide to Using DCL and Command
Procedures on VAX/VMS:

• Page 1-11. The last two lines in the example LOGICALS.COM file
should read as follows:

$ DEFINE JON DAISY: :HARRIS
$ DEFINE JANE DAISY: :MOORE

• Page 4-16. In the example in Section 4.6.2, the statement

$WRITE "Result is",RES

should be replaced as follows:

$WRITE SYS$0UTPUT "Result is ",RES

1-1

Supplemental Information for General Users

• Page 5-14. The following line of code is missing from the example at the
top of the page:

$ NUM = NUM + 1

Insert this line under PROCESS-LOOP as follows:

$ PROCESS_LOOP:
$ FILE= F$ELEMENT(NUM, 11 / 11 ,FILE_LIST)
$ IF FILE .EQS. "/" THEN GOTO DONE
$ COPY 'FILE' .MEM MORRIS::DISK3:[DOCSET]*.*
$ NUM = NUM + 1
$ GOTO PROCESS_LOOP

• Page 5-15. The first statement in the example should have a hyphen (-)
at the end of the line as follows:

$ COMMAND_LIST = "DELETE/DIRECTORY/EXIT/" + -

• Page 6-7. In the example at the top of the page, the following statement
is incorrect:

$ INQUIRE RECORD "Enter name"

Replace the preceding statement with the following statement:

$ INQUIRE NAME "Enter name"

• Page 8-5. In the text following the third bullet, the qualifier /NOPRINT
should be /NOPRINTER.

1.3 VAX/VMS Mail Utility Reference Manual- Addition
The description of the /SELF qualifier in the VAX/VMS Mail Utility Reference
Manual should include the following information:

• There is a corresponding /NOSELF qualifier.

• If you send a message from the DCL level (that is, you do not receive
the MAIL> prompt from within the Mail Utility), specifying /SELF or
/NOSELF overrides any setting you have established by the
SET COPY-SELF command within the Mail Utility.

• Specifying /SELF or /NOSELF on the DCL command line has no effect if
you enter the Mail Utility and receive the MAIL> prompt.

Thus, for example, you could specify the following command to send
MYFILE.DAT to user JONES and avoid receiving a copy of the file yourself
even if you have previously entered the SET COPY_SELF command within
the Mail Utility.

$ MAIL/NOSELF MYFILE.DAT JONES

1 .4 VAX/VMS User's Manual- Correction

1-2

The positions of two figures in the VAX/VMS User's Manual were
inadvertently reversed in the last release. The figure appearing under
Appendix CHAR, CHAR.1 belongs under Appendix MAIL, MAIL.3.1. The
figure that appears under Appendix MAIL, MAIL.3.1 belongs under
Appendix CHAR, CHAR.1.

Supplemental Information for General Users

1 . 5 SET HOST /DTE/DIAL Command - Additional Modems Supported
The DCL command SET HOST /DTE/DIAL now supports the following
modems:

• DF03

• DF112

• DMCL (any modem that uses DIGITAL Modem Control Language)

1 . 6 Support for VT300-Series Terminals
VAX/VMS supports the VT300-series terminals. The terminal device type is
VT300_SERIES, and the terminal characteristic is DEC_CRT3. The
DEC_CRT3 characteristic indicates the following:

• The ISO LATIN-1 character set is resident

• The ability to display a twenty-fifth line (the status line)

• The ability to report explicit state information about itself

When entering the SET TERMINAL command, you can specify
VT300_SERIES as a terminal type for the /DEVICE_TYPE qualifier. You can
also supply a value of 3 to the /DEC_CRT qualifier, which sets the
DEC_CRT3 terminal characteristic.

1 . 7 Terminal Driver line Editing - Clarification
The following information clarifies the documentation for CTRL/V in
Table 1-2 of the VAX/VMS DCL Concepts Manual and in Table GEN-2 of the
VAX/VMS Mini-Reference.

At DCL level, CTRL/V disables the command line editing features that were
new with Version 4.0. For example, if you press CTRL/V and press CTRL/D,
a CTRL/D is generated instead of the cursor moving left one character. Note,
however, that CTRL/D is a terminator at the DCL level. Thus, pressing
CTRL/V followed by pressing CTRL/D simulates a carriage return. DCL
uses the default RMS terminator set, which is described in Chapter 8 of the
VAX/VMS 1/0 User's Reference Manual: Part I.

Control characters that are not terminators at DCL level, such as CTRL/H
and CTRL/J, have no effect when you use them with CTRL/V, because a
backspace or a linefeed in the middle of a line results in an invalid command.

Certain control keys perform the same function with Version 4.0 as they did
in previous versions of the VAX/VMS operating system. If you press one of
these keys (including CTRL/U) after a CTRL/V, the key behaves as it did
prior to Version 4.0.

1-3

Supplemental Information for General Users

1 .8 New Hardware Configuration for VAX 8200/8300/8350 Systems

1-4

A new hardware configuration exists for VAX 8200/8300/8350 systems.
Software documentation for the original VAX 8200/8300/8350 hardware
configuration is still accurate, with the following exceptions:

• The main cabinet on the new configuration is wider than the original
VAX 8200/8300/8350 cabinet.

• Diskette drives on the new configuration are oriented horizontally. CSAl
is the top diskette drive and CSA2 is the bottom diskette drive. Diskette
drives on the original configuration are oriented vertically.

• The processor control panel on the new configuration is located to the
right of the diskette drives. The processor control panel on the original
configuration is located under the diskette drives.

• The new hardware configuration supports a 24-slot backplane; the
original configuration supports a 12-slot backplane.

2 Supplemental Information for System Managers

This chapter contains supplemental information for system managers.

2.1 SET TIME Command - /[NO]CLUSTER Qualifier
The DCL command SET TIME has a new /[NO]CLUSTER qualifier. The
default value for this qualifier is /NOCLUSTER.

Use the SET TIME/CLUSTER command to update the time on all nodes
present in the VAXcluster. If you enter the SET TIME/CLUSTER command
without a new time value, the system reads the time-of-year clock on the
local node, then sets all nodes in the cluster to that time.

Because of communications and processing delays, the command cannot
synchronize clocks exactly; the variation is typically less than a few
hundredths of a second. If the command cannot verify that the time was
set to within one half second of the specified time, you receive a warning
message that specifies the name of the node that failed to respond quickly
enough.

As a result of slight inaccuracies in each interval clock, times on the nodes of
a cluster tend to drift apart. You can use the following procedure to keep the
time on all cluster nodes reasonably synchronized:

$ SYNCH_CLOCKS:
$ SET TIME /CLUSTER
$ WAIT 6:00:00
$ GOTO SYNCH_CLOCKS

This procedure sets the time on all cluster nodes to the value obtained from
the local time-of-year clock, waits, then resets the time for the cluster.

See the VAX/VMS DCL Dictionary for more information about the SET TIME
command.

2.2 VAX/VMS DECnet Test Sender/DECnet Test Receiver Utility Reference
Manual- Correction

The description of the /[NO]DISPLAY qualifier on page DTS-8 should be
replaced as follows:

/[NO]DISPLA Y=number
Instructs DTS to print the specified number of bytes (in hexadecimal) of data
and interrupt messages to DTR. The default is /NODISPLAY.

2.3 VAX/VMS Network Control Program Reference Manual-Corrections
The following sections contain corrections to the VAX/VMS Network Control
Program Reference Manual.

2-1

2.3.1

2.3.2

2.3.3

Supplemental Information for System Managers

CONNECT NODE Command - Use VIA Parameter
The VAX/VMS Network Control Program Reference Manual contains an error
on page NCP-40. SERVICE CIRCUIT is incorrectly listed as a command
parameter that can be used with the CONNECT NODE command. Instead
of the SERVICE CIRCUIT parameter, use the command parameter VIA as
follows:

VIA circuit id - Specifies the circuit to be used to create the logical link
between the host node and the target node. The circuit must be an Ethernet
circuit.

In addition, replace the command example with the corrected command
example that follows:

NCP> CONNECT NODE RTDEV SERVICE PASSWORD FEFEFEFEFEFEFEFE
- NCP> VIA UNA-0 PHYSICAL ADDRESS AA-00-04-00-38-00

X.25 Packet Level Events Numbered Incorrectly
In Section A.4.6 of the VAX/VMS Network Control Program Reference Manual,
"X.25 Packet Level Events," the events numbered 7.3 through 7.14 should in
fact be numbered 7.0 through 7.11.

DTE State Tables Corrected

2-2

The following two tables give corrected information for Tables NCP-6 and
NCP-7 (pages NCP-178 and NCP-179) in the VAX/VMS Network Control
Program Reference Manual.

Table 2-1 lists all VAX PSI management states and substates for DTEs.
Table 2-2 provides a list of DTE state transitions.

Supplemental Information for System Managers

Table 2-1 DTE States and Substates

State Substate

OFF RUNNING

SYNCHRONIZING

Meaning

X.25 level 2 and level 3 software is operational,
but the DTE is not available for use. Incoming
calls are cleared.

X.25 level 2 software is operational, but
level 3 software is not. The DTE is not available
for use.

UNSYNCHRONIZED X.25 levels 2 and 3 are not operational, and the
DTE is not available for use.

ON RUNNING

SYNCHRONIZING

The DTE is available for normal use.

X.25 level 2 software is operational, level 3
software is starting up, and the DTE will soon
be available for use.

UNSYNCHRONIZED X.25 level 2 software is starting up, and the
DTE will soon be available for use.

SHUT RUNNING

SYNCHRONIZING

X.25 levels 2 and 3 are operational, but the
DTE is not to be used for any new activity; that
is, all existing virtual circuits will be allowed to
complete their operations. Incoming calls are
cleared.

X.25 level 2 software is operational and
level 3 software is starting up. When the DTE is
available for use, no circuits can be established.

UNSYNCHRONIZED X.25 level 2 software is starting up. When
the DTE is available for use, no circuits can be
established.

Table 2-2 DTE State Transitions

Old State New State

OFF-RUNNING ON-RUNNING

OFF-SYNCHRONIZING

OFF-UNSYNCHRONIZED

OFF-UNSYNCHRONIZED ON-UNSYNCHRONIZED

OFF-SYNCHRONIZING

OFF-SYNCHRONIZING ON-SYNCHRONIZING

Cause of Change

Operator command: SET
MODULE X25-PROTOCOL
DTE ST ATE ON.

X.25 level 3 software is
resynchronizing.

X.25 level 2 software is
resynchronizing.

Operator command: SET
MODULE X25-PROTOCOL
DTE ST ATE ON.

X.25 level 2 startup has
completed.

Operator command: SET
MODULE X25-PROTOCOL
DTE STATE ON.

2-3

Supplemental Information for System Managers

Table 2-2 (Cont.) DTE State Transitions

Old State New State Cause of Change

OFF-RUNNING X.25 level 3 startup has
completed.

OFF-UNSYNCHRONIZED X.25 level 2 software is
resynchronizing.

ON-RUNNING OFF-RUNNING Operator command: SET
MODULE X25-PROTOCOL
DTE STATE OFF.

SHUT-RUNNING Operator command: SET
MODULE X25-PROTOCOL
DTE STATE SHUT.

ON-SYNCHRONIZING X.25 level 3 software is
resynchronizing.

ON-UNSYNCHRONIZED X.25 level 2 software is
resynchronizing.

ON-UNSYNCHRONIZED OFF-UNSYNCHRONIZED Operator command: SET
MODULE X25-PROTOCOL
DTE STATE OFF.

SHUT- Operator command: SET
UNSYNCHRONIZED MODULE X25-PROTOCOL

DTE STATE OFF.

ON-SYNCHRONIZING X.25 level 2 startup has
completed.

ON-SYNCHRONIZING OFF-SYNCHRONIZING Operator command: SET
MODULE X25-PROTOCOL
DTE STATE OFF.

SHUT-SYNCHRONIZING Operator command: SET
MODULE X25-PROTOCOL
DTE ST A TE SHUT.

ON-RUNNING X.25 level 3 startup has
completed.

ON-UNSYNCHRONIZED X.25 level 2 software is
resynchronizing.

SHUT-RUNNING OFF-RUNNING Operator command: SET
MODULE X25-PROTOCOL
DTE STATE OFF.

ON-RUNNING Operator command: SET
MODULE X25-PROTOCOL
DTE ST ATE ON.

SHUT-SYNCHRONIZING X.25 level 3 software is
resynchronizing.

SHUT- X.25 level 2 software is
UNSYNCHRONIZED resynchronizing.

SHUT- OFF-UNSYNCHRONIZED Operator command: SET
UNSYNCHRONIZED MODULE X25-PROTOCOL ·

DTE STATE OFF.

2-4

2.3.4

Supplemental Information for System Managers

Table 2-2 (Cont.) DTE State Transitions

Old State

SHUT-SYNCHRONIZING

SHOW CIRCUIT Command Changes

New State

ON-UNSYNCHRONIZED

SHUT-SYNCHRONIZING

OFF-SYNCHRONIZING

ON-SYNCHRONIZING

SHUT-RUNNING

SHUT
UNSYNCHRONIZED

Cause of Change

Operator command: SET
MODULE X25-PROTOCOL
DTE STATE ON.

X.25 level 2 startup has
completed.

Operator command: SET
MODULE X25-PROTOCOL
DTE STATE OFF.

Operator command: SET
MODULE X25-PROTOCOL
DTE STATE ON.

X.25 level 3 startup has
completed.

X.25 level 2 software is
resynchronizing.

Prior to Version 4.6, the Network Control Program's SHOW CIRCUIT ...
SUMMARY command displayed circuit information about all adjacent nodes
(routing and nonrouting). For Version 4.6 and subsequent versions, the
SUMMARY parameter displays circuit information about adjacent routing
nodes only. However, the STATUS parameter continues to display circuit
information about all adjacent nodes. For more information about the SHOW
CIRCUIT command, refer to the VAX/VMS Network Control Program Reference
Manual.

2.4 VAX/VMS Networking Manual- Corrections
Make the following corrections on page 3-46, in Section 3.5.7.4:

• In the first sentence, the default value for the RECALL TIMER parameter
should be 100 seconds.

• In the third sentence, note that the circuit is placed in the ON-FAILED
state if an attempt to make an outgoing call causes the system to exceed
the MAXIMUM RECALLS parameter.

2.5 Guide to VAX/VMS Software Installation- Correction
In the Guide to VAX/VMS Software Installation, Section 7.5.4.1, the FILLM
quota should be 60, not 20.

2-5

Supplemental Information for System Managers

2.6 AUTOGEN Enhancements

2.6.1

2.6.2

2.6.3

The sections that follow describe enhancements to the AUTOGEN command
procedure.

OLDSITE Parameter-Passing Mechanism Becoming Obsolete
The MODP ARAMS parameter-passing mechanism supersedes the OLDSITE
mechanism. The transition to the MODP ARAMS mechanism involves
two steps. Version 4.6 eliminated SYS$SYSTEM:OLDSITE1.DAT. The
next major release of the VAX/VMS operating system will eliminate
SYS$SYSTEM:OLDSITE2.DAT, OLDSITE3.DAT, and OLDSITE4.DAT.

The parameter values created by the files OLDSITEn.DAT can be
found in the file SYS$SYSTEM:PARAMS.DAT. Comment lines in
SYS$SYSTEM:PARAMS.DAT indicate which OLDFILEn.DAT the parameters
come from. DIGITAL recommends that you review the parameters in the
most recent version of SYS$SYSTEM:PARAMS.DAT.

When you review SYS$SYSTEM:PARAMS.DAT, you may find parameters
necessary for your site that were transferred from OLDSITEn.DAT
files. Include the records for these parameters from PARAMS.DAT in
SYS$SYSTEM:MODPARAMS.DAT. If MODPARAMS.DAT does not exist,
you can create it with a text editor.

After updating MODPARAMS.DAT to reflect the parameters transferred from
the OLDSITEn.DAT files, invoke AUTOGEN as follows:

$ @SYS$UPDATE:AUTOGEN GETDATA REBOOT INITIAL

For more information about the MODP ARAMS parameter-passing
mechanism, refer to Section 11.4 of the VAX/VMS System Manager's Reference
Manual.

New WSMAX Check
Since a value for the WSMAX parameter that is too high can disable pool
expansion, AUTOGEN now displays a warning if it discovers a user-supplied
value for the WSMAX parameter that appears to be too high.

Current Parameter Values Saved

2-6

AUTOGEN now saves current system parameters in
SYS$SYSTEM:VAXVMSSYS.OLD before updating these parameters in
SYS$SYSTEM:VAXVMSSYS.PAR.

2.6.4

2.6.5

2.6.6

Supplemental Information for System Managers

Specifying an Alternate Startup Command Procedure
If you use a startup command procedure other than
SYS$SYSTEM:STARTUP.COM, you can now assign the name of your
procedure to the symbol STARTUP in MODPARAMS.DAT. After invoking
AUTOGEN, your procedure becomes the default startup command procedure.

For example, to specify MY_STARTUP.COM as the new default startup
command procedure, make the following entry in MODPARAMS.DAT:

STARTUP= "SYS$MANAGER:MY_STARTUP.COM"

QUORUM Value Calculated
AUTOGEN calculates a value for the QUORUM parameter by selecting the
higher of the following two values: the initial quorum or the current cluster
quorum.

Page and Swap File Handling - Improvements
AUTOGEN now understands and manipulates secondary page and swap
files. Generally, if secondary page or swap files exist, AUTOGEN's file
manipulation involves secondary files but excludes primary files; AUTOGEN
assumes that primary files are on a cluster common system disk. AUTOGEN
handles different types of input in the following ways:

1 If AUTOGEN does not receive user-supplied information from
MODPARAMS.DAT, it performs default page and swap file size
calculations. If no secondary files exist, AUTOGEN applies any changes
to the primary files. If secondary files exist, AUTOGEN applies changes
evenly across all secondary page or swap files, but does not modify
primary files.

2 AUTOGEN can receive general user-supplied size information from
MODPARAMS.DAT. This information consists of records of the form
PAGEFILE =nor SWAPFILE = n. If n is zero, the corresponding section is
skipped. If n is not zero and no secondary files exist, AUTOGEN applies
the value to primary files. If n is not zero and secondary files exist,
AUTOGEN applies any change evenly across all secondary files, but does
not modify primary files.

3 You can now specify the individual sizes of all existing page and swap
files (including secondary files), as well as the location and size of new
files that you want AUTOGEN to create. To do this, define symbols in
MODPARAMS.DAT using the following format:

{PAGE/SWAP}FILEn_{NAME/SIZE}

In this format, n is an integer that specifies the page or swap file. Refer
to the primary page and swap files by specifying a value of 1 for n; refer
to subsequent files by specifying increasingly higher integer values for n.
For example, to refer to a secondary page or swap file, you could specify
a value of 2 for n. Braces ({}) indicate that you must choose between
the options delimited by a backslash (/). For example, specify PAGE or
SWAP, NAME or SIZE.

2-7

Supplemental Information for System Managers

For existing files, you typically define _SIZE symbols only; AUTOGEN
already has the name and location. For example, to direct AUTOGEN to
set the primary page file size to 10000 blocks, use the following symbol
definition:

PAGEFILE1_SIZE = 10000

To direct AUTOGEN to create a new secondary swap file named
PAGED$:[PAGESWAPJSWAPFILE.SYS that holds 30000 blocks, use
the following symbol definitions:

SWAPFILE2_NAME = "PAGED$: [PAGESWAP]SWAPFILE.SYS"
SWAPFILE2_SIZE = 30000

Note that you must manually edit SYS$MANAGER:SYSTARTUP.COM
to include a SYSGEN command that installs the newly created secondary
file.

You cannot specify both general and explicit information as described in
numbers 2 and 3 above. AUTOGEN issues a warning if conflicting symbol
definitions exist in MODPARAMS.DAT.

If the creation or extension of a file would cause the target disk to become
more that 95% full, AUTOGEN issues a warning and does not perform the
operation.

For more information about AUTOGEN, see Section 11.1 of the VAX/VMS
System Manager's Reference Manual.

2. 7 Primary Page and Swap Files on Disks Other Than the System Disk

2-8

You can have primary page and swap files on disks other than the system
disk.

Page and swap files in SYS$SYSTEM are installed automatically. If no page
and swap files exist in SYS$SYSTEM, a message informs you that the files
were not found. For example, you might receive the following message:

%SYSINIT-I-PAGEFILE.SYS not found - system initialization continuing ...

To install page and swap files on any disk, create the file
SYS$MANAGER:SYP AGSWPFILES.COM. In SYPAGSWPFILES.COM,
specify the MOUNT and SYSGEN INSTALL commands that install page
and swap files. The following example demonstrates some of the commands
you might put in SYPAGSWPFILES.COM:

$ RUN SYS$SYSTEM:SYSGEN
INSTALL DISK_SYS2: [SYSTEM]PAGEFILE1.SYS /PAGEFILE
INSTALL DISK_SYS2: [SYSTEM]SWAPFILE1.SYS /SWAPFILE

Immediately before system overhead processes are created (for example,
OPCOM and JOBCTL), STARTUP.COM searches for and executes
SYPAGSWPFILES.COM.

After SYPAGSWPFILES.COM executes, control returns to STARTUP.COM. If
no page files have been installed, STARTUP.COM returns the following error
message:

%STARTUP-E-NOPAGFIL, no page files have been successfully installed.

Supplemental Information for System Managers

Observe the following restrictions when you use SYPAGSWPFILES.COM:

• In order to use the primary page file for writing crash dumps, the primary
page file must be located on the system disk.

• Disks mounted by SYP AGSWPFILES.COM must not be mounted by other
processors during upgrades where SYSGEN parameter VAXCLUSTER is
set to zero.

2.8 LOCKDIRWT SYSGEN Parameter
Version 4.6 and subsequent versions change the way the Lock Database is
rebuilt when nodes are added or removed from a VAXduster while SYSGEN
parameter LOCKDIRWT is set to zero.

Prior to Version 4.6, setting LOCKDIRWT to zero on a VAXduster node
prevented that node from participating in the lock directory service unless
all member nodes had LOCKDIRWT set to zero. Version 4.6 and subsequent
versions retain the old behavior but include the following new feature: a
node with LOCKDIRWT set to zero now gives other nodes an opportunity
to become resource managers before reacquiring locks during a duster state
transition. This feature tends to move management of shared resources away
from a node that has a zero value for LOCKDIRWT.

A zero value for LOCKDIRWT can be useful when the cluster contains a
relatively low number of high-powered processors with a relatively high
number of low-powered processors, where all processors access the same
shared resources. Setting LOCKDIRWT to zero in this case tends to move
resource management tasks to the larger processors and can reduce memory
use on the smaller processors.

DIGITAL recommends you use the value for LOCKDIRWT that AUTOGEN
assigns.

2.9 Monitor Utility Supports Monitoring of Additional Nodes
The Monitor Utility (MONITOR) now supports monitoring of the maximum
number of nodes allowable in a duster-currently 28.

However, insufficient process quotas of the following types can restrict the
number of nodes you can monitor:

• ASTLM

• FILLM

• JTQUOTA

If necessary, use the Authorize Utility (AUTHORIZE) to increase the values
for these quotas.

An insufficient value for maximum logical links can also restrict the number
of nodes you can monitor. If necessary, use the Network Control Program
(NCP) to increase the value for maximum links.

2-9

2.10

Supplemental Information for System Managers

VAX/VMS System Manager's Reference Manual- Corrections
The sections that follow contain corrections to the VAX/VMS System Manager's
Reference Manual.

2.10.1 Setting Up Queues for Spooled Line Printers
In Section 9.7.12 of the VAX/VMS System Manager's Reference Manual,
"Guidelines for Setting Up Queues for Spooled Line Printers,"
Figures 9-6, 9-7, and 9-8 contain commands that do not conform to the
procedure described in the preceding text.

The preferred method for setting up queues for spooled line printers is
described in the text and not in the figures. This inconsistency will be
eliminated in the next revision of the manual.

2.10.2 Bootstrapping a VAX 8200/8300/8350 from an HSC-Controlled Disk
This note provides information that was omitted from Sections 2.4 and 2.5 of
the VAX/VMS System Manager's Reference Manual.

When you bootstrap your 8200/8300/8350 processor from a local (non
HSC) disk, no default bootstrap command procedure is required. When you
bootstrap from an HSC-controlled disk, modify the CIBOO.CMD command
procedure supplied on the console diskette and rename it DEFBOO.CMD.
When the console diskette is in the console diskette drive and contains a file
named DEFBOO.CMD, the processor uses DEFBOO.CMD to perform either
of the following actions: 1

• Reboot automatically

• Bootstrap the processor when you enter the BOOT command at the
console mode prompt without specifying a device name

Use the following procedure to modify the CIBOO.CMD command procedure
and rename it DEFBOO.CMD:

1 Be sure your console device is connected. If it is not, invoke SYSGEN
and enter the following SYSGEN command to connect it:

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> CONNECT CONSOLE
SYSGEN> EXIT

2 Insert the console diskette into the console drive (CSAl:, the left-hand
diskette drive).

3 Enter the following command to mount the console diskette:

$MOUNT/FOREIGN CSA!:

1 These actions occur assuming that the default boot descriptors in the processor's EEPROM are set to boot
your system. An automatic reboot occurs only if the lower key switch on the system control panel is set to
"Autostart."

2-10

Supplemental Information for System Managers

4 Use the DXCOPY.COM command procedure to copy CIBOO.CMD to a
disk directory. You cannot modify a file directly on the console diskette
because of the way the diskette is formatted. Copy CIBOO.CMD to a
disk directory as follows:

a. Enter the following command to invoke DXCOPY.COM command
procedure:

$ @SYS$UPDATE:DXCOPY

b. Enter Y in response to the following prompt:

Is the system console storage medium mounted (YIN)?: Y

c. Enter Y in response to the following prompt:

Copy from console medium (YIN)?: Y

d. Enter CIBOO.CMD in response to the following prompt:

Name of file to be copied?: CIBOO.CMD
$

e. DXCOPY copies the file to your default directory and exits to DCL
command level.

5 When the DCL prompt appears, use a text editor to edit CIBOO.CMD.
Originally, this file contained the following text:

!CIBOO.CMD :Boot command file to boot a VAX 82001830018350 from an HSC disk.

Note "n", "p" (and "q"), "u", and "r" are single hexadecimal characters

DIG O 20
!DIG 1 n
!DIG 2 p
!DIG 2 OpOq
!DIG 3 u
DIG 4 0
!DIG 5 rOOOOOOO
DIG E 200
LOAD VMB.EXEISTART:200
START 200

CI Port Device Type Code
n = CI adapter's VAXBI node number
Use the HSC controller at CI node p
Use either the HSC controller at CI nodes p and q
u = Disk drive unit number
Boot Block LBN (not used)
r =system root [SYSR ...], Software boot flags
Address of Working Memory+-X200
Load Primary Bootstrap
Start Primary Bootstrap

Edit CIBOO.CMD as follows. All numbers you insert in this file are in
hexadecimal radix.

a. Delete the comment character (!) that appears before the D /G 1
command and replace n with the VAXBI node number of the CI
adapter.

b. If your processor is connected to one HSC controller, delete the
comment character (!) that appears before the first D /G 2 command
and replace p with the HSC controller number. If your processor
is connected to two HSC controllers, delete the comment character
that appears before the second D /G 2 command and replace p with
the VAXBI node number of the first HSC and replace q with the
VAXBI node number of the second HSC. Note that you can delete the
comment character from only one of these commands.

c. Delete the comment character (!) that appears before the D /G 3
command and replace u with the unit number of the HSC disk from
which you will bootstrap the VAX/VMS operating system.

2-11

Supplemental Information for System Managers

d. Delete the comment character (!) that appears before the
D /G 5 command and replace r with the number of the system root
from which you will bootstrap the VAX/VMS operating system. By
default, the VAX/VMS operating system is stored in system root 0.

e. Exit from the text editor.

6 Enter the following command to rename CIBOO.CMD to DEFBOO.CMD.

$ RENAME CIBOO.CMD DEFBOO.CMD

7 Use the DXCOPY.COM command procedure as follows to copy
DEFBOO.CMD to the console diskette:

a. Enter the following command to invoke the DXCOPY.COM command
procedure:

$ ©SYS$UPDATE:DXCOPY

b. Enter Y in response to the following prompt:

Is the system console storage medium mounted (Y/N)?: Y

c. Enter N in response to the following prompt:

Copy from console medium (Y/N)?: N

The negative response tells DXCOPY you want to copy the file from
your default directory to the console storage medium.

d. Enter DEFBOO.CMD in response to the following prompt:

Name of file to be copied?: DEFBOO.CMD
$

DXCOPY copies DEFBOO.CMD to the console volume and exits to
DCL command level.

8 Dismount and remount the console diskette using the following
commands:

$DISMOUNT CSA1:
$ MOUNT CSA1:

You have successfully created a default bootstrap command procedure,
DEFBOO.CMD, on the console diskette.

2.10.3 Alternate, Nonstop, Bootstrap Procedure for a VAX 8200/8300/8350

2-12

The following text adds information to that given in Section 4.2.2 of the
VAX/VMS System Manager's Reference Manual:

You normally use an alternate, nonstop, bootstrap command procedure when
the default bootstrap procedure cannot be accessed because of problems with
the device designated in the default procedure. To bootstrap the system using
an alternate, nonstop procedure, follow these steps:

1 Halt the processor. You halt a VAX 8200 /8300 /8350 system by pressing
CTRL/P.

2 Bootstrap the system, by entering the following command:

>>> B ddnu

2.11

2.12

2.13

Supplemental Information for System Managers

The code dd is the device type, n is the VAXBI node number, and u is
the unit number for the disk on which the alternate bootstrap procedure
resides.

Creating a Command Procedure to Boot Standalone BACKUP from an
Alternate System Root

Modify the text and table found in list item S on page 4-41 of the Version 4.4
Guide to VAX/VMS Software Installation.

On the line that begins with either the command DEPOSIT RS or D/G S,
change the left-most digit of the number following this command to an E.
For example, on a VAX-11/782, change the line that says DEPOSIT RS
4000nnnn, where the n's represent hexadecimal digits, to DEPOSIT RS
EOOOnnnn. On a VAX 8200, change the line that says D/G S Onnnnnnn to
D/G S Ennnnnnn, where the n's represent hexadecimal digits. A different
procedure, which is described in the VAX 8800/8700/8550/8500 Console User's
Guide, is used for the VAX 8800/8700/8SS0/8S30 processors.

Use VMSINSTAL to Install Optional Software Products
The VMSUPDATE command procedure, described in Appendix C of the
Version 4.4 Guide to VAX/VMS Software Installation, should not be used to
install optional software products. Instead, use the VMSINSTAL command
procedure, described in Chapter S of the Guide to VAX/VMS Software
Installation.

VMSUPDATE is not supported on tailored systems, cluster configurations that
share a common system disk, or on the VAX 8600, VAX 86SO, VAX 8800,
VAX 8700, VAX 8SSO, and VAX 8S30 processors.

Using Volume Shadowing on a VAX 8800/8700/8530/8550/Processor
Section 3.3.1 of the VAX 8800/8700/8550/8500 Operations Guide describes
the procedure for modifying the template bootstrap command procedures
BCiaaa.COM, BDAaaa.COM, and UDAaaa.COM (where aaa is BOO, GEN, or
XDT) to bootstrap your processor. If volume shadowing is installed on your
processor, modify the bootstrap command procedures to deposit the values
listed in Table 2-3 in R3.

Table 2-3 Values to Deposit in R3 in the Bootstrap Command
Procedures

Bit
Position Possible Values Meaning

<31 :24> 8016 Shadow set indicator

<23: 16> uu Shadow unit number (DUSuu)

< 15:00> uu Unit number of booting member of shadow set

Modify registers RO through R2 and R4 through RS to contain the values
listed in Table 3-2 of the VAX 8800/8700/8550/8500 Operations Guide. See

2-13

2.14

Supplemental Information for System Managers

the VAX/VMS Volume Shadowing Manual for more information about volume
shadowing.

VAX/VMS Authorize Utility Reference Manual- Corrections and
Additions

2-14

Make the following corrections to the VAX/VMS Authorize Utility Reference
Manual. These corrections will be incorporated in the next revision of the
manual.

• Page AUTH-2 - The summary of AUTHORIZE commands should
include the following qualifiers:

/ ASTLM (for the ADD command)
/GENERATE_P ASSWORD (for the MODIFY command)

• Page AUTH-11 - In Table AUTH-2, the /FLAG=[NO]PWDEXPIRED
function should read /FLAG=[NO]PWD_EXPIRED. Please include the
underscore (-).

• Page AUTH-13 - The /PWDEXPIRED and /PWDLIFETIME qualifiers
should appear as /[NO]PWDEXPIRED and /[NO]PWDLIFETIME,
respectively.

• Page AUTH-14 - In the description of the /UIC qualifier, the
documentation states that the value of the member number must be
in the range of 0-1777776. The correct range is 0-177776.

• Pages AUTH-21, AUTH-37, AUTH-42 - The documentation states that
the rights identifier values must be in the range 32,768 to 268,435. Note
that user-defined identifiers must be in the range 65,536 to 268,435,455.
Identifier values of less than 65,536 are reserved.

• Tables AUTH-2 and AUTH-4 - The recommended values for process
resource limits should read as follows:

Limit Value

ASTLM 24
BIOLM 18
BYTLM 8192
ENOLM 30
PGFLOUOTA 12800
WSDEFAULT 200
WSOUOTA 500
WSEXTENT 1000

2.14.1 Error Messages

Supplemental Information for System Managers

The Authorize Utility has the following error messages that have not
previously been documented:

BADNODFORM, improper node::remoteuser format

Facility: AUTHORIZE, Authorize Utility

Explanation: You specified the format for the remote node and user
incorrectly. The correct format consists of a node name, a pair of colons,
and the user name of the remote user. A node name may consist of 1-6
alphanumeric characters and must contain at least one alphabetic character.
If you use a wildcard character for either the node or user, you must still
include the colons.

User Action: Reenter your command with the correct format.

BADUSR, username does not exist

Facility: AUTHORIZE, Authorize Utility

Explanation: The user name you specified does not exist in the system user
authorization file (SYSUAF.DAT).

User Action: Correct the user name and reenter your command. You can
display the records in the user authorization file by using the AUTHORIZE
command SHOW.

CLIWARNMSG, Warning: /CLITABLES field may need to reflect changes to
/CLI field

Facility: AUTHORIZE, Authorize Utility

Explanation: If you modify the command language interpreter (CLI) field of
a record in the system user authorization file, you may have to modify the
CLITABLES field to reflect the change. If you have set the CLI field to DCL
or MCR, however, the CLITABLES field defaults to the correct value.

User Action: If you have changed the CLI field to a value other than DCL
or MCR, use the AUTHORIZE command MODIFY /CLITABLES to set the
CLITABLES field to the corresponding tables. Refer to the description of the
LOGIN Procedure in the VAX/VMS DCL Dictionary for further information
about specifying CLI tables.

CMDTOOLONG, command line exceeds maximum length

Facility: AUTHORIZE, Authorize Utility

Explanation: The length of your command, after any symbols and logical
names have been expanded, exceeds the maximum allowable length.

User Action: Reenter a shorter form of the command.

EXTRAP ARM, superfluous parameter detected

Facility: AUTHORIZE, Authorize Utility

Explanation: You have specified too many parameters in the command line.
The extra parameter is identified in the message.

User Action: Reenter your command without the excess parameter.

2-15

Supplemental Information for System Managers

2-16

GRANTERR, unable to grant identifier 'id-name' to 'user name'

Facility: AUTHORIZE, Authorize Utility

Explanation: The specified identifier cannot be granted to the specified user.
This message should be accompanied by a second message showing the
specific reason why the identifier could not be granted.

User Action: Correct the condition identified by the second message and
reenter your command.

GRANTMSG, identifier 'id-name' granted to 'user name'

Facility: AUTHORIZE, Authorize Utility

Explanation: The specified general identifier has been granted to the specified
user. The user has access to all of the rights associated with the identifier.

User Action: None.

HELPERR, error finding or outputting HELP information

Facility: AUTHORIZE, Authorize Utility

Explanation: An error occurred trying to access the AUTHORIZE HELP file.

User Action: Check that the AUTHORIZE HELP file-by default named
UAFHLP.HLB-is located in the proper directory and is not protected against
read access.

IDOUTRNG, identifier value is not within legal range

Facility: AUTHORIZE, Authorize Utility

Explanation: The value you specified for an identifier is not within the
permissible range. A general identifier may have an integer value between
32,768 and 268,435,455. A UIC identifier takes a value in standard UIC
format.

User Action: Reenter your command with an identifier value that is within
the permissible range.

INVCMD, invalid command

Facility: AUTHORIZE, Authorize Utility

Explanation: The command you have entered is not a valid AUTHORIZE
command.

User Action: Refer to the VAX/VMS Authorize Utility Reference Manual for
a description of the command you are trying to use and then reenter the
command correctly.

INVUSERNAME, username syntax error

Facility: AUTHORIZE, Authorize Utility

Explanation: The user name you specified is invalid due to incorrect syntax.
If you are adding a new user name to the system user authorization file
with the AUTHORIZE command ADD, the new user name may be 1-12
alphanumeric characters, and it may include underscores.

User Action: Correct the user name and reenter your command.

Supplemental Information for System Managers

INVUSERSPEC, error in user specification

Facility: AUTHORIZE, Authorize Utility

Explanation: Your command included an incorrect user specification. In a
user specification, you can use a numeric UIC format (for example, [007,007)),
an alphanumeric format (for example, [COMPOSERS,HAYDN]), or a user
name (for example, HAYDN). You can use wildcards to specify multiple
users. Refer to the VAX/VMS Authorize Utility Reference Manual for specific
syntax rules for the command you are using.

User Action: Correct the user specification and reenter your command.

NAFADDERR, unable to add record to NETUAF.DAT

Facility: AUTHORIZE, Authorize Utility

Explanation: The record you specified could not be added to the network
user authorization file (NETUAF.DAT). This message should be accompanied
by a VAX RMS message that identifies the specific reason for the error. For
example, this error occurs if you try to add a record authorizing a remote user
to access more than one local account. Each user at a remote node is allowed
access to the files of only one user on the local node.

User Action: If possible, correct the condition identified by the RMS
message and reenter your command. Otherwise, examine the network
user authorization file to determine why the record could not be added. You
can display the contents of the file by using the AUTHORIZE command
SHOW /PROXY. You can write the contents of NETUAF.DAT to a listing file
by using the AUTHORIZE command LIST/PROXY. If you want to delete
a current record from NETUAF.DAT in order to add a new one, use the
AUTHORIZE command REMOVE/PROXY.

NAFAEX, NETUAF.DAT already exists

Facility: AUTHORIZE, Authorize Utility

Explanation: A network user authorization file (NETUAF.DAT) already exists
for the local node.

User Action: If you want to create a new network user authorization file,
either delete or rename the current one (if you have sufficient privilege
to do so). Once the current file has been deleted or renamed, reenter the
AUTHORIZE command CREATE/PROXY. Note that you must have sufficient
privilege to create a new file.

NAFCREERR, unable to create NETUAF.DAT

Facility: AUTHORIZE, Authorize Utility

Explanation: A network user authorization file (NETUAF.DAT) could not be
created. This message should be accompanied by a VAX RMS message that
identifies the specific reason why the file could not be created. For example,
this error occurs if you do not have sufficient privilege to create the file.

User Action: Correct the condition identified by the RMS message and
reenter your command.

2-17

Supplemental Information for System Managers

2-18

NAFDNE, NETUAF.DAT does not exist

Facility: AUTHORIZE, Authorize Utility

Explanation: A network user authorization file (NETUAF.DAT) does not exist
on the local node.

User Action: If you have sufficient privilege, use the AUTHORIZE command
CREATE/PROXY to create a network user authorization file. Then you can
add records to the file by using the AUTHORIZE command ADD /PROXY.

NAFDONEMSG, network authorization file modified

Facility: AUTHORIZE, Authorize Utility

Explanation: The network user authorization file (NETUAF.DAT) has been
modified to reflect the change directed by your command.

User Action: None.

NAFNOMODS, no modifications made to network authorization file

Facility: AUTHORIZE, Authorize Utility

Explanation: No modifications have been made to the network user
authorization file (NETUAF.DAT).

User Action: None.

NAFUAEERR, entry already exists in NETUAF.DAT

Facility: AUTHORIZE, Authorize Utility

Explanation: The record you have tried to add to the network user
authorization file is already in the file; it has not been duplicated.

User Action: None.

NAONAF, unable to open NETUAF.DAT

Facility: AUTHORIZE, Authorize Utility

Explanation: The network user authorization file (NETUAF.DAT) could
not be opened. This message should be accompanied by a VAX RMS
message that identifies the specific reason for the error. Possible reasons
are insufficient privilege, file protection violation, or location of the file in the
wrong directory.

User Action: If you do not have sufficient privilege to open NETUAF.DAT,
there is nothing you can do except to ask a privileged user, such as your
system manager, to access the file for you. If you do have sufficient privilege,
make sure the file is located in the proper directory and is not protected
against read or write access. Then reenter your command.

NETLSTMSG, listing file NETUAF.LIS complete

Facility: AUTHORIZE, Authorize Utility

Explanation: The contents of the network user authorization file
(NETUAF.DAT) have been written to the listing file named NETUAF.LIS.

User Action: None.

Supplemental Information for System Managers

NOARG, missing argument for option

Facility: AUTHORIZE, Authorize Utility

Explanation: You specified a qualifier without a required argument.

User Action: Reenter your command and include the required argument.

NODTOOBIG, node name too long

Facility: AUTHORIZE, Authorize Utility

Explanation: VAX/VMS node names cannot exceed six characters. A node
name may consist of 1-6 alphanumeric characters; at least one character must
be alphabetic.

User Action: Check the node name and reenter your command with the
correct name.

NOGRPWILD, wildcard group numbers not allowed

Facility: AUTHORIZE, Authorize Utility

Explanation: Wildcard characters are not allowed in the UIC group number
field for the command you entered.

User Action: Reenter your command with a specific UIC group number
instead of a wildcard character.

NOIDNAM, no ID name was specified

Facility: AUTHORIZE, Authorize Utility

Explanation: The command you entered requires that you include an
identifier name.

User Action: Check the VAX/VMS Authorize Utility Reference Manual for the
syntax rules regarding identifier names for the command you want to use.
Then reenter the command including an identifier name.

NOTIDFMT, id name parameter does not translate to ID format

Facility: AUTHORIZE, Authorize Utility

Explanation: The identifier name that you specified does not translate to
a corresponding value in general identifier format. Identifier name values
translate to either general identifier format or UIC format. General identifier
names can be 1 to 31 alphanumeric characters and are stored with an integer
value in the range of 32,768 to 268,435,455. General identifiers are created
by the AUTHORIZE command ADD /IDENTIFIER.

When you use the AUTHORIZE command GRANT /IDENTIFIER, the first
identifier you specify must be in general identifier format. In other words,
you cannot grant a UIC format identifier to another UIC format identifier.

User Action: Determine why the identifier name does not translate. You can
display an identifier name and its corresponding value with the AUTHORIZE
command SHOW /IDENTIFIER. To change the value of an identifier name,
use the AUTHORIZE command MODIFY /IDENTIFIER.

2-19

Supplemental Information for System Managers

2-20

NOTUICFMT, user id parameter does not translate to UIC format

Facility: AUTHORIZE, Authorize Utility

Explanation: The user specification in your command does not translate to a
UIC identifier (an identifier in UIC format).

User Action: Determine why the user specification does not translate. You
can display user names and their corresponding UIC values by using the
AUTHORIZE command SHOW.

NOUSERNAME, missing usemame

Facility: AUTHORIZE, Authorize Utility

Explanation: The command you are using requires a user name. A user
name is the member name from the alphanumeric form of a user's UIC (user
identification code).

User Action: Reenter your command and include a user name.

NOUSERSPEC, missing user specification

Facility: AUTHORIZE, Authorize Utility

Explanation: The command you are using requires a user specification. A
user specification can be a user name (for example, CAESAR), or a user
identification code (for example, [100,44]).

User Action: Reenter your command and include a user specification.

PREMMSG, record removed from NETUAF.DAT

Facility: AUTHORIZE, Authorize Utility

Explanation: The record specifed in the AUTHORIZE command
REMOVE/PROXY has been removed from the network user authorization
file.

User Action: None.

PWDNCH, password not changed

Facility: AUTHORIZE, Authorize Utility

Explanation: An error occurred using the random password generator to
generate an account password.

User Action: None.

PWDNOL, password not on list; try again

Facility: AUTHORIZE, Authorize Utility

Explanation: The password you specified was not one of those listed.

User Action: Select another password and try again.

Supplemental Information for System Managers

RDBADDERR, unable to add 'id-name' to RIGHTSLIST.DAT

Facility: AUTHORIZE, Authorize Utility

Explanation: The identifier name you specified could not be added to the
rights database file (RIGHTSLIST.DAT). This message should be accompanied
by a VAX RMS message that identifies the specific reason for the error. Most
likely, the identifier name already exists in the rights database file. Duplicate
identifier names are not allowed in the rights database file.

User Action: Correct the condition identified by the RMS message and
reenter your command. If you want to change the name of an identifier in the
rights database file, use the AUTHORIZE command MODIFY/IDENTIFIER.

RDBADDERRU, unable to add 'id-name' value: '[UIC]' to RIGHTSLIST.DAT

Facility: AUTHORIZE, Authorize Utility

Explanation: The specified identifier name and its corresponding user
identification code (UIC) could not be added to the rights database file
(RIGHTSLIST.DAT). This message should be accompanied by a VAX RMS
message that identifies the specific reason for the error. Most likely, the
identifier name already exists in the rights database file. Duplicate identifier
names are not allowed in the rights database file.

This error also occurs if you copy a record in the system user authorization
file (SYSUAF.DAT) without specifying a new UIC value for the copy. By
default, an identifier name and corresponding UIC value for the new record
are written to the rights database file (RIGHTSLIST.DAT); if the UIC has not
been changed, it conflicts with the UIC of the original record, and a 'duplicate
identifier' error results.

User Action: Correct the condition identified by the RMS message and
reenter your command. If you want to change the UIC value of an identifier
in the rights database file, use the /VALUE qualifier with the AUTHORIZE
command MODIFY /IDENTIFIER. If you copy a record in the system user
authorization file and you want an identifier for the new record to be added
to the rights database file, use the /UIC qualifier with the AUTHORIZE
command COPY.

RDBADDERRV, unable to add 'id-name' value: 'hex code' to RIGHTSLIST.DAT

Facility: AUTHORIZE, Authorize Utility

Explanation: The specified identifier name and its corresponding integer
value (expressed as an 8-bit hexadecimal code) could not be added to the
rights database file (RIGHTSLIST.DAT). This message should be accompanied
by a VAX RMS message that identifies the specific reason for the error. Most
likely, the identifier name or value already exists in the rights database file.
Duplicate identifier names or values are not allowed in the rights database
file.

User Action: Correct the condition identified by the RMS message and
reenter your command. If you want to change the value of an identifier in
the rights database file, use the /VALUE qualifier with the AUTHORIZE
command MODIFY /IDENTIFIER.

2-21

Supplemental Information for System Managers

2-22

RDBADDMSG, identifier 'id-name' value: 'hex code' added to RIGHTSLIST.DAT

Facility: AUTHORIZE, Authorize Utility

Explanation: A general identifier with the specified name and value has been
added to the rights database file (RIGHTSLIST.DAT).

User Action: None.

RDBADDMSGU, identifier 'id-name' value: '[UIC]' added to RIGHTSLIST.DAT

Facility: AUTHORIZE, Authorize Utility

Explanation: A UIC identifier with the specified name and value has been
added to the rights database file (RIGHTSLIST.DAT).

User Action: None.

RDBCREERR, unable to create RIGHTSLIST.DAT

Facility: AUTHORIZE, Authorize Utility

Explanation: The rights database file, named RIGHTSLIST.DAT, could not
be created. This message should be accompanied by a VAX RMS message
that identifies the specific reason for the error. For example, you cannot
create another rights database file if one already exists, unless you first delete
or rename the original file.

User Action: Correct the condition identified by the RMS message and
reenter your command. If you want to create a new rights database file,
either delete or rename the current one (if you have sufficient privilege to
do so). Once the current file has been deleted or renamed, reenter your
command.

RDBDONEMSG, rights database modified

Facility: AUTHORIZE, Authorize Utility

Explanation: The rights database file (RIGHTSLIST.DAT) has been modified.

User Action: None.

RDBMDFYERR, unable to modify identifier 'id-name'

Facility: AUTHORIZE, Authorize Utility

Explanation: The specified identifier could not be modified. This message
should be accompanied by a VAX RMS message that identifies the specific
reason for the error.

User Action: Correct the condition identified by the RMS message and
reenter your command.

RDBMDFYERRU, unable to modify identifier '[UIC]'

Facility: AUTHORIZE, Authorize Utility

Explanation: The specified UIC identifier could not be modified. This
message should be accompanied by a VAX RMS message that identifies
the specific reason for the error.

User Action: Correct the condition identified by the RMS message and
reenter your command.

Supplemental Information for System Managers

RDBMDFYMSG, identifier 'id-name' modified

Facility: AUTHORIZE, Authorize Utility

Explanation: The record for the specified identifier in the rights database file
has been modified according to the AUTHORIZE command
MODIFY /IDENTIFIER.

User Action: None.

RDBNOMODS, no modifications made to rights database

Facility: AUTHORIZE, Authorize Utility

Explanation: The rights database file (RIGHTSLIST.DAT) was not modified.

User Action: None.

RDBREMERR, unable to remove 'id-name' from RIGHTSLIST.DAT

Facility: AUTHORIZE, Authorize Utility

Explanation: The specified identifier could not be removed from the rights
database file (RIGHTSLIST.DAT). This message should be accompanied by a
VAX RMS message that identifies the specific reason for the error.

User Action: Correct the condition identified by the RMS message and
reenter your command.

RDBREMMSG, identifier 'id-name' value: 'hex code' removed from
RIGHTSLIST.DAT

Facility: AUTHORIZE, Authorize Utility

Explanation: The general identifier with the specified name and hexadecimal
value has been removed from the rights database file (RIGHTSLIST.DAT).

User Action: None.

RDBREMMSGU, identifier 'id-name' value: '[UIC]' removed from
RIGHTSLIST.DAT

Facility: AUTHORIZE, Authorize Utility

Explanation: The UIC identifier with the specified name and user
identification code has been removed from the rights database file
(RIGHTSLIST.DAT).

User Action: None.

REVOKEERR, unable to revoke identifier 'id-name' from 'user name'

Facility: AUTHORIZE, Authorize Utility

Explanation: The specified identifier could not be revoked from the specified
user.

User Action: Make sure that the user has been granted the identifier you
are trying to revoke. Use the AUTHORIZE commands SHOW /IDENTIFIER
/FULL or LIST /IDENTIFIER/FULL to display an identifier and the users who
hold it.

2-23

Supplemental Information for System Managers

2-24

REVOKEMSG, identifier 'id-name' revoked from 'user name'

Facility: AUTHORIZE, Authorize Utility

Explanation: The specified identifier has been revoked from the specified
user. The user no longer has the rights associated with the identifier.

User Action: None.

RLSTMSG, listing file RIGHTSLIST.LIS complete

Facility: AUTHORIZE, Authorize Utility

Explanation: The contents of the rights database file (RIGHTSLIST.DAT)
have been written to the listing file named RIGHTSLIST.LIS.

User Action: None.

SHOWERR, unable to complete show command

Facility: AUTHORIZE, Authorize Utility

Explanation: The AUTHORIZE command SHOW could not be completed.
This message should be accompanied by a VAX RMS message that identifies
the specific reason for the error.

User Action: Correct the condition identified by the RMS message and
reenter your command.

SYSMSG2, Error code 'hex code' not found

Facility: AUTHORIZE, Authorize Utility

Explanation: The $GETMSG system service could not find a corresponding
message for the specified error code, which probably indicates that the code
is incorrect. Since an incorrect error code obviously should not be generated,
this message probably indicates an internal software error.

User Action: Submit a Software Performance Report (SPR) that describes the
conditions leading to the error.

WLDNOTALWD, wild card user specs not allowed

Facility: AUTHORIZE, Authorize Utility

Explanation: Wildcard characters are not allowed in the user specification for
the command you are using.

User Action: Reenter your command without using wildcard characters.

ZZPRACREN, proxies to 'user name' renamed

Facility: AUTHORIZE, Authorize Utility

Explanation: Proxy access records for the specified user have been renamed
to the new user name. When a user name in the system user authorization
file (SYSUAF.DAT) is renamed, any records in the network authorization file
(NETUAF.DAT) for the original user name are automatically renamed to the
new user name.

User Action: None.

Supplemental Information for System Managers

ZZSYSPWD, system password modified

Facility: AUTHORIZE, Authorize Utility

Explanation: The system password has been changed to the password
directed by your command.

User Action: None.

2.14.2 New /ATTRIBUTES Keyword
The Authorize Utility has a new keyword for the/ ATTRIBUTES qualifier.
You can specify the [NO]DYNAMIC keyword with the following commands:

ADD /IDENTIFIER/ ATTRIBUTES
GRANT /IDENTIFIER/ ATTRIBUTES
MODIFY /IDENTIFIER/ ATTRIBUTES

Specifying the [NO]DYNAMIC keyword indicates whether unprivileged
holders of the identifiers may add or remove them from the process rights
list. The default is NODYNAMIC.

This information will be added to the VAX/VMS Authorize Utility Reference
Manual in a future release.

2.14.3 Enhanced /ACCESS Qualifier
The syntax string for the /ACCESS qualifier to the MODIFY command
has been enhanced to allow more readable, flexible usage. The following
commands produce identical results:

UAF> MODIFY SAM /ACCESS=(primary, 2-3, 5, secondary, 8-12)
UAF> MODIFY SAM /ACCESS="Primary: 2--3, E, Secondary: 8-12"
UAF> MODIFY SAM /ACCESS=(p,2,s,8,p,3,s,9,p 5.s,10-12)
UAF> MODIFY SAM /ACCESS="2-3 SEC 8-12 PRIM

2.14.4 /DEFPRIVILEGES and /PRIVILEGES Qualifiers
You can specify the keyword [NO]ALL for the /DEFPRIVILEGES and
/PRIVILEGES qualifiers to disable/ enable all user privileges.

2.14.5 Secondary Passwords - Change
Beginning with Version 4.2, users cannot initially give themselves secondary
passwords. The initial setting of the secondary password must be done by
the system manager using the Authorize Utility. The reason for this change is
to protect careless users who leave their terminal sessions unattended.

In earlier versions of VAX/VMS, anyone could render an account useless by
simply adding a secondary password that the account's owner did not know.
If a user now tries to initiate a secondary password, the system will respond
as follows:

$ SET PASSWORD/SECONDARY
%SET-F-PWD2NOTSET, system manager must initially set secondary passwords

2-25

Supplemental Information for System Managers

2.14.6 New AUTOLOGIN Flag

2.15

A flag named AUTOLOGIN has been added to the flags field in the user
authorization file (SYSUAF). The flag is set by specifying the qualifier
/FLAGS=AUTOLOGIN to one of the following Authorize Utility commands:
ADD, MODIFY, or COPY. When set, it makes the account available only by
using the autologin mechanism. The following forms of access are disabled:

• Login by any terminal, LAT connection, or SET HOST involving
presentation of username and password

• Access by DECnet task using explicit access control

The following forms of access remain permitted:

• Interactive login by the autologin mechanism

• Batch jobs

• Proxy access by DECnet task

Guide to Multiprocessing on VAX/VMS- Setting Up a VAX-11 /782
This section supplements the Guide to Multiprocessing on VAX/VMS and
provides instructions for building multiprocessing console diskettes on a
VAX-11/782 system. The information in this section assumes the following:

• The VAX-11/782 hardware has already been installed and configured.

• The VAX/VMS operating system has been installed as described in the
installation booklet packaged with the media (for example, Installing
VAX/VMS on a VAX-11/780 From Magnetic Tape).

Note that you should keep a record of the following information regarding
memory configuration:

• The number and type of memory controllers

• The transmit request (TR) levels at which the controllers are configured

• The amount of memory on each controller

Note: The command procedure BOOTBLDR.COM does not recognize MS780-H
memory. If your system configuration includes an MS780-H, contact your
DIGIT AL Customer Support Center or submit an SPR.

2.15.1 Building Multiprocessing Console Diskettes

2-26

Each processor in the VAX-11/782 system must have its own console
diskette. Multiprocessing console diskettes allow for the booting of the
VAX-11/782 attached processor system by means of several boot command
procedures. These bootstrap command procedures cause MA780 shared
memory rather than local memory to be used as main memory, and they set
the memory configuration registers to ensure that MA780 shared memory is
configured at the low physical addresses (beginning at 0) and local memory
at the higher addresses.

2.15.1.1

Supplemental Information for System Managers

In addition, each multiprocessing console diskette contains the "reset
memory" command procedure RMEM.COM, which is specific to the memory
configuration of the processor. The RMEM.COM procedure reconfigures
local memory to start at physical address 0 (zero) and MA780 shared
memory to start at adjacent higher physical addresses. Thus, after executing
RMEM.COM, you can boot the VAX-11/782 system as a single-processor
VAX-11/780 system by using a standard VAX-11/780 console diskette
(providing you have sufficient local memory on the system).

To build multiprocessing console diskettes, you execute the interactive
command procedure SYS$UPDATE:BOOTBLDR.COM. This command
procedure first creates a new console diskette for the primary processor
and then one for the attached processor. The procedure executes interactively
and prompts you for information about the memory configuration of the
system.

The sections that follow describe how to obtain information about the
memory configuration of the system and how to execute BOOTBLDR.COM.

Determining the Memory Configuration
In order to run BOOTBLDR.COM, you must determine certain information
about the configuration of your system. For each memory controller on the
system, you need to know the following:

• Its type (MS780-A, MS780-C, MS780-E, or MA780)

• The transmit request (TR) level at which it is configured

• The amount of memory it holds

In addition, you need to know the TR level of the first UNIBUS and
MASSBUS adapter on the system (that is, the UBA and the MBA with
the lowest TR number). You need the information regarding MS780-x
memory and MA780 memory for both the primary and attached processors;
information regarding UNIBUS and MASS BUS adapters is needed only for
the primary processor. (Note that not all VAX 11/782 systems are configured
with a MASSBUS adapter.)

You can obtain the necessary information from your DIGITAL Field Service
Representative or by following the procedure in this section. If you already
know the memory configuration of your system, proceed to Section 2.15.3.

This section describes how to obtain this information, first for the primary
processor and then for the attached processor. The procedure is the same in
both cases, with the following exceptions:

• For the primary processor, perform the procedure at the primary
processor's console terminal; for the attached processor, at the attached
processor's console terminal.

• You need to determine the TR level and memory amount of each MA780
controller only once (for the primary processor), since an MA780 memory
controller must be configured at the same TR level on both processors.
Note, however, that obtaining this information twice (for both processors)
allows you to check whether MA780 memory has been configured
correctly (is at the same TR level) on both processors.

2-27

Supplemental Information for System Managers

You can determine the memory configuration of each processor by examining
the configuration registers for TR levels 1 through 15. Memory controllers
can be configured only at TR levels 1 through 6; UNIBUS and MASSBUS
adapters can be configured at any TR level (1 through 15). TR level 0 is
reserved for the CPU and is not of interest to BOOTBLDR.COM.

Table 2-4 shows the physical addresses for the configuration registers at each
TR level. Table 2-5 shows the codes for each type of adapter.

Table 2-4 Configuration Register Physical Addresses

MA 780 Port Invalidation
Transmit Request Configuration Register (CR) Physical Configuration Register (PICR)
(TR) Level Address Physical Address

1 20002000 2000200C

2 20004000 2000400C

3 20006000 2000600C

4 20008000 2000800C

5 2000AOOO 2000AOOC

6 2000COOO 2000COOC

7 2000EOOO

8 20010000

9 20012000

10 20014000

11 20016000

12 20018000

13 2001AOOO

14 2001COOO

15 2001EOOO

Table 2-5 Adapter Type Codes

Adapter Scale
Value Type Factor

08,09 MS780-A 64KB

10.11 MS780-C 64KB

20 MBA (MASSBUS n/a
adapter)

28-2B UBA (UNIBUS n/a
adapter)

40-43 MA780 256KB

68-6A MS780-E 1024KB

70-74 MS780-H n/a

Other not of interest to
BOOTBLDR.COM

2-28

Supplemental Information for System Managers

To determine the memory configuration on your system, perform the
following steps:

1 Put the console terminal into console mode by pressing CTRL/P.

2 Enter the console command HALT at the console-mode prompt(> > >)
to halt the processor.

3 Use the console command EXAMINE to read the appropriate
configuration registers for each TR level (Table 2-4 shows the TR levels
and their corresponding registers). For example, the following command
reads the configuration register at TR level 1 (TRI):

>»EXAMINE 20002000
p 20002000 00002610

If the specified TR level has no adapter at all, you will see a display like
the following, where n represents a hexadecimal digit:

»>EXAMINE 2000EOOO
? MIC-ERR ON FUNCTION
(nn)nnnnnnnn (nn)nnnnnnnn (nn)nnnnnnnn
(nn)nnnnnnnn (nn)nnnnnnnn (nn)nnnnnnnn
(nn)nnnnnnnn (nn)nnnnnnnn (nn)nnnnnnnn

The EXAMINE command in this example attempts to read the
configuration register for TR level 7. Because there is no adapter at
TR 7, the microcode returns an error after trying to read the nonexistent
CR.

4 Using Table 2-5 for reference, interpret the displayed value to determine
the type of adaptor connected to the designated TR level. To do
this, extract the two rightmost digits from the configuration register
(CR) display and match them with an entry listed under "Value" in
the table. (Note that the table only shows the values of interest to
BOOTBLDR.COM.)

For example, the CR value displayed by the EXAMINE command in
step 3 is 00002610. The two rightmost digits are 10. According to
Table 2-5, the value 10 designates an MS780-C memory controller
containing 64-kilobyte memory boards.

5 Depending upon the type of adapter (MS780, MA780, UNIBUS, or
MASSBUS), perform the following steps:

MS780 memory (all types except MS780-H)

a. Extract the fifth and sixth (from the left) digits from the CR value.
(In the example shown in step 3, these digits are 26.)

b. Convert this number from hexadecimal to decimal.

c. Divide the converted number by 2, discarding the remainder, and
add 1 to the result.

d. Multiply the result by the scale factor (shown in Table 2-5) to
determine the total amount of memory.

e. Record the TR number, memory type, and the amount of memory
for later use.

2-29

Supplemental Information for System Managers

2-30

Note that the BOOTBLDR.COM procedure does not recognize
MS780-H memory. If your configuration includes this type of
memory, contact your DIGITAL Customer Support Center or submit
an SPR.

MA780 memory

a. Examine the contents of the MA780 Port Invalidation
Configuration Register (PICR).

b. Extract the fourth digit from the left and add 1 to that value.
(There is no need to convert to decimal, as the value is never
greater than 7.)

c. Multiply the result by the scale factor (shown in Table 2-5) to
determine the total amount of memory.

d. Record the TR number, memory type, and the amount of memory
for later use.

UNIBUS or MASSBUS adapters (UBA or MBA)

Make note of the TR number of the first (lowest TR number) of each
type.

A memory controller can be configured only at TR levels 1 through
6. However, a UBA or MBA can be configured at any TR level from 1
through 15. Therefore, you should examine the locations that correspond
to TR levels 7 through 15 to determine whether a UBA or MBA is
configured at any of them. If the two rightmost digits of the displayed
value are in the range 28 through 2B, a UBA is configured at the TR
level corresponding to the examined address. If the two rightmost digits
of the displayed value are 20, an MBA is configured at the TR level
corresponding to the examined address.

Note that, if the rightmost two digits of the value displayed by any
EXAMINE command are not in the ranges shown in Table 2-5, the TR
level corresponding to the examined address does not have a memory
controller, UBA, or MBA. In this case, whatever is configured at that
particular TR level is not of concern, and you need not further interpret
the displayed value. Further, if a microcode error results when you
examine any of the addresses, simply assume that a device is not
configured at the TR level corresponding to the examined address.

6 Once you have completed the preceding steps, you have determined
the memory configuration for the primary processor. To determine the
memory configuration of the attached processor, repeat steps 1 through 4
at the attached processor's console terminal. That is, put the terminal in
console mode, enter the EXAMINE commands for TR levels 1 through 6,
and interpret the displayed values.

Again, you need not obtain information about MA780 memory a second
time, since information about MA780 memory is identical for both the
primary and attached processors. Thus, you need not examine one of the
six addresses if an examination of that address at the primary processor's
console terminal revealed an MA780 memory controller. However, it
might be useful to examine all addresses in order to verify that your
system is configured properly.

2.15.1.2

Supplemental Information for System Managers

Once you have completed steps 1 through 5, you have determined the
memory configuration of the system. You have all the information needed to
execute BOOTBLDR.COM. Proceed to the next section.

Executing BOOTBLDR.COM
BOOTBLDR.COM is an interactive command procedure that builds console
diskettes for the primary and attached processors. You must execute
BOOTBLDR.COM when you initially set up your VAX-11/782 system and
whenever you change its memory configuration. The multiprocessing console
diskettes created by BOOTBLDR.COM can be used only in a system with the
same memory configuration as the memory configuration of that system for
which they were created.

BOOTBLDR.COM requests that you enter information and gives you
instructions about what to do next. As it executes, it displays messages
that indicate what is taking place.

This section discusses those parts of the command procedure over which you
have control. That is, it discusses how to respond to requests for information.
If you want more information, you can read the command procedure itself by
entering the following command at the console terminal:

$ TYPE SYS$UPDATE:BOOTBLDR COM

Note: The console diskettes you are creating initialize the starting physical
addresses of all memory on the system. If you enter incorrect memory
amounts when executing BOOTBLDR.COM, these starting physical
addresses will be incorrect. A machine check results if VAX/VMS
references an incorrect physical address.

The following steps describe how to use BOOTBLDR.COM:

1 Enter the following command to invoke the procedure:

$ ~SYS$UPDATE:BOOTBLDR

The procedure prompts as follows:

Enter memory type (MA780, MS780C, MS780E or <RETURN> to end):

2 Enter the name of the first memory controller configured on the primary
processor. For example, enter MS780E if you have an MS780E memory
controller configured on the primary processor. Do not abbreviate or add
suffixes to your response; for example, do not abbreviate MS780E as MS.

There are no defaults; do not press RETURN until you have entered all
the necessary information (the procedure continues to prompt for memory
type until you press RETURN).

The procedure then prompts as follows:

Enter TR level (1 through 6):

3 Enter the number of the TR level at which the memory controller (MS780
or MA780) you entered in response to the previous prompt is configured.
Enter only a number. Note that, if you simply pressed the RETURN key
in response to the previous question, this prompt does not appear.

The procedure then prompts as follows:

Enter amount of memory for this controller in .25 megabyte
increments (for example, for 512 kilobytes, enter .5):

2-31

Supplemental Information for System Managers

2-32

4 Enter the amount of memory configured at this TR level. Enter only a
number; that is, do not enter a suffix such as Mbytes or megabytes. Note
that memory must be present in increments of 0.25 megabytes.

The procedure repeats this sequence of requests until you press RETURN
(and nothing else) in response to the first request. You should press
RETURN after you have named all memory controllers connected to the
primary processor.

After you respond to a prompt by pressing RETURN, the procedure
displays the following message:

Would you like the bootstrap command files to boot the system using
local (MS780A, MS780C, or MS780E) memory as well as shared (MA780)
memory <YES or [NO]>:

5 Enter YES and press RETURN. The procedure responds with the
following information and prompt:

The UNIBUS Adapter (UBA) is assumed to be at TR level x.
Enter the TR level of the UBA (Enter <RETURN> to default):

The letter x represents a number from 1 to 15. BOOTBLDR.COM derives
the number represented by the letter x by adding 1 to the number of the
highest TR level at which an MA780 memory controller is configured.
BOOTBLDR.COM uses the TR level of the UBA in the creation of boot
command procedures (such as DMOBOO.CMD) for UNIBUS devices (such
as RK06 and RK07 disk drives).

If a UBA is configured at the TR level displayed in the preceding message,
simply press RETURN; do not enter a number. On the other hand, if a
UBA is not configured at the TR level displayed in the preceding message,
enter the TR level at which the UBA is configured; enter only a number
and then press RETURN.

Note that a system can have more than one UBA and that
BOOTBLDR.COM can create boot command procedures for use on
only one UBA. In a system with more than one UBA, you must select the
UBA for which you want boot command procedures created. In this way,
boot command procedures for devices on that UBA (but not for devices
on the other UBA) are created.

6 The procedure continues with a similar prompt for the MASSBUS adapter:

The Massbus Adapter (MBA) is assumed to be at TR level x.
Enter the TR level of the MBA (Enter <RETURN> to default):

If an MBA is configured at the TR level displayed in the preceding
message, press RETURN and do not enter a number. If an MBA is not
configured at the TR level displayed in the preceding message, enter the
TR level at which the MBA is configured; enter only a number and then
press RETURN.

The procedure continues by prompting as follows:

Enter the name of the default boot command procedure (DEFBOO.CMD)
to be used when booting the system. (Default is xxnBOO.CMD):

VAX/VMS supplies a number of default boot command procedures to
enable you to boot the system from various devices. In general, the file
name of the default boot command procedure you should choose has
as its first three characters the device name of the device on which you
expect the system disk to reside; the remaining characters in the file name

Supplemental Information for System Managers

are BOO.CMD. Respond to the request by entering the file name (for
example, DBOBOO.CMD).

7 Next, the procedure asks for information about the memory configuration
for the attached processor. Before prompting you for the information,
BOOTBLDR.COM reminds you that MA780 memory must be identical
on both processors. For this reason, the procedure does not prompt for
the TR levels at which MA780 memory is configured on the attached
processor. You have already provided the necessary information about
MA780 memory.

The procedure then mentions that local (MS780A, MS780C, or MS780E)
memory on the attached processor may be different from local memory
on the primary processor. That is, MS780 memory on the attached
processor may be configured at different TR levels; further, there may be
more or less MS780 memory on the attached processor.

The procedure then prompts as follows:

Enter memory type (MA780, MS780C, MS780E or <RETURN> to end):

8 Enter the name of the first memory controller configured on the attached
processor.

The procedure then prompts as follows:

Enter TR level (1 through 6):

9 Enter the number of the TR level at which the memory controller (MS780
or MA780) you entered in response to the previous prompt is configured.

The procedure then prompts as follows:

Enter amount of memory for this controller in .25 megabyte
increments (for example, for 512 kilobytes, enter .5):

1 0 Enter the amount of memory configured at this TR level.

The procedure repeats this sequence of requests until you press RETURN
(and nothing else) in response to the first request. You should press
RETURN only after you have named all memory controllers connected to
the attached processor.

11 After you respond to a prompt by pressing RETURN, the procedure
prompts you for the name of the diskette drive you want to use. Enter
the drive name as in the following example. BOOTBLDR.COM then
instructs you to insert the original diskette in the drive and asks whether
you are ready to continue.

Enter the name of the floppy disk drive you want to use: CSA1
Insert original 11/780 console floppy in CSA1:.
Ready to continue? (YES or NO): YES
Copying console floppy to temporary directory.
Copying VMB.EXE from SYS$SYSTEM.
11/782 requires a V3 or later VMB in order to use MA780 memory.

12 Next, BOOTBLDR.COM instructs you to remove the original diskette and
to place a scratch volume in the drive.

Please remove original floppy from CSA1:
Creating floppy for primary processor.
Place a scratch floppy in CSA1:.
WARNING -- CSA1: will be initialized.

2-33

Supplemental Information for System Managers

After warning you that the volume will be initialized, the procedure asks
whether you are ready to continue. Enter YES (assuming you have placed
a scratch diskette in the drive as instructed). BOOTBLDR.COM proceeds
as follows:

Ready to continue? (YES or NO) : YES
Note: Console media must not contain any bad blocks.
Analyzing CSA1: for defective blocks, please stand by ...
%MOUNT-I-MOUNTED ...
Copying unmodified files to CSA1:.
Creating multiprocessor bootstrap command procedures.
Primary processor console floppy completed.
Creating floppy for attached processor.
Place a scratch floppy in CSA1:.
WARNING -- CSA1: will be initialized.
Ready to continue? (YES or NO):

If BOOTBLDR.COM finds any bad blocks, it will not mount the volume.
Instead, it asks you to place another scratch volume in the drive.

13 Remove the first scratch volume and place another scratch volume in the
drive. Enter YES to continue; BOOTBLDR.COM proceeds as follows and
completes the build.

Ready to continue? (YES or NO) : YES
Note: Console media must not contain any bad blocks.
Analyzing CSA1: for defective blocks, please stand by ...
%MOUNT-I-MOUNTED ...
Copying unmodified files to CSA1:.
Creating multiprocessor bootstrap command procedures.
Attached processor console floppy completed.

If BOOTBLDR.COM finds any bad blocks, it does not mount the volume.
Instead, it asks you to place another scratch volume in the drive.

You now have multiprocessing console diskettes for the primary and attached
processors. Be sure to label them correctly-ATTACHED for the attached
processor's console diskette, PRIMARY for the primary processor's console
diskette. They are not interchangeable.

You should also indicate on the label the machine for which the
multiprocessing console diskettes are intended. These diskettes can be
used only in a VAX-11/782 system whose memory configuration is identical
to the memory configuration you described when you created the diskettes
using BOOTBLDR.COM. These diskettes cannot be used in a single-processor
VAX-11/780 system or in a VAX-11/782 system with a different memory
configuration.

2.15.2 Shutting Down the System

2-34

After you have created console diskettes for the primary and attached
processors, shut down the system by entering the following command:

$ @SYS$MANAGER:SHUTDOWN

This command invokes the system shutdown command procedure, which
shuts down the system in an orderly fashion.

Ensure that both processors are halted and that the console-mode prompt
(> > >) appears on both console terminals.

Supplemental Information for System Managers

2.15.3 Booting the VAX-11 /782 System
With the system shut down and both processors halted, boot the system in
the following manner:

· 1 Insert the primary processor's console diskette in the primary processor's
console diskette drive.

2 Insert the attached processor's console diskette in the attached processor's
console diskette drive.

3 Enter the BOOT command on the primary processor's console terminal.

4 Log in using the SYSTEM account.

5 Enter the DCL command START/CPU on the primary processor's console
terminal.

6 Enter the BOOT command on the attached processor's console terminal.

The VAX/VMS operating system is now running on the VAX-11/782 system.
You should now follow the procedure described in Section 2.15.4 for editing
SYSTARTUP.COM.

2.15.4 Editing SYSTARTUP.COM

2.16

When the VAX/VMS operating system is running on the VAX-11/782
system, you should edit the site-specific startup command procedure
SYS$MANAGER:SYSTARTUP.COM to allow automatic restart of the attached
processor following a system shutdown.

To accomplish this, edit the command procedure
SYS$MANAGER:SYSTARTUP.COM to include the following commands:

$ START/CPU
$WRITE SYS$0UTPUT "You can boot the attached processor now."

On a cold start, you can boot the attached processor when the message "You
can boot the attached processor now" appears on the primary processor's
console terminal. To boot the attached processor, you can enter the BOOT
command at the attached processor's console terminal, or you can press the
BOOT button on the attached processor's console panel.

VAX/VMS Verify Utility Reference Manual- Correction
On page VER-7, the example should read /READ_CHECK, not
/[NO]READ_CHECK. This correction will be incorporated in the next
revision of the manual.

2-35

2.17

2.18

Supplemental Information for System Managers

VAX/VMS Developer's Guide to VMSINSTAL - Correction
The VMSINSTAL CHECK_NET_UTILIZATION callback documented in
Section 5.2 of the VAX/VMS Developer's Guide to VMSINSTAL (a new optional
manual) is described as follows:

This callback determines whether the net number of free blocks on the
VMI$ROOT device is sufficient to successfully complete the installation.

The description should state "peak number" rather than "net number" of
free blocks. This correction will be incorporated into the manual in a future
revision.

VAX/VMS Install Utility Reference Manual- Additions and Corrections
This section describes information not included in the Install Utility
documentation.

2.18.1 New Method of Invoking INSTALL
On page INS-1, the format for invoking INSTALL is given as:

RUN SYS$SYSTEM:INST ALL

This command line format became obsolete with Version 4.0, when the
foreign command format was implemented. To establish the INSTALL
command as the default for your site, you must define the global symbol
INSTALL in your SYLOGIN.COM file as follows:

$ INSTALL == 11 $INSTALL/COMMAND_MODE 11

Once this symbol is defined, you can invoke the Install Utility by entering
INSTALL as a DCL command.

In a future release, this format will become the default.

2.18.2 Enhanced LIST/GLOBAL/FULL Command
The LIST /GLOBAL/FULL command of the Install Utility now displays the
following additional information on global sections:

• Owner and protection

• Access control entries (ACEs) if an access control list (ACL) exists

2.18.3 /SUMMARY Qualifier

2-36

Used with the INSTALL/GLOBAL command, the /SUMMARY qualifier
displays a summary of global section and global page usage on the system for
both local and shared memory global sections.

Supplemental Information for System Managers

2.18.4 Corrections to Text

2.19

2.20

2.21

Make the following corrections to the VAX/VMS Install Utility Reference
Manual. These corrections will be incorporated into the next revision of the
manual.

• Page INS-2 - Footnote 2 under Example INS-2 should read "with the
/OPEN qualifier", not "with the /SHARED qualifier".

• Page INS-6 - The privilege listed as SYSLCKL should read SYSLCK.

• Page INS-7 - The file name GRPCOMMEXE should read
GRPCOMM.EXE.

• Page INS-15 - In the third paragraph, 00038E should read 0003E8.

VAX/VMS Accounting Utility Reference Manual - Corrections
Make the following corrections to the VAX/VMS Accounting Utility Reference
Manual. These corrections will be incorporated in the next revision of the
manual.

• Page ACC-4 - In the example, the keyword ELAPSES should read
ELAPSED.

• Page ACC-49 - Figure ACC-7 is incorrect. There should be an empty,
unused byte at offset 25. ACR$W_USERNAME should be at offset 26.
Each item in the figure should be moved forward by 1 byte, starting with
the USERNAME field.

VAX/VMS Mount Utility Reference Manual- Addition
The documentation for the jobwide MOUNT support was omitted from the
documentation. It should read as follows:

Any subprocess in the process tree can mount or dismount a volume for
the job. When a subprocess mounts a volume (for the job) as a private
volume, the master process of the job becomes the owner of this device.
This provision is necessary because the subprocess may be deleted and
the volume should remain privately mounted for this job.

Image Activation, Search Lists, and Known Images
One of the steps involved in image activation uses VAX Record Management
Service (RMS) to open the specified image file. When the image to be
activated is specified as a logical name, the file specification that is the
translation of that logical name is accessed. RMS then opens the image by
first attempting to locate the image on one of the known file lists. If the
image is not known (that is, the lookup operation fails) then RMS has no
other choice but to incur the overhead of locating and opening the image file
on disk.

2-37

2.22

Supplemental Information for System Managers

If the image specification includes a semicolon or a period to delimit the
version number (whether or not an explicit version number is actually
specified), the known file lookup by RMS is skipped. In that case, RMS
always incurs the overhead of opening the image file on disk.

The precedence of the known file lookup over the normal file system access
during image activation is extended when an image is being activated by way
of a search list. For each element on the search list that does not include a
file version delimiter, RMS executes a known file lookup. This continues until
a lookup is successful or until the search list is exhausted. If the search list
is exhausted, RMS then evaluates the entire search list from its beginning a
second time in an effort to locate and open the image file on disk. Further
information about locating files using search lists can be found in the Guide to
VAX/VMS File Applications.

Because of this behavior, it is suggested that care be taken when defining a
search list that contains specifications for images that are installed. Regardless
of the order of the elements of the search list, the first image in that search list
that is found to be installed is the image selected for activation. That occurs
even if there are preceding images in the search list that are not installed.

VAX/VMS System Generation Utility Reference Manual- Corrections

2-38

The following notes document errors and omissions in the Version 4.2
manual:

• The SHARE command is incorrectly documented as SHARE/CONNECT.

• On pages SGN-19 and SGN-20, the examples shown for the CONNECT
command are incorrect and should be as follows:

SYSGEN> CONNECT LPAO /ADAPTER=3/CSR=%0777514 -
_ SYSGEN> /DRIVERNAME=LP2DRIVER/VECTOR=%0200

SYSGEN> CONNECT NET /NOADAPTER/DRIVER=NETDRIVER

• On page SGN-58, the final sentence in the description of the
ACP_SHARE parameter should be as follows: "This parameter should be
set on when ACP_MUL TIPLE is on."

• On page SGN-62, the parameters FREEGOAL and FREELIM are listed as
dynamic. These parameters are not dynamic.

• On page SGN-66, the description of the LNMHASHTBL parameter
should indicate that the values specified for this parameter are always
rounded up to the nearest power of 2. The same is true for the
LNMPHASHTBL parameter.

• On page SGN-73, the parameters listed as PQL_DJJQUOTA and
PQL _MJJQUOTA are misspelled and should be PQL _DJTQUOTA and
PQL_MJTQUOTA respectively.

• On pages SGN-77 and SGN-78, the descriptions of the RMS_DFMBC
and RMS_DFNBC parameters should be as follows:

2.23

Supplemental Information for System Managers

RMS_DFMBC (D)
RMS_DFMBC specifies the default disk block size used by RMS in
accessing sequential files.

Normally the default value is adequate.

RMS_DFNBC (D)
RMS_DFNBC specifies a default block count for network access to
remote, sequential, indexed sequential, and relative files.

The network block count value represents the number of blocks that RMS
is prepared to allocate for the I/O buffers used to transmit and receive
data. The buffer size used for remote file access, however, is the result
of a negotiation between VAX RMS and the remote File Access Listener
(FAL}. The buffer size chosen is the smaller of the two sizes presented.

Thus, RMS_DFNBC places an upper limit on the network buffer size
that can be used. It also places an upper limit on the largest record that
can be transferred to or from a remote file. In other words, the largest
record that can be transferred must be less than or equal to RMS_DFNBC
multiplied by 512 bytes.

Normally the default value is adequate.

• On page SGN-79, the following information should be included in the
description of the SCSNODE parameter:

Specify the parameter value as an ASCII string enclosed in quotation
marks ("). Note that the string may not include dollar sign ($) or
underscore (-) characters.

• On page SGN-84, the description of the TTY_DIALTYPE parameter
should be as follows:

TTV_DIALTYPE
TTY_DIALTYPE provides flag bits for dial-ups. Bit 0 is 1 for United
Kingdom dial-ups and 0 for all others. Bit 1 controls the modem protocol
used. Bit 2 controls whether modem lines hang up 30 seconds after
seeing CARRIER if a channel is not assigned to the device. The remaining
bits are reserved for future use. See the VAX/VMS I/O User's Reference
Manual: Part I for more information on flag bits.

Guide to VAX/VMS System Security- Corrections
Make the following corrections to the Guide to VAX/VMS System Security.
These corrections will be included in the next revision of the manual.

2.23.1 Defining Ownership Privileges
Section 4.4.2 defines the conditions needed to convey ownership privileges to
a user. The numbered list should be replaced with the following:

1 Hold the resource attribute to the identifier that owns the file

2 Running with BYPASS or SYSPRV

3 Running with GRPPRV and in the same group as the file owner

2-39

Supplemental Information for System Managers

2.23.2 Establishing and Changing File Ownership
Section 4.4.5 describes the steps VAX/VMS uses to determine the default
owner of a file. These steps should be replaced with the following list:

1 An attempt is made to propagate the ownership from a previous version
of the file. This succeeds only if the user is privileged (holds BYPASS,
SYSPRV, or GRPPRV privilege) or has ownership rights to the owner of
the previous version.

2 If the attempt to propagate from the previous version fails (either because
there is no previous version, the creator lacks ownership rights to the
previous version, or the creator is not privileged), then an attempt is
made to propagate ownership from the parent directory. This succeeds
only if the user is privileged or has ownership rights to the owner of the
parent of the directory.

3 If the attempt to propagate from the parent directory fails, then the owner
of the created file is the same as the creator of the file.

2.23.3 Default ACL Protection

2.23.4 Example Change

2-40

The second sentence in Section 4.5.2.2 states the following:

In addition, when you create a file whose owner identifier is not your
UIC, an ACE is added to your ACL for the file that grants full access to
your UIC.

Replace this sentence with the following corrected version:

In addition, when you create a file whose owner identifier is not your
UIC, an ACE is added to your ACL for the file that grants CONTROL
access plus the access available to the owner of the file (the Owner field
of the SOGW protection mask).

A similar change will also be made to Section 5.2.6.2 and the flowcharts in
Figures 4-4 and 5-5. These changes will be incorporated in the next revision
of the manual.

In Figure 5-10, the line

$ READ /END ...

should be placed following the line

$ DELETE /SYMBOL /LOCAL /ALL

This correction will be included in the next revision of the manual.

Supplemental Information for System Managers

2.23.5 System Passwords Incompatible with LAT Terminal Servers

2.24

The following text, found on page 5-26 of the Guide to VAX/VMS System
Security, is incorrect:

Note that the use of a system password is incompatible with the use of
the DIGITAL-supplied terminal concentrator known as the LAT-11. For
more information about LAT-11, see the documentation provided with
the LAT-11 software.

Replace this incorrect text with the following:

Note that the use of a system password is incompatible with the use of
the DIGITAL-supplied LAT terminal servers and LAT /VMS. For more
information about terminal servers, see the documentation provided with
the server. For more information about LAT /VMS, see the LAT /VMS
Management Guide.

TMPJNL and PRMJNL Privileges Removed
The TMPJNL and PRMJNL privileges, which were never used by VAX/VMS,
have been removed from VAX/VMS Version 4.4 and subsequent versions.

Any documentation that mentions these privileges will be updated to reflect
this change in the next release.

2-41

3 Supplemental Information for Application
Programmers

This chapter contains supplemental information for application programmers.

3. 1 VAX/VMS Linker Reference Manual- Correction

3. 2 Debugger

The following corrections apply to the VAX/VMS Linker Reference Manual.

•

•

•

•

•

On page LINK-1, the default for the command qualifier
/[NO]USERLIBRARY should read /USERLIBRARY=ALL.

The reference to Section 6.3.6.2 on page LINK-31 (third list item at the
top of the page) is incorrect. The correct reference is to Section 5.3.6.2.

The reference to Appendix A on page LINK-61 (fourth line, second
paragraph from the bottom) is incorrect. The correct reference is to
Chapter 6, which contains information on the VAX Object Language.

On page LINK-113, replace the last paragraph of Section 6.7 with the
following sentence:

The linker produces a DST only if the /DEBUG or /TRACEBACK
qualifier was specified at link time.

On page LINK-128, replace the first sentence of the fourth paragraph of
the Description section with the following sentence:

If you specify /SHAREABLE, you cannot also specify /SYSTEM.

• Example 3 on page LINK-129 is incorrect. The example should read as
follows:

$ LINK LAMAR,SYS$INPUT/OPTION GRABLE/SHAREABLE

Note, GRABLE is the name of a shareable image file and not an options
file as previously documented. The above correction also applies to
Example 2 on page LINK-142.

The behavior of the LINK/SHARE command changed in Version 4.4. For
Version 4.4 and subsequent versions, if you link your shareable images using
the LINK/SHARE command, traceback information is passed to the shareable
image.

When you debug your program and execution is suspended within that
shareable image, the debugger sets the image automatically. This is called
dynamic image setting.

3-1

3.2.1

3.2.2

3.2.3

Supplemental Information for Application Programmers

This results in different symbolic information being made available. For
example, the display for SHOW CALLS will look different. In contrast to
module setting, the symbol information for only the currently set image is
available at any one time. (See the description of the SET IMAGE,
SET MODULE, and SET MODE [NO]DYNAMIC commands in the
VAX/VMS Debugger Reference Manual for more information.)

If you prefer the old behavior, you can link your shareable image with the
command LINK/SHARE/NOTRACE. Traceback information will not be
present in the image and DEBUG will not set the image.

)'o take full advantage of the new shareable image support, you should link
your shareable image with the command LINK/SHARE/DEBUG. Then full
symbol table information will be available, the debugger will set the image,
and you can perform symbolic debugging of that shareable image.

Predefined Breakpoints
If any portion of your program is written in VAX Ada, then the following two
breakpoints are automatically established when you invoke the debugger (the
output of a SHOW BREAK command is shown):

Breakpoint on ADA event "DEPENDENTS_EXCEPTION" for any value
Breakpoint on ADA event "EXCEPTION_TERMINATED" for any value

These breakpoints are equivalent to entering the following commands:

DBG> SET BREAK/EVENT=DEPENDENT_EXCEPTION
DBG> SET BREAK/EVENT=EXCEPTION_TERMINATED

Ada programmers find these breakpoints convenient for debugging tasking
programs.

CALL from an Exception Breakpoint
Prior to Version 4.6, you could not enter the CALL command directly after an
exception breakpoint was triggered. This restriction has been removed.

Some related restrictions still apply. If a routine is called with the CALL
command just after an exception breakpoint was triggered, no breakpoints,
tracepoints, or watchpoints set within that routine are triggered. However,
they are triggered if the CALL command is given at another time.

STEP from an Exception Breakpoint

3-2

Prior to Version 4.6 you could not enter the STEP command directly after an
exception breakpoint was triggered. This restriction has been removed.

Entering a STEP command at an exception breakpoint causes you to step to
the start of whatever exception handler gets control. If you have not declared
any exception handlers, the exception is resignalled and the debugger prompt
is displayed - that is, the STEP command has no effect.

3.2.4

Supplemental Information for Application Programmers

Nonstatic Watchpoints
You can set watchpoints on dynamically allocated variables, such as those on
the stack or in registers. These are called nonstatic watchpoints.

You can set a watchpoint on a nonstatic variable only when its defining
routine is active. If you try to set a watchpoint on a nonstatic variable when
its defining routine is not active, the debugger issues a warning, as in the
following example:

DBG> SET WATCH Y
%DEBUG-W-SYMNOTACT, nonstatic variable 'Y' is not active

To implement nonstatic watchpoints the debugger must trace every
instruction, slowing down the execution of the program being debugged.
When you set a nonstatic watchpoint, the debugger determines whether
the watched location is statically or nonstatically allocated. If the location is
nonstatically allocated, the debugger issues an informational message that you
are setting a nonstatic watchpoint, so that you will be aware of the slower
performance.

A nonstatic watchpoint is automatically canceled when execution returns from
its defining routine, and an informational message is issued to that effect.

3.3 VAX PASCAL Run-Time Library - Changes

3.3.1

The sections that follow describe changes to the PASCAL Run-Time Library.

DEC and UDEC Built-in Routine

• The default number of significant digits for the DEC and UDEC built-in
routines has been changed from eight to ten.

For example, consider the following code segment:

WRITELN (I< I ,DEC(12345). I> I);

Prior to Version 4.6, this code generated the following output:

< 00012345>

This code now generates:

< 0000012345>

To duplicate previous behavior, specify the number of significant digits in
calls to the DEC or UDEC built-in routines.

• The default length parameter has been changed from 12 to 11 characters.

For more information about changes to DEC and UDEC, see the release notes
for VAX PASCAL Version 3.5.

3-3

3.3.2

3.3.3

3.3.4

Supplemental Information for Application Programmers

KEV Attribute Enhanced
The VAX PASCAL Run-Time Library includes support for the enhanced VAX
PASCAL KEY attribute. The KEY attribute accepts the following additional
keywords:

[NO]CHANGES
[NO]DUPLICA TES
ASCENDING
DESCENDING

New Default RECORD_LENGTH for TEXT Files
The defa~lt record length for TEXT files has increased from 133 to 255
characters. To duplicate previous behavior, you must specify the following in
your OPEN statement:

RECORD_LENGTH := 133

Use of EXTEND, REWRITE, and TRUNCATE
Prior to Version 4.6, the VAX PASCAL Run-Time Library enforced solitary
access to sequential files for the EXTEND, REWRITE, or TRUNCATE built-in
routines. The PASCAL Run-Time Library now supports shared access to
sequential files for these built-ins.

3.4 PL/I Run-Time Library Supports VAX PL/I Version 3.0

3-4

The PL/I Run-Time Library supports VAX PL/I Version 3.0. The Run
Time Library contains several minor changes that support the PL/I
SUBSCRIPTRANGE, STRINGRANGE, and STORAGE conditions; these
changes are incompatible with previous versions of VAX PL/I. Specifically,
the PL/I Run-Time Library has the following new primary condition values:

• PLl$_SUBRG (replaces PLl$_SUBRANGEn)

• PLl$_STRRANGE (replaces PLI$--5UBSTRn)

• PLl$_STORAGE (replaces LIB$GET_ VM)

For each new primary condition value, the built-in ONCODE function returns
the old primary status value.

DIGITAL recommends that customers upgrade to VAX PL/I Version 3.0. If
you choose to run a previous version VAX PL/I, you should recode where
appropriate. For example, you might make the following code change:

ON VAXCONDITION(PLI$_SUBSTR2) BEGIN;

END:

Supplemental Information for Application Programmers

Change to:

DCL PLI$_STRRANGE GLOBALREF FIXED BIN(31) VALUE;
ON VAXCONDITION(PLI$_STRRANGE) BEGIN;

IF ONCODE() -= PLI$_SUBSTR2
THEN

CALL RESIGNAL() ;
ELSE

END;

3.5 VAX Ada Run-Time Library- Unhandled Exceptions
VAX/VMS has improved the way the VAX Ada Run-Time Library deals
with unhandled VAX Ada exceptions and VAX conditions. Exceptions and
conditions are considered to be unhandled if they propagate as far as they
can go-to the level of a task or a main program-and a VAX/VMS or VAX
Ada Run-Time Library catch-all handler gains control. Catch-all handlers are
located in frames enclosing the main program and library packages, each task
body, and each accept body.

Beginning with Version 4.6, new catch-all handler messages are produced,
and changes to program execution behavior have been made, as follows:

• If an unhandled VAX condition with a severity of success, information,
warning, or error (any severity except severe) reaches a VAX Ada
Run-Time Library catch-all handler, the handler displays the message
associated with the condition and continues program execution. This
behavior is consistent with the behavior of VAX/VMS catch-all handlers.

• If a VAX Ada exception or a VAX condition with a severity of severe
reaches a VAX Ada Run-Time Library catch-all handler, the handler
displays the exception or condition message, and then the task, main
program, or rendezvous exits. (Note, however, that when an exception or
severe condition leaves an accept body, the message is not displayed
because the exception or condition propagates to both of the tasks
involved in the rendezvous.)

• The VAX Ada Run-Time Library catch-all handlers display a warning
when an unhandled exception may have to wait for dependent tasks to
terminate.

The new catch-all handler messages are directed to both SYS$0UTPUT and
SYS$ERROR.

Also, since Version 4.6, the point in the VAX Ada exception-handling
sequence at which waiting for dependent tasks takes place has changed. Prior
to Version 4.6, waiting for dependent tasks took place during the search for
an applicable exception handler; with Version 4.6, waiting has been deferred
until an applicable handler has been found. A more detailed explanation of
this change follows.

In VAX Ada, a general condition handler is automatically established for all
stack frames that have exception handlers, and a run-time table of active
exception parts is maintained for each frame. The general condition handler
determines which VAX Ada exception handler in the frame eventually gains
control (if any). Any subsequent VAX Ada exception propagation takes
place in two phases. During the first phase, th~ general condition handler

3-5

Supplemental Information for Application Programmers

3-6

determines which VAX Ada exception handler should gain control; each
frame on the stack is searched for this handler. When the applicable handler
is found, the general condition handler requests a stack unwind, and the
second phase begins. During the second phase, each frame is removed from
the stack. Prior to VAX/VMS Version 4.6, waiting for the termination of
tasks dependent on some VAX Ada frame took place during the first phase
(search for a handler). Now, waiting for dependent tasks takes place during
the second phase (unwind). After the unwind, the handler for the exception
executes.

The exception-handling improvements have the following effects:

• Programs written entirely in VAX Ada are not visibly affected by the
change in the point at which waiting for dependent tasks takes place.
Such programs are affected only by the new catch-all handler error
messages and by continuation of the main program in cases of nonsevere
unhandled exceptions.

• Software (such as the CLI) that signals a condition in order to print
a message, expecting continuation at the point of the signal, is now
supported-provided that the program does not handle the condition
(exception) before the condition gets to the VAX Ada Run-Time Library
catch-all handlers.

• Software that signals a nonsevere condition value with a call to the
VAX/VMS Run-Time Library routine LIB$SIGNAL, but does not want the
continuation that LIB$SIGNAL usually leads to, must call the Run-Time
Library routine LIB$STOP instead, or use a VAX Ada raise statement (if
the signaling software is written in VAX Ada).

• A task no longer terminates silently because of an unhandled exception
the exception message is now displayed. In addition, the exception
message appears before waiting begins for dependent tasks (because such
waiting may cause a deadlock). This makes VAX Ada programs more
robust because an unexpected exception in a production program now
generates a message.

If you do not want your software to produce task termination messages,
you may want to have exception handlers in those task bodies to which
you expect unhandled exceptions to propagate. For example, if you expect
that the predefined exception END-ERROR will cause task termination
messages in one of your tasks, you could have the following code, or its
equivalent (the action need not be a null statement), in the exception part
of the affected task body:

when END_ERROR => null;

The handler absorbs the unhandled exception and prevents it from
propagating further. The use of a handler in this situation also allows you
to see that the termination resulting from this exception is to be expected.

• The change in the point at which waiting for dependent tasks takes place
might affect mixed-language programs. Prior to Version 4.6, a VAX Ada
exception that propagated to non-VAX Ada code would cause execution
to wait until all dependent VAX Ada tasks terminated; a handler in the
non-VAX Ada code could not execute until the tasks terminated. With
Version 4.6 and subsequent versions, the exception is propagated, and
dependent tasks continue to execute; a handler in the non-VAX Ada code
can execute concurrently with the dependent tasks.

Supplemental Information for Application Programmers

If some software beyond your control is adversely affected by the messages
resulting from unhandled exceptions, you can hide the messages by defining
the logical names SYS$0UTPUT, SYS$ERROR, and ADA$0UTPUT. Define
SYS$0UTPUT and SYS$ERROR to be where you want the messages to go,
and define ADA$0UTPUT to be where you want VAX Ada output (from
package TEXT-10) to go.

Note: You should redirect error-message output only as a temporary measure
until you have modified your program as previously described. If you
redirect SYS$0UTPUT, be careful to ensure that you do not miss other
error messages that might occur; DIGIT AL advises that you capture the
output directed to SYS$0UTPUT and compare it with output containing
the messages you would otherwise expect.

For information about new features of the debugger that affect VAX Ada
programs, see Section 3.2.1.

3.6 VAX C Run-Time Library - Changes

3.6.1

3.6.2

3.6.3

The sections that follow describe changes to the VAX C Run-Time Library.

Printf Function Restrictions Removed
Prior to Version 4.6, printf functions could not format more that 512
characters in a single call. Now, printf functions accept formatted output
of unlimited length. However, an individual field in the resulting string
cannot be longer than 512 characters.

File Sharing Now Supported
Prior to Version 4.6, the VAX C Run-Time Library did not support file
sharing. The VAX C Run-Time Library now supports file sharing when you
use record mode to access files; you must use the ctx=rec file attribute with all
file open functions. Specify the shr=xxx file attributes as appropriate.

Stream 1/0 Facilities
Version 4.6 and subsequent versions improve stream 1/0 facilities in the
VAX C Run-Time Library. You can now specify the mbc=nnn file attribute
when opening stream files. The value for this attribute specifies the number
of blocks to allocate for 1/0 buffer. Reads and writes are performed using
this block size.

For more information about changes to the VAX C Run-Time Library, see
documentation for VAX C Version 2.3.

3. 7 VAX/VMS Run-Time Library Routines Reference Manual- Correction
The descriptions of the screen management routines SMG$ENABLE_
UNSOLICITED-1NPUT, SMG$SET_BROADCAST_TRAPPING, and
SMG$SET_OUT_OF_BAND-ASTS should describe the parameter passing
mechanism for AST-routine as •address of entry mask by value" and not as
"entry mask by reference."

3-7

Supplemental Information for Application Programmers

3.8 VAX/VMS Command Definition Utility Reference Manual- Example
Correction

The following example is an excerpt from Example CDU-2.

To make this BASIC program execute as described in the documentation,
change the following lines (comments describe the changes):

200 SUB EXIT_COMMAND !Same as documented.
!exclude EXTERNAL INTEGER FUNCTION SYS$EXIT
CALL SYS$EXIT(1% BY VALUE) !Note addition.

290 SUBEND !Same as documented.

1 EXTERNAL INTEGER FUNCTION CLIDCL_PARSE,CLIDISPATCH !Exclude LIB$GET_INPUT
EXTERNAL INTEGER FUNCTION SEND_COMMAND,SEARCH_COMMAND,EXIT_COMMAND !Same
EXTERNAL INTEGER TEST_TABLE,LIB$GET_INPUT !Note addition.

2 IF NOT CLI$DCL_PARSE(,TEST_TABLE,LIBGET_INPUT,LIBGET_INPUT, 'TEST> ')
AND 1%
THEN GOTO 2 !Note elimination of 0 above.

3 .9 VAX Text Processing Utility Reference Manual- Additions

3.9.1

The sections that follow describe changes to the VAX Text Processing Utility
Reference Manual.

GET_INFO- Restriction

3-8

The material in the VAX Text Processing Utility Reference Manual does
not include a restriction on using the built-in procedure GET_JNFO. The
following material should be added to the manual's description of the built-in
procedure GET_JNFO.

Be careful when you write programs that attempt to search one of the lists
maintained by VAXTPU. VAXTPU provides only one context for traversing
each list. VAXTPU maintains lists of buffers, defined keys, key maps, key
map lists, processes, and windows. You can search a list by using "first,"
"next," "previous," "current," or "last" as the second parameter to the built-in
procedure GELJNFO.

If you create nested loops that attempt to search the same list, the results are
unpredictable. For example, a program attempting to search two key-map
lists for common key maps may contain the built-in procedure GELJNFO
(KEY_MAP, "next", ...) in a loop within a loop containing GET_INFO
(KEY_MAP, "previous", ...). This creates an infinite loop.

3.9.2

Supplemental Information for Application Programmers

VAX BLISS - VAXTPU Example
The VAX BLISS example TPU-1 in Section 12 of the VAX/VMS Utility
Routines Reference Manual contains errors. Example 3-1 contains corrections
to Example TPU-3.

Example 3-1 Sample VAX BLISS Template for Callable VAXTPU

! How to declare the VAXTPU routines

external routine
tpu$FILEIO,
tpu$HANDLER,
tpu$INITIALIZE,
tpu$EXECUTE_INIFILE,
tpu$EXECUTE_COMMAND,
tpu$CONTROL,
tpu$CLEANUP;

How to declare the VAXTPU literals

external literal

! File I/0 operation codes
tpu$k_close,
tpu$k_close_delete,
tpu$k_open,
tpu$k_get,
tpu$k_put,

File access codes
tpu$k_access,
tpu$k_io,
tpu$k_input,
tpu$k_output,

Item codes
tpu$k_calluser,
tpu$k_fileio,
tpu$k_outputfile,
tpu$k_sectionfile,
tpu$k_commandfile,
tpu$k_filename,
tpu$k_journalfile,
tpu$k_options,

Mask for values in options
tpu$m_recover,
tpu$m...;journal,
tpu$m_read,
tpu$m_command,
tpu$m_create,
tpu$m_section,
tpu$m_display,
tpu$m_output,

Bit positions for values in options
tpu$v_display,
tpu$v_recover,
tpu$v_journal,

Example 3-1 Cont'd. on next page

3-9

Supplemental Information for Application Programmers

Example 3-1 (Cont.) Sample VAX BLISS Template for Callable VAXTPU

tpu$v_read,
tpu$v_create,
tpu$v_command,
tpu$v_section,
tpu$v_output,

VAXTPU status codes
tpu$_nofileaccess,
tpu$_openin,
tpu$_inviocode,
tpu$_failure,
tpu$_closein,
tpu$_closeout,
tpu$_readerr,
tpu$_writeerr,
tpu$_success;

own
OPTIONS: bitvector [32];

! OPTIONS will be passed to VAXTPU

GLOBAL ROUTINE top_level =
BEGIN
!++
! Main entry point of your program
!--
! Your_initialization_routine must be declared as a BPV

local BPV: vector[2,long] initial (TPU_INIT,O); ! Procedure block

! First establish the condition handler

LIB$ESTABLISH (tpu$handler) ;

Call the intialization routine and pass it the address of the BPV
which has the address of your initialization routine (VAXTPU
calls this)

tpu$initialize (BPV);

! Use the following call if the options word passed to VAXTPU indicated that
! an initialization file needs to be executed and/or the TPU$INIT_PROCEDURE
! in the section file needs to be executed.

tpu$execute_inifile();

! Let VAXTPU take over.
tpu$control () ;

! To break out of VAXTPU, use call_user from within a VAXTPU program
! Upon return from tpu$control, the editing session is done

tpu$cleanup();

! Loop and start the sequence over or exit
return tpu$_success;

END;

Example 3-1 Cont'd. on next page

3-10

Supplemental Information for Application Programmers

Example 3-1 (Cont.) Sample VAX BLISS Template for Callable VAXTPU

ROUTINE TPU_INIT =
BEGIN

!-
own BPV: vector[2,long] initial (TPU_IO,O); ! Procedure block

Macro
OUTFILE_NAME= 1 0UTPUT.TPU 1 %,
COMFILE_NAME= 'TPUINI.TPU'%,
SECFILE_NAME= 1 SYS$LIBRARY:EVESECINI.TPU$SECTION 1 %,

FILE_NAME= 'FILE.TPU 1 %;

Set VAXTPU options I want to enable

OPTIONS[tpu$v_display] 1;
OPTIONS[tpu$v_section] 1;
OPTIONS[tpu$v_create] 1·
OPTIONS[tpu$v_command] 1;
OPTIONS[tpu$v_recover] = O;
OPTIONS[tpu$v_journal] = O;
OPTIONS[tpu$v_read] = 0;
OPTIONS[tpu$v_output] = 1;

begin
bind

! Just for BIND

! Set up item list to pass back to VAXTPU to tell it what to do
! VAXTPU calls me back later
ITEMLIST = uplit byte (

!buffer length, item code,

word (4), word (tpu$k_options),
word (4), word (tpu$k_fileio),
word (%charcount(outfile_name)),

word (tpu$k_outputfile) ,

word C%charcount(comfile_name)),

buffer address, return address

long (OPTIONS) ,
long (BPV),

long (0),
long (0),

long (uplit(%ascii(outfile_name))),
long (0),

word (tpu$k_commandfile), long (uplit(%ascii(commandfile_name))),
long (0) .

word (%charcount(file_name)),
word (tpu$k_filename),

word (%charcount(secfile_name)),

long (uplit(%ascii(file_name))),
long (0),

word (tpu$k_sectionfile), long (uplit(%ascii(secfile_name))),
long (0) ,

long (0)) ;

return ITEMLIST;
end;
END; ! End of routine TPU_INIT

GLOBAL ROUTINE TPU_IO (P_OPCODE, FILE_BLOCK, DATA: ref block [,byte])
BEGIN

!-
local

item: ref block [3,long].
status;

Example 3-1 Cont'd. on next page

Item list entry

3-11

3.10

Supplemental Information for Application Programmers

Example 3-1 (Cont.) Sample VAX BLISS Template for Callable VAXTPU

Look at the opcode (operation) that VAXTPU wants me to perform
and if I don't want to do it, just call it back
if (.. P_OPCODE NEQ tpu$k_open)

then
return (tpu$fileio (.p_opcode, .file_block, .data));

Else set what operation to do

selectone .. P_OPCODE of
set
[tpu$k_open]:
! Time to open a file

begin
item = .data;

end;
return tpu$_success;

end;
[tpu$k_get]:
! Time to read a record

begin
end;

[tpu$k_put]:
begin

return tpu$_success;
end;

[tpu$k_close] :
begin

return tpu$_success;
end;

Point to the FILENAME item list entry

End of tpu$k_open

If none exists, then no data

Time to write a record

Time to close a file

[tpu$k_close_delete]: lib$stop (.. p_opcode);
[otherwise]: lib$stop (.. p_opcode);
tes;

return tpu$_success;

END; End of routine TPU_IO

Error log Utility - New Features and Changes
The new features and changes that have been added to the Error Log Utility
are outlined in the following two sections.

3.10.1 Enhancements to the User Interface

3-12

The ANAL YZE/ERRQR_LQG command has been enhanced to support the
following:

1 New device class keywords for /EXCLUDE and /INCLUDE:

WORKSTATION Include or exclude workstation error log entries.

LINE_PRINTER Include or exclude line printer error log entries.

Supplemental Information for Application Programmers

2 The BUSES keyword that is supported by /INCLUDE and /EXCLUDE
has been enhanced to include BI bus error log entries.

3 The DEVICE_ERRORS keyword that is supported by /INCLUDE and
/EXCLUDE has been enhanced to include BI adapter error log entries.

The error log entries for workstations and line printers can also be specified
by indicating the device name or the type of entry that is logged for the new
hardware to /INCLUDE and /EXCLUDE.

3.10.2 /EXCLUDE Qualifier Added
By default, whenever an "unknown" device, CPU, or error log entry
is encountered by ANALYZE/ERROR_LOG, it outputs the entry in a
hexadecimal longword format. The /EXCLUDE=UNKNOWN qualifier
excludes these entries from the report.

3-13

4 Supplemental Information for System Programmers

This chapter contains supplemental information of use to system
programmers.

4.1 VAX/VMS System Services Reference Manual- Correction

4.1.1

The sections that follow describe changes to the VAX/VMS System Services
Reference Manual.

New Nullarg Argument

FORMAT

FORMAT

FORMAT

The $CHANGE-ACL, $FORMAT-ACL, and $PARSE-ACL system services
have a place-holding nullarg argument that appears as the last argument in
the argument list. Following is the correct format of each of these system
services:

SYS$CHANGE_ACL [chan] ,objtyp ,[objnam} ,itmlst
,[acmode] ,[nullarg} ,[contxt}
,[nullarg}

SYS$FORMAT_ACL aclent ,[acllen] ,aclstr ,[width]
,[trmdsc] ,[indent] ,{accnam}
,[nullarg}

SYS$PARSE_ACL aclstr ,aclent ,[errpos} ,[accnam}
,[nullarg}

Add the following definition to the end of the argument definition list for the
$CHANGE-ACL, $FORMAT-ACL, and $PARSE-ACL system services:

nullarg
VMS usage:
type:
access:
mechanism:

nulLarg
longword (unsigned)
read only
by value

Place-holding argument. This argument is reserved to DIGITAL.

4-1

4.1.2

Supplemental Information for System Programmers

$GETSVI Service - New Item Codes

4-2

The following item codes have been added to $GETSYI:

SYl$->CCPU
When SYI$-XCPU is specified, $GETSYI returns the extended CPU processor
type of the node. $GETSYI returns this information only for the local node.

The general processor type value should be obtained first by using the
SYl$_CPU item code. For some of the general processor types, there is
extended processor-type information provided by the item code, SYI$-XCPU.
For other general processor types, the value returned by the SYI$-XCPU item
code is currently undefined.

Since the processor type is a longword decimal number, the buffer length
field in the item descriptor should specify 4 (bytes).

The $PRDEF macro defines the symbols for the extended processor types.
The current extended processor types available and their symbols are as
follows:

VAX
Processor
Type Symbol

PR$_SID_ TYPUV

PR$_SID_ TYP8NN

SYl$->CSID

Extended
Processor
Type

MicroVAX II
V AXstation II

MicroVAX 2000
V AXstation 2000

VAX 8530

VAX 8550

VAX 8700

VAX 8800

Extended
Processor
Symbol

PR$_XSID_uv_uv2

PR$_XSID_UV_410

PRS$_XSID_N8530

PRS$_XSID_N8550

PRS$_XSID_N8700

PRS$_XSID_N8800

When SYI$-XSID is specified, $GETSYI returns processor-specific
information. For the MicroVAX II, this information is the contents of the
system-type register of the VAX node. The system-type register contains
the full extended information used in determining the extended system type
codes. For other processors, the data returned by SYI$-XSID is currently
undefined.

Since the value of this register is a longword hexadecimal number, the buffer
length field in the item descriptor should specify 4 (bytes).

4.1.3

4.1.4

Supplemental Information for System Programmers

$GETSVI Service - Changed Item Code
The SYl$_CPU item code description for $GETSYI has been revised as
follows:

SYl$_CPU
When SYl$_CPU is specified, $GETSYI returns the general CPU processor
type of the node. $GETSYI returns this information only for the local VAX
node.

Since the processor type is a longword decimal number, the buffer length
field in the item descriptor should specify 4 (bytes).

Symbols for the processor types are defined by the $PRDEF macro.
The following chart gives the current processors and their symbols. For
information about extended processor-type codes, see the description of the
SYl$_)(CPU item code in this section.

Processor

V AX-11 780, 782, 785

VAX-11 750

VAX-11 730

MicroVAX I

MicroVAX II series

V AXstation 2000

VAX 8600, 8650

VAX 8200, 8300

VAX 8530, 8550, 8700, 8800

$QIO and $QIOW System Services

Symbol

PR$_SID_ TYP780

PR$_SID_ TYP750

PR$_SID_ TYP730

PR$_SID_ TYPUV 1

PR$_SID_ TYPUV2

PR$_SID_ TYP410

PR$_SID_ TYP790

PR$_SID_ TYP8SS

PR$_SID_ TYP8NN

The documentation for the Pl through P6 arguments to the $QIO and $QIOW
services is incorrect. These parameters can be passed either by reference or
by value, depending on the 1/0 function they perform.

4.2 System Dump Analyzer - New Command
The System Dump Analyzer has a new command, SHOW CALL_FRAME.
This section describes the new command in detail. The information in this
section updates the VAX/VMS System Dump Analyzer Reference Manual.

4-3

SHOW CALL_FRAME

SHOW CALL_FRAME

FORMAT

COMMAND
PARAMETER

QUALIFIERS

DESCRIPTION

4-4

Displays the locations and contents of the longwords representing a
procedure call frame.

SHOW CALL_FRAME address

address
An expression representing the starting address of the procedure call frame
you want to display.

/NEXT_FP
Displays the procedure call frame starting at the address stored in the FP
longword of the last call frame displayed by this command.

Whenever a procedure is called using CALLG or CALLS instructions,
information is stored on the stack of the calling routine in the form of a
procedure call frame. This call frame contains the following longwords:

• A condition handler address

• A longword containing the stack pointer alignment bits, the register save
mask for registers RO through Rl 1, and the saved PSW of the caller

• The saved AP value of the calling routine

• The saved FP value of the calling routine

• The saved PC value (return address) of the calling routine

• One longword for each saved register (RO through Rll) of the caller,
specified by the register save mask

The SHOW CALLJRAME command displays the call frame information
by interpreting a specified address expression as the beginning address of
the call frame. If no address expression or options are specified, the default
address expression for SHOW CALLJRAME is the longword contained in
the current process FP register.

SHOW CALL_FRAME

The following example shows the display produced by the
SHOW CALL _FRAME command. The display consists of the following
sections:

Instruction Type

Call Frame Address

Call Frame Contents

Symbols

Longword Description

Stack Alignment

Argument List

The display indicates what type of instruction,
either a CALLG or CALLS instruction, generated
the procedure call frame.

SDA lists all the virtual addresses that are part of
the call frame. The call frame addresses are listed
in a column that increases in increments of 4 bytes
(one longword).

SDA lists the contents of the call frame longwords
in a column next to the call frame addresses.

SDA attempts to display the contents of the
longwords in the call frame with the exception
of the "Mask-PSW" longword, which is not
symbolized.

SDA provides a meaningful description of the.
contents of each longword in the context of a
procedure call frame.

SDA provides a message describing the number
of bytes by which the stack pointer was adjusted
prior to storing the call frame information.

For CALLS cases, the argument list is displayed by
virtual address and contents in two columns below
the stack alignment field.

All valid procedure call frames have a 0 in bit 28 of the second longword
of the call frame. If the call frame specified has a 1 in bit 28 of the second
longword of the call frame, the call frame is invalid and the SDA display
shows:

Invalid Call Frame: Bit 28 is Set in "Mask-PSW" Longword

All valid procedure call frames begin on a longword boundary. If the
specified address expression does not begin on a longword boundary, the
call frame is invalid and the SDA display shows:

Invalid Call Frame: Start Address Not On Longword Boundary

4-5

SHOW CALL_FRAME

EXAMPLE

SDA> SHOW CALL_FRAME 7FFE7D94

4-6

Call Frame Information

Call Frame Generated by CALLS Instruction
Condition Handler 7FFE7D94 00000000
SP Align Bits = 00 7FFE7D98 20FCOOOO

Saved AP 7FFE7D9C 7FFED024
Saved FP 7FFE7DAO 7FFE7DE4
Return PC 7FFE7DA4 801AOCEE

R2 7FFE7DA8 7FFE7DDO
R3 7FFE7DAC 7FFCCFF8
R4 7FFE7DBO 80443090
R5 7FFE7DB4 7FFCDOOO
R6 7FFE7DB8 7FFE6400
R7 7FFE7DBC 00000003

Align Stack by 0 Bytes =>
Argument List 7FFE7DCO 00000003

7FFE7DC4 7FFE7DDO
7FFE7DC8 00000000
7FFE7DC8 00000000

CLT$GL_KSTKBAS+005E4
SYSTEM_PRIMITIVES+005E4
CTL$GL_KSTKBAS+005DO

MMG$IMGHDRBUF

CTL$GL_KSTKBAS+005DO

Supplemental Information for System Programmers

4.3 Ethernet/802 Device Drivers

4.3.1

4.3.2

4.3.3

The sections that follow describe changes to the Ethernet/802 device drivers.

IEEE 802 Response Packets
The Ethernet/802 device drivers now allow a response packet to be
transmitted on channels that have the IEEE 802 packet format enabled. This
is accomplished using the WRITE function code and the 10$M-RESPONSE
modifier. Use of this modifier is validated for those IEEE 802 channels that
have Class I service enabled; the control field value for channels with
Class I service enabled must be either XID or TEST in order to send a
response packet.

802 User-Supplied Services
Prior to Version 4.6, the Ethernet/802 device drivers responded to XID
and TEST command packets. For Version 4.6, all XID and TEST packets
(command or response) for channels with User Supplied service are not
responded to by the Ethernet/802 device drivers, but are instead passed to
the application through READ requests.

Ethernet/802 device drivers still respond to XID and TEST command packets
for channels with Class I service enabled.

Protocol Type Validation
The protocol type (NMA$c_PCLLPTY) parameter is now validated on the
SETMODE QIO. The validation is implemented as follows: the
Ethernet/802 device driver takes the low order word of the longword
parameter and swaps the two bytes; this new word value may not be less
than 1501 (05DD hexadecimal). If the value is less than 1501,
SS$-BADP ARAM status is returned in the IOSB.

4.4 Writing a Device Driver for VAX/VMS - Corrections

4.4.1

The 'sections that follow contain corrections to the Writing a Device Driver for
VAX/VMS manual.

IFNORD, IFNOWRT, IFRD, and IFWRT Macros
The descriptions of the IFNORD, IFNOWRT, IFRD, and IFWRT macros on
pages B-16 through B-19 erroneously define the dest argument.

4-7

4.4.2

4.4.3

Supplemental Information for System Programmers

The published information is incorrect in both the text and parameter
definition list. The following table supplies the correct definitions:

Macro Definition of "dest"

IFNORD Address to which IFNORD passes control if either of the specified
bytes cannot be read in the specified access mode

IFNOWRT Address to which IFNOWRT passes control if either of the specified
bytes cannot be written in the specified access mode

IFRD Address to which IFRD passes control if both bytes can be read in
the specified access mode

IFWRT Address to which IFWRT passes control if both bytes can be written
in the specified access mode

Bootstrapping with XDEL TA
In Section 15.1 of the Writing a Device Driver for VAX/VMS manual, the
instructions for bootstrapping with XDELTA on the VAX 8200 and VAX 8800
systems apply as well to the VAX 8300, VAX 8350, VAX 8530, VAX 8550, and
VAX 8700 systems.

EXE$QIODRVPKT Executive Routine

4-8

The executive routine EXE$QIODRVPKT was inadvertently omitted from
Appendix C of the Version 4.4 Writing a Device Driver for VAX/VMS manual.
(It is, however, described in Section 8 of that volume.)

The following is the routine description:

EXE$QIODRVPKT

EXE$QIODRVPKT
MODULE: SYSQIOREQ

Driver FDT routines call EXE$QIODRVPKT to send an IRP to a driver start-
1/0 routine. This routine calls EXE$INSIOQ and then transfers control to
EXE$QIORETURN.

Registers

R3

R4

R5

Fields

UCB$B_FIPL

UCB$V_BSY (in
UCB$L_STS)

UCB$L _IOQFL

Contents

Address of IRP for the current 1/0 request

Address of current PCB

Address of UCB

Contents

Driver fork IPL

Unit busy flag

Address of unit 1/0 queue listhead

4-9

4.4.4

Supplemental Information for System Programmers

$DEF Macro
Page B-5 incorrectly describes the method for defining a second symbolic
name for a single field. The following text should appear as the second
paragraph in the description of the alloc argument:

You can define a second symbolic name for a single field, using the $DEF
macro a second time immediately following the first definition, leaving
the alloc argument blank in the first definition. The following example
does this, equating SYNONYM2 with LABEL2:

$DEFINI JLB
$DEF LABEL1 .BLKL 1
$DEF SYNONYM2
$DEF LABEL2 .BLKL 1
$DEF LABEL3 .BLKL 1
$DEFEND JLB

Start structure definition
First JLB field
Synonym for LABEL2 field
Second JLB field
Third JLB field
End of JLB structure

4.5 VAX/VMS 1/0 User's Reference Manual: Part II- DR32 Microcode
Loader

The following information should be added in Section 4.4.4 of the VAX/VMS
1/0 User's Reference Manual: Part II immediately after item 2 ("If the opening
procedure ... "):

By default, XFLOADER attempts to load microcode into all DR32s on
a system. To limit microcode loading to a subset of DR32s, define the
logical name XF$DEVNAM using the device names of the DR32s as the
equivalence names. XFLOADER will search for the translation using the
LNM$FILE_DEV search list. For example:

$DEFINE/SYSTEM XF$DEVNAM XFAO,XFCO

This definition tells XFLOADER to load microcode only in the first and
third DR32s on the system.

The sentence that will immediately follow the above addition ("After loading
microcode into all available DR32s, ... ") should be changed to read: "After
loading microcode into all specified DR32s, ... ".

4.6 VAX MACRO and Instruction Set Reference Manual- Cyclic
Redundancy Check (CRC)

The following step should be included in the Cyclic Redundancy Check
(CRC) instruction on page 9-138 of the VAX MACRO and Instruction Set
Reference Manual:

Upon completion of the CRC instruction,
registers RO, R1, R2 and R3 are left as follows:

RO = result of CRC

Rl = 0

R2 = 0

R3 = address one byte beyond end of source string

A Generic VAXBI Device Support in VAX/VMS

A.1 Overview

This appendix provides information needed to write and load a device
driver for a non-DIGITAL-supplied device attached to the VAXBI bus.
VAX/VMS Version 4.5 provides special support for such devices in the
system initialization routines for the VAX 8200, VAX 8300, VAX 8350,
VAX 8530, VAX 8550, VAX 8700, and VAX 8800 systems. Because of the
many and varied implementations of VAXBI devices, however, VAX/VMS
support must of necessity be very general. Some devices may more fully
utilize the VAXBI interface than others; a device might incorporate its interface
initialization logic in microcode, whereas another might defer initialization to
code in its driver.

The VAXBI Options Handbook includes a description and guidelines for
possible VAXBI device implementations. Please refer to that manual for
further discussion of all VAXBI topics discussed in brief in Section A.2 and
elsewhere in this document.

A VAXBI device driver refers to the same data structures and contains the
same routines as a traditional VAX/VMS driver. Since this document presents
only information specific to writing a driver for a non-DIGITAL-supplied
device, it presumes an understanding of the material discussed in the Writing
a Device Driver for VAX/VMS manual.

A VAXBI device driver deviates from the traditional VAX/VMS driver almost
exclusively in the code that initializes the VAXBI interface or supports
direct-memory-access (OMA) transfers for devices that address memory
across the VAXBI bus. Section A.4 discusses tasks that drivers of various
V AXBI devices can perform in their initialization routines to supplement
both VAX/VMS initialization and that initialization performed by device
microcode. Section A.5 contains a general discussion of how some VAXBI
devices and their drivers manage OMA transactions.

Section A.3 describes those data structures the VAX/VMS adapter
initialization routine creates and prepares for a generic VAXBI device, while
Section A.7 discusses the method by which the driver for a generic VAXBI
device can be loaded into the operating system. The final section of this
document provides reference material and includes a description of the
backplan~ interconnect interface chip (BIIC) registers and a summary of the
IOC$ALLOSPT system routine.

A-1

Generic VAXBI Device Support in VAX/VMS

A.2 VAXBI Concepts
The VAXBI serves as the 1/0 bus for the VAX 8200, VAX 8300, VAX 8530,
VAX 8550, VAX 8700, and VAX 8800 systems (see Figure A-1).1 Each of the
VAX 8200 and VAX 8300 systems can have a single VAXBI; the VAX 8530,
VAX 8550, VAX 8700, and VAX 8800 systems can have multiple VAXBI buses
(see Figure A-2).

Figure A-1 VAX 8200, VAX 8300, and VAX 8350 Systems

DEVICE

VAXBI

BUA

UNIBUS

DEVICE DEVICE

ZK-5539-86

Each location on a VAXBI bus is called a node. A single VAXBI bus can
service 16 nodes. In the case of the VAX 8200 and VAX 8300 systems, these
nodes can be processors, memory, and adapters; the VAX 8530, VAX 8550,
VAX 8700, and VAX 8800 systems permit only adapters to be attached to the
VAXBI bus.2 A node receives its node ID, a number from 0 to 15, from a plug
on the V AXBI backplane slot into which the node module is inserted.

1 The VAXBI is also the system bus for the VAX 8200 and VAX 8300 systems.
2 For the VAX 8530, VAX 8550, VAX 8700, and VAX 8800, the NMI-to-BI adapter (NBIA/NBIB) (or, more

specifically, the NBIB) resides at a node on a VAXBI bus, monitoring and controlling transactions to the memory
interconnect (NMI) where the processors and memory reside.

A-2

A.2.1

Generic V AXBI Device Support in VAX/VMS

Figure A-2 VAX 8530, VAX 8550, VAX 8700, and VAX 8800 Systems

CPU

MEMORY
CONTROLLER

en
:J
CD

>
<(
a:
a:
<(

DEVICE

VAXBI

NBIA

BUA

DEVICE

NBIB
VAXBI

NBIA

NBIB VAXBI

An adapter is a node that connects other buses, communication lines, and
peripheral devices to the VAXBI bus. This document uses the term device to
refer to a device or combination of devices serviced by a single adapter or
controller.

VAXBI Address Space
Each VAXBI bus supports 30-bit addressing capability. This gigabyte of
physical address space is split equally between memory and 1/0 space, as
shown in Figure A-3.

All memory locations on a VAXBI bus are addressed using physical addresses
in VAXBI memory space (from 0000000016 through 1FFFFFFF16). A VAXBI
device, or its driver, that accesses memory directly, must perform virtual-to
physical translation before transmitting a memory address on the bus (see
Section A.5).

A-3

Generic VAXBI Device Support in VAX/VMS

A-4

Figure A-3 V AXBI Address Space

Hex Address
..-------. 0000 0000

Memory Space
512MB

1/0 Space
512MB

2000 0000

....._ _____ ___. 3FFF FFFF

ZK·5541·86

VAXBI 1/0 space (physical addresses 2000000016 through 3FFFFFFF16) is
partitioned as illustrated in Figure A-4. Figure A-5 shows the structure of an
1/0-space address.

As shown in Figures A-4 and A-5, VAXBI architecture grants each of the 16
nodes on a VAXBI bus two discrete sections in 1/0 space: node space and
window space.

Node space

Window space

Generic VAXBI Device Support in VAX/VMS

An 8KB block of addresses consisting of 256 bytes
of 81/C CSR space, followed by user interface CSR
space. A device can access the control and status
registers (CSRs) of its backplane interconnect interface
chip by using BllC CSR space addresses. Device-specific
registers reside in user interface CSR space.

Because the VAX/VMS adapter initialization routine
virtually maps node space for each V AXBI node on
each VAXBI bus, a device driver can access both BllC
registers and device registers using virtual addresses.
(See Sections A.4 and A.5 for a discussion of driver
access to registers.)

A 256KB block used by a V AXBI adapter to map an 1/0
transfer to a target bus. Because VAX/VMS does not
automatically map window space to virtual addresses,
a driver that manipulates addresses in window space
must itself allocate and fill sufficient system page-table
entries for the range of its window space addresses.
(See Section A.4.)

A-5

Generic VAXBI Device Support in VAX/VMS

Figure A-4 Description of VAXBI 1/0 Space

Node O Nodespace
(8KB)

. . .
Node 15 Nodespace

(8KB)

Multicast Space
(128KB)

Node Private Space
(3.75MB)

Node 0
Window Space

(256KB)

. . .
15

Window Space
(256KB)

RESERVED

RESERVED
(for multiple VAXBI systems)

(480MB)

A-6

Hex Address

2000 0000

2000 1FFF

2001 EOOO

2001 FFFF
2002 0000

2003 FFFF
2004 0000

203F FFFF
2040 0000

2043 FFFF

207C 0000

207F FFFF

2200 0000

3FFF FFFF

ZK-5542-86

Generic VAXBI Device Support in VAX/VMS

Figure A-5 Physical Addresses in V AXBI 1/0 Space

29

~ 1/0 SPACE

28 25

D SPECIFIES WHICH VAXBI BUS

24 23 B IF NOT ZERO BITS <24: 23> INDICATE RESERVED SPACE

22 8 WINDOW SPACE

21 18 D SPECIFIES WHICH NODE'S WINDOW SPACE

17 0

WINDOW SPACE ADDRESS

22 G NON-WINDOW SPACE

21 20 19 18

I 0 0 0 0J 1F NOT ZERO BITS <21: 18> INDICATE NODE PRIVATE SPACE

17 G NODESPACE

16 13

DNODEID

12 0

.... I ___________ ..JI NODESPACE ADDRESS

17

Q MULTICAST SPACE

16 0

MULTICAST SPACE ADDRESS

ZK-5543·86

A-7

A.2.2

Generic VAXBI Device Support in VAX/VMS

Backplane Interconnect Interface Chip (BllC)
The backplane interconnect interface chip (BIIC) serves as the primary interface
between the VAXBI bus and the user interface logic of a node. The BIIC
supplies the logic necessary for a node to initiate and respond to transactions
on the VAXBI bus, arbitrate bus ownership, send and receive interrupt
requests, and monitor bus errors.

A node can enable, control, and monitor such activities by accessing the set
of BIIC registers located in the first 256 bytes of its node space. Because the
VAX/VMS adapter initialization routine virtually maps node space addresses,
drivers for VAXBI devices can use virtual addresses to access BIIC registers.
In addition, given the virtual address of the base of a device's node space,
a driver can use the symbolic offsets, masks, and bit fields defined by the
VAX/VMS macro $BIICDEF (in SYS$LIBRARY:LIB.MLB). Table A-1, in
Section A.8.1, describes these symbols.

A.3 Initialization Performed by VAX/VMS
During the phase of system initialization known as adapter initialization
(INIADP), VAX/VMS performs a set of processor-specific tasks to identify and
configure each device it discovers at each of the 16 nodes on each VAXBI bus
in the system configuration.

The INIADP module configures DIGITAL-supplied and non-DIGITAL
supplied devices alike, performing the following activities as part of its
initialization cycle:

1 Tests for the presence of a device at the node by issuing a MOVL
instruction, the target of which is a system virtual address temporarily
mapped to the first longword of its node space. If this instruction is
successful, it returns the contents of the BIIC Device-Type Register of the
addressed node to the processor.3

2 Records the 32-bit contents of the BIIC Device-Type Register in the slot
in the CONFREGL array that corresponds to the VAXBI bus and node
at which it found the device4 and compares this value against a table of
recognized device types.

3 If it recognizes the device, maps the number of pages specified in the table
for the device type and places the system virtual address of the base of
the mapped node space in the slot in the SBICONF array that corresponds
to the VAXBI bus and node at which it found the device.5

3 If no device exists at a given VAXBI node address, the CPU becomes aware of this in a processor-dependent
way. For example, the VAX 8200 and VAX 8300 processors experience a machine check, whereas the VAX
8530, VAX 8550, VAX 8700, and VAX 8800 processors determine that the node is vacant by reading an
NXM (nonexistent memory) error from the BIIC Bus Error Register of the NBIB adapter on the VAXBI being
examined.

4 The CONFREGL array is a set of longwords in system pool pointed to by EXE$GL _CONFREGL. The
CONFREGL array contains an entry for each possible VAXBI node. For VAX 8200 and VAX 8300 systems with
one VAXBI, this array has 16 entries. For VAX 8530, VAX 8550, VAX 8700, and VAX 8800 systems, this array
has 16 entries for each VAXBI bus on the system.

5 The SBICONF array is a set of longwords, similar in structure to the CONFREGL array and pointed to by
MMG$GL_SBICONF, that lists the system virtual addresses of the base of the node space for each node on a
VAXBI bus.

A-8

A.3.1 Data Structures

Generic V AXBI Device Support in VAX/VMS

If it does not recognize the device, maps the entire BKB of the node's
node space into VAX/VMS virtual address space by allocating 16 system
page table entries (SPTEs) and associating them with the 16 page-frame
numbers (PFNs) of the physical addresses assigned to this node's node
space on this VAXBI bus. INIADP then saves the base system virtual
address of the resulting BKB range in the longword slot corresponding to
this node in the SBICONF array.

4 Performs such additional tasks as allocating and filling in data structures
in a device-specific manner. For a non-DIGITAL-supplied device attached
to a VAXBI bus, INIADP creates generic versions of the channel request
block, interrupt dispatch block, and adapter control block-as discussed
in Section A.3.1-and fills in the appropriate vectors in the system control
block.

For devices it recognizes, INIADP additionally calls a VAX/VMS-supplied
subroutine, the address of which it obtains from the device-type table,
that performs further device-specific initialization.

For devices it does not recognize, INIADP must defer device-specific
initialization to the device driver's initialization routine.

The INIADP module creates and prepares a channel request block, interrupt
dispatch block, and an adapter control block in the manner described below.
For each data structure it creates, INIADP fills in the first three longwords
with the standard VAX/VMS header information (that is, the structure type,
size, and links).

Channel Request Block

For the newly created channel request block (CRB), INIADP performs the
following tasks:

• Sets up the resource wait queue header (CRB$L_WQFL and
CRB$L_WQBL).

• Initializes the single interrupt dispatcher (CRB$L_JNTD) so that it has
the effect of pushing general registers RO through RS onto the stack,
and issuing a JSB instruction. The destination of the JSB instruction at
initialization is a standard null interrupt handler that merely dismisses the
interrupt. Later, when the specific device driver is loaded for the device
(see Section A.7), the driver's interrupt-servicing routine address replaces
this null interrupt handler in the dispatcher.

Interrupt Dispatch Block

INIADP initializes the interrupt dispatch block (IDB) in the following manner:

• Sets the number of device units controlled by this interrupt dispatch
block (IDB$W_UNITS) to 1. As a result, the list of unit-control block
(UCB) addresses in this IDB is one longword in size. The driver-loading
procedure writes a UCB address into this longword whenever it creates a
new UCB associated with the controller. Because there is only one slot in
this array, drivers for non-DIGITAL-supplied multidevice controllers must
use a different mechanism to locate the UCB of interest at the time of an
interrupt.

A-9

Generic V AXBI Device Support in VAX/VMS

A-10

• Copies the virtual address of the base of this device's node space to
IDB$L_CSR from the corresponding slot in the SBICONF array.

Adapter-Control Block

INIADP creates a truncated adapter control block (ADP) for a non-DIGITAL
supplied VAXBI device (48 bytes as opposed to the traditional 600 bytes). The
ADP it creates contains no fields reserved for the allocation and accounting
of data paths or mapping registers. INIADP prepares this generic ADP in the
following manner:

• Copies the virtual address of the base of this device's node space to
ADP$L_CSR from IDB$L_CSR.

• Places the VAXBI node ID of this device in ADP$W_TR.

• Stores the value AT$_GENBI (signifying the generic VAXBI ADP type)
in ADP$W__ADPTYPE. Symbol AT$_GENBI has the value 1310 in
VAX/VMS Version 4.5.

• Inserts the address of the new channel request block in ADP$L _CRB.

• Calculates the address of the first of the four interrupt vectors for this
node in the system control block (SCB) and places the address in
ADP$L--.AVECTOR. Each of these SCB vectors contains the address
of CRB$LJNTD plus 1. A driver can determine the addresses of the
other three SCB vectors by adding 64, 128, or 192, respectively, to the
address of this first SCB vector.

• Saves the offset of this first SCB vector from the start of its SCB page in
ADP$W_BLVECTOR. (Refer to Section A.3.2 for a description of the
SCB.)

• Places in ADP$L_BLJDR a longword mask with a single bit set, as
appropriate to the VAX processor, that specifies which VAXBI node
should become the destination of interrupts from this node. On VAX
8200 and VAX 8300 systems, the V AXBI node of the primary processor
becomes the destination for interrupts; on VAX 8530, VAX 8550, VAX
8700, and VAX 8800 systems, it is the VAXBI node at which the NBIB
adapter for this VAXBI bus resides.

• Stores in ADP$L-MBASCB - and in each of the device's four SCB
vectors - the address of the interrupt dispatcher. The actual stored
value is CRB$LJNTD+l, the set low bit of the address indicating that
the interrupt stack be used to service the interrupt. Certain powerfail
recovery operations use the contents of ADP$L-MBASCB to refresh the
SCB vectors.

• Saves in ADP$L-MBASPTE the contents of the first of the 16 SPTEs
that map the device's node space. Certain recovery operations use the
contents of ADP$L-MBASPTE to restore correct SPTE values and to
remap node space following a power failure.

A.3.2

Generic V AXBI Device Support in VAX/VMS

System Control Block
The system control block (SCB) consists of two or more pages of vectors.
For all VAX processors, the first half page contains vectors used in exception
dispatching. VAX/VMS uses the remainder of the first page, as well as
subsequent pages, in a processor-dependent way.

For VAX 8200 and VAX 8300 systems, VAX/VMS assigns the vectors from
10016 to 1FC16 to VAXBI devices in the order of their node IDs.

In contrast, VAX 8530/8550/8700/8800 system architecture relegates vectors
10016 to 1FC16 to NMI nexus vectors. Page 1 is reserved for the first
"offsettable" device that exists in the system. (An "offsettable" device is
an adapter, such as the BI-to-UNIBUS adapter [BUA], that passes interrupts
from devices on another bus to the V AXBI and, from there, to the NMI and
the processor.) If there is more than one "offsettable" device, an additional
SCB page is needed for each.

Ultimately, the vectors for other devices attached to each of the four possible
VAXBI buses of the system are contained in the four corresponding SCB
pages from page 28 to page 31. Vectors for devices connected to VAXBI 0 and
VAXBI 1 on NBI 0 are assigned to pages 28 and 29 of the SCB, respectively;
vectors for devices connected to V AXBI 0 and V AXBI 1 on NBI 1 are likewise
assigned to pages 30 and 31.

Generally, a VAX processor obtains a device vector from the BIIC registers of
the node that has requested the interrupt (see Figure A-6). Information
supplied in the device vector allows the processor to index to the
corresponding interrupt-dispatching vector in the appropriate page of the
SCB. For VAX 8200 and VAX 8300 systems, such information includes the
interrupt level of the device and its VAXBI node ID. A similar vector for
VAX 8530, VAX 8550, VAX 8700, and VAX 8800 devices further specifies the
appropriate NBI vector offset and the number of the VAXBI bus.

Figure A-6 VAXBI Device Vectors

For VAX 8200 and VAX 8300 Devices

13 12 11 10 9 8 7 6 5 4 3 2 1 0

~ , 1-, r~-,1 I
For VAX 8500, VAX 8550, VAX 8700, VAX 8800 Devices

13 12 1110 9 8 7 6 5 4 3 2 1 0

NBI vector
offset register

level VAXBI node ID

VAXBI number (0 or 1)

A-11

A.4

Generic VAXBI Device Support in VAX/VMS

The specific SCB interrupt-dispatching vector, thus found, transfers control to
the interrupt-dispatching code in the device's CRB. Upon an interrupt from
this device, the SCB vector directs flow into the interrupt dispatcher in the
CRB, which saves the register contents and dispatches to the interrupt handler
established by the device driver.

Initialization Performed by the VAXBI Device Driver

A-12

All generic VAXBI device drivers must specify GENBI as the adapter type in
the adapter argument to the DPTAB macro.

The device driver's initialization routines are expected to initialize the device
specific aspects of the VAXBI device. For non-DIGITAL-supplied devices,
the initialization routines perform the sort of tasks that the INIADP module
performs for the DIGITAL-supplied devices it discovers on a VAXBI bus. For
single-unit devices, a separate unit-initialization routine may not be necessary.

The VAX/VMS System Generation Utility (SYSGEN) calls the controller
initialization routine at IPL 31, passing it the following values in the listed
general registers:

• R4 pointing to the system virtual address of the device's node space

• RS pointing to the IDB

• R6 pointing to the device data block

• R8 pointing to the CRB

After the controller-initialization routine has completed, SYSGEN calls the
driver's unit-initialization routine at IPL 31 and passes it the following values
in the listed general registers:

• R3 pointing to the system virtual address of the device's node space

• RS pointing to the UCB

Hardware initialization might include such activities as writing values to
BIIC and device-specific registers, examining the results of the BIIC self test,
mapping a node's window space, building data structures to control the
device, and linking these structures into chains of similar data structures.

This section provides some ideas and guidelines for code that may be
necessary in an initialization routine. There is no requirement that driver
code perform all the functions discussed here. The needs of various devices
differ, and some devices make more demands on driver software than others.

Code examples in this section assume that R4 initially contains the virtual
address of the base of the device's node space and R8 contains the virtual
address of the device's CRB.

A.4.1

A.4.2

Generic V AXBI Device Support in VAX/VMS

Examining BllC Self-Test Status
According to the hardware specification for all devices attached to a VAXBI
bus, a VAXBI node undergoes a self test on power failure recovery and at
system boot time. The BIIC indicates the successful completion of the self test
by setting BIIC$V_STS and by clearing BIIC$V_BROKE in BIIC$L_BICSR.

A driver unit initialization routine should test these bits before performing
any transaction on the VAXBI bus. If BIIC$V_STS is clear, then self test is still
under way. If BIIC$V_BROKE is set, then the driver action is implementation
specific. In any event, a driver should not set UCB$V_ONLINE in
UCB$L_STS if the node is not usable.

The maximum duration of the BIIC self test is ten seconds. If a VAXBI node
implements the maximum self-test time, then the driver unit initialization
routine may have to spinwait for the setting of BIIC$V_STS (for instance,
by embedding the testing instructions in an invocation of the TIMEDWAIT
macro). Driver unit initialization routines should perform this spinwait only
when UCB$W_POWER in UCB$L_STS is set. Otherwise, the driver is being
loaded by SYSGEN, and a long spinwait at high IPL will have adverse effects
on the rest of the VAX/VMS system.

Normally, only diagnostics initiate a self test by setting the SST bit in the
BIIC. A V AXBI driver that sets this bit must take special precautions to avoid
a machine-check and to avoid undetected corruption of VAXBI memory.
These precautions include the following steps:

1 Begin a machine-check protection block (using the $PRTCTINI macro).
Code within the block executes at IPL 31.

2 Disable arbitration on the VAXBI node being reset.

3 Set BIIC$V_SST and BIIC$V_STS simultaneously to initiate the self test.

4 Do not set SST in the same instruction that disables arbitration.

5 End the machine-check protection block (using the $PRTCTEND macro).

6 Do not access the BIIC registers for at least one microsecond. You cannot
even check the state of the SIS bit during this interval.

7 Do not access any other address on the VAXBI node until the self test has
completed.

Clearing BllC Errors, Setting Interrupts, and Enabling Interrupts
There is a set of tasks that a VAXBI driver should perform during initialization
that ensures that interrupts are properly enabled and delivered to an
appropriate VAXBI target node. These tasks include the following:

• Clearing any outstanding set bits in the Bus Error Register.

• Setting the target node for interrupts in the Interrupt Destination Register.

• Setting the device interrupt vector in the Error Interrupt Control Register.

• Setting the device interrupt vector in the User Interface Interrupt Control
Register.

• Enabling hard and soft error interrupts as required by the device.
Typically hard errors and enabled and soft errors are disabled.

A-13

Generic V AXBI Device Support in VAX/VMS

• Enabling interrupts upon certain types of transactions to user interface
CSR space.

It is important that the interrupt vectors and destination be set up before BIIC
hard error and soft error interrupts are enabled. An error occurring while
error interrupts are enabled but while the vector is uninitialized could lead to
an invalid condition.

A.4.2.1 Clearing the Bus Error Register
The following example clears all set bits in the Bus Error Register
(BIIC$L_BER) to prevent spurious or pending error interrupts at initialization:

MOVL BIIC$L_BER(R4), BIIC$L_BER(R4) ;Clear all set write-1-to-clear
; bits in BIIC$L_BER

A.4.2.2

A.4.2.3

A....;14

Loading the Interrupt Destination Register
The Interrupt Destination Register (BIIC$L-1DR) specifies which VAXBI node
should become the destination of interrupts from this node. On the VAX
8200 and VAX 8300 systems, the V AXBI node of the primary CPU becomes
the destination for interrupts. On VAX 8530, VAX 8550, VAX 8700, and VAX
8800 systems, the V AXBI node of the NBIB on the particular VAXBI on which
this device resides becomes the destination for such interrupts.

The VAX/VMS system initialization procedure described in Section A.3
creates a 32-bit mask with the appropriate bit set and stores it in
ADP$L_BI-1DR. If a driver must set the Interrupt Destination Register, it can
simply move this value to the BIIC register:

MOVL CRB$L_INTD+VEC$L_ADP(R8),RO ;Get ADP address
MOVL ADP$L_BI_IDR(RO),BIIC$L_IDR(R4) ;Write to IDR

Setting Interrupt Vectors
A VAXBI node uses the Error Interrupt Control Register (BIIC$L_EICR)
to determine the SCB vector through which to interrupt when a BIIC at
this node detects a bus error. The User Interface Interrupt Control Register
(BIIC$L_UJCR) similarly controls the operation of interrupts initiated by the
device at this node.

Because the VAX/VMS system initialization procedure described in
Section A.3 saves the offset of the node's first SCB vector from the start of
its SCB page in ADP$W_BLVECTOR, a driver can initialize both of these
registers by using code similar to that in the following example:

MOVL CRB$L_INTD+VEC$L_ADP(R8),RO ;Get ADP address
MOVZWL ADP$W_BI_VECTOR(RO),R2 ;Get device vector
MOVL BIIC$L_UICR(R4),BIIC$L_UICR(R4) ;Clear user vector
MOVL R2,BIIC$L_UICR(R4) ;Set user vector
BISL #1©<BIIC$V_LEVEL+BIIC$S_LEVEL-1>,R2

;OR in interrupt level
;BR7 in this case

MOVL BIIC$L_EICR(R4),BIIC$L_EICR(R4) ;Clear error vector
MOVL R2,BIIC$L_EICR(R4) ;Set error vector

Note that the driver clears both vectors before it actually sets them. Clearing
BIIC$L_UJCR and BIIC$L_EICR causes any pending interrupt to be cleared.
Also note that the interrupt level must be set in BIIC$L_EICR, in this case
BR7. If the level is not set, an error interrupt will never be generated.

A.4.3

A.4.2.4

A.4.2.5

Generic V AXBI Device Support in VAX/VMS

Enabling Error Interrupts
Finally, to enable interrupts that report errors detected by the node's BIIC,
the controller-initialization routine can set the soft error interrupt-enable or
hard error interrupt-enable bits in the VAXBI Control and Status Register.
The BIIC sets bits in the Bus Error Register (BIIC$L_BER) to reflect the type
of bus error reported by the interrupt.

BISL #<BIIC$M_SEIE!BIIC$M_HEIE>,-
BIIC$L_BICSR(R4)

Enabling BllC Options

;Soft error interrupt enable
;Hard error interrupt enable

Device registers are in the area of node space called user interface CSR
space and are located following the 256 bytes reserved for the BIIC-required
registers. Use of user interface CSR space is implementation-depenqent.

For the processor to be alerted to various transactions directed at user
interface CSR space, the controller-initialization routine of devices that
support such transactions should set appropriate bits in the BCI Control
and Status Register (BIIC$L_BCICR). See Table A-1, in Section A.8.1, for
definitions of these bits.

The following example enables a node to alert the node specified as the
interrupt destination (in BIIC$L_IDR) when a retry timeout, STOP command,
or read or write transaction is directed at its user interface CSR space:

BISL #<BIIC$M_STOPEN!
BIIC$M_RTOEVEN!
BIIC$M_UCSREN>,
BIIC$L_BCICR(R4)

;Stop enable
;Retry timeout enable
;User CSR enable

Mapping Window Space
Each VAXBI, starting at address 2040000016, provides 16 address blocks of
256K bytes apiece, called window space. VAXBI nodes can use window space
if it is necessary to map VAXBI transactions to memory space on a target bus,
although few nodes use this feature.

Whereas the VAX/VMS initialization routine maps each VAXBI node's node
space to virtual addresses, it does not automatically map each node's window
space. If a device needs to use its window space, it is up to the driver's unit
initialization routine to map this space.

First of all, the driver must determine the starting physical address of the
node's window space. Figure A-5 illustrates how VAXBI addresses are
constructed. Drivers can use the following VAX/VMS-supplied macros (in
SYS$LIBRARY:LIB.MLB) to access pertinent VAXBI addresses and values:

• $108SSDEF (for the VAX 8200 and VAX 8300 systems)

• $108NNDEF (for the VAX 8530, VAX 8550, VAX 8700, and VAX 8800
systems)

To determine the starting address of a node's window space, the driver
should perform the following actions:

1 Extract the VAXBI node ID from BIIC$L_BICSR.

A-15

A.4.4

Generic VAXBI Device Support in VAX/VMS

2 Multiply the node ID with the size of window space, as stored in
108SS$AL _NDSPER for VAX 8200 and VAX 8300 systems and
108NN$AL_NDSPER for VAX 8530, VAX 8550, VAX 8700, and VAX
8800 systems. VAXBI device drivers running on a VAX 8200 or VAX 8300
system can skip to step 4.

3 Perform steps necessary to account for the existence of multiple VAXBI
buses on the system. These steps are only necessary for VAXBI device
drivers running on a VAX 8530, VAX 8550, VAX 8700, or VAX 8800
system. They include the following:

a. Determining which VAXBI bus the node is attached to by extracting
the VAXBI bus number from bits <7:4> of ADP$W_TR.

b. Multiplying the VAXBI bus number thus obtained by 200000016, the
amount of physical address space allocated for each VAXBI bus.

c. Adding the result to the product obtained in step 2.

4 Add to the accumulated calculations the base address of the start
of window space for node 0 on a VAXBI bus. This address can be
determined by adding the values contained in 108SS$AL _NQDESP
and 108SS$AL_IOBASE (for a VAX 8200 or VAX 8300 system) or
108NN$AL_NODESP and 108NN$ALJOBASE (for a VAX 8530, VAX
8550, VAX 8700, or VAX 8800 system).

Secondly, each page of window space to be used must be associated with a
system page-table entry (SPTE) that maps the page-frame number (PFN) of
the physical page in window space to a system virtual address. VAX/VMS
includes the routine IOC$ALLOSPT in module IOSUBNPAG that, given the
number of SPTEs to be allocated in Rl, returns in R2 the starting system
virtual page number (SVPN) of the first allocated SPTE of the requested
amount.

Because IOC$ALLOSPT expects to be called at IPL$_SYNCH, the unit
initialization routine must fork from IPL$_PQWER to IPL$L_SYNCH before
calling it. See Section A.4.4 for a discussion of forking in a driver initialization
routine.

Finally, once the SPTEs have been allocated, the driver moves the physical
page-frame numbers (PFNs) of the window space pages into the SPTEs.

Forking from a Driver Initialization Routine

A-16

If a driver initialization routine must fork to perform a thread of code that
must synchronize with code or a structure synchronized at a lower IPL, it
must take special care to avoid breaking that synchronization.

First of all, because the System Generation Utility under normal,
circumstances, immediately calls a driver's unit-initialization routine at
IPL$JOWER after its controller-initialization completes, the unit
initialization routine· must be prepared for the instance of a controller
initialization routine that forks. Such a unit-initialization routine would
complete before the fork thread of the controller-initialization routine
resumed.

A. 5 OMA Transfers

Generic VAXBI Device Support in VAX/VMS

A fork thread in a unit-initialization routine (or a controller-initialization
routine in a driver without a unit-initialization routine) must otherwise take
the following precautions to avoid breaking synchronization:

• Allocate a separate fork block within the UCB. Do not attempt to allocate
this block with EXE$ALONPAGEDYN. The separate fork block prevents
a conflict with the use of the normal UCB fork block by the IOFORK
routine.

•

•

•

Use a semaphore bit to protect against multiple forking. Remember that
the unit initialization routine can be called repeatedly in the case of
power failures. If the semaphore shows that a fork is in progress, then
exit without attempting to fork.

Invoke EXE$FORK with RS pointing to the new fork block. Restore the
original value of RS once the fork process is active.

Remember to restore all registers on exit to the unit initialization routine .
Since EXE$FORK removes the caller's address from the stack and returns
to the caller's caller, the unit initialization routine must set up a dummy
caller's caller routine to restore registers destroyed by EXE$FORK.

The method by which a device accomplishes direct-memory-access (OMA)
transfers depends upon the characteristics of the device. As part of a VAXBI
read or write transaction, such a device must place on the VAXBI bus a
physical address, the target of which is a memory node or a node (such as an
NBIB adapter) that transmits the request to memory across another bus.

For the OMA device to successfully access the memory pages of a buffer
involved in an I/O transfer, it must be given sufficient information about
the size and location of these buffer pages, the type of transaction that is
requested, the offset into the first page of the buffer, and the length of the
transaction. In addition, if the size of the transaction causes it to exceed the
boundaries of a page, the device must have some means of accessing the
remaining pages-even if they are, as is most likely, scattered throughout
physical memory.

As a result, devices make use of several types of structures that map to
the various pages of the buffer involved in the transfer to help generate a
succession of contiguous physical addresses on the VAXBI bus. Some possible
constructions of this kind include the following:

• A physically contiguous buffer in memory

• System page tables in system memory

• Process page tables locked in system memory

• Mapping registers in the device's VAXBI I/O address space

A separate but related issue results from the fact that the original buffer, as
specified in the user Queue-I/O request, is in process space and is mapped by
process page-table entries. Because the driver cannot rely on process context
existing at the time the device is ready to service the I/O request, it must
have some means of guaranteeing that it can access both the data involved in
the transfer and the page-table entries that map the buffer.

A-17

Generic VAXBI Device Support in VAX/VMS

MOVL
SUBW3
BICW3
EXTZV
MOVL
MOVAL

A-18

VAX/VMS supplies two separate techniques applied by traditional VAX/VMS
drivers and described in full in the Writing a Device Driver for VAX/VMS
manual. These techniques are as follows:

• Direct 1/0, the technique used most commonly by DMA drivers, locks
the user buffer in memory as well as the page-table entries that map
it. The function-decision table (FDT) of a direct 1/0 DMA driver calls a
VAX/VMS-supplied FDT routine that prepares the user buffer for direct
IjO.

• Buffered I/O is the strategy whereby the driver FDT dispatches to an
FDT routine in the driver that allocates a buffer from nonpaged pool. It
is this intermediate buffer that is involved in the DMA transfer. Driver
preprocessing routines copy the data from the user buffer to the system
buffer for a write request; 1/0 postprocessing routines deliver data from
the system buffer to the user buffer for a read request.

That DMA drivers may make use of either VAX/VMS direct 1/0 or buffered
1/0 is one way by which these drivers can supply specific information needed
by the device to accomplish a DMA transfer. Those driver FDT routines that
call a VAX/VMS direct-1/0 FDT routine leave the following information in
the device's unit-control block (UCB):

UCB$L _SV APTE

UCB$W_BOFF

UCB$W_BCNT

Virtual address of the system page-table entry (PTE)
for the first page used in the transfer

Byte offset in the first page of the transfer buffer

Size in bytes of the transfer

FDT routines that elect buffered-1/0 call EXE$ALLOCBUF to obtain a
nonpaged pool buffer and initialize the same UCB fields with the following
information:

UCB$L_SVAPTE

UCB$W_BOFF

UCB$W_BCNT

Virtual address of system buffer used in the 1/0
transfer

Number of bytes to be charged to the process for the
transfer

Size in bytes of the transfer

If a driver's fork process must manipulate the data in any way at fork level
(that is, outside of the driver's FDT routines), then it needs a virtual address
it can use to access the data. Typically this is done by using a nonpaged
pool buffer. It can also be done by loading a system page-table entry with
the correct PFN and computing the associated system virtual address. The
drivers for the disks that have ECC correction do this when there is an ECC
error detected. The controller can tell the driver that the error in the data in
memory can be corrected by applying some pattern to a part of the data, but
the fork process has to perform the correction, not the controller.

IRP$L_SVAPTE(R3),R2
#12,8(R2) ,UCB$W_BCNT(R5)
#C-<VA$M_BYTE>,(R2),UCB$W_BOFF
#VA$V_VPN,#VA$S_VPN(R2),R2
G-MMG$GL_SPTBASE,R1
(R1) [R2] ,UCB$L_SVAPTE(R5)

;Get address of system buffer
;Calculate system buffer length
;Put offset in buffer
;Get system virtual page number
;Get address of system page table
;Get system virtual address of page

A.5.1

Generic V AXBI Device Support in VAX/VMS

Example: DMB32 Asynchronous/Synchronous Multiplexer
The.DMB32 asynchronous/synchronous multiplexer can use any of four
different modes of address translation for DMA accesses. Under each of these
modes, the DMB32 requires that its driver supply an address by which it can
either directly or indirectly obtain the pages of the buffer that is involved in
the transfer. The four different translation modes require such addresses in
one of the following forms:

• System virtual address of a buffer

• System virtual address of a page-table entry

• Physical address of a page table

• Address of a physically-contiguous buffer

System Virtual Address of a Buffer and System Virtual Address of a
Page-Table Entry

The DMB32 itself can perform the first two types of address translation
because it can read entries in the VAX/VMS system page table (see Figure
A-7, as well as the VAX/VMS Internals and Data Structures manual). The
controller-initialization routine of a DMB32 device driver supplies the
physical address and length of the VAX/VMS system page table, plus the
virtual address and length of the VAX/VMS global page table. It also sets a
page-table-valid bit in a device maintenance register.

As a result, a driver for a DMB32 device could use either direct 1/0 or
buffered 1/0 and accordingly load a device register with the system virtual
address of the page-table entry that maps the buffer or the system virtual
address of the buffer itself. After the driver has loaded other device registers
with a buffer offset value and a transfer size-and set the "start" bit in a
DMB32 line-control register-the DMB32 performs the transfer without any
additional mapping or other driver intervention.

Figure A-7 Page Table Entry

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

protection page frame number
code

1 Global Page Table Index

Page Table Entry

ZK-5544·86

A-19

Generic VAXBI Device Support in VAX/VMS

Physical Address of a Page Table

In this mode, the DMB32 can be given the physical address of a page table
that maps the 1/0 transfer. The DMB32 architecture mandates that each
page-table entry be four bytes long and that the page table be aligned on a
longword boundary. Also, each page is 512 bytes long. However, the page
table can be anywhere in memory, possibly at a range of VAXBI 1/0-space
addresses belonging to the node to which the DMB32 adapter is attached.
To perform a DMA transfer under this addressing mode, the DMB32 adapter
requires the offset of the first byte of the buffer, which is in the page described
by the page-table entry. Each page-table entry contains bits <29:9> of the
physical address of the page that is to be accessed.

In this case, the driver must extract the PFNs of the pages involved in the
transfer and insert them into the page table of the device. The following is
an example of a routine that translates a system virtual address to a physical
address. It returns the physical address at the top of the stack.

VIRT TO PHYAD:
PUSHL (SP) ;Create slot at top of stack for return

; value
PUS HR
BICL3
EXTZV

MOVL
MOVL
EXTZV

ASHL
BISL3
POPR
RSB

A-20

#-M<RO,R1,R2,R3>
#-512, R1. RO
#VA$V_VPN,
#VA$S_VPN,R1,R2
G-MMG$GL_SPTBASE,R3
(R3) [R2] ,R3
#PTE$V_PFN,
#PTE$S_PFN,R3,R3
#VA$V_VPN,R3,R3
RO,R3,20(SP)
#-M<RO,R1,R2,R3>

;Save registers
;RO = byte offset of address
;Extract VPN
; and put it in R2
;R3 => system page table
;R3 => PIE
;Get page frame number of buffer
; page into R3
;Shift into place for physical address
;Put result into stack slot
;Restore registers
;Return to caller

Physical Address of a Buffer

If the device can neither read system page tables nor has its own scatter
gather map-and must perform a DMA transfer that spans physical pages-it
must rely upon the actual contiguity of the physical pages involved in
the transfer. Because there is no guarantee that this is the state of the user's
buffer, the driver must allocate an intermediate buffer consisting of contiguous
physical pages. The driver never deallocates this buffer unless the driver is
being unloaded (by means of SYSGEN's RELOAD command). The best time
to allocate such a buffer is during the device's initialization, when memory is
most likely to be contiguous.

The VAX/VMS routine EXE$ALOPHYCNTG, described in the Writing a
Device Driver for VAX/VMS manual, allocates such a buffer. The size of the
buffer that should be allocated depends on the device's characteristics and
the size of the transfers requested on the device. A buffer of four pages is
likely to be large enough for most disk transfers, for example, but if you
have enough memory on your system, you might want to make your buffer
the size of a disk track in order to reduce disk latency. In any event, large
transfers to the device can be segmented into transfers the size of your
intermediate buffer.

The start-1/0 routine of such a driver copies the data from the user's buffer
into the intermediate, physically contiguous buffer by means of the routine
IOC$MOVFRUSER.

Generic VAXBI Device Support in VAX/VMS

The driver then sets up the device for the OMA transfer as follows:

1 Determines the physical address of the buffer from the system virtual
address returned by EXE$ALOPHYCNTG

2 Moves the address to the device address register

3 Activates the device

4 If the transfer size exceeds the size of the buffer, returns to step 1

When a user requests a transfer from such a device, the driver moves the data
from the device to the intermediate, physically contiguous buffer by means
of a OMA transfer, then calls IOC$MOVTOUSER to copy the data into the
user's buffer.

A.6 Register-Dumping Routine

MOVL
MOVL
MOVL
MOVL
MOVL

In the event of a device error or a VAXBI bus error, a driver's register
dumping routine should contain code that makes certain interesting registers
available for error logging. Apart from any device registers that should be
saved, the following BIIC registers might contain information important in
determining the cause of the error: the Device Register (BIIC$L_DTREG), the
VAXBI Control and Status Register (BIIC$L_BICSR), the Bus Error Register
(BIIC$L_BER), the Error Interrupt Control Register (BIIC$L__EICR), and the
Interrupt Destination Register (BIIC$LJDR).

The following is an example of part of a register-dumping routine that pushes
the contents of these BIIC registers into an error buffer.

BIIC$L_DTREG(R4),(RO)+
BIIC$L_BICSR(R4),(RO)+
BIIC$L_BER(R4),(RO)+
BIIC$L_EICR(R4),(RO)+
BIIC$L_IDR(R4),(RO)+

;Device Type Register
;BIIC CSR Register
;Bus Error Register
;Error Interrupt Control Register
;Interrupt Destination Register

A. 7 Loading a VAXBI Device Driver
The System Generation Utility (SYSGEN) loads the device driver into
system virtual memory, creates additional data structures for the device
unit, connects the device's interrupt vectors, and calls the device driver's
controller-initialization routine and unit-initialization routine.

The Writing a Device Driver for VAX/VMS manual discusses the SYSGEN
commands commonly used during driver loading. The following discussion
pertains to those aspects of the loading process that specifically relate to the
support of non-DIGITAL-supplied VAXBI devices.

Traditionally, SYSGEN is invoked near the end of system initialization,
during the execution of the system startup command procedure
(SYS$SYSTEM:STARTUP.COM). STARTUP.COM generally issues a SYSGEN
AUTOCONFIGURE command with the result that SYSGEN scans various
device tables to determine devices VAX/VMS expects to be connected to each
VAXBI bus configured in the system. Ultimately, as the autoconfigure facility
discovers the data structures associated with VAXBI devices recognized
by VAX/VMS, it loads the associated device drivers and invokes their
initialization routines.

A-21

Generic V AXBI Device Support in VAX/VMS

Because the autoconfigure facility cannot recognize non-DIGITAL-supplied
VAXBI devices, STARTUP.COM (or a later invocation of SYSGEN) must
explicitly request that SYSGEN connect the device.6 SYSGEN responds to
such explicit requests by utilizing the data structures created by the INIADP
module for the unknown VAXBI device to load the associated device driver
and invoke its initialization routines.

For example, suppose that an unknown VAXBI device were located at
node 3 on a given V AXBI bus and that the software device driver for this
device were known as 0 ZZDRIVER". During INIADP processing, VAX/VMS
would encounter an unknown type of VAXBI device at node 3 and would
perform the following operations:

• Map the node space for node 3 into system virtual memory

• Construct various data structures to govern the future operation of this
device

SYSGEN executes in response to the following commands:

$RUN SYS$SYSTEM:SYSGEN
SYSGEN>CONNECT ZZAO:/ADAPTER=3

SYSGEN performs the following activities:

1 Searches the list of ADPs in the system to find the ADP for this VAXBI
node (node 3) and, in turn, locates the corresponding CRB and IDB by
following pointers in the ADP.

2 Loads ZZDRIVER into system virtual memory. If the /DRIVER qualifier
is specified, SYSGEN loads the specified driver instead.

3 Creates a UCB for device ZZAO: and places the address of the device's
CRB in that UCB. SYSGEN also initializes other UCB fields at this time.

4 Sets the first entry in the IDB UCB array (IDB$L_UCBLST) to point to
the new UCB.

5 Creates a DDB for the ZZA device/controller combination. This allows
user programs to assign I/O channels to device ZZAO: later. This DDB,
in turn, points to the location in memory where ZZDRIVER has been
loaded and to the UCB for the ZZAO: device.

6 Calls the controller-initialization routine in ZZDRIVER at IPL 31.

7 Calls the unit-initialization routine in ZZDRIVER at IPL 31.

Note: If you do not specify GENBI as the adapter type in the adapter argument
to the DPT AB macro, the CONNECT command fails and issues the
following error message:

%SYSGEN-E-INVVEC, invalid or unspecified interrupt vector

A.8 Reference Material
The following sections include reference material concerning the contents of
the BIIC register set and the routines discussed in this document.

6 Because the autoconfigure facility is never called for a non-DIGITAL-supplied device, any unit-delivery routine
that a VAXBI device driver may include is never called.

A-22

A.8.1

Generic V AXBI Device Support in VAX/VMS

BllC Register Definitions
Each VAXBI node is required to implement a minimum set of registers
contained in specific locations within the node's node space. VAX/VMS
automatically maps each node's node space at boot time and provides the
macro $BIICDEF (in SYS$LIBRARY:LIB.MLB) to define offsets to the BIIC
registers and their significant bit fields.

The contents of the BIIC registers are illustrated in Figure A-8 and described
in Table A-1. See the VAXBI Options Handbook for a discussion of the BIIC
and the rules for configuring its registers.

Note: Fields marked "Reserved to DIGIT AL" are reserved for future use by
DIGIT AL and should contain zeros.

Figure A-8 Backplane Interconnect Interface Chip (BllC) Registers

BllC$L_DTREG

BllC$L _BICSR

BllC$L_BER

BllC$L_EICR

BllC$L_IDR

BllC$L_IPIMR

BllC$L_IPIDR

BllC$L_IPISR

BllC$L_SAR

BllC$L_EAR

BllC$L_BCICR

BllC$L_WSR

BllC$L _IPISTPF

unused

unused

unused

BllC$L_UICR

(Continued on next page)

A-23

Generic V AXBI Device Support in VAX/VMS

Figure A-8 (Cont.) Backplane Interconnect Interface Chip (BllC) Registers

l unuse d(172b t) yes 1
;~

BllC$L_GPRO

BllC$L _GPR 1

BllC$L _GPR2

BllC$L _GPR3

Table A-1 Contents of the BllC Registers

Field Name Contents

BllC$L_DTREG

BllC$L_BICSR

1 Read-only field.

A-24

Device Register.

BllC$L_DTREG consists of the following two words:

BllC$W _DEVTYPE

BllC$W_REVCODE

Device type. This field is written by device hardware
and self-test microcode. It contains two bit fields:

BllC$V_MEMNODE (bits < 14:8>) when clear, indicates
a memory node.

BllC$V_NONDEC (bit 15), when clear indicates a
DIGITAL-supplied device; it should be 1 otherwise.

Revision code.

V AXBI Control and Status Register.

The following fields are defined within BllC$L_BICSR.

Bit Field

BllC$V_NODE_ID 1

BllC$V_ARBCNTL

Contents

Node ID. This field is automatically loaded during the
power-up sequence. Reserved to DIGIT AL.

Arbitration mode used by the node. Currently, all
arbitration modes except dual round-robin arbitration are
reserved to DIGITAL. Correspondingly, these two bits
should be clear. When these two bits are set, arbitration
is disabled, thus preventing a node from starting a
VAXBI transaction.

Generic VAXBI Device Support in VAX/VMS .

Table A-1 (Cont.) Contents of the BllC Registers

Field Name

1 Read-only field.

Contents

BllC$V_SEIE

BllC$V_HEIE

BllC$V_UWP

<9> 1

BllC$V_SST

BllC$V_STS

BllC$V_BROKE2

BllC$V_INIT2

BllC$V_SES 1

BllC$V_HES 1

BllC$V_BllCTYPE 1

BllC$V_BllCREVN 1

Soft error interrupt enable. When set, this bit allows
the node to generate an interrupt when the soft error
summary bit (BllC$V_SES) in this register is set.

Hard error interrupt enable. When set, this bit allows
the node to generate an interrupt when the hard error
summary bit (BllC$V_HES) in this register is set.

Unlock write pending. When set, this bit signals that
the master port interface at this node has successfully
completed an IRCI (Interlock Read with Cache Intent)
transaction. The node clears this bit when it successfully
completes a corresponding UWMCI (Unlock Write Mask
with Cache Intent) instruction.

Reserved to DIGIT AL. Must be zero.

Node reset. This bit is normally used by diagnostics to
initiate the BllC internal self test. Prior to initiating a BllC
self test, a node should disable arbitration by setting
both bits in BllC$V_ARBCNTL. When BllC$V_SST is set,
the self-test status bit (BllC$V_STS) in this register must
also be set.

Reads to BllC$V_SST return a zero.

Self-test status. When set, this bit indicates that the
BllC has passed its self test. The controller-initialization
routine of a V AXBI device driver should inspect this
bit and the BllC$V_BROKE bit before proceeding with
any V AXBI transactions. During the self-test sequence,
BllC$V_STS is automatically reset by the BllC to allow
the proper recording of the new self-test results at the
end of self test.

Broke bit. When cleared by the device's self test, this
bit indicates that device has passed its self test. The
controller-initialization routine of a V AXBI device driver
should inspect this bit and the BllC$V_STS bit before
proceeding with any V AXBI transactions.

Initialization bit.

Soft error summary. When set, this bit indicates that
one or more of the soft error bits in the Bus Error
Register (BllC$L_BER) is set.

Hard error summary. When set. indicates that one or
more of the hard error bits in the Bus Error Register
(BllC$L_BER) is set.

BllC type. These bits <23:16> always contain
00000001.

BllC revision number.

2Write-one-to-clear bit. Write-type transactions cannot set this bit.

A-25

Generic VAXBI Device Support in VAX/VMS

Table A-1 (Cont.) Contents of the BllC Registers

Field Name

BllC$L_BER

BllC$L_EICR

1 Read-only field.

Contents

Bus Error Register.

The following bits are defined within BllC$L_BER. Bits <30: 16> are hard error
bits and bits <2:0> are soft error bits.

Bit Field

BllC$V_NPE2

BllC$V_CRD2

BllC$V_IPE2

BllC$V_UPEN 1

< 14:4> 1

BllC$V_ICE2

BllC$V_NEX2

BllC$V_BT02

BllC$V_ST02

BllC$V_RT02

BllC$V_RDS2

BllC$V_SPE2

BllC$V_CPE2

BllC$V_IVE2

BllC$V_TDF2

BllC$V_ISE2

BllC$V_MPE2

BllC$V_CTE2

BllC$V_MTCE2

BllC$V_NMR2

<31> 1

Contents

Null bus parity error.

Corrected read data.

ID parity error.

User parity enabled.

Reserved to DIGIT AL. Must be zero.

Illegal confirmation error.

Nonexistent address.

Bus timeout.

Stall timeout.

Retry timeout.

Read data substitute.

Slave parity error.

Command parity error.

IDENT vector error.

Transmitter during fault.

Interlock sequence error.

Master parity error.

Control transmit error.

Master transmit check error.

NO ACK to multiresponder command received.

Reserved to DIGIT AL. Must be zero.

Error Interrupt Control Register. This register supplies information the node uses to
request and monitor the status of both BllC-detected and forced-error interrupts;
that is, those interrupts signaled by either the setting of a bit in the Bus Error
Register (BllC$L_BER) or the setting of the force bit (BllC$V_EIFORCE) in this
register, respectively. The node can initiate BllC-detected error-interrupt requests
only if the appropriate error-interrupt enables (BllC$V_SEIE and/or BllC$V_HEIE) are
set in the VAXBI Control and Status Register (BllC$L_BICSR).

2 Write-one-to-clear bit. Write-type transactions cannot set this bit.

A-26

Generic V AXBI Device Support in VAX/VMS

Table A-1 (Cont.) Contents of the BllC Registers

Field Name

BllC$L_IDR

BllC$L _IPIMR

BllC$L _IPIDR

BllC$L _IPISR

BllC$L_SAR

1Read-only field.

Contents

The following fields are defined within BllC$L_EICR.

Bit Field Contents

<1:0> 1

BllC$V_EIVECTOR

<15:14> 1

BllC$V_LEVEL

BllC$V_EIFORCE

BllC$V_EISENT2

<22> 1

BllC$V_EllNTC2

BllC$V_EllNT AB2

<31:25> 1

Reserved to DIGIT Al. Must be zero.

12-bit vector used in error interrupt sequences.

Reserved to DIGIT Al. Must be zero.

These four bits (< 19: 16>) correspond to the four
interrupt levels (INT <7:4>) of the VAXBI bus. A set
bit causes the corresponding level to be used when INTR
commands under control of this register are transmitted.

Force bit. When set, this bit posts an error interrupt
request in the same way as a bit set in the Bus Error
Register (BllC$L_BER), except that the request is not
qualified by the bits BllC$V_HEIE and BllC$V_SEIE in
BllC$L_BICSR.

INTR sent.

Reserved to DIGIT Al. Must be zero.

INTR complete. When set, this bit indicates that the
vector for an error interrupt has been successfully
transmitted or an INTR command sent under the control
of this register has been successfully aborted.

INTR abort. When set, this bit indicates that an INTR
command under the control of this register has been
aborted (that is, a NO ACK or illegal confirmation code
has been received). This bit is a status bit set by the
BllC and can be reset only by the user interface.

Reserved to DIGIT Al. Must be zero.

Interrupt Destination Register. The low-order word of this register indicates which
nodes are to be selected by INTR commands.

Interprocessor Interrupt Mask Register. The high-order word of this register
indicates which nodes are permitted to send IPINTRs to this node.

Force-bit IPINTR/STOP Destination Register. The low-order word of this register
indicates which nodes are to be targeted by force-bit IPINTR or STOP commands
sent by this node.
21PINTR Source Register. The BllC stores in the high-order word of this register the
decoded ID of a node that sends an IPINTR command to this node.

Starting Address Register. The Starting Address Register and Ending Address
Register define storage blocks in either memory or 1/0 space. They must not be
configured to include node space or multicast space.

The low-order 18 bits of this register must be zero. This means that memories
are multiples of 256K bytes. Software should set up the Starting Address Register
before the Ending Address Register.

2Write-one-to-clear bit. Write-type transactions cannot set this bit.

A-27

Generic VAXBI Device Support in VAX/VMS

Table A-1 (Cont.) Contents of the BllC Registers

Field Name

BllC$L_EAR

BllC$L_BCICR

BllC$L_WSR

1 Read-only field.

A-28

Contents

Ending Address Register.

The low-order 18 bits of this register must be zero. This means that memories
are multiples of 256K bytes. Software should set up the Starting Address Register
before the Ending Address Register. See the description of the Starting Address
Register (BllC$L_SAR).

BCI Control Register.

The following fields are defined within BllC$L_BCICR.

Bit Field

<2:0> 1

BllC$V_RTOEVEN

BllC$V_PNXTEN

BllC$V_IPINTREN

BllC$V_INTREN

BllC$V_BICSREN

BllC$V_UCSREN

BllC$V_ WINV ALEN

BllC$V_INV ALEN

BllC$V_IDENT

BllC$V_RESEN

BllC$V_STOPEN

BllC$V_BDCSTEN

BllC$V_MSEN

BllC$V_IPINTRF

BllC$V_BURSTEN

<31:18> 1

Write Status Register.

Contents

Reserved to DIGIT AL. Must be zero.

RTO EV enable.

Pipeline NXT enable.

IPINTR enable.

INTR enable.

BllC CSR Space enable.

User Interface CSR Space enable.

WRITE Invalidate enable.

INV AL enable.

!DENT enable.

RESERVED enable.

STOP enable.

BDCST enable.

Multicast Space enable.

IPINTR/STOP force.

Burst enable.

Reserved to DIGIT AL. Must be zero.

Generic VAXBI Device Support in VAX/VMS

Table A-1 (Cont.) Contents of the BllC Registers

Field Name

BllC$L_IPISTPF

BllC$L_UICR

1 Read-only field.

Contents

The following fields are defined within BllC$L_UICR.

Bit Field Contents

<27:0> 1

BllC$V_GPR02

BllC$V_GPR1 2

BllC$V_GPR22

BllC$V_GPR32

Reserved to DIGIT AL. Must be zero.

Indicates that a V AXBI transaction has written to General
Purpose Register 0 (BllC$L_GPRO).

Indicates that a V AXBI transaction has written to General
Purpose Register 1 (BllC$L_GPR1).

Indicates that a V AXBI transaction has written to General
Purpose Register 2 (BllC$L_GPR2).

Indicates that a V AXBI transaction has written to General
Purpose Register 3 (BllC$L_GPR3).

Force-Bit IPINTR/STOP Command Register.

The following fields are defined within BllC$L_IPISTPF.

Bit Field

<10:0> 1

BllC$V_MIDEN

BllC$V_CMD

<31:16> 1

Contents

Reserved to DIGIT AL. Must be zero.

Master ID Enable.

These four bits indicate the command code for either an
IPINTR or STOP transaction that is initiated by setting
the IPINTR/STOP force bit (BllC$V_INTRF in
BllC$L _BCICR).

Reserved to DIGIT AL. Must be zero.

User Interface Interrupt Control Register. This register controls the operation of
interrupts initiated by the device.

2Write-one-to-clear bit. Write-type transactions cannot set this bit.

A-29

Generic VAXBI Device Support in VAX/VMS

Table A-1 (Cont.) Contents of the BllC Registers

Field Name

BllC$L _GPRO

BllC$L _GPR 1

BllC$L_GPR2

BllC$L_GPR3

1 Read-only field.

Contents

The following fields are defined within BllC$L _UICR.

Bit Field Contents

<1:0> 1

BllC$V_UIVECTOR

<14> 1

BllC$V_EXVECTOR

BllC$V_UIFORCE

BllC$V_UISENT2

BllC$V_UllNTC2

Reserved to DIGIT AL. Must be zero.

These 12 bits contain the vector used during user
interface interrupt sequences (unless the external vector
bit (BllC$V_EXVECTOR in BllC$L_UICR) is set). The
vector is transmitted when this node wins an IDENT
arbitration that matches the conditions given in
BllC$L_UICR.

Reserved to DIGIT AL. Must be zero.

When set, the BllC solicits the interrupt vector from the
node rather than transmitting the vector contained in
BllC$L_UICR.

These four bits correspond to the four interrupt levels
(INT <7:4>). When a bit is set, the BllC generates an
interrupt at the indicated level.

These four bits correspond to the four interrupt levels
(INT <7:4>). A set bit indicates that an INTR command
for the corresponding level has been successfully
transmitted.

These four bits correspond to the four interrupt levels
(INT <7:4>). A set bit indicates that the vector
for an interrupt at the corresponding level has been
successfully transmitted or that an INTR command sent
under the control of this register has been successfully
aborted.

BllC$V_UllNT AB2 These four bits correspond to the four interrupt levels
(INT <7:4>). A set bit indicates that an INTR command
at the corresponding level, sent under the control of this
register, has been aborted (that is, a NO ACK or illegal
confirmation code has been received).

General Purpose Register 0

General Purpose Register 1

General Purpose Register 2

General Purpose Register 3

2Write-one-to-clear bit. Write-type transactions cannot set this bit.

A-30

A.8.2 IOC$ALLOSPT

Generic VAXBI Device Support in VAX/VMS

Drivers for non-DIGITAL-supplied VAXBI device drivers use the executive
routine IOC$ALLOSPT when they need to map a portion of a device's node
space to system virtual address space. See Section A.4.3 for a discussion of
a driver's use of IOC$ALLOSPT to map a device's VAXBI window space.
Tables A-2 and A-3 describe inputs to and output from the routine.

A-31

IOC$ALLOSPT

IOC$ALLOSPT
MODULE: IOSUBNPAG

Table A-2 Input

Register

R1

Field

BOO$GL _SPTFREL

BOO$GL _SPTFREH

IPL at execution: IPL$_SYNCH

Table A-3 Output

Register

RO

R1

R2

R3

IPL at exit: IPL$_SYNCH

A-32

Contents

Number of system page table entries to be allocated.

Contents

Lowest free virtual page number.

Highest free virtual page number.

Contents

SS$_NORMAL or 0

Number of allocated system page table entries.

Starting system virtual page number (SVPN) allocated.

Address of the base of the system page table
(MMG$GL _SPTBASE).

Index

A
Accounting Utility• 2-37
ACL protection• 2-39
Adapter• A-2
Adapter control block

See ADP
Address space

See V AXBI address space
ADP$L_BLIDR • A-10, A-14
ADP$W_BLVECTOR•A-10, A-14
ADP (adapter control block)

for generic V AXBI devices• A-10
Alternate startup command procedure

specifying with AUTOGEN • 2-7
ANAL YZE/ERRQR_LOG command• 3-12
Arbitration mode• A-25
AST routine

invoked by screen management routine• 3-7
A T$_GENBI • A-10
Authorize Utility• 2-14

/ACCESS qualifier• 2-25
/ATTRIBUTES qualifier• 2-25
AUTOLOGIN flag• 2-26
/DEFPRIVILEGES qualifier• 2-25
error messages• 2-15
/PRIVILEGES qualifier• 2-25
/PWDEXPIRED qualifier• 2-14
/PWDLIFETIME qualifier• 2-14
secondary passwords• 2-25

AUTOCONFIGURE command• A-21
AUTOGEN command procedure

enhancements• 2-6
MODPARAMS parameter~passing

mechanism• 2-6
OLDSITE parameter-passing mechanism• 2-6
QUORUM parameter• 2-7
WSMAX parameter• 2-6

B
Backplane interconnect interface chip

See BllC
BllC$L_BCICR • A-15, A-28

BllC$L_BER•A-8, A-14, A-15, A-25 to A-26
BllC$L_BICSR•A-13, A-24 to A-25
BllC$L_DTREG • A-8, A-24
BllC$L_EAR • A-27
BllC$L_EICR•A-11, A-14, A-26 to A-27
BllC$L _GPRO • A-30
BllC$L_GPR1 •A-30
BllC$L _GPR2 • A-30
BllC$L_GPR3 • A-30
BllC$L_IDR•A-14, A-27
BllC$L_IPIDR • A-27
BllC$L_IPIMR • A-27
BllC$L_IPISR • A-27
BllC$L _IPISTPF • A-29
BllC$L_SAR • A-27
BllC$L_UICR•A-11, A-14, A-29 to A-30
BllC$L_WSR•A-28 to A-29
BllC$V_BROKE • A-13
BllC$V_SST • A-13
BllC$V_STS • A-13
BllC (backplane interconnect interface chip)• A-8

clearing error register• A-13, A-14
enabling error interrupts• A-15, A-26
self test• A-13

BllC CSR space• A-5
$BllCDEF macro• A-8, A-23
BllC registers

accessing • A-5
symbolic names• A-23 to A-30

BOOTBLDR.COM command procedure•2-31
Bootstrap command procedure

alternate nonstop• 2-12
Bootstrapping

with volume shadowing• 2-13
with XDEL TA• 4-8

BUA (Bl-to-UNIBUS adapter)• A-11
Buffered 1/0 • A-18

c
CALL command

after exception breakpoint• 3-2
Channel request block

See CAB
Cold start• 2-35

lndex-1

Index

Command Definition Utility (CDU) • 3-8
Command line editing• 1-3
CONFREGL array• A-8
CONNECT command• A-22
Console diskette

building on VAX-11/782•2-26
Controller initialization routine• A-12

forking•A-16 to A-17
CRB (channel request block)

for generic V AXBI devices• A-9
CTRL/V character• 1-3
Cyclic Redundancy Check (CRC)

MACR0•4-10

D
Debugger• 3-1

new features• 3-1
predefined breakpoints in Ada programs• 3-2

Default bootstrap command procedure• 2-32
$DEF macro • 4-10
Delta/XDelta Utility (DEL T A/XDEL TA)• 4-8
Device•A-2

"offsettable" • A-11
Device drivers

Ethernet/802 • 4-7
Device initialization

performed by V AXBI device driver•
A-12 to A-17

performed by VAX/VMS•A-8 to A-12
Device registers

accessing• A-5
Direct 1/0 • A-18
DMOBOO.CMD command procedure• 2-32
OMA (direct memory access) transfer•

A-17 to A-21
DMB32 asynchronous/synchronous

multiplexer• A-19
DR32 microcode loader• 4-10
DTE states• 2-2

transitions• 2-3
DX COPY command procedure• 2-11, 2-12
Dynamic image setting• 3-1

E
Error Log Utility• 3-12
Ethernet/802 device drivers• 4-7

lndex-2

Exception breakpoint
CALL command• 3-2
STEP command• 3-2

EXE$ALLOCBUF•A-18
EXE$ALOPHYCNTG•A-20
EXE$GL_CONFREGL•A-8
EXE$010DRVPKT executive routine• 4-8
Executive routines

EXE$OIODRVPKT • 4-8

F
FDT (function-decision table) routine• A-18
File ownership• 2-39
File sharing

VAX C Run-Time Library• 3-7
Forking• A-16 to A-17

G
$GETSYI system service• 4-2 to 4-3

SYl$_CPU item code• 4-3
GET_INFO built-in procedure

string constants• 3-8
VAXTPU•3-8

Guide to Using DCL and Command Procedures on
VAX/VMS

documentation corrections• 1-1
Guide to VAX/VMS Software Installation

documentation correction• 2-5

I
IDB$L _UCBLST • A-22
IDB (interrupt dispatch block)

for generic V AXBI devices• A-9
IFNORD macro•4-7
IFNOWRT macro• 4-7
IFRD macro•4-7
IFWRT macro• 4-7
Image activation• 2-37
INIADP module• A-8 to A-12
Installation

of optional software• 2-13
Install Utility (INST ALL)• 2-36

Install Utility (INSTALL) (cont'd.)

INST ALL/GLOBAL/SUMMARY
command• 2-36

invoking• 2-36
LIST /GLOBAL/FULL command• 2-36

Interrupt destination
setting• A-14

Interrupt dispatch block

See IDB
Interrupt dispatcher• A-12
Interrupt vector

for VAX 8200 and VAX 8300 • A-11
for VAX 8530, VAX 8550, VAX 8700, and

VAX 8800•A-11
setting• A-14

IOC$ALLOSPT • A-16, A-30 to A-32
IOC$MOVFRUSER • A-20
IOC$MOVTOUSER • A-21

L
LAT terminal servers

cannot support system passwords• 2-41
Linker• 3-1

shareable image• 3-1
LINK/SHARE command• 3-1
LINK/SHARE/DEBUG command• 3-2
LINK/SHARE/NOTRACE command• 3-2
LOCKDIRWT

SYSGEN parameter• 2-9

M
MACRO

Cyclic Redundancy Check (CRC) • 4-10
documentation change• 4-10

Mail Utility (MAIL)
/SELF qualifier• 1-2

Memory

See V AXBI memory
Memory configuration

determining• 2-27
Microcode

error in• 2-30
MMG$GL_SBICONF • A-8
Monitor Utility

can monitor up to 28 nodes• 2-9
Mount Utility• 2-37

Index

Mount Utility (cont'd.)

change in jobwide support• 2-37

N
Network Control Program

documentation corrections• 2-1 to 2-5
SHOW CIRCUIT command• 2-5

NM I-to-Bl adapter• A-2
Node

See V AXBI node
Node space• A-4, A-8

mapped by VAX/VMS• A-8

0
Optional software products

installing• 2-13

p
Page files

on disks other than the system disk• 2-8
secondary • 2-7

Page table
physical address of• A-20

Page table entry
format• A-19

PL/I Run-Time Library• 3-4
Printf function

VAX C Run-Time Library• 3-7
Privileges• 2-39
PRMJNL privilege• 2-41
$PRTCTEND macro• A-13
$PRTCTINI macro• A-13

R
Record Management Service (RMS)

image activation• 2-37
Register dumping routine• A-21
Registers

See Device registers, BllC registers

lndex-3

Index

Run-Time Library
VAX Ada•3-5
VAX C•3-7
VAX PASCAL• 3-3

s
SBICONF array• A-8
SCB (system control block)

of VAX 8200 and VAX 8300•A-11
of VAX 8530, VAX 8550, VAX 8700, and

VAX 8800•A-11
Security• 2-39
Self-test status• A-25

determining• A-13
SET HOST /DTE/DIAL command

modems supported• 1-3
SET TIME command

/[NO]CLUSTER qualifier• 2-1
Shareable image

traceback information passed to• 3-1
SHOW CALLS command• 3-2
SHOW CALL_FRAME command• 4-3
SHUTDOWN.COM command procedure• 2-34
SMG$ENABLE _UNSOLICITED_INPUT • 3-7
SMG$SELBROADCAST _TRAPPING• 3-7
SMG$SET_OUT_OF_BAND_ASTS•3-7
Spooled line printer

setting up queue• 2-10
ST ART /CPU command• 2-35
STARTUP.COM• A-21
STEP command

after exception breakpoint• 3-2
Stream 1/0

VAX C Run-Time Library• 3-7
Swap files

on disks other than the system disk• 2-8
secondary• 2-7

SYSGEN parameter
LOCKDIRWT • 2-9

SYST ARTUP.COM command procedure
editing• 2-35

System control block

See SCB
System Dump Analyzer• 4-3
System Generation Utility (SYSGEN) • 2-38

loading a V AXBI device driver• A-21 to A-22
System page table entry

allocating• A-16

lndex-4

System services
$CHANGE_ACL • 4-1
$FORMA LACL • 4-1
$GETSYl•4-2to 4-3
$PARSE_ACL • 4-1
$QI0•4-3
$QIOW•4-3

T
TMPJNL privilege• 2-41
Traceback

information passed to shareable image• 3-1

u
UBA (UNIBUS Adapter)• 2-32
UCB$L_SVAPTE•A-18
UCB$V_ONLINE • A-13
UCB$W _BCNT • A-18
UCB$W_BOFF•A-18
UNIBUS device• 2-32
Unit initialization routine• A-12

forking• A-16 to A-17
User interface CSR space

enabling interrupts from• A-15

v
VAX-11/782

BOOTBLDR.COM command procedure• 2-27
bootstrap command procedure• 2-26
bootstrapping• 2-35
building a console diskette for• 2-26
reset memory procedure (RMEM.COM) • 2-27
setting registers for memory

configuration• 2-26
VAX 8200 • A-2

alternate nonstop bootstrap• 2-12
bootstrapping from HSC-controlled

disk•2-10 to 2-12
interrupt destination • A-10
new hardware configurations• 1-4

VAX 8300 • A-2
alternate nonstop bootstrap• 2-12

VAX 8300 (cont'd.)

bootstrapping from HSC-controlled
disk•2-10 to 2-12

interrupt destination • A-10
new hardware configurations• 1-4

VAX 8350
new hardware configurations• 1-4

VAX 8530 • A-2
bootstrapping with volume shadowing• 2-13
bootstrapping with XDEL TA• 4-8
interrupt destination• A-10

VAX 8550 • A-2
bootstrapping with volume shadowing• 2-13
bootstrapping with XDEL TA• 4-8
interrupt destination• A-10

VAX 8700• A-2
bootstrapping with volume shadowing• 2-13
bootstrapping with XDEL TA• 4-8
interrupt destination• A-10

VAX 8800• A-2
bootstrapping with volume shadowing• 2-13
interrupt destination• A-10

VAX Ada Run-Time Library
enhancements for unhandled exceptions• 3-5

VAXBI
address space• A-3 to A-7
device support• A-1 to A-32
errors• A-26
1/0 space• A-4
memory•A-3
node• A-2, A-8

VAX C Run-Time Library• 3-7
VAX PASCAL Run-Time Library•3-3

DEC built-in routine• 3-3
key attribute • 3-4
UDEC built-in routine• 3-3

VAX PSI
DTE state transitions• 2-3

VAXTPU (VAX Text Processing Utility)• 3-8
parameter to GET_INFO • 3-8

VAX/VMS Authorize Utility Reference Manual
documentation corrections• 2-14

VAX/VMS DCL Concepts Manual
documentation corrections• 1-1

VAX/VMS Networking Manual
documentation corrections• 2-5

VAX/VMS System Manager's Reference Manual
documentation corrections• 2-10

Verify Utility• 2-35
VMSINSTAL

installing optional products using• 2-13

Index

VMSINST AL command procedure
CHECK_NET _UTILIZATION callback• 2-36

VMSUPDATE
restrictions on use• 2-13

Volume shadowing
bootstrapping with• 2-13

VT300-series terminals• 1-3

w
Watchpoints

setting for non-static variables• 3-3
Window space• A-5

mapping•A-15 to A-16

x
X.25 packet level events• 2-2

lndex-5

Reader's Comments VAX/VMS Supplemental
Information, Version 4. 7

AA-KX21 A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

--- Do Not Tear - Fold Here and Tape -------------------~lllr--------------·
No Postage

~nmnomo™ ~:::i~=:r

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 •• 1.1 .. 1 •• 1.1 ... 1.11 .. 1

in the
United States

---- Do Not Tear - Fold Here ---·

leader's Comments VAX/VMS Supplemental
Information. Version 4. 7

AA-KX21 A-TE

lease use this postage-paid form to comment on this manual. If you require a written reply to a software
~oblem and are eligible to receive one under Software Performance Report (SPR) service, submit your
1mments on an SPR form.

t\ank you for your assistance.

rate this manual's: Excellent

ccuracy (software works as manual says) 0
ompleteness (enough information) 0
larity (easy to understand) 0
rganization (structure of subject matter) 0
gures (useful) 0
<amples (useful) 0
1dex (ability to find topic) 0
1ge layout (easy to find information) 0

would like to see more/less

rhat I like best about this manual is

rhat I like least about this manual is

found the following errors in this manual:

1ge Description

dditional comments or suggestions to improve this manual:

am using Version ___ of the software this manual describes.

ame/Title

ompany

!ailing Address

Good Fair Poor

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Dept.

Date

Phone

·---- Do Not Tear - Fold Here and Tape ------------------~111r--------------
No Postage

momoama™ ~::::~v

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 .. 1.1 ••• 1.11 .. 1

in the
United States

----- Do Not Tear - Fold Here --

