
VMS

Guide to Using VMS

Order Number AA-LAOSA-TE

Guide to Using VMS

Order Number: AA-LA05A-TE

April 1988

This manual describes general user tasks that can be performed using
the VMS operating system and is intended for users with all levels of
experience. The information contained within is applicable to all members
of the VAX and MicroVAX families of computers operating under the
control of the VMS operating system.

Revision/Update Information: This is a new manual.

Software Version: VMS Version 5.0

digital equipment corporation
maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT
DEC US RSTS

~U~UD~U™ DECwriter RSX

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO RICO* CANADA INTERNATIONAL

ZK3390

Digital Equipment Corporation Digital Equipment
P.O. Box CS2008 of Canada Ltd.

Digital Equipment Corporation
PSG Business Manager

Nashua, New Hampshire 100 Herzberg Road
03061 Kanata, Ontario K2K 2A6

Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
In Canada call 800-267-6215.

c/o Digital's local subsidiary
or approved distributor

*Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).
Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Westminster, Massachusetts 014 7 3.

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use
DIGITAL-supported devices, such as the LN03 laser printer and PostScript®
printers (PrintServer 40 or LN03R ScriptPrinter), to produce a typeset-quality
copy containing integrated graphics.

® PostScript is a trademark of Adobe Systems, Inc.

Contents

PREFACE xv

CHAPTER 1 INTRODUCING VMS AND DCL 1-1

1.1 LOGGING IN TO THE SYSTEM 1-1
1.1.1 Alternative Login Procedures 1-3
1. 1. 1. 1 Automatic Login • 1-3
1.1.1.2 Logging In over the Network • 1-3
1.1.1.3 Dialing In • 1-4
1.1.2 Logging Out of the System 1-5

1.2 USING THE DIGITAL COMMAND LANGUAGE 1-6
1.2.1 DCL Command HELP 1-7
1.2.2 The DCL Command Line 1-8
1.2.3 Prompting and System Defaults 1-11
1.2.4 Entering Parameters 1-11
1.2.5 Entering Qualifiers 1-12
1.2.5.1 Types of Qualifiers • 1-1 2
1.2.5.2 Qualifier Defaults • 1-13
1.2.6 Entering Dates and Times as Values 1-14
1.2.6.1 Absolute Time • 1-1 5
1.2.6.2 Delta Time• 1-16
1.2.6.3 Combination Time • 1-1 6

1.3 ENTERING AND EDITING DCL COMMANDS 1-17
1.3.1 Entering a DCL Command 1-19
1.3.2 Interrupting and Canceling a DCL Command 1-20
1.3.2.1 Using CTRL/T • 1-20
1.3.2.2 Using CTRL/Y • 1-21
1.3.2.3 Using CTRL/C • 1-21
1.3.3 Redirecting the Output of Commands 1-21
1.3.4 Recalling Commands 1-21
1.3.5 Editing a DCL Command 1-22
1.3.6 Controlling Screen Display 1-23
1.3.7 Representing DCL Commands with Symbols 1-23
1.3.8 Defining Terminal Keys 1-24
1.3.8.1 Key States • 1-25
1.3.8.2 Examining and Deleting Keys • 1-26

v

Contents

1.4
1.4.1
1.4. 1. 1
1.4.1.2
1.4. 1.3
1.4. 1.4
1.4. 1.5
1.4. 1.6
1.4.1.7
1.4. 1.8
1.4.2
1.4.3
1.4.3. 1
1.4.3.2
1.4.3.3
1.4.3.4
1.4.3.5
1.4.3.6
1.4.3.7
1.4.3.8

CHAPTER 2

2.1
2.1.1
2.1.2

2.2
2.2.1
2.2.2

2.3
2.3.1
2.3.2
2.3.3

2.4
2.4.1

2.5
2.5.1
2.5.1.1

vi

UTILITIES
Using the Mail Utility

Creating a Mail Subdirectory • 1-27
Sending Mail • 1-27
Reading Mail • 1-30
Creating a File from a Mail Message • 1-31
Deleting Mail • 1-32
Organizing Mail with Folders and Files • 1-32
Using the Mail Keypad • 1-34
Setting the Default Editor • 1-35

Using the Phone Utility
Using the Sort/Merge Utility

Sorting Records• 1-37
Other Types of Sorting • 1-39
Character Data Files • 1-39
Noncharacter Data Files • 1-40
Terminal Input • 1-40
Output File Organization • 1-41
Batch Job Submission • 1-41
Merging Files • 1-42

WORKING WITH FILES AND DIRECTORIES

FILES
File Names, Types, and Versions
File Characteristics

DIRECTORIES
Directory Structure
Directory Names

DEVICES
Physical Device Names
Logical Device Names
Generic Device Names

FULL FILE SPECIFICATION
Using System Default Values When Specifying Files

FILE OPERATIONS
Using Wildcards with File Specifications

The Asterisk (*) Wildcard Character • 2-14

1-26
1-27

1-36
1-37

2-1

2-1
2-2
2-4

2-6
2-6
2-8

2-8
2-9

2-10
2-10

2-11
2-12

2-13
2-14

Contents

2.5.1.2 The Percent (%) Wildcard Character • 2-1 5
2.5.2 Displaying the Contents of Files 2-15
2.5.3 Creating and Modifying Files 2-16
2.5.4 Deleting Files 2-17
2.5.5 Printing Files 2-18

2.6 DEVICE AND DIRECTORY OPERATIONS 2-20
2.6.1 Displaying Directories 2-20
2.6.2 Creating Directories 2-21
2.6.3 Deleting Directories 2-21
2.6.4 Setting a Default Directory 2-22
2.6.5 Setting a Default Device 2-23
2.6.6 Searching the Directory Structure with Search Wildcards 2-23
2.6.6.1 The Ellipsis (...) Wildcard Character • 2-23
2.6.6.2 The Hyphen (-) Wildcard Character • 2-24
2.6.6.3 Using Wildcards to Copy a Directory Structure • 2-25

CHAPTER 3 WORKING WITH PROCESSES 3-1

3.1 PROCESSES AND THE USER ENVIRONMENT 3-1
3.1.1 Programs 3-3
3.1.2 Command Procedures 3-4
3.1.3 Subprocesses 3-5
3.1.3.1 Exiting from a Subprocess • 3-6
3.1.3.2 Subprocess Context • 3-7
3.1.4 Batch Jobs 3-8
3.1.5 Submitting a Batch Job 3-8
3.1.6 Batch Job Output 3-9
3.1.7 Restarting Batch Jobs 3-9

CHAPTER 4 USING LOGICAL NAMES 4-1

4.1 CREATING LOGICAL NAMES 4-2
4.1.1 Displaying Logical Names 4-3
4.1.2 Deleting Logical Names 4-5

4.2 LOGICAL NAME TABLES 4-5
4.2.1 The Process Table 4-5
4.2.2 The Job Table 4-6
4.2.3 The Group Table 4-7
4.2.4 The System Table 4-7

vii

Contents

4.3 DIRECTORY LOGICAL NAME TABLES 4-9
4.3.1 The Process Directory Table 4-9
4.3.2 The System Directory Table 4-10

4.4 LOGICAL NAME TRANSLATION 4-11
4.4.1 Iterative Translation 4-12
4.4.2 Modifying Logical Name Translation 4-12
4.4.3 System Defaults During Logical Name Translation 4-13

4.5 LOGICAL NAME ACCESS MODES 4-13

4.6 CREATING A LOGICAL NAME TABLE 4-14

4.7 SEARCH LISTS 4-15

4.8 LOGICAL NODE NAMES 4-16

4.9 SYSTEM-CREATED LOGICAL NAMES 4-17
4.9.1 Process-Permanent Logical Names 4-17
4.9.1.1 Redefining SYS$1NPUT • 4-18
4.9.1.2 Redefining SYS$0UTPUT • 4-18
4.9.1.3 Redefining SYS$ERROR • 4-1 9
4.9.1.4 Redefining SYS$COMMAND • 4-19
4.9.2 System-Permanent Logical Names 4-20

CHAPTER 5 REPRESENTING DATA WITH SYMBOLS 5-1

5.1 DATA STORAGE 5-1

5.2 CREATING AND USING SYMBOLS 5-1

5.3 ABBREVIATING SYMBOL NAMES 5-4

5.4 DCL COMMANDS TO USE WITH SYMBOLS 5-5

5.5 SYMBOL SUBSTITUTION 5-6

5.6 STORING AND MANIPULATING DATA WITH SYMBOLS 5-7

viii

5.6.1
5.6.1.1
5.6.1.2
5.6.1.3
5.6.1.4
5.6.1.5
5.6.2
5.6.2.1
5.6.2.2
5.6.2.3
5.6.2.4
5.6.2.5

CHAPTER 6

6.1

6.2
6.2.1
6.2.2

6.3

6.4
6.4.1
6.4.2
6.4.3
6.4.4

6.5

6.6
6.6.1
6.6.2
6.6.3

6.7
6.7.1
6.7.2
6.7.3
6.7.4

Symbol Values
Character String Values • 5-7
Numeric Values • 5-8
Values Returned by Lexical Functions • 5-9
Logical Values • 5-10
Using a Symbol as a Value for Another Symbol• 5-10

Using Symbols in Expressions
Character String Expressions • 5-12
Numeric Expressions• 5-13
Logical Expressions • 5-1 5
Substr:ng Replacement and Numeric Overlays • 5-16
Order of Operations and the Results of Evaluations • 5-18

WRITING AND USING COMMAND PROCEDURES

FORMAT

EXECUTION
Changing Command Levels
Exiting from Command Procedures

DESIGNING A LOGIN COMMAND PROCEDURE

PASSING DATA
Using Parameters to Pass Data
The INQUIRE Command
The READ Command
Obtaining Data from SYS$1NPUT

RETURNING DATA

DISPLAYING DATA
Displaying Character Strings and Symbols
Displaying Text
Displaying Files

READING AND WRITING FILES (FILE 1/0)
Specifying Files in Batch Job Command Procedures
Writing to a File
Reading from a File
Modifying a File

Contents

5-7

5-11

6-1

6-1

6-2
6-3
6-4

6-4

6-6
6-6
6-9
6-9

6-10

6-11

6-11
6-12
6-12
6-13

6-13
6-13
6-13
6-15
6-15

ix

Contents

6.7.4.1 Minor Modifications • 6-16
6.7.4.2 Major Modifications • 6-1 7
6.7.4.3 Appending Records to a File • 6-18
6.7.5 Handling Input/Output (1/0) Errors 6-18

6.8 COMPLEX COMMAND PROCEDURES 6-18
6.8.1 Designing Complex Command Procedures 6-19
6.8.2 Coding Complex Command Procedures 6-20
6.8.2.1 The IF Command • 6-21
6.8.2.2 Case Statements • 6-23
6.8.2.3 Loops• 6-24
6.8.2.4 Subroutines• 6-25
6.8.3 Testing and Debugging 6-27

6.9 HANDLING ERRORS AND CTRL/Y INTERRUPTS 6-30
6.9.1 The ON Command 6-30
6.9.2 The SET [NO]ON Command 6-31
6.9.3 CTRL/Y Interrupts 6-31

6.10 RESTARTING BATCH JOBS 6-32

6.11 CLEANUP OPERATIONS 6-33

CHAPTER 7 MAINTAINING ACCOUNTS AND SYSTEM SECURITY 7-1

7.1 USER ACCOUNTS 7-1

7.2 PROTECTION 7-1
7.2.1 UIC-Based Protection 7-2
7.2.1.1 UIC Format • 7-2
7.2.1.2 Ownership and Access Categories• 7-3
7.2.1.3 Protection Masks • 7-4
7.2.1.4 Securing User Data and Devices • 7-5
7.2.2 ACL-Based Protection 7-5
7.2.2.1 Object Types • 7-6
7.2.2.2 Identifiers • 7-6
7.2.2.3 Access Control List Entries (ACE) • 7-7
7 .2.2.4 IDENTIFIER ACEs • 7-8
7.2.2.5 DEFAUL T_PROTECTION ACEs • 7-9
7.2.2.6 ALARM_JOURNAL ACEs • 7-9
7.2.3 File Protection 7-9
7.2.3.1 Default File Protection • 7-1 0

x

Contents

7.2.3.2 Explicit File Protection • 7-10
7.2.3.3 Directory Protection • 7-11
7.2.3.4 Mail File Protection • 7-11
7.2.4 Disk Volume Protection 7-11
7.2.5 Device Protection 7-12
7.2.6 Displays of Ownership and Protection 7-12

7.3 CREATING AND DELETING ACLS 7-13
7.3.1 Using the SET ACL Command 7-13
7.3.2 ACL Editor 7-15
7.3.2.1 Using Prompts • 7-1 6
7.3.2.2 Moving the Cursor• 7-17
7.3.2.3 Entering and Deleting Data • 7-17
7.3.2.4 Processing an ACE• 7-18

CHAPTER 8 EDITING FILES WITH THE EVE AND EDT EDITORS 8-1

8.1 THE EVE EDITOR 8-1
8.1.1 Beginning and Ending an Editing Session 8-1
8. 1.1. 1 Invoking EVE • 8-1
8.1.1.2 Ending an Editing Session • 8-3
8.1.2 Entering EVE Commands 8-4
8.1.2.1 Using Defined Keys to Enter EVE Commands • 8-4
8.1.2.2 Entering EVE Commands • 8-6
8.1.3 Editing Text 8-7
8.1.3.1 Moving the Cursor • 8-7
8.1.3.2 Inserting Text • 8-10
8.1.3.3 Erasing and Restoring Text • 8-1 3
8.1.3.4 Moving Text from One Location to Another • 8-1 5
8.1.3.5 Locating Text • 8-1 7
8.1.3.6 Marking Locations in Text • 8-19
8.1.3.7 Replacing Text • 8-20
8.1.4 Using the HELP Facility 8-22
8.1.5 Recovering from System Interruptions 8-23
8.1.5.1 Refreshing the Screen • 8-23
8.1.5.2 Using the Journal File • 8-23
8.1.6 Formatting Text 8-24
8.1.7 Using Buffers 8-31
8.1.7.1 Listing Buffers • 8-32
8.1.7.2 Displaying the Contents of the Messages Buffer • 8-32
8.1.7.3 Editing Two Buffers • 8-33
8.1.7.4 Reading and Writing Files • 8-34 .
8.1.8 Using Windows 8-35
8.1.8.1 Editing One Buffer • 8-35
8.1.8.2 Editing Two Buffers • 8-36

xi

Contents

8.1.9 Defining Keys 8-39
8.1.9.1 Defining Keys to Execute an EVE Command • 8-39
8.1.9.2 Defining Keys to Enter a Learn Sequence • 8-40
8.1.9.3 Defining a GOLD Key • 8-41
8.1.9.4 Saving Key Definitions and Learn Sequences • 8-43
8.1.9.5 Creating Initialization Files • 8-44
8.1.10 Using the TPU Command 8-45
8.1.11 Using DCL Within EVE 8-45
8.1.11.1 Executing a DCL Command • 8-46
8.1.11.2 Creating a Subprocess • 8-46

8.2 THE EDT EDITOR 8-46
8.2.1 Invoking and Terminating EDT 8-47
8.2.1.1 Invoking EDT • 8-4 7
8.2.1.2 Terminating EDT • 8-48
8.2.2 Entering EDT Commands 8-48
8.2.2.1 Entering EDT Line Commands • 8-48
8.2.2.2 Entering Keypad Commands • 8-49
8.2.2.3 Canceling EDT Commands • 8-51
8.2.3 Getting HELP in EDT 8-51
8.2.3.1 Getting HELP on Keypad-Editing Commands • 8-51
8.2.3.2 Getting HELP on Line-Editing Commands • 8-52
8.2.3.3 Getting HELP on Nokeypad-Editing Commands • 8-52
8.2.4 Changing Editing Modes 8-52
8.2.4.1 Changing from Keypad to Line Editing • 8-52
8.2.4.2 Changing from Line to Keypad Editing • 8-52
8.2.4.3 Entering Line-Editing Commands from Keypad Mode • 8-53
8.2.5 Recovering from Interruptions 8-53
8.2.6 EDT Keypad Editing 8-54
8.2.6.1 Manipulating the Cursor • 8-54
8.2.6.2 Inserting Text • 8-59
8.2.6.3 Deleting and Restoring Text • 8-59
8.2.6.4 Locating Text • 8-62
8.2.6.5 Substituting Text• 8-64
8.2.6.6 Moving Text • 8-65
8.2.6.7 Moving Text Within the File• 8-65
8.2.6.8 Using Multiple Buffers • 8-69
8.2.7 Controlling EDT Sessions 8-71
8.2.7.1 Startup Command Files • 8-71
8.2.7.2 Controlling Screen Format with SET Commands • 8-72
8.2.7.3 Controlling Editing Functions with SET Commands • 8-72
8.2.7.4 Defining Keys• 8-73
8.2.7.5 Defining EDT Macros• 8-74

xii

CHAPTER 9 PROCESSING FILES WITH DIGITAL STANDARD
RUNOFF

9.1 FORMATTING TEXT
9.1.1 Filling and Justifying Text
9.1.2 Adjusting Margins and Centering Text
9.1.3 Formatting Paragraphs
9.1.4 Formatting Literal Text
9.1.5 Formatting Lists
9.1.5.1 Numbered Lists• 9-8
9.1.5.2 Bulleted Lists • 9-9
9.1.5.3 Nested Lists • 9-1 0
9.1.5.4 Lists Beginning with Letters and Roman Numerals • 9-1 0
9.1.6 Leaving Space on a Page
9.1.7 Formatting Notes
9.1.8 Formatting Footnotes
9.1.9 Bolding and Underlining Text

9.2 LAYING OUT A DOCUMENT
9.2.1 Chapters and Appendixes
9.2.2 Sections
9.2.3 Running Heads
9.2.4 Pagination

9.3 PROCESSING DSR FILES
9.3.1 Producing a Table of Contents
9.3.2 Producing an Index
9.3.3 Printing Output Files

APPENDIX A CHARACTER SETS

A.1

A.2

A.3

ASCII CHARACTER SET

ASCII AND DEC MULTINATIONAL CHARACTER SET
TABLES

DEC MULTINATIONAL CHARACTER SET

Contents

9-1

9-1
9-4
9-5
9-6
9-7
9-8

9-11
9-11
9-12
9-12

9-13
9-14
9-14
9-16
9-17

9-17
9-17
9-18
9-20

A-1

A-1

A-1

A-5

xiii

Contents

APPENDIX B EXPRESSIONS

INDEX

FIGURES
2-1

8-1

8-2

TABLES
1-1

1-2

2-1

2-2

4-1

4-2

4-3

4-4

4-5

4-6

5-1

5-2

A-1

A-2

A-3

xiv

Directory Structure

Editing Keys-VT200-Series and VT300-Series
Terminals

Editing Keys-VT100-Series Terminals

Built-In Commands

Keys That Execute Terminal Functions

Default File Types

File Specification Defaults

Default Process Logical Names

Default Job Logical Names

Default System Logical Names

Default Process Directory Logical Names

Default System Directory Logical Names

Equivalence Names for Process-Permanent Logical
Names

DCL Commands to Use with Symbols

Determining the Value of an Expression

Graphical Representation of the ASCII Character Set

Graphical Representation of the DEC Multinational
Extension to the ASCII Character Set

Abbreviations and Descriptions of the DEC Multinational
Character Set

B-1

2-7

8-5

8-6

1-7

1-17

2-2

2-12

4-6

4-7

4-8

4-9

4-10

4-17

5-5

5-18

A-2

A-4

A-6

Preface

This manual provides an overview of the VMS operating system and is
designed to support general users in their daily computing tasks.

Intended Audience
This manual is intended for all general users.

Document Structure
This manual includes the following chapters:

• Chapter 1-Introducing VMS and DCL

• Chapter 2-Working with Files and Directories

• Chapter 3-Working with Processes

• Chapter 4-Using Logical Names

• Chapter 5-Representing Data with Symbols

• Chapter 6-Writing and Using Command Procedures

• Chapter 7-Maintaining Accounts and System Security

• Chapter 8-Editing Files with the EVE and EDT Editors

• Chapter 9-Processing Files with DIGITAL Standard Runoff

Two appendixes contain the following information:

• ASCII character set

• ASCII and DEC multinational character set tables

• DEC Multinational Character Set

• Expressions

xv

Preface

Conventions

xvi

Convention

CTRL/C

$SHOW TIME
05-JUN-1988 11 :55:22

$ TYPE MYFILE.DAT

input-file, ...

[logical-name]

quotation marks
apostrophes

Meaning

In examples, a key name (usually abbreviated)
shown within a box indicates that you press
a key on the keyboard; in text, a key name is
not enclosed in a box. In this example, the key
is the RETURN key. (Note that the RETURN
key is not usually shown in syntax statements
or in all examples; however, assume that you
must press the RETURN key after entering a
command or responding to a prompt.)

A key combination, shown in uppercase with a
slash separating two key names, indicates that
you hold down the first key while you press the
second key. For example, the key combination
CTRL/C indicates that you hold down the key
labeled CTRL while you press the key labeled C.
In examples, a key combination is enclosed in a
box.

In examples, system output (what the system
displays) is shown in black. User input (what
you enter) is shown in red.

In examples, a vertical series of periods, or
ellipsis, means either that not all the data that
the system would display in response to a
command is shown or that not all the data a
user would enter is shown.

In examples, a horizontal ellipsis indicates
that additional parameters, values, or other
information can be entered, that preceding
items can be repeated one or more times, or
that optional arguments in a statement have
been omitted.

Brackets indicate that the enclosed item is
optional. (Brackets are not, however, optional
in the syntax of a directory name in a file
specification or in the syntax of a substring
specification in an assignment statement.)

The term quotation marks is used to refer
to double quotation marks (") . The term
apostrophe (') is used to refer to a single
quotation mark.

1 Introducing VMS and DCL

Your VAX computer operates under the control of the VMS (Virtual Memory
System) operating system. VMS is an interactive system: while you are
logged in to the computer, you and the system conduct a dialogue of
command and response. You use DCL, the DIGITAL Command Language
interpreter, to communicate with VMS. DCL provides you with over 200
commands and functions to use in communicating with VMS to accomplish
your computing tasks.

This chapter describes basic interaction with the VMS operating system. In it,
you will learn how to log in to the system, how to use DCL to communicate
with the system, how to customize your computing environment, how to get
online help, and how to use two system utilities that let you communicate
with other users.

Some of the topics discussed in this chapter require you to be familiar with
your terminal. For information on setting up or using your terminal, see the
owner's manual supplied with your terminal.

1 .1 Logging In to the System
In order to interact with the VMS operating system, you must log in to
an account. Logging in consists of identifying yourself to the system as
an authorized user. Your system manager or whoever authorizes system
use at your installation usually sets up accounts. This person provides you
with your user name and password. Your user name is a unique name that
identifies you to the system and distinguishes you from other users. In
many cases, a user name is your first or last name. Your password is for
your protection. If you maintain its secrecy, other users cannot use system
resources under your user name. '

Use the following procedure to log in to the system:

1 Make sure your terminal is plugged in and the power is turned on.

2 Press RETURN to signal the system that you want to log in. (You may
need to press RETURN several times.) The system responds by displaying
a prompt for your user name.

3 Enter your user name and press RETURN. The system displays your user
name on the screen as you type it. (You have about 30 seconds to do this,
otherwise the system "times out" and you must start the login procedure
again.) After you enter your user name and press RETURN, the system
prompts you for your password.

4 Enter your password and press RETURN. The system does not display
your password as you type it; this preserves the secrecy of your password.
The password you enter is compared with the encrypted password stored
in a system file called the User Authorization File (UAF). (See Section 7.1
for more information about the UAF file.)

1-1

Introducing VMS and DCL
1 .1 Logging In to the System

1-2

If you make a mistake entering your user name or password, or your
password has expired, the system displays the message "User authorization
failure," and you are not logged in. This message means that you made a
typing mistake when entering your user name or password, or that your
user name or password is incorrect. If you make a mistake entering your
user name or password, press RETURN and try again. If your password has
expired or you have any other problems logging in, get help from the person
who set up your account.

Some accounts are set up to require two passwords. If you see a second
password prompt, enter the second password required to access that account.

If none of these prompts ($, Password:, or Username:) appears when you
press RETURN, a system password may be required to log in to your system.
If you know the system password, type it and press RETURN. If you do not
know it, see the person in charge of your system.

If your login is successful, a dollar sign symbol ($) is displayed in the
left margin of your terminal. This dollar sign is a prompt that VMS uses
to indicate you are at DIGITAL Command Language (DCL) level and can
begin entering DCL commands. When you log in to the system and work
interactively with DCL, you are at command level 0. When you execute a
program interactively, you are placed at command level l; when the program
completes execution, you are returned to command level 0.

The following example shows a successful login:

[fil]
Username: CASEY ~
Password: ~

$

Welcome to VAX/VMS version 5.0 on node MARS
Last interactive login on Friday, 31-DEC-1988 08:41
Last non-interactive login on Thursday, 30-DEC-1988 11:05

If your account was set up by someone else, immediately change your
password after you log in for the first time. You should also change your
password frequently to ensure system security. To change your password,
enter the DCL command SET PASSWORD. Enter your old password at
the first prompt and press RETURN. Enter your new password at the next
prompt and press RETURN. Finally, enter your new password again and
press RETURN to confirm your choice. The following example shows what
you see:

$ SET PASSWORD
Old password:
New password:
Verification:

(If you are managing your own system, see the Guide to Setting Up a VMS
System for instructions on setting up a user account and establishing a
password.)

Each time you log in, the system automatically executes up to two login
command procedures. A command procedure is a file that contains a list
of DCL commands. When a command procedure is executed, the DCL
interpreter reads the file and executes the commands it contains.

If your system manager has set up a system login command procedure, it
is executed when you log in. This command procedure allows your system
manager to ensure that certain commands are always executed when you and
other users on your system log in.

1.1.1

Introducing VMS and DCL
1 .1 Logging In to the System

After executing the system login command procedure, the system executes
your personal login command procedure, if one exists. Your personal login
command procedure allows you to customize your computing environment.
The commands contained in it are executed every time you log in. The person
who set up your account may have placed a login command procedure in
your top level directory. (Unless your account has been specially modified to
do otherwise, the system automatically places you in your top level directory
when you log in.) If a login command procedure is not there, you can create
one yourself, name it LOGIN .COM, and place it in your top level directory
unless your system manager tells you otherwise. DCL and DCL commands
are discussed in Section 1.2. Directories, including your top level directory,
are discussed in Chapter 2. A sample personal login command procedure is
described in Section 6.3.

When you log in, an environment is created from which you can enter
commands. This environment is called your process. The system obtains the
characteristics that are unique to your process from the user authorization file
(UAF). The UAF lists those users permitted to access the system and defines
the characteristics for each user's process. The system manager usually
maintains the UAF. See Chapter 3 for more information about processes.

Alternative Login Procedures

1.1.1.1

1.1.1.2

The standard login procedure described in the preceding section may not fit
your needs if you must log in to a terminal assigned to a specific account,
access a system other than your own, or dial in to your system by telephone.
The following sections describe these procedures.

Automatic Login
You may need to log in to a terminal that is assigned to a particular account.
This procedure, called automatic login, permits you to log in without
specifying a user name. To log in, turn on the terminal and press the
RETURN key. Either the DCL or password prompt appears. If the DCL
prompt appears, you are logged in. If the password prompt appears, type the
password of the account associated with the terminal and press RETURN.
(The password is not displayed on the screen.) If your login is successful, you
see the DCL dollar sign prompt that VMS uses to indicate you are at DCL
command level and can begin entering commands.

Logging In over the Network
Your system may be part of a DECnet-VAX network. VMS systems linked
together in a DECnet network are able to communicate with each other and
share information and resources. Each system in the network is called a
network node and is identified by a unique node name and address. When
you are logged in to a network node, you can communicate with every other
node in the network. The node at which you are logged in is called the local
node; the other nodes on the network are called remote nodes.

If you have access to an account on a remote node, you can log in to that
account from your local node and use the facilities of that remote node while
remaining physically connected to your local node.

The following example shows how to access a remote node on the network
using the DCL command SET HOST. HUBBUB is the name of the remote
node.

$ SET HOST HUBBUB

1-3

Introducing VMS and DCL
1 .1 Logging In to the System

~ .1.1.3

1-4

You can then log in to your account on the remote node using the remote
node's login procedure. When you use the SET HOST command to log in
to a remote node, you can perform any operation on the remote node as
though it were your local node. Note that the remote node need not be a
VMS system. If the network link cannot be established, you receive an error
message.

If you want to abort the login procedure, enter CTRL/Z at the user name or
password prompt or enter CTRL/Y twice. The host system should respond
with the question, "Are you repeating "Y to abort the remote session?"
Answering Y (uppercase or lowercase) aborts the remote session.

You can terminate a remote session in two ways:

• Use the remote system's logout procedure (for example, on a VMS
system, use the LOGOUT command).

• Press CTRL/Y twice to obtain the host system's prompt that asks whether
you want to abort the remote session. Answer Y if you want to abort the
remote session. This method works regardless of the system running on
the remote node.

When you terminate a remote session, the message "%REM-S-END, control
returned to node _NODENAME::" is displayed, and you are returned to the
system from which you made the remote node connection.

If the DECnet network has made intermediate connections for you and one
of the intermediate systems goes down, DECnet either attempts to reroute
the connection or waits a few seconds to determine whether the system will
recover. If DECnet is able to recover the connection, the interruption may
be so brief that you do not notice it, or it may last as long as 60 seconds. If
DECnet cannot recover the connection, the remote session is terminated and
the message "Path lost to partner" may be displayed.

See the VMS DCL Dictionary for more information about the DCL command
SET HOST. For more information about networking and DECnet, see the
Guide to DECnet-VAX Networking.

Dialing In
Dialing in allows you to communicate with your system by telephone. To
dial in to your system, you need the following items:

• Modem (or data set)-A modem is a piece of hardware that is
independent of the VMS system. The user's manual that comes with
the modem should describe how to connect the modem to a telephone
line and a terminal.

• Terminal-You cannot dial in unless the transmission speed (baud rate)
of the terminal agrees with the baud rate of the modem and the modem
terminal characteristic is set. To set the baud rate for VT200- and VT300-
series terminals, select the "Comm" category in the Set-Up Directory. To
set the baud rate for a VTlOO series terminal, you must be in SET-UP
B. To enter the Set-Up Directory, press the SET-UP key. Press the key
labeled A/B to toggle to SET-UP B.

To set the modem terminal characteristic, use the DCL command
SET TERMINAL/MODEM. If your terminal has the modem terminal
characteristic set (the DCL command SHOW TERMINAL lists the terminal
characteristics set for your terminal), typing the SET
TERMINAL/NOMODEM command causes the system to log you out.

1.1.2

Introducing VMS and DCL
1 .1 Logging In to the System

See your terminal's installation manual for information on using the
Set-Up Directory to set the baud rate and other terminal characteristics.

• Manual login account-If your account is set up for automatic login, you
cannot dial in to it. Either change the account to a manual login account
(one where you must type your user name) or use a different account.

• Telephone number for the system-To dial in, you must know the
telephone number for your system. Get the telephone number from your
system manager.

Once the terminal is receiving the signal through the telephone line,
follow the conventions your site has instituted for remote login. When
communication is established, your system should respond with the DCL
dollar sign prompt.

If you are managing your own system, you can ensure system security by
disallowing dialup accounts with null passwords.

Logging Out of the System
When you finish using the system, always log out. This prevents
unauthorized users from accessing your account and the system at large.
It is also a wise use of system resources: the resources you no longer need
are freed for use by others.

To log out, enter the LOGOUT command, which can be abbreviated as LO.
You see a display confirming that you are logged out of the system that looks
similar to the following:

$ LOGOUT
HARRIS logged out at 31-DEC-1988 12:42:48.12

You can log out of the system only when you are at the DCL prompt. You
cannot enter the LOGOUT command while you are compiling or executing
a program, using an editor (such as EDT or EVE), or running a utility (such
as MAIL). First you must exit the program, editor, or utility and receive the
DCL prompt. It is possible to exit by entering CTRL/Y, but this is not always
advisable. See Section 1.3.2.2 for more information about using CTRL/Y.

To find out how much time you spent at the terminal (elapsed time), how
much computer time you used (charged CPU time), and other accounting
information, include the /FULL qualifier to the LOGOUT command as
follows:

$ LOGOUT/FULL
SIMPSON logged out at 31-DEC-1988 12:42:48.12

Accounting information:
Buffered I/0 count: 8005 Peak working set size: 212
Direct I/0 count: 504 Peak virtual size: 770
Page faults: 1476 Mounted volumes: 0
Charged CPU time:O 00:00:50.01 Elapsed time:O 02:27:43.06

If you are logging out from a dialup terminal, enter the LOGOUT command
with the /HANGUP qualifier. This command causes the system to break the
connection to the dialup line after you log out.

1-5

Introducing VMS and DCL
1.2 Using the DIGITAL Command Language

1.2 Using the DIGITAL Command Language

1-6

The DIGITAL Command Language (DCL) is the language you use to
communicate with the VMS operating system. DCL commands let you
do the following:

• Get information about the system

• Work with files

• Work with disks, magnetic tapes, and other devices

• Modify your work environment

• Develop and execute programs

• Provide security and ensure that resources are used efficiently

DCL commands are usually verbs that describe what you want the system to
do. In response to the DCL dollar sign ($) prompt, you enter a command (in
upper- or lowercase). The following example shows how to enter the DCL
command SHOW TIME:

$ SHOW TIME [ill]

The system responds by displaying the current date and time and returns the
DCL prompt to indicate it is ready to accept another command:

31-DEC-1988 15:41:43
$

You can use DCL in the following two modes:

• Interactive-In interactive mode, you enter commands from your
terminal. One command has to finish executing before you can enter
another.

• Batch-In batch mode, the system creates another process to execute
commands on your behalf. Batch jobs and network processes use DCL
in batch mode. A process is an environment created by the system that
makes it possible for you to work with the system. A batch job is a
command procedure or program that is submitted to the operating system
for execution as a separate user process. After you submit the command
procedure for batch execution, you can continue to use your terminal
interactively. (See Chapter 3 for more information about processes and
batch jobs.)

When you type a command and press RETURN, it is read and translated
by the DCL interpreter. The way the command interpreter responds to
a command is determined by the type of command entered. The three
types of commands are as follows:

Built-in commands-These commands, listed in Table 1-1, are
built into the DCL interpreter. DCL executes a built-in command
internally.

Commands that invoke programs-DCL calls another program
to execute the command rather than executing it internally. The
program invoked to execute a command is referred to as a command
image. This command image can be either an interactive program
like MAIL or a noninteractive program like COPY. Parameter and
qualifier information (which modify the command) are passed to the
program. Most commands not listed in Table 1-1 are in this category.

1.2.1

Introducing VMS and DCL
1.2 Using the DIGITAL Command Language

Foreign commands-A symbol that executes an image is referred
to as a foreign command. A foreign command executes an image
whose name is not recognized by the command interpreter as a DCL
command. The following example defines the symbol FUN as a
foreign command. (No DCL command FUN exists.)

$FUN := $DISK1:[ROY.PROGRAMS]GAMES.EXE

The request to execute the image GAMES.EXE is implied in the
symbol definition by the presence of the dollar sign. (File names
with a file type EXE are always executable images.) Once you equate
the symbol FUN to the file specification shown, you can execute the
image GAMES.EXE by typing FUN.

See Chapter 5 and the VMS DCL Concepts Manual for information
about defining symbols. See Chapter 3 for a description of images.
Chapter 2 describes file names, file types, and file specifications.

Table 1-1 Built-In Commands

= == ·= ·== ALLOCATE ASSIGN

ATTACH CALL CANCEL

CLOSE CONNECT CONTINUE

CREATE/LOGICAL_NAME_ TABLE DEALLOCATE DEASSIGN

DEBUG DECK DEFINE

DEFINE/KEY DELETE/KEY DELETE/SYMBOL

DEPOSIT DISCONNECT ENDSUBROUTINE

EOD EXAMINE EXIT

GO SUB GOTO IF

INQUIRE ON OPEN

READ RECALL RETURN

SET CONTROL SET DEFAULT SET KEY

SET ON SET OUTPUT _RA TE SET PROMPT

SET PROTECTION/DEFAULT SET UIC SET VERIFY

SHOW DEFAULT SHOW KEY SHOW PROTECTION

SHOW QUOTA SHOW STATUS SHOW SYMBOL

SHOW TIME SHOW TRANSLATION SPAWN

STOP SUBROUTINE WAIT

WRITE

DCL Command HELP
You can obtain online documentation for any DCL command by invoking the
HELP facility. To use the HELP facility in its simplest form, enter the DCL
command HELP. HELP displays a list of topics and the Topic? prompt. If
you want to see information on one of the topics, type the topic name after
the prompt. The system displays information on that topic. (Command and
topic names can be abbreviated.)

1-7

1.2.2

Introducing VMS and DCL
1.2 Using the DIGITAL Command Language

If the topic has subtopics, HELP lists the subtopics and displays the Subtopic?
prompt. If you want information on one of the subtopics, type the name after
the prompt. If you want information on another topic, press RETURN. You
can ask for information on another topic when HELP displays the Topic?
prompt. If you want to exit the HELP facility, press RETURN again to return
to DCL level. At any time, press CTRL/Z to exit.

If you know the command you need information about, type HELP and the
command name.

If you need help but do not know what command or system topic to specify,
enter the command HELP with the word HINTS as a parameter. Each task
name listed in the HINTS text is associated with a list of related command
names and system information topics.

Following is a sample HELP display for the DCL command SHOW USERS:

$ HELP SHOW USERS

SHOW

USERS

Displays the terminal name, username, and process
identification code (PID) of either specific interactive
users or all interactive users on the sytem.

Format:

SHOW USERS [username]

Additional information available:

Parameters Command_Qualif iers
/OUTPUT
Examples

SHOW USERS Subtopic?

You can also obtain help while you are using an interactive utility. Utilities
are programs that are invoked with DCL commands. To get help while
you are using an interactive utility, type HELP at the utility prompt (and
press RETURN) just as you would at DCL level. See Section 1.4 for more
information about VMS utilities.

The DCL Command Line

1-8

DCL, like any language, has its own vocabulary and usage rules. The
vocabulary consists of commands, parameters, and qualifiers, which are
strung together in a way that DCL can interpret. The way in which the parts
of a command line are put together is referred to as the command line syntax.
DCL command line syntax follows the following general format shown.
(Items in square brackets [] are optional and may not be required by a specific
command.)

[$] [label:] command [/qualifier[=value] ...] [parameter[/qualifier ...]]

Introducing VMS and DCL
1.2 Using the DIGITAL Command Language

The DCL command line can contain the following components:

$

Label

Command

Parameter

Qualifier

Value

The dollar sign is the DCL prompt. When you work
interactively with DCL, DCL displays the prompt when it is
ready to accept a command. When you write a command
procedure, you must type the dollar sign at the beginning of
each line.

Identifies a line in a command procedure. Use labels
only within command procedures, which are described in
Chapter 6.

Specifies the name of the command.

Specifies what the command acts upon. You must position
parameters in a specified order within the command. The DCL
command descriptions in the VMS DCL Dictionary describe
what parameter values are allowed for each command and
where they must be placed. Examples of parameter values
include file specifications, queue names, and logical names.

Modifies the action taken by the command. Some qualifiers
can modify parameters. Some can accept values. The DCL
command descriptions in the VMS DCL Dictionary indicate
whether a specific qualifier can accept a value and what kind
of value is acceptable.

Modifies a qualifier and is often preceded by an equal sign.
A value can be a file specification, a character string, a
number, or a DCL keyword. A keyword is a word reserved
for use in certain specified syntax formats. You must use
keywords exactly as listed in the description of the particular
DCL command you want to specify. For example, SYSTEM,
OWNER, GROUP, and WORLD are DCL keywords. A DCL
keyword can also have a value.

Following is an example of a DCL command line:

$ PRINT /COPIES=5 LAUNDRY. LIS ffig]

In the previous example, the elements are as follows:

• $is the DCL prompt.

• PRINT is a command.

• /COPIES is a qualifier that modifies the command.

• 5 is a value that modifies the qualifier.

• LAUNDRY.LIS is a parameter (in this case the parameter is a file
specification).

In some cases (such as DELETE/ENTRY or SHOW QUEUE), a command
is coupled with a parameter or qualifier. In these cases, the command and
parameter or qualifier are used as a pair and cannot be separated. If you
specify additional parameters or qualifiers, they must follow the command
pair.

The following example shows a command pair that contains a command
(SHOW) and a parameter (QUEUE). The additional parameter LN03_PRINT,
which specifies the queue name whose jobs you want displayed, is specified
after the command pair.

1-9

Introducing VMS and DCL
1.2 Using the DIGITAL Command Language

1-10

$ SHOW QUEUE LN03_PRINT

Observe the following rules when entering DCL commands:

• You can use any combination of uppercase and lowercase letters. The
DCL interpreter translates lowercase letters to uppercase. Upper- and
lowercase characters in parameter and parameter qualifier values are
equivalent unless enclosed in quotation marks.

• Separate the command name from the first parameter with at least one
blank space. Separate each additional parameter from the previous
parameter with at least one blank space. Begin each qualifier with a slash
(/); the slash serves as a separator and need not be preceded by blank
spaces or tabs.

• You may need more than one line on your terminal screen to type
a command line. Continue the command line onto the next line by
terminating it with a hyphen and pressing RETURN. The system responds
to this combination of a hyphen and RETURN with an underscore (-)
followed by the dollar sign prompt; you continue typing the command
line after this prompt. (A single command line cannot exceed 256
characters.) A line beginning with an underscore means that the system
is waiting for your response, as shown in the following example:

$ COPY/LOG FORMAT.TXT,FIGURE.TXT,ART_WORK.TXT -
_$ SAVE.TXT

Note that you must include the appropriate spaces between command
names, parameters, and so on. Pressing RETURN after the hyphen does
not add a space.

• A command line can contain a maximum of 128 elements (for example,
a file specification or qualifier). Each element in a command must not
exceed 255 characters. The entire command must not exceed 1024
characters after all symbols and lexical functions are converted to their
values. (You use symbols, described in Chapter 5, to pass information
to the system in an abbreviated manner. A lexical function, described in
Chapter 6, obtains information from the system, including information
about system processes, batch and print queues, and user processes, and
then substitutes the result of the operation for itself.)

• You can abbreviate any command name by typing only the first four
characters. You can abbreviate a command name to fewer than four
characters as long as the abbreviated name remains unique among all
DCL command names.

For example, the following commands are equivalent:

$ PR/C=2 FORMAL_ART.TXT
$ PRINT/COPIES=2 FORMAL_ART.TXT

In interactive mode, you will work faster if you abbreviate. Do not
abbreviate commands in command procedures because your command
procedure will be difficult to read. Also, the abbreviations might not be
valid if new DCL commands are added at a later date.

Other rules governing the format of commands apply mainly to their use
in command procedures. See Chapter 6 for more information about using
commands in command procedures.

1.2.3

1.2.4

Introducing VMS and DCL
1.2 Using the DIGITAL Command Language

Prompting and System Defaults
Some items must be entered on the command line. If you do not enter them,
the system displays a prompt and asks you to supply the missing information.
In the following example, the TYPE command expects a file specification.
Because a file specification is a required parameter, if you do not enter one,
the system requests it. A line beginning with an underscore (-) means the
system is waiting for your response.

$ TYPE
_File: WATER.TXT

When you are prompted for an optional parameter, press RETURN to omit it.
At any prompt, you can enter one or more of the remaining parameters and
any additional qualifiers.

If you press CTRL/Z after a command prompt, DCL ignores the command
and redisplays the DCL prompt.

Some items need not be specified on the command line. These are called
defaults. When DCL does something by def a ult, it assumes that you want
a command to use certain values or to take certain actions without your
having to explicitly specify them. In general, the values and actions are those
considered normal or expected by users.

For example, if you do not specify the number of copies as a qualifier for
the PRINT command, DCL uses the default value of 1. Unless you specify
otherwise, DCL assumes that you have chosen the default. You can override
this default behavior and print multiple copies of a file by specifying the
following:

$ PRINT/COPIES=4 MYFILE.TXT

DCL supplies default values in several areas, including command parameters
and qualifiers. Parameter defaults are described in the following section;
qualifier defaults are described in Section 1.2.5.2.

Entering Parameters
DCL supplies default values for some command parameters. The parameters
accepted by a command as well as the specific command parameter defaults
supplied by DCL are described in each command description in the VMS DCL
Dictionary. The following rules apply when specifying parameters:

• Square brackets ([]) indicate optional items. In the following example,
you do not have to enter a file specification:

DIRECTORY [file-spec]

Anything not enclosed in square brackets is required. In the following
example, you must enter a device name:

SHOW PRINTER device-name

• Place required parameters to the left of optional parameters.

• Precede an output file parameter with an input file parameter. In the
following example, the input file, LISTS.TXT, is copied to the output file,
FORMAT.TXT:

$COPY LISTS.TXT FORMAT.TXT

1-11

1.2.5

Introducing VMS and DCL
1.2 Using the DIGITAL Command Language

The following example reverses the order of the parameters, copying the
input file, FORMAT.TXT, to the output file, LISTS.TXT:

$ COPY FORMAT.TXT LISTS.TXT

• A parameter can be one item or a series of items. If you enter a series of
items, separate them with commas (,) or plus signs (+). Any number of
spaces or tab characters can precede or follow a comma or a plus sign.
Note that some commands regard the plus sign as a concatenator, not as
a separator. The parameter section of each DCL command description in
the VMS DCL Dictionary describes how each command interprets commas
and plus signs.

The following command syntax line shows that you can optionally enter
a list of files as the parameter:

DELETE file-spec[, ...]

The following example shows how to specify a list of parameters. Here,
three files are copied to a fourth file. The three file specifications
PLUTO.TXT, SATURN.TXT, and EARTH.TXT-constitute the first
parameter. PLANETS.TXT is the second parameter.

$COPY PLUTO.TXT,SATURN.TXT,EARTH.TXT PLANETS.TXT

Entering Qualifiers

1.2.5.1

1-12

The qualifiers accepted by a command are described in each command
description in the VMS DCL Dictionary. The DCL command description
also indicates whether a qualifier accepts a value and what kind of value is
required.

You can abbreviate any qualifier name by typing only the first four characters
(not counting the slash). You can use fewer than four characters to abbreviate
a qualifier name as long as the abbreviated name remains unique among all
qualifier names for the same ·command.

Although you are never required to specify a qualifier, commands have
defaults automatically applied. You need to be aware of the defaults that
apply for each qualifier. The following sections describe types of qualifiers
and qualifier defaults.

Types of Qualifiers
The three types of qualifiers are as follows:

• Command qualifiers-A command qualifier modifies a command.
Although it is a good practice to place the qualifier after the command
name (or, if you are specifying multiple qualifiers, after other command
qualifiers that follow the command name), a command qualifier can
appear anywhere in the command line.

In the following example, /QUEUE is a command qualifier. The files
SATURN.TXT and EARTH.TXT are queued to the LN03_PRINT queue.

$ PRINT/QUEUE=LN03_PRINT SATURN.TXT,EARTH.TXT

1.2.5.2

Introducing VMS and DCL
1.2 Using the DIGITAL Command Language

• Positional qualifiers-A positional qualifier can modify commands or
parameters and has different meanings depending on where you place
it in the command string. If you place a positional qualifier after the
command but before the first parameter, it affects the entire command
string. If you place a positional qualifier after a parameter, it affects only
that parameter.

In the following example, the first PRINT command requests two copies
of the files SPRING.SUM and FALL.SUM. The second PRINT command
requests two copies of the file SPRING.SUM, but only one copy of
FALL.SUM.

$ PRINT/COPIES=2 SPRING.SUM.FALL.SUM
$ PRINT SPRING.SUM/COPIES=2,FALL.SUM

• Parameter qualifiers-A parameter qualifier can be used only with certain
types of parameters, such as input and output files.

For example, the BACKUP command accepts several parameter qualifiers
that apply only to input and output file specifications. In the following
example, the /CREATED and /BEFORE qualifiers, which can be specified
only with input files, select specific input files for the backup operation.
(For the purposes of this example, multiple copies of the file MYFILE.TXT
exist. Only those versions that were created before December 31, 1988,
are selected for the backup operation.)

$BACKUP MYFILE.TXT/CREATED/BEFORE=31-DEC-1988 NEWFILE.TXT

Qualifier Defaults
When you omit a specific qualifier from the command line, the system
responds with default behavior. For example, when you delete a file with
the DELETE command, the system by default does not request confirmation
of each delete operation. However, by specifying the DELETE/CONFIRM
command, you can override that default behavior and request that you be
prompted for confirmation before each file is deleted.

You can specify qualifiers in several ways. The qualifier syntax required by
a specific DCL command is given in the command descriptions in the VMS
DCL Dictionary. The following paragraphs explain the syntax used to describe
qualifiers and their defaults:

• Qualifiers with positive and negative forms-These qualifiers have a
value of true or false. You do not specify a value, but indicate a true
value by simply naming the qualifier. Negate the qualifier by inserting
the prefix NO.

For example, the /CONFIRM qualifier can be expressed positively or
negatively. If you omit the qualifier from the command line, the default
action is /NOCONFIRM. The syntax for the /CONFIRM qualifier is given
in a DCL command description as follows:

/CONFIRM
/NOCONFIRM (default)

• Qualifiers that require values-If you use a qualifier that accepts a value,
you must specify a value. If you omit the qualifier completely, the default
value is applied. For example, if you use the /COPIES qualfier, you must

1-13

1.2.6

Introducing VMS and DCL
1.2 Using the DIGITAL Command Language

provide a numeric value. If you omit the /COPIES qualfier, the default
is /COPIES=l. The syntax for the /COPIES qualifier is given in a DCL
command description as follows:

/COPIES=n

If the qualifier accepts a list of values, you must enclose the values in
parentheses and separate them with commas as follows:

$ DELETE/ENTRY=(230,231) LN03_PRINT

The command deletes jobs 230 and 231 from the queue LNQ3_PRINT.

• Qualifiers that accept value and positive/negative combinations-Some
qualifiers combine value and positive/negative characteristics so that the
qualifier both accepts a value and allows you to negate the qualifier by
inserting the prefix NO. For example, the SET TERMINAL command
permits the following choices for the /PARITY qualifier:

$ SET TERMINAL/PARITY=EVEN
$ SET TERMINAL/PARITY=ODD
$ SET TERMINAL/NOPARITY

• Qualifiers that affect command execution only if specified-The qualifier
has no corresponding default. For example, the /BY_OWNER qualifier
does not affect the command if it is not specified. The syntax for the
/BY_OWNER qualifier is given in a DCL command description as
follows:

/BY_QWNER

• Qualifiers that override other qualifiers-Sometimes a command has a
qualifier that is automatically applied as a default. Other qualifiers are
available to override the default qualifier.

For example, the /BRIEF qualifier is applied by default when you
specify the DIRECTORY command. That is, the DIRECTORY command
generates a listing that includes only the file name, file type, and version
number of each file in the directory. You must specify the /FULL qualifier
to generate a listing that includes the file name, file type, and version
number as well as the number of blocks used, the date of the file's
creation, the date the file was last backed up, and so on.

Some commands contain conflicting qualifiers that cannot be specified in
the same command line. If you use incompatible qualifiers, the command
interpreter usually displays an error message. The command descriptions in
the VMS DCL Dictionary indicate which qualifiers cannot be used together.

Entering Dates and Times as Values

1-14

Certain commands and qualifiers accept date and time values. You can
specify these values in one of the following formats:

• Absolute time

• Delta time

• Combination time (combines absolute and delta time formats)

The command descriptions in the VMS DCL Dictionary indicate the time
formats accepted by commands and qualifiers.

1.2.6.1

Introducing VMS and DCL
1.2 Using the DIGITAL Command Language

Absolute Time
Absolute time is a specific date or time of day. The format for an absolute
time is as follows:

[dd-mmm-yyyy][:][hh:mm:ss.cc]

The fields are as follows:

Field Meaning

dd Day of the month; an integer in the range 1-31

mmm Month; JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT,
NOV, or DEC

yyyy Year; an integer

hh Hour; an integer in the range 0-23

mm Minute; an integer in the range 0-59

ss Seconds; an integer in the range 0-59

cc Hundredths of a second; an integer in the range 0-99

You can truncate the date or the time on the right. However, if you are
specifying both date and time, you must include a colon between them. The
date must contain at least one hyphen. You can omit any of the fields within
the date and time as long as you include the punctuation marks that separate
the fields. A truncated or omitted date field defaults to the corresponding
fields for the current date. A truncated or omitted time field defaults to zero.
If you specify a past time in a command that expects the current or a future
time, the current time is used.

You can also specify an absolute time as one of the following keywords:

Keyword

TODAY

TOMORROW

YESTERDAY

Meaning

The current day, month, and year at 00:00:00.0 o'clock

00:00:00.00 o'clock tomorrow

00:00:00.00 o'clock yesterday

Some examples of absolute time specifications follow:

Time Specification

31-DEC-1988: 13

31-DEC

15:30

31-

31-::30

Result

1 P.M. on December 31, 1988

Midnight at the beginning of December 31 this
year

3:30 P.M. today

The 31st day of the current year and month at
midnight

12:30 A.M. on the 31st of this month

1-15

Introducing VMS and DCL
1.2 Using the DIGITAL Command Language

1.2.6.2

1.2.6.3

1-16

Delta Time
Delta time is an offset (a time interval) from the current date and time to a
time in the future. The general format of a delta time is as follows:

[dddd-][hh:mm:ss.cc]

The fields are as follows:

Field Meaning

dddd Number of days; an integer in the range 0-9999

hh Number of hours; an integer in the range 0-23

mm Number of minutes; an integer in the range 0-59

ss Number of seconds; an integer in the range 0-59

cc Number of hundredths of seconds; an integer in the range 0-99

You can truncate a delta time on the right. If you specify the number of
days, include a hyphen. You can omit fields within the time as long as you
include the punctuation that separates the fields. If you omit the time field,
the default is zero.

Some examples of delta time specifications follow:

Time Specification

3-

3

:30

3-:30

15:30

Combination Time

Result

3 days from now (7 2 hours)

3 hours from now

30 minutes from now

3 days and 30 minutes from now

15 hours and 30 minutes from now

To combine absolute and delta time; spedfy an absolute time plus (l) or
minus (-) a delta time. The format for combination time is as follows:

"[absolute time][+delta time]"
or
[absolute time][-delta time]

The variable fields and default fields for absolute and delta time values are
the same as those described in the preceding sections. The delta time value
must always be preceded by a plus or minus sign. (Note that the minus sign
is the same keyboard key as the hyphen.) Whenever a plus sign precedes
the delta time value, enclose the entire time specification in quotation marks.
Also, you can omit the absolute time value. If you do, the delta time is offset
from the current date and time.

Some examples of combination time specifications follow:

Introducing VMS and DCL
1.2 Using the DIGITAL Command Language

Time Specification Result

"+5"

"+:5"

-:5

-1-00

5 hours from now

5 minutes from now

Current time minus 5 minutes

Current time minus 1 day. The minus sign (-) indicates a
negative offset. The dash (-) separates the day from the
time field.

If a qualifier is described as a value that may be expressed as an absolute
time, a delta time, or a combination of the two, you must specify a delta time
as if it were part of a combination time. For example, to specify a delta time
value of five minutes from the current time, use "+:5" (not "0-0:5").

1.3 Entering and Editing DCL Commands
At the DCL level, you can use many individual keys and key combinations
to change what you type, to recall commands, or to display information.
Table 1-2 lists the keys that allow you to enter and edit DCL commands.
Sections that follow describe these keys in greater detail.

DCL also provides you with shortcuts that simplify the typing of commands
and command lines. You can establish symbols to use in place of command
names and entire command strings. You can define keys, which enable you
to enter commands with fewer keystrokes. These shortcuts are described in
Section 1.3.7 and Section 1.3.8.

Table 1-2 Keys That Execute Terminal Functions

Key

Keys That Enter DCL Commands

CTRL/Z and F101

RETURN

Function

Signals the end of the file for data entered from the terminal. CTRL/Z
is displayed as "Exit."

Sends the current line to the system for processing. (On some
terminals, the RETURN key is labeled CR.)

Before a terminal session, RETURN initiates a login sequence.

Keys That Interrupt DCL Commands

CTRL/C and F6 1

CTRL/T

During command entry, cancels command processing. CTRL/C is
displayed as "Cancel."

Momentarily interrupts terminal output to display a line of statistical
information about the current process. This display includes your node
and user name, the time, the name of the image you are running, and
information about system resources used during your current terminal
session.

1This key is available only on an LK201 keyboard.

1-17

Introducing VMS and DCL
1 .3 Entering and Editing DCL Commands

Table 1-2 (Cont.) Keys That Execute Terminal Functions

Key Function

Keys That Interrupt DCL Commands

CTRL/Y

Keys That Recall Commands

CTRL/B and Up arrow

Down arrow

Keys That Control Cursor Position

<XI I DELETE

CTRL/ A, F14 1

CTRL/D and Left arrow

CTRL/E

CTRL/F and Right arrow

CTRL/H, BACKSPACE, and F12 1

CTRL/I and TAB

CTRL/J, LINEFEED, and F13 1

CTRL/K

CTRL/L

CTRL/R

CTRL/U

You can also use the CTRL/T key to determine whether the system
is operating. CTRL/T does not return information if the system is
temporarily unresponsive or if your terminal is set to NOBROADCAST.
In order to use CTRL/T, SET CONTROL= T must be enabled either in
the system login command procedure or by you, either interactively or
in your login command procedure.

Interrupts command processing. CTRL/Y is displayed as "Interrupt."
You can disable CTRL/Y with the command SET NOCONTROL =Y.

Under most conditions, CTRL/Y returns you to the DCL prompt. The
program running is still active. You can enter any built-in command
(described in Section 1.3.2) and then continue the program with the
CONTINUE command. (Press CTRL/W to refresh the screen after you
enter the CONTINUE command.)

Recalls up to 20 previously entered commands.

Displays the next line in the recall buffer.

Deletes the last character entered at the terminal. (On some terminals,
the DELETE key is labeled RUBOUT.) The DELETE key also works
when line editing is disabled.

Switches between overstrike and insert mode. The default mode (as
set with the SET TERMINAL/LINE_EDITING command) is reset at the
beginning of each line.

Moves the cursor one character to the left.

Moves the cursor to the end of the line.

Moves the cursor one character to the right.

Moves the cursor to the beginning of the line.

Moves the cursor to the next tab stop on the terminal. The system
provides tab stops at every eighth character position on a line. Tab
settings are hardware terminal characteristics that, in general, you can
modify. The TAB key also works when line editing is disabled.

Deletes the word to the left of the cursor.

Advances the current line to the next vertical tab stop.

Causes the cursor to go to the beginning of the next page. This use
of this key is ignored when line editing is enabled.

Repeats the current command line and leaves the cursor positioned
where it was when you pressed CTRL/R.

Cancels the current input line.

1 This key is available only on an LK201 keyboard.

1-18

1.3.1

Introducing VMS and DCL
1.3 Entering and Editing DCL Commands

Table 1-2 (Cont.) Keys That Execute Terminal Functions

Key Function

Keys That Control Cursor Position

CTRL/V

CTRL/X

F7, F8, F9, F11

Turns off some of the line editing function keys. For example, if you
press CTRL/V followed by CTRL/D, a CTRL/D is generated instead of
the cursor moving left one character. CTRL/D is a line terminator at
DCL level.

When combined with CTRL/V, characters that are not line terminators
have no effect. Examples are CTRL/H and CTRL/J. H~wever, certain
control keys, such as CTRL/U, retain their line editing functions.

Cancels the current line and deletes data in the type-ahead buffer.

Reserved for DIGIT AL.

Keys That Control Screen Display

CTRL/O

CTRL/S

CTRL/Q

Alternately suspends and continues display of output to the terminal.
CTRL/O is displayed as "Output off" and "Output on."

Suspends terminal output until CTRL/Q is pressed.

Resumes terminal output suspended by CTRL/S.

HOLD SCREEN 1 and NO SCROLL 2 Suspends terminal output until the key is pressed again.

1This key is available only on an LK201 keyboard.

2This key is available only on a VT100 keyboard.

Entering a DCL Command
The RETURN key is recognized as a command line terminator. Once you
type a command at the DCL prompt, press RETURN to terminate the line and
send it to the DCL interpreter for execution. CTRL/Z is also recognized as a
command line terminator.

When you enter a command at the terminal or execute an image that results
in an error, the system displays an error message. Also, the system sometimes
generates messages when a command has completed successfully. For
interactive users, messages are normally displayed on the terminal; for batch
job users, messages are written to the batch job log file.

Most system error messages have the following format:

%FACILITY-L-IDENT, text

The fields are as follows:

• FACILITY is a mnemonic for the program issuing the message.

• L is the first letter of the severity code; the severity level can be S
(Success), I (Information), W (Warning), E (Error), or F (Fatal or severe
error).

• IDENT is an abbreviation of the text.

• Text is an explanation of the error.

1-19

1.3.2

Introducing VMS and DCL
1 .3 Entering and Editing DCL Commands

Suppress any component of the error message with the SET MESSAGE
command. (See the VMS DCL Dictionary for the SET MESSAGE qualifiers you
need to specify to suppress individual components of the error message.)
A SET MESSAGE command remains in effect until you enter the SET
MESSAGE command again or log out. The following command suppresses
the abbreviation of the explanatory text of the message:

$ SET MESSAGE/NOIDENTIFICATION

Interrupting and Canceling a DCL Command

1.3.2.1

1-20

After you enter a DCL command, you can temporarily interrupt its execution,
run other commands, and then return to executing the command that was
interrupted. To interrupt the execution of a command, use CTRL/T, CTRL/Y,
or CTRL/C. These keys perform in different ways depending on the type of
DCL command currently executing.

As mentioned previously, there are built-in commands and command images.
A built-in DCL command (listed in Table 1-1) is part of the command
interpreter. A command image is a program that is called by the DCL
interpreter. (For example, COPY is a command image.)

A command image can be privileged or nonprivileged. The VMS operating
system, the system manager, or you may install a command image as
privileged. Privileged command images may vary from system to system.
Your system manager can tell you which command images on your system
are privileged.

For more information on privileged command images, see the VMS Install
Utility Manual.

Using CTRL/T
CTRL/T interrupts execution of the command, displays a line of statistical
information about the current process (node name, process name, system
time, currently running image, elapsed CPU time, page faults, direct and
buffered 1/0 operations, and pages in physical memory), and resumes
command execution. Y01-! c~n i,1se CTRL/T to !!1terrupt ~built-in cv:rri.ffi.aii.d,
or a privileged or nonprivileged command image. The following example
shows how pressing CTRL/T interrupts and then resumes the copy operation:

$ COPY [JONES.MEMOS]TODAY.LIS URGENT.LIS
(CTRL/TI

SATURN: :JONES 16:54:17 COPY CPU=00:00:00.54 PF=241 I0=47 MEM=141
$

In order to use CTRL/T, SET CONTROL=T must be enabled either in the
system login command procedure or by you. You can enable CTRL/T
in your login command procedure, or you can enable it interactively by
entering SET CONTROL=T at DCL level. (To enable CTRL/T for the current
session, you must enable it interactively.) Section 1.1 describes your personal
login command procedure; Section 6.3 shows a sample personal command
procedure.

1.3.3

1.3.4

1.3.2.2

1.3.2.3

Using CTRL/Y

Introducing VMS and DCL
1.3 Entering and Editing DCL Commands

When you use CTRL/Y to interrupt a nonprivileged command image, the
interrupted command is temporarily suspended and control returns to the
DCL interpreter. You see the DCL prompt. To resume execution of the
interrupted command, type CONTINUE. Only built-in commands can
be entered after CTRL/Y and before CONTINUE without disturbing the
interrupted command. Entering any other type of command effectively
cancels the interrupted one.

If you are interrupting a privileged command image, you can press CTRL/Y
and enter the built-in commands SPAWN, ATTACH, and CONTINUE only,
followed by any other command. Entering a command after CTRL/Y other
than SP AWN, ATTACH, and CONTINUE effectively cancels the interrupted
one.

You can immediately terminate the privileged or nonprivileged command
image that you interrupted with CTRL/Y by entering one of the following:

• The STOP or EXIT commands. STOP suppresses any cleanup activities
such as the display of error messages. EXIT executes any cleanup
procedures before terminating.

• A command that invokes another command image (that is, a nonbuilt
in command), which removes the interrupted command image from
memory.

Using CTRL/C
CTRL/C works like CTRL/Y in many cases. CTRL/C interrupts the execution
of a built-in command. Command images, however, can create different
definitions for CTRL/C, in which case pressing CTRL/C does not necessarily
interrupt the command and return you to DCL level. For example, the TYPE
command (a command image) defines CTRL/C as "cancel." Pressing CTRL/C
while typing a series of files to the terminal halts the display of the current
file and begins the display of the next file in the series, but does not interrupt
the command.

Redirecting the Output of Commands
Many commands allow you to specify the /OUTPUT qualifier to redirect
output. The following example shows how the display produced by the DCL
command DIRECTORY is redirected to a new text file named FULL. LIS in
your default directory:

$ DIRECTORY/FULL/OUTPUT=FULL.LIS

Recalling Commands
At DCL level, you can recall previously typed command lines and avoid the
inconvenience of retyping long command lines. The recall buffer holds up
to 20 previously entered commands. Once a command is displayed, you can
reexecute or edit it.

Each of the following lets you display the commands stored in the recall
buffer:

• CTRL/B

• Up and down arrow keys

1-21

1.3.5

Introducing VMS and DCL
1 .3 Entering and Editing DCL Commands

• RECALL command

Pressing CTRL/B once recalls the previous command line. Pressing CTRL/B
again recalls the line before the previous line, and so on to the last saved
command line.

Pressing the up and down arrow keys recalls the previous and successive
command, respectively. Press the arrow keys repeatedly to move through the
commands.

To examine up to 20 previously typed command lines, type RECALL/ ALL.
Following is a sample display generated by typing RECALL/ ALL:

$ RECALL/ALL

1 SET DEFAULT DISK2: [MARSHALL]
2 EDIT ACCOUNTS.COM
3 PURGE ACCOUNTS.COM
4 DIRECTORY/FULL ACCOUNTS.COM
5 COPY ACCOUNTS.COM [.ACCOUNTS]*
6 SET DEFAULT [.ACCOUNTS]

Having reviewed the available commands, you can recall a particular
command line by typing RECALL and the number of the desired command.
The following example shows how to recall the fourth command line stored
in the recall buffer:

$ RECALL 4

After you press RETURN, the fourth command in the list is displayed at the
DCL prompt. (The RECALL command itself is not placed in the buffer.)

You can also follow RECALL with the first characters of the command line
you want to display. RECALL scans the previous command lines (beginning
with the most recent one) and returns the first command line that begins with
the characters you typed. For example:

$ RECALL E

After you press RETURN, the following command line is displayed:

$EDIT ACCOUNTS.COM

You can also perform command recall with CTRL/B and the up and down
arrow keys. If you are running a utility or an application program that uses
VMS screen management software, you can also use these keys to perform
command recall. Line editing must be enabled. Some utilities that have this
feature are MAIL, DEBUG, SHOW CLUSTER, the System Dump Analyzer
(SDA), and the VAXTPU editor.

Editing a DCL Command

1-22

Your terminal has a set of keys that you can use to edit a DCL command line.
Command-line editing is most useful for modifying long command lines. You
can edit command lines that contain typographical errors or command lines
that you have recalled and want to modify.

There are many types of terminals, each with its own operating
characteristics. In general, they all have standard line editing keys. Line
editing keys (keys that let you edit the DCL command line) allow you to
control cursor position and are listed in Table 1-2.

1.3.6

1.3.7

Introducing VMS and DCL
1.3 Entering and Editing DCL Commands

For some of the line editing keys to work, the SET TERMINAL/
LINE-EDITING command must be in effect. To see whether or not line
editing is enabled, enter the SHOW TERMINAL command, which displays
your terminal's current characteristics. Use the SET TERMINAL command
to change any of these characteristics. See the VMS DCL Dictionary for a
description of SET TERMINAL.

For example, the following command line contains one mistake that can be
corrected easily using the line editing keys:

$ DILETE SCHEDULE.TXT;3

If you are using an LK201 keyboard (VT200- and VT300-series terminals),
press the F12 key. If you are using a VTlOO-series terminal, press the
BACKSPACE key. Notice that the cursor moves to the beginning of the
line. Press the right arrow key once to position the cursor over the "I" in
"DILETE." Type the letter E and the typographical error is corrected.

The preceding example assumes that the SET TERMINAL/OVERSTRIKE
attribute is in effect, as it is by default. The OVERSTRIKE attribute allows
you to replace the incorrect character by typing the correct character over it.

To insert characters in the command line without simultaneously deleting
others, change the OVERSTRIKE attribute to the INSERT attribute. While
you are editing a command line, you can set the OVERSTRIKE or INSERT
attributes temporarily by pressing F14 (or CTRL/ A). Use the SET TERMINAL
command to set either attribute for your current terminal session.

Controlling Screen Display
Your terminal has several keys that permit you to suspend and resume the
display of output to the terminal screen. These keys-CTRL/O, CTRL/Q,
and CTRL/S-are useful when a large file is scrolling on your screen and you
want to stop the display temporarily.

To suspend output to your terminal, press CTRL/S. To resume the output
suspended by CTRL/S, press CTRL/Q. To toggle between suspending and
resuming the output, type CTRL/O, which is alternatively displayed as
"Output off" and "Output on."

The VT200- and VT300-series terminal also have a HOLD SCREEN key
that you can press to alternately hold and resume screen output. On VTlOO
terminals, the NO SCROLL key performs this same function.

Representing DCL Commands with Symbols
When you specify parameters, multiple qualifiers, and values, one DCL
command line can make for much typing. You can simplify your interaction
with DCL and save time by establishing symbols to use in place of command
names and entire command strings you type frequently. A symbol is a name
that represents a numeric, character, or logical value. When you use a symbol
in a DCL command line, DCL uses the value you assign to the symbol. By
defining a symbol as a command line, you can execute the command by
typing only the symbol name.

The following example equates the symbol ME to the DCL command SHOW
ENTRY:

$ ME == "SHOW ENTRY"

1-23

1.3.8

Introducing VMS and DCL
1 .3 Entering and Editing DCL Commands

After you equate a symbol to an expression (which can be a DCL command),
the symbol assumes a new identity or value. In the previous example, the
symbol ME assumes a new identity as the DCL command SHOW ENTRY.
Once the two are equated, use the symbol ME in place of the SHOW ENTRY
command as follows:

$ ME

Jobname Username Entry Blocks Status

STAFF JONES 202 38 Printing
On printer queue SYS$PRINT

You can also equate long command strings to symbols. The following
example equates the symbol LN03 with the command string shown:

$ LN03 == "PRINT/QUEUE=HUBBUB_LN03A/NOBURST/NOFEED/NOTIFY"

By defining a symbol interactively, you create a symbol that is in effect for the
current session only. If you want that symbol to be in effect each time you
log in, place the symbol definition in your login command procedure. See
Chapter 5 for more information about defining symbols. See Section 1.1 and
Section 6.3 for more information about creating a personal login command
procedure.

Defining Terminal Keys

1-24

Key definitions let you customize your keyboard so you can enter DCL
commands with fewer keystrokes. A key definition is a string of characters
that you assign to a particular terminal key. When a key is defined, you can
press it instead of typing the string of characters. A key definition usually
contains all or part of a command line. When you press a defined key, the
command is either displayed on your terminal or executed.

Some definable keys are automatically enabled for definition (like keys
PFl through PF4 and keys Fl 7 through F20 on VT200- and VT300-
series terminals). However, before you can define other keys, including
KPO (keypad 0) through KP9 and the keypad keys PERIOD, COMMA,
MINUS, and ENTER, you must enable them for definition by entering either
the SET TERMINAL/ APPLICATION _KEYPAD or the SET TERMINAL
/NONUMERIC command. For a complete list of definable keys and for more
information on how to create key definitions, see the description of the DCL
command DEFINE/KEY in the VMS DCL Dictionary.

The following example shows how to equate the PFl key to the PRINT
command and the PF2 key to the qualifier /QUEUE=SATURN_LN03:

$ DEFINE/KEY PF1 "PRINT"
%DCL-I-DEFKEY, DEFAULT key PF1 has been defined
$ DEFINE/KEY PF2 "/QUEUE=SATURN_LN03"
%DCL-I-DEFKEY, DEFAULT key PF2 has been defined

When you press the PFl key and then the PF2 key, the words PRINT/
QUEUE=SATURN_LN03 are echoed and entered as if you had typed them.
You need only supply the parameter, which is the file name of the file
you want to print. When defining a command line with two or more keys,
remember to include all the necessary spaces required in the command line
syntax.

1.3.8.1

Introducing VMS and DCL
1.3 Entering and Editing DCL Commands

The informational message following the key definition indicates the key state
for which the key is defined. Key states are described in Section 1.3.8.1. You
can suppress the informational message using the /NOLOG qualifier of the
DEFINE/KEY command.

A key definition remains in effect until you redefine the key, enter the
DELETE/KEY command for that key, or terminate the session. If you want
to use a key definition each time you log in, place the key definition in
your login command procedure. See Section 6.3 for more information about
creating your personal login command procedure.

Key States
The same key can be assigned multiple definitions, as long as each definition
is associated with a different state. A key state is a name you invent to remind
you of the types of key definitions grouped under it. If you do not create any
key states, all keys are defined in the DEFAULT state.

Specify the /SET_STATE qualifier to the DEFINE/KEY command to change
the key state temporarily (the key state remains in effect until you press a
definable key or terminate the command line). Use the /IF_STATE qualifier
to the DEFINE/KEY to define a key for the specified state.

In the following example, the PFl key in the DEFAULT state is defined to
enter the PRINT command and to change the key state to PRINTERS. The
MINUS key is defined in the PRINTERS state to enter the
/QUEUE=LN03_PRINT qualifier. The COMMA is defined in the PRINTERS
state to enter the /QUEUE=LINE_PRINT qualifer. (Remember to enter the
DCL command SET TERMINAL/ APPLICATION _KEYPAD to enable keypad
key definitions.) The /TERMINATE qualifier places a carriage return after the
text; when you press the key, the system attempts to execute the command
line.

$ DEFINE/KEY/SET_STATE=PRINTERS PF1 "PRINT"
%DCL-I-DEFKEY, DEFAULT key PF1 has been defined
$ DEFINE/KEY/TERMINATE/IF_STATE=PRINTERS MINUS "/QUEUE=LN03_PRINT"
%DCL-I-DEFKEY, PRINTERS key MINUS has been defined
$ DEFINE/KEY/TERMINATE/IF_STATE=PRINTERS COMMA "/QUEUE=LINE_PRINT"
%DCL-I-DEFKEY, PRINTERS key COMMA has been defined

To change a key state permanently (until you log out or change the state
again), specify the /LOCK and /SET_STATE qualifiers to the DEFINE/KEY
command, or specify the /STATE qualifier to the SET KEY command. After
permanently changing the key state, you can recall the DEFAULT key state.
However, the system does not provide a mechanism that allows you to
determine whether the DEFAULT state was the previous key state.

Because you cannot determine the previous key state after permanently
changing the key state, you may want to use the following steps to extend
the duration of a temporary state:

1 Use the /SET_STATE qualifier to the DEFINE/KEY command to change
your key state temporarily.

2 Each time you define a key for that temporary state, use the /SET_STATE
qualifier to reset the temporary state.

1-25

Introducing VMS and DCL
1.3 Entering and Editing DCL Commands

1.3.8.2

1 .4 Utilities

1-26

Examining and Deleting Keys
To examine the key definitions you have created, enter the SHOW KEY
command. Specify the /DIRECTORY qualifier to display the states that you
have defined as follows:

$ SHOW KEY/DIRECTORY
DEFAULT
GOLD

Specify the /ALL and /FULL qualifiers to list all the keys in the states
specified by the /STATE qualifier. The following example shows that the PFl
key has been defined to enter the DIRECTORY command. The PF2 key has
been defined to enter the SET DEFAULT command and change the key state
from DEFAULT to DIRECTORIES.

$ SHOW KEY/ALL/FULL/STATE=DEFAULT
DEFAULT keypad definitions:

PF1 = "DIRECTORY" (echo,terminate,noerase,nolock)
PF2 = "SET DEFAULT" (echo,noterminate,noerase,nolock,state=DIRECTORIES)

To delete a particular key definition, enter the DELETE/KEY command, as
shown in the following example:

$ DELETE/KEY PF1
%DCL-I-DELKEY, DEFAULT key PF1 has been deleted

The following example shows how to delete all the keys defined in the GOLD
state:

$ DELETE/KEY/ALL/STATE=GOLD
%DCL-I-DELKEY, GOLD key PF2 has been deleted
%DCL-I-DELKEY, GOLD key PF3 has been deleted

A utility is a program that provides a service. Utilities are invoked with
DCL commands. Some utilities-interactive utilities-provide a special
environment from which you can perform a specific set of tasks. You
work interactively with these utilities by entering subcommands and other
information in response to the utility's prompt. For example, MAIL is an
interactive utility; it has its own prompt and subcommands.

Other utilities are noninteractive. When you invoke a noninteractive utility,
it occupies your terminal and executes a task. When the task is complete,
you are returned to DCL level and your terminal is once again available.
The SORT /MERGE and the LIBRARIAN utilities are two examples of
noninteractive utilities.

Some utilities, both interactive and noninteractive, prompt you for a file
name. When you are using such a utility (for example, BACKUP, MESSAGE,
PATCH, and SORT /MERGE), you can add qualifiers to the DCL command
line to tailor the utility to your specific needs, as shown in the following
example:

$ BACKUP/RECORD/IMAGE/LOG ~
_From:

To exit from a utility and return to DCL level, type EXIT (and press RETURN)
or press CTRL/Z in response to the utility prompt.

1.4.1

Introducing VMS and DCL
1 .4 Utilities

The following sections describe the interactive VMS Mail Utility, the VMS
Phone Utility, and the Sort/Merge Utility.

Using the Mail Utility

1.4.1.1

1.4.1.2

The interactive VMS Mail Utility (MAIL) allows you to send messages to
and receive messages from other users on your system or on any other VAX
computer that is connected to your system by means of DECnet-VAX. You
can also file, forward, delete, reply to, and print messages that you have
received.

To invoke the Mail Utility, enter the DCL command MAIL at the DCL
prompt. The MAIL prompt appears, signaling that the utility is ready to
accept subcommands as follows:

$ MAIL
MAIL>

For more information about MAIL commands and qualifiers, see the VMS
Mail Utility Manual or type HELP at the MAIL prompt.

To exit from MAIL, enter the MAIL command EXIT or press CTRL/Z. Note,
however, that if you are entering the text of a message, CTRL/Z sends the
message. If you wish to cancel the send operation without exiting from
MAIL, press CTRL/C.

Creating a Mail Subdirectory
When you receive mail messages, they are usually written to files named
MAIL$xxxxxxxxxx.MAI located in your top level directory. To avoid the
display of these MAI files in your top level directory, use the MAIL command
SET MAIL_DIRECTORY, which creates a mail subdirectory and moves all
your MAI files to that subdirectory. (The MAIL command SHOW
MAIL _DIRECTORY displays the name of the subdirectory that contains all
your MAI files.) To move the MAI files from a subdirectory back to your top
level directory, use the SET NOMAIL_DIRECTORY command.

Sending Mail
You can create and send a mail message interactively to one user or many
users with the Mail Utility. Also, you can send a file to other users from
within MAIL or from DCL level.

Sending a Message

To send a mail message to any user on your system, invoke the Mail Utility
and specify the MAIL command SEND. MAIL prompts you for the name of
the user receiving the message, the subject of the message (optional), and the
text of the message (optional). The following example sends a message to
THOMPSON:

MAIL> SEND
To: THOMPSON
Subj: Meeting on January 9
Enter your message below. Press CTRL/Z when complete, or CTRL/C to quit:
I have some new ideas for the Hubbub Cola account. Let me know when
you're available to talk about them.

--Jeff

1-27

Introducing VMS and DCL
1 .4 Utilities

1-28

Press CTRL/Z to send the message. If you decide not to send the message,
press CTRL/C. Doing so cancels the send operation without exiting from
MAIL.

You can send the same message to several users. To do so, separate their user
names with commas, as shown in the following example:

MAIL> SEND
To: THOMPSON,JONES,BARNEY
Subj: Meeting on January 9

If your computer system is part of a network, you can send mail to any other
user on the network. If you are sending mail to someone not on your node,
you must enter their node name and user name at the To: prompt. (See
Section 1.1.1.2 for more information about nodes.) You can address the mail
message to the intended recipient on the remote node using the following
format:

nodename: :username

The following example shows how to send a message to user HIGGINS on
node CHEETA:

MAIL> SEND
To: CHEETA: :HIGGINS

MAIL will notify you if the network connection to the remote node is not
available.

You may want to use a VMS text editor to compose your message before
you send it interactively. (A text editor allows you to enter text from the
keyboard and use editing commands to modify that text. See Chapter 8 for
a description of the EVE and EDT text editors.) To do so, specify the /EDIT
qualifier with the SEND command as shown in the following example:

MAIL> SEND/EDIT

After you respond to the To: and Subj: prompts, MAIL invokes the text
editor. By default, MAIL invokes the EDT editor. (Section 1.4.1.8 describes
how to change the default editor.)

If you see an asterisk (*) after you enter the subject line and press RETURN,
press the C key to enter the screen editor. To send the message, exit from
the editor by pressing CTRL/Z and entering the EXIT command; to cancel
the send operation, exit from the editor by pressing CTRL/Z and entering the
QUIT command.

You can also use the /EDIT qualifier with the REPLY and FORWARD
commands. By specifying /EDIT when you invoke MAIL, you can use
the editor for send, reply, and forward operations during the ensuing mail
session.

Sending a File

You can send a file to other users from within MAIL or from DCL level. The
following example invokes MAIL and uses the MAIL command SEND to
send a file:

$ MAIL
MAIL> SEND MEMO.TXT
To: EDGELL
Subj : Another memo

Introducing VMS and DCL
1 .4 Utilities

To send the file, press RETURN; to cancel the send operation, press CTRL/C
or CTRL/Y. CTRL/C keeps you within the Mail Utility; CTRL/Y returns you
to DCL level.

When you send a file from DCL level, MAIL is invoked, but you do not enter
an interactive session, nor do you see the MAIL prompt. When the file is
sent, you are automatically returned to DCL level. When you are sending
a file in this way, the argument to the (optional) /SUBJECT qualifier must
be enclosed in quotation marks if it contains any spaces or nonalphanumeric
characters, as shown in the following example:

$ MAIL/SUBJECT="Another memo" MEMO.TXT CHEETA: :EDGELL

To send the file, press RETURN; to cancel the send operation, press CTRL/C.

Sending a Message to a Distribution List

If you need to send one message to many users, you can create a file-called
a distribution list-that contains a list of users. You then specify that file
name rather than the individual user names when you send the message to
those users. Use a text editor or the DCL command CREATE to create this
file.

When you create a distribution list, type one user name per line. You can
also include the names of other distribution lists by specifying an at sign (@)
followed by the name of the distribution list. Exclamation points (!) delimit
comments in programs and command procedures. DCL ignores everything to
the right of the exclamation point when processing the line. For example:

ALLBUDGET.DIS

Budget Committee Members
©BUDGET ! listed in BUDGET.DIS.
! Staff
HARRINGTON
BRUTUS: : WILSON
PORTIA: : RIPLEY

me
Martha Wilson
Roy Ripley

If the file BUDGET.DIS is not in the same directory as the new distribution list
file you are creating, include the file specification for BUDGET.DIS in the new
distribution file. (The file specification gives the system all the information
necessary to locate a file. Depending on where you create ALLBUDGET.DIS,
you may have to specify the device and directory in which BUDGET. DIS is
located. See Chapter 2 for more information on file specifications.)

To send a message to a distribution list from within MAIL, type an at sign
and the file name at the To: prompt. For example:

MAIL> SEND
To: ©ALLBUDGET
Subj: Tomorrow's Meeting

By default, the system looks for a distribution list file with the file type
DIS. If the file containing your distribution list has a different file type, you
must specify the file name and file type at the To: prompt. If you invoke
MAIL while in one directory and the file containing the distribution list is in
another, enter the distribution list's file specification at the To: prompt.

1-29

Introducing VMS and DCL
1 .4 Utilities

1.4.1.3

1-30

Reading Mail
Invoke MAIL to read an old or new mail message. Messages you receive are
stored in mail files, which have a default file type of MAI. Your default mail
file, MAIL.MAI, is created in your top level directory the first time you receive
a mail message.

By default, MAIL provides folders. New messages are automatically placed
in a folder called NEWMAIL; old messages are held in a folder called MAIL.
You can move between these folders to read old or new mail messages.

Reading New Messages

When you are logged in and receive a mail message, notice of the new
message appears on your screen. (You can screen out notification of incoming
messages by specifying the DCL commands SET TERMINAL/
NOBROADCAST or SET BROADCAST=NOMAIL.) For example, a message
sent by user FELLINI appears as follows:

New mail from FELLINI

If you are part of a DEC-net VAX network and someone on a remote node
sends you mail, the sender's node and name are indicated.

If you have new mail, you are notified when you log in and when you invoke
MAIL. To read a new message, invoke MAIL. MAIL displays the number
of mail messages received and prompts for a command, as shown in the
following example:

$MAIL

You have 1 new message.

MAIL>

To read the new message, press RETURN. The message appears on your
screen as follows:

#1 31-DEC-1988 14:12:27 NEWMAIL

From: FELLINI
To: JONES
Subj: Sales presentation on January 9

The meeting to discuss the Hubbub Cola account has been moved
from our conference room to the auditorium. Dress to impress.

MAIL>

You may have another new message. To read your next new message, press
RETURN at the MAIL prompt. Pressing RETURN in MAIL is equivalent to
specifying the READ command without parameters. When you have read all
your new messages, MAIL issues the message "%MAIL-E-NOMOREMSG,
no more messages," and continues to prompt for commands until you exit by
entering EXIT or pressing CTRL/Z.

If you receive a mail message while you are in MAIL, enter the READ /NEW
command to read the new message.

1.4.1.4

Introducing VMS and DCL
1 .4 Utilities

Reading Old Messages

If you have just read a new message and want to reread an old message,
enter the following:

MAIL> SELECT MAIL

This command selects the MAIL folder. The SELECT command allows you to
move between folders. Once you are in the MAIL folder, press RETURN at
the MAIL prompt or use the READ command to read the old message. The
first message (numbered 1) in your default mail file appears on your screen.
Press RETURN to display the next message. If the message is too long to
display on one screen, press RETURN to display the next part of the message.
To skip part of a message and display the next message, type NEXT, which
can be abbreviated to "N."

You can display a list of all messages within the current mail folder by
entering the DIRECTORY command. You can then display a particular
message by entering the READ command and the number of the message, as
shown in the following example:

MAIL> DIRECTORY
MAIL

From Subject
1 DOLCE: :FELLINI
2 DOODAH: : JONES

Date
31-DEC-1988
31-DEC-1988

Sales presentation on January 9
status

MAIL> READ 2

You can also omit the READ command and enter just the number of the
message.

If you have many messages, you can locate a particular message by using
the SEARCH command to find a specified string. To search for a string,
specify that string as a parameter to the SEARCH command, as shown in the
following example:

MAIL> SEARCH "appointment"

The SEARCH command selects and displays the first message in the current
folder that contains the specified string.

To search for a new string, specify the string as a parameter to the SEARCH
command. Each time you specify a new string, the SEARCH command
starts the search at message number 1. To continue searching the folder
for messages that contain the specified string, use the SEARCH command
without specifying a parameter.

Creating a File from a Mail Message
To copy a mail message to a text file, enter the EXTRACT command while
you are reading the message. When you exit from MAIL, the file is listed in
your current directory (unless you specify another directory). The following
example shows how to create a file named JANUARY_MEETINGS.TXT
containing the text of message number 3:

MAIL> READ 3

MAIL> EXTRACT/NOHEADER JANUARY_MEETINGS.TXT
%MAIL-I-CREATED, DISK1: [JONES]JANUARY_MEETINGS.TXT;1 created
MAIL>

1-31

Introducing VMS and DCL
1 .4 Utilities

1.4.1.5

1.4.1.6

1-32

The mail header is composed of the From, To, and Subject lines. Specifying
the /NOHEADER qualifier deletes the mail header and copies only the text
of the message to the file. If the message has more than one header (as does,
for example, a forwarded message), only the last header is deleted.

Use the /APPEND qualifier to the EXTRACT command to copy a message to
the end of an existing file. Use the /ALL qualifier to copy all the files in the
current folder to an existing file.

Deleting Mail
To delete a mail message, either enter the DELETE command while you are
reading the message or enter the DELETE command followed by the number
(or range of numbers) of the message you want to delete. The following
example deletes messages 4, 5, 6, 11, 12, 14, 15, 16, and 17. You can use
either the hyphen(-) or the colon(:) to define the range of messages to be
deleted.

MAIL> DELETE 4-6,11,12,14:17

When you delete a message, the message is moved to a folder called
WASTEBASKET. During your interactive MAIL session, you can recover
any deleted message by moving the message out of the wastebasket folder.
(See Section 1.4.1.6 for information on moving messages between folders.)
Deleted messages collect in the WASTEBASKET folder until you exit from the
current mail file (either by exiting from MAIL or by specifying a different mail
file). Once you exit from the current mail file, WASTEBASKET is emptied and
the folder itself is deleted. (See Section 1.4.1.6 for a discussion of mail files.)

Organizing Mail with Folders and Files
By default, each user account has one mail file (called MAIL.MAI). MAIL
helps you organize your messages by providing the following folders as they
are required:

• NEWMAIL-Contains all messages that have not been read. If you
invoke MAIL when you have a new message, you are placed into
the NEWMAIL folder. Once you leave the NEWMAIL folder (either
by exiting MAIL or by changing to another folder), MAIL moves any
messages that have been read but not deleted to your MAIL folder and
deletes the NEWMAIL folder if it is empty.

• MAIL-Contains messages that have been read but not deleted. If you
invoke MAIL and have no new messages, you are placed into the MAIL
folder.

• WASTEBASKET-Contains messages that have been deleted. This folder
and its contents are deleted when you exit MAIL or specify a different
mail file.

You can extend this organizational scheme by creating your own folders.
Each folder can contain any number of messages.

Like the default folders, the folders you create are normally stored in the mail
file MAIL.MAI. You can also create your own mail files; each mail file can
contain any number of folders. Although you can create any number of mail
files, you usually organize your messages by creating folders rather than by
creating mail files.

Introducing VMS and DCL
1.4 Utilities

Creating and Modifying Folders

The following MAIL commands allow you to create and modify folders:

• FILE-Files the current message in the folder you specify. If the folder
does not exist, you are asked whether you want to create it. After being
filed, the message is automatically deleted from the current folder.

• COPY-Places a copy of the current message into the folder you specify.
If the folder does not exist, you are asked whether you want to create
it. The following commands copy all messages containing the word
MEETING from the current folder to a folder named SCHEDULE. After
the commands are executed, you have two copies of each message, one
in the current folder and one in folder SCHEDULE. The first command
selects and displays the first message containing the word "meeting":

MAIL> SEARCH MEETING

MAIL> COPY SCHEDULE
Folder SCHEDULE does not exist.
Do you want to create it (Y/N, default is N)?Y
%MAIL-I-NEWFOLDER, folder SCHEDULE created

This command selects and displays the next message containing
"meeting":

MAIL> SEARCH

MAIL> COPY MEETING
MAIL> SEARCH
%MAIL-E-NOTFOUND, no messages containing 'MEETING' found

• MOVE-Synonymous with the FILE command.

Selecting Folders

The name of the current folder is displayed in the top right corner of the
screen each time you enter a READ or DIRECTORY command. You can work
only with messages that are in your current folder.

To display a list of the folders in your current mail file, enter the
DIRECTORY /FOLDER command, as shown in the following example:

MAIL> DIRECTORY/FOLDER
Listing of folders in SYS$LOGIN: [JONES]MAIL.MAI;1

Press CTRL/C to cancel listing
MAIL
MEMOS
STAFF

MEETING_MINUTES
PROJECT_NOTES

To select a new folder as your current folder, use one of the following
commands:

• SELECT-Selects the specified folder as the current folder.

• DIRECTORY-Selects the specified folder as the current folder and lists
the messages in the folder.

• READ-Selects the specified folder as the current folder and displays the
specified message (by default, the first message in the folder).

1-33

Introducing VMS and DCL
1 .4 Utilities

1.4.1.7

1-34

Deleting Folders

To delete a mail folder, delete all the messages in the folder or move them to
another folder. The following example deletes the MUSIC folder:

MAIL> SELECT MUSIC
%MAIL-I-SELECTED, 2 messages selected
MAIL> DELETE/ALL

Creating and Accessing Mail Files

To create a mail file, move a message into the file by entering the COPY,
MOVE, or FILE command as you would to create a folder. When MAIL
prompts you for the name of the folder, specify the name of the mail file after
the name of the folder.

The following example creates the mail file ACCOUNTS.MAI, moves the
current message into a folder named FEED in the file ACCOUNTS.MAI, and
deletes the message from its current folder and file:

MAIL> MOVE
_Folder: FEED IBg)
_File: ACCOUNTS lli@

To work within a mail file other than the default mail file, use the MAIL
command SET FILE to specify the alternate file. (The MAIL command SHOW
FILE displays the name of the current mail file.) When you change mail files,
the WASTEBASKET folder of the current mail file is emptied and deleted, and
the mail file is closed.

Using the Mail Keypad
You can use the keypad to execute commands in the Mail Utility. Most of the
keypad keys can execute two commands. To enter the top command for each
key shown in the following diagram, press the appropriate key. To enter the
bottom command shown in the following diagram, press the PFl key before
you press the key.

1.4.1.8

G
PF2

HELP

DIR/FOLDER

....._ ___ ..J

7 8

SEND REPLY

SEND/EDIT REP/EDIT/EXT

4 5

CURRENT FIRST

CURRENT/EDIT FIRST/EDIT

1 2

BACK PRINT

BACK/EDIT PRINT/PR/NOT

0

NEXT

NEXT/EDIT

Introducing VMS and DCL
1 .4 Utilities

PF3 PF4

EXTRACT/MAIL ERASE

EXTRACT SELECT/MAIL

9 -
FORWARD READ/NEW

FORWARD/EDIT SHOW/NEW

6 ' LAST DIR/NEW

LAST/EDIT DIR MAIL

3 ENTER

DIR

DIR/ST =99999

SELECT

•
FILE

DELETE

ZK-1744-84

For example, to execute the MAIL command SEND, press the keypad key 7
(KP7). To execute the MAIL command SEND/EDIT, press the PFl key first
and then press KP7. (For more information on mail keypad commands, see
the VMS Mail Utility Manual.)

You can redefine the keypad keys to execute MAIL commands when you
are in the Mail Utility. Defining keypad keys in MAIL is similar to defining
keypad keys to execute DCL commands; see the DEFINE/KEY command in
the VMS Mail Utility Manual for more information.

Setting the Default Editor
By default, MAIL invokes the EDT editor when you specify the MAIL
command SEND /EDIT. By entering the TPU parameter to the MAIL
command SET EDITOR, you can specify that the TPU editor be invoked
instead. (EVE is the default TPU editor.) The TPU editor remains your
default MAIL editor (even if you log out of the system and log back in) until
you enter the SET EDITOR EDT command.

The following example sets the default MAIL editor to TPU:

MAIL> SET EDITOR TPU

1-35

1.4.2

Introducing VMS and DCL
1 .4 Utilities

In the following example, the default MAIL editor has been set to TPU, and
the MAIL command SEND /EDIT has been entered at the MAIL prompt. You
see the following screen display:

Buff er MAIN I Insert I Forward

Enter the text of your message, using EVE commands to move around in
the buffer, which is a temporary storage area that exists only during an
editing session. Send the message by pressing CTRL/Z. (See Chapter 8 and
the Guide to VMS Text Processing for information about using EVE and EVE
commands.)

You can display the default MAIL editor by entering the MAIL command
SHOW EDITOR, as shown in the following example:

MAIL> SHOW EDITOR
Your editor is TPU.

Using the Phone Utility

1-36

The VMS Phone Utility (PHONE) allows you to "talk" by way of your
terminal screen to other users on your system or on any other VAX computer
connected to your system by means of DECnet-VAX. The Phone Utility
simulates the functions and features of a telephone. To invoke the Phone
Utility, type PHONE at the DCL prompt. Your screen display splits
horizontally into two sections. Your name is in the top section. At the
switchhook character (the % sign), type the name of the person you want to
call. Type the following to reach user SMITH on node CHEETA:

% CHEETA: : SMITH

If you are calling another user on your node, or if your computer system is
not part of a network, type only their user name.

PHONE rings the other party. If that person answers your call, their name
appears in the bottom section. You can begin typing your conversation. If
your call is not answered, you will be informed that the person is unavailable.

To answer a call from another user, invoke PHONE. Again, your terminal
screen splits into two sections, with you in the top section. Enter the
ANSWER command at the switchhook character. When you finish typing
your conversation, enter the EXIT command or press CTRL/Z to exit from
PHONE.

For more information about PHONE commands, see the VMS Phone Utility
Manual or type HELP at the PHONE prompt.

1.4.3

Introducing VMS and DCL
1 . 4 Utilities

Using the Sort/Merge Utility

1.4.3.1

The VMS Sort Utility (SORT), invoked with the DCL command SORT, sorts
records from one or more input files according to the fields you select and
generates one reordered output file. The Sort Utility reorders records in a file
(or files) so that they are in alphabetic or numeric order, either low to high
(ascending) or high to low (descending), according to a portion of each record
called the key. By default, the Sort Utility sorts on the first character of the
first field in each record contained in the input file.

The VMS Merge Utility (MERGE), invoked with the DCL command MERGE,
combines up to ten previously sorted files into one ordered output file. By
default, MERGE does sequence checking to ensure the input files are in order.
The sequence check stops the merge if a record is found to be out of order.
To prevent sequence checking during the merge, specify the
/NOCHECK_SEQUENCE qualifier.

For more information about the SORT /MERGE parameters and qualifiers, see
the VMS Sort/ Merge Utility Manual.

Sorting Records
A file record can be thought of as a line of text in a file. Record sorting,
the default sort operation, keeps records intact and produces an output file
consisting of complete records. Records can be subdivided into fields, which
describe individual segments of the record. A field is specified by the starting
position of its first character in the record and the length, in characters, of
the field. You can sort records based on the contents of certain fields by
specifying the field as a sort key.

The following example illustrates an ascending (the default) record sort based
on that portion of each record starting at character position 8 and extending
to the end of the record (the name):

$ SORT/KEY=(POSITION=8,SIZE=15) EMPLOYEE.LST BYNAME.LST

EMPLOYEE.LST BYNAME.LST

B 7828 MCMAHON JANE A 8042 BENTLEY PETER
A 7933 ROSENBERG HARRY c 8102 KNIGHT MARTHA
c 8102 KNIGHT MARTHA -- B 7951 LONG FRANK
A 8042 BENTLEY PETER B 7828 MCMAHON JANE
B 7951 LONG FRANK A 7933 ROSENBERG HARRY

ZK-1748-84

The following example sorts the same file in descending order using the field
in character positions 3 through 6 (the number) as the sort key:

$ SORT/KEY=(POSITION=3,SIZE=4,DESCENDING) EMPLOYEE.LST BYNUMBER.LST

1-37

Introducing VMS and DCL
1 .4 Utilities

1-38

0 EMPL YEE.LST s BYNUMBER.L T

B 7828 MCMAHON JANE c 8102 KNIGHT MARTHA
A 7933 ROSENBERG HARRY A 8042 BENTLEY PETER
c 8102 KNIGHT MARTHA

__...
B 7951 LONG FRANK ..

A 8042 BENTLEY PETER A 7933 ROSENBERG HARRY
B 7951 LONG FRANK B 7828 MCMAHON JANE

ZK-1749-84

The first parameter of the SORT command names the file or files to be sorted.
Multiple files are treated as one large file for sorting purposes. The second
parameter provides a name for the ordered output file that the sort will create.
The following example sorts the records in two files, EMPLOYEE.LST and
EMPLOYER.LST, and creates the ordered output file BYNAME.LST:

$SORT EMPLOYEE.LST,EMPLOYER.LST BYNAME.LST

Single Key

By default, the SORT command assumes that a key field in a record has the
following characteristics:

• Begins in the first position of a record

• Includes the entire record

• Contains character data

• Will be sorted in ascending order

Use the /KEY qualifier to specify characteristics of the key field other than
those assumed by default.

In the following example, the /KEY qualifier specifies that the key field starts
in position 8 and is 15 characters long:

$ SORT/KEY=(POSITION=8,SIZE=15) EMPLOYEE.LST BYNAME.LST

(If an actual key would have to extend beyond the end of the record to
meet the size specification-for example, if the key is the last item in a
variable-length format-the missing characters are treated as null characters.)

Multiple Keys

You can specify more than one key field, up to a limit of 255 characters. Each
key can be ascending or descending. Specify multiple keys in the order of
their priority in the sort. For example, the following command sorts records
first on the value of position 1 in descending order, then on the value of
positions 8 through 27 (or the end of the record) in ascending order:

$ SORT/KEY=(POSITION=1,SIZE=1,DESCENDING) -
_$ /KEY=(POSITION=8,SIZE=15) -
_$ EMPLOYEE.LST DEPTNAME.LST

1.4.3.2

1.4.3.3

Introducing VMS and DCL
1 .4 Utilities

The results of the sort specified in the preceding example are as follows:

EMPLOYEE LST DEPTNAME LST

B 7828 MCMAHON JANE c 8102 KNIGHT MARTHA
A 7933 ROSENBERG HARRY B 7951 LONG FRANK
c 8102 KNIGHT MARTHA - B 7828 MCMAHON JANE
A 8042 BENTLEY PETER A 8042 BENTLEY PETER
B 7951 LONG FRANK A 7933 ROSENBERG HARRY

ZK-1764-84

By default, records with identical keys are kept but not sorted predictably.
To retain identical keys and arrange them according to the input file order,
specify the /STABLE qualifier. To eliminate duplicate keys, specify the
/NODUPLICATES qualifier.

Other Types of Sorting
In addition to record sorting, you can perform the following types of sort
operations:

• Tag sort-Sorts the keys only and then rereads the input file to produce
an output file of complete records. The net result is the same as for a
complete record sort. A tag sort is useful if disk space is at a premium,
because it typically uses less scratch file space while sorting. Time may
be saved if the records are large but the keys are relatively small. Specify
the /PROCESS=TAG qualifier with the SORT command to generate a tag
sort.

• Address sort-Sorts the keys only and produces an output file of record
addresses (RF As) in binary format. An address sort is faster than a record
sort, but to take advantage of this feature, you must write a program to
associate the record addresses with the records of the input file. Specify
the /PROCESS=ADDRESS qualifier to generate an address sort.

• Indexed sort-Sorts the keys only and produces an output file of keys and
record addresses (RFAs). The addresses are in binary format. An index
sort is faster than a record sort, but, to take advantage of this feature, you
must write a program to associate the record addresses with the records
of the input file. Specify the /PROCESS=INDEX qualifier to generate an
index sort.

Character Data Files
The SORT command assumes by default that the files to be sorted contain
character data. Characters are sorted according to a collating sequence, which
describes the order in which characters are arranged (A, B, C, and so on).

ASCII is the default collating sequence for character data. In general, ASCII
orders numbers (0 through 9) first, then uppercase letters (A through Z), and
then lowercase letters (a through z).

You can specify the EBCDIC collating sequence to generate an output file that
is ordered in EBCDIC sequence (although it remains in ASCII representation).
To use the EBCDIC collating sequence, specify the
/COLLATING_SEQUENCE=EBCDIC qualifier.

1-39

Introducing VMS and DCL
1.4 Utilities

1-40

The multinational collating sequence collates characters according to the
international character set defined by DIGITAL (see Appendix A). The
multinational collating sequence compares for different characters first,
then for different diacritical forms of the same character (formed by using
diacritical marks as part of "compose sequences" on VT200-series terminals),
and then for different cases (uppercase or lowercase) of the same character.
To use the multinational collating sequence, specify the
/COLLATING_SEQUENCE=MUL TINATIONAL qualifier.

Note: Use caution when using the multinational collating sequence to sort
or merge files for further processing. Sequence-checking procedures in
most programming languages compare numeric characters. Because the
multinational sequence is based on actual graphic characters (and not the
codes representing those characters), normal sequence checking will not
work.

1 .4.3.4 Noncharacter Data Files

1.4.3.5

If you sort files containing items other than character data, you must specify
the data type of each key. Also, you must take care in calculating starting
positions and sizes, because the items being compared may occupy more than
one byte. For example, if you are sorting a file that contains 20 characters
followed by 3 floating-point numbers in F_floating format, and the key is the
last floating-point number, you must make the following specification:

$ SORT/KEY=(POSITION=29,F_FLOATING) STATS.RAW STATS.SOR

In the example, the character data occupies positions 1 through 20 (20
characters), the first F_floating-point number occupies position 21 through 24,
the second F_floating-point number occupies positions 25 through 28, and
the third F_floating-point number occupies positions 29 through 32. The size
of the floating-point number is not specified (since it is fixed at 4 bytes).

Terminal Input
The records to be sorted or merged need not be in a file. You can enter
the records directly from the terminal as you enter the SORT or MERGE
command.

To enter the input records for a sort or merge operation from your terminal,
specify SYS$INPUT as the input file parameter, qualifying it with the size
of the longest record (in bytes) and the approximate size of the input file (in
blocks). After you enter the command, enter the input records on successive
terminal lines. Terminate each record by pressing RETURN. Terminate the
file by pressing CTRL/Z.

The following example demonstrates a sort operation in which the input
records to be sorted are entered directly from the terminal:

$ SORT/KEY=(POSITION=8,SIZE=15) -
_$ SYS$INPUT/FORMAT=(RECORD_SIZE=22,FILE_SIZE=10) BYNAME.LST
B 7828 MCMAHON JANE lli[f\
A 7933 ROSENBERG HARRY~
C 8102 KNIGHT MARTHA~
A 8042 BENTLEY PETER lli[f\
B 7951 LONG FRANK lli[f\
lcTRL/ZJ

1.4.3.6

1.4.3.7

Introducing VMS and DCL
1 .4 Utilities

Output File Organization
You must specify the file organization of the output file of a sort or merge
operation if that organization differs from that of the input file. The following
example assumes that EMPLOYEE.LST is an indexed file and you want the
output file produced by the sort to be a sequential file (for more information
on file organization, see Section 2.1.2):

$ SORT/KEY=(POSITION=8,SIZE=15) -
_$ EMPLOYEE.LST BYNAME.LST/SEQUENTIAL

If the organization of the output file is indexed, the file must already exist
and must be empty. You must also qualify the output file parameter with
/OVERLAY.

Batch Job Submission
If you are sorting large files, you should consider submitting the sort
operation as a batch job, since the sort will require some time. Batch jobs
are programs or DCL command procedures that run independently of your
current session. See Sections 3.1.2 and 3.1.4 for more information about
command procedures and batch jobs, respectively.

If the records to be sorted are in a file, the command procedure you submit as
a batch job must contain the SORT command and explicitly set your default
directory or include the directory in the command file specifications. The
following example submits the DCL command procedure SORTJOB.COM
as a batch job. The text of the command procedure is shown following the
command line:

$ SUBMIT SORT JOB

SORT JOB.COM

$ SET DEFAULT [USER.PER] ! Set default to location of input files
$ SORT/KEY=(POSITION=8,SIZE=15) EMPLOYEE.LST BYNAME.LST

You can include the input records in the batch job by placing them after the
SORT command, one record per line, as shown in the following example.
As with terminal input of records, you specify the input file parameter as
SYS$INPUT and qualify it with the record size (in bytes) and the approximate
file size (in blocks):

$ SUBMIT SORTJOB

SORT JOB.COM

$ SET DEFAULT [USER.PER]
$ SORT/KEY=(POSITION=8,SIZE=15)
SYS$INPUT
/FORMAT=(RECORD_SIZE=22,FILE_SIZE=10)
BYNAME.LST
B 7828 MCMAHON JANE
A 7933 ROSENBERG HARRY
C 8102 KNIGHT MARTHA
A 8042 BENTLEY PETER
B 7951 LONG FRANK

1-41

Introducing VMS and DCL
1 .4 Utilities

1.4.3.8

1-42

Merging Files
The MERGE command combines up to 10 sorted files into one ordered output
file. The input files must all have the same format, and all must have been
sorted on the same key fields.

The following example demonstrates the merging of two files based on the
field in each record starting at position 8 and extending to the end of the
record (the name field):

$ MERGE/KEY=(POSITION=8,SIZE=15) BYNAME1.LST,BYNAME2.LST BYNAME3.LST

BY ME LST NA 1.

A 8042 BENTLEY PETER
c 8102 KNIGHT MARTHA BYNAME3.LST

B 7951 LONG FRANK A 8042 BENTLEY PETER
B 7828 MCMAHON JANE c 8102 KNIGHT MARTHA
A 7933 ROSENBERG HARRY c 7212 KRAMER KARL

B 7951 LONG FRANK -- B 7828 MCMAHON JANE

BYNAME2.LST c 8323 NORTON FLORENCE
A 7933 ROSENBERG HARRY

c 7212 KRAMER KARL A 8240 TROUT SAM
c 8323 NORTON FLORENCE
A 8240 TROUT SAM

ZK-1771-84

By default, MERGE does sequence checking to ensure the input files are in
order. The sequence check stops the merge and reports an error if a record
is found to be out of order. To prevent sequence checking during the merge,
specify the /NOCHECK_SEQUENCE qualifier.

2 Working with Files and Directories

2.1 Files

In the VMS operating system, information is hierarchically stored. At the
top of this hierarchy is the master file directory (MFD). Your user file directory
(UFD) is listed in this master file directory, along with the user file directories
of other users. Your user file directory (usually called username.DIR) is a file
that points to your top level directory, which is also called your login directory
or default directory because the system places you there by default when you
log in. This top level directory contains the files and subdirectories that you
have created or that have been created for you. It is from your top level
directory that you perform most of your daily online tasks.

An MFD and UFDs are stored on physical devices called disks. The access
path to a file is through the node and device, through a top level directory,
through any subdirectories, and then to the file.

Your directory structure resembles a family tree. At the top is your top level
directory, which branches off to files and to subdirectories, which branch still
further. You can ascend and descend the directory structure to access your
files and subdirectories. You can also access other directory structures that
have been set up to allow public access. With the correct process privileges,
you can also access files and directories on remote systems. Process privileges
control what commands and functions you are authorized to execute from
your account. See the Guide to Setting Up a VMS System for more information
about process privileges.

A file contains information. This information can be machine-readable data
that the computer understands. It can also be text you enter and manipulate.
The text in the file might be the text of a document; a program that you can
execute, written in a language such as C or Pascal; or a list of addresses. You
can examine the data in these files by displaying the files on a terminal screen
and printing them on paper.

Every file must have a file name or file type to identify it to both the system
and you. A file also has a version number. This file information is specified
using the following format:

filename. type ;version

Taken together, these elements form a file specification. The following section
describes the elements of a file specification and the rules for specifying these
elements.

2-1

2.1.1

Working with Files and Directories
2.1 Files

File Names, Types, and Versions

2-2

When you create a file, give it a name that is meaningful to you. The file
name can be from 0 through 39 characters chosen from the letters A through
Z (upper- or lowercase), the numbers 0 through 9, an underscore (-), a
hyphen (-), or a dollar sign ($). Do not use a hyphen as the first or last
character in the file name. Do not begin a file name with a dollar sign,
although it is a legal character within the file name.

A file type identifies the nature of a file. The file type can be from 0 through
39 characters and must be preceded by a period. The rules for creating file
names also apply to file types.

Including a file type is optional. With certain commands, if you omit the file
type, the system applies a default value. Table 2-1 lists some of the more
common default file types used by DCL commands. It also lists the default
file types for some high-level language source programs.

Table 2-1 Default File Types

File Type Contents

Default File Types for DCL Commands

CLO

COM

DAT

DIS

DIR

EDT

EXE

HLP

JOU

LIS

LOG

MAI

MEM

OBJ

RNO

SIXEL

SYS

TJL

TMP

TPU

TXT

Command description file

Command procedure file

Data file

Distribution list file for the MAIL command

Directory file

Startup command file for the EDT editor

Executable program image file created by the linker

Input source file for help libraries

Journal file created by the EDT editor

Listing file created by a language compiler or assembler; default
input file for the PRINT and TYPE commands

Batch job output file

MAIL message file

Output file created by DIGIT AL Standard Runoff (DSR)

Object file created by a language compiler or assembler

Input source file for DIGIT AL Standard Runoff

Sixel graphic file

System image

Journal file created by the V AXTPU and ACL editors

Temporary file

Command file for the V AXTPU editor

Input file for text libraries or MAIL command output

Working with Files and Directories
2.1 Files

Table 2-1 (Cont.) Default File Types

File Type Contents

Default File Types for Language Source Programs

ADA

BAS

B32

c
COB

FOR

MAR

PAS

PU

Input source file for the VAX Ada compiler

Input source file for the VAX BASIC compiler

Input source file for the VAX BLISS-32 compiler

Input source file for the VAX C compiler

Input source file for the VAX COBOL compiler

Input source file for the VAX FORTRAN compiler

Input source file for the VAX MACRO compiler

Input source file for the VAX Pascal compiler

Input source file for the VAX PL/I compiler

In addition to a file name and type, every file has a version number. Version
numbers are decimal numbers from 1 to 32,767 that differentiate versions of
a file. When you initially create a file, the system assigns it a version number
of 1.

You may have several versions of a file. Unless you specify a version number,
the system uses the highest existing version number of that file. When you
modify that file, the system saves the original file and produces a modified
output file. By default, this output file has the same name and type as the
original, but the version number is incremented by one.

Version numbers must be preceded with a semicolon or a period. When the
system displays file specifications, it generally displays a semicolon in front of
the file version number.

The following example shows how to display the latest version of the file
STAFF_VACATIONS.TXT. Because the system displays the latest version of a
file by default, you can omit the version number from the file specification.

$ TYPE STAFF_VACATIONS.TXT

You can refer to versions of a file in a relative µlanner by specifying a zero
or a negative version number. Specifying zero locates the latest (highest
numbered) version of the file. Specifying -1 locates the next-most-recent
version, -2 the version before that, and so on.

You can control the number of versions of a file by specifying the
/VERSION_LIMIT qualifier to the DCL commands CREATE/DIRECTORY,
SET DIRECTORY, and SET FILE.

2-3

2.1.2

Working with Files and Directories
2.1 Files

File Characteristics

2-4

A file consists of records, each of which consists of a number of bytes of data.
(Bytes are commonly used to represent characters.) A file's characteristics
describe the physical layout of a file and determine how the file is treated
during file operations. Specifically, file characteristics describe the following
features of a file:

• File organization-Sequential, indexed, or relative.

The records of a sequential file are arranged one after another in the order
of creation. Records must be read from the file in order. The file must
be rewritten (that is, another file or version of the file must be created) to
update it.

The records of an indexed file are arranged randomly and accessed
through one or more indexes. An index contains a portion of each record
called a key; the keys are arranged in sequence from lowest to highest
(by binary, numeric, or ASCII value depending on data type); one key
is called the primary key. You can read a record directly (randomly) by
specifying an index and the value of one of its keys. You can read records
sequentially by specifying an index-records are read in ascending
sequence according to the key values for that index, starting with the
current record. Update an indexed file in place by adding, deleting, or
changing records. Indexed files require more space since, in addition to
the data, the indexes must be stored.

The records of a relative file are arranged in fixed-length, numbered cells.
The cell numbers are used to determine the position of the record in the
file. As with indexed files, you can read records sequentially or randomly.
Typically, relative files are created and accessed by programs, rather than
from DCL command level.

• Record format-Indicates the way all records in a file appear physically
on the recording surface of the storage medium. Record format is defined
in terms of record length and can be fixed length, variable length, variable
length with fixed control area (VFC), or stream. All records in a fixed
length file are the same size. Records in a variable-length file vary in size.
Records in a VFC file have a fixed-length header followed by a variable
part. Note that VFC record format is not applicable for indexed files.
Records with stream format are delimited with special control characters.

• Data type-Strictly speaking, a file does not have a data type, because
programs processing a file must know how each item in the file is to
be interpreted. However, a file whose records contain all character data
(each item is one byte, interpreted according to ASCII conventions) is
called a text, or character, file. A file whose data is formatted as integers,
floating-point numbers, object code, or other non-ASCII data is called a
binary file.

• Carriage control-New line (also known as "implied," "carriage return,"
or "CRLF"), FORTRAN carriage control, none, or print. New line places
a carriage return and line feed at the end of each record when it is
displayed or printed. FORTRAN carriage control uses the first character
of each record to specify carriage-control information. "None" does not
place carriage-control characters into a file; if you want to include control
characters in the file, you must specify them as part of the data in the
file. Note that the PRINT and TYPE commands interpret carriage-return,
line-feed, and form-feed characters embedded in records. Print carriage

Working with Files and Directories
2.1 Files

control interprets the two bytes of each VFC record as prefix and postfix
carriage-control information.

Files you create using the editor or the CREATE command use new-line
carriage control. Each time you press RETURN, you create a new record.
When the file is printed or typed, each record appears on a new line.
Files you create using the OPEN, WRITE, and CLOSE commands use
print carriage control. Each WRITE command adds a new record (in VFC
format) to the file.

• File size-The size of a sequential file with fixed-length records can
be calculated by multiplying the number of records and the size of
each record. Variable-length records require two extra bytes per record,
and indexed files require space for the indexes. In addition to the files
themselves, the VMS system uses disk space to store directory entries, file
headers, and other file-maintenance information.

At DCL level, you normally deal with sequential, variable-length text files,
although some commands permit access to indexed files. You can examine a
file's characteristics with the /FULL qualifier of the DIRECTORY command,
as shown in the following example:

$ DIRECTORY/FULL RECEIPTS.DAT

Directory DISK1: [JONES.TAXES]

RECEIPTS.DAT;15 File ID: (103,75,0)
Size: 64/66 Owner: [200,200]
Created: 02-JUN-1988 17:47:26.30
Revised: 31-DEC-1988 11:28:51.35 (2)
Expires: <None specified>
Backup: 30-DEC-1987 22:48:08:23
File organization: Sequential
File attributes: Allocation=153, Extend=O Global Buffer Count = 0

Record format:
Record attributes:
Journaling enabled:
File protection:
Access Control List:

No version limit
Variable length, maximum 82 bytes
Carriage return carriage control
None
System:RWED, Owner:RWED, Group:RW. World:
None

Total of 1 file, 64/66 blocks.

The file size of the preceding example indicates that 64 blocks have been
used out of the 66 allocated. (File size is the number of actual blocks used of
the blocks that have been allocated; more will be allocated by the system as
needed.) If you are only interested in the size of the file (or several files), use
the /SIZE qualifier. The following example lists the number of blocks used
by the files in one directory.

$ DIRECTORY/SIZE

Directory DISK1: [JONES.TAXES]

BILLING.DAT;31 62
LEGAL.TXT;9 20
LOCAL.DIS;2 4
PROPERTY.DIR;! 7
RECEIPTS.DAT;15 64
SALES.DIR;! 5

Total of 6 files, 162 blocks.

2-5

Working with Files and Directories
2.2 Directories

2.2 Directories

2.2.1

A directory is a special kind of file that catalogs (by name and location) a
set of files. A directory file contains the following information for every file
cataloged within it:

• The file name, type, and version number

• A pointer to the file header, which describes, among other things, the
file's owner, protection code, and location

A directory file has the following format:

directory. DIR; 1

For example, DOG.DIR;! is a directory file. Because you cannot edit a
directory file, all directory files have a version number of 1.

In addition to the file name, a file specification can include the directory in
which the file is located. The following example shows the file specification
used to display the file STAFF_VACATIONS.TXT located in the directory
(JONES]:

$ TYPE [JONES]STAFF_VACATIONS.TXT

If you omit the directory name from the file specification, the current directory
is assumed by default.

Directory Structure

2-6

Each disk contains a main directory that is set up by the system manager.
This main directory is called the master file directory (MFD). The MFD
contains a list of user file directories (UFDs). User file directories are files
in the master file directory that point to top level directories. Your top level
directory is also called your login or default directory. Unless your account has
been specially modified to do otherwise, by default the system places you in
your top level directory when you log in.

A UFD exists for each user on the system. It contains the names of and
pointers to files cataloged in a user's directory. A subdirectory is any directory
file that is not an MFD or a UFD. Subdirectories let you organize files into
meaningful groups. Like a directory, a subdirectory contains names and
pointers for the files cataloged within it. It can contain an entry for another
subdirectory, which can contain an entry for another subdirectory, and so on
to seven levels of subdirectories. This structure (a first level directory plus a
maximum of seven levels of subdirectories) is called a hierarchical directory
structure.

Figure 2-1 shows a sample directory hierarchy. At the top of the
structure is the MFD. Its directory name is [000000]. (Directory names are
always enclosed in either square brackets ([]) or angle brackets (< >).)
Figure 2-1 contains entries for user file directories including MARTINO.DIR,
PUBLIC.DIR, SCHULTZ.DIR, and JONES.DIR. The top level directory
[JONES] exists as a user file directory named JONES.DIR;! in (000000].

Assume that you are user JONES. At login, you are placed in (JONES],
your default directory. (JONES] contains four nondirectory files and two
directory files. The directory file TAXES.DIR;! points to the [JONES.TAXES]
subdirectory; LICENSES.DIR;! points to the [JONES.LICENSES] subdirectory.
(Subdirectories are specified by concatenating the subdirectory name to

Working with Files and Directories
2.2 Directories

the name of the directory one level above it.) The [JONES.LICENSES]
subdirectory contains three nondirectory files and two directory files. The
directory file DOG.DIR;l points to the [JONES.LICENSES.DOG] subdirectory;
MARRIAGE.DIR points to the [JONES.LICENSES.MARRIAGE] subdirectory.

This sample directory structure is the basis for the examples in this chapter,
which demonstrate how to ascend arid descend the directory structure and
how to access files within this structure.

Figure 2-1 Directory Structure

MASTER DIRECTORY:

TOP LEVEL DIRECTORY:

SECOND LEVEL DIRECTORY:

THIRD LEVEL DIRECTORY:

[000000]

MARTINO.DIR
PUBLIC.DIR
JONES.DIR

{JONES]

LOGIN.COM;3
LOGIN.COM;4
STAFF.DIS;3
STAFF _VACATIONS.TXT;2 .. _.,... ___________ _

LICENSES. DIR; 1
TAXES.DIR; 1

'

[JONES.TAXES]

BILLING.DAT;31
LEGAL.TXT;9
LOCAL.DIS;2
RECEIPTS.DAT; 15

PROPERTY. DIR; 1
SALES.DIR; 1

~

[JONES. TAXES.SALES]

FEDERAL. LIS ;6
STATE.LIS;2

'
[JONES.TAXES.PROPERTY]

DISTRICT1. DAT; 1
DISTRICT2.DAT;4
DISTRICT3.DAT;2

[JONES.LICENSES]

MAILING.LIS;6
TOTAL.DAT;2
DEPT.DAT;3

DOG.DIR;1
MARRIAGE.DIR; 1

' [JONES.LICENSES.MARRIAGE}

CURRENT.DAT;6
FEES.DAT;11
1980S.DAT;2

•
{JONES.LICENSES. DOG}

FEES.DAT;4
FEMALE.LIS;6
MALE.LIS;3
POUND.LIS;17

ZK-1746-84

2-7

2.2.2

Working with Files and Directories
2.2 Directories

Directory Names
Use a named directory specification to refer to a directory. A named directory
specification consists of a top level directory name that can be followed by a
maximum of seven subdirectory names.

A named directory specification has the following format:

[directory.subdirectory[.subdirectory ...]]

A directory name can contain up to 39 alphanumeric characters. Any
characters valid for file names are also valid for directory names. Enclose
the directory name in either square brackets ([]) or angle brackets (< >).
Default and wildcard characters can be applied. You use wildcard characters to
apply DCL commands to multiple files rather than to one file at a time and to
move around the directory structure. See Section 2.6.6.3 for more information
about using wildcard characters in a named directory specification.

2.3 Devices

2-8

Files are stored on devices. In the VMS operating system, devices are
classified as follows:

• Mass storage devices save the contents of files on a magnetic medium.
Files saved this way can be accessed, updated, modified, or reused at any
time. Disks and magnetic tapes are mass storage devices.

• Record-oriented devices read and write only single physical units of data
at a time and do not provide online storage of the data. Terminals,
printers, mailboxes, and card readers are record-oriented devices.
(Printers and card readers are also called unit-record devices.)

A device name has the following three parts:

• The device type, which identifies the hardware device. (For example, an
RP06 disk has the device type DB, and a TE16 magnetic tape has the
device type MT.)

• A controller designator, which identifies the hardware controller to which
the device is attached.

• The unit number, which uniquely identifies a device on a particular
controller.

The files you commonly access are stored on disks or magnetic tape. Your
user file directory (UFD) and your default directory with all your files and
subdirectories are located on a disk. You can use a file specification that
contains directory information only if the file is located on a disk. Magnetic
tapes do not have directory structures. To obtain a file stored on tape, use a
file specification that contains only file information.

If you want to access a file that is not located on your default device, you
must specify the device name. For files on disks, you must also specify the
directory where the file is cataloged.

You can use physical, logical, or generic names, described in the following
sections, to refer to devices.

2.3.1 Physical Device Names

Working with Files and Directories
2.3 Devices

Each physical device known to the system is uniquely identified by a physical
device name. The physical device name identifies the kind of device, for
example a storage disk or a terminal. A device name has the following
format:

ddcu

The fields are as follows:

dd

c

u

Device code that represents a device type.

Controller designation. The controller designation, along with
the unit number, identifies the location of the device within the
hardware configuration of the system. Controllers are designated
with alphabetic letters A through Z.

Unit number. The unit number, along with the controller
designation, identifies the location of the device within the
hardware configuration of the system. Unit numbers are decimal
numbers from 0 through 65535.

The maximum length of the device name field, including the controller and
the unit number, is 15 characters. When you specify a device name as part
of a file specification, terminate it with a colon (:). If you do not specify a
logical or physical device name, your default device name is supplied.

In addition to directory and file information, a file specification can include the
device on which a directory and file are located. In the following example,
the file STAFF_VACATIONS.TXT is located in the directory [JONES], which
is located on a device with the logical name DISK2. To display the file from
device DISKl, enter the following file specification:

$ TYPE DISK2: [JONES]STAFF_VACATIONS.TXT

A disk or tape must be mounted on a device in order to be recognized by the
system as a volume. The system also recognizes volume sets. A volume set
consists of two or more related volumes.

To access a file on a disk volume set, you have the following options:

• Specify the name of the device on which the first volume in the set is
mounted. For example, if the disks DUAl and DUA2 have been mounted
as one volume set, access a file on that disk volume set by specifying
DUAl in the file specification.

• Specify the logical name assigned to the volume set when it was
mounted. This is the preferred method because it allows system managers
to move the volume to another device without disrupting users.

To access a file on a tape volume set, specify any device that has been
allocated to that volume set. For example, if the tapes MUAl and MUA2
have been mounted as one volume set, access a file on that tape volume set
by specifying either MUAl or MUA2 in the file specification.

2-9

2.3.2

2.3.3

Working with Files and Directories
2.3 Devices

Logical Device Names
Your system manager has probably set up logical names to represent the
devices on your system. Logical device names can be used to equate a
somewhat cryptic device name to a short, meaningful name. Use these
logical names, rather than the physical device names, to refer to devices.

By using logical names, users can avoid making specific references to physical
devices whose names may change. In daily system management, devices are
sometimes shuffled about. You might not know when a storage disk is added
to your system configuration and a frequently accessed file moved to that new
disk. You continue to access the file with the same file specification because
your system manager has redefined the logical name that previously pointed
to one device to point to the new device.

Consequently, if your file specification contains a logical device name, you
can access the file regardless of which physical device holds the disk or tape
on which the file is stored. Your system manager will ensure that logical
device names are always equated to the correct physical devices.

In the following example, a logical device name is used to specify the device
containing the disk volume with the file STAFF_VACATIONS.TXT. Note that,
like a physical device name, a logical device name must be terminated with a
colon.

$ TYPE DISK1: [JONES]STAFF_VACATIONS.TXT

The VMS system also offers a special type of logical device name called a
concealed device name. If a device has a concealed device name, the logical
name (not the physical device name) will be displayed in system messages
that refer to the device.

See Chapter 4 for a complete discussion of the use of logical names.

Generic Device Names

2-10

A generic device name consists of the device code and omits the specific
controller or unit number. When you use a generic device name, the system
locates the first available controller or device unit whose physical name
satisfies the portions of the generic device name you specified.

When you use the DCL commands ALLOCATE and MOUNT, the system
allows you to specify generic device names in which the controller, the unit
number, or both is not specified. For example, if you enter the ALLOCATE
command and specify only a device type, the ALLOCATE command locates
the first available unit of that type.

For all other DCL commands, the system goes to controller A if you omit the
controller designation, and to unit number 0 if you omit the unit number.

Working with Files and Directories
2.4 Full File Specification

2.4 Full File Specification
As discussed in Chapter 1, a node is one of several VMS systems connected
to form a computer network. If your VMS system is part of a network, the
node that you access when you log in is your local node. Other nodes in
the network are remote nodes. As a general user of the network, you can
perform file operations on nodes other than the one at which you are logged
in.

A node name can contain 1 to 6 alphanumeric characters and must contain at
least one alphabetic character. A node name must always be followed by a
double colon (::). You can also use a logical node name in place of the node
name. For more information on logical node names, see Section 4.8.

When you add node information to the device, directory, and file information,
you create a full file specification. A full file specification completely describes
the access path the system uses to locate and identify a file. Because it
describes the network node on which the file resides, a full file specification is
also known as a network file specification.

The format for a full file specification follows:

node-name: :device:[directory]filename.type;version

Assuming the file protection is set to allow remote access, the following
example shows the full file specification used to display the file
STAFF_VACATIONS.TXT on node HUBBUB:

$ TYPE HUBBUB: :DISK1: [JONES]STAFF_VACATIONS.TXT

If you specify your local node in the file specification, DECnet-VAX logs
you in over the network to perform the file operation, even though the
file exists on your local node. To save time and reduce system overhead
when accessing a file on your current node, omit the node name in .the file
specification.

The full file specification can optionally include an access control string. To
indicate that you are authorized to access a file protected against network
access, include an access control string (a 0- to 42-character string that contains
a user name and password). DECnet-VAX uses this access control string
to log in at the remote node. The device, directory, and file information is
passed to the remote node and interpreted there.

The usual format for a full file specification that contains an access control
string is as follows:

node-name" username password":: device: [directory]filename. type ;version

Assume again that you are user JONES. The following example includes the
access control string necessary for you to copy the file STAFF_SALARIES. TXT
from your account on node HUBBUB to your default directory on another
node. The asterisk at the end of the file specification is a wildcard character.
Here, it instructs the system to duplicate the file name STAFF_SALARIES. TXT
when that file is copied to the remote node.

$ COPY HUBBUB" JONES PANDEMONIUM": : DISK1: [JONES] STAFF _SALARIES. TXT *

2-11

2.4.1

Working with Files and Directories
2.4 Full File Specification

If you omit the access control string, the login information sent to the remote
node is determined as follows:

• If a proxy login account exists for you on the remote node, the system
logs you in using that account. (A proxy login account gives access
privileges on a remote node to selected users who do not have a private
account on that node.)

• If no proxy login account exists, the system uses the default DECnet-VAX
account for that node as specified by the local system manager.

If a file resides on a non-VMS system (that is, the file specification does not
conform to VMS syntax), the name of the file as specified in this format is
enclosed in a quoted string. The quotation marks prevent the local VMS
system from performing syntax checking or logical name translation. In the
following example, the file TEST?.DAT contains a question mark character,
which is not recognized as a valid file name character in VMS:

$ COPY BOSTON: : "TEST?. DAT" *

Using System Default Values When Specifying Files

2-12

When you enter a file specification, you can omit fields and let the system
supply default values for these fields. Table 2-2 summarizes the defaults
applied to each field in a file specification.

Note that the system supplies the defaults described in Table 2-2 for the first
input file specification that you enter on a DCL command line.

Table 2-2 File Specification Defaults

Field

Node

Device

Directory

File name

File type

File version

Defaults

The system assumes that the default is the local system.

The system uses the device (usually a disk) established at login
or by the SET DEFAULT command. Devices are usually identified
with logical names.

If a physical device (ddcu) is used and a controller designation is
omitted, the controller designation defaults to A. If a unit number
is omitted, the unit number defaults to 0. (The ALLOCATE,
MOUNT, and SHOW DEVICES commands, however, treat a
device name that does not contain controller or unit numbers as
a generic device name.)

The system uses the directory name established at login or by
the SET DEFAULT command.

No defaults are applied to the first file name in an input file
specification. Most commands apply default output file names
based on the file name of an input file.

Various commands apply defaults for file types, based on the
standard file type conventions summarized in Table 2-1.

For input files, the system assumes the highest version number.

2. 5 File Operations

Working with Files and Directories
2.4 Full File Specification

Table 2-2 (Cont.) File Specification Defaults

Field Defaults

For output files, if no file with the specified file name and file
type exists in the current directory, the file is created with a
version number of 1. However, if one or more versions do exist,
the next highest version number is used.

When you enter more than one input file specification, the system applies
temporary defaults for node, device, and directory names. The system uses
the preceding file specification in the list that included this information. The
following examples show how the system applies temporary defaults.

The following example copies the latest versions of
DISKl:[JONES.TAXES.PROPERTY]DISTRICTl.DAT and
DISK1:[JONES.TAXES.PROPERTY]DISTRICT2.DAT to the file AUDIT.DAT
in the default directory. By default, the output (second) file specification
parameter assumes the corresponding fields of the first file specification.

$COPY DISK1: [JONES.TAXES.PROPERTY]DISTRICT1.DAT,DISTRICT2 AUDIT

When you want to specify the default file type, be sure to omit the period
(which indicates a null file type).

The following example copies the files DISKl:(JONES.TAXES]BILLING.DAT
and DISKl:[JONES]STAFF.DIS to DISKl:[JONES]ASSIGNMENTS.DAT. Note
that the output (second) file specification parameter uses the default directory,
not the directory in the first input file specification.

$SET DEFAULT DISK1: [JONES]
$COPY [.TAXES]BILLING.DAT, []STAFF.DIS ASSIGNMENTS.DAT

The system applies defaults in different ways depending on the DCL
command you specify. If, for example, you substitute the RENAME
command for the COPY command in the previous example, you will
produce one file [JONES.TAXES]ASSIGNMENTS.DAT and another
[JONES]ASSIGNMENTS.DAT. See the VMS DCL Dictionary for more
information on the defaults applied to specific DCL commands.

File operations involve the creation, use, and deletion of files. File operations
include the following:

• Displaying the contents of files

• Creating files

• Modifying files

• Copying files

• Renaming files

• Deleting files

• Printing files

• Purging files from directories

2-13

2.5.1

Working with Files and Directories
2.5 File Operations

• Using wildcards

As a VMS user, you can also perform file operations over the DECnet network
if you have sufficient privileges. You can display locally the contents of
remote directories and files and copy files from node to node. You can print
files at the remote node where they reside, copy them to a remote printing
device, or copy them to the local node for printing. DCL commands permit
you to access common or public directories or databases located on any node
on the network. You can display their contents or print or copy the files.

See the descriptions of the DCL commands in the VMS DCL Dictionary for
more information on specific file operations you can perform locally and over
the network.

Using Wildcards with File Specifications

2.5.1.1

2-14

By using wildcard characters, you can apply a DCL command to multiple files
rather than to one file at a time. The command applies to all files that match
the portion of the file specification entered.

With many DCL commands, you can use an asterisk (*)and a percent sign
(%) as a wildcard in directory names, file names, and file types. You can also
use the asterisk, but not the percent sign, in version numbers.

The use of wildcard characters in DCL commands varies with the individual
command. For more information on using wildcards with a particular DCL
command, see the VMS DCL Dictionary.

The Asterisk (*) Wildcard Character
Use the asterisk wildcard character to match the following:

• An entire field, or a portion of it, in the directory, file name, and file type
fields

• The entire version number field, but not a portion of it

The following example displays all versions of the file LOGIN.COM in the
directory [JONES]:

$TYPE [JONES]LOGIN.COM;*

The following example displays all versions and all file types of all files that
begin with the word STAFF in the directory [JONES]. This would include
STAFF_VACATIONS.TXT and STAFF.DIS.

$TYPE [JONES]STAFF*.*;*

You can also use the asterisk wildcard character in a directory specification.
The following example displays all versions of all files with the file type .LIS
in all subdirectories one level down from [JONES]:

$TYPE [JONES.*]*.LIS;*

You can use the asterisk in the name, type, and version fields in output file
specifications. Use an asterisk in an output file specification when you want
the output files to match the corresponding field in the input files.

The following example copies the latest versions of all DAT files in [JONES]
to new files in [JONES] with the same name but a file type of SAV:

$COPY *.DAT *.SAV

2.5.2

2.5.1.2

Working with Files and Directories
2. 5 File Operations

The following example copies the latest versions of all DAT files in [JONES]
beginning with the characters 19 to new files with the same names but in the
directory [SAVE]:

$COPY 19*.DAT [SAVE]*.*

The Percent (%) Wildcard Character
The percent sign wildcard character can be used as a substitute for any single
character in a file specification. You can use the percent sign in the directory,
file name, and file type fields. You cannot, however, use the percent sign in
the version number field.

The following example displays the latest versions of all DAT files whose
names begin with DISTRICT:

$TYPE [JONES.TAXES.PROPERTY]DISTRICT%.DAT

This display would include the files DISTRICTl.DAT, DISTRICT2.DAT,
and DISTRICT3.DAT. The file DISTRICT4_5.DAT would not be displayed
because it has more than one character after DISTRICT, nor would the
file DISTRICT.DAT be displayed. The percent sign replaces one character
position in a field, but there must be a character to replace.

Displaying the Contents of Files
You can display the contents of files on your terminal screen by using the
TYPE command or by invoking an interactive text editor with the
/READ_ONLY qualifier. The following example displays the file
STAFF_ VACATIONS.TXT:

$ TYPE STAFF_VACATIONS.TXT

The following example displays the file COMPANY_HOLIDAYS.TXT, which
is located on remote node CHAOS:

$TYPE CHAOS: :DISK2: [PUBLIC]COMPANY_HOLIDAYS.TXT

If more than one file is listed in the TYPE command, the files are displayed in
the order specified; if wildcard characters are used, the files are displayed in
alphabetical order.

To stop the scrolling of the text on the screen temporarily, press the HOLD
SCREEN key (Fl on VT200- and VT300-series terminals); to resume scrolling,
press the HOLD SCREEN key again. To stop the display and return to DCL
command level, press CTRL/Y or CTRL/O.

If you specify the /PAGE qualifier to the TYPE command, you can view one
screen at a time. The system prompts you to press RETURN when you want
to see the next screen.

By invoking an interactive text editor (for example, EVE or EDT) with the
/READ_ONL Y qualifier, you can use interactive editing commands to move
around in a file and search for specific sequences of characters. The
/READ_ONL Y qualifier prevents you from modifying the file as you display
it. Control characters are displayed rather than being interpreted when you
use /READ_ONLY, however. For example, the form-feed character appears
as <FF> rather than producing a form feed.

2-15

2.5.3

Working with Files and Directories
2.5 File Operations

Creating and Modifying Files

2-16

The most versatile interactive tool for creating and modifying files is the
interactive editor. EVE and EDT are two such editors; VMS supports several
others. See Chapter 8 for a description of the EVE and EDT editors.

You can also create and modify files by using the DCL commands CREATE,
COPY, and RENAME. The CREATE command creates a text file. You enter
the CREATE command and then type lines of text, as shown in the following
example:

$ CREATE POUND.LIS
Tag #23, Elmer Doolittle, notified
Tag #37, James Watson, notified
No tag, light brown, 30 lbs., looks part beagle
lcrnL/zl

Pressing CTRL/Z signals the end of the file and returns you to DCL command
level. You cannot modify a file with the CREATE command. Once you have
pressed RETURN, you cannot return to a previous line to modify a word.

The COPY command duplicates the contents of the old file in a new file.
The following example copies FEES.DAT to RECORDS.DAT in the default
directory:

$ COPY FEES.DAT RECORDS

The COPY command can duplicate many files at a time. The following
example copies all TXT files in the default directory to another directory:

$COPY *.TXT;* [SAVETEXT]*.*;*

The COPY command can concatenate files. The following example appends
FEESl.DAT to FEES.DAT (forming a new version of FEES.DAT) in your
default directory:

$COPY FEES.DAT,FEES1.DAT FEES.DAT

Use the COPY command to copy files from another node to your node. The
following example copies the latest version of all files in DISK2:[PUBLIC] on
node CHAOS to files with the same names in your default directory:

$COPY CHAOS: :DISK2: [PUBLIC]*.* *

Use the COPY command to copy files from your node to another node. The
following example copies the latest version of all files in your default directory
to files with the same names in the directory DISK2:(STAFF_BACKUP] on
node CHAOS:

$COPY*·* CHAOS: :DISK2: [STAFF_BACKUP]

If you receive a protection violation or DECnet-VAX error message when you
attempt to copy a file across systems, you have two recourses:

• If you own the file, you can send it to a user account on the other node
with the Mail Utility.

• You can follow the node name in the file specification with an access
control string.

2.5.4 Deleting Files

$DELETE/LOG *.LIS;*

Working with Files and Directories
2.5 File Operations

Use the /SINCE qualifier with the COPY command to select only those files
that meet the specified criterion. The following example copies to the default
directory only those files in the directory (JONES.LICENSES.DOG] that have
been modified since December 31, 1988:

$ COPY/SINCE=31-DEC-1988/MODIFIED [JONES.LICENSES.DOG]*.* *

Use the RENAME command to give the file a new name and optionally locate
it in a different directory. The following example gives the file FEES.DAT the
new name RECORDS.DAT and moves it from the default directory to another
directory:

$RENAME FEES.DAT;4 [SAVETEXT]RECORDS.DAT

Note that after being renamed, the file FEES.DAT;4 no longer exists in the
default directory. When you use the RENAME command, the input and
output locations must be on the same device.

The DELETE command removes files from directories and releases the disk
space they occupy for use by other files. The DELETE command requires
you to specify a version number or the asterisk wildcard character in each file
specification. The following example deletes version 17 of POUND.LIS:

$DELETE POUND.LIS;17

The following example deletes versions 16 and 17 of POUND.LIS:

$DELETE POUND.LIS;16, ;17

The following example deletes all versions of POUND.LIS:

$DELETE POUND.LIS;*

When you delete many files with wildcard characters, you should confirm
each deletion by specifying the /CONFIRM qualifier, as shown in the
following example:

$DELETE/CONFIRM *.*;*
DISK1:[JONES.LICENSES.DOG]FEES.DAT;4, delete? [N]:
DISK1:[JONES.LICENSES.DOG]FEMALE.LIS;6, delete? [N]:
DISK1:[JONES.LICENSES.DOG]MALE.LIS;3, delete? [N]:
DISK1: [JONES.LICENSES.DOG]POUND.LIS;17, delete? [N]:

Similarly, you may want to display the names of files as they are deleted. You
can do this by specifying the /LOG qualifier with the DELETE command, as
shown in the following example:

_%DELETE-I-FILDEL, DISK1: [JONES.LICENSES.DOG]FEMALE.LIS;6 deleted (35 blocks)
_%DELETE-I-FILDEL, DISK1: [JONES.LICENSES.DOG]MALE.LIS;3 deleted (5 blocks)
_%DELETE-I-FILDEL, DISK1: [JONES.LICENSES.DOG]POUND.LIS;17 deleted (9 blocks)

The PURGE command deletes all but the latest version of the specified file
(or all files) in the default directory or any other specified directory. Purging
sequential files after updating them enables you to retain more free space on
your disk volumes.

The following example deletes all but the latest two versions of each file in
your default directory:

$ PURGE/KEEP=2

2-17

2.5.5

Working with Files and Directories
2. 5 File Operations

Printing Files

2-18

The PRINT command places your print job (all the files to be printed) in a
list of jobs to be printed called a print queue. Print queues can be one of the
following types of queues:

• Print queue-A queue assigned to a specific print device.

• Terminal queue-A print queue assigned to a hardcopy terminal that is
being used solely as a printer (not interactively).

• Generic queue-A queue that distributes the processing of jobs to printers
with similar characteristics. Jobs submitted to a generic queue are held in
that queue until one of the assigned printer queues becomes available.

To print a file or files, use the PRINT command. The following example
places a print job containing three files in the default print queue,
SYS$PRINT.

$ PRINT POUND,MALE,FEES.DAT
Job POUND (queue SYS$PRINT, entry 202) started on SYS$PRINT

The file types of the files named in the PRINT command default to LIS
or the last explicitly named file type; thus, the preceding example queues
POUND.LIS, MALE.LIS, and FEES.DAT to SYS$PRINT. The system displays
the job name (POUND), the queue name (SYS$PRINT), the job number
(202), and indicates whether the job has started or is pending. By default,
the job name is the name of the first (or only) file specification in the PRINT
command. Once a job is submitted to a queue, you reference it using the
job number. Once the job is queued, it will be printed when no other jobs
precede it in the queue and when the printer is physically ready to print.

A print queue can execute only one job at a time. Print jobs are scheduled
for printing according to their priority, and the job with the highest priority is
printed first. If more than one job exists with the same priority, the smallest
job is usually printed first. Jobs of equal size having the same priority are
selected for printing according to their submission time.

The default print queue, SYS$PRINT, is usually initialized and started as part
of the site-specific system startup procedures. The SHOW QUEUE command
displays the queues that are initialized at your site. The SHOW ENTRY
command displays the status of your print jobs, as shown in the following
example:

$ SHOW ENTRY

Jobname Username Entry Blocks Status

POUND JONES 202 38 Printing
On printer queue SYS$PRINT

Specify the USERNAME parameter to the SHOW ENTRY command to see
jobs queued by other users. Use the ENTRY-NUMBER parameter to the
DELETE/ENTRY command to delete your job from the queue, as shown in
the following example:

$ DELETE/ENTRY=202

Working with Files and Directories
2. 5 File Operations

You can print a file on another system by copying that file to the remote
node and specifying the /REMOTE qualifier to the PRINT command. The
following example copies the file COMPANY_HOLIDAYS.TXT from your
local node to the remote node CHAOS and queues the file for printing to the
default system print queue (SYS$PRINT) on node CHAOS. The asterisk at
the end of the file specification is a wildcard character. Here, it instructs the
system to duplicate the file name COMPANY_HOLIDAYS.TXT when that file
is copied to the remote node.

$COPY COMPANY_HOLIDAYS.TXT CHAOS"JONES PANDEMONIUM": :DISK2: [JONES]*
$PRINT/REMOTE CHAOS: :DISK2: [JONES]COMPANY_HOLIDAYS.TXT

In the previous example, an access control string was specified to indicate that
you are authorized to copy files to the directory [JONES] on node CHAOS.
However, if you have a proxy account on that remote node, the access control
string is unnecessary. (See Section 2.4 for more information about proxy
accounts.)

Note that not all qualifiers to the PRINT command are compatible with the
/REMOTE qualifier. For example, you cannot queue a job to a specific print
queue; all jobs are queued to the default system print queue (SYS$PRINT).
See the description of the /REMOTE qualifier to the DCL command PRINT
in the VMS DCL Dictionary for a list of PRINT qualifiers compatible with
/REMOTE.

DCL Commands That Control Print Jobs

The DCL commands listed in the following table allow you to control print
jobs in various ways. For example, you can specify the number of copies
printed or you can request that the system notify you when your print job
is complete. For more information on any of these commands, see the VMS
DCL Dictionary.

Print Operations

Number of copies
By job
By file
Specified file only

Number of pages

Print features
Flag pages
Type of forms (paper)
Special features
Double-spacing
Page heading

Notification of job execution

Delay execution of a job
For a specified time
Indefinitely

Release a delayed job

Display your print jobs

Print Job Commands and Qualifiers

PRINT/ JQB_CQUNT =n 1

PRINT /COPIES=n 1

file-spec/COPIES=n 1

PRINT/PAGES= 1

PRINT /FLAG=1

PRINT /FORM= 1

PRINT /CHARACTERISTICS= 1

PRINT /SPACE 1

PRINT /HEADER1

PRINT /NOTIFY

PRINT/ AFTER
PRINT/HOLD

SET QUEUE/ENTRY /RELEASE

SHOW ENTRY

1 Parallel qualifiers for the SET QUEUE/ENTRY command allow you to specify these
operations for print jobs that are already queued but not yet printing.

2-19

Working with Files and Directories
2.5 File Operations

Print Operations

Stop a print job
Delete job
Stop currently printing

job and begin printing
the next job in the
queue

Stop currently printing
job and requeue it for
printing

Print Job Commands and Qualifiers

DELETE/ENTRY=job-number
STOP/ABORT

STOP /REOUEUE

2.6 Device and Directory Operations

2.6.1

To access files on your system, you need to know how to navigate through
many directory structures. Because directories reside on devices, you also
need to know how to work with devices other than your default device.

Device and directory operations include the following:

• Displaying directories

• Crea ting directories

• Deleting directories

• Setting a default device

• Setting a default directory

• Searching the directory structure with wildcards

Displaying Directories

2-20

The DCL command DIRECTORY displays the names of the files in a
directory. The following example lists the files in [JONES]:

$ DIRECTORY/COLUMNS=1

Directory DISK1: [JONES]

LICENSES.DIR;1
LOGIN.COM;3
LOGIN.COM;4
STAFF.DIS;3
STAFF_VACATIONS.TXT;2
TAXES. DIR; 1

Total of 5 files.

The display shows us that [JONES] contains two subdirectories
[JONES.LICENSES] and [JONES.TAXES]-and four nondirectory files
STAFF.DIS, STAFF_VACATIONS.TXT, and two versions of LOGIN.COM.
The following example (assuming that the default directory remains [JONES])
lists the contents of the subdirectory [JONES.LICENSES]. Note that if you
want to move one level down the directory structure, you need specify only
the subdirectory name, preceded by a period, to which you want to move.

2.6.2

2.6.3

Working with Files and Directories
2.6 Device and Directory Operations

$ DIRECTORY/COLUMNS=1 [.LICENSES]

Directory DISK1: [JONES.LICENSES]

MAILING.LIS;6
TOTAL.DAT;2
DEPT.DAT;3
DOG.DIR; 1
MARRIAGE.DIR;!

Total of 6 files.

If you have sufficient privileges, you can display the contents of the master
file directory. To do so, specify (000000] as the file-spec parameter to the
DIRECTORY command or search up one level from a top level directory
using the [-] wildcard (described in Section 2.6.6.2). Note that nine of the
files contained in [000000] are structure files, which are special files created
and reserved by the system that must not be deleted. Note also that your
system disk contains several directories with files that provide data required
to run VMS and allow you to run command images and execute command
procedures.

See the Guide to Setting Up a VMS System for more information about user
privileges.

Creating Directories
The CREATE/DIRECTORY command creates a subdirectory, as shown in the
following example.

$CREATE/DIRECTORY [JONES.LICENSES]

If your current default directory is [JONES], specify the following:

$ CREATE/DIRECTORY [.LICENSES]

Note that you must have SYSPRV privilege to create a top level directory.
See the Guide to Setting Up a VMS System for a discussion of user privileges.

Deleting Directories
You cannot delete a directory that contains files. Before deleting a directory or
subdirectory, make sure it is empty by entering the DIRECTORY command,
as shown in the following example:

$ SET DEFAULT [JONES.LICENSES]
$ DIRECTORY

No files found.

If the directory contains any files, copy or rename them to another directory
(if you want to save them) and delete them from the directory of interest. If
the directory contains subdirectories, examine those subdirectories (copying
and deleting their files) and delete the subdirectories.

To delete a directory, move to the directory one level above the directory you
want to delete. This means that if you want to delete [JONES.LICENSES],
you should set default to [JONES]. Remember that the subdirectory
[JONES.LICENSES] exists as a file named UCENSES.DIR;l in the directory
[JONES]. You delete a directory by deleting the file that points to that
directory.

2-21

2.6.4

Working with Files and Directories
2.6 Device and Directory Operations

Because a directory file is created without delete access to prevent accidental
deletion of the directory, you must change the file protection to allow delete
access before you can delete that directory file. (See Section 7.2 for more
information about file protection.) The following example shows how to
delete the subdirectory [JONES.LICENSES]:

$ SET DEFAULT [JONES]
$SET PROTECTION=OWNER:D LICENSES.DIR
$DELETE LICENSES.DIR;!

The directory files (for example, JONES.DIR;l) in the master file directory
require SYSPRV privilege to delete. See the Guide to Setting Up a VMS System
for a discussion of user privileges.

Setting a Default Directory

2-22

Ascend and descend the directory hierarchy by setting default to a different
directory with the DCL command SET DEFAULT. The default remains in
effect until you enter another SET DEFAULT command.

The following example sets default to the directory [JONES] and displays the
file STAFF_ VACATIONS. TXT:

$ SET DEFAULT [JONES]
$TYPE STAFF_VACATIONS.TXT

Subdirectories are specified by corlcatenating the subdirectory name to the
name of the directory one level above it. The following example displays the
file BILLING.DAT located in the subdirectory [JONES.TAXES]:

$SET DEFAULT [JONES.TAXES]
$ TYPE BILLING.DAT

When you move from your current default directory to a subdirectory one
level below, you can omit the current directory's name in the file specification.
By default, the system assumes the current directory. In the following
example, the current default directory is [JONES]:

$SET DEFAULT [.TAXES]
$ TYPE BILLING.DAT

You can display the current default directory by entering the command
SHOW DEFAULT, as shown in the following example:

$ SHOW DEFAULT
DISK1: [JONES.TAXES]

$ SET DEFAULT [PUBLIC]
$ SHOW DEFAULT

DISK1: [PUBLIC]

2.6.5

2.6.6

Working with Files and Directories
2.6 Device and Directory Operations

Setting a Default Device
Section 2.6.4 describes how to set a default directory with the DCL command
SET DEFAULT. You can also use the SET DEFAULT command to change
the default device. The default remains in effect until you enter another SET
DEFAULT command or log out.

The following example shows how to change the default device:

$ SHOW DEFAULT
DISK!: [JONES]

$ SET DEFAULT DISK2: [GROUP]
$ SHOW DEFAULT

DISK2: [GROUP]

You can specify the device to which you want to set default without including
the directory in the command. In the following example, the directory
(JONES] is assumed and exists on DISKl and DISK2:

$ SHOW DEFAULT
DISK!: [JONES]

$ SET DEFAULT DISK2:
$ SHOW DEFAULT

DISK2: [JONES]

Note that VMS allows you to set default to a nonexistent disk or directory.
If you find yourself in a nonexistent disk or directory and cannot carry out
a desired operation, simply set default to an existing disk or directory and
continue your task.

Searching the Directory Structure with Search Wildcards

2.6.6.1

From any point in a directory structure, you can refer to another directory or
subdirectory in the structure. Do this by specifically naming the directory or
subdirectory you want or by using the ellipsis (...) and hyphen (-) wildcard
characters.

The Ellipsis (...) Wild card Character
Use the ellipsis to search down into the directory hierarchy. To search
the current directory and all the subdirectories below it, use the ellipsis by
itself. The following command searches the current default directory and all
subdirectories below it:

$ DIRECTORY [...]

Assuming the current directory is (JONES], the following command
displays the latest versions of all files named FEES.DAT in (JONES] and
all subdirectories under [JONES]:

$TYPE [JONES ...]FEES.DAT

If you begin the directory specification with an ellipsis, the search begins from
your current directory. Assuming the current default directory is (JONES],
the following command searches all subdirectories that end in .SALES and
displays the latest versions of the file FEDERAL. LIS:

$ TYPE [... SALES]FEDERAL.LIS

2-23

Working with Files and Directories
2.6 Device and Directory Operations

2.6.6.2

2-24

Assuming the current directory is [JONES], the following command
displays the latest versions of all files named DEPT.DAT in [JONES] and
all subdirectories under [JONES]:

$ TYPE [...] DEPT .DAT

However, if you begin the directory specification with a period, only the
subdirectory that is one level lower than the current directory is searched.
Assuming the current directory is [JONES], the following command searches
only the [.LETTERS] subdirectory that is one level lower than [JONES] for the
file INVITATION.TXT. The subdirectory [JONES.LETTERS] is searched, but
[JONES.WORK.LETTERS] is not:

$TYPE [.LETTERS]INVITATION.TXT

Assuming the current directory is [JONES], the following command displays
the latest versions of all files named DEPT.DAT in the [.LICENSES]
subdirectory under [JONES] and all subdirectories under the [.LICENSES]
subdirectory:

$ TYPE [... LICENSES ...] DEPT. DAT

To search all top level directories and their subdirectories from wherever you
are in the directory structure, use an asterisk (*) followed by an ellipsis (...).
The following command (which requires READALL privilege) searches as
many as eight levels of directory names (the top level directory and seven
subdirectories), if they exist. It does not search the MFD.

$DIRECTORY [* ...]

The Hyphen (-) Wildcard Character
The hyphen wildcard character permits you to move up through the directory
structure. Each hyphen refers to the directory one level up from the current
one. You can follow the hyphens with directory and subdirectory names to
move down the directory structure on another path.

If the current directory is [JONES.LICENSES], the following command
displays the latest version of STAFF.DIS in [JONES]:

$TYPE [-]STAFF.DIS

If your current directory is [JONES.LICENSES], the following command
displays the latest version of BILLING.DAT in [JONES. TAXES]:

$TYPE [-.TAXES]BILLING.DAT

You can specify more than one hyphen. The following command moves you
up two levels in the directory hierarchy.

$SET DEFAULT [--]

If you enter so many hyphens that you point above the master file directory
(MFD), the system displays an error message.

The following example uses the BACKUP command to copy all files in
[JONES.TAXES] to a directory named [AUDIT], and all the files in any
subdirectories under [JONES.TAXES] to corresponding subdirectories under
[AUDIT]:

$BACKUP [JONES.TAXES ...]*.*·* [AUDIT ...]*.*·*

2.6.6.3

Working with Files and Directories
2.6 Device and Directory Operations

The trailing ellipsis in the output specification lets you move the entire
third level directory structure from the input directory to the second level of
the output directory. Unlike the COPY command, the BACKUP command
preserves the input directory structure in the output it creates.

Using Wildcards to Copy a Directory Structure
By including asterisk (*) and ellipsis (...) wildcards in output directory
specifications, you can do the following:

• Duplicate an entire input directory structure

• Move files from one directory structure into another directory structure at
the same or at a different level

Each wildcard character in an output directory specification refers to
a corresponding directory level in the input specification. An output
specification may contain only wildcards, or it may contain a combination
of wildcards and directory names. If directory names are used, they must
always precede any wildcards that are included.

Use the asterisk when you want a particular level in the output directory
specification to match a level indicated by a wildcard in the input
specification. For example:

$BACKUP [JONES.*]*.*;* [SCHULTZ.SAVE.*]*.*;*

In the previous example, the BACKUP command copies all files from any
subdirectories under [JONES] to any corresponding subdirectories under
[SCHULTZ.SAVE]. For example, all files in the subdirectory [JONES.TAXES]
are copied to the subdirectory [SCHULTZ.SAVE.TAXES]. Notice that
the single asterisk in the output directory specification refers to the first
subdirectory level in the input directory that contained a wildcard.

Use the ellipsis when you want the output directory specification to follow
the same structure downwards as the input directory from the first level that
contained a wildcard. For example:

$BACKUP [JONES.TAXES ...]*.*;* [AUDIT ...]*.*;*

In the previous example, the BACKUP command copies all files in
[JONES.TAXES] to a directory named [AUDIT], and all the files in all
subdirectories under [JONES. TAXES] to corresponding subdirectories under
[AUDIT]. The trailing ellipsis in the output specification lets you move the
entire third level directory structure from the input directory to the second
level of the output directory.

For output directory specifications, a trailing asterisk and ellipsis are mutually
exclusive when they follow a specific directory name. Therefore, output
directory specifications such as [USER.* ...] and [USER ... *] are invalid.
However, [* ...] is valid, because the asterisk wildcard is used in place of a
directory name.

You can move an entire input directory structure to an output directory
structure. The two ways to do this are as follows:

$BACKUP DISK1: [JONES ...]*.*;* DISK2[*]*.*;*

or

$BACKUP DISK1: [JONES ...]*.*;* DISK2[* ...]*.*;*

2-25

Working with Files and Directories
2.6 Device and Directory Operations

2-26

These commands let you move all the files in the [JONES] directory structure
on the disk DISKl to the [JONES] directory structure on disk DISK2, from the
top level directory down through the entire structure.

3 Working with Processes

The environment in which you interact with the system is called a process. A
process contains identification and status information that the system needs to
execute programs for you. Within a process, programs execute one at a time
in the order in which they are invoked.

You can place your process into hibernation and create a second process
called a subprocess under your user name. You can interact with the system
and log out of that subprocess to return to the original process.

A program executes within the context of the process that invokes it. Some
programs are system programs that control the flow of events within the
process. For example, when you log in, your process is under the control of
the system program SYS$SYSTEM:LOGINOUT.EXE. When you work at DCL
level, your process is under the control of SYS$SYSTEM:DCL.EXE.

A command procedure is a file that contains a list of DCL commands.
Complex command procedures resemble programs written in high-level
programming languages. In this sense, command procedures provide a way
to write programs in DCL.

You can submit programs and command procedures for execution as batch
jobs, which you submit to the system as separate processes. Batch jobs allow
you to continue to work interactively with the system while the program or
procedure executes as another process under your user name.

3.1 Processes and the User Environment
Each user on the system is associated with a process, which is a special
environment created by the system that makes interaction with the system
possible. A process has a beginning and an end; for example, the system
creates a process for you when you log in and deletes that process when
you log out. A process contains all the information that the system needs
to execute programs. It is within your process that the system executes your
programs (also called images or executable images) one at a time.

A process can be a detached process (a process that is independent of other
processes) or a subprocess (a process that is dependent on another process
for its existence and resources). Your main process, also called your parent
process, is a detached process.

The system creates a process for you when you do one of the following:

• Log in-The system creates a process for each interactive user.

• Submit a batch job-The system creates a process for each batch job.
When the batch job is completed, the system deletes the process.
Section 3.1.4 discusses batch jobs.

• Spawn a subprocess-The system creates a process when you use the
SP AWN command. Section 3.1.3 describes subprocesses.

• Run a program using either the /DETACHED or the UIC=uic qualifiers.
Section 3 .1.1 describes programs.

3-1

Working with Processes
3.1 Processes and the User Environment

The system also creates special system processes to perform various functions.
The DCL command SHOW SYSTEM displays both user and system processes.

The following list summarizes the process context. Certain characteristics,
such as the privileges, symbols, and logical names enabled in your process,
collectively create the process context. Use the DCL command SHOW
PROCESS/ ALL to examine your process context.

31-DEC-1988 13:30:37.12 0 User: CLEAVER fJ
Pid: 24E003DC C) Proc. name: CLEAVER_! 0 UIC: [DOC.CLEAVER] CD
Priority: 4 (!> Default file spec: DISK!: [CLEAVER] f)

Process Quotas: CD
Account name: DOC
CPU limit: Infinite Direct I/O limit:
Buffered I/0 byte count quota: 31808 Buffered I/O limit:
Timer queue entry quota: 10 Open file quota:
Paging file quota: 22276 Subprocess quota:
Default page fault cluster: 64 AST quota:
Enqueue quota: 600 Shared file limit:
Max detached processes: 0 Max active jobs:

Accounting information: CD
Buffered I/0 count: 140 Peak working set size: 383
Direct I/O count: 7 Peak virtual size: 2336
Page faults: 304 Mounted volumes: 0
Images activated: 1
Elapsed CPU time: 0 00:00:00.55
Connect time: 0 00:00:22.76

Process privileges: Qi)
GROUP may affect other processes in same group
TMPMBX may create temporary mailbox
OPER operator privilege
NETMBX may create network device

Process rights identifiers: 4D
INTERACTIVE
LOCAL
SYS$NODE_AJAX

Process Dynamic Memory Area ~
Current Size (bytes)
Free Space (bytes)
Size of Largest Block
Number of Free Blocks

Processes in this tree: 41>
CLEAVER

CLEAVER_! (*)

25600
19592
19520

3

Current Total Size (pages)
Space in Use (bytes)
Size of Smallest Block
Free Blocks LEQU 32 Bytes

18
25
57
4

38
0
0

50
6008

24
1

0 Current date and time-The date and time when the SHOW
PROCESS/ ALL command is executed.

3-2

0 User name-The user name assigned to the account that is associated
with the process.

0 Process identification number (PID)-A unique number assigned to the
process by the system. The SHOW PROCESS command displays the PID
as a hexadecimal number.

0 Process name-The name assigned to the process. Since process names
are unique, the first process logged in under an account is assigned the
user name, and subsequent processes logged in under the same account

3.1.1 Programs

Working with Processes
3.1 Processes and the User Environment

are assigned the terminal name. You can change your process name with
the DCL command SET PROCESS/NAME.

0 User identification code (UIC)-The group and member numbers (or
letters) assigned to the account that is associated with the process (for
example, [PERSONNEL,RODGERS]). Part of your UIC identifies the
group to which you belong. Within a group, users are allowed to share
files or system resources more freely than between groups.

0 Priority-The current priority of the process.

0 Default file specification-The current device and directory. Change your
current defaults with the DCL command SET DEFAULT.

G Process quotas-The quotas (limits) associated with the process. Examine
these quotas with the /QUOTAS or/ ALL qualifiers of the SHOW
PROCESS command.

0 Accounting information-The continuously updated account of the
process's use of memory and CPU time. Examine this information
with the /ACCOUNTING or /ALL qualifiers of the SHOW PROCESS
command.

Cl> Process privileges-The privileges granted to your processes. Privileges
restrict the performance of certain system activities to certain users.
Examine your privileges with the /PRIVILEGES or /ALL qualifiers of the
SHOW PROCESS command.

a. Process rights identifiers-System-defined identifiers that are used in
conjunction with access control list protection. Identifiers provide the
means of specifying the users in an access control list. An access control
list is a security tool that defines the kinds of access to be granted or
denied to users of an object, such as a file, device, or mailbox. (See
Chapter 7 for more information about identifiers and access control lists.)

48 Process dynamic memory area-The process's current use of dynamic
memory. Dynamic memory is allocated by the system to an image
when that image is executing. When that memory is no longer needed
by one process, the system allocates it to another process. Examine
this information with the /MEMORY or /ALL qualifiers of the SHOW
PROCESS command.

41 Processes in this tree-A list of subprocesses belonging to the parent
process. An asterisk appears after the current process. Examine this with
the DCL SHOW PROCESS /SUBPROCESSES or /ALL command.

A program, also called an image or executable image, is a file that contains
instructions and data in machine-readable format. Image files can be VMS
or user-supplied and usually have a file type of EXE. You cannot examine an
image file with the DCL commands TYPE, PRINT, or EDIT because image
files do not consist of ASCII characters. (Text files contain ASCII characters,
which are a standard method of representing the alphabet, punctuation
marks, numerals, and other special symbols.)

3-3

3.1.2

Working with Processes
3.1 Processes and the User Environment

A program can be either a command image or a noncommand image as
follows:

•

•

Command image-A command image is a program associated
with and invoked by a DCL command. For example, when you
type the DCL command COPY, the system executes the program
SYS$SYSTEM:COPY.EXE. COPY.EXE is a command image. A system
directory named SYS$SYSTEM contains a number of command image
files, most of which are VMS-supplied. Use the DCL command
DIRECTORY SYS$SYSTEM to examine this system directory.

Noncommand image-A noncommand image is a program not associated
with a DCL command. To invoke a noncommand image, name the file
containing the program as the parameter to the RUN command.

Executing Programs Across the Network

Because of support provided by DECnet-VAX, programs can execute across
the network as if they were executing locally. Because DECnet-VAX is
integrated within the VMS operating system, it is easy to write programs that
access remote files. To access a remote file in an application program, you
need only include in your file specification the name of the remote node and
any required access control information.

Task-to-task communications, a feature common to all DECnet
implementations, allows two application programs running on the same
or different operating systems to communicate with each other regardless
of the programming languages used. Examples of network applications are
distributed processing applications, transaction processing applications, and
applications providing connection to servers.

Command Procedures

3-4

A command procedure is a file that contains a list of DCL commands.
When you execute a command procedure, DCL reads the command file and
executes the commands it contains. Command procedures can be executed as
interactive or batch processes. If you use command procedures that require
lengthy processing time (for example, the compilation or assembly of large
programs) submit these procedures as batch jobs so you can continue to use
your terminal interactively.

When you submit a command procedure for batch execution, the system
creates a detached process using your account and process characteristics.
The system runs the job from that process and deletes the process when the
job is completed.

You can use command procedures to automate sequences of commands that
you enter frequently. For example, if you always examine the contents of a
directory immediately after setting default to it, you can design a command
procedure that issues the appropriate commands to display the directory's
contents. A command procedure might contain the following commands
to set default to the ACCOUNT subdirectory and display the subdirectory' s
contents. (Exclamation points delimit comments in command procedures;
DCL ignores everything to the right of the exclamation point when processing
the line.)

3.1.3 Subprocesses

Working with Processes
3.1 Processes and the User Environment

$! DISK1: [ADAMS]ACCOUNTD.COM
$!
$SET DEFAULT DISK1: [ADAMS.ACCOUNT]
$ DIRECTORY

To execute a command procedure interactively, type the@ command
followed by the procedure's file specification. To execute the command
procedure in the previous example, enter @DISKl :[ADAMS]ACCOUNTD
(or @ACCOUNTD if your current disk and directory are DISKl:[ADAMS]).

Chapter 6 discusses command procedures in greater detail.

The SPAWN command enables you to create a subprocess of your current
process. Within this subprocess, you can interact with the system and log out
of the subprocess to return to your parent process, or switch between your
parent process and subprocesses. Only one of your processes is executing at
any time.

Each user on the system is represented by a job tree. A job tree is a hierarchy
of all your processes and subprocesses, with your main process at the top. A
subprocess is dependent on the parent process and is deleted when the parent
process exits. By default, the subprocess assumes the name of the parent
process followed by an underscore and a unique number. For example,
if the parent process name is DOUGLASS, the subprocesses are named
DOUGLASS_l, DOUGLASS_2, and so on, forming a tree of subprocesses.

Typically, you use a· subprocess in one of the following two ways:

• To interrupt a task, perform a second task, then return to the original
task-Because SPAWN is a built-in command (listed in Chapter 1), you
can use CTRL/Y to interrupt one task, spawn a subprocess to perform
a second task, exit from the subprocess, and then enter the CONTINUE
command to return to the original task. By default, when you create a
subprocess, the parent process hibernates, and you are given control at
DCL level within the subprocess. Your default directory is the current
directory of the parent process. (If you interrupt the EDT editor, enter the
CONTINUE command and press CTRL/W to refresh the screen.)

• To perform a second task while continuing to work on your original
task-You can do so by creating the subprocess with the
SPAWN/NOWAIT command. Use the SPAWN/NOWAIT command
only to execute commands that do not require input; SPAWN/NOWAIT
generates a noninteractive, batch-like subprocess.

Because both the parent and the subprocess are executing concurrently,
both attempt to control the terminal. To prevent conflicts, also specify the
following:

/OUTPUT qualifier-Indicates that the subprocess should write
output to a specified file rather than to the terminal.

SP AWN command parameter or /INPUT qualifier-Indicates that
the subprocess should execute the specified commands rather than
reading input from the terminal.

3-5

Working with Processes
3.1 Processes and the User Environment

3.1.3.1

3-6

When you specify the /INPUT qualifier of the SP AWN command,
the subprocess is created as a noninteractive process that exits upon
encountering a severe error or an end-of-file indicator. At DCL level,
CTRL/Z is treated as an end-of-file indicator.

In the following example, a command image (the TYPE command) is
interrupted with CTRL/Y and a subprocess is spawned:

$TYPE MICE.TXT
Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.

\CTRL/Y\
$ SPAWN
%DCL-S-SPAWNED, process DOUGLASS_! spawned
%DCL-S-ATTACHED, terminal now attached to process DOUGLASS_!
$ MAIL
MAIL>

MAIL> EXIT
$ LOGOUT
Process DOUGLASS_! logged out at 31-DEC-1988 12:42:12.46

%DCL-S-RETURNED, control returned to process DOUGLASS
$ CONTINUE
Once inside, they may gnaw through electrical wires and raid
your food. Because mice reproduce so quickly, what started
as one or two mice can quickly become an invasion. If you seal
the cracks and holes on the exterior of your foundation, you can
prevent these rodents from ever getting in.

Because each process you create is unique, commands executed in one
process do not usually affect any other process. However, because control
of the terminal passes between processes, commands that affect the terminal
characteristics (for example, SET TERMINAL) affect any process controlling
that terminal. For example, if one process inhibits echoing and exits without
restoring it, echoing remains inhibited for the next process that gains control
of the terminal. Reset any altered terminal characteristics with the SET
TERMINAL command.

Exiting from a Subprocess
To exit from a subprocess created by SP AWN, use one of the following
commands:

• LOGOUT-When you exit from a subprocess with the LOGOUT
command, the subprocess is deleted (along with any subprocesses that it
created), and you are returned to the parent process.

• ATTACH-When you exit from a subprocess with the ATTACH
command, the subprocess hibernates, and control of your terminal
is transferred to the specified process. (You must specify either a
process name as a parameter to the ATTACH command or a process
identification number (PID) as a value of the /IDENTIFIER qualifier of
the ATTACH command.) The following example shows how to exit from
the subprocess DOUGLASS_! and attach to the process DOUGLASS:

3.1.3.2

Working with Processes
3.1 Processes and the User Environment

$ ATTACH DOUGLASS

%DCL-S-RETURNED, control returned to process DOUGLASS

$ SHOW PROCESS

26-APR-1988 10:34:58.50 VTA303 User: DOUGLASS
Pid: 25C002B4 Proc. name: DOUGLASS UIC: (200,200]
Priority: 4 Default file spec: SYS$SYSDEVICE: [DOUGLASS]

Devices allocated: 11VTA303:

Subprocess Context
By default, a subprocess inherits the following items from the parent process:
defaults, privileges, symbols, logical names, control characters, message
format, verification state, and key definitions. The environment that these
items collectively create is called the process context. The following items,
however, are not inherited from the parent process:

• Process identification number (PID)-The system assigns each created
subprocess a unique process identification number.

• Process name-By default, the subprocess name consists of the name of
the parent process followed by an underscore and an integer. Use the
/PROCESS qualifier of the SP AWN command to specify a process name
other than the default. A process name must be unique.

• Created commands-Commands that are defined by a parent process
using the SET COMMAND command are not copied to a subprocess. To
use a created command in a subprocess, you must use SET COMMAND
to create that command for the subprocess.

• Authorize privileges-When you spawn to a subprocess, the process
context contains the privileges currently enabled, not the privileges
that you may be authorized to enable. For example, if you spawn to a
subprocess while in MAIL and want to perform a privileged operation,
you need to have already set the proper privilege in the parent process.

You can use the following SPAWN qualifiers to prevent the subprocess from
inheriting a number of these items:

Qualifier

/CARRIAGE_CQNTROL, /PROMPT

/NOCLI

/NOKEYPAD

/NOLOGICAL_NAMES

/NOSYMBOL

Items Inhibited or Changed

DCL prompt

CLI (command language interpreter;
DCL by default)

Keypad definitions

Logical names

Symbols

The /SYMBOL and /LOGICAL-NAMES qualifiers do not affect system
defined symbols (such as $SEVERITY and $STATUS) or system-defined
logical names (such as SYS$COMMAND and SYS$0UTPUT). Symbols are
described in Chapter 5. See Chapter 4 for more information about logical
names.

3-7

3.1~4

3.1.5

Working with Processes
3.1 Processes and the User Environment

Batch Jobs

Since copying logical names and symbols to a subprocess can be time
consuming (a few seconds}, you may want to use the
/NO LOGICAL _NAMES and /NOSYMBOL qualifiers to the SP AWN
command unless you plan to use the logical names or symbols in the
subprocess. If you use subprocesses frequently, the ATTACH command
provides the most efficient way to enter and exit a subprocess. This method
allows you to transfer control quickly between the parent process and
subprocess rather than repeatedly waiting for the system to create a new
subprocess for you.

Usually you use VMS in interactive mode. When you work interactively with
VMS, the system must expend resources waiting for your input. If the system
is heavily loaded with other jobs, your interaction with VMS is slowed. Also,
when you run a long job interactively, your terminal is unavailable to you
until the job is completed.

A batch job consists of one or more programs or command procedures that
execute as a detached process without user interaction. A batch job allows
you to use your terminal for other work while the system executes your
program or command procedure.

When you submit a batch job, the system logs in under your user name and
creates a detached process dedicated to executing the commands in that file.
A batch job is aiso more efficient than an interactive session: it runs under
a lower priority and can be run at times when the system is not overloaded
with interactive users.

Submitting a Batch Job

3-8

To run a job in batch mode, submit your job to a batch queue (a list of batch
jobs waiting to execute) by entering the DCL command SUBMIT. When you
submit a job, it is directed to the default batch queue, SYS$BATCH, where it
is added to the end of the queue of jobs waiting to be executed. When the
jobs preceding yours are completed, your job is executed. (On a VMS system,
the number of batch jobs that can execute simultaneously is specified when
the batch queue is created by the system manager.)

By default, the SUBMIT command uses a file type of COM. The following
command enters JOBI.COM into SYS$BATCH:

$ SUBMIT JOB1
Job JOB1 (queue SYS$BATCH, entry 651, started on SYS$BATCH)

The system displays the name of the job, the queue containing the job, and
the entry number assigned to the job. You receive the DCL prompt once your
job is submitted to the batch queue. If you need to reference your batch job
in any DCL commands (DELETE/ENTRY, for example), do so by using the
job entry number. (You can obtain the job entry number by using the SHOW
ENTRY command.) Note that if multiple procedures are submitted in a batch
job, the batch job terminates when any procedure exits with an error or fatal
error status.

3.1.6

3.1.7

Batch Job Output

Working with Processes
3.1 Processes and the User Environment

Your batch job does not necessarily have to start running at the time you
submit it to the batch queue. To specify a different time, enter the
SUBMIT/ AFTER command. In the following example, the job is submitted
after 11:30 p.m.:

$ SUBMIT/AFTER=23:30 JOB1.COM

By default, accumulated output from a batch job is written to a log file once
each minute. (To specify a different time interval, include the SET
OUTPUT_RATE command in your command procedure.) If you attempt to
use the EDT editor to read the log fie while the system is writing to it, you
receive a message indicating that the file is locked by another user. Wait a
few seconds and try again. The EVE editor, however, allows you to read the
batch job's log file. By specifying EDIT/TPU/READ_ONLY and the name
of the log file, you can use EVE commands to move around the log file and
ensure that any changes you make to the file are not saved. If you omit the
/READ_ONL Y qualifier and modify the log file in any way, the batch job
terminates.

Because your batch job is a process that logs in under your user name and
executes your login command procedure, the output from a batch job includes
the contents of your login command procedure. The output also includes
everything written to the batch job log file (command procedure output,
error messages, and so on) and the full logout message. To prevent your
login command procedure from being written to the batch log file, add the
following command to the beginning of your login command procedure:

$ IF F$MODE() . EQS. "BATCH" THEN SET NOVERIFY

By default, the log file name is the name under which you submitted the
job. Also by default, the log file has a file type of LOG and assumes the
device and directory specified by your login defaults. To specify a different
log file name when you submit the job, use the /LOG_NAME qualifier to
the SUBMIT command.

When the batch job completes, the log file is queued to the default system
printer (SYS$PRINT), printed, and deleted. To save the log file after printing
it, use the /KEEP qualifier to the SUBMIT command. To save the log file
without printing it, use the /NOPRINT qualifier to the SUBMIT command.

Restarting Batch Jobs
If the system fails while your batch job is executing, your job does not
complete. When the system recovers and the queue is restarted, your job is
aborted, and the next job in the queue is executed. However, by specifying
the /RESTART qualifier when you submit a batch job, you indicate that
the system should reexecute your job if the system crashes before the job is
finished.

By default, a batch job is reexecuted beginning with the first line. See
Section 6.10 for more information about symbols you can add to your
command procedures to specify a different restarting point.

3-9

4 Using Logical Names

When you define a logical name, you equate one character string to an
equivalence name, which is usually a full or partial file specification, another
logical name, or any other character string. Once you have equated a logical
name to one or more equivalence names, you can use the logical name to
refer to those equivalence names. For example, you might assign a logical
name to your default disk and directory. Logical names serve two main
functions:

• Shorthand and readability-You can define commonly used files,
directories, and devices with short, meaningful logical names. Such
names are easier to remember and type than the full file specifications.
Names that you use frequently can be defined in your login command
procedure. Names that most users on your system use frequently can be
defined by a system manager in the site-specific system startup command
procedure.

• File independence-You can use logical names to keep your programs
and command procedures independent of physical file specifications.
For example, if a command procedure references the logical name
ACCOUNTS, you can equate ACCOUNTS to any file on any disk before
executing the command procedure.

Logical names can be defined by you or by the system. Logical names and
their definitions are kept in tables called logical name tables. The system
provides the following logical name tables:

• Your process table

• The job table for your process

• Your group table

• The system table

When you enter a logical name as part of a command line, the system
translates the logical name. It does this by searching the logical name tables
in a certain order. Information about existing logical name tables and the
order in which they are searched is stored in two logical name directory tables.

With DCL, you can also apply special attributes to logical names and define
the order in which logical names tables are searched.

4-1

Using Logical Names
4.1 Creating Logical Names

4.1 Creating Logical Names

4-2

You can create your own logical names with either the ASSIGN or the
DEFINE command. This section uses the DEFINE command to create logical
names. (Note that the syntax for the ASSIGN command differs from the
syntax for the DEFINE command. For information on using the ASSIGN
command, see the VMS DCL Dictionary.)

The syntax for defining a logical name is as follows:

DEFINE logical-name equivalence-name[, ...]

The following example associates the logical name ACCOUNTS with the
equivalence name DISKl :[JONES.ACCOUNTS]:

$ DEFINE ACCOUNTS DISK1: [JONES.ACCOUNTS]

Now you can use ACCOUNTS to refer to the directory
DISKl :[JONES.ACCOUNTS].

Observe the following rules when creating a logical name with the DEFINE
command:

• A logical name and its equivalence name can each have a maximum of
255 characters. A logical name can contain alphanumeric characters, as
well as the underscore (_), dollar sign ($), and hyphen (-).

• The equivalence name must include the punctuation marks (colons,
brackets, periods) that would be required if it were part of a file
specification. For example, a device name is terminated by a colon, a
directory specification is enclosed in square brackets, and a file type is
preceded by a period.

• You can optionally terminate a logical name with a colon. If you do this,
the ASSIGN command removes the colon before placing the logical name
in a logical name table. The DEFINE command does not remove the
colon before placing the name in a logical name table.

In general, you should not specify a colon at the end of a logical name
when you are creating it. However, if you do so and want to save the
colon as part of the logical name, use the DEFINE command. (Note
that when you delete a logical name ending with a colon, you need to
specify two colons because the DEASSIGN command, like the ASSIGN
command, removes one colon before it searches the logical name table for
a match.)

If the logical name is part of a file specification, the logical name must be
the leftmost component of the file specification and must be separated from
the rest of the file specification by a colon. When you use a logical name to
represent a complete file specification, the terminating colon is not needed.
The following examples all display the file
DISKl:[SALES_STAFF]PAYROLL.DAT:

4.1.1

Using Logical Names
4.1 Creating Logical Names

$DEFINE PAY DISK1: [SALES_STAFF]PAYROLL.DAT
$ TYPE PAY

$ DEFIN2 PAY_FILE DISK1: [SALES_STAFF]PAYROLL
$ TYPE PAY_FILE: .DAT

$DEFINE PAY_DIR DISK1: [SALES_STAFF]
$ TYPE PAY_DIR:PAYROLL.DAT

$DEFINE PAY_DISK DISK1:
$ TYPE PAY_DISK: [SALES_STAFF]PAYROLL.DAT

Note that if you combine a logical name with only an explicitly stated file type
or version number, you must include the period or semicolon, respectively.
For example, if PAY is equivalent to DUAl:[SALES_STAFF]PAYROLL.DAT,
PAY:2 is an invalid file specification. (PAY:;2 is valid.) Defaults for the
current directory, the file type (depending on the function being performed),
and the version number are applied as usual after translation.

By default, the DEFINE command places logical names in your process logical
name table, where the logical name is available only to your process and
subprocesses. Section 4.2 describes logical name tables.

You can equate more than one logical name with an equivalence name. For
example, you can equate the logical names $TERMINAL and CONSOLE to
the physical name of a terminal so that both logical names translate to the
same device. (If you equate a logical name to more than one equivalence
string in a single command, you create a search list for the system to use
to translate the names. See Section 4.7 for information about search list
translation.)

If you equate a logical name to one equivalence string and then equate
the same logical name to another equivalence string, the second definition
supersedes the first. You can, however, equate the same logical name to
different equivalence strings if the logical name definitions are in different
tables (described in Section 4.2). You can equate the same logical name to
different equivalence strings in the same table if they are defined in different
access modes (described in Section 4.5).

If you cannot access a file, and the command you are specifying and the
file specification seem in order, check the left-hand component of the file
specification (with SHOW LOGICAL) to be sure that it is not defined as a
logical name.

Displaying Logical Names
Display the definition of a logical name with either the SHOW LOGICAL or
SHOW TRANSLATION command.

When you enter the SHOW LOGICAL command, the system searches the
process, job, group, and system logical name tables (in that order) for the
specified logical name. In the following example, the system found the logical
name ACCOUNTS in both the process and job logical name tables:

$ SHOW LOGICAL ACCOUNTS
"ACCOUNTS" "DISK!: [ACCOUNTS]" (LNM$PROCESS_TABLE)
"ACCOUNTS" ="DISK!: [ACCOUNTS]" (LNM$JOB_80891AEO)

4-3

Using Logical Names
4.1 Creating Logical Names

4-4

Sometimes the definition of a logical name may include another logical name.
The SHOW LOGICAL command continues to search the logical name tables
until all levels of logical names in a definition have been found. This is
referred to as iterative translation.

When iterative translation is performed, the SHOW LOGICAL command
displays multiple lines. Each line has a number that shows the level of
translation. For example:

$ SHOW LOGICAL MYDISK
"MYDISK" = "DISK2" (LNM$PROCESS_TABLE)

1 "DISK2" = "11DUA4:" (LNM$SYSTEM_TABLE)

Level numbers are zero based; that is, 0 is the first level, 1 is the second,
and so on. In the previous example, two translations were performed. The
number 1 indicates the second level of translation. See Section 4.4.1 for more
information about iterative translation.

Unless you have redefined the search order, you can display the contents
of the process, job, group, and system logical name tables by entering the
SHOW LOGICAL command without qualifiers or parameters. The following
command displays the logical names and their definitions in all four tables:

$ SHOW LOGICAL

When you enter the SHOW TRANSLATION command, the system searches
the process, job, group, and system logical name tables for the specified
logical name. It displays the first definition it finds as well as the table in
which it was found. In the following example, you see that the logical name
ACCOUNTS is translated as DISKl:[ACCOUNTS] and exists in the process
logical name table (LNM$PROCESS_TABLE):

$ SHOW TRANSLATION ACCOUNTS
"ACCOUNTS" = "DISK1: [ACCOUNTS]" (LNM$PROCESS_TABLE)

Some commands and lexical functions do not translate logical names
iteratively. The SHOW TRANSLATION command, for example, provides
only the immediate equivalence name, as shown in the following example:

$ DEFINE SALES_DISK WORKDISK:
$ DEFINE SALES SALES_DISK
$ SHOW TRANSLATION SALES
SALES = "SALES_DISK" (LNM$PROCESS_TABLE)

Although the SHOW LOGICAL and SHOW TRANSLATION commands
both translate logical names, certain circumstances argue for the use of one
command over the other, as follows:

• To ensure that all levels of logical name translation are performed, specify
the SHOW LOGICAL command. If you are certain that a logical name
does not require iterative translation, specify the SHOW TRANSLATION
command.

• Because the SHOW TRANSLATION command is a built-in command,
you can interrupt an image (with CTRL/Y, for example) and enter SHOW
TRANSLATION without causing the interrupted image to exit. (Built-in
commands are described in Section 1.2.) If you interrupt an image with
the SHOW LOGICAL command, your interrupted image is forced to exit.

4.1.2 Deleting Logical Names

Using Logical Names
4.1 Creating Logical Names

To delete a logical name defined interactively, use the DEASSIGN command.
For example:

$DEFINE STAFF [JONES.STAFF]

$ DEASSIGN STAFF

Logical names 1n your process and job tables are automatically deleted when
your process terminates. However, by specifying the /USER_MODE qualifier
to the DEFINE command, you can place a logical name in the process logical
name table and execute one command image before the logical name is
deleted.

4.2 Logical Name Tables

4.2.1

The system stores logical names and their equivalence strings in four logical
name tables called process, job, system, and group. Some logical name tables
are available only to your process; these tables are called process-private.
Other tables are shareable; that is, they are available to other users on the
system.

Identical logical names can exist in more than one table. The logical name
that is used depends on the order in which the logical name tables are
searched. For example, when the system attempts to translate a logical name
in order to identify the location of a file, it uses the logical name
LNM$FILE_DEV to provide the list of tables in which to look for the name.
The order in which the tables are listed is also the order in which they are
searched. The precedence order defined by LNM$FILE_DEV is: (1) process
table, (2) job table, (3) group table, (4) system table . .Therefore, if a logical
name exists in both the process and the group logical name tables, the logical
name within the process table is used. See Section 4.3.2 for more information
about LNM$FILE_DEV.

Within each table, the system defines some logical names for you. Each table
and its system-defined logical names are described in the following sections.

The Process Table
Your process logical name table, named LNM$PROCESS_ TABLE, contains
logical names that are available only to your process and any subsequent
subprocesses. Use the logical name LNM$PROCESS to refer to the process
table.

Process logical names are recognized by the process they were created in and
by any subsequent subprocesses. However, process logical names are not
recognized by any parent process.

To display the logical names in your process table, use the following
command:

$ SHOW LOGICAL/PROCESS

You can also specify the SHOW LOGICAL/TABLE=table_name command to
display the contents of any logical name table.

4-5

4.2.2

Using Logical Names
4.2 Logical Name Tables

The Job Table

4-6

By default, the DEFINE and DEASSIGN commands place names in and delete
names from your process table.

Every process on the system has a process logical name table. When you log
in, the system creates logical names for your process and places them in your
process table. These names are listed in Table 4-1.

Table 4-1 Default Process Logical Names

Logical Name Description

SYS$COMMAND

SYS$DISK

SYS$ERROR

SYS$1NPUT

SYS$NET

SYS$0UTPUT

TT

The initial file (usually your terminal) from which DCL
reads input. (A file from which DCL reads input is
called an input stream.) The command interpreter uses
SYS$COMMAND to "remember" the original input
stream.

Default device established at login or changed by the
SET DEFAULT command.

The default device or file to which DCL writes error
messages generated by warnings, errors, and severe
errors.

The default file from which DCL reads input.

The source process that invokes a target process
in DECnet-VAX task-to-task communication. When
opened by the target process, SYS$NET represents
the logical link over which that process can exchange
data with its partner. SYS$NET is defined only during
task-to-task communication.

The default file (usually your terminal) to which DCL
writes output. (A file to which DCL writes output is
called an output stream.)

Default device name for terminals.

Note that the logical names SYS$INPUT, SYS$0UTPUT, SYS$ERROR, and
SYS$COMMAND refer to files that remain open for the life of the process.
They are referred to as process-permanent files. For more information on
process-permanent files, see Section 4.9.1.

Your job logical name table contains logical names that are available to all
processes in your job tree, no matter what process or subprocess you are
currently in. Your job table is named LNM$JOB_xxx, where xxx is the Job
Information Block address (defined by the system) for your job tree. Use the
logical name LNM$JOB to refer to your job table.

When you log in, the system creates certain logical names and places them in
the job logical name table. These names are listed in Table 4-2. In addition,
the logical names created for mounted disks and tapes and temporary
mailboxes are also placed in the job logical name table.

4.2.3

4.2.4

The Group Table

Using Logical Names
4.2 Logical Name Tables

Table 4-2 Default Job Logical Names

Logical Name

SYS$LOGIN

SYS$LOGIN _DEVICE

SYS$REM_ID

SYS$REM_NODE

SYS$SCRATCH

Description

Your default device and directory when you log in.

Your default device when you log in.

For jobs initiated through a DECnet network
connection, the identification of the process on the
remote node from which the job was originated. On
VMS operating systems, if proxy logins are enabled,
this identification is the process's user name, or,
if proxy logins are not enabled, this is the process
identification number (PIO). For more information about
proxy logins, see the Guide to VMS System Security.

For jobs initiated through a DECnet network
connection, the name of the remote node from which
the job was originated.

Default device and directory to which temporary files
are written.

There is one job table for each job tree in the system. All job tables are
shareable so that all users may access them. However, to access a job logical
name table other than your own, you must redefine LNM$JOB in your
process directory logical name table. For more information about LNM$JOB,
see Section 4.3.

The group logical name table contains logical names that are available to all
users with the same user identification code (UIC) group number. The group
table is named LNM$GROUP_xxx, where xxx represents your UIC group
number. Use the logical name LNM$GROUP to refer to your group table.
Every group on the system has a corresponding group logical name table.

To create or delete a name in your group table, you need GRPNAM,
GRPPRV, or SYSPRV privilege. See the Guide to Setting Up a VMS System for
a description of user privileges.

The System Table
The system logical name table contains logical names that are available to all
users on the system. The system table is named LNM$SYSTEM_ TABLE; use
the logical name LNM$SYSTEM to refer to it. To create or delete a name in
the system table, you must have a UIC group number between 0 and 10, or
SYSNAM or SYSPRV privilege.

There is only one system logical name table for the system. It contains the
names shown in Table 4-3.

4-7

Using Logical Names
4.2 Logical Name Tables

Table 4-3 Default System Logical Names

4-8

Logical Name

DBG$1NPUT

DBG$0UTPUT

SYS$COMMON

SYS$ERRORLOG

SYS$EXAMPLES

SYS$HELP

SYS$1NSTRUCTION

SYS$LIBRARY

SYS$LOADABLE_IMAGES

SYS$MAINTENANCE

SYS$MANAGER

SYS$MESSAGE

SYS$NODE

SYS$SHARE

SYS$SPECIFIC

SYS$STARTUP

SYS$SYSDEVICE

SYS$SYSROOT

SYS$SYSTEM

SYS$TEST

SYS$UPDATE

Description

Default input stream for the VMS Debugger;
equated to SYS$1NPUT

Default output stream for the VMS Debugger;
equated to SYS$0UTPUT

Device and directory name for the common
part of SYS$SYSROOT

Device and directory name of error log data
files

Device and directory name of system
examples

Device and directory name of system HELP
files

Device and directory name of system
instruction data files

Device and directory name of system libraries

Device and directory of operating system
executive loadable images, device drivers,
and other executive loaded code

Device and directory name of system
maintenance files

Device and directory name of system
manager files

Device and directory name of system
message files

Network node name for the local system if
DECnet-VAX is active on the system

Device and directory name of system
shareable images

Device and directory name for node-specific
part of SYS$SYSDEVICE

Device and directory name of system startup
files

VMS system disk containing system
directories

Device and root directory for system
directories

Device and directory of operating system
programs and procedures

Device and directory name of User
Environment Test Package (UETP) files

Device and directory name of system update
files

Using Logical Names
4.3 Directory Logical Name Tables

4.3 Directory Logical Name Tables

4.3.1

The system provides the following two directory tables to catalog your logical
name tables:

• LNM$PROCESS_DIRECTORY catalogs your process tables
(LNM$PROCESS and LNM$JOB).

• LNM$SYSTEM_DIRECTORY catalogs your shareable tables
(LNM$GROUP and LNM$SYSTEM).

Both of these directories contain logical names that translate iteratively to
table names. The name of a logical name table must be recorded in one of
these directory tables in order for the system to find it.

You can see the relationship of directory tables to logical name tables with
the SHOW LOGICAL/STRUCTURE command, as shown in the following
example:

$ SHOW LOGICAL/STRUCTURE
(LNM$PROCESS_DIRECTORY)

(LNM$PROCESS_TABLE)
(LNM$SYSTEM_DIRECTORY)

(LNM$GROUP_000360)
(LNM$JOB_806E98EO)
(LNM$SYSTEM_TABLE)

The Process Directory Table
Each process on the system has its own process directory logical name table.
When you log in, the VMS operating system places certain logical names in
your process directory table. These names are listed in Table 4-4.

Table 4-4 Default Process Directory Logical Names

Logical Name

LNM$GROUP

LNM$JOB

Description

A logical name that is defined as
LNM$GROUP _xxx, where xxx represents
your group number. LNM$GROUP _xxx is
the logical name table used by your UIC
group. (The table LNM$GROUP _xxx is
cataloged in the system directory table.)
Therefore, LNM$GROUP is a logical name
that translates iteratively to the name of
your group logical name table.

A logical name that is defined as
LNM$JQB_xxx, where xxx represents a
number unique to your job tree.
LNM$JQB_xxx is the logical name table
used by your job. (The table LNM$JQB_xxx
is cataloged in the system directory table.)
Therefore, LNM$JOB is a logical name that
translates iteratively to the name of your job
logical name table.

4-9

4.3.2

Using Logical Names
4.3 Directory Logical Name Tables

Table 4-4 (Cont.) Default Process Directory Logical Names

Logical Name

LNM$PROCESS

LNM$PROCESS_DIRECTORY

LNM$PROCESS_ TABLE

Description

A logical name that translates iteratively to
LNM$PROCESS_ TABLE, which is the name
of your process logical name table.

The name of your process directory logical
name table.

The name of your process logical name
table.

The System Directory Table

4-10

There is one system directory logical name table. The VMS operating system
places certain logical names in the system directory table. These names are
listed in Table 4-5.

Table 4-5 Default System Directory Logical Names

Logical Name

LNM$DCL _LOGICAL

LNM$DIRECTORIES

LNM$FILE_DEV

LNM$GROUP _xxx

LNM$JOB_xxx

Description

A logical name that is defined as
LNM$FILE_DEV. This logical name
iteratively translates into the list of logical
name tables searched and displayed by the
SHOW LOGICAL and SHOW TRANSLATION
commands and the F$TRNLNM lexical
function. By default, these commands
search and display the process, job, group,
and system logical name tables, in that
order.

A logical name that is defined as
LNM$PROCESS_DIRECTORY and
LNM$SYSTEM_OIRECTORY.

A logical name that is defined as the
list of logical name tables searched
by the system when processing a file
specification. By default, it is defined as
LNM$PROCESS, LNM$JOB, LNM$GROUP,
and LNM$SYSTEM. This means that the
process, job, group, and system logical
name tables are searched, in that order.

The name of a group logical name table,
where xxx is a group number. There is an
LNM$GROUP _xxx logical name table for
each group in the system.

The name of a job logical name table,
where xxx is a number unique to this job
tree. There is an LNM$JOB_xxx logical
name table for each job in the system.

Using Logical Names
4.3 Directory Logical Name Tables

Table 4-5 {Cont.) Default System Directory Logical Names

Logical Name Description

LNM$SYSTEM A logical name that translates iteratively to
LNM$SYSTEM_ TABLE, which is the name
of the system logical name table.

LNN$SYSTEM _DIRECTORY

LNM$SYSTEM_ TABLE

The name of the system directory logical
name table.

The name of the system logical name table.

Generally, you do not need to change the default logical name table
definitions set up in the directory tables, LNM$PROCESS_DIRECTORY
and LNM$SYSTEM_DIRECTORY. Two reasons for changing the entries in
the directory tables are: (1) to create another

1
logical name table, and

(2) to change the search order for file specification logical names by redefining
LNM$FILE_DEV. See Section 4.6 for information about creating your own
logical name table and changing the order in which the system searches the
logical name tables.

Multiple tables with the same name may exist. For example, there may exist
both a process-private and a shareable table called MY_ TABLE. The process
private version always takes precedence over the shareable table in all logical
name table processing. When a logical name, such as LNM$FILE_DEV, is
used as a table name, the logical name is iteratively translated until a list of
table names is formed. During this iterative translation, each name is first
translated in the process directory. If this translation fails, it is then translated
in the system directory. This order of precedence cannot be changed. As a
consequence of this ordering, a logical name placed in the process directory
table for use as a table name will always take precedence over any identical
name residing in the system directory.

4.4 Logical Name Translation
When the system reads a file specification or device name in a DCL command
line, it examines the file specification or device name to see whether the
leftmost component is a logical name. If the leftmost component ends with a
colon, space, comma, or a line terminator (for example, RETURN), the system
attempts to translate it as a logical name. If the leftmost component ends with
any other character, the system does not attempt to translate it as a logical
name.

After you enter the command shown in the following example, the system
checks to see whether PUP is a logical name because PUP is the leftmost
component of the file specification. Because the leftmost component is
terminated with RETURN, the system attempts to translate PUP.

$ TYPE PUP

After you enter the command shown in the next example, the system checks
whether DISK is a logical name. The system attempts to translate DISK
because it is the leftmost component and ends with a colon. (The system
does not check PUP.)

4-11

Using Logical Names
4.4 Logical Name Translation

$ TYPE DISK : PUP

In the third example, the system does not try to translate [DRYSDALE]PUP
because the leftmost component ends with a square bracket (]):

$ TYPE [DRYSDALE]PUP

By default, when the system translates logical names in file specifications, it
searches the process, job, group, and system tables in that order, and uses the
first match it finds.

//~4.-4~ ," Iterative Translation

4.4.2

Logical name translation can be iterative. This means that after the system
translates a logical name, it repeats the translation process for any logical
names it finds contained within the first logical name. For example:

$DEFINE DISK DUA1:
$DEFINE MEMO DISK: [JEFF.MEMOS]COMPLAINT.TXT

In this example, the first DEFINE command equates the logical name DISK to
the device name DU Al. The second DEFINE command equates the logical
name MEMO to the file specification DISK:[JEFF.MEMOS]COMPLAINT.TXT.
When the system translates the logical name MEMO, it finds the equivalence
name DISK:[JEFF.MEMOS]COMPLAINT.TXT. It then checks to see whether
the leftmost component in this file specification ends in a colon, a space, a
comma, or an end-of-line terminator. It finds a colon after DISK. The system
translates that logical name also. The final translation of the file specification
is as follows:

DUA1: [JEFF.MEMOS]COMPLAINT.TXT

The system limits the number of levels to which it performs logical name
translation. The number of levels varies among system facilities, but it is at
least nine. If you define more than the system-determined number of levels,
or if you create a circular definition, an error occurs when the logical name is
used.

Modifying Logical Name Translation

4-12

When you create a logical name, you can specify translation attributes
that modify how the system interprets the equivalence name. Use the
/TRANSLATION _ATTRIBUTES qualifier to the DEFINE command. (This
is a positional qualifier: depending on where you place it on a command
line, it can apply translation attributes to all equivalence names or only to
certain ones.) Two translation attributes can be specified as values to the
/TRANSLATION _ATTRIBUTES qualifier: CONCEALED and TERMINAL.

The CONCEALED attribute causes the logical name of a device, rather than
the physical name, to be displayed in system messages (except for the SHOW
LOGICAL display). The CONCEALED attribute is usually specified when
defining logical names for devices. Using concealed devices allows you to
write programs and command procedures and perform other operations
without being concerned about which physical device actually holds the disk
or tape. It also lets you use names that are more meaningful than the physical
device names.

4.4.3

Using Logical Names
4.4 Logical Name Translation

The following example shows how to create a concealed device name:

$ DEFINE/TRANSLATION_ATTRIBUTES=CONCEALED DISK DJA3:
$ SHOW DEFAULT

DISK: [SAM. PUP]
$ SHOW LOGICAL DISK

"DISK" = 11 DJA3 11 (LNM$PROCESS_TABLE)

The logical name DISK represents the physical device DJA3. Thus, the
SHOW DEFAULT command displays the logical name DISK rather than the
actual physical device name, DJA3. The SHOW LOGICAL command reveals
the translation of DISK.

The TERMINAL attribute prevents iterative translation of a logical name.
That is, the equivalence name is not examined to see if it is also a logical
name. The translation is "terminal" (final, or completed) after the first
translation.

System Defaults During Logical Name Translation
When the system translates a logical name, it fills in any missing fields in a
file specification. It fills them in with the current default device, directory, and
version number. When you use a logical name to specify the input file for a
command, the command uses the logical name to assign a file specification to
the output file as well.

If the equivalence name contains a file name and file type, the output file
is given the same file name and file type. If the equivalence name does not
contain a file type, a default file type is supplied. The file type supplied
depends on the command you are using.

4.5 Logical Name Access Modes
The four access modes in the VMS operating system are as follows:

• User-mode (the outermost and least privileged mode)

• Supervisor-mode

• Executive-mode

• Kernel-mode (the innermost and most privileged mode)

When you create a logical name with DCL commands, it has an access mode
of user, supervisor, or executive. By default, logical names are created in
supervisor mode; you must have SYSNAM privilege to create an executive
mode logical name. To see the access mode for a logical name, use the
SHOW LOGICAL/FULL command, as follows:

$ SHOW LOGICAL/FULL PROJECT
"PROJECT" [super] ="DISK!: [JONES]" (LNM$PROCESS_TABLE)

This shows that the logical name PROJECT was created in supervisor mode.

You can equate the same logical name to different equivalence strings in
the same logical name table by specifying different access modes for each
definition. The following example equates the logical name ACCOUNTS to
two different equivalence names in the process logical name table-one in
supervisor-mode and one in executive-mode:

4-1~

Using Logical Names
4.5 Logical Name Access Modes

$DEFINE ACCOUNTS DISK1: [ACCOUNTS] CURRENT.DAT
$ DEFINE/EXECUTIVE_MODE ACCOUNTS DISK1: [JANE.ACCOUNTS]OBSOLETE.DAT

Logical names created in user mode are temporary. Define a logical name
in user mode when you want to define it only for the execution of the
next image. In the following example, the logical name ADDRESSES is
automatically deleted after the execution of the program PAYABLE:

$ DEFINE/USER_MODE ADDRESSES DISK1: [SAM.ACCOUNTS]OVERDUE.LIS
$ RUN PAYABLE

In looking up logical names, all privileged images and utilities, such as
LOGINOUT and MAIL, bypass the user- and supervisor-mode portions of
the system logical name table. Therefore, DIGITAL recommends that logical
names for important system components (public disks and directories, for
example) be defined in executive mode, using the DCL command
DEFINE/SYSTEM/EXECUTIVE. (Only the operating system and privileged
programs can create logical names in kernel-mode.) This operation requires
either the SYSPRV or SYSNAM privilege.

4.6 Creating a Logical Name Table

4-14

The CREATE/NAME_TABLE command creates a logical name table and
catalogs it in one of the directory logical name tables. (Logical names that
identify logical name tables or that translate iteratively to logical name tables
must always be entered into one of the directory logical name tables.) To
create a logical name table that is private to your process, create the table
in LNM$PROCESS_DIRECTORY (the default). If you want the table to be
shareable, specify /PARENT_TABLE=LNM$SYSTEM_DIRECTORY with the
CREATE/NAME_TABLE command. Creating shareable name tables requires
SYSPRV privilege or _ENABLE access to the parent table.

The following example creates a process-private logical name table named
TAX, places the definition for the logical name CREDIT in the table, and
verifies the table's creation. (You must specify the /TABLE qualifier with the
SHOW LOGICAL command to display a logical name in any table other than
LNM$SYSTEM or LNM$PROCESS.)

$ CREATE/NAME_TABLE TAX
$ DEFINE/TABLE=TAX CREDIT [ACCOUNTS.CURRENT]CREDIT.DAT
$ SHOW LOGICAL/TABLE=TAX CREDIT

"CREDIT"= "[ACCOUNTS.CURRENT]CREDIT.DAT" (TAX)

To make the system search a user-created logical nam(f! table automatically
when processing file specifications, you must create a process-private version
of the default search list (LNM$FILE_DEV) in
LNM$PROCESS_DIRECTORY. To add the created table's name to the
default search list, you can define LNM$FILE_DEV as follows:

$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY LNM$FILE_DEV -
_$ TAX,LNM$PROCESS,LNM$JOB,LNM$GROUP,LNM$SYSTEM

Placing the table's name first specifies that the system search that table first,
and so on in the order of specification.

To delete a logical name table, specify the table that contains it (the system
or process directory logical name table) and the name of the table. Deleting a
shareable logical name table requires DELETE access to the table or SYSPRV
privilege. For example, to delete the logical name table TAX of the preceding
example, specify the following command line:

4. 7 Search Lists

Using Logical Names
4. 6 Creating a Logical Name Table

$ DEASSIGN/TABLE=LMN$PROCESS_DIRECTORY TAX

Note that all logical names in descendant tables (and the descendant tables
themselves) are deleted when a parent logical name table is deleted.

A search list is a logical name that has more than one equivalence name. You
can use a search list in any place you can use a logical name. For example:

$DEFINE GETTYSBURG [JONES.HISTORY], [JONES.WORKFILES]
$ SHOW LOGICAL GETTYSBURG

"GETTYSBURG" ="[JONES.HISTORY]" (LNM$PROCESS_TABLE)
= "[JONES.WORKFILES]"

The logical name GETTYSBURG is a search list because it has more than one
equivalence name.

When you use a logical name that is a search list, the system translates the
logical name until it finds a match. The order in which you specify the
equivalence strings determines the order in which the system translates the
names. It uses each equivalence name listed in the definition until a match is
found.

A search list is not a wildcard. It is a list of places to look. Once a file is
found, the search is ended. For example:

$ TYPE GETTYSBURG:SPEECH.TXT

DISK1:[JONES.HISTORY]SPEECH.TXT;2

Fourscore and seven years ago, our fathers brought forth on
this continent a new nation, conceived in liberty, and
dedicated to the proposition that all men are created equal.

In the previous example, the TYPE command searches the equivalence names
[JONES.HISTORY] and [JONES.WORKFILES] in the order they were listed
when GETTYSBURG was defined. Once it finds a file named SPEECH.TXT,
the search is halted and the file is displayed.

You can use a search list with a command that accepts wildcards. When you
use wildcards, the system forms file specifications using each equivalence
name in the search list. The command operates on each file specification that
identifies an existing file.

For example, if you specify the DIRECTORY command with a wildcard
character in the version field, it finds all versions of SPEECH. TXT in the
search list defined by GETTYSBURG, as shown in the following example:

$DIRECTORY GETTYSBURG:SPEECH.TXT;*

Directory DISK!: [JONES.HISTORY]

SPEECH.TXT;2 SPEECH.TXT;1

Total of 2 files.

Directory DISK1: [JONES.WORKFILES]

4-15

Using Logical Names
4. 7 Search Lists

SPEECH.TXT;1

Total of 1 file.

Grand total of 2 directories, 3 files.

The DIRECTORY command searches the equivalence names
[JONES.HISTORY] and [JONES.WORKFILES] in the order they were listed
when GETTYSBURG was defined. It finds a file named SPEECH. TXT in
each directory. If SPEECH.TXT exists in only one of the directories, only
one directory listing is displayed. If SPEECH. TXT does not exist in either
directory, an error message is displayed indicating that the file was not found.

When you use a search list with a command that does not accept wildcards in
a file specification, the system forms a file specification using each equivalence
name in the search list until a file specification for an existing file is found.
The command affects only the first file found. For example:

$ DEFINE DECEMBER DISK!: [FRED] ,WORK2: [BARNEY]
$ EDIT/EDT DECEMBER:QUOTAS.TXT

First, the system forms the file specification DISKl :[FRED]QUOTAS. TXT and
searches for that file. If QUOTAS.TXT is found in DISKl:[FRED], it is opened
for editing. No other files are subsequently opened. If QUOTAS.TXT is not
found in DISKl :[FRED], the system searches for it in WORK2:[BARNEY]. If
QUOTAS.TXT is found there, it is opened. If it is not found, an error message
is displayed. The system displays an error message only after it checks all
equivalence names in a search list. Then the system reports an error only on
the last file it attempted to find.

The RUN command is an exception. When the RUN command is followed
by a search list, the system forms file specifications as described previously.
However, the system then checks to see whether any of the files in the list
are installed images. It runs the first file in the search list that is an installed
image. Then the RUN command terminates.

If none of the file specifications are installed images, the system repeats
the process of forming file specifications. This time it looks for each file
specification on the disk. It runs the first file it finds there. An error message
is displayed if none of the specified files is found irt either the known file list
or on the disk.

4.8 Logical Node Names

4-16

A logical node name is a special type of logical name that can be used in
place of a network node name or in place of a node name and an access
control string. For example:

$ DEFINE BOS "BOSTON""ADAMS JOHN"":: II

The logical name BOS is equated to the node name BOSTON and an access
control string, where ADAMS is the user name and JOHN is the password.
Use the logical name BOS to avoid typing (and displaying) your user name
and password on the terminal screen.

Note: Do not place a DEFINE command that includes a password in a file (your
login command procedure, for example). If others read the file, they will
see the password.

Using Logical Names
4.9 System-Created Logical Names

4.9 System-Created Logical Names

4.9.1

The system creates a number of logical names for you when you start the
system and log in. By default, DCL creates and assigns logical names to
four process-permanent files. When you redefine these logical names, only
your process is affected. The system defines other logical names that you can
reassign only' with special privileges.

Process-Permanent Logical Names
Process-permanent logical names are created by DCL when you log in and
remain defined for the life of your process. You cannot deassign these
logical names. You can redefine them (by specifying the same name in
a DEFINE command), but if the redefined name is later deassigned, the
process-permanent name is reestablished. These process-permanent logical
names, as follows, are available to each user of the system at the process
level:

• SYS$INPUT-Logical name that refers to the default input device or file

• SYS$0UTPUT-Logical name that refers to the default output device or
file

• SYS$ERROR-Logical name that refers to the default device or file to
which the system writes messages

• SYS$COMMAND-Logical name that refers to the value of SYS$INPUT
when you log in

Table 4-6 shows what these logical names are equated to by default.

Table 4-6 Equivalence Names for Process-Permanent Logical
Names

Logical Interactive Batch
Name Mode Mode

SYS$COMMAND Terminal 1 Disk2

SYS$1NPUT Terminal Disk

SYS$ERROR Terminal Log file3

SYS$0UTPUT Terminal Log file

1 Device name of your terminal

2Device name of the initial default device
3 Batch job log file

Command
Procedure

Terminal

Disk

Terminal

Terminal

The following sections describe how to use process-permanent logical names
as file specifications.

4-17

Using Logical Names
4.9 System-Created Logical Names

4.9.1.1

4.9.1.2

4-18

Redefining SYS$1NPUT
You can redefine SYS$INPUT so that a command procedure reads input from
the terminal or another file. For example, to edit a file from a command
procedure, include the following lines in the command procedure:

$ DEFINE/USER_MODE SYS$INPUT SYS$COMMAND
$ EDIT/TPU MYFILE.DAT

In the previous example, SYS$INPUT is redefined as SYS$COMMAND so
that the editor obtains input from the terminal rather than from the command
procedure file (the default). SYS$COMMAND refers to the terminal, the
initial input stream when you logged in. The /USER_MODE qualifier tells
the command procedure that SYS$INPUT is redefined only for the duration
of the next image. In this example, the next image is the editor. When the
editor is finished, SYS$INPUT resumes its default value; in this case, the
default value is the command procedure file.

Note that if you redefine SYS$INPUT, DCL ignores your definition. DCL
always obtains input from the default input stream. However, images, such
as command procedures, can use your definition for SYS$INPUT.

Redefining SYS$0UTPUT
You can redefine SYS$0UTPUT to redirect output from your default device
to another file. When you redefine SYS$0UTPUT, the system opens a file
with the name you specify in the logical name assignment. When you define
SYS$0UTPUT, all subsequent output is directed to the new file.

In the following example, SYS$0UTPUT is defined as MYFILE.LIS before
the SHOW DEVICES command is entered. The display produced by SHOW
DEVICES is directed to MYFILE.LIS in your current directory rather than to
your terminal. You can manipulate this data as you would any other text file.

$ DEFINE SYS$0UTPUT MYFILE.LIS
$ SHOW DEVICES

Remember to deassign SYS$0UTPUT, or output will continue to be written
to the file you specify. Note that you can redefine SYS$0UTPUT in user
mode (with DEFINE/USER_MODE) to redirect output from an image. This
definition is in effect only until the next command image is executed. Once
the command image is executed (that is, the output is captured in a file), the
logical name SYS$0UTPUT resumes its default value.

When you log in, the system creates two logical names called SYS$0UTPUT.
One name is created in executive mode; the other name is created in
supervisor mode. You can supersede the supervisor mode logical name
by redefining SYS$0UTPUT. If you deassign the supervisor mode name,
the system redefines SYS$0UTPUT in supervisor mode, using the executive
mode equivalence name. You cannot deassign the executive mode name.

In the following example, SYS$0UTPUT is redefined to the file TEMP .DAT.
When SYS$0UTPUT is redefined, output from DCL and from images is
directed to the file TEMP.DAT. The output from the SHOW LOGICAL
command and from the SHOW TIME command is also sent to TEMP.DAT.
When you deassign SYS$0UTPUT, the system closes the file TEMP.DAT
and redefines SYS$0UTPUT to your terminal. When you enter the TYPE
command, the output collected in TEMP.DAT is displayed on your terminal.

4.9.1.3

4.9.1.4

Using Logical Names
4.9 System-Created Logical Names

$ DEFINE SYS$0UTPUT TEMP.DAT
$ SHOW LOGICAL SYS$0UTPUT
$ SHOW TIME
$ DEASSIGN SYS$0UTPUT
$ TYPE TEMP.DAT

11 SYS$OUTPUT 11 = "DISK1:" (LNM$PROCESS_TABLE)
31-DEC-JAN-1988 13:26:53

When you redefine SYS$0UTPUT to a file, the logical name contains only
the device portion of the file specification, even though the output is directed
to the file you specify. In the previous example, when SYS$0UTPUT was
redefined, the equivalence name contained the device name DISKl :, not the
full file specification.

If the system cannot open the file you specify when you redefine
SYS$0UTPUT, an error message is displayed.

After you redefine SYS$0UTPUT, most commands direct output to the
existing version of the file. However, certain commands create a new version
of the file before they write output.

Redefining SYS$ERROR
You can redefine SYS$ERROR to direct error messages to a specified file.
However, if you redefine SYS$ERROR so it is different from SYS$0UTPUT
(or if you redefine SYS$0UTPUT without also redefining SYS$ERROR), DCL
commands send informational, warning, error, and severe error messages to
both SYS$ERROR and SYS$0UTPUT. Therefore, you receive these messages
twice-once in the file indicated by the definition of SYS$ERROR and once in
the file indicated by SYS$0UTPUT. Success messages are sent only to the file
indicated by SYS$0UTPUT.

If you redefine SYS$ERROR and then run an image that references
SYS$ERROR, the image sends error messages only to the file indicated
by SYS$ERROR even if SYS$ERROR is different from SYS$0UTPUT. Only
DCL commands and images using standard VMS error display mechanisms
send error messages to both SYS$ERROR and SYS$0UTPUT when these files
are different.

Redefining SYS$COMMAND
Although you can redefine SYS$COMMAND, DCL ignores your definition.
DCL always uses the default definition for your initial input stream.
However, if you execute an image that references SYS$COMMAND, the
image can use your new definition.

4-19

4.9.2

Using Logical Names
4.9 System-Created Logical Names

System-Permanent Logical Names
The following table lists the logical names automatically defined when the
system starts up. These names are available to all users of the system at the
system level.

4-20

Logical Name

DBG$1NPUT

DBG$0UTPUT

SYS$COMMON

SYS$ERRORLOG

SYS$EXAMPLES

SYS$HELP

SYS$1NSTRUCTION

SYS$LIBRARY

SYS$LOADABLE_IMAGES

SYS$MAINTENANCE

SYS$MANAGER

SYS$MESSAGE

SYS$NODE

SYS$SHARE

SYS$SPECIFIC

SYS$STARTUP

SYS$SYSDEVICE

SYS$SYSROOT

SYS$SYSTEM

SYS$TEST

SYS$UPDATE

Equivalence Name

SYS$1NPUT at the process level

SYS$0UTPUT at the process level

SYS$SYSDEVICE :[SYSn.SYSCOMMON.],
where n is the root directory number of your
processor

SYS$SYSROOT :[SYSERR]

SYS$SYSROOT :[SYSHLP. EXAMPLES]

SYS$SYSROOT :[SYSHLP]

SYS$SYSROOT :[SYSCBI]

SYS$SYSROOT :[SYSLIB]

SYS$SYSROOT :[SYS$LDR]

SYS$SYSROOT :[SYSMAINT]

SYS$SYSROOT:[SYSMGR]

SYS$SYSROOT :[SYSMSG]

Name of your node if you are on a network

SYS$SYSROOT :[SYSLIB]

SYS$SYSDEVICE:[SYSn.], where n is the root
directory number of your processor

As a search list, points first to
SYS$SYSROOT:[SYS$ST ARTUP], then to
SYS$MANAGER

System disk (usually SYS$DISK)

As a search list, points first to
SYS$SYSDEVICE:[SYSn.], where n is the
root directory number of your processor; then
to SYS$COMMON

SYS$SYSROOT :[SYSEXE]

SYS$SYSROOT :[SYSTEST]

SYS$SYSROOT:[SYSUPD]

5 Representing Data with Symbols

5.1 Data Storage

As you carry out your computing tasks with the support of DCL and VMS,
you may need to store and manipulate data, such as numbers and strings of
characters, through the use of symbols. Like files, symbols store data. Yet,
unlike files, the symbols you create are temporary and have no means of
physical storage-they exist only for the life of your computing session or for
the life of a program's execution.

This chapter describes the kinds of data you can use in DCL, how you can
use symbols to represent that data, and how you can combine symbols into
expressions to manipulate the data that the symbols represent.

With the VMS operating system, the most common units in which data can
be stored are the following:

• Bit-The most basic unit of storage, a bit has a value of 0 or 1.

• Byte-Equal to 8 bits, a byte can represent an unsigned integer value of
0 through 255 and a signed value of -128 through 127. Characters are
stored one per byte.

• Word-Equal to 2 bytes, a word can represent an unsigned integer value
of 0 through 65,353 and a signed value of -32,768 through 32,767.

• Longword-Equal to 4 bytes (32 bits), a longword can represent an
unsigned integer value of 0 through 4,294,967,295 and a signed value of
-2,147,483,648 through 2,147,483,647.

The first unit in any series of these units is called the low-order unit. In
numeric values, the low-order unit is the least-significant unit in the number.
For example, in a binary number composed of the series of bits 11111110, the
0 is the low-order bit.

5.2 Creating and Using Symbols
A symbol is a name that represents a character value (for example, "DOG"),
a numeric value (for example, 17), or a logical value (for example, True).
When you use a symbol in a DCL command, D,CL replaces the symbol with
its value before executing the command. Symbols are useful for representing
data in commands and command procedures and as shortcuts for entering
commands you use frequently.

For example, you may define a symbol as any of the following:

• Foreign command-Defining a symbol as a foreign command allows you
to execute an image by entering only the symbol name. (The command
is "foreign" because it is unknown to DCL.) In the following example, the
symbol FIX is defined to execute the image NUMFIX.EXE in the [BILLS]
directory on the disk ACCOUNTS:

$ FIX == "$ACCOUNTS: [BILLS] NUMFIX 11

5-1

Representing Data with Symbols
5.2 Creating and Using Symbols

5-2

• Command line-Defining a symbol as a command line allows you
to execute the command by entering only the symbol name. In the
following example, the symbol HUBBUB is defined to establish a network
connection to the node HUBBUB:

$ HUBBUB == 11 S£T HOST HUBBUB"

Setting a symbol equal to a command line that executes a command
procedure allows you to execute the procedure by typing only the symbol
name. In the following example, COUNT is defined to execute the
command procedure CENSUS:

$ COUNT ·'""' "©D LSK l: [JONES PROCEDURESJ CENSUS''

When you enter COUNT to execute CENSUS, place any parameters for
CENSUS after the symbol as if you had entered @CENSUS.

• Character string-Defining a symbol as a character string allows you
to insert that string in a command line by typing the symbol (with
surrounding apostrophes to force substitution, as described in Section 5.5).
In the following example, the symbol FILE is first defined as a complete
file specification and then used in the TYPE command:

$ FJU; == 11 DLSKl: lJONES TAXES] CORPORATE DAT"
$ TY pc; IF L LE I

The string can be a directory you often access. In the following example,
whenever the symbol TAXES occurs in a command line, the literal value
replaces the symbol before the line is executed.

$TAXES=-= "LJONES TAXES]"
$COPY 'TAXES'OVERDUE DAT OVERDUE.TMP

Symbols can also hold variables, which are values that you calculate or that
you assign as something other than a literal. For example, you might assign
the value of a lexical function to a variable or read the value of a file record
into a variable. As variables, symbols are most often used in command
procedures (see Chapter 6).

To create a symbol, assign a value to a symbolic name using the following
format:

symbol-name =[=] value

The symbol name can be 1 through 255 characters long and must begin with
a letter, an underscore (-), or a dollar sign ($). In a symbol name, both
lowercase and uppercase letters are treated as uppercase.

The value you assign to a symbol can be made either locally or globally
available to the command interpreter:

• Local-A local symbol is available to the command level that defined
it, to any command procedure executed from that level, and to lower
command levels. (By convention, DCL level-command level 0-is the
highest command level and command level 31 the lowest command level.
Thus, when you move from command level 3 to command level 2, you
are moving to the next higher command level. If you execute a command
procedure interactively, the commands in the procedure are executed at
command level 1. You can create a maximum of 32 command levels.)

Representing Data with Symbols
5.2 Creating and Using Symbols

• Global-A global symbol is available to any command level regardless of
the level at which it was defined.

To create a local symbol, use a single equal sign in the assignment
statement. To create a global symbol, use two equal signs. The
following commands define the local symbol FILE as the character string
DISK2:[BOLIVAR]PRICES.CUR and the global symbol MAX_ VALUE as the
number 24.

$ FILE = "DISK2: [BOLIVAR] PRICES. CUR"
$ MAX_VALUE == 24

You can omit the quotation marks around character strings in assignment
statements if you precede the equal sign or signs with a colon. Symbol
assignments that omit quotation marks automatically change the character
string to uppercase letters and compress multiple spaces and tabs to a single
space. The following example again creates the local symbol FILE, this time
omitting the quotation marks because of the included colon:

$FILE := ACCOUNTS: [BOLIVAR]PRICES.84

The result of DCL' s evaluation of a symbol is either a character string or an
integer value. The data type (character or integer) of a symbol is determined
by the data type of the value currently assigned. The type is not permanent:
if the value changes type, as in the following example, the symbol changes
type. In the following example, the local symbol NUM is first assigned a
character value and then converted to an integer value when used in an
expression with an integer:

$ NUM = "12"
$ RESULT = NUM + 10

Local symbols take precedence over global symbols with the same name.
Symbols take precedence over identical command names. This means that if
you define a symbol with the same name as a DCL command, your definition
overrides the command name. For example, if you define the symbol HELP
as the command TYPE HELP.LST, you can no longer invoke the system's
HELP facility by typing HELP.

Symbols are stored in the following tables, which are maintained by the
operating system:

• Local symbol table-DCL maintains a local symbol table for your main
process and for every command level that you create when you execute a
command procedure, use the CALL command, or submit a batch job. A
local table is deleted when its associated command level terminates. (See
Chapter 3 for more information about processes, command procedures,
and batch jobs.)

In addition to the local symbols you create, a local symbol table contains
eight symbols that are maintained by DCL. These symbols, named Pl,
P2, and so on through PS, are used for passing parameters to a command
procedure. Parameters passed to a command procedure are regarded as
character strings. Otherwise, Pl through PS are defined as null character
strings (""). They are stored in the local symbol table.

• Global symbol table-DCL maintains only one global symbol table for
the duration of a process. In addition to the global symbols you create,
the global symbol table contains the reserved global symbols described in
the following table. These global symbols give you status information on

5-3

Representing Data with Symbols
5.2 Creating and Using Symbols

your programs and command procedures as well as on system commands
and utilties.

Reserved
Global
Symbols Definition

$ST A TUS The condition code returned by the most recently executed
command. $STATUS conforms to the format of a VMS
message code. User programs can set the value of the global
symbol $ST A TUS by including a parameter value to the
EXIT command. The system uses the value of $STATUS to
determine which message, if any, to display and whether to
continue execution at the next-higher command level. The
value of the lower three bits in $ST A TUS is placed in the
global symbol $SEVERITY.

$SEVERITY The severity level of the condition code returned by the most
recently executed command. $SEVERITY, which is equal to
the lower three bits of $STATUS, can have the following
values:

0 Warning

1 Success

2 Error

3 Information

4 Severe (fatal) error

$REST ART Has the value TRUE if a batch job was restarted after it was
interrupted by a system crash. Otherwise, $RESTART has the
value FALSE.

5.3 Abbreviating Symbol Names

5-4

You can use abbreviated forms of symbols if you define them with the
asterisk. The following example shows how to create a local symbol that can
be abbreviated:

$ M*AIL = "MAIL"

Once this symbol is established, the VMS Mail Utility is invoked whenever
you specify any of the following versions of the symbolic name:

$ M
$MA
$ MAI
$ MAIL

Generally, you can use abbreviated symbol definitions in any situation that
allows a symbol to be used. However, there are some restrictions as follows:

• You cannot abbreviate symbols that involve substring replacement.

• When you define a symbol that includes an asterisk, existing symbols
may possibly be deleted. If an existing symbol exactly matches the new
symbol at or past the asterisk, the new symbol replaces the existing
symbol.

Representing Data with Symbols
5.3 Abbreviating Symbol Names

• If you define a symbol with an asterisk, you cannot define another symbol
whose name partly matches the existing symbol at or past the asterisk.

5.4 DCL Commands to Use with Symbols
Table 5-1 shows the DCL commands you can use with symbols.

Table 5-1 DCL Commands to Use with Symbols

Command Function

SHOW SYMBOL

DELETE/SYMBOL

SET SYMBOL/SCOPE

INQUIRE

READ

Displays the value of the specified symbol. By
default, the SHOW SYMBOL command searches the
local symbol tables and then the global symbol table
to locate a specified symbol name.

Deletes a symbol. By default, the DELETE/SYMBOL
command searches for symbols only in the local
symbol table. To delete a global symbol, use the
/GLOBAL qualifier.

You can mask global or local symbols at the specified
command level.

Reads a value from SYS$COMMAND and assigns it
to a symbol.

Reads a record from a file and assigns its contents to
a symbol.

The SHOW SYMBOL command displays symbol values. Specify the name
of the symbol to display the value of a particular local symbol. Specify the
name of the symbol and /GLOBAL to display the value of a particular global
symbol. Specify/ ALL to display all local symbols and /ALL/GLOBAL to
display all global symbols.

The DELETE/SYMBOL command deletes a symbol. You must include the
/GLOBAL qualifier to delete a global symbol. In the following example, the
global symbol TEMP is deleted:

$ DELETE/SYMBOL/GLOBAL TEMP

The SET SYMBOL/SCOPE=(keyword, ...) command controls access to local
and global symbols in command procedures. This allows you to treat symbols
as undefined without deleting them. Symbol scoping works differently for
local and global symbols.

If you specify /SCOPE=NOLOCAL, all local symbols defined in an outer
procedure level are treated as undefined by the current procedure and any
inner levels. Specifying LOCAL removes any symbol translation limit set by
the current procedure level.

For example, if SET SYMBOL/SCOPE=NOLOCAL was specified at procedure
levels 2 and 4, procedure level 2 can access only procedure level 2 local
symbols. Procedure level 3 can access procedure levels 2 and 3 local symbols;
procedure level 4 can access procedure level 4 local symbols and any local
symbols in inner procedure levels.

5-5

Representing Data with Symbols
5.4 DCL Commands to Use with Symbols

Global symbols are not procedure level dependent. The global symbol
scoping state (GLOBAL or NOGLOBAL) that is in effect when a new
procedure level is invoked is propagated to the new procedure level.
Specifying /SCOPE=NOGLOBAL makes all global symbols inaccessible
for all subsequent commands until you either specify /SCOPE=GLOBAL or
exit to a previous level at which global symbols were accessible.

In the following example, the SET SYMBOL command denies access to all
global symbols:

$ SET SYMBOL/SCOPE=NOGLOBAL

Exiting a procedure level back to an outer procedure level causes the symbol
scope-state to be restored for both local and global symbols.

The INQUIRE and READ commands are most often used within DCL
command procedures and are therefore discussed in Chapter 6.

5.5 Symbol Substitution

5-6

When a command line is executed, symbols in the following positions are
automatically substituted:

• On the right side of an [:]= or [:]==assignment statement

• In a lexical function

• In the brackets on the left side of an assignment statement when you are
performing substring substitution or number overlays (see Section 5.6.2.4)

• In a DEPOSIT, EXAMINE, IF, or WRITE command

• At the beginning of the command line

To force substitution of a symbol that is not in one of the positions listed,
enclose the symbol with apostrophes as follows:

$ TYPE 'B'

To force substitution of a symbol within a quoted character string, precede
that symbol with double apostrophes and follow it with a single apostrophe
as follows:

$ T = "TYPE I I BI II

When processing a command line, DCL replaces symbols with their values in
the following order:

• Forced substitution-From left to right, DCL replaces all strings
delimited by apostrophes (or double apostrophes for strings within
quotation marks). Symbols preceded by single apostrophes are translated
iteratively; symbols preceded by double apostrophes are not.

• Automatic substitution-From left to right, DCL evaluates each value in
the command line, executing it if it is a command and evaluating it if it
is an expression. Symbols in expressions are replaced by their assigned
values; this substitution is not iterative.

Representing Data with Symbols
5.5 Symbol Substitution

The following example demonstrates the effect of the order in which DCL
substitutes symbols. Assume the following symbol definitions:

$ PN = "PRINT /NOTT FY"
$ FTLE1 :::: "[BOLTVARlTEST__CASE.TXT"
$ NUM "' 1

Given the preceding symbol definitions, the following commands print the
file named [BOLIVAR]TEST_CASE.TXT:

$ FfLE :: "'FILE' 'NUM' Ill

$ PN 'FTLE'

In the first command, forced substitution causes NUM to become 1, making
FILE"NUM' become FILEl. If you enter the command SHOW SYMBOL FILE,
you will see that FILE= '"FILEl"'.

The second command performs two substitutions. First, 'FILE' is substituted
with 'FILE 1 '. 'FILE 1' also requires substitution because it is enclosed in
single quotation marks. Automatic substitution causes FILEl to become
[BOLIVAR]TEST_CASE.TXT. This file name is then appended to the value of
PN, which is PRINT /NOTIFY. The resulting string is as follows:

$PRINT/NOTIFY [BOLIVAR]TEST_CASE.TXT

5.6 Storing and Manipulating Data with Symbols

5.6.1 Symbol Values

5.6.1.1

You can use symbols to store and manipulate a variety of values. This
section describes the values that can be stored in symbols. It also describes
how symbols can be combined in expressions to manipulate the values the
symbols contain.

A symbol can be defined as a character string, a number, a lexical function,
a logical value, or another symbol. The following sections describe these
values.

Character String Values
A character string can contain any characters that can be printed.
Appendix A, which includes tables of the ASCII character set and the DEC
Multinational Character Set, shows those characters that you can include in a
character string.

Characters fall into the following three main categories:

• Alphanumeric characters-The uppercase letters A through Z, the
lowercase letters a through z, the digits 1 through 9, the dollar sign
($), the underscore (-), and the hyphen (-).

• Special characters-All other characters that can be displayed or printed:
the exclamation point (!), quotation marks ("), number sign (#), and so
on.

• Nonprintable characters-All characters that cannot be printed or
displayed. In general, nonprintable characters are ignored for display

5-7

Representing Data with Symbols
5.6 Storing and Manipulating Data with Symbols

5.6.1.2

5-8

and print purposes. However, several nonprintable characters serve
control functions as follows:

Character

HT

LF
FF
CR

ESC

SP

Function

Starts printing or typing at the next horizontal tab

Starts printing or typing on the next line

Starts printing or typing at the top of the next page

Starts printing or typing at the first space on the same line

Introduces a terminal escape sequence

Inserts one space

You can define a character string by enclosing it in quotation marks. In this
way, alphabetic case and spaces are preserved when the symbol assignment
is made.

Numeric Values
A number can have the following values:

• Decimal-The ASCII characters 0 through 9

• Hexadecimal-The ASCII characters 0 through 9 and A through F

• Octal-The ASCII characters 0 through 7

The number you assign to a symbol must be in the range -2147483648
through 2147483647 (decimal). (An error is not reported if a number outside
this range is specified or calculated, but an incorrect value results.)

At DCL command level and within command procedures, specify a number
as follows:

• Positive numbers-Specify a positive number by typing the appropriate
digits. The following example assigns the number 13 to the symbol
DQG_COUNT:

$ DOG_COUNT = 13
$ SHOW SYMBOL DOG_COUNT

DOG_COUNT = 13 Hex = OOOOOOOD Octal = 00000000015

• Negative numbers-Precede a negative number with a minus sign, as in
the following example:

$ BALANCE = -15237
$ SHOW SYMBOL BALANCE

BALANCE = -15237 Hex = FFFFC47B Octal = 37777742173

• Radix-Specify a number in a radix other than decimal by preceding the
number (but not the minus sign) with %X for hexadecimal numbers and
%0 for octal numbers. For example:

$ DOG_COUNT = %XD
$ SHOW SYMBOL DOG_COUNT

DOG_COUNT = 13 Hex = 00000000 Octal = 00000000015

$ BALANCE = -%X3B85
$ SHOW SYMBOL BALANCE

BALANCE = -15237 Hex = FFFFC47B Octal = 37777742173

5.6.1.3

Representing Data with Symbols
5.6 Storing and Manipulating Data with Symbols

• Fractions-A number cannot include a decimal point. In calculations,
fractions are truncated; for example, 8 divided by 3 equals 2.

Numbers are stored internally as signed 4-byte integers, called longwords;
positive numbers have values of 0 through 2147483647 and negative numbers
have values of 4294967296 minus the absolute value of the number. The
number -15237, for example, is stored as 4294952059. Negative numbers are
converted back to minus-sign format for ASCII or decimal displays; however,
they are not converted back for hexadecimal and octal displays. For example,
the number -15237 appears in displays as hexadecimal FFFFC47B (decimal
4294952059) rather than hexadecimal -00003885.

Numbers are stored in text files as a series of digits using ASCII conventions
(for example, the digit 1 has a storage value of 49).

Values Returned by Lexical Functions
Typically used in command procedures, lexical functions provide users with
a means to obtain information from the system, including information about
system processes, batch and print queues, and user processes. You can
also use lexical functions to manipulate character strings and translate logical
names. When you assign a lexical function to a symbol, the symbol is equated
to the information returned by the lexical function (for example, a number
or character string). At DCL level, you can then display that information
with the DCL command SHOW SYMBOL. In a command procedure, the
information stored in the symbol can be used later in the procedure. See the
VMS DCL Dictionary for a description of each lexical function.

To use a lexical function, type the name of the lexical function (which always
begins with F$) and its argument list. Use the following syntax:

F$function-name(args[, ...])

The argument list follows the function name with any number of intervening
spaces and tabs. When using a lexical function, observe the following rules:

• Enclose the argument list in parentheses.

• Within the list, specify arguments in exact order and separate them with
commas; even if you omit an optional argument, do not omit the comma.

• If no arguments are required, type an empty set of parentheses.

• Do not enclose lexical functions in quotation marks.

• If an argument contains a character string, enclose the character string in
quotation marks.

• If an argument contains an integer, a symbol, or another lexical function,
do not enclose these values in quotation marks.

Use lexical functions the same way you would use character strings, integers,
and symbols. The following example uses the F$LENGTH function.
F$LENGTH returns an integer that specifies the length of the string. The
returned value is assigned to the symbol LEN.

$LEN= F$LENGTH("The cow jumped over the moon.")
$ SHOW SYMBOL LEN

LEN = 29 Hex = 00000010 Octal = 00000000035

5-9

Representing Data with Symbols
5.6 Storing and Manipulating Data with Symbols

5.6.1.4

5.6.1.5

5-10

You can use a lexical function in any position that you can use a symbol. In
positions where symbol substitution must be forced by enclosing the symbol
in apostrophes, lexical function evaluation must be forced by placing the
lexical function within apostrophes. Lexical functions can also be used as
argument values in other lexical functions.

The following example equates the length of the character symbol LINE to a
numeric symbol named L:

$ L = F$LENGTH (LINE)

The following example strips the last two characters from the character string
that is the value of the symbol LINE:

$ LINE = F$EXTRACT (O,F$LENGTH(LINE)-2,LINE)

Logical Values
Some operations interpret numbers and character strings as logical data with
values as follows:

• True-A number has a logical value of true if it is odd (that is, the low
order bit is 1). A character string has a logical value of true if the first
character is an uppercase or lowercase T or Y.

• False-A number has a logical value of false if it is even (that is, the
low-order bit is 0). A character string has a logical value of false if the
first character is not an uppercase or lowercase T or Y.

In both of the following examples, DOG_COUNT is assigned the value 13.
IF STATUS means if the logical value of STATUS is true.

$ STATUS = 1
$ IF STATUS THEN DOG_COUNT = 13

$ STATUS = "TRUE"
$ IF STATUS THEN DOG_COUNT = 13

Using a Symbol as a Value for Another Symbol
After a symbol is defined, it can be used as a value for another symbol. It can
be interpreted as a character string or a number, depending on the context in
which it is used. For example, suppose a symbol, COUNT, is assigned the
integer value 3 as follows:

$ COUNT = 3

Then the value of COUNT can be used in other assignment statements. In
the following example, the value of COUNT is added to 1:

$ TOTAL = COUNT + 1

The result, 4, is equated to the symbol TOTAL. You can confirm the
assignment of the value to TOTAL by entering the SHOW SYMBOL
command as follows:

$ SHOW SYMBOL TOTAL
TOTAL = 4 Hex = 00000004 Octal = 00000000004

5.6.2

Representing Data with Symbols
5.6 Storing and Manipulating Data with Symbols

You can include the symbol COUNT in a string assignment statement as
follows:

$ BARK := P'COUNT'

COUNT is converted to a string value and appended to the character P. BARK
now has the value P3.

To include a symbol in a string assignment, use either a colon and an equal
sign (:=) or a colon and two equal signs (:==), and enclose the symbol in
apostrophes. Otherwise, DCL will not recognize it as a symbol.

If you define a null character string for a symbol, that symbol has a value of
0, as shown in the following example:

$ A = 1111

$ B = 2
$ C = A + B
$ SHOW SYMBOL C

C = 2 Hex = 00000002 Octal = 00000000002

Using Symbols in Expressions
An expression is a combination of values. Each value in an expression is
connected to another value by an operator. Operators are denoted in the
following ways:

• Special characters-Asterisk (*), slash (/), plus sign (+), and minus
sign (-).

• Special names-.EQ., .GE., .GT., .LE., .LT., .NE., .NOT., .AND., and
.OR.; the names can be uppercase or lowercase.

Data entities and operators can be adjacent or can be separated by any
number of spaces or tabs. The values in the expression can be symbols or
literal values (such as 3 or "DOG"). Expressions take the following two forms:

• Operations-An operation combines two data entities or alters a data
entity. The following example combines the literal values 10 and 3 by
adding them:

$ DOG_COUNT = 10 + 3
$ SHOW SYMBOL DOG_COUNT

DOG_COUNT = 13 Hex = 00000000 Octal = 00000000015

• Comparisons-A comparison evaluates a relationship between two
entities as true or false. A true comparison evaluates to a numeric value
of 1, and a false comparison evaluates to a numeric value of 0. The
following example compares the value of the symbol DOG _COUNT with
the literal value 13 and finds them to be equal:

$ DOG_CHECK = DOG_COUNT .EQ. 13
$ SHOW SYMBOL DOG_CHECK

DOG_CHECK = 1 Hex = 00000001 Octal = 00000000001

You can create character string expressions, numeric expressions, and logical
expressions. These are described in the following sections.

5-11

Representing Data with Symbols
5.6 Storing and Manipulating Data with Symbols

5.6.2.1

5-12

Character String Expressions
A character string expression can contain character strings, lexical functions
that evaluate to character strings, or symbols that have character string
values. Attempting an operation or comparison between a character string
and a number causes the character string to be converted to a number.

You can specify the following character string operations:

• Concatenation-The plus sign concatenates two character strings. For
example:

$ COLOR = "light brown"
$WEIGHT= "30 lbs."
$ DOG2 = "No tag' " + COLOR + II " + WEIGHT
$ SHOW SYMBOL DOG2

DOG2 ="No tag, light brown, 30 lbs."

• Reduction-The minus sign removes the second ~haracter string from the
first character string. For example:

$ SHOW SYMBOL DOG2
DOG2 ="No tag, light brown, 30 lbs."

$ DOG2 = DOG2 - ". 30 lbs."
$ SHOW SYMBOL DOG2

DOG2 = "No tag, light brown"

If the second character string occurs more than once in the first character
string, only the first occurrence of the string is removed.

When you compare two character strings, the strings are compared character
by character; strings of different lengths are not equal (for example, "dogs" is
greater than "dog").

The comparison criteria are the ASCII values of the characters. Under this
criterion, the digits 0 through 9 are less than the letters A through Z, and the
uppercase letters A through Z are less than the lowercase letters a through
z. A character string comparison terminates when either of the following
conditions is true:

1 All the characters have been compared, in which case the strings are
equal.

2 The first mismatch occurs.

You can specify the following varieties of string comparisons. In the
examples, assume that the symbol LAST_NAME has the value "WHITFIELD."

• Equal to-The operator .EQS. compares one character string to another
for equality. The following comparison evaluates to 0 to indicate that the
value of the symbol LAST_NAME does not equal the literal "NORMAN":

$ TEST_NAME = LAST_NAME .EQS. "NORMAN"
$ SHOW SYMBOL TEST_NAME

TEST_NAME = 0 Hex = 00000000 Octal = 00000000000

• Greater than or equal to-The operator .GES. compares one character
string to another for a greater or equal value in the first specified string.
The following comparison evaluates to 1 to indicate that the value of the
symbol LAST_NAME is greater than or equal to the literal "NORMAN":

5.6.2.2

Representing Data with Symbols
5.6 Storing and Manipulating Data with Symbols

$ TEST_NAME = LAST_NAME .GES. "NORMAN"
$ SHOW SYMBOL TEST_NAME

TEST_NAME = 1 Hex = 00000001 Octal = 00000000001

• Greater than-The operator .GTS. compares one character string to
another for a greater value in the first specified string. The following
comparisoirevaluates to 1 to indicate that the value of the symbol
LAST_NAME is greater than the literal "NORMAN":

$ TEST_NAME = LAST_NAME .GTS. "NORMAN"
$ SHOW SYMBOL TEST_NAME

TEST_NAME = 1 Hex = 00000001 Octal = 00000000001

• Less than or equal to-The operator .LES. compares one character string
to another for a lesser or equal value in the first specified string. The
following comparison evaluates to 0 to indicate that the value of the
symbol LAST_NAME is not less than or equal to the literal "NORMAN":

•

$ TEST_NAME = LAST_NAME .LES. "NORMAN"
$ SHOW SYMBOL TEST_NAME

TEST_NAME = 0 Hex = 00000000 Octal = 00000000000

Less than-The operator . L TS. compares one character string to another
for a lesser value in the first specified string. The following comparison
evaluates to 0 to indicate that the value of the symbol LAST_NAME is
not less than the literal "NORMAN":

$ TEST_NAME = LAST_NAME .LTS. "NORMAN"
$ SHOW SYMBOL TEST_NAME

TEST_NAME = 0 Hex = 00000000 Octal = 00000000000

• Not equal-The operator .NES. compares one character string to another
for inequality. The following comparison evaluates to 1 to indicate
that the value of the symbol LAST_NAME does not equal the literal
"NORMAN":

$ TEST_NAME = LAST_NAME .NES. "NORMAN"
$ SHOW SYMBOL TEST_NAME

TEST_NAME = 1 Hex = 00000001 Octal = 00000000001

Numeric Expressions
In a numeric expression, the values involved must be literal numbers (such
as 3) or symbols with numberic values. In addition, you can use a character
string that represents a number (for example, "23" or "-51"). Attempting an
operation or comparison between a number and a character string causes the
character string to be converted to a number.

You can specify the following numeric operations:

• Multiplication-The asterisk multiplies two numbers. For example:

$ BALANCE = 142 * 14
$ SHOW SYMBOL BALANCE

BALANCE = 1988 Hex = 000007C4 Octal = 00000003704

• Division-The slash divides the first specified number by the second
specified number. For example:

$ BALANCE = BALANCE / 14
$ SHOW SYMBOL BALANCE

BALANCE = 142 Hex = 0000008E Octal = 00000000216

If a number does not divide evenly, the remainder is lost. (No rounding
takes place.)

5-13

Representing Data with Symbols
5.6 Storing and Manipulating Data with Symbols

5-14

• Addition-The plus sign adds two numbers. For example:

$ BALANCE = BALANCE + 37
$ SHOW SYMBOL BALANCE

BALANCE = 179 Hex = OOOOOOB3 Octal = 00000000263

• Subtraction-The minus sign subtracts the second specified number from
the first specified number. For example:

$ BALANCE = BALANCE - 15416
$ SHOW SYMBOL BALANCE

BALANCE = -15237 Hex = FFFFC47B Octal = 00000142173

• Unary plus and minus-The plus and minus signs change the sign of the
number they precede. For example:

$ BALANCE = -(-142)
$ SHOW SYMBOL BALANCE

BALANCE = 142 Hex = 0000008E Octal = 00000000216

You can specify the following numeric comparisons:

• Equal to-The operator .EQ. compares one number to another for
equality. The following comparison evaluates to 1 to indicate that
BALANCE equals -15237:

$ TEST_BALANCE = BALANCE .EQ. -15237
$ SHOW SYMBOL TEST_BALANCE

TEST_BALANCE = 1 Hex = 00000001 Octal = 00000000001

• Greater than or equal to-The operator .GE. compares one number to
another for a greater or equal value in the first number. The following
comparison evaluates to 1 to indicate that BALANCE is greater than or
equal to -15237:

$ TEST_BALANCE = BALANCE .GE. -15237
$ SHOW SYMBOL TEST_BALANCE

TEST_BALANCE = 1 Hex = 00000001 Octal = 00000000001

• Greater than-The operator .GT. compares one number to another for a
greater value in the first number. The following comparison evaluates to
0 to indicate that BALANCE is not greater than -15237:

$ TEST_BALANCE = BALANCE .GT. -15237
$ SHOW SYMBOL TEST_BALANCE

TEST_BALANCE = 0 Hex = 00000000 Octal = 00000000000

• Less than or equal to-The operator .LE. compares one number to
another for a lesser or equal value in the first number. The following
comparison evaluates to 1 to indicate that BALANCE is less than or equal
to -15237:

$ TEST_BALANCE = BALANCE .LE. -15237
$ SHOW SYMBOL TEST_BALANCE

TEST_BALANCE ~ 1 Hex = 00000001 Octal = 00000000001

• Less than-The operator .LT. compares one number to another for a
lesser value in the first number. The following comparison evaluates to 0
to indicate that BALANCE is not less than -15237:

$ TEST_BALANCE = BALANCE .LT. -15237
$ SHOW SYMBOL TEST_BALANCE

TEST_BALANCE = 0 Hex = 00000000 Octal = 00000000000

5.6.2.3

Representing Data with Symbols
5.6 Storing and Manipulating Data with Symbols

• Not equal to-The operator .NE. compares one number to another for
inequality. The following comparison evaluates to 0 to indicate that
BALANCE equals -15237:

$ TEST_BALANCE = BALANCE .NE. -15237
$ SHOW SYMBOL TEST_BALANCE

TEST_BALANCE = 0 Hex = 00000000 Octal = 00000000000

Logical Expressions
A logical operation affects all the bits in the number being acted upon. The
values for logical expressions are integers, and the result of the expression
is an integer as well. If you specify a character string value in a logical
expression, the string is converted to an integer before the expression is
evaluated.

String and integer values are evaluated as follows:

• If the first character is T, t, Y, or y, a character string has a logical value
of true (1).

• If the first character is not T, t, Y, or y, a character string has a logical
value of false (0).

• If an integer is odd (the low-order bit is 1), it has a logical value of true
(1).

• If an integer is even (the low-order bit is 0), it has a logical value of false
(0).

Typically, you use logical expressions to evaluate the low-order bit of a logical
value; that is, to determine whether the value is true or false. You can specify
the following logical operations:

• Not-The operator .NOT. reverses the bit configuration of a logical value.
A true value becomes false and a false value becomes true. The following
example reverses a true value to false. The expression evaluates to -2;
the value is even and is therefore false:

$ SHOW SYMBOL STATUS
STATUS = 1 Hex = 00000001 Octal = 00000000001

$ STATUS = .NOT. STATUS
$ SHOW SYMBOL STATUS

STATUS = -2 Hex = FFFFFFFE Octal = 37777777776

• And-The operator .AND. combines two logical values as follows:

Bit Level

1 .AND. 1 = 1

1 .AND. 0 = 0

0 .AND. 1=0

0 .AND. 0 = 0

Entity Level

true .AND. true= true

true .AND. false= false

false .AND. true = false

false .AND. false= false

5-15

Representing Data with Symbols
5.6 Storing and Manipulating Data with Symbols

5.6.2.4

5-16

The following example combines a true value and a false value to produce
a false value:

$ STAT1 = "TRUE"
$ STAT2 = "FALSE"
$ STATUS = STAT1 .AND. STAT2
$ SHOW SYMBOL STATUS

STATUS = 0 Hex = 00000000 Octal = 00000000000

• Or-The operator .OR. combines two logical values as follows:

Bit Level

1 .OR. 1 = 1

1 .OR. 0 = 1

0 .OR. 1 = 1

0 .OR. 0 = 0

Entity Level

true .OR. true= true

true .OR. false =true

false .OR. true = true

false . OR. false = false

The following example combines a true value and a false value to produce
a true value:

$ STAT1 = "TRUE"
$ STAT2 = "FALSE"
$ STATUS = STAT1 .OR. STAT2
$ SHOW SYMBOL STATUS

STATUS = 1 Hex = 00000001 Octal = 00000000001

Subst:ing Replacement and Numeric Overlays
You can replace a part of a character string with another character string. The
assignment statement has the following format:

symbol-name[offset,size] := replacement-string

or

symbol-name[offset,size]

The fields are as follows:

replacement-string

• Offset is an integer that indicates the position of the replacement
string relative to the first character in the original string. An offset of
0 means the first character in the symbol, an offset of 1 means the second
character, and so on.

• Size is an integer that indicates the length of the replacement-string.

To replace substrings, observe the following rules:

• The square brackets are required notation. No spaces are allowed
between the symbol name and the left bracket.

• Integer values can be in the range of 0 through 768.

• The replacement-string must be a character string.

In the following example, the first assignment statement gives the symbol
A the value PACKRAT. The second statement specifies that MUSK replace
the first four characters in the value of A. The result is that the value of A
becomes MUSKRAT.

Representing Data with Symbols
5. 6 Storing and Manipulating Data with Symbols

$ A := PACKRAT
$ A[0,4] :=MUSK
$ SHOW SYMBOL A

A = "MUSKRAT"

The symbol name you specify can be undefined initially. The assignment
statement creates the symbol name and, if necessary, provides leading or
trailing spaces in the symbol value. For example:

$ B[4,3] := RAT

If the symbol B does not have a previous value, it is given a value of four
leading spaces followed by RAT. This format creates a blank line of any
length. The following example gives the symbol LINE a value of 80 blank
spaces:

$ LINE[0,80] := II II

Lining up records in columns makes a list easier to read and sort. You can
use this format to specify how you want data to be stored. For example:

$ DATA[0,15] := 'NAME'
$ DATA[17,1] := 'GRADE'

The first statement fills in the first 15 columns of DATA with whatever value
NAME has. The second statement fills in column 18 with whatever value
GRADE has. Columns 16 and 17 contain blanks.

A special format of the assignment statement can also be used to perform
binary (bit-level) overlays of the current symbol value. This format is as
follows:

$ symbol-name[bit-position,size] = replacement-expression

or

$ symbol-name[bit-position,size)

where:

replacement-expression

• bit-position is an integer that indicates the location relative to bit 0 at
which the overlay is to occur.

• size is an integer that indicates the number of bits to be overlaid.

When using numeric overlays, observe the following rules:

• The square brackets are required notation. No spaces are allowed
between the symbol name and the left bracket.

• Literal values are assumed to be decimal.

• The maximum length for both bit-position and size is 32 bits.

• The replacement-expression must be a numeric expression.

• When symbol-name is either undefined or defined as a string, the result of
the overlay is a string. Otherwise the result is an integer.

The following example defines the symbol BELL as the value 7. The low
order byte of BELL has the binary value 00000111. By changing the 0 at
offset 5 to 1 (beginning with 0, count bits from right to left), you create the
binary value 00100111 (decimal value 39).

5-17

Representing Data with Symbols
5.6 Storing and Manipulating Data with Symbols

5.6.2.5

5-18

$ BELL = 7
$ BELL[5,1] = 1
$ SHOW SYMBOL BELL

BELL = 39 Hex = 00000027 Octal = 00000000047

Order of Operations and the Results of Evaluations
An expression can contain any number of operations and comparisons. You
can indicate precedence (the order in which operation and comparison should
be evaluated) by placing operations to be performed first in parentheses.
(Parentheses can be nested.) Otherwise, operations within an expression are
evaluated in the following order:

1 Unary plus (+) and minus (-)

2 Multiplication and division

3 All other numeric and character operations

4 All numeric and character comparisons

5 Logical NOT operations

6 Logical AND operations

7 Logical OR operations

Operations and comparisons that have the same precedence are evaluated
from left to right. The following examples illustrate precedence of operations
in expressions:

$ BALANCE = 150 + 20 * 4
(BALANCE = 150 + 80)

$ SHOW SYMBOL BALANCE
BALANCE = 230 Hex = OOOOOOE6 Octal = 00000000346

$ BALANCE = (150 + 20) * 4
(BALANCE = 170 * 4)

$ SHOW SYMBOL BALANCE
BALANCE = 680 Hex = 000002A8 Octal = 00000001250

$ STATUS = 150 * 4 .GT. 80 * 2
(STATUS = 600 .GT. 160)

$ SHOW SYMBOL STATUS
STATUS = 1 Hex = 00000001 Octal = 00000000001

An expression has either an integer or a string value, depending on the
types of values and the operators used. The following table summarizes how
DCL evaluates expressions. The first column lists the different values and
operators that an expression might contain. The second column tells, for each
case, what the entire expression is equated to. Within the table any value
stands for a string or an integer.

Table 5-2 Determining the Value of an Expression

Expression

Integer value

String value

Integer lexical function

Resulting
Value Type

Integer

String

Integer

Representing Data with Symbols
5. 6 Storing and Manipulating Data with Symbols

Table 5-2 (Cont.) Determining the Value of an Expression

Expression

String lexical function

Integer symbol

String symbol

+,-,or .NOT. any value

Any value .AND. or .OR. any value

String + or - string

Integer + or - any value

Any value + or - integer

Any value * or / any value

Any value (string comparison) any value

Any value (numeric comparison) any value

Resulting
Value Type

String

Integer

String

Integer

Integer

String

Integer

Integer

Integer

Integer

Integer

5-19

6 Writing and Using Command Procedures

6.1 Format

A command procedure is a file that contains DCL commands and data
lines used by the DCL commands. You can write both simple and complex
command procedures. A simple command procedure executes a series of
DCL commands in the order in which they are written. A complex command
procedure performs program-like functions.

Follow these instructions when formatting a command procedure:

•

•
•

•

•

•

Begin each line containing a command, comment, or label with a dollar
sign.

Do not begin data lines with a dollar sign .

Use comments to explain the command procedure to anyone who
must maintain it. Place comments at the beginning of a procedure to
describe the procedure and the parameters passed to it; place them at
the beginning of each block of commands to describe that section of
the procedure. The command interpreter ignores comments when the
command procedure executes. Precede a comment with an exclamation
point; the comment is all text to the right of an exclamation point. (To
include a literal exclamation point in a command line, precede and follow
it with quotation marks.)

Use complete names for commands and qualifiers. Commands and
qualifiers are usually self-explanatory when they are not abbreviated.
Abbreviated commands and qualifiers may no longer be unique when
new commands and qualifiers are added to the VMS operating system.

Put labels on separate lines to make loops, subroutines, and conditional
code easier to understand. (Labels mark the beginning of loops,
subroutines, and conditional code.) You may choose to differentiate
labels from commands by placing labels immediately after the dollar
sign and preceding commands by a space. A label can have up to 255
characters, cannot contain embedded blanks, and must be terminated
by a colon. (The GOTO, GOSUB, and CALL commands transfer control
to labels, which mark the beginning of a loop, a section of code, or a
subroutine.)

Separate command sequences with lines containing a dollar sign and
an exclamation point ($!). This makes it easier to see the outline of the
command procedure. (If you insert blank lines, the command interpreter
interprets them as data lines and produces a message warning you that
the data lines were ignored. If you insert lines containing only a dollar
sign, the command interpreter searches the whole line for a command.)

6-1

Writing and Using Command Procedures
6.2 Execution

6.2 Execution

6-2

Command procedures can be executed interactively from DCL level, from
within another command procedure, on a remote node using the TYPE
command, or in batch mode. To execute a command procedure interactively,
type an at sign (@) followed by the file specification of the procedure.
The file type defaults to COM. The following command executes the
procedure SETD.COM in the directory [MAINT.PROCEDURES] on the
disk WORKDISK:

$ ©WORKDISK: [MAINT.PROCEDURES]SETD

To simplify the invocation of a procedure, create a global symbol or a
logical name, and place the symbol or logical name in your login command
procedure. (Section 6.3 describes how to create a login command procedure.
Symbols are described in Chapter 5. See Chapter 4 for more information
about logical names.) Equating the command line to a global symbol allows
you to invoke the command procedure from any directory by entering the
global symbol name as follows:

$ SETD == "©WORKDISK: [MAINT.PROCEDURES]SETD"
$ SETD

Equating the file specification to a logical name allows you to invoke the
command procedure from any directory by entering an at sign followed by
the logical name as follows:

$ DEFINE SETD WORKDISK: [MAINT. PROCEDURES] SETD. COM
$ ©SETD

To invoke a command procedure from within another command procedure,
use the at sign (@) followed by the file specification of the procedure. In the
following example, the command procedure WRITEDATE.COM invokes the
command procedure GETDATE.COM:

$! WRITEDATE.COM
$ INQUIRE TIME "What is the current time, in hh:mm format?"
$ ©GETDATE

Use the TYPE command to execute a command procedure interactively on a
remote node. The TYPE command lets you execute command procedures to
list the users logged on to the remote node or to display the status of services
in the local cluster not provided clusterwide. The output of the command
procedure is displayed on the user's terminal at the local node.

To execute a command procedure in the default DECnet account of the
remote node, specify the command procedure as a parameter to the TYPE
command as follows:

$TYPE node_name: :"TASK=command_procedure"

The variable node_name is the name of the remote node on which the
command procedure resides; command_procedure is the name of the command
procedure.

To execute a command procedure in the top level directory of another account
on the remote node, use an access control string in the command as follows:

$TYPE node_name"user_name password": :"TASK=command_procedure"

The variable user _name is the user name of the account on the remote node,
password is the password of the account on the remote node, and
command_procedure is the name of the command procedure.

6.2.1

Writing and Using Command Procedures
6. 2 Execution

The following command procedure, SHOWUSERS.COM, displays the users
logged in at the remote node on which the command procedure resides:

$! SHOWUSERS.COM
$ IF F$MODE() .EQS. "NETWORK" THEN DEFINE/USER SYS$0UTPUT SYS$NET
$ SHOW USERS

The following command executes the command procedure
SHOWUSERS.COM and displays the output from this command procedure
on the user's terminal. The command procedure resides in the top level
directory of account BIRD on node ORIOLE.

$ TYPE ORIOLE"BIRD FLIESFAST":: "TASK=SHOWUSERS"

VAX/VMS Interactive Users
09-DEC-1988 17:20:13.30

Total number of interactive users = 4
Username Process Name PID Terminal
FLICKER Freddie 00536278 TXA1:
ROBIN Red 00892674 VTA2:
DOVE Whitie 00847326 TXA3:
DUCK Donna 02643859 RTA1:

You can also submit a command procedure to a batch queue to execute as a
batch job. If your system is part of a network, you can submit a command
procedure to execute as a batch job on a remote node. Within a command
procedure, you can use DCL commands to open and close files on a remote
node and read and write records in these files, using the same commands
and qualifiers as for local files. Section 3.1.4 contains more information about
batch jobs.

Changing Command Levels
A command level is an input stream for the DCL command interpreter.
You can create a maximum of 32 command levels. There are two ways to
create new command levels. You can either use the CALL command to call
a subroutine that exists within the command procedure, or you can nest
command procedures by using an execute procedure (@) command inside
one command procedure to invoke another command procedure. When you
use the CALL command or nest a command procedure, the command level
increases by 1.

When you invoke a command procedure, the command level increases by
1. For example, if you invoke procedure SUB from DCL command level
(level 0), SUB executes at command level 1. If SUB then invokes SUBl,
which invokes SUBSUBl, SUBl executes at command level 2, and SUBSUBl
executes at command level 3.

By convention, DCL level (command level 0) is the highest command level
and command level 31 the lowest command level. Thus, when you move
from command level 3 to command level 2, you are moving to the next
higher command level.

6-3

6.2.2

Writing and Using Command Procedures
6. 2 Execution

Exiting from Command Procedures
A command procedure exits when it reaches the end of the procedure, an
EXIT command, or a STOP command. If the exit is caused by the end
of the procedure or an EXIT command, control returns to the next higher
command level. If the exit is caused by the EXIT command, you can return
a status value to the next higher command level by specifying the value
as the parameter of the EXIT command. (A status value is a hexadecimal
representation of a VMS message code.) This status value is placed in the
global symbol $STATUS. If you return the status value 44 with the EXIT
command, control returns to DCL command level and the following error
message is displayed:

%SYSTEM-F-ABORT, abort

See Section 5.2 for more information about the global symbols $STATUS and
$SEVERITY. For example, if you invoke SUB at DCL command level, and
SUB calls SUBJ, the following sequence of actions occurs:

1 Exiting from SUBJ returns you to SUB at the command line following the
call to SUB 1.

2 Exiting from SUB returns you to DCL command level.

If the exit is caused by the STOP command, control always returns to
DCL command level, regardless of the command level in which the STOP
command executes.

6.3 Designing a Login Command Procedure

6-4

You can create a command procedure, called a login command procedure,
to execute the same commands each time you log in. Name your login
command procedure LOGIN.COM, and place it in your top level directory,
unless your system manager tells you otherwise.

The following sample LOGIN.COM procedure illustrates some commands
you may want to include in your login command procedure:

$! Sample LOGIN.COM for user MARCIA with
$! default disk of DISK3
$!
$! Exit if this is a batch job or another
$! type of noninteractive process
$!
$ IF F$MODE () . NES . 11 INTERACTIVE 11 THEN EXIT 0
$!
$! Tailor the default behavior of
$! certain DCL commands
$!
$ PUR*GE :== PURGE/LOG
$ SUB*MIT :== SUBMIT/NOLOG_FILE/NOTIFY
$ M*AIL :== MAIL/EDIT=(SEND,FORWARD,REPLY)
$!
$! Define global symbols
$!
$ DISPLAY :== MONITOR PROCESSES/TOPCPU
$ GO :== SET DEFAULT
$ LP :== SHOW QUEUE/ALL SYS$PRINT
$ SS :== SHOW SYMBOL
$ SQ :== SHOW QUEUE/ALL

Writing and Using Command Procedures
6.3 Designing a Login Command Procedure

$ REM :== ©DISK3: [MARCIA.PROG]REMINDER
$ MAIN :== SET DEFAULT DISK3: [MARCIA]
$!
$! Define logical names for:
$! Directories
$ DEFINE HOME DISK3: [MARCIA]
$ DEFINE REV DISK3: [MARCIA.REVIEWS]
$DEFINE TOOLS DISK3: [MARCIA.TOOLS]
$! Files
$DEFINE EQUIP DISK3: [MARCIA.LISTS]EQUIPMENT.DAT
$ DEFINE ACCOMP DISK3: [MARCIA] ACCOMPLISHMENTS.DAT
$! Users
$ DEFINE JON DAISY: :HARRIS
$DEFINE JANE DAISY::MOORE
$!
$! Define keys to execute commands
$!
$ DEFINE/KEY PF3 "SHOW USERS" /TERMINATE
$ DEFINE/KEY KP7 "SPAWN" /TERMINATE
$ DEFINE/KEY KP8 "ATTACH "
$ DEFINE/KEY KP4 "SET HOST II

$!
$! Change the prompt string to a three-character
$! abbreviation of the node name
$!
$ NODE = F$GETSYI("NODENAME") f)
$ PROMPT = F$EXTRACT(0,3,NODE)
$SET PROMPT= "''PROMPT'>"
$!
$! Type the system notices 0
$!
$ TYPE SYS$SYSTEM:NOTICE.TXT
$!
$! Run a program that displays today's appointments 0
$!
$ RUN DISK3: [MARCIA.PROG]REMINDER

0 The F$MODE lexical function returns the mode (interactive, batch,
network or other) that the process is in when the LOGIN.COM procedure
is executing. This statement causes the procedure to exit unless you are
using the system interactively. You should test the mode at the beginning
of your LOGIN.COM procedure to ensure that commands used only in
interactive mode are not executed in any other mode; in some cases these
commands can abort noninteractive processes.

f) This group of commands changes the DCL prompt to the first three
characters of the node name. The F$GETSYI lexical function determines
the node name. The F$EXTRACT lexical function extracts the first three
characters of the name. The SET PROMPT command changes the prompt
from a dollar sign to the first three characters of the node name followed
by the right-angle bracket character (>) and a space.

0 This command displays the system notices that your system manager
keeps in the file SYS$SYSTEM:NOTICE.TXT.

0 This command runs a user-written program that displays your daily
appointments. If you have written programs that you always run
after you log in, you may prefer to execute them directly from your
LOGIN.COM file.

6-5

Writing and Using Command Procedures
6.3 Designing a Login Command Procedure

The system manager assigns the file specification for your login command
procedure in the LGICMD field for your account. In most installations, the
login command procedure is called LOGIN.COM. However, if you want
to execute a file other than the one named in the LGICMD field for your
account, use the /COMMAND qualifier when you log in.

6.4 Passing Data

6.4.1

Command procedures frequently require data provided by a user. To specify
the same data each time the command procedure is executed, place the data
on data lines following the command that requires the data. (A data line
is a line that does not begin with a dollar sign. To include a data line that
begins with a dollar sign, use the DCL commands DECK and EOD, which
are described in the VMS DCL Dictionary.) The following command procedure
executes the image CENSUS.EXE, which reads the data 1981, 1982, and 1983
each time the procedure is executed:

$! CENSUS.COM
$!
$ RUN CENSUS
1981
1982
1983
$ EXIT

The text on a data line is passed directly to the image; DCL does not process
data lines. Therefore, DCL does not translate symbols or evaluate arithmetic
expressions on data lines before passing the symbols or arithmetic expressions
to the image. Logical names are not translated by DQL; therefore, a logical
name included on a data line is translated before it is passed to an image.

To specify different data each time a command procedure executes, use one
of the following mechanisms, which are described in Sections 6.4.1 through
6.4.4:

• Pass the data as one or more parameter values.

• Use the INQUIRE or READ command within the command procedure to
prom pt for data.

• Specify a device or file from which to read the data by redefining the
logical name SYS$INPUT.

Using Parameters to Pass Data

6-6

When you invoke a command procedure, you can pass it up to eight
parameters. Place the parameters after the file specification of the command
procedure. Separate the parameters with one or more spaces or tabs. For
example, the following command invokes SUM.COM and passes eight
parameters to the procedure:

$ ©SUM 34 52 664 89 2 7 87 3

To pass parameters to a command procedure executed in batch mode, use the
/PARAMETERS qualifier of the SUBMIT command. If you pass more than
one parameter, place the parameters in parentheses and separate them with
commas. If you execute more than one command procedure using a single
SUBMIT command, the specified parameters are used for each command
procedure in the batch job. The following command passes three parameters

Writing and Using Command Procedures
6.4 Passing Data

to the command procedures ASK.COM and GO.COM, which are executed as
batch jobs:

$ SUBMIT/PARAMETERS=(TODAY,TOMORROW,YESTERDAY) ASK.COM, GO.COM

DCL places parameters passed to a command procedure in the local symbols
Pl through PS; Pl is assigned the first parameter value; P2 the second; P3
the third, and so on. If you pass more than eight values, you receive the
following error message and the command procedure does not execute:

%DCL-W-DEFOVF, too many command procedure parameters - limit to eight

If you pass fewer than eight values, the extra symbols are assigned null
values.

Specify a parameter value as one of the following:

• Integer-When you specify an integer, it is converted to a string as
follows:

$ ©ADDER 24 25

In this example, Pl is the string value 24; P2 is the string value 25.
(You can, however, use the symbols Pl and P2 in both integer and
character string expressions; DCL performs the necessary conversions
automatically.)

• String-Specify character strings as follows:

$ ©DATA Paul Cramer

In this example, the strings Paul and Cramer are converted to uppercase
letters; Pl is PAUL and P2 is CRAMER.

To preserve spaces, tabs, or lowercase characters, place quotation marks
before and after the string as follows:

$ ©DATA "Paul Cramer"

In this example, Pl is Paul Cramer and P2 is null.

• Symbol-To pass the value of a symbol, place an apostrophe character
before and after the symbol, as shown in the following example. When
passing a symbol, DCL removes quotation marks that enclose a string.
(To preserve spaces, tabs, and lowercase characters in a symbol value,
surround the symbol with quotation marks.)

$ NAME = "Paul Cramer"
$ ©DATA 'NAME'

In this example, Pl is Paul and P2 is Cramer.

To include a quotation mark as part of a string, enter three quotation
marks as follows:

$ NEW_NAME = """Paul Cramer"""
$ ©DATA 'NEW_NAME'

In this example, Pl is "Paul Cramer" and P2 is null.

• Null-To pass a null parameter, use a set of quotation marks as a
placeholder in the command string. In the following example, the first
parameter passed to DATA.COM is a null parameter:

$ ©DATA 1111 "Paul Cramer"

6-7

Writing and Using Command Procedures
6.4 Passing Data

6-8

In the preceding example, Pl is null, and P2 is Paul Cramer.

For example, when DATA.COM is invoked with the following command, Pl
through PB are defined in DATA.COM as follows:

Pl= Paul Cramer
P2 = 24
P3 = (555) 111-1111
P4-PB =null

$ ©DATA "Paul Cramer" 24 "(555) 111-1111"

You can pass up to eight parameters to a nested command procedure. The
local symbols Pl through PB in the nested procedure are not related to the
local symbols Pl through PB in the invoking procedure. In the following
example, DATA.COM invokes the nested command procedure NAME.COM:

$! DATA.COM
$ ©NAME 'P1' Joe Cooper

Because Pl in DATA.COM is the string Paul Cramer, which contains
no quotation marks, it is passed to NAME.COM as two parameters. In
NAME.COM, Pl through PB are defined as follows:

Pl= PAUL
P2 =CRAMER
P3 =JOE
P4 =COOPER
PS-PB= null

Because DCL removes quotation marks when passing a symbol, you must
enclose the value in three sets of quotation marks to preserve spaces, tabs,
and lowercase characters in the symbol value. In the following example, the
literal value in Pl is enclosed in three sets of quotation marks and passed to
NAME.COM. If Pl originally contained the value "Paul Cramer", the value
"Paul Cramer" is passed to NAME.COM.

$! DATA.COM
$ QUOTE = """
$ Pi = QUOTE + Pi + QUOTE
$©NAME 'Pi' "Joe Cooper"

In this example, Pl is Paul Cramer and P2 is Joe Cooper in the command
procedure NAME.COM.

An alternative is to enclose the text in quotation marks and, where a symbol
appears, precede the symbol with two apostrophes and follow it with one
apostrophe as follows:

$! DATA.COM
$ ©NAME II I I Pi I II

Passing Data and Parameters to a Batch Job

To specify parameters for a job submitted in batch mode, use the
/PARAMETERS qualifier of the SUBMIT command. Note that you can
also pass data to a batch job by including the data in a command procedure
or by defining SYS$INPUT to be a file. The specified parameters are used for
each command procedure in the batch job. The following SUBMIT command
passes two parameters to the command procedures LIBRARY.COM and
SORT.COM:

6.4.2

6.4.3

Writing and Using Command Procedures
6.4 Passing Data

$ SUBMIT-
_$ /PARAMETERS=(DISK: [ACCOUNT.BILLS]DATA.DAT,DISK: [ACCOUNT] NAME. DAT) -
_$LIBRARY.COM, SORT.COM

Your batch job executes as if you had logged in and executed each of
the submitted command procedures. For example, the previous SUBMIT
command executes a batch job that logs in under your account, executes your
login command procedure, and then executes the following commands:

$©LIBRARY DISK:[ACCOUNT.BILLS]DATA.DAT DISK: [ACCOUNT]NAME.DAT
$ ©SORT DISK: [ACCOUNT.BILLS]DATA.DAT DISK: [ACCOUNT] NAME.DAT

The INQUIRE Command
You can use the INQUIRE command to obtain data for command procedures
that you execute interactively. The INQUIRE command prompts for a value,
reads the value from the terminal, and assigns it to a symbol. The response
to the prompt is interpreted as a character string. By default, the response
is converted to uppercase, multiple blanks and tabs are replaced by a single
space, and leading and trailing spaces are removed. To preserve lowercase
characters, multiple spaces, and tabs, enclose your response in quotation
marks. The following command procedure writes the prompt Filename: and
puts your response into the local symbol FILE:

$ INQUIRE FILE "Filename"

To suppress the colon and space automatically added to the end of the
prompt, use the /NOPUNCTUATION qualifier. To make the symbol global
instead of local, use the /GLOBAL qualifier. The following command
procedure writes the prompt Do you want to use defaults? and puts the
response into the global symbol DEFAULT:

$ INQUIRE/NOPUNCTUATION/GLOBAL DEFAULT-
_$ "Do you want to use defaults?"

When a command procedure is submitted as a batch job, the value for
a symbol specified in an INQUIRE command is read from the data line
following the INQUIRE command. If you do not include a data line, the
symbol is assigned a null value.

The READ Command
You can use the READ command to obtain data for command procedures that
you execute interactively. The READ command prompts for a value, reads
the value from the source specified by the first parameter, and assigns it to the
symbol named as the second parameter. If you do not specify a prompt, the
READ command outputs DATA: as the default prompt. To specify a different
prompt, use the /PROMPT qualifier. All characters typed on the terminal
in response to the prompt are taken as an exact character string value (case,
spaces, and tabs are preserved). The following command writes the prompt
Filename:, reads the response from the source specified by the logical name
SYS$COMMAND (by default, the terminal), and assigns the response to the
symbol FILE:

$ READ/PROMPT="Filename: " SYS$COMMAND FILE

6-9

6.4.4

Writing and Using Command Procedures
6.4 Passing Data

Obtaining Data from SVS$1NPUT

6-10

Commands, utilities, and other system images usually take their input from
the source specified by the logical name SYS$INPUT. SYS$INPUT is a
process-permanent logical name that the system defines automatically. You
can specify SYS$INPUT as any one of the following:

• Data line-In a command procedure, the default value of SYS$INPUT is
the data lines of the procedure. In the following command procedure, the
image CENSUS.EXE uses the default value of SYS$INPUT to take input
(1986, 1987, and 1988) from the data lines:

$! CENSUS.COM
$!
$! Execute CENSUS
$ RUN CENSUS
1986
1987
1988
$

• Terminal-A command procedure can get input from a terminal by
defining SYS$INPUT as the terminal. This allows you to perform
interactive tasks from a command procedure. The following command
procedure defines SYS$INPUT as SYS$COMMAND, which is, by default,
the terminal. The command procedure then invokes the EDT editor,
beginning an interactive editing session. (The /USER_MODE qualifier
redefines SYS$INPUT for a single image; you should use this qualifier
whenever you redefine a process-permanent logical name.)

$! EDIT .COM
$!
$! Edit the file STATS.DAT
$WRITE SYS$0UTPUT "Edit STATS.DAT:"
$ DEFINE/USER_MODE SYS$INPUT SYS$COMMAND:
$ EDIT STATS.DAT

• File-A command procedure can get input from a file by defining
SYS$INPUT as a file. The following command procedure defines
SYS$INPUT as the file YEARS.DAT, then invokes the program CENSUS.
CENSUS reads its input from the file YEARS.DAT.

$! CENSUS.COM
$!
$! Execute CENSUS
$ DEFINE/USER_MODE SYS$INPUT YEARS.DAT
$ RUN CENSUS

6.5 Returning Data

6.6 Displaying Data

Writing and Using Command Procedures
6.5 Returning Data

To return a value from a command procedure (either to a calling procedure or
to DCL command level), you must assign the value to a global symbol. The
global symbol can be read at any command level. Use comments to explain
the use of any global symbols.

To create a global symbol, specify the value to be passed on the right side of
a global assignment statement. In the following example, the command
procedure DATA.COM invokes the command procedure NAME.COM,
passing NAME.COM a full name. NAME.COM places the last name in the
global symbol LAST_NAME. When NAME.COM completes, DCL continues
executing DATA.COM, which reads the last name by specifying the global
symbol LAST_NAME. (The command procedure NAME.COM would be in a
separate file; it is indented here for clarity.)

$ @DATA "Paul Cramer"

$ DATA.COM
$
$ Pi is a full name
$ NAME.COM returns the last name in the
$ global symbol LAST_NAME
$
$@NAME 'Pi'

$! NAME.COM
$! Pi is a first name
$! P2 is a last name
$! return P2 in the global symbol LAST_NAME
$ LAST_NAME == P2
$ EXIT

$! write LAST_NAME to the terminal
$WRITE SYS$0UTPUT "LAST_NAME = I

1 LAST_NAME 111

LAST_NAME = CRAMER

Commands, utilities, and other system images normally write their output
to the source specified by the logical name SYS$0UTPUT. By default,
SYS$0UTPUT is equated to the terminal. However, you can redirect the
output of a command procedure to a file by using the /OUTPUT qualifier. In
the following example, output from the command procedure SETD.COM is
written to the file RE SUL TS. TXT instead of to the terminal:

$ @SETD/OUTPUT=RESULTS.TXT

DCL commands that accept the /OUTPUT qualifier include: ACCOUNTING,
CALL, DIRECTORY, HELP, LIBRARY, RUN (process), SPAWN, and TYPE.

6-11

6.6.1

6.6.2

Writing and Using Command Procedures
6.6 Displaying Data

Displaying Character Strings and Symbols

Displaying Text

6-12

To display character strings and symbols on the terminal, use the WRITE
command as follows:

• Character string-Enclose the text to be displayed in quotation marks.
The following example displays the text: Two files were written.

$WRITE SYS$0UTPUT "Two files were written."

• Symbol value-The WRITE command automatically substitutes
symbols and lexical functions. The following example displays the
text STAT1.DAT, which is the translation of the symbol FILE:

$FILE= "STAT1.DAT"
$ WRITE SYS$0UTPUT FILE

• Combination of character strings and symbol values-Enclose the text to
be displayed in quotation marks. Preface a symbol with two apostrophes,
and follow it with one apostrophe. The following example displays
the text: STAT1.DAT and STAT2.DAT were written. STATl.DAT is the
translation of the symbol AFILE; STAT2.DAT is the translation of the
symbol BFILE.

$ AFILE = "STAT1.DAT"
$ BFILE = "STAT2.DAT"
$ WRITE SYS$0UTPUT "' 'AFILE' and ''BFILE' were written."

You can also use commas and quotation marks to display a combination
of character strings and symbol values. The following example displays
the same text as the previous example:

$ AFILE = "STAT1.DAT"
$ BFILE = "STAT2.DAT"
$ WRITE SYS$0UTPUT AFILE, " and " , BFILE, " were written. "

To display text that is more than one line long, use the TYPE command.
TYPE writes data to SYS$0UTPUT (the terminal, by default). Using
SYS$INPUT as the parameter causes TYPE to read the data from the
command procedure. When the following command procedure is executed,
the text on the data lines is displayed on the terminal:

$! CLEAN.COM
$!
$ TYPE SYS$INPUT

This command procedure executes a command that allows you
to clean up a directory.

Please enter one of the following commands after the prompt:
EXIT, DIRECTORY, TYPE, PURGE, DELETE, COPY

$ INQUIRE COMMAND "Command"

6.6.3 Displaying Files

Writing and Using Command Procedures
6.6 Displaying Data

To display the contents of a file, use the TYPE command. The following
example displays the file STATl.DAT on the terminal:

$TYPE DUAO: [HORACE]STAT1.DAT

6. 7 Reading and Writing Files (File 1/0)

6.7.1

6.7.2

To move data to and from files, use the OPEN, CLOSE, READ, and WRITE
commands. The logical name you specify in the OPEN command is used to
refer to the file in the WRITE, READ, and CLOSE commands.

Specifying Files in Batch Job Command Procedures

Writing to a File

A batch job command procedure executes as if you had logged in and
executed the command procedure interactively. Since your login default
directory is not usually the default directory needed to access files mentioned
in a command procedure, command procedures that will be executed in batch
mode should use one of the following mechanisms to ensure that the correct
files are accessed:

• Use complete file specifications-When specifying a file in a command
procedure or passing a file to a command procedure, include the device
and directory names as part of the file specification, as shown in the
previous example.

• Use the SET DEFAULT command-Before accessing a file in a command
procedure, use the SET DEFAULT command to specify the proper device
and directory.

To write data to a file, take the following steps:

1 Open the file-The OPEN command assigns to the logical name specified
in the first parameter the file name specified in the second parameter.

Use the/ APPEND qualifier of the OPEN command to write data to
the end of an existing file. If you use the /APPEND qualifier to open a
nonexistent file, an error occurs and no file is opened.

Use the /WRITE qualifier of the OPEN command to create a new file and
to open this file for write access. If you use the /WRITE qualifier to open
an existing file, a new version of that file is created.

2 Begin the write loop with a label-File IJO is always done in a loop
unless you are writing or reading a single record.

3 Read the data to be written-Use the INQUIRE command or the READ
command to read data into a symbol.

4 Test the data-Check the symbol containing the data. If the symbol is
null (you pressed RETURN and entered no data on the line), you have
reached the end of the data to be written to the file and should go to the
end of the loop. Otherwise, continue.

6-13

Writing and Using Command Procedures
6. 7 Reading and Writing Files (File 1/0)

6-14

5 Write the data to the file-Use the WRITE command to write the value of
the symbol (one record) to the file.

6 Return to the beginning of the loop-You remain in the loop until there
is no more data to be written to the file.

7 End the loop and close the file-The CLOSE command disassociates the
file name from the logical name and closes the file. (Files opened by the
OPEN command remain open until you log out unless you explicitly close
them.)

The following command procedure writes data to the new file STAT.DAT. If a
file of that name exists, a new version is created.

$! Write a file
$ ON ERROR THEN EXIT
$
$ OPEN/WRITE IN_FILE STAT.DAT
$ ON CONTROL_Y THEN GOTO END_WRITE
$
$ ON ERROR THEN GOTO END_WRITE
$
$WRITE:
$ INQUIRE STUFF "Input data"
$ IF STUFF . EQS. '"' THEN GOTO END_WRITE
$ WRITE IN_FILE STUFF
$ GOTO WRITE
$END_WRITE:
$!
$ CLOSE IN_FILE

!EXIT if the command procedure
! cannot open the file
!Open the file
!Close the file if you abort
! execution with a CTRL/Y
!Close the file if an error
! occurs
!Begin loop
!Get input
!Test for end of file
!Write to the file
!Goto beginning
!End loop

! Close the file

Note: The logical name in the OPEN command must be unique. If the OPEN
command does not work and your commands seem correct, change the
logical name in the OPEN command. Use the SHOW LOGICAL command
to display logical name definitions.

If you want to create a file with a unique name, use the F$SEARCH lexical
function to see whether the name is already in the directory. (See the lexical
function descriptions in the DCL Commands section for more information
about F$SEARCH.) The following command procedure prompts the user for
a file name, then uses the F$SEARCH lexical function to search the default
directory for the name. If a file with that name already exists, control is
passed to ERROR_l, the procedure prints the message File already exists, and
control returns to the label GET_NAME. You are again prompted for a file
name.

$! FILES.COM
$!
$GET_NAME:
$ INQUIRE FILE "File" ! Get a file name
$ CHECK = F$SEARCH (FILE) ! Make sure the file name is unique
$ IF CHECK .NES. "" THEN GOTO ERROR_1
$ OPEN/WRITE IN_FILE 'FILE' ! Open and write to the file

$ EXIT
$ERROR_1:
$ WRITE SYS$0UTPUT "File already exists"
$ GOTO GET_NAME

6.7.3

6.7.4

Writing and Using Command Procedures
6. 7 Reading and Writing Files (File 1/0)

Reading from a File

Modifying a File

To read data from a file, take the following steps:

1 Open the file-The OPEN /READ command opens the file for read access
and associates the file name with a logical name.

2 Begin the read loop-File 1/0 is always done in a loop unless you are
reading or writing a single record.

3 Read the data from the file-Use the READ command with the
/END_OF_FILE qualifier to read the next record in the file to a symbol.
The /END_OF_FILE qualifier causes the VMS system to pass control to
the label specified by the /END_Of_FILE qualifier when you reach the
end of the file. Generally, you specify the label that marks the end of the
read loop.

4 Process the data-When you read a file sequentially, process the current
record before reading the next one.

5 Return to the beginning of the loop-You remain in the loop until you
reach the end of the file.

6 End the loop and close the file-The CLOSE command disassociates the
file name from the logical name and closes the file.

The following command procedure reads and processes each record in the file
STAT.DAT:

$ OPEN/READ OUT_F STAT.DAT
$!
$READ_DATA:
$ READ/END_OF_FILE=END_READ OUT_F STUFF
$
$

$ GOTO READ_DATA
$
$END_READ:
$!
$ CLOSE OUT_F

! Open the file

!Begin the loop
!Read a record; test for

end of file
! Process the data

!Go to the beginning
! of the loop
!End of loop

!Close the file

You can modify a file in the following ways:

• Rewrite records-This method allows you to make minor changes to a
small number of records in a file. You cannot change the size of a record
or the number of records in the file.

• Rewrite the file-This method allows you to change, delete, and insert
records. You create a new file using the old file as the main source of
input.

• Append records to a file-This method allows you to add new records to
the e,nd of the file.

6-15

Writing and Using Command Procedures
6. 7 Reading and Writing Files (File 1/0)

6.7.4.1

6-16

Minor Modifications
To make minor changes to the records in a file, take the following steps:

1 Open the file for both read and write access.

2 Use the READ command to read through the file until you reach the
record that you want to modify.

3 Create a symbol containing the modified record. The modified record
must be exactly the same size as the original record. If the text of the
modified record is shorter, pad the record with spaces. If the text of the
modified record is longer, you cannot use this method to modify the file.

4 Use the WRITE/UPDATE command to write the modified record back to
the file.

5 Repeat steps 2 through 4 until you have changed all records you intend
to change.

6 Close the file.

Since this method does not allow you to modify the size of the record, use it
only if you have formatted the records in a file (for example, in a data file).

The following command procedure reads each record in a data file. The
record is displayed on the terminal, and you are asked whether the record is
to be modified. If you choose to modify the record, a new record is read from
the terminal, and its length is compared to the length of the original record.
If the original record is longer, the new record is padded with spaces. If the
original record is shorter, an error message is displayed, and you are again
prompted for a new record. If you choose not to modify the record, the next
record is read from the file.

$! MODIFY.COM
$!
$ SPACES = II

$
$!

Initialize string of spaces
for padding

$ OPEN/READ/WRITE FILE STATS.DAT Open the file
$!
$BEGIN_LOOP:
$!

Begin the loop

$ READ/END_OF_F.ILE=END_LOOP FILE RECORD ! Read and display a record
$PROMPT:
$ WRITE SYS$0UTPUT RECORD
$
$! Does the user want to change the record?
$ INQUIRE/NOPUNCTUATION YN "Change? [Y] "
$ IF YN .EQS. "N" THEN GOTO BEGIN_LOOP
$ INQUIRE NEW_RECORD "New record"
$

If not, get next record
Otherwise, get the new record

6.7.4.2

Writing and Using Command Procedures
6. 7 Reading and Writing Files (File 1/0)

$ OLD_LEN = F$LENGTH (RECORD) ! Compare the old and new records
$ IF OLD_LEN .GE. F$LENGTH(NEW_RECORD) THEN GOTO NO_ERROR
$! New record longer than old record
$ WRITE SYS$0UTPUT "ERROR -- New record is too long"
$ GOTO PROMPT
$!
$NO_ERROR:
$ IF OLD_LEN .EQ. F$LENGTH(NEW_RECORD) THEN GOTO WRITE_RECORD
$! New record shorter than old record
$PAD= F$EXTRACT(O,OLD_LEN-F$LENGTH(NEW_RECORD),SPACES)
$ NEW_RECORD = NEW_RECORD + PAD
$!
$WRITE_RECORD: ! Write the new record
$ WRITE/UPDATE FILE NEW_RECORD
$ GOTO BEGIN_LOOP
$!
$END_LOOP:
$ CLOSE FILE
$ EXIT

Major Modifications
To make extensive changes to a file, open that file for read access and open
a new file for write access. Since the /WRITE qualifier opens a new file for
write access, the new file can have the same name as the original file. The
new file has a version number one greater than the version number of the old
file.

Note: You must open the existing file for read access before you open the
new version for write access to ensure that the correct file is opened for
reading.

To make major modifications to a file, take the following steps:

1 Open the file for read access. This is the file you are modifying.

2 Open a new file for write access.

3 Use the READ command to read each record from the ·file you are
modifying.

As you read each record from the original file, decide how the record is to
be treated. In the following examples, the symbol RECORD contains the
record read from the original file:

• No change-Write the same symbol to the new file.

$! No change
$ WRITE NEW_FILE RECORD

• Change-Use the INQUIRE command to read a different record into
the symbol, then write the modified symbol to the new file.

$! Change
$ INQUIRE NEW_RECORD "New record"
$ WRITE NEW_FILE NEW_RECORD

• Delete-Do not write the symbol to the new file.

• Insert-Use a loop to read records into the symbol and to write the
symbol to the new file, as shown in the following example:

6-17

6.7.5

Writing and Using Command Procedures
6. 7 Reading and Writing Files (File 1/0)

6.7.4.3

$! Insertion
$LOOP:
$!Get new records to insert
$ INQUIRE NEW_RECORD "New record"
$ IF RECORD .EQS. "" THEN GOTO END_LOOP
$ WRITE NEW_FILE NEW_RECORD
$ GOTO LOOP
$END_LOOP:

4 Continue reading and processing records until you have finished.

5 Use the CLOSE command to close both the input and the output files.

Appending Records to a File
The OPEN/ APPEND command allows you to append records to the end of
an existing file. Use the following steps to append records to a file:

1 Use the OPEN command with the /APPEND qualifier to position the
record pointer at the end of the file. The/ APPEND qualifier does not
create a new version of the file.

2 Use the WRITE command to write new data records. Continue adding
records until you are through.

3 Use the CLOSE command to close the file.

Handling Input/Output (1/0) Errors
Use the /ERROR qualifier with the OPEN, READ, or WRITE command to
suppress error messages and to pass control to a specified label if an error
occurs during an input or output operation. This qualifier overrides all other
error-control mechanisms (except the /END_OF_FILE qualifier on the READ
command). In the following command procedure, if an error occurs during
execution of the OPEN command, the message Error opening STAT.DAT is
printed and the procedure exits:

$ OPEN/READ/ERROR=READ_ERR OUT_F STAT.DAT

$ EXIT
$READ_ERR:
$ WRITE SYS$0UTPUT "Error opening STAT.DAT"
$ EXIT

6.8 Complex Command Procedures

6-18

Complex command procedures perform programlike functions. You can use
variable input in a complex command procedure, execute sections of the
procedure only if certain conditions are true, execute subroutines, or invoke
other command procedures. The following sections describe how to design,
code, and test complex command procedures.

6.8.1

Writing and Using Command Procedures
6.8 Complex Command Procedures

Designing Complex Command Procedures
Before writing a complex command procedure, perform the tasks interactively
that the command procedure will execute. As you type the necessary
commands, note the following:

• Variables-Data that changes each time you perform the task.

• Conditionals-Any command or set of commands that may vary each
time you perform the task. Note the commands and the conditions under
which you would execute them.

• Iteration-Any command or set of commands that you repeat. Note the
commands and the factor that controls how often you repeat them.

The following example shows the commands needed to clean up a directory:

REPEAT
UNTIL
DONE

COMMAND VARIABLE

DIRECTORY
or

TYPE filename
or

PURGE filename
or

DELETE filename
or

COPY filename newname

CONDITION

- TO DISPLAY NEW FILE NAMES

- TO DISPLAY A FILE

- TO PURGE A FILE

- TO DELETE A FILE

- TO COPY A FILE

ZK-1750-84

The file names change each time you clean your directory; therefore, they are
variables. Any or all of the commands may be executed depending on the
operation you need to perform; therefore, each command is conditional. The
entire process is repeated until the directory is clean; therefore, it is iterative.

You must decide how to load the variables, test the conditionals, and exit
from the loop. For the directory cleaning procedure, the following design
decisions were made:

• Load variables-The command procedure gets the file names from the
terminal.

• Test conditionals-The command procedure gets a command name
from the terminal and executes the appropriate statements based on the
command name. The first two characters of each command must be read
to differentiate between DELETE and DIRECTORY.

• Exit from loop-You must enter the EXIT command to exit from the loop.

6-19

6.8.2

Writing and Using Command Procedures
6.8 Complex Command Procedures

Complete the design as follows:

l
[GET command l

If command begins with DI
DIRECTORY

If command begins with TY
GET filename
TYPE filename

If command begins with PU
GET filename
PURGE filename

If command begins with DE
GET filename
DELETE/CONFIRM filename

If command begins with CO
GET filename
GET newname
COPY filename newname

If command begins with EX
EXIT

l
ZK-1751-84

Coding Complex Command Procedures

6-20

To make the command procedure easier to understand and to maintain, try
to write the statements so that the procedure executes in a linear fashion,
from the first command to the last command. The following sections describe
how to execute conditional code and loops. (See Section 5.6.2 for information
about the logical operators used in condition expressions.)

6.8.2.1

Writing and Using Command Procedures
6.8 Complex Command Procedures

The IF Command
The IF command tests the value of an expression and causes different
commands to execute when the expression is true and when it is false.
DCL provides two distinct formats for the IF command. The first format
executes a single command when the condition specified to the IF command
is true as follows:

$ IF condition THEN command

DCL also provides a block-structured IF format. The block-structured IF
command executes more than one command if the condition is true and
accepts an optional ELSE statement that executes one or more commands
if the condition is false. To execute more than one command upon a true
condition, specify the THEN statement as a verb (a DCL command preceded
by a dollar sign) and terminate the resulting block-structured statement with
an ENDIF statement as follows:

$ IF condition
$ THEN command
$ command

$ ENDIF

To execute one or more commands upon a false condition, specify the ELSE
statement as a verb and terminate the resulting block-structured statement
with an ENDIF statement as follows:

$ IF condition
$ THEN command
$ command

$ ELSE command
$ command

$ ENDIF

Command blocks can be executed in several ways, depending on whether
you leave the commands in the same command procedure or put them in
another command procedure and execute them there:

• If you leave the commands in the command procedure, place them after
the THEN statement.

$ IF condition
$ THEN command

command

$ ENDIF

6-21

Writing and Using Command Procedures
6.8 Complex Command Procedures

6-22

• If you place the commands in a separate procedure, make the call to that
command procedure as part of the THEN statement.

$ IF condition
$ THEN ©command_procedure
$ ELSE command
$ command
$ ENDIF

You can continue to specify the nonblock structured IF format and direct flow
to a labeled region when the condition specified is met as follows:

$ IF not condition THEN GOTO END_LABEL

$END_LABEL:

In the following example, a specified file is purged if COMMAND equals
"PU". If COMMAND does not equal "PU", a specified file is printed.

$! Purge a file. If no file exists, print the requested file.
$ IF COMMAND . EQS. "PU"
$ THEN
$ INQUIRE FILESPEC "File to purge"
$ PURGE 'FILESPEC'
$ ELSE
$ INQUIRE FILESPEC "File to print"
$ PRINT 'FILESPEC'
$ ENDIF
$! Type a file. If no file exists, exit"
$ IF COMMAND . EQS. "TY"

$ EXIT

In the following example, the command procedure SCREEN_SETUP.COM is
executed if F$MODE() equals "INTERACTIVE". If F$MODE() does not equal
"INTERACTIVE", the procedure exits. (The command procedure
SCREEN _SETUP.COM would be in a separate file; the commands it contains
are indented here for clarity.)

$ IF F$MODE () . EQS . II INTERACTIVE II
$ THEN
$ ©SCREEN_SETUP

$! SCREEN_SETUP.COM
$! Set terminal characteristics
$ SET TERMINAL/DEVICE=VT200
$ SET TERMINAL/WIDTH=132

$! Invoke Editor
$ EVE :== EDIT/TPU
$ ELSE
$ EXIT
$ ENDIF

6.8.2.2

Writing and Using Command Procedures
6.8 Complex Command Procedures

Case Statements
A case statement is a special form of conditional code that executes one out of
a set of command blocks, depending on the value of a variable or expression.
Typically, the valid values for the case statement are labels at the beginning
of each command block. The case statement passes control to the appropriate
block of code by using the specified value as the target label in a GOTO
statement.

To write a case statement:

1 List the labels-Equate a symbol to a string that contains a list of the
labels delimited by slashes (or any character you choose to act as a
delimiter). This symbol definition should precede the command blocks.

$ COMMAND_LIST = "/PURGE/DELETE/EXIT/"

2 Write the "case statement" -First, use the INQUIRE command to get the
value of the case variable. Next, use the IF command with F$LOCATE
and F$LENGTH to determine whether the value of the case variable is
valid. If the case variable is valid, execute the case statement (a GOTO
command) to pass control to the appropriate block of code. Otherwise,
display a message and exit or request a different case value.

In the following example, the label is equated to the full command
name. Therefore, F$LOCATE includes the delimiters in its search for the
command name to ensure that the command is not abbreviated.

$GET_COMMAND:
$ INQUIRE COMMAND -

"Command (EXIT,PURGE,DELETE)"
$IF F$LOCATE ("/"+COMMAND+"/",COMMAND_LIST) .EQ. -

F$LENGTH (COMMAND_LIST) THEN GOTO ERROR_1
$ GOTO 'COMMAND'

$ERROR_1:
$WRITE SYS$0UTPUT "No such command as ''COMMAND'"
$ GOTO GET_COMMAND

3 Write the command blocks-Each block of commands may contain one
or more commands. Begin each command block with a unique label.
End each command block by passing control to a label outside the list of
command blocks.

$GET_COMMAND:

$PURGE:
$ INQUIRE FILE
$ PURGE 'FILE'
$ GOTO GET_COMMAND
$!
$DELETE:
$ INQUIRE FILE
$ DELETE 'FILE'
$ GOTO GET_COMMAND
$!
$EXIT:

6-23

Writing and Using Command Procedures
6.8 Complex Command Procedures

6.8.2.3

6-24

Loops
A loop is a group of commands that executes repeatedly until a condition is
met. The following arrangement is recommended for statements that form a
loop:

1 Begin the loop.

2 Change the termination variable.

3 Test the termination variable. If the condition is met, go to the end of the
loop.

4 Perform the commands in the body of the loop.

5 Return to the beginning of the loop.

6 End the loop.

You can also write loops that test the termination variable at the end of the
loop rather than at the beginning as follows:

1 Begin the loop.

2 Perform the commands in the body of the loop.

3 Change the termination variable.

4 Test the termination variable. If the condition is not met, go to the
beginning of the loop.

5 End the loop.

Note that when you test the termination variable at the end of the loop, the
commands in the body of the loop execute at least once, regardless of the
value in the termination variable.

Both of the following examples execute a loop that terminates when
COMMAND equals "EX" (EXIT). (F$EXTRACT truncates COMMAND to
its first two characters.) In the first example, COMMAND, the termination
variable, is tested at the beginning of the loop; in the second, it is tested at
the end of the loop.

$! EXAMPLE 1
$!
$GET_COMMAND:
$ INQUIRE COMMAND-

" Command (EXIT,DIRECTORY,TYPE,PURGE,DELETE,COPY)"
$ COMMAND = F$EXTRACT(0,2,COMMAND)
$ IF COMMAND .EQS. "EX" THEN GOTO END_LOOP

$ GOTO GET_COMMAND
$END_LOOP:

6.8.2.4

Writing and Using Command Procedures
6.8 Complex Command Procedures

$! EXAMPLE 2
$!
$GET_COMMAND:
$ INQUIRE COMMAND-

" Command (EXIT,DIRECTORY,TYPE,PURGE,DELETE,COPY)"
$ COMMAND = F$EXTRACT(0,2,COMMAND)

$ IF COMMAND .NES. "EX" THEN GOTO GET_COMMAND
$! End of loop

To perform a loop a specific number of times, use a counter as the termination
variable. In the following example, 10 file names are input by the user and
placed into the local symbols FILl, FIL2, ... , FILlO:

$ NUM = 1
$LOOP:
$ INQUIRE FIL' NUM' "File"
$ NUM = NUM + 1
$ IF NUM .LT. 11 THEN GOTO LOOP
$END_LOOP:

Set counter
Begin loop
Get file name
Update counter
Test for termination
End loop

To perform a loop for a known sequence of values, use F$ELEMENT. In the
following example, the files CHAPl, CHAP2, CHAP3, CHAPA, CHAPB, and
CHAPC are processed in order.

$ FILE_LIST = "1,2,3,A,B,C"
$ INDEX = 0
$PROCESS:
$ NUM = F$ELEMENT(INDEX, 11

,
11 ,FILE_LIST)

$IF NUM .EQS. "." THEN GOTO END_LOOP
$ FILE = "CHAP' 'NUM'"
$! process file named by FILE

$ INDEX = INDEX + 1
$ GOTO PROCESS
$END_LOOP:
$ EXIT

Subroutines
Use the GOSUB command or the CALL command to transfer control to a
subroutine within a command procedure. The GOSUB command transfers
control to a labeled subroutine in a command procedure without creating
a new procedure level. Since the GOSUB command does not create a new
command level, it is referred to as a local subroutine call. The RETURN
command terminates the GOSUB subroutine procedure, returning control to
the command foll~wing the calling GOSUB statement.

6-25

Writing and Using Command Procedures
6.8 Complex Command Procedures

6-26

The following command procedure shows how to use the GOSUB command
to transfer control to labeled subroutines:

$!
$! GOSUB.COM
$!
$ SHOW TIME
$ GOSUB TEST1
$ WRITE SYS$0UTPUT "success completion"
$EXIT
$!
$! TEST1 GOSUB definition
$!
$ TEST1:
$ WRITE SYS$0UTPUT "This is GOSUB level 1."
$ GOSUB TEST2
$ RETURN
$!
$! TEST2 GOSUB definition
$!
$ TEST2:
$ WRITE SYS$0UTPUT "This is GOSUB level 2."
$ RETURN

The CALL command transfers control to a labeled subroutine in a command
procedure and creates a new command level. The CALL command allows
you to keep more than one related command procedure in a single file,
making the procedures easier to manage. You can pass up to eight parameters
to the subroutine; you can create up to 32 command levels with the CALL
command.

By default, the CALL command sends output to SYS$0UTPUT. The optional
/OUTPUT qualifier allows you to direct output from the subroutine to a file.
Do not use wildcard characters in the output file specification. The default file
type for the output file is LIS.

Unless they are masked using the SET SYMBOL command, local symbols
defined in an outer level are available to any inner procedure or subroutine
levels and global symbols are available at any command level. Labels are
valid only for the level in which they are defined.

The SUBROUTINE and ENDSUBROUTINE commands define the beginning
and end of a subroutine invoked with the CALL command. The label
defining the entry point to the subroutine immediately precedes the
SUBROUTINE command. The ENDSUBROUTINE command functions as
an EXIT command if an EXIT command is not specified in the procedure. The
ENDSUBROUTINE command terminates the subroutine and transfers control
to the command line immediately following the CALL command.

Command lines in a CALL subroutine execute only when the subroutine is
called with the CALL command. During the line-by-line execution of the
command procedure, the command language interpreter skips all commands
between the SUBROUTINE and the ENDSUBROUTINE commands.

The following procedure shows how to use CALL to transfer control to
a labeled subroutine. The example also shows that you can call another
command procedure from within a subroutine. (You can also call another
subroutine from a subroutine.) The CALL command invokes the subroutine
SUBl, directing output to the file NAMES.LOG and allowing other users
write access to the file.

6.8.3

Writing and Using Command Procedures
6.8 Complex Command Procedures

$!
$! CALL.COM
$!
$! Define subroutine SUB1
$!
$ SUB1: SUBROUTINE

$ ©FILE !Invoke another command procedure

$ EXIT
$ ENDSUBROUTINE !End of SUB1 definition
$!
$! Start of main routine. At this point, SUB1 has
$! been defined, but none of the commands in the
$! subroutine have executed.
$!
$ START:
$ CALL/OUTPUT=NAMES.LOG SUB1 "THIS IS Pi"

$ EXIT !Exit this command procedure file

Testing and Debugging
For lengthy or complex command procedures, write the logic for the main
procedure, but use stubs for the nested procedures and subroutine-type pieces
of code. A stub is a command that writes a message stating the function it is
replacing. For example, the following stub replaces the purge routine:

$! Purge a file
$ IF COMMAND .NES. "PU" THEN GOTO END_PURGE
$ WRITE SYS$0UTPUT "Purge routine" ! stub
$END_PURGE:

If you have a number of places that need stubs, you can use one nested
command procedure to insert the stub logic as follows. (The command
procedure STUB.COM would be in a separate file; it is indented here for
clarity.)

6-27

Writing and Using Command Procedures
6.8 Complex Command Procedures

6-28

$! Purge a file
$ IF COMMAND .NES. "PU" THEN GOTO END_PURGE
$ ©STUB "Purge"
$! STUB.COM
$! Procedure STUB
$ WRITE SYS$0UTPUT "' 'P1' routine"
$END_PURGE:

Once you have written the code using stubs, you can test the overall logic of
the command procedure as follows. Test all possible paths of execution.

$! CLEAN.COM
$!
$GET_COMMAND:
$! Read a command from the terminal
$ INQUIRE COMMAND-

" Command (EXIT, DIRECTORY, TYPE, PURGE, DELETE, COPY)"
$ COMMAND = F$EXTRACT(0,2,COMMAND)
$
$ IF COMMAND .EQS. "EX" THEN GOTO END_COMMAND
$!
$! Purge a file
$ IF COMMAND .NES. "PU" THEN GOTO END_PURGE
$WRITE SYS$0UTPUT "Purge routine."
$END_PURGE:
$!
$! Delete a file
$ IF COMMAND .NES. "DE" THEN GOTO END_COMMAND
$WRITE SYS$0UTPUT "Delete routine."
$ END_DELETE:

$ GOTO GET_COMMAND
$END_COMMAND:

Once the overall logic of the procedure works, you can begin filling in the
stubs. Fill in the first stub, test it, and debug it if necessary. When that stub
works, move on to the next one.

The following commands are useful for debugging command procedures:

• SET VERIFY-SET VERIFY prints each line before it is executed. When
an error occurs with verification set, you see the error and the line that
generated the error. In the following example, seeing the command line
that generated the error explains the error message.

Writing and Using Command Procedures
6.8 Complex Command Procedures

$ SET VERIFY
$ ©CDIR
$! Read a command from the terminal
$ INQUIRE COMMAND-

" Command (EXIT, DIRECTORY, TYPE, PURGE, DELETE, COPY)"
Command (EXIT, DIRECTORY, TYPE, PURGE, DELETE, COPY): DELETE
$ COMMAND = F$EXTRACT(0,2,COMMAND)
$GET_COMMAND:
$ IF COMMAND .EQ. "EX" THEN GOTO END_COMMAND
%DCL-W-IVCHAR, non-numeric character in value string
\E\ EXIT

$ IF COMMAND .NES. "DI" THEN GOTO END_DIR

The logical operator .EQ. is used to compare numbers, not strings (see
Section 5.6.2 for information about logical operators). To correct the error,
change .EQ. to .EQS.. Note that you can use keywords with SET VERIFY
to indicate that only command lines or data lines are to be verified.

• SHOW SYMBOL-Use the SHOW SYMBOL command to print the values
of the symbols involved in an error. In the following procedure, the IF
statements are not passing control to the expected procedures. Putting the
command SHOW SYMBOL COMMAND before the IF statements allows
you to check the value of COMMAND.

$ SET VERIFY
$ ©CDIR
$GET_COMMAND:
$! Read a command from the terminal
$ INQUIRE COMMAND-

" Command (EXIT, DIRECTORY, TYPE, PURGE, DELETE, COPY)"
Command (EXIT, DIRECTORY, TYPE, PURGE, DELETE, COPY): DELETE
$ COMMAND = F$EXTRACT(1,2,COMMAND)
$ SHOW SYMBOL COMMAND

COMMAND = "EL"
$GET_COMMAND:
$ IF COMMAND .EQS. "EX" THEN GOTO END_COMMAND

The F$EXTRACT lexical function is extracting two characters beginning
at character 1 (the second character) rather than at character 0 (the first
character). To correct the error, change F$EXTRACT(l,2,COMMAND) to
F$EXTRACT(0,2,COMMAND). Note that INQUIRE automatically converts
input to uppercase; therefore, the quoted string in the IF statement must be
written in uppercase for DCL to evaluate the strings as equal.

6-29

Writing and Using Command Procedures
6.9 Handling Errors and CTRL/Y Interrupts

6.9 Handling Errors and CTRL/Y Interrupts

6.9.1

The following table describes the default action taken when an error occurs
or when you press CTRL/Y. These default actions can be overridden with the
ON, SET [NO]ON, and SET [NO]CONTROL=Y commands.

Interrupt

Error or severe error

CTRL/Y at DCL
command level or
command level 1

CTRL/Y at command
level lower than level 1

Default Action

Procedure exits to the next command level.

Interrupts procedure: procedure can continue if no
other image forces it to exit.

Procedure exits to the next higher command level.

The ON Command

6-30

The ON command specifies an action to be performed if an error of a certain
severity or greater severity occurs. (See Section 5.2 for discussion of error
conditions and severity levels.) When such an error occurs, the system takes
the following actions:

1 The error message is displayed.

2 The action specified by the ON command is performed.

3 The default error action (exit to the next higher command level) is reset.

When an error of less than the specified severity occurs, the error message
is displayed, and the command procedure continues executing. Assume a
command procedure executes the following command:

$ ON ERROR THEN GOTO ERR1

The command procedure continues to execute unless an error or severe
error occurs. When such an error occurs, the error message is displayed; the
default error action (exit to the next higher command level) is reset; and the
command procedure continues execution at ERRl. If a second error occurs
before another ON or SET NOON command is executed, the procedure exits
to the next higher level.

The action specified by the ON command applies only within the command
level in which the command is executed. Therefore, if you execute an ON
command in a procedure that calls another procedure, the ON command
action does not apply to the nested command procedure.

The execution of an ON statement performs an implicit SET ON function,
thus nullifying any SET NOON condition that may be in effect.

Note: Only one ON statement of each type can be in effect at any one time. For
example, if the command procedure includes more than one ON ERROR
statement, the ON ERROR statement executed most recently is in effect.

6.9.2

6.9.3

Writing and Using Command Procedures
6.9 Handling Errors and CTRL/V Interrupts

The SET [NO]ON Command
The SET ON and SET NOON commands enable and disable error checking
for the current command level. The SET NOON command overrides the
ON command. If an error (regardless of severity) occurs after a SET NOON
command is executed, the system takes the following actions:

1 Displays the error message

2 Continues executing the procedure

SET NOON remains in effect until either an ON or SET ON command is
executed. The SET ON command reenables error checking for the current
command level. The action specified by the last ON command, if one exists,
is reestablished. Otherwise, the default error action is reenabled.

In the following command procedure, if an error or severe error occurs while
copying the file, the procedure continues to execute without going to
GET_COMMAND as specified by the ON command.

$ ON ERROR THEN GOTO GET_COMMAND
$GET_COMMAND:

$! Type a file
$ IF COMMAND .NES. "CO" THEN GOTO END_COPY
$ INQUIRE FILESPEC "File to move"
$ INQUIRE COPYSPEC "New file specification"
$ SET NOON
$ COPY 'FILESPEC' 'COPYSPEC'
$ SET ON
$END_COPY:

CTRL/Y Interrupts
The ON CONTROL_Y command specifies an action to be performed when
CTRL/Y is pressed at the current command level. (By default, pressing
CTRL/Y causes the system to prompt for command input at the CTRL/Y
command level.) In the following command procedure, pressing CTRL/Y
while a file is being typed passes control to the label END-TYPE.

$! Type a file
$ IF COMMAND .NES. "TY" THEN GOTO END_TYPE
$ ON CONTROL_Y THEN GOTO END_TYPE
$ TYPE 'FILESPEC'
$END_ TYPE:
$!
$!Reset default
$ SET NOCONTROL=Y
$ SET CONTROL=Y

6-31

6.10

Writing and Using Command Procedures
6.9 Handling Errors and CTRL/Y Interrupts

An ON CONTROL_Y command remains in effect until another ON
CONTROL_ Y or a SET NOCONTROL=Y command executes or the
command procedure exits.

See Section 6.11 for another example of using the ON CONTROL_ Y
command.

To exit from a nonterminating loop when CTRL/Y is disabled, you must
delete your process from another terminal using the DCL command STOP.
If you disable the default CTRL/Y action, reset it as soon as possible. To
reset the default CTRL/Y action, execute the SET NOCONTROL=Y command
followed by the SET CONTROL=Y command, as shown in the previous
example.

Restarting Batch Jobs

6-32

Chapter 3 describes how to specify that your batch job be reexecuted if the
system crashes before the job is finished. By default, a batch job is reexecuted
beginning with the first line. However, you can use the following symbols in
your command procedures to specify a different restarting point:

• $RESTART-A global symbol whose value is true if the batch job has
been started at least once before this execution. Do not specify a value
for $RESTART; the system will assign the appropriate value.

• BATCH$RESTART-A global symbol whose value you specify using the
SET RESTART_ VALUE command.

The following steps describe how to use these symbols in a command
procedure:

• Begin each possible starting point of the procedure with a label.

• As the first step in each section, equate the value of BATCH$RESTART to
the label using the SET RESTART_ VALUE command.

• At the beginning of the procedure, test $RESTART. If $RESTART is true,
issue a GOTO statement using BATCH$RESTART as the transfer label.

The following command procedure extracts a number of modules from a
library, concatenates those modules, and then sorts the resulting file. If
aborted, the command procedure reexecutes from the beginning of the file,
the statement labeled CONCATENATE_LIBRARIES or the statement labeled
SORT_FILE, depending on the value of BATCH$RESTART. (If you were
extracting a number of separate modules, you could make each extraction a
separate section.)

$ SORT_MODULES.COM
$!
$! set default to the directory containing
$! the library whose modules are to be sorted
$ SET DEFAULT WORKDISK: [ACCOUNTS.DATA83]
$
$! check for restarting
$ IF $RESTART THEN GOTO BATCH$RESTART
$

6.11

Writing and Using Command Procedures
6.10 Restarting Batch Jobs

$ EXTRACT_LIBRARIES:
$ SET RESTART_VALUE=EXTRACT_LIBRARIES

$ CONCATENATE_LIBRARIES:
$ SET RESTART_VALUE=CONCATENATE_LIBRARIES

$ SORT_FILE:
$ SET RESTART_VALUE=SORT_FILE

$ EXIT

Cleanup Operations
In general, execution of a command procedure should not change the user's
process state. Therefore, a command procedure should include a set of
commands that returns the process to its original state. Common cleanup
operations include the following (see the lexical function descriptions in the
DCL Commands section for lexical function specifications):

• Closing files-If you have opened any files, make sure that they are
closed before the command procedure exits. You can use the lexical
function F$GETJPI to examine the remaining open file quota (FILCNT)
for the process. If FILCNT is the same at the beginning and end of the
command procedure, you know that no files have been left open. In the
following example, a warning message is displayed if a file is left open:

$ FIL_COUNT = F$GETJPI("","FILCNT")

$IF FIL_COUNT .NE. F$GETJPI("","FILCNT") THEN
WRITE SYS$0UTPUT "WARNING -- file left open"

• Deleting temporary or extraneous files-If you have created temporary
files, delete them. In general, if you have updated any files, you should
purge them to delete the previous copies. Take care in deleting files
that you have not created. For example, if you have updated a file that
contains crucial data, you may wish to make the purging operation
optional.

• Resetting default device and directory-If you change the default
device and/or directory, reset the original defaults before the command
procedure exits.

To save the name of the original default directory, use the DEFAULT
keyword of the F$ENVIRONMENT lexical function. At the end of the
command procedure, include a SET DEFAULT command that restores the
saved device and directory.

6-33

Writing and Using Command Procedures
6.11 Cleanup Operations

6-34

The following example saves and restores device and directory defaults:

$ SAV_DEFAULT = F$ENVIRONMENT("DEFAULT")

$ SET DEFAULT 'SAV_DEFAULT'

The following table lists other commonly changed process characteristics as
well as the lexical functions and commands used to save and restore the
original settings:

Characteristic To save ... To restore ...

DCL prompt F$ENVIRONMENT SET PROMPT

Default protection F$ENVIRONMENT SET PROTECTION/DEFAULT

Privileges F$SETPRV F$SETPRV or SET PROCESS
/PRIVILEGES

Control characters F$ENVIRONMENT SET CONTROL

Verification F$VERIFY F$VERIFY

Message format F$ENVIRONMENT SET MESSAGE

Key state F$ENVIRONMENT SET KEY

To ensure that cleanup operations are performed even if the command
procedure is aborted, begin each command level in the command procedure
with the following statement:

$ ON CONTROL_Y THEN GOTO CLEAN_UP

In each command level of the command procedure, place cleanup operations
after the CLEAN_UP label.

7 Maintaining Accounts and System Security

7. 1 User Accounts

7. 2 Protection

By being aware of system security, you can take steps to protect your files
from unauthorized access. This chapter discusses security features of the VMS
operating system and describes how to protect your files and use the system
securely.

User accounts are maintained in a file named SYS$SYSTEM:SYSUAF.DAT,
referred to as the user authorization file, or UAF. A VMS system uses the UAF
to validate login requests and to set up processes for users who successfully
log in. You can examine and modify this file with the Authorize Utility
(AUTHORIZE).

The UAF contains a record for each account. Each record consists of
fields providing information for the following areas: identification, login
characteristics, login restrictions, priority, limits, and privileges. The user
name field is specified as a parameter to Authorize Utility commands; the
other fields are specified as qualifier values of Authorize Utility commands.
See the VMS Authorize Utility Manual for descriptions of the qualifiers and
information about invoking the Authorize Utility.

The VMS operating system provides two related mechanisms to control the
access that users have to system objects as follows:

• UIC-based protection-Each user process in the system is assigned
a user identification code (UIC) in the user authorization file (UAF)
with the Authorize Utility. Each object on the system, such as a file, is
also assigned a UIC (typically the UIC of its creator). Each object also
maintains a protection mask, a structure which defines the type of access
allowed to users, based upon the relationship between the user UIC and
the object UIC.

• ACL-based protection-An access control list (ACL) that specifies the type
of access to be granted or denied to a particular user or group of users
may be associated with a system object. An ACL is an optional form of
protection that is typically created by the object owner using the ACL
editor (invoked with the DCL command EDIT/ ACL) or the SET ACL
command.

The system objects for which ACL-based protection can be specified are:
files, directories, devices, batch and print queues, logical name tables, and
global sections. Users are specified by identifiers in the rights database
that are assigned with the Authorize Utility. (The rights database is
described in Section 7.2.2.2.)

7-1

7.2.1

Maintaining Accounts and System Security
7. 2 Protection

The system determines whether to grant a user access to an object, as follows:

1 ACL-If the user matches an identifier in the object's ACL, the system
grants or denies access based on the ACL. However, even if an entry
in the ACL denies access, the system may still grant access based
on the SYSTEM and OWNER fields of the VIC-based protection (see
Section 7.2.1.2).

2 VIC-If the user does not match an identifier in the object's ACL or
the object has no ACL, the system grants or denies access based on the
relationship between the user's UIC and the object's VIC as specified in
the object's protection mask.

3 Privileges-If the system denies the user access, the user may be granted
access by using one of the following privileges: BYPASS, GRPPRV,
READALL, or SYSPRV.

UIC-based protection is useful for denying or granting access to a specified
group of users or to all users on the system. The optional ACL-based
protection allows further control over the protection of an object. You can
grant or deny access to individual users, and you can further identify users
by certain aspects of their usage (such as whether they are interactive, batch,
local, remote, or dialup users). The combination of VIC and ACL protection
provides a way to specify multiple subsets and overlapping groups of users.

UIC-Based Protection

7.2.1.1

7-2

Typically, you use UIC-based protection if the object is to be accessed by:
(1) only the owner, (2) all users on the system, or (3) a specific group of users.

UIC Format
UICs are a subset of the identifiers that the VMS system uses to identify users
and groups of users (see Section 7.2.2.2 for other identifiers). Each user on
the system is assigned a unique VIC when the account is created. A VIC
consists of two parts, group and member, specified in the following format:

[group, member]

A UIC can be either numeric or alphanumeric.

• Numeric VIC-Consists of a group number in the range 0 through 37776
(octal) and a member number in the range 0 through 177776 (octal).

• Alphanumeric VIC-Consists of a member name (the user name
parameter specified with the Authorize Utility command ADD) and,
optionally, a group name. The UIC group name is taken from the account
name specified with the/ ACCOUNT qualifier. Member and group names
must contain at least one alphabetic character and up to a maximum of 31
alphanumeric characters (including A through Z, 0 through 9, underscore,
and dollar sign characters). An alphanumeric VIC is equated to a numeric
VIC in the rights database by default once the rights database has been
created. You can generally specify a numeric UIC and its equivalent
alphanumeric VIC interchangeably.

7.2.1.2

Maintaining Accounts and System Security
7. 2 Protection

The member component of a UIC must be unique to the system. By default,
the member component of an alphanumeric UIC is equated to both the group
and member components of a numeric UIC in the rights database (so that
specifying just the member part of an alphanumeric UIC is sufficient). The
following examples illustrate several UICs in proper UIC notation:

UIC

[200, 10]

[3777,3777]

[USER, FRED]

[EXEC,JONES]

[JONES]

Meaning

Group 200, member 10

Group 3777, member 3777

Group USER, member FRED

Group EXEC, member JONES

Group EXEC, member JONES

When you log in to a VMS system, the UIC of your process is the UIC
specified in your UAF account. Typically, your process UIC does not
change, although it can be changed with the SET UIC command (which
requires CMKRNL privilege). By default, detached processes (created by
the DCL command SUBMIT or RUN) and subprocesses (created by the
DCL command SP AWN) take the same UICs as their creators. If you have
DETACH privilege, you can create a detached process with a different UIC
(by using the /UIC qualifier of the RUN command).

By default, an object (such as a file) receives the UIC of the process creating
it. You can change the UIC of a file with the /OWNER_UIC qualifier of
the BACKUP, CREATE, SET DIRECTORY, and SET FILE commands. With
SYSPRV privilege, you can specify any UIC; with GRPPRV privilege, you can
specify any member within your current group; otherwise, you can specify
only your own UIC.

You can specify the UIC of a disk volume with the /OWNER_UIC qualifier
of the INITIALIZE and MOUNT commands (except for the system disk,
which retains the UIC specified when it was initialized). You can also
change the UIC of a disk (including the system disk) with the SET VOLUME
command. You must have the VOLPRO privilege to specify a UIC other
than your own. In addition, when you initialize a system disk (/SYSTEM
qualifier), it receives a UIC of [1,1] and a group disk (/GROUP qualifier)
receives a UIC of [n,O], where n is the group number of the owner. You can
specify a UIC for a device such as a terminal (by default, devices are not
owned) with the /OWNER_UIC qualifier of the SET PROTECTION/DEVICE
command.

Ownership and Access Categories
The relationships between the UIC of a process and the UIC of an object fall
into the following four ownership categories:

• System-The UIC of the process is in the range 1 through 10 (octal)
or the process has SYSPRV privilege. (The range of system UICs is
determined by the SYSGEN parameter MAXSYSGROUP, which defaults
to 10 octal.)

• Owner-The UIC of the process and the UIC of the object are identical.

• Group-The group number of the process and the group number of the
object are identical or the process has GRPPRV privilege.

7-3

Maintaining Accounts and System Security
7. 2 Protection

7.2.1.3

7-4

• World-All users on the system.

A process may be able to access an object through more than one of these
ownership categories. For example, a user with a UIC of [CS102,MARTIN]
can attempt access to an object with a UIC of [CS102,PROF] through both the
group and world categories.

A process can access an object in the following ways:

• Read (allocate)-Read a file; read from a disk volume; allocate nonfile
devices.

• Write-Write a file; write to a disk volume.

• Execute (create)-Execute an image file; look up entries in a directory if
you explicitly specify the file name (without using wildcard characters);
create files on a disk volume.

• Delete-Delete files.

Protection Masks
A protection mask is a structure created by the system for each system object
defining the type of UIC access allowed to the object. A protection mask
consists of four fields, each with four indicators. Each field applies to one
category of ownership. Each indicator within a field applies to one category
of access. The fields and indicators are as follows:

Ownership Fields Access Indicators

SYSTEM READ WRITE EXECUTE DELETE

OWNER READ WRITE EXECUTE DELETE

GROUP READ WRITE EXECUTE DELETE

WORLD READ WRITE EXECUTE DELETE

Protection for an object must be specified in the following format:

(ownership[:access], ...)

Specify ownership as one of the following (each may be abbreviated to one
character): SYSTEM, OWNER, GROUP, or WORLD. Specify access as one or
more of the following indicators: R (read), W (write), E (execute), D (delete).
Omission of the colon and access indicators disallows access for that category
of ownership. The following protection specification allows system users full
access to an object, the owner full access except delete, and group and world
users no access:

(S:RWED,O:RWE,G,W)

Omission of an ownership category generally results in no access being
granted to that category. However, the SET PROTECTION command retains
the existing protection of the object for omitted fields of the ownership
category.

7.2.2

7.2.1.4

Maintaining Accounts and System Security
7. 2 Protection

Securing User Data and Devices
The suggestions for establishing UIC-based protection of data and devices
belonging to individual and application accounts are as follows:

• Default protection-Make sure your default protection is adequate. In
general, you do not want to grant write or delete access to world users.
You may or may not want to grant write access to group users. You may
or may not want to grant read access to world users.

By default, the system assigns each file the following protection mask:

(S:RWED,O:RWED,G:RE,W)

You can redefine this default for all files you create using the SET
PROTECTION/DEFAULT command, or you can modify the protection
on individual files using the /PROTECTION qualifier to the SET FILE
command.

• Sensitive files-Protect sensitive files by specifying extra protection, for
example, with the SET PROTECTION command. You can also protect
sensitive files by maintaining them in a subdirectory on which extra
protection is set. However, to protect sensitive files completely, directory
protection alone is not adequate. You must also protect each individual
file contained within the directory. You can add a default protection ACE
to the subdirectory file that defines the UIC protection mask for newly
created files in the directories (see Section 7.2.2.5).

• Individual access-Use access control lists (ACLs) to grant or deny
individual users access to a file (see Section 7.2.2).

• Copied files-In general, do not copy a file into someone else's directory
(for example, if you have write access to a group member's directory), as
it will have your UIC instead of the UIC of the directory's owner. Use
the MAIL command to send the file, or have the owner of the directory
copy the file.

• Private volumes-A private volume is one that is mounted on a device
allocated to your process. No other users on the system can access
the volume. If you mount a private volume, use the DEALLOCATE
command to deallocate the device when you are done.

ACL-Based Protection
Typically, you use access control lists (ACLs) on system objects to grant
or deny access to individual users, groups of users, and to subsets of user
groups. ACLs contain entries (ACEs) that specify the access to be granted or
denied a user or group of users. The user or group of users is designated by
identifiers, as described in Section 7.2.2.2.

7-5

Maintaining Accounts and System Security
7 .2 Protection

7.2.2.1

7.2.2.2

7-6

Object Types
You can establish ACLs for various system objects: files, directory files,
devices, global sections, queues, and logical name tables. In general, you
need· not be concerned about the object type when establishing or changing
an ACL; however, ACLs set up on devices, logical name tables, and global
sections (except those backed by files) are not saved and must be reestablished
every time the system is booted.

ACLs on system objects are set up and modified with the ACL editor (see
Section 7.3.2) or with the DCL command SET ACL in the following format:

SET ACL/OBJECT_ TYPE=object-type object-name ...

For example, the following command adds an ACL to the file
PERSONNEL.DAT containing a single ACE that denies all network access
to the file:

$ SET ACL/OBJECT_TYPE=FILE PERSONNEL.DAT -
_$ /ACL=(IDENTIFIER=NETWORK,ACCESS=NONE)

Identifiers
An identifier is a value that represents an individual user, or a group of users,
for an aspect of the user's environment. Following are the three types of
identifiers:

• UIC identifiers

• General identifiers

• System-defined identifiers

A UIC identifier is created each time a new user account is added with the
Authorize Utility. The UIC identifier matches the UIC specified for the user.
A second UIC identifier is created matching the name of the UIC group
when a UIC group is defined for the first time. UICs can be in both numeric
and alphanumeric form (see Section 7.2.1.1) and are useful in identifying
individual users in ACLs. UIC identifiers must be enclosed in brackets
and can have wiidcard characters in either the group or member fields (for
example, [EXEC,*]).

Identifiers include other general identifiers that you explicitly associate with
users in the rights database. These general identifiers are useful in identifying
multiple groups of users outside the bounds of UIC groups. For example, you
could create the identifier SECRET and assign it in the rights database to a
selected group of users, some of whom could be in different UIC groups.

A third type of identifier includes the following system-defined identifiers,
which you can use to identify users by their mode of using the system:

7.2.2.3

Maintaining Accounts and System Security
7. 2 Protection

System-Defined Identifiers

BATCH

DIALUP

INTERACTIVE

LOCAL

NETWORK

REMOTE

Type of User

Batch user

User logged in on a dialup terminal

Interactive user

User logged in on local terminal

Network process

User logged in over the network

Generally, you should treat the preceding system-defined identifiers as being
mutually exclusive. However, you can combine them with UIC identifiers
or general identifiers by connecting them with plus signs (for example,
[FRED]+BATCH). Access is granted only if both identifiers are true. (In the
example [FRED]+BATCH, the user identified as [FRED] must be running a .
batch job for the system to grant the specified access.)

Following are examples of user-defined identifiers that are valid for ACL
based protection:

• PAYROLL-Specifies all users holding the identifier PAYROLL.

• [USER,JONES]-Specifies the user whose alphanumeric UIC is group
USER and member JONES.

• [200,10]-Specifies the user whose numeric UIC is group 200, member
10.

• [FRED]+BATCH-Specifies the batch user whose alphanumeric UIC is
FRED.

• DIALUP-Specifies all users logged in on a dialup terminal.

Rights List

The system determines protection by checking identifiers in the object's ACL
against the list of identifiers held by the accessor to find a matching entry.
The list of identifiers held by the accessor is called a rights list.

The file containing all the identifiers defined in the system is called the
rights database. (Identifiers are defined and granted to specific users with
the AUTHORIZE commands ADD/IDENTIFIER and GRANT/IDENTIFIER.)
The rights list, created for each process at login, is the portion of the rights
database containing all the identifi.ers and attributes held by the user.

Access Control List Entries (ACE)
An entry in an access control list specifies the access to a system object that
is to be granted or denied a user. This access is specified by the identifier.
Different kinds of access are: NONE, READ, WRITE, EXECUTE, DELETE,
and/ or CONTROL.

Following are the three types of ACEs:

• Identifier ACE

• Default_protection ACE

• Alarm_journal ACE

7-7

Maintaining Accounts and System Security
7. 2 Protection

7-8

7.2.2.4 IDENTIFIER ACEs
An identifier ACE controls the type of access allowed to a particular user or
group of users. Identifier ACEs have the following format:

(IDENTIFIER=identifier[,OPTIONS=options+ ...] ,ACCESS=access+ ...)

The following are examples of ACEs:

(IDENTIFIER=[200,201] ,ACCESS=READ+WRITE+EXECUTE)

Grants the user identified by UIC identifier [200,201] read, write, and execute
access to the system object.

(IDENTIFIER=[FRED]+BATCH,ACCESS=WRITE+EXECUTE)

Grants batch user with the alphanumeric UIC [FRED] write and execute access
to the system object.

(IDENTIFIER=PAYROLL,ACCESS=READ)

Grants users who hold the identifier PAYROLL read access to the system
object.

(IDENTIFIER=DIALUP,ACCESS=NONE)

Denies holders of the system-defined identifier DIALUP any access to the
system object.

The preceding ACEs could be specified in a single ACL for a system object as
follows:

(IDENTIFIER=[200,201] ,ACCESS=READ+WRITE+EXECUTE)
(IDENTIFIER=[FRED]+BATCH,ACCESS=WRITE+EXECUTE)
(IDENTIFIER=PAYROLL,ACCESS=READ)
(IDENTIFIER=DIALUP,ACCESS=NONE)

To specify one or more default ACEs for inclusion in the ACLs of files
subsequently created in a directory, use the OPTIONS=DEFAULT option

·of an identifier ACE. The following ACE, when placed in the ACL of the
directory file, grants all users holding the SECRET identifier read, write, and
execute access to new files in the directory:

(IDENTIFIER=SECRET,OPTIONS=DEFAULT,ACCESS=READ+WRITE+EXECUTE)

Note: Default protection is associated only with newly created files, not existing
ones. If you add a default protection ACE to a directory, you must also
change the protection on files already in the directory.

Because the system determines access at the first matching entry, the order of
the entries is critical. For example, if the last entry in the previous example
(IDENTIFIER=DIALUP ,ACCESS=NONE)-were placed at the top of the list,
all dialup users (including those specified in the remaining entries) would be
denied access to the associated file. Placing it last in the access control list
allows users holding identifiers [200,201], [FRED]+BATCH, and [PAYROLL]
the specified access, even when they are dialup users.

7.2.3

7.2.2.5

7.2.2.6

File Protection

Maintaining Accounts and System Security
7.2 Protection

DEFAULT_PROTECTION ACEs
To specify default protection for new files in a particular directory, place
a default-protection ACE in the ACL of the directory file. (The directory
file is the file with the directory name as file name and DIR as file type
in the parent directory). The default_protection ACE affects files that are
subsequently created in the directory and in any subdirectories under that
directory unless protection is specified for one of those files individually.
DefaulLprotection ACEs apply UIC-based protection. Specify a
default-protection ACE in the following format, where protection-mask is the
same mask used in UIC protection (see Section 7.2.1.3):

(DEFAULT_PROTECTION[,options] ,protection-mask)

The following default-protection ACE specifies that by default the system
and owner have read, write, execute, and delete access to any files
subsequently created for the directory and that group and world users have
no access.

(DEFAULT_PROTECTION,S:RWED,O:RWED,G,W)

ALARM_JQURNAL ACEs
The alarm_journal ACE allows you to specify that an alarm message be
sent to the security operator's terminal if a certain type of access takes place.
Alarms are supported only for files and global sections. The alarm_journal
ACE functions only when alarms to the security operator's terminal have
been enabled through the DCL command SET AUDIT, security messages to
the operator's terminal have been enabled with the DCL command
REPLY /ENABLE=SECURITY, and the OPCOM process is executing.

Following is the format of an alarm_journal ACE:

(ALARM_JOURNAL=SECURITY[,options+ ...] [,access+ ...])

The following alarm_journal ACE specifies that an alarm will be sent to the
security operator's terminal if an accessor attempts to read the object, and that
this ACE will be preserved even when an attempt is made to delete the entire
ACL:

(ALARM_JOURNAL=SECURITY,OPTIONS=PROTECTED,ACCESS=READ+SUCCESS+FAILURE)

For an alarm to have any effect, you must include either SUCCESS or
FAILURE or both in the ACCESS field.

File protection is usually transparent. To set protection or modify the ACL of
a file, you must own the file, have control access to the file, or have GRPPRV,
SYSPRV, BYPASS, or READALL privilege.

Note: To completely protect a file, you must apply the same or greater
protection to the directory in which the file resides. See Section 7.2.3.3 for
information on directory protection.

7-9

Maintaining Accounts and System Security
7. 2 Protection

7.2.3.1

7.2.3.2

7-10

Default File Protection
A new file receives default VIC-based protection and the default ACEs (if
any) of its parent directory. A renamed file's protection is unchanged. A
new version of an existing file receives the VIC-based protection and ACL
of the previous version. (Use the /PROTECTION qualifier of the BACKUP,
COPY, CREATE, and SET FILE commands to override the default VIC-based
protection.)

You can use either of the following methods to override the default VIC
based protection given to new files:

• Default VIC protection-The operating system provides each process
with a default VIC-based protection of (S:RWED,O:RWED,G:RE,W). This
indicates that SYSTEM users and the owners of objects have full access
to the object, users in the same VIC group as the object owner have
read and execute access to the object, and all other users are denied
access to the object. To change the default protection, invoke the SET
PROTECTION command with the /DEFAULT qualifier. For example, if
you place the following command in your login command procedure, you
grant all processes read and execute access to any files that you create.
(Remember that you must execute the login command procedure for this
command to execute.)

$ SET PROTECTION = (S:RWED,O:RWED,G:RE,W:RE)/DEFAULT

• Default ACL protection-You can override default VIC protection for
specified directories or subdirectories by placing a default-protection
ACE in the ACL of the appropriate directory file. The default protection
specified in the ACE is applied to any new file created in the specified
directory or subdirectory of the directory. The following ACE, which
must be in the ACL of a directory file, specifies that the default protection
for that directory and the directory's subdirectories allow system and
owner processes full access, group processes read and execute access, and
world users no access.

(DEFAULT_PROTECTION,S:RWED,O:RWED,G:RE,W:)

To specify a default identifier ACE to be copied to the ACL of any file
subsequently created in the directory, specify the DEFAULT option in the
directory file's identifier ACL.

Explicit File Protection
You can explicitly specify VIC-based protection for a new file with the
/PROTECTION qualifier (valid with the BACKUP, COPY, and CREATE
commands) as shown in the following example:

$CREATE MAST12.TXT/PROTECTION=(S:RWED,O:RWED,G,W)

You can change the VIC-based protection on an existing file with the SET
PROTECTION command as shown in the following example:

$SET PROTECTION=(S:RWED,O:RWED,G,W) MAST12.TXT

After a file is created and you have created an ACL for the file, you can
modify the ACL and add as many ACEs to the ACL as you want. The
protection specified by the ACL overrides the file's VIC protection.

7.2.4

7.2.3.3

Maintaining Accounts and System Security
7. 2 Protection

Directory Protection
You cannot completely protect a file without applying at least the same
protection to the directory in which the file resides. For example, if you
deny a user all access to a file but allow that user read access to the file's
directory, the user cannot access the contents of the file but can see that it
exists. Conversely, a user allowed access to a file and denied access to the
file's directory (or one of the parent directories) cannot see that the file exists.

Note: To protect sensitive files, directory protection alone is not adequate. You
must also protect each file within the directory.

7.2.3.4

By default, top level directories receive UIC-based protection
(S:RWE,O:RWE,G:RE,W:E) and no ACL. Subdirectories receive UIC-based
protection from the parent directory.

To specify UIC-based protection explicitly when creating a directory, use
the /PROTECTION qualifier of the CREATE/DIRECTORY command. You
cannot specify an ACL for the directory until the directory is created. To
change the UIC-based protection of an existing directory, use the SET
PROTECTION command (apply this command to the directory file). To
specify or change the ACL of an existing directory, edit the directory file's
ACL (see Section 7.2.3.1).

You can limit but not prohibit directory access by specifying execute access
but not read access. Execute access on a directory permits you to examine
and read files that you know are contained in the directory (that is, you know
the file specifications), but prevents you from displaying a list of the files in
the directory.

Mail File Protection
Mail files receive the protection (S:RWD,O:RW,G,W). Files of type MAI
created with the EXTRACT command of the Mail Utility receive the protection
(S:RWD ,O:RWD ,G, W).

Disk Volume Protection
By default, no protection is applied to newly initialized disk volumes. You
can specify protection with the /PROTECTION qualifier of the INITIALIZE
command and you can specify an ACL for a disk volume. The following
example specifies UIC-based protection for the disk volume ACCOUNTl:

$ INITIALIZE WORKDISK: ACCOUNT1 -
_$ /PROTECTION=(S:RWED,O:RWED,G:R,W:R)

You can respecify the protection each time you mount the volume with the
/PROTECTION qualifier of the MOUNT command. You must own the
volume or have VOLPRO privilege to change protection.

You can also limit access to a disk volume with the following qualifiers to the
INITIALIZE and MOUNT commands:

• /SYSTEM-All processes have RWED access to the volume, but only
system processes (or processes with SYSNAM and SYSPRV privileges)
can create first-level directories. (The volume is owned by [l, 1].)

• /GROUP and /NOSHARE-System, owner, and group processes have
RWED access to the volume. World users have no access.

7-11

7.2.5

7.2.6

·Maintaining Accounts and System Security
7. 2 Protection

Device Protection

• /NOSHARE-System and owner processes have RWED access to the
volume. Group and world users have no access.

At initialization time, the preceding qualifiers override any protection mask
specified. At mount time, however, the protection mask overrides the
qualifiers. When mounting a volume, you must have GRPNAM privilege
to specify /GROUP, and SYSNAM privilege to specify /SYSTEM.

In general, device protection controls the ability to allocate the device and
is specified by granting read access in an ACL. To specify an ACL for a disk
device, use the SET ACL/OBJECT_TYPE=DEVICE command. For example, to
grant a user with the alphanumeric UIC [FRED] read access to the disk device
WORKDISK, type:

$ SET ACL/OBJECT_TYPE=DEVICE/ACL=(IDENTIFIER=[FRED] ,ACCESS=READ) -
_$ WORKDISK

Note that when you specify an ACL for a disk device, the ACL is associated
with the device, not with the disk volume. For example, when you mount a
disk volume, specify an ACL for the device. Then when you dismount the
volume, the ACL protection remains on the device.

The only protection that applies to a nonfile device is the ability to allocate
it, specified by read access. By default, nonfile devices such as mailboxes are
unprotected. Interactive terminals are set up to provide complete access to
system users and no access to all other users. (Note that access here refers to
access via an application program. The device protection on a terminal does
not control who can log in to it.)

You can change the protection of a nonfile device through the use of ACLs
or by changing the standard UIC protection. Modify the ACL with the DCL
command SET ACL/OBJECT_ TYPE=DEVICE. Modify the UIC protection
with the DCL command SET PROTECTION/DEVICE (requires OPER
privilege). For example, the following command allows users holding the
PAYROLL identifier read access to TERMINAL3:

$ SET ACL/OBJECT_TYPE=DEVICE/ACL=(IDENTIFIER=PAYROLL,ACCESS=READ) -
_$ TERMINAL3

Displays of Ownership and Protection

7-12

You can display ownership and protection information with the following
commands and qualifiers:

Command

DIRECTORY/ ACL file-spec

DIRECTORY /OWNER_UIC file-spec

DIRECTORY /PROTECTION file-spec

DIRECTORY /SECURITY

DIRECTORY /FULL file-spec

Display

File's ACL

File's UIC

File's UIC-based protection

All of the above

All of the above

Maintaining Accounts and System Security
7. 2 Protection

Command

SHOW ACL

SHOW PROCESS/ ALL

SHOW PROTECTION

SHOW DEVICES/FULL device-name

Display

Device, file, batch or print queue,
logical name table, or global
section's ACL

Process UIC

Default file protection

Device UIC and protection

7 .3 Creating and Deleting AC Ls

7.3.1

Use the ACL editor (invoked with the DCL command EDIT/ ACL) to create
an ACL or to make major changes to it. Use the DCL command SET ACL
with the /OBJECT_TYPE qualifier to make minor changes to an ACL or to set
an ACL on more than one object.

Using the SET ACL Command
The DCL command SET ACL allows you to specify an ACL for a file,
directory, device, batch or print queue, system logical name table, or global
section. The /OBJECT_TYPE qualifier is required for all objects except files.
To specify an ACL for a device, for example, specify the SET ACL command
with the /OBJECT_TYPE=DEVICE qualifier. The following command
specifies an ACL that grants users who hold the identifier PAYROLL read
access to the disk device WORKDISK:

$ SET ACL/OBJECT_TYPE=DEVICE/ACL=(IDENTIFIER=PAYROLL,ACCESS=READ) -
_$ WORKDISK

To set the same ACL on all files with the file type DAT in the default
directory, enter the following:

$ SET ACL/OBJECT_TYPE=FILE/ACL=(IDENTIFIER=PAYROLL,ACCESS=READ) -
_$ *.DAT;*

To select a subset of the files specified by the wildcard character, use one or
more of the following qualifiers:

Qualifier

/BY_OWNER

/EXCLUDE

/BEFORE

/SINCE

/CREATED

Meaning

Selects files with a specified UIC

Selects all but the specified files

Selects files created or modified before a specified time

Selects files created or modified since a specified time

Specifies that /BEFORE or /SINCE check for the creation date

You can also use the /CONFIRM qualifier with the preceding qualifiers to
elicit a confirmation prompt for each file; the /CONFIRM qualifier allows you
to specify whether the file is to be excluded.

7-13

Maintaining Accounts and System Security
7 .3 Creating and Deleting ACLs

7-14

By default, the DCL commands that create ACLs add the entries to the top
of the ACL in the order specified. (If the object does not have an ACL, an
ACL is created.) Use the /AFTER qualifier to specify a position for the entry
(other than the top of the ACL). For example, the following command places
a new entry after an existing entry-the ACE specified with the /AFTER
qualifier-in the access control list of the file DOGS83.DAT:

$ SET ACL/AFTER=(IDENTIFIER=[JONES] ,ACCESS=READ)-
_$ /ACL=(IDENTIFIER=SECRET,ACCESS=READ+EXECUTE) DOGS83.DAT

The /AFTER qualifier is especially useful because the ACEs are processed
from first to last. For example, if users holding the identifier PAYROLL are
denied access in an ACE that precedes one granting access to user FRED, and
if FRED holds both identifiers, FRED will be denied access.

The SET ACL command also permits the following ACL operations:

• Delete an ACE-Use the /DELETE qualifier to delete ACEs (specified on
the / ACL qualifier) from an object's ACL. If no value is specified with
the/ ACL qualifier, all the entries in the ACL of the specified objects are
deleted (except those entries protected by the PROTECTED option). The
following example deletes the ACE specified with the / ACL qualifier from
the ACL of the latest version of each file with type FOR in the default
directory:

$ SET ACL/OBJECT_TYPE=FILE -
_$ /ACL=(IDENTIFIER=PAYROLL,ACCESS=READ+WRITE+EXECUTE)
_$ /DELETE *.FOR

• Replace an ACE-Use the /REPLACE qualifier to specify an ACE to
replace the ACE specified by the / ACL qualifier. If no value is specified
with the / ACL qualifier, the ACEs specified by the /REPLACE qualifier
are added to the ACLs of the specified objects. The following example
changes the ACE specified with / ACL to the one specified by /REPLACE
in the ACL of the device WORKDISK:

$ SET ACL/ACL=(IDENTIFIER=[200,200] ,ACCESS=READ)
_$ /REPLACE=(IDENTIFIER=NONEXEC,ACCESS=NONE)-
_$ /OBJECT_TYPE=DEVICE WORKDISK

• Copy an ACL-Use the /LIKE qualifier to copy an ACL from one object
to another. Specify the name of the object whose ACL is to be copied
as the value of the /LIKE qualifier and specify the name of the objects
to receive the ACL as the parameter of the SET ACL command. The
following example copies the ACL from [USER]X.X to all versions of all
files in the [USER] directory tree. The /LOG qualifier displays each file
specification as the file is modified. (You might also want to include the
/CONFIRM qualifier, which issues a request for confirmation before each
modification.)

$ SET ACL/LOG/LIKE=[USER.TESTS]X.X [USER ...]*.*;*

• Propagate the directory ACL-Use the /DEFAULT qualifier to copy the
ACL on a directory file to files in the directory. For subdirectory (DIR)
files in the directory, all ACEs except those with the NOPROP AGATE
option are copied. For all other files, only ACEs with the DEFAULT
option are copied from the parent directory. Any ACL that already exists
on the file is deleted.

7.3.2 ACL Editor

Maintaining Accounts and System Security
7 .3 Creating and Deleting ACLs

Use wildcards to copy the directory ACL to multiple files or to copy the
directory ACL throughout the directory tree. The following example
propagates the ACL on the [}MARTIN .WORK] directory to all files in the
subdirectory:

$SET ACL/DEFAULT [JMARTIN.WORK]*.*;*

It is often more convenient to use the ACL editor instead of the SET ACL
command (for example, when creating or modifying long ACLs). To invoke
the ACL editor, type EDIT/ ACL followed by the name of the object whose
ACL you want to edit and press the RETURN key as follows:

$ EDIT/ACL PROTA.TXT

If the object has an ACL, the ACL appears on the screen. Otherwise, you
are creating an ACL and will begin the editing session by entering an ACE.
Enter ACL editor commands using the keypad keys shown in the following
diagram.

EJ :::~MT p::~::T
PF4
DEL ACE

UNO ACE

7 oo· -SEL FIELD DEL W

ADV FIELD UNO W
...._ ___ _

4 5 o-, ADVANCE BACKUP DEL C

BOTTOM TOP UNO C

H 2

EOL D LJ DELEOL

ENTER

-

_

0

__ 0_V_E_R_A_C_E ___ o ____ _ INSERT D

ENTER

ZK-1740-84

By default, the ACL editor operates as if the object whose ACL is being
edited is a file. To specify an object other than a file, use the /OBJECT_TYPE
qualifier. For example, to edit the ACL of a device named TTAl, enter the
following command line:

$ EDIT/ACL/OBJECT_TYPE=DEVICE TTA1:

7-15

Maintaining Accounts and System Security
7 .3 Creating and Deleting AC Ls

7.3.2.1

7-16

You can specify any one of the following objects with the /OBJECT_ TYPE
qualifier:

FILE Specifies that the object type is a file or a
directory file

DEVICE Specifies that the object type is a device

SYSTEM_GLOBAL_SECTION Specifies that the object type is a system global
section

GROUP _GLOBAL _SECTION

LOGICAL_NAME_ TABLE

QUEUE

Specifies that the object type is a group global
section

Specifies that the object type is a logical name
table

Specifies that the object type is a queue

To execute a command, press the key. To execute the lower command shown
on a key in the diagram, press the GOLD key first, and then press the key.
You can display information on each command by pressing the HELP key
followed by the command. To display information on the proper format of
an ACE, press GOLD and then HELP.

To exit from the editor and create or modify the ACL, press CTRL/Z. To
exit without creating or modifying the ACL, press GOLD and CTRL/Z. To
refresh the screen while in the editor (for example, after receiving a broadcast
message), enter CTRL/W.

The ACL editor edits a copy of· the ACL. If your ACL editing session is
terminated by entering CTRL/Y or if the system fails, the existing ACL
remains unchanged or, if no ACL exists, no ACL is created. To recover an
ACL editing session interrupted by CTRL/Y or system failure, specify the
/RECOVER qualifier of the EDIT/ ACL command.

Using Prompts
By default, the ACL editor prompts for each ACE and provides values
in the various fields within an ACE whenever possible. The /MODE
qualifier controls the choice of mode. To disable prompting, specify
/MODE=NOPROMPT.

The FIELD, ITEM, and ENTER commands on the keypad enable you to take
full advantage of prompt mode in the ACL editor.

• FIELD-Completes the current ACE field and moves the cursor to the
next ACE field or subfield, inserting text as needed. If the ACL editor
is not in prompt mode, the ACL editor advances to the next field in the
current existing ACE.

• ITEM-Selects the next item for the current ACE field. If the ACL editor
is not in prompt mode, this key is ignored.

• ENTER-Indicates that the current ACE is complete. This key ends the
insertion. You can press it while the cursor is located at any position
within the ACE. (Pressing the RETURN key produces the same results.)

7.3.2.2

7.3.2.3

Maintaining Accounts and System Security
7 .3 Creating and Deleting ACLs

Moving the Cursor
To position the cursor within the current line, use the following commands:

Command

EOL

WORD

ADVANCE

BACKUP

Action

Moves the cursor to the end of the line

Moves the cursor one word in the current direction

Sets the cursor direction to forward

Sets the cursor direction to backward

Moves the cursor left one character

Moves the cursor right one character

LEFT ARROW

RIGHT ARROW

FIELD Completes the current ACE field and moves the cursor to the
next ACE field or subfield

ITEM Selects the next item for the current ACE field

The following commands move the cursor to a different line of the ACL:

Command Action

BOTTOM Moves the cursor to the end of the ACL

TOP Moves the cursor to the beginning of the ACL

UP ARROW Moves the cursor up a line

DOWN ARROW Moves the cursor down a line

OVER ACE Moves the cursor to the next ACE

To locate a specified text string or locate the next occurrence of a previously
specified text string, use FIND and FIND NEXT.

If the command moves the cursor out of an unprocessed ACE, the editor
attempts to process the current ACE. If the ACE is improperly formatted, an
error occurs and the cursor r.emains in place.

Entering and Deleting Data
Unless you disable prompting, the following text appears on the screen when
you invoke the ACL editor:

(IDENTIFIER=

If you want to create an identifier ACE, specify the identifier value by typing
in the appropriate value. You can also delete the text and type a
default_protection or alarm_journal ACE.

7-17

Maintaining Accounts and System Security
7.3 Creating and Deleting ACLs

7.3.2.4

7-18

To delete text, use the following commands:

Command

DEL C

DELETE key

DEL W

LINE FEED

DEL EOL

DEL ACE

CTRL/U

Action

Deletes the current character

Deletes the previous character

Deletes the current word

Deletes the previous word

Deletes from cursor to end of line

Deletes the current ACE

Deletes the text from the cursor to the beginning of the line

If you delete text by mistake, you can restore it by using the following
commands:

Command

UNO C

UNDW

UNO ACE

GOLD CTRL/U

Action

Restores the most recently deleted character

Restores the most recently deleted word

Restores the most recently deleted ACE

Restores the most recently deleted portion of a line

Processing an ACE
To process an ACE, press ENTER or carriage return. You must process the
current ACE before you can begin editing a second ACE. If the ACE is in the
proper format, the editor puts the ACE into the ACL and moves the cursor
to the next line. If the cursor is positioned at the end of the ACL and if
prompting is enabled, the editor displays the text IDENTIFIER=. (Moving
the cursor off a line containing an unprocessed ACE implicitly processes the
ACE.)

8 Editing Files with the EVE and EDT Editors

8.1 The EVE Editor

Text editors are computer programs that allow you to enter text from a
keyboard into computer memory. Once the text is in memory, you can
modify the text using text editing commands. For example, you can type
in data for a report and then rearrange sections, duplicate information, or
substitute phrases. Text editors also format text so that the report or article
can be ready for distribution. Different formatting commands set margins,
insert white space, and paste in figures and tables.

VMS supports several text editors. This chapter discusses the EVE and the
EDT editors.

EVE, the Extensible VAX Editor, is an editor built on the VAX Text Processing
Utility (VAXTPU), a high performance, programmable, text processing utility.
Using EVE, you can create and edit new files or edit existing files. You can
add text to a file and modify or format that text. EVE is interactive, so you
see the changes to a file as you make them.

Unlike the EDT editor, EVE lets you display more than one buffer on the
screen at a time and to edit more than one file during the same editing
session. EVE is easy to customize or extend using EVE commands and
VAXTPU procedures.

8.1.1 Beginning and Ending an Editing Session

8.1.1.1

To begin an editing session, invoke EVE with the DCL command EDIT/TPU.
In an editing session, you can create and edit a new file, or you can edit an
existing file. The session ends when you enter the EXIT or QUIT command.
Exiting from EVE typically produces a new file or a new version of an existing
file.

Invoking EVE
You can start an editing session by creating a new file and inserting text into
it during the session. You can also begin by specifying an existing file when
you invoke EVE.

To begin an EVE editing session, enter the DCL command EDIT/TPU. Specify
a file name on the command line if you want to edit an existing file or assign
a name to a new file.

For example, to invoke EVE to create a new file named NEWFILE.DAT, enter
the following command:

$ EDIT/TPU MYFILE.DAT

8-1

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

8-2

This command produces the following screen output:

tEnd of file]

~u~~.er .. NEYi~tI.i~.:pA.:t:··
Editing new file: could not find WORKDISK: [USER]NEWFILE.DAT

EVE inserts the text of the file you are editing into a temporary holding area
called a buffer. A buffer is a temporary storage area and exists only during
an editing session. The contents of the buffer are shown in an area of your
screen that is called a window. When you end an editing session, you direct
EVE to save or discard the contents of a buffer.

The end-of-file marker defines the end of an EVE buffer. It is only visible
on the screen and does not become part of your file. When you add text to
the buffer, the end-of-file marker moves downward. The marker may not be
visible when you are viewing the beginning of a buffer that contains many
lines of text.

A highlighted status line appears at the bottom of the EVE window and
provides information about the EVE buffer. The status line shows the buffer
name, current mode (insert or overstrike), and current direction (forward or
reverse).

If you invoke EVE with a file name, an informational message appears in the
message buffer beneath the highlighted status line stating either that the file
is a new file or that a certain number of lines were read from an existing file.
EVE communicates with you throughout the editing session by displaying
messages in the Message window.

To invoke EVE to edit an existing file named OLDFILE.DAT, enter the
EDIT /TPU command in the following format:

$ EDIT/TPU OLDFILE.DAT

S.chedule for 1 July
10:00 AM meeting with supervisor
Read and review memo from Donna
Work on Pascal program
[End of file]

~:U,f:f'.e~·.u14t>P:;:t~g·:"o!~'.· .. ::~;~: t:
4 lines read from file WORKDISK: [USER]OLDFILE.DAT

When you invoke EVE to edit an existing file, you can use the asterisk
wildcard character (*) as a substitute for all or some of the characters in the
file name and file type. You can use the percent wildcard character (%) as a
substitute for one character in the file name and file type, and you can use the
ellipsis wildcard ([...]) as a substitute for a directory specification. When
using wildcards in EVE, follow the same rules as using wildcards in DCL. If
only one match is made, the file is displayed on your screen. If more than
one match is made, EVE displays a list of matching files and prompts you to
provide a more complete file specification. If no match is made, the file name
that you typed appears in the highlighted status line. The message Editing
new file. Could not find: is displayed in the message buffer.

8.1.1.2

Buff er·. FUN. DAT•

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

You may want to use a command symbol to invoke the EVE editor. For
example, if you place the following statement in your login command file and
execute your login command file, you only need to type EVE to invoke the
EVE editor.

$ EVE == EDIT/TPU

Rather than name a file at the beginning of an editing session, you can invoke
EVE with the command EDIT/TPU and then enter text into the buffer. You
can save the text by writing it to a file using the WRITE FILE command
described in Section 8.1.7. Alternately, when you finish creating your file,
EVE prompts for a file name as follows:

Enter a file name to write buffer MAIN; else press RETURN:

Type the name of the file, and press RETURN to write out the buffer to a file.

Ending an Editing Session
Two different commands can end an EVE editing session. EVE produces
a new version of the edited file when you end the session with the EXIT
command. EVE discards your edits when you end a session with the QUIT
command. Any existing versions of the files remain unchanged regardless of
how the editing session is ended.

To save your edited text, use the EXIT command. Enter the EXIT command
by pressing the FlO key (on VT200-series or VT300-series terminals) or by
pressing CTRL/Z.

If you have modified the current buffer, EVE creates a new version of the file
with the same file name and file type as the original version, with the version
number incremented by 1. For example, if you use the EXIT command after
modifying a file named FUN.DAT;l, the output file is named FUN.DAT;2, as
follows:

4 lines written to file WORKDISK: [USER]FUN.DAT;2

To exit from a session without saving your edits, use the QUIT command.
To execute the QUIT command, press the DO key (PF4 on VTlOO-series
terminals), type QUIT at the Command: prompt, and press RETURN. For
example, if you have modified a file named FUN.DAT and enter the QUIT
command, the following display appears on your terminal screen:

Buffer modifications will not be saved, continue quitting (Y or N)?

Type Y and press RETURN if you want to quit without saving the edits. If
you change your mind and decide to save your edits, type N, press RETURN,
and exit from the file using the EXIT command.

If you have modified buffers other than the current one, EVE asks if you want
to save the contents of those buffers. If you type Y, EVE creates new versions
of any existing files, incrementing the version number by 1. EVE prompts for
a file name if no file currently exists.

8-3

8.1.2

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

Entering EVE Commands

8.1.2.1

8-4

Once you have invoked EVE, enter EVE commands to edit and manipulate
text. There are two ways to enter EVE commands: by pressing predefined
editing keys and by typing the actual commands.

Using Defined Keys to Enter EVE Commands
EVE defines some editing keys by default. You can define additional editing
keys to enter commands or to perform editing operations that you use
frequently (see Section 8.1. 9). The predefined editing keys on VT200-series
and VT300-series terminals include the minikeypad (located between the
main keypad and the numeric keypad), certain function keys, and certain
control key sequences. On VTlOO-series terminals, EVE automatically defines
most of the numeric keypad keys, the arrow keys, and certain control keys.
Each predefined editing key performs one editing command.

Throughout this chapter, EVE editing keys are referred to by their names,
rather than by their location on the VT200-series, VT300-series, or VTlOO
series keyboards. For example, on a VT200-series or VT300-series terminal,
the DO key is located at the top of the editing keypad and is labeled DO.
On a VTlOO-series terminal, the DO key is located at the upper right of the
numeric keypad and is labeled PF4. Figure 8-1 shows the predefined keys on
the VT200-series and VT300-series terminal. Figure 8-2 shows the predefined
keys on the VTl 00-series terminal.

Editing Files with the EVE and EDT Editors
8. 1 The EVE Editor

Figure 8-1 Editing Keys-VT200-Series and VT300-Series Terminals

F10

Forward
Reverse

F11

Move By
Line

F12

CTRL/B - Recall
CTRL/E - End of Line
CTRL/H - Start of Line
CTRL/R - Remember

Erase
Word

F13

CTRL/U - Erase to Start of Line
CTRL/V - Quote
CTRL/W - Refresh
CTRL/Z - Exit

Insert
Overstr

F14

(___ Help l_D_o J
/

"""
Find Insert Re-

Here move

Select Prev Next
Screen Screen

' ...)

t
/

""' I ~

\.. _...)

ZK-4036-85

8-5

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

Figure 8-2 Editing Keys-VT100-Series Terminals

[t Ii I- I J
/"

""'
Find Help

Forward
Do

Reverse

BACKSPACE - Start of Line Select Remove
Insert Move By
Here Line

CTRL/B - Recall
CTRL/E - End of Line
CTRL/R - Remember
CTRL/U - Erase to Start of Line

t
Erase

CTRL/V - Quote
CTRL/W - Refresh
CTRL/Z - Exit

8.1.2.2

8-6

Word

! - ~

Insert
Overstr

Next Prev
Screen Screen

\... ./

ZK-4037-85

Note that EVE uses the numeric keypad differently on the VTlOO-series
terminals than on the VT200-series and VT300-series. EVE automatically
defines 16 of the 18 numeric keypad keys on the VTlOO as editing keys, but
it does not automatically define the numeric keypad keys on the VT200-series
and VT300-series terminals. On these later model terminals, you can use the
numeric keypad keys to enter numeric data, or you can define them to enter
EVE commands (see Section 8.1.9).

EVE offers two default keypads in addition to the default EVE keypad.
You can select an EDT keypad or a WPS keypad. Although neither fully
implements EDT or WPS editing functions, each provides most keypad
functions.

Entering EVE Commands
In addition to using defined keys, you can enter EVE commands by typing
them at the Command: prompt. When you enter EVE commands, you always
perform the following three steps:

1 Press the DO key. EVE displays the Command: prompt.

2 Type the EVE command after the prompt.

3 Press either RETURN or the DO key to enter the command.

8.1.3 Editing Text

8.1.3.1

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

You can correct typing mistakes on the EVE command line by pressing DCL
line-editing keys. Use CTRL/U to erase to the beginning of the line, CTRL/E
to move to the end of the line, and CTRL/B to recall the last command
entered. By default, the editing mode of the EVE command line is the same
as the editing mode of your terminal. (You can change the default prior to
invoking EVE with the DCL command SET TERMINAL. Once in EVE, you
can change the editing mode with CTRL/ A.)

To save keystrokes when typing EVE commands, you can use CTRL/B,
abbreviate commands, use the REPEAT command, or press the DO key. Each
method of saving keystrokes is described as follows:

• Press CTRL/B to recall the last EVE command you entered. Pressing
CTRL/B again recalls the previous command that you entered. Continue
pressing CTRL/B until the command you wish to execute appears on
your screen, and press RETURN to enter the command.

• Abbreviate EVE command names, making sure the abbreviation is
unambiguous. If you enter an abbreviation that is not unique, EVE
displays a list of matching commands and prompts you for a choice. Type
enough additional characters to ensure that the abbreviation is unique,
and press RETURN to enter the command. You can also abbreviate buffer
names and, file names. Again, EVE provides a list of choices if you do
not provide a unique abbreviation.

• Use the REPEAT command to repeat an EVE command or keystroke.
Press the DO key, type REPEAT and the number of times it is to
be repeated, and press RETURN. EVE repeats the next character or
command you enter the specified number of times. For example, to insert
the character p in your editing buffer 20 times, press the DO key, type
REPEAT 20, and press RETURN. Then type p. EVE inserts a pinto the
current buffer 20 times.

• Press the DO key twice to activate the last command entered.

Once you know how to invoke the EVE editor and how to enter commands,
you can use EVE commands to edit new and existing files. Editing keys and
commands allows you to position the cursor and perform such text editing
operations as moving, erasing, and restoring text.

Moving the Cursor
When editing files with EVE, first you move the cursor to the place in the text
where you want to perform an editing function. Therefore, the more quickly
and efficiently you move the cursor through the text, the more time you save
in your editing session.

8-7

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

8-8

The following tables show the EVE editing keys and commands that move
the cursor:

Editing Key

Up arrow

Down arrow

Left arrow

Right arrow

CTRL/E

CTRL/H

Move By Line

Next Screen

Previous Screen

Editing Command

BOTTOM

BUFFER

END OF LINE

GET FILE

LINE

MOVE BY PAGE

MOVE BY WORD

NEXT WINDOW

Moves the Cursor to the Following Position

Up one line.

Down one line.

One character or column to the left.

One character or column to the right.

End of the current line.

Beginning of the current line.

In forward direction: end of the current line or if the
cursor is already at the end of a line, to the end of the
next line. In reverse direction: beginning of the current
line or if the cursor is already at the beginning of a line, to
the beginning of the previous line.

Forward in the current buffer. The number of lines the
cursor moves depends on the size of the current window.

Backward in the current buffer. The number of lines the
cursor moves depends on the size of the current window.

Moves the Cursor to the Following Position

End of the current buffer.

Puts the specified buffer in the current window and moves
the cursor to the end of the buffer. Creates a new buffer
if the specified buffer does not exist.

End of the current line.

Creates a new buffer containing text of the specified file
(or an empty buffer if the file does not exist) and puts the
cursor at the beginning of the buffer.

If entered a second time with the same file name during
an editing session, EVE puts the existing buffer in the
current window and positions the cursor at its last
location in the buffer.

Beginning of the specified line in the current buffer.

Next or previous page break, depending on the current
direction.

Beginning of the next word, if direction is forward. In
reverse direction, cursor moves to the beginning of the
current word; if already there, EVE positions cursor at the
beginning of the previous word.

Next window on your screen, assuming another exists.
The cursor appears in the last location it occupied in that
editing window.

Schedule for 1 July

Editing Files with the EVE and EDT Editors
8. 1 The EVE Editor

Editing Command

PREVIOUS WINDOW

SET CURSOR
BOUND

SET CURSOR FREE

ST ART OF LINE

TOP

Moves the Cursor to the Following Position

Previous window on screen, assuming another window
exists. The cursor appears in the last location it occupied
in that editing window.

Changes cursor mode. Cursor follows the flow of text
and cannot be put into an unused portion of the buffer.
Similar to cursor behavior in EDT and other editors.

The default mode. Cursor is not bound to the flow of the
text but can be put anywhere on the screen and text can
be entered.

Beginning of the current line.

Beginning of the current buffer.

The following example shows how to move the cursor through a buffer. The
example assumes that you created a file named OLDFILE.DAT in an earlier
editing session.

Invoke EVE to edit the file OLDFILE.DAT using the command EDIT /TPU.
EVE reads the contents of OLDFILE.DAT into a buffer and places the cursor
at the beginning of the first line of text.

10:00 AM meeting with supervisor
Read and review memo from Donna
Work on Pascal program
[End of file]

Buffet •.. OLD.Fitt:~:J:)AT '.; .•. ,·

4 lines read from file WORKDISK: [USER]OLDFILE.DAT

Press CTRL/E to move the cursor to the end of the first line of text. CTRL/E
works the same way in EVE as it does in DCL.

Schedule for 1 July::·
10:00 AM meeting with supervisor
Read and review memo from Donna
Work on Pascal program
[End of file]

4 lines read from file WORKDISK:[USER]OLDFILE.DAT

Use the BOTTOM command to move the cursor to the end of the buffer.
Press the DO key, type BOTTOM, and press RETURN.

Schedule for 1 July
10:00 AM meeting with supervisor
Read and review memo from Donna
Work on Pascal program
1End of file]

Command: BOTTOM

8-9

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

Press the up arrow to move the cursor to the beginning of the fourth line of
· text.

Schedule for 1 July
10:00 AM meeting with supervisor
Read and review memo from Donna
Work on Pascal program
[End of file]

Schedule for 1 July

Press the Forward Reverse key to change the current buffer direction to
reverse. Press the Move By Line key to move the cursor to the beginning of
the third line of text.

10:00 AM meeting with supervisor
Read and review memo from Donna
Work on Pascal program
[End of file]

Schedule for 1 July

Press the DO key, type the command LINE 1, and press RETURN to move
the cursor to the beginning of the first line of text.

10:00 AM meeting with supervisor
Read and review memo from Donna
Work on Pascal program
[End of file]

Command: LI NE 1

8.1.3.2

8-10

Inserting Text
You can insert sections of text, entire files, and special nonprinting characters
(such as control characters) into the buffer you are currently editing. The
following tables show the editing keys and EVE commands that you use
while inserting text:

Editing Files with the EVE and EDT Editors
8. 1 The EVE Editor

Editing Key

Insert Overstrike

CTRL/A

CTRL/V

Command

INCLUDE FILE

What It Does

Changes the current editing mode as displayed
on the highlighted status line. In insert mode,
EVE inserts text at the current character position,
moving existing text to accommodate the insertion.
In overstrike mode, EVE overwrites text at the
current position.

Same as the Insert Overstrike key.

Lets you insert nonprinting characters (or control
codes) in a buffer. You can search for special
characters using the Find key. First, press the Find
key, then press CTRL/V and the special character
to be found, and activate the search by pressing
RETURN.

What It Does

Inserts the entire contents of the specified file
into a buffer at the line before the current cursor
location.

Before you begin inserting text into a buffer, look at the highlighted status line
to determine whether EVE is in insert or overstrike mode. If EVE is in insert
mode, text is inserted at the cursor position, and text that already appears
in the file moves to accommodate your insertions. If EVE is in overstrike
mode, text that you type at the keyboard is inserted at the cursor position,
and the text that already appears in the file is overwritten as the cursor moves
through it.

Press CTRL/ A or the Insert Overstrike key to change from one mode to the
other.

You can add text to your buffer in the following ways:

• Text - Type characters that EVE adds to the buffer at the current cursor
position. The characters are added according to the current mode of the
buffer (insert or overstrike).

• Files - Add entire files by pressing the DO key and entering the EVE
command INCLUDE FILE. Type the file specification at the File to include:
prompt and press RETURN. EVE disregards the current mode (insert or
overstrike) of the buffer and inserts the entire contents of the specified file
into the buffer just before the line in which the cursor currently appears.

Wildcards are allowed in the file specification. If there is more than
one match for a file specification with a wildcard, EVE displays a list of
choices and prompts you to provide a more complete file specification.
If the specified file does not exist, EVE displays a message stating that it
could not include the file.

• Special Nonprinting Characters - Add special nonprinting characters
by pressing CTRL/V followed by the special character. For example, to
insert an escape character into the buffer on a VT200-series or VT300-
series terminal, press CTRL/V followed by CTRL/3. (On a VTlOO
series terminal, press CTRL/V and then press CTRL/[.) The special

8-11

Editing Files with the EVE and EDT Editors
8. 1 The EVE Editor

Schedule for 1 July

characters are added according to the current mode of the buffer (insert or
overs trike).

The following example shows how to insert text into a file, first in insert
mode and then in overstrike mode. Invoke EVE to edit the existing file
OLDFILE.DAT.

10:00 AM meeting with supervisor
Read and review memo from Donna
Work on Pascal program
[End of file]

Bli~f~~:,; ': :(;tf; r.1'1"1'+: ct~''·:,,., .. ,jip"

4 lines read from fil~ WORKDISK: [USER]OLDFILE.DAT

Schedule for 1 July

Check the highlighted status line to ensure that EVE is in insert mode. Press
the Insert Overstrike key (or CTRL/ A) to change to insert mode, if necessary.
Move the cursor to the first s in the word supervisor, type Engineering, and
press the space bar.

The word Engineering is inserted in your text buffer, and the rest of the text
on the line shifts to the right.

10:00 AM meeting with Engineering ,supervisor
Read and review memo from Donna
Work on Pascal program
[End of file]

4 lines read from file WORKDISK: [USER]OLDFILE.DAT

Schedule for 1 July

Now press the Insert Overstrike key to change to overstrike mode. Move the
cursor to the letter D in the word Donna and type Andrea.

The word Andrea is placed in the buffer, overwriting the word Donna.

10:00 AM meeting with Engineering supervisor
Read and review memo from Andrea:.:.
Work on Pascal program
[End of file]

4 lines read from file WORKDISK: [USER]OLDFILE.DAT

8-12

8.1.3.3

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

Erasing and Restoring Text
With the EVE editor, you can easily delete text from a file or correct mistakes
made during an editing session. If you erase text by mistake, you can restore
the most recently erased text to its former location or, by moving the cursor,
to another location. The following table shows the editing keys and EVE
commands that erase and restore text:

Editing Key

<Kl
Erase Word

CTRL/U

Command

ERASE CHARACTER

ERASE LINE

ERASE PREVIOUS WORD

RESTORE

RESTORE CHARACTER

RESTORE LINE

RESTORE WORD

What It Erases

Character to the left of the cursor.

Current word or, if the cursor is not on a word,
erases the next word.

All characters from the current cursor position to
the beginning of the line.

What It Does

Erases the current character.

Erases from the current cursor position to the end
of the current line, appending the next line to the
end of the current line.

Erases the previous word or the word the text
cursor is on. If you are at the start of a line, you
erase the carriage return at the end of the previous
line, and the current line moves up. If you are
between words or on the first character of a word,
you erase the previous word. If you are in the
middle of a word, you erase all of that word (same
as ERASE WORD).

Restores, at the current cursor position, the word,
sentence, or line that you have erased most
recently with an EVE command or editing key.
RESTORE does not restore single characters.

Restores, at the current cursor position, the
character you have erased most recently with an
EVE command or editing key.

Restores, at the current cursor position, the line
that you have erased most recently with an EVE
command or editing key.

Restores, at the current cursor position, the word
that you have erased most recently with an EVE
command or editing key.

To erase text from your buffer, move the cursor to the location of the text
that you want to erase, and press the appropriate editing key, or type the
appropriate EVE command.

The following example shows how to erase and restore text. Invoke EVE to
edit the existing file RHYMES.DAT. (This example assumes that you created
this file in an earlier editing session.)

8-13

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

She rhymes with tree,
also with bee,
and this one makes three.
[End of file]

Move the cursor to the letter l in the word also. Press the DO key, type the
command ERASE LINE, and press RETURN.

She rhymes with tree,
also with bee,
and this one makes three.
[End of file]

BU:ff:~r RHYMEs::;J)\At'< :
Commmand: ERASE LINE

EVE erases all characters from the letter l to the end of the line and appends
the next line to the current line.

She rhymes with tree,
a and this one makes three.
[End of file]

·f<·: Itls~:rt:t I·· fQrw~r~

Move the cursor to the letter y in the word rhymes. Press the DO key and
enter the command ERASE WORD.

She rhymes with tree,
a and this one makes three.
[End of file]

J:bit:f:et< :RHYM~s::,pAt
Command: ERASE WORD

She with tree,

EVE erases the word rhymes and shifts the remaining text to the left.

a and this one makes three.
[End of file]

She with tree,

Move the cursor to the space between the letter a and the word and on the
second line. Press the DO key and enter the command RESTORE LINE.

a:and this one makes three.
[End of fHe]

.a~f::t'e£: s.11IY:W:E$; rn~:r:·:., ·"
Command: RESTORE LINE

8-14

EVE restores the last line that was erased, in this case, lso with bee,.

She with tree,
also with bee,

Editing Files with the EVE and EDT Editors
8. 1 The EVE Editor

Move the cursor to the letter w in the word with on the first line. Press the
DO key and enter the command RESTORE WORD.

and this one makes three.
[End of file]

Bu:fief 'amEs".:IS:AtrY,:,;'..~{;,~::'.t:J:~1,'··
Command: RESTORE WORD

She rhymes with tree,
also with bee,

EVE restores the last word that was erased, in this case, rhymes.

and this one makes three.
[End of file]

8.1.3.4

Section 8.1.3.4 describes the functions of the Select and Remove keys, which
can be used together to erase text from a buffer.

Moving Text from One Location to Another
The following tables describe the functions of the Select, Remove, and Insert
Here keys as well as the STORE TEXT command, which are used to erase
text, to move text from one location to another within a buffer in "cut and
paste" operations, and to duplicate text. For information on how to move text
from one buffer to another, see Section 8.1.7.

Editing Key

Select

Remove

Insert Here

Command

STORE TEXT

What It Does

Marks text (highlighting it in reverse video) from the cursor
location to wherever you move the cursor. To cancel the
selection, press the Select key again or use RESET.

Removes the text that was marked with SELECT, and
places it in the Insert Here buffer.

Inserts the text from the Insert Here buffer at the current
cursor location.

What it Does

Copies text that was marked with SELECT or highlighted
by FIND, placing it in the Insert Here buffer. Text that is
copied is not removed from its original position.

To mark text when the buffer is set in a forward direction, place the cursor on
the first character that you wish to erase. Press the Select key, and then move
the cursor to one character beyond the last character that you wish to erase.
(In reverse direction, move the cursor to the last character, not one beyond.)
The text that will be erased is highlighted in reverse video. (If you decide
not to remove text from the buffer, press the Select key again to cancel the
selection.) Press the Remove key. EVE deletes the highlighted text from your
screen and places it in the Insert Here buffer.

8-15

Editing Files with the EVE and EDT Editors
8. 1 The EVE Editor

She rhymes with tree,
also with bee,

You can insert the text at any cursor location by pressing the Insert Here key,
or you can erase text permanently from your buffer by leaving it in the Insert
Here buffer. You can insert the text contained in the Insert Here buffer any
number of times at any cursor location until you select a new section of text
and put that new text in the Insert Here buffer using the Remove key or the
STORE TEXT command. The Insert Here buffer contains whatever text was
last copied or removed.

The following example shows how to erase and move text from one location
to another using the Select, Remove, and Insert Here keys. Invoke EVE to
edit the file RHYMES.DAT.

Move the cursor to the beginning of the second line of RHYMES.DAT and
press the Select key.

and this one makes three.
[End of file]

Move the cursor to select text.

Press the down arrow key once. The second line of text is highlighted. Press
the Remove key. The second line of text is removed from the current buffer.

She rhymes with tree,
and this one makes three.
[End of file]

Remove completed.

She rhymes with tree,

Press the down arrow key once. Press RETURN twice and then press the
Insert Here key. The text in the Insert Here buffer is inserted at the current
cursor location.

and this one makes three.

also with bee,
,[End of file]

8-16

The STORE TEXT command allows you to duplicate text in a file. Move the
cursor to the first line of text and press the Select key. Press CTRL/E to move
the cursor to the end of the first line and enter the STORE TEXT command.
(Press DO, type STORE TEXT, and press RETURN.) The Insert Here buffer
now contains a copy of the selected text. Now move the cursor to the line
above also with bee and press the Insert Here key.

She rhymes with tree,

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

and this one makes three.

She rhymes with tree,
and also with bee,
[End of file]

Store text completed.

8.1.3.5

:·:r, lns·ert I .. Forward

Locating Text
Use the Find key to locate specified strings of text in your buffer. Press the
Find key (PFl on VTlOO-series terminals). Then type the text string that you
wish to locate, called the search string, and press RETURN.

EVE attempts to move the cursor to the beginning of the specified string.

If the search string contains all lowercase letters, EVE disregards the case
of letters and locates any occurrence of the string. Thus, the, THe, and thE
all match the search string the. If the search string contains one or more
uppercase letters, EVE locates only the occurrences of the string in which the
case of letters is exactly the same. Therefore, the only match for the search
string tHis is tHis.

EVE is sensitive to diacritical (accent) marks and locates only those
occurrences of the string in which diacritical marks are exactly the same.
For example, in searching for e, EVE does not locate occurrences of e, e, e,
ore.

The current direction of the buffer determines whether EVE first searches in a
forward or a reverse direction.

If the editor cannot find the string in the current direction but finds it in the
opposite direction, EVE prompts you to change direction. To search in the
opposite direction, type Y. EVE moves the cursor to the first occurrence of
the string in the opposite direction. The current direction in the highlighted
status line is not changed, however.

When EVE finds the search string, the editor highlights it and moves the
cursor to the first letter of the string. You can use any one of the following
commands to modify a highlighted search string: REMOVE, FILL RANGE,
STORE TEXT, LOWERCASE, UPPERCASE, and CAPITALIZE. To cancel
the highlighting, move the cursor off the search string or enter the RESET
command.

If you press the Find key twice, EVE tries to find the next occurrence of the
search string.

The following example uses the existing file RHYMES.DAT to illustrate
the use of the Find key. When you invoke EVE to edit RHYMES.DAT, the
cursor appears on the first letter of the first line of the buffer, and the current
direction is forward.

8-17

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

She rhymes with tree,
also with bee,
and this one makes three.
[End of file]

3 lines read from file WORKDISK: [USER]RHYMES.DAT

She rhymes with tl~e-,
also with bee,

Press the Find key, type the letters ree, and press RETURN. The cursor moves
to the letter r in the word tree and highlights the letters ree.

and this one makes three.
[End of file]

She rhymes with tree,
also with bee,

Press Find twice to find the next occurrence of the string ree. The cursor
moves to the letter r in the word three and highlights the letters ree.

and this one makes thlee.
[End of file]

·su:f't·e±:.;.:rear~··,u.Ar::·\ .. -
Finding previous target: ree

She rhymes with tree,
also with bee,

When a search string is found and highlighted, you can use any command
that works on a selected range. For example, enter the UPPERCASE
command.

and this one makes three.
[End of file]

Command: UPPERCASE

She rhymes with tree,
also with bee,

The UPPERCASE command changes the case of the highlighted letters from
lowercase to uppercase.

and this one makes th~S:.
[End of file]

8-18

You can also use wildcards to search for a text string. Wildcard characters
in a search string refer to a group of strings, rather than a specific string. By
default, EVE searches for text using the VMS wildcard patterns, which include
the asterisk (*) and percent sign (%). (To display all wildcard patterns for
VMS, enter the SHOW WILDCARD command.) EVE can also search for text
using UL TRIX patterns.

Move the cursor to the sin She.

She rhymes with tree,
also with bee,

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

To search for text strings ending in ee, enter the command WILDCARD
FIND *ee.

and this one makes thREE.
[End of file]

Buff et . RHYMES; DA:r ';,;·
Command: WILDCARD FIND *ee

8.1.3.6

EVE positions the cursor at the start of the line containing the r in tree.

The WILDCARD FIND command can also search for a string terminated by
the Forward Reverse key. The key resets the initial direction of the search,
overriding the current direction for the buffer.

You can specify how the FIND command treats the blank spaces between
words such as spaces, tabs, and line breaks, which is called white space. By
default EVE treats the white space in a search string literally and does not
match across a line break. However, if you use the SET FIND WHITESPACE
command before the search, the FIND command ignores white space when
searching for a text string,

Marking Locations in Text
The MARK and GO TO commands are very useful when you are editing a
large file and know that you want to return to a specific cursor location later
in the editing session. The following table describes the MARK and GO TO
commands:

Command

MARK

GOTO

What It Does

Associates a unique and invisible label, consisting of
one or more alphanumeric characters, with the current
cursor location. The mark exists for the rest of an editing
session.

Returns the cursor to the location labeled by the MARK
command. If the labeled location is contained in another
buffer, EVE moves the cursor to the other buffer and
places the buffer in the current window.

To mark a cursor location, press the DO key, type MARK label-name, and
press RETURN. The label name can be one or more printable characters,
including alphanumeric and punctuation characters. To return the cursor to
the marked location, press the DO key, type GO TO label-name, and press
RETURN.

The following example shows you how to use the MARK and GO TO
commands to mark a cursor position with the label name FIRST and how to
return to that cursor position.

Move the cursor to the letter bin the word bee. Press the DO key, type
MARK and press RETURN. To mark the cursor location with the label FIRST,
type FIRST at the Mark name: prompt.

8-19

Editing Files with the EVE and EDT Editors
8. 1 The EVE Editor

She rhymes with tree,
also with lee,
and this one makes three.
[End of file]

She rhymes with tree,
also with bee,

Move the cursor to the letter t of the word three.

and this one makes ~hree.
[End of file]

Current position marked as FIRST

She rhymes with tree,
also with nee,

Press the DO key, type GO TO FIRST, and press RETURN to return the
cursor to the position labeled FIRST.

and this one makes three.
[End of file]

Going to mark: FIRST

8.1.3.7

8-20

Replacing Text
The REPLACE command allows you to replace a text string that appears in
the current buffer with another text string. This is especially useful if you
have spelled a word incorrectly throughout a long file, and you want to fix
every occurrence.

To use the REPLACE command, press the DO key, type REPLACE, and press
RETURN. Type the string that you wish to replace at the Old string: prompt
and press RETURN. Type the new string at the New string: prompt and press
RETURN.

If EVE finds the old string in the current direction, it moves the cursor to
the first occurrence of the old string, highlights the string, and provides the
following prompt: Replace? Type yes, no, all, last, or quit.

If EVE does not find the string in the current direction but finds it in the
opposite direction, EVE provides the following prompt: Found in 'reverse
/forward' direction. Go there? [Y]. If you type Y, EVE moves the, cursor to
the first occurrence of the string in the new current direction, highlights the
string, and provides the following prompt: Replace? Type yes, no, all, last, or
quit: The current direction of the buffer in the highlighted status line is not
changed.

Respond to the prompt by typing a single-character abbreviation of the
response and pressing RETURN. Simply pressing RETURN is equivalent to
typing Y and pressing RETURN. The following table explains the possible
responses and actions when you type these responses:

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

Response

Yes

No

All

Last

Quit

Replacement Procedure

Replaces the string and attempts to locate another occurrence
of the string in the current direction. If found, the cursor moves
to the next occurrence of the. string, the string is highlighted,
and EVE prompts: Replace? Type yes, no, all, last, or quit:. If
the string is not found in the current direction but is found in the
opposite direction, EVE prompts: Found in 'reverse /forward'
direction. Go there? [Y].
Skips this occurrence and searches for another occurrence of the
string in the current direction. If found, the cursor moves to the
next occurrence of the string, the string is highlighted, and EVE
prompts: Replace? Type yes, no, all, last, or quit:. If the string
is not found in the current direction but is found in the opposite
direction, EVE prompts: Found in 'reverse/forward' direction.
Go there? [Y].
Replaces the string and all other occurrences of the string in the
current direction. EVE leaves the cursor at the position where
the first replacement occurred. After all occurrences of the string
in the current direction have been replaced, EVE may inform
you: Found in 'forward/reverse' direction. Go there? [Y]. If you
type yes, EVE replaces all occurrences of the string in the new
direction.

Replaces this occurrence of the string and stops the REPLACE
procedure; the cursor does not move.

Does not replace this occurrence of the string and stops the
REPLACE procedure; the cursor does not move. Pressing
CTRL/Z has the same effect.

The REPLACE command is case sensitive. If the old string and the new string
are given in all lowercase characters, then EVE matches the case appropriately
for each replacement. For example, in replacing the string parsley with the
string dill, EVE replaces a capitalized version of parsley with a capitalized
version of dill. If the old string is lowercase, the search is general. However,
if the old string is uppercase or mixed case, the search is case-exact. If the
old and the new strings are lowercase, the replacement mirrors the case of
the occurrence. Whereas, if the new string is uppercase or mixed case, the
replacement is exact.

After finding the old string and prompting for the replacement of all
occurrences of the string in both directions, EVE continues to search the
buffer for the string. If EVE finds more occurrences, it informs you: Found in
forward/reverse direction. (May have already been replaced.) Go there [NJ? The
default answer is N to prevent you from replacing the occurrences a second
time.

The following example shows how to use the REPLACE command to replace
every occurrence of the string ee with the string oo. Move the cursor to the
top of the buffer. Press the DO key, type REPLACE, and press RETURN.
Type ee at the highlighted Old string: prompt, press RETURN, and type oo at
the highlighted New string: prompt.

8-21

8.1.4

Editing Files with the EVE and EDT Editors
8. 1 The EVE Editor

She rhymes with tree,
also with bee,
and this one makes three.
[End of file]

She rhymes with troo,
also with boo,

The cursor moves to the highlighted string ee in the word tree. Type all, and
press RETURN. All occurrences of the string ee are replaced with the
string oo.

and this one makes throo.
[End of file]

Using the HELP Facility

MOVE BY LINE

EVE has an online HELP Facility that quickly supplies information on editing
commands and keys during your editing session without disturbing your
work. You can obtain help by entering the HELP command or by pressing
the Help key.

To view a list of EVE commands, press the DO key and enter HELP. Use
the Previous Screen and Next Screen keys (up and down arrow keys on a
VTlOO-series terminal) to scroll through the entire list of EVE commands. To
get information on a particular command, type a command name after the
help prompt and press RETURN. The help text appears on the screen.

If you know the name of a specific command for which you need help,
press the DO key, type HELP followed by the name of the command, and
press RETURN. The help text for that command appears on the screen.
For example, to receive help on the MOVE BY LINE command, enter the
command HELP MOVE BY LINE. The following help text appears on your
screen:

Moves the text cursor a line at a time in the current direction (shown in
the status line).

o In FORWARD direction, the cursor moves to the end of the current line
or if already there, to the end of the next line (if any).

o In REVERSE direction, the cursor moves to the start of the current line
or if already there, to the start of the previous line (if any).

Keys: By default, key F12 is defined as MOVE BY LINE. The VT100 keypad
defines MINUS on the keypad.

Related topics:

END OF LINE LINE START OF LINE WHAT LINE

Buff er HELP
Type topic name or ? for list. Press Return if done:

8-22

8.1.5

Editing Files with the EVE and EDT Editors
8. 1 The EVE Editor

The HELP Facility also provides information on general topics. For example,
if you choose to use the EDT or the WPS keypad, use the command HELP
SET KEYPAD EDT or the command HELP SET KEYPAD WPS to get
information on changing your default keypad. To display a list of all defined
keys for the keypad you are using, enter the command HELP KEYS. There
is also help on the difference between an EDT keypad within EVE and the
original EDT keypad (HELP EDT DIFFERENCES).

The Help key produces a keypad diagram for the keypad you are using. The
diagram shows both the default editing keys and the keys you have defined
for the minikeypad (LK201 keyboard), the main keypad, the keys Fl0-F14
(LK201 keyboard), and the GOLD key (described in Section 8.1.9.3).

You can get help on particular editing keys after you display the keypad by
pressing the desired key. If you press a key to which you have assigned an
EVE command, EVE provides the help text for that EVE command.

Recovering from System Interruptions

8.1.5.1

8.1.5.2

EVE has recovery procedures for two types of system interruptions. You
can remove extraneous characters that appear on your screen. You can also
recover edits from an interrupted editing session with the journaling facility.

Refreshing the Screen
If extraneous characters, such as a message from the operator, appear on your
terminal screen while you are editing or inserting text, press CTRL/W to
refresh your screen. The screen becomes blank, and then all characters are
redrawn, minus any extraneous characters.

Using the Journal File
If you are editing a file and a system interruption (that is, a break in
communication between your terminal and the computer) occurs, you can
recover your lost editing session. By default, EVE records the keystrokes you
enter during an editing session in a journal file that has the same file name as
the file you are editing and a file type of TJL.

Typically, an editing session ends without interruption, so the system deletes
the journal file. When you experience a system interruption, however, the
journal file is saved. EVE can use the journal file to reconstruct your editing
session so that only the last few keystrokes of your editing session are lost.

To recover an editing session, enter the command you used to invoke EVE
with the /RECOVER qualifier. For example, to recover an editing session
you began with the command EDIT/TPU LETTER.RNO, type the following
command and file name and press RETURN:

$ EDIT/TPU/RECOVER LETTER.RNO

You must recover an editing session at a terminal of the same type as the one
you used for your editing session. When EVE finishes recovering the session,
check to ensure that the last few keystrokes of your editing session were
recovered and continue editing the file. If another system interruption occurs
before you exit, a journal file containing the keystrokes from both editing
sessions is saved.

8-23

8.1.6

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

The journal file is saved in the current default editing directory. However,
you can create a journal file in another directory using the /JOURNAL
qualifier:

$ EDIT/TPU/JOURNAL=[ALEXIS.JOURNEYS]LETTER.TJL LETTER.RNO

If you use the /JOURNAL qualifier to create a journal file with a different
file name or a different directory, you must use the /JOURNAL qualifier
and the file name when you recover the file. For example, to recover the file
LETTER.RNO when the journal file is in directory [ALEXIS.JOURNEYS], enter
the following command:

$ EDIT/TPU/JOURNAL=[ALEXIS.JOURNEYS]LETTER.TJL/RECOVER LETTER.RNO

Formatting Text

8-24

The journaling facility has the following restrictions:

• If you use the WRITE FILE command during your editing session to copy
the contents of the buffer to another file, you need to recover the original
version of the file that you were editing. That is, you must specify the
original version number in order to recover your file. For example, if
you are editing an existing file called LETTER.RNO;l and use the WRITE
FILE command, EVE creates LETTER.RN0;2. If you experience a system
interruption, you must enter the original version of LETTER.RNO on
the EDIT /TPU /RECOVER command line. In this example it would be
LETTER.RNO;l. See Section 8.1.7.4 for more information on the WRITE
FILE command.

• EVE is usually unable to recover keystrokes entered after you press
CTRL/C. If you press CTRL/C, end the editing session immediately with
the EXIT command and invoke EVE again.

EVE provides commands that enable you to format your text by setting
margins, tabs, screen width, and word wrap. It allows you to center lines,
take extra white space out of text, and insert page breaks. The following table
lists text formatting commands and describes their functions:

Command

CAPITALIZE WORD

CENTER LINE

FILL

FILL PARAGRAPH

FILL RANGE

What It Does

Capitalizes a single word or each word in the text
highlighted by FIND or SELECT.

Centers the line of text marked by the cursor between
the current left and right margins. The text cursor
moves with the line, remaining on the same character
as the line moves.

Reformats the current paragraph or selected range
according to the margins of the buffer, so the maximum
number of words fits on a line.

Reformats the paragraph the text cursor identifies
according to the margins set for the buffer.

Reformats the currently selected range of text (or the
current FIND range) according to the current margin
settings.

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

Command

INSERT PAGE BREAK

LOWERCASE WORD

SET LEFT MARGIN

SET RIGHT MARGIN

SET TABS AT

SET TABS EVERY

SET TABS INSERT

SET TABS SPACES

SET TABS MOVEMENT

SET TABS VISIBLE

SET TABS INVISIBLE

SET WIDTH

What It Does

Inserts a form feed character at the current editing
position to mark the beginning of a new page. A page
break appears as a small double-F and is always on a
line by itself. By default, CTRL/L inserts a page break.

Makes a single word or the text highlighted with FIND
or SELECT all lowercase.

Sets the left margin in current buffer. The left margin
must be greater than 0 but less than the right margin.
By default, the left margin is 1 .

Sets the right margin for the current buffer. The
right margin must be greater than the left margin. By
default, the right margin is one less than the screen
width. The width is typically 80, so the default margin
is typically 79.

Sets tab stops at the columns that you specify.
Columns are specified as a sequence of positive
integers separated by spaces. By default, tab stops
are set in every eighth column. This command does
not affect the hardware tab settings of your terminal.

Sets tab stops at the specified interval. By default, tab
stops are set in every eighth column. This command
does not affect the hardware tab settings of your
terminal.

Turns on tab insert mode, so that EVE sets a tab stop
at the column where you press the Tab key, moving
over text currently on the screen. SET TABS INSERT
is the default mode.

Changes tab mode to insert an appropriate number of
spaces rather than a tab character when the Tab key
is pressed. Previously existing tab characters are not
affected.

Changes the tab mode so the Tab key becomes a
cursor-control key. Pressing the Tab key moves the
cursor to the next tab stop but does not insert a tab
character.

Displays tabs as visible characters on the screen.

Does not display tabs as visible characters on the
screen. SET TABS INVISIBLE is the default mode.

Sets the width of lines displayed on the screen.
Specify width as a positive integer n. By default,
screen width is your terminal setting, typically 80
columns. If n is greater than 80, EVE sets the terminal
to 132-column mode for the current editing session.
When the EVE session is terminated, the terminal
is restored to the default setting. Setting the width
changes the display of text in all windows.

8-25

Editing Files with the EVE and EDT Editors
8 .1 The EVE Editor

She rhymes with tree,
also with bee,

Command

SET WRAP

SET NOWRAP

SHIFT LEFT

SHIFT RIGHT

UPPERCASE WORD

What It Does

Enables word wrapping at the right margin of the buffer
so EVE starts new lines without a RETURN command
or use of the FILL command. SET WORD WRAP is the
default setting.

Disables word wrapping at the right margin of the
buffer. You must start new lines by pressing RETURN
or by using the FILL command.

Moves the current window to the left a specified
number of columns. The SHIFT LEFT command can
be used only to reverse the effect of the SHIFT RIGHT
command.

Moves the current window to the right a specified
number of columns, allowing you to view columns of
characters that do not currently appear on the terminal
screen.

Makes a single word or the text highlighted with FIND
or SELECT all uppercase.

The following example shows how to use EVE commands to set margins and
screen width and to shift the current window: Invoke EVE to edit the existing
file RHYMES.DAT. Press the DO key, type SET LEFT MARGIN 20, and press
RETURN to set a left margin of 20. The text that currently appears in the
buffer does not change.

and this one makes three.
[End of file]

She rhymes with tree,
also with bee,

Move the cursor to the end of the buffer and type the following new text:
Also with thee, and me. The new text that you enter is inserted at the left
margin of 20.

and this one makes three.
Also with thee, and
me.

[End of file]

Buf~e~\mrtY:M$,~PJJ~!f,1:.;_
Left margin set to 20

8-26

Editing Files with the EVE and EDT Editors
8. 1 The EVE Editor

Reset the left margin to 1. Press the DO key, type SET LEFT MARGIN l, and
press RETURN. Again, the text that currently appears in the buffer does not
change. When you insert new text, it is inserted at a left margin setting of 1.

She rhymes with tree,
also with bee,
and this one makes three.

Also with thee, and
me

[End of file]

Briffer RHYMES .'l>.~t -
Command: SET LEFT MARGIN 1

Next, set the right margin to 25 by pressing the DO key, typing SET RIGHT
MARGIN 25, and pressing RETURN.

She rhymes with tree,
also with bee,
and this one makes three.

Also with thee, and
me.•

[End of file]

B\itf'i:f 1tlffMts··•.;o~1'££Et"'':/.;ti:T,'.
Command: SET RIGHT MARGIN 25

Enter the following new text in your file and notice that it wraps automatically
to the next line at a right margin of 25.

She rhymes with tree,
also with bee,
and this one makes three.

Also with thee, and
me.

And free, and fee, and
see, and brie, and any
number of other words

[End of file]

Right margin set to 25

To reset the right margin to 79, press the DO key, type SET RIGHT MARGIN
79, and press RETURN.

She rhymes with tree,
also with bee,
and this one makes three.

Also with thee, and
me.

And free, and fee, and
see, and brie, and any
number of other words

[End of file]

Right margin set to 79

8-27

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

She rhymes with tre
also with bee,
and this one makes
And free, and fee,
see, and brie, and
number of other wor

[End of file]

Now, set the width of your text window to 20 by pressing the DO key, typing
SET WIDTH 20, and pressing RETURN.

,auf:fi.~r :inmgs::,.,:A.'f:,: ;:: ~:.'.t,';':;; :· : ~
Command: SET WIDTH 20

ymes with tree,
with bee,
his one makes three.

Also
me.

ree, and fee, and
and brie, and any
r of other words.

[End of file]

Command: SHIFT RIGHT 5

She rhymes with tre
also with bee,
and this one makes
And free, and fee,
see, and brie, and
number of other wor

[End of file]

Command: SHIFT LEFT 5

She rhymes with tree,
also with bee,

The appearance of the current text window changes; all text beyond the
twentieth column disappears from the screen. Press the DO key, type SHIFT
RIGHT 5, and press RETURN to view five columns of text beyond the right
boundary of the window.

The window shifts five columns to the right, and you can see characters that
were not visible before the shift operation.

Shift the window to its original location by pressing the DO key, typing
SHIFT LEFT 5, and pressing RETURN.

Set the screen width to 80 by pressing the DO key, typing SET WIDTH 80,
and pressing RETURN.

and this one makes three.
Also with thee, and
me.

And free, and fee, and
see, and brie, and any
number of other words

8-28

[End of file]

13uf:f er B.ttYMES .. D!T
Command: SET WIDTH 80

She rhymes with tree,
also with bee,

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

EVE sets the width of lines on your screen to 80.

The following example shows how to fill a highlighted section of text and
how to fill a paragraph. Using the existing file RHYMES.DAT, set the left
margin to 5 and the right margin to 55.

and this one makes three.
Also with thee, and
me.

And free, and fee, and
see, and brie, and any
number of other words.

[End of file]

~.ift'J.e':r ~'Y'MES:;l}AJ: ...
Command: SET RIGHT MARGIN 55

Next, fill a highlighted section of text by selecting the first three lines of text
(with the Select key) and entering the FILL command. Press the DO key,
type the command FILL, and press RETURN.

~~rb~~~~mt
a:nd::;thiS···<>ll~·ilifiltea.: thr~e.:T .

Also with thee, and
me.

And free, and fee, and
see, and brie, and any
number of other words.

[End of file]

a11~*:e~~:::~i'tws~·n:M:.1·: :

Command: FILL

EVE fills the highlighted text between the left margin of 5 and the right
margin of 55.

She rhymes with tree, also with bee, and this one
· makes three

Also with thee, and
me.

And free, and fee, and
see, and brie, and any
number of other words.

[End of file]

For EVE, a paragraph is defined by blank lines, the top or bottom of the
buffer, or page breaks. To compress text in a paragraph, put the cursor
anywhere in the text of a paragraph, press the DO key, type the command
FILL PARAGRAPH, and press RETURN. .

8-29

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

She rhymes with tree, also with bee, and this one
makes three

Also with thee, and
me.

And free, and fee, and
see, and brie, and any
number of other words.

[End of file]

,Buf:f'~f,;'.B,BfMis'4'f1j'f;;::;;~£;;;;:;
Command: FILL PARAGRAPH

EVE fills the paragraph according to the margins set for the buffer, in this
case 5 and 55.

She rhymes with tree, also with bee, and this one
makes three. Also with thee, and me. And free, and
fee, and see, and brie, and any number of other
words

[End of file]

To center a line of text, put the cursor anywhere on the line you want to
center. For example, to center the text words in the last line of RHYMES.DAT,
put the cursor on thew. Press the DO key, type the command CENTER
LINE, and press RETURN.

She rhymes with tree, also with bee, and this one
makes three. Also with thee, and me. And free, and
fee, and see, and brie, and any number of other
words.

[End of file]

:au~:f:~:;t': Rli~i$ ~ tlA\f:~,::
Command: CENTER LINE

The command centers the line of text between the current left and right
margins; in this example, the left margin is set at 1 and the right margin is set
at 55. The cursor moves with the line, remaining on the character was the
line is centered.

The EVE commands that change the case of text-CAPITALIZE,
UPPERCASE, and LOWERCASE-work either on a selected range of text
or on the word the cursor is on.

To change the case of the first line of text, move the cursor to the word she
and press the Select key. To mark the end of the selection, move the cursor to
the end of the line, press the DO key, and enter the command UPPERCASE.

SHE RHYMES WITH TREE, ALSO WITH BEE, AND THIS ONE
makes three. Also with thee, and me. And free, and
fee, and see, and brie, and any number of other

words.

[End of file]

Command: UPPERCASE

8-30

8.1.7 Using Buffers

Editing Files with the EVE and EDT Editors
8. 1 The EVE Editor

To change the case of a particular word, position the cursor on the word,
press the DO key, and enter the appropriate case-changing command. Once
EVE changes the case of the word, the cursor moves to the next word or to
the end of the line. If the cursor is between two words, the case of the word
to the right of the cursor is changed, and the cursor moves to the end of the
word.

Buffers are storage areas that exist only during an editing session. The
following table describes EVE commands used to create, manipulate, and
delete buffers:

Command

BUFFER

DELETE BUFFER

GET FILE

GO TO

SHOW

SHOW BUFFERS

SHOW SYSTEM
BUFFERS

WRITE FILE

What It Does

Puts the specified buffer in the current window and moves
the cursor to the last location it occupied in that buffer.
Creates a new buffer if the specified buffer does not exist.

Deletes the buffer you specify.

Creates a new buffer that contains the text of the
specified file (or an empty buffer if you specify a file
that does not exist); places the new buffer in the current
window; and places the cursor at the beginning of the
new buffer. If you specify the same file again during an
editing session, GET FILE places the buffer in the current
window. If you specify the same file name and file type
with a different device or directory name during an editing
session, EVE prompts you for a different buffer name into
which to read the file.

Returns the cursor to the location labeled by the MARK
command. If the labeled location is contained in another
buffer, EVE moves the cursor to the other buffer and
places the buffer with the label in the current window.

Displays information about the buffers you have created
during the editing session. If more than one buffer is
active in your editing session, EVE displays information
about the buffer you are currently editing. For information
on other buffers, press the DO key. To resume editing,
press any other key.

Lists the buffers you have created during an editing
session. You can move the cursor through the list and
specify a particular buffer for viewing using the Select
key.

Lists the system buffers created by EVE. You can move
the cursor through the list and specify a buffer for viewing
using the Select key.

Writes the contents of the current buffer to a file. If
you do not specify a file name, EVE uses the buffer
name as the file name. If you created the current buffer
with the BUFFER command, EVE prompts you for a file
specification.

8-31

Editing Files with the EVE and EDT Editors
8. 1 The EVE Editor

8-32

8.1.7.1

When you invoke EVE to edit an existing file, EVE reads the contents of the
file into a buffer. The highlighted status line contains the buffer name, editing
mode, and current direction of the buffer.

To display more information about the current buffer, enter the SHOW
command. The information displayed includes buffer name, name of the
input and output files, whether the buffer has been modified, current mode
and direction, number of lines, margin and screen-width settings, tab-stop
settings, and marks that have been defined in the buffer. If more than one
buffer is active during an editing session, you are prompted to press the DO
key to receive information about the other buffers.

To delete a buffer, enter the DELETE BUFFER command, specifying the
name of the buffer you wish to delete. For example, the command DELETE
BUFFER MYFILE.TXT deletes the buffer called MYFILE.TXT. The buffer name
must be typed in full; no abbreviations are allowed.

If the buffer (in this example, MYFILE. TXT) has been modified, EVE issues
the following prompt to confirm that you want to delete the buffer:. That's a
modified buffer. Type delete_only, write-first, or quit.

If you are viewing a buffer that you want to delete, EVE replaces the buffer
with the oldest buffer existing in the editing session.

Listing Buffers
To display a list of all buffers you have created during an editing session,
enter the SHOW BUFFERS command. You can scroll through the list and
specify a buffer you want to view or any buffers you want to delete. To
display a buffer in your current window, move the cursor to the buffer name
and press the Select key. To delete a buffer, move the cursor to the buffer
name and press the Remove key.

These applications of the Select and Remove keys apply only when you are
viewing a list of buffers.

To display a list of all buffers that EVE has created, enter the SHOW SYSTEM
BUFFERS command. You can scroll through the list and specify a buffer you
want to view by moving the cursor to the buffer name and pressing the Select
key. EVE puts the buffer in your current window.

Note: Do not delete system buffers because these buffers are necessary for some
commands to work properly.

8.1.7.2 Displaying the Contents of the Messages Buffer
EVE uses the Messages window, which appears at the bottom of the screen,
to communicate error and informational messages during an editing session.
The Messages window displays the last message in the Messages buffer.

You can display these messages with the BUFFER command. To display the
contents of the Messages buffer, enter the command BUFFER MESSAGES.
To return to the buffer you were editing, enter the BUFFER command
followed by the name of the appropriate buffer. For example, to return to
the buffer named RHYMES.DAT, you would enter the command BUFFER
RHYMES.DAT. Alternately, you can enter the SHOW BUFFERS command
to display the buffers you have created. Use the Select key to specify the
appropriate buffer.

8.1.7.3

She rhymes with tree,
also with bee,

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

Editing Two Buffers
During an editing session, you can use several buffers if you want to edit
more than one file or if you want temporary storage areas for manipulating
blocks of text. Multiple buffers are especially useful if you want to copy text
from one file to another.

To create a new buffer, enter the GET FILE command and the name of the
file you want to copy to the new buffer. You can use the asterisk wildcard
character (*) as a substitute for all or some of the characters in the file name
and file type. You can use the percent wildcard character (%) as a substitute
for one character in the file name and file type. You can use the ellipsis
wildcard ([...]) as a substitute for a directory specification.

If the specified file exists, EVE reads the contents of the file into a new buffer
and displays the buffer in the current window. If there is more than one
match for a wildcarded file specification, EVE displays a list of choices and
prompts you to provide a more complete file specification. Otherwise, EVE
creates an empty buffer and displays the buffer in the current window.

To change the buffer in the current window, press the DO key, type BUFFER
and the name of the buffer you want to display on the screen, and press
RETURN. If you forget a buffer name, enter the SHOW BUFFERS command
to display the names of active buffers in your editing session, and specify a
buffer with the Select key.

The following example shows how to use two buffers to edit two files during
an EVE editing session. This example assumes that the original versions of
files RHYMES.DAT and OLDFILE.DAT exist in your current default directory.
Invoke EVE to edit the file RHYMES.DAT.

and this one makes three.

[End of file]

Bii:ffef<. RHYMES •. DAT
3 lines read from WORKDISK: [USER]RHYMES.DAT

Schedule for 1 July

Press the DO key, type the command GET FILE OLDFILE.DAT, and press
RETURN to create a new buffer that contains the most recent version of
OLDFILE.DAT.

10:00 AM meeting with supervisor
Read and review memo from Donna
Work on Pascal program
[End of file]

:::rn::set:P' if · .. :~-Orw~~a

Now that you have two buffers, practice copying from one buffer to another.
Place the cursor on the letter R in the word Read, and press the Select key.
Press the down arrow once and the third line of OLDFILE.DAT is highlighted.
Press the Remove key to place the selected line in the Insert Here buffer.

8-33

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

Schedule for 1 July
10:00 AM meeting with supervisor
'.Rij;~a··::~'4~';;~~·!V~~~;~\;ilf~ii~:::.t:~~~r1~~~'~
Work on Pascal program
[End of file]

Move the text cursor to select text.

She rhymes with tree,
also with bee,

The text from OLDFILE.DAT remains in the Insert Here buffer until you
overwrite it with other selected text. Now switch to the other buffer to
resume editing RHYMES.DAT. Press the DO key, type the command BUFFER
RHYMES.DAT, and press RETURN.

and this one makes three.

[End of file]

. J::ii~;~,:rt.t ·•l\·,!f;~fW<l.r.9:

Press the Insert Here key. The text from the Insert Here buffer that was
removed from the buffer OLDFILE.DAT is inserted in the top of the buffer
RHYMES.DAT.

Read and review memo from Donna
She rhymes with tree,
also with bee,
and this one makes three.

[End of file]

8.1.7.4

8-34

:1:.'. :tiis~wt :': t :r:.ot;wa1k<t

If you exit from an editing session in which you have modified multiple
buffers, EVE writes the contents of the current buffer to a file and then asks
you whether you want to write each of the other modified buffers to files.

Reading and Writing Files
There are three ways to read a file into an EVE buffer:

• Invoke EVE with a file specification.

• Enter the INCLUDE FILE command and the name of the file you want to
include. EVE reads the entire contents of a file into a buffer just before
the line where the cursor is located. Using the INCLUDE FILE command
does not change the name of the buffer on the status line.

• Enter the GET FILE command and the name of the file you want to use.
This command creates a new buffer and reads the contents of an existing
file into the buffer. The name of the buffer on the status line is the same
as the file name you specified with the GET FILE command. (See Section
8.1.7.3.)

To write the contents of the current buffer to a file, enter the WRITE
FILE command. You can include a file specification with the WRITE FILE
command. If you do not include a file specification, EVE writes the file using
the input file specification. If you created the current buffer with the BUFFER
command, EVE prompts you for a file specification to which it writes the file.

8.1.8 Using Windows

8.1.8.1

Editing Files with the EVE and EDT Editors
8. 1 The EVE Editor

If you have used the WRITE FILE command in an editing session and you
experience a system interruption, you can recover the editing session. See
Section 8.1.5 for information.

During an EVE editing session, the text buffer you are editing is displayed on
the screen in a window. A highlighted status line appears at the bottom of a
window identifying the name, current editing mode, and current direction of
the buffer.

EVE allows you to view more than one window on your terminal screen at
the same time. For example, you can have two windows in order to view and
edit different sections of the same buffer.

The following table describes EVE commands used to create and manipulate
windows:

Command

SPLIT WINDOW

TWO WINDOWS

NEXT WINDOW

PREVIOUS WINDOW

OTHER WINDOW

ONE WINDOW

DELETE WINDOW

ENLARGE WINDOW

SHRINK WINDOW

Editing One Buffer

Effect in a Window Environment

Splits the window that the cursor is in, forming two
smaller windows. Adding an argument to the command
allows you to divide the window into more than two
parts. For example, SPLIT WINDOW 3 splits the window
into 3 windows.

Synonymous with the SPLIT WINDOW command.

Puts the text cursor in the next (or other) window.

Puts the text cursor in the previous (or other) window.

Synonymous with the NEXT WINDOW command.

Restores the current window as a single, large window.

Deletes the window the text cursor is in, assuming you
are using more than one window.

Enlarges the current window by a specified number of
lines. For example, ENLARGE WINDOW 5 ·enlarges the
window the text cursor is in by 5 lines. The adjacent
window shrinks accordingly.

Shrinks the current window by a specified number of
lines. For example, SHRINK WINDOW 5 shrinks the
window the text cursor is in by 5 lines. The adjacent
window is enlarged accordingly.

To view or edit two sections of a file at the same time, use the SPLIT
WINDOW command. EVE splits your screen and creates two identical
windows. The cursor maintains its position in the buffer but appears only in
the bottom window. Notice that the buffer name in each of the status lines is
the same.

8-35

Editing Files with the EVE and EDT Editors
8. 1 The EVE Editor

8.1.8.2

She rhymes with tree,
also with bee,

Now you can edit different sections of a single file. Any edits that you make
in one window are made simultaneously in the other window. Unless you
are viewing two different sections of a file, you can see EVE incorporate edits
simultaneously in the two windows.

Displaying two sections of a long file makes moving text within a file very
efficient. You can select and remove text from one part of the file and insert
it into the other. To move the cursor from one window to the other, enter the
NEXT WINDOW command.

To remove the second window from the screen and expand the current
window to occupy the whole editing area, press the DO key, type ONE
WINDOW, and press RETURN.

Editing Two Buffers
The following steps describe how to edit two buffers containing different files:

1 Invoke EVE to edit a file.

2 Create two windows by entering the command SPLIT WINDOW. EVE
splits your screen and creates two windows. The cursor maintains its
position in the buffer but appears only in the bottom window. Notice
that the buffer name in each of the highlighted status lines is the same.

3 Put a different buffer in the current window using either the GET FILE or
the BUFFER command.

To create a new buffer in the current window, use the GET FILE
command with a file specification.

Or, to display a buffer that you created earlier in the editing session in
the current window, enter the BUFFER command and the name of the
buffer you want to display.

EVE replaces the current buffer with the buffer named with the GET FILE
command or the BUFFER command.

4 Your terminal screen now displays two different buffers. You can select
and remove text from one buffer and insert it into the other buffer. To
move the cursor from one window to the other, enter the command
NEXT WINDOW.

The following example shows you how to edit two files and move text from
one file to another using two windows. First, invoke EVE to edit the file
RHYMES.DAT.

and this one makes three.

[End of file]

3 lines read from file WORKDISK:[USER]RHYMES.DAT

8-36

Press the DO key, type the command SPLIT WINDOW, and press RETURN
to create two windows on your screen.

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

She rhymes with tree,
also with bee,
and this one makes three.

[End of file]

She rhymes with tree,
also with bee,
and this one makes three.

[End of file]

aujif;e:t:: :&aful!;s': ~A;r<:'<J~;:Fr;~:~:::
Command: SPLIT WINDOW

Press the DO key, type the command GET FILE OLDFILE.DAT, and press
RETURN to create a new buffer containing the text of OLDFILE.DAT in the
bottom window of your screen.

She rhymes with tree,
also with bee,
and this one makes three.

[End of file]

S<:hedule for 1 July
10:00 AM meeting with supervisor
Read and review memo from Donna
Work on Pascal program
[End of file]

4 lines read from file WORKDISK: [USER]OLDFILE.DAT

Move the cursor to the letter R in the word Read, press the Select key,
and press the down arrow twice. The last two lines in OLDFILE.DAT are
highlighted.

She rhymes with tree,
also with bee,
and this one makes three.

[End of file]

Schedule for 1 July
10:00 AM meeting with supervisor

<6i1Ul&nila!

![End of file]

Move the text cursor to select text.

8-37

Editing Files with the EVE and EDT Editors
8. 1 The EVE Editor

She rhymes with tree,
also with bee,

Press the Remove key to place the highlighted text in the Insert Here buffer.

and this one makes three.

[End of file]

Schedule for 1 July
10:00 AM meeting with supervisor
.[End of file]

Remove completed.

She rhymes with tree,
also with bee,

Enter the NEXT WINDOW command to move the cursor to the other
window. Move the cursor to the bottom of the buffer and press the Insert
Here key. The text that you removed from OLDFILE.DAT is inserted into
RHYMES.DAT.

and this one makes three.
Read and review memo from Donna
Work on Pascal program
[End of file]

Schedule for 1 July
10:00 AM meeting with supervisor
[End of file]

8-38

'. i ~:,1·:· •. ··:r\li~art:;;1·:; :t!l:c.~a.:ta·.

Enter the ONE WINDOW command to remove all other windows from the
screen and expand the window containing the cursor to occupy the whole
editing area of the screen. Press the DO key, type ONE WINDOW, and press
RETURN.

If you exit from the editing session, EVE writes the contents of the current
buffer to a file. EVE prompts Write buffer? if another modified buffer exists.
To write the contents of the other buffer to a file, type Y.

8.1.9 Defining Keys

8.1.9.1

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

You can define keys to execute EVE commands or to enter a series of
keystrokes.

EVE does not allow you to define the RETURN key (CTRL/M), the space
bar, or any printing characters (such as letters, digits, and punctuation marks)
on the main keyboard. In addition, DIGITAL recommends that you do not
define the following keys and control key sequences:

DELETE <Xl
F6 (VT200- and VT300-series)
Help (PF2 on VTlOO-series)
CTRL/C
CTRL/I (Tab key)
CTRL/R
CTRL/S
CTRL/T
CTRL/Q
CTRL/U
CTRL/X
CTRL/Y

You can define all other keys, including control keys. You can redefine the
DO key, as long as you assign the DO command to another key.

Defining Keys to Execute an EVE Command
The DEFINE KEY command assigns an EVE command to a single key or
control key sequence. You can, in effect, create your own editing keys to
enter EVE commands that you use frequently. If you press a key to which
you have assigned an EVE command, EVE provides the help text for that
EVE command. Key definitions are discarded when you terminate an EVE
editing session unless you use the SAVE EXTENDED EVE command (see
Section 8.1.9.4) to save key definitions from one editing session to the next.

To define a key, do the following:

1 Press the DO key, enter the command DEFINE KEY, and press RETURN.

2 Type the EVE command that you want to assign to the key and press
RETURN.

3 Press the key to be associated with the EVE command.

The message Key defined appears if you have successfully defined a key.

You can also assign EVE commands to keys by creating an initialization file.
The initialization file contains EVE commands that EVE executes when you
invoke the editor. Each command line in the initialization file should contain
a DEFINE KEY command. The command syntax is as follows:

DEFINE KEY [=key-name] command

The first parameter is the key to be defined, and the second parameter is the
command to assign to the key. For example, the following command line
assigns the MOVE BY WORD command to keypad key 1:

Command: DEFINE KEY=KP1 MOVE BY WORD

8-39

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

8.1.9.2

She rhymes with tree,
also with bee,

The following command assigns the FILL command to CTRL/F:

Command: DEFINE KEY=CTRL/F FILL

You can use three different separators when specifying key names: an
underscore, a hyphen, or a slash. For example, the CTRL/F key can appear
as CTRL_F, CTRL-F, or CTRL/F.

To remove a key definition, use the UNDEFINE KEY command.

Section 8.1.9.3 contains more examples of defining keys to execute EVE
commands.

Defining Keys to Enter a Learn Sequence
The LEARN command assigns a sequence of keystrokes called a learn
sequence to a single key or control key. Learn sequences allow you to enter
the same series of keystrokes in a buffer any number of times by pressing
one key. If you press a key to which you have assigned a learn sequence,
EVE provides a HELP message stating that you have defined the key; the
HELP diagram labels as sequence any keys to which you have assigned a
learn sequence, but does not describe what the key sequence is. All learn
sequences are discarded when you terminate an EVE editing session unless
you use the SAVE EXTENDED EVE command (see Section 8.1.9.4).

Define a learn sequence as follows:

1 Press the DO key, enter the LEARN command, and press RETURN.

2 Type the keystrokes to be remembered.

3 Press CTRL/R followed by the key to be associated with the learn
sequence.

The message Key sequence remembered appears if you have successfully
defined a key.

The following example shows how to define a learn sequence that will insert
a string of text into your file when you press CTRL/F. Invoke EVE to edit the
file RHYMES.DAT.

and this one makes three.

[End of file]

l3ii:ff.~r:· RHYM$$·; OAT·:·····:
3 lines read from file WORKDISK: [USER]RHYMES.DAT

She rhymes with tree,
also with bee,

First, move to the end of the buffer. To begin the definition of the learn
sequence, enter the LEARN command.

and this one makes three.

UEnd of file]

Bur.fit: ·1aYME$t;Jj~J! ;•~ •. ; .:;
Command: LEARN

8-40

She rhymes with tree,
also with bee,

Editing Files with the EVE and EDT Editors
8. 1 The EVE Editor

Insert the text And what is a rhyme? at the end of your file. This is the text
that EVE is to remember.

and this one makes three.
And what is a rhyme?
[End of file]

Buffer RHYMES.PAT I Insert I Forward

Press keystrokes to be learned. Press CTRL/R to remember these keystrokes.

She rhymes with tree,
also with bee,

Press CTRL /R.

and this one makes three.
And what is a rhyme?

[End of file]

Buffer RHYMES.DAT l Insert I Forward

Pres$:¥Jl:~:,k,ey:. tha~ ·yoJl 1/lant:. to use to; se~ what, ,w~s j_nst learned:

She rhymes with tree,
also with bee,

Press CTRL/F, the key to which you are assigning the learn sequence.

and this one makes three.
And what is a rhyme?

[End of file]

lfoffer RHYMES . DA!'

Key sequence remembered

8.1.9.3

, Ip,sert I Fol;'ward

For the rest of the editing session, press CTRL/F to insert the text And what is
a rhyme? at the current cursor position.

Defining a GOLD Key
You can assign two editing functions to one editing key if you create a
GOLD key. One editing function is performed by pressing the editing key.
The other function is performed by first pressing the GOLD key and then
pressing the same editing key. To define a GOLD key, enter the SET GOLD
KEY command and press the key you want to use as the GOLD key. Once
defined, the message GOLD key set. appears in the Messages buffer.

Once you have defined a GOLD key, you can use the GOLD editing keys
that EVE predefines (on VT200-series and VT300-series terminals). To see a
diagram of these commands, enter HELP KEYPAD. The GOLD editing keys
appear in reverse video.

You can also create your own key definitions using the GOLD key. The
following example demonstrates how to define a GOLD key and assign two
commands to a single key. The example defines the number 4 key on the
numeric keypad as the GOLD key and then assigns the BOTTOM and TOP
commands to the CTRL/G key. Thus, pressing CTRL/G alone enters the
BOTTOM command, and pressing the GOLD key followed by CTRL/G
enters the TOP command.

8-41

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

She rhymes with tree,
also with bee,

Invoke EVE to edit the file RHYMES.DAT. Define a GOLD key by pressing
DO, typing SET GOLD KEY, and pressing RETURN.

and this one makes three.
[End of file]

13\ii!fier;::; :: ii°Y1MES:t DkT>'
Command: SET GOLD KEY

She rhymes with tree,
also with bee,

Press the number 4 key on the numeric keypad.

and this one makes three.
[End of file]

Bujf ~:e~< ~~Y:MEs::.p~~; ·: ··.• · :. ; ·: : ...• ·.. . • · '.:.i:::: : . •. I~1t::tn~~;f11·. ~.1; ~:mij:wa;g·
Pr:~s$·. t~~, kE!Y .. :t~.~~ ::·y:.ou·:·:y;~t·.~: ~<?:•:µ~~:::~~ : #i,¢. ·~G:~Pt::~ef~.
GOLD key set

She rhymes with tree,
also with bee,

Press the DO key, type DEFINE KEY, and press RETURN.

and this one makes three.
[End of file]
Buf~e:i: ·:::TB.aYME$;:.DAW:~·:'.·'.:;

Command: DEFINE KEY

And what is a rhyme?
She rhymes with tree,
also with bee,

Type BOTTOM and press RETURN.

and this one makes three.
[End of file]

i~~.i~:~~~:I:~·\·

She rhymes with tree,
also with bee,

Press CTRL/G.

and this one makes three.
[End of file]

Key defined

She rhymes with tree,
also with bee,

Now define the GOLD CTRL/G key to enter the TOP command. Press the
DO key, type DEFINE KEY, and press RETURN.

and this one makes three.
[End of file]

fl)lif~ei.: iiltHY~&S .'.l)A:A:: ;;
Command: DEFINE KEY

8-42

She rhymes with tree,
also with bee,

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

Type TOP and press RETURN.

and this one makes three.
[End of file]

Buffer RHYMES.DAT:
EVE • Ce>mmand: TOP

She rhymes with tree,
also with bee,

I Insert I Forward

Press the GOLD key (number 4 on the numeric keypad) and then press
CTRL/G.

and this one makes three.
[End of file]

Buf!er RHYMES.DAT

Key defined

8.1.9.4

I Insert I Forward

For the rest of your editing session, when you press CTRL/G, EVE executes
the BOTTOM command; and when you press the GOLD key (number 4 on
the numeric keypad) followed by CTRL/G, EVE executes the TOP command.
If you press the GOLD key by mistake, press the Select key to cancel it.

You can define only one GOLD key at a time. To remove a GOLD key
definition, enter the SET NOGOLD KEY command, then press the key you
want to undefine. Alternatively, define another GOLD key, which removes
the original GOLD key definition.

You can also define a GOLD key by inserting a command in an initialization
file, using the following format:

SET GOLD KEY keyname

For example, the following command defines keypad key 4 as the GOLD key:

SET GOLD KEY KP4

To save key definitions from one editing session to the next, use the SAVE
EXTENDED EVE command, described in Section 8.1.9.4.

Saving Key Definitions and Learn Sequences
The command definitions and learn sequences that you assign to keys extend
the power of. the EVE editor, making editing faster and more efficient. You
can save your definitions cumulatively in a section file. EVE creates a section
file automatically when you save definitions with the SAVE EXTENDED EVE
command. Enter the SAVE EXTENDED EVE command before you terminate
the editing session, using the following format:

SA VE EXTENDED EVE filename

The section file is saved in your current default directory unless you include
a device and directory in the file specification. The file type defaults to
TPU$SECTION. You can specify the same file specification each time you
execute the SAVE EXTENDED EVE command. By doing this, you add any
new key definitions and learn sequences to the same section file.

8-43

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

8.1.9.5

8-44

To use this extended version of EVE, you must include the /SECTION
qualifier in th_e command line when you invoke EVE. For example,
to invoke EVE to edit the file RHYMES.DAT using the section file
WORKDISK:[USER]MYDEFS.TPU$SECTION, enter the following command:

$ EDIT/TPU/SECTION=WORKDISK: [USER]MYDEFS.TPU$SECTION RHYMES.DAT

Remember, you can define a command symbol to invoke this or any other
lengthy command line. See the Guide to VMS Text Processing for further
information on building section files.

Creating Initialization Files
Rather than defining keys or setting the characteristics of an editing
session interactively, you can put EVE commands and key definitions in
an initialization file. You can execute an initialization file when invoking EVE
or during an editing session, by using the @ command; for example,

Command: ©SETUP_INIT

An initialization file is an ASCII file containing standard EVE commands.
When invoked, EVE executes an initialization file after the section file.

Each command in an initialization file begins on a separate line. You
can add comments to the file to document it, as long as you precede the
comments with an exclamation mark and place them on a line separate from
a command. An initialization file has a file type of EVE. The following is an
example of an initialization file:

set tabs every 5
set left margin 15
set right margin 75
overstrike mode
define key=Ctrl/D erase word
define key=Gold/W start of line
define key=KP5 fill paragraph
!
!Binds the EDT forward function (KP4 on
!EDT keypad) to GOLD F
!
define key=Gold/F EDT KP4

An initialization file can be specified with the /INITIALIZATION qualifier,
defined as EVE$INIT in your LOGIN.COM file, or named EVE$INIT.EVE in
your SYS$LOGIN directory. The following command invokes EVE with the
initialization file named MY_INIT:

$ EDIT/TPU/INIT=WORK1: [ALEXIS]MY_INIT

By default, EVE uses the initialization file whose logical name is EVE$INIT.
If you define this logical name in your LOGIN.COM file, EVE automatically
uses your initialization file when you invoke the editor. For example, you
could insert the following command in your LOGIN.COM file:

$ DEFINE EVE$INIT WORK1: [ALEXIS]MY_INIT.EVE

Since an initialization file is executed after a section file, the definitions in
an initialization file override those in a section file. For this reason, place
commands that define the editing environment in your initialization file.
Commands that define the environment include the following:

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

• SET CURSOR BOUND or FREE

• SET FIND WHITESPACE or NOWHITESP ACE

• SET KEYPAD

• SET GOLD KEY

• SET LEFT MARGIN

• SET RIGHT MARGIN

• SET SCROLL MARGINS

• SET TABS AT or EVERY

• SET TABS SPACES, MOVEMENT, or INSERT

• SET TABS VISIBLE or INVISIBLE

• SET WIDTH

• SET WILDCARD VMS or UL TRIX

• SET WRAP or NOWRAP

• The default mode of the buffer: CHANGE MODE, OVERSTRIKE MODE,
or INSERT MODE

• The default direction of the buffer: CHANGE DIRECTION, FORWARD,
or REVERSE

8.1.10 Using the TPU Command
EVE is an editor built on the VAX Text Processing Utility (VAXTPU), which
is a programmable text processing utility. The TPU command allows you to
enter any VAXTPU statement or series of statements that can be expressed on
one command line.

To enter a VAXTPU statement, press DO, enter the command TPU followed
by the VAXTPU statement you want to execute, and press RETURN. For
example, to execute the TPU APPEND-LINE statement, which places
the current line at the end of the previous line, enter the command TPU
APPEND_LINE. For more information on the TPU command, type HELP
TPU. See the VAX Text Processing Utility Manual for a complete list of
VAXTPU statements and procedures.

8.1 .11 Using DCL Within EVE
You can execute a DCL command from within EVE, or you can use a
subprocess to switch between the DCL command level and an EVE editing
session very quickly.

8-45

Editing Files with the EVE and EDT Editors
8.1 The EVE Editor

8.1.11.1

8.1.11.2

8.2 The EDT Editor

8-46

Executing a DCL Command
To execute a DCL command from within EVE, press the DO key, type the
EVE command DCL and the DCL command you wish to execute, and press
RETURN. The message Creating DCL subprocess ... appears in the Message
buffer.

When the DCL command has executed, EVE creates another window, if
necessary, and displays the DCL command and its output in the DCL buffer.
(The cursor remains in the buffer it was in before you executed the DCL
command.) You can move the cursor to the DCL buffer, select and remove
text, and copy it to the editing buffer. Do not enter DCL commands that
generate continuous output or run programs that do screen management of
their own, such as the Phone Utility. The DCL command is most useful when
you want to capture output in a buffer.

Creating a Subprocess
You can create a subprocess to switch between an EVE editing session and
DCL command level without terminating your editing session. To create
a subprocess, press the DO key, type the SP AWN command, and press
RETURN. EVE suspends the current editing session and connects your
terminal to a new VMS subprocess. The DCL prompt ($) appears on your
screen.

While the most common reasons to spawn a subprocess are to invoke the
Mail Utility and to run screen-oriented programs, your subprocess can invoke
any VMS utility or execute any DCL command.

To return to your editing session, log out of the subprocess by typing the DCL
command LOGOUT and pressing RETURN. EVE resumes the editing session,
and the cursor appears in the location it occupied before you spawned the
subprocess.

You can also supply a DCL command as a parameter to the SP AWN
command to create a specific subprocess. For example, to execute the Mail
Utility, press DO, type SPAWN MAIL, and press RETURN. The prompt for
the Mail Utility appears on the screen (MAIL>). When you exit from the
Mail Utility, you are automatically logged out of the subprocess and EVE
resumes the editing session.

EDT is an interactive text editor. With EDT you can create a new file, insert
text into it, and modify that text. You can also edit text in existing files.

EDT provides both line and keypad editing. In line editing, you type the
editing command and the range of text you want the command to affect. In
keypad editing, you move the cursor directly to the text you want to change
and press keypad keys to enter the editing commands.

An efficient way to use EDT on a video terminal is to use the keypad as the
primary editing mode in combination with various line-editing commands.
You can also redefine certain keypad and control keys to perform editing
functions not available in keypad editing. This chapter describes keypad
editing as the main editing mode and includes supplementary line-editing
commands and key definitions. (If you are using a hardcopy terminal, you
can use only line-editing commands.)

8.2.1

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

See the VAX EDT Reference Manual for a list of the line-editing commands
available with EDT.

Invoking and Terminating EDT

8.2.1.1

An editing session begins when you invoke EDT with the DCL command
EDIT. In an editing session, you can create and edit a new file, or you can
edit an existing file. The session ends when you enter the EXIT or QUIT
command.

Invoking EDT
To invoke EDT, type the DCL command EDIT and specify as a parameter
the file you want to edit. If the specified file already exists, EDT saves the
existing versions and places a copy of the latest version in your buffer. (A
buffer is the temporary storage area in which you edit text.) The existing
versions of the file remain unchanged. For example, to edit an existing file
named MEMO.TXT, enter the following command line:

$ ED IT MEMO . TXT

Qnce the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.

[EOB]

The first few lines of the latest version of the file appear on the screen. The
cursor is positioned at the top of the screen, and EDT is ready to receive a
keypad-editing command.

If you invoke EDT to create a file, the following message appears:

$EDIT NEWFILE.TXT

(EOB]

J:.~P#'.tJF~:~ie[;~P:,s: :~(>t:.J~ati~!1.

Only the EDT message and the end-of-buffer symbol, [EOB], appear on the
screen, and EDT is ready to receive keypad-editing commands. See Section
8.2.2.1 for a description of EDT line commands.

Note: In the previous examples, you enter EDT in keypad (change) mode
because a startup command file (SYS$LOGIN:EDTINI.EDT) containing the
SET MODE CHANGE command has been executed. If this command is
not executed in an EDT startup command file, you will enter EDT in line
mode. See Section 8.2.7.1 for more information on EDT startup command
files.

8-47

8.2.2

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

8.2.1.2 Terminating EDT
To terminate an EDT session, press CTRL/Z. This puts you into line
editing mode. You can type EXIT or QUIT at the asterisk(*) prompt. QUIT
terminates the editing session and does not save your edits. EXIT saves your
edits in a new version of the file. (Note that the existing versions of a file
remain unchanged regardless of how the editing session is terminated.)

To save your edited text, use the line-editing command EXIT to terminate
EDT. When you enter the EXIT command, EDT creates an output file
containing the edited version of the input file. By default, the output file
has the same name and type as the input file, with the version number
incremented by 1.

For example, if you enter the EXIT command after editing a file named
MEMO.TXT;3, EDT creates a higher version named MEMO.TXT;4 as follows:

*EXIT
DISK1: [USER]MEMO.TXT;4 2 lines
$

To override the default output file name, enter the EXIT command with a
new file specification as the parameter. For example, if you end the same
editing session with EXIT MICE.TXT, EDT names the output file MICE.TXT;l,
provided no other file named MICE.TXT exists.

*EXIT MICE.TXT
DISK1: [USER]MICE.TXT;1 2 lines
$

To terminate EDT without saving your edits, use the line-editing command
QUIT. All edits you have made to the text are ignored, and no output file is
created.

*QUIT
$

The QUIT command is a useful way to terminate EDT when you have opened
a file by mistake. No new file version is created.

Entering EDT Commands

8.2.2.1

8-48

Enter most keypad-editing commands by pressing a keypad key. Enter line
editing commands by typing them after the line-editing prompt and pressing
RETURN.

Entering EDT Line Commands
EDT prompts for line-editing commands with an asterisk. Line-editing
commands usually operate on a range of one or more lines of text that you
specify as a parameter for the command. For example, to display an entire
file on your screen, enter the TYPE command and specify WHOLE as the
parameter as follows:

*TYPE WHOLE

You can abbreviate EDT line-editing commands. For clarity, the examples in
this chapter show complete line-editing commands.

8.2.2.2

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

Entering Keypad Commands
In keypad editing, the screen displays editing changes as you make them.
You type text from the main keyboard and enter keypad-editing commands
from the numeric keypad. (To initiate keypad editing, you must first enter the
line-editing command CHANGE or have SET MODE CHANGE in your EDT
startup file. See Section 8.2.4.2 for information on the CHANGE command.)

The following figure shows the keypad keys and their functions.

EJL::J PF3 PF4

HELP
FNDNXT DELL

FIND UNO L

7 8 9
PAGE SECT APPEND DEL W

COMMAND FILL REPLACE UNO W

4 5 6 ' ADVANCE BACKUP CUT DEL C

BOTTOM TOP PASTE UNO C

1 2 3 ENTER
WORD EOL CHAR

ENTER
CHNGCASE DEL EOL SPECINS

0 •
LINE SELECT

SUBS
OPEN LINE RESET

ZK-1688-84

Each key in the keypad performs at least one editing command; most perform
two. Pressing a key invokes the regular, or upper, function. To invoke the
alternate, or lower, function of a key, press the GOLD key (labeled PFl) first,
followed by the desired key. In the examples that follow, a small diagram
of the keypad highlights the key or keys that perform the command being
described. The text associated with the keypad illustrates the effect of that
editing command.

For example, key 1 performs both the WORD and the CHNGCASE functions.
To invoke the WORD command, press WORD: the cursor moves to the
beginning of the next word.

8-49

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

8-50

WORD

DODD
DODD
DODD
11000 DD
Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.

[EOB]

To invoke the CHNGCASE command, press the GOLD key first and then
CHNGCASE. The character at the cursor or the characters highlighted with
the select key changes from lowercase to uppercase or from uppercase to
lowercase.

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.

[EOB]

CHNGCASE

llllDDD
DODD
DODD
11000 DD
Once The weather turns cold, mice may find a crack in your foundation
and enter your house. They're looking for food and shelter from the harsh
weather ahead.

[EOB]

The supplemental editing keys on the VT200 keypad perform the same
functions as some of the EDT keypad keys. (See the VAX EDT Reference
Manual for more information about these supplemental editing keys.)

8.2.3

8.2.2.3

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

~I-~~(E-~-~-r)~___.

B (Paste) (Cut)
Insert Re-
Here move

I Select I Prev Next
Screen Screen

ZK-1677-84

Canceling EDT Commands
Use CTRL/C to cancel the currently executing EDT command without
affecting previous edits. For example, to stop the display of a long file, press
CTRL/C.

*TYPE WHOLE

\CTRL/C\
tcKtreEt:J
Aborted by CTRL/C

*
The display stops and the CTRL/C message appears.

Getting HELP in EDT

8.2.3.1

EDT provides a help facility for each of the EDT editing modes.

Getting HELP on Keypad-Editing Commands
To display a diagram of the keypad keys and their functions, enter change
mode (assuming you are in line-editing mode) and then press the HELP key
(labeled PF2). (On VT200-series terminals, you can also use the HELP key on
the supplemental editing keypad.) To display information about a particular
keypad command, first press the HELP key and then press the keypad key.

8-51

8.2.4

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

8.2.3.2

8.2.3.3

Getting HELP on Line-Editing Commands
To display a list of EDT topics on which information is available, type HELP
and press RETURN. To display information about a particular command or
topic, type HELP followed by the name of the topic and press RETURN. EDT
responds with a display of information about the topic and a list of related
topics about which information is available. To display information about the
use of a particular command qualifier, type HELP plus the command and that
qualifier and press RETURN. For example, to display information on the use
of /QUERY with the COPY command, enter the following command line:

*HELP COPY /QUERY

Getting HELP on Nokeypad-Editing Commands
Nokeypad commands are used to construct key definitions. To display a list
of the nokeypad-editing commands on which information is available, enter
the following HELP command in line mode:

*HELP CHANGE SUBCOMMANDS

To display information about nokeypad entities (units of text upon which
nokeypad-editing commands operate), enter the following HELP command in
line mode:

*HELP CHANGE ENTITIES

Changing Editing Modes

8.2.4.1

8.2.4.2

8-52

You can easily switch back and forth between line and keypad editing;
you can also enter line-editing commands from keypad mode. Before using
keypad commands, be sure that your terminal type is set properly. (Use
SHOW TERMINAL to display the setting and SET TERMINAL/INQUIRE to
set the terminal type.)

Changing from Keypad to Line Editing
To change from keypad editing to line editing, press CTRL/Z. The asterisk
prompt appears at the bottom of your screen, indicating EDT is ready to
accept line-editing commands.

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.

[EOB]
lcTRL/zl

Changing from Line to Keypad Editing
To change from line editing to keypad editing, enter the CHANGE command:

*CHANGE

The first 22 lines of the file are displayed on your screen. If the file has fewer
than 22 lines, the [EOB] symbol appears below the last line of the file.

8.2.5

8.2.4.3

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

Entering Line-Editing Commands from Keypad Mode
The keypad COMMAND function allows you to enter line-editing commands
without leaving keypad mode. First, enter COMMAND (by pressing GOLD
and then COMMAND) to invoke the Command: prompt, then type the line
editing command and press ENTER. (If you press RETURN by mistake, "M
appears; delete the "M by pressing the DELETE key on the main keyboard,
and press ENTER.) The following example enters the line-editing command
SET QUIET, which suppresses the sound made when EDT issues an error
message:

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.

[EOB]

COMMAND

llDDD
llDDD
DODD
~BO
Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.

[EOB]

~~ii\lililil"<~l1;::~t)ii't

ENTER

DODD
DODD
DODD

~Bl
Recovering from Interruptions

You can recover from interruptions to your editing session in the following
ways:

• Deleting extraneous characters-Pressing CTRL/W removes extraneous
characters (such as a broadcast message or a message indicating that you
have received electronic mail) from the screen and restores the previous
display. Use CTRL/W to ensure that the cursor is in the correct position.

• Resuming an interrupted editing session-The DCL command
CONTINUE resumes an editing session that was interrupted by pressing
CTRL/Y, so long as only built-in DCL commands were entered after
pressing CTRL/Y. (See Chapter 1 for a list of built-in commands.) For
example, you could press CTRL/Y, enter the command SHOW TIME,
and return to your editing session with the CONTINUE command.

8-53

8.2.6

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

(Press CTRL/W to refresh the screen display. The text of your editing
session is once again displayed.)

• Recovering a lost session-By default, EDT keeps a journal file with the
same file name as the input file and a file type of JOU. If the editing
session ends without interruption, the journal file is deleted when you
terminate the session. If the editing session is aborted (for example,
during a system failure, in response to pressing CTRL/Y, or entering the
QUIT /SAVE command), you can recover your edits (with the exception
of those commands entered just prior to the interruption). Enter the
same command line you used to begin the editing session, adding the
/RECOVER qualifier. For example:

$ EDIT/RECOVER MEMO.TXT

EDT will reproduce the editing session, reading the commands from the
journal file and executing them on the screen.

EDT Keypad Editing

8.2.6.1

8-54

While line editing allows you to manipulate large portions of text easily,
keypad editing provides easy manipulation of small units of text. Several
EDT keypad commands enable you to find, insert, delete, substitute, and
move text in a file. The cursor can be moved through a file in a variety of
ways, and the position of the cursor in a file determines how text will be
affected by EDT commands.

Manipulating the Cursor
You can manipulate the cursor with commands that move it unit by unit
through the text or with commands that move it directly to a particular
location. Several commands that move the cursor are controlled by the
ADVANCE and BACKUP commands, which set the cursor's direction forward
and backward. Unless otherwise stated, this chapter assumes the default
direction of the cursor to be ADVANCE.

You can move the cursor by character, word, and line units.

Use one of the following keys to move the cursor by character:

• RIGHT ARROW - Moves the cursor one character to the right.

• LEFT ARROW..,...- Moves the cursor one character to the left.

• CHAR - Moves the cursor one character in the current direction.

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

CHAR

DODD
DODD
DODD

~~D

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

The WORD command moves the cursor to the beginning of the next or
previous word.

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

WORD

DODD
DODD
DODD
11000 DD
Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

The following keys move the cursor by line:

• UP ARROW-Moves the cursor up one line.

• DOWN ARROW-Moves the cursor down one line.

• EOL-Moves the cursor to the end of the current or previous line.

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

EOL

DODD
DODD
DODD
01100 DD
Once the weather turns cold, mice may find a crack in your ,
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

• F12 (the BACKSPACE key on VTlOO-series terminals)-Moves the cursor
to the beginning of the previous line.

8-55

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

8-56

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead. ffi (!BACKSPACE/)

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.

• LINE-Moves the cursor to the beginning of the next line or previous
line.

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.

LINE

DODD
DODD
DODD
0000
•D
Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

The OPEN LINE command terminates a line without moving the cursor. (The
RETURN key also terminates a line, but moves the cursor to the next line.)
The OPEN LINE command is useful when you want to insert a blank line or
a new line of text. When the cursor is placed at the beginning of a line and
the OPEN LINE command is entered, the text on that line is moved down so
that the cursor is at the beginning of a blank line as follows:

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

OPEN LINE

llllDDD
DODD
DODD
DODO
•D
Once the weather turns cold, mice may find a crack in your

foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

To move the cursor by large units, use the SECT and PAGE commands. The
SECT and PAGE commands allow you to scan several lines of text at a time.
The direction in which EDT moves depends upon whether ADVANCE or
BACKUP is set.

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

• SECT-Moves the cursor across a 16-line section of text in EDT's current
direction. If there are fewer than 16 lines, SECT moves the cursor across
the existing lines.

(On the VT200-series terminals, the supplemental editing keypad key
Next Screen moves the cursor 16 lines forward, regardless of EDT's
current direction. The supplemental editing keypad key Prev Scteen
moves the cursor 16 lines backward, regardless of EDT' s current
direction.)

• PAGE-Moves the cursor to the next or previous page boundary (form
feed) or to the end or top of the buffer if there is no boundary. To insert
form feeds in your text, use CTRL/L.

The TOP and BOTTOM commands allow you to move directly to the
beginning or end of a buffer. (See Section 8.2.6.8 for more information
about buffers.)

• TOP-Moves the cursor to the beginning, or top, of the buffer.

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

TOP

llDDD
DODD
DllDD
ODDO DD
Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

• BOTTOM-Moves the cursor to the end, or bottom, of the buffer.

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

BOTTOM

llDDD
DODD
llDDD
~BO
Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
EEDB]

8-57

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

8-58

The ADVANCE and BACKUP commands control the cursor's direction for the
following EDT keypad-editing commands: CHAR, CHNGCASE, EOL, FIND,
FNDNXT, LINE, PAGE, SECT, SUBS, and WORD. Each of the directional
commands remains in effect until you set the cursor in the opposite direction
with the other command.

• ADVANCE-Sets the cursor's direction forward so that subsequent
commands move the cursor in the forward direction. For example, if you
enter the WORD command after using ADVANCE, the cursor moves
forward one word.

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

ADVANCE

DODD
DODD
1111000

~BO
WORD

DODD
DODD
DODD
~BO
Once ~he weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

• BACKUP-Sets the cursor's direction in the backward direction so that
subsequent commands move the cursor toward the top of the buffer. For
example, if you enter the WORD command after using BACKUP, the
cursor moves backward one word.

Once fihe weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

BACKUP

DODD
DODD
DllDD
0000 DD

8.2.6.2

8.2.6.3

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

WORD

DODD
DODD
DODD
11000 DD
Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

The cursor remains set in the backward direction until you press ADVANCE.
For example, if you enter a second WORD command in the preceding
example you receive a message indicating that the command requests EDT to
back up past the top of the buffer.

The ADVANCE and BACKUP commands are particularly important in string
searches; see Section 8.2.6.4 for more information on searches.

Inserting Text
To insert text in EDT keypad editing, position the cursor where you want
the text to be inserted and begin typing; the cursor remains one position to
the right of the last character inserted. Inserting text in the middle of a line
moves both the cursor and the remainder of the line one position to the right
for each character inserted. When the line exceeds 80 characters, the text
you type will either wrap to the following line or disappear off your screen,
depending on the status of the SET SCREEN, SET [NO]TRUNCATE, and SET
[NO]WRAP commands. (See Section 8.2.7.2 for information about screen
formatting commands.)

Deleting and Restoring Text
The delete commands work like the cursor movement commands. In EDT
keypad editing, you can delete by character using the Delete key (<Xl)
(DELETE on VT100-series terminals) and DEL C; by word using F13
(LINEFEED on VT100-series terminals) and DEL W; and by line using DELL,
DEL EOL, and CTRL/U.

The deleted text is stored in a buffer so that you can also restore the character
(UND C), word (UND W), or line (UND L) most recently deleted wherever
and as many times as you need. Note that the undelete commands restore
only the corresponding units of text that were most recently deleted. For
example, if you have deleted two lines of text with the DEL L (delete line)
command, the UNO L (undelete line) command will restore only one line, the
line most recently deleted.

The <K1 key on the main keyboard (the DELETE key on VT100-series
terminals) deletes the character immediately to the left of the cursor. The
EDT keypad-editing command DEL C deletes the character directly at the
cursor. The UNO C command restores the last character deleted with either
the <Xl (DELETE) key or the DEL C command. For example:

Elnce the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

8-59

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

8-60

DELC

DODD
DODD
DDDllll
~BO
nee the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

UNDC

llllDDD
DODD
DDDllll
0000 DD
Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

The F13 key on the main keyboard (the LINEFEED key on VTlOO-series
terminals) deletes to the beginning of the current or preceding word. The
DEL W command deletes to the end of the current word. Blank spaces are
considered part of the word they follow, while all other word delimiters are
considered to be separate words. The UNO W command restores the last
word deleted with either the F13 (LINEFEED) key or the DEL W command.
For example:

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

DELW

DODD
DDDll
DODD
0000 DD
Once the weather turns cold, may find a crack in your
foundation and enter your house. They're looking for food
and shelter from the harsh weather ahead.
[EOB]

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

UNDW

llDDD
DDDll
DODD
~BO
Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

The following commands delete a line (or part of a line) of text:

• DEL L-Deletes from the cursor to the end of the line, including the line
terminator. If the cursor is at the beginning of the line, the entire line is
deleted, and the cursor is positioned at the beginning of the next line.

• DEL EGL-Deletes from the cursor to the end of the line (excluding the
line terminator), leaving the cursor at the end of the truncated line.

• CTRL/U-Deletes from the cursor to the next previous beginning of line,
leaving the cursor at the beginning of the previous line. (If CTRL/U is
used when the cursor is at the beginning of the line, the previous line is
deleted.)

The UND L command restores the last line (or part of a line) that was deleted
with the DEL L, DEL EOL, or CTRL/U command. For example:

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

DELL

DDDll
DODD
DODD
0000 DD

Once the weather f:oundation and enter your house. They' re looking for food and
shelter from the harsh weather ahead.
[EOB]

UNO L

110011
DODD
DODD
0000 DD

8-61

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

8.2.6.4

8-62

Once the weather ~urns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.
[EOB]

The EDT line-editing command DELETE is useful for deleting large sections
of text. Generally, you use line numbers to specify a range for a line-editing
command. For example, to delete lines 306 through 860, enter the following:

*DELETE 306 THRU 860
555 lines deleted

861 Rodents have had a profound effect on human civilization.

*
Note that the EDT line-editing command SET NUMBERS (the default) must
be in effect for line numbers to be displayed in EDT line editing.

You can also use certain keywords (such as WHOLE, REST, BEFORE) as
range specifiers. For example, if you are in the middle of a long buffer and
want to delete from the cursor to the end of the buffer, enter the following:

*DELETE REST
43 lines deleted
[EOB]

*
(You can also specify range by using the EDT keypad-editing command
SELECT. See Section 8.2.6.7 for information on SELECT.)

Locating Text
You can move the cursor to a character string you specify with the FIND and
FNDNXT EDT keypad-editing commands. The FIND command searches for
the specified character string between the current position of the cursor and
the beginning or end of the buffer (depending on whether the ADVANCE
or the BACKUP command is in control). EDT does not distinguish between
uppercase and lowercase letters unless you use the SET SEARCH EXACT
line-editing command. When EDT finds the string, it positions the cursor at
the first character in the string (unless the SET SEARCH END command is
in effect, and the cursor is positioned at the last character in the string). In a
long file the message "Working" may flash on the screen while EDT searches
for the string.

For example, to delete a comma after the word "house" in the following text,
you can use the FIND command to move the cursor to the string "house."
First, enter the EDT keypad command FIND by pressing the GOLD key and
then the FIND key (on the VT200-series terminal you can also use the FIND
key located on the supplemental editing keypad). Next, type the string you
want to locate (the search string) after the Search for: prompt.

FIND

llDllD
DODD
DODD

~BO

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead. Once inside, they may gnaw
through electrical wires and raid your food. Because mice reproduce
so quickly, what started as one or two mice can quickly become an
invasion. If you seal the cracks and holes on the exterior of your
house, you can prevent these rodents from ever getting in.
[EOB]
Se.ai-~h 'tor: house
To search in the forward direction, use the ADVANCE command to enter the
search string.

ADVANCE

DODD
DODD
llDDD
DODO DD
Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. Because elephants reproduce so
quickly, what started as one or two elephants can quickly become an
invasion. If you seal the cracks and holes on the exterior of your
house, you can prevent these rodents from ever getting in.
[EOB]

Use the CHAR command to move the cursor to the comma after the word
"house". Then use the DEL C command to delete the comma.

CHAR

DODD
DODD
DODD
DDllO DD
Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. Because elephants reproduce so
quickly, what started as one or two elephants can quickly become an
invasion. If you seal the cracks and holes on the exterior of your
house;: you can prevent these rodents from ever getting in.
[EOB]

To find the next occurrence of the string located with the FIND command,
use the FNDNXT (find next) command. If there is no other occurrence of
the string (as in the example above), EDT issues the message "String was not
found."

Note: Note that the directional setting of the cursor determines the direction
of the search. After you press FIND, you can press either ADVANCE or
BACKUP (depending on the direction in which you want to search) to
enter the search string. You can also use the ENTER command, which
applies the current direction to the search.

8-63

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

8.2.6.5

8-64

Substituting Text
To substitute one character string for another, you can use the SUBS keypad
editing command or the SUBSTITUTE line-editing command. The EDT
line-editing command can make global substitutions; that is, it can replace
every occurrence of one character string in the specified range with another
string using only one EDT line-editing command. In contrast, you must use
the keypad SUBS command (press the GOLD key followed by the SUBS
key) for each substitution you make. (If you do not specify a range, the
line-editing command SUBSTITUTE replaces only the first occurrence of the
search string in the current line with the substitute string.)

For example, to substitute the string "mice" for "elephants" throughout a
buffer, enter the line-editing command SUBSTITUTE, the old string, and the
new string, separating all three with the same delimiter. You can use any
nonalphanumeric character (except the percent sign and underscore) as a
delimiter for the SUBSTITUTE command, as long as the delimiting character
is not part of either string. To apply the command to the entire buffer in a
global substitution, specify WHOLE as the parameter. When the operation
has been completed, EDT displays each occurrence of the substitution and the
total number of substitutions. The following example substitutes the string
"mice" for each occurrence of the string "elephants" in the following text:

COMMAND

llDDD
llDDD
DODD
~BO
Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. Because elephants reproduce so
quickly, what started as one or two elephants can quickly become an
invasion. If you seal the cracks and holes on the exterior of your
house, you can prevent these rodents from ever getting in.
[EOB]
cQ,hiril~nd a: .l :.'.$1fJa~3tl:!'cJtc!~ffi:1;c::~~~t:e~t>;o:.~1lt~;~NJlJ:lieiti~:

ENTER

DODD
DODD
DODD
~Bl

8.2.6.6

8.2.6.7

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. Because elephants reproduce so
quickly, what started as one or two elephants can quickly become an
invasion. If you seal the cracks and holes on the exterior of your
house, you can prevent these rodents from ever getting in.
[EOB]

Note that a global substitution replaces all occurrences of the string, regardless
of case or surrounding characters. If you want EDT to search for exact
comparisons of case, use the SET SEARCH EXACT command. If the search
string occurs in the middle of a longer string, the substitution will still be
made. For instance, a global substitution of "IN" for "AT" would change all
words containing the string "AT". ("LATER" would become "LINER", "THAT"
would become "THIN", "SAT" would become "SIN", and so on.)

To get EDT to prompt you before each substitution, use the /QUERY qualifier
with the SUBSTITUTE command.

Command: SUBSTITUTE\AT\IN\WHOLE/QUERY

EDT prompts you with a ? to verify each substitution. You can respond with
one of the following:

Y Yes, do the substitution.

N No, do not do the substitution.

Q Quit, terminate the command.

A All, do the rest of the substitutions without query.

Moving Text
Both EDT keypad and line commands can move text; however, only line
editing commands transfer text between buffers and files.

Moving Text Within the File
The EDT keypad-editing command CUT deletes a selected range of text
and the PASTE command inserts it at the cursor's current position. (On the
VT200-series terminals, the supplemental editing keys Remove and Insert
Here perform the same functions as the EDT keypad commands CUT and
PASTE.) For instance, to move the first sentence in the second paragraph of
the example to the end of that paragraph, move the cursor to the beginning
of the sentence and press SELECT. (On the VT200-series terminals, the
supplemental editing key SELECT performs the same function as the EDT
keypad command SELECT.) This marks the beginning of the selected range.
(You can cancel the SELECT command with the RESET command.)

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead. Once inside, they may gnaw
through electrical wire8 and raid your food. Because mice reproduce
so quickly, what started as one or two mice can quickly become an
invasion. If you seal the cracks and holes on the exterior of your
house, you can prevent these rodents from ever getting in.
[EOB]

8-65

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

8-66

SELECT

DODD
DODD
DODD
0000
Dll
To mark the end of the selected range, move the cursor to the end of the
sentence. The terminal highlights a selected range in reverse video. (The
selected range includes the text up to the character preceding the cursor.)

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
e.1ectr~c~1.w.ir~s.and ra~.d .your food .. ;B~4a~se•··ea:eplian:t:s·rep;:o~ij_ce::so·
q,~~:Gkl~:~'.~;wlf~"(i'.: s:bar:ti·.e.(i: as:: ()ne. or. 1/W.o ~~epha~11s :~~~'. :~~i,:~~1,y ;b~:~R~~:i.~~ : ...
f'.nvasioni:: If you seal the cracks and holes on the exterior of your
house, you can prevent these rodents from ever getting in.
[EOB]

Press CUT to delete the selected text.

CUT

DODD
DODD
DDllD
~BO
Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in.
[EOB]

Deleted text remains in the PASTE buffer until you perform another CUT
operation. To restore the text, move the cursor to the appropriate position
and enter the PASTE command. (The text will be inserted directly in front of
the cursor.)

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in
[EOB]

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

PASTE

llDDD
DODD
DDllD
~BO
Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in. Because elephants reproduce so quickly, what started as one
or two elephants can quickly become an invasion.
[EOB]

Because the selected text is held in the PASTE buffer until you perform
another CUT operation (or give the line-editing command CLEAR PASTE),
you can paste the text contained in the PASTE buffer as many times as you
want. You can also enter the PASTE buffer to edit the text it contains. (See
Section 8.2.6.8 for information on using multiple buffers.)

After moving the text, you may want to use the FILL command to reorganize
selected text so that the maximum number of whole words are fitted within
the current line width. The default line width is 80 characters, but you can
use the SET WRAP command to use another line length for filling text.
For example, you can set the line length to 71 characters with the EDT
line-editing command SET WRAP and then fill a selected range of text.

COMMAND

llDDD
llDDD
DODD
0000 DD
Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in. Because elephants reproduce so quickly, what started as one
or two elephants can quickly become an invasion. ,,
[EOB]
CQWtt~f);cJ;;:

ENTER

DODD
DODD
DODD
~Bl

8-67

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

8-68

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in. Because elephants reproduce so quickly, what started as one
or two elephants can quickly become an invasion.
[EOB]

EDT will now wrap lines of inserted text and fill lines of selected text at a line
width of 71 characters. Use the SELECT command to mark the text you want
to affect and then enter the EDT keypad command FILL.

SELECT

DODD
DODD
DODD
0000
011

FILL

llDDD
DllDD
DODD
~BO
Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in. Because elephants reproduce so quickly, what started as one
or two elephants can quickly become an invasion.
[EOB]

There are several EDT line-editing commands that move text. For example,
the MOVE and COPY commands each perform a function similar to those of
the keypad CUT and PASTE operations. MOVE deletes text from one location
and inserts it in another; COPY inserts a copy of the text where specified
without deleting any text. The EDT line-editing commands INCLUDE and
WRITE perform tasks not possible with EDT keypad-editing commands:

• INCLUDE-Copies a file into the buffer you are currently editing or the
buffer you specify. Follow the VMS conventions for file specifications

8.2.6.8

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

when specifying the file to be copied to the buffer. For example, the
following command copies the file named MEM.DAT to the buffer named
BUFl:

Command : : ;I~CEi'tIDE MEI.L DAT =BOF 1

• WRITE-Copies a specified range of text from a buffer (the current buffer
by default) to a specified file. If you do not specify a range, the WRITE
command copies the entire contents of the current buffer. For example,
the following command copies the contents of the current buffer to the
file ANIMALS. TXT:

C.ommand; ·WRITE' ANIMALS. 'l'XT
$DISK1: [USER]ANIMALS.TXT;1 11 lines

The message displays the new file specification and length.

Using Multiple Buffers
When you begin editing a file with EDT, you are working on a copy of the
file in a buffer called MAIN. (EDT also uses a buffer called PASTE to store
the text that you delete with the CUT and APPEND commands; you can
edit this buffer just as you can edit other text buffers.) You can create other
buffers to store pieces of text during your EDT editing session. You can enter
and edit these buffers; you can copy text to and from them; and you can write
their contents to specified files.

To create a buffer, press the COMMAND key. Type the line-editing
command FIND followed by the equal sign and the name you are giving
the buffer, then press the ENTER key. For example, the following command
creates a buffer named BUFl:

COMMAND

llDDD
llDDD
DODD
0000 DD
Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in. Because elephants reproduce so quickly, what started as one
or two elephants can quickly become an invasion.
[EOB]
ilt>i~tt~:::~;··: :r:t.t!~~v,~t·

When you enter this command, the. system responds by displaying only the
[EOB] symbol, which indicates that the current buffer, BUFl, is empty. You
can now insert and edit text just as you would in the MAIN buffer. To return
to the MAIN buffer, follow the same procedure, typing FIND=MAIN rather
than FIND=BUFl. To return to your previous position in the MAIN buffer,
include a period after the buffer's name as follows:

8-69

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

8-70

The buffer named BUFl remains intact until you exit from EDT, regardless of
whether you enter the EXIT or QUIT command. That is, you can enter, edit,
and exit from a buffer as necessary. However, when you exit from EDT, only
the buffer MAIN is saved.

The SHOW BUFFER command displays the number of lines contained in each
buffer and indicates (with an equal sign) the current buffer. The following
example indicates that there are three buffers (including MAIN and PASTE,
which always exist) and that MAIN is the current buffer:

COMMAND

llDDD
llDDD
DODD
~80
Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in. Because elephants reproduce so quickly, what started as one
or two elephants can quickly become an invasion.

Pressing the RETURN key returns the cursor to its previous position in the
buffer.

You can further manipulate the contents of a buffer by specifying the buffer's
name in an EDT line-editing command. For example, if you are in the MAIN
buffer and want to save the contents of BUFl in a file named RODENT.TXT
before exiting from EDT, enter the following command:

COMMAND

llDDD
llDDD
DODD
~80
Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and shelter
from the harsh weather ahead. Once inside, they may gnaw through
electrical wires and raid your food. If you seal the cracks and holes
on the exterior of your house, you can prevent these rodents from ever
getting in. Because elephants reproduce so quickly, what started as one
or two elephants can quickly become an invasion.

8.2.7

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

[EOB]
~<!~and:

,,,,,..,

~:.~fu;q; ;.1 .•• ~,;~~~~~
EDT returns a message indicating that the file has been created, and the
cursor is returned to its previous location in the buffer.

Controlling EDT Sessions

8.2.7.1

You can control some of the characteristics of an EDT editing session with the
SET commands. You can redefine the functions of many keys by using the
EDT line-editing command DEFINE KEY (or CTRL/K in keypad editing)
plus one or more EDT nokeypad-editing commands. (EDT nokeypad
editing commands perform keypad operations; you can combine them in
key definitions to extend your editing capacity. See the VAX EDT Reference
Manual for a list of EDT nokeypad-editing commands.) You can also define
a macro (a sequence of line-editing commands) and define keys in EDT. You
can enter these control commands interactively, or you can include them in
an EDT startup command file.

Startup Command Files
An EDT startup command file contains EDT line-editing commands that are
executed when you invoke EDT before you receive control of the editor. A
startup command file is useful for setup operations in EDT; it can include
specifications for screen format, definitions of text entities, and definitions of
keys and macros. Generally, EDT reads a systemwide startup command file
at the beginning of your editing session. If no systemwide startup command
file exists on your system, EDT looks for a file named EDTINI.EDT in your
default directory and processes the commands in that file.

To create an EDTINI.EDT file, invoke an editor and specify EDTINI.EDT as
the file specification as follows:

$EDIT EDTINI.EDT

Now list the commands, one per line. Some typical commands you might
want to put in a startup command file follow:

SET QUIET
SET WRAP 60
SET SEARCH BOUNDED
SET TAB 5
DEFINE KEY GOLD P AS "PAR."
SET MODE CHANGE

When you exit from the editor, EDTINI.EDT is saved in your default
directory. Every time you invoke the editor, the commands in your
EDTINI.EDT file are in effect.

To specify an EDT startup command file named something other than
EDTINI.EDT, you must include the file specification in the EDIT command
line n as follows:

$ EDIT/COMMAND=startup-file-spec file-spec

For a list of EDT line and nokeypad editing commands, see the VAX EDT
Reference Manual.

8-71

Editing Files with the EV~ and EDT Editors
8.2 The EDT Editor

8.2.7.2

8.2.7.3

8-72

Controlling Screen Format with SET Commands
Several EDT commands control the format of a screen display. Some are
listed below. See the VAX EDT Reference Manual for a comprehensive list of
the SET commands.

• SET LINES n-Controls the number of lines that EDT displays on the
screen. This number, which can be set from 1 to 22, defaults to 22. To
set the screen to 15 lines, for example, type:

Note that if you are editing at slow baud rates, setting the number of
lines low will increase your editing speed.

• SET SCREEN width-Controls the maximum length of the line EDT
displays; the default width is 80 characters. (When there are more
characters than the SET SCREEN command specifies, EDT displays a
diamond at the end of the line.)

If you use the SET SCREEN command to make the screen wider than 80
on either a VTlOO- or VT200-series terminal, EDT changes the terminal's
screen width to 132.

• SET [NO]TRUNCATE-Controls whether the characters that exceed
the SET SCREEN width are displayed on the next line. The default is
SET TRUNCATE, which ends the display of a line at the value of SET
SCREEN.

• SET [NO]WRAP n-Specifies n character positions as the point at
which text will be moved to the beginning of the next line. When
you are inserting text in EDT keypad mode and the cursor position
exceeds the value of n, EDT wraps the next full word to the next line.
(However, when you insert text in the middle of a line, that line does not
always wrap.) The default is NOWRAP. To wrap the text exceeding 75
characters, for example, type:

SET commands have corresponding SHOW commands; see the VAX EDT
Reference Manual for a list of SHOW commands.

Controlling Editing Functions with SET Commands
Several commands control EDT's responses during an editing session, as
follows. (See the VAX EDT Reference Manual for a comprehensive list of the
SET commands.)

• SET ENTITY-Defines boundaries for the WORD, SENTENCE,
PARAGRAPH, and PAGE entities. (The SENTENCE and PARAGRAPH
entities are not used by any default key definitions; consequently, they
are useful only in the key definitions you create with the DEFINE KEY
command.) For example, the default boundaries for the WORD entity are
a line feed, tab, form feed, line terminator, and space. To make the period
and comma the only delimiters of the word entity, enter the following
SET ENTITY command:

8.2.7.4

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

• SET MODE-Controls the EDT editing mode to be entered when the
processing of the EDTINI.EDT file is completed (either line or change
mode, which is keypad mode). For example, to enter change mode
instead of line mode at the beginning of editing sessions, insert the
following command at the end of your EDT startup command file:

SET MODE CHANGE

• SET QUIET-Suppresses the sound made when EDT issues an error
message in keypad mode. The default is NOQUIET.

Defining Keys
To redefine a key, assign one or more EDT nokeypad-editing commands
(listed in the VAX EDT Reference Manual) to the key with the DEFINE KEY
command:

C::oinmand: DEFINE KEY key AS 1~:i;:o~and(s) 11

You can redefine all keypad keys. You can define any GOLD keyboard
key sequence except the keyboard digits, minus sign, and <Kl key (the
DELETE key on VTlOO-series terminals). See the VAX EDT Reference Manual
for a diagram of the keypad key numbers you use to define keypad keys.
Although you can define many keys as control keys, do not redefine the
specialized control keys CTRL/C, CTRL/M, CTRL/O, CTRL/P, CTRL/Q,
CTRL/R, CTRL/S, CTRL/T, CTRL/U, CTRL/Y, and CTRL/Z.

The following example of a key definition redefines the GOLD key and the
S key combination to perform a global substitution, with prompts for the
search string and the replacement string:

DEFINE KEY GOLD s AS "EXT S/? I REPLACE: I/?* I WITH: I /WHOLE. 11

The string within quotation marks consists of an EDT line-editing command
(EXT, which tells EDT that the rest of the line is an EDT line-editing
command); an EDT line-editing command (SUBSTITUTE, abbreviated
"S"); its qualifier (WHOLE); prompts (the question marks followed by the
prompts REPLACE and WITH, and the asterisk (*) directly following the
question mark prompt, allowing you to use either ENTER or RETURN to
enter your response). Note that the period at the end of the definition
(before the final quotation mark) is necessary to make the command execute
immediately when the key is pressed. Subsequent use of GOLD S performs
the substitution, prompting for old and new strings and displaying the
substitutions.

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead. Once inside, they may gnaw
through electrical wires and raid your food. Because mice reproduce
so quickly, what started as one or two mice could quickly become an
invasion. If you seal the cracks and holes on the exterior of your
house, you can prevent the rodents from ever getting in.
[EOB]

Once the weather turns cold, elephants may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead. Once inside, they may gnaw
through electrical wires and raid your food. Because elephants
reproduce so quickly, what started as one or two elephants could
quickly become an invasion. If you seal the cracks and holes on the
exterior of your house, you can prevent the rodents from ever getting in.

8-73

Editing Files with the EVE and EDT Editors
8.2 The EDT Editor

8.2.7.5

8-74

Placing key definitions (such as the GOLD+ S definition) in an EDT startup
command file makes the redefined keys available during every editing session.

Defining EDT Macros
An EDT macro allows you to execute a sequence of EDT line-editing
commands whenever you invoke the macro. To define a macro, use the
EDT line-editing command DEFINE MACRO to define the name of a buffer
as the macro name. Then create and enter a buffer with the same name as
the macro. (See Section 8.2.6.8 for information about using multiple buffers.)
Once in the buffer, type the EDT line-editing commands in the desired
sequence, one command per line. For example, the following macro inserts a
four-line heading.

INSERT;NAME:
INSERT;DEPT:
INSERT;DATE:
INSERT;SUBJ:
[EOB]

Then exit from the buffer. To invoke the macro, enter its name as an EDT
line-editing command. The lines of the heading are inserted at the cursor
position:

NAME:
DEPT:
DATE:
SUBJ:

To make a macro available during other editing sessions, you can place the
DEFINE MACRO command and the macro command sequence in an EDT
startup command file. When you include a macro definition in a startup
command file, be sure the command sequence contains the commands for
entering the macro buffer (FIND=buffer-name.) and returning to the MAIN
buffer (FIND=MAIN.). Note that you must precede each command in the
sequence with the INSERT command. For more information about key and
macro definitions, see the VAX EDT Reference Manual.

9 Processing Files with DIGITAL Standard Runoff

9.1 Formatting Text

DIGITAL Standard Runoff (DSR) is a text formatter that processes source
files into formatted text and intermediate files, and creates tables of contents
and indexes. You process the source and intermediate files with the DCL
commands RUNOFF, RUNOFF /CONTENTS, and RUNOFF /INDEX. With
DSR, you can produce several types of documents including a memo, letter,
and full-length manuscript.

The DSR source file is a file you created with EDT, EVE, or another text
editor. This file has a default file type of .RNO and contains text, DSR
formatting commands, flags and control characters. (DSR flags are special
characters that you insert in text to specify, for example, emphasis of text, case
of characters, and spacing of characters.) When the source file is processed,
the DSR commands cause the text to be formatted into sections, paragraphs,
lists, and so on. You can direct DSR to provide title pages, footnotes, tables of
contents, indexes, and appendixes for the source files it processes by inserting
control characters and other special identifiers within your text.

See the VAX DIGIT AL Standard Runoff Reference Manual for rules on entering
DSR commands and a description of each command.

DSR commands start with the control flag, which by default is represented
by a period. DSR commands can be typed in uppercase, lowercase, or a
combination of uppercase and lowercase. You can abbreviate DSR command
names, but the abbreviations must be exactly as listed in the VAX DIGITAL
Standard Runoff Reference Manual.

Using DSR, you can format text into paragraphs or lists, or maintain a literal
display. You can adjust the margins and the spacing between lines or blocks
of lines. DSR also provides commands for leaving blocks of space on a page
and for writing notes and footnotes.

You can control such features as holding and underlining with embedded
flags. By default, DSR treats certain characters as flags rather than text.
For example, by default, a character is underlined if it is preceded by an
ampersand (&). (To place an actual ampersand in the text, you must enter
an ampersand preceded by an underscore (_&) flag, or you must turn off the
flag governing that character.) One approach is to turn off all flags at the start
of your DSR file. The following commands turn off all flags that are on by
default:

9-1

Processing Files with DIGITAL Standard Runoff
9.1 Formatting Text

9-2

Flag Command

.NO FLAGS ACCEPT

.NO FLAGS COMMENT

.NO FLAGS LOWERCASE

.NO FLAGS SPACE

.NO FLAGS SUBINDEX

.NO FLAGS UNDERLINE

.NO FLAGS UPPERCASE

Flag Character

Underscore (_) by default

Exclamation point (!) by default

Backslash (\) by default

Number sign (#) by default

Right angle bracket (>) by default

Ampersand (&) by default

Circumflex n by default

When you need a particular flag, set the flag on (.FLAGS command), write
the text that uses the flag, and set the flag off (.NO FLAGS command). (See
Section 9 .1. 9.) You can change the special flag character when you specify
the .FLAGS command.

Following are several examples that illustrate how to use various DSR
commands to produce formatted output:

.BREAK

.BLANK

.BLANK 2

.RIGHT MARGIN 34

.CENTER;Twelve Days of Dieting

In the previous example, the .BREAK command ends the current line. The
.BLANK command without a parameter inserts a blank line in the text. The
.BLANK command with the parameter 2 inserts two blank lines in the text.
The .RIGHT MARGIN command sets the right margin at position 34. The
.CENTER command centers the text following the semicolon.

On any line containing a DSR command, the first item on the line must be
a DSR command and the control flag must occupy position 1. Depending
on the particular commands, a line containing a command may contain
additional commands and text. In the following example, the DSR command
occupies its own line. The end of the line terminates the command .

. BLANK 2

In the following example, the command and text are placed on one line. The
semicolon acts as the command terminator .

. CENTER;Twelve Days of Dieting

In the following example, two commands are placed on one line. The
beginning of the second command terminates the first command .

. BLANK 2.CENTER;Twelve Days of Dieting

The following example demonstrates the use of the DSR commands .BLANK
and .CENTER to format text:

Processing Files with DIGITAL Standard Runoff
9.1 Formatting Text

.RIGHT MARGIN 34

.CENTER;Twelve Days of Dieting

.CENTER;Watching Your Weight Increase

.BLANK 2
On the twelfth day of dieting, Millitsa gave to me,
.BREAK
Twelve hot fudge sundaes,
.BREAK
Eleven Hostess Twinkies,
.BREAK
Ten cherry cheese cakes,
.BLANK
Nine ladyfingers,
.BREAK
Eight date nut muffins,
.BREAK
Seven oatmeal cookies,
.BREAK
Six bags of Fritos,
.BREAK
Five coffee rings,
.BLANK
Four sticky buns,
.BREAK
Three Clark bars,
.BREAK
Two marbled cakes,
.BREAK
And a pizza with pepperoni.

The preceding lines of text coded in DSR produce the following output:

Twelve Days of Dieting
Watching Your Weight Increase

On the twelfth day of dieting, Millitsa gave to me,
Twelve hot fudge sundaes,
Eleven Hostess Twinkies,
Ten cherry cheese cakes,

Nine ladyfingers,
Eight date nut muffins,
Seven oatmeal cookies,
Six bags of Fritos,
Five coffee rings,

Four sticky buns,
Three Clark bars,
Two marbled cakes,
And a pizza with pepperoni.

Do not edit the output file from a DSR operation. Instead, modify the DSR
file and reprocess it. If you do make minor modifications to the output file,
the file does not have the carriage return record attribute (which causes
each record in the file to produce a new line automatically when the file is
displayed or printed). The carriage return and line feed control characters are
embedded in the file.

9-3

9.1.1

Processing Files with DIGITAL Standard Runoff
9.1 Formatting Text

Filling and Justifying Text

9-4

By default, DSR fills and justifies text. Filling adds words to each output
line until the addition of another word would exceed the right margin.
Justification inserts additional space between words on a line so that the last
word reaches the right margin. The following example demonstrates how text
is filled and justified:

.RIGHT MARGIN 45
For it so falls out,
That what we have
we prize not
to the worth
while we enjoy it;
but being lacked,
lacked and lost,
Why,
then we rack the value.

The preceding lines of text coded in DSR produce the following output:

For it so falls out, That what we have
we prize not to the worth while we enjoy
it; but being lacked, lacked and lost,
Why, then we rack the value.

If you do not want filling or justification, you must explicitly specify the
.NO FILL command or the .NO JUSTIFY command before you write the
text. Turn filling or justifying back on by specifying the .FILL or .JUSTIFY
command. The following example turns off justification but retains filling,
which produces a ragged right margin:

.RIGHT MARGIN 45

.NO JUSTIFY
For it so falls out,
That what we have
we prize not
to the worth
while we enjoy it;
but being lacked,
lacked and lost,
Why,
then we rack the value .
. JUSTIFY

The preceding lines of text coded in DSR produce the following output:

For it so falls out, That what we have
we prize not to the worth while we enjoy
it; but being lacked, lacked and lost,
Why, then we rack the value.

The next example turns off both filling and justifying, which formats the
output lines in the same way as the input lines:

9.1.2

Processing Files with DIGITAL Standard Runoff
9.1 Formatting Text

.NO FILL.NO JUSTIFY
For it so falls out,
That what we have
we prize not
to the worth
while we enjoy it;
but being lacked,
lacked and lost,
Why,
then we rack the value .
. FILL.JUSTIFY

The preceding lines of text coded in DSR produce the following output:

For it so falls out,
That what we have
we prize not
to the worth
while we enjoy it;
but being lacked,
lacked and lost,
Why,
then we rack the value.

Adjusting Margins and Centering Text
By default, margins are set at 0 and 70. Change the margin settings with the
.LEFT MARGIN and .RIGHT MARGIN commands. The following example
changes the right margin to position 60:

.RIGHT MARGIN 60

To indent one or more lines of text on the left, increase the left margin setting.
After you write the indented text, decrease the left margin setting by the same
amount. Indent on the right by decreasing the right margin setting, writing
the text, and increasing the right margin setting. The following example
indents text by 10 spaces on either margin:

.LEFT MARGIN +10.RIGHT MARGIN -10
indented text
.LEFT MARGIN -10.RIGHT MARGIN +10

You can indent a single line of text from the left margin with the .INDENT
command. The following example indents a line of text eight spaces:

.INDENT 8
I wandered lonely as a cloud

Indent a single line of text from the right margin with the .RIGHT command.
You can also use the .RIGHT command to position a single line of text against
the right margin as follows:

.RIGHT 0
I wandered lonely as a cloud

9-5

9.1.3

Processing Files with DIGITAL Standard Runoff
9.1 Formatting Text

To center text between two margins, use the .CENTER command. Place the
text to be centered on the line following the command as follows:

.CENTER
I wandered lonely as a cloud

You can also end the .CENTER command with a semicolon, and place the
text to be centered on the same line as follows:

.CENTER;! wandered lonely as a cloud

Formatting Paragraphs

9-6

To separate text into paragraphs, place the .PARAGRAPH command between
paragraphs. By default, the .PARAGRAPH command indents the first line
of a paragraph five spaces, inserts one blank line before starting a new
paragraph, and tests to ensure that room remains on the page for at least four
lines of text. You can change the parameter values when you type your first
.PARAGRAPH command or by placing a .SET PARAGRAPH command at the
top of the file. The following example does not indent the first line of each
paragraph and ensures that room remains on the page for at least three lines
of text:

.SET PARAGRAPH 0,1,1
paragraph of text
.PARAGRAPH
paragraph of text
.PARAGRAPH

You can also separate text by inserting .BLANK or .SKIP commands. The
.BLANK command inserts the exact number of lines specified by the
parameter (which defaults to 1). The .BLANK command does not provide
for indentation or for testing the room left on the page; perform these actions
with the .INDENT and . TEST PAGE commands. The following example
separates two blocks of text with one blank line after first testing to ensure
that at least three lines remain on the page:

paragraph of text
.TEST PAGE 3
.BLANK
paragraph of text

The .SKIP command takes into account the spacing you have in effect. When
the default is in effect (spacing is 1), .BLANK and .SKIP are equivalent.
However, if multiple spacing is in effect, the .SKIP command multiplies the
skip value by the spacing value. You can specify something other than single
spacing with the .SP ACING command. (The .SP ACING command also affects
the test page value in the .PARAGRAPH and .SET PARAGRAPH commands.)
The following example demonstrates double spacing, with two extra lines
between blocks of text:

9.1.4

Processing Files with DIGITAL Standard Runoff
9.1 Formatting Text

.SPACING 2
block of text
.SKIP
block of text
.SKIP

Formatting Literal Text
To have text appear in the output file exactly as it appears in the DSR source
file, enclose it with . LITERAL and .END LITERAL commands as follows:

.RIGHT MARGIN 34

.BLANK 2

.LITERAL
Twelve Days of Dieting

Watching Your Weight Increase

On the twelfth day of dieting, Millitsa gave to me,
Twelve hot fudge sundaes,
Eleven Hostess Twinkies,
Ten cherry cheese cakes,

Nine ladyfingers,
Eight date nut muffins,
Seven oatmeal cookies,
Six bags of Fritos,
Five coffee rings,

Four sticky buns,
Three Clark bars,
Two marbled cakes,
And a pizza with pepperoni .
. END LITERAL

The preceding lines coded in DSR produce the following output:

Twelve Days of Dieting
Watching Your Weight Increase

On the twelfth day of dieting, Millitsa gave to me,
Twelve hot fudge sundaes,
Eleven Hostess Twinkies,
Ten cherry cheese cakes,

Nine ladyfingers,
Eight date nut muffins,
Seven oatmeal cookies,
Six bags of Fritos,
Five coffee rings.

Four sticky buns,
Three Clark bars,
Two marbled cakes,
And a pizza with pepperoni.

Literal text is not filled and not justified; lines are the same as in the input
file. Except for the .END LITERAL command, commands and flags are not
recognized in literal text. In addition, commands and flags placed before the
literal text do not affect the literal text except that you can set the left margin,
set tab stops, set spacing, start holding, and start underlining. You cannot

9-7

9.1.5

Processing Files with DIGITAL Standard Runoff
9.1 Formatting Text

Formatting Lists

9.1.5.1

9-8

reset any of these items until the literal text ends (for example, you would
have to bold the entire literal block). The following example indents the
literal text (the .MARGIN commands must be outside the literal block):

the text filled and justified
.LEFT MARGIN +5
.LITERAL
the literal text
.END LITERAL
.LEFT MARGIN -5

If you want the positional effect of literal text but also want to use commands
and flags, you can turn off filling and justifying (.NO FILL and .NO JUSTIFY)
and turn it back on after the literal text. If the literal text contains blank lines,
specify .KEEP when you turn off the filling and justification as follows:

the text filled and justified
.NO FILL
.NO JUSTIFY
.KEEP
the literal text
.FILL
.JUSTIFY
.NO KEEP

For a small number of lines, you might place .BREAK or .BLANK commands
(specify .BLANK 0 for single spacing) between the literal lines.

You can format text as lists. Although by default DSR creates a numbered
list, you can create a bulleted or lettered list or use any other character or
symbol to precede the list elements.

Numbered Lists
The following three commands format a numbered list:

• .LIST-Starts the list by leaving one blank line and indenting. The text of
the list is indented nine spaces if the left margin is currently 0. Otherwise,
the text of the list is indented four spaces.

• .LIST ELEMENT-Starts an element (an item) within the list. You can
have any number of elements.

• .END LIST-Ends the list and writes a blank line.

Each element is preceded by a number starting with 1. Elements are
separated by blank lines as follows:

.LIST

.LIST ELEMENT;grosbeak

.LIST ELEMENT;goldfinch

.LIST ELEMENT;redpoll

.LIST ELEMENT;sparrow

.END LIST

Processing Files with DIGITAL Standard Runoff
9.1 Formatting Text

9.1.5.2

The preceding lines of text coded in DSR produce the following output:

1. grosbeak

2. goldfinch

3. redpoll

4. sparrow

Text for each list element can be placed after the semicolon terminating the
command (as shown in the example) or can be placed on a line or lines
following the command. A single list element continues until the next .LIST
ELEMENT command or an .END LIST command occurs. The list element can
contain commands and flags.

To change the spacing between list elements, specify the number of spaces
as parameter 1 to the .LIST command. For example, .LIST 0 places no spaces
between list elements.

Bulleted Lists
If you do not want your list to be numbered, as it is by default, substitute
another character for the numbers by specifying that character as the second
parameter of the .LIST command. Enclose the character in quotation marks
or apostrophes; the character does not have to be preceded by a comma if the
first parameter is not specified. In the following example, the lowercase "o"
gives the effect of an unfilled bullet:

.LIST 11 0 11

.LIST ELEMENT;ferret

.LIST ELEMENT;mink

.LIST ELEMENT;rabbit

.LIST ELEMENT;sable

.LIST ELEMENT;raccoon

.END LIST

The preceding lines of text coded in DSR produce the following output:

o ferret

o mink

o rabbit

o sable

o raccoon

9-9

Processing Files with DIGITAL Standard Runoff
9.1 Formatting Text

9.1.5.3

9.1.5.4

9-10

Nested Lists
You can nest one list within another as long as the nested list is entirely
within one element of the outer list as follows:

.LIST 0

.LIST ELEMENT;German

.LIST ELEMENT;Russian

.LIST ELEMENT;Swedish

.LIST ELEMENT;Yugoslavian

.LIST 0,"o"

.LIST ELEMENT;Serbian

.LIST ELEMENT;Croatian

.LIST ELEMENT;Macedonian

.END LIST

.LIST ELEMENT;Turkish

.LIST ELEMENT;Scottish

.LIST ELEMENT;Irish

.END LIST

The preceding lines of text coded in DSR produce the following output:

1. German
2. Russian
3. Swedish
4. Yugoslavian

o Serbian
o Croatian
o Macedonian

5. Turkish
6. Scottish
7. Irish

Lists Beginning with Letters and Roman Numerals
By default, DSR numbers lists with decimal numbers. You can, however,
produce a list whose elements are preceded by uppercase or lowercase letters
or Roman numerals by specifying the .DISPLAY ELEMENTS command. You
must place the .DISPLAY ELEMENTS command between the .LIST command
and the first .LIST ELEMENT command. The following example produces a
numbered list using lowercase Roman numerals:

.LIST 0

.DISPLAY ELEMENTS RL

.LIST ELEMENT;tan

.LIST ELEMENT;beige

.LIST ELEMENT;rust

.LIST ELEMENT;brown

.END LIST

The preceding lines of text coded in DSR produce the following output:

i. tan
ii. beige

iii. rust
iv. brown

9.1.6

9.1.7

Processing Files with DIGITAL Standard Runoff
9. 1 Formatting Text

Leaving Space on a Page

Formatting Notes

The text of a file usually starts on the fourth or fifth line from the top of
a page, depending on the layout of the document. To leave extra space at
the top of a page, specify an amount in a .FIGURE command (the .BLANK
command does not work at the top of a page). To leave extra space in the
middle of a page, use either the .FIGURE or .BLANK command. If you want
a certain amount of space all on one page, use the .FIGURE or .FIGURE
DEFERRED command. These commands insert the required space on the
next page if it does not fit on the current page. While the .FIGURE command
leaves the rest of the current page blank, the .FIGURE DEFERRED command
fills the rest of the current page using the text and commands that follow the
.FIGURE DEFERRED command.

The following example writes 40 blank lines to the current page if they will
fit; otherwise, the 40 blank lines are placed at the top of the next page,
and the current page is filled from the input lines following the .FIGURE
DEFERRED line.

text filled and justified
.FIGURE DEFERRED 40
text filled and justified

You can also create space on a page by entering the .LITERAL command,
pressing RETURN once for each empty line, and entering the .END LITERAL
command. This technique allows you to see the amount of space you are
creating. However, the space will be split if you cross page boundaries.

The .NOTE command narrows the left and right margins, inserts a blank
line, writes a centered title, inserts another blank line, and writes the text that
follows the .NOTE command. The .END NOTE command writes a blank line
and restores the margin settings. The title defaults to the word NOTE.

The following example writes a note with the title CAUTION:

.NOTE CAUTION
Do not operate the machine outdoors in wet weather.
Do not operate the machine in a wet area indoors or outdoors.
Such actions may lead to a severe electrical shock .
. END NOTE

The preceding lines of text coded in DSR produce the following output:

CAUTION

Do not operate the machine outdoors in wet weather.
Do not operate the machine in a wet area indoors or
outdoors. Such actions may lead to a severe
electrical shock.

9-11

9.1.8

9.1.9

Processing Files with DIGITAL Standard Runoff
9.1 Formatting Text

Formatting Footnotes
The .FOOTNOTE command places the text following the command at the
bottom of the page if enough room exists. If the entire footnote does not fit,
the whole footnote is placed at the bottom of the next page. No automatic
formatting occurs; you must determine how to format the footnote with DSR
commands. In addition, no automatic footnote symbols are provided. The
.END FOOTNOTE command ends the footnote and automatically restores
any case, fill, justify, and margin settings you might have changed within the
footnote.

The following example demonstrates the use of a footnote:

Press the START button firmly.
Release the START button as soon as the engine starts. (1)
.FOOTNOTE.BLANK.LEFT MARGIN +4.INDENT -4
(1)
If the engine does not crank, ensure that the battery cables
are firmly connected to the battery. Sometimes the cables are
disconnected for shipping .
. END FOOTNOTE
Push the choke in until you hear it click.
Pull the throttle about halfway down but do not let the
engine stall.
After about two minutes, push the choke all the way in
and pull the throttle all the way down .
. PARAGRAPH 0
Before engaging the drive train, ensure that you are in a
comfortable position to operate the machine.
Two seat controls are provided for your comfort.

The preceding lines of text coded in DSR produce the following output:

Press the START button firmly. Release the START button as
soon as the engine starts.(1) Push the choke in until you
hear it click. Pull the throttle about halfway down but do
not let the engine stall. After about two minutes, push the
choke all the way in and pull the throttle all the way down.

Before engaging the drive train, ensure that you are in a
comfortable position to operate the machine. Two seat
controls are provided for your comfort.

(1) If the engine does not crank, ensure that the battery
cables are firmly connected to the battery. Sometimes
the cables are disconnected for shipping.

Bolding and Underlining Text

9-12

The following steps describe how to bold a single character:

1 Turn the bold flag on. (The bold flag is off by default.)

2 In the text, precede the character to be bolded by the bold flag (an asterisk
by default).

3 Turn the bold flag off to enable the use of the flag as a normal character.

The following example bolds the numbers 3 and 7:

.FLAGS BOLD
Follow route *3 to route *7 .
. NOFLAGS BOLD

Processing Files with DIGITAL Standard Runoff
9.1 Formatting Text

The following steps describe how to underline a single character:

1 Turn the underline flag on. (The underline flag is on by default.)

2 In the text, precede the character to be underlined by the underline flag
(an ampersand by default).

3 Turn the underline flag off to enable the use of the flag as a normal
character.

The following example underlines the letters A and B:

.FLAGS UNDERLINE
&A is for Amy and &B is for Basil .
. NOFLAGS UNDERLINE

The following steps describe how to bold or underline a block of text:

1 Turn on the uppercase and lowercase flags (they are on by default) in
addition to the bold or underline flag.

2 Start the block of text with the uppercase flag (a circumflex by default)
followed by the bold or underline flag.

3 End the block of text with the lowercase flag (a backslash by default)
followed by the bold or underline flag.

The following example bolds a line of text:

.FLAGS BOLD

.FLAGS UPPERCASE

.FLAGS LOWERCASE
A*KEEP OFF THE GRASS, PLEASE*
.NOFLAGS BOLD
.NOFLAGS UPPERCASE
.NOFLAGS LOWERCASE

9.2 Laying Out a Document
By default, DSR produces a document of consecutively numbered pages (that
is, if you do not specify .LAYOUT, .CHAPTER, or .APPENDIX commands).
On each page, the text area is the fourth line through the bottom line. Page
numbers appear in the upper right corner as "Page 2," "Page 3," and so on,
starting with page 2. Running heads (chapter names or other designated text)
appear in the upper left corner.

You can adjust the position of page numbers and running heads with the
.LAYOUT command. Layout codes 1, 2, and 3 center the page number at the
bottom of the page and adjust the running heads as follows:

• Layout code 1 centers running heads at the top of the page.

• Layout code 2 moves the running heads to one upper corner or the other
depending on whether the page number is odd or even.

• Layout code 3 puts the running heads in the upper left corner and puts
the date in the upper right corner.

Specify the .LAYOUT command at the beginning of your file. The following
command adjusts the layout to code 2:

.LAYOUT 2,3

9-13

9.2.1

9.2.2

Processing Files with DIGITAL Standard. Runoff
9.2 Laying Out a Document

Chapters and Appendixes

Sections

9-14

To divide a document into chapters, start each chapter with the .CHAPTER
command. The title of the chapter must follow the command name on the
same line. The lines following the .CHAPTER command are part of that
chapter until you enter another .CHAPTER command or an .APPENDIX
command.

By default, chapters are numbered consecutively within the document,
beginning with Chapter 1. You can force the numbering of a chapter (for
example, in order to place each chapter in a separate file) by preceding the
.CHAPTER command with a .NUMBER CHAPTER command. The following
example begins Chapter 2:

.NUMBER CHAPTER 2
.CHAPTER starting procedures

The preceding lines of text coded in DSR produce the following output:

<12 blank lines>
CHAPTER 2

STARTING PROCEDURES

DSR starts a chapter on a new page with 12 blank lines at the top of the
page. The number of the chapter and the chapter title are centered on the
page in uppercase characters. You can adjust the appearance of the chapter
number with the .DISPLAY CHAPTER command.

The .APPENDIX, .NUMBER APPENDIX, and .DISPLAY APPENDIX
commands work similarly to the chapter commands. However, by default,
appendixes are lettered sequentially starting with Appendix A. The following
example starts Appendix C:

.NUMBER APPENDIX C
.APPENDIX connecting the battery

The .HEADER LEVEL command divides a document into sections and
subsections identified by a decimal numbering scheme to a maximum
depth of 6. The topmost section is header level 1. Each level is numbered
sequentially starting with 1 unless a .NUMBER LEVEL command precedes
the .HEADER LEVEL command. The following example shows a document
with three sections:

text
.HEADER LEVEL 1 normal starting
text
.HEADER LEVEL 1 cold weather starting
text
.HEADER LEVEL 1 troubleshooting
text

Processing Files with DIGITAL Standard Runoff
9.2 Laying Out a Document

The preceding lines of text coded in DSR produce the following output:

text
1 NORMAL STARTING
text
2 COLD WEATHER STARTING
text
3 TROUBLESHOOTING
text

Subsections are numbered within their respective higher-level sections as
follows:

text
.HEADER LEVEL 1 normal starting
text
.HEADER LEVEL 2 cold engine
text
.HEADER LEVEL 2 warm engine
text
.HEADER LEVEL 1 cold weather starting
text
.HEADER LEVEL 2 above zero
text
.HEADER LEVEL 2 below zero
text
.HEADER LEVEL 1 troubleshooting
text

The preceding lines of text coded in DSR produce the following output:

text
1 NORMAL STARTING
text
1.1 Cold Engine
text
1.2 Warm Engine
text
2 COLD WEATHER STARTING
text
2.1 Above Zero
text
2.2 Below Zero
text
3 TROUBLESHOOTING
text

If the sections are within chapters or appendixes, the section number is
prefixed by the chapter or appendix identifier and a decimal point as follows:

.NUMBER CHAPTER 2

.CHAPTER starting procedures
text
.HEADER LEVEL 1 normal starting
text
.HEADER LEVEL 1 cold weather starting
text
.HEADER LEVEL 1 troubleshooting
text

9-15

9.2.3

Processing Files with DIGITAL Standard Runoff
9.2 Laying Out a Document

Running Heads

9-16

The preceding lines of text coded in DSR produce the following output:

the chapter heading and text
2.1 NORMAL STARTING
text
2.2 COLD WEATHER STARTING
text
2.3 TROUBLESHOOTING
text

You can force the numbering of a section with the .NUMBER LEVEL
command. The following example forces the start of section 1.2:

.NUMBER LEVEL 1,2

.HEADER LEVEL 2 Warm Engine

You can change the appearance of section headers with the .STYLE
HEADERS command. The default .STYLE HEADERS settings cause level
1 headers to be written in all uppercase and level 2 headers to be written
with the initial letter of every word in uppercase. The following command
changes the settings so that the headers below level 1 are written exactly as
you type them:

.STYLE HEADERS 3,1,0,7,7,2,1,9,2

By default, chapter and appendix titles appear as the first line of running
heads. If the document does not contain chapters or appendixes, no running
heads appear. Running heads are always placed at the top of the page; their
exact position can be changed with the .LAYOUT command.

To use level 1 header titles as the second line of running heads, enter the
following commands at the start of your DSR file:

.SUBTITLE

.AUTOSUBTITLE

To use titles other than chapter and section titles as running heads, use the
.TITLE and .SUBTITLE commands. The .TITLE command affects the first line
of the running head; the .SUBTITLE command affects the second line of the
running head.

The title specified by a .TITLE command remains in effect until you specify
another .TITLE or .CHAPTER command. If you want to use a specified title
in place of a chapter name, enter the .TITLE command immediately after the
.CHAPTER command. The title specified by a .SUBTITLE command remains
in effect until you specify another .SUBTITLE command or until a .HEADER
LEVEL command occurs-(if automatic subtitles are in effect).

9.2.4 Pagination

Processing Files with DIGITAL Standard Runoff
9.2 Laying Out a Document

If the document is not divided into chapters, pagination is sequential
throughout the document. If the document is chapter oriented, pagination
is sequential throughout the document only if .LAYOUT 3 is in effect.
Otherwise, pagination is sequential within each chapter and appendix; the
page number starts with the chapter or appendix identifier and a hyphen.

You can suspend the numbering of pages with the .NO NUMBER command
(unless .LAYOUT 3 is in effect). Create a document that is not paged (no
running heads, no page numbers) by entering the command .NO PAGING.

9.3 Processing DSR Files

9.3.1

Enter the RUNOFF command to process a DSR file. Specify the name of
the DSR file as the parameter; the file type defaults to RNO. The following
example processes a file named EXAMPLE.RNO in your default directory.

$ RUNOFF EXAMPLE

If you do not specify the /OUTPUT qualifier, the RUNOFF command
produces an output file with the same name as the input file and a file
type of MEM. The preceding example produces an output file named
EXAMPLE.MEM. The following example produces an output file named
EXAMPLE.MEM from a DSR file named TEMPLATE.RNO:

$ RUNOFF/OUTPUT=EXAMPLE TEMPLATE

See the VAX DIGIT AL Standard Runoff Reference Manual for a complete
description of the RUNOFF command and its qualifiers.

Producing a Table of Contents
The table of contents you produce can display chapter titles and numbers,
header levels, and appendix titles and letters. To produce a table of contents,
do the following:

1 Enter the command RUNOFF/INTERMEDIATE, specifying the RNO file
as the parameter. The name of the intermediate file produced is the same
as the name of the DSR file with a file type of BRN, unless you specify
a different name. You will also get the usual output (MEM) file; you can
specify /NOOUTPUT if you do not want the MEM file.

2 Enter the command RUNOFF /CONTENTS, specifying the intermediate
file as the parameter. This command produces an unformatted table of
contents file with the same name as the input file but with a file type of
RNT.

3 Enter the RUNOFF command, specifying the RNT file as the parameter.
You must specify the file type. This command produces a formatted table
of contents file with a file type of MEC.

The following example processes a file named OPER.RNO. It produces an
output file named OPER.MEM and a table of contents named OPER.MEC:

$ RUNOFF/INTERMEDIATE OPER
$ RUNOFF/CONTENTS OPER
$ RUNOFF OPER.RNT

9-17

9.3.2

Processing Files with DIGITAL Standard Runoff
9.3 Processing DSR Files

To produce a table of contents from more than one file, you must concatenate
the intermediate files when you enter the RUNOFF /CONTENTS command.
(You cannot use wildcard characters.) The following example produces output
files and a single table of contents from three DSR files:

$ RUNOFF/INTERMEDIATE OPER1
$ RUNOFF/INTERMEDIATE OPER2
$ RUNOFF/INTERMEDIATE OPER3
$ RUNOFF/CONTENTS/OUTPUT=OPER OPER1+0PER2+0PER3
$ RUNOFF OPER.RNT

The table of contents is based on the .CHAPTER, .APPENDIX, and .HEADER
LEVEL commands in your DSR file. You can control the formatting to some
extent with the qualifiers to the RUNOFF/CONTENTS command. You can
write additional information to the table of contents with the command
.SEND TOC.

See the VAX DIGIT AL Standard Runoff Reference Manual for more information
about producing a table of contents with DSR.

Producing an Index

9-18

To create an index, you enter .INDEX and .ENTRY commands throughout
your DSR file. (You can also use the index flag to index a word of text.)

The .INDEX command names an item to be placed in the index. Position the
.INDEX command as close as possible to the text being indexed. The item
appears in the index followed by the number of the page on which it was
written to the formatted text (MEM) file. The following example makes index
entries for each section:

text
.HEADER LEVEL 1 Normal Starting
.INDEX Normal starting
text
.HEADER LEVEL 1 Cold Weather Starting
.INDEX Cold weather starting
text
.HEADER LEVEL 1 Troubleshooting
.INDEX Troubleshooting
text

The index entries would appear as follows:

Cold weather starting, 2-2
Normal starting, 2-1
Troubleshooting, 2-3

Use the subindex flag (by default a right angle bracket) to indicate subentries
in the index. A subentry is listed under the higher-level item in the index
and has its own page number. The subindex flag must be turned on. The
following example produces one index entry for "Starting" under which are
listed the two subentries "normal" and "cold weather":

Processing Files with DIGITAL Standard Runoff
9.3 Processing DSR Files

text
.HEADER LEVEL 1 Normal Starting
.FLAGS SUBINDEX
.INDEX Normal starting
.INDEX Starting>normal
.NOFLAGS SUBINDEX
text
.HEADER LEVEL 1 Cold Weather Starting
.FLAGS SUBINDEX
.INDEX Cold weather starting
.INDEX Starting>cold weather
.NOFLAGS SUBINDEX
text
.HEADER LEVEL 1 Troubleshooting
.INDEX Troubleshooting
text

The index entry for "Starting" would appear as follows:

Starting
cold weather, 2-2
normal, 2-1

You can make an entry without a page number in the index with the .ENTRY
command. Usually these index entries are used for cross references. The
following example produces an index entry for "Weather," under which the
subentry "see cold weather" appears without a page number:

.FLAGS SUBINDEX

.ENTRY Weather>see cold weather

The index entry would appear as follows:

Weather
see cold weather

After you enter the index commands to your file, you are ready to run the
indexing program. To produce an index, do the following:

1 Enter the command RUNOFF/INTERMEDIATE, specifying your RNO
file as the parameter. The name of the intermediate file produced is the
same as the name of the DSR file but with a file type of BRN, unless you
specify a different name. You will also get the usual output (MEM) file;
you can specify /NOOUTPUT if you do not want the MEM file.

2 Enter the command RUNOFF /INDEX, specifying the intermediate file as
the parameter. This command produces an unformatted index file with
the same name as the input file but with a file type of RNX.

·3 Enter the RUNOFF command, specifying the RNX file as the parameter.
You must specify the file type. This command produces a formatted index
file with a file type of MEX.

The following example processes a file named OPER.RNO. It produces an
output file named OPER.MEM, a table of contents named OPER.MEC, and
an index named OPER.MEX.

$ RUNOFF/INTERMEDIATE OPER
$ RUNOFF/CONTENTS OPER
$ RUNOFF/INDEX OPER
$ RUNOFF OPER.RNT
$ RUNOFF OPER.RNX

9-19

9.3.3

Processing Files with DIGITAL Standard Runoff
9.3 Processing DSR Files

To produce an index from more than one file, you must concatenate the
intermediate files when you enter the RUNOFF /INDEX command. (You
cannot use wildcard characters.) The following example produces formatted
text files, a single table of contents, and a single index from three DSR files:

$ RUNOFF/INTERMEDIATE OPER1
$ RUNOFF/INTERMEDIATE OPER2
$ RUNOFF/INTERMEDIATE OPER3
$ RUNOFF/CONTENTS/OUTPUT=OPER OPER1+0PER2+0PER3
$ RUNOFF/INDEX/OUTPUT=OPER OPER1+0PER2+0PER3
$ RUNOFF OPER.RNT
$ RUNOFF OPER.RNX

Printing Output Files

9-20

The following are guidelines for printing nonlaser-output files produced by
DSR:

• Copying files-You can copy a file (with the COPY command) to a
printer, but you may occasionally lose a form feed. You lose a form feed
when the size of an output page equals 66 or the value that
SYS$LP_LINES had at the time the file was created if SYS$LP_LINES
was defined as a logical name. (Note that the current value of
SYS$LP_LINES has no effect on the output file after it is created.)

• Generating automatic form feeds-In general, use the default for the DCL
command PRINT (PRINT/FEED) to generate form feeds automatically
when printing nonlaser files. However, you may occasionally generate a
blank page. More precisely, you generate a blank page when an output
page equals 66 or the value that SYS$LP_LINES had at the time the file
was created if SYS$LP_LINES was defined as a logical name. (Note that
the current value of SYS$LP_LINES has no effect on the output file.) If
you specify PRINT /NOFEED, you eliminate the chance of a blank page,
but you take the chance of losing pages under the same circumstances as
a COPY operation.

The following example shows a laser printer setup in a command procedure.
Dsr$ln01 is the name you assign the laser printer form. LpbO is the name of
the printer.

$! Define form for dsr output on ln01 laser printer
$
$ DEFINE/FORM dsr$ln01 /MARGIN=(BOTTOM=O) -

/NOWRAP -
/NOTRUNCATE -
/STOCK=DEFAULT -
/DESCRIPTION="dsr ln01 form definition"

$
$! Set up ln01 laser printer for dsr output
$
$ SET PRINTER lpbO /NOTRUNCATE -

/NOWRAP -
/TAB -
/PRINTALL -
/FF -
/NOCR

Processing Files with DIGITAL Standard Runoff
9.3 Processing DSR Files

The print command should specify /NOFEED, the name of the form, and
the name of the queue. You should equate this command to a global symbol
in your login file or in the system login file. The following example makes
LNPRINT a global symbol that prints LNOl files:

$! Set up lnprint as print command for ln01 laser printer
$
$ LNP*RINT == "PRINT/NOFEED/FORM=dsr$ln01/QUEUE=ln01_queue"

9-21

A Character Sets

The following tables present the ASCII character set and the DEC
Multinational Character Set.

A.1 ASCII Character Set

Hex
Values 0

0 NUL
I SOH
2 STX
3 ETX
4 EOT
5 ENQ
6 ACK
7 BEL
8 BS
9 HT
A LF
B VT
c FF
D CR
E so
F SI

The ASCII character set consists of the characters shown in the following
table. The characters with names are not printable. (The ASCII character
set comprises the first 127 characters of the DEC Multinational Character
Set; descriptions of the nonprintable characters are located in the table
in Section A.3.) You can calculate the numeric value of a character by
constructing a 2-digit hexadecimal number in which the column position of
the character represents the 16s position of the hexadecimal number and the
row position of the character represents the units position of the number.
For example, an uppercase A has the numeric value 41 hexadecimal. String
comparisons are made using these values.

DLE
DCl
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
us

2

SP
!
fl

$
o· lo

& ,

(
)

*
+

I

3 4

0 @

1 A
2 B
3 c
4 D
5 E
6 F
7 G
8 H
9 I

J
K

< K
M

> N
? 0

5 6 7

p p
Q a q
R b r
s c s
T d t
u e u
v f v
w g w
x h x
y y
z j z
[k
\ 1
l m

n
0 DEL

ZK-1774-84

A.2 ASCII and DEC Multinational Character Set Tables
Table A-1 represents the ASCII character set (characters with decimal values
0 through 127). The first half of each of the numbered columns identifies
the character as you would enter it on a VT300-, VT200-, or VTlOO-series
terminal or· as you would see it on a printer (except for the nonprintable
characters). The remaining half of each column identifies the character by
the binary value of the byte; the value is stated in three radixes-octal,
decimal, and hexadecimal. For example, the uppercase letter A has, under

A-1

Character Sets
A.2 ASCII and DEC Multinational Character Set Tables

ASCII conventions, a storage value of hexadecimal 41 (a bit configuration of
01000001), equivalent to 101 in octal notation and 65 in decimal notation.

Table A-1 Graphical Representation of the ASCII Character Set

COLUMN 0 1 2 3 4 5 6 7

b8 BITS 0 0 0 0 0 0 0 0
b7 0 0 0 0 1 1 1 1

r----i b6 0 0 1 1 0 0 1 1
b5 0 1 0 1 0 1 0 1

ROW b4 b3 b2 b1

0 20 40 60 100 120

'
140 160

0 0 0 0 0 NUL 0 OLE 16 SP 32 0 48 @ 64 p 80 96 p 112
0 10 20 30 40 50 60 70

1 DC1 21 41 61 101 121 141 161

1 0 0 0 1 SOH 1 17 ! 33 1 49 A 65 a 81 a 97 q 113
1

(XONI
11 21 31 41 51 61 71

2 22 42 62 102 122 142 162

2 0 0 1 0 STX 2 DC2 18 II
34 2 50 B 66 R 82 b 98 r 114

2 12 22 32 42 52 62 72

3 DC3 23 43 63 103 123 143 163

3 0 0 1 1 ETX 3 19 # 35 3 51 c 67 s 83 c 99 s 115
3

(XOFFI
13 23 33 43 53 63 73

4 24 44 64 104 124 144 164

4 0 1 0 0 EOT 4 DC4 20 $ 36 4 52 D 68 T 84 d 100 t 116
4 14 24 34 44 54 64 74

5 25 45 65 105 125 145 165

5 0 1 0 1 ENO 5 NAK 21 % 37 5 53 E 69 u 85 e 101 u 117
5 15 25 35 45 55 65 75

6 26 46 66 106 126 146 166

6 0 1 1 0 ACK 6 SYN 22 & 38 6 54 F 70 v 86 f 102 v 118
6 16 26 36 46 56 66 76

7 27 47 67 107 127 147 167

7 BEL ETB 23
I

39 7 G 71 w 0 1 1 1 7 55 87 g 103 w 119
7 17 27 37 47 57 67 77

10 30 50 70 110 130 150 170

8 1 0 0 0 BS 8 CAN 24 (40 8 56 H 72 x 88 h 104 x 120
8 18 28 38 48 58 68 78

11 31
)

51 71 111 131 151 171

9 1 0 0 1 HT 9 EM 25 41 9 57 I 73 y 89 i 105 y 121
9 19 29 39 49 59 69 79

12 32 52 72 112 132 152 172

10 1 0 1 0 LF 10 SUB 26 * 42 : 58 J 74 z 90 j 106 z 122
A lA 2A 3A 4A 5A 6A 7A

13 33 53 73 113 133 153

{
173

11 1 0 1 1 VT 11 ESC 27 + 43 ; 59 K 75 [91 k 107 123
B 1B 2B 3B 48 58 68 78

14 34 54 74 114 134 154 174

12 1 1 0 0 FF 12 FS 28 44 < 60 L 76 \ 92 1 108 I 124
c 1C ' 2C 3C 4C 5C 6C 7C

15 35 55 75 115 135 155

}
175

13 1 1 0 1 CR 13 GS 29 - 45 = 61 M 77] 93 m 109 125
D 1D 2D 3D 40 50 6D 70

16 36 56 76 116
A 136 156 176

14 1 1 1 0 so 14 RS 30 46 > 62 N 78 94 n 110 126

E 1 E 2E 3E 4E 5E 6E 7E

17 37 57 77 117 137 157 177

15 1 1 1 1 SI 15 us 31 I 47 ? 63 0 79 95 0 111 DEL 127
F 1F 2F 3F 4F - 5F 6F 7F

KEY
CHARACTER ESC 33 OCTAL

27 DECIMAL

18 HEX

ZK-1752-84

A-2

Character Sets
A.2 ASCII and DEC Multinational Character Set Tables

The ASCII character set comprises the first half of the DEC Multinational
Character Set. Table A-2 represents the second half of the DEC Multinational
Character Set (characters with decimal values 128 through 255). The first half
of each of the numbered columns identifies the character as you would see
it on a VT300- or VT200-series terminal or printer (these characters cannot
be output on a VTlOO-series terminal). Section A.3 describes how to enter
symbols from the DEC Multinational Character Set.

A-3

A.2 ASCII and DEC Multinational Character Set Tables

Table A-2 Graphical Representation of the DEC Multinational Extension to the ASCII
Character Set

8 9 10 11 12 13 14 15 COLUMN

1 11 1 1 1 1 1 1 b8
b7 BITS 0 0 0 0 1 1 1 1

0 0 · 1 1 0 0 1 1 b6
0 1 0 1 0 1 0 1 b5 ~

b4 b3 b2 b1 ROW

200 220

~
240 0 260

'
300 320

'
340 360

128 DCS 144 160 176 A 192 208 a 224 240 0 0 0 0 0
80 90 AO BO co DO EO FO

201 221 241 261 , 301 - 321 341 - 361

PU1 i + ,
1 129 145 161 177 A 193 N 209 a 225 n 241 0 0 0 1

81 91 Al B1 C1 D1 E1 F 1

202 222 242 2 262 A 302

'
322

A
342

'
362

130 PU2 146 ¢. 162 178 A 194 0 210 a 226 0 242 0 0 1 0 2
82 92 A2 B2 C2 D2 E2 F2

203 223 243 3 263 - 303 , 323 - 343 363

STS £
,

3 131 147 163 179 A 195 0 211 a 227 0 243 0 0 1 1
83 93 A3 B3 C3 D3 E3 F3

204 224 244 264 •• 304 A 324 .. 344 A 364
IND 132 CCH 148 164 180 A 196 0 212 a 228 0 244 0 1 0 0 4

84 94 A4 B4 C4 D4 E4 F4

205 225 245 265 305 - 325 345 - 365

NEL 133 MW 149 :t. 165 µ 181 A 197 0 213 a 229 0 245 0 1 0 1 5
85 95 A5 B5 C5 D5 E5 F5

206 226 246

~
266 306 •• 326 346 .. 366

SSA 134 SPA 150 166 182 IE. 198 0 214 ae 230 0 246 0 1 1 0 6
86 96 A6 B6 C6 D6 E6 F6

207 227 247 267

~
307 327 347 367

ESA 135 EPA 151 § 167 183 199 CE 215 ~ 231 m 247 0 1 1 1 7
87 97 A7 B7 C7 D7 E7 F7

210 230 250 270

'
310 330

'
350 370

HTS 136 152):(168 184 E 200 llJ 216 e 232 16 248 1 0 0 0 8
88 98 AS BS CB DB EB F8

211 231

©
251 1 271 , 311

'
331 351 371

HTJ ,
' 9 137 153 169 185 E 201 u 217 e 233 u 249 1 0 0 1

89 99 A9 B9 C9 D9 E9 F9

212 232 i! 252 Q 272 A 312 , 332

'
352 372

VTS 218
,

10 138 154 170 1S6 E 202 u 234 u 250 1 0 1 0
SA 9A AA BA CA DA EA FA

213 233 253 273 •• 313 A 333 353
A 373

PLO 139 CSI 155 « 171 » 1S7 E 203 u 219 e 235 u 251 1 0 1 1 11
SB 9B AB BB CB DB EB FB

214 234 254 274 ' 314 •• 334

'
354 374

PLU 140 ST 156 172 Y4 188 I 204 u 220 236
..

252 1 1 0 0 12 I u ac 9C AC BC cc DC EC FC

215 235 255 275 , 315 •• 335 355 .. 375
RI osc 1/2 205

,
237 0 1 13 141 157 173 1S9 I y 221 I y 253 1 1

SD 9D AD BD CD DD ED FD

216 ~36 256 276 A 316 336
A 356 376

SS2 142 PM 158 174 190 I 206 222 I 238 254 1 1 1 0 14
BE 9E AE BE CE DE EE FE

217 237 257 277 •• 317 337 357

~
377

SS3 143 APC 159 175 l 191 207 JS 223
..

239 255 15 I I 1 1 1 1
BF 9F AF BF CF DF EF FF

KEV
CHARACTER ESC 33 OCTAL

27 DECIMAL

lB HEX

ZK-1753-84

A-4

A.3 DEC Multinational Character Set

Character Sets
A.3 DEC Multinational ·Character Set

The DEC Multinational Character Set is an 8-bit character set with 256
characters; the first 128 characters in the set correspond to the ASCII character
set. Each character has a value in the range 0 through 255 decimal.

In Table A-3, the graphic symbols shown in parentheses represent ASCII
control characters. These are produced on most terminals by pressing the key
indicated while holding down the CONTROL key. On VT300- and VT200-
series terminals, graphic symbols with decimal values greater than 127 can
be entered using the compose sequences. Press the Compose Character key
followed by the EDT symbol; the graphic symbol is then displayed on your
terminal. On VT300- and VT200-series terminals, you can enter symbols for
characters 128 through 255 either in EDT or at DCL level.

On VTlOO-series terminals, graphic symbols with decimal values greater than
127 can only be entered from screen mode in EDT. Use the EDT keypad
command SPECINS or the nokeypad command ASC to enter these characters
in your text; EDT then displays the EDT symbol that corresponds to the
character rather than displaying the graphic symbol itself.

A-5

A.3 DEC Multinational Character Set

Table A-3 Abbreviations and Descriptions of the DEC Multinational Character Set

EDT Decimal
Graphic Symbol Value Abbrev. Description

(~I) A~/ 0 NUL null character
(Al AA SOH start of heading
(8) AB 2 STX start of text
(Cl AC 3 ETX end of text
(D) AD 4 EOT end of transmission
(£) AE 5 ENQ enquiry
(Fl AF 6 ACK acknowledge
(Q) AG 7 BEL bell
(H) AH 8 BS backspace
m 9 HT horizontal tabulation
(J) <LF> 10 LF line feed
(Kl <VT> 11 VT vertical tabulation
(Ll <FF> 12 FF form feed
(Ml <CR> 13 CR carriage return
(Nl AN 14 so shift out
(Q) AQ 15 SI shift in
(Pl Ap 16 DLE data link escape
(Q) AQ 17 DCl device control 1
(R) AR 18 DC2 device control 2
(S) AS 19 DC3 device control 3
(Tl AT 20 DC4 device control 4
(U) AU 21 NAK negative acknowledge
(Vl AV 22 SYN synchronous idle
(Wl AW 23 ETB end of transmission block
(Xl AX 24 CAN cancel
(Yl AY 25 EM end of medium
(Zl AZ 26 SUB substitute
(j) <ESC> 27 ESC escape
(\) A\ 28 FS file separator
(]) A] 29 GS group separator
(A) AA 30 RS record separator
() A 31 us unit separator

32 SP space
33 exclamation point

" " 34 II quotation marks (double quote)
35 # number sign
$ $ 36 $ dollar sign
7r 7r 37 7r percent sign
& & 38 & ampersand

39 apostrophe (single quote)
40 opening parenthesis
41 closing parenthesis

* * 42 :;: asterisk
+ + 43 + plus

44 comma
45 hyphen or minus
46 period or decimal point
47 slash

ZK-1737/1-84

A-6

Table A-3 (Cont.)

EDT
Graphic Symbol

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

< <

> >

? ?
(u (u

A A
B B
c c
D D
E E
F F
G G
H H
I I
J J
K K
L L
M M
N N
0 0
p p

Q Q
R R
s s
T T
u u
v v
w w
x x
y y
z z
[[

\ \
J J
/\ /\

Character Sets
A.3 DEC Multinational Character Set

Abbreviations and Descriptions of the DEC Multinational Character Set

Decimal
Value Abbrev. Description

48 0 zero
49 1 one
50 2 two
51 3 three
52 4 four
53 5 five
54 6 six
55 7 seven
56 8 eight
57 9 nine
58 colon
59 semicolon
60 < less than
61 equals
62 > greater than
63 ? question mark
64 (u commercial at
65 A uppercase A
66 B uppercase B
67 c uppercase C
68 D uppercase D
69 E uppercase E
70 F uppercase F
71 G uppercase G
72 H uppercase H
73 I uppercase I
74 J uppercase J
75 K uppercase K
76 L uppercase L
77 M uppercase M
78 N uppercase N
79 0 uppercase 0
80 p uppercase P
81 Q uppercase Q
82 R uppercase R
83 s uppercase S
84 T uppercase T
85 u uppercase U
86 v uppercase V
87 w uppercase W
88 x uppercase X
89 y uppercase Y
90 z uppercase Z
91 [opening bracket
92 \ back slash
93 J closing bracket
94 /\ circumflex
95 underline (underscore)

ZK-1737 /2-84

A-7

ra... --+-... e!-+"'• •a• Q\,1.~I ...;J~I.~

A.3 DEC Multinational Character Set

Table A-3 (Cont.) Abbreviations and Descriptions of the DEC Multinational Character Set

EDT Decimal
Graphic Symbol Value Abbrev. Description

96 grave accent
a a 97 a lowercase a
b b 98 b lowercase b
c c 99 c lowercase c
d d 100 d lowercased
e e 101 e lowercase e
f f 102 f lowercase f
g g 103 g lowercase g
h h 104 h lowercase h

105 lowercase i
j j 106 j lowercasej
k k 107 k lowercase k
1 1 108 1 lowercase 1
m m 109 m lowercase m
n n 110 n lowercase n
0 0 111 0 lowercase o
p p 112 p lowercase p
q q 113 q lowercase q
r r 114 r lowercase r
s s 115 s lowercases

116 lowercase t
u u 117 u lowercase u
v v 118 v lowercase v
w w 119 w lowercase w
x x 120 x lowercase x
y y 121 y lowercase y
z z 122 z lowercase z

123 opening brace
124 vertical line
125 closing brace
126 tilde

DEL 127 DEL delete, rubout
<X80> 128 I reserved]
<X81 > 129 I reserved]
<X82> 130 I reserved]
<X83> 131 I reserved]
<IND> 132 IND index
<NEL> 133 NEL next line
<SSA> 134 SSA start of selected area
<ESA> 135 ESA end of selected area
<HTS> 136 HTS horizontal tab set
<HTJ> 137 HTJ horizontal tab set with justification
<VTS> 138 VTS vertical tab set
<PLD> 139 PLD partial line down
<PLU> 140 PLU partial line up
<RI> 141 RI reverse index
<SS2> 142 SS2 single shift 2
<SS3> 143 SS3 single shift 3

ZK-173713-84

A-8

Table A-3 (Cont.)

EDT
Graphic Symbol

<DCS>
<PUl>
<PU2>
<STS>
<CCH>
<MW>
<SPA>
<EPA>
<X98>
<X99>
<X9A>
<CSI>
<ST>
<OSC>
<PM>
<APC>
<XAO>

j < !!>
</, <Cl>

£ <L->
<XA4>

¥ <Y->
<XA6>

§ <SO>
:0: <XO>
·~ <CO>
a <a_>

< < < >
<XAC>
<XAD>
<XAE>
<XAF>
<0" >

:± < +->
<2" >
<3" >
<XB4>

µ </U>
<P!>
<." >
<XB8>
< 1" >

Q <o_ >
< > > >

l/4 <14>
112 <12>

<XBE>
i, <?? >

Character Sets
A.3 DEC Multinational Character Set

Abbreviations and Descriptions of the DEC Multinational Character Set

Decimal
Value Abbrev. Description

144 DCS device control string
145 PUl private use 1
146 PU2 private use 2
147 STS set transmit state
148 CCH cancel character
149 MW message waiting
150 SPA start of protected area
151 EPA end of protected area
152 I reserved]
153 I reserved]
154 I reserved]
155 CSI control sequence introducer
156 ST string terminator
157 osc operating system command
158 PM privacy message
159 APC application program command
160 I reserved]
161 j inverted exclamation mark
162 </, cent sign
163 £ pound sign
164 I reserved]
165 ¥ yen sign
166 I reserved I
167 § section sign
168 :0: general currency sign
169 'G. copyright sign
170 a feminine ordinal indicator
171 angle quotation mark left
172 I reserved I
173 I reserved]
174 I reserved I
175 I reserved I
176 degree sign
177 :± plus/minus sign
178 superscript 2
179 superscript 3
180 I reserved I
181 µ micro sign
182 paragraph sign, pilcrow
183 middle dot
184 I reserved I
185 superscript 1
186 Q masculine ordinal indicator
187 angle quotation mark right
188 1/i fraction one quarter
189 112 fraction one half ·
190 I reserved l
191 i, inverted question mark

ZK-1737/4-84

A-9

rh~r~r+or ~o+c -··-·--·-· --·-
A.3 DEC Multinational Character Set

Table A-3 (Cont.) Abbreviations and Descriptions of the DEC Multinational Character Set

EDT Decimal
Graphic Symbol Value Abbrev. Description

A <A'> 192 A uppercase A with grave accent
A <A'> 193 A uppercase A with acute accent
A <A"> 194 A uppercase A with circumflex
A <A-> 195 A uppercase A with tilde
A <All> 196 A uppercase A with umlaut,(diaeresis)
A <A*> 197 A uppercase A with ring
IE <AE> 198 IE uppercase AE diphthong
Q <C,> 199 Q uppercase C with cedilla
E <E' > 200 E uppercase E with grave accent
:E <E'> 201 :E uppercase E with acute accent
:E <E"> 202 :E uppercase E with circumflex
:E <E11 > 203 :E uppercase E with umlaut, (diaeresis)
l <I'> 204 l uppercase I with grave accent
f <I'> 205 f uppercase I with acute accent
i <r> 206 i uppercase I with circumflex
f <I II> 207 f uppercase I with umlaut, (diaeresis)

<XDO> 208 I reserved]
N <N-> 209 N uppercase N with tilde
6 <O' > 210 6 uppercase 0 with grave accent
6 <O'> 211 6 uppercase 0 with acute accent
6 <O"> 212 6 uppercase 0 with circumflex
6 <0-> 213 6 uppercase 0 with tilde
b <011 > 214 b uppercase 0 with umlaut, (diaeresis)
CE <OE> 215 CE uppercase OE ligature
0 <01> 216 0 uppercase 0 with slash
0 <U' > 217 0 uppercase U with grave accent
(J <U'> 218 (J uppercase U with acute accent
0 <U"> 219 0 uppercase U with circumflex
0 <U11 > 220 0 uppercase U with umlaut, (diaeresis)
y <Y11 > 221 y uppercase Y with umlaut, (diaeresis)

<XDE> 222 I reserved]
B <ss> 223 B German lowercase sharp s
a <a'> 224 a lowercase a with grave accent
a <a'> 225 a lowercase a with acute accent
a <a"> 226 a lowercase a with circumflex
a <a-> 227 a lowercase a with tilde
a <all> 228 a lowercase a with umlaut, (diaeresis)
a <a*> 229 a lowercase a with ring
c:E <ae> 230 ffi lowercase ae diphthong
c; <c,> 231 c; lowercase c with cedilla
e <e' > 232 e lowercase e with grave accent
e <e'> 233 e lowercase e with acute accent
e <e"> 234 e lowercase e with circumflex
e <ell> 235 e lowercase e with umlaut, (diaeresis)

<i' > 236 lowercase i with grave accent
<i '> 237 lowercase i with acute accent
< i"> 238 lowercase i with circumflex
<i II> 239 lowercase i with umlaut, (diaeresis)

ZK-1737/5-84

A-10

Character Sets
A.3 DEC Multinational Character Set

Table A-3 (Cont.) Abbreviations and Descriptions of the DEC Multinational Character Set

EDT Decimal
Graphic Symbol Value Abbrev. Description

<XFO> 240 [reservedl
fl <n-> 241 fl lowercase n with tilde
0 <o' > 242 0 lowercase o with grave accent
6 <o'> 243 6 lowercase o with acute accent
6 <oA> 244 6 lowercase o with circumflex
6 <o-> 245 6 lowercase o with tilde
0 <o" > 246 0 lowercase o with umlaut, (diaeresis)
CE <oe> 247 CE lowercase oe ligature
0 <o/ > 248 0 lowercase o with slash
u <u' > 249 u lowercase u with grave accent
u <u'> 250 u lowercase u with acute accent
u <uA> 251 tl lowercase u with circumflex
ti. <u" > 252 ii lowercase u with umlaut, (diaeresis)
y <y" > 253 y lowercase y with umlaut, (diaeresis)

<XFE> 254 [reservedl
<XFF> 255 [reservedl

ZK-1737 /6-84

A-11

B Expressions

The following table lists data operations and comparisons in order of
precedence, beginning with the highest:

Operator Precedence Description

+ Indicates a positive number

1 Indicates a negative number

2 Multiplies two numbers

I 2 Divides two numbers

+ 3 (1) Adds two numbers (2) Concatenates two
character strings

3 (1) Subtracts two numbers (2) Subtracts two
character strings

.EQS. 4 Tests if two character strings are equal

.GES. 4 Tests if first character string is greater than or
equal

.GTS. 4 Tests if first character string is greater than

.LES. 4 Tests if first character string is less than or equal

.LTS. 4 Tests if first character string is less than

.NES. 4 Tests if two character strings are not equal

.EQ. 4 Tests if two numbers are equal

.GE. 4 Tests if first number is greater than or equal to

.GT. 4 Tests if first number is greater than

.LE. 4 Tests if first number is less than or equal to

.LT. 4 Tests if first number is less than

.NE. 4 Tests if two numbers are not equal

.NOT. 5 Logically negates a number

.AND. 6 Combines two numbers with a logical AND

.OR. 7 Combines two numbers with a logical OR

The following tables demonstrate the results of logical operations on a bit
by-bit basis and a number-by-number basis. In logical operations, a character
string beginning with an uppercase or lowercase T or Y is treated as the
number 1; a character string beginning with any other character is treated as
the number 0. In logical operations, odd numbers are considered true and
even numbers and zero are considered false.

B-1

l=vnr~c:c:innc: _,,I"".---·-··-

Given Results
Bit A Bit B .NOTA A.AND.B A.OR. B

1 0

1 0 0 0

0 0 1

0 0 0 0

Given Results
Number A Number B .NOTA A.AND. B A.OR. B

odd odd even odd odd

odd even even even odd

even odd odd even odd

even even odd even even

B-2

Index

A
Absolute time

combined with delta time• 1-16
default values• 1-15
examples• 1-15
rules for entering • 1-1 5
syntax• 1-15

Access
object• 7-3

Access control list
See ACL

Access Control List Editor
See ACL editor

Access control list entry

See ACE
Access control string

copying files between nodes with• 2-16
definition• 2-11
example• 2-11
in a logical node name • 4-16
rules for entering• 2-11

Access mode
and the DEFINE command • 4-13
for a logical name• 4-13
for a logical name table• 4-13
using qualifiers to specify• 4-13

ACE (access control list entry)
ALARM_JQURNAL • 7-9
creating• 7-7
DEFAUL T_PROTECTION • 7-9
deleting• 7-14
IDENTIFIER• 7-8
processing• 7-18
replacing• 7-14

ACL (access control list)
copying• 7-14
default protection• 7-10
definition • 7-1 , 7-5
displaying with SHOW ACL command• 7-12
editing with EDIT/ ACL command• 7-15
entries in • 7-7
identifier• 7-6
modifying• 7-14
protecting files with• 7-5

ACL (access control list) (cont'd.)

specifying with SET ACL command (DCL) •
7-13

ACL editor
deleting text with• 7-18
invoking with EDIT/ ACL command• 7-15
keypad• 7-15
moving the cursor with• 7-17
restoring text with• 7-18

Address sort• 1-39
ADVANCE command (EDT)• 8-58
ALARM_JOURNAL access control list entry• 7-9

ACCESS field• 7-9
Allocate access category

definition• 7-4
ALLOCATE command (DCL) • 2-10
.APPENDIX command (DSR) • 9-14
Arrow key

See Down arrow key, Left arrow key, Right
arrow key, Up arrow key

ASCII
collating sequence• 1-39

ASCII Character Set• A-1
ASSIGN command (DCL) • 4-2
Assignment statement

creating a blank line with• 5-1 7
creating a global symbol with• 5-3
creating a local symbol with• 5-3
formatting output records with• 5-17
for numeric overlay • 5-1 7
including an asterisk in• 5-4
including a symbol as part of a character string•

5-11
syntax• 5-2

for numeric overlay• 5-16
for string overlay• 5-16

Asterisk (*) wildcard character
in directory specifications• 2-14
rules for using• 2-14

ATTACH command (DCL) • 1-21 , 3-6
Authorize Utility (AUTHORIZE)• 7-1
Automatic login• 1-3

B
BACKSPACEkey•1-18

lndex-1

Index

BACKUP command (EDT)• 8-58
Batch job

definition• 3-8
job number of• 3-8
log file • 3-9
output• 3-9
passing parameters to• 6-7, 6-8
restarting• 3-9, 6-32
submitting• 3-8
submitting command procedure as• 1-6, 3-4
submitting program as• 1-6
submitting sort operation as• 1-41

Batch mode
definition• 1-6

Bit
definition• 5-1

BOTTOM command (EDT) • 8-5 7
BOTTOM command (EVE) • 8-9
Buffer

definition• 8-2
EDT commands for using• 8-69
EVE commands for using• 8-31 to 8-33
MAIN•8-69
PASTE•8-66
reading file into

with EDT• 8-69
with EVE• 8-34

writing
with EDT• 8-69
with EVE• 8-34

BUFFER command (EVE) • 8-9, 8-31
Built-in command

definition• 1-6
interrupting and canceling• 1-20 to 1-21

Built-In command
table of DCL built-in commands• 1-7

Byte
definition• 5-1

c
CALL command (DCL) • 6-26
CAPITALIZE command (EVE)• 8-30
CAPITALIZE WORD command (EVE) • 8-36
Carriage control

types of•2-5
CENTER LINE command (EVE) • 8-30, 8-36
CHANGE command (EDT)• 8-52
.CHAPTER command (DSR) • 9-14

lndex-2

Character data
See also Character string
alphanumeric• 5-7
expression• 5-12
non printable• 5-8
special• 5-8

Character set
ASCII• A-1
DEC Multinational• A-5

Character string• 5-7
comparison operators in expression• 5-11
concatenation • 5-12
creating • 5-8
evaluation of• 5-3
expression• 5-12
multiple string values in an expression • 5-12
passing to command procedure• 6-7
reduction • 5-12
substring replacement in• 5-16
symbol substitution in• 5-6
used as symbol• 5-2
values stored in• 5-7

CHAR command (EDT)• 8-54, 8-63
CLOSE command (DCL) • 6-14
Collating sequence

ASCll•1-39
EBCDIC• 1-39
multinational• 1-40

Combination time
examples• 1-16
rules for entering • 1-16
syntax • 1-16

Command
See also Command procedure

See also Foreign command
abbreviating• 1-10

in command procedures• 1-10
in HELP• 1-7

built-in • 1-6
canceling• 1-11, 1-20, 1-21
DCL command line syntax• 1-8
executing• 1-19
interrupting• 1-20 to 1-21
rules for entering• 1-10
types• 1-6

Command file
EDT•8-71

Command image
definition• 1-6, 1-20, 3-4
interrupting and canceling• 1-20 to 1-21
privileged and nonprivileged • 1-20

Command level
definition• 1-2
nesting • 6-3

Command line
continuation over multiple lines• 1-10
editing

enabling• 1-22
in insert mode• 1-23
in overstrike mode• 1-23
list of keys for• 1-17 to 1-19

parts of• 1-8
recalling• 1-21 to 1-22
syntax• 1-8
terminators• 1-19

Command procedure
and file 1/0 • 6-13
case statement in • 6-23
cleanup• 6-33
comments in• 1-29, 6-1
creating global symbol in• 6-11
data line in• 6-6
debugging• 6-27, 6-28
definition • 3-4, 6-1
directing output to terminal• 6-12
error handling• 6-30
executing

interactively• 6-2
on remote node• 6-2

exiting• 6-4
format• 6-1
1/0 errors in• 6-18
input• 6-6

from file • 6-10
from terminal• 6-10

interrupting with CTRL/Y • 6-32
invoking within a command procedure• 6-2
loop in • 6-24
nested• 6-3
passing character string to• 6-7
passing data to• 6-6
passing parameters to• 5-3, 6-7
passing symbols to• 6-7
redirecting output• 6-11
returning status value in• 6-4
SET DEFAULT command (DCL) in • 6-13
submitting as batch job• 3-8
subroutines in• 6-25
using stubs in• 6-27
using TYPE command to execute• 6-2
variables in• 6-19
writing file from a• 6-13

Command qualifi.er • 1-12
definition• 1-12
rules for entering• 1-12

Command values
date and time formats• 1-14

Comment
in a command procedure• 1-29, 6-1

CONTINUE command (DCL) • 1-21, 3-5
CONTINUE command (EDT) • 8-54
Controller designation field

default value• 2-10
definition • 2-9

COPY command (DCL) • 2-16
printing DSR output with• 9-20

COPY command (MAIL) • 1-33
CREA TE command (DCL) • 2-16

Index

CREA TE/DIRECTORY command (DCL) • 2-21,
7-11

CREA TE/NAME_ TABLE command (DCL) • 4-14
CTRL/B

recalling commands with• 1-18, 1-21
CTRL/C

See also CTRL/Y
and corrupted EVE journal file• 8-24
canceling a MAIL message with• 1-28
canceling EDT command with• 8-51
interrupting or canceling DCL commands with•

1-17, 1-20, 1-21
CTRL/T

enabling• 1-20
interrupting DCL commands with• 1-18, 1-20

CTRL/W
refreshing screen display in EDT with• 8-53
refreshing screen display in EVE with• 8-23
refreshing screen display with• 1-18, 3-5

CTRL/Y

See also CTRL/C
aborting remote session with• 1-4
interrupting a command procedure with• 6-30,

6-32
interrupting an EDT editing session with• 8-54
interrupting an image with• 3-5
interrupting or canceling DCL commands with•

1-18, 1-20, 1-21
CTRL/Z

as command line terminator• 1-19
as end-of-file terminator• 1-17, 2-16
sending a file in MAIL with• 1-28
sending a MAIL message with• 1-28
writing a file in EDT with• 8-48
writing a file in EVE with• 8-3

lndex-3

Index

CTRLkeys•1-17to 1-19
Cursor control

in EDT• 8-54, 8-58
in EVE•8-8

CUT command (EDT)• 8-65

D
Data

logical• 5-10, 5-15
numeric• 5-8, 5-13
passing to command procedure• 6-6
storing• 5-1

Data type• 2-4
Date

See also Absolute time
See also Combination time
See also Delta time
specifying absolute and delta date and time

combinations• 1-16
specifying absolute date and time• 1-15
specifying delta date and time• 1-16

DCL (DIGIT AL Command Language)
definition• 1-1
using• 1-6

DCL command• 1-6
executing within EVE • 8-46
interrupting or canceling

with CTRL/C• 1-17, 1-20, 1-21
with CTRL/Y• 1-18, 1-20, 1-21

interrupting with CTRL/T • 1-18, 1-20
recalling

with CTRL/B • 1-18
with Down arrow key• 1-18
with Up arrow key• 1-18

DCL command level
definition• 1-2

DCL prompt ($) • 1-2, 1-6
DEASSIGN command (DCL) • 4-5

and process logical name table• 4-5
DECK command (DCL) • 6-6
DEC Multinational Character Set• A-5
DECnet

See also Network
logging in to remote systems with• 1-3

DECnet-VAX
access violation• 2-16
and logical node name• 4-16
file manipulation with• 2-16

lndex-4

Default protection• 7-5, 7-10
Default values

in file specifications• 2-12
provided by system• 1-11

DEF AUL T_PROTECTION access control list entry•
7-9

DEFINE command (DCL) • 4-2
and process logical name table• 4-5
example with access mode qualifier• 4-13
specifying the access mode with• 4-13

DEFINE/KEY command (DCL) • 1-24
DEFINE KEY command (EDT)• 8-71 , 8-7 3
DEFINE KEY command (EVE) • 8-39
DEFINE/KEY command (MAIL)• 1-35
DEFINE MACRO command (EDT)• 8-7 4
DEL C command (EDT)• 8-59
DEL EOL command (EDT)• 8-61
Delete access category

definition• 7-4
DELETE BUFFER command (EVE)• 8-31, 8-32
DELETE command (DCL) • 2-17

and wildcard characters• 2-17
DELETE command (MAIL)• 1-32
DELETE key• 1-18
DELETE KEY command• 1-26
DELETE/SYMBOL command (DCL) • 5-5
DELETE WINDOW command (EVE)• 8-35
DEL L command (EDT) • 8-61
Delta time

combined with absolute time• 1-16
default values• 1-16
examples• 1-16
rules for entering• 1-16
syntax• 1-16

DEL W command (EDT) • 8-60
Detached process

batch job as• 3-8
creating with unique UIC • 7-3
definition • 3-1

Device•2-1, 2-8
default name designation• 2-10
mass storage• 2-8
nonfile • 7-12
record oriented• 2-8
setting default to another• 2-23
unit record• 2-8

Device code
definition• 2-9

Device field
default value• 2-12
in full file specification• 2-11

Device name
See also Device field
See also Physical device name
concealed• 4-13
generic• 2-10
logical name equated to• 2-1 O
rules for entering• 2-9

Device protection • 7-12
Dialing in• 1-4
DIGIT AL Command Language

See DCL
DIGIT AL Standard Runoff

See DSR
DIRECTORY command (DCL) • 2-20, 7-12
DIRECTORY command (MAIL)• 1-31, 1-33
Directory field

default value• 2-12
in full file specification• 2-11
using an asterisk wildcard character in• 2-14
using a percent sign wildcard character in•

2-15
Directory file

See also Directory structure
creating• 2-21
default• 2-6, 2-22
definition• 2-6
deleting• 2-21
login•2-6
named format• 2-8
protection • 7-11
setting default to another• 2-22
top level• 2-1, 2-6

Directory name
named format in a file specification• 2-8
replacing

with the ellipsis (...) wildcard character•
2-23

with the hyphen (-) wildcard character•
2-24

Directory structure• 2-1
duplicating

with BACKUP command• 2-25
with wildcard characters• 2-25

master file directory in• 2-1, 2-6
sample•2-7
subdirectory in• 2-6
top level directory in• 2-1, 2-6
user file directory in• 2-1, 2-6

Disk•2-8
See also Device
contents of• 2-6, 2-8

Disk (cont'd.)

protection • 7-11
Distribution list

creating in MAIL• 1-29
DO key

Index

on VT200- and VT300-series terminals• 8-4
using•8-6

Down arrow key
recalling commands with• 1-18, 1-21

DSR (DIGIT AL Standard Runoff)
adjusting page numbers with• 9-13
adjusting running heads with• 9-13, 9-16
centering text with• 9-5
creating bolded text with• 9-12
creating section heads with• 9-14
flags• 9-1
formatting footnotes with• 9-12
formatting literal text with• 9-7
formatting notes with• 9-11
formatting paragraphs with• 9-6
indenting text with• 9-5
justifying text with• 9-4
output file• 9-3

printing• 9-20
processing source file with• 9-17
producing an index with • 9-18
producing table of contents with• 9-17
source file• 9-1
suspending page numbers with• 9-17
underlining text with • 9-12

DSR commands
abbreviating• 9-1

DSR Table of Contents Utility• 9-17

E
EBCDIC

collating sequence• 1-39
EDIT/ ACL command (DCL) • 7-15
EDIT command (DCL) • 8-4 7
EDIT /EDT command (DCL)

/READ_ONL Y qualifier to• 2-15
Editing session

exiting from EDT• 8-48
exiting from EVE• 8-3
recovering EDT after system interruption• 8-54
recovering EVE after system interruption• 8-23
refreshing screen display during EDT• 8-53
refreshing screen display during EVE• 8-23

lndex-5

Index

EDIT /TPU command (DCL) • 8-2
/READ_ONL Y • 2-15

EDT editor
as default MAIL editor• 1-35
buffer

commands for using • 8-69 to 8-71
definition • 8-4 7

changing modes in• 8-52
creating startup file for• 8-71
cursor control in• 8-54, 8-58
defining macros in• 8-7 4
displaying a file with• 8-48
exiting from• 8-48
invoking• 8-4 7
key definitions

assigning• 8-71, 8-73
keypad commands• 8-49
line-editing commands• 8-48, 8-52
reading a file with• 8-69
recovering session after system interruption•

8-54
replacing text with• 8-64
setting screen display in• 8-72
writing text to a file with• 8-69

EDTINl.EDT file• 8-71
EDT keypad option

using in EVE• 8-23
Ellipsis (...) wildcard character

in a directory name• 2-23 to 2-24
END OF LINE command (EVE) • 8-9
ENDSUBROUTINE command (DCL) • 6-26
ENLARGE WINDOW command (EVE)• 8-35
ENTER command (EDT) • 8-53
EOB (End-of-buffer) symbol• 8-4 7
EOD command (DCL) • 6-6
EOL command (EDT)• 8-55
Equivalence name

definition• 4-1
ERASE CHARACTER command (EVE)• 8-13
ERASE LINE command (EVE)• 8-13
ERASE PREVIOUS WORD command (EVE) • 8-13
Error handling

in command procedures• 6-30
Error message

format • 1-1 9
EVE editor

adjusting margins with• 8-26
as default MAIL editor• 1-35
buffer

commands for using• 8-31 to 8-33
definition• 8-2

lndex-6

EVE editor
buffer (cont'd.)

reading file into• 8-34
writing • 8-34

centering text with• 8-30
changing case of text with• 8-30
cursor control in • 8-8
editing modes• 8-7
entering commands in • 8-6
exiting from• 8-3
filling text in• 8-29
formatting text with• 8-24
in insert mode• 8-11
in overstrike mode• 8-11
key definitions

assigning• 8-39 to 8-40, 8-40, 8-41
removing• 8-40

keypad diagram
for VT 100-series terminal• 8-6
for VT200- and VT300-series terminals•

8-4
marking locations in • 8-19
reading batch job log file with• 3-9
recovering session after system interruption•

8-23
replacing text with• 8-20
spawning out of• 8-46
window

commands for using• 8-35
definition• 8-2

Executable image

See Image
Execute access category

definition• 7-4
Execute procedure (@)

executing command procedure interactively
with•6-2

executing EVE initialization file with• 8-44
executing nested command procedure with•

6-26
EXIT command (DCL) • 1-21, 6-4
EXIT command (EDT)• 8-48
EXIT command (EVE)• 8-3
Expression

character• 5-12
definition• 5-11
logical• 5-15
numeric• 5-13
rules for determining the value of• 5-18
string comparison operators• 5-11
summary of operators• 5-18

EXTRACT command (MAIL)• 1-31

F
F$ELEMENT lexical function• 6-25
F$ENVIRONMENT lexical function• 6-34
F$EXTRACT lexical function• 6-24, 6-29
F$GET JPI lexical function• 6-33
F$SEARCH lexical function• 6-14
F6 through F 14 keys• 1-17 to 1-19
File

See also Directory file
carriage control in• 2-5
copying• 2-16

between nodes• 2-16
with access control string• 2-19

creating in command procedure• 6-13
definition• 2-1
editing in command procedure• 6-15
merging• 1-42

and sequence checking• 1-42
merging multiple• 1-37
open file quota• 6-33
operations over the network• 2-14
purging• 2-17
reading from command procedure• 6-15
renaming• 2-17 ·
sorting• 1-37
writing in command procedure• 6-13

File access
and ownership categories• 7-4
on a disk volume set• 2-9
on a tape volume set• 2-9

File characteristics• 2-4 to 2-5
record• 2-4
size• 2-5

FILE command (MAIL)• 1-33
File name

See also File name field
definition• 2-2
rules for entering• 2-2
valid characters in• 2-2

File name field
default value• 2-12
in full file specification• 2-11
using an asterisk wildcard character in• 2-14
using a percent sign wildcard character in•

2-15
File organization

See Indexed file
See Relative file
See Sequential file

Index

File organization (cont'd.)

specifying output from sort/merge operation•
1-41

File protection• 7-9

See also Protection
File specification

See also Wildcard character
as a search list• 4-1 5
default values

created by logical name translation• 4-13
in output file specification• 2-13

device field in• 2-11
directory field in• 2-11
example• 2-11
file name field in• 2-11
file type field in• 2-11
file version number field in• 2-11
foreign• 2-12
format• 2-11
in parameter list• 2-13
logical name in• 4-1
node field in• 2-11
node name in•2-11, 2-16

File type
definition• 2-2
list of default• 2-2
rules for entering• 2-2

File type field
asterisk wildcard character in• 2-14
default values• 2-12
default values created by logical name

translation• 4-13
in full file specification• 2-11
using a percent sign wildcard character in•

2-15
File version number

definition• 2-3
File version number field

default values• 2-12
in full file specification• 2-11
using an asterisk wildcard character in• 2-14

FILL command (EDT)• 8-67, 8-68
FILL command (EVE)• 8-29, 8-36
FILL PARAGRAPH command (EVE)• 8-29, 8-36
FILL RANGE command (EVE) • 8-36
FIND command (EDT) • 8-62
Find key

on VT200- and VT300-series terminals• 8-17
VT 100 terminal equivalent of• 8-17

Flag
in DSR source file• 9-1

lndex-7

Index

FNDNXT command (EDT) • 8-63
Footnote

formatting in DSR • 9-1 2
Foreign command• 5-1

definition• 1-7
Foreign file specification

on a network• 2-12
Form feed

in DSR output• 9-20
FORTRAN carriage control• 2-5
Function keys • 1-1 7 to 1-19

G
Generic device name

definition• 2-10
Generic queue

definition• 2-18
GET FILE command (EVE) • 8-9, 8-3 1 , 8-34
Global symbol

command levels available to• 5-3
creating in command procedure• 6-11

Global symbol table
DCL reserved symbols• 5-4
definition • 5-3
search order• 5-5

GOLD key• 8-4 1
in EDT•8-49
in EVE• 8-41

GOSUB command (DCL) • 6-25
GOTO command (DCL) • 6-22
GO TO command (EVE) • 8-19, 8-31
Graphic symbol

VT 100 terminals• A-5
VT200 terminals• A-5
VT300 terminals• A-5

Group logical name table
definition • 4-7
logical name for• 4-7

Group number
in user identification code• 7-2

Group ownership category• 7-3

H
HELP command (DCL) • 1-7
HELP command (EDT) • 8-51

lndex-8

HELP command (EVE)• 8-22
HELP command (MAIL)• 1-27
HELP command (PHONE) • 1-36
HELP facility

EDT• 8-51
EVE•8-22
in interactive utilities• 1-8

Hyphen
and command line continuation• 1-10

Hyphen (-) wildcard character
in a directory name• 2-24 to 2-25

I
1/0 error

in command procedures• 6-18
Identifier

definition • 7-6
IDENTIFIER access control list entry• 7-8
IF command (DCL) • 6-21
Image

See also Command image
definition• 3-1, 3-3
noncommand • 3-4
See also Foreign command• 1-7

INCLUDE command (EDT)• 8-69
INCLUDE FILE command (EVE)• 8-11, 8-34
Index

producing with DSR • 9-18
Indexed file• 2-4

and Sort/Merge Utility• 1-41
Indexed sort• 1-39
Initialization file

defining keys in EVE• 8-39
editing-environment commands in• 8-44
invoking EVE with• 8-44

Input stream
definition• 4-6

INQUIRE command (DCL) • 5-5, 6-9
INSERT HERE command (EVE)• 8-15
Insert mode

editing command line in• 1-23
using EVE in• 8-11

INSERT PAGE BREAK command (EVE)• 8-36
Integer

See Number
Interactive mode

definition• 1-6

Interactive utility

See Utility
Iterative translation

See also Logical name translation
and SHOW LOGICAL command• 4-4
and SHOW TRANSLATION command• 4-4
definition• 4-4, 4-12
preventing• 4-13

J
Job logical name

definition• 4-6
in a job tree• 4-6

Job logical name table
list of default contents of• 4-6
logical name for• 4-6

Job tree • 3-5
definition• 4-5

Journal file
EDT•S-54
EVE•S-23

K
Key

See also Key definition
function • 1-17 to 1-19
sort• 1-38

Key definition
assigning• 1-24, 1-25

in EDT•S-71
in EVE•S-39

deleting• 1-26
displaying• 1-26
list of definable keys• 1-24

Keypad
ACL editor diagram• 7-15
displaying EDT keypad in EVE• 8-23
displaying EVE keypad• 8-23
displaying WPS keypad in EVE• 8-23
EDT•S-49
tVE

on VT 100-series terminal• 8-6
on VT200- and VT300-series terminals•

8-6
MAIL diagram• 1-35

Key state• 1-25

Key state (cont'd.)

changing• 1-25
Keyword

definition• 1-9

L
Label

definition• 1-9
in DCL command line• 1-8

Learn sequence
defining• 8-40

Left arrow key
moving cursor with• 1-18

Lexical function
and logical name translation• 4-4
definition• 5-9
evaluating• 5-10
invoking• 5-9

Index

list of functions used to save and restore
process characteristics• 6-34

symbol substitution in• 5-6
syntax• 5-9
using in command procedure• 5-9, 6-12

LINE command (EDT)• 8-56
LINE command (EVE) • 8-9
Line editing

See Command line
LINEFEED key• 1-18
Line terminators• 1-19
LINK command (DCL) • 4-13
List

formatting with DSR • 9-8
LNM$GROUP • 4-7
LNM$JOB • 4-6
LNM$PROCESS • 4-5
LNM$PROCESS_DIRECTORY • 4-9
LNM$SYSTEM • 4-7
LNM$SYSTEM_DIRECTORY • 4-9
Local node

copying files from remote node to• 2-14
definition• 1-3
displaying remote files from• 2-11

Local symbol• 5-2
Local symbol table

definition• 5-3
P 1 through PS• 5-3
search order• 5-5

lndex-9

Index

Log file

for batch job • 3-9
Logical name

See also Job logical name

See also Logical name table

See also Process logical name
access mode• 4-13
as device name• 2-10
concealed device name• 4-13
defined as a search list• 4-15
defining• 4-2
displaying• 4-4
equivalence name• 4-1
for a mounted disk or tape• 4-6
for a network • 4-16
for a node specification• 4-16
overview • 4-1
preventing definition in subprocesses• 3-8
process-permanent• 4-1 7
rules for creating• 4-2
search lists• 4-15
system-created • 4-1 7
system-permanent• 4-20
translation in file specifications• 4-2

Logical name directory table
definition• 4-9
process • 4-9
system • 4-10

Logical name table

See also Group logical name table

See also Job logical name table

See also Process logical name table

See also System logical name table
creating• 4-14
defining access mode• 4-13
definition• 4-5
deleting• 4-14
list of system-provided • 4-1
process-private • 4-5
search order• 4-5, 4-12
shareable• 4-6

definition• 4-5
Logical name translation

and wildcards • 4-15
default search order• 4-11
default values• 4-13
in file specifications• 4-13
iterative • 4-12
preventing iterative translation• 4-13

Logical operators• 5-12

lndex-10

Login
automatic • 1-3
dial in• 1-4
manual• 1-1
network • 1-3

LOGIN.COM
See Login command procedure

Login command procedure
personal• 6-4

defining EVE$1NIT in• 8-44
defining keys in• 1-25
defining logical names in • 4-1
defining symbols in• 1-24
definition• 1-3, 6-4
executed as batch jobs • 3-9
location of• 6-4
sample•6-4
specifying alternate file specification• 6-6

system• 1-2
Login directory file• 2-1, 2-6
Logout•1-5

network• 1-4
LOGOUT command (DCL) • 1-5, 3-6
Longword

definition • 5-1
LOWERCASE command (EVE) • 8-30
LOWERCASE WORD command (EVE) • 8-36
Low-order unit

definition• 5-1

M
MAIL command (DCL) • 1-27
MAIL folder

creating• 1-33
deleting• 1-34
displaying list of• 1-33
MAIL• 1-31, 1-32
NEWMAIL• 1-30, 1-32
selecting • 1-33
WASTEBASKET• 1-32

Mail subdirectory
creating• 1-2 7

Mail Utility (MAIL)
creating mail files• 1-34
deleting a message in• 1-32
exiting• 1-2 7
extracting a message to a file with• 1-31
invoking• 1-27

Mail Utility (MAIL) (cont'd.)

keypad
commands• 1-34
diagram• 1-35

protecting mail files in• 7-11
reading a message in• 1-30 to 1-31
sending a file from DCL level with• 1-29
sending a file in MAIL with• 1-28, 2-16
sending a message over network with• 1-28
sending a message to a distribution list with•

1-29
setting default editor in• 1-35
using text editor in• 1-28

Margin adjustment
DSR•9-5

MARK command (EVE) • 8-19
Mass storage device

definition• 2-8
Master file directory

See MFD
Member number

in user identification code• 7-2
MERGE command (DCL) • 1-37, 1-42

See also Sort/Merge Utility
MFD (master file directory)• 2-1, 2-6

See also Directory structure
displaying contents of• 2-21

Modem (or data set)• 1-4
MOUNT command (DCL)•2-10, 7-11
MOVE BY PAGE command (EVE)• 8-9
MOVE BY WORD command (EVE) • 8-9
MOVE command (MAIL)• 1-33
Multinational collating sequence• 1-40

N
Named directory specification

definition• 2-8
format in a file specification• 2-8
rules for entering• 2-8

Network
executing programs across• 3-4
link• 1-4
login• 1-3
logout• 1-4
sending mail over• 1-28

Network file specification

See File specification

Network node

See also Access control string

See also Node name
accessing a local node• 2-11
accessing a remote node• 2-11

Index

NEXT WINDOW command (EVE)• 8-9, 8-35
Node field

default value• 2-12
in full file specification• 2-11

Node name
See also Access control string

See also Node field
definition• 2-11
format in a file specification• 2-11
rules for entering• 2-11
using a logical name• 4-16

Noncommand image• 3-4
Nonfile device

protection • 7-12
Nonprivileged command image

interrupting and canceling• 1-20 to 1-21
Number

as fraction• 5-9
assigning to a symbol• 5-8
converting to a string value• 5-15
evaluation of• 5-3
in an expression• 5-13
integer values recognized by DCL • 5-8
internal storage of• 5-9

0
Offset

definition• 5-16
ON command (DCL) • 6-30
ON CONTROL_ Y command (DCL) • 6-31
ONE WINDOW command (EVE)• 8-35
OPEN command (DCL) • 6-13
OPEN LINE command (EDT)• 8-56
Operator

character string• 5-1 2
concatenation • 5-1 2
definition• 5-11
logical• 5-12, 5-15
numeric• 5-13
order of evaluation• 5-18
reduction • 5-12
string comparison• 5-11

OTHER WINDOW command (EVE)• 8-35

lndex-11

Index

Output stream
definition• 4-6

Overlay, numeric• 5-16, 5-1 7
Overstrike mode

editing command line in• 1-23
using EVE in• 8-11

Owner ownership category• 7-3
Ownership

displaying file• 7-12
object• 7-3

p
P 1 through PS • 5-3
PAGE command (EDT)• 8-5 7
Page number

adjusting with DSR • 9-13
suspending with DSR • 9-1 7

Paragraph
formatting with DSR • 9-6

Parameter
definition • 1-9
in DCL command line• 1-8
in file specification• 2-13
passing to a command procedure• 5-3, 6-7
rules for entering• 1-11
syntax • 1-11

Parameter list
syntax• 1-12

Parameter qualifier
definition• 1-13

Parent process
definition • 3-1

Password
changing• 1-2
creating• 1-2
in access control string• 2-11
in command procedure• 1-4
in file• 1-4

PASTE command (EDT)• 8-65
Percent sign (%) wildcard character

rules for using• 2-15
PF1 key

on VT 100-series terminals• 8-1 7
Phone Utility (PHONE)• 1-36
Physical device name

controller designation field• 2-9
device code field• 2-9
format in a file specification• 2-9

lndex-12

Physical device name (cont'd.)

unit number field• 2-9
PIO (process identification number)

and process context• 3-2
Positional qualifier

definition• 1-12
rules for entering • 1-13

PREVIOUS WINDOW command (EVE)• 8-9, 8-35
PRINT command (DCL) • 2-19
Print job• 2-18

delaying• 2-19
list of DCL commands to use with• 2-19
obtaining multiple copies of• 2-19
priorities• 2-18

Print queue
and print job execution• 2-18
controlling• 2-19
definition• 2-18
generic• 2-18
terminal• 2-18

Privileged command image• 1-20
Process • 3- 1

See also Subprocess
and job tree• 3-3, 3-5
creating• 3-1
definition• 3-1
detached• 7-3
types of• 3-1

Process characteristics
lexical functions used to save and restore•

6-34
obtained from UAF • 1-3

Process context • 3-1
list of characteristics• 3-2

Process directory logical name table
list of default contents of• 4-9

Process identification number
See PIO

Process logical name
in a job tree• 4-5

Process logical name table
definition• 4-5
list of default contents in• 4-6
logical name for• 4-5

Process-permanent logical names
list of• 4-17

Process privilege
and file access• 2-1
and process context• 3-3

Process rights identifier
and process context• 3-3

Program• 3-1
as batch job• 3-8
command image• 3-4
definition • 3-3
executing• 3-3

across network• 3-4
noncommand image• 3-4

Prompt
system in a command line• 1-11

Protection • 7-1
access-control-list-based • 7-6
default• 7-5, 7-10
device• 7-12
directory• 7-11
disk volume• 7-11
displaying file• 7-12
file• 7-5, 7-9
format for object• 7-4
nonfile device• 7-12
of copied files • 7-5
of mail file• 7-11
user data and devices• 7-5
user-identification-code-based• 7-2

Protection mask• 7-4
Proxy login account

definition• 2-12
PURGE command (DCL) • 2-17

a
Qualifier

abbreviating• 1-12
command• 1-12
default values• 1-13
definition • 1-9
format• 1-13
in DCL command line• 1-8
parameter• 1-13
positional• 1-13
rules for entering• 1-12
types of• 1-12, 1-13

Qualifier values
date and time formats• 1-14
rules for entering • 1-14
types of• 1-14

Queue
batch• 3-8
generic• 2-18
print•2-18

Queue (cont'd.)

terminal• 2-18
QUIT command (EDT) • 8-48
QUIT command (EVE)• 8-3

R
Radix

specifying in symbol assignment• 5-8
Read access category

definition• 7-4
READ command (DCL) • 5-5, 6-9, 6-15
READ command (MAIL) • 1-30 to 1-31
RECALL command (DCL) • 1-2 1
Recalling commands• 1-21 to 1-22
Record

Index

deleting in command procedure• 6-17
modifying in command procedure• 6-16
writing from command procedure• 6-17

Record format• 2-4
Record oriented device

definition• 2-8
Record sort• 1-37
/RECOVER qualifier• 8-23
Relative file• 2-4
Remote node

copying files to local node from• 2-14
definition• 1-3
displaying files on• 2-11
printing file on• 2-19

REMOVE command (EVE)• 8-15
RENAME command (DCL) • 2-17
REPEAT command (EVE) • 8-7
REPLACE command (EVE)• 8-20
RESET command (EDT)• 8-65
$REST ART global symbol• 5-4
RESTORE CHARACTER command (EVE)• 8-13
RESTORE command (EVE)• 8-13
RESTORE LINE command (EVE)• 8-13
RESTORE WORD command (EVE)• 8-13
RETURN command (DCL) • 6-25
RETURN key• 1-1 7, 1-19
Right arrow key

moving cursor with • 1-18
RUN (Image) command (DCL) • 3-4
RUN (Process) command (DCL) • 3-1
Running head

adjusting with DSR•9-13, 9-16
Runoff

See DSR

lndex-13

Index

RUNOFF command (DCL) • 9-17

s
SAVE EXTENDED EVE command (EVE)• 8-39,

8-43
SEARCH command (MAIL)• 1-31
Search list

definition• 4-15
example• 4-1 5
in a file specification• 4-1 5
translation• 4-15

Search order
for logical name translation• 4-11

Search string• 8-1 7
SECT command (EDT)• 8-57
Section file

and initialization file• 8-44
default location of• 8-43
saving command definitions and learn

sequences in• 8-43
SELECT command (EDT) • 8-62
SELECT command (EVE) • 8-1 5
SELECT command (MAIL)• 1-33
SEND command (MAIL)• 1-28
SEND/EDIT command (MAIL)• 1-35
Sequential file• 2-4

and Sort/Merge Utility• 1-41
SET ACL command (DCL)•7-13, 7-14
SET CONTROL =Y command (DCL) • 6-32
SET CURSOR BOUND command (EVE)• 8-9
SET CURSOR FREE command (EVE) • 8-9
SET DEFAULT command (DCL) • 2-22, 2-23
SET EDITOR command (MAIL)• 1-35
SET ENTITY command (EDT)• 8-72
SET FIND command (EVE)• 8-19
SET GOLD KEY command (EVE)• 8-41
SET HOST command (DCL) • 1-3
SET LEFT MARGIN command (EVE)• 8-26, 8-36
SET LINES command (EDT)• 8-72
SET MESSAGE command (DCL) • 1-20
SET MODE command (EDT)• 8-73
SET NOGOLD KEY command (EVE) • 8-43
SET NOWRAP command (EVE) • 8-36
SET NUMBERS command (EDT)• 8-62
SET ON command (DCL) • 6-30, 6-31
SET PASSWORD command (DCL) • 1-2
SET PROTECTION command (DCL) • 7-10
SET PROTECTION/DEVICE command (DCL) • 7-3

lndex-14

SET QUIET command (EDT)• 8-73
SET RIGHT MARGIN command (EVE)• 8-27,

8-36
SET SCREEN command (EDT)• 8-72
SET SEARCH command (EDT)• 8-63, 8-65
SET SYMBOL command (DCL) • 5-5
SET SYMBOL/SCOPE command (DCL) • 5-5
SET TABS command (EVE)• 8-36
SET TERMINAL command (DCL) • 1-23, 3-6
SET TRUNCATE command (EDT) • 8-72
SET UIC command (DCL) • 7-3
SET VERIFY command (DCL) • 6-28
SET WIDTH command (EVE)• 8-28, 8-36
SET WRAP command (EDT)• 8-67, 8-72
SET WRAP command (EVE) • 8-36
$SEVERITY global symbol• 5-4
Shareable tables

group logical name table• 4-7
system logical name table• 4-7

SHIFT LEFT command (EVE)• 8-28, 8-36
SHIFT RIGHT command (EVE)• 8-28, 8-36
SHOW ACL command (DCL)•7-12
SHOW BUFFER command (EDT) • 8-70
SHOW BUFFERS command (EVE)• 8-31, 8-32
SHOW command (EVE) • 8-31
SHOW DEFAULT command (DCL) • 2-22
SHOW DEVICES command (DCL) • 7-12
SHOW ENTRY command (DCL) • 2-18, 3-8
SHOW KEY command (DCL) • 1-26
SHOW LOGICAL command (DCL) • 4-4

See also SHOW TRANSLATION command
and logical name access mode• 4-13
and logical name table structure• 4-9

SHOW PROCESS command (DCL)•3-2, 7-12
SHOW PROTECTION command (DCL) • 7-12
SHOW QUEUE command (DCL) • 2-18
SHOW SYMBOL command (DCL) • 5-5, 6-29
SHOW SYSTEM BUFFERS command (EVE)• 8-31
SHOW TRANSLATION command (DCL) • 4-4

See also SHOW LOGICAL command
SHRINK WINDOW command (EVE)• 8-35
Sort

batch job• 1-41
character data• 1-39
collating sequence• 1-39
indexed output file• 1-4 1
key• 1-38
output file• 1-41
single key• 1-38
terminal input• 1-40
types of• 1-37 to 1-39

SORT command (DCL) • 1-37, 1-38

See also Sort/Merge Utility
Sort/Merge Utility (SORT /MERGE)

See also Sort
collating sequences

ASCll•1-39
EBCDIC• 1-39

entering records from terminal with• 1-40
invoking• 1-37
merging files with• 1-42
sorting noncharacter data files with• 1-40
sorting records with• 1-37

SPAWN command (DCL)• 1-21, 3-5
SP AWN command (EVE) • 8-46
SPLIT WINDOW command (EVE)• 8-35
ST ART OF LINE command (EVE)• 8-9
Startup file

EDT•8-71
$ST A TUS global symbol• 5-4
STOP command (DCL) • 1-21, 6-4, 6-32
STORE TEXT command (EVE)• 8-15
Subdirectory• 2-1

creating• 2-21
definition• 2-6
setting default to another• 2-22
syntax• 2-7

SUBMIT command (DCL) • 3-8
Subprocess• 3-1

andjobtree•3-3,3-5
and process identification number• 3-7
context • 3-7
creating• 3-5
definition• 3-5
deleting• 3-6
exiting from• 3-6

SUBROUTINE command (DCL) • 6-26
SUBSTITUTE command (EDT)• 8-64
Substring replacement• 5-16
Suspending terminal display• 1-23
Switchhook character (%) • 1-36
Symbol

abbreviating• 5-4
as another symbol• 5-10
as foreign command • 1-7, 5-1
assignment• 5-2
character string• 5-2
controlling access to• 5-5
creating• 5-2
defined as a lexical function• 5-9
defining in command procedure• 6-9
definition• 1-23, 5-1

Symbol (cont'd.)

deleting • 5-5
displaying• 5-5

in command procedure• 6-12
evaluation • 5-3
global • 5-3, 5-6
indicating a numeric value• 5-3, 5-8
list of DCL commands to use with• 5-5
local• 5-2, 5-5
logical data• 5-10
numeric overlay with• 5-17
passing to a command procedure• 6-7
precedence • 5-3

Index

preventing assignment in subprocesses• 3-8
scope•5-5
substitution • 5-6

automatic • 5-6
forced•5-6
order of• 5-6

substring replacement with• 5-16
symbol table search order• 5-5
used as variable• 5-2
used in expressions• 5-7 to 5-8,

5-11 to 5-19
uses of• 5-1 to 5-2

Symbol table

See Local symbol table, Global symbol table
SYS$BATCH•3-8
SYS$COMMAND

redefining• 4-19
SYS$ERROR

redefining• 4-19
SYS$1NPUT

redefining• 4-18
in command procedure• 6-10

SYS$0UTPUT
redefining• 4-18

SYS$PRINT • 2-18
and batch job log files• 3-9

System directory logical name table
list of default contents of• 4-10

System logical name table
definition• 4-7
list of default contents of• 4-7
logical name for• 4-7

System ownership category• 7-3
System-permanent logical name• 4-20
SYSUAF.DAT•7-1

lndex-15

Index

T
TAB key• 1-18
Table of contents

producing with DSR • 9-1 7
Tag sort• 1-39
Terminal

display
stopping and starting• 1-19, 1-23

1/0
in command procedure• 6-1 O, 6-12

protection• 7-12
Terminal queue

definition• 2-18
Text formatting

with DSR • 9-1
Time

See also Absolute time
See also Combination time
See also Delta time
specifying absolute and delta date and time

combinations• 1-16
specifying absolute date and time• 1-1 5
specifying delta date and time• 1-16

TOP command (EDT) • 8-5 7
TOP command (EVE) • 8-9
Top level directory file•2-1, 2-6
TPU command (EVE) • 8-45
TPU editor

as default MAIL editor• 1-35
TWO WINDOWS command (EVE)• 8-35
TYPE command (DCL) • 6-12

and wildcard characters• 2-15
displaying files with• 2-15
executing command procedure on remote node

with•6-2

u
UAF (user authorization file)

and login procedure• 1-1
and process characteristics• 1-3, 7-1
and the Authorize Utility• 7-1
definition• 7-1

UFO (user file directory)• 2-1

See also Directory structure
contents of• 2-6
location of• 2-8

lndex-16

UIC (user identification code)
alphanumeric• 7-2
and process context• 3-3
default protection• 7-1 O
member component• 7-3
numeric• 7-2
object• 7-3
process • 7-3
protection• 7-2

UNO C command (EDT)• 8-59
UNDEFINE KEY command (EVE)• 8-40
UNO L command (EDT) • 8-61
UNO W command (EDT) • 8-60
Unit number field

default value• 2-10
definition• 2-9

Unit record device
definition• 2-8

Up arrow key
recalling commands with• 1-18, 1-21

UPPERCASE command (EVE) • 8-30
UPPERCASE WORD command (EVE)• 8-36
User account

in UAF•7-1
User authorization file

See UAF
User file directory

See UFO
User identification code

See UIC
/USER_MODE qualifier

redefining SYS$1NPUT with• 4-18
redefining SYS$0UTPUT with• 4-18

Utility
definition• 1-26
types of• 1-26

v
Value

definition• 1-9
in DCL command line• 1-8

Volume
See also Disk
definition• 2-9

Volume set
definition• 2-9
disk•2-9
tape•2-9

w
White space

finding in EVE• 8-19
Wildcard character

asterisk (*) • 2-14
duplicating directory structure with• 2-25
ellipsis (...) • 2-23 to 2-24
hyphen (-) • 2-24 to 2-25
in directory specifications• 2-8
in EVE file name• 8-2
in file specifications containing logical names•

4-15
in search string• 8-18

percent sign (%) • 2-15
WILDCARD FIND command (EVE)• 8-18
Window

definition• 8-2
EVE commands for using• 8-35

Word
definition• 5-1

WORD command (EDT)• 8-55
World ownership category• 7-4
WPS keypad option

using in EVE• 8-23
Write access category

definition• 7-4
WRITE command (DCL) • 6-12, 6-13
WRITE command (EDT) • 8-69

Index

WRITE FILE command (EVE)• 8-24, 8-31, 8-34

lndex-17

Reader's Comments Guide to Using VMS
AA-LA05A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

-- Do Not Tear - Fold Here and Tape -------------------[lllr--------------
No Postage

~nmnoma™ ~;~=~=~y

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 •• 1.1 ... 1.11 .. 1

in the
United States

-- Do Not Tear - Fold Here --

I

I
I
I
I
I
I

Reader's Comments Guide to Using VMS
AA-LA05A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

--;;~t;~~~:·d Here _d Tape ------------------~lllr-------;~£2; __ _
in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 •• 1.1 .. 1 •• 1.1 ••• 1.11 .. 1

-- Do Not Tear • Fold Here --

I

I
I
I
I
I
I

