
VMS

•

VMS Message Utility Manual

Order Number AA-LA63A-TE

VMS Message Utility
Manual

Order Number: AA-LA63A-TE

April 1988

This manual describes the VMS Message Utility.

Revision/Update Information: This manual supersedes the VAX/VMS
Message Utility Reference Manual,
Version 4.0.

Software Version: VMS Version 5.0

digital equipment corporation
maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT
DECUS RSTS

~urnuo~u TM DECwriter RSX

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO Rico* CANADA INTERNATIONAL

ZK4550

Digital Equipment Corporation
P.O. Box CS2008

Digital Equipment
of Canada Ltd.

Digital Equipment Corporation
PSG Business Manager

Nashua, New Hampshire
03061

100 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
In Canada call 800-267-6215.

c/o Digital's local subsidiary
or approved distributor

*Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).
Internal orders should be placed through the Software Distribution Center (SOC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use
DIGITAL-supported devices, such as the LN03 laser printer and PostScript®
printers (PrintServer 40 or LN03R ScriptPrinter), to produce a typeset-quality
copy containing integrated graphics.

® PostScript is a trademark of Adobe Systems, Inc.

Contents

PREFACE

NEW AND CHANGED FEATURES

MESSAGE Description

1 MESSAGE FORMAT

2 CONSTRUCTING MESSAGES
2.1 The Message Source File
2.2 Compiling the Message Source File
2.3 Linking the Message Object Module

3 USING MESSAGE POINTERS

4 THE SET MESSAGE COMMAND

5 MESSAGE SOURCE FILES

MESSAGE Usage Summary

MESSAGE Qualifiers

MESSAGE Commands

/FILE_NAME
/LIST
/OBJECT
/SYMBOLS
/TEXT

BASE MESSAGE NUMBER DIRECTIVE
END DIRECTIVE
FACILITY DIRECTIVE
IDENTIFICATION DIRECTIVE
LITERAL DIRECTIVE
MESSAGE DEFINITION
PAGE DIRECTIVE
SEVERITY DIRECTIVE
TITLE DIRECTIVE

vii

ix

MSG-1

MSG-1

MSG-2
MSG-3
MSG-4
MSG-4

MSG-4

MSG-5

MSG-6

MSG-8

MSG-9
MSG-10
MSG-11
MSG-12
MSG-13
MSG-14

MSG-15
MSG-16
MSG-17
MSG-18
MSG-20
MSG-21
MSG-22
MSG-25
MSG-26
MSG-28

v

Contents

MESSAGE Examples

INDEX

FIGURES
MSG-1
MSG-2

vi

Message Code
Creating a Message Pointer

MSG-29

MSG-2
MSG-6

Preface

Intended Audience
This document is intended for programmers and general users of the VMS
operating system.

Document Structure
This document consists of the following five sections:

• Description-Provides a full description of the Message Utility
(MESSAGE).

• Usage Summary-Outlines the following information:

-Invoking the utility
-Exiting the utility

• Qualifiers-Describes MESSAGE qualifiers, including format, parameters,
and examples.

• Commands-Describes MESSAGE source file statements including
format, parameters, and examples.

• Examples-Provides examples for using message files and pointer files.

Associated Documents
The VMS Linker Utility Manual contains information about linking object
modules and creating executable, nonexecutable, and shareable images.

vii

Preface

Conventions

viii

Convention

CTRL/C

$SHOW TIME
05-JUN-1988 11 :55:22

$ TYPE MYFILE.DAT

input-file, ...

[logical-name]

quotation marks
apostrophes

Meaning

In examples, a key name (usually abbreviated)
shown within a box indicates that you press
a key on the keyboard; in text, a key name is
not enclosed in a box. In this example, the key
is the RETURN key. (Note that the RETURN
key is not usually shown in syntax statements
or in all examples; however, assume that you
must press the RETURN key after entering a
command or responding to a prompt.)

A key combination, shown in uppercase with a
slash separating two key names, indicates that
you hold down the first key while you press the
second key. For example, the key combination
CTRL/C indicates that you hold down the key
labeled CTRL while you press the key labeled C.
In examples, a key combination is enclosed in a
box.

In examples, system output (what the system
displays) is shown in black. User input (what
you enter) is shown in red.

In examples, a vertical series of periods, or
ellipsis, means either that not all the data that
the system would display in response to a
command is shown or that not all the data a
user would enter is shown.

In examples, a horizontal ellipsis indicates
that additional parameters, values, or other
information can be entered, that preceding
items can be repeated one or more times, or
that optional arguments in a statement have
been omitted.

Brackets indicate that the enclosed item is
optional. (Brackets are not, however, optional
in the syntax of a directory name in a file
specification or in the syntax of a substring
specification in an assignment statement.)

The term quotation marks is used to refer
to double quotation marks ("). The term
apostrophe (') is used to refer to a single
quotation mark.

New and Changed Features

This version of the Message Utility (MESSAGE) includes no significant
technical changes.

ix

1

MESSAGE Description

Message Format

This section describes how to use the Message Utility (MESSAGE).

Messages are displayed as a line of alphanumeric codes. The text of the
message explains the condition that caused the message to be displayed.

Messages are displayed in the following format:

%FACILITY-L-IDENT, message-text

FACILITY
Specifies the abbreviated name of the software component that issued the
message.

L
Shows the severity level of the condition that caused the message. The five
severity levels are represented by the following codes:

S Success

Informational

W Warning

E Error

F Fatal or severe

/DENT
Identifies a symbol of up to 15 characters that represents the message.

message-text
Explains the cause of the message. The message text can include up to 255
formatted-ASCII-output (FAO) arguments. For example, an FAO argument
can be used to display the instruction where an error occurred or a value that
you should be aware of.

%and,
Included as delimiters if any of the first three fields-FACILITY, L, or
IDENT-are present.

If you suppress FACILITY, L, and IDENT, the first character of the message
text is capitalized by the Put Message ($PUTMSG) system service.

The following is a typical message:

%TYPE0-W-80PENIN0, error opening _DBO: [ROSE]STATS.FOR;Ct as inputeit

0 TYPE is the facility.

8 W, warning, is the severity level.

0 OPENIN is the IDENT.

MSG-1

MESSAGE Description

8 _DBO:[ROSE]STATS.FOR is the FAO argument.

0 "Error opening _DBO:[ROSE]STATS.FOR; as input" is the message text.

2 Constructing Messages

MSG-2

You construct messages by writing a message source file, by compiling it
using the Message Utility, and by linking the resulting object module with
your facility object module. When you run your program, the Put Message
($PUTMSG) system service finds the information to use in the message by
using a message argument vector.

The message argument vector includes the message code, a 32-bit value that
uniquely identifies the message. The message code, which is created from
information defined in the message source file, consists of the following:

• The severity level defined in the severity directive or message definition

• The message number assigned automatically by a message definition or
specified with the base message number directive

• The facility number defined in the facility directive

• Internal control flags

Figure MSG-1 shows the arrangement of the bits in the message code.

Figure MSG-1 Message Code

31 28 27 16 15 32

control facility number message number sev

0

ZK-866-82

You can refer to the message code in your programs by means of a global
symbol called the message symbol, which also is defined by information from
the message source file. The message symbol, which appears in the compiled
message file, consists of the following:

• The symbol prefix defined in the facility directive

• The symbol name defined in the message definition

MESSAGE Description

2.1 The Message Source File
The message source file consists of message definition statements and
directives that define the message text, the message code values, and the
message symbol. The various elements that can be included in a message
source file are as follows:

• Facility directive

• Severity directive

• Base message number directive

• Message definition

• Literal directive

• Identification directive

• Listing directives

• End directive

Usually, the first statement in a message source file is a . TITLE directive,
which allows you to specify a module name for the compiled message file.
You must specify a .FACILITY directive after the .TITLE directive. All the
messages defined after a .FACILITY directive are associated with that facility.
A .END directive or a new .FACILITY directive ends the list of messages
associated with a particular facility.

You must define a severity level for each message either by specifying a
.SEVERITY directive or by including a severity qualifier as part of the message
definition.

Each message defined in the message source file must have a facility and a
message definition associated with it. All other message source file statements
are optional. See the Source File Statements Section for a detailed description
of the format of each of these message source file statements.

The TESTMSG.MSG file that follows is a sample message source file. The
messages for the associated FORTRAN program, TEST.FOR, are defined in
TESTMSG.MSG with the following lines:

.FACILITY

.SEVERITY
SYNTAX
ERRORS

.END

TEST,1 /PREFIX=MSG_
ERROR

<Syntax error in string '!AS'>/FA0=1
<Errors encountered during processing>

The FORTRAN program, TEST.FOR, contains the following lines:

EXTERNAL MSG_SYNTAX,MSG_ERRORS
CALL LIB$SIGNAL(MSG_SYNTAX,%VAL(1),'ABC')
CALL LIB$SIGNAL(MSG_ERRORS)
END

In addition to defining the message data, TESTMSG.MSG also defines the
message symbols MSG _SYNTAX and MSG __ERRORS that are included as
arguments in the procedure calls of TEST.FOR. The function %VAL is a
required FORTRAN compile-time function. The first call also includes the
string ABC as an FAO argument.

MSG-3

MESSAGE Description

2.2 Compiling the Message Source File
You must compile message source files into object modules before you can
use the messages defined in them. You compile your message source file
by typing the MESSAGE command followed by the file specification of the
message source file. For example:

$ MESSAGE TESTMSG

This command compiles the message source file, TESTMSG.MSG, and creates
an object module file, TESTMSG.OBJ.

For your convenience, you can put message object modules into object
module libraries, which you can then link with facility object modules.

2.3 Linking the Message Object Module
After you compile the message file, you must link the message object module
with the facility object module (created when the source file was compiled) to
produce one executable image file.

For example, you link the message object module, TESTMSG.OBJ, to the
FORTRAN object module, TEST.OBJ, to create the executable program,
TEST .EXE, with the following command:

$ LINK/NOTRACE TEST+TESTMSG

At this point, you can execute the program, which contains both the message
data and the facility code, with the following command:

$ RUN TEST

If an error occurs when you execute the program, the following messages are
displayed:

%TEST-E-SYNTAX, Syntax error in string ABC
%TEST-E-ERRORS, Errors encountered during processing

3 Using Message Pointers

MSG-4

Message pointers are generally used when you need to provide different
message texts for the same set of messages, for example, a multilingual
situation. When you use message pointers, you do not link the message
object module directly with the facility object module. Consequently, you
do not have to relink the executable image file to change the message text
included in it.

To use a pointer, you must create a nonexecutable message file that contains
the message text, and a pointer file that· contains the symbols and pointer to
the nonexecutable file.

You create the nonexecutable message file by compiling and linking a
message source file. For example, to create the nonexecutable message file
COBOLMF.EXE, you first create the object module by compiling the message
source file, COBOLMSG.MSG, with the following command:

$ MESSAGE/NOSYMBOLS COBOLMSG

MESSAGE Description

You link the resulting object module with the following command:

$ LINK/SHAREABLE=SYS$MESSAGE:COBOLMF COBOLMSG.OBJ

By default, the Linker places newly created images in your default device and
directory. In the preceding example, the nonexecutable image COBOLMF.EXE
is placed in the system message library SYS$MESSAGE.

You create the pointer file by recompiling the message source file with the
MESSAGE/FILE_NAME command. To avoid confusion, the pointer file
should have a different file name from the nonexecutable file.

The object module resulting from the MESSAGE/FILE_NAME command
contains only global symbols and the file specification of the nonexecutable
message file.

For example, the following command creates the object module
MESPNTR.OBJ, which contains a pointer to the nonexecutable message
file COBOLMF.EXE:

$ MESSAGE/FILE_NAME=COBOLMF /OBJECT=MESPNTR COBOLMSG

In addition to the pointers, the object module, MESPNTR.OBJ, contains the
global symbols defined in the message source file, COBOLMSG.MSG. If the
destination of the nonexecutable message file is not SYS$MESSAGE, you
must specify the device and directory in the file specification for the
/FILE_NAME qualifier.

After you create the pointer object module, you can then link it with the
facility object module.

For example, the following command links the object module,
MESPNTR.OBJ, to the COBOL program, COBOLCODE:

$ LINK COBOLCODE,MESPNTR

When you run the resulting facility image file, the $GETMSG system service
retrieves the message data from the message file, COBOLMF.

Figure MSG-2 illustrates the relationship of the files in this example.

4 The SET MESSAGE Command
The SET MESSAGE command allows you to do the following:

• Suppress or enable the various fields of the messages in your process.

• Supplement the system message data with the message data in a
nonexecutable message image for your process.

For example, the following SET MESSAGE command specifies that the
message information in MYMSG.EXE supplements the existing system
messages:

$ SET MESSAGE MYMSG

MSG-5

5

MESSAGE Description

Figure MSG-2 Creating a Message Pointer

MESSAGE
SOURCE

FILE
COBOLMSG.MSG

MESSAGE
COMPILER

/NOSYMBOLS
COBOLMSG

MESSAGE
COMPILER

/FILE_NAME=
COBOLMF
/OBJECT=
MESPNTR

MESSAGE
OBJECT
MODULE

COBOLMSG.OBJ

MESSAGE
POINTER
OBJECT
MODULE

MESPNTR.OBJ

FACILITY
OBJECT
MODULE

COBOLCODE.OBJ

NON-
LINKER EXECUTABLE

/SHAREABLE= MESSAGE
SYS$MESSAGE: FILE

COBOLMF SYS$MESSAGE:
COBOLMF.EXE

A
I
I
I $GETMSG
I

EXECUTABLE
PROGRAM,

LINKER INCLUDING
POINTER TO

MESSAGE DATA

ZK-868-82

In addition, the SET MESSAGE command used with one or more qualifiers
suppresses or enables one or more fields in a messsage. For example, the
following command suppresses the IDENT field in a message:

$ SET MESSAGE/NOIDENTIFICATION

For more information about the SET MESSAGE command, see the VMS DCL
Dictionary.

Message Source Files

MSG-6

The message source file contains statements or directives and the information
included in the message, the message code, and the message symbol.

Source File Statements

Message source file statements are embedded within a message source file.
Generally, message source file statements help construct the message code
and the message symbol, and control output listings. The message source file
statements or directives are as follows:

• Facility directive .FACILITY

• Severity directive .SEVERITY

• Base message number directive .BASE

• Message definition message-name

• End directive .END

• Literal directive .LITERAL

MESSAGE Description

• Identification directive .IDENT

• Listing directives

Title directive . TITLE

Page directive .PAGE

Many of these statements accept qualifiers and parameters. The specific
format of each of the message source file statements is described in detail in
the section on MESSAGE commands.

Any line in the message source file, except lines that contain the .TITLE
directive, can include a comment delimited by an exclamation point. You
may insert extra spaces and tabs in any line to improve readability.

The listing title specified with the .TITLE directive and the message text
specified in the message definition must occupy only one line. All other
statements in a message source file can occupy any number of lines; text that
continues onto the next line must end with a hyphen.

Defining Symbols in the Message Source File

Symbols defined in the message source file can include any of the following
characters:

A through Z
a through z
1 through 9
$ (dollar sign)
_ (underscore)

Using Expressions in the Message Source File

Expressions used in the message source file can include any of the following
radix operators:

AX Hexadecimal

Ao Octal

AD Decimal

Radix operators specify the radix of a numeric value. The default radix is
decimal.

Expressions can include symbols and the plus sign (+), which assigns
a positive value, and minus sign (-), which assigns a negative value.
Expressions can include the following binary operators:

+ Addition

Subtraction

Multiplication

/ Division

@ Arithmetic shift

Expressions can also include parentheses as grouping operators. Expressions
enclosed in parentheses are evaluated first; nested parenthetical expressions
are evaluated from inside to outside.

MSG-7

MESSAGE Usage Summary

FORMAT

COMMAND
PARAMETER

usage summary

MSG-8

The VMS Message Utility (MESSAGE) allows you to supplement the VMS
system messages with your own messages. Your messages can indicate
that an error has occurred. Messages can also indicate other conditions,
for example, that a routine has run successfully, or that a default value has
been assigned.

MESSAGE file-spec{, ... }

file-spec
Specifies the message source file to be compiled. If you do not specify a
file type, the default is MSG. Wildcard characters are allowed in the file
specification or specifications.

If you specify more than one message source file, separated by either commas
or plus signs, the files are concatenated and compiled as a single file.

If you specify SYS$INPUT, the message source file or files must immediately
follow the MESSAGE command in the input stream, and both the object
module name, identified by the /OBJECT qualifier, and the listing file name,
identified by the /LIST qualifier, must be stated explicitly.

The DCL command MESSAGE invokes the Message Utility. After compiling
the message source file, the Message Utility returns you to DCL command
level. For details about message statements and directives, qualifiers, and
parameters in message source files, see the Message Commands Section.

MESSAGE
QUALIFIERS

MESSAGE
MESSAGE Qualifiers

MESSAGE command qualifiers allow you to specify the type and contents of
output files produced. In addition, MESSAGE command qualifiers allow you
to create nonexecutable message files that contain pointers to files that contain
message data. Output files produced by command qualifiers are named in
accordance with the rules described in the VMS DCL Dictionary.

MSG-9

MESSAGE
/FILE_NAME

/FILE_NAME

FORMAT

QUALIFIER
VALUE

DESCRIPTION

EXAMPLES

iJ $ MESSAGE COBOLMSG

Specifies whether the object module contains a pointer to a file containing
message data.

/Fl LE_NAME=fi/e-spec
/NOFILE_NAME

file-spec
Identifies a nonexecutable message file. The default device and directory for
the file specification is SYS$MESSAGE, and the default file type is EXE. No
wildcard characters are allowed in the file specification.

The /[NO]FILE_NAME qualifier specifies whether the object module contains
a pointer to a file containing message data. By default, the object module
contains only compiled message information and no pointers.

The /FILE-NAME and /TEXT qualifiers cannot be used together because
a message pointer file cannot contain message text. The message text is
contained in the nonexecutable message file, specified by the /FILE-NAME
qualifier.

This MESSAGE command creates the message object module,
COBOLMSG.OBJ, by compiling the message source file, COBOLMSG.MSG.
The default qualifier /NOFILE-NAME is implied.

~ $ MESSAGE/FILE_NAME=COBOLMF COBOLMSG

MSG-10

This MESSAGE command creates a message pointer file, COBOLMSG.OBJ,
which contains a pointer to the nonexecutable message file,
SYS$MESSAGE:COBOLMF.EXE.

/LIST

FORMAT

QUALIFIER
VALUE

DESCRIPTION

EXAMPLE

MESSAGE
/LIST

Controls whether an output listing is created, and optionally provides an
output file specification for the listing.

/LI ST [=file-spec]
/NOLIST

file-spec
Specifies an output file specification for the listing file. The default device and
directory are the current device and directory. The default file type is LIS. No
wildcard characters are allowed in the file specification.

The /LIST qualifier creates a listing file. If you do not specify a file
specification, the listing file has the same name as the first message source file
being compiled and a file type of LIS. When you compile message source files
in batch mode, the output listing is created by default; however, in interactive
mode, the default is to produce no output listing.

$ MESSAGE/LIST=MSGOUTPUT COBOLMSG

This MESSAGE command compiles the message source file
COBOLMSG.MSG and creates the output listing MSGOUTPUT.LIS in your
current directory.

MSG-11

MESSAGE
/OBJECT

/OBJECT

FORMAT

QUALIFIER
VALUE

DESCRIPTION

EXAMPLES

iJ $ MESSAGE COBOLMSG

Controls whether an object module is created by the message compiler
and optionally provides a file specification for the object module.

/OBJECT[=fi/e-spec}
/NOOBJECT

file-spec
Specifies a file specification for the object module. The default device and
directory are the current device and directory; no wildcard characters are
allowed in the file specification.

By default, the message compiler creates an object module that contains the
message data. If you do not specify a file specification, the object module has
the same name as the first message source file being compiled and a file type
of OBJ.

This MESSAGE command creates the message object module,
COBOLMSG.OBJ, by compiling the message source file, COBOLMSG.MSG.
The default qualifier /OBJECT is implied.

f:a $ MESSAGE/FILE_NAME=COBOLMF /OBJECT=MESPNTR COBOLMSG

MSG-12

This MESSAGE command creates the object module, MESPNTR.OBJ, which
contains a pointer to the nonexecutable message file, COBOLMF.EXE.

/SYMBOLS

FORMAT

QUALIFIER
VALUES

DESCRIPTION

EXAMPLE

MESSAGE
/SYMBOLS

Controls whether global symbols are present in the object module. By
default, object modules are created with global symbols.

/SYMBOLS
/NOSYMBOLS

None.

By default, the message compiler creates an object module with global
symbols. The /SYMBOLS qualifier requires that the /OBJECT qualifier be in
effect, either explicitly or implicitly. If you are creating both a pointer object
module and a nonexecutable message image, you can compile the object
module, which becomes the nonexecutable image, with the /NOSYMBOLS
qualifier. The symbols have to be only in the pointer object module.

$ MESSAGE/FILE_NAME=COBOLMF /OBJECT=MESPNTR/SYMBOLS COBOLMSG

This MESSAGE command creates the object module, MESPNTR.OBJ, which
contains global symbols.

MSG-13

MESSAGE
/TEXT

/TEXT

FORMAT

QUALIFIER
VALUES

DESCRIPTION

EXAMPLE

Controls whether the message text is present in the object module.

/TEXT
/NOTEXT

None.

By default, the message compiler creates an object module that contains
message text. The message text is obtained from the nonexecutable message
file specified by the /FILE_NAME qualifier. The /TEXT and /FILE_NAME
qualifiers cannot be used together because a message pointer file cannot
contain message text.

The /TEXT qualifier requires that the /OBJECT qualifier be in effect, either
explicitly or implicitly.

You can use the /NOTEXT qualifier with the /SYMBOLS qualifier to produce
an object module containing only global symbols.

$ MESSAGE/FILE_NAME=COBOLMF/NOTEXT /OBJECT=MESPNTR COBOLMSG

MSG-14

This MESSAGE command creates the object module, MESPNTR.OBJ, which
does not contain text; instead, it contains a pointer to the nonexecutable
message file, COBOLMF.EXE.

MESSAGE
COMMANDS

MESSAGE
MESSAGE Commands

This section describes the message source file statements.

MSG-15

MESSAGE
Base Message Number Directive

Base Message Number Directive

Defines the value used in constructing the message code .

FORMAT . BASE number

PARAMETER number
Specifies a message number to be associated with the next message definition,
or an expression that is evaluated as the desired number.

QUALIFIERS None.

DESCRIPTION By default, all of the messages following a facility directive are numbered
sequentially, beginning with 1.

EXAMPLE

. TITLE

. !DENT

.FACILITY

.SEVERITY

UNRECOG
AMBIG

.SEVERITY

. BASE
SYNTAX

.END

MSG-16

If you need to supersede this default numbering system (for example, if you
want to reserve some message numbers for future assignment), specify a
message number of your choice using the base message number directive.
The message number is used as a base for the sequential numbering of all
messages that follow until either another .BASE directive or the end of the
messages belonging to the facility is encountered.

SAMPLE Error and Warning Messages
'VERSION 4.00'
SAMPLE,1/PREFIX=ABC_ 0
ERROR

< Unrecognized keyword !AS>/FAO_COUNT=l
< Ambiguous keyword>

WARNING
10 •

< Invalid syntax in keyword>

The facility number (facnum) in the facility statement 0 defines the first two
message numbers as 1 and 2. This sequential numbering is superseded by the
base message number directive 8 which assigns the message number 10 to
the third message.

MESSAGE
End Directive

End Directive

Terminates the entire list of messages for the facility.

FORMAT .END

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION An End directive terminates the entire list of messages for a facility. A
.FACILITY directive also terminates a list of messages.

EXAMPLE
.TITLE
. !DENT
.FACILITY
.SEVERITY

UNRECOG
AMBIG

.SEVERITY

.BASE
SYNTAX

.ENDO

SAMPLE Error and Warning Messages
'VERSION 4.00'
SAMPLE,1/PREFIX=ABC_
ERROR

< Unrecognized keyword !AS>/FAO_COUNT=1
< Ambiguous keyword>

WARNING
10

< Invalid syntax in keyword>

The .END directive 0 terminates the list of messages for the SAMPLE facility.

MSG-17

MESSAGE
Facility Directive

Facility Directive

FORMAT

PARAMETERS

QUALIFIERS

DESCRIPTION

MSG-18

Specifies the facility to which the messages apply.

.FACILITY [/qualifier, ... } facnam[,}facnum [/qualifier, ... }

facnam
Specifies the facility name used in the facility field of the message and in the
symbol representing the facility number. The facility name can be up to nine
characters.

facnum
Specifies the facility number used to construct the 32-bit value of the message
code. A decimal value in the range 1 to 2047, or an expression that evaluates
to a value in that range may be used. The system manager usually assigns
facility numbers so that no two facilities have the same number.

/PREFIX=prefix
Defines an alternate symbol prefix to be used in the message symbol for all
messages referring to this facility. The default symbol prefix is the facility
name followed by an underscore (-). If the /SYSTEM qualifier is also
specified, the default prefix is the facility name followed by a dollar sign and
an underscore ($_). The combined length of the prefix and the message
symbol name cannot exceed 31 characters. The maximum length of an
alternate symbol prefix created with the /PREFIX qualifier is nine characters.

/SHARED
Inhibits the setting of the facility-specific bit in the message code. The
/SHARED qualifier is used only for system services and shared messages,
and is reserved for DIGITAL use.

/SYSTEM
Inhibits the setting of the customer facility bit in the message code. This
qualifier is reserved for DIGITAL use.

The .FACILITY directive is the first directive in a message source file. All
of the lines following a .FACILITY directive apply to that facility until an
end statement or another facility statement is reached. You must specify the
facility name and the facility number in a .FACILITY directive. The facility
name and facility number can be separated by a comma or by any number of
spaces or tabs.

The .FACILITY directive creates a global symbol of the following form:

facnam$_FACILITY

You can use this symbol to refer to the facility number assigned to the facility.

EXAMPLE

.TITLE

. IDENT

.FACILITY

.SEVERITY

UNRECOG
AMBIG

.SEVERITY

.BASE
SYNTAX

.END

SAMPLE Error and Warning Messages
'VERSION 4.00'
SAMPLE,1/PREFIX=ABC_ 0
ERROR

< Unrecognized keyword !AS>/FAO_COUNT=1
< Ambiguous keyword>

WARNING
10

< Invalid syntax in keyword>

MESSAGE
Facility Directive

The facility statement 0 in this message source file defines the messages
belonging to the facility (facnam) SAMPLE with a facility number (facnum)
of 1. The message numbers begin with 1 and continue sequentially. The
/PREFIX=ABC_ qualifier defines the message symbols ABC_UNRECOG,
ABC_AMBIG, and ABC_SYNTAX.

MSG-19

MESSAGE
Identification Directive

Identification Directive

Identifies the object module the Message Utility produces.

FORMAT .IDENT string

PARAMETER string
Identifies the object module, for example, a string that identifies a version
number. If it is not delimited, the string is a 1- to 31-character string of
alphanumeric characters, underscores, and dollar signs. If other characters are
used, then the string must be delimited with either apostrophes or quotation
marks.

QUALIFIERS None.

DESCRIPTION The identification directive is used in addition to the name you assign to
the module with the . TITLE directive. You can label the object module

EXAMPLE
. TITLE
.!DENT
.FACILITY
.SEVERITY

UNRECOG
AMBIG

.SEVERITY

.BASE
SYNTAX

.END

MSG-20

by specifying a character string with the directive. If a message source file
contains more than one identification directive, the last directive establishes
the character string that form~ part of the object module identification.

SAMPLE Error and Warning Messages
'VERSION 4.00'0
SAMPLE,1/PREFIX=ABC_
ERROR

<Unrecognized keyword !AS>/FAO_COUNT=1
<Ambiguous keyword>

WARNING
10

< Invalid syntax in keyword>

This identification directive 0 identifies the object module that the Message
Utility produces.

MESSAGE
Literal Directive

Literal Directive

FORMAT

Defines global symbols in your message source file. You can either assign
values to these symbols or use the default values the directive provides.

.LITERAL symbol[=value}{, ... }

PARAMETERS symbol

QUALIFIERS

DESCRIPTION

EXAMPLES

Specifies a symbol name.

value
Specifies any valid expression. If you omit the value, a default value is
assigned. The default value is 1 for the first symbol in the directive and 1
plus the last value assigned for subsequent symbols.

None.

You can use the .LITERAL directive to define a symbol as the value of another
previously defined symbol, or as an expression that results from operations
performed on previously defined symbols.

iJ .LITERAL A,B,C

~ .FACILITY
.SEVERITY

FIRST

LAST
.LITERAL

.LITERAL

The values of A, B, and C will be 1, 2, and 3.

SAMPLE,1/PREFIX=MSG$_
ERROR

< first error>

< last error>
LASTMSG=MSG$_LAST 0
NUMSG=(MSG$_LAST©-3)-(MSG$_FIRST©-3) of messages 8

In this example, symbols defined in the facility and message definitions are
used to assign values to symbols created with the .LITERAL directives.

The first .LITERAL directive 0 defines a symbol that has the value of the last
32-bit message code defined. The second .LITERAL directive 8 defines the
total number of messages in the source file.

MSG-21

MESSAGE
Message Definition

Message Definition

Defines the message symbol, the message text, and the number of FAQ
arguments that can be printed with the message.

FORMAT name[/qualifier, ...] <message-text> [/qualifier, ...]

PARAMETERS name

QUALIFIERS

MSG-22

Specifies the name that is combined with the symbol prefix (defined in the
.FACILITY directive) to form the message symbol. The combined length of
the prefix and the message symbol name cannot exceed 31 characters.

The name is used in the IDENT field of the message unless you specify the
/IDENTIFICATION qualifier in the message definition.

message-text
Defines the text explaining the condition that caused the message to be
displayed. The message text can be delimited either by angle brackets or by
quotation marks. The text can be up to 255 bytes long; however, you cannot
continue the delimited text onto another line. The message text can include
FAO directives that insert ASCII strings into the resulting message; the
Formatted ASCII Output ($FAO) system service uses these directives. If you
include an FAO directive, you must also use the /FAO_COUNT qualifier.

/FAO_COUNT=n
Specifies the number of FAO arguments to be included in the message at
execution time. The number specified must be a decimal number in the range
0 through 255. The $PUTMSG system service, when constructing the final
message text, uses n to determine how many arguments are to be given to the
$FAO service. The default value for n is 0.

/IDENTIFICATION=name
Specifies an alternate character string to be used as the IDENT field of the
message. The name can include up to nine characters. If you do not specify
this qualifier, the name defined in the message definition is used.

/USER_ VALUE=n
Specifies an optional user value that can be associated with the message. The
value must be a decimal number in the range of 0 through 255. '[he default is
0. The value can be retrieved by the Get Message ($GETMSG) system service
for use in classifying messages by type or by action to be taken.

/SUCCESS
Specifies the success level for a message. This qualifier overrides any
.SEVERITY directive in effect. If no .SEVERITY directive is in effect, you
must use this qualifier to specify the success level.

DESCRIPTION

MESSAGE
Message Definition

/INFORMATIONAL
Specifies the informational level for a message. This qualifier overrides any
.SEVERITY directive in effect. If no .SEVERITY directive is in effect, you must
use this qualifier to specify the informational level.

/WARNING
Specifies the warning level for a message. This qualifier overrides any
.SEVERITY directive in effect. If no .SEVERITY directive is in effect, you must
use this qualifier to specify the warning level.

/ERROR
Specifies the error level for a message. This qualifier overrides any
.SEVERITY directive in effect. If no .SEVERITY directive is in effect, you
must use this qualifier to specify the error level.

/SEVERE
Specifies the severity level for a message. This qualifier overrides any
.SEVERITY directive in effect. If no .SEVERITY directive is in effect, you
must use this qualifier to specify the severity level.

/FATAL
Specifies the fatality level for a message. This qualifier overrides any
.SEVERITY directive in effect. If no .SEVERITY directive is in effect, you
must use this qualifier to specify the fatality level.

The message definition specifies the message text that is to be displayed and
the name used in the IDENT field of the message. Additionally, you can
use the message definition to specify the number of FAO arguments to be
included in the message text. Any number of message definitions can follow
a .SEVERITY directive (or a .FACILITY directive if no .SEVERITY directive is
included).

You can place qualifiers in any order before or after the message text.

You can use the severity level qualifiers either to override the severity level
defined in a .SEVERITY directive or to replace .SEVERITY directives in your
message source file. Only one Message Definition qualifier can be included
per message definition.

MSG-23

MESSAGE
Message Definition

EXAMPLE

. TITLE

. !DENT

.FACILITY

.SEVERITY

UNRECOG
AMBIG

.SEVERITY

.BASE
SYNTAX

.END

MSG-24

SAMPLE Error and Warning Messages
'VERSION 4.00'
SAMPLE,1/PREFIX=ABC_ 0
ERROR

< Unrecognized keyword !AS>/FAO_COUNT=1 8
"Ambiguous keyword" 0

WARNING
10

< Invalid syntax in keyword>

This message source file contains a .FACILITY directive 0 and three
message definitions 8 0 e. The symbol names-UNRECOG, AMBIG, and
SYNTAX-specified in the message definitions are combined with a prefix,
ABC_, defined in the .FACILITY directive, to form the message symbols,
ABC_UNRECOG, ABC_AMBIG, and ABC_SYNTAX.

The message text of the UNRECOG and SYNTAX messages 8 0 is delimited
by angle brackets (< >); the message text of the AMBIG message 0 is
delimited by quotation marks ("").

In addition, the first message definition in this example includes the FAO
directive !AS (which inserts an ASCII string at the end of the message text)
and the corresponding qualifier /FAO_COUNT.

MESSAGE
Page Directive

Page Directive

Forces page breaks in the output listing.

FORMAT .PAGE

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The .PAGE directive allows you to specify page breaks in the output listing.

EXAMPLE
.TITLE
.IDENT
.FACILITY
.SEVERITY

UNRECOG
AMBIG

.PAGE 0

.SEVERITY

.BASE
SYNTAX

.END

You can specify only one page break per any one .PAGE directive; however,
you can use the .PAGE directive as often as you like.

SAMPLE Error and Warning Messages
'VERSION 4.00'
SAMPLE,1/PREFIX=ABC_
ERROR

< Unrecognized keyword !AS>/FAO_COUNT=1
< Ambiguous keyword>

WARNING
10

< Invalid syntax in keyword>

This .PAGE directive 0 forces a page break in the output listing after the
AMBIG message definition.

MSG-25

MESSAGE
Severity Directive

Severity Directive

FORMAT

PARAMETER

QUALIFIERS

DESCRIPTION

MSG-26

Specifies the severity level to be associated with the messages that follow
the .SEVERITY directive.

.SEVERITY level

level
Specifies the level of the condition that caused the message. The severity
level codes are as follows:

SUCCESS Produces an S code in a message.

INFORMATIONAL Produces an I code in a message.

WARNING Produces a W code in a message.

ERROR Produces an E code in a message.

SEVERE Produces an F code in a message.

FATAL Produces an F code in a message.

The SEVERE parameter is equivalent to the FATAL parameter and they can
be used interchangeably.

None.

Following the .FACILITY directive, the message source file generally contains
a .SEVERITY directive. If you do not specify the severity on each message
definition with one of the Message Definition severity qualifiers, you must
include a .SEVERITY directive. If you attempt to define a message without
specifying a severity level, an error results.

A new .FACILITY directive cancels the previous severity level in effect.

EXAMPLE

. TITLE

.!DENT

.FACILITY

.SEVERITY

UNRECOG
AMBIG

.SEVERITY

.BASE
SYNTAX

.END

SAMPLE Error and Warning Messages
'VERSION 4.00'
SAMPLE,1/PREFIX=ABC_
ERROR 0

< Unrecognized keyword !AS>/FAO_COUNT=1
< Ambiguous keyword>

WARNING f)
10

< Invalid syntax in keyword>

MESSAGE
Severity Directive

The two .SEVERITY directives 0 f) included in this message source define
the severity levels for three messages. The first two messages have a severity
level of E; the third message has a severity level of W.

MSG-27

MESSAGE
Title Directive

Title Directive

FORMAT

Specifies the module name and title text that is to appear at the top of
each page of the output listing file.

. TITLE modname [listing-title}

PARAMETERS mod name
Specifies a character string of up to 31 characters that is to appear in the
object module as the module name.

listing-title
Defines the text to be used as the title of the listing. The title begins with
the first nonblank character after the module name and continues through
the next 28 characters. An exclamation mark(!) within these 28 characters is
treated as part of the title and not as a comment delimiter. The listing title
has a maximum length of 28 characters and cannot be continued onto another
line.

QUALIFIERS None.

EXAMPLE

. TITLE

.!DENT

.FACILITY

.SEVERITY

UNRECOG
AMBIG

.SEVERITY

.BASE
SYNTAX

.END

MSG-28

SAMPLE Error and Warning MessagesO
'VERSION 4.00'
SAMPLE,1/PREFIX=ABC_
ERROR

< Unrecognized keyword !AS>/FAO_COUNT=1
< Ambiguous keyword>

WARNING
10

< Invalid syntax in keyword>

The module name 0 of the object module produced by this file is SAMPLE,
and the title of the output listing 8 is defined as "Error and Warning
Messages."

MESSAGE
EXAMPLES

MESSAGE
MESSAGE Examples

The following examples demonstrate the use of message files and pointer
files.

Creating an Executable Image Containing Message Data

The following example illustrates the steps involved in incorporating a
message file within an executable image.

The message source file, TESTMSG.MSG, created with a text editor, contains
the following lines:

.FACILITY

.SEVERITY
SYNTAX
ERRORS
.END

TEST,1 /PREFIX=MSG_
ERROR
<Syntax error in string '!AS'>/FA0=1
< Errors encountered during processing>

You compile the message source file by entering the following command:

$ MESSAGE TESTMSG

You compile the FORTRAN source file by entering the following command:

$ FORTRAN TEST

You link the message object module, TESTMSG.OBJ, to the FORTRAN object
module, TEST.OBJ, by entering the following command:

$ LINK/NOTRACE TEST+TESTMSG

You execute the image by entering the following command:

$ RUN TEST

If an error occurs when you execute the program, the system displays the
following messages:

%TEST-E-SYNTAX, Syntax error in string ABC
%TEST-E-ERRORS, Errors encountered during processing

Creating an Executable Image Containing a Pointer

The following example demonstrates how to create an executable image that
contains a pointer to a nonexecutable message file.

You compile the message source, COBOLMSG, by entering the following
command:

$ MESSAGE/NOSYMBOLS COBOLMSG

You link the object module, COBOLMSG.OBJ, to create the nonexecutable
message file by entering the following command:

$ LINK/SHAREABLE=SYS$MESSAGE:COBOLMF COBOLMSG.OBJ

MSG-29

MESSAGE
MESSAGE Examples

MSG-30

You create the pointer object module, MESPNTR.OBJ, which contains a
pointer to the nonexecutable message file, COBOLMF.EXE, by entering the
following command:

$ MESSAGE/FILE_NAME=COBOLMF /OBJECT=MESPNTR COBOLMSG

You link the pointer object module, MESPNTR.OBJ, to the COBOL program
object module, COBOLCODE.OBJ, by entering the following command:

$ LINK COBOLCODE,MESPNTR

You execute the program by entering the following command:

$ RUN COBOLCODE

The system then displays the messages defined in COBOLMSG.

Index

B
Base message number directive (.BASE)

in message source file• MSG-16
Binary operators• MSG-7

D
Definition statements• MSG-3
Directive• MSG-2

E
End directive (.END)

in message source file • MSG-17
/ERROR qualifier

in message definition• MSG-23
Expressions

in message source file• MSG-7

F
Facility directive (.FACILITY)

in message source file • MSG-18
qualifiers • MSG-18

Facility name
in . FACILITY directive• MSG-18

Facility number
in . FACILITY directive• MSG-18

Facility object module• MSG-4
FAO argument•MSG-1, MSG-22, MSG-23
/FAO_COUNT qualifier

in message definition• MSG-22
/FAT AL qualifier

in message definition• MSG-23
/FILE_NAME qualifier• MSG-10
Format

of message source file statements• MSG-3

G
Global symbol

See Message symbol; /SYMBOL qualifier

I
Identification directive (.IDENT)

in message source file• MSG-20
/IDENTIFICATION qualifier

in message definition• MSG-22
/INFORMATIONAL qualifier

in message definition• MSG-23

L
Library• MSG-5
Listing directives• MSG-25, MSG-28
/LIST qualifier• MSG-11
Literal directive (.LITERAL)

in message source file• MSG-21

M
Message

construction of• MSG-2
definition of• MSG-22
example of• MSG-1
format of• MSG-1

Message code• MSG-2
MESSAGE command• MSG-4, MSG-9

format of• MSG:._8
parameter for• MSG-8
qualifiers • MSG-8 to MSG-14

MESSAGE commands• MSG-15
Message definition

in message source file• MSG-22
qualifiers for• MSG-22, MSG-23
statements • MSG-3

Message examples• MSG-29

lndex-1

Index

Message file

See Nonexecutable message file
Message object module

linking• MSG-4
Message pointer

creating• MSG-5
example• MSG-29
use of• MSG-4, MSG-5

Message source file
comments in• MSG-7
compiling• MSG-4
elements of• MSG-3
expressions in • MSG-7
format• MSG-3
sample of• MSG-1 8
symbols in• MSG-7

Message source file statements• MSG-6,
MSG-15

base message number directive (.BASE)•
MSG-16

end directive (.END)• MSG-17
facility directive (.FACILITY)• MSG-18
identification directive (.IDENT) • MSG-20
listing directives• MSG-25, MSG-28
literal directive (.LITERAL)• MSG-21
message definition• MSG-22
page directive (.PAGE)• MSG-25
severity directive (.SEVERITY)• MSG-26
title directive (.TITLE)• MSG-7, MSG-28

Message symbol•MSG-2, MSG-6, MSG-22
Message Utility (MESSAGE)

command qualifiers• MSG-9 to MSG-28
controlling output• MSG-9
exiting• MSG-8
invoking• MSG-8

N
Nonexecutable message file

creating• MSG-4

0
Object module

See Message object module
/OBJECT qualifier• MSG-12

lndex-2

p
Page directive (.PAGE)

in message source file• MSG-25
Pointer

See Message pointer
/PREFIX qualifier

in . FACILITY directive• MSG-18
Program

creating• MSG-4
executing• MSG-4

Program example• MSG-3
$PUTMSG • MSG-2

Q
Qualifiers• MSG-9

R
Radix• MSG-7
Radix operators• MSG-7

s
SET MESSAGE command• MSG-5
/SEVERE qualifier

in message definition• MSG-23
Severity directive (.SEVERITY)

in message source file• MSG-26
Severity level • MSG-1
/SHARED qualifier

in .FACILITY directive• MSG-18
Source file

See Message source file
Source file statements

See Message source file statements
/SUCCESS qualifier

in message definition• MSG-22
Symbols

in message source file• MSG-7
/SYMBOLS qualifier• MSG-13
/SYSTEM qualifier

in .FACILITY directive•MSG-18

T
/TEXT qualifier• MSG-14
Title directive (.TITLE)

in message source file• MSG-7, MSG-28

u
/USER_ VALUE qualifier

in message definition• MSG-22

w
/WARNING qualifier

in message definition• MSG-23

Index

lndex-3

Reader's Comments VMS Message Utility Manual
AA-LA63A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 .. 1.1 ... 1.11 .. 1

-- Do Not Tear - Fold Here --
1

