
VMS

digital Introduction to VMS System Services

Order Number AA-LA68A-TE

Introduction to VMS
System Services

Order Number: AA-LA68A-TE

April 1988

This manual describes how to use the VMS system services.

Revision/Update Information: This is a new manual.

Software Version: VMS Version 5.0

digital equipment corporation
maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT
DECUS RSTS

~D~Dll~UTM DECwriter RSX

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO Rico* CANADA INTERNATIONAL

ZK4589

Digital Equipment Corporation
P.O. Box CS2008

Digital Equipment
of Canada Ltd.

Digital Equipment Corporation
PSG Business Manager

Nashua, New Hampshire
03061

100 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
In Canada call 800-267-6215.

c/o Digital's local subsidiary
or approved distributor

*Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).
Internal orders should be placed through the Software Distribution Center (SOC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use
DIGITAL-supported devices, such as the LN03 laser printer and PostScript®
printers (PrintServer 40 or LN03R ScriptPrinter), to produce a typeset-quality
copy containing integrated graphics.

® PostScript is a trademark of Adobe Systems, Inc.

Contents

PREFACE

NEW AND CHANGED FEATURES

CHAPTER 1 INTRODUCTION TO SYSTEM SERVICES

1.1

1.1.1
1.1.2
1.1.3
1.1.3.1
1.1.3.2
1.1.3.3
1.1.3.4
1.1.3.5
1.1.4
1.1.5

CHAPTER 2

2.1
2.1.1
2.1.2
2.1.3

2.2

2.3

2.4
2.4.1
2.4.1.1

2.4.1.2

DOCUMENTATION FORMAT FOR SYSTEM SERVICE
ROUTINES
Format Heading
Returns Heading
Arguments Heading

VMS Usage Entry • 1-6
Type Entry• 1-7
Access Entry • 1-7
Mechanism Entry • 1-8
Explanatory Text Entry • 1-9

Condition Values Returned Heading
Condition Values Returned in the 1/0 Status Block Heading

CALLING SYSTEM SERVICES

SYSTEM SERVICES AND SYSTEM INTEGRITY
User Privileges
Resource Quotas
Access Modes

DETERMINING ARGUMENTS FOR SYSTEM SERVICES

OBTAINING VALUES FOR SYMBOLIC CODES

CALLING SYSTEM SERVICES FROM VAX MACRO
Using Macros to Construct Argument Lists

Specifying Arguments with the $name_S Macro and the
$name Macro • 2-6
Conventions for Specifying Arguments to System Services
• 2-7

xix

xxi

1-1

1-3
1-4
1-5
1-6

1-9
1-10

2-1

2-1
2-2
2-2
2-2

2-3

2-4

2-5
2-6

v

Contents

2.4.1.3 Defining Symbolic Names for Argument List Offsets: $name
and $nameDEF • 2-8

2.4.2 Using Macros to Call System Services 2-9
2.4.2.1 The $name_S Macro • 2-10
2.4.2.2 Example of $name_S Macro Call • 2-1 0
2.4.2.3 The $name_G Macro • 2-10
2.4.2.4 Example of $NAME and $name_G Macro Calls • 2-11

2.5 SYSTEM SERVICE COMPLETION 2-11
2.5.1 Synchronous and Asynchronous System Services 2-12
2.5.2 Process Execution Modes 2-13
2.5.2.1 Resource Wait Mode• 2-13
2.5.2.2 System Service Failure Exception Mode • 2-14

2.6 CONDITION VALUES RETURNED FROM SYSTEM SERVICES 2-15
2.6.1 Information Provided by Condition Values 2-16

2.7 TESTING RETURN CONDITION VALUES 2-16
2.7.1 System Messages Generated by Condition Values 2-17

2.8 HIGH-LEVEL LANGUAGE CALLS 2-17
2.8.1 Testing Return Condition Values in High-level Languages 2-18

2.9 INTERPRETING THE PROGRAMMING EXAMPLES 2-18

CHAPTER 3 SECURITY SERVICES 3-1

3.1 OVERVIEW OF VMS PROTECTION SCHEME 3-2

3.2 IDENTIFIERS 3-2
3.2.1 Identifier Format 3-3
3.2.2 Identifier Names 3-3
3.2.3 System-Defined Identifiers 3-4
3.2.4 General Identifiers 3-4
3.2.5 Identifier Attributes 3-5

3.3 RIGHTS DATABASE 3-5
3.3.1 Initializing a Rights Database 3-6
3.3.2 Using System Services to Affect a Rights Database 3-7
3.3.2.1 Translating Identifier Names and Binary Values • 3-8
3.3.2.2 Adding Identifiers and Holders to Rights Database • 3-9

vi

Contents

3.3.2.3 Determining Holders of Identifiers • 3-1 0
3.3.2.4 Determining Identifiers Held• 3-10
3.3.2.5 Modifying the Identifier Record • 3-12
3.3.2.6 Modifying a Holder Record • 3-1 3
3.3.2.7 Removing Identifiers and Holders from the Rights

Database• 3-15
3.3.3 Search Operations 3-15

3.4 CREATING, TRANSLATING, AND MAINTAINING ACES 3-18
3.4.1 Format of ACE Types 3-18
3.4.1.1 Alarm ACE• 3-19
3.4.1.2 Application-Dependent ACE • 3-20
3.4.1.3 Default Protection ACE• 3-21
3.4.1.4 Identifier ACE • 3-23
3.4.2 Translating ACEs 3-24
3.4.3 Creating and Maintaining ACEs 3-25

3.5 MODIFYING A RIGHTS LIST 3-30

3.6 CHECKING ACCESS PROTECTION 3-30
3.6.1 SYS$CHKPRO 3-30
3.6.2 SYS$CHECK_ACCESS 3-31

3.7 ADDITIONAL SECURITY SERVICES 3-35

CHAPTER4 EVENT FLAG SERVICES 4-1

4.1 EVENT FLAG NUMBERS AND EVENT FLAG CLUSTERS 4-2

4.2 EXAMPLES OF EVENT FLAG SERVICES 4-3

4.3 EVENT FLAG WAITS 4-3

4.4 SETTING AND CLEARING EVENT FLAGS 4-4

4.5 COMMON EVENT FL.AG CLUSTERS 4-4

4.6 DISASSOCIATING AND DELETING COMMON EVENT FLAG
CLUSTERS 4-5

vii

Contents

4.7 EXAMPLE OF USING A COMMON EVENT FLAG CLUSTER 4-6

4.8 CLUSTER NAME 4-7

4.9 EXAMPLE OF USING EVENT FLAG SERVICES 4-8

CHAPTER 5 AST (ASYNCHRONOUS SYSTEM TRAP) SERVICES 5-1

5.1 ACCESS MODES FOR AST EXECUTION 5-2

5.2 ASTS AND PROCESS WAIT STATES 5-3
5.2.1 Event Flag Waits 5-3
5.2.2 Hibernation 5-3
5.2.3 Resource Waits and Page Faults 5-3

5.3 HOW ASTS ARE DECLARED 5-3

5.4 THE AST SERVICE ROUTINE 5-4

5.5 AST DELIVERY 5-5

5.6 EXAMPLE OF USING AST SERVICES 5-6

CHAPTER 6 LOGICAL NAME SERVICES 6-1

6.1 LOGICAL NAME CONCEPTS 6-1
6.1.1 Logical Names and Equivalence Names 6-1
6.1.2 Logical Name Tables 6-2
6.1.2.1 Logical Name Directory Tables • 6-3
6.1.2.2 Default Logical Name Tables• 6-3
6.1.2.3 User-Defined Logical Name Tables• 6-6
6.1.3 Privileges 6-6
6.1.4 Access Modes 6-7
6.1.5 Attributes 6-8
6.1.6 Logical Name Table Quotas 6-9
6.1.6. 1 Directory Table Quotas• 6-9
6.1.6.2 Default Logical Name Table Quotas • 6-9
6.1.6.3 Job Logical Name Table Quotas• 6-10

viii

Contents

6.1.6.4 User-Defined Logical Name Table Quotas• 6-10
6.1.7 Logical Name and Equivalence Name Format Conventions 6-10
6.1.8 Specifying the Logical Name Table Search List 6-11

6.2 CREATING A LOGICAL NAME-$CRELNM 6-12
6.2.1 Duplication of Logical Names 6-13

6.3 CREATING LOGICAL NAME TABLES-$CRELNT 6-16
6.3.1 Shareable Logical Name Tables 6-16
6.3.2 $CRELNT System Service Call 6-16

6.4 DELETING LOGICAL NAMES-$DELLNM 6-17

6.5 TRANSLATING LOGICAL NAMES-$TRNLNM 6-17

6.6 EXAMPLE OF USING THE LOGICAL NAME SYSTEM
SERVICES 6-19

CHAPTER 7 INPUT/OUTPUT SERVICES 7-1

7.1 QUOTAS, PRIVILEGES, AND PROTECTION 7-2
7.1.1 Buffered 1/0 Quota 7-3
7.1.2 Buffered 1/0 Byte Count Quota 7-3
7.1.3 Direct 1/0 Quota 7-3
7.1.4 AST Quota 7-4
7.1.5 Physical 1/0 Privilege 7-4
7.1.6 Logical 1/0 Privilege 7-4
7.1.7 Mount Privilege 7-4
7.1.8 Volume Protection 7-4
7.1.9 Device Protection 7-6
7.1.10 System Privilege 7-6
7.1.11 Bypass Privilege 7-6

7.2 SUMMARY OF VMS QIO OPERATIONS 7-6

7.3 PHYSICAL, LOGICAL, AND VIRTUAL 1/0 7-7
7.3.1 Physical 1/0 Operations 7-7
7.3.2 Logical 1/0 Operations 7-7
7.3.3 Virtual 1/0 Operations 7-8

ix

Contents

7.4 1/0 FUNCTION ENCODING 7-12
7.4.1 Function Codes 7-12
7.4.2 Function Modifiers 7-13

7.5 ASSIGNING CHANNELS 7-14

7.6 QUEUING 1/0 REQUESTS 7-14

7.7 SYNCHRONIZING SERVICE COMPLETION 7-15

7.8 RECOMMENDED METHOD FOR TESTING ASYNCHRONOUS
COMPLETION 7-17

7.9 SYNCHRONOUS FORMS OF INPUT/OUTPUT SERVICES 7-18

7.10 1/0 COMPLETION STATUS 7-19

7.11 DEASSIGNING 1/0 CHANNELS 7-20

7.12 EXAMPLE OF USING COMPLETE TERMINAL 1/0 7-20

7.13 CANCELING 1/0 REQUESTS 7-22

7.14 DEVICE ALLOCATION 7-22
7.14.1 Implicit Allocation 7-23
7.14.2 Deallocation 7-24

7.15 MOUNTING AND DISMOUNTING VOLUMES 7-24
7.15.1 Calling the $MOUNT System Service 7-24
7.15.2 Calling the $DISMOU System Service 7-26

7.16 LOGICAL NAMES AND PHYSICAL DEVICE NAMES 7-26

7.17 DEVICE NAME DEFAULTS 7-27

7.18 OBTAINING INFORMATION ABOUT PHYSICAL DEVICES 7-27

7.19 FORMATTING OUTPUT STRINGS 7-28

x

Contents

7.20 MAILBOXES 7-30
7.20.1 Mailbox Name 7-32
7.20.2 System Mailboxes 7-33
7.20.3 Mailboxes for Process Termination Messages 7-34

7.21 EXAMPLE OF USING 1/0 SERVICES 7-34

CHAPTER 8 PROCESS CONTROL SERVICES 8-1

8.1 SUBPROCESSES AND DETACHED PROCESSES 8-2

8.2 THE EXECUTION CONTEXT OF A PROCESS 8-2

8.3 PROCESS CREATION 8-2
8.3.1 Defining an Image for a Subprocess to Execute 8-3
8.3.2 Input, Output, and Error Devices for Subprocesses 8-3
8.3.3 Disk and Directory Defaults for Created Processes 8-5
8.3.4 Controlling Resources of Created Processes 8-6
8.3.5 Detached Processes 8-7

8.4 INTERPROCESS CONTROL AND COMMUNICATION 8-7
8.4.1 Privileges for Process Creation and Control 8-7
8.4.2 Process Identification 8-8
8.4.2.1 Process Naming Within Groups • 8-9
8.4.2.2 Obtaining Information About Processes• 8-10
8.4.3 Techniques for Interprocess Communication 8-10

8.5 PROCESS HIBERNATION AND SUSPENSION 8-11
8.5.1 Process Hibernation 8-12
8.5.2 Alternate Methods of Hibernation 8-13
8.5.3 Suspension 8-14

8.6 IMAGE EXIT 8-14
8.6.1 Image Rundown Activities 8-14
8.6.2 The $EXIT System Service 8-15
8.6.3 Exit Handlers 8-15
8.6.4 Forced Exit 8-16

8.7 PROCESS DELETION 8-17
8.7.1 The Delete Process System Service 8-18

xi

Contents

8.7.2 Termination Mailboxes 8-18

8.8 EXAMPLE OF USING PROCESS CONTROL SERVICES 8-22

CHAPTER 9 TIMER AND TIME CONVERSION SERVICES 9-1

9.1 THE SYSTEM TIME FORMAT 9-2

9.2 OBTAINING THE CURRENT DATE AND TIME 9-2

9.3 OBTAINING AN ABSOLUTE TIME IN SYSTEM FORMAT 9-3

9.4 OBTAINING A DELTA TIME IN SYSTEM FORMAT 9-3

9.5 TIMER REQUESTS 9-4

9.6 SCHEDULED WAKEUPS 9-6

9.7 NUMERIC AND ASCII TIME 9-7

9.8 SETTING THE SYSTEM TIME 9-8

9.9 EXAMPLE OF USING THE TIMER SERVICE 9-11

CHAPTER 10 CONDITION-HANDLING SERVICES 10-1

10.1 TYPES OF EXCEPTION 10-1

10.2 HOW TO SPECIFY CONDITION HANDLERS 10-6

10.3 THE EXCEPTION DISPATCHER 10-7

10.4 THE ARGUMENT LIST PASSED TO A CONDITION HANDLER 10-8
10.4.1 Signal Array Arguments 10-10
10.4.2 Mechanism Array Arguments 10-10

xii

Contents

10.5 COURSES OF ACTION FOR THE CONDITION HANDLER 10-12
10.5.1 Example of Condition-Handling Routines 10-13
10.5.2 Unwinding the Call Stack 10-14

10.6 MULTIPLE EXCEPTIONS 10-17

10.7 EXAMPLE OF USING CONDITION-HANDLING SERVICES 10-17

CHAPTER 11 MEMORY MANAGEMENT SERVICES 11-1

11.1 VIRTUAL ADDRESS SPACE 11-2

11.2 INCREASING AND DECREASING VIRTUAL ADDRESS
SPACE 11-2

11.3 INPUT ADDRESS ARRAYS AND RETURN ADDRESS
ARRAYS 11-4

11.4 PAGE OWNERSHIP AND PAGE PROTECTION 11-5

11.5 WORKING SET PAGING 11-6

11.6 PROCESS SWAPPING 11-7

11.7 SECTIONS 11-8
11.7.1 Creating Sections 11-8
11.7.2 Opening the Disk File 11-9
11.7.3 Defining the Section Extents 11-10
11.7.4 Defining the Section Characteristics 11-10
11.7.5 Defining Global Section Characteristics 11-11
11.7.6 Global Section Name 11-12
11.7.7 Mapping Sections 11-13
11.7.8 Mapping Global Sections 11-15
11.7.9 Global Page-File Sections 11-15
11.7.10 Section Paging 11-16
11.7.11 Reading and Writing Data Sections 11-18
11.7.12 Releasing and Deleting Sections 11-18
11.7.13 Writing Back Sections 11-19
11.7.14 Image Sections 11-19

xiii

Contents

11 . 7 .1 5 Page Frame Sections

11.8 EXAMPLE OF USING MEMORY MANAGEMENT SYSTEM
SERVICES

CHAPTER 12 LOCK MANAGEMENT SERVICES

12.1 CONCEPTS OF RESOURCES AND LOCKS
12.1.1 Granularity
12.1.2 Resource Names
12.1.3 Choosing a Lock Mode
12.1.4 Levels of Locking and Compatibility
12.1.5 Lock Management Queues
12.1.6 Lock Conversion Concepts
12.1.7 Deadlock Detection

12.2 QUEUING LOCK REQUESTS

12.3 ADVANCED LOCKING TECHNIQUES
12.3.1 Synchronizing Locks
12.3.2 Notification of Synchronous Completion
12.3.3 Lock Status Block
12.3.4 Blocking ASTs
12.3.5 Lock Conversions
12.3.6 Parent Locks
12.3.7 Lock Value Blocks

12.4 DEQUEUING LOCKS

12.5 LOCAL BUFFER CACHING WITH THE LOCK MANAGEMENT
SERVICES

12.5.1 Using the Lock Value Block
12.5.2 Using Blocking ASTs
12.5.2.1 Deferring Buffer Writes • 12-1 5
12.5.2.2 Buffer Caching • 12-15
12.5.3 Choosing a Buffer Caching Technique

12.6 EXAMPLE OF USING LOCK MANAGEMENT SERVICES

xiv

11-19

11-20

12-1

12-1
12-2
12-2
12-3
12-4
12-4
12-6
12-6

12-7

12-8
12-8
12-8
12-9
12-9

12-10
12-11
12-12

12-13

12-14
12-15
12-15

12-16

12-16

CHAPTER 13 PROGRAMMING EXAMPLES

13.1 ORION PROGRAM EXAMPLE

13.2 CYGNUS PROGRAM EXAMPLE

13.3 LYRA PROGRAM EXAMPLE

APPENDIX A USER-WRITTEN SYSTEM SERVICES

A.1 CODING THE USER-WRITTEN SYSTEM SERVICE
A.1.1 Change-Mode Vector
A.1.2 Entry Point to the User-Written System Service
A.1.3 Kernel-Mode or Executive-Mode Dispatcher
A.1.4 Enabling and Disabling User Privileges

A.2 LINKING THE USER-WRITTEN SYSTEM SERVICE
A.2.1 Specifying Protection for the Image or Clusters

A.3 INSTALLING THE USER-WRITTEN SYSTEM SERVICE

A.4 USING THE USER-WRITTEN SYSTEM SERVICE

A.5 PROGRAM LISTINGS

APPENDIX B USING SHARED MEMORY

B.1

B.2

B.3

B.4

PREPARING MULTIPORT MEMORY FOR USE

PRIVILEGES REQUIRED FOR SHARED MEMORY USE

NAMING FACILITIES IN SHARED MEMORY

ASSIGNING LOGICAL NAMES AND LOGICAL NAME
TRANSLATION

Contents

13-1

13-1

13-8

13-17

A-1

A-1
A-1
A-3
A-3
A-3

A-4
A-4

A-4

A-5

A-5

B-1

B-1

B-2

B-2

B-3

xv

Contents

B.5 HOW VMS FINDS FACILITIES IN SHARED MEMORY

B.6 USING COMMON EVENT FLAGS IN SHARED MEMORY

B.7 USING MAILBOXES IN SHARED MEMORY

B.8 USING GLOBAL SECTIONS IN SHARED MEMORY
B.8.1 Removing Shared Memory Global Sections
B.8.2 Create and Map Section System Service

APPENDIX C LOADING INSTALLATION-SPECIFIC EXECUTIVE
LOADED IMAGES

INDEX

EXAMPLES
2-1

FIGURES
2-1

3-1

7-1

7-2

7-3

7-4

7-5

7-6

7-7

7-8

7-9

7-10

8-1

10-1

10-2

10-3

xvi

Interpreting MACRO Examples

Procedure Argument Passing Mechanisms

Flowchart of $CHKPRO Operation

Files-11 Volume Protection Fields

Foreign Volume Protection Fields

Mailbox Protection Fields

Physical 1/0 Access Checks

Logical 1/0 Access Checks

Physical, Logical, and Virtual 1/0
1/0 Function Format

Function Modifier Format

1/0 Status Block

$MOUNT Item Descriptor

Image Exit and Process Deletion

Search of Stack for Condition Handler

Argument List and Arrays Passed to Condition Handler

Unwinding the Call Stack

B-4

B-5

B-6

B-7
B-8
B-9

C-1

2-20

2-19

3-32

7-5

7-5

7-6

7-9

7-10

7-11

7-12

7-13

7-19

7-24

8-19

10-9

10-11

10-16

Contents

11-1 Layout of Process Virtual Address Space 11-3
12-1 Model Database 12-2
12-2 Three Lock Queues 12-5
12-3 A Deadlock 12-7
12-4 The Lock Status Block 12-9

TABLES
1-1 Main Headings in the Routine Template 1-3
3-1 ACE Type-Independent Information 3-19
4-1 Summary of Event Flag and Cluster Numbers 4-2
6-1 Summary of Privileges 6-7
7-1 Read and Write 1/0 Functions 7-12
7-2 Default Device Names for 1/0 Services 7-28
8-1 Process Identification 8-9
8-2 Process Hibernation and Suspension 8-11
10-1 Summary of Exception Conditions 10-2
11-1 Sample Virtual Address Arrays 11-5
11-2 Flag Bits to Set for Specific Section Characteristics 11-11
12-1 Compatibility of Lock Modes 12-5
12-2 Effect of Lock Conversion on Lock Value Block 12-13

xvii

Preface

This manual provides provides guidelines for how to use the system services
on a VMS operating system.

You can use VMS system services only in programs written in languages
that produce native code for the VAX hardware. At present these languages
include VAX MACRO and the following high-level languages:

VAX®> Ada®
VAX BASIC
VAX BLISS-32
VAXC
VAX COBOL
VAX COBOL-74
VAX CORAL
VAX DIBOL
VAX FORTRAN
VAX PASCAL
VAX PL/1

Intended Audience
This manual is intended for system and application programmers who want
to call system services.

Document Structure
This manual is organized as follows:

• Chapter 1 introduces the system services. It presents overviews of the
categories of system services and explains the documentation format of
the service descriptions in the VMS System Services Reference Manual.

• Chapter 2 describes how to call system services. It contains detailed
information for the VAX MACRO programmer and general information
for the high-level language programmer. For additional information about
a high-level language and programming examples in that language, see
the language's user's guide.

• Chapters 3 through 12 guide new users in understanding how the system
services work and how to use them. Each category of services has
its own chapter. Examples are provided in VAX MACRO and VAX
FORTRAN, although they are explained in a way meaningful to all
high-level language programmers.

• Chapter 13 contains sample programs that use various system services.

• Appendix A contains information about how you can code your own
system services.

®> VAX is a trademark of Digital Equipment Corporation.
® Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

xix

Preface

• Appendix B provides a guide for programmers in their use of shared
memory.

• Appendix C provides instructions for loading installation-specific
executive loaded images.

Associated Documents

Conventions

xx

For a detailed description of each system service routine, see the VMS System
Services Reference Manual.

The VAX Procedure Calling and Condition Handling Standard, which is
documented in the Introduction to VMS System Routines, contains useful
information for anyone who wants to call system services.

VAX MACRO programmers can find additional information about calling
system services in the VAX MACRO and Instruction Set Reference Manual.

High-level language programmers can find additional information about
calling system services in the language reference manual and language user's
guide provided with the VAX language.

The following documents may also be useful:

• Guide to Using VMS Command Procedures

• Guide to VMS File Applications

• Guide to VMS System Security

• VMS Networking Manual

• VMS Record Management Services Manual

• VMS I/O User's Reference Manual: Part I

• VMS I/O User's Reference Manual: Part II

For a complete list and description of the manuals in the VMS document set,
see the Overview of VMS Documentation.

The conventions used in this document are described in Section 1.1 of this
manual.

New and Changed Features

This manual was formerly Part I of the VAX/VMS System Services Reference
Manual, Version 4.4.

xxi

1 Introduction to System Services

System services are procedures that the VMS operating system uses to
control resources available to processes; to provide for communication among
processes; and to perform basic operating system functions, such as the
coordination of input/ output operations.

Although most system services are used primarily by the operating system on
behalf of logged-in users, they are also available for general use and provide
mechanisms that you can use in application programs. For example, when
you log in to the operating system, the Create Process ($CREPRC) system
service is called to create a process on your behalf. You may, in turn, write
a program that calls the $CREPRC system service to create a subprocess to
perform certain functions for an application.

System services can be divided into functional groups. The following table
lists each group of system services and its function.

Services Group

Security

Event Flag

AST

Logical Names

Function

The security services provide various
mechanisms that you can use to enhance
the security of VMS operating systems.

A process can use event flags to synchronize
sequences of operations in a program. Event
flag services clear, set, and read event flags,
and place a process in a wait state pending
the setting of an event flag or flags.

Process execution can be interrupted by
events (such as 1/0 completion) for the
execution of designated subroutines. These
software interrupts are called asynchronous
system traps (AST s) because they occur
asynchronously to process execution. System
services are provided so that a process can
control the handling of ASTs.

Logical name services provide a generalized
technique for maintaining and accessing
character string logical name and equivalence
name pairs. Logical names can provide device
independence for system and application
program input and output operations.

1-1

Introduction to System Services

Services Group

Input/Output

Process Control

Timer and Time Conversion

Condition-Handling

Memory Management

1-2

Function

1/0 services perform input and output
operations directly, rather than through the
file handling services of the VAX Record
Management Services (RMS). 1/0 services do
the following:

• Perform logical, physical, and virtual
input/output operations.

• Format output lines converting binary
numeric values to ASCII strings and
substituting variable data in ASCII strings.

• Perform network operations.

• Send messages to system processes.

Process control services allow you to create,
delete, and control the execution of processes.

Timer services schedule program events
for a particular time of the day, or after a
specified interval of time has elapsed. The
time conversion services provide a way to
obtain and format binary time values for use
with the timer services.

Condition handlers are procedures that can
be designated to receive control when a
hardware or software exception condition
occurs during image execution. Condition
handling services designate condition handlers
for special purposes.

Memory management services provide ways
to use the virtual address space available to
a program. Included are services that do the
following:

• Allow an image to increase or decrease
the amount of virtual memory data
available.

• Control the paging and swapping of virtual
memory.

• Create and access files in memory that
contain shareable code or data.

Introduction to System Services

Services Group

Change Mode

Lock Management

Function

Change mode services alter the access mode
of a process to a more privileged mode to
execute particular routines, or change the
stack pointer for a less privileged mode.
These services are used primarily by the
operating system.

Lock management services allow cooperating
processes to synchronize their access to
shared resources.

1 . 1 Documentation Format for System Service Routines
Each system service routine in the VMS System Services Reference Manual
is documented using a structured format called the routine template. This
section discusses the main headings in the routine template, the information
that is presented under each heading, and the format used to present the
information.

The purpose of this section, therefore, is to explain where to find information
and how to read it correctly, not how to use it. For a substantive discussion
of the contents, meaning, and use of the information provided in the routine
template, see the Introduction to VMS System Routines.

Some main headings in the routine template contain information that requires
no further explanation beyond what is given in Table 1-1. However, the
following main headings contain information that does require additional
discussion, and this discussion takes place in the remaining subsections of
this section.

Format Heading
Returns Heading
Arguments Heading
Condition Values Returned Heading

Table 1-1 Main Headings in the Routine Template

Main Heading

Routine Name

Routine Overview

Format

Returns

Description

Required. The routine entry point name appears at the
top of the first page. It is usually, though not always,
followed by the English text name of the routine.

Required. The routine overview appears directly below
the routine name; the overview explains, usually in one
or two sentences, what the routine does.

Required. The format heading follows the routine
overview. The format gives the routine entry point
name and the routine argument list.

Required. The returns heading follows the routine
format. It explains what information is returned by the
routine.

1-3

1.1.1

Introduction to System Services
1 .1 Documentation Format for System Service Routines

Format Heading

1-4

Table 1-1 {Cont.) Main Headings in the Routine Template

Main Heading Description

Arguments Required. The arguments heading follows the returns
heading. Detailed information about each argument
is provided under the arguments heading. If a routine
takes no arguments, it is indicated by the word "None."

Description Optional. The description heading follows the
arguments heading. The description section contains
information about specific actions taken by the
routine: interaction between routine arguments, if

Condition Values
Returned

any; operation of the routine within the context of
VMS; user privileges needed to call the routine, if any;
system resources used by the routine; and user quotas
that may affect the operation of the routine.

For some simple routines, a description section is not
necessary because the routine overview provides the
needed information.

Required. The condition values returned section
follows the description section. It lists the condition
values (typically status or completion codes) returned
by the routine.

The following two types of information may be present under the format
heading:

• Procedure call format

• Explanatory text

All system service routines have a procedure call format. Use of the
procedure call format results in a routine call conforming to the procedure call
mechanism described in the VAX Procedure Calling and Condition Handling
Standard; for example, an entry mask is created, registers are saved, and
so on.

Explanatory text may follow the procedure call format. This text is present
only when needed to clarify the format(s). For example, the call format
indicates that arguments are optional by enclosing them in square brackets
([]). However, square brackets alone cannot convey all the important
information that may apply to optional arguments. For example, in some
routines that have many optional arguments, if you select one optional
argument, you must select another optional argument. In such cases, text
following the format clarifies this fact.

A procedure call format is shown under the format heading. For example:

ENTRY-POINT-NAME arg1 ,arg2 . [arg3] ,nullarg [,arg4] [,arg5]

The format given here, though intended to be generic, is in fact specific to
some extent; it is chosen in order to bring to light some of the syntactical
mechanisms used to handle the more complex routine calls.

1.1.2 Returns Heading

Introduction to System Services
1 .1 Documentation Format for System Service Routines

The sample format exemplifies the use of the following syntax rules.

Element

Entry Point Names

Argument Names

Spaces

Square Brackets ([])

Commas

Null Arguments

Syntax Rule

Entry point names are always shown in uppercase
letters.

Argument names are always shown in lowercase
letters.

You must leave at least one space between the
entry point name and the first argument, and
between arguments.

Square brackets surround optional arguments;
arg3, arg4, and arg5 are optional arguments
because they are surrounded by brackets. Note
that commas too can be optional (see the comma
element).

Between arguments, the comma always follows
the space. If the argument is optional, the comma
may appear inside the brackets or outside the
brackets, depending on the position of the
argument in the list and on whether surrounding
arguments are optional or required.

For example, arg3 in the sample format is an
optional argument, but because other required
arguments follow arg3 in the list, the comma
itself is not optional (because it marks the place
of arg3). Therefore, the comma is not inside the
brackets.

The arguments arg4 and arg5 are optional.
Because no required arguments follow arg4 and
arg5 in the list, the commas in front of arg4 and
arg5 are themselves optional; that is, you would
not specify the commas in the call if you did not
specify arg4 and arg5. Therefore, the commas in
front of arg4 and arg5 are inside the brackets.

A null argument is a place-holding argument. It
is used to hold a place in the argument list for an
argument DIGIT AL has not yet implemented. A
null argument is always given the name "null_arg."
When calling a routine that has a null argument,
you must either (1) supply the value 0 for the null
argument or (2) supply no value but include the
comma in the call format to mark its place.

The information under the returns heading describes what information, if any,
the routine returns to the caller. For system services, the information returned
is always a longword condition value.

1-5

1.1.3

Introduction to System Services
1 .1 Documentation Format for System Service Routines

This condition value contains various kinds of information, but most
importantly for the caller, it describes (in bits 0 through 3) the completion
status of the operation. Programmers test the condition value to determine if
the routine completed successfully.

Status information is returned by means of a condition value in a VAX register
(RO). This is of little importance to high-level language programmers because
the high-level language programmer receives this status information in the
return (or status) variable he or she uses when making the call. The run
time environment established for the high-level language program allows
the status information in RO to be moved automatically to the user's return
variable.

Note that the Condition Values Returned heading in the routine template
describes the possible condition values that the routine can return.

Arguments Heading

1.1.3.1

1-6

Detailed information about each argument listed in the call format is shown
under the arguments heading. Arguments are described in the order in which
they appear in the call format. If the routine has no arguments, it is indicated
by the word "None."

The following format is used to describe each argument:

argument-name

VMS Usage:
type:
access:
mechanism:

argument-VMS-data-type
argument-data-type
argument-access
argument-passing-mechanism

One paragraph of structured text is followed by other paragraphs of text, as
needed.

VMS Usage Entry
The VMS usage entry indicates the VMS data type of the argument. Each
VMS data type has only one storage representation; for example, the VMS
data type "access_mode" is an unsigned byte. In addition, a VMS data type
may or may not have a "conceptual" meaning.

Most VMS data types may be considered "conceptual" types; that is, they
carry meaning unique in the context of the VMS operating system. Take, for
example, the VMS data type "access_mode." The storage representation of
this VMS data type is an unsigned byte, and the conceptual content of this
unsigned byte rests in the fact that it designates a hardware access mode and
therefore has only four valid values: 0, designating kernel mode; l, executive
mode; 2, supervisor mode; and 3, user mode. However, some VMS data
types are not conceptual types; that is, they specify a storage representation,
but carry no other semantic content from the point of view of VMS. For
example, the VMS data type "byte_signed" is not a conceptual type.

The Introduction to VMS System Routines decribes the VMS data types in more
detail. It also contains language implementation charts, which describe how
to construct each of the VMS data types in a number of high-level languages.

1.1.3.2

1.1.3.3

Introduction to System Services
1 .1 Documentation Format for System Service Routines

Type Entry
When a calling program passes an argument to a system service, the service
expects the argument to be of a particular data type. The service descriptions
in the VMS System Services Reference Manual indicate the expected data types
for each argument.

Properly speaking, an argument does not have a data type; rather, the data
specified by an argument has a data type. The argument is merely the vehicle
for the passing of data to the called routine.

As described in the VAX Procedure Calling Standard in the Introduction to
VMS System Routines, procedure calls result in the construction of an argument
list. This argument list is a vector of longwords. The first longword in
the list contains a count of the number of remaining longwords, and each
remaining longword is one argument. Thus, an argument is one longword in
the argument list.

Nevertheless, the phrase "argument data type" is frequently used to describe
the data type of the data specified by the argument. This terminology is
used because it is simpler and more straightforward than the strictly accurate
phrase "data type of the data specified by the argument."

The Introduction to VMS System Routines describes the data types allowed by
the VAX Procedure Calling Standard.

Access Entry
The argument-access entry describes the way in which the called routine
accesses the data specified by the argument. The following three methods of
access arc the most common:

1 Read only. Data upon which a routine operates, or data the routine needs
to perform its operation, must be read by the called routine. Such data
is also called input data. When an argument specifies input data, the
"access" entry shows "read only."

The term "only" is present to indicate that the called routine does not
both read and write (that is, modify) the input data. Thus, input data
supplied by a variable is preserved when the called routine completes
execution.

2 Write only. Data that the called routine returns to the calling routine
must be written into a location where the calling routine can access it.
Such data is also called output data. When an argument specifies output
data, the "access" entry shows "write only."

The term "only" is present to indicate that the called routine does not
read the contents of the location either before or after it writes into the
location.

3 Modify. When an argument specifies data that is both read and written
by the called routine, the "access" entry shows "modify." In this case, the
called routine reads the input data, which it uses in its operation, and
then overwrites the input data with the results (the output data) of the
operation. Thus, when the called routine completes execution, the input
data the argument specifies is lost.

1-7

Introduction to System Services
1 .1 Documentation Format for System Service Routines

1.1.3.4

1-8

Following is a complete list of the access types allowed by the VAX Procedure
Calling Standard:

• Read only

• Write only

• Modify

• Function call (before return)

• JMP after unwind

• Call after stack unwind

• Call without stack unwind

Mechanism Entry
The way in which an argument specifies the actual data to be used by the
called routine is defined in terms of the argument-passing mechanism. There
are three types of argument-passing mechanism:

• By value. When the longword argument in the argument list contains the
actual data to be used by the routine, the actual data is said to be passed
to the routine by value. In this case, the longword argument contains the
actual data; in other words, the argument is the actual data. Note that
because an argument is only one longword in length, only data that can
be represented in one longword can be passed by value.

• By reference. When the longword argument in the argument list contains
the address of the data to be used by the routine, the data is said to be
passed by reference. In this case, the argument is a pointer to the data.

• By descriptor. When the longword argument in the argument list contains
the address of a descriptor, the data is said to be passed by descriptor.
A descriptor consists of two or more longwords (depending on the type
of descriptor used), which describe the location, length, and data type of
the data to be used by the called routine. In this case, the argument is a
pointer to a descriptor that itself is a pointer to the actual data.

The following list contains the passing mechanisms allowed by the VAX
Procedure Calling Standard.

Passing Mechanism

By value

By reference

By reference, array reference

By descriptor

By descriptor, fixed-length

By descriptor, dynamic string

By descriptor, array

By descriptor, procedure

By descriptor, decimal string

By descriptor, noncontiguous array

Descriptor Code

DSC$K_CLASS_S
DSC$K_CLASS_D
DSC$K_CLASS_A
DSC$K_CLASS_P
DSC$K_CLASS_SD
DSC$K_CLASS_NCA

1.1.4

1.1.3.5

Introduction to System Services
1 .1 Documentation Format for System Service Routines

Passing Mechanism

By descriptor, varying string

By descriptor, varying string array

By descriptor, unaligned bit string

By descriptor, unaligned bit array

By descriptor, string with bounds

By descriptor, unaligned bit string with bounds

Explanatory Text Entry

Descriptor Code

DSC$K_CLASS_VS
DSC$K_CLASS_VSA
DSC$K_CLASS_UBS
DSC$K_CLASS_UBA
DSC$K_CLASS_SB
DSC$K_CLASS_UBSB

For each argument, one or more paragraphs of explanatory text follows the
type, access, and mechanism entries. The first paragraph is highly structured
and always contains the following items of information:

1 An initial sentence fragment that describes (1) the nature of the data
specified by the argument and (2) the way in which the routine uses this
data. For example, if an argument were supplying a number, which the
routine was to convert to another data type, the initial sentence fragment
would be something like the following: "number that is to be converted
to the such-and-such data type."

2 A sentence expressing the relationship between the argument and the
data it specifies. This relationship is the passing mechanism used to pass
the data.

If the passing mechanism is by value, this sentence says something like
the following: "the xxx argument contains (or is) the such-and-such data."

If the passing mechanism is by reference, this sentence says something
like the following: "the xxx argument is the address of the such-and-such
data."

If the passing mechanism is by descriptor, this sentence says something
like the following: "the xxx argument is the address of a descriptor
pointing to the such-and-such data."

Additional explanatory paragraphs follow each argument, as needed. For
example, some arguments specify complex data consisting of many discrete
fields, each of which has a particular purpose and use. In such cases,
additional paragraphs provide detailed descriptions of each such field,
symbolic names for the fields, if any, and guidance relating to their use.

Condition Values Returned Heading
A condition value is an unsigned longword that has several uses in the VAX
architecture.

• It indicates the success or failure of a called procedure.

• It describes an exception condition when an exception is signaled.

• It identifies system messages.

• It reports program success or failure to the command language level.

1-9

1.1.5

Introduction to System Services
1 .1 Documentation Format for System Service Routines

See the illustration in the Introduction to VMS System Routines that depicts
the format and contents of the longword condition value. The Introduction to
VMS System Routines also describes these contents and explains in detail the
uses of the condition value.

Under the Condition Values Returned heading, a two-column list gives the
symbolic code for each condition value that the routine can return and its
accompanying description. This description explains whether the condition
value indicates success or failure, and if failure, what user action may have
caused the failure and what can be done to correct it.

Note that the list of condition values is as complete as possible. However,
the complexity of some internal routines causes certain rare condition codes
to occasionally be returned. If a condition value is not listed, see the VMS
System Messages and Recovery Procedures Reference Volume.

Symbolic codes for condition values are system defined. The symbolic code
defined for each condition value equates to a number that is identical to the
longword condition value when interpreted as a number. In other words,
though the condition value consists of several fields, each of which can
be interpreted individually for specific information, the entire longword
condition value itself can be interpreted as an unsigned longword integer, and
this integer has an equivalent symbolic code.

Note that if a called routine generates an exception condition during
execution, the exception condition is signaled; the exception condition is
then handled by a condition handler (either user-supplied or system-supplied).
Depending on the nature of the exception condition and on the condition
handler that handles the exception condition, the called routine either
continues normal execution or terminates abnormally.

The documentation heading Condition Values Returned describes the condition
values returned by the routine when it completes execution without
generating an exception condition.

Condition Values Returned in the 1/0 Status Block Heading

1-10

When the called routine returns a condition value in an 1/0 status block,
the possible condition values that the routine can return are listed under the
Condition Values Returned in the I/O Status Block heading.

Some system services complete asynchronously; that is, they return to the
caller immediately after the call to the service is successfully queued but
before the operation to be performed by the service has completed. This
allows the calling program to continue execution while the system service
itself is executing. System services that complete asynchronously all have
arguments that specify an 1/0 status block. When the system service
operation has completed, a condition value specifying the completion status
of the operation is written to the 1/0 status block.

The first word in the 1/0 status block receives the condition value for the
final completion status of an asynchronous system service. Representing
a longword condition value in a word-length field is possible for system
services because the high-order word in system service condition values is
zero.

Introduction to System Services
1 .1 Documentation Format for System Service Routines

One field in the condition value specifies which facility generated the
condition value; this field is in the high-order word of the longword condition
value. For the system facility, the value of this field is zero. This fact allows
condition values generated by the system facility (which includes all system
services) to be represented in a word, rather than a longword, because bits in
the high-order word are all zeros.

For an explanation of the contents of the fields in the longword condition
value, see the Introduction to VMS System Routines.

1-11

2 Calling System Services

System service procedures are called using the standard VAX procedure
calling conventions. The programming languages that generate VAX native
mode instructions provide mechanisms for specifying the procedure calls.
These languages and supporting documentation are listed in the preface.

When you code a system service call, you must supply whatever arguments
the service requires.

When the service completes execution, it returns control to the calling
program with a return condition value. The caller should analyze the
condition value to determine the success or failure of the service call so
that the program can alter the flow of execution, if necessary.

If you are a VAX MACRO programmer, you should read Section 2.4 for
details on how to write the instructions that generate system service calls.

If you program in either VAX MACRO or a high-level language, you should
read Sections 2.2, 2.7, and 2.9. Section 2.2 provides information about
specifying arguments to system services; Section 2. 7 discusses methods
for checking return status from system services. Section 2.9 provides
programming examples in a number of VAX native languages to aid high
level language programmers in interpreting the programming examples that
appear throughout Chapters 3 through 13.

If you program in a high-level language, you should read Section 2.8 for
information about how to call system services from high-level languages. For
detailed information and examples, see the user's guide for your programming
language.

System service macros generate argument lists and CALL instructions
to call system services. These macros are located in the system library
SYS$LIBRARY:STARLET.MLB. When you assemble a source program, this
library is searched automatically for unresolved references.

Knowledge of VAX MACRO rules for assembly language programming
is required for understanding the material presented in this section. The
VAX MACRO and Instruction Set Reference Manual contains the necessary
prerequisite information.

2.1 System Services and System Integrity
Many system services are available and suitable for application programs, but
the use of some services must be restricted to protect the performance of the
system and the integrity of user processes.

For example, because the creation of permanent mailboxes uses system
dynamic memory, the unrestricted use of permanent mailboxes could decrease
the amount of memory available to other users. Therefore, the ability to
create permanent mailboxes is controlled: a user must be specifically assigned
the privilege to use the Create Mailbox ($CREMBX) system service to create a
permanent mailbox.

2-1

2.1.1

2.1.2

2.1.3

Calling System Services
2.1 System Services and System Integrity

User Privileges

Resource Quotas

Access Modes

2-2

The various controls and restrictions applied to system service usage are
described in this chapter. The Description section of each system service
in the VMS System Services Reference Manual lists any privileges and quotas
necessary to use the service.

The system manager, who maintains the user authorization file for the
system, grants privileges to use protected system services. The user
authorization file contains, in addition to profile information about each
user, a list of specific user privileges and resource quotas.

When you log in to the system, the privileges and quotas assigned to you
are associated with the process created on your behalf. These privileges and
quotas are applied to every image the process executes.

When an image issues a call to a system service that is protected by privilege,
the privilege list is checked. If you have the specific privilege required, the
image is allowed to execute the system service; otherwise, a condition value
indicating an error is returned.

For a list of privileges, see the description of the Create Process ($CREPRC)
system service in the VMS System Services Reference Manual.

Many system services require certain system resources for execution. These
resources include system dynamic memory and process quotas for 1/0
operations. When a system service is called that uses a resource controlled by
a quota, the process's quota for that resource is checked. If the process has
exceeded its quota, or if it has no quota allotment, an error condition value
may be returned.

A process can execute at any one of four access modes: user, supervisor,
executive, or kernel. The access modes determine a process's ability to access
pages of virtual memory. Each page has a protection code associated with
it, specifying the type of access-read, write, or no access-allowed for each
mode. The VAX Architecture Handbook provides additional information about
access modes.

For the most part, user-written programs execute in user mode; system
programs executing at the user's request (system services, for example) may
execute at one of the other three, more privileged, access modes.

In some system service calls, the access mode of the caller is checked. For
example, when a process tries to cancel timer requests, it can cancel only
those requests that were issued from the same or less privileged access
modes. For example, a process executing in user mode cannot cancel a timer
request made from supervisor, executive, or kernel mode.

Note that many system services use access modes to protect system resources,
and thus employ a special convention for interpreting access mode arguments.
You can specify an access mode using a numeric value or a symbolic name.
The following table shows the access modes, their numeric values, symbolic
names, and privilege ranks.

Calling System Services
2.1 System Services and System Integrity

Access Numeric Symbolic Privilege
Mode Value Name Rank

Kernel 0 PSL$C_KERNEL High

Executive 1 PSL$C_EXEC ! Supervisor 2 PSL$C_SUPER

User 3 PSL$C_USER Low

The symbolic names are defined by the symbolic definition macro ·$PSLDEF.

System services that permit an access mode argument allow callers to specify
only an access mode less privileged than, or equal in privilege to, the access
mode from which the service was called. If the access mode specified is more
privileged than the access mode from which the service was called, the less
privileged access mode is always used.

To determine the mode to use, VMS compares the specified access mode with
the access mode from which the service was called. Because this operation
results in an access mode with a higher numeric value (when the access mode
of the caller is different from the specified access mode), the access mode is
said to be "maximized."

Because much of the code you write executes in user mode, you can omit the
access mode argument. The argument value defaults to 0 (kernel mode), and
when this value is compared with the value of the current execution mode (3,
user mode), the higher value (3) is used.

2.2 Determining Arguments for System Services
You can determine the arguments required by a system service from each
service's description in the VMS System Services Reference Manual. The
Format section in each system service description indicates the positional
dependencies and keyword names of each argument, as shown in the
following sample:

$SERVICE arga ,argb ,argc ,argd

This format indicates that the macro name of the service is $SERVICE and
that it requires four arguments, ordered as shown and with keyword names
arga, argb, argc, and argd. You must use the following format for the
argument list for this service.

2-3

Calling System Services
2.2 Determining Arguments for System Services

31 8 7 0

0 I 4

arga

argb

argc

argd

ZK-854-82

All arguments are longwords. The first longword in the list must always
contain, in its low-order byte, the number of arguments in the remainder of
the list. The remaining three bytes must be zeros.

Many arguments to system services are optional; these are indicated by
square brackets in the macro formats. For example, if the second and
third arguments of $SERVICE are optional, the macro format looks like
the following:

$SERVICE arga ,[argb] ,[argc] ,argd

If you omit an optional argument in a system service macro, the macro
supplies a default value for the argument.

Arguments that are optional to system services always have default values,
whether they are passed by value, by reference, or by descriptor. In almost
every case, an optional argument defaults to 0. The macros used to call the
system services allow some languages to set default values to values other
than 0 (VAX MACRO and VAX BLISS-32 allow this). The descriptions of
the optional arguments in the VMS System Services Reference Manual specify
default values other than 0.

The description of an optional argument always specifies what action the
service takes when the default value is used.

Arguments that specify a return address may be optional when the system
service returns information; if the program does not require the information,
you can omit the optional argument.

2.3 Obtaining Values for Symbolic Codes

2-4

Individual services have symbolic codes for special return conditions,
argument list offsets, identifiers, and flags associated with these services.
For example, the Create Process ($CREPRC) service (which is used to create
a subprocess or a detached process) has symbolic codes associated with the
various privileges and quotas you can grant to the created process.

Calling System Services
2.3 Obtaining Values for Symbolic Codes

The default system macro library, STARLET.MLB, contains the macro
definitions for most system symbols. When you assemble a source program
that calls any of these macros, the assembler automatically searches
STARLET .MLB for the macro definitions. Each symbol name has a numeric
value.

If your language has a method of obtaining values for these symbols, this
method is explained in the user's guide.

If your language does not have such a method, you can do the following:

1 Write a short VAX MACRO program containing the desired macro(s).

2 Assemble the program and generate a listing. Using the listing, find the
desired symbols and their hexadecimal values.

3 Define each symbol with its value within your source program.

For example, to use the Get Job/Process Information ($GETJPI) service to
find out the accumulated CPU time (in 10-millisecond ticks) for a specified
process, you must obtain the value associated with the item identifier
JPl$_CPUTIM. You can do this in the following way:

1 Create the following three-line VAX MACRO program (named
JPIDEF.MAR here; you may choose any name you want):

.TITLE JPIDEF Obtain values for $JPIDEF
$JPIDEF GLOBAL ; These MUST be UPPERCASE
.END

2 Assemble and link the program to create the file, JPIDEF.MAP.

$ MACRO JPIDEF
$ LINK/NOEXE/MAP/FULL JPIDEF
%LINK-W-USRTFR, image NL:[] .EXE; has no user transfer address

The file JPIDEF.MAP contains the symbols defined by $JPIDEF listed both
alphabetically and numerically.

3 Find the value of JPl$_CPUTIM and define the symbol in your program.

2.4 Calling System Services from VAX MACRO
System service macros generate argument lists and CALL instructions
to call system services. These macros are located in the system library
SYS$LIBRARY:STARLET.MLB. When you assemble a source program, this
library is searched automatically for unresolved references.

Knowledge of VAX MACRO rules for assembly language programming
is required for understanding the material presented in this section. The
VAX MACRO and Instruction Set Reference Manual contains the necessary
prerequisite information.

Each system service has four macros associated with it. These macros allow
you to define symbolic names for argument offsets, construct argument lists
for system services, and call system services. The following table lists the
generic macros and the functions they serve.

2-5

2.4.1

Calling System Services
2.4 Calling System Services from VAX MACRO

Macro

$nameDEF

$name

$name_S

$name_G

Function

Defines symbolic names for the argument list offsets

Defines symbolic names for the argument list offsets and
constructs the argument list

Calls the system service and constructs the argument list

Calls the system service and uses the argument list
constructed by $name macro

Using Macros to Construct Argument Lists

2.4.1.1

2-6

There are two generic macros for constructing argument lists for system
services:

$name

$name_S

The macro you use depends on which macro you are going to use to call the
system service. If you use the $name_G macro to call a system service, you
should use the $name macro to construct the argument list. If you use the
$name_S macro to call a system service, you can also use it to construct the
argument list.

Specifying Arguments with the Sname_S Macro and the $name
Macro
When you use the $name_S or the $name macro to construct an argument
list for a system service, you can specify arguments in any of three ways:

• By using keywords to describe the arguments. All keywords must be
followed by an equal sign (=) and then by the value of the argument.

• By using positional order, with omitted arguments indicated by commas
in the argument positions. You can omit commas for optional trailing
arguments.

• By using both positional dependence and keyword names (positional
arguments must be listed first).

For example, $SERVICE may have the following format:

$SERVICE arga ,[argb] ,[argc] ,argd

Assume, for the purposes of this example, that arga and argb are arguments
that require you to specify numeric values and that argc and argd require you
to specify addresses.

The following two examples show valid ways of writing the $name_S macro
to call $SERVICE.

$name_S Example 1 : Using Keywords

MYARGD: .LONG 100

$SERVICE_S ARGB=#O,ARGC=O,ARGA=#1,ARGD=MYARGD

2.4.1.2

Calling System Services
2.4 Calling System Services from VAX MACRO

$name_S Example 2: Specifying Arguments in Positional Order

MYARGD: .LONG 100

$SERVICE_S #1,, ,MYARGD

The argument list is pushed on the stack, as follows:

PUS HAL
PUSHL
PUSHL
PUSHL

MYARGD
#0
#0
#1

Note that all arguments, whether specified positionally or with keywords,
must be valid assembler expressions because they are used as source operands
in instructions.

The following two examples show valid ways of writing a $name macro to
construct an argument list for a later call to $SERVICE.

$name Example 1 : Using Keywords

LIST: $SERVICE -
ARGB=O, -
ARGC=O, -
ARGA=1, -
ARGD=MYARGD

$name Example 2: Specifying Arguments in Positional Order

LIST: $SERVICE -
1,, ,MYARGD

The argument list generated in both cases is as follows:

LIST: .LONG 4
.LONG 1
.LONG 0
.LONG 0
.ADDRESS -

MYARGD

Note that all arguments, whether specified in positional order or by keyword,
must be expressions that the assembler can evaluate to generate .LONG or
.ADDRESS data directives. Contrast this with the arguments for the $name_S
macro, which must be valid assembler expressions because they are used as
source operands in instructions.

Conventions for Specifying Arguments to System Services
You must specify the arguments according to the VAX MACRO assembler
rules for specifying and addressing operands.

The way to specify a particular argument depends on the following factors:

• Whether the system service requires an address or a value as the
argument. In the VMS System Services Reference Manual, the descriptions
of the arguments following a system service macro format always indicate
if the argument is an address. A Boolean value, number, or mask takes a
value as the argument.

2-7

Calling System Services
2.4 Calling System Services from VAX MACRO

2.4.1.3

2-8

• The system service macro being used. The expansions of the $name and
$name_S macros in the examples in the preceding section showed the
code generated by each macro.

If you are unsure whether you specified a value or an address argument
correctly, you can assemble the program with the .LIST MEB directive
to check the macro expansion. See the VAX MACRO and Instruction Set
Reference Manual for details.

Defining Symbolic Names for Argument List Offsets: $name and
$nameDEF
You can refer symbolically to arguments in the argument list. Each argument
in an argument list has an offset from the beginning of the list; a symbolic
name is defined for the numeric offset of each argument. If you use the
symbolic names to refer to the arguments in a list, you do not have to
remember the numeric offset (which is based on the position of the argument
shown in the macro format).

There are two additional advantages to referring to arguments by their
symbolic names:

• Your program is easier to read.

• If an argument list for a system service changes with a later release of a
system, the symbols remain the same.

You form the offset names for all system service argument lists by
concatenating the service macro name with$_ and the keyword name of
the argument. In the following example, name is the name for the system
service macro and keyword is the keyword argument.

name$_keyword

Similarly, you can define a symbolic name for the number of arguments a
particular macro requires, as follows:

name$_NARGS

You can define symbolic names for argument list offsets automatically
whenever you use the $name macro for a particular system service. You
can also define symbolic names for system service argument lists using the
$nameDEF macro. This macro does not generate any executable code; it
merely defines the symbolic names so they can be used later in the program.
For example:

$QIODEF

This macro defines the symbol QIO$_NARGS and the symbolic names for
the $QIO argument list offsets.

You may need to use the $nameDEF macro if you specify an argument list to
a system service without using the $name macro, or if a program refers to an
argument list in a separately assembled module.

For example, the $READEF and $READEFDEF macros define the values listed
in the following table.

2.4.2

Calling System Services
2.4 Calling System Services from VAX MACRO

Symbolic Name

READEF$_NARGS

READEF$_EFN

READEF$_ST A TE

Value

Number of arguments in the list (2)

Offset of EFN argument (4)

Offset of ST A TE argument (8)

Thus, you can specify the $READEF macro to build an argument list for a
$READEF system service call, as follows:

READLST: $READEF EFN=1,STATE=TEST1

Later, the program may want to use a different value for the state argument
to call the service. The following lines show how you can do this with a call
to the $name_G macro:

MOVAL TEST2,READLST+READEF$_STATE
$READEF_G READLST

The MOVAL instruction replaces the address TESTl in the $READEF
argument list with the address TEST2; the $READEF_G macro calls the
system service with the modified list.

Using Macros to Call System Services
There are two generic macros for writing calls to system services:

$name_S

$name_G

Which macro you use depends on how the argument list for the system
service is constructed.

• The $name_S macro requires you to supply the arguments to the system
service in the system service macro. The macro generates code to push
the argument list onto the call stack during program execution. With this
macro, you can use registers to contain or point to arguments so that you
can write reentrant programs.

• The $name_G macro requires you to construct an argument list elsewhere
in the program and specify the address of this list as an argument to the
system service. (A macro is provided to create an argument list for each
system service.) With this macro, you can use the same argument list,
with modifications if necessary, for more than one invocation of the
macro.

The $name_S macro generates a CALLS instruction; the $name_G macro
generates a CALLG instruction. The services are called according to the
standard procedure calling conventions. System services save all registers
except RO and Rl, and restore the saved registers before returning control to
the caller.

The following sections describe how to code system service calls using each
of these macros.

2-9

Calling System Services
2.4 Calling System Services from VAX MACRO

2.4.2.1

2.4.2.2

2.4.2.3

2-10

The $name_S Macro
The $name_S macro call has the following format:

$name_S arg 1 , ... , argn

The macro generates code to push the arguments on the stack in reverse
order. The actual instructions used to place the arguments on the stack are
determined as follows:

• If the system service requires a value for an argument, either a PUSHL
instruction or a MOVZWL to -(SP) instruction is generated.

• If the system service requires an address for an argument, a PUSHAB,
PUSHAW, PUSHAL, or PUSHAQ instruction is generated, depending on
the context.

The macro then generates a call to the system service in the following
format:

CALLS #n,@#SYS$name

In this format, n is the number of arguments on the stack.

Example of Sname_S Macro Call
Because a $name_S macro constructs the argument list at execution time,
you can supply addresses and values using register addressing modes. The
following line can be used to execute the $READEF_S macro:

$READEF_S EFN=#1,STATE=(R10)

RlO contains the address of the longword to receive the status of the flags.

This macro instruction is expanded as follows:

PUSHAL (R10)
PUSHL #1
CALLS #2,©#SYS$READEF

The $name_G Macro
The $name_G macro requires a single operand:

$name_G label

label
Address of the Argument list.

The $name Macro

Macros are provided to create argument lists for the $name_G macro. The
format of the macros is as follows:

label: $name arg1 , ... ,argn

label
Symbolic address of the generated argument list. This is the label given as an
argument in the $name_G macro.

$name
The service macro name.

2.4.2.4

Calling System Services
2.4 Calling System Services from VAX MACRO

arg1 , ... ,argn
Arguments to be placed in successive longwords in the argument list.

The $name_G macro (used with the $name macro) is especially useful for
doing the following:

• Making calls to system services that have long argument lists

• Calling services repeatedly during the execution of a single program with
the same, or essentially the same, argument list

Example of $NAME and $name_G Macro Calls
The example that follows shows how you can write a call to the Read Event
Flags ($READEF) system service using an argument list created by $name.

The $READEF system service has the following macro format:

$READEF efn ,state

The efn argument must specify the number of an event flag cluster, and the
state argument must supply the address of a longword to receive the contents
of the cluster.

You may specify these arguments using the $name macro, as follows:

READLST:
$READEF EFN=1, -

STATE=TESTFLAG
; Argument list for $READEF

This $READEF macro generates the following code:

READLST:
.LONG 2
.LONG 1
.ADDRESS -

TESTFLAG

; Argument list for $READEF

Executing the $READEF macro requires only the following line:

$READEF_G READLST

The macro generates the following code to call the Read Event Flags system
service:

CALLG READLST,©#SYS$READEF

SYS$READEF is the name of a vector to the entry point of the Read Event
Flags system service. The linker automatically resolves the entry point
addresses for all system serviees.

2.5 System Service Completion
When a system service completes, control is returned to your program. You
can choose how and when control is returned to your program by choosing
synchronous or asynchronous forms of system services and by enabling
process execution modes.

The following sections describe

• When synchronous system services return control to your program.

• When asynchronous system services return control to your program.

2-11

2.5.1

Calling System Services
2.5 System Service Completion

• How you can synchronize the completion of asynchronous system
services.

• How control is returned to your program when special process execution
modes are enabled.

Synchronous and Asynchronous System Services

2-12

You can execute a number of system services either synchronously or
asynchronously (for example, SYS$GETJPI and SYS$GETJPIW). The "W"
at the end of the system service name indicates the synchronous version of
the system service.

The asynchronous version of a system service queues a request and returns
control to your program. You can perform operations while the system
service executes; however, you should not attempt to access information
returned by the service until you check that the system service has completed.

Typically, you pass an asynchronous system service an event flag and an 1/0
status block. When the system service completes, it sets the event flag and
places the final status of the request in the 1/0 status block. You use the
SYS$SYNCH system service to ensure that the system service has completed.
You pass SYS$SYNCH the event flag and 1/0 status block that you passed
to the asynchronous system service; SYS$SYNCH waits for the event flag to
be set, then ensures that the system service (rather than some other program)
sets the event flag by checking the 1/0 status block. If the 1/0 status block is
still zero, SYS$SYNCH waits until the 1/0 status block is filled.

The synchronous version of a system service acts exactly as if you had used
the asynchronous version followed immediately by a call to SYS$SYNCH. If
you omit the efn argument, the service uses event flag number zero whether
you use the synchronous or asynchronous version of a system service.

The following is an example of using the $SYNCH system service to check
the completion status of the asynchronous service $GETJPI.

Example of $SYNCH System Service in VAX FORTRAN

Data structure for SYS$GETJPI

INTEGER*4 STATUS,
2 FLAG,
2 PIO_ VALUE
! I/0 status block
INTEGER*2 JPISTATUS,
2 LEN
INTEGER*4 ZERO /0/
COMMON /IO_BLOCK/ JPISTATUS,
2 LEN,
2 ZERO

Call SYS$GETJPI and wait for information
STATUS = LIB$GET_EF (FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

2.5.2

STATUS = SYS$GETJPI
2
2
2
2
2

Calling System Services
2.5 System Service Completion

(%VAL(FLAG),
PID_VALUE,

' NAME_BUF_LEN,
JPISTATUS,
')

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

STATUS= SYS$SYNCH (%VAL(FLAG),
2 JPISTATUS)
IF (.NOT. JPISTATUS) THEN

CALL LIB$SIGNAL (%VAL(JPISTATUS))
END IF

END

Process Execution Modes

2.5.2.1

When an error occurs during the execution of a system service, two process
execution modes affect how control is returned to the calling program:

• Resource wait mode

• System service failure exception mode

If you change the default setting in a program for either of these modes, the
program must handle the special return conditions that result. The next two
sections discuss considerations for using these modes.

Resource Wait Mode
Normally, when a system service is called and a required resource is not
available, the process is placed in a wait state until the resource becomes
available. Then, the service completes execution. This mode is called resource
wait mode.

In a real-time environment, however, it may not be practical or desirable
for a program to wait. In these cases, you can choose to disable resource
wait mode so that, when a required resource is unavailable, control returns
immediately to the calling program with an error condition value. You can
disable (and reenable) resource wait mode with the Set Resource Wait Mode
($SETRWM) system service.

How a program responds to the unavailability of a resource depends very
much on the application and the particular service being called. In some
instances, the program may be able to continue execution and retry the
service call later. In other instances, it may be necessary only to note that the
program is being required to wait.

2-13

Calling System Services
2.5 System Service Completion

2.5.2.2

2-14

System Service Failure Exception Mode
When an error occurs during the execution of a system service, control
normally returns to the next instruction in the calling program, which can
check the return condition value in RO to determine the success or failure of
the service call.

To detect and respond to system service call failures, you can use the
condition-handling mechanism of VMS to respond to system service failures.
Then, when an error occurs, a software exception condition is generated, and
control is passed to a condition-handling routine.

This mode is called system service failure exception mode, and can be
enabled (and disabled) with the Set System Service Failure Exception Mode
($SETSFM) system service, as shown in the following example:

$SETSFM_S ENBFLG=#1

This call enables the generation of exceptions when errors or severe errors
occur during execution of a system service (exceptions are not generated for
warning returns).

Certain formatting and conversion services are not affected by the enabling of
system service failure exception mode. The following services do not generate
exceptions when failures occur and when system service failure exception
mode is enabled:

$ASCTIM
$BINTIM
$FAO/$FAOL
$MOUNT
$PUTMSG
$UNWIND

If you write a program to execute with this mode enabled, you can write a
condition-handling routine. Information about condition handlers is provided
in Chapter 10, Condition-Handling Services. If no user-specified routine is
available when an exception occurs and the program was run with the DCL
command RUN, the default condition handler causes the program to exit and
displays descriptive information about the exception condition.

DIGITAL recommends that high-level language programs do not enable
system service failure exception mode, except in certain debugging situations.
If you enable system service failure exception mode and do not declare
your own condition handler, many error messages displayed at run time are
meaningless. High-level language compilers generate calls to system services
for many statements or instructions in source programs. (For example, reads
and writes to files generate calls to VMS RMS, which uses the $QIO and
$QIOW services.) If you enable system service failure exception mode, many
different types of errors-such as an I/O attempt to a nonexistent device or
nonnumeric input to a math routine-generate the message
%SYSTEM-F-SSFAIL, system service failure exception,

Calling System Services
2.6 Condition Values Returned from System Services

2.6 Condition Values Returned from System Services
When a system service finishes execution, a numeric status value is always
returned. For VAX MACRO calls, the status value is returned in general
register RO; however, the mechanisms used in high-level languages vary. See
the appropriate user's guide.

Depending on your specific needs, you can test just the low-order bit, the
low-order three bits, or the entire value, as follows:

• The low-order bit indicates successful (1) or unsuccessful (0) completion
of the service.

• The low-order three bits, taken together, represent the severity of the
error. The severity code values are as follows:

Value Meaning Symbolic Name

0 Warning STS$K_WARNING

1 Success STS$K_SUCCESS

2 Error STS$K_ERROR

3 Informational STS$K_INFO

4 Severe or fatal error STS$K_SEVERR

5-7 Reserved

The symbolic definition macro $STSDEF defines the symbolic names.

• The remaining bits (bits 3 through 31) classify the particular return
condition and the operating system component that issued the condition
value. For system service return status values, the high-order word (bits
16 through 31) contains zeros.

Each numeric condition value has a unique symbolic name in the following
format:

SS$_code

where:

code Is a mnemonic describing the return condition.

For example, the following usually indicates a successful return:

SS$_NORMAL

An example of an error return condition value is as follows:

SS$_ACCVIO

This condition value indicates that an access violation occurred because a
service could not read an input field or write an output field.

The symbolic definitions for condition values are included in the default
system library SYS$LIBRARY:STARLET.OLB. You can obtain a listing of these
symbolic codes at assembly time by invoking the system macro $SSDEF. To
check return conditions, use the symbolic names for system condition values.

2-15

2.6.1

Calling System Services
2.6 Condition Values Returned from System Services

VMS does not automatically handle system service failure or warning
conditions; you must test for them and handle them yourself. This contrasts
with the operating system's handling of exception conditions detected by
the hardware or software; the system handles these exceptions by default,
although you can intervene in or override the default handling by declaring a
condition handler (see Chapter 10).

Information Provided by Condition Values
Condition values returned by system services may provide information; that
is, they do not indicate only whether the service completed successfully.
The usual condition value indicating success is SS$_NORMAL, but others
are defined. For example, the condition value SS$_BUFFEROVF, which
is returned when a character string returned by a service is longer than the
buffer provided to receive it, is a success code. This condition value, however,
gives the program additional information.

Warning returns and some error returns indicate that the service may have
performed some part, but not all, of the requested function.

The possible condition values that each service can return are described
with the individual service descriptions in the VMS System Services Reference
Manual. When you write calls to system services, read the descriptions of the
return condition values to determine whether you want the program to check
for particular return conditions.

2. 7 Testing Return Condition Values

2-16

To test for successful completion after a system service call, the program can
test the low-order bit of RO and branch to an error checking routine if this bit
is not set, as follows:

BLBC RO,errlabel ; Error if low bit clear

Programs should not test for success by comparing the return status to
SS$_NORMAL. A future release of VMS may add new alternate success
codes to an existing service, causing programs that test for SS$_NORMAL to
fail.

The error checking routine may check for specific values or for specific
severity levels. For example, the following instruction checks for an illegal
event flag number error condition:

CMPL #SS$_ILLEFC,RO ; Is event flag number illegal?

Note that return condition values are always longword values; however, all
system services always return the same value in the high-order word of all
condition values returned in RO.

2.7.1

Calling System Services
2. 7 Testing Return Condition Values

System Messages Generated by Condition Values
When you execute a program with the DCL command RUN, the command
interpreter uses the contents of RO to issue a descriptive message if the
program completes with a nonsuccessful status.

The following code fragment shows a simple error-checking procedure in a
main program:

$READEF_S -
EFN=#64, -
STATE=TEST

BSBW ERROR

ERROR: BLBC
RSB

R0, 10$ Check register 0
Success, return
Exit with RO status 10$: RET

After a system service call, the BSBW instruction branches to the subroutine
ERROR. The subroutine checks the low-order bit in register 0 and if the bit is
clear, branches to a RET instruction that causes the program to exit with the
status of RO preserved. Otherwise, the subroutine issues an RSB instruction
to return to the main program.

If the event flag cluster requested in this call to $READEF is not currently
available to the process, the program exits and the command interpreter
displays the following message:

%SYSTEM-F-UNASEFC, unassociated event flag cluster

The keyword UNASEFC in the message corresponds to the condition value
SS$_UNASEFC.

The following three severe errors generated by the calls, not the services, can
be returned from calls to system services.

Error

SS$_ACCVIO

SS$_1NSFARG

SS$_1LLSER

Meaning

The argument list cannot be read by the caller (using the
$name_G macro), and the service is not called.

This meaning of SS$_ACCVIO is different from its
meaning for individual services. When SS$_ACCVIO is
returned from individual services, the service is called, but
one or more arguments to the service cannot be read or
written by the caller.

Not enough arguments were supplied to the service.

An illegal system service was called.

2.8 High-Level Language Calls
Each high-level language supported by VMS provides some mechanism for
calling an external procedure and for passing arguments to that procedure.
The specifics of the mechanism and the terminology used, however, vary from
one language to another. This manual does not describe the ways in which
each high-level language calls system services. For specific information,

2-17

2.8.1

Calling System Services
2.8 High-Level Language Calls

DIGITAL recommends that you refer to the appropriate high-level language
user's guide.

VMS system services are external procedures that accept arguments. There
are three ways to pass arguments to system services: by value, by reference,
and by descriptor. For more information, see Section 1.1.3.4.

The VMS System Services Reference Manual provides a description of each
service that indicates how each argument is to be passed. Phrases such as "an
address" and "address of a character string descriptor" identify reference and
descriptor arguments, respectively. Words like "Boolean value," "number,"
"value," or "mask" indicate an argument passed by value. Figure 2-1 shows
how arguments are passed to the system services.

Some services also require service-specific data structures that indicate
functions to be performed or hold information to be returned. The VMS
System Services Reference Manual includes descriptions of these service-specific
data structures. You can use this information and information from your
programming language manuals to define such service-specific item lists.

Testing Return Condition Values in High-level Languages
When a service returns control to your program, it places a return status
value in the general register RO. The value in the low-order word indicates
either that the service completed successfully or some specific error prevented
the service from performing some or all of its functions. After each call to a
system service, you must check whether it completed successfully. You can
also test for specific error conditions. (See Section 2.6 for more information
about return status values.)

Each language provides some mechanism for testing the return status. Often
you need only check the low-order bit, such as by a test for TRUE (success or
informational return) or FALSE (error or warning return).

To check the entire value for a specific return condition, each language
provides a way for your program to determine the values associated with
specific symbolically defined codes. You should always use these symbolic
names when you write tests for specific conditions.

For information about how to test for these codes, see the user's guide for
your programming language.

2.9 Interpreting the Programming Examples

2-18

Chapters 3 through 13 contain programming examples (using VAX MACRO
and VAX FORTRAN) designed to familiarize you with the system services
and their arguments. The examples do not show complete programming
sequences; rather, they show the code or arguments pertinent to a particular
discussion, or both.

Some of the more complex examples contain numeric symbols that
correspond to a list of explanatory text.

Calling System Services
2.9 Interpreting the Programming Examples

Figure 2-1 Procedure Argument Passing Mechanisms

ARGUMENT LIST

l N
(AP)

ARG 1

ARG 2

ACTUAL VALUE

ARG N

N (AP)

ARG 1

ARG 2

POINTER TO
ACTUAL VALUE

ARG N

N

ARG 1

ARG 2

POINTER TO
DESCRIPTOR

ARG N

(AP)

(a) ARGUMENT PASSED BY VALUE

(b) ARGUMENT PASSED BY REFERENCE

(c) ARGUMENT PASSED BY DESCRIPTOR

DESCRIPTOR

CLASS D TYPE LENGTH

POINTER

Note: ARG 1, ARG 2, and ARG N
can be passed by value, by
reference, or by descriptor
in any of these examples.

:(AP) = argument pointer

N = number of arguments

DATA

H

T
I

ZK-1962-84

2-19

Calling System Services
2.9 Interpreting the Programming Examples

Although the examples are written using VAX MACRO and VAX FORTRAN,
they are designed to be as meaningful as possible to programmers using
other high-level languages. Example 2-1 shows a portion of a VAX MACRO
program and the equivalent code in the following languages:

VAX BASIC
VAX BLISS-32
VAX COBOL
VAX FORTRAN
VAX PASCAL

Example 2-1 Interpreting MACRO Examples

MACRO Example

CYGDES: .ASCID /CYGNUS/ tt; Descriptor for CYGNUS string
TBLDES: .ASCID /LNM$SYSTEM/f) ; Logical name table
NAMBUF: . BLKB 255 C) ; Output buff er
NAMLEN: .BLKW 1 ~ Word to receive length
ITEMS: .WORD 255 Output buffer length

.WORD LNM$STRING Item code

.ADDRESS - Output buffer
NAMBUF

.ADDRESS - Return length
NAMLEN

.LONG 0 List terminator

.ENTRY ORION,O .,
0 $TRNLNM_S -

Routine entry point & mask

0 BLBC

TABNAM=TBLDES, -
LOGNAM=CYGDES, -
ITMLST=ITEMS

RO.ERROR ; Check for error

.END

Example 2-1 Cont'd. on next page

2-20

Calling System Services
2.9 Interpreting the Programming Examples

Example 2-1 (Cont.) Interpreting MACRO Examples

MACRO Notes

0 The input character string descriptor argument is defined using the
.ASCID directive.

8 The name of the table to search is defined using the .ASCID directive.

0 Enough bytes to hold the output data are allocated for an output character
string argument.

0 The MACRO directive .BLKW reserves a word to hold the output length.

9 A routine name and entry mask show the beginning of executable code in
a routine or subroutine.

0 A macro name that has the suffix _5 or _G calls the service.

You can specify arguments by keyword (as in this example) or in
positional order. (Keyword names correspond to the names of the
arguments shown in lowercase in the system service format descriptions
in the VMS System Services Reference Manual.) If you omit any optional
arguments (that is, accept the defaults), you can omit them completely
if you specify arguments by keyword. If you specify arguments by
positional order, however, you must specify the comma for each missing
argument.

Use the number sign (#) to indicate a literal value for an argument.

0 The BLBC instruction causes a branch to a subroutine named ERROR (not
shown) if the low bit of the condition value returned from the service is
clear (low bit clear = failure or warning). You can use a BSBW instruction
to branch unconditionally to a routine that checks the return status.

Example 2-1 Cont'd. on next page

2-21

Calling System Services
2.9 Interpreting the Programming Examples

Example 2-1 (Cont.) Interpreting MACRO Examples

BASIC Equivalent

10 SUB ORION .. Subprogram ORION

OPTION TYPE=EXPLICIT

EXTERNAL LONG FUNCTION SYS$TRNLNM
EXTERNAL WORD CONSTANT LNM$_STRING

Require declaration of all
symbols

Declare the system service
The request code that

! we will use
DECLARE WORD NAMLEN, f) ! Word to receive length

LONG SYS_STATUS ! Longword to receive status
COMMON (BUF) STRING NAME_STRING = 255 .,

RECORD ITEM_LIST

WORD BUFFER_LENGTH
WORD ITEM
LONG BUFFER_ADDRESS
LONG RETURN_LENGTH_ADDRESS

LONG TERMINATOR
END RECORD ITEM_LIST

Define item
descriptor structure
The buff er length
The request code
The buff er address
The address of the return len
word
The terminator
End of structure definition

DECLARE ITEM_LIST ITEMS Declare an item list
ITEMS: :BUFFER_LENGTH = 255% Initialize the item list
ITEMS: :ITEM= LNM$_STRING
ITEMS: :BUFFER_ADDRESS = LOC(NAME_STRING)
ITEMS: :RETURN_LENGTH_ADDRESS = LDC(NAMLEN)
ITEMS: :TERMINATOR = 0

e
SYS_STATUS = SYS$TRNLNM(, 'LNM$SYSTEM', 'CYGNUS',, ITEMS) (f)

IF (SYS_STATUS AND 1%) = 0% Ci)
THEN

! Error path
ELSE

! Success path
END IF
END SUB

Example 2-1 Cont'd. on next page

2-22

Calling System Services
2.9 Interpreting the Programming Examples

Example 2-1 (Cont.) Interpreting MACRO Examples

BASIC Notes

0 The SUB statement defines the routine and its entry mask.

8 The DECLARE WORD NAMLEN declaration reserves a 16-bit word for
the output value.

C) The COMMON (BUF) STRING NAME_STRING = 255 declaration
allocates 255 bytes for the output data in a static area. The compiler
builds the descriptor.

G The SYS$ form invokes the system service as a function.

Enclose the arguments in parentheses, and specify them in positional
order only. Specify a comma for each optional argument that you omit
(including trailing arguments).

9 The input character string is specified directly in the system service call;
the compiler builds the descriptor.

0 The IF statement performs a test on the low-order bit of the return status.
This form is recommended for all status returns.

Example 2-1 Cont'd. on next page

2-23

Calling System Services
2.9 Interpreting the Programming Examples

Example 2-1 (Cont.) Interpreting MACRO Examples

BLISS Equivalent

MODULE ORION=

BEGIN
EXTERNAL ROUTINE

ERROR_PROC: NOVALUE;

LIBRARY 'SYS$LIBRARY:STARLET.L32';

GLOBAL ROUTINE ORION: NOVALUE=

BEGIN
OWN

NAMBUF : VECTOR[255, BYTE],
NAMLEN : WORD,
ITEMS : BLOCK[16,BYTE]

INITIAL(WORD(255,
LNM$_STRING),
NAMBUF,
NAMLEN,

0);

Error processing routine

Library containing VMS
macros (including $TRNLNM).
This declaration
is required.

! Output buff er
! Translated string length

Output buff er length
Item code
Output buff er
Address of word for
translated
string length
List terminator

LOCAL Return status from
STATUS; system service

STATUS = $TRNLNM(TABNAM = %ASCID'LNM$SYSTEM',
LOGNAME = %ASCID'CYGNUS',
ITMLST =ITEMS); 0

IF NOT .STATUS THEN ERROR_PROC(.STATUS); fJ
END;

BLISS Notes

0 The macro is invoked by its service name, without a suffix.

Enclose the arguments in parentheses, and specify them by keyword.
(Keyword names correspond to the names of the arguments shown in
lowercase in the system service format descriptions in the VMS System
Services Reference Manual.)

8 The return status, which is assigned to the variable STATUS, is tested for
TRUE or FALSE. FALSE (low bit= 0) indicates failure or warning.

Example 2-1 Cont'd. on next page

2-24

Calling System Services
2.9 Interpreting the Programming Examples

Example 2-1 (Cont.) Interpreting MACRO Examples

COBOL Equivalent

IDENTIFICATION DIVISION.
PROGRAM-ID. ORION. .,
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TABNAM PIC X(11) VALUE 11 LNM$PROCESS 11

•

01 CYGDES PIC X(6) VALUE "CYGNUS".
01 NAMDES PIC X(255) VALUE SPACES. ~
01 NAMLEN PIC S9(4) COMP.
01 ITMLIS.

02 BUFLEN PIC S9(4) COMP VALUE 225.
02 ITMCOD PIC S9(4) COMP VALUE 2. C)
02 BUFADR POINTER VALUE REFERENCE NAMDES.
02 RETLEN POINTER VALUE REFERENCE NAMLEN.
02 FILLER PIC S9(5) COMP VALUE 0.

01 RESULT PIC S9(9) COMP. Ct
PROCEDURE DIVISION.
START-ORION.

CALL 11 SYS$TRNLNM 11 8
USING OMITTED

BY DESCRIPTOR TABNAM
BY DESCRIPTOR CYGDES Ci)
OMITTED
BY REFERENCE ITMLIS

GIVING RESULT.
IF RESULT IS FAILURE fj

GO TO ERROR-CHECK.
DISPLAY "NAMDES: ", NAMDES (1: NAMLEN).
GO TO THE-END.

ERROR-CHECK.
DISPLAY "Returned Error: 11

, RESULT CONVERSION.
THE-END.

STOP RUN.

Example 2-1 Cont'd. on next page

2-25

Calling System Services
2.9 Interpreting the Programming Examples

Example 2-1 (Cont.) Interpreting MACRO Examples

COBOL Notes

0 The PROGRAM-ID paragraph identifies the program by specifying the
program name, which is the global symbol associated with the entry
point. The compiler builds the entry mask.

8 Enough bytes are allocated for the alphanumeric output data. The
compiler generates a descriptor when you specify "USING BY
DESCRIPTOR" in the CALL statement.

0 The value of the symbolic code LNM$STRING is 2. Section 2.3 explains
how to obtain values for symbolic codes.

G This definition reserves a signed longword with COMP (binary) usage to
receive the output value.

0 The service is called by the SYS$ form of the service name, and the name
is enclosed in quotation marks.

Specify arguments in positional order only, with USING You cannot
omit arguments; if you are accepting the default for an argument, you
must pass the default value explicitly (OMITTED in this example).

You can specify explicitly how each argument is being passed: by
descriptor, by reference (that is, by address), or by value. You can also
implicitly specify how an argument is being passed: through the default
mechanism (by reference), or through association with the last specified
mechanism (thus, the last two arguments in the example are implicitly
passed by value).

0 The input string is defined as alphanumeric (ASCII) data. The compiler
generates a descriptor when you specify "USING BY DESCRIPTOR" in
the CALL statement.

0 The IF statement tests RESULT for a failure status. In this case, control is
passed to the routine ERROR-CHECK.

Example 2-1 Cont'd. on next page

2-26

Calling System Services
2.9 Interpreting the Programming Examples

Example 2-1 (Cont.) Interpreting MACRO Examples

FORTRAN Equivalent

SUBROUTINE ORION

C Declare all the system service names, the output buffer,
C and a variable to receive the length
C of the string returned.
c

INCLUDE '($SYSSRVNAM)' Ct
CHARACTER*255 EQUIV_NAME fJ
INTEGER*2 NAMLEN .,
INTEGER*4 STATUS ~

., STATUS= SYS$TRNLNM('CYGNUS', NAMLEN, EQUIV_NAME,,,%VAL(4))
IF (.NOT. STATUS) CALL EXIT(STATUS) Ci)

END

Example 2-1 Cont'd. on next page

2-27

Calling System Services
2.9 Interpreting the Programming Examples

Example 2-1 (Cont.) Interpreting MACRO Examples

FORTRAN Notes

0 The module $SYSSRVNAM in the FORTRAN system default library
FORSYSDEF.TLB contains INTEGER and EXTERNAL declarations for
each of the system services, so you need not provide any in your program
explicitly. Other modules in FORSYSDEF declare the structures, offsets,
and symbolic values used to refer to the data structures and symbolic
return codes used by the system services.

8 The EQUIV_NAME declaration allocates 255 bytes for the output data.
The system service requires a descriptor for the equivalence name (output)
argument. Because FORTRAN passes character values by descriptor as
the default, you need not use the %DESCR actual argument function.

8 The NAMLEN declaration allocates 2 bytes for the actual length of the
returned equivalence name (an output argument). Because the $TRNLNM
service takes this argument by reference, and by reference is the default
FORTRAN mechanism for numeric arguments, you need not use the
%REF actual argument function.

0 The status value returned by the system services must be treated as a
4-byte integer in FORTRAN programs. The declaration of the service
names in the $SYSSRVNAM module insures this for the service names
themselves. However, you should also declare variables used to hold
status values as INTEGER•4 quantities. Unpredictable results could
occur if a REAL variable is used to hold return status values because of
erroneous REAL to INTEGER conversions of the status value.

9 The service is called as a function reference.

Enclose the arguments in parentheses. Specify a comma for each optional
argument that you omit (including trailing arguments).

Because the SYS$TRNLNM service requires its last argument to be passed
by value, you must use the % VAL argument list function to force the
compiler to use this mechanism.

0 It is usually best to test the status return value immediately for success
or failure. When used in a logical test, failure status values test as
.FALSE. and success status values test as .TRUE. If it is important for
your program to recognize precise return status values, you should use
the LIB$MATCH_COND library function to make sure that only the
bits specific to the returned status are tested and the "message info" bits
are not part of the test. By using the value of the return status as the
argument to the EXIT system-supplied subroutine, you can cause your
program to issue the exit status as its result value and test for this value
in a DCL command procedure. Many other possibilities exist, including
providing a condition handler to resolve the error condition without
terminating the program. For more information about testing return
status values, see the VAX FORTRAN User's Guide.

Example 2-1 Cont'd. on next page

2-28

Calling System Services
2.9 Interpreting the Programming Examples

Example 2-1 (Cont.} Interpreting MACRO Examples

PASCAL Equivalent

PROGRAM ORION (OUTPUT);

TYPE
$UBYTE = [BYTE] 1 .. 255;
$UWORD = [WORD] 1 .. 65535;
BUFFER_TYPE =PACKED ARRAY [1 .. 255] OF CHAR;

CONST
LNM$STRING = 2 t»

[ASYNCHRONOUS] FUNCTION SYS$TRNLNM
%REF ATTR :

UNSIGNED := %IMMED O;
TABNAM :

[CLASS_S] PACKED ARRAY
[$12 .. $u2:INTEGER] OF CHAR;

LOGNAM :
[CLASS_S] PACKED ARRAY [$13 .. $u3:INTEGER]

OF CHAR := %IMMED O;
%REF ACMODE :

$UBYTE := %IMMED 0;
%REF ITMLST :

[UNSAFE] ARRAY [$15 .. $u5:INTEGER] OF
$UBYTE := %IMMED 0) INTEGER; EXTERN;

PROCEDURE ERROR;
BEGIN
WRITELN ('Failed to translate logical name');
END;

VAR

{

}

NAM_BUF
NAM_LEN

: ABUFFER_TYPE; .,
: A INTEGER; e

NOTE: because of the various structures that an
item can have, type compatibility is given up.

ITEM LIST PACKED RECORD

IO CODE
I

BUF_LEN
ITEM_ CODE
BUF_ADDR
LEN_ADDR
TERMINATOR
END;

INTEGER;
INTEGER;

$UWORD;
$UWORD;
ABUFFER_TYPE;
AINTEGER;
INTEGER;

BEGIN
ITEM_LIST.BUF_LEN
ITEM_LIST.ITEM_CODE
ITEM_LIST.TERMINATOR

NEW(NAM_BUF);
ITEM_LIST.BUF_ADDR

NEW(NAM_LEN);
ITEM_LIST.LEN_ADDR

:= 255;
:= LNM$STRING;
:= O;

:= NAM_BUF;

:= NAM_LEN;

Example 2-1 Cont'd. on next page

2-29

Calling System Services
2.9 Interpreting the Programming Examples

Example 2-1 (Cont.) Interpreting MACRO Examples

END.

0
IOCODE := SYS$TRNLNM(, 'LNM$SYSTEM', 'CYGNUS',

, ITEM_LIST) ; 0
IF NOT ODD(IOCODE) f)
THEN

ERROR
ELSE

BEGIN
WRITE (' Logical name translates to " ') ;
FOR I := 1 TO NAM_LEN- DO

WRITE(NAM_BUF-[I]);
WRITELN (, II ,) ;

END;

PASCAL Notes

0 The value of the symbolic code LNM$STRING is 2. Section 2.3 explains
how to obtain values for symbolic codes.

8 The system service routine must be declared in an external function
declaration in the function and procedure declaration section. Note that
all the parameters for the system service call must be formally declared
here.

8 The VAR declaration for the identifier NAM_BUF declares a pointer to a
packed array of 255 characters for the associated name output from the
system service. The packed array of characters is used as a string data
type in PASCAL. .

0 The VAR declaration for the identifier NAM_LEN declares a pointer to a
longword for the output length.

0 The input character string is specified directly by the system service call.
The compiler builds the string descriptor.

0 The system service is called by the SYS$ form of the service name. The
arguments are enclosed in parentheses and are specified in positional
order. If you omit optional arguments, insert a comma as a placeholder.
The default value for the argument will be supplied.

f) The IF statement performs a logical test following the function reference
to see if the service completed successfully. If an error or warning occurs
during the service call, the procedure ERROR is called.

2-30

3 Security Services

The VMS security system services provide various mechanisms that you can
use to enhance the security of VMS operating systems. These services include
facilities to do the following:

• Create and maintain a rights database.

• Create and translate access control list (ACL) entries.

• Modify a process rights list.

• Check access protection.

• Provide a security erase pattern for disks.

• Control magnetic tape access.

The following table lists the system services related to system security.

Service

$ADD_HQLDER

$ADD_IDENT

$ASCTOID

$CHANGE_ACL

$CHECK_ACCESS

$CHKPRO

$CREATE_RDB

$ERAPAT

$FIND_HELD

$FIND_HOLDER

$FINISH_RDB

$FORMA T_ACL

$GRANT ID

$1DTOASC

$MOD_HOLDER

$MOD_IDENT

$MT ACCESS

$PARSE_ACL

$REM_HOLDER

Function

Adds holder record to rights database

Adds identifier to rights database

Translates identifier name to binary value

Creates or modifies an ACL

Invokes system access protection check on behalf of
another user

Invokes system access protection check

Initializes a rights database

Generates a security erase pattern

Returns identifier(s) held by a holder in rights database

Returns holder(s) of an identifier in rights database

Deallocates record stream and clears context value when
searching the rights database

Formats ACE into a text string

Adds identifier to process or system rights list

Translates identifier value to its identifier name

Modifies holder record in rights database

Modifies identifier record in rights database

Controls magnetic tape access

Converts text ACE into binary format

Deletes holder record from identifier's list of holders in
rights database

3-1

Security Services

Service

$REM_IOENT

$REVOKID

Function

Deletes identifier and all holders of that identifier from
rights database

Removes identifier from process or system rights list

3.1 Overview of VMS Protection Scheme

3. 2 Identifiers

3-2

The basis of the VMS security scheme is an identifier, which is a 32-bit binary
value that represents a process to the system. An identifier can represent an
individual user, a group of users, or some aspect of the environment in which
a user is operating. A process is a holder of an identifier when that identifier
can represent that process to the system.

The system rights database is an indexed file consisting of identifier and
holder records. Those records define the identifiers and the holders of those
identifiers on a system. When a process logs in to the system, LOGINOUT
creates" a rights list for the process from the applicable entries in the rights
database. Thus, a process rights list contains all the identifiers that the process
holds. A process can be the holder of a number of identifiers. Each of those
identifiers determines the identity and the access rights of the list holder.
The process rights list becomes part of the process and is propagated to any
created processes.

When a process attempts to access an object in the system, VMS uses the
rights list when performing a protection check. The system compares the
identifiers in the rights list to the protedion attributes of the object and grants
or denies access to the object based on the comparison. In other words, the
entries in the rights list do not specifically grant access; instead, the system
uses them to perform a protection check when the process attempts to access
an object.

The VMS protection scheme provides security with the mechanism of the
access control list (ACL). An ACL consists of access control list entries (ACEs)
that specify the type of access an identifier has to an object like a file, device,
or mailbox. When a process attempts to access an object with an associated
ACL, the system grants or denies access based on whether an exact match for
the identifier in the ACL exists in the rights database.

The following sections describe each of the components of the security
scheme-identifiers, rights database, process rights list, and ACLs-and the
system services affecting those components.

The basic component of the VMS protection scheme is an identifier. This
32-bit binary value represents various types of agents using the system. The
types of agents represented include individual users, groups of users, and
environments in which a process is operating.

3.2.1 Identifier Format

3.2.2 Identifier Names

Security Services
3.2 Identifiers

Identifiers have two formats in the rights database: UIC format and ID
format. The high-order bits of the identifier value specify the format of the
identifier. Two high-order zero bits identify a UIC format identifier; bit 31,
set to 1, identifies an ID format identifier.

Each UIC identifier is unique and represents a system user. The UIC identifier
contains the two high-order bits that designate format, a member field, and a
group field. Member numbers range from 0 to 65 ,534; group numbers range
from 1 to 16,382.

The following is a diagram of the UIC format:

31 0

I 00 I group I member I
UIC Format

ZK-1905-84

Bit 31, set to l, specifies ID format. Bits 30 through 28 are reserved by
DIGITAL. The remaining bits specify the identifier value.

The following is a diagram of the ID format:

31 0

I 1000 identifier

ID Format

ZK-1906-84

To the system an identifier is a binary value; however, to make identifiers
easy to use, the system translates the binary identifier value into an identifier
name. The binary value and the identifier name are associated in the rights
database.

An identifier name consists of 1 to 31 alphanumeric characters and contains
at least one nonnumeric character. An identifier name cannot consist entirely
of numeric characters. It can include the uppercase letters A through Z, dollar
signs ($) and underscores (-), as well as the numbers 0 through 9. Any
lowercase letters are automatically converted to uppercase.

3-3

3.2.3

3.2.4

Security Services
3.2 Identifiers

System-Defined Identifiers
System-defined identifiers, or environmental identifiers, are automatically
defined when the rights database is initialized. The following system
defined identifiers correspond directly with the login classes and relate to
the environment in which the process operates.

BATCH

NETWORK

INTERACTIVE

LOCAL

DIALUP

REMOTE

All attempts at access made by batch jobs

All attempts at access made across the DECnet-VAX
network

All attempts at access made by interactive processes

All attempts at access made by users logged in at local
terminals

All attempts at access made by users logged in at dialup
terminals

All attempts at access made by users logged in on a
network

Depending on the environment in which the process is operating,
LOGINOUT includes one or more of these identifiers when creating the
process rights list.

General Identifiers

3-4

You can define general identifiers to meet the specific needs of your site. You
grant these identifiers to users by establishing holder records in the rights
database. General identifiers can identify a single user, a single UIC group, a
group of users, or a number of groups.

You define identifiers and their holders in the rights database with the
Authorize Utility or with the appropriate system services. You can define an
identifier in the rights database to allow users from different UIC groups to
hold an identifier. Each user can hold multiple identifiers. This allows you to
create a different kind of group designation than the one used with the user's
UIC.

The alternative grouping described here permits each user to be a member
of multiple overlapping groups. Access control lists (ACLs) define the access
to system objects based on the identifiers the user holds, rather than on the
user's UIC. See Section 3.4 for information on creating ACLs.

You can also define identifiers to represent particular terminals, times of
day, or other site-specific environmental attributes. These identifiers are not
given holder records in the rights database but may be granted to users by
customer-written privileged software. This feature of the security system
allows each site flexibility and, because the identifiers can be so specific to
the site, enhanced security. For a programming example demonstrating this
technique, see Section 3.3.2.4. Also, for more information, see the Guide to
VMS System Security.

Security Services
3.2 Identifiers

3.2.5 Identifier Attributes

3.3 Rights Database

An identifier has attributes associated with it in the rights database. Part of
the process rights list includes the attributes of any identifiers that the process
holds. A holder of an identifier can hold an attribute only if the identifier
holds the attribute.

Attributes that may be added to identifiers include the DYNAMIC and
RESOURCE attributes. The DYNAMIC attribute allows unprivileged holders
of an identifier to add or remove the identifier from the process rights
list. The RESOURCE attribute allows the holder of an identifier to charge
resources, like disk blocks, to an identifier. Conversely, a holder who does
not have the RESOURCE attribute cannot charge resources to the identifier,
and an unprivileged holder who does not have the DYNAMIC attribute
cannot modify the identifier.

The following example demonstrates the advantages of defining an identifier
and holder(s) for a project.

The physics department of a school may have a common library with an
associated disk quota on the system. (If disk quotas are in use, you must
establish a quota file entry for the identifier to allow anyone to charge
space to it.) You want to allow the faculty members to charge any disk
quota that they use in conjunction with the library to an identifier, and
to prevent the students from charging resources to that identifier. You
could define an identifier PHYSICS in the rights database with the holders
FRED, a faculty member, and GEORGE, a student. If you can specify the
RESOURCE attribute for FRED, that holder can charge resources to the
PHYSICS identifier; if you do not specify the RESOURCE attribute for
GEORGE, that holder cannot charge resources to the PHYSICS identifier.

The rights database is an indexed file containing two types of records that
define all identifiers: identifier records and holder records.

One identifier record appears in the rights database for each identifier. The
identifier record associates the identifier name with its 32-bit binary value,
and specifies the attributes of the identifier. The following figure depicts the
format of the identifier record.

identifier value

attributes

0

0

identifier name

ZK-1904-84

One holder record exists in the rights database for each holder of each
identifier. The holder record associates the holder with the identifier, specifies

3-5

3.3.1

Security Services
3.3 Rights Database

the attributes of the holder, and identifies the UIC identifier of the holder. A
holder record has the following format:

identifier value

attributes

UIC identifier of holder

(reserved)

ZK-1907-84

The rights database is an indexed file with three keys. The primary key is
the identifier value, the secondary key is the holder ID, and the third key is
the identifier name. Through the use of the secondary key of the holder ID,
all the rights held by a process can be retrieved quickly when LOGINOUT
creates the process rights list.

Initializing a Rights Database

3-6

The rights database is initialized in one of the following ways:

• When a system is installed or upgraded

• With the Authorize Utility

• With the $CREATE_RDB system service

When you call $CREATE_RDB, you can use the sysid argument to pass the
system identification value associated with the rights database. If you omit
sysid, the system uses the current system time in 64-bit format. If the rights
database already exists, $CREATE_RDB fails with the error code RMS$_FEX.
To create a new rights database when one already exists, you must explicitly
delete or rename the old one.

When a rights database is initialized, it is equated to the logical name
RIGHTSLIST, which you must define as a system logical name at executive
mode. If the logical name does not exist, the rights database is given the
default file specification SYS$SYSTEM:RIGHTSLIST.DAT.

When created, RIGHTSLIST.DAT has the default protection
(S:RWED,O:RWED,G:RWE,W:R). World read access to the directory in which
the database is to be located is required so that all users can read the records
in the database. In order to use $CREATE_RBD, write access to the database
is necessary. If the database is in SYS$SYSTEM, which is the default, you
need SYSPRV privilege to grant write access to the database.

When $CREATE_RDB initializes a rights database, system-defined identifiers,
which describe the environment in which a process can operate, are
automatically created.

To add any other identifiers to the rights database, you must define them
with the Authorize Utility or with the appropriate system service.

3.3.2

Security Services
3.3 Rights Database

Using System Services to Affect a Rights Database
The identifier and holder records in the rights database contain the following
elements:

• Jdentifier binary value

• Identifier name

• Holder(s) of each identifier

• Attribute of each identifier and each holder of each identifier

You can use the Authorize Utility or one of the following system services to
add, delete, display, modify, or translate the various elements of the rights
database.

Action

Translate

Add

Find

Modify

Delete

Element

Identifier name to identifier binary value

Identifier binary value to identifier name

New identifier record

Identifier to holder record

Identifier value held by holder

Holder(s) of an identifier

All identifiers

Attribute in holder record

Attribute in identifier record

Holder from identifier record

Identifier and all its holder(s)

Service Used

$ASCTOID

$1DTOASC

$ADD_HOLDER

$ADD_IDENT

$FIND_HELD

$FIND_HQLDER

$1DTOASC

$MQD_HQLDER

$MQD_IDENT

$REM_HOLDER

$REM_IDENT

The following table shows what access you need with which services.

Service Required Access

$ADD_HOLDER Write

$ADD_IDENT Write

$ASCTOID Read

$CREATE_RDB Write

$FIND_HELD Read

$FIND_HOLDER Read

$FINISH_RDB Read

$1DTOASC Read

$MQD_HOLDER Write

$MOD_IDENT Write

$REM_HOLDER Write

$REM_IDENT Write

3-7

Security Services
3.3 Rights Database

3.3.2.1

3-8

Translating Identifier Names and Binary Values
To the system an identifier is a 32-bit binary value; however, to make
identifiers easy to use, each binary value has an associated identifier name.
The identifier value and the ASCII identifier name string are associated in
the rights database. You can use the $ASCTOID and $1DTOASC system
services to translate from one format to another. When you pass the address
of a string descriptor pointing to an identifier name to $ASCTOID, the
corresponding identifier binary value is returned. Conversely, you use the
$IDTOASC service to translate a binary identifier value to an ASCII identifier
name string.

You can also use the $IDTOASC service to list the identifier names of all of
the identifiers in the rights database. Specify the id argument as -1, initialize
the context argument to 0, and repeatedly call $1DTOASC until the status
code SS$_NOSUCHID is returned. The $IDTOASC service returns the
identifier names in alphabetical order. When SS$_NOSUCHID is returned,
$IDTOASC clears the context longword and deallocates the record stream. If
you complete your calls to $IDTOASC before SS$_NQSUCHID is returned,
use $FINISH_RDB to clear the context longword and to deallocate the record
stream.

The following programming example uses $IDTOASC to identify all
identifiers in a rights database:

Program ID_LIST

*
* Produce a list of all the identifiers

*

*

integer SYS$IDTOASC
external SS$_NORMAL, SS$_NOSUCHID

character*31 NAME
integer IDENTIFIER, ATTRIBUTES

integer ID/-1/, LENGTH, CONTEXT/Of
integer NAME_DSC(2)/31, 0/

integer STATUS

* Initialization

*

*

NAME_DSC(2) = %loc(NAME)
STATUS = %loc(SS$_NORMAL)

* Scan through the entire ROB ...

*
do while (STATUS .and. (STATUS .ne. %loc(SS$_NOSUCHID)))

STATUS= SYS$IDTOASC(%val(ID), LENGTH, NAME_DSC,
+ IDENTIFIER, ATTRIBUTES, CONTEXT)

if (STATUS .and. (STATUS .ne. %loc(SS$_NOSUCHID))) then

NAME(LENGTH+1:LENGTH+1) = ','

print 1, NAME, IDENTIFIER, ATTRIBUTES
1 format(1X,'Name: ',A31,' Id: ',Z8,', Attributes: ',Z8)

end if

end do

3.3.2.2

Security Services
3.3 Rights Database

* * Do we need to finish the RDB ???

*
if (STATUS .ne. %loc(SS$_NOSUCHID)) then

call SYS$FINISH_RDB(CONTEXT)
end if

end

Adding Identifiers and Holders to Rights Database
To add identifiers to the rights database, use the $ADD_!DENT service in a
program. When you call $ADD_IDENT, use the name argument to pass the
identifier name you want to add. You can specify an identifier value with the
id argument; however, if you do not specify a value, the system selects an
identifier value from the general identifier space.

In addition to defining the identifier value and identifier name, you use
$ADD_IDENT to specify attributes in the identifier record. Attributes are
valid for a holder of an identifier only when they are set in both the identifier
record and the holder record. The attrib argument is a longword containing a
bit mask specifying the attributes. The symbol KGB$V_RESOURCE, defined
in the system macro library $KGBDEF, sets the RESOURCE bit in the attribute
longword, and the symbol KGB$V_DYNAMIC sets the DYNAMIC bit. (You
can use the prefix KGB$M rather than KGB$V.)

When $ADD_IDENT successfully completes execution, a new identifier
record exists in the rights database containing the identifier value, the
identifier name, and the attributes of the identifier.

When the identifier record exists in the rights database, you define the
holder(s) of that identifier with the $ADD_HOLDER system service. You
pass the binary identifier value with the id argument; you specify the holder
with the holder argument, which is the address of a quadword data structure
in the following format:

UIC identifier of holder

0

ZK-1903-84

In the rights database, the holder identifier is in UIC format. You specify the
attributes of the holder with the attrib argument in the same manner as with
$ADD_IDENT. Attributes are valid for a holder of an identifier only when
they are set in both the identifier record and the holder record.

After $ADD_HOLDER completes execution, a new holder record exists in the
rights database containing the binary value of the identifier that the holder
holds, the attributes of the holder, and the UIC of the holder.

3-9

Security Services
3.3 Rights Database

3.3.2.3

3.3.2.4

Determining Holders of Identifiers
To determine the holders of a particular identifier, use the $FIND_HOLDER
service in a program. When you call $FIND_HOLDER, use the id argument
to pass the binary value of the identifier whose holder you want to determine.
On successfully completing execution, $FIND_HOLDER returns the holder
identifier with the holder argument and the attributes of the holder with the
attrib argument.

You can identify all of the identifier's holders by initializing the context
argument to 0, and repeatedly calling $FIND_HOLDER as detailed in
Section 3.3.3. Because $FIND_HOLDER identifies the records by the same
key (holder ID), it returns the records in the order in which they were written.

Determining Identifiers Held
To determine the identifier(s) held by a holder, use the $FIND_HELD service
in a program. When you call $FIND_HELD, use the holder argument to
specify the holder whose identifier is to be found.

On completing execution, $FIND_HELD returns the identifier's binary
identifier value and attributes.

You can identify all the identifiers held by the specified holder by initializing
the context argument to 0 and repeatedly calling $FIND_HELD as detailed in
Section 3.3.3. Because $FIND_HELD identifies the records by the same key
(identifier), it returns the records in the order in which they were written.

The following programming example uses $FIND_HELD to determine if a
user is the holder of a particular identifier. This example also demonstrates
how to define an identifier to represent particular terminals .

. title SECURE_TERMINAL

This module verifies that the user is executing this program
from one of a set of "secure terminals" as outlined in file:
SECURITY$:SECURE_TERMINAL.DATA;1 .

. psect SECURE_TERMINAL,LONG

The full names of all "secure terminals" are stored in
file SECURITY$:SECURE_TERMINAL.DATA;1, which is an indexed file
containing only the names of the secure terminals. If a name
is found in that file, it is considered "secure."

.align LONG

XAB: $XABKEY pos = 0, -

FAB:

3-10

siz = 64

.align LONG

$FAB fnm = <SECURITY$:SECURE_TERMINAL.DATA;1>, -
fac = <GET>, -
shr =<GET, PUT, UPD, DEL>, -
org = IDX, -
rfm = FIX, -
mrs = 64, -
xab = XAB

.align LONG

RAB: $RAB fab = FAB, -
kbf = BUFFER, -
ksz = 64, -
ubf = BUFFER, -
usz = 64, -
rac = KEY

Declare the identifier name.

NAME:
LENGTH: .blkl 1

.address
BUFFER: .blkb 64
HOLDER: .blkl 1

.long 0

BUFFER

ID_NAME: .ascid /SECURE_TERMINAL/
ID: . blkl 1

CONTXT: .long 0
HELD: .blkl 1

Security Services
3.3 Rights Database

In order to get the name of the particular terminal, we need this item list .

. align LONG

ITMLST : . word
.word
.address

64
JPI$_TERMINAL

BUFFER
LENGTH .address

.long 0

ABORT_: jmp ABORT

Here we go

.entry SECURE_TERMINAL,Am<>

First, get the full device name

$GETJPIW_S itmlst ITMLST
blbc rO, ABORT_

$OPEN fab = FAB
blbc rO, ABORT_

$CONNECT rab = RAB
blbc rO, ABORT_

$GET rab = RAB
blbc rO, ABORT_

If we have gotten here, then our terminal is secure.

$DISCONNECT rab = RAB
$CLOSE fab = FAB

3-11

Security Services
3.3 Rights Database

Is this user allowed to use the secure terminals
(a holder of the SECURE_TERMINAL identifier)?

MOVW #JPI$_USERNAME, ITMLST+2
$GETJPIW_S itmlst = ITMLST

pushal LENGTH
pushal NAME
pushal NAME
calls #3, STR$TRIM

$ASCTOID_S
$ASCTOID_S

name = NAME, id = HOLDER
name = ID_NAME, id = ID

$1: $FIND_HELD_S holder= HOLDER, id= HELD, contxt = CONTXT
blbc rO, ABORT

cmpl ID, HELD
bneq $1

Now pass control on to the program.

calls #0, ©#MAIN_PROGRAM_PROPER
$EXIT_S RO

.weak MAIN_PROGRAM_PROPER

Else kick the user out.

.external
LIB$SIGNAL_:

.address

LIB$SIGNAL

LIB$SIGNAL

ABORT: pushl #SS$_NOPRIV
pushl #0

3-12

pushl rO
calls #3, ©LIB$SIGNAL_

$EXIT_S #SS$_NORMAL

.end SECURE_TERMINAL

3.3.2.5 Modifying the Identifier Record
To modify an identifier record by changing the identifier's name, value,
or attributes or all three in the rights database, use the $MOD_IDENT
service in a program. Use the id argument to pass the binary value of the
identifier whose record you want to modify. To enable attributes, use the
set_attrib argument, which is a longword containing a bit mask specifying
the attributes. The symbol KGB$V_RESOURCE, defined in the system macro
library $KGBDEF, sets the RESOURCE bit in the attribute longword, and the
symbol KGB$V_DYNAMIC sets the DYNAMIC bit. (You can use the prefix
KGB$M rather than KGB$V.)

If you want to disable the attributes for the identifier, use the clr_attrib
argument, which is a longword containing a bit mask specifying the attributes.
If the same attribute is specified in set_attrib and clr_attrib, the attribute is
enabled.

3.3.2.6

Program MOD_HOLDER

*

Security Services
3.3 Rights Database

You can also change the identifier name or value or both with the
new_name and new_value arguments. New_name is the address of a
descriptor pointing to the identifier name string; new_value is a longword
containing the binary identifier value. If you change the value of an identifier
that is the holder of other identifiers (a UIC, for example) $MOD_IDENT
updates all the corresponding holder records with the new holder identifier
value.

When $MOD_IDENT successfully completes execution, a new identifier
record exists in the rights database containing the identifier value, the
identifier name, and the attributes of the identifier.

Modifying a Holder Record
To modify a holder record, use the $MOD_HOLDER service in a program.
When you call $MOD_HOLDER, use the id argument and the holder
argument to pass the binary identifier value and the UIC holder identifier
whose holder record you want to modify.

Use the $MQD_HOLDER service to enable or disable the attributes of an
identifier in the same way as with $MOD_HOLDER.

When $MOD_HOLDER completes execution, a new holder record exists in
the rights database containing the identifier value, the identifier name, and
the attributes of the identifier.

The following programming example uses $MOD_HOLDER to modify holder
records in the rights database.

* Modify the attributes of all the holders of identifiers to reflect
* the current attribute setting of the identifiers themselves.

*

*

external SS$_NOSUCHID
parameter KGB$M_RESOURCE = 1, KGB$M_DYNAMIC = 2
integer SYS$IDTOASC, SYS$FIND_HELD, SYS$MOD_HOLDER

* Store information about the holder here.

*

*

integer HOLDER(2)/2*0/
equivalence (HOLDER(1), HOLDER_ID)
integer HOLDER_NAME(2)/31, 0/
integer HOLDER_ID, HOLDER_CTX/O/
character*31 HOLDER_STRING

* Store attributes here.

*
integer OLD_ATTR, NEW_ATTR, ID_ATTR, CONTEXT

* * Store information about the identifier here.

*
integer IDENTIFIER, ID_NAME(2)/31, 0/
character*31 ID_STRING

integer STATUS

3-13

Security Services
3.3 Rights Database

* * Initialize the descriptors.

*

*

HOLDER_NAME(2) = %loc(HOLDER_STRING)
ID_NAME(2) = %loc(ID_STRING)

* Scan through all the identifiers.

*
do while

+ (SYS$IDTOASC(%val(-1),, HOLDER_NAME, HOLDER_ID,, HOLDER_CTX)
+ .ne. %loc(SS$_NOSUCHID))

* * Test all the identifiers held by this identifier (our HOLDER) .

*

*

if (HOLDER_ID .le. 0) go to 2

CONTEXT = 0

do while
+ (SYS$FIND_HELD(HOLDER, IDENTIFIER, OLD_ATTR, CONTEXT)
+ .ne. %loc(SS$_NOSUCHID))

* Get name and attributes of held identifier.

*
STATUS= SYS$IDTOASC(%val(IDENTIFIER),, ID_NAME,, ID_ATTR,)

* *Modify the holder record to reflect the state of the identifier itself.

*

*

if ((ID_ATTR .and. KGB$M_RESOURCE) .ne. 0) then
STATUS = SYS$MOD_HOLDER

+ (%val(IDENTIFIER), HOLDER, %val(KGB$M_RESOURCE),)
NEW_ATTR = OLD_ATTR .or. KGB$M_RESOURCE

else
STATUS = SYS$MOD_HOLDER

+ (%val(IDENTIFIER), HOLDER,, %val(KGB$M_RESOURCE))
NEW_ATTR = OLD_ATTR .and. (.not. KGB$M_RESOURCE)

end if

if ((ID_ATTR .and. KGB$M_DYNAMIC) .ne. 0) then
STATUS = SYS$MOD_HOLDER

+ (%val(IDENTIFIER), HOLDER, %val(KGB$M_DYNAMIC),)
NEW_ATTR = OLD_ATTR .or. KGB$M_DYNAMIC

else
STATUS = SYS$MOD_HOLDER

+ (%val(IDENTIFIER), HOLDER,, %val(KGB$M_DYNAMIC))
NEW_ATTR = OLD_ATTR .and. (.not. KGB$M_DYNAMIC)

end if

* Were we successful?

*

3-14

if (.not. STATUS) then
NEW_ATTR = OLD_ATTR
call LIB$SIGNAL(%val(STATUS))

end if

3.3.3

*

Security Services
3.3 Rights Database

* Report it all.

*
print 1, HOLDER_STRING, ID_STRING,

+ OLD_ATTR, ID_ATTR, NEW_ATTR
1 format(1X, 'Holder: ',A31, 'Id: ',A31,

+ ' Old: ', ZS, ' Id: ', ZS, ' New: ' ZS)

end do

2 continue

end do

end

3.3.2.7 Removing Identifiers and Holders from the Rights Database
To remove an identifier and all of its holders, use the $REM-1DENT service
in a program. When you call $REM-1DENT, use the id argument to pass
the binary value of the identifier you want to remove. When $REM-1DENT
completes execution, the identifier and all of its associated holder records are
removed from the rights database.

To remove a holder from the list of an identifier's holder's, use the
$REMJiOLDER service in a program. When you call $REMJiOLDER, use
the id argument and the holder argument to pass the binary ID value and
the UIC identifier of the holder whose holder record you want to delete.

On successfully completing execution, $REMJiOLDER removes the holder
from the list of the identifier's holders.

Search Operations
You can search the entire rights database when using the $1DTOASC,
$FINDJiELD, and $FINDJfOLDER services. You initialize the context
longword to 0, and repeatedly call one of the three services until the status
code SS$_NOSUCHID is returned. When SS$_NOSUCHID is returned,
the service clears the context longword and deallocates the record stream. If
you complete your calls to one of these services before SS$_NOSUCHID is
returned, you must use $FINISH--RDB to clear the context longword and to
deallocate the record stream.

The structure of the rights database affects the order in which each of these
services returns the records when you search the rights database. The rights
database is an indexed file with three keys. The primary key is the identifier
binary value, the secondary key is the holder UIC identifier, and the third key
is the identifier name.

During a searching operation, the service obtains the first record with an
indexed RMS GET operation. The key used for the GET operation depends
on the service. The $FINDJfOLDER service uses the identifier binary
value; $FIND_HELD uses the holder UIC identifier. After the indexed
GET, the service returns the records with sequential RMS GET operations.
Consequently, the file organization, the key used for the first GET operation,
and the order in which the records were originally written in the database
determine how the service returns records in a searching operation.

3-15

Security Services
3.3 Rights Database

The following table summarizes how records are returned by the $IDTOASC,
$FIND_HELD, and $FIND_HOLDER services when used in a searching
operation.

Service

$1DTOASC

$FIND_HELD

$FIND_HOLDER

Record Order

Identifier name order.

First GET operation-holder key. Subsequent records are
returned in the order in which they were written.

First GET operation-identifier key. Subsequent records are
returned in the order in which they were written.

The following programming example uses $IDTOASC, $FINISH_RDB, and
$FIND_HOLDER to search the entire rights database for identifiers with
holders, and produces a list of those identifiers and their holders.

Module ID_HOLDER
(main= MAIN,

addressing_mode(external=GENERAL)
begin

Produce a list of all the identifiers, which have holders,
with their respective holders.

Declarations:

library

'SYS$LIBRARY:LIB';

forward routine

MAIN;

external routine

LIB$PUT_OUTPUT,

SYS$FAO,
SYS$IDTOASC,
SYS$FINISH_RDB,
SYS$FIND_HOLDER;

To create static descriptors

macro S_DESCRIPTOR[NAME, SIZE] =
own

3-16

%name(NAME, '_BUFFER'): block[%number(SIZE), byte],
~oname(NAME): block[DSC$K_S_BLN, byte]

preset([DSC$B_CLASS] = DSC$K_CLASS_S,
[DSC$W_LENGTH] = %number(SIZE),
[DSC$A_POINTER] = %name(NAME, '_BUFFER')) ; %;

Security Services
3.3 Rights Database

Descriptors for ID, holder NAME, and output LINE

S_DESCRIPTOR('ID_NAME', 31);
S_DESCRIPTOR('NAME', 31);
S_DESCRIPTOR('LINE', 76);

own

STATUS,

ID,
ID_LENGTH,
ID_CONTEXT: initial(O),

HOLDER,
LENGTH,
CONTEXT: initial(O),

ATTRIBS,
VALUE,
LINE_: block[DSC$K_S_BLN, byte]

preset([DSC$B_CLASS] = DSC$K_CLASS_S,
[DSC$A_POINTER] = LINE_BUFFER);

To check for existence of an ID or HOLDER

macro CHECK(EXPRESSION) =
(STATUS = %remove(EXPRESSION)) and (.STATUS neq SS$_NOSUCHID) %;

List all the identifiers, which have holders, with their holders.

routine MAIN =
begin

Examine all IDs (-1).

while

do
CHECK(<SYS$IDTOASC(-1, ID_LENGTH, ID_NAME, ID, ATTRIBS, ID_CONTEXT)>)

begin

CONTEXT = O;

Find all holders of ID.

while CHECK(<SYS$FIND_HOLDER(.ID, HOLDER, ATTRIBS, CONTEXT)>) do
begin

Translate the HOLDER to find its NAME.

SYS$IDTOASC(.HOLDER, LENGTH, NAME, VALUE, ATTRIBS, 0);

3-17

Security Services
3.3 Rights Database

Print a message reporting ID and HOLDER.

end;

SYS$FAO(%ascid'Id: !AD, Holder: !AD',
LINE_[DSC$W_LENGTH], LINE,
.ID_LENGTH, .ID_NAME[DSC$A_POINTER],
.LENGTH, .NAME[DSC$A_POINTER]) ;

LIB$PUT_OUTPUT(LINE_);

end;

return SS$_NORMAL;

end;

end

eludom

3.4 Creating, Translating, and Maintaining ACEs

3.4.1

An access control list (ACL) is a list of entries defining the type of access
allowed to an object in the system like a file, device, or mailbox. When a
process attempts to access an object with an associated ACL, the system
allows access based on the type of access specified by the entries in the ACL.

To the system, access control list entries (ACEs) are in binary form; however,
ACEs are easy to use because they have text string format. You use
$FORMAT_ACL and $PARSE_ACL to translate ACEs from one format to
another in the same way that $IDTOASC and $ASCTOID translate identifiers
from binary to text format and text to binary format.

To create and manipulate ACLs, use the ACL editor, the DCL command SET
ACL, or the $CHANGE_ACL system service in a program.

Format of ACE Types

3-18

There are four types of ACE:

• Alarm

• Application dependent

• Default protection

• Identifier

The alarm ACE defines the types of access to an object that cause a security
alarm to be generated. The application ACE contains application-dependent
or user-defined information. The default protection ACE defines the default
protection for a directory; that protection can be propagated to the files and
subdirectories created in that directory. The identifier ACE controls the type
of access allowed to a particular user or group of users as specified by an
identifier.

An ACE' s type determines its format. The following sections describe the
format of each of the four types of ACE. Symbols specifying byte offsets and
type values are defined in the system macro library ($ACEDEF).

3.4.1.1

Security Services
3.4 Creating, Translating, and Maintaining ACEs

Alarm ACE
The access alarm ACE sets a security alarm on an object in the system. The
following figure illustrates its format.

flags I type l length

access

alarm name

ZK-1710-84

Field Symbol Name Description

Length ACE$B_SIZE Byte containing the length in bytes of
the ACE buffer

Type ACE$B_TYPE Byte containing the type value
ACE$C_ALARM

Flags ACE$W _FLAGS Word containing alarm ACE information
and ACE type-independent information

Access ACE$L_ACCESS Longword containing a mask indicating
the access modes to be watched

Alarm Name ACE$T _AUDITNAME Counted character string containing the
alarm name

The flags word contains information specific to alarm ACEs and information
applicable to all types of ACE. In the flags word, the first byte contains flags
scific to each ACE type; the second byte contains flags common to all ACE
types. The following symbols are bit offsets to the alarm ACE information.

Bit

ACE$V_SUCCESS

ACE$V_FAILURE

Meaning When Set

Indicates that the alarm is raised when access is successful

Indicates that the alarm is raised when access fails

The symbols shown in Table 3-1 are bit offsets to ACE information that is
applicable to all types of ACE.

Table 3-1 ACE Type-Independent Information

Bit Meaning When Set

ACE$V_DEFAUL T This ACE is added to the ACL of any file created in
the directory whose ACL contains this ACE. This
option is applicable only for an ACE in a directory
file's ACL.

3-19

Security Services
3.4 Creating, Translating, and Maintaining ACEs

3.4.1.2

3-20

Table 3-1 (Cont.) ACE Type-Independent Information

Bit

ACE$V_HIDDEN

ACE$V_NOPROPAGATE

ACE$V_PROTECTED

Meaning When Set

This ACE is application dependent. The DCL ACL
commands and the ACL editor cannot be used to
change the setting; the DCL command DIRECTORY
/ ACL does not display it.

This ACE is not propagated among versions of the
same file.

This ACE is not deleted if the entire ACL is deleted;
instead this ACE must be explicitly deleted.

The following symbol values are offsets to bits within the access mask.

Bit

ACE$V_READ

ACE$V_WRITE

ACE$V_EXECUTE

ACE$V_DELETE

ACE$V_CONTROL

Meaning When Set

Read access is monitored.

Write access is monitored.

Execute access is monitored.

Delete access is monitored.

Modification of the access field is monitored.

You can also obtain the symbol values as masks with the appropriate bit set
using the prefix ACE$M rather than ACE$V.

Application-Dependent ACE
The application ACE contains application-dependent information. The
following figure illustrates its format.

flags l type

application mask

application information
. .

Field Symbol Name

Length ACE$B_SIZE

Type ACE$B_TYPE

1 length

ZK-1711-84

Description

Byte containing the length
in bytes of the ACE buffer.

Byte containing the type
value ACE$C_INFO.

3.4.1.3

Security Services
3.4 Creating, Translating, and Maintaining ACEs

Field

Flags

Application Mask

Application Information

Symbol Name Description

ACE$W_FLAGS Word containing
application ACE
information and ACE type
independent information.

ACE$L_INFQ_FLAGS Longword containing a
mask defined and used by
the application.

ACE$T_INFO_ST ART Variable-length data
structure defined and
used by the application.
The length of this data is
implied by length field.

The flags word contains information specific to application ACEs and
information applicable to all types of ACE. In the flags word, the first
byte contains flags specific to each ACE type; the second byte contains
flags common to all ACE types. For details on the ACE type-independent
information, see Table 3-1. The following symbol is a bit offset to the
application ACE information.

Bit

ACE$V_INFO_ TYPE

Meaning When Set

Four-bit field containing a value indicating whether
the application is a CSS application (ACE$C_CSS),
a customer application (ACE$C_CUST), or a VMS
application (ACE$C_ VMS)

Default Protection ACE
The default protection ACE specifies the default protection for all files and
subdirectories created in the directory. This type of ACE can be used only in
the ACL of a directory file. The following figure illustrates its format.

flags l type l length

spare

system

owner

group

world

ZK-1712-84

3-21

Security Services
3.4 Creating, Translating, and Maintaining ACEs

3-22

Field Symbol Name

Length ACE$B_SIZE

Type ACE$B_TYPE

Flags ACE$W _FLAGS

Spare ACE$L_SPARE1

System ACE$L _SYS_PROT

Owner ACE$L _OWN_PROT

Group ACE$L _GRP _PROT

World ACE$L _WOR_PROT

Description

Byte containing the length in bytes of the
ACE buffer.

Byte containing the type value
ACE$C_DIRDEF.

Word containing ACE type-independent
information.

Longword reserved for future use and so
must be zero.

Longword containing a mask indicating the
access mode granted to system users. Each
bit represents one type of access.

Longword containing a mask indicating the
access mode granted to the owner. Each bit
represents one type of access.

Longword containing a mask indicating the
access mode granted to group users. Each
bit represents one type of access.

Longword containing a mask indicating the
access mode granted to the world. Each bit
represents one type of access.

The flags word contains the ACE type-independent information. In the flags
word, the first byte contains flags specific to each ACE type; the second byte
contains flags common to all ACE types. For details, see Table 3-1.

The system interprets the bits within the access mask as shown in the
following table. The symbol values are offsets to bits within the mask
indicating the access mode granted in the system, owner, group, and world
fields.

Bit

ACE$V_READ

ACE$V_ WRITE

ACE$V_EXECUTE

ACE$V_DELETE

Meaning When Set

Read access is granted.

Write access is granted.

Execute access is granted.

Delete access is granted.

You can also obtain the symbol values as masks with the appropriate bit set
by using the prefix ACE$M rather than ACE$V.

3.4.1.4

Security Services
3.4 Creating, Translating, and Maintaining ACEs

Identifier ACE
The identifier ACE controls the type of access allowed based on identifiers.
Access is controlled by whether an exact match exists in the process rights list
for the identifier(s) in the ACE. The following figure illustrates its format.

flags l
access

reserved

reserved

.

identifier

identifier

.

.

Field Symbol Name

Length ACE$B_SIZE

Type ACE$B_TYPE

Flags ACE$W_FLAGS

Access ACE$L_ACCESS

type 1 length

ZK-1713-84

Description

Byte containing the length in bytes of
the ACE buffer.

Byte containing the type value
ACE$C_KEYID.

Word containing identifier ACE
information and ACE type-independent
information.

Longword containing a mask indicating
the access mode granted to the
specified identifiers.

3-23

3.4.2

Security Services
3.4 Creating, Translating, and Maintaining ACEs

Translating ACEs

3-24

Field Symbol Name Description

Reserved ACE$V_RESERVED Longwords containing application
specific information. The number of
reserved longwords is specified in the
flags field.

Identifier ACE$L_KEY Longwords containing identifiers. The
number of longwords is implied by
ACE$B_LENGTH. If an accessor holds
all the listed identifiers, the ACE is
said to match the accessor and the
access specified in ACE$L_ACCESS is
granted.

The flag word contains information specific to identifier ACEs and information
applicable to all types of ACE. In the flags word, the first byte contains flags
specific to each ACE type; the second byte contains flags common to all ACE
types. For details on the ACE type-independent information, see Table 3-1.
The following symbol is a bit offset to the identifier ACE information.

Bit Meaning When Set

ACE$V_RESERVED Four-bit field containing the number of longwords to
reserve for application-dependent data. The number must
be between 0 and 15. The reserved longwords, if any,
immediately precede the identifiers.

The following symbol values are offsets to bits within the mask indicating the
access mode granted in the system, owner, group, and world fields.

Bit

ACE$V_READ

ACE$V_WRITE

ACE$V_EXECUTE

ACE$V_DELETE

ACE$V_CONTROL

Meaning When Set

Read access is granted.

Write access is granted.

Execute access is granted.

Delete access is granted.

Modification of the access field is granted.

You can also obtain the symbol values as masks with the appropriate bit set
by using the prefix ACE$M rather than ACE$V.

To translate ACEs from binary format into a text string, use the
$FORMAT_ACL service. The aclent argument is the address of a descriptor
pointing to a buffer containing the description of the ACE. The first byte
of the buffer contains the length of the ACE; the second byte contains the
type, which in turn defines the format of the ACE. The following four values
specify ACE type.

3.4.3

Security Services
3.4 Creating, Translating, and Maintaining ACEs

Value

ACE$C_ALARM

ACE$C_INFO

ACE$C_DIRDEF

ACE$C_KEYID

ACE Type

Alarm ACE

Application-dependent ACE

Default protection ACE

Identifier ACE

The acllen argument specifies the length of the text string written to
the buffer pointed to by aclstr. You use the width, trmdsc, and indent
arguments to specify a particular width, termination character, and number of
blank characters for an ACE. The accnam argument contains the address of
an array of 32 quadword descriptors that define the names of the bits in the
access mask of the ACE. If accnam is omitted, the following names are used:

Bit 0 READ
Bit 1 WRITE
Bit 2 EXECUTE
Bit 3 DELETE
Bit 4 CONTROL
Bit 5 BIT_5
Bit 6 BIT_6

Bit 31 BIT_31

The $P ARSE_ACL service translates an ACE from text string format to binary
format. The aclstr argument is the address of a string descriptor pointing
to the ACE text string. As with $FORMAT_ACL, the aclent argument is
the address of a descriptor pointing to a buffer containing the description
of the ACE. The first byte of the buffer contains the length of the ACE; the
second byte contains the type, which in turn defines the format of the ACE.
If $PARSE_ACL fails, the errpos argument points to the failing point in
the string. The accnam argument contains the address of an array of 32
quadword descriptors that define the names of the bits in the access mask
of the ACE. If accnam is omitted, the names specified in the description of
$FORMAT_ACL are used.

Creating and Maintaining ACEs
To create or modify an ACL associated with a system object, you use the
$CHANGE_ACL service. You specify the object whose ACL is to be modified
with either the chan argument, which specifies the 1/0 channel associated
with the object, or with the objnam argument, which specifies the object
name. If you specify objnam, chan must be omitted or specified as zero. The
objtyp argument specifies the type of object.

3-25

Security Services
3.4 Creating, Translating, and Maintaining ACEs

3-26

The values specifying object type are as follows:

ACL$C_DEVICE

ACL$C_FILE

Object is a device

Object is a Files-11 structure level 2
file

ACL$C_GROUP _GLOBAL _SECTION

ACL$C_JOBCTL_QUEUE

ACL$C_LOGICAL _NAME_ TABLE

ACL$C_SVSTEM _GLOBAL _SECTION

Object is a group global section

Object is a batch or print queue

Object is a logical name table

Object is a system global section

Use the acmode argument to specify the access mode used when checking file
access protection. By default, kernel mode is used, but the system compares
acmode against the caller's access mode and uses the least privileged mode.
The itmlst argument is an item list specifying the changes to be made to
the ACL. Each item code consists of three elements. The following figure
illustrates the format of the item code.

code I buflen

bufadr

unused

ZK-1701-84

The item list ends with a longword containing the value zero. The buflen
argument contains the number of bytes in the buffer containing information
passed to or from $CHANGE_ACL pointed to by bufadr. The third
longword of the standard item descriptor is not used by $CHANGE_ACL
and should be zero.

The item code specifies the change to be made to the ACL. The following
symbols for the item codes are defined in the system macro library
($ACLDEF).

Bit

ACL$C_ACLLENGTH

ACL$C_ADDACLENT

ACL$C_DELACLENT

Meaning When Set

Returns the size, in bytes, of the object's ACL. The
bufadr argument points to a longword that contains
the size.

Adds an ACE to the beginning of the ACL when contxt
is 0, to the end of the ACL when contxt is -1, or at
a location pointed to by a prior ACL$C_FNDACETYP
or ACL$C_FNDACLENT. The bufadr argument points
to a variable-length data structure containing the ACE
to be added. You can add more than one ACE with
ACL$C_ADDACLENT; however, buflen must contain
the total size of all ACEs contained in the buffer.

Deletes the ACE pointed to by bufadr or, if bufadr
is specified as zero, the ACE pointed to by a prior
ACL$C_FNDACETYP or ACL$C_FNDACLENT.

Security Services
3.4 Creating, Translating, and Maintaining ACEs

Bit

ACL$C_DELETEACL

ACL$C_FNDACETYP

ACL$C_FNDACLENT

ACL$C_RLOCK_ACL

ACL$C_ WLOCK_ACL

ACL$C_MODACLENT

ACL$C_READACE

ACL$C_READACL

ACL$C_UNLOCK_ACL

Meaning When Set

Deletes the entire ACL with the exception of protected
ACEs.

Locates an ACE of the type pointed to by bufadr.

Locates the ACE pointed to by bufadr.

Obtains a read lock on an object in order to lock out
all writers to the object's ACL. Regardless of the
caller's mode, ACL locks are user-mode locks so that
all access modes interlock ACLs correctly.

Obtains an exclusive lock on an object in order to lock
out all other readers and writers to the object's ACL.
Regardless of the caller's mode, ACL locks are user
mode locks so that all access modes interlock ACLs
correctly.

Replaces the ACE pointed to by a prior
ACL$C_FNDACETYP or ACL$C_FNDACLENT with the
ACE pointed to by bufadr.

Reads the ACE pointed to by ACL$C_FNDACETYP
or ACL$C_FNDACLENT into the buffer pointed to by
bufadr.

Reads the object's ACL. The contxt argument should
be initially set to zero. Complete ACEs are read into
the buffer pointed to by bufadr.

Releases the lock obtained with ACL$C_RLOCK_ACL
or ACL$C_ WLOCK_ACL.

When you add an ACE with ACL$C_ADDACLENT or locate an ACE with
ACL$CJNDACETYP or ACL$CJNDACLENT, $CHANGE_ACL searches
the ACL for a match for the ACE in the ACE buffer. The $CHANGE_ACL
service does not always make a match based on the entire ACE buffer;
instead, the ACE type determines how $CHANGE_ACL makes a match. For
example:

• A default protection ACE (ACE$C_DIRDEF) matches only on the type
field (ACE$B_TYPE). An ACL can have only one default protection ACE
because $CHANGE_ACL stops searching when it locates a match.

• An identifier ACE (ACE$C_KEYID) matches on the flags
(ACE$WJLAGS) and identifier (ACE$L _KEY) fields.

• An alarm ACE (ACE$C_ALARM) matches on the flags (ACE$W_FLAGS)
and access mask (ACE$L_ACCESS) fields.

• All other ACE types match on the entire ACE buffer.

Because $CHANGE_ACL uses these matching rules, adding an ACE
sometimes results in the replacement of another ACE. For example, if you
add an identifier ACE with the same flags and identifier fields but a different
access mask, the new ACE replaces the old ACE. When you add an ACE on
the top of an ACL, $CHANGE_ACL deletes any matching ACE because it is
not seen. If you add an ACE below a matching ACE in an ACL, the added
ACE has no effect because it is not seen.

3-27

Security Services
3.4 Creating, Translating, and Maintaining ACEs

The following programming example uses $CHANGE_ACL to add an ACE
to the ACL of a terminal. (See Section 3.6 for a related example.)

Module SECURE (main= MAIN, addressing_mode(external=general)) =
begin

Insert a record into the specified terminal's ACL so that
holders of the SECURE_TERMINAL identifier may do confidential
work with that terminal.

To use: $ SECURE tt20:

Confidential applications will, of course, need to use
SYS$CHKPRO to verify that users are authorized to use them.

library

'SYS$LIBRARY:LIB';

forward routine

MAIN;

external routine

LIB$GET_FOREIGN,
SYS$CHANGE_ACL,
SYS$PARSE_ACL;

To get the name of the terminal
To make the actual changes to the ACL
To translate the ACE from ASCII

compiletime

POSITION = O;

macro

Some of the routines require dynamic string descriptors.

DYNAMIC_DESCRIPTOR =
block[DSC$K_D_BLN, byte]
preset([DSC$B_CLASS] = DSC$K_CLASS_D, [DSC$B_DTYPE] = 0,

[DSC$W_LENGTH] = 0, [DSC$A_POINTER] = 0) %,

These two macros are used solely for initializing the access name table.

INITIALIZE[BIT_NUMBER, BIT_NAME] =
[BIT_NUMBER, DSC$W_LENGTH] = %charcount(BIT_NAME),
[BIT_NUMBER, DSC$A_POINTER] = uplit byte(BIT_NAME) %,

IGNORE(START, FINISH)[] =
%if START leq FINISH %then

[START, DSC$W_LENGTH] =
%charcount(%string('BIT_', START)),

[START, DSC$A_POINTER] =
uplit byte(%string('BIT_', START))

%if START lss FINISH %then , %fi
%assign(POSITION, START+1)
IGNORE(%number(POSITION), FINISH)

%fi %;

own

STATUS,

3-28

Security Services
3.4 Creating, Translating, and Maintaining ACEs

OBJNAM: DYNAMIC_DESCRIPTOR,
BUFADR: block[ACL$S_ADDACLENT, byte],

The name of this terminal
The new ACE

ACLENT: block[DSC$K_D_BLN, byte]
preset([DSC$W_LENGTH] = ACL$S_ADDACLENT,

[DSC$A_POINTER] = BUFADR),

ITMLST: $ITMLST_DECL(),

The Access Name Table:

Here we specify the ASCII names of all the access types.

ACCNAM: blockvector[32, DSC$K_S_BLN, byte]
preset(INITIALIZE(0, 'READ',

1, 'WRITE',
2, 'LOGICAL',
3, 'PHYSICAL' ,
4, 'CONTROL',

5, 'CONFIDENTIAL'),

IGNORE(6, 31));

Prompt the user for the terminal's name.
Create a new ACE.
Add the ACE to the ACL of the terminal.

Our hero

routine MAIN =
begin

LIB$GET_FOREIGN(OBJNAM, %ascid'Device: ');
SYS$PARSE_ACL(%ascid'(IDENTIFIER=SECURE_TERMINAL,ACCESS=CONFIDENTIAL)',

ACLENT, 0, ACCNAM);

$ITMLST_INIT(itmlst = ITMLST,

if not

(itmcod = ACL$C_ADDACLENT,
bufsiz = .BUFADR[ACE$B_SIZE],
bufadr = BUFADR));

(STATUS= SYS$CHANGE_ACL(O, %ref(ACL$C_DEVICE), OBJNAM, ITMLST, 0,0,0))
then

signal_stop(.STATUS);

return SS$_NORMAL;

end;

end
eludom

3-29

Security Services
3.5 Modifying a Rights List

3.5 Modifying a Rights List
When a process is created, LOGINOUT builds a rights list for the process
consisting of the identifiers the user holds and any appropriate environmental
identifiers. A system rights list is a default rights list used in addition to any
process rights list. Modifications to the system rights list effectively become
modifications to the rights of each process.

A privileged subsystem can alter the process or system rights list with the
$GRANTID or $REVOKID services. These services are not intended for the
general system user. The $GRANTID service adds an identifier to a rights list,
or if the identifier is already part of the rights list, it modifies the attributes
of the identifier. The $REVOKID service removes an identifier from a rights
list. If the identifier, specified by either id or name, is the holder of any other
identifiers, the identifier is removed from those holder records.

The $GRANTID and $REVOKID services treat the pidadr and prcnam
arguments the same way all other process control services treat these
arguments. For more details, see the Guide to VMS System Security.

You may also modify the process or system rights list with the DCL command
SET RIGHTS_LIST. Additionally, you can use SET RIGHTS_LIST to modify
the attributes of the identifier if the identifier is already part of the rights list.
Note that you may not use the SET RIGHTS_LIST command to modify the
rights database from which the rights list was created. For more information
about using the SET RIGHTS_LIST command, see the VMS DCL Dictionary.

3.6 Checking Access Protection

3.6.1 SYS$CHKPRO

3-30

VMS provides two system services that check access to objects on the system:
SYS$CHKPRO and SYS$CHECK_ACCESS. The SYS$CHKPRO service
performs the system access protection check on a user attempting direct
access to an object on the system; SYS$CHECK_ACCESS performs a similar
check but on behalf of a third-party accessor attempting access to an object.
These services are described in the following subsections.

The $CHKPRO service invokes the access protection check used by the
system. The service does not grant or deny access; rather it performs the
protection check on behalf of a layered product, application program, or other
similar subsystem which in turn must specifically grant or deny access.

To pass the input and output information to $CHKPRO, use the itmlst
argument, which is the address of an item list of descriptors. The $CHKPRO
service compares the item list of the rights and privileges of the accessor to a
list of the protection attributes of the object to be accessed. If the accessor can
access the object, $CHKPRO returns the status SS$_NQRMAL; if the accessor
cannot access the object, $CHKPRO returns the status SS$_NOPRIV. The
$CHKPRO service does not grant or deny access. The subsystem itself must
grant or deny access based on the output (SS$_NORMAL or SS$_NOPRIV)
from $CHKPRO.

3.6.2

Security Services
3.6 Checking Access Protection

The $CHKPRO service also returns an item list of the rights or privileges that
allowed the accessor access to the object as well as the names of security
alarms raised by the access attempt. For information about the item codes
defined for $CHKPRO, see the description of $CHKPRO in the VMS System
Services Reference Manual.

Figure 3-1 provides a flowchart of the steps that $CHKPRO follows when
performing a protection check.

SYS$CHECK_ACCESS
Whereas SYS$CHKPRO performs the system access protection check on a
user attempting access to an object, SYS$CHECK_ACCESS executes the
protection check on behalf of a third-party accessor. An example of this
would be a file server program that uses SYS$CHECK-ACCESS to ensure
that an accessor (the third party) requesting a file has the required privileges
to do so.

You pass the input and output information to $CHECK-ACCESS by using
the itmlst argument, which is the address of an item list of descriptors. You
also pass the name of the accessor and the name and type of the object being
accessed by using the arguments usrnam, objnam and objtyp, respectively.
The $CHECK-ACCESS service compares the rights and privileges of the
accessor to a list of the protection attributes of the object to be accessed.
If the accessor can access the object, $CHECK-ACCESS returns the status
SS$_NORMAL; if the accessor cannot access the object, $CHECK-ACCESS
returns the status SS$_NOPRIV.

The $CHECK-ACCESS service does not grant or deny access. The subsystem
itself must grant or deny access based on the output (SS$-NORMAL or
SS$_NOPRIV) from $CHECK-ACCESS.

The $CHECK-ACCESS service also returns an item list of the rights or
privileges that allowed the accessor access to the object as well as the names
of security alarms raised by the access attempt. For information about the
item codes defined for $CHECK-ACCESS, see the description of
$CHECK-ACCESS in the VMS System Services Reference Manual.

3-31

Security Services
3. 6 Checking Access Protection

Figure 3-1 Flowchart of $CHKPRO Operation

3-32

PERFORM ACCESS
MODE CHECK

YES ACCESS
GRANTED

ZK-6375/1-HC

Figure 3-1 Cont'd. on next page

Security Services
3.6 Checking Access Protection

Figure 3-1 (Cont.) Flowchart of $CHKPRO Operation

CHECK
ACCESSOR
FOR
PRIVILEGES

ACCESS
DENIED

NO

NO

ACCESS
GRANTED

ACCESS
GRANTED

YES ACCESS
DENIED

ZK-6375/2-HC

The following programming example uses $CHKPRO to verify that a user is
authorized to use a terminal for confidential work. The $CHKPRO service
does not explicitly grant access; it only performs the protection check.
The application itself must grant or deny access based on the output from
$CHKPRO. See Section 3.4.3 for a related example.

3-33

Security Services
3.6 Checking Access Protection

Module CHECK (main= MAIN, addressing_mode(external=general))
begin

library

'SYS$LIBRARY:LIB';

forward routine

MAIN;

external routine

own

SYS$CHKPRO,
SYS$CHANGE_ACL,
LIB$GET_VM;

STATUS,

ACLLENGTH,
ACL: ref block[, byte],

ITMLST1: $ITMLST_DECL(),
ITMLST2: $ITMLST_DECL(items=2);

routine MAIN =
begin

Query for the size of the user terminal's ACL.

$ITMLST_INIT(itmlst = ITMLST1,
(itmcod = ACL$C_ACLLENGTH, bufadr = ACLLENGTH));

SYS$CHANGE_ACL(O, %ref(ACL$C_DEVICE), %ascid'TT:', ITMLST1, 0,0,0);

Allocate memory to store the ACL.

LIB$GET_VM(%ref(.ACLLENGTH), ACL);

Read the entire ACL into the buffer.

$ITMLST_INIT(itmlst = ITMLST1,
(itmcod = ACL$C_READACL, bufadr = .ACL, bufsiz = .ACLLENGTH));

SYS$CHANGE_ACL(O, %ref(ACL$C_DEVICE), %ascid'TT:', ITMLST1, 0,0,0);

Check the object for CONFIDENTIAL (BIT_5) access.

$ITMLST_INIT(itmlst = ITMLST2,
(itmcod = CHP$_ACL, bufadr = .ACL, bufsiz = .ACLLENGTH),
(itmcod = CHP$_ACCESS, bufadr = uplit(%b'100000')));

if not (STATUS = SYS$CHKPRO(ITMLST2)) then
signal_stop(.STATUS);

return SS$_NORMAL;

end;

end
eludom

3-34

3. 7 Additional Security Services

Security Services
3. 7 Additional Security Services

VMS provides two additional services that affect system security. The
$ERAP AT service provides a consistent mechanism by which users can
write a security erase pattern for disks. The security erase patterns can be
custom configured to fit the individual needs of a site. The $MTACCESS
service checks the accessibility field in a magnetic tape label to determine if a
volume is protected by VMS.

For more information, see the descriptions of the $MTACCESS and the
$ERAP AT services in the VMS System Services Reference Manual.

3-35

4 Event Flag Services

Event flags are status posting bits maintained by VMS for general
programming use. Programs can use event flags to perform a variety of
signaling functions. Event flag services clear, set, and read event flags. They
also can place a process in a wait state pending the setting of an event flag or
flags. The following system services are event flag services:

• Associate Common Event Flag Cluster ($ASCEFC)

• Disassociate Common Event Flag Cluster ($DACEFC)

• Delete Common Event Flag Cluster ($DLCEFC)

• Set Event Flag ($SETEF)

• Clear Event Flag ($CLREF)

• Read Event Flags ($READEF)

• Wait for Single Event Flag ($WAITFR)

• Wait for Logical OR of Event Flags ($WFLOR)

• Wait for Logical AND of Event Flags ($WFLAND)

Some system services set an event flag to indicate the completion or the
occurrence of an event; the calling program can test the flag. The following
are some of the system services that use event flags to signal events to the
calling process:

• Enqueue Lock Request ($ENQ and $ENQW)

• Get Device/Volume Information ($GETDVI and $GETDVIW)

• Get Job /Process Information ($GETJPI and $GETJPIW)

• Get Systemwide Information ($GETSYI and $GETSYIW)

• Queue I/O Request ($QIO and $QIOW)

• Set Timer ($SETIMR)

• Update Section File on Disk ($UPDSEC)

• Update Section File on Disk and Wait ($UPDSECW)

Event flags can be used by more than one process as long as the cooperating
processes are in the same group. Thus, if you have developed an application
that requires the concurrent execution of several processes, you can use
event flags to establish communication among them and to synchronize their
activity.

4-1

Event Flag Services
4.1 Event Flag Numbers and Event Flag Clusters

4.1 Event Flag Numbers and Event Flag Clusters

4-2

Each event flag has a unique decimal number; event flag arguments in system
service calls refer to these numbers. For example, if you specify event flag 1
in a call to the $QIO system service, then event flag number 1 is set when the
1/0 operation completes.

To allow manipulation of groups of event flags, the flags are ordered
in clusters, with 32 flags in each cluster, numbered from right to left,
corresponding to bits 0 through 31 in a longword. The clusters are also
numbered from 0 to 3. The range of event flag numbers encompasses the
flags in all clusters: event flag 0 is the first flag in cluster 0, event flag 32 is
the first flag in cluster l, and so on.

There are two types of clusters, local event flag clusters and common event
flag clusters.

• A local event flag cluster can only be used internally by a single process.
Local clusters are automatically available to each process.

• A common event flag cluster can be shared by cooperating processes
in the same group. Before a process can refer to a common event flag
cluster, it must explicitly "associate" with the cluster. Association is
described in Section 4.5.

The ranges of event flag numbers and the clusters to which they belong are
summarized in Table 4-1.

Table 4-1 Summary of Event Flag and Cluster Numbers

Cluster Event Flag
Number Numbers Description Restriction

0 0-31 Process-local event Event flags 24 through
1 32-63 flag clusters for 31 reserved for

general use system use

2 64-95 Assignable common Must be associated
3 96-127 event flag cluster before use

Specifying Event Flag and Event Flag Cluster Numbers

The same system services manipulate flags in both local and common event
flag clusters. Because the event flag number implies the cluster number, it is
not necessary to specify the cluster number when you call a system service
that refers to an event flag.

When a system service requires an event flag cluster number as an argument,
you need only specify the number of any event flag in the cluster. Thus, to
read the event flags in cluster l, you could specify any number in the range
3 2 through 63.

To prevent accidental use of an event flag already in use elsewhere in your
program, you should allocate and deallocate local event flags. The VMS
Run-Time Library Routines Volume describes routines you can use to allocate
an arbitrary event flag (LIB$GET_EF), to allocate a particular event flag
(LIB$RESERVE_EF), or to deallocate an event flag (LIB$FREE_EF) from the
process-wide pool of available local event flags. No similar routines exist for
common event flags.

Event Flag Services
4.2 Examples of Event Flag Services

4.2 Examples of Event Flag Services

TIME: .BLKQ 1

$SETIMR_S -

Local event flags are most commonly used in conjunction with other system
services. For example, you can use the Set Timer ($SETIMR) system service
to request that an event flag be set at a specific time of day or after a specific
interval of time has passed. If you want to place a process in a wait state for
a specified period of time, you could specify an event flag number for the
$SETIMR service and then use the Wait for Single Event Flag ($WAITFR)
system service, as follows:

; Will contain time interval to wait

Set the timer
EFN=#3, -
DAYTIM=TIME

$WAITFR_S -
EFN=#3

4.3 Event Flag Waits

; Wait until timer expires

In this example, the daytim argument refers to a 64-bit time value. For
details about how to obtain a time value in the proper format for input to this
service, see Chapter 9.

The following three system services place the process in a wait state until an
event flag, or group of event flags, is set:

• The Wait for Single Event Flag ($WAITFR) system service places the
process in a wait state until a single flag has been set.

• The Wait for Logical OR of Event Flags ($WFLOR) system service places
the process in a wait state until any one of a specified group of event flags
has been set.

• The Wait for Logical AND of Event Flags ($WFLAND) system service
places the process in a wait state until all of a specified group of event
flags have been set.

Another system service that accepts an event flag number as an argument is
the Queue I/O Request ($QIO) system service. The following example shows
a program segment that issues two $QIO system service calls, and uses the
$WFLAND system service to wait until both I/O operations complete before
it continues execution.

$QIO_S EFN=#1, ... 0
BSBW ERROR
$QIO_S EFN=#2, ...
BSBW ERROR
$WFLAND _S - 8

EFN=#1, - C)
MASK=#-B0110

BSBW ERROR

Issue first I/0 request
; Check for error
; Issue second I/0 request
; Check for error
Wait until both complete

Check for error

Continue execution

0 The event flag argument is specified in each $QIO request. Both of these
event flags are in cluster 0.

4-3

Event Flag Services
4.3 Event Flag Waits

8 After both 1/0 requests are successfully queued, the program calls the
Wait for Logical AND of Event Flags ($WFLAND) system service to wait
until the 1/0 operations complete. In this service call, the efn argument
can specify any event flag number in the cluster containing the event
flags to be waited for. The mask argument specifies that flags 1 and 2 are
to be waited for.

9 Note that the $WFLAND system service (and the other wait system
services) wait for the event flag to be set; they do not wait for the 1/0
operation to complete. If some other event were to set the required
event flags, the wait for event flag would complete prematurely. Use
of event flags must be carefully coordinated. (See Section 7.3.1 for
more information about the recommended technique for testing 1/0
completion.)

4.4 Setting and Clearing Event Flags
System services that use event flags clear the event flag specified in the
system service call before they queue the timer or 1/0 request. This ensures
that the process knows the state of the event flag. If you are using event flags
in local clusters for other purposes, be sure the flag's initial value is what you
want before you use it.

The Set Event Flag ($SETEF) and Clear Event Flag ($CLREF) system services
set and clear specific event flags. For example, the following system service
call clears event flag 32:

$CLREF_S EFN=#32

The $SETEF and $CLREF services return successful status codes that indicate
whether the specified flag was set or clear when the service was called. The
caller can thus determine the previous state of the flag, if necessary. The
codes returned are SS$_WASSET and SS$_WASCLR.

Event flags in a common event flag cluster are all initially clear when the
cluster is created. The next section describes the creation of common event
flag clusters.

4.5 Common Event Flag Clusters

4-4

Common event flags act as a communication link between images executing
in different processes in the same group. Common event flags are often
used as a synchronization tool for other more complicated communication
techniques such as logical names and global sections. For more information
about using event flags to synchronize communication between processes, see
Section 2.5.1.

Before any processes can use event flags in a common event flag cluster,
the cluster must be created. The Associate Common Event Flag Cluster
($ASCEFC) system service creates a common event flag cluster. After a
cluster is created, other processes in the same group can call $ASCEFC to
establish their association with the cluster, so they can access flags in it.

Event Flag Services
4.5 Common Event Flag Clusters

When a common event flag cluster is created, it must be identified by a
name string. (Section 4.8 explains the format of this string.) Each process
that associates with the cluster must use the same name to refer to it; the
$ASCEFC system service establishes correspondence between the cluster
name and the cluster number that a process assigns to the cluster.

The following example shows how a process might create a common event
flag cluster named COMMON _CLUSTER and assign it a cluster number of 2.

CLUSTER:
.ASCID /COMMON_CLUSTER/

$ASCEFC_S -
EFN=#65, -
NAME=CLUSTER

; Cluster name

Create cluster 2

Subsequently, other processes in the same group may associate with this
cluster. Those processes must use the same character string name to refer to
the cluster; however, the cluster numbers they assign do not have to be the
same.

Common event flag clusters are either temporary or permanent. The perm
argument to the $ASCEFC system service defines whether the cluster is
temporary or permanent.

Temporary clusters require an element of the creating process's quota for
timer queue entries (TQELM quota). They are deleted when all processes
associated with the cluster have disassociated. Disassociation can be
performed explicitly, with the Disassociate Common Event Flag Cluster
($DACEFC) system service, or implicitly, when the image exits.

Permanent clusters require the creating process to have the PRMCEB user
privilege. They continue to exist until they are explicitly marked for deletion
with the Delete Common Event Flag Cluster ($DLCEFC) system service.

If every cooperating process that is going to use a common event flag cluster
has the necessary privilege or quota to create a cluster, the first process to call
the $ASCEFC system service creates the cluster.

4.6 Disassociating and Deleting Common Event Flag Clusters
When a process no longer needs access to a common event flag cluster,
it issues the Disassociate Common Event Flag Cluster ($DACEFC) system
service. When all processes associated with a temporary cluster have issued
a $DACEFC system service, the system deletes the cluster. If a process does
not explicitly disassociate itself from a cluster, the system performs an implicit
disassociation when the image that called $ASCEFC exits.

Permanent clusters, however, must be explicitly marked for deletion with
the Delete Common Event Flag Cluster ($DLCEFC) system service. After
the cluster has been marked for deletion, it is not deleted until all processes
associated with it have been disassociated.

4-5

Event Flag Services
4. 7 Example of Using a Common Event Flag Cluster

4. 7 Example of Using a Common Event Flag Cluster

4-6

The following is an example of four cooperating processes that share a
common event flag cluster. The processes named ORION, CYGNUS, LYRA,
and PEGASUS are in the same group.

Process ORION

CNAME: .ASCID /TITUS/ ; Descriptor for cluster name

.. $ASCEFC_S - Create common cluster
EFN=_#64, -
NAME=CNAME 8

BSBW ERROR ; Check for error

8 $WFLAND_S -
EFN=_#64, -
MASK=_#_AB1110 ; Wait for flags 1,2,3

BSBW ERROR Check for error
0 $DACEFC_S -

EFN=_#64 ; Disassociate cluster

Process CYGNUS

ORION_FLAGS: .ASCID /TITUS/ ; Descriptor for

0 $ASCEFC_S -

cluster name

EFN=_#64, -
NAME=ORION_FLAGS

BSBW ERROR ; Check for error
$SETEF_S - ; Set event flag 1

EFN=_#65
BSBW ERROR ; Check for error
$DACEFC_S - ; Disassociate

EFN=_#64

Process LYRA

SHARE: .ASCID /TITUS/ ; Descriptor for cluster name

Ci) $ASCEFC_S - ; Associate with cluster 3
EFN=_#96, -
NAME= SHARE

BSBW ERROR ; Check for error
$SETEF_S - ; Set flag 3

EFN=_#99
BSBW ERROR ; Check for error
$DACEFC_S - ; Disassociate

EFN=_#96

Process PEGASUS

CLUSTER: .ASCID /TITUS/ Descriptor for cluster name

4.8 Cluster Name

Event Flag Services
4. 7 Example of Using a Common Event Flag Cluster

f) $ASCEFC_S - ; Associate with cluster
EFN=_#64, -
NAME=CLUSTER

BSBW ERROR ; Check for error
$WAITFR_S - ; Wait for flag 1

EFN=_#65
BSBW ERROR ; Check for error

; Continue

$SETEF_S - ; Set flag 2
EFN=_#66

BSBW ERROR ; Check for error
$DACEFC_S - ; Disassociate

EFN=_#64

0 Assume for this example that ORION is the first process to issue the
$ASCEFC system service and therefore is the creator of the cluster.
Because this is a newly created cluster, all event flags in it are clear.

8 The argument name in the $ASCEFC system service call is a pointer to
the descriptor CNAME for the name to be assigned to the cluster; in this
example, the cluster is named TITUS. This service call associates this
name with cluster 2 of process ORION, containing event flags 64 through
95. Cooperating processes CYGNUS, LYRA, and PEGASUS must use the
same character string name to refer to this cluster.

f) The continuation of process ORION depends on work done by processes
CYGNUS, LYRA, and PEGASUS. The Wait For Logical AND of Event
Flags ($WFLAND) system service call specifies a mask indicating the
event flags that must be set before process ORION can continue. The
mask in this example ("Bll 10) indicates that the second, third, and fourth
flags in the cluster must be set.

0 When all three event flags are set, process ORION continues execution
and calls the $DACEFC system service. Because ORION did not specify
the perm argument when it created the cluster, TITUS is deleted.

0 Process CYGNUS executes, associates with the cluster, sets event flag 65
(flag 1 in the cluster), and disassociates.

0 Process LYRA associates with the cluster, but instead of referring to it
as cluster 2, it refers to it as cluster 3 (with event flags in the range 96
through 127). Thus, when process LYRA sets flag 99, it is setting flag
number 3 in TITUS.

f) Process PEGASUS associates with the cluster, waits for an event flag set
by process CYGNUS, and sets an event flag itself.

The name argument to the Associate Common Event Flag Cluster ($ASCEFC)
service identifies the cluster that the process is creating or associating with.
The name argument specifies a descriptor pointing to a character string.

Translation of the name argument proceeds in the following manner:

1 CEF$ is prefixed to the current name string and the result is subjected to
logical name translation.

4-7

Event Flag Services
4.8 Cluster Name

NAMEDESC:

2 If the result is a logical name, step 1 is repeated until translation does
not succeed or until the number of translations performed exceeds the
number specified by the SYSGEN parameter LNM$C_MAXDEPTH.

3 The CEF$ prefix is stripped from the current name string that could not
be translated. This current string is the cluster-name.

For example, assume that you have made the following logical name
assignment:

$ DEFINE CEF$CLUS_RT CLUS_RT_001

Assume also that your program contains the following statements:

.ASCID /CLUS_RT/ ; Descriptor for logical name of cluster

$ASCEFC_S -
... ,NAME=NAMEDESC, ...

The following logical name translation takes place:

1 CEF$ is prefixed to CLUS_RT.

2 CEF$CLUS_RT is translated to CLUS_RT_QQl. (No further translation is
successful. When logical name translation fails, the string is passed to the
service.)

There are two exceptions to the logical name translation method discussed in
this section:

• If the name string starts with an underscore (-), VMS strips the
underscore and considers the resultant string to be the actual name
(that is, no further translation is performed).

• If the name string is the result of a logical name translation, the name
string is checked to see if it has the "terminal" attribute. If the name string
is marked with the "terminal" attribute, VMS considers the resultant string
to be the actual name (that is, no further translation is performed).

4.9 Example of Using Event Flag Services

4-8

This section contains an example of how to use event flag services.

Common event flags are often used for communicating between a parent
process and a created subprocess. In the following example, REPORT .FOR
creates a subprocess to execute REPORTSUB.FOR, which performs a number
of operations.

After REPORTSUB.FOR performs its first operation, the two processes can
perform in parallel. REPORT .FOR and REPORTSUB.FOR use the common
event flag cluster named JESSIER to communicate.

Event Flag Services
4.9 Example of Using Event Flag Services

REPORT .FOR associates the cluster name with a common event flag
cluster, creates a subprocess to execute REPORTSUB.FOR, then waits for
REPORTSUB.FOR to set the first event flag in the cluster. REPORTSUB.FOR
performs its first operation, associates the cluster name JESSIER with a
common event flag cluster, and sets the first flag. From then on, the processes
execute concurrently.

REPORT.FOR

! Associate common event flag cluster
STATUS= SYS$ASCEFC (%VAL(64),
2 'JESSIER',,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Create subprocess to execute concurrently
MASK = IBSET (MASK,0)
STATUS= LIB$SPAWN ('RUN REPORTSUB', Image
2 'INPUT.DAT', ! SYS$INPUT
2 'OUTPUT.DAT', ! SYS$0UTPUT
2 MASK
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Wait for response from subprocess.
STATUS = SYS$WAITFR (%VAL(64))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

REPORTSUB.FOR

Do operations necessary for
continuation of parent process.

Associate common event flag cluster
STATUS= SYS$ASCEFC (%VAL(64),
2 'JESSIER' ,,)
IF (.NOT. STATUS)
2 CALL LIB$SIGNAL (%VAL(STATUS))

! Set flag for parent process to resume
STATUS = SYS$SETEF (%VAL(64))

4-9

5 AST (Asynchronous System Trap) Services

Some system services allow a process to request that it be interrupted when
a particular event occurs. Because the interrupt occurs asynchronously (out
of sequence) with respect to the process's execution, the interrupt mechanism
is called an asynchronous system trap (AST). The trap provides a transfer of
control to a user-specified procedure that handles the event.

The following system services are AST services:

• Set AST Enable ($SETAST)

• Declare AST ($DCLAST)

• Set Power Recovery AST ($SETPRA)

The system services that use the AST mechanism accept as an argument the
address of an AST service routine, that is, a routine to be given control when
the event occurs.

The following are some of the services that use ASTs:

• Declare AST ($DCLAST)

• Enqueue Lock Request ($ENQ)

• Get Device/Volume Information ($GETDVI)

• Get Job /Process Information ($GETJPI)

• Get Systemwide Information ($GETSYI)

• Queue 1/0 Request ($QIO)

• Set Timer ($SETIMR)

• Set Power Recovery AST ($SETPRA)

• Update Section File on Disk ($UPDSEC)

For example, if you call the Set Timer ($SETIMR) system service, you can
specify the address of a routine to be executed when a time interval expires or
at a particular time of day. The service schedules the execution of the routine
and returns; the program image continues executing. When the requested
timer event occurs, the system "delivers" an AST by interrupting the process
and calling the specified routine.

The following example shows a typical program that calls the $SETIMR
system service with a request for an AST when a timer event occurs.

5-1

AST (Asynchronous System Trap) Services

NOON: .BLKQ 1 Will contain 12:00 system time
.ENTRY LIBRA,O Entry mask for LIBRA

0 $SETIMR_S - Set timer
DAYTIM=NOON, -
ASTADR=TIMEAST

BSBW ERROR Check for error

+---------+
<---------------------- ! Timer !

!Interrupt! 8
+---------+

.ENTRY TIMEAST,~M<> Entry mask for AST routine
Handle timer request

RET
.END LIBRA

Done

0 The call to the $SETIMR system service requests an AST at 12:00 noon.

The DAYTIM argument refers to the quadword NOON, which must
contain the time in system time (64-bit) format. For details on how this
is done, see Chapter 9. The ASTADR argument refers to TIMEAST, the
address of the AST service routine.

When the call to the system service completes, the process continues
execution.

8 The timer expires at 12:00 noon and notifies the system. The system
interrupts execution of the process and gives control to the AST service
routine.

8 The user routine TIMEAST handles the interrupt. When the AST routine
completes, it issues a RET instruction to return control to the program.
The program resumes execution at the point at which it was interrupted.

The following sections describe in more detail how ASTs work and how to
use them.

5.1 Access Modes for AST Execution

5-2

Each request for an AST is associated with the access mode from which
the AST is requested. Thus, if an image executing in user mode requests
notification of an event by means of an AST, the AST service routine executes
in user mode.

Because the ASTs you use almost always execute in user mode, you do not
need to be concerned with access modes. However, you should be aware
of some system considerations for AST delivery. These considerations are
described in Section 5 .5.

AST (Asynchronous System Trap) Services
5.2 ASTs and Process Wait States

5.2 ASTs and Process Wait States

5.2.1

5.2.2

5.2.3

Event Flag Waits

Hibernation

A process in a wait state can be interrupted for the delivery of an AST and
the execution of an AST service routine. When the AST service routine
completes execution, the process is returned to the wait state, if the condition
that caused the wait is still in effect.

Any wait states can be interrupted, except suspended waits (SUSP) and
suspended outswapped waits (SUSPO).

If a process is waiting for an event flag and is interrupted by an AST, the wait
state is restored following execution of the AST service routine. If the flag
is set at completion of the AST service routine (for example, by completion
of an 1/0 operation), then the process continues execution when the AST
service routine completes.

Event flags are described in detail in Chapter 4.

A process can place itself in a wait state with the Hibernate ($HIBER) system
service. This wait state can be interrupted for the delivery of an AST.
When the AST service routine completes execution, the process continues
hibernation. The process can, however, "wake" itself in the AST service
routine or be awakened by another process or as the result of a timer
scheduled wakeup request. Then, it continues execution when the AST
service routine completes.

Process suspension is another form of wait; however, a suspended process
cannot be interrupted by an AST. Process hibernation and suspension are
described in Chapter 8.

Resource Waits and Page Faults
When a process is executing an image, the system can place the process in a
wait state until a required resource becomes available, or until a page in its
virtual address space is paged into memory. These waits, which are generally
transparent to the process, can also be interrupted for the delivery of an AST.

5.3 How ASTs Are Declared
Most ASTs occur as the result of the completion of an asynchronous event
initiated by a system service (for example, a $QIO or $SETIMR request) when
the process requests notification by means of an AST.

The Declare AST ($DCLAST) system service creates ASTs. With this service,
a process can declare an AST only for the same or for a less privileged access
mode.

You may find occasional use for the $DCLAST system service in your
programming applications; you may also find the $DCLAST service useful
when you want to test an AST service routine.

5-3

AST (Asynchronous System Trap) Services
5.4 The AST Service Routine

5.4 The AST Service Routine

5-4

An AST service routine must be a separate procedure. The system calls
the AST with a CALLG instruction; the routine must return using a RET
instruction. If the service routine modifies any registers other than RO or Rl,
it must set the appropriate bits in the entry mask so that the contents of those
registers are saved.

Because knowing when the AST service routine will begin executing is
impossible, you must take care when you write the AST service routine that it
does not modify any data or instructions used by the main procedure (unless,
of course, that is its function).

On entry to the AST service routine, the Argument Pointer register (AP)
points to an argument list that has the following format:

31 8 7

0 l 5

AST parameter

RO

Rl

PC

PSL

0

ZK-855-82

The registers RO and Rl, the PC, and the PSL in this list are those that were
saved when the process was interrupted by delivery of the AST.

The AST parameter is an argument passed to the AST service routine so
that it can identify the event that caused the AST. When you call a system
service requesting an AST, or when you call the $DCLAST system service,
you can supply a value for the AST parameter. If you do not specify a value,
it defaults to 0.

The following example illustrates an AST service routine. In this example,
the ASTs are queued by the $DCLAST system service; the ASTs are delivered
to the process immediately so that the service routine is called following each
$DCLAST system service call.

5. 5 AST Delivery

AST (Asynchronous System Trap) Services
5.4 The AST Service Routine

.ENTRY CELESTEF,O ; Entry mask

4) $DCLAST_S - AST with parameter=!
ASTADR=ASTRTN, -
ASTPRM=#1

$DCLAST_S -
ASTADR=ASTRTN, -
ASTPRM=#2

RET

AST with parameter=2

; Return control

ASTRTN: .WORD 0 ; Entry mask
8 CMPL

BEQL
CMPL
BEQL

#1,4(AP)
10$
#2,4(AP)
20$

Check if AST parameter=!
If equal, goto 10$
Check if AST parameter=2
If equal, goto 20$

10$:

20$:
RET

RET

.END CELESTEF

Handle first AST
Return
Handle second AST
Return

4) The program CELESTEF calls the $DCLAST AST system service twice
to queue ASTs. Both ASTs specify the AST service routine, ASTRTN.
However, a different parameter is passed for each call.

8 The first action this AST routine takes is to check the AST parameter
so that it can determine if the AST being delivered is the first or second
one declared. The value of the AST parameter determines the flow of
execution. If a number of different values are determining a number of
different paths of execution, DIGITAL recommends that you use the VAX
MACRO instruction, CASE.

When a condition causes an AST to be delivered, the system may not be able
to deliver the AST to the process immediately. An AST cannot be delivered
under any of the following conditions:

• An AST service routine is currently executing at the same or at a more
privileged access mode.

Because ASTs are implicitly disabled when an AST service routine
executes, one AST routine cannot be interrupted by another AST routine
declared for the same access mode. It can, however, be interrupted for an
AST declared for a more privileged access mode.

• AST delivery is explicitly disabled for the access mode.

A process can disable the delivery of AST interrupts with the Set AST
Enable ($SETAST) system service. This service may be useful when
a program is executing a sequence of instructions that should not be
interrupted for the execution of an AST routine.

5-5

AST (Asynchronous System Trap) Services
5.5 AST Delivery

• The process is executing or waiting at an access mode more privileged
than that for which the AST is declared.

For example, if a user mode AST is declared as the result of a system
service but the program is currently executing at a higher access mode
(because of another system service call, for example}, the AST is not
delivered until the program is once again executing in user mode.

If an AST cannot be delivered when the interrupt occurs, the AST is queued
until the conditions disabling delivery are removed. Queued ASTs are
ordered by the access mode from which they were declared, with those
declared from more privileged access modes at the front of the queue. If more
than one AST is queued for an access mode, the ASTs are delivered in the
order in which they are queued.

5.6 Example of Using AST Services

PROGRAM DISK_DOWN
! Implicit none
! Status variable
INTEGER STATUS
STRUCTURE /ITMLST/

2

2

UNION
MAP

INTEGER*2 BUFLEN,
CODE

INTEGER*4 BUFADR,
RETLENADR

END MAP
MAP

INTEGER*4 END_LIST
END MAP

END UNION
END STRUCTURE

The following is an example of a VAX FORTRAN program that finds the
PID number of any user working on a particular disk and delivers an AST to
notify the user that the disk is coming down.

RECORD /ITMLST/ DVILIST(2),
2 JPILIST(2)
! Information for GETDVI call
INTEGER PID_BUF,
2 PID_LEN
! Information for GETJPI call
CHARACTER*7 TERM_NAME
INTEGER TERM_LEN
EXTERNAL DVI$_PID,
2 JPI$_TERMINAL
! AST routine and flag
INTEGER AST_FLAG
PARAMETER (AST_FLAG = 2)
EXTERNAL NOTIFY_USER

INTEGER SYS$GETDVIW,
2 SYS$GETJPI,
2 SYS$WAITFR

5-6

AST (Asynchronous System Trap) Services
5.6 Example of Using AST Services

! Set up for SYS$GETDVI
DVILIST(1).BUFLEN = 4
DVILIST(1).CODE = %LOC(DVI$_PID)
DVILIST(1).BUFADR = %LOC(PID_BUF)
DVILIST(1).RETLENADR = %LOC(PID_LEN)
DVILIST(2).END_LIST = 0
! Find PID number of process using SYS$DRIVEO
STATUS = SYS$GETDVIW (,
2
2 '_MTAO: ', ! device
2 DVILIST, ! item list
2 .. ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Get terminal name and fire AST
JPILIST(1).CODE = %LOC(JPI$_TERMINAL)
JPILIST(1).BUFLEN = 7
JPILIST(1).BUFADR = %LOC(TERM_NAME)
JPILIST(1).RETLENADR = %LOC(TERM_LEN)
JPILIST(2).END_LIST = 0
STATUS = SYS$GETJPI (,
2 PID_BUF, !process id
2
2 JPILIST, !itemlist
2
2 NOTIFY_USER, !AST
2 TERM_NAME) !AST arg
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! Ensure that AST was executed
STATUS = SYS$WAITFR(%VAL(AST_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
END

SUBROUTINE NOTIFY_USER (TERM_STR)
! AST routine that broadcasts a message to TERMINAL
! Dummy argument
CHARACTER*(*) TERM_STR
CHARACTER*8 TERMINAL
INTEGER LENGTH
! Status variable
INTEGER STATUS
CHARACTER*(*) MESSAGE
PARAMETER (MESSAGE =
2 'SYS$TAPE going down in 10 minutes')
! Flag to indicate AST executed
INTEGER AST_FLAG

! Declare system routines
INTRINSIC LEN
INTEGER SYS$BRDCST,
2 SYS$SETEF
EXTERNAL SYS$BRDCST,
2 SYS$SETEF,
2 LIB$SIGNAL
! Add underscore to device name
LENGTH = LEN (TERM_STR)
TERMINAL(2:LENGTH+1) = TERM_STR
TERMINAL(1:1) = '-'

5-7

AST (Asynchronous System Trap) Services
5.6 Example of Using AST Services

! Send message
STATUS = SYS$BRDCST(MESSAGE,
2 TERMINAL(1:LENGTH+1))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! Set event flag
STATUS = SYS$SETEF (%VAL(AST_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
END

5-8

6 Logical Name Services

The VMS logical name services provide a technique for manipulating and
substituting character string names. Logical names are commonly used to
specify devices or files for input or output operations. You can use logical
names to communicate information between processes by creating a logical
name in one process in a shared logical name table, and translating the logical
name in another process. The VMS logical name services are as follows:

• Create Logical Name ($CRELNM)

• Create Logical Name Table ($CRELNT)

• Delete Logical Name ($DELLNM)

• Translate Logical Name ($TRNLNM)

This chapter describes how to use system services to establish logical names
for general application purposes. The system performs special logical name
translation procedures for names associated with 1/0 services and with
services that can deal with facilities located in shared (multiport) memory.
For further information, see the following chapters:

• Mailbox names and device names for 1/0 services: Chapter 7

• Common event flag cluster names: Chapter 4

• Global section names: Chapter 11

• Shared memory: Appendix B

For further discussion of logical names, see the VMS DCL Dictionary.

6.1 Logical Name Concepts

6.1.1

As the names of the logical name system services imply, when you use the
logical name system services you are concerned with creating, deleting, and
translating logical names and with creating and deleting logical name tables.
There are several concepts you should be aware of when using the logical
name system services.

Logical Names and Equivalence Names
A logical name is a user-specified character string that can represent a file
specification, device name, logical name table name, application-specific
information, or another logical name. Typically, for process-private purposes,
you specify logical names that are easy to use and remember. System
managers and privileged users choose mnemonics for files, system devices,
and search lists that are frequently accessed by all users.

An equivalence name is a character string that denotes the actual file
specification, device name, or a character string. An equivalence name
can also be a logical name. In this case, further translation is necessary to
reveal the actual equivalence name, if permitted.

6-1

6.1.2

Logical Name Services
6.1 Logical Name Concepts

A multivalued logical name, commonly called a search list, is a logical
name that has more than one equivalence string. Each equivalence string
is assigned an index number starting at zero.

Logical names and their equivalence strings are contained in logical name
tables.

Logical names can have a maximum length of 255 characters. Equivalence
strings can have a maximum of 255 characters. You can establish logical
name and equivalence string pairs as follows:

• At the command level, with the DCL commands ALLOCATE, ASSIGN,
DEFINE, or MOUNT

• In a program, with the Create Logical Name ($CRELNM), Create Mailbox
and Assign Channel ($CREMBX), or Mount Volume ($MOUNT) system
service

For example, you could use the symbolic name TERMINAL to refer to an
output terminal in a program. For a particular run of the program, you could
use the DEFINE command to establish the equivalence name TTA2.

To perform an assignment in a program, you must define character string
descriptors for the name strings. In addition, you must call the system service
through an external function declaration within your program, depending on
the programming language.

Logical Name Tables

6-2

A logical name table contains logical name and equivalence string pairs. Each
table is an independent name space. Logical name tables are referenced by
logical names.

Logical name tables can be created in process space or in system space.
Tables created in process space are accessible only by that process. Tables
created in system space are potentially shareable among many processes.
Certain logical name tables have predefined logical names that provide the
environment for creating, deleting, and translating user-specified logical
names. These predefined logical names begin with the prefix LNM$. Logical
name and equivalence name pairs are maintained in three types of logical
name tables:

• Logical name directory tables

• Default logical name tables

• User-defined logical name tables

When the process is created, the logical name directory tables and the default
logical name tables are created for each new process.

6.1.2.1

6.1.2.2

Logical Name Services
6.1 Logical Name Concepts

Logical Name Directory Tables
Because the names of logical name tables are logical names, table names must
reside in logical name tables. Two special tables called directories exist for
this purpose. Table names are translated from these logical name directory
tables. Logical name and equivalence name pairs for logical name tables are
maintained in the following two directory tables:

• Process Directory Table (LNM$PROCESS_Dll~ECTORY)

• System Directory Table (LNM$SYSTEM_DIRECTORY)

The process directory table contains the names of all process-private user
defined logical name tables created through the $CRELNT system service. In
addition, the process directory table contains system-assigned logical name
table names, the name of the process logical name table
LNM$PROCESS_ TABLE, and the default logical name table search list.

The system directory table contains the names of potentially shareable logical
name tables and system-assigned logical name table names. You must have
the SYSPRV privilege to create a logical name in the system directory table.
For a discussion on privileges, see Section 6.1.3.

Logical names other than logical name table names may exist within these
tables. The maximum length of logical names created in either of these
tables must not exceed 31 characters. Logical names created in the directory
tables must consist of alphanumeric characters, dollar signs, and underscores.
Equivalence strings must not exceed 255 characters.

Default Logical Name Tables
Certain logical name tables are created for or assigned to a process at process
creation. These tables are called the def a ult logical name tables. The newly
created process is provided with these tables by default. Logical name and
equivalence name pairs are maintained in the default logical name tables.

Each default logical name table has a logical name associated with it. To
place an entry in a logical name table, specify a logical name table name. The
default logical name table names and the common logical names used to refer
to them are as follows:

Table Name Logical Name

Process LNM$PROCESS_ TABLE LNM$PROCESS

Job LNM$JOB_xxxxxxxx LNM$JOB

Group LNM$GROUP _gggggg LNM$GROUP

System LNM$SYSTEM_ TABLE LNM$SYSTEM

The letter x represents a numeral in an 8-digit hexadecimal number that
uniquely identifies the job logical name table. The letter g represents a
numeral in a 6-digit octal number that contains the user's group number.

The maximum length of logical names created in these tables must not
exceed 255 characters with no restriction on the types of characters used.
Equivalence strings must not exceed 255 characters.

6-3

Logical Name Services
6.1 Logical Name Concepts

LOGDESC:
.ASCID

EQVNAM1:
.ASCII

EQVLEN1=
.-EQVNAM1

EQVNAM2:
.ASCII

EQVLEN2=
.-EQVNAM2

TABDESC:

CRELST:
.ASCID

.WORD

.WORD

.ADDRESS

.LONG

.WORD

.WORD

.ADDRESS

.LONG

.LONG
$CRELNM_S -

Process Logical Name Table

The process logical name table LNM$PROCESS_ TABLE contains names
used exclusively by the process. A process logical name table is created and
exists for each process in the system. Some entries in the process logical
name table are made by system programs executing at more privileged
access modes; these entries are qualified by the access mode from which
the entry was made. The process logical name table contains the following
process-permanent logical names:

Logical Name

SYS$1NPUT

SYS$0UTPUT

SYS$COMMAND

SYS$ERROR

Meaning

Default input stream

Default output stream

Original first-level (SYS$1NPUT) input stream

Default device to which the system writes error messages

SYS$COMMAND is created only for processes that execute LOGINOUT.

Process-Private Logical Name Creation and Image Rundown

Most entries in the process logical name table are made at user and supervisor
mode. The following example shows how process-private logical names can
be created in user mode by an image:

/ABC/

/XYZ/

/DEF/

/LNM$PROCESS/

EQVLEN1
LNM$_STRING
EQVNAM1
0
EQVLEN2
LNM$_STRING
EQVNAM2
0
0

;Length of first equivalence name
;Logical name string
;First equivalence name

;Length of second equivalence name
;Logical name string
;Second equivalence name

LOGNAM = LOGDESC,
TABNAM = TABDESC,
ITMLST = CRELST

;Logical name
;Table name
;Equivalence strings

6-4

In the preceding example a logical name ABC was created and represents
two equivalence strings XYZ and DEF. Each time the LNM$_STRING item
code of the itmlst argument is invoked, an index value is assigned to the next
equivalence string. The newly created logical name and its equivalence string
are contained in the process logical name table LNM$PROCESS_ TABLE.

Logical Name Services
6.1 Logical Name Concepts

The following example illustrates logical name creation at supervisor mode
through DCL:

$ DEFINE/SUPERVISOR_MODE/TABLE=LNM$PROCESS ABC XYZ,DEF

Process logical names created in user mode are deleted whenever the creating
process runs an image down. This behavior is illustrated by the following
DCL commands:

$ DEFINE/USER ABC XYZ
$ SHOW TRANSLATION ABC

ABC = XYZ
$DIRECTORY
$ SHOW LOGICAL ABC

ABC = (undefined)

The DCL command DIRECTORY performs image rundown when it is
finished operating. At that time, all user-mode process-private logical names
are deleted, including the logical name ABC.

Job Logical Name Table

The job logical name table is a shareable table accessible by all processes
within the same job tree. Whenever a detached process is created, a
job logical name table is created for this process and all of its potential
subprocesses. At the same time, the process-private logical name LNM$JOB
is created in the process directory logical name table
LNM$PROCESS_DIRECTORY. The logical name LNM$JOB translates to the
name of the job logical name table.

Because the job logical name table already exists for the main process, only
the process-private logical name LNM$JOB is created when a subprocess is
created.

The job logical name table contains the following three process-permanent
logical names for processes that execute LOGINOUT:

Logical Names Meaning

Original default device and directory

Original default device

SYS$LOGIN

SYS$LOGIN_DEVICE

SYS$SCRATCH Default device and directory to which temporary files are
written

Thus, instead of creating these logical names within the process logical
name table LNM$PROCESS_TABLE for every process within a job tree,
LOGINOUT creates these logical names once when it is executed for the
process at the root of the job tree.

Additionally, the job logical name table contains the following logical names:

• The logical name optionally specified and associated with a newly created
temporary mailbox

• The logical name optionally specified and associated with a privately
mounted volume

You need no privileges to modify the job logical name table. For a discussion
on privileges, see Section 6.1.3.

6-5

6.1.3

Logical Name Services
6.1 Logical Name Concepts

6.1.2.3

Privileges

6-6

Group Logical Name Table

The group logical name table contains names that cooperating processes in
the same group can use. You need the GRPNAM privilege to add or delete a
logical name in the group logical name table. For a discussion on privileges,
see Section 6.1.3.

Group logical name tables are created as needed. However, the logical name
LNM$GROUP exists in each process's process directory
LNM$PROCESS_DJRECTORY. This logical name translates into the name of
the group logical name table.

System Logical Name Table

The system logical name table LNM$SYSTEM_TABLE contains names that
all processes in the system can access. This table includes the default names
for all system-assigned logical names. You need the SYSNAM or SYSPRV
privilege to add or delete a logical name in the system logical name table. For
a discussion on privileges, see Section 6.1.3.

User-Defined Logical Name Tables
You can create process-private tables and shareable tables by calling the
$CRELNT system service in a program. However, you must have SYSPRV
privilege to create a shareable table. For a discussion on privileges, see
Section 6.1.3.

Processes other than the creating process cannot use logical names contained
in process-private tables.

Logical name tables are created through the $CRELNT system service either
with the DCL command CREATE/NAME_ TABLE or by calling $CRELNT in
a program. If granted access, processes other than the creating process can
use shareable tables.

The maximum length of logical names created in user-defined logical name
tables must not exceed 255 characters. Equivalence strings must not exceed
255 characters.

Certain functions of the logical name system services are restricted to
users with specific privileges. The system checks the privileges in the User
Authorization File (UAP) granted to you when your system manager sets up
your account. The system also checks for read, write, and delete accessibility.
Privileges allow users to perform the functions shown in Table 6-1.

6.1.4 Access Modes

Logical Name Services
6.1 Logical Name Concepts

Table 6-1 Summary of Privileges

Privilege Function

GRPNAM Create or delete a logical name in your group logical name table.

GRPPRV Create or delete a logical name in your group logical name table.

SYSNAM Create executive or kernel mode logical names. Delete a logical
name or table at an inner access mode.

SYSPRV Create or delete a logical name in your group logical name table.
Create a shareable table.

All users can create, delete, and translate their own process-private logical
names and process-private logical name tables.

You can specify the access mode of a logical name when you define the
logical name. If you do not specify an access mode, then the access mode
defaults to that of the caller of the $CRELNM system service. If you specify
the acmode argument and the process has SYSNAM privilege, the logical
name is created with the specified access mode. Otherwise, the access mode
can be no more privileged than that of the caller. For information on access
modes, see Section 2.1.3.

A logical name table can contain multiple definitions of the same logical
name with different access modes. If a request to translate such a logical
name specifies the acmode argument, then the $TRNLNM system service
ignores all names defined at a less privileged mode. A request to delete
a logical name includes the access mode of the logical name. Unless the
process has SYSNAM privilege, the mode specified can be no more privileged
than that of the caller.

The command interpreter places entries made from the command stream in
the process-private logical name table; these are supervisor mode entries and
are not deleted at image exit (except for the logical names defined by the
DCL commands ASSIGN/USER and DEFINE/USER). During certain system
operations, such as the activation of an image installed with privilege, only
executive and kernel mode logical names are used.

Logical names or logical name table names, which either an image running in
user mode or the DCL commands ASSIGN/USER and DEFINE/USER placed
in a process-private logical name table, are automatically deleted at image
exit. Shareable user mode names, however, survive image exit and process
deletion.

6-7

6.1.5

Logical Name Services
6.1 Logical Name Concepts

Attributes

6-8

Generally, attributes specified through the logical name system services
perform two functions: affect the creation of logical names or govern how
the system service operates, and affect the translation of logical names and
equivalence strings.

Attributes that affect the creation of the logical names are specified optionally
in the attr argument of a system service call.

You can specify any of the following attributes:

• LNM$M_CONCEALED-Specifies that the equivalence string for the
logical name is an RMS concealed device name.

• LNM$M_CONFINE-Prevents process-private logical names from being
copied to subprocesses. Subprocesses are created by the DCL command
SP AWN or by the LIB$SP AWN Run-Time Library procedure. This
attribute is specified only in a $CRELNM or $CRELNT system service
call.

• LNM$M_NO_ALIAS-Prevents creation of a duplicate logical name
in the specified logical name table at an outer access mode. If another
logical name already exists in the table at an outer access mode, it is
deleted.

If specified in a $CRELNT system service call, this attribute prevents
creation of a logical name table at an outer access mode in a directory
table if the table name already exists in the directory table.

This attribute is specified only in a $CRELNM or $CRELNT system
service call.

• LNM$M_CREATE-1F-Prevents creation of a logical name table if
the specified table already exists at the specified access mode in the
appropriate directory table. This attribute is specified only in a $CRELNT
system service call.

• LNM$M_CASE_BLIND-Governs the translation process and causes
$TRNLNM to ignore uppercase and lowercase differences in letters
when searching for logical names. This attribute is specified only in a
$TRNLNM system service call.

• LNM$M_TERMINAL-Prevents further translation of equivalence strings
by the logical name services.

The translation attributes LNM$M_CQNCEALED and LNM$M_TERMINAL
associated with logical names and equivalence strings are specified optionally
through the LNM$_ATTRIBUTES item code in the itmlst argument of the
$CRELNM system service call. When the item code LNM$_ATTRIBUTES
is specified through $TRNLNM, the system returns the current attributes
associated with the logical name and equivalence string at the current index
value.

The following attributes may be returned:

• LNM$M_CONCEALED-Indicates that the equivalence string at the
current index value for the logical name is a VMS RMS concealed device
name.

6.1.6

Logical Name Services
6.1 Logical Name Concepts

• LNM$M_CONFINE-Indicates that the logical name cannot be used by
spawned subprocesses. Subprocesses are created by the DCL command
SP AWN or by the Run-Time Library LIB$SP AWN routine.

• LNM$M_CRELOG-Indicates the logical name was created by the
$CRELOG system service.

• LNM$M_EXISTS-Indicates that the equivalence string at the specified
index value exists.

• LNM$M_NO_ALIAS-Indicates that if the logical name already exists in
the table, it cannot be created in that table at an outer access mode.

• LNM$M_ TABLE-Indicates the logical name is the name of a logical
name table.

• LNM$M_TERMINAL-Indicates that the equivalence strings cannot be
translated further.

The attributes of multiple equivalence strings do not have to be the same. For
more information about attributes, refer to the appropriate system service in
the VMS System Services Reference Manual.

Logical Name Table Quotas

6.1.6.1

6.1.6.2

A logical name table quota is the number of bytes allocated in memory for
logical names contained in a logical name table. Logical name table quotas
are established in the following instances:

• When the system is initialized

• When a process is created

• When logical name tables are created

Each logical name table has a quota associated with it that limits the number
of bytes of memory (either process pool or system paged pool) and can
be occupied by the names defined in the table. The quota for a table is
established when the table is created.

If no quota is specified, the newly created table has unlimited quota. Note
that this table may expand to consume all available process or system
memory, and all users with write access to such a shareable table can cause
the unlimited consumption of system paged pool.

Directory Table Quotas
When the system is initialized, unlimited quota is automatically established
for the system directory table LNM$SYSTEM_DIRECTORY.

When you log in to the system, unlimited quota is automatically established
for the process directory table LNM$PROCESS_DIRECTORY.

Default Logical Name Table Quotas
The process, group, and system logical name tables have unlimited quotas.

6-9

6.1.7

Logical Name Services
6.1 Logical Name Concepts

6.1.6.3

6.1.6.4

Job Logical Name Table Quotas
Because the job logical name table is a shareable table, and you need no
special privileges to create logical names within it, the quota allocated to
this logical name table is constrained at the time the table is created. Three
mechanisms exist to specify the job logical name table quota at the time of its
creation.

For all processes that activate LOGIN OUT, the quota for the job logical name
is obtained from the system authorization file. This allows the quota for the
job to be specified on a user-by-user basis. You can modify the job logical
name table quota by specifying a value with the AUTHORIZE/JTQUOTA=
command.

For all processes that do not activate LOGINOUT, the quota for the job
logical name table may be specified as a quota list item PQL$_JTQUOTA
in the call to the Create Process ($CREPRC) system service. If a detached
process is to be created by means of the DCL command RUN/DETACHED,
then the /JOB_TABLE_QUOTA qualifier is used to specify the $CREPRC
quota list item.

For all processes that do not activate LOGINOUT and do not specify a
PQL$_JTQUOTA quota list item in their call to $CREPRC, the quota for the
job logical name table is taken from the dynamic System Generation Utility
(SYSGEN) parameter PQL$_DJTQUOTA. You may use SYSGEN to display
both PQL$_DJTQUOTA and PQL$__MJTQUOTA, the default and minimum
job logical name table quotas.

User-Defined Logical Name Table Quotas
User-defined logical name tables may be created with either an explicit limited
quota or no quota limit.

The presence of user-defined logical name table quotas eliminates the need
for a privilege, for example, SYSNAM or GRPNAM, to control consumption
of paged pool when you create logical names in a shareable table.

Logical Name and Equivalence Name Format Conventions

6-10

The operating system uses special conventions for assigning logical names
to equivalence names and translating logical names. These conventions are
generally transparent to user programs; however, you should be aware of the
programming considerations involved.

If a logical name string presented in 1/0 services is preceded by an
underscore (_), the 1/0 services bypass logical name translation, drop
the underscore, and treat the logical name as a physical device name.

When you log in, the system creates default logical name table entries
for process permanent files. The equivalence names for these entries (for
example, SYS$1NPUT and SYS$0UTPUT) are preceded by a four-byte header
that contains the following information.

6.1.8

ILST:
.WORD
.WORD
.LONG
.LONG
.LONG

TABDESC:
.ASCID

LOGDESC:

Byte(s)

0

1

2-3

Contents

AX 1 B (Escape character)

Axoo

Logical Name Services
6.1 Logical Name Concepts

VMS RMS Internal File Identifier (IFI)

This header is followed by the equivalence name string. If any of your
program applications must translate system-assigned logical names, you must
prepare the program to check for the existence of this header and then to
use only the desired part of the equivalence string. The following program
segment demonstrates how to do this.

LNM$C_NAMLENGTH
LNM$_STRING
RESSTRING
RESDESC
0

/LNM$FILE_DEV/ Device/file table name

Logical name to be translated
.ASCID /INPUT_DEVICE/

RESDESC:
.LONG LNM$C_NAMLENGTH

Descriptor for result string
Size of result string
Address of result string .ADDRESS -

RESSTRING:
.BLKB

RESSTRING
Result string destination

LNM$C_NAMLENGTH

$TRNLNM_S - Translate logical name

1$:

BLBC
CMPW
BNEQ
SUBW
ADDL

LOGNAM=LOGDESC, -
TABNAM=TABDESC, -
ITMLST=ILST
RO.ERR
RESSTRING, AX001B
1$
#4,RESDESC
#4,RESDESC+4

Branch if error
Is first character an escape?
No, continue at 1$
Yes, subtract 4 from length ...
and add 4 to address of string

Specifying the Logical Name Table Search List
Logical names exist as entries within logical name tables. When a logical
name is to be created, deleted, or translated, you must present a name that
designates the containing logical name table. This name possesses one or
more of the following characteristics:

• It is the name of a logical name table.

• It is a logical name that iteratively translates in the process or system
directory table to the name of a logical name table.

6-11

Logical Name Services
6.1 Logical Name Concepts

• It is a multivalued logical name that iteratively translates to the names of
several logical name tables. A multivalued logical name is also known as
a search list. The tables are used in the order in which they appear.

As mentioned earlier, predefined logical names exist for certain logical name
tables. These predefined names begin with the prefix LNM$. You can
redefine these names to modify the search order or the tables used.

Instead of a fixed set of logical name tables and a rigidly defined order
(process, job, group, system) for searching those tables, you can specify which
tables are to be searched and the order in which they are to be searched.
Logical names in the directory tables are used to specify this searching
order. By convention, each class of logical name, for example, device/file
specification, uses a particular predefined name for this purpose.

For example, LNM$FILE_DEV is the name of the logical name table used
whenever file specifications or device names are translated by VMS RMS or
the 1/0 services. This name must translate to a list of one or more logical
name table names specifying the tables to be searched when translating file
specifications.

By default, LNM$FILE-DEV specifies that the process, job, group, and system
tables are all searched, in that order, and the first match found is returned.

Logical name table names are translated from two tables, the process logical
name directory table LNM$PROCESS_DIRECTORY and the system logical
name directory table LNM$SYSTEM_DIRECTORY. The LNM$FILE_DEV
logical name table must be defined in one of these tables.

Thus, if identical logical names exist in the process and group tables, the
process table entry is found first, and the job and group tables are not
searched. When the process logical name table is searched, the entries are
searched in order of access mode, with user-mode entries matched first,
supervisor second, and so on.

If you want to change the list of tables used for device and file specifications,
you can redefine LNM$FILE_DEV in the process directory table
LNM$PROCESS_DIRECTORY.

6.2 Creating a Logical Name-$CRELNM

6-12

To perform an assignment in a program, you must provide character string
descriptors for the name strings, select the table to contain the logical name,
and use the $CRELNM system service as shown in the following example. In
either case, the result is the same: the logical name DISK is equated to the
physical device name DUA2 in table LNM$JOB.

6.2.1

LOGDESC:
.ASCID

TABDESC:
.ASCID

LNMATTR:
.LONG

CRELST:
.WORD
.WORD
.ADDRESS
.LONG
.WORD
.WORD
.ADDRESS
.LONG
.LONG

EQVNAM:
.ASCII

EQVLEN=
.-EQVNAM

$CRELNM_S -
LOG NAM
TABNAM
ATTR
ITMLST

Logical Name Services
6.2 Creating a Logical Name-SCRELNM

LOGDESC,
TABDESC,
TABDESC,
CRELST

/DISK/

/LNM$JOB/

LNM$M_TERMINAL

4
LNM$_ATTRIBUTES
LNMATTR
0
EQVLEN
LNM$_STRING
EQVNAM
0
0

/DUA2:/

Note that the translation attribute is specified as terminal. This attribute
indicates that iterative translation of the logical name DISK ends when
the equivalence string DUA2 is returned. In addition, because the acmode
argument was not specified, the access mode of the logical name DISK is the
access mode of the calling image.

Duplication of Logical Names
A logical name table can contain entries for the same logical name at different
access modes. Different logical name tables can contain entries for the same
logical name.

In all other cases, only one entry can exist for a particular logical name in a
logical name table.

Any number of logical names can have the same equivalence name.

Consider the following examples of the logical name TERMINAL defined in
several tables. The logical name TERMINAL translates differently depending
on the table specified.

Process Logical Name Table for Process A

The following process logical name table equates the logical name
TERMINAL to the specific terminal TTA2. The INFILE and OUTFILE logical
names are equated to disk specifications. The logical names were created
from supervisor mode.

6-13

Logical Name Services
6.2 Creating a Logical Name-$CRELNM

6-14

Logical Name

INFILE

OUTFILE

TERMINAL

-->
-->
-->

Equivalence Name

OM 1 :[HIGGINS]TEST.OAT

OM 1 :[HIGGINS]TEST.OUT

TTA2:

Access Mode

Supervisor

Supervisor

Supervisor

To determine the equivalence string for the logical name TERMINAL in the
preceding table, enter the following command:

$ SHOW LOGICAL TERMINAL

The system returns the equivalence string TTA2.

Job Logical Name Table

The portion of the following job logical name table assigns the logical name
TERMINAL to a virtual terminal VTA14. The logical name SYS$LOGIN is
the device and directory for the process when you log in. The SYS$LOGIN
logical name is defined in executive mode.

Logical Name

SYS$LOGIN

TERMINAL

-->
-->

Equivalence Name

OBA9:[HIGGINS]

VTA14:

Access Mode

Exec

User

To determine the equivalence string of the logical name TERMINAL defined
in the preceding table, enter the following command:

$ SHOW LOGICAL/JOB TERMINAL

The system returns the equivalence string VTA14 as the translation.

User-Defined Logical Name Table

The following user-defined logical name table (called LQG_TBL for the
purposes of this discussion) contains a definition of TERMINAL as the
mailbox device MBA407. The multivalued logical name XYZ has two
translations: DISKl and DISK3.

Logical Name Services
6.2 Creating a Logical Name-$CRELNM

Logical Name Equivalence Name Access Mode

TERMINAL

XYZ

-->
-->
-->

MBA407:

DISK1:

DISK3:

Supervisor

Supervisor

To determine the equivalence string for the logical name TERMINAL in the
preceding user-defined table, enter the following command:

$ SHOW LOGICAL/TABLE=LOG_TBL TERMINAL

The system returns the equivalence string MBA407. In order to use this
definition of TERMINAL as a device or file specification, you must redefine
the logical name table name LNM$FILE_DEV to reference the user-defined
table, as follows:

$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY LNM$FILE_DEV LOG_TBL -
_$ LNM$PROCESS_TABLE,LNM$JOB,LNM$SYSTEM_TABLE

In the preceding example, the DCL command DEFINE is used to redefine
the default search list LNM$FILE_DEV. The /TABLE qualifier specifies
the table LNM$PROCESS_DIRECTORY that is to contain the redefined
search list. The system searches the tables defined by LNM$FILE_DEV in
the following order: LOG_TBL, LNM$PROCESS_TABLE, LNM$JOB, and
LNM$SYSTEM_TABLE.

System Logical Name Table

The following system logical table contains system-assigned logical names
accessible to all processes in the system. For example, the logical names
SYS$LIBRARY and SYS$SYSTEM provide logical names that all users can
access to use the device and directory containing system files.

Logical Name

SYS$LIBRARY

SYS$SYSTEM

-->
-->

Equivalence Name

SYS$SYSROOT :[SYSLIB]

SYS$SYSROOT :[SYSEXE]

The "Logical Names" section of the VMS DCL Dictionary contains a list of
these system-assigned logical names.

Logical Name Supersession

If the logical name TERMINAL is equated to TTA2 in the process table as
shown in the previous examples, and the process subsequently equates the
logical name TERMINAL to TTA3, the equivalence of TERMINAL TTA2 is
replaced by the new equivalence name. The successful return status code
SS$_SUPERSEDE indicates that a new entry replaced an old one.

6-15

Logical Name Services
6.2 Creating a Logical Name-$CRELNM

The definitions of TERMINAL in the job table and in the user-defined table
LOG_ TBL are unaffected.

6.3 Creating Logical Name Tables-$CRELNT

6.3.1

6.3.2

The Create Logical Name Table ($CRELNT) system service creates logical
name tables. Logical name tables can be created at any access mode
depending on the privileges of the calling process. A user-specified logical
name identifying the newly created logical name table is stored in the process
directory table LNM$PROCESS_DIRECTORY.

Shareable Logical Name Tables
If you have SYSPRV privilege, you can create shareable logical name tables.
You can assign protection to these tables through the promsk argument of
the $CRELNT system service. The promsk argument allows you to specify
the type of access for system, owner, group, an:d world users, as follows:

• Read privileges allow access to names in the logical name table.

• Write privileges allow creation and deletion of names within the logical
name table.

• Delete privileges allow deletion of the logical name table.

Note: The "E" protection bit is reserved by DIGIT AL.

If the promsk argument is omitted, complete access is granted to system and
owner, and no access is granted to group and world.

$CRELNT System Service Call

6-16

The following example illustrates a call to the $CRELNT system service:

TABDESC:
.ASCID

PARDESC:
.ASCID

TAB_ATTR:
.LONG

TAB_QUOTA:
.LONG

$CRELNT_S -
TABNAM = TABDESC,
PARTAB = PARDESC,
ATTR = TAB_ATTR,
QUOTA = TAB_QUOTA

/LOG_ TABLE/

/LNM$PROCESS_TABLE/

LNM$M_CONFINE

5000

;Table name
;Parent table
;Attributes
;Quota

In this example, a user-defined table LOG_TABLE is created with an explicit
quota of 5000 bytes. The name of the newly created table is an entry in the
process-private directory LNM$PROCESS_DIRECTORY. The quota of 5000
bytes is deducted from the parent table LNM$PROCESS_ TABLE. Because the
CONFINE attribute is associated with the logical name table, the table cannot
be copied from the process to its spawned processes.

Logical Name Services
6.4 Deleting Logical Names-SDELLNM

6.4 Deleting Logical Names-$DELLNM
The Delete Logical Name ($DELLNM) system service deletes entries from a
logical name table. When you write a call to the $DELLNM system service,
you can specify a single logical name to delete, or you can specify that you
want to delete all logical names from a particular table. For example, the
following call deletes the process logical name TERMINAL from the job
logical name table:

LOGDESC:
.ASCID

TABDESC:
.ASCID

$DELLNM_S -

/TERMINAL/

/LNM$JOB/

LOGNAM = LOGDESC,
TABNAM = TABDESC,-

For information about access modes and the deletion of logical names, see
Section 6.1.4.

6.5 Translating Logical Names-$TRNLNM
The Translate Logical Name ($TRNLNM) system service translates a logical
name to its equivalence string. In addition, $TRNLNM returns information
about the logical name and equivalence string.

The system service call to $TRNLNM specifies the tables to search for the
logical name. The tabnam argument can be either the name of a logical name
table or it can be a logical name that translates to a list of one or more logical
name tables.

Because logical names can have many equivalence strings, you can specify
which equivalence string you want to receive.

A number of system services that require a device name accept a logical name
and translate the logical name iteratively until a physical device name is
found (or until the system default number of logical name translations has
been performed). These services implicitly specify the logical name table
name LNM$FILE_DEV. For more information about LNM$FILE_DEV, refer
to Section 6.1.8. The following system services perform iterative logical name
translation automatically:

• Allocate Device ($ALLOC)

• Assign 1/0 Channel ($ASSIGN)

• Broadcast ($BRDCST)

• Create Mailbox ($CREMBX)

• Deallocate Device ($DALLOC)

• Dismount Volume ($DISMOU)

• Get Device/Volume Information ($GETDVI)

• Mount Volume ($MOUNT)

6-17

Logical Name Services
6.5 Translating Logical Names-$TRNLNM

6-18

In many cases, however, a program must perform the logical name translation
to obtain the equivalence name for a logical name outside the context of a
device name or file specification. In that case, you must supply the name of
the table or tables to be searched. The $TRNLNM system service searches
the user-specified logical name tables for a specified logical name and returns
the equivalence name. In addition, $TRNLNM returns attributes specified
optionally for the logical name and equivalence string.

The following example shows a call to the $TRNLNM system service to
translate the logical name ABC.

LOGDESC:

TABDESC:

EQVBUF1:

EQVDESC1:

EQVBUF2:

EQVDESC2:

TRNLIST:

TRNATTR:

$TRNLNM_S

.ASCID

.ASCID

.BLKB

.LONG

.ADDRESS

.BLKB

.LONG

.ADDRESS

.WORD

.WORD

.ADDRESS

.ADDRESS

.WORD

.WORD

.ADDRESS

.ADDRESS

.LONG

.LONG

LOGNAM = LOGDESC,
TABNAM = TABDESC,
ATTR = TRNATTR,
ITMLST = TRNLIST

/ABC/

/LNM$FILE_DEV/

LNM$C_NAMLENGTH

0
EQVBUF1

LNM$C_NAMLENGTH

0
EQVBUF2

LNM$C_NAMLENGTH
LNM$_STRING
EQVBUF1
EQVDESC1
LNM$C_NAMLENGTH
LNM$_STRING
EQVBUF2
EQVDESC2
0

LNM$M_CASE_BLIND

This call to the $TRNLNM system service results in the translation of the
logical name ABC. In addition, LNM$FILE_DEV is specified in the tabnam
argument as the search list that $TRNLNM is to use to find the logical name
ABC. The logical name ABC was assigned two equivalence strings. The
LNM$_STRING item code in the itmlst argument directs $TRNLNM to look
for an equivalence string at the current index value. Note that the
LNM$_STRING item code is invoked twice. The equivalence strings are
placed in the two output buffers, EQVBUFl and EQVBUF2, described by
TRNLIST.

The attribute LNM$M_CASE_BLIND governs the translation process. The
$TRNLNM system service searches for the equivalence strings without regard
to uppercase or lowercase letters. The $TRNLNM system service matches any
of the following character strings: ABC, aBC, AbC, abc, and so forth.

Logical Name Services
6.5 Translating Logical Names-$TRNLNM

The output equivalence name string length is written into the first word of
the character string descriptor. This descriptor can then be used as input to
another system service.

6.6 Example of Using the Logical Name System Services
In the following example, the FORTRAN program CALC.FOR creates a
spawned subprocess to perform an iterative calculation. The logical name
REP-NUMBER specifies the number of times that REPEAT should perform
the calculation. Because the two processes are part of the same job, REP_
NUMBER is placed in the job logical name table LNM$JOB. (Note that logical
name table names are case sensitive. Specifically, LNM$JOB is a system
defined logical name that refers to the job logical name table; lnm$job
is not.)

! PROGRAM CALC
Include '($lnmdef)'

CALC.FOR

! Status variable and system routines
INTEGER*4 STATUS,
2 SYS$CRELNM,
2 LIB$GET_EF,
2 LIB$SPAWN

Item list for SYS$CRELNM
INTEGER*2 NAME_LEN,
2 NAME_ CODE
INTEGER*4 NAME_ADDR,
2 RET_ADDR /0/,
2 END_LIST /0/

COMMON /LIST/ NAME_LEN,
2 NAME_CODE,
2 NAME_ADDR,
2 RET_ADDR,
2 END_LIST
! Number to pass to REPEAT.FOR
CHARACTER*3 REPETITIONS_STR
INTEGER REPETITIONS

! Symbols for LIB$SPAWN and SYS$CRELNM
EXTERNAL CLI$M_NOLOGNAM,
2 CLI$M_NOCLISYM,
2 CLI$M_NOKEYPAD,
2 CLI$M_NOWAIT,
2 LNM$_STRING

. ! Set REPETITIONS_STR

Set up and create logical name REP_NUMBER in job table
NAME_LEN = 3
NAME_CODE = (LNM$_STRING)
NAME_ADDR = %LOC(REPETITIONS_STR)
STATUS = SYS$CRELNM (,
2 'LNM$JOB' ,
2 'REP _NUMBER' , ,
2 NAME_ LEN)

Logical name table
Logical name
List specifying
Equivalence string

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

6-19

Logical Name Services
6.6 Example of Using the Logical Name System Services

6-20

! Execute REPEAT.FOR in a subprocess
MASK = %LDC (CLI$M_NOLOGNAM) .OR.
2 %LOC (CLI$M_NOCLISYM) .OR.
2 %LDC (CLI$M_NOKEYPAD) .OR.
2 %LDC (CLI$M_NOWAIT)
STATUS = LIB$GET_EF (FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS= LIB$SPAWN ('RUN REPEAT', ,,MASK,,, ,FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

REPEAT.FOR
PROGRAM REPEAT
! Repeats a calculation REP_NUMBER of times,
! where REP_NUMBER is a symbol name
! Status variables and system routines
INTEGER STATUS,
2 SYS$TRNLNM,SYS$DELLNM
! Number of times to repeat
INTEGER*4 REITERATE,
2 REPEAT_STR_LEN
CHARACTER*3 REPEAT_STR
! Item list for SYS$TRNLNM
INTEGER*2 NAME_LEN,
2 NAME_ CODE
INTEGER*4 NAME_ADR,
2 RET_ADR,
2 END_LIST /0/
COMMON /LIST/ NAME_LEN,
2 NAME_CODE,
2 NAME_ADDR,
2 RET_ADDR,
2 END_LIST
EXTERNAL LNM$_STRING

! Set up and translate the logical name REP_NUMBER
NAME_LEN = 3
NAME_CODE = (LNM$_STRING)
NAME_ADDR = %LOC(REPEAT_STR)
RET_ADDR = %LOC(REPEAT_STR_LEN)
STATUS = SYS$TRNLNM (,
2 'LNM$JOB' ,
2 'REP _NUMBER' , ,
2 NAME_LEN)

Logical name table
Logical name
List requesting
Equivalence string

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Convert equivalence string to integer
READ (UNIT= REPEAT_STR (1:REPEAT_STR_LEN),
2 FMT = '(I3)') REITERATE

! Calculations
DO I = 1, REITERATE

END DO

! Delete logical name
STATUS= SYS$DELLNM ('LNM$JOB', ! Logical name table
2 'REP_NUMBER',) ! Logical name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

7 Input/Output Services

You can use two basic methods to perform input/output operations under
VMS.

• VMS Record Management Services (RMS)

• I/O system services

VMS RMS provides a set of routines for general purpose, device-independent
functions such as data storage, retrieval, and modification.

The 1/0 system services permit you to use the I/O resources of the operating
system directly in a device-dependent manner. I/O services also provide
some specialized functions not available in VMS RMS. Using I/O services
requires more programming knowledge than using VMS RMS, but can result
in more efficient input/ output operations.

The following system services are Input/Output services:

• Assign If O Channel ($ASSIGN)

• Deassign I/O Channel ($DASSGN)

• Queue I/O Request ($QIO)

• Queue I/O Request and Wait for Event Flag ($QIOW)

• Formatted ASCII Output ($FAQ)

• Formatted ASCII Output with List Parameter ($FAOL)

• Allocate Device ($ALLOC)

• Deallocate Device ($DALLOC)

• Mount Volume ($MOUNT)

• Dismount Volume ($DISMOU)

• Get Device and Channel Information ($GETDVI)

• Get Device and Channel Information and Wait ($GETDVIW)

• Cancel IjO on Channel ($CANCEL)

• Create Mailbox and Assign Channel ($CREMBX)

• Delete Mailbox ($DELMBX)

• Breakthrough ($BRKTH)

• Breakthrough and Wait ($BRKTHW)

• Get Queue Information ($GETQUI)

• Get Queue Information and Wait ($GETQUIW)

• Send Message to Job Controller ($SNDJBC)

• Send Message to Job Controller and Wait ($SNDJBCW)

7-1

Input/Output Services

• Send Message to Operator ($SNDOPR)

• Send Message to Error Logger ($SNDERR)

• Get Message ($GETMSG)

• Put Message ($PUTMSG)

• Get Job /Process Information ($GETJPI)

• Get Job/Process Information and Wait ($GETJPIW)

• Get Lock Information ($GETLKI)

• Get Lock Information and Wait ($GETLKIW)

• Get Systemwide Information ($GETSYI)

• Get Systemwide Information and Wait ($GETSYIW)

• Update Section File on Disk ($UPDSEC)

This chapter includes the following general information about how to use the
1/0 services:

• Assigning channels

• Queuing 1/0 requests

• Allocating devices

• Using mailboxes

Examples are provided to show you how to use the 1/0 services for simple
functions, such as terminal input and output operations. If you plan to write
device-dependent 1/0 routines, see the VMS 1/0 User's Reference Volume.

If you want to write your own device driver or connect to a device interrupt
vector, see the VMS Device Support Manual.

7. 1 Quotas, Privileges, and Protection

7-2

To preserve the integrity of the operating system, VMS 1/0 operations are
performed under the constraints of quotas, privileges, and protection.

Quotas establish a limit on the number and type of 1/0 operations that
a process can perform concurrently, and on the total size of outstanding
transfers. They ensure that all users have an equitable share of system
resources and usage.

Privileges are granted to a user to allow the performance of certain
If 0-related operations, for example, creating a mailbox and performing
logical 1/0 to a file-structured device. Restrictions on user privileges protect
the integrity and performance of both the operating system and the services
provided to other users.

Protection controls access to files and devices. Device protection is provided
in much the same way as file protection: shareable and nonshareable devices
are protected by protection masks.

7.1.1

7.1.2

7.1.3

Input/Output Services
7 .1 Quotas, Privileges, and Protection

The Set Resource Wait Mode ($SETRWM) system service allows a process
to select either of two modes when an attempt to exceed a quota occurs. In
the enabled (default) mode, the process waits until the required resource is
available before continuing. In the disabled mode, the process is notified
immediately by a system service status return that an attempt to exceed a
quota has occurred. Waiting for resources is transparent to the process when
resource wait mode is enabled; the process takes no explicit action when a
wait is necessary.

The different types of 1/0-related quotas, privilege, and protection are
described in the following sections.

Buffered 1/0 Quota
The buffered 1/0 quota specifies the maximum number of concurrent buffered
1/0 operations a process can have active. In a buffered 1/0 operation, the
user's data is buffered in system dynamic memory. The driver deals with the
system buffer and not the user buffer. Buffered 1/0 is used for terminal, line
printer, card reader, network, mailbox, and console medium transfers and file
system operations. For a buffered 1/0 operation, the system does not have to
lock the user's buffer in memory.

The system manager, or the person who creates the process, establishes the
buffered 1/0 quota value in the user authorization file. If you use the Set
Resource Wait Mode system service to enable resource wait mode for the
process, the process enters resource wait mode if it attempts to exceed its
direct 1/0 quota.

Buffered 1/0 Byte Count Quota

Direct 1/0 Quota

The buffered 1/0 byte count quota specifies the maximum amount of buffer
space that can be consumed from system dynamic memory for buffering 1/0
requests. All buffered 1/0 requests require system dynamic memory in which
the actual 1/0 operation takes place.

The system manager, or the person who creates the process, establishes the
buffered 1/0 byte count quota in the user authorization file. If you use the
Set Resource Wait Mode system service to enable resource wait mode for the
process, the process enters resource wait mode if it attempts to exceed its
direct 1/0 quota.

The direct 1/0 quota specifies the maximum number of concurrent direct
(unbuffered) 1/0 operations that a process can have active. In a direct 1/0
operation, data is moved directly to or from the user buffer. Direct 1/0 is
used for disk, magnetic tape, most DMA real-time devices, and nonnetwork
transfers, for example, DMCll/DMRll write transfers. For direct 1/0, the
user's buffer must be locked in memory during the transfer.

The system manager, or the person who creates the process, establishes
the direct 1/0 quota value in the user authorization file. If you use the Set
Resource Wait Mode system service to enable resource wait mode for the
process, the process enters resource wait mode if it attempts to exceed its
direct 1/0 quota.

7-3

7.1.4

7.1.5

7.1.6

7.1.7

7.1.8

Input/Output Services
7 .1 Quotas, Privileges, and Protection

AST Quota
The AST quota specifies the maximum number of asynchronous system traps
that a process can have outstanding. The system manager, or the person who
creates the process, establishes the quota value in the user authorization file.
There is never an implied wait for that resource.

Physical 1/0 Privilege
Physical 1/0 privilege (PHY_IQ) allows a process to perform physical 1/0
operations on a device. Physical 1/0 privilege also allows a process to
perform logical 1/0 operations on a device. Figures 7-4 and 7-5 show the
use of physical 1/0 privilege in greater detail.

Logical 1/0 Privilege

Mount Privilege

Logical 1/0 privilege (LOG-10) allows a process to perform logical 1/0
operations on a device. A process can also perform physical operations on a
device if the process has logical 1/0 privilege, the volume is mounted foreign,
and the volume protection mask allows access to the device. (A foreign
volume is one volume that contains no standard file structure understood
by any VMS software.) Figures 7-4 and 7-5 show the use of logical 1/0
privilege in greater detail.

Mount privilege (MOUNT) allows a process to use the 10$__MOUNT function
to perform mount operations on disk and magnetic tape devices. The
10$__MOUNT function is used in ACP interface operations.

Volume Protection

7-4

Volume protection protects the integrity of mailboxes and both foreign and
Files-11 structured volumes. Volume protection for a foreign volume is
established when the volume is mounted. Volume protection for a Files-11
structured volume is established when the volume is initialized. (If the
process mounting the volume has the override volume protection privilege,
VOLPRO, protection can be overridden when the volume is mounted.)

The $CREMBX system service protection mask argument establishes mailbox
protection.

Set Protection QIO requests allow you to set volume protection on a mailbox.
You must either be the owner of the mailbox or have BYPASS privilege.

Protection for structured volumes and mailboxes is provided by a volume
protection mask that contains four 4-bit fields. These fields correspond to the
four classes of user permitted to access the volume. (User classes are based
on the volume owner's UIC.)

The 4-bit fields are interpreted differently for volumes that are mounted as
structured (that is, volumes serviced by an ancillary control process (ACP)),
volumes that are mounted as foreign, and mailboxes (both temporary and
permanent).

Input/Output Services
7. 1 Quotas, Privileges, and Protection

Figure 7-1 shows the 4-bit protection fields for volumes mounted as
structured. Figure 7-2 shows the 4-bit protection fields for foreign volumes.
Figure 7-3 shows the 4-bit protection fields for mailboxes.

Figure 7-1 Files-11 Volume Protection Fields

15 11 7 3 0

world group owner system

/. 10

delete execute write read

ZK-622-82

Figure 7-2 Foreign Volume Protection Fields

11 10 9 8

log 1/0 phy 1/0

*not used
ZK-623-82

Usually, volume protection is meaningful only for read and write operations.

7-5

Input/Output Services
7 .1 Quotas, Privileges, and Protection

7.1.9 Device Protection

7. 1 . 1 0 System Privilege

7 .1 .11 Bypass Privilege

Figure 7-3 Mailbox Protection Fields

11 10 9 8

log 1/0 * write read

*not used
ZK-624-82

Device protection protects the allocation of nonshareable devices, such as
terminals and card readers.

Protection is provided by a device protection mask similar to that of volume
protection. The difference is that only the bit corresponding to read access
is checked, and that bit determines if the process can allocate or assign a
channel to the device.

You establish device protection with the DCL command SET PROTECTION
/DEVICE. This command sets both the protection mask and the device owner
VIC.

System VIC privilege (SYSPRV) allows a process to be eligible for the volume
or device protection specified for the system protection class, even if the
process does not have a UIC in one of the system groups.

Bypass privilege (BYPASS) allows a process to bypass volume and device
protection completely.

7 .2 Summary of VMS QIO Operations

7-6

The VMS operating system provides QIO operations that perform three basic
I/O functions: read, write, and set mode. The read function transfers data
from a device to a user-specified buffer. The write function transfers data
in the opposite direction-from a user-specified buffer to the device. For
example, in a read QIO function to a terminal device, a user-specified buffer
is filled with characters received from the terminal. In a write QIO function to
the terminal, the data in a user-specified buffer is transferred to the terminal
where it is displayed.

The set mode QIO function is used to control or describe the characteristics
and operation of a device. For example, a set mode QIO function to a line
printer can specify either uppercase or lowercase character format. Not all
QIO functions are applicable to all types of devices. The line printer, for
example, cannot perform a read QIO function.

Input/Output Services
7 .3 Physical, Logical, and Virtual 1/0

7 .3 Physical, Logical, and Virtual 1/0

7.3.1

7.3.2

1/0 data transfers can occur in any one of three device addressing modes:
physical, logical, or virtual. Any process with device access allowed by
the volume protection mask can perform logical 1/0 on a device that is
mounted foreign; physical 1/0 requires privileges. Virtual 1/0 does not
require privileges; however, intervention by an ACP to control user access
may be necessary if the device is under ACP control. (ACP functions are
described in the VMS 1/0 User's Reference Volume.)

Physical 1/0 Operations
In physical 1/0 operations, data is read from and written to the actual,
physically addressable units accepted by the hardware (for example, sectors
on a disk or binary characters on a terminal in the P ASSALL mode). This
mode allows direct access to all device-level 1/0 operations.

Physical 1/0 requires that one of the following conditions be met:

• The issuing process has physical 1/0 privilege (PHY--10).

• The issuing process has all of the following characteristics:

The issuing process has logical 1/0 privilege (LOG--10).

The device is mounted foreign.

The volume protection mask allows physical access to the device.

If neither of these conditions is met, the physical 1/0 operation is rejected by
the $QIO system service, which returns a condition value of SS$_NOPRIV
(no privilege). Figure 7-4 illustrates the physical 1/0 access checks in greater
detail.

The inhibit error-logging function modifier (10$M--1NHERLOG) can be
specified for all physical 1/0 functions. The 10$M--1NHERLOG function
modifier inhibits the logging of any error that occurs during the 1/0
operation.

Logical 1/0 Operations
In logical 1/0 operations, data is read from and written to logically
addressable units of the device. Logical operations can be performed on
both block-addressable and record-oriented devices. For block-addressable
devices (such as disks), the addressable units are 512-byte blocks. They are
numbered from 0 to n-1, where n is the number of blocks on the device. For
record-oriented or non-block-structured devices (such as terminals), logical
addressable units are not pertinent and are ignored. Logical 1/0 requires that
one of the following conditions be met:

• The issuing process has physical 1/0 privilege (PHY--10).

• The issuing process has logical 1/0 privilege (LOG--10).

• The volume is mounted foreign and the volume protection mask allows
access to the device.

7-7

7.3.3

Input/Output Services
7 .3 Physical, Logical, and Virtual 1/0

If none of these conditions is met, the logical 1/0 operation is rejected by
the $QIO system service, which returns a condition value of 55$-NOPRIV
(no privilege). Figure 7-5 illustrates the logical 1/0 access checks in greater
detail.

Virtual 1/0 Operations

7-8

You can perform virtual 1/0 operations on both record-oriented (non-file
structured) and block-addressable (file-structured) devices. For record
oriented devices (such as terminals), the virtual function is the same as a
logical function; the virtual addressable units of the devices are ignored.

For block-addressable devices (such as disks), data is read from and written
to open files. The addressable units in the file are 512-byte blocks. They
are numbered starting at 1 and are relative to a file rather than to a device.
Block-addressable devices must be mounted and structured and must contain
a file that was previously accessed on the 1/0 channel.

Virtual 1/0 operations also require that the volume protection mask allow
access to the device (a process having either physical or logical 1/0 privilege
can override the volume protection mask). If these conditions are not met,
the virtual 1/0 operation is rejected by the QIO system service, which returns
one of the following condition values:

Condition Value

SS$_NOPRIV

SS$_DEVNOTMOUNT

SS$_DEVFOREIGN

Meaning

No privilege

Device not mounted

Volume mounted foreign

Figure 7-6 shows the relationship of physical, logical, and virtual 1/0 to the
driver.

Figure 7-4 Physical 1/0 Access Checks

ALLOW
ACCESS

NO

•volume protection mask allows access.

YES

NO

START

Input/Output Services
7 .3 Physical, Logical, and Virtual 1/0

NO

NO

DENY
ACCESS

ZK-625-82

7-9

Input/Output Services
7 .3 Physical, Logical, and Virtual 1/0

Figure 7-5 Logical 1/0 Access Checks

ALLOW
ACCESS

NO

•volume protection mask allows access.

7-10

YES

YES

NO

START

NO

NO

NO

NO

NO

YES

DENY
ACCESS

ZK-626-82

Figure 7-6 Physical, Logical, and Virtual 1/0

ERROR

YES

YES

GO TO
ACP

NO

QIO
REQUEST

TRANSLATE LOGICAL
BLOCK ADDRESS

TO PHYSICAL
BLOCK ADDRESS

MAP VIRTUAL BLOCK
ADDRESS TO LOGICAL

BLOCK ADDRESS

YES

Input/Output Services
7 .3 Physical, Logical, and Virtual 1/0

1/0
DRIVER

*Needed to map virtual address to logical address

WAKE ACP TO
CHANGE MAPPING

WINDOW

ZK-627-82

7-11

Input/Output Services
7 .4 1/0 Function Encoding

7 .4 1/0 Function Encoding

7.4.1 Function Codes

7-12

1/0 functions fall into three groups that correspond to the three 1/0 device
addressing modes (physical, logical, and virtual) described in Section 7.3.
Depending on the device to which it is directed, an 1/0 function can be
expressed in one, two, or all three modes.

1/0 functions are described by 16-bit, symbolically expressed values that
specify the particular 1/0 operation to be performed and any optional
function modifiers. Figure 7-7 shows the format of the 16-bit function
value.

Symbolic names for 1/0 function codes are defined by the $10DEF macro.

Figure 7-7 1/0 Function Format

15 6 5 0

function modifiers code

ZK-628-82

The low-order 6 bits of the function value are a code that specifies the
particular operation to be performed. For example, the code for read logical
block is expressed as 10$_READLBLK. Table 7-1 lists the symbolic values for
read and write 1/0 functions in the three transfer modes.

Table 7-1 Read and Write 1/0 Functions

Physical 1/0 Logical 1/0 Virtual 1/0

10$_READPBLK 10$_READLBLK 10$_READVBLK

10$_ WRITEPBLK 10$_ WRITELBLK 10$-'-WRITEVBLK

The set mode 1/0 function has a symbolic value of 10$_SETMODE.

7.4.2

Input/Output Services
7 .4 1/0 Function Encoding

Function codes are defined for all supported devices. Although some of
the function codes (for example, 10$_READVBLK and 10$-WRITEVBLK)
are used with several types of devices, most are device dependent; that is,
they perform functions specific to particular types of devices. For example,
10$_CREATE is a device-dependent function code; it is used only with file
structured devices such as disks and magnetic tapes. The VMS 1/0 User's
Reference Volume provides complete descriptions of the functions and function
codes.

Note: You should determine the device class before performing any QIO
function, because the requested function may be incompatible with some
devices. For example, the SYS$1NPUT device could be a terminal, a disk,
or some other device. Unless this device is a terminal, an 10$-SETMODE
request that enables a CTRL/C AST is not performed.

Function Modifiers
The high-order 10 bits of the function value are function modifiers. These are
individual bits that alter the basic operation to be performed. For example,
you can specify the function modifier 10$M_NOECHO with the function
10$_READLBLK to a terminal. When used together, the two values are
written in VAX MACRO as 10$_READLBLK!IO$M_NOECHO. This causes
data typed at the terminal keyboard to be entered into the user buffer, but not
echoed to the terminal. Figure 7-8 shows the format of function modifiers.

Figure 7-8 Function Modifier Format

-

1_5 ________ ,3 __ 1_2 _____________ 6 __ _,1~Jo device /function device /function
independent dependent

ZK-629-82

As shown in Figure 7-8, bits 13 through 15 are device/function-independent
bits, and bits 6 through 12 are device/function-dependent bits.
Device/function-dependent bits have the same meaning, whenever possible,
for different device classes. For example, the function modifier
10$M_ACCESS is used with both disk and magnetic tape devices to cause a
file to be accessed during a create operation. Device/function-dependent bits
always have the same function within the same device class.

There are two device/function-independent modifier bits: 10$M-1NHRETRY
and I0$M_DATACHECK (a third bit is reserved). 10$M-1NHRETRY is
used to inhibit all error recovery. If any error occurs, and this modifier bit
is specified, the operation is terminated immediately and a failure status is
returned in the 1/0 status block (see Section 7.10). 10$M_DATACHECK is
used to compare the data in memory with that on a disk or magnetic tape.

7-13

Input/Output Services
7. 5 Assigning Channels

7. 5 Assigning Channels
Before any input or· output operation can be performed on a physical device,
you must assign a channel to the device to provide a path between the
process and the device. The Assign IjO Channel ($ASSIGN) system service
establishes this path.

When you write a call to the $ASSIGN service, you must supply the name
of the device, which may be a physical device name or a logical name, and
the address of a word to receive the channel number. The service returns a
channel number, and you use this channel number when you write an input
or output request.

For example, the following lines assign an I/O channel to the device TTA2.
The channel number is returned in the word at TTCHAN.

TTNAME: .ASCID /TTA2:/
TTCHAN: .BLKW 1

Terminal descriptor
; Terminal channel number

$ASSIGN_$ -
DEVNAM=TTNAME, -
CHAN=TTCHAN

To assign a channel to the current default input or output device, use the
logical name SYS$INPUT or SYS$0UTPUT.

For more details on how $ASSIGN and other 1/0 services handle logical
names, see Section 7.1.5.

7 .6 Queuing 1/0 Requests

7-14

All input and output operations in VMS are initiated with the Queue I/O
Request ($QIO) system service. The $QIO service queues the request and
returns immediately to the caller. While the operating system processes the
request, the program that issued the request can continue execution.

Required arguments to the $QIO service include the channel number assigned
to the device on which the I/O is to be performed, and a function code
(expressed symbolically) that indicates the specific operation to be performed.
Depending on the function code, one to six additional parameters may be
required.

For example, the IO$_WRITEVBLK and IO$_READVBLK function codes are
device-independent codes used to read and write single records or virtual
blocks. These function codes are suitable for simple terminal 1/0. They
require parameters indicating the address of an input or output buffer and the
buffer length. A call to $QIO to write a line to a terminal may look like the
following:

$QIO_S CHAN=TTCHAN, -
FUNC=#IO$_WRITEVBLK, -
P1=BUFADDR, -
P2=#BUFLEN

Input/Output Services
7.6 Queuing 1/0 Requests

Function codes are defined for all supported device types, and most of the
codes are device dependent; that is, they perform functions specific to a
particular device. The $IODEF macro defines symbolic names for these
function codes. For information about how to obtain a listing of these
symbolic names, see Section 2.3. For details on all function codes and an
explanation of the parameters required by each, see the VMS 1/0 User's
Reference Volume.

7. 7 Synchronizing Service Completion
The $QIO system service returns control to the calling program as soon as
a request is queued; the status code returned in RO indicates whether the
request was queued successfully. To ensure proper synchronization of the
queuing operation with respect to the program, the program must do the
following:

1 Test that the operation was queued successfully.

2 Test whether the operation itself completed successfully.

Optional arguments to the $QIO service provide techniques for synchronizing
1/0 completion. There are three methods you can use to test for the
completion of an 1/0 request.

• Specify the number of an event flag to be set when the operation
completes.

• Specify the address of an AST routine to be executed when the operation
completes.

• Specify the address of an 1/0 status block in which the system can place
the return status when the operation completes.

1/0 status blocks are explained in Section 7.10.

Examples of using these three techniques are shown in the three examples
that follow.

Example 1: Event Flags

$QIO_S EFN=#1, .. . 0
BLBC RO.ERROR
$QIO_S EFN=#2, .. . 8
BLBC RO.ERROR
$WFLAND_S - C»

EFN=#O, - 0
MASK=#-B110

Issue 1st I/0 request
; Queued successfully?

; Issue 2nd I/O request
; Queued successfully?

Wait till both done

0 When you specify an event flag number as an argument, $QIO clears the
event flag when it queues the 1/0 request. When the 1/0 completes, the
flag is set.

8 In this example, the program issues two Queue 1/0 requests. A different
event flag is specified for each request.

7-15

Input/Output Services
7. 7 Synchronizing Service Completion

7-16

0 The Wait for Logical AND of Event Flags ($WFLAND) system service
places the process in a wait state until both 1/0 operations are complete.
The efn argument indicates that the event flags are both in cluster 0; the
mask argument indicates the flags for which the process is to wait.

8 Note that the $WFLAND system service (and the other wait system
services) wait for the event flag to be set; they do not wait for the 1/0
operation to complete. If some other event were to set the required
event flags, the wait for event flag would complete too soon. You
must coordinate the use of event flags carefully. (See Section 7.8 for
a discussion of the recommended technique for testing 1/0 completion.)

Example 2: An AST Routine

$QIO_S ... ,ASTADR=TTAST, - 0; I/0 with AST
ASTPRM=#1, ...

BLBC RO.ERROR ; Queued successfully?
; Continue

.ENTRY TTAST.~M<R10,R11> 8; AST service routine entry mask
handle I/0 completion

RET ; End of service routine

0 When you specify the astadr argument to the $QIO system service, the
system interrupts the process when the 1/0 completes and passes control
to the specified AST service routine.

The $QIO system service call specifies the address of the AST routine,
TTAST, and a parameter to pass as an argument to the AST service
routine. When $QIO returns control, the process continues execution.

8 When the 1/0 completes, the AST routine TTAST is called, and it
responds to the 1/0 completion. By examining the AST parameter,
TTAST can determine the origin of the 1/0 request.

When this routine is finished executing, control returns to the process at
the point at which it was interrupted. If you specify the astadr argument
in your call to $QIO, you should also specify the iosb argument so that
the AST routine can evaluate whether the 1/0 completed successfully.

Example 3: The I/O Status Block 0

TTIOSB: .BLKQ 1 8 I/0 status block

• $QIO_S ... ,IOSB=TTIOSB, ... Issue I/O request
BLBC RO.ERROR ; Queued successfully?

Continue

10$: TSTW TTIOSB e ; Is I/0 done yet?
BEQL 10$ No, loop till done • CMPW TTIOSB,#SS$_NORMAL ; I/0 successful?
BNEQ IO_ERR No, handle the error

Input/Output Services
7. 7 Synchronizing Service Completion

0 An I/O status block is a quadword structure that the system uses to post
the status of an I/O operation. You must define the quadword area in
your program.

8 TTIOSB defines the I/O status block for this I/O operation. The iosb
argument in the $QIO system service refers to this quadword.

8 The $QIO system service clears the quadword when it queues the I/O
request. When the request is queued, the program calls a routine to check
whether the request was successfully placed on the queue; if queuing was
successful, the program continues execution.

0 The process polls the I/O status block. If the low-order word still
contains 0, the I/O operation has not yet completed. In this example,
the program loops until the request is complete.

9 After the I/O operation completes, the process compares the low word of
the I/O status block with the success status SS$-NORMAL. If the return
status is not SS$-NORMAL, the program branches to IO-ERR.

Note: The technique shown in Example 3 wastes system time, looping until the
request is complete; you should use this technique only when it is the
last possible alternative.

7 .8 Recommended Method for Testing Asynchronous Completion
DIGITAL recommends that you use the Synchronize ($SYNCH) system
service to wait for completion of an asynchronous event. The $SYNCH
service correctly waits for the actual completion of an asynchronous event,
even if some other event sets the event flag.

To use the $SYNCH service to wait for the completion of an asynchronous
event, you must specify both an event flag number and the address of an
I/O status block (IOSB) in your call to the asynchronous system service. The
asynchronous service queues the request and returns control to your program.
When the asynchronous service completes, it sets the event flag and places
the final status of the request in the IOSB.

In your call to $SYNCH, you must specify the same efn and I/O status block
that you specified in your call to the asynchronous service. The $SYNCH
service waits for the event flag to be set by means of the $WAITFR system
service. When the specified event flag is set, $SYNCH checks the specified
I/O status block. If the 1/0 status block is nonzero, the system service has
completed and $SYNCH returns control to your program. If the I/O status
block is zero, $SYNCH clears the event flag by means of the $CLREF service
and calls the $WAITFR service to wait for the event flag to be set.

The $SYNCH service sets the event flag before returning control to your
program. This insures that the call to $SYNCH does not interfere with
testing for completion of another asynchronous event that completes
at approximately the same time and uses the same event flag to signal
completion.

7-17

Input/Output Services
7 .8 Recommended Method for Testing Asynchronous Completion

The following call to the Queue 1/0 Request ($QIO) system service
demonstrates how the $SYNCH service is used:

EVENT_FLAG = 1

Q_IOSB: .QUAD 0

$QIO_S EFN=#EVENT_FLAG, -
IOSB=Q_IOSB, ...

$SYNCH_S -
EFN=#EVENT_FLAG
IOSB=Q_IOSB

BLBC RO.ERROR

Request I/O

Wait until I/O completes
Test status

Note: The $QIOW service provides a combination of $QIO and $SYNCH. This
program segment provides only an example of how $SYNCH operates.
For a more complete example, see Section 2.5.1.

7 .9 Synchronous Forms of Input/Output Services

7-18

You can execute some input/ output services either synchronously or
asynchronously. A "W" at the end of a system service name indicates the
synchronous version of the system service.

The synchronous version of a system service combines the functions of
the asynchronous version of the service and the Synchronize ($SYNCH)
system service. The synchronous version acts exactly as if you had used the
asynchronous version of the system service followed immediately by a call to
$SYNCH; it queues the 1/0 request, and then places the program in a wait
state until the 1/0 request completes. The synchronous version takes the
same arguments as the asynchronous version.

The asynchronous and synchronous names of input/output services that have
synchronous versions are as follows:

Asynchronous Name Synchronous Name Description

$BRKTHRU $BRKTHRUW Breakthrough

$GETDVI $GETDVIW Get Device/Volume
Information

$GETJPI $GETJPIW Get Job/Process
Information

$GETLKI $GETLKIW Get Lock
Information

$GET QUI $GETQUIW Get Queue
Information

$GETSYI $GETSYIW Get Systemwide
Information

$QIO $QIOW Queue 1/0 Request

7.10

Input/Output Services
7 .9 Synchronous Forms of Input/Output Services

Asynchronous Name Synchronous Name

$SNDJBC $SNDJBCW

Description

Send to Job
Controller

$UPDSEC $UPDSECW Update Section File
on Disk

1/0 Completion Status
When an 1/0 operation completes, the system posts the completion status
in the 1/0 status block, if one is specified. The completion status indicates
whether the operation completed successfully, the number of bytes that were
transferred, and additional device-dependent return information.

Figure 7-9 illustrates the format for the $QIO system service of the
information written in the IOSB.

Figure 7-9 1/0 Status Block

31 16 15

count condition value

device-dependent information

0

ZK-856-82

The first word contains a system status code indicating the success or failure
of the operation. The status codes used are the same as for all returns from
system services; for example, SS$_NORMAL indicates successful completion.

The second word contains the number of bytes actually transferred in the 1/0
operation. Note that for some devices this word contains only the low-order
word of the count. For information about specific devices, see the VMS 1/0
User's Reference Volume.

The second longword contains device-dependent return information.

System services other than $QIO use the quadword 1/0 status block, but the
format is different. See the description of each system service in the VMS
System Services Reference Manual for the format of the information written in
the IOSB for that service.

To ensure successful 1/0 completion and the integrity of data transfers,
you should check the IOSB following 1/0 requests, particularly for device
dependent 1/0 functions. For complete details on how to use the 1/0 status
block, see the VMS 1/0 User's Reference Volume.

7-19

7.11

7.12

Input/Output Services
7 .11 Deassigning 1/0 Channels

Deassigning 1/0 Channels
When a process no longer needs access to an 1/0 device, it should release
the channel assigned to the device by calling the Deassign 1/0 Channel
($DASSGN) system service.

$DASSGN_S CHAN=TTCHAN

This service call releases the terminal channel assignment acquired in the
$ASSIGN example shown in Section 7.5. The system automatically deassigns
channels for a process when the image that assigned the channel exits.

Example of Using Complete Terminal 1/0
The following example shows a complete sequence of input and output
operations using the $QIOW macro to read and write lines to the current
default SYS$INPUT device. Because the input/ output of this program
must be to the current terminal, it functions correctly only if you execute
it interactively.

TTNAME: .ASCID /SYS$INPUT:/ 0
TTCHAN: .BLKW 1

TTIOSB: .BLKW 1 • TTIOLEN:
.BLKW 1
.BLKL 1

OUTLEN: .BLKL 1 C)
BUFFER: .BLKB 80

LENGTH=.-BUFFER

8$ASSIGN_S -
DEVNAM=TTNAME, -
CHAN=TTCHAN

BSBW ERROR
0 $QIOW_S -

FUNC=#IO$_READVBLK
CHAN=TTCHAN, -
P2=#LENGTH, -
P1=BUFFER, -
IOSB=TTIOSB

BSBW ERROR
MOVZWL TTIOSB,RO

~ BSBW ERROR
f) MOVZWL TTIOLEN,OUTLEN

7-20

$QIOW_S -
FUNC=#IO$_WRITVBLK
CHAN=TTCHAN, -
P2=0UTLEN, -
P1=BUFFER, -
IOSB=TTIOSB

Descriptor for terminal name

; Receive channel number here

First word of IOSB, status

; Second word, get length
; Second longword of IOSB

Length of string to output
; Buff er to read input

Assign channel
; Logical name translated by $ASSIGN

; Move status code to RO

Get length out of IOSB

f9 BSBW ERROR

Input/Output Services
7 .12 Example of Using Complete Terminal 1/0

MOVZWL TTIOSB,RO ; Move status code to RO
BSBW ERROR

0 $DASSGN_S -
CHAN=TTCHAN

Done, deassign channel

BSBW ERROR

ERROR: BLBS R0, 10$

$EXIT_S RO

10$: RSB

Check for successful
return code

If not successful,
exit and signal

If successful,
return to caller

0 The TTNAME label is a character string descriptor for the logical device
SYS$INPUT, and TTCHAN is a word to receive the channel number
assigned to it.

8 The IOSB for the 1/0 operations is structured so that the program can
easily check for the completion status (in the first word) and the length of
the input string returned (in the second word).

0 The string will be read into the buffer INBUF; the longword OUTLEN
will contain the length of the string for the output operation.

0 The $ASSIGN service assigns a channel and writes the channel number
at TTCHAN.

0 If the $ASSIGN service completes successfully, the $QIOW macro reads a
line from the terminal, and requests that the completion status be posted
in the I/O status block defined at TTIOSB.

0 The process waits until the I/O is complete, then checks the first word in
the 1/0 status block for a successful return. If unsuccessful, the program
takes an error path.

f) The length of the string read is moved into the longword at OUTLEN,
because the $QIOW macro requires a longword argument. However, the
length field of the I/O status block is only a word long. The $QIOW
macro writes the line just read to the terminal.

0 The program performs error checks. First, it ensures that the $OUTPUT
macro successfully queued the I/O request; then, when the request is
completed, it ensures that the I/O was successful.

0 When all I/ 0 operations on the channel are finished, the channel is
deassigned.

7-21

7.13

7.14

Input/Output Services
7 .13 Canceling 1/0 Requests

Canceling 1/0 Requests

Device Allocation

7-22

If a process must cancel I/O requests that have been queued but not yet
completed, it can issue the Cancel I/O On Channel ($CANCEL) system
service. All pending I/O requests issued by the process on that channel are
canceled; you cannot specify a particular I/O request.

For example, you can call the $CANCEL system service as follows:

$CANCEL_S CHAN=TTCHAN

In this example, the $CANCEL system service initiates the cancellation of all
pending I/O requests to the channel whose number is located at TTCHAN.

The $CANCEL system service returns after initiating the cancellation of the
I/O requests. If the call to $QIO specified an event flag, AST service routine,
or I/O status block, the system sets the flag, delivers the AST, or posts the
I/O status block as appropriate when the cancellation is actually completed.

Many I/O devices are shareable; that is, more than one process can access
the device at a time. By calling the Assign I/O Channel ($ASSIGN) system
service, a process is given a channel to the device for I/O operations.

In some cases, a process may need exclusive use of a device so that data is
not affected by other processes. To reserve a device for exclusive use, you
must allocate it.

Device allocation is normally accomplished from the DCL command stream,
with the ALLOCATE command. A process can also allocate a device by
calling the Allocate Device ($ALLOC) system service. When a device has
been allocated by a process, only the process that allocated the device and
any subprocesses it creates can assign channels to the device.

When you call the $ALLOC system service, you must provide a device name.
The device name specified can be any of the following:

• A physical device name, for example, the tape drive MTB3:

• A logical name, for example, TAPE

• A generic device name, for example, MT:

If you specify a physical device name, $ALLOC attempts to allocate the
specified device.

If you specify a logical name, $ALLOC translates the logical name and
attempts to allocate the physical device name equated to the logical name.

If you specify a generic device name, that is, if you specify a device type
but do not specify a controller or unit number or both, $ALLOC attempts
to allocate any device available of the specified type. For more information
about the allocation of devices by generic names, see Section 7.17.

When you specify generic device names, you must provide fields for the
$ALLOC system service to return the name and the length of the physical
device that is actually allocated so that you can provide this name as input to
the $ASSIGN system service.

LOGDEV: .ASCID /TAPE/
DEVDESC:

.LONG 64

.ADDRESS -
DEVSTR

DEVSTR: .BLKB 64
TAPECHAN:

.BLKW 1

0 $ALLOC_S -

Input/Output Services
7. 14 Device Allocation

The following example illustrates the allocation of a tape device specified by
the logical name TAPE.

Descriptor for logical name
Descriptor for physical name
Length of buff er
Address of buff er

Get physical name returned

Channel for tape I/O

DEVNAM=LOGDEV, -
PHYLEN=DEVDESC, -
PHYBUF=DEVDESC

BSBW ERROR
8 $ASSIGN_S - Assign channel

DEVNAM=DEVDESC, -
CHAN=TAPECHAN

BSBW ERROR
; Continue with I/O

0 $DASSGN_S -
CHAN=TAPECHAN

Deassign channel

BSBW ERROR
$DALLOC_S -

DEVNAM=DEVDESC
; Deallocate tape

0 The $ALLOC system service call requests allocation of a device
corresponding to the logical name TAPE, defined by the character
string descriptor LOGDEV. The argument DEVDESC refers to the buffer
provided to receive the physical device name of the device actually
allocated and the length of the name string. The $ALLOC service
translates the logical name TAPE, and returns the equivalence name
string of the device actually allocated into the buffer at DEVDESC. It
writes the length of the string in the first word of DEVDESC.

8 The $ASSIGN command uses the character string returned by the
$ALLOC system service as the input device name argument, and requests
that the channel number be written into TAPECHAN.

0 When I/O operations are completed, the $DASSGN system service
deassigns the channel, and the $DALLOC system service deallocates
the device. The channel must be deassigned before the device can be
deallocated.

7 .14.1 Implicit Allocation
Devices that cannot be shared by more than one process (for example,
terminals and line printers) do not have to be explicitly allocated. Because
they are nonshareable, they are implicitly allocated by the $ASSIGN system
service when $ASSIGN is called to assign a channel to the device.

7-23

Input/Output Services
7. 14 Device Allocation

7 .14.2 Deallocation

7.15

When the program has finished using an allocated device, it should release
the device with the Deallocate Device ($DALLOC) system service, to make it
available for other processes, as in this example:

$DALLOC_S DEVNAM=DEVDESC

At image exit, the system automatically deallocates devices allocated by the
image.

Mounting and Dismounting Volumes
Mounting a volume establishes a link between a volume, a device, and a
process. A volume, or volume set, must be mounted before 1/0 operations
can be performed on the volume. Normally, you mount or dismount a
volume from the DCL command stream with the MOUNT or DISMOUNT
command. A process can also mount a volume or volume set using the
Mount Volume ($MOUNT) system service. You can dismount a volume or
volume set with the Dismount Volume ($DISMOU) system service.

Mounting a volume involves two operations.

1 Placing the volume on the device and starting the device (by pressing the
START or LOAD button).

2 Mounting the volume with the $MOUNT system service.

7 .15.1 Calling the $MOUNT System Service

7-24

The Mount Volume ($MOUNT) system service allows a process to mount a
single volume or a volume set. When you call the $MOUNT system service,
you must specify a device name.

The $MOUNT system service has a single argument, an address of a list
of item descriptors. The list is terminated by a longword of binary zeros.
Figure 7-10 shows the format of an item descriptor.

Figure 7-10 $MOUNT Item Descriptor

31 15

item code l buffer length

buffer address

return length address

0

ZK-1705-84

Input/Output Services
7 .15 Mounting and Dismounting Volumes

Most item descriptors do not have to be in any order. To mount volume sets,
you must specify one item descriptor per device and one item descriptor per
volume; you must specify the descriptors for the volumes in the same order
as the descriptors for the devices on which the volumes are loaded.

For item descriptors other than device and volume names, if you specify the
same item descriptor more than once, the last occurrence of the descriptor is
used.

The following example illustrates a call to $MOUNT. The call is equivalent to
the DCL command that precedes the example:

$ MOUNT/SYSTEM/NOQUOTA DRA4: ,DRA5: USER01,USER02 USERD$

$MNTDEF
ITEMS: .WORD 4 Length of flags

.WORD MNT$_FLAGS Flag code

.ADDRESS - Address of flags longword
FLAGS

.LONG 0 Unused longword

.WORD 5 Length of first device name

.WORD MNT$_DEVNAM Device code

.ADDRESS - Address of first device name
DEV1

.LONG 0 Unused longword

.WORD 6 Length of first volume name

.WORD MNT$_VOLNAM Volume code

.ADDRESS - Address of first volume name
VOL1

.LONG 0 Unused longword

.WORD 5 Length of second device name

.WORD MNT$_DEVNAM Device code

.ADDRESS - Address of second device name
DEV2

.LONG 0 Unused longword

.WORD 6 Length of second volume name

.WORD MNT$_VOLNAM Volume code

.ADDRESS - Address of second volume name
VOL2

.LONG 0 Unused longword

.WORD 6 Length of volume logical name

.WORD MNT$_LOGNAM Logical name code

.ADDRESS - Address of volume logical name
LOG

.LONG 0 Unused longword

.LONG 0 End of item list

DEV1: .ASCII /DRA4:/ First device
VOL1: .ASCII /USER01/ First volume name
DEV2: .ASCII /DRA5:/ Second device
VOL2: .ASCII /USER02/ Second volume name
LOG: .ASCII /USERD$/ Logical name

7-25

Input/Output Services
7. 1 5 Mounting and Dismounting Volumes

FLAGS: .LONG <MNT$M_SYSTEM!MNT$M_NODISKQ>

$MOUNT_S -
ITMLST=ITEMS

Now call $MOUNT

7 .15.2 Calling the $DISMOU System Service

7.16

The $DISMOU system service allows a process to dismount a volume or
volume set. When you call $DISMOU, you must specify a device name. If
the volume mounted on the device is part of a fully mounted volume set, and
you do not specify flags, the whole volume set is dismounted.

The following example illustrates a call to $DISMOU. The call dismounts the
volume set mounted in the previous example.

DEV1_DESC:
.ASCID /DRA4:/

$DISMOU_S -
DEVNAM=DEV1_DESC

Logical Names and Physical Device Names

7-26

When you specify a device name as input to an 1/0 system service, it can
be a physical device name or a logical name. If the device name contains a
colon, the colon and the characters after it are ignored. When an underscore
character (-) precedes a device name string, it indicates that the string is a
physical device name string. For example:

TTNAME: .ASCID /_TTB3:/

Any string that does not begin with an underscore is considered a logical
name, even though it may be a physical device name. The following system
services translate a logical name iteratively until a physical device name
is returned, or until the system default number of translations have been
performed.

• Allocate Device ($ALLOC)

• Assign 1/0 Channel ($ASSIGN)

• Broadcast ($BRDCST)

• Deallocate Device ($DALLOC)

• Dismount Volume ($DISMOU)

• Get 1/0 Device Information ($GETDEV)

7.17

7.18

Input/Output Services
7 .1 6 Logical Names and Physical Device Names

• Get Device/Volume Information ($GETDVI)

• Mount Volume ($MOUNT)

In each translation, the logical name tables defined by the logical name
LNM$FILE_DEV are searched in order. These tables, listed in search
order, are normally LNM$PROCESS, LNM$JOB, LNM$GROUP and
LNM$SYSTEM. If a physical device name is located, the 1/0 request is
performed for that device.

If the services do not locate an entry for the logical name, the 1/0 service
treats the name specified as a physical device name. When you specify the
name of an actual physical device in a call to one of these services, include
the underscore character to bypass the logical name translation.

When the $ALLOC system service returns the device name of the physical
device that has been allocated, the device name string returned is prefaced
with an underscore character. When this name is used for the subsequent
$ASSIGN system service, the $ASSIGN service does not attempt to translate
the device name.

If you use logical names in 1/0 service calls, you must be sure to establish
a valid device name equivalence before program execution. You can do this
by issuing a DEFINE command from the command stream, or by having the
program establish the equivalence name before the 1/0 service call with the
Create Logical Name ($CRELNM) system service.

For details on how to create and use logical names, see Chapter 6.

Device Name Defaults
If, after logical name translation, a device name string in an 1/0 system
service call does not fully specify the device name (that is, device, controller,
and unit), the service either provides default values for nonspecified fields, or
provides values based on device availability.

The following rules apply:

• The $ASSIGN and $DALLOC system services apply default values as
shown in Table 7-2.

• The $ALLOC system service treats the device name as a generic device
name and attempts to find a device that satisfies the components of the
device name specified, as shown in Table 7-2.

Obtaining Information About Physical Devices
The Get Device/Volume Information ($GETDVI) system service returns
information about devices. The information returned is specified by an item
list created before the call to $GETDVI.

When you call the $GETDVI system service, you must provide the address
of an item list that specifies the information to be returned. The format of
the item list is described in the description of $GETDVI in the VMS System
Services Reference Manual. The VMS 1/0 User's Reference Volume contains
details on the device-specific information these services return.

7-27

7.19

Input/Output Services
7 .18 Obtaining Information About Physical Devices

In cases where a generic (that is, nonspecific) device name is used in an 1/0
service, a program may need to find out what device has actually been used.
To do this, the program should provide $GETDVI with the number of the
channel to the device, and request the name of the device with the
DVl$_DEVNAM item identifier.

Table 7-2 Default Device Names for 1/0 Services

Device

dd:

ddc:

ddu:

ddcu:

Key:

Device Name

ddAO: (unit 0 on
controller A)

ddcO: (unit 0 on
controller specified)

ddAu: (unit specified
on controller A)

ddcu: (unit and
controller specified)

dd: is the device type specified 1

c: is the controller specified

x: is any controller

u: is the unit number specified

y: is any unit number

Generic Device

ddxy: (any available device of the
specified type)

ddcy: (any available unit on the
specified controller)

ddxu: (device of specified type and unit
on any available controller)

ddcu: (unit and controller specified)

1 A summary of the device names is contained in the VMS DCL Concepts Manual.

VMS also supports a device for program development called the null device.
The mnemonic for the null device is NL. Its characteristics are as follows:

• A read from NL returns an end-of-file error (SS$_ENDOFFILE).

• A write to NL immediately returns a success indication (SS$_NORMAL).

The null device functions as a virtual device to which you can direct output,
but from which the data does not return.

Formatting Output Strings

7-28

When you are preparing output strings for a program, you may need to insert
variable information into a string prior to output, or you may need to convert
a numeric value to an ASCII string. The Formatted ASCII Output ($FAO)
system service performs these functions.

Input to the $FAO service consists of the following:

• A control string that contains the fixed text portion of the output and
formatting directives. The directives indicate the position within the
string where substitutions are to be made, and describe the data type and
length of the input values that are to be substituted or converted.

• An output buffer to contain the string after conversions and substitutions
have been made.

Input/Output Services
7 .19 Formatting Output Strings

• An optional argument indicating a word to receive the final length of the
formatted output string.

• Parameters that provide arguments for the formatting directives.

The following example shows a call to the $FAO system service to format an
output string for a $QIOW macro. Complete details on how to use $FAO,
with additional examples, are provided in the description of the $FAO system
service in the VMS System Services Reference Manual.

FAOSTR:O .ASCID /FILE !AS DOES NOT EXIST/ ; Descriptor for

FAODESC: 8
.LONG 80
.ADDRESS -

FAOBUF
FAOBUF: .BLKB 80

; FAQ control string
Descriptor for $FAQ output

Length of buff er
Address of buff er

Buff er for $FAD output

FAOLEN: .LONG 0 Receive length of $FAO output

FILESPEC: C)
.ASCID /DISK$USER:MYFILE.DAT/ ; Descriptor for FAO parameter

0 $FAO_S CTRSTR=FAOSTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,-
Pl=#FILESPEC Parameter for $FAD

BSBW ERROR
0 $QIOW ... ,BUFFER=FAOBUF, -

· LENGTH=FAOLEN
BSBW ERROR

0 FAOSTR provides the FAO control string. !AS is an example of an FAO
directive: it requires an input parameter that specifies the address of a
character string descriptor. When $FAO is called to format this control
string, !AS will be substituted with the string whose descriptor address is
specified.

8 FAODESC is a character string descriptor for the output buffer; $FAO
will write the string into the buffer, and will write the length of the
final formatted string in the low-order word of FAOLEN. (A longword
is reserved so that it can be used for an input argument to the $QIOW
macro.)

0 FILESPEC is a character string descriptor defining an input string for the
FAO directive !AS.

0 The call to $FAO specifies the control string, the output buffer and length
fields, and the parameter Pl, which is the address of the string descriptor
for the string to be substituted.

0 When $FAO completes successfully, $QIOW writes the following output
string:

FILE DISK$USER:MYFILE.DAT DOES NOT EXIST

7-29

7.20

Input/Output Services
7 .20 Mailboxes

Mailboxes

Process ORION

MBLOGNAM:

Mailboxes are virtual devices that can be used for communication among
processes. You accomplish actual data transfer by using VMS RMS or I/O
services. When the Create Mailbox and Assign Channel ($CREMBX) service
creates a mailbox, it also assigns a channel to it for use by the creating
process. Other processes can then assign channels to the mailbox using either
the $CREMBX or $ASSIGN system service.

The $CREMBX system service creates the mailbox. The $CREMBX system
service identifies a mailbox by a user-specified logical name and assigns it
an equivalence name. The equivalence name is a physical device name in
the format MBAn, where n is a unit number. The equivalence name has the
terminal attribute.

When another process assigns a channel to the mailbox with the $CREMBX
or $ASSIGN system service, it can identify the mailbox by its logical name.
The service automatically translates the logical name. The process can obtain
the MBAn name by translating the logical name (with the $TRNLNM system
service), or it can call the Get Device/Volume Information ($GETDVI) system
service to obtain the unit number and the physical device name.

Mailboxes are either temporary or permanent. You need the user privileges
TMPMBX and PRMMBX to create temporary and permanent mailboxes.

For a temporary mailbox, the $CREMBX service enters the logical name and
equivalence name in the logical name table LNM$TEMPORARY_MAILBOX.
This logical name table name usually specifies the LNM$JOB logical name
table name. The system deletes a temporary mailbox when no more channels
are assigned to it.

For a permanent mailbox, the $CREMBX service enters the logical name and
equivalence name in the logical name table LNM$PERMANENT_MAILBOX.
This logical name table name usually specifies the LNM$SYSTEM logical
name table name. Permanent mailboxes continue to exist until they are
specifically marked for deletion with the Delete Mailbox ($DELMBX) system
service.

The following example shows how processes can communicate by means of a
mailbox.

.ASCID /GROUP100_MAILBOX/
MBUFLEN = 128

Mailbox logical
Name descriptor

MBUFFER:
.BLKB MBUFLEN

MBXCHAN:
.BLKW 1

MBXIOSB:
.BLKW 1

MBLEN: .BLKW 1
.BLKL 1

OUTLEN: .BLKL 1

.ENTRY ORION, ~M<R2,R3,R4>

7-30

Input buff er for mailbox reads

Mailbox channel number

IOSB first word (status)
IOSB 2nd word (length)
Remainder of IOSB

Longword to get length

Entry mask

0 $CREMBX_S -
PRMFLG= #0, -
CHAN=MBXCHAN, -
MAXMSG=#MBUFLEN, -
BUFQUO= #384, -
PROMSK= # Axoooo. -
LOGNAM=MBLOGNAM

BSBW ERROR

~ $QIO_S CHAN=MBXCHAN, -
FUNC= #IO$_READVBLK, -
IOSB=MBXIOSB,
ASTADR=MBXAST, -
P1=MBUFFER, -
P2=#MBUFLEN

BSBW ERROR

RET

.ENTRY MBXAST, AM<R2,R3,R4>

CMPW MBXIOSB, #SS$_NORMAL
BNEQ ASTERR
MOVZWL MBLEN,OUTLEN
$QIOW_S ... ,BUFFER=MBUFFER, -

LENGTH=OUTLEN, ...
BSBW ERROR

RET

Process CYGNUS

MAILBOX:
.ASCID /GROUP100_MAILBOX/

MAILCHAN:
.BLKW 1

OUTBUF: .BLKB 128
OUTLEN: .BLKL 1

.ENTRY CYGNUS, AM<R2,R3,R4>
$ASSIGN_S -

DEVNAM=MAILBOX, -
CHAN=MAILCHAN

BSBW ERROR

$QIOW_S CHAN=MAILCHAN, -
BUFFER=OUTBUF, -
LENGTH=OUTLEN, ...

BSBW ERROR

RET

Input/Output Services
7 .20 Mailboxes

AST routine entry mask

I/0 successful?
Branch if not
Make length a longword

Mailbox logical name descriptor

Mailbox channel number

Buff er for output msg data
Will contain length of msg

; Entry mask
Assign channel

0 Process ORION creates the mailbox and receives the channel number at
MBXCHAN.

The prmflg argument indicates that the mailbox is a temporary mailbox.
The logical name is entered in the LNM$TEMPORARY_MAILBOX logical
name table.

7-31

Input/Output Services
7 .20 Mailboxes

7 .20.1 Mailbox Name

7-32

The maxmsg argument limits the size of messages that the mailbox
can receive. Note that the size indicated in this example is the same
size as the buffer (MBUFFER) provided for the $QIO request. A buffer
for mailbox I/O must be at least as large as the size specified in the
MAXMSG argument.

When a process creates a temporary mailbox, the amount of system
memory allocated for buffering messages is subtracted from the process's
buffer quota. Use the BUFQUO argument to specify how much of the
process quota you want to be used for mailbox message buffering.

Mailboxes are protected devices. By specifying a protection mask with
the promsk argument, you can restrict access to the mailbox. (In this
example, all bits in the mask are clear, indicating unlimited read and
write access.)

8 After creating the mailbox, process ORION calls the $QIO system service,
requesting that it be notified when I/O completes (that is, when the
mailbox receives a message) by means of an AST interrupt. The process
can continue executing, but the AST service routine at MBXAST will
interrupt and begin executing when a message is received.

8 When a message is sent to the mailbox (by CYGNUS), the AST is
delivered and ORION responds to the message. Process ORION gets
the length of the message from the first word of the I/O status block
at MBXIOSB and places it in the longword OUTLEN so it can pass the
length to $QIOW_S.

0 Process CYGNUS assigns a channel to the mailbox, specifying the logical
name the process ORION gave the mailbox. The $QIOW system service
writes a message from the output buffer provided at OUTBUF.

Note that on a write operation to a mailbox, the 1/0 is not complete
until the message is read, unless you specify the IO$M_NOW function
modifier. Therefore, if $QIOW (without the IO$M_NOW function
modifier) is used to write the message, the process will not continue
executing until another process reads the message.

The lognam argument to the $CREMBX service specifies a descriptor that
points to a character string for the mailbox name.

Translation of the lognam argument proceeds as follows:

1 The current name string is prefixed with MBX$ and the result is subject to
logical name translation.

2 If the result is a logical name, step 1 is repeated until translation does
not succeed or until the number of translations performed exceeds the
number specified by the SYSGEN parameter LNM$C__MAXDEPTH.

3 The MBX$ prefix is stripped from the current name string that could
not be translated. This current string is made a logical name with an
equivalence name MBAn (n is a number assigned by the system).

For example, assume that you have made the following logical name
assignment:

$ DEFINE MBX$CHKPNT CHKPNT_001

Input/Output Services
7 .20 Mailboxes

Assume also that your program contains the following statements:

MBXDESC: .ASCID /CHKPNT/ ; Descriptor for mailbox logical name

$CREMBX_S LOGNAME=MBXDESC, ...

The following logical name translation takes place:

1 MBX$ is prefixed to CHKPNT.

2 MBX$CHKPNT is translated to CHKPNT_OOl.

Because no further translation is successful, the logical name CHKPNT_QQl
is created with the equivalence name MBAn (n is a number assigned by the
system).

There are two exceptions to the logical name translation method discussed in
this section:

• If the name string starts with an underscore (-), VMS strips the
underscore and considers the resultant string to be the actual name
(that is, no further translation is performed).

• If the name string is the result of a logical name translation, then the
name string is checked to see if it has the "terminal" attribute. If the
name string is marked with the "terminal" attribute, VMS considers the
resultant string to be the actual name (that is, no further translation is
performed).

7 .20.2 System Mailboxes
The system uses mailboxes for communication among system processes. All
system mailbox messages contain, in the first word of the message, a constant
that identifies the sender of the message. These constants have symbolic
names (defined in the $MSGDEF macro) in the following format:

MSG$_sender

The symbolic names included in the $MSGDEF macro and their meanings are
as follows:

Symbolic Name

MSG$_ TRMUNSOLIC

MSG$_CRUNSOLIC

MSG$_ABORT

MSG$_CONFIRM

MSG$_CONNECT

MSG$_DISCON

MSG$_EXIT

MSG$_1NTMSG

MSG$_PATHLOST

MSG$_PROTOCOL

Meaning

Unsolicited terminal data

Unsolicited card reader data

Network partner aborted link

Network connect confirm

Network inbound connect initiate

Network partner disconnected; hang-up

Network partner exited prematurely

Network interrupt message; unsolicited data

Network path lost to partner

Network protocol error

7-33

Input/Output Services
7 .20 Mailboxes

Symbolic Name

MSG$_REJECT

MSG$_ THIRDPARTY

MSG$_ TIMEOUT

MSG$_NETSHUT

MSG$_NQDEACC

MSG$_NQDEINACC

MSG$_EVT A VL

MSG$_EVTRCVCHG

MSG$_1NCDA T

MSG$_RESET

MSG$_LINUP

MSG$_LINDWN

MSG$_EVTXMTCHG

Meaning

Network connect reject

Network third party disconnect

Network connect timeout

Network shutting down

Node has become accessible

Node has become inaccessible

Events available to DECnet Event Logger

Event receiver database change

Unsolicited incoming data available

Request to reset the virtual circuit

PVC line up

PVC line down

Event transmitter database change

The remainder of the message contains variable information, depending on
the system component that is sending the message.

The format of the variable information for each message type is documented
with the system function that uses the mailbox.

7 .20.3 Mailboxes for Process Termination Messages

7.21

When a process creates another process, it can specify the unit number of
a mailbox as an argument to the Create Process ($CREPRC) system service.
When you delete the created process, the system sends a message to the
specified termination mailbox. Section 8.7.2 provides an example of how to
create and use a termination mailbox.

You cannot use a mailbox in memory shared by multiple processors as a
process termination mailbox.

Example of Using 1/0 Services

7-34

In the following FORTRAN example, the first program SEND.FOR creates a
mailbox named MAIL _BOX, writes data to it, and then indicates the end of
the data by writing an end-of-file message.

The second program RECEIVE.FOR creates a mailbox with the same logical
name MAIL_BOX. It reads the messages from the mailbox into an array.
It stops the read operations when a read operation generates an end-of-file
message and the second longword of the 1/0 status block is nonzero. By
checking that the 1/0 status block is nonzero, the second program confirms
that the writing process sent the end-of-file message.

The processes use common event flag number 64 to ensure that SEND .FOR
does not exit until RECEIVE.FOR has established a channel to the mailbox.
(If RECEIVE.FOR executes first, an error occurs because SYS$ASSIGN cannot
find the mailbox.)

Input/Output Services
7.21 Example of Using 1/0 Services

SEND.FOR
INTEGER STATUS

! Name and channel number for mailbox
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = 'MAIL_BOX')
INTEGER*2 MBX_CHAN

! Mailbox message
CHARACTER*80 MBX_MESSAGE
INTEGER LEN

CHARACTER*80 MESSAGES (255)
INTEGER MESSAGE_LEN (255)
INTEGER MAX_MESSAGE
PARAMETER (MAX_MESSAGE = 255)

! I/0 function codes and status block
INCLUDE '($IODEF)'
INTEGER*4 WRITE_CODE
INTEGER*2 IOSTAT,
2 MSG_LEN
INTEGER READER_PID
COMMON /IOBLOCK/ IOSTAT,
2 MSG_LEN,
2 READER_PID

! System routines
INTEGER SYS$CREMBX,
2 SYS$ASCEFC,
2 SYS$WAITFR,
2 SYS$QIOW

! Create the mailbox.
STATUS = SYS$CREMBX (,
2 MBX_CHAN,
2
2 MBX_NAME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Fill MESSAGES array

! Write the messages.
DO I = 1, MAX_MESSAGE

WRITE_CODE = IO$_WRITEVBLK .OR. IO$M_NOW
MBX_MESSAGE = MESSAGES(!)
LEN = MESSAGE_LEN(I)
STATUS = SYS$QIOW (,

2 %VAL(MBX_CHAN), Channel
2 %VAL(WRITE_CODE), I/O code
2 IOSTAT, Status block
2
2 %REF(MBX_MESSAGE), Pi
2 %VAL(LEN),,,,) P2

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTAT) CALL LIB$SIGNAL (%VAL(STATUS))

END DO

7-35

Input/Output Services
7 .21 Example of Using 1/0 Services

7-36

! Write end of file
WRITE_CODE = IO$_WRITEOF .OR. IO$M_NOW
STATUS= SYS$QIOW (,
2 %VAL(MBX_CHAN), Channel
2 %VAL(WRITE_CODE), End of file code
2 IOSTAT, Status block
2 , ' '''' ')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTAT) CALL LIB$SIGNAL (%VAL(IOSTAT))

Make sure cooperating process can read the information
by waiting for it to assign a channel to the mailbox.

STATUS= SYS$ASCEFC (%VAL(64),
2 'CLUSTER' , ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$WAITFR (%VAL(64))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

INTEGER STATUS

INCLUDE '($IODEF)'
INCLUDE '($SSDEF)'

RECEIVE.FOR

! Name and channel number for mailbox
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = 'MAIL_BOX')
INTEGER*2 MBX_CHAN

! QIO function code
INTEGER READ_CODE

! Mailbox message
CHARACTER*80 MBX_MESSAGE
INTEGER*4 LEN

! Message arrays
CHARACTER*80 MESSAGES (255)
INTEGER*4 MESSAGE_LEN (255)

! I/0 status block
INTEGER*2 IOSTAT,
2 MSG_LEN
INTEGER READER_PID
COMMON /IOBLOCK/ IOSTAT,
2 MSG_LEN,
2 READER_PID

! System routines
INTEGER SYS$ASSIGN,
2 SYS$ASCEFC,
2 SYS$SETEF,
2 SYS$QIOW

Input/Output Services
7.21 Example of Using 1/0 Services

! Create the mailbox and let the other process know
STATUS = SYS$ASSIGN (MBX_NAME,
2 MBX_CHAN,,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS= SYS$ASCEFC (%VAL(64),
2 'CLUSTER',,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$SETEF (%VAL(64))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Read first message
READ_CODE = IO$_READVBLK .OR. IO$M_NOW
LEN = 80
STATUS = SYS$QIOW (,
2 %VAL(MBX_CHAN), Channel
2 %VAL(READ_CODE), Function code
2 IOSTAT, Status block
2 ••
2 %REF(MBX_MESSAGE), P1
2 %VAL(LEN),,,,) P2
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF ((.NOT. IOSTAT) .AND.
2 (IOSTAT .NE. SS$_ENDOFFILE)) THEN

CALL LIB$SIGNAL (%VAL(IOSTAT))
ELSE IF (IOSTAT .NE. SS$_ENDOFFILE) THEN

I = 1
MESSAGES(!) = MBX_MESSAGE
MESSAGE_LEN(I) = MSG_LEN

END IF

! Read messages until cooperating process writes end-of-file
DO WHILE (.NOT. ((IOSTAT .EQ. SS$_ENDOFFILE) .AND.
2 (READER_PID .NE. 0)))

STATUS = SYS$QIOW
2
2
2
2
2
2

(.
%VAL(MBX_CHAN),
%VAL(READ_CODE),
IOSTAT, ..
%REF(MBX_MESSAGE),
%VAL(LEN),,,,)

Channel
Function code
Status block

P1
P2

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF ((.NOT. IOSTAT) .AND.

2 (IOSTAT .NE. SS$_ENDOFFILE)) THEN
CALL LIB$SIGNAL (%VAL(IOSTAT))

ELSE IF (IOSTAT .NE. SS$_ENDOFFILE) THEN
I = I + 1
MESSAGES(!) = MBX_MESSAGE
MESSAGE_LEN(I) = MSG_LEN

END IF

END DO

7-37

8 Process Control Services

When you log in to the system, it creates a process for the execution of
program images. You can create another process to execute an image by
issuing the RUN or SPAWN command, using any of the qualifiers that
pertain to process creation. You can also write a program that creates another
process to execute a particular image.

The following services are process control system services:

• Create Process ($CREPRC)

• Delete Process ($DELPRC)

• Suspend Process ($SUSPND)

• Resume Process ($RESUME)

• Hibernate ($HIBER)

• Wake ($WAKE)

• Schedule Wakeup ($SCHDWK)

• Cancel Wakeup ($CANWAK)

• Exit ($Exit)

• Force Exit ($FORCEX)

• Declare Exit Handler ($DCLEXH)

• Cancel Exit Handler ($CANEXH)

• Set Process Name ($SETPRN)

• Set Priority ($SETPRI)

• Set Privileges ($SETPRV)

• Set Resource Wait Mode ($SETRWM)

• Get Job /Process Information ($GETJPI)

Process control services allow you to create processes and to control a process
or group of processes. This chapter describes some aspects of process control
services and includes discussions of the following:

• Subprocesses and detached processes

• Execution context of a process

• Process creation

• Interprocess control and communication

• Process hibernation and suspension

• Image exit and exit handlers

• Process deletion and termination messages

8-1

Process Control Services

8.1 Subprocesses and Detached Processes
A process is either a subprocess or a detached process. A subprocess receives
a portion of its creator's resource quotas and must terminate before the
creator. A detached process is fully independent; for example, the process the
system creates when you log in is a detached process.

The Create Process ($CREPRC) system service creates both subprocesses
and detached processes. The number of subprocesses a process can create is
controlled by its PRCLM quota. The DETACH privilege controls your ability
to create a detached process with a UIC that is different from the UIC of the
creating process.

8. 2 The Execution Context of a Process

8.3 Process Creation

8-2

The execution context of a process defines a process to the system. It includes
the following:

• Image that the process is executing

• Input and output streams for the image executing in the process

• Disk and directory defaults for the process

• System resource quotas and user privileges available to the process

When the system creates a detached process as the result of a login, it uses
the system user authorization file (SYSUAF.DAT) to determine the process's
execution con text.

For example, the following occurs when you log in to the system:

1 The process created for you executes the image LOGINOUT.

2 The terminal you are using is established as the input, output, and error
stream device for images that the process executes.

3 Your disk and directory defaults are taken from the user authorization
file.

4 The resource quotas and privileges you have been granted by the system
manager are associated with the created process.

5 A command language interpreter is mapped into the created process.

When you call the $CREPRC system service to create a process, you define
the context by specifying arguments to the service.

Sections 8.3.1 through 8.3.5 show examples of process creation and describe
how the arguments to the $CREPRC system service define the context of the
process.

8.3.1

8.3.2

Process Control Services
8. 3 Process Creation

Defining an Image for a Subprocess to Execute

PROGNAME:
.ASCID /CARRIE/

When you call the $CREPRC system service, use the image argument to
provide the process with the name of an image to execute. For example, the
following lines create a subprocess to execute the image named CARRIE.EXE.

Descriptor for image to execute

$CREPRC_S -

IMAGE=PROGNAME

Create Process to execute CARRIE

In this example, only a file name is specified; the service uses current disk
and directory defaults, performs logical name translation, uses the default
file type EXE, and locates the most recent version of the image file. When
the subprocess completes execution of the image, the subprocess is deleted.
Process deletion is described in Section 8.7.

Input, Output, and Error Devices for Subprocesses
When you call the $CREPRC system service, you can provide equivalence
names for the logical names SYS$INPUT, SYS$0UTPUT, and SYS$ERROR.
These logical name/equivalence name pairs are placed in the process logical
name table for the created process.

The following program segment is an example of defining input, output, and
error devices for a subprocess.

INSTREAM: -
.ASCID /SUB_MAIL_BOX/

OUTSTREAM: -
.ASCID /COMPUTE_OUT/

PROGNAME: -
.ASCID /COMPUTE.EXE/

Descriptor for input stream

Descriptor for output
and error stream

Descriptor for image name

$CREPRC_S - ; Create process
IMAGE=PROGNAME, -
INPUT=INSTREAM, - 0
OUTPUT=OUTSTREAM, - fJ
ERROR=OUTSTREAM C)

0 The input argument equates the equivalence name SUB_MAIL _BOX to
the logical name SYS$INPUT. This logical name may represent a mailbox
that the calling process previously created with the Create Mailbox And
Assign Channel ($CREMBX) system service. Any input the subprocess
reads from the logical device SYS$INPUT will be read from the mailbox.

8 The output argument equates the equivalence name COMPUTE_QUT to
the logical name SYS$0UTPUT. All messages the program writes to the
logical device SYS$0UTPUT will be written to this file.

8-3

Process Control Services
8.3 Process Creation

DVILIST:

$PRCDEF
$DVIDEF

.WORD 64

8 The error argument equates the equivalence name COMPUTE_OUT
to the logical name SYS$ERROR. All system-generated error messages
will be written into this file. Because this is the same file as that used
for program output, the file effectively contains a complete record of all
output produced during the execution of the program image.

The $CREPRC system service does not provide default equivalence names
for the logical names SYS$INPUT, SYS$0UTPUT, and SYS$ERROR. If none
are specified, entries in the group or system logical name tables, if any, may
provide equivalences. If, while the subprocess executes, it reads or writes
to one of these logical devices and no equivalence name exists, an error
condition results.

In a program that creates a subprocess, you can cause the subprocess to share
the input, output, or error device of the creating process. You must first
follow these steps:

1 Use the Get Device/Volume Information ($GETDVI) system service to
obtain the device name for the logical name SYS$INPUT, SYS$0UTPUT,
or SYS$ERROR.

2 Specify the address of the descriptor returned by the $GETDVI service
when you specify the input, output, or error argument to the $CREPRC
system service.

This procedure is illustrated in the following example:

.WORD DVI$_DEVNAM

.ADDRESS -

Begin $GETDVI item list
Maximum of 16 bytes long
Get terminal name

TERM
.ADDRESS -

TERMDESC
.LONG 0

Destination of terminal name

Destination of length of string
End item list

TERMDESC: Descriptor for terminal name
Maximum of 16 bytes long .WORD 64

.WORD 0
TERMADDR:

TERM:

.ADDRESS -
TERM

.BLKB 64

LOGNAM: .ASCID /SYS$INPUT/

IMAGENAME:
.ASCID /WRKD$: [ORANGE]MIRROR/

Determine terminal name

8-4

$GETDVI_S -
DEVNAM=LOGNAM, -
ITMLST=DVILIST

BLBC RO,SSERR

Terminal name is placed here

Image for subprocess

Return information on SYS$INPUT
Address of the item list

If not success, go to error routine

8.3.3

10$: $CREPRC_S -
IMAGE=IMAGENAME,
INPUT=TERMDESC, -
OUTPUT=TERMDESC, -
ERROR=TERMDESC, -
BASPRI=#4

Process Control Services
8.3 Process Creation

Create subprocess
Running MIRROR
Using creating process's
terminal as the input,
output, and error device
Set base priority to 4

When the subprocess executes, the logical names SYS$INPUT,
SYS$0UTPUT, and SYS$ERROR are equated to the device name of the
creating process's logical input device. The subprocess can then do one of the
following:

• Use VMS RMS to open the file for reading or writing, or both.

• Use the Assign I/O Channel ($ASSIGN) system service to assign an I/O
channel to the device for input/ output operations.

In the following example, the program assigns a channel to the device
specified by the logical name SYS$0UTPUT.

OUTPUT: .ASCID /SYS$0UTPUT/
OUTCHAN:

Logical name descriptor

.BLKW 1 Channel number of output device

$ASSIGN_S -
DEVNAM=OUTPUT, -
CHAN=OUTCHAN

For more information about channel assignment for I/O operations, see
Chapter 7.

Disk and Directory Defaults for Created Processes
When you use the $CREPRC system service to create a process to execute an
image, the system locates the image file in the default device and directory of
the created process. Any created process inherits the current default device
and directory of its creator.

If a created process runs an image that is not in its default directory, you must
identify the directory and, if necessary, the device in the file specification of
the image to be run.

There is no way to define a default device or directory (or both) for the
created process that is different from that of the creating process in a call to
$CREPRC. The created process can, however, define an equivalence for the
logical device SYS$DISK by calling the Create Logical Name ($CRELNM)
system service.

If the process is a subprocess, you can define an equivalence name in
the group logical name table, job logical name table, or any logical name
table shared between the creating process and the subprocess. The created
process can also set its own default directory by calling the VMS RMS default
directory control routine, SYS$SETDDIR.

8-5

8.3.4

Process Control Services
8.3 Process Creation

A process can create a process with a default directory that is different from
its own by doing the following:

1 The process that is creating a new process makes a call to SYS$SETDIR
to change its own default directory.

2 The creating process makes a call to $CREPRC to create the new process.

3 The creating process makes a call to SYS$SETDIR to change its own
default directory back to the default directory it had before the first call to
SYS$SETDIR.

The creating process now has its original default directory. The new process
has the different default directory that the creating process had when it
created the new process. For details on how to call SYS$SETDIR, see the
VMS Record Management Services Manual.

Controlling Resources of Created Processes
Ordinarily, when you create a subprocess, you need only assign it an image
to execute and, optionally, the SYS$INPUT, SYS$0UTPUT, and SYS$ERROR
devices. The system provides default values for the process's privileges,
resource quotas, execution modes, and priority. In some cases, however, you
may want to define these values specifically. The arguments to the $CREPRC
system service that control these characteristics follow. For details, see the
descriptions of arguments to the $CREPRC system service in the VMS System
Services Reference Manual.

• prvadr-This argument defines the privilege list for the created process.
If you do not specify this argument, the privileges of the calling process
are used. If you specify the prvadr argument, only the privileges specified
in the bit mask are used; the privileges of the calling process are not used.
For example, a creating process has the user privileges GROUP and
TMPMBX. It creates a process, specifying the user privilege TMPMBX.
The created process receives only the user privilege TMPMBX; it does not
have the user privilege GROUP.

If you need to create a process that has a special privilege, you must have
the user privilege SETPRV.

Symbols associated with privileges are defined by the $PRVDEF macro.
Each symbol begins with PRV$V_ and identifies the bit number that must
be set to specify a given privilege. The following example shows the data
definition for a mask specifying the GRPNAM and GROUP privileges.

PRVMSK: .LONG <1©PRV$V_GRPNAM>!<1©PRV$V_GROUP> ; Grpnam and group

8-6

.LONG 0 ; quadword mask required. No bits set in
; high-order longword for these privileges.

• quota-This argument defines the quota list for a subprocess. If you
do not specify this argument, the system defines default quotas for the
subprocess.

• stsflg-This argument defines the status flag, a set of bits that control
some execution characteristics of the created process, including resource
wait mode and process swap mode.

8.3.5

Process Control Services
8.3 Process Creation

• baspri-This argument sets the base execution priority for the created
process. If not specified, it defaults to 2 for VAX MACRO and VAX
BLISS-32 and to 0 for all other languages. If you want a subprocess to
have a higher priority than its creator, you must have the user privilege
AL TPRI to raise the priority level.

Detached Processes
The creation of a detached process is primarily a function performed by VMS
when you log in. The DETACH privilege controls the ability to create a
detached process with a UIC that is different from the UIC of the creating
process. The uic argument to the $CREPRC system service provides one way
to define whether a process is a subprocess or a detached process; it provides
the created process with a user identification code (UIC). If you omit the uic
argument, the $CREPRC system service creates a subprocess that executes
under the UIC of the creating process.

You can also create a detached process with the same UIC as the creating
process by specifying the detach flag in the stsflg argument. You do not need
DETACH privilege to create a detached process with the same UIC as the
creating process.

8.4 Interprocess Control and Communication

8.4.1

Processes can be either wholly independent or cooperative. The sections
that follow discuss considerations for developing applications that require the
concurrent execution of many programs.

Privileges for Process Creation and Control
There are three levels of process control privilege.

• Processes with the same UIC can always issue process control services for
one another.

• You need GROUP privilege to issue process control services for other
processes executing in the same group.

• You need WORLD privilege to issue process control services for any
process in the system.

You need additional privileges to perform some specific functions, for
example, to set the base priority of a process to a higher level than that
of the creating process.

8-7

8.4.2

Process Control Services
8.4 Interprocess Control and Communication

Process Identification

8-8

There are two types of process identification.

• Process identification number (PID). The system assigns this unique
32-bit number to a process when it is created. If you provide the pidadr
argument to the $CREPRC system service, the system returns the process
identification number at the location specified. You can then use the
process identification number in subsequent process control services.

• Process name. A process name is a 1- to 15-character text name string.
Each process name must be unique within its group (processes in different
groups can have the same name). You can assign a name to a process by
specifying the prcrtam argument when you create it. You can then use
this name to refer to the process in other system service calls. Note that
you cannot use a process name to specify a process outside the caller's
group; you must use a process identification number.

In the examples shown in the preceding sections, the subprocesses are not
identified.

If you want to control the execution of a subprocess, you must give it a name.
You must also name detached processes that execute in the same group if
they communicate with each other or issue control functions affecting each
other.

For example, you could call the $CREPRC system service, as follows:

ORION: .ASCID /ORION/
ORIONID:

.LONG 0

$CREPRC_S -
PRCNAM=ORION, -
PIDADR=ORIONID, ...

Descriptor for process name

Process ID returned

The service returns the process identification in the longword at ORIONID.
You can now use either the process name (ORION) or the process
identification (ORIONID) to refer to this process in other system service
calls.

A process can set or change its own name with the Set Process Name
($SETPRN) system service. For example, a process can set its name to
CYGNUS, as follows:

CYGNUS: .ASCID /CYGNUS/ ; Descriptor for process name

$SETPRN_S -
PRCNAM=CYGNUS

Most of the process control services accept either the prcnam or pidadr
argument, or both. However, you should identify a process by its process
identification number for the following reasons:

• The service executes faster because it does not have to search a table of
process names.

8.4.2.1

Process Control Services
8.4 Interprocess Control and Communication

• For a process not in your group, you must use the process identification
number (see Section 8.4.2.1).

If you specify neither the process name argument nor the process
identification number argument, the service is performed for the calling
process. Table 8-1 gives a summary of the possible combinations of these
arguments and an explanation of how the services interpret them.

Process Naming Within Groups
Process names are always qualified by their group number. The system
maintains a table of all process names and the UIC associated with each.
When you use the prcnam argument in a process control service, the table is
searched for an entry that contains the specified process name and the group
number of the calling process.

To use process control services on processes within its group, a calling process
must have the user privilege GROUP; this privilege is not required when you
specify a process with the same UIC as the caller.

The search for a process name fails if the specified process name does not
have the same group number as the caller. The search fails even if the calling
process has the user privilege WORLD. To execute a process control service
for a process that is not in the caller's group, the requesting process must use
a process identification and must have the user privilege WORLD.

Table 8-1 Process Identification

Process
Name
Specified?

No

No

No

Yes

Yes

Yes

Process ID
Address
Specified?

No

Yes

Yes

No

Yes

Yes

Contents of
Process ID

0

Process ID

0

Process ID

Resultant
Action
by Services

The process identification of
the calling process is used, but
is not returned.

The process identification of
the calling process is used and
returned.

The process identification is
used and returned.

The process name is used.
The process identification is
not returned.

The process name is used and
the process identification is
returned.

The process identification is
used and returned; the process
name is ignored.

8-9

8.4.3

Process Control Services
8.4 Interprocess Control and Communication

8.4.2.2 Obtaining Information About Processes
The Get Job /Process Information ($GETJPI) system service allows a process
to obtain information about itself or another process. For complete details
about the $GETJPI system service, see the description of $GETJPI in the VMS
System Services Reference Manual.

Techniques for Interprocess Communication

8-10

Processes can communicate in the following ways:

• Files

• Common event flag clusters

• Logical Name Tables

• Mailboxes

• Global sections

• Lock Management system services

Each communication technique offers different possibilities in terms of the
speed at which it communicates information and the amount of information
it can communicate. For example, files offer the possibility of sharing an
effectively limitless amount of information; however, the files technique is the
slowest because the disk must be accessed to share information.

Like files, global sections offer the possibility of sharing large amounts of
information. Because sharing information through global sections requires
only memory access, it is the fastest communication technique.

Logical names and mailboxes can communicate moderate amounts of
information. Because each technique operates through a relatively complex
system service, they are faster than files, but slower than the other
communication techniques.

The lock management services and common event flag cluster techniques can
communicate relatively small amounts of information. With the exception
of global sections, they are the fastest of the interprocess communication
techniques.

Common Event Flag Clusters: Processes executing within the same group
can use common event flag clusters to signal the occurrence or completion
of particular activities. For details on event flags, event flag clusters, and
an example of how cooperating processes in the same group use a common
event flag, see Chapter 4.

Logical Name Tables: Processes executing in the same job can use the
jobwide logical name table to provide member processes with equivalence
names for logical names. Processes executing in the same group can use the
group logical name table. A process must have the user privilege GRPNAM
to place names in the group logical name table. All processes in the system
can use the system logical name table. Processes can also create and use
user-defined logical name tables. For details on logical names and logical
name tables, see Chapter 6.

Process Control Services
8.4 Interprocess Control and Communication

Mailboxes: Mailboxes can be used as virtual input/output devices to pass
information, messages, or data among processes. For details on how to
create and use mailboxes, with an example of how cooperating processes
use a mailbox, see Chapter 7. Mailboxes may also be used to provide a
creating process with a way to determine when and under what condition a
created subprocess was deleted. For an example of a termination mailbox, see
Section 8.7.2.

Global Sections: Global sections can be either disk files or pagefile sections
containing shareable code or data. Through the use of memory management
services, these files can be mapped to the virtual address space of more
than one process. In the case of a data file on disk, cooperating processes
can synchronize reading and writing the data in physical memory; as data is
updated, system paging results in the updated data being written directly back
into the disk file. Global pagefile sections are useful for temporary storage of
common data; they are not mapped to a disk file. Instead, they only page to
the system default page file. Global sections are described in more detail in
Section 11.6.

Lock Management System Services: Processes can use the lock management
system services to control access to resources (any entity on the system that
the process can read, write, or execute). In addition to controlling access,
the lock management services provide a mechanism for passing information
among processes that have access to a resource (lock value blocks). Blocking
ASTs can be used to notify a process that other processes are waiting for a
resource. For more information about the lock management system services,
see Chapter 12.

8.5 Process Hibernation and Suspension
There are two ways to halt the execution of a process temporarily:
hibernation, performed by the Hibernate ($HIBER) system service, and
suspension, performed by the Suspend Process ($SUSPND) system service.
The process can continue execution normally only after a corresponding
Wake from Hibernation ($WAKE) system service, if it is hibernating, or after a
Resume Process ($RESUME) system service, if it is suspended.

Process hibernation and suspension are compared in Table 8-2.

Table 8-2 Process Hibernation and Suspension

Hibernation

Can only cause self to
hibernate

Reversed by $WAKE
system service

Interruptible; can receive
ASTs

Can wake self

Suspension

Can suspend self or another process, depending
on privilege

Reversed by $RESUME system service

Noninterruptible; cannot receive ASTs

Cannot cause self to resume

8-11

8.5.1

Process Control Services
8. 5 Process Hibernation and Suspension

Table 8-2 {Cont.) Process Hibernation and Suspension

Hibernation Suspension

Can schedule wakeup at an Cannot schedule resumption
absolute time or at a fixed
time interval

Requires little system
overhead

Requires system dynamic memory

Process Hibernation

8-12

The hibernate/wake mechanism provides an efficient way to prepare an
image for execution and then place it in a wait state until it is needed. When
you issue the wakeup request, the image is reactivated with little delay or
system overhead.

If you create a subprocess that must execute the same function repeatedly and
must execute immediately when it is needed, you could use the $HIBER and
$WAKE system services as shown in the following example:

Process TAURUS

ORION: .ASCID /ORION/
FASTCOMP:

.ASCID /COMPUTE.EXE/

Descriptor for subprocess name

Descriptor for image name

0 $CREPRC_S - Create ORION
PRCNAM=ORION, -
IMAGE=FASTCOMP, ...

BSBW ERROR ; Continue

fJ $WAKE_S PRCNAM=ORION Wake ORION
BSBW ERROR

$WAKE_S PRCNAM=ORION Wake ORION again
BSBW ERROR

Process ORION

.ENTRY COMPUTE,-M<> .,; Entry mask
10$: $HIBER_S Sleep

BSBW ERROR
Perform ...

BRW 10$ Back to sleep

0 Process TAURUS creates the process ORION, specifying the descriptor for
the image named COMPUTE.

8 At an appropriate time, TAURUS issues a $WAKE request for ORION.
ORION continues execution following the $HIBER service call. When it
finishes its job, ORION loops back to repeat the $HIBER call and to wait
for another wakeup.

8.5.2

Process Control Services
8.5 Process Hibernation and Suspension

0 The image COMPUTE is initialized, and ORION issues the $HIBER
system service.

The Schedule Wakeup ($SCHDWK) system service, a variation of the $WAKE
system service, schedules a wakeup for a hibernating process at a fixed time
or at an elapsed (delta) time interval. Using the $SCHDWK service, a process
can schedule a wakeup for itself before issuing a $HIBER call. For an example
of how to use the $SCHDWK system service, see Chapter 9.

Hibernating processes can be interrupted by Asynchronous System Traps
(ASTs), as long as AST delivery is enabled. The process can call $WAKE on
its own behalf in the AST service routine, and continue execution following
the execution of the AST service routine. For a description of ASTs and how
to use them, see Chapter 5.

Alternate Methods of Hibernation
You can use two additional techniques to cause a process to hibernate.

• Specify the stsflg argument for the $CREPRC system service, setting
the bit that requests $CREPRC to place the created process in a state of
hibernation as soon as it is initialized.

• Specify the /DELAY, /SCHEDULE, or /INTERVAL qualifier to the RUN
command when you execute the image from the command stream.

When you use the $CREPRC service, the creating process can control when
to wake the created process. When you use the RUN command, its qualifiers
control when the process is to be awakened.

If you use the /INTERVAL qualifier and the image to be executed does not
call the $HIBER system service, the image is placed in a state of hibernation
whenever it issues a RET instruction. Each time the image is reawakened, it
begins executing at its entry point. If the image does call $HIBER, each time
it is awakened it begins executing at either the point following the call to
$HIBER or at its entry point (if it last issued a RET instruction).

If wakeup requests are scheduled at time intervals, the image can be
terminated with the Delete Process ($DELPRC) or Force Exit ($FORCEX)
system service, or from the command level with the STOP command. The
$DELPRC and $FORCEX system services are described in Section 8.6.4 and
in Section 8.7. The RUN and STOP commands are described in the VMS DCL
Dictionary.

These techniques allow you to write programs that can be executed once, on
request, or cyclically. If an image is executed more than once in this manner,
normal image activation and termination services are not performed on the
second and subsequent calls to the image. Note that the program must ensure
the integrity of data areas that are modified during its execution, as well as
the status of opened files.

8-13

8.5.3

Process Control Services
8.5 Process Hibernation and Suspension

Suspension
Using the Suspend Process ($SUSPND) system service, a process can place
itself or another process into a wait state similar to hibernation. Suspension,
however, is a more pronounced state of hibernation. VMS provides no
system service to force a process to be swapped out, but the $SUSPND
system service can accomplish the task in the following way. Suspended
processes are the first processes to be selected for swapping. A suspended
process cannot be interrupted by ASTs, and can resume execution only after
another process issues a Resume Process ($RESUME) system service for it.
If ASTs are queued for the process while it is suspended, they are delivered
when the process resumes execution. This is an effective tool for blocking
delivery of all ASTs.

8.6 Image Exit

8.6.1

When image execution completes normally, the operating system performs
a variety of image rundown functions. If the image is executed by the
command interpreter, image rundown prepares the process for the execution
of another image. If the image is not executed by the command interpreter
for example, if it is executed by a subprocess-the process is deleted.

These exit activities are also initiated when an image completes abnormally as
a result of any of the following conditions:

• Specific error conditions caused by improper specifications when a process
is created. For example, if an invalid device name is specified for the
SYS$1NPUT, SYS$0UTPUT, or SYS$ERROR logical name, or if an
invalid or nonexistent image name is specified, the error condition is
signaled in the created process.

• An exception occurring during execution of the image. When an
exception occurs, any user-specified condition handlers receive control
to handle the exception. If there are no user-specified condition handlers,
a system-declared condition handler receives control, and it initiates exit
activities for the image. Condition handling is described in Chapter 10.

• A Force Exit ($FORCEX) system service issued on behalf of the process
by another process.

Image Rundown Activities

8-14

The operating system performs image rundown functions that release system
resources obtained by a process while it is executing in user mode. These
activities occur in the following order:

1 Any outstanding 1/0 requests on the 1/0 channels are canceled and 1/0
channels are deassigned.

2 Memory pages occupied or allocated by the image are deleted and the
working set size limit of the process is readjusted to its default value.

3 All devices allocated to the process at user mode are deallocated
(devices allocated from the command stream in supervisor mode are
not deallocated).

4 Timer-scheduled requests, including wakeup requests, are canceled.

8.6.2

8.6.3

Process Control Services
8.6 Image Exit

5 Common event flag clusters are disassociated.

6 Locks are dequeued as a part of rundown.

7 User mode ASTs that are queued but have not been delivered are deleted,
and ASTs are enabled for user mode.

8 Exception vectors declared in user mode, compatibility mode handlers,
and change mode to user handlers are reset.

9 System service failure exception mode is disabled.

10 All process private logical names and logical name tables created for user
mode are deleted. Deletion of a logical name table causes all names in
that table to be deleted. Note that names entered in shareable logical
name tables such as the job or group table are not deleted at image
rundown, regardless of the access mode for which they were created.

The $EXIT System Service

Exit Handlers

To initiate the rundown activities described in Section 8.6.1, the system calls
the Exit ($EXIT) system service on behalf of the process. In some cases,
a process can call $EXIT to terminate the image itself, for example, if an
unrecoverable error occurs.

The $EXIT system service accepts a status code as an argument. If you use
$EXIT to terminate image execution, you can use this status code argument
to pass information about the completion of the image. If an image returns
without calling $EXIT, the current value in RO is passed as the status code
when the system calls $EXIT.

This status code is used as follows:

• The command interpreter uses the status code to optionally display an
error message when it receives control following image rundown.

• If the image has declared an exit handler, the status code is written in the
address specified in the exit control block.

• If the process was created by another process, and the creator has
specified a mailbox to receive a termination message, the status code
is written into the termination mailbox when the process is deleted.

Exit handlers are procedures that can perform image-specific cleanup or
rundown operations. For example, if an image uses memory to buffer data,
an exit handler can ensure that the data is not lost when the image exits as
the result of an error condition.

To establish an exit-handling routine, you must set up an exit control block
and specify the address of the control block in the call to the Declare Exit
Handler ($DCLEXH) system service. Exit handlers are called using standard
calling conventions; you can provide arguments to the exit handler in the
exit control block. The first argument in the control block argument list must
specify the address of a longword for the system to write the status code from
$EXIT.

8-15

8.6.4

Process Control Services
8.6 Image Exit

Forced Exit

EXITBLOCK: 0
.LONG 0
.ADDRESS -

EXITRTN
.LONG 1
.ADDRESS -

STATUS
STATUS: .BLKL 1

If an image declares more than one exit handler, the control blocks are linked
together on a last-in, first-out basis. After an exit handler is called and returns
control, the control block is removed from the list. Exit control blocks can
also be removed prior to image exit with the Cancel Exit Handler ($CANEXH)
system service.

Exit handlers can be declared from system routines executing in supervisor
or executive mode. These exit handlers are also linked together in other lists,
and receive control after exit handlers declared from user mode are executed.

Exit handlers are called as a part of the $EXIT system service. While a call
to the $EXIT system service often precedes image rundown activities, it is
not a part of image rundown. There is no guaranteed way to insure that exit
handlers will be called if an image terminates in a nonstandard way.

The Force Exit ($FORCEX) system service provides a way for a process to
initiate image rundown for another process. For example, the following call
to $FORCEX causes the image executing in the process CYGNUS to exit.

CYGNUS: .ASCID /CYGNUS/ ; Process name descriptor

$FORCEX_S -
PRCNAM=CYGNUS

Because the $FORCEX system service calls the $EXIT system service, any exit
handlers declared for the image are executed before image rundown. Thus, if
the process is using the command interpreter, the process is not deleted, and
can run another image. Because the $FORCEX system service uses the AST
mechanism, an exit cannot be performed if the process being forced to exit
has disabled the delivery of ASTs. AST delivery, and how it is disabled and
reenabled, is described in Chapter 5.

The following program segment shows an example of an exit-handling
routine.

Exit control block
System uses this for pointer

Address of exit handler
Number of args for handler

Destination of status code
Status code from $EXIT

.ENTRY PEGASUS,-M<R2,R3>
f) $DCLEXH_S -

; Entry mask for PEGASUS

BSBW
DESBLK=EXITBLOCK
ERROR

; Declare exit handler

RET End of main routine

exit handler
.ENTRY EXITRTN,-M<R2> Entry mask

8-16

0 BLBS STATUS,10$

10$: RET

8. 7 Process Deletion

Process Control Services
8.6 Image Exit

Normal exit? yes, finish
No, clean up

; Finished

0 EXITBLOCK is the exit control block for the exit handler EXITRTN. The
third longword indicates the number of arguments to be passed. In this
example, only one argument is passed - the address of a longword
for the system to store the return status code. This argument must be
provided in an exit control block.

8 The $DCLEXH system service call designates the address of the exit
control block, thus declaring EXITRTN as an exit handler.

0 The EXITRTN exit handler checks the status code. If this is a normal exit,
EXITRTN returns control. Otherwise, it handles the error condition.

Process deletion completely removes a process from the system. A process
can be deleted by any of the following events:

• The Delete Processs ($DELPRC) system service is called.

• A process that created a subprocess is deleted.

• An interactive process uses the DCL command LOGOUT.

• A batch job reaches the end of its command file.

• An interactive process uses the DCL command STOP /ID=pid or STOP
username.

• A process that contains a single image calls the Exit ($EXIT) system
service.

When the system is called to delete a process as a result of any of these
conditions, it first locates all subprocesses, searching hierarchically. No
process can be deleted until any subprocesses it has created have been
deleted.

The lowest subprocess in the hierarchy is a subprocess that has no descendent
subprocesses of its own. When that subprocess is deleted, its parent
subprocess becomes a subprocess that has no descendent subprocesses and it
can be deleted. The topmost process in the hierarchy is the process that is the
ultimate parent process of all the other subprocesses.

Beginning with the lowest process in the hierarchy and completing with the
topmost process, each of the following procedures is performed.

• The image- executing in the process is run down. The image rundown
that occurs during process deletion is the same as that described in
Section 8.6.1. When a process is deleted, however, the rundown releases
all system resources, including those acquired from access modes other
than user mode.

• Resource quotas are released to the creating process, if the process being
deleted is a subprocess.

8-17

8.7.1

8.7.2

Process Control Services
8. 7 Process Deletion

• If the creating process specified a termination mailbox, a message
indicating that the process is being deleted is sent to the mailbox. For
detached processes created by the system, the termination message is sent
to the system job controller.

• The control region of the process's virtual address space is deleted. (The
control region consists of memory allocated and used by the system on
behalf of the process.)

• All system-maintained information about the process is deleted.

Figure 8-1 illustrates the flow of events from image exit through process
deletion.

The Delete Process System Service
A process can delete itself or another process at any time, depending on the
restrictions outlined in Section 8.4.1. The Delete Process ($DELPRC) system
service deletes a process. For example, if a process has created a subprocess
named CYGNUS, it can delete CYGNUS as follows:

CYGNUS: .ASCID /CYGNUS/ ;Descriptor for process name

$DELPRC_S-
PRCNAM=CYGNUS

Because a subprocess is automatically deleted when the image it is executing
terminates (or when the command stream for the command interpreter
reaches end-of-file), you do not normally need to issue the $DELPRC system
service explicitly.

As an alternative to deleting a process to stop an image, you can use the
Force Exit ($FORCEX) system service to force the exit of the image executing
in a process (see Section 8.6.4).

Termination Mailboxes

8-18

A termination mailbox provides a process with a way of determining when,
and under what conditions, a process that it has created is being deleted.
The Create Process ($CREPRC) system service accepts the unit number of a
mailbox as an argument. When the created process is deleted, the mailbox
receives a termination message.

The first word of the termination message contains the symbolic constant,
MSG$_DELPROC, which indicates that it is a termination message. The
second longword of the termination message contains the final status value
of the image. The remainder of the message contains system accounting
information used by the job controller, and is identical to the first part of the
accounting record sent to the system accounting log file. The description of
the $CREPRC system service in the VMS System Services Reference Manual
provides the complete format of the termination message.

Figure 8-1 Image Exit and Process Deletion

IMAGE EXIT

CALL THEM, IN LIFO ORDER,
USING ARGUMENT LIST IN EXIT
CONTROL BLOCK

YES

NO

NO CALL THE DELETE PROCESS
($DELPRC) SYSTEM SERVICE
TO DELETE THE PROCESS

NO
CALL THE EXIT HANDLER
DECLARED BY THE
COMMAND INTERPRETER'

RETURN TO COMMAND
INTERPRETER TO EXECUTE
THE NEXT IMAGE

*This exit handler is declared
from supervisor mode and is
located during the normal
search for exit handlers.

SEND A TERMINATION MESSAGE
TO THE MAILBOX SPECIFIED BY
THE PROCESS'S CREATOR

ZK-857-82

,

Process Control Services
8. 7 Process Deletion

If necessary, the creating process can determine the process identification of
the process being deleted from the 1/0 status block posted when the message
is received in the mailbox. The second longword of the IOSB contains the
process identification of the process being deleted.

A termination mailbox cannot be located in memory shared by multiple
processors.

8-19

Process Control Services
8. 7 Process Deletion

The following example illustrates a complete sequence of process creation,
with a termination mailbox.

EXCHAN:

MBXINFO:
.BLKW 1

.WORD 4 0

.WORD DVI$_UNIT

.ADDRESS -
UNITNUM

.LONG

.LONG
UNITNUM:

.WORD

0
0

EXITMSG:
.BLKB ACC$K_TERMLEN

MBXIOSB:
.BLKW 1

MBLEN: .BLKW 1
MBPID: .BLKL 1
LYRAPID:

.LONG 0
LYREXE: .ASCID /LYRA.EXE/

; To hold channel number of mailbox
; Start $GETDVI item list
Length of buff er

Address of buff er
No return length needed
End item list

To receive unit number

Buff er for mailbox message
(see $SNDACC explanation

for ACC$K_TERMLEN)

Quadword I/0 status block
Length of I/O
Receives PIO of process deleted

Get PIO of subprocess
Name of image for subprocess

$CREMBX_S - Create mailbox
CHAN=EXCHAN, -
MAXMSG=_#84, -
PROMSK=_#O, -
BUFQU0=_#240

BSBW ERROR
C) $GETDVI_S - Get mailbox info

CHAN=EXCHAN, -
ITMLST=MBXINFO

BSBW ERROR
$CREPRC_S - ; Create subprocess

IMAGE=LYREXE, -
PIDADR=LYRAPID, ... , -
MBXUNT=UNITNUM ; Specify termination mailbox

BSBW ERROR
$QIO_S CHAN=EXCHAN, - ; QIO (read) to mailbox

FUNC=_#IO$_READVBLK, -
ASTADR=EXITAST, -
IOSB=MBXIOSB, -
P1=EXITMSG, -
P2=_#ACC$K_TERMLEN

BSBW ERROR
; Continue execution

RET

AST routine for termination message

8-20

Process Control Services
8. 7 Process Deletion

0 .ENTRY EXITAST,-M<> ; Entry mask

10$:
20$:

CMPW MBXIOSB,_#SS$_NORMAL ; I/O successful?
BNEQ 20$; Branch if not
CMPW EXITMSG+ACC$W_MSGTYP,#MSG$_DELPROC

Is it a termination msg?
BNEQ 20$; No, something else
CMPL LYRAPID,MBPID ; Is it LYRA?
BNEQ 20$; No, somebody else
CMPL EXITMSG+ACC$L_FINALSTS,#SS$_NORMAL

BEQL 10$

RET

Deleted normally?
Yes, return
No, respond to error in LYRA

AST routine finished
Handle all other conditions

0 The item list for the Get Device/Volume Information ($GETDVI) system
service specifies that the unit number of the mailbox is to be returned.

8 The Create Mailbox and Assign Channel ($CREMBX) system service
creates the mailbox, and returns the channel number at EXCHAN.

0 The Create Process ($CREPRC) system service creates a process to execute
the image LYRA.EXE, and returns the process identification at LYRAPID.
The mbxunt argument refers to the unit number of the mailbox, obtained
from the Get Device/Volume Information ($GETDVI) system service.

0 The Queue I/O Request queues a read request to the mailbox, specifying
an AST service routine to receive control when the mailbox receives
a message and the address of a buffer to receive the message. The
information in the message can be accessed by the symbolic offsets
defined in the $ACCDEF macro. The process continues executing.

0 When a message is received in the mailbox, the AST service routine,
EXITAST, receives control. Because this mailbox can be used for other
interprocess communication, the AST routine checks for the following:

• Successful completion of the I/O operation by examining the first
word in the IOSB

• The message received is a termination message by examining the
message type field in the termination message at the offset
ACC$W_MSGTYPE

• The process identification of the process that has been deleted by
examining the second longword of the IOSB

• The completion status of the process by examining the status field in
the termination message at the offset ACC$LJINALSTS

In this example, the AST service routine performs special action when
the subprocess is deleted. All other messages or error conditions cause a
branch to the label 20$.

The Create Mailbox and Assign Channel ($CREMBX), Get Device/Volume
Information ($GETDVI), and Queue I/O Request ($QIO) system services are
described in greater detail in Chapter 7.

8-21

Process Control Services
8.8 Example of Using Process Control Services

8.8 Example of Using Process Control Services
The following FORTRAN example calculates gross income and taxes, and
then uses the results to calculate net income.

The INCOME.FOR program uses SYS$CREPRC, specifying a termination
mailbox, to create a subprocess to calculate taxes (CALC_TAXES) while
the INCOME program calculates gross income. The INCOME program
issues an asynchronous read to the termination mailbox. The asynchronous
read specifies an event flag to be set when the read completes. (The read
completes when CALC_TAXES completes terminating the created process
and causing the system to write to the termination mailbox.)

After finishing its own gross income calculations, INCOME.FOR waits for the
flag that indicates CALC_TAXES has completed and then figures net income.

The CALC_ TAXES.FOR program passes the tax information to
INCOME.FOR, using the installed common block created from
INSTALLED.FOR.

INSTALLED.FOR
Installed common to be linked with INCOME.FOR and
CALC_TAXES.FOR.

Unless the shareable image created from this file is
in SYS$SHARE, you must define a group logical name
INSTALLED and equate it to the full file specification
of the shareable image.

INTEGER*4 INCOME (200),
2 TAXES (200),
2 NET (200)
COMMON /CALC/ INCOME,
2 TAXES,
2 NET

END

INCOME.FOR
! Status and system routines
INCLUDE '($SSDEF)'
INCLUDE '($IODEF)'
INTEGER STATUS,
2 LIB$GET_LUN,
2 LIB$GET_EF,
2 SYS$CLREF,
2 SYS$CREMBX,
2 SYS$CREPRC,
2 SYS$GETDVIW,
2 SYS$QIO,
2 SYS$WAITFR

8-22

Process Control Services
8.8 Example of Using Process Control Services

! Set up for SYS$GETDVI
INTEGER*4 UNIT_BUF,
2 UNIT_LEN
INTEGER*2 UNIT_BUF_LEN,
2 UNIT_BUF_CODE
INTEGER*4 UNIT_BUF_ADDR,
2 UNIT_LEN_ADDR,
2 END_LIST /0/
EXTERNAL DVI$_UNIT
COMMON /GETDVI_LIST/ UNIT_BUF_LEN,
2 UNIT_BUF_CODE,
2 UNIT_BUF_ADDR,
2 UNIT_LEN_ADDR,
2 END_LIST

! Name and I/0 channel for mailbox
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = 'MAIL_BOX')
INTEGER*2 MBX_CHAN
! Logical unit number for I/0
INTEGER*4 MBX_LUN
! Mailbox message
CHARACTER*84 MBX_MESSAGE
INTEGER*4 READ_CODE,
2 LENGTH
! I/O status block
INTEGER*2 IOSTAT,
2 MSG_LEN
INTEGER*4 READER_PID
COMMON /IOBLOCK/ IOSTAT,
2 MSG_LEN,
2 READER_PID

! Declare calculation variables in installed common.
INTEGER*4 INCOME (200),
2 TAXES (200),
2 NET (200)
COMMON /CALC/ INCOME,
2 TAXES,
2 NET

! Flag to indicate taxes calculated
INTEGER*4 TAX_DONE

! Get and clear an event flag.
STATUS = LIB$GET_EF (TAX_DONE)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = SYS$CLREF (%VAL(TAX_DONE))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! Create the mailbox.
STATUS = SYS$CREMBX (,
2 MBX_CHAN,
2
2 MBX_NAME)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

8-23

Process Control Services
8.8 Example of Using Process Control Services

! Get unit number of the mailbox.
UNIT_BUF_LEN = 4
UNIT_BUF_CODE = %LOC(DVI$_UNIT)
UNIT_BUF_ADDR = %LOC(UNIT_BUF)
UNIT_LEN_ADDR = %LOC(UNIT_LEN)
STATUS = SYS$GETDVIW (,
2 %VAL(MBX_CHAN),
2 MBX_NAME, device
2 UNIT_BUF_LEN, common
2 .. ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! Create subprocess to calculate taxes
STATUS = SYS$CREPRC (,
2 'CALC_TAXES', !image
2
2
2
2

'CALC_TAXES', !process name
%VAL(4), !priority

2 %VAL(UNIT_BUF),)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! Asynchronous read to termination mailbox
! sets flag when tax calculations complete.
READ_CODE = IO$_READVBLK
LENGTH = 84
STATUS = SYS$QIO
2

(%VAL(TAX_DONE), indicates read complete

2
2
2
2
IF (.NOT. STATUS)

%VAL(MBX_CHAN), channel
%VAL(READ_CODE), function code
IOSTAT, , , status block
%REF(MBX_MESSAGE), ! P1
%VAL(LENGTH),, ,,) ! P2
CALL LIB$SIGNAL (%VAL(STATUS))

Calculate incomes.

Wait until taxes are calculated.
STATUS = SYS$WAITFR (%VAL(TAX_DONE))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! check mailbox I/0
IF (.NOT. IOSTAT) CALL LIB$SIGNAL (%VAL(IOSTAT))

! Calculate net income after taxes.

END

CALC_TAXES.FOR
! Declare calculation variables in installed common.
INTEGER*4 INCOME (200),
2 TAXES (200),
2 NET (200)
COMMON /CALC/ INCOME,
2 TAXES,
2 NET

Calculate taxes.

END

8-24

9 Timer and Time Conversion Services

Many applications require the scheduling of program activities based on clock
time. Under VMS, an image can schedule events for a specific time of day or
after a specified time interval. The timer and time conversion services are as
follows:

• Get Time ($GETTIM)

• Convert Binary Time to Numeric Time ($NUMTIM)

• Convert Binary Time to ASCII String ($ASCTIM)

• Convert ASCII String to Binary Time ($BINTIM)

• Set Timer ($SETIMR)

• Cancel Timer Request ($CANTIM)

• Schedule Wakeup ($SCHDWK)

• Cancel Wakeup ($CANWAK)

• Set System Time ($SETIME)

You can use timer services to schedule, convert, or cancel events. For
example, you may use the timer services to do the following:

• Schedule the setting of an event flag or the queuing of an asynchronous
system trap (AST) for the current process, or cancel a pending request
that has not yet been processed.

• Schedule a wakeup request for a hibernating process, or cancel a pending
wakeup request that has not yet been processed.

• Set or recalibrate the current system time, if the caller has the proper user
privileges.

The timer services require you to specify the time in a 64-bit format. To work
with the time in different formats, you can use time conversion services to do
the following:

• Obtain the current date and time in an ASCII string or in system format.

• Convert an ASCII string into the system time format.

• Convert a system time value into an ASCII string.

• Convert the time from system format to integer values.

This chapter describes the system time format and the services that use it,
with examples of how to schedule program activities using the timer services.

9-1

Timer and Time Conversion Services
9.1 The System Time Format

9.1 The System Time Format
VMS maintains the current date and time in 64-bit format. The time value is
a binary number in 100-nanosecond units offset from the system base date
and time, which is 00:00 o'clock, November 17, 1858 (the Smithsonian base
date and time for the astronomical calendar). Time values must be passed to,
or returned from, system services as the address of a quadword containing
the time in 64-bit format. A time value can be expressed as either of the
following:

• An absolute time that is a specific date and time of day. Absolute times
are always positive values (or zero).

• A delta time that is an offset from the current time to a time or date in
the future. Delta times are always expressed as negative values.

If you specify zero as the address of a time value, VMS supplies the current
date and time.

9.2 Obtaining the Current Date and Time

ATIMENOW:
.LONG 23
.ADDRESS -

TIMES TR
TIME_vALUE:

.BLKQ 1
TIMESTR:

.BLKB 23

You obtain the current time in system format by using the Get Time
($GETTIM) system service, which places the time into a quadword buffer.
For example:

TIME: .BLKQ 1

$GETTIM_S -
TIMADR=TIME

; Buff er for time

; Get time

This call to $GETTIM returns the current date and time in system format in
the quadword buffer TIME.

The Convert Binary Time to ASCII String ($ASCTIM) system service converts
a time in system format to an ASCII string and returns the string in a 23-byte
buffer. You call the $ASCTIM system service as follows:

Descriptor for ASCII time
Length of buff er

Address of buff er
64-bit time value to be converted

23 bytes returned

$ASCTIM_S -
TIMBUF=ATIMENOW, -
TIMADR=TIME_VALUE

9-2

Because the address of a 64-bit time value is not supplied, the default value,
zero, is used.

Timer and Time Conversion Services
9.2 Obtaining the Current Date and Time

The string the service returns has the following format:

dd-mmm-yyyy hh:mm:ss.cc

where:

dd

mmm

yyyy

hh:mm:ss.cc

Is the day of the month.

Is the month (a three-character alphabetic abbreviation).

Is the year.

Is the time in hours, minutes, seconds, and hundredths of
seconds.

9.3 Obtaining an Absolute Time in System Format

ASCII_NOON:

The converse of the $ASCTIM system service is the Convert ASCII String
to Binary Time ($BINTIM) system service. You provide the service with the
time in the ASCII format shown in Section 9.2. The service then converts the
string to a time value in 64-bit format. You can use this returned value as
input to a timer scheduling service.

When you specify the ASCII string buffer, you can omit any of the fields, and
the service uses the current date or time value for the field. Thus, if you want
a timer request to be date-independent, you could format the input buffer for
the $BINTIM service as shown in the following example. The two hyphens
that are normally embedded in the date field must be included, and at least
one blank must precede the time field.

.ASCID /-- 12:00:00.00/
BINARY_NOON:

Descriptor for ASCII 12 noon

.BLKQ 1 Buff er for binary 12 noon

$BINTIM_S -
TIMBUF=ASCII_NOON, -

Convert time

TIMADR=BINARY_NOON

When the $BINTIM service completes, a 64-bit time value representing "noon
today" is returned in the quadword at BINARY__NOON.

9.4 Obtaining a Delta Time in System Format
The $BINTIM system service also converts ASCII strings to delta time values
to be used as input to timer services. The buffer for delta time ASCII strings
has the following format:

dddd hh:mm:ss.cc

The first field, indicating the number of days, must be specified as 0 if you are
specifying a delta time for the current day.

9-3

Timer and Time Conversion Services
9.4 Obtaining a Delta Time in System Format

ATENMIN:

BTENMIN:

The following example shows how to use the $ BINTIM service to obtain a
delta time in system format:

.ASCID /0 00:10:00.00/ Descriptor for ASCII ten minutes

.BLKQ 1 Buff er for binary ten minutes

$BINTIM_S - Convert time
TIMBUF=ATENMIN, -
TIMADR=BTENMIN

If you are a VAX MACRO programmer, you can also specify approximate
delta time values when you assemble a program, using two MACRO .LONG
directives to represent a time value in terms of 100-nanosecond units. The
arithmetic is based on the following formula:

1 second = 10 million * 100 nanoseconds

For example, the following statement defines a delta time value of five
seconds:

FIVESEC: .LONG -10*1000*1000*5,-1 ; Five seconds

The value 10 million is expressed as 10•1000•1000 for readability. Note that
the delta time value is negative.

If you use this notation, however, you are limited to the maximum number of
100-nanosecond units that can be expressed in a longword. In terms of time
values, this is slightly more than seven minutes.

9.5 Timer Requests

9-4

Timer requests made with the Set Timer ($SETIMR) system service are
queued; that is, they are ordered for processing according to their expiration
times. The quota for timer queue entries (TQELM quota) controls the number
of entries a process can have pending in this timer queue.

When you call the $SETIMR system service, you can specify either an
absolute time or a delta time value. Depending on how you want the request
processed, you can specify either or both of the following:

• The number of an event flag to be set when the time expires. If you do
not specify an event flag, the system sets event flag 0.

• The address of an AST service routine to be executed when the time
expires.

Optionally, you can specify a ·request identification for the timer request. You
can use this identification to cancel the request, if necessary. The request
identification is also passed as the AST parameter to the AST service routine,
if one is specified, so that the AST service routine can identify the timer
request.

Examples 1 and 2 show timer requests using event flags and ASTs. Event
flags and event flag services are described in more detail in Chapter 4. ASTs
are described in more detail in Chapter 5.

Timer and Time Conversion Services
9.5 Timer Requests

Example 1: Setting an Event Flag

A30SEC: .ASCID /0 00:00:30.00/ Descriptor for ASCII 30
seconds, delta time

B30SEC: .BLKQ 1 Quadword to hold converted
(binary) delta time

$BINTIM_S - Convert to binary
TIMBUF=A30SEC, -
TIMADR=B30SEC

BSBW ERROR
0 $SETIMR_S - Set time to wait

EFN=#4, -
DAYTIM=B30SEC

BSBW ERROR : Call error routine
8 $WAITFR_S - Wait 30 seconds

EFN=#4
BSBW ERROR

0 The call to $SETIMR requests that event flag 4 be set in 30 seconds
(expressed in the quadword B30SEC).

8 The Wait for Singte Event Flag ($WAITFR) system service places the
process in a wait state until the event flag is set. When the timer expires,
the flag is set and the process continues execution.

Example 2: Using an AST Service Routine

ANDON: .ASCID /-- 12:00:00.00/ ; Descriptor for ASCII 12 noon
BNOON: .BLKQ 1 ; To hold converted (binary) noon

0 $BINTIM_S - ; Convert to binary
TIMBUF=ANOON, -
TIMADR=BNOON

BSBW ERROR
8 $SETIMR_S -

10$:

DAYTIM=BNOON, - Set timer for noon,
ASTADR=ASTSERV, - ; Specify AST routine,
REQIDT=#12 ; Request ID. of 12 as AST parameter

BSBW ERROR

RET

.ENTRY ASTSERV,-M<>
CMPL #12,4(AP)
BNEQ 10$

RET

RET

Entry mask for AST routine
Is this a "noon" AST request?
If not, handle other type(s)
Handle "noon" AST request

Handle other types of requests

9-5

Timer and Time Conversion Services
9.5 Timer Requests

0 The call to $BINTIM converts the ASCII string representing 12:00 noon
to system format. The value returned in BNOON is used as input to the
$SETIMR system service.

8 The AST routine specified in the $SETIMR request will be called when
the timer expires, at 12:00 noon. The reqidt argument identifies the timer
request. (This argument is passed as the AST parameter and is stored
at offset 4 in the argument list. See Chapter 5.) The process continues
execution; when the timer expires, it is interrupted by the delivery of the
AST. Note that if the current time of day is past noon, the timer expires
immediately.

0 This AST service routine checks the parameter passed by the reqidt
argument and checks whether it must service the 12:00 noon timer
request or another type of request (identified by a different reqidt value).
When the AST service routine completes, the process continues execution
at the point of interruption.

Canceling Timer Requests

The Cancel Timer Request ($CANTIM) system service cancels timer requests
that have not been processed. The $CANTIM service removes the entries
from the timer queue. Cancellation is based on the request identification
given in the timer request. For example, to cancel the request illustrated in
Example 2, you would use the following call to $CANTIM:

$CANTIM_S REQIDT=#12

If you assign the same identification to more than one timer request, all
requests with that identification are canceled. If you do not specify the reqidt
argument, all your requests are canceled.

9.6 Scheduled Wakeups

9-6

Example 1 shows a process placing itself in a wait state using the $SETIMR
and $WAITFR services. A process can also make itself inactive by hibernating.
A process hibernates by issuing the Hibernate ($HIBER) system service;
hibernation is reversed by a wakeup request, which can be put into effect
immediately with the $WAKE system service, or scheduled with the Schedule
Wakeup ($SCHDWK) system service. For more information about the
$HIBER and $WAKE system services, see Section 8.5.

The following example shows a process scheduling a wakeup for itself prior
to hibernating.

ATENSEC:

BTENSEC:

.ASCID /0 00:00:10.00/ Descriptor for
10-second wait time

.BLKQ 1 To hold binary ten-second value

$BINTIM_S - ; Convert time
TIMBUF=ATENSEC, -
TIMADR=BTENSEC

$SCHDWK_S - Schedule wakeup
DAYTIM=BTENSEC

$HIBER_S Sleep ten seconds

Timer and Time Conversion Services
9.6 Scheduled Wakeups

Note that a suitably privileged process can wake or schedule a wakeup
request for another process; thus, cooperating processes can synchronize
activity using hibernation and scheduled wakeups. Moreover, when you
use the $SCHDWK system service in a program, you can specify that the
wakeup request be repeated at fixed time intervals. See Chapter 8 for more
information on hibernation and wakeup.

Canceling Scheduled Wakeups

You can cancel scheduled wakeup requests that are pending but have not yet
been processed with the Cancel Wakeup ($CANWAK) system service.

The following example shows the scheduling of wakeup requests for a
process, CYGNUS, and the subsequent cancellation of the wakeups. The
$SCHDWK system service in this example specifies a delta time of one
minute and an interval time of one minute; the wakeup is repeated every
minute until the requests are canceled.

CYGNUS: .ASCID /CYGNUS/ Descriptor for process name
ONE_MIN:

.ASCID /0 00:01:00.00/ Descriptor for 1 min (delta)
INTERVAL:

.BLKQ 1 8 bytes to hold binary 1 min

$BINTIM_S - ; Convert to binary
TIMBUF=ONE_MIN, -
TIMADR=INTERVAL

$SCHDWK_S - ; Wake up every minute
PRCNAM=CYGNUS, -
DAYTIM=INTERVAL, -
REPTIM=INTERVAL

$CANWAK_S -
PRCNAM=CYGNUS

9. 7 Numeric and ASCII Time

Cancel wakeups

The Convert Binary Time to Numeric Time ($NUMTIM) system service
converts a time in the system format into binary integer values. The service
returns each of the components of the time (year, month, day, hour, and
so on) into a separate word of a 7-word buffer. The $NUMTIM system
service and the format of the information returned are described in the VMS
System Services Reference Manual.

You use the $ASCTIM system service to format the time into ASCII for
inclusion in· an output string. The $ASCTIM service accepts as an argument
the address of a quadword that contains the time in system format and
returns the date and time in ASCII format.

9-7

Timer and Time Conversion Services
9. 7 Numeric and ASCII Time

If you want to include the date and time in a character string that contains
additional data, you can format the output string with the Formatted ASCII
Output ($FAO) system service. The $FAO system service converts binary
values to ASCII representations, and substitutes the results in character
strings according to directives supplied in an input control string. Among
these directives are !% T and !%0, which convert a quadword time value to
an ASCII string and substitute the result in an output string. For examples
of how to do this, see the discussion of $FAO in the VMS System Services
Reference Manual.

9.8 Setting the System Time

9-8

The Set System Time ($SETIME) system service allows a user with the
operator (OPER) and logical 1/0 (LOG-10) privileges to set the current
system time. You can specify a new system time (using the timadr argument),
or you can recalibrate the current system time using the processor's hardware
time-of-year clock (omitting the timadr argument). If you specify a time, it
must be an absolute time value; a delta time (negative) value is invalid.

The system time is set whenever the system is bootstrapped. There is
normally no need to change the system time between system bootstrap
operations; however, in certain circumstances you may want to change
the system time without rebooting. For example, you might specify a new
system time to synchronize two processors, or to adjust for changes between
standard time and daylight savings time. You may want to recalibrate the
time to ensure that the system time matches the hardware clock time (the
hardware clock is more accurate than the system clock).

The DCL command SET TIME calls the $SETIME service.

If a process issues a delta time request and then the system time is changed,
the interval remaining for the request does not change; the request executes
after the specified time has elapsed. If a process issues an absolute time
request and the system time is changed, the request executes at the specified
time, relative to the new system time.

The following example shows the effect of changing the system time on an
existing timer request. In this example two set timer requests are scheduled:
one is to execute after a delta time of 5 minutes, the other specifies an
absolute time of 9:00.

Timer and Time Conversion Services
9.8 Setting the System Time

. TITLE

.PSECT
ABS_ TIME:

.ASCID
DELTA_ TIME:

.ASCID

SCORPIO Show scheduled wakeups
READ_ONLY_DATA,NOEXE,RD,NOWRT

/-- 9:00:00.00/ Absolute time of 9:00 AM

/0 :05:00/ Delta time of 5 minutes

.PSECT WRITEABLE_DATA,NOEXE,RD,WRT

ABS_BINARY:
.BLKQ 1

DELTA_BINARY:
.BLKQ 1

Absolute time in 64-bit format

Delta time in 64-bit format

.PSECT CODE,EXE,PIC,NOSHR,RD,NOWRT

10$:

20$:

30$:

.ENTRY SCORPIO,-M<>
$BINTIM_S -

BLBS
BRW

TIMBUF=ABS_TIME, -
TIMADR=ABS_BINARY
RO, 10$
ERR

$SETIMR_S -
DAYTIM=ABS_BINARY, -
ASTADR=GEMINI, -
REQIDT=#1

BLBS R0,20$
BRW ERR

$BINTIM_S -
TIMBUF=DELTA_TIME, -
TIMADR=DELTA_BINARY

BLBS R0,30$
BRW ERR

$SETIMR_S -
DAYTIM=DELTA_BINARY, -
ASTADR=GEMINI, -
REQIDT=#2

BLBS R0,40$
BRW ERR

Convert absolute time to
Binary

Check for error
If so, exit

Set timer to wake AST routine
at 9:00 AM
Routine is GEMINI
Request ID number 1
Check for error

Convert delta time to
binary

Check for error
If so, exit

Set timer to wake AST routine
in 15 minutes
Routine is GEMINI
Request ID number 2

9-9

Timer and Time Conversion Services
9.8 Setting the System Time

40$: $HIBER_S Hibernate process

EXIT: $EXIT_S

ERR: PUSHL
CALLS
BRW

RO
#1,G-LIB$SIGNAL
EXIT

.PSECT READ_ONLY_DATA,NOEXE,RD,NOWRT
FAD IN: .ASCID "Request ID !UB answered at !AS."

.PSECT WRITEABLE_DATA,NOEXE,RD,WRT
NOWDESC:

TIMENOW:

.LONG 12

.ADDRESS -
TI MEN OW

.BLKB 12
FAO_OUT:

FAO_STR:

10$:

.

.LONG 80

.ADDRESS -
FAO_STR

.BLKB 80

.PSECT CODE,EXE,PIC,NOSHR,RD,NOWRT

.ENTRY GEMINI,~M<R6,R7,R8,R9,R10,R11>

$ASCTIM_S - Find out the current time
TIMBUF=NOWDESC, -
CVTFLG=#1 Hours, mins, secs, only

BLBS R0,10$
BRW ERR

$FAO_S CTRSTR=FAO_IN, -
OUTBUF=FAO_OUT, -
OUTLEN=FAO_OUT, -
P1=4(AP), -
P2=#NOWDESC

BLBS ·R0,20$
BRW ERR

Format string
Place in FAO_OUT

Request ID
Current time

20$: PUSHAL FAO_OUT
CALLS #1,G-LIB$PUT_OUTPUT
RET

. END SCORPIO

The following example shows the output received from the preceding
program. Assume the program starts execution at 8:45. Seconds later, the
system time is set to 9:15. The timer request that specified an absolute time
of 9:00 executes immediately, because 9:00 has passed. The request that
specified a delta time of 5 minutes times out at 9:20.

$ SHOW TIME
30-DEC-1988 8:45:04.56 +----------------------+

$ RUN SCORPIO I operator sets system I
<---! time to 9:15
Request ID number 1 executed at 09:15:00.00 +----------------------+
Request ID number 2 executed at 09:20:00.02
$

9-10

Timer and Time Conversion Services
9.9 Example of Using the Timer Service

9.9 Example of Using the Timer Service
To execute a program at timed intervals, you can use either LIB$SPAWN or
LIB$CREPRC. With LIB$SPAWN, you can create a subprocess that executes a
command procedure containing three commands: the DCL command WAIT,
the command that invokes the desired program, and a GOTO command that
directs control back to the WAIT command. To prevent the parent process
from remaining in hibernation until the subprocess executes, you should
execute the subprocess concurrently.

The following steps describe how to use SYS$CREPRC to execute a program
at timed intervals. To create a detached process, you must use SYS$CREPRC.

1 Use SYS$CREPRC to create a process that executes the desired program.
Set the PRC$VJfIBER bit of the stsflg argument of the SYS$CREPRC
system service to indicate that the created process should hibernate before
executing the program.

2 Use the SYS$SCHDWK system service to specify the time at which the
system should wake the subprocess and a time interval at which the
system should repeat the wakeup call.

The following program creates a subprocess that hibernates immediately.
(The identification number of the created subprocess is returned to the parent
process so that it can be passed to SYS$SCHDWK.) The system wakes the
subprocess at 6:00 a.m. the morning of the 23rd (month and year default to
system month and year) and every 10 minutes thereafter.

SYS$CREPRC options and values
INTEGER OPTIONS
EXTERNAL PRC$V_HIBER

! ID of created subprocess
INTEGER CR_ID

! Binary times
INTEGER TIME(2),
2 INTERVAL(2)

Set the PRC$V_HIBER bit in the OPTIONS mask and
create the process.

OPTIONS = IBSET (OPTIONS, %LOC(PRC$V_HIBER))
STATUS = SYS$CREPRC (CR_ID, PID of created process
2 'CHECK' , image
2
2 'SLEEP', Process name
2 %VAL(4), Priority
2
2 %VAL(OPTIONS)) ! Hibernate
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Translate 6:00 a.m. (absolute time) to binary
STATUS= SYS$BINTIM ('23-- 06:00:00.00', ! 6:00 a.m.
2 TIME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Translate 10 minutes (delta time) to binary
STATUS = SYS$BINTIM ('0 :10:00.00', ! 10 minutes
2 INTERVAL)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

9-11

Timer and Time Conversion Services
9.9 Example of Using the Timer Service

! Schedule wakeup calls
STATUS = SYS$SCHDWK (CR_ID, ID of created process
2
2 TIME, Initial wakeup time
2 INTERVAL) Repeat wakeup time
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

9-12

1 0 Condition-Handling Services

10.1

A condition handler is a procedure that is given control when an exception
occurs. An exception is an event that is detected by the hardware or software
and that interrupts the execution of an image. Examples of exceptions include
arithmetic overflow or underflow and reserved opcode or operand faults.

If you determine that a program needs to be informed of particular exceptions
so that it can take corrective action, you can write and specify a condition
handler. This condition handler, which receives control when any exception
occurs, can test for specific exceptions.

If an exception occurs and you have not specified a condition handler,
the default condition handler established by the operating system is given
control. If the exception is a fatal error, the default condition handler issues a
descriptive message and causes the image that incurred the exception to exit.

This section describes how the condition-handling mechanism in VMS works
and explains how to write a condition handler. You use the following system
services in writing a condition handler:

• Set Exception Vector ($SETEXV)

• Set System Service Failure Exception Mode ($SETSFM)

• Unwind from Condition Handler Frame ($UNWIND)

• Declare Change Mode or Compatibility Mode Handler ($DCLCMH)

Types of Exception
Exceptions can be generated by any of the following:

• Hardware

• Software

• System service failures

Hardware-generated exceptions always result in conditions that require
special action if program execution is to continue.

Software-generated exceptions may result in error or warning conditions.
These conditions and their messages are documented in the VMS System
Messages and Recovery Procedures Reference Volume or, for certain software
routines, in the manual associated with that routine. (VAX MACRO error
messages appear in the VAX MACRO User's Guide.)

System service failure exceptions occur when an error or severe error status
is returned from a call to a system service. You can choose to handle error
returns from system services by using the condition-handling mechanism
rather than other error-checking methods. If you want to handle exceptions

10-1

Condition-Handling Services
1 0. 1 Types of Exception

generated by service failures, you must enable system service failure exception
mode with the Set System Service Failure Mode ($SETSFM) system service.
For example:

$SETSFM_S ENBFLG=#1

System service failure exception mode is initially disabled, and may be
enabled or disabled at any time during the execution of an image. For
additional information about system service failure exception modes, see
Section 2.5.2.2.

Table 10-1 provides a summary of common conditions caused by exceptions.
The condition names are listed in the first column. The second column
explains the condition more fully by giving inf9rmation about the type,
meaning, and arguments relating to the conditi<\n. The condition type is
either trap or fault. Because the explanation of tY}Jes is complicated, you
should refer to the VAX Architecture Handbook for '1lore detailed information.
The meaning of the exception condition is a short description of each
condition. The arguments for the condition handler are listed, if any apply;
they give specific information about the condition.

Table 10-1 Summary of Exception Conditions

Condition Name

SS$_ACCVIO

SS$_ARTRES

10-2

Explanation

Type:

Description

Arguments:

Type:

Description

Arguments:

Fault

Access violation

1 Reason for access violation. This is a mask with the
following format:

Bit 0 = type of access violation

0 = page table entry protection code did not
permit intended access

1 = POLR, P 1 LR, or SLR length violation

Bit 1 = page table entry reference

0 = specified virtual address not accessible

1 = associated page table entry not accessible

Bit 2 = intended access

0 =read

1 =modify

2 Virtual address to which access was attempted or, on
some processors, virtual address within the page to which
access was attempted

Trap

Reserved arithmetic trap

None

Condition-Handling Services
1 0. 1 Types of Exception

Table 10-1 (Cont.) Summary of Exception Conditions

Condition Name Explanation

SS$_ASTFLT

SS$_BREAK

SS$_CMODSUPR

SS$_CMODUSER

Type:

Description

Arguments:

Type:

Description

Arguments:

Type:

Description

Arguments:

Type:

Description

Arguments:

Trap

Stack invalid during attempt to deliver an AST

1 Stack pointer value when fault occurred

2 AST parameter of failed AST

3 Program counter (PC) at AST delivery interrupt

4 Processor status longword (PSL) at AST delivery
interrupt 1

5 Program counter (PC) to which AST would have been
delivered 1

6 Processor status longword (PSL) to which AST would
have been delivered 1

Fault

Breakpoint instruction encountered

None

Trap

Change mode to supervisor instruction encountered2

Change mode code. The possible values are -32, 768 through
32,767.

Trap

Change mode to user instruction encountered2

Change mode code. The possible values are -32, 768 through
32,767.

1 The PC and PSL normally included in the signal array are not included in this argument list. The stack pointer of the
access mode receiving this exception is reset to its initial value.

2 tf a change mode handler has been declared for user or supervisor modes with the Declare Change Mode or
Compatibility Mode Handler ($DCLCMH) system service, that routine receives control when the1 associated trap occurs.

10-3

Condition-Handling Services
1 0. 1 Types of Exception

Table 10-1 (Cont.) Summary of Exception Conditions

Condition Name

SS$_COMPAT

SS$_DECOVF

SS$_FLTDIV

SS$_FL TDIV_F

SS$_FLTOVF

SS$_FL TOVF _F

SS$_FLTUND

Explanation

Type:

Description

Arguments:

Type:

Description

Arguments:

Type:

Description

Arguments:

Type:

Description

Arguments:

Type:

Description

Arguments:

Type:

Description

Arguments:

Type:

Description

Arguments:

Fault

Compatibility mode exception. This exception condition can
occur only when executing in compatibility mode.3

Type of compatibility exception. The possible values are as
follows:

0 = Reserved instruction execution

1 = BPT instruction executed

2 = IOT instruction executed

3 = EMT instruction executed

4 = TRAP instruction executed

5 = Illegal instruction executed

6 = Odd address fault

7 = TBIT trap

Trap

Decimal overflow

None

Trap

Floating/decimal divide by zero

None

Fault

Floating divide by zero fault

None

Trap

Floating overflow

None

Fault

Floating overflow fault

None

Trap

Floating underflow

None

3 1f a compatibility mode handler has been declared with the Declare Change Mode or Compatibility Mode Handler
($DCLCMH) system service, that routine receives control when this fault occurs.

10-4

Condition-Handling Services
1 0. 1 Types of Exception

Table 10-1 (Cont.) Summary of Exception Conditions

Condition Name

SS$_FL TUND_F

SS$_INTDIV

SS$_1NTOVF

SS$_0PCCUS

SS$_0PCDEC

SS$_PAGRDERR

SS$_RADRMOD

Explanation

Type:

Description

Arguments:

Type:

Description

Arguments:

Type:

Description

Arguments:

Type:

Description

Arguments:

Type:

Description

Arguments:

Type:

Description

Arguments:

Type:

Description

Arguments:

Fault

Floating underflow fault

None

Trap

Integer divide by zero

None

Trap

Integer overflow

None

Fault

pcode reserved to customer fault

None

Fault

Opcode reserved by DIGIT AL fault

None

Fault

Read error occurred during an attempt to read a faulted page
from disk

1 Translation not valid reason. This is a mask with the
following format:

Bit 0 = 0

Bit 1 = page table entry reference

0 = specified virtual address not valid

1 = associated page table entry not valid

Bit 2 = intended access

0 =read

1 =modify

2 Virtual address of referenced page

Fault

Attempt to use a reserved addressing mode

None

10-5

10.2

Condition-Handling Services
1 0. 1 Types of Exception

Table 10-1 (Cont.) Summary of Exception Conditions

Condition Name

SS$_RQPRAND

SS$_SSFAIL

SS$_SUBRNG

SS$_TBIT

Explanation

Type:

Description

Arguments:

Type:

Description

Arguments:

Type:

Description

Arguments:

Type:

Description

Arguments:

Fault

Attempt to use a reserved operand

None

Fault

System service failure (when system service failure exception
mode is enabled)

Status return from system service (RO). (The same value is in
RO of the mechanism array.)

Trap

Subscript range trap

None

Fault

Trace bit is pending following an instruction

None

Change Mode and Compatibility Mode Handlers

Two types of hardware exception can be handled in a way different from the
normal condition-handling mechanism described in this chapter. The two
types of hardware exception are as follows:

• Traps caused by change mode to user or change mode to supervisor
instructions

• Compatibility mode faults

You can use the Declare Change Mode or Compatibility Mode Handler
($DCLCMH) system service to establish procedures to receive control when
one of these conditions occurs. The $DCLCMH system service is described in
the VMS System Services Reference Manual.

How to Specify Condition Handlers

10-6

You can establish condition handlers to receive control in the event of an
exception in two ways.

• By specifying the address of the entry mask of a condition handler in the
first longword of a procedure call frame

• By establishing exception handlers with the Set Exception Vector
($SETEXV) system service

10.3

Condition-Handling Services
10.2 How to Specify Condition Handlers

The first of these methods is the preferred way to specify a condition handler
for a particular image. The use of call frame handlers is also the most
efficient way in terms of declaration. Vectored handlers should be used for
special purposes, such as writing debuggers. The VAX MACRO programmer
can use the following single move address instruction to place the address of
the condition handler in the longword pointed to by the current frame pointer
(FP).

MOVAB HANDLER,(FP)

The high-level language programmer can call the common Run-Time Library
routine LIB$ESTABLISH (see the VMS Run-Time Library Routines Volume);
however, some languages provide access to condition handling as part of the
language.

Each procedure on the call stack can declare a condition handler.

The $SETEXV system service allows you to specify addresses for a primary
exception handler, a secondary exception handler, and a last chance exception
handler. Handlers may be specified for each access mode. The primary
exception vector is reserved for the debugger. In general, you should avoid
using the vectored handlers unless absolutely necessary. If you use a vectored
handler, it must be prepared for all exceptions occurring in that access mode.

An address of 0 in the first longword of a procedure call frame or in an
exception vector indicates that no condition handler exists for that call frame
or vector.

The Exception Dispatcher
When an exception occurs, control is passed to the operating system's
exception dispatching routine. The exception dispatcher searches for a
condition-handling routine in the following order:

1 The primary exception vector for the access mode at which the program
was executing when the exception occurred.

2 The secondary exception vector for the access mode at which the program
was executing when the exception occurred.

3 The condition handler address specified in the procedure call stack
of the access mode at which the program was executing when the
exception occurred. The exception dispatcher scans call frames on the
stack backwards, using the saved frame pointer in each call frame to refer
to the previous call frame.

4 The last chance exception vector for the access mode at which the
program was executing when the exception occurred.

The search is terminated when the dispatcher finds a condition handler. If the
dispatcher cannot find a user-specified condition handler, it calls the condition
handler whose address is stored in the last chance exception vector. If the
image was activated by the command interpreter, the last chance vector points
to the catch-all condition handler. The catch-all handler issues a message and
either continues program execution or causes the image to exit, depending on
whether the condition was a warning or an error condition, respectively.

10-7

10.4

Condition-Handling Services
10.3 The Exception Dispatcher

You may call the catch-all handler in two ways:

• If the last chance exception vector returns to the dispatcher, or if the
last chance exception vector is empty, the last chance exception vector
calls the catch-all condition handler, and exits with the return status code
SS$_NOHANDLER.

• If the exception dispatcher detects an access violation, it calls the catch-all
condition handler, and exits with the return status code SS$_ACCVIO.

Figure 10-1 illustrates the exception dispatcher's search of the call stack for a
condition handler.

The Argument List Passed to a Condition Handler

10-8

When the dispatcher finds a condition handler, it passes control to it using
a CALLG instruction. The argument list passed to the condition handler
is constructed on the stack and consists of the addresses of two argument
arrays, as illustrated in Figure 10-2; these arguments are described in detail in
Sections 10.4.1 and 10.4.2.

Using the $CHFDEF macro instruction, you can define the following symbolic
names to refer to these arguments:

Symbolic Offset

CHF$L _SIGARGLST

CHF$L _MCHARGLST

CHF$L_SIG_ARGS

CHF$L_SIG_NAME

CHF$L_SIG_ARG 1

CHF$L_MCH_ARGS

CHF$L _MCH _FRAME

CHF$L _MCH _DEPTH

CHF$L_MCH_SAVRO

CHF$L_MCH_SAVR 1

Value

Address of signal array

Address of mechanism array

Number of signal arguments

Condition name

First signal-specific argument

Number of mechanism arguments

Establisher frame address

Frame depth of establisher

Saved register RO

Saved register R 1

Condition-Handling Services
10.4 The Argument List Passed to a Condition Handler

Figure 1 0-1 Search of Stack for Condition Handler

C runs and
incurs con dition _i

0

FP

B calls C l
0

FP

es (FP) 1
lls B

A writ
and ca

HANDLERA

FP

Xe alls A t

..

'~

Notes on Figure 10-1

Condition
Occurs

Condition
Handler Found

ZK-858-82

1 The illustration of the call stack indicates the calling sequence: Procedure
A calls Procedure B, and Procedure B calls Procedure C. Procedure A
establishes a condition handler.

2 An exception occurs while Procedure C is executing. The exception
dispatcher searches for a condition handler.

10-9

Condition-Handling Services
10.4 The Argument List Passed to a Condition Handler

3 After checking for a condition handler declared in the exception vectors
(assume that none has been specified for this process), the dispatcher
looks at the first longword of Procedure C's call frame. A value of 0
indicates that no condition handler has been specified. The dispatcher
locates the call frame for Procedure B by using the frame pointer (FP) in
Procedure C's call frame. Again, it finds no condition handler, and locates
Procedure A's call frame.

4 The dispatcher locates and gives control to HANDLERA.

10.4.1 Signal Array Arguments
The signal array contains the following values describing the condition.

• Condition name-The symbolic value assigned to the specific condition.
The possible exception conditions and their symbolic definitions are listed
in Table 10-1.

• Arguments-Specific information relating to the condition (see
Table 10-1).

• PC-The program counter at the time of the exception. Depending on the
type of exception (fault or trap), this can be the address of the instruction
that caused the exception (for a fault), or of the following instruction (for
a trap).

• PSL-The processor status longword at the time of the exception.

10.4.2 Mechanism Array Arguments

10-10

The mechanism array describes the context in which the exception occurred.
The exception dispatcher supplies the following arguments:

• Establisher frame-The frame pointer (FP) registers contents of the call
frame that established the condition handler. This is the address of the
longword containing the condition handler address. For example, if the
call stack is as shown in Figure 10-1, this argument points to the call
frame for Procedure A.

This value can be used to display local variables in the procedure that
established the condition handler, if the variables are at known offsets
from the FP of the procedure.

Condition-Handling Services
10.4 The Argument List Passed to a Condition Handler

Figure 10-2 Argument List and Arrays Passed to Condition Handler

Signal Array
__,,. I n

condition name

~
arguments for

~~ condition handler,

Argument List if any

I 2
PC

address of signal array PSL

address of mechanism array

Mechanism Array

~ I 4

establisher frame

depth

RO

R1

You can define symbolic names to refer to these arguments using the
$CHFDEF macro instruction. The symbolic names are as follows:

Symbolic Offset

CHF$L _SIGARGLST
CHF$L _MCHARGLST

CHF$L _SIG_ARGS
CHF$L_SIG_NAME
CHF$L _SIG_ARG 1

CHF$L_MCH_ARGS
CHF$L _MCH_FRAME
CHF$L _MCH_DEPTH
CHF$L_MCH_SAVRO
CHF$L _MCH_SA VR 1

Value

Address of signal array
Address of mechanism array

Number of signal arguments
Condition name
First signal-specific argument

Number of mechanism arguments
Establisher frame address
Frame depth of establisher
Saved register RO
Saved register R 1

ZK-859-82

10-11

10.5

Condition-Handling Services
10.4 The Argument List Passed to a Condition Handler

• Depth-The frame number of the procedure that established the
condition handler, relative to the frame of the procedure that incurred
the exception. The depth is determined as follows:

Depth

-3

Meaning

Condition handler was established in the last chance exception
vector

-2 Condition handler was established in the primary exception vector

-1 Condition handler was established in the secondary exception
vector

0 Condition handler was established by the frame that was active
when the exception occurred

Condition handler was established by the caller of the frame that
was active when the exception occurred

2 Condition handler was established by the caller of the caller of the
frame that was active when the exception occurred

For example, if the call stack is as shown in Figure 10-1, the depth
argument passed to HANDLERA would have a value of 2.

The condition handler can use this argument to determine whether it
wants to handle the condition. For example, the handler may not want
to handle the condition if the exception that caused the condition did not
occur in the establisher frame.

• RO-The contents of register 0 when the exception occurred.

• Rl-The contents of register 1 when the exception occurred.

Courses of Action for the Condition Handler

10-12

After the condition-handling routine determines the nature of the exception,
it can take one of the three following courses of action:

• Continue

The condition handler may or may not be able to fix the problem, but
the program can attempt to continue execution. The handler places the
return status value SS$_CONTINUE in RO and issues a RET instruction
to return control to the dispatcher. If the exception was a fault, the
instruction that caused it is reexecuted; if the exception was a trap, control
is returned at the instruction following the one that caused it.

Condition-Handling Services
10.5 Courses of Action for the Condition Handler

• Resignal

The handler cannot fix the problem, or this condition is one that it does
not handle. It places the return status value SS$-RESIGNAL in RO and
issues a RET instruction to return control to the exception dispatcher. The
dispatcher resumes its search for a condition handler. If it finds another
condition handler, it passes control to that routine.

• Unwind

The condition handler cannot fix the problem, and execution cannot
continue while using the current flow. The handler issues the Unwind
Call Stack ($UNWIND) system service to unwind the call stack. Call
frames may then be removed from the stack and the flow of execution
modified, depending on the arguments to the $UNWIND service.

Examples of these three situations are shown in the next two sections.

10.5.1 Example of Condition-Handling Routines
The following example shows two procedures, A and B, that have declared
condition handlers. The notes describe the sequence of events that would
occur if a call to a system service failed during the execution of Procedure B.

.ENTRY PGMA,-M<>

t» MOVAB HANDLERA,(FP)
$SETSFM_S -

ENBFLG=#1

f) CALLG ARGLIST,PGMB

; Entry mask for
; procedure A

Declare condition handler

; Enable SSFAIL
; exceptions

Call procedure B

... ENTRY HANDLERA,-M<R2,R3,R4> ; Entry mask of HANDLERA

e

10$:

MOVL CHF$L_SIGARGLST(AP),R4 ; Get addr of signal args
CMPL #SS$_SSFAIL,CHF$L_SIG_NAME(R4)

BNEQ 10$

MOVZWL #SS$_CONTINUE,RO
RET

MOVZWL #SS$_RESIGNAL,RO
RET

.ENTRY PGMB,-M<R2,R3,R4>

System service failure?
No - resignal
handle SSFAIL exception

Signal to continue
Return to exception
dispatcher
Signal to resignal
Return to dispatcher

CitMOVAB HANDLERB,(FP)
; Entry mask of procedure B

Declare condition handler

8
<-- System service failure occurs CD

10-13

Condition-Handling Services
10.5 Courses of Action for the Condition Handler

fa.ENTRY HANDLERB,-M<R2,R3,R4> ; Entry mask of HANDLERB

MOVL CHF$L_SIGARGLST(AP),R4 ; Get addr of signal args
CMPL #SS$_BREAK,CHF$L_SIG_NAME(R4) ; Breakpoint fault?
BNEQ 10$ No, resignal

Yes, handle exception

MOVZWL #SS$_CONTINUE,RO
RET

Signal to continue
Return to exception
dispatcher

10$: MOVZWL #SS$_RESIGNAL,RO
RET

Signal to resignal 0
Return to dispatcher

0 Procedure A executes and establishes condition handler HANDLERA.
HANDLERA is set up to respond to exceptions caused by failures in
system service calls.

8 During its execution, Procedure A calls Procedure B.

C) The exception dispatcher resumes its search for a condition handler and
calls HANDLERA.

0 HANDLERA handles the system service failure exception, corrects the
condition, places the return value SS$_CONTINUE in RO, and returns
control to the exception dispatcher.

0 Procedure B establishes condition handler HANDLERB. HANDLERB is
set up to respond to breakpoint faults.

0 While Procedure Bis executing, an exception occurs caused by a system
service failure.

8 The dispatcher returns control to Procedure B, and execution of Procedure
B resumes at the instruction following the system service failure.

fa The exception dispatcher searches the exception vectors for a condition
handler (assume there are none defined), and then searches the call stack.
HANDLERB is called with the condition SS$_SSFAIL.

0 Because HANDLERB handles only breakpoint faults, it places the return
value SS$_RESIGNAL in RO and returns control to the exception
dispatcher.

10.5.2 Unwinding the Call Stack

10-14

The third course of action a condition handler can take is to unwind the
procedure call stack. The unwind operation is complex, and should be used
only when control must be restored to an earlier procedure in the calling
sequence. Moreover, use of the $UNWIND system service requires the calling
condition handler to be aware of the calling sequence and of the exact point
to which control is to return.

The $UNWIND system service accepts two optional arguments.

• The depth to which the unwind is to occur. If the depth is 1, the
call stack is unwound to the caller of the procedure that incurred the
exception. If the depth is 2, the call stack is unwound to the caller's
caller, and so on. By specifying the depth in the mechanism array, the
handler can unwind to the procedure that established the handler.

•

Condition-Handling Services
10.5 Courses of Action for the Condition Handler

The address of a location to receive control when the unwind operation is
complete, that is, a PC to replace the current PC in the call frame of the
procedure that will receive control when all specified frames have been
removed from the stack.

If no argument is supplied to the $UNWIND service, the unwind is performed
to the caller of the procedure that established the condition handler that is
issuing the $UNWIND service. Control is returned to the address specified
in the return PC for that procedure. Note that this is the default and normal
case for unwinding.

Another common case of unwinding is to unwind to the procedure that
declared the handler. This is done by using the depth value from the
exception mechanism array (CHF$L_MCH_DEPTH) as the depth argument
to $UNWIND.

It therefore follows that the default unwind (no depth specified) is equivalent
to specifying CHF$L_MCH_DEPTH plus one. In certain cases of nested
exceptions, however, this is not the case. DIGITAL recommends that you
omit the depth argument when unwinding to the caller of the routine that
established the condition handler.

Figure 10-3 illustrates an unwind situation and describes some of the possible
results.

The unwind operation consists of two parts:

1 In the call to $UNWIND, the return PC's saved in the stack are modified
to point into a routine within the $UNWIND service, but the entire stack
remains present.

2 When the handler returns, control is directed to this routine by the
modified PC's. It proceeds to return to itself, removing the modified stack
frames, until the stack has been unwound to the proper depth.

For this reason, the stack is in an intermediate state directly after calling
$UNWIND. Handlers should in general return immediately after calling
$UNWIND.

During the actual unwinding of the call stack, the unwind routine examines
each frame in the call stack to see if a condition handler has been declared.
If a handler has been declared, the unwind routine calls the handler with the
status value SS$_UNWIND (indicating that the call stack is being unwound)
in the condition name argument of the signal array. When a condition
handler is called with this status value, it can perform any procedure-specific
clean-up operations required. After the handler returns, the call frame is
removed from the stack.

Thus, in Figure 10-3, HANDLERS may be called a second time, during
the unwind operation. Note that HANDLERS does not have to be able to
specifically interpret the SS$_UNWIND status value; the RET instruction
merely returns control to the unwind procedure, which does not check any
status values.

10-15

Condition-Handling Services
10.5 Courses of Action for the Condition Handler

10-16

Figure 10-3 Unwinding the Call Stack

D runs and incurs cond it ion

C ca lls D

s (FP) B write
and call sC

1
0

FP

A~

0

FP

j
HANDLERS

FP

A calls B

0

FP

X calls A t

Notes on Figure 10-3

...... -

*

ZK-860-82

1 The procedure call stack is as shown. Assume that no exception vectors
are declared for the process and that the exception occurs during the
execution of Procedure D.

2 Because neither Procedure D nor Procedure Chas established a condition
handler, HANDLERB receives control.

10.6

10.7

Condition-Handling Services
10.5 Courses of Action for the Condition Handler

3 If HANDLERB issues the $UNWIND system service with no arguments,
the call frames for B, C, and Dare removed from the stack (along with
the call frame for HANDLERB itself), and control returns to Procedure A.
Procedure A receives control at the point following its call to Procedure B.

4 If HANDLERB issues the $UNWIND system service specifying a depth of
2, call frames for C and D are removed, and control returns to
Procedure B.

Multiple Exceptions
A second exception may occur while a condition handler or a procedure that
it has called is still executing. In this case, when the exception dispatcher
searches for a condition handler, it skips the frames that were searched to
locate the first handler.

The search for a second handler terminates in the same manner as the initial
search, as described in Section 10.3.

If the $UNWIND system service is issued by the second active condition
handler, the depth of the unwind is determined according to the same rules
followed in the exception dispatcher's search of the stack: all frames that
were searched for the first condition handler are skipped.

Primary and secondary vectored handlers, on the other hand, are always
entered when an exception occurs.

If an exception occurs during the execution of a handler established in
the primary or secondary exception vector, that handler must handle the
additional condition. Failure to do so correctly may result in a recursive
exception loop in which the vectored handler is repeatedly called until the
user stack is exhausted.

Example of Using Condition-Handling Services
This section contains an example of how to use condition-handling services.

You should write an exit handler as a subroutine because no function value
can be returned. The dummy arguments of the exit subroutine should agree
in number, order, and data type with the arguments you specified in the call
to SYS$DCLEXH.

Assume that two or more programs are cooperating. To keep track of which
programs are executing, each has been assigned a common event flag (the
common event flag cluster is named ALIVE). When a program begins, it sets
its flag; when the program terminates, it clears its flag. Because each program
must clear its flag before exiting, you create an exit handler to perform
the action. The exit handler accepts two arguments: the final status of the
program and the number of the event flag to be cleared.

Because in the following example the clean-up operation is to be performed
whether the program completes successfully or not, the final status is not
examined in the exit routine.

10-17

Condition-Handling Services
10. 7 Example of Using Condition-Handling Services

! Arguments for exit handler
INTEGER*4 EXIT_STATUS ! Status
INTEGER*4 FLAG /64/
! Setup for exit handler
STRUCTURE /EXIT_DESCRIPTOR/

INTEGER LINK,
2 ADDR,
2 ARGS /2/,
2 STATUS_ADDR,
2 FLAG_ADDR
END STRUCTURE
RECORD /EXIT_DESCRIPTOR/ HANDLER

! Exit handler
EXTERNAL EXIT_HANDLER

INTEGER*4 STATUS,
2 SYS$ASCEFC,
2 SYS$SETEF

! Associate with the common event flag
! cluster and set the flag.
STATUS= SYS$ASCEFC (%VAL(FLAG),
2 'ALIVE' , ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$SETEF (%VAL(FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Do not exit until cooperating program has a chance to
associate with the common event flag cluster.

Enter the handler and argument addresses
into the exit handler description.

HANDLER.ADDR = %LOC(EXIT_HANDLER)
HANDLER.STATUS_ADDR = %LOC(EXIT_STATUS)
HANDLER.FLAG_ADDR = %LOC(FLAG)
! Establish the exit handler.
CALL SYS$DCLEXH (HANDLER)

Continue with program

END

! Exit Subroutine

SUBROUTINE CLEAR_FLAG (EXIT_STATUS,
2 FLAG)
! Exit handler clears the event flag

! Declare dummy argument
INTEGER EXIT_STATUS,
2 FLAG

! Declare status variable and system routine
INTEGER STATUS,
2 SYS$ASCEFC,
2 SYS$CLREF

! Associate with the common event flag
! cluster and clear the flag
STATUS= SYS$ASCEFC (%VAL(FLAG),
2 'ALIVE' , ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$CLREF (%VAL(FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

10-18

11 Memory Management Services

The VMS memory management routines map and control the relationship
between physical memory and the virtual address space of a process. These
activities are, for the most part, transparent to you and your programs. In
some cases, however, you can make a program more efficient by explicitly
controlling its virtual memory usage. Memory management system services
are as follows:

• Expand Program/Control Region ($EXPREG)

• Create Virtual Address Space ($CRETVA)

• Delete Virtual Address Space ($DEL TVA)

• Create and Map Section ($CRMPSC)

• Map Global Section ($MGBLSC)

• Delete Global Section ($DGBLSC)

• Update Section File on Disk ($UPDSEC)

• Lock Pages in Working Set ($LKWSET)

• Unlock Pages from Working Set ($ULWSET)

• Adjust Working Set Limit ($ADJWSL)

• Purge Working Set ($PURGWS)

• Lock Page in Memory ($LCKPAG)

• Unlock Page in Memory ($ULKPAG)

• Set Protection on Pages ($SETPRT)

• Set Process Swap Mode ($SETSWM)

• Set Stack Limits ($SETSTK)

Memory management services allow you to control the size of virtual and
physical memory address space available to a program. For example, they
allow you to do the following:

• Increase or decrease the virtual address space available in the program or
control region of a process.

• Control the process's working set size and the exchange of pages between
physical memory and the paging device.

• Define disk files containing data or shareable images and map the files
into the virtual address space of a process.

11-1

Memory Management Services

This chapter discusses the services that provide these capabilities. However,
before you use any of these services, you should have an understanding
of the VAX memory structure and memory management routines. Where
pertinent, virtual memory concepts related to the use of particular services
are discussed in this section. For more background information, see the VMS
Glossary.

11.1 Virtual Address Space

11.2

The virtual address space of a process is divided into two regions:

• The program region (PO), which contains the image currently being
executed.

• The control region (Pl), which contains the information maintained by
the system on behalf of the process. It also contains the user stack, which
expands toward the lower-addressed end of the control region.

Figure 11-1 illustrates the layout of a process's virtual memory. The initial
size of a process's virtual address space depends on the size of the image
being executed.

To facilitate memory protection and mapping, the virtual address space is
subdivided into 512-byte units called pages. Using memory management
services, a process can add a specified number of pages to the end of either
the program region or the control region. Adding pages to the program region
provides the process with additional space for image execution, for example,
for the dynamic creation of tables or data areas. Adding pages to the control
region increases the size of the user stack. As new pages are referenced, the
stack is automatically expanded. (You can also expand the user stack when
you link the image, by using the STACK= option in a linker options file.)

The maximum size to which a process can increase its address space is
controlled by the SYSGEN parameter VIRTUALPAGECNT.

Increasing and Decreasing Virtual Address Space

11-2

The Expand Program/Control Region ($EXPREG) system service adds pages
to the end of either the program or control region, and optionally returns the
range of virtual addresses of the new pages. For example, if you want to add
four pages to the program region of a process, you can write a call to the
$EXPREG system service, as follows:

BEGSPACE:
.BLKL 2 2 longwords to hold start

and end of new pages

$EXPREG_S - ; Get 4 pages
PAGCNT=#4, -
RETADR=BEGSPACE, -
REGION=#O

Memory Management Services
11.2 Increasing and Decreasing Virtual Address Space

Figure 11-1 Layout of Process Virtual Address Space

Virtual
Address

00000000

3FFFFFFF
40000000

7FFFFFFF

PROGRAM REGION
(PO)

T

I
I

direction of
growth

I

• length - - - - - - - - -

CONTROL REGION
(P1)

length - - - - - -._- - -
I

I

direction of
growth

I
I

_l

ZK-861-82

The value 0 is passed in the region argument to specify that the pages are
to be added to the program region. To add the same number of pages to the
control region, you would specify REGION=#l.

Note that the region argument to the $EXPREG service is optional; if not
specified, the pages are added to or deleted from the program region by
default.

The $EXPREG service can add pages only to the end of a particular region.
When you need to add pages that are not at the end of these regions, you can
use the Create Virtual Address Space ($CRETVA) system service. Likewise,
when you need to delete pages created by either $EXPREG or $CRETVA,
you can use the Delete Virtual Address Space ($DELTVA) system service.
For example, if you have used the $EXPREG service twice to add pages to
the program region, and want to delete the first range of pages but not the
second, you could use the $DEL TVA system service as shown in the following
example.

11-3

11.3

Memory Management Services
11 .2 Increasing and Decreasing Virtual Address Space

BEGSPACEA:
.BLKL 2

BEGSPACEB:
.BLKL 2

Start and end of 1st area

Start and end of 2nd area

$EXPREG_S - Four pages
PAGCNT=#4, -
RETADR=BEGSPACEA, -
REGION=#O

BSBW ERROR

$EXPREG_S - Three more
PAGCNT=#3, -
RETADR=BEGSPACEB, -
REGION=#O

BSBW ERROR

$DELTVA_S - Delete first 4 pages
INADR=BEGSPACEA

BSBW ERROR

In this example, the first call to $EXPREG adds four pages to the program
region; the virtual addresses of the created pages are returned in the two
longword array at BEGSP ACEA. The second call adds three pages, and
returns the addresses at BEGSPACEB. The call to $DELTVA deletes the first
four pages that were added.

Input Address Arrays and Return Address Arrays

11-4

When the $EXPREG system service adds pages to a region, it adds them in
the normal direction of growth for the region. The return address array, if
requested, indicates the order in which the pages were added. For example:

• If the program region is expanded, the starting virtual address is smaller
than the ending virtual address.

• If the control region is expanded, the starting virtual address is larger than
the ending virtual address.

The addresses returned indicate the first byte in the first page that was added
or deleted and the last byte in the last page that was added or deleted.

When input address arrays are specified for the Create or Delete Virtual
Address Space system service ($CRETVA and $DEL TVA), these services add
or delete pages beginning with the address specified in the first longword and
ending with the address specified in the second longword.

The order in which the pages are added or deleted does not have to be in the
normal direction of growth for the region. Moreover, because these services
add or delete only. whole pages, they ignore the low-order 9 bits of the
specified virtual address (the low-order 9 bits contain the byte offset within
the page). The virtual addresses returned indicate the byte offsets.

11.4

Memory Management Services
11 .3 Input Address Arrays and Return Address Arrays

Table 11-1 shows some sample virtual addresses that may be specified as
input to $CRETVA or $DELTVA and shows the return address arrays, if all
pages are successfully added or deleted.

Table 11-1 Sample Virtual Address Arrays

Input Array Output Array Number
Start End Region Start End of Pages

1010 1670 PO 1000 17FF 4
1450 1451 PO 1400 15FF 1
1200 1000 PO 1000 13FF 2
1450 1450 PO 1400 15FF
7FFEC010 7FFEC010 P1 7FFEC1FF 7FFECOOO 1
7FFEC010 7FFEBCAO P1 7FFEC1FF 7FFEBCOO 3

Note that if the input virtual addresses are the same, as in the fourth and fifth
items in Table 11-1, a single page is added or deleted. The return address
array indicates that the page was added or deleted in the normal direction of
growth for the region.

Page Ownership and Page Protection
Each page in the virtual address space of a process is owned by the access
mode that created the page. For example, pages in the program region
initially provided for the execution of an image are owned by user mode.
Pages that the image creates dynamically are also owned by user mode.
Pages in the control region, except for the pages containing the user stack, are
normally owned by more privileged access modes.

Only the owner access mode or a more privileged access mode can delete the
page or otherwise affect it. The owner of a page can also indicate, by means
of a protection code, the type of access that each access mode will be allowed.

The Set Protection on Pages ($SETPRT) system service changes the protection
assigned to a page or group of pages. The protection is expressed as a code
that indicates the specific type of access (none, read-only, or read/write) for
each of the four access modes (kernel, executive, supervisor, user). Only
the owner access mode or a more privileged access mode can change the
protection for a page.

When an image attempts to access a page that is protected against the access
attempted, a hardware exception called an access violation occurs. When
an image calls a system service, the service probes the pages to be used to
determine whether an access violation would occur if the image attempts to
read or write one of the pages. If an access violation would occur, the service
exits with the status code SS$_ACCVIO.

11-5

11.5

Memory Management Services
11 .4 Page Ownership and Page Protection

Because the memory management services add, delete, or modify a single
page at a time, one or more pages can be successfully changed before an
access violation is detected. If the retadr argument is specified in the service
call, the service returns the addresses of pages changed (added, deleted,
or modified) before the error. If no pages are affected, that is, if an access
violation would occur on the first page specified, the service returns a -1 in
both longwords of the return address array.

If the retadr argument is not specified, no information is returned.

Working Set Paging

11-6

When a process is executing an image, a subset of its pages resides in physical
memory; these pages are called the working set of the process. The working
set includes pages in both the program region and the control region.

When the image refers to a page that is not in memory, a page fault occurs,
and the page is brought into memory, replacing an existing page in the
working set. If the page that is going to be replaced is modified during the
execution of the image, that page is written into a paging file on disk. When
this page is needed again, it is brought back into memory, again replacing a
current page from the working set. This exchange of pages between physical
memory and secondary storage is called paging.

The paging of a process's working set is transparent to the process. However,
if a program is very large, or if pages in the program image that are used
often are being paged in and out frequently, the overhead required for paging
may decrease the program's efficiency. The following system services allow a
process, within limits, to counteract these potential problems:

• The Adjust Working Set Limit ($ADJWSL) system service increases or
decreases the maximum number of pages that a process can have in its
working set.

• The Purge Working Set ($PURGWS) system service removes one or more
pages from the working set.

• The Lock Pages in Working Set ($LKWSET) system service makes one or
more pages in the working set ineligible for paging.

The initial size of a process's working set is defined by the process's working
set default (WSDEFAULT) quota. Because some programs may have larger
memory requirements than others, a program can call the $ADJWSL system
service to dynamically increase the process's working set limit. When the
additional pages are no longer needed in the working set, the program can
call the $ADJWSL system service to decrease the working set limit. It can also
call the $PURGWS system service to remove pages from the working set that
are no longer in use. The maximum size of a process's working set is defined
by the process's working set quota (WSQUOTA).

Under some circumstances, an image may not want certain pages to be paged
out at all; in this case, the image can lock these pages in the working set
with the Lock Pages in Working Set ($LKWSET) system service. As long as
the process's working set is in memory, these pages cannot be paged out
until they are explicitly unlocked with the Unlock Pages in Working Set
($ULWSET) system service.

Memory Management Services
11.6 Process Swapping

11.6 Process Swapping
The operating system balances the needs of all the processes currently
executing, providing each with the system resources it requires on an as
needed basis. The memory management routines balance the memory
requirements of the process. Thus, the sum of the working sets for all
processes currently in physical memory is called the balance set.

When a process whose working set is in memory becomes inactive-for
example, to wait for an I/O request or to hibernate-the entire working set
or part of it may be removed from memory to provide space for another
process's working set to be brought in for execution. This removal from
memory is called swapping.

The working set may be removed in two ways:

• Partially-also called swapper trimming. Pages are removed from the
working set of the target process so that the number of pages in the
working set is fewer, but the working set is not swapped.

• Entirely-called swapping. All pages are swapped out of memory.

When a process is swapped out of the balance set, all the pages (both
modified and unmodified) of its working set are swapped, including any
pages that had been locked in the working set.

A privileged process may lock itself in the balance set. While pages can still
be paged in and out of the working set, the process remains in memory even
when it is inactive. To lock itself in the balance set, the process issues the Set
Process Swap Mode ($SETSWM) system service, as follows:

$SETSWM_S SWPFLG=#1

This call to $SETSWM disables process swap mode. You can also disable
swap mode by setting the appropriate bit in the STSFLG argument to the
Create Process ($CREPRC) system service; however, you need the PSWAPM
privilege to alter process swap mode.

A process can also lock pages in memory with the Lock Pages in Memory
($LCKPAG) system service. When a page is locked in memory with this
service, the page remains in memory even when the remainder of the
process's working set is swapped out of the balance set. This system service
can be useful in special circumstances, for example, for routines that perform
I/O operations to devices without using the VMS I/O system.

You can unlock pages locked in memory with the Unlock Pages in Memory
($ULKPAG) system service. However, you need the PSWAPM privilege to
issue the $LCKPAG or $ULKPAG service.

11-7

11.7.

11. 7 .1

Memory Management Services
11 . 7 Sections

Sections

Creating Sections

11-8

A section is a disk file or a portion of a disk file containing data or instructions;
that can be brought into memory and made available to a process for
manipulation and execution. A section can also be one or more consecutive
page frames in physical memory or 1/0 space; such sections, which require
you to specify page frame number mapping, are discussed in Section 11.7.15.

Sections are either private or global (shared).

• Private sections are accessible only by the process that creates them. A
process can define a disk data file as a section, map it into its virtual
address space, and manipulate it.

• Global sections can be shared by more than one process. One copy of
the global section resides in physical memory, and each process sharing
it refers to the same copy. A global section can contain shareable code
or data that can be read, or read and written, by more than one process.
Global sections are either temporary or permanent and can be defined
for use within a group or on a system-wide basis. Global sections can be
either mapped to a disk file or created as a global page-file section.

When modified pages in writable disk file sections are paged out of memory
during image execution, they are written back into the section file, rather than
into the paging file, as is the normal case with files. (However,
copy-on-reference sections are not written back in to the section file.)

The use of disk file sections involves two distinct operations:

1 The creation of a section defines a disk file as a section and informs the
system what portions of the file contain the section.

2 The mapping of a section makes it available to a process and establishes
the correspondence between virtual blocks in the file and specific
addresses in the virtual address space of a process.

The Create and Map Section ($CRMPSC) system service creates and maps a
private section or a global section. Because a private section is used only by a
single process, creation and mapping are simultaneous operations. In the case
of a global section, one process can create a permanent global section and not
map to it; other processes can map to it. A process can also create and map a
global section in one operation.

The following sections describe creating, mapping, and using disk file
sections. In each case, operations and requirements that are common to
both private sections and global sections are described first, followed by
additional notes and requirements for the use of global sections. Section
11.7.15 discusses special requirements for page frame sections; Section 11.7.9
discusses global page-file sections.

To create a disk file section, you must follow these steps:

1 Open or create the disk file containing the section.

2 Define which virtual blocks in the file comprise the section.

3 Define the characteristics of the section.

Memory Management Services
11 . 7 Sections

11. 7. 2 Opening the Disk File
Before you can use a file as a section, you must open it using VMS RMS. The
following example shows the VMS RMS file access block ($FAB) and $OPEN
macros used to open the file, and the channel specification to the $CRMPSC
system service necessary for reading an existing file:

SECFAB: $FAB FNM=<SECTION.TST>, ; File access block
FOP=UFO
RTV= -1

$OPEN FAB=SECFAB
$CRMPSC_S -

CHAN=SECFAB+FAB$L_STV, ...

The file options parameter (FOP) indicates that the file is to be opened for
user 1/0; this option is required so that VMS RMS assigns the channel using
the access mode of the caller. VMS RMS returns the channel number on
which the file is accessed; this channel number is specified as input to the
$CRMPSC system service (chan argument). The same channel number can
be used for multiple create and map section operations.

The option, RTV=-1 tells the file system to keep all of the pointers to be
mapped in memory at all times. If this option is omitted, the $CRMPSC
service requests the file system to expand the pointer areas if necessary.
Storage for these pointers is charged to BYTLM quota, which means that
opening a badly fragmented file can fail with an EXBYTLM failure status. Too
many fragmented sections may cause the byte limit to be exceeded.

The file may be a new file that is to be created while it is in use as a section.
In this case, you should use the $CREATE macro to open the file. If you are
creating a new file, the file access block (FAB) for the file must specify an
allocation quantity (ALQ parameter).

You can also use $CREATE to open an existing file; if the file does not exist, it
will be created. The following example shows the required fields in the FAB
for the conditional creation of a file:

GBLFAB: $FAB FNM=<GLOBAL.TST>, -
ALQ=4, -
FAC=PUT,
FOP=<UFO.CIF ,CBT>, -
SHR=<PUT,UPI>

$CREATE FAB=GBLFAB

When the $CREATE macro is invoked, it creates the file GLOBAL. TST if the
file does not currently exist. The CBT (contiguous-best-try) option requests
that, if possible, the file be contiguous. Although section files are not required
to be contiguous, better performance can result if they are.

11-9

Memory Management Services
11 . 7 Sections

11. 7. 3 Defining the Section Extents
After the file is opened successfully, the $CRMPSC system service can
create a section from the entire file, or from only certain portions of it. The
following arguments to $CRMPSC define the extents of the file that comprise
the section:

• pagcnt (page count). This argument is required; it indicates the number
of virtual blocks that will be mapped. These blocks correspond to pages
in the section.

• vbn (virtual block number). This argument is optional; it defines the
number of the virtual block in the file that is the beginning of the section.
If you do not specify this argument, the value 1 is passed (the first virtual
block in the file is the beginning of the section). If you have specified
physical page frame number mapping, the vbn argument specifies the
starting page frame number.

11. 7 .4 Defining the Section Characteristics

11-10

The flags argument to the $CRMPSC system service defines the following
section characteristics:

• Whether it is a private section or a global section (the default is to create
a private section).

• How the pages of the section are to be treated when they are copied
into physical memory or when a process refers to them. The pages in a
section can be either, or both, of the following:

Read/write or read-only

Created as demand-zero pages or as copy-on-reference pages,
depending on how the processes are going to use the section and
whether the file contains any data (see Section 11.7.10)

• Whether the section is to be mapped to a disk file or to specific physical
page frames (see Section 11.7.15).

Table 11-2 shows the flag bits that must be set for specific characteristics.

Memory Management Services
11 . 7 Sections

Table 11-2 Flag Bits to Set for Specific Section Characteristics

Section to Be Created

Correct Flag PFN PFN Shared
Combinations Private Global Private Global Memory

SEC$M_GBL 0 0 1 1

SEC$M_CRF Optional Optional 0 0 0

SEC$M_DZRO Optional Optional 0 0 Optional

SEC$M_WRT Optional Optional Optional Optional Optional

SEC$M_PERM Not used Optional Optional 1 1

SEC$M_SYSGBL Not used Optional Not used Optional Optional

SEC$M_PFNMAP 0 0 1 0

SEC$M_EXPREG Optional Optional Optional Optional Optional

SEC$M_PAGFIL 0 Optional 0 0 0

When specifying section characteristics, the following restrictions hold:

• Global sections cannot be both demand-zero and copy-on-reference.

• Demand-zero sections must be writable.

• Shared memory private sections are not allowed.

11. 7. 5 Defining Global Section Characteristics
If the section is a global section, you must assign a character string name
(gsdnam argument) to it so that other processes can identify it when
they map it. The format of this character string name is explained in
Section 11.7.6.

The flags argument specifies the following types of global section:

• Group temporary (the default)

• Group permanent

• System temporary

• System permanent

Group global sections can be shared only by processes executing with the
same group number. The name of a group global section is implicitly
qualified by the group number of the process that created it. When other
processes map it, their group numbers must match.

A temporary global section is automatically deleted when no processes are
mapped to it, but a permanent global section remains in existence even
when no processes are mapped to it. A permanent global section must be
explicitly marked for deletion with the Delete Global Section ($DGBLSC)
system service.

You need the user privileges PRMGBL and SYSGBL to create permanent
group global sections or system global sections (temporary or permanent),
respectively.

A system global section is available to all processes in the system.

11-11

Memory Management Services
11 . 7 Sections

Optionally, a process creating a global section can specify a protection mask
(prot argument) restricting all access or a type of access (read, write, execute,
delete) to other processes.

11.7.6 Global Section Name

11-12

The gsdnam argument specifies a descriptor that points to a character string.

Translation of the gsdnam argument proceeds in the following manner:

1 The current name string is prefixed with GBL$ and the result is subject to
logical name translation.

2 If the result is a logical name, step 1 is repeated until translation does
not succeed or until the number of translations performed exceeds the
number specified by the SYSGEN parameter LNM$C_MAXDEPTH.

3 The GBL$ prefix is stripped from the current name string that could not
be translated. This current string is the global-section-name.

For example, assume that you have made the following logical name
assignment:

$ DEFINE GBL$GSDATA GSDATA_001

Your program contains the following statements:

NAMEDESC:
.ASCID /GSDATA/

$CRMPSC_S -
GSDNAM=NAMEDESC, ...

Descriptor for logical name
of section

The following logical name translation takes place.

1 GBL$ is prefixed to GDSDATA.

2 GBL$GSDATA is translated to GSDATA_OQl. (No further translation is
successful. When logical name translation fails, the string is passed to the
service.)

There are three exceptions to the logical name translation method discussed
in this section:

• If the name string starts with an underscore (-), VMS strips the
underscore and considers the resultant string to be the actual name
(that is, no further translation is performed).

• If the name string is the result of a logical name translation, then the
name string is checked to see if it has the "terminal" attribute. If the
name string is marked with the "terminal" attribute, VMS considers the
resultant string to be the actual name (that is, no further translation is
performed).

• If the global section has a name in the format name_nnn, VMS first strips
the underscore and the digits (nnn), then translates the resultant name
according to the sequence discussed in this section, and finally reappends
the underscore and digits. The system uses this method in conjunction
with known images and shared files installed by the system manager.

Memory Management Services
11 . 7 Sections

11. 7. 7 Mapping Sections
When you call the $CRMPSC system service to create or map a section, or
both, you must provide the service with a range of virtual addresses (inadr
argument) into which the section is to be mapped.

If you know specifically which pages the section should be mapped into, you
provide these addresses in a two-longword array. For example, to map a
private section of 10 pages into virtual pages 10 through 19 of the program
region, specify the input address array as follows:

MAPRANGE:
.LONG AX1400
.LONG AX2300

; Address (hex) of page 10
; Address (hex) of page 19

You do not need to know the explicit addresses to provide an input address
range. If you want the section mapped into the first available virtual address
range in the program (PO) or control (Pl) region, you can specify the
SEC$M-EXPREG flag bit in the flags argument. In this case, the addresses
specified by the inadr argument control whether the service finds the first
available space in the program or control region. The value specified or
defaulted for the pagcnt argument determines the number of pages mapped.
The following example shows part of a program used to map a section at the
current end of the program region.

MAPRANGE:
.LONG AX200
.LONG AX200

RETRANGE:
.BLKL 2

$CRMPSC_S -

Any program (PO) region address
Any PO address (can be same)

Address range returned here

INADR=MAPRANGE, -
RETADR=RETRANGE,
FLAGS=<SEC$M_EXPREG>, ...

The addresses specified do not have to be currently in the virtual address
space of the process. The $CRMPSC system service creates the required
virtual address space during the mapping of the section. If you specify the
retadr argument, the service returns the range of addresses actually mapped.

After a section is mapped successfully, the image can refer to the pages using
one of the following:

• A base register or pointer and predefined symbolic offset names

• Labels defining offsets of an absolute program section or structure

11-13

Memory Management Services
11 . 7 Sections

11-14

The following example shows part of a program used to create and map a
process section:

SECFAB: $FAB

MAPRANGE:
.LONG
.LONG

RETRANGE:
.BLKL

ENDRANGE:
.BLKL

$OPEN
BLBS
BSBW

FNM=<SECTION.TST>, -
FOP=UFO, -
FAC=PUT, -
SHR=<GET,PUT>

1

1

FAB=SECFAB
R0, 10$
ERROR

10$: $CRMPSC_S -
INADR=MAPRANGE,
RETADR=RETRANGE,
PAGCNT=#4,
FLAGS=#SEC$M_WRT,-

20$:

BLBS
BSBW
MOVL

CHAN=SECFAB+FAB$L_STV
R0,20$
ERROR
RETRANGE,R6

Notes on Example

First page
Last page

First page mapped

Last page mapped

Open section file

Input address array
Output array
Map four pages
Read/write section
Channel number

Point to start of section

1 The OPEN macro opens the section file defined in the file access block
SECFAB. (The FOP parameter to the $FAB macro must specify the UFO
option.)

2 The $CRMPSC system services uses the addresses specified at
MAPRANGE to specify an input range of addresses into which the
section will be mapped. The pagcnt argument requests that only four
pages of the file be mapped.

3 The flags argument requests that the pages in the section have read/write
access. The symbolic flag definitions for this argument are defined in the
$SECDEF macro. Note that the file access field (FAC parameter) in the
FAB also indicates that the file is to be opened for writing.

4 When $CRMPSC completes, the addresses of the four pages that were
mapped are returned in the output address array at RETRANGE. The
address of the beginning of the section is placed in general register 6,
which serves as a pointer to the section.

11. 7 .8 Mapping Global Sections

Memory Management Services
11 . 7 Sections

A process that creates a global section can map to it when it creates it. Then,
other processes can map it by calling the Map Global Section ($MGBLSC)
system service.

When a process maps a global section, it must specify the global section name
assigned to the section when it was created, whether it is a group or system
global section, and whether it desires read-only or read/write access. The
process may also specify the following:

• A version identification (indent argument}, indicating the version number
of the global section (when multiple versions exist) and whether more
recent versions are acceptable to the process.

• A relative page number (relpag argument}, specifying the page number,
relative to the beginning of the section, to begin mapping the section. In
this way, processes can use only portions of a section. Additionally, a
process can map a piece of a section into a particular address range and
subsequently map a different piece of the section into the same virtual
address range.

To specify that the global section being mapped is located in physical memory
that is being shared by multiple processors, you can include the shared
memory name in the gsdnam argument character string (see Section 11.7.6).
A demand-zero global section in memory shared by multiple processors must
be mapped when it is created.

Cooperating processes can both issue a $CRMPSC system service to create
and map the same global section. The first process to call the service actually
creates the global section; subsequent attempts to create and map the section
result only in mapping the section for the caller. The successful return status
code SS$_CREATED indicates that the section did not already exist when the
$CRMPSC system service was called. If the section did exist, the status code
SS$_NORMAL is returned.

The example in Section 11.7.10 shows one process (ORION) creating a global
section and a second process (CYGNUS) mapping the section.

11. 7 .9 Global Page-File Sections
Global page-file sections are used to store temporary data in a global section.
A global page-file section is a section of virtual memory that is not mapped
to a file. The section can be deleted when processes have finished with it.
Contrast this with demand-zero pages where no initialization is necessary, but
the pages are saved in a file. The SYSGEN parameter GBLP AGFIL controls
the total number of global page-file pages in the system.

To create a global page-file section, you must set the flag bits SEC$M_GBL
and SEC$M_P AGFIL in the flags argument to the Create and Map Section
($CRMPSC) system service. The channel (chan argument) must be zero.

You cannot specify the flag bit SEC$M_CRF with the flag bit
SEC$M_P AGFIL.

11-15

Memory Management Services
11 . 7 Sections

11. 7 .10 Section Paging

11-16

The first time an image executing in a process refers to a page that was
created during the mapping of a disk file section, the page is copied into
physical memory. The address of the page in the virtual address space of a
process is mapped to the physical page. During the execution of the image,
normal paging can occur; however, pages in sections are not written into
the page file when they are paged out, as is the normal case. Rather, if they
have been modified, they are written back into the section file on disk. The
next time a page fault occurs for the page, the page is brought back from the
section file.

If the pages in a section were defined as demand-zero pages or copy
on-reference pages when the section was created, the pages are treated
differently, as follows:

• If the call to $CRMPSC requested that pages in the section be treated as
demand-zero pages, these pages are initialized to zeros when they are
created in physical memory. If the file is either a new file being created as
a section or a file being completely rewritten, demand-zero pages provide
a convenient way of initializing the pages. The pages are paged back into
the section file.

• When the virtual address space is deleted, all unreferenced pages are
written back to the file as zeros. This causes the file to be initialized, no
matter how few pages were modified.

• If the call to $CRMPSC requested that pages in the section be
copy-on-reference pages, each process that maps to the section receives
its own copy of the section, on a page-by-page basis from the file, as it
refers to them. These pages are never written back into the section file,
but are paged to the paging file as needed.

In the case of global sections, more than one process can be mapped to the
same physical pages. If these pages need to be paged out or written back to
the disk file defined as the section, these operations are done only when the
pages are not in the working set of any process.

In the following example, process ORION creates a global section, and
process CYGNUS maps to that section.

Process ORION
FLGCLUSTER: ; Descriptor for common event flag cluster name

.ASCID /FLAG_CLUSTER/
GLOBALSEC: Descriptor for global section name

.ASCID /GLOBAL_SECTION/

FLGSET = 65 Flag number to associate and set

Memory Management Services
11 . 7 Sections

GBLFAB: $FAB FNM=<GLOBAL.TST>, -
FOP=<UFO,CIF,CBT>,
ALQ=4, -
FAC=PUT

0 $ASCEFC_S -
EFN=#FLGSET, -
NAME=FLGCLUSTER

BLBS RO, 10$
BSBW ERROR

8 $CRMPSC_S - ; Create global section
10$: GSDNAM=GLOBALSEC,-

FLAGS=#SEC$M_WRT!SEC$M_GBL, ...
BLBS R0,20$
BSBW ERROR
$SETEF_S - ; Set common event flag

20$: EFN=#FLGSET

Process CYGNUS

CLUSTER:
.ASCID /FLAG_CLUSTER/ ; Cluster name descriptor

SECTION:
.ASCID /GLOBAL_SECTION/ ; Section name descriptor

FLGSET = 65

$ASCEFC_S -
EFN=#FLGSET, -
NAME=CLUSTER

BLBS R0, 10$
BSBW ERROR
$WAITFR_S -

10$: EFN=#FLGSET
BLBS R0,20$
BSBW ERROR
$MGBLSC_S -

20$: INADR=MAPRANGE, -
RETADR=RETRANGE,
FLAGS=#SEC$M_GBL,- ; Global section
GSDNAM=SECTION ; Section name

BSBW ERROR

0 The processes ORION and CYGNUS are in the same group. Each process
first associates with a common event flag cluster named FLAG-CLUSTER
to use common event flags to synchronize its use of the section.

8 The process ORION creates the global section named GLOBAL_
SECTION, specifying section flags that indicate that it is a global section
(SEC$M_GBL) and has read/write access. Input and output address
arrays, the page count parameter, and the channel number arguments are
not shown; procedures for specifying them are the same as shown in this
example.

0 The process CYGNUS associates with the common event flag cluster and
waits for the flag defined as FLGSET; ORION sets this flag when it has
finished creating the section. To map the section, CYGNUS specifies the
input and output address arrays, the flag indicating that it is a global
section, and the global section name. The number of pages mapped is the
same as that specified by the creator of the section.

11-17

Memory Management Services
11 . 7 Sections

11. 7. 11 Reading and Writing Data Sections
Read/write sections provide a way for a process or cooperating processes to
share data files in virtual memory.

The sharing of global sections may involve application-dependent
synchronization techniques. For example, one process can create and map to
a global section in read/write fashion; other processes can map to it in read
only fashion and interpret data written by the first process. Or, two or more
processes can write to the section concurrently. (In this case, the application
must provide the necessary synchronization and protection.)

After a file is updated, the process or processes can release (or unmap) the
section. The modified pages are then written back into the disk file defined as
a section.

When this is done, the revision number of the file is incremented, and
the version number of the file remains unchanged. A full directory listing
indicates the revision number of the file and the date and time that the file
was last updated.

11. 7 .12 Releasing and Deleting Sections

11-18

A process unmaps a section by deleting the virtual addresses in its own
virtual address space to which it has mapped the section. If a return address
range was specified to receive the virtual addresses of the mapped pages,
this address range can be used as input to the Delete Virtual Address Space
($DEL TVA) system service, as follows:

$DELTVA_S INADR=RETRANGE

When a process unmaps a private section, the section is deleted; that is,
all control information maintained by the system is deleted. A temporary
global section is deleted when all processes that have mapped to it have
unmapped it. Permanent global sections are not deleted until they are
specifically marked for deletion with the Delete Global Section ($DGBLSC)
system service; they are then deleted when no more processes are mapped.

Note that deleting the pages occupied by a section does not delete the section
file, but rather cancels the process's association with the file. Moreover,
when a process deletes pages mapped to a read/write section and no other
processes are mapped to it, all modified pages are written back into the
section file.

After a section is deleted, the channel assigned to it can be deassigned. The
process that created the section can deassign the channel with the Deassign
I/O Channel system service, as follows:

$DASSGN_S CHAN=GBLFAB+FAB$L_STV

Memory Management Services
11 . 7 Sections

11. 7 .13 Writing Back Sections

11. 7 .14 Image Sections

Because read/write sections are not normally updated on disk until the
physical pages they occupy are paged out, or until all processes referring to
the section have unmapped it, a process should ensure that all modified pages
are successfully written back into the section file at regular intervals.

The Update Section File on Disk ($UPDSEC) system service writes the
modified pages in a section into the disk file. The $UPDSEC system service is
described in the VMS System Services Reference Manual.

Global sections can contain shareable code. The operating system uses global
sections to implement shareable code, as follows:

1 The object module containing code to be shared is linked to produce
a shareable image. The shareable image is not, in itself, executable. It
contains a series of sections, called image sections.

2 You link private object modules with the shareable image to produce an
executable image. No code or data from the shareable image is put into
the executable image.

3 The system manager uses the INSTALL command to create a permanent
global section from the shareable image file, making the image sections
available for sharing.

4 When you run the executable image, VMS automatically maps the global
sections created by the INSTALL command into the virtual address space
of your process.

For details on how to create and identify shareable images and how to link
them with private object modules, see the VMS Linker Utility Manual. For
information about how to install shareable images and make them available
for sharing as global sections, see the Guide to Maintaining a VMS System.

11. 7 .15 Page Frame Sections
A page frame section is one or more contiguous pages of physical memory
or I/O space that have been mapped as a section. One use of page frame
sections is to map to an I/O page, thus allowing a process to read device
registers. A process mapped to an I/O page can also connect to a device
interrupt vector.

A page frame section differs from a disk file section in that it is not associated
with a particular disk file and is not paged. However, it is similar to a disk
file section in most other respects: you create, map, and define the extent and
characteristics of a page frame section in essentially the same manner as you
do a disk file section.

To create a page frame section, you must specify page frame number mapping
by setting the SEC$M_PFNMAP flag bit in the flags argument to the Create
and Map Section ($CRMPSC) service. The vbn argument is now used to
specify that the first page frame is to be mapped instead of the first virtual
block. You must have the user privilege PFNMAP to create or delete a page
frame section, but not to map to an existing one.

11-19

11.8

Memory Management Services
11 . 7 Sections

Because a page frame section is not associated with a disk file, you do not use
the relpag, chan, and pfc arguments to the $CRMPSC service to create or
map this type of section. For the same reason, the SEC$M_CRF
(copy-on-reference) and SEC$M_DZRO (demand-zero) bit settings in the
flags argument do not apply. Pages in page frame sections are not written
back to any disk file (including the paging file).

You must use caution when working with page frame sections. If you permit
write access to the section, each process that writes to it does so at its own
risk. Serious errors can occur if a process writes incorrect data or writes to
the wrong page, especially if the page is also mapped by the system or by
another process. Thus, any user who has the PFNMAP privilege can damage
or violate the security of a system.

Example of Using Memory Management System Services
In the following example, two programs are communicating through a global
section. The first program creates and maps a global section (by using the
$CRMPSC system service), and then writes a device name to the section.
This program also defines the device terminal and process names and sets the
event flags that synchronize the processes.

The second program maps the section (by using the $MGBLSC system
service), and then reads the device name and the process that allocated the
device and any terminal allocated to that process. This program also writes
the process named to the terminal global section where the process name can
be read by the first program.

The common event cluster is used to synchronize access to the global section.
The first program sets REQ _FLAG to indicate that the device name is in the
section. The second program sets INFQ_FLAG to indicate that the process
and terminal names are available.

Data in a section must be page aligned. The following is the option file used
at link time that causes the data in the common area named DATA to be page
aligned.

PSECT_ATTR =DATA, PAGE

Before executing the first program, you need to write a user-open routine that
sets the user open bit (FAB$V_UFO) of the FAB options longword
(FAB$L_FOP). The user-open routine would then read the channel number
that the file is opened on from the status longword (FAB$L_STV) and
return that channel number to the main program by using a common block
(CHANNEL in this example).

!This is the program that creates the global section.

! Define global section flags
INCLUDE '($SECDEF)'
! Mask for section flags
INTEGER SEC_MASK

11-20

Memory Management Services
11 .8 Example of Using Memory Management System Services

! Logical unit number for section file
INTEGER INFO_LUN
! Channel number for section file
! (returned from useropen routine)
INTEGER SEC_CHAN
COMMON /CHANNEL/ SEC_CHAN
! Length for the section file
INTEGER SEC_LEN
! Data for the section file
CHARACTER*12 DEVICE,
2 PROCESS
CHARACTER*6 TERMINAL
COMMON /DATA/ DEVICE,
2 PROCESS,
2 TERMINAL
! Location of data
INTEGER PASS_ADDR (2),
2 RET_ADDR (2)

! Two common event flags
INTEGER REQUEST_FLAG,
2 INFO_FLAG
DATA REQUEST_FLAG /70/
DATA INFO_FLAG /71/

! User-open routines
INTEGER UFO_CREATE
EXTERNAL UFO_CREATE

! Open the section file
STATUS = LIB$GET_LUN (INFO_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
SEC_MASK = SEC$M_WRT .OR. SEC$M_DZRO .OR. SEC$M_GBL
! (Last element - first element + size of last element + 511)/512
SEC_LEN = ((%LOC(TERMINAL) - %LOC(DEVICE) + 6 + 511)/512)
OPEN (UNIT=INFO_LUN,
2 FILE='INFO.TMP',
2 STATUS='NEW',
2 INITIALSIZE = SEC_LEN,
2 USEROPEN = UFO_CREATE)
! Free logical unit number and map section
CLOSE (INFO_LUN)

! Get location of data
PASS_ADDR (1) = %LDC (DEVICE)
PASS_ADDR (2) = %LDC (TERMINAL)

STATUS = SYS$CRMPSC (PASS_ADDR,
2 RET_ADDR,

! Address of section
! Addresses mapped

2
2
2
2
2
2

.
%VAL(SEC_MASK),
'GLOBAL_SEC' ,

%VAL(SEC_CHAN),
' '')

Section mask
Section name

I/0 channel

IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

11-21

Memory Management Services
11 .8 Example of Using Memory Management System Services

! Create the subprocess
STATUS = SYS$CREPRC (,
2 'GETDEVINF ' , Image
2
2 'GET_DEVICE' , Process name
2 %VAL(4), ,,) Priority
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! Write data to section
DEVICE= '$FLOPPY1'

! Get common event flag cluster and set flag
STATUS = SYS$ASCEFC (%VAL(REQUEST_FLAG),
2 'CLUSTER',,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = SYS$SETEF (%VAL(REQUEST_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! When GETDEVINF has the information, INFO_FLAG is set
STATUS = SYS$WAITFR (%VAL(INFO_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

This is the program that maps to the global section
created by the previous program.

Define section flags
INCLUDE '($SECDEF)'
! Mask for section flags
INTEGER SEC_MASK
! Data for the section file
CHARACTER*12 DEVICE,
2 PROCESS
CHARACTER*6 TERMINAL
COMMON /DATA/ DEVICE,
2 PROCESS,
2 TERMINAL

! Location of data
INTEGER PASS_ADDR (2),
2 RET_ADDR (2)

! Two common event flags
INTEGER REQUEST_FLAG,
2 INFO_FLAG
DATA REQUEST_FLAG /70/
DATA INFO_FLAG /71/

Get common event flag cluster and wait
for GBL1.FOR to set REQUEST_FLAG

STATUS= SYS$ASCEFC (%VAL(REQUEST_FLAG),
2 'CLUSTER',,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$WAITFR (%VAL(REQUEST_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Get location of data
PASS_ADDR (1) = %LDC (DEVICE)
PASS_ADDR (2) = %LDC (TERMINAL)

! Set write flag
SEC_MASK = SEC$M_WRT

11-22

Memory Management Services
11 .8 Example of Using Memory Management System Services

! Map the section
STATUS = SYS$MGBLSC (PASS_ADDR, ! Address of section
2 RET_ADDR, ! Address mapped
2
2 %VAL(SEC_MASK), ! Section mask
2 'GLOBAL_SEC', ,) ! Section name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

Call GETDVI to get the process ID of the
process that allocated the device, then
call GETJPI to get the process name and terminal
name associated with that process ID.
Set PROCESS equal to the process name and
set TERMINAL equal to the terminal name.

! After information is in GLOBAL_SEC
STATUS = SYS$SETEF (%VAL(INFO_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

11-23

1 2 Lock Management Services

12.1

The VMS lock management system services allow cooperating processes
to synchronize their access to shared resources. You can accomplish this
by providing a common data area in which processes can lock a specified
resource by name. All processes that access the resources must use the VMS
lock management services, or they are not effective.

To synchronize access to resources, the lock management services provide a
queuing mechanism that allows processes to wait in a queue until a particular
resource is available.

The Enqueue Lock Request ($ENQ) system service is used to make lock
requests and the Dequeue Lock Request ($DEQ) system service is used to
cancel lock requests. The Get Lock Information ($GETLKI) system service is
used to get information about existing locks.

Concepts of Resources and Locks
A resource can be any entity on VMS (for example, files, data structures,
databases, and executable routines). When two or more processes access the
same resource, you often need to control their access to the resource. You
do not want to have one process reading the resource while another process
writes new data; a writer can quickly invalidate anything being read by a
reader. The lock management system services allow processes to associate a
name with a resource and request access to that resource. Lock modes enable
processes to indicate how they want to share access with other processes.

To use the lock management system services, a process must request access
to a resource (request a lock) using the Enqueue Lock Request ($ENQ) system
service. There are three required arguments to the $ENQ system service for
new locks.

• A resource name. The lock management services use the resource name
to look for other lock requests that use the same name.

• The lock mode to be associated with the requested lock. The lock
mode indicates how the process wants to share the resource with other
processes.

• The address of a lock status block. The lock status block receives the
completion status for a lock request and the lock identification. The lock
identification is used to refer to a lock request after it has been queued.

The lock management services compare the lock mode of the newly requested
lock to the lock modes of other locks with the same resource name. New
locks are granted in the following instances:

• If no other· process has a lock on the resource

• If another process has a lock on the resource and the mode of the new
request is compatible with the existing lock

12-1

Lock Management Services
12.1 Concepts of Resources and Locks

12.1 .1 Granularity

12.1 .2 Resource Names

12-2

• If another process already has a lock on the resource and the mode of the
new request is not compatible with the lock mode of the existing lock,
the new request is placed in a queue where it waits until the resource
becomes available. When the resource becomes available, the process is
notified that it can access the resource.

Processes can also use the $ENQ system service to change the lock mode of a
lock. This is called a lock conversion.

Many resources can be divided into smaller parts. As long as a part of a
resource can be identified by a resource name, the part can be locked. The
term granularity describes the part of the resource being locked.

Figure 12-1 depicts a model of a database. The database is divided into areas,
which in turn are subdivided into records. The records are further divided
into items.

Figure 12-1 Model Database

VOLUME

~ ~
FILE FILE

/ ~ /I ~
RECORD RECORD RECORD RECORD RECORD

/I~ /\ I\ I\ /I~
ITEM ITEM ITEM ITEM ITEM ITEM ITEM ITEM ITEM ITEM ITEM ITEM

ZK-373-81

The processes that request locks on the database shown in 12-1 must lock the
whole database, an area in the database, a record, or a single item. Locking
the entire database is considered locking at a coarse granularity; locking a
single item is considered locking at a fine granularity.

The lock management system services refer to each resource by a name
composed of the following four parts:

• A name specified by the caller

• The caller's access mode

• The caller's UIC group number (unless the resource is systemwide)

• The identification of the lock's parent (optional)

For two resources to be considered the same, these four parts must be
identical for each resource.

Lock Management Services
12.1 Concepts of Resources and Locks

The name specified by the process represents the resource being locked.
Other processes that need to access the resource must refer to it using
the same name. The correlation between the name and the resource is a
convention agreed upon by the cooperating processes.

The access mode is determined by the caller's access mode, unless a
less privileged mode is specified in the call to the $ENQ system service.
Access modes, their numeric values, and symbolic names are discussed in
Section 2.1.3.

Resources can be group-specific or systemwide. The default is for resource
names to be qualified by the group number of the calling process's UIC. You
define systemwide locks by setting a flag bit in the call to the $ENQ system
service. You need the user privilege SYSLCK to request systemwide locks
from user or supervisor mode. No additional privilege is required to request
systemwide locks from executive or kernel mode.

When a lock request is queued, it can specify the identification of a parent
lock, at which point it becomes a sublock. However, the parent lock must be
granted or the lock request is not accepted. This enables a process to lock a
resource at different degrees of granularity.

12.1.3 Choosing a Lock Mode
The mode of a lock determines whether the resource can be shared with other
lock requests. The six lock modes are as follows:

Mode Name

LCK$K_NLMODE

LCK$K_CRMODE

LCK$K_CWMODE

LCK$K_PRMODE

Meaning

Null mode. This mode grants no access to the resource;
the null mode is typically used as an indicator of interest
in the resource, or as a place holder for future lock
conversions.

Concurrent read. This mode grants read access to the
resource and allows sharing of the resource with other
readers. The concurrent read mode is generally used when
additional locking is being performed at a finer granularity
with sublocks, or to read data from a resource in an
"unprotected" fashion (allowing simultaneous writes to the
resource).

Concurrent write. This mode grants write access to the
resource and allows sharing of the resource with other
writers. The concurrent write mode is typically used to
perform additional locking at a finer granularity, or to write
in an "unprotected" fashion.

Protected read. This mode grants read access to the
resource and allows the resource to be shared with other
readers. No writers are allowed access to the resource.
This is the traditional "share lock."

12-3

Lock Management Services
12.1 Concepts of Resources and Locks

Mode Name

LCK$K_PWMODE

LCK$K_EXMODE

Meaning

Protected write. This mode grants write access to the
resource and allows the resource to be shared with
concurrent read mode readers. No other writers are
allowed access to the resource. This is the traditional
"update lock."

Exclusive. The exclusive mode grants write access to the
resource and prevents the resource from being shared
with any other readers or writers. This is the traditional
"exclusive lock."

12.1.4 Levels of Locking and Compatibility
Locks that allow the process to share a resource are called low-level locks;
locks that allow the process almost exclusive access to a resource are called
high-level locks. Null and concurrent read mode locks are considered
low-level locks; protected write and exclusive mode locks are considered
high-level. The lock modes from lowest to highest level access modes are
null, concurrent read, concurrent write, protected read, protected write, and
exclusive. The concurrent write and protected read modes are considered to
be of equal level.

Locks that can be shared with other locks are said to have compatible lock
modes. Higher-level lock modes are less compatible with other lock modes
than are lower-level lock modes. Table 12-1 shows the compatibility of the
lock modes.

12.1 .5 Lock Management Queues

12-4

A lock on a resource can be in one of three states.

• GRANTED - The lock request has been granted.

• WAITING - The lock request is waiting to be granted.

• CONVERSION - The lock request has been granted at one mode and is
waiting to be granted a higher lock mode.

A queue is associated with each of the three states (see Figure 12-2).

Lock Management Services
12.1 Concepts of Resources and Locks

Table 12-1 Compatibility of Lock Modes

Mode of Mode of Currently Granted Locks
Requested
Lock NL

NL Yes

CR Yes

cw Yes

PR Yes

PW Yes

EX Yes

Key to Lock Modes

NL-Null lock
CR-Concurrent read
CW-Concurrent write
PR-Protected read
PW-Protected write
EX-Exclusive lock

CR cw

Yes Yes

Yes Yes

Yes Yes

Yes No
Yes No
No No

Figure 1 2-2 Three Lock Queues

w NE
LOG

GRAN
K

TED
_,,, --

--
CONVERSIONS

GRANTED

WAITING LOCKS
GRANTED

--~
NEW LOCK QUEUED __..

~

PR PW

Yes Yes

Yes Yes

No No
Yes No
No No
No No

GRANTED

~
i---

CONVERSIONS ~

WAITING

EX

Yes

No
No
No
No
No

COMPATIBLE
CONVERSIONS

INCOMPATIBLE
CONVERSIONS

ZK-374-81

12-5

Lock Management Services
12.1 Concepts of Resources and Locks

When you request a new lock, the lock management services first determine
if the resource is currently known (that is, if any other processes have locks
on that resource). If the resource is new (that is, no other locks exist on
the resource), the lock management services create an entry for the new
resource and the requested lock. If the resource is already known, the lock
management services determine if any other locks are waiting in either the
conversion or waiting queue. If other locks are waiting in either queue, the
new lock request is queued at the end of the waiting queue. If both the
conversion and waiting queues are empty, the lock management services
determine if the new lock is compatible with the other granted locks. If
the lock request is compatible, the lock is granted; if it is not compatible,
it is placed on the waiting queue. You can use a flag bit to direct the lock
management services not to queue a lock request if one cannot be granted
immediately.

12.1.6 Lock Conversion Concepts
Lock conversions allow processes to change the level of locks. For example,
a process can maintain a low-level lock on a resource until it limits access to
the resource. The process can then request a lock conversion.

You specify lock conversions by using a flag bit (see Section 12.3.5) and a
lock status block. The lock status block must contain the lock identification
of the lock to be converted. If the new lock mode is compatible with the
currently granted locks, the conversion request is granted immediately. If the
new lock mode is incompatible with the existing locks in the granted queue,
the request is placed on the conversion queue. The lock retains its old lock
mode and does not receive its new lock mode until the request is granted.

When a lock is dequeued, or converted to a lower lock mode, the lock
management services inspect the first conversion request on the conversion
queue. If the conversion request is compatible with the locks currently
granted, it is granted. Any compatible conversion requests immediately
following are also granted. If the conversion queue is empty, the waiting
queue is checked. If the first lock request on the waiting queue is compatible
with the locks currently granted, it is granted. Any compatible lock requests
immediately following are also granted.

1 2. 1 . 7 Deadlock Detection

12-6

A deadlock occurs when any group of locks are waiting for each other in a
circular fashion. See Figure 12-3.

In Figure 12-3, three processes have queued requests for resources that
cannot be accessed until the current locks held are dequeued (or converted to
a lower lock mode).

If the lock management services determine that a deadlock exists, the services
choose a process to break the deadlock. The chosen process is termed the
victim. If the victim has requested a new lock, the lock is not granted; if the
victim has requested a lock conversion, the lock is returned to its old lock
mode. In either case, the status code SS$_DEADLOCK is placed in the lock
status block. Note that granted locks are never revoked; only waiting lock
requests can receive the status code SS$_DEADLOCK.

12.2

Lock Management Services
12.1 Concepts of Resources and Locks

Figure 12-3 A Deadlock

A B

WAITING FOR WAITING FOR
THE RESOURCE -- THE RESOURCE ~

THAT B HAS THAT CHAS

c

WAITING FOR
THE RESOURCE

THAT A HAS

ZK-375-81

Note: Programmers must not make assumptions regarding which process is to
be chosen to break a deadlock.

Queuing Lock Requests

LKSB: .BLKQ 0
RESOURCE:

You use the $ENQ system service to queue lock requests. When you request
new locks, the system service call must specify the lock mode, address of the
lock status block, and resource name. The following example illustrates a call
to $ENQ.

To contain lock status block

.ASCID /STRUCTURE_1/ STRUCTURE_1 is the name of
the resource being locked

$ENQW_S LKMODE=#LCK$K_PRMODE, - Protected read mode
LKSB=LKSB, -
RESNAM=RESOURCE

In this example, a number of processes access the data structure,
STRUCTURE_!. Some processes read the data structure; others write to
the structure. Readers must be protected from reading the structure while it
is being updated by writers. The reader in the example queues a request for
a protected read mode lock. Protected read mode is compatible with itself, so
all readers can read the structure at the same time. A writer to the structure
uses protected write or exclusive mode locks. Because protected write mode
and exclusive mode are not compatible with protected read mode, no writers
can write the data structure until the readers have released their locks; and no
readers can read the data structure until the writers have released their locks.

Table 12-1 shows the compatibility of lock modes.

12-7

12.3

Lock Management Services
12.3 Advanced Locking Techniques

Advanced Locking Techniques
The previous sections discussed locking techniques and concepts useful to all
applications. The following sections discuss specialized features of the VMS
lock manager.

12.3.1 Synchronizing Locks
The $ENQ system service returns control to the calling program when the
lock request is queued. The status code in RO indicates whether the request
was queued successfully. After the request is queued, the procedure cannot
access the resource until the request is granted. A procedure can use three
methods to check that a request has been granted:

• Specify the number of an event flag to be set when the request is granted
and wait for the event flag.

• Specify the address of an AST routine to be executed when the request is
granted.

• Poll the lock status block for a return status code that indicates that the
request has been granted.

These methods of synchronization are identical to the synchronization
techniques used with the $QIO system services, described in Section 7.7.

The $ENQW macro performs synchronization by combining the functions
of the $ENQ system service and the Synchronize ($SYNCH) system service.
The $ENQW macro has the same arguments as the $ENQ macro. It queues
the lock request, and then places the program in an event flag wait state (LEF)
until the lock request is granted.

12.3.2 Notification of Synchronous Completion

12-8

The lock management services provide a mechanism that allows processes
to determine if a lock request is granted synchronously, that is, if the lock
is not placed on the conversion or waiting queue. This feature can be
used to improve performance in applications where most locks are granted
synchronously (as is normally the case).

If the flag bit LCK$M_SYNCSTS is set and a lock is granted synchronously,
the status code SS$_SYNCH is returned in RO; no event flag is set and no
AST is delivered.

If the request is not completed synchronously, the success code
SS$_NORMAL is returned; event flags or AST routines are handled normally
(that is, the event flag is set and the AST is delivered when the lock is
granted).

Lock Management Services
12.3 Advanced Locking Techniques

12.3.3 Lock Status Block

12.3.4 Blocking ASTs

The lock status block receives the final completion status and the lock
identification, and optionally contains a lock value block (see Figure 12-4).
When a request is queued, the lock identification is stored in the lock status
block even if the lock has not been granted. This allows a procedure to
dequeue locks that have not been granted. For more information about the
Dequeue Lock Request ($DEQ) system service, see Section 12.4.

Figure 12-4 The Lock Status Block

reserved condition value

lock identification

16-byte lock value block

(used only when LCK$M_ V ALBLK is set)

ZK-376-81

The status code is placed in the lock status block only when the lock is
granted (or when errors occur in granting the lock).

The uses of the lock value block are described in Section 12.5.1.

In some applications that use the lock management services, a process must
know if it is preventing another process from locking a resource. The lock
management services inform processes of this through the use of blocking
ASTs. To enable blocking ASTs, the blkast argument of the $ENQ system
service must contain the address of a blocking AST service routine. When the
lock prevents another lock from being granted, a blocking AST is delivered
and the blocking AST service routine is executed. The astprm argument is
used to pass a parameter to the blocking AST. For more information about
ASTs and AST service routines, see Chapter 5. Some uses of blocking ASTs
are described in Section 12.5.2.

12-9

Lock Management Services
12.3 Advanced Locking Techniques

1 2. 3. 5 Lock Conversions
Lock conversions perform three main functions.

• Maintaining a low-level lock and converting it to a higher lock mode
when necessary

• Maintaining values stored in a resource lock value block (described in the
following paragraphs)

• Improving performance in some applications

A procedure normally needs an exclusive (or protected write) mode lock
while writing data. The procedure should not keep the resource exclusively
locked all the time, however, because writing may not always be necessary.
Maintaining an exclusive or protected write mode lock prevents other
processes from accessing the resource. Lock conversions allow a process
to request a low-level lock at first and convert the lock to a higher-level lock
mode (protected write mode, for example) only when it needs to write data.

Some applications of locks require the use of the lock value block. If a
version number or other data is maintained in the lock value block, you
need to maintain at least one lock on the resource so that the value block is
not lost. In this case processes convert their locks to null locks, rather than
dequeuing them when finished accessing the resource.

In order to improve performance in some applications, all resources that
might be locked are locked with null locks during initialization. You can
convert the null locks to higher-level locks as needed. Usually a conversion
request is faster than a new lock request because the necessary data structures
have already been built. However, maintaining any lock for the life of a
procedure uses system dynamic memory. Therefore, the technique of creating
all necessary locks as null locks and converting them as needed improves
performance at the expense of increased storage requirements.

Note: If you specify the flag bit LCK$M_NOQUEUE on a lock conversion

12-10

and the conversion fails, the new blocking AST address and parameter
specified in the conversion request replace the blocking AST address and
parameter specified in the previous $ENQ request.

Queuing Lock Conversions

To perform a lock conversion, a procedure calls the $ENQ system service with
the flag bit LCK$M_CQNVERT. Lock conversions do not use the resnam,
parid, acmode, or prot argument. The lock being converted is identified
by the lock identification contained in the lock status block. The following
example shows a simple lock conversion. Note that the lock must be granted
before it can be converted.

12.3.6 Parent Locks

Lock Management Services
12.3 Advanced Locking Techniques

LKSB: .BLKQ 1
RESOURCE:

.ASCID /STRUCTURE_!/

$ENQW_S LKMODE=#LCK$K_NLMODE, - Null lock
LKSB=LKSB, -
RESNAM=RESOURCE

<---------------------! Lock is I
I granted I

$ENQW_S LKMODE=#LCK$K_PWMODE, - Protected write
LKSB=LKSB, - Lock ID is in LKSB
FLAGS=#LCK$M_CONVERT Conversion

When a lock request is queued, declaring a parent lock for the new lock
is possible. When a lock has a parent, it is called a sublock. To specify a
parent lock, the lock identification of the parent lock is passed in the parid
argument to the $ENQ system service. A parent lock must be granted before
the sublocks belonging to the parent can be granted.

The benefits of specifying parent locks are as follows:

•

•

Low-level locks (concurrent read or concurrent write) can be held at a
coarse granularity (files, for example), while higher-level (protected write
or exclusive mode) sublocks are held on resources of a finer granularity
(such as records or data items).

Resources names are unique with each parent (parent locks are part of the
resource name).

The following paragraphs describe the use of parent locks. Assume that a
number of processes need to access a database. The database can be locked
at two levels: the file and individual records. When updating all the records
in a file, locking the whole file and updating the records without additional
locking is faster and more efficient. But, when updating selected records,
locking each record as it is needed is preferable.

To use parent locks in this way, all processes request locks about the file.
Processes that need to update all records must request protected write or
exclusive mode locks on the file. Processes that need to update individual
records request concurrent write mode locks on the file, and then use sublocks
to lock the individual records in protected write or exclusive mode.

In this way the processes that need to access all records can do so by locking
the file, while processes that can share the file lock individual records. A
number of processes can share the file-level lock at concurrent write mode,
while their sublocks update selected records.

12-11

Lock Management Services
12.3 Advanced Locking Techniques

The number of levels of sublocks is limited by the size of the interrupt stack.
If the limit is exceeded, the error status SS$_EXDEPTH is returned. The size
of the interrupt stack is controlled by the SYSGEN parameter INTSTKP AGES.
The default value for INTSTKP AGES allows 32 levels of sublocks. For more
information on SYSGEN and INTSTKP AGES, see the Guide to Maintaining a
VMS System.

12.3. 7 Lock Value Blocks

12-12

The lock value block is an optional 16-byte extension of a lock status block.
The first time a process associates a lock value block with a particular
resource, the lock management services create a resource lock value block
for that resource. The lock management services maintain the resource lock
value block until there are no more locks on the resource.

To associate a lock value block with a resource, the process must set the flag
bit LCK$M_ VALBLK in calls to the $ENQ system service. The lock status
block lksb argument must contain the address of the lock status block for the
resource.

When a process sets the flag bit LCK$M_VALBLK in a lock request (or
conversion request) and the lock request (or conversion) is granted, the
contents of the resource lock value block are written to the lock value block
of the process.

When a process sets the flag bit LCK$M_ V ALBLK on a conversion from
protected write or exclusive mode to a lower mode, the contents of the
process's lock value block are stored in the resource lock value block.

In this manner, processes can pass the value in the lock value block along
with the ownership of a resource.

Table 12-2 shows how lock conversions affect the contents of the process's
and the resource's lock value block.

12.4 Dequeuing Locks

Lock Management Services
12.3 Advanced Locking Techniques

Table 12-2 Effect of Lock Conversion on Lock Value Block

Lock Mode
at Which
Lock Is Held NL

NL Return

CR Neither

cw Neither

PR Neither

PW Write

EX Write

Key to Lock Modes

NL-Null lock
CR-Concurrent read
CW-Concurrent write
PR-Protected read
PW-Protected write
EX-Exclusive lock

Key to Effects

Lock Mode to Which Lock Is Converted

CR cw PR PW EX

Return Return Return Return Return

Return Return Return Return Return

Neither Return Return Return Return

Neither Neither Return Return Return

Write Write Write Write Return

Write Write Write Write Write

Return-The contents of the resource lock value block are returned to the lock value
block of the process.
Neither-The lock value block of the process is not written; the resource lock value
block is not returned.
Write-The contents of the process's lock value block are written to the resource lock
value block.

Note that when protected write or exclusive mode locks are dequeued using
the Dequeue Lock Request ($DEQ) system service, and the address of a lock
value block is specified in the valblk argument, the contents of that lock
value block are written to the resource lock value block.

When a process no longer needs a lock on a resource, you can dequeue the
lock by using the Dequeue Lock Request ($DEQ) system service. Dequeuing
locks means that the specified lock request is removed from the queue it is in.
Locks are dequeued from any queue: granted, waiting, or conversion. When
the last lock on a resource is dequeued, the lock management services delete
the name of the resource from its data structures.

The four arguments to the $DEQ macro (lkid, valblk, acmode and flags) are
optional. The lkid argument allows the process to specify a particular lock to
be dequeued, using the lock identification returned in the lock status block.

The valblk argument contains the address of a 16-byte value lock block. If
the lock being dequeued is in protected write or exclusive mode, the contents
of the value block are stored in the value block associated with the resource.
If the lock being dequeued is in any other mode, the value block is not used.
The lock value block can be used only if a particular lock is being dequeued.

12-13

12.5

,Lock Management Services
12.4 Dequeuing Locks

Three flags are available: LCKM_DEQALL, LCKM_CANCEL, and
LCK$M-1NVVALBLK.

The LCK$M_DEQALL flag indicates that all locks of the access mode
specified with the acmode argument and less privileged access modes are
to be dequeued. The access mode is maximized with the access mode of the
caller. If the flag LCK$M_DEQALL is specified, then the lkid argument must
be zero (or not specified).

When LCK$M_CANCEL is specified, $DEQ attempts to cancel a lock
conversion request that was queued by $ENQ. This attempt can only succeed
if the lock request has not yet been granted, in which case, the request is in
the conversion queue. The LCK$M_CANCEL flag is ignored if the
LCK$M_DEQALL flag is specified. For more information about the
LCK$M_CANCEL flag, see the description of the $DEQ service in the VMS
System Services Reference Manual.

When LCK$M-1NVVALBLK is specified, $DEQ marks the lock value block,
which is maintained for the resource in the lock database, as invalid. See the
descriptions of $DEQ and $ENQ in the VMS System Services Reference Manual
for more information on the LCK$M-1NVVALBLK flag.

The following is an example of dequeueing locks:

LKSB: .QUAD 0
RESOURCE: ; Resource is STRUCTURE_!

.ASCID /STRUCTURE_!/

$ENQ_S LKMODE=#LCK$K_CRMODE, - Concurrent read mode
LKSB=LKSB, -
RESNAM=RESOURCE, -
ASTADR=READ_UPDATES

$DEQ_S LKID=LKSB+4 ; LKSB+4 contains the lock ID

User mode locks are automatically dequeued when the image exits.

Local Buffer Caching with the Lock Management Services

12-14

The lock management services provide methods for applications to perform
local buffer caching (also called distributed buffer management). Local buffer
caching allows a number of processes to maintain copies of data (disk blocks,
for example) in buffers local to each process, and to be notified when the
buffers contain invalid data due to modifications by another process. In
applications where modifications are infrequent, substantial 1/0 may be
saved by maintaining local copies of buffers-hence, the names local buffer
caching or distributed buffer management. Either the lock value block or
blocking ASTs (or both) can be used to perform buffer caching.

Lock Management Services
12.5 Local Buffer Caching with the Lock Management Services

12.5.1 Using the Lock Value Block
To support local buffer caching using the lock value block, each process
maintaining a cache of buffers maintains a null mode lock on a resource that
represents the current contents of each buffer. (For this discussion, assume
that the buffers contain disk blocks.) The value block associated with each
resource is used to contain a disk block "version number." The first time a
lock is obtained on a particular disk block, the current version number of that
disk block is returned in the lock value block of the process. If the contents of
the buffer are cached, this version number is saved along with the buffer. To
reuse the contents of the buffer, the null lock must be converted to protected
read mode or exclusive mode, depending on whether the buffer is to be read
or written. This conversion returns the latest version number of the disk
block. The version number of the disk block is compared with the saved
version number. If they are equal, the cached copy is valid. If they are not
equal, a fresh copy of the disk block must be read from disk.

Whenever a procedure modifies a buffer, it writes the modified buffer
to disk and then increments the version number prior to converting the
corresponding lock to null mode. In this way, the next process that attempts
to use its local copy of the same buffer will find a version number mismatch
and must read the latest copy from disk, rather than use its cached (now
invalid) buffer.

12.5.2 Using Blocking ASTs

12.5.2.1

12.5.2.2

Blocking ASTs are used to notify processes with granted locks that another
process with an incompatible lock mode has been queued to access the same
resource.

Blocking ASTs can be used to support local buffer caching in two ways. One
technique involves deferred buffer writes; the other technique is an alternate
method of local buffer caching without using value blocks.

Deferring Buffer Writes
When local buffer caching is being performed, a modified buffer must be
written to disk before the exclusive mode lock can be released. If a large
number of modifications are expected (particularly over a short period of
time), you can reduce disk I/Oby maintaining the exclusive mode lock for
the entire time that the modifications are being made, and writing the buffer
once. However, this prevents other processes from using the same disk block
during this interval. This can be avoided if the process holding the exclusive
mode lock has a blocking AST. The AST will notify the process if another
process needs to use the same disk block. The holder of the exclusive mode
lock can then write the buffer to disk and convert its lock to null mode
(thereby allowing the other process to access the disk block). However, if no
other process needs the same disk block, the first process can modify it many
times, but only write it once.

Buffer Caching
To perform local buffer caching using blocking ASTs, processes do not convert
their locks to null mode from protected read or exclusive mode when finished
with the buffer. Instead, they receive blocking ASTs whenever another
process attempts to lock the same resource in an incompatible mode. With
this technique, processes are notified that their cached buffers are invalid as
soon as a writer needs the buffer, rather than the next time the process tries
to use the buffer.

12-15

Lock Management Services
12.5 Local Buffer Caching with the Lock Management Services

12.5.3 Choosing a Buffer Caching Technique

12.6

The choice between using version numbers or blocking ASTs to perform
local buffer caching depends on the characteristics of the application. An
application that uses version numbers performs more lock conversions,
while one that uses blocking ASTs delivers more ASTs. Note that these
techniques are compatible; some processes can use one technique and other
processes can use the other at the same time. Generally speaking, blocking
ASTs are preferred in a low-contention environment, while version numbers
are preferred in a high-contention environment. You may even invent
"combined" or "adaptive" strategies.

In a "combined" strategy, the applications use specific techniques. If a process
is expected to reuse the contents of a buffer in a short amount of time,
blocking ASTs are used; if there is no reason to expect a quick reuse, version
numbers are used.

In an "adaptive" strategy, an application makes evaluations on the rate of
blocking ASTs and conversions. If blocking ASTs arrive frequently, the
application changes to using version numbers; if many conversions take place
and the same cached copy remains valid, the application changes to using
blocking ASTs.

For example, consider the case where one process continually displays the
state of a database, while another occasionally updates it. If version numbers
are used, the displaying process must always check to see that its copy of
the database is valid (by performing a lock conversion); if blocking ASTs are
used, the display process is informed every time the database is updated. On
the other hand, if updates occur frequently, the use of version numbers is
preferable to continually delivering blocking ASTs.

Example of Using Lock Management Services

12-16

The following program segment requests a null lock for the resource named
TERMINAL. After the lock is granted, the program requests that the lock
be converted to an exclusive lock. Note that after SYS$ENQW returns, the
program checks both the status of the system service and the condition
value returned in the lock status block to ensure that the request completed
successfully.

Lock Management Services
12.6 Example of Using Lock Management Services

! Define lock modes
INCLUDE '($LCKDEF)'
! Define lock status block
INTEGER*2 LOCK_STATUS,
2 NULL
INTEGER LOCK_ID
COMMON /LOCK_BLOCK/ LOCK_STATUS,
2 NULL,
2 LOCK_ ID

Request a null lock
STATUS= SYS$ENQW (,
2 %VAL(LCK$K_NLMODE),
2 LOCK_STATUS,
2
2
2

.
'TERMINAL' ,
J I I I ,)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. LOCK_STATUS) CALL LIB$SIGNAL (%VAL(LOCK_STATUS))

! Convert the lock to an exclusive lock
STATUS= SYS$ENQW (,
2 %VAL(LCK$K_EXMODE),
2 LOCK_STATUS,
2 %VAL(LCK$M_CONVERT),
2 'TERMINAL' ,
2 •••••)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. LOCK_STATUS) CALL LIB$SIGNAL (%VAL(LOCK_STATUS))

To share a terminal between a parent process and a subprocess, each process
requests a null lock on a shared resource name. Then, each time one of
the processes wants to perform terminal ljO, it requests an exclusive lock,
performs the 1/0, and requests a null lock.

Because the lock manager is effective only between cooperating programs,
the program that created the subprocess should not exit until the subprocess
has exited. To ensure that the parent does not exit before the subprocess,
specify an event flag to be set when the subprocess exits (the num argument
of LIB$SPAWN). Before exiting from the parent program, use SYS$WAITFR to
ensure that the event flag has been set. (You can suppress the logout message
from the subprocess by using the SYS$DELPRC system service to delete the
subprocess instead of allowing the subprocess to exit.)

After the parent process exits, a created process cannot synchronize access to
the terminal and should use the SYS$BRKTHRU system service to write to
the terminal.

12-17

1 3 Programming Examples

13.1

This chapter presents three VAX MACRO programs: ORION, CYGNUS, and
LYRA. These programs do not perform any practical operations; they are
intended only to illustrate how to call various system services.

Each program is preceded by an introduction identifying the services it uses
and the main functions it performs. The programs themselves contain many
comments related to specific data definitions and portions of code.

ORION Program Example
The program ORION uses the following system services:

$ASSIGN Assign 1/0 Channel

$010W Form of Queue 1/0 Request and Synchronize

$NUMTIM Convert Binary Time to Numeric Time

$BINTIM Convert ASCII String to Binary Time

$SETIMR Set Timer

$WAITFR Wait for Single Event Flag

$READEF Read Event Flags

$SETPRN Set Process Name

This sample program illustrates the following:

1 Assigning an I/O channel to a terminal and writing messages to the
terminal. The device name is specified by the logical name TERMINAL.
Before ORION is run, the logical name must be assigned an equivalence
device name.

2 Using the $NUMTIM system service to determine whether the current
time is before or after noon. A call to $SETIMR is made conditionally if
the time is prior to noon.

3 Obtaining a delta time value in the system format to use as input to the
Set Timer ($SETIMR) system service.

4 Calling the Set Timer system service.

a. Event flag-The $SETIMR call is followed by a wait for the specified
event flag. When the timer expires, the program calls $READEF and
displays the current status of the event flag cluster.

b. AST routine-One AST routine is for a delta time interval. The other
(conditional) is for an a_bsolute time. In either case, the program
continues execution and will be interrupted when the timer requests
are processed.

13-1

Programming Examples
13.1 ORION Program Example

5 An example of terminal input. The program prompts for a character
string to be used as the process name of the current process. Then it uses
this name as input to the $SETPRN system service .

. TITLE ORION SYSTEM SERVICES TEST

.!DENT /01/

Macro library calls

$IODEF
$SSDEF
$READEFDEF

Define I/0 function codes
Define system status values
Define off sets for $READEF

Local macro defined in private macro library

MESSAGE Output messages formatted by FAD

.MACRO MESSAGE
$QIOW_S CHAN=TTCHAN, -

FUNC=#IO$_WRITEVBLK, -
P1=FAOBUF, -
P2=FAOLEN, -
P4=#32

BSBW ERROR
.ENDM MESSAGE

Read-only data program section

.PSECT RODATA,NOWRT,NOEXE

Local Read/Write Data

TTNAME: .ASCID /TERMINAL/ ; Terminal logical name

; FAD control strings and data for timer (AST and event flag) tests

ASCNOON:
.ASCID

TENSEC: . ASCID
D ISP LA YEFN:

.ASCID
TIMSTR:

.ASCID
NOONMSG:

.ASCIC
SECMSGDESC:

.ASCID
TWENTY : . LONG

/-- 12:00:00.00/
/0 00:00:10/

; Noon in ASCII format
; Ten seconds delta time in ASCII format
; Display cluster contents

/CLUSTER 2 CONTENTS: !XL/
; Display message after event flag wait

"!/TIMER ENTRY PROCESSED; CLUSTER 2 = !XL"
; Display message at noon

/I'M YOUR TIME AST ROUTINE; IT'S NOON ... /
; Display message from AST routine

"!/TIME AST ROUTINE; DELTA TIME !%T"
-10*1000*1000*20,-1 ; 20 seconds delta time

; Announcement messages

FAOSTR:
. ASCID II ! /ORION: ! AC "

Master control string
Name, message

Announcement messages and lengths for outputting

13-2

Programming Examples
13.1 ORION Program Example

HELLO: .ASCII /HELLO ... MY NAME IS ORION ... /
HELLOLEN:

.LONG HELLOLEN-HELLO

TIMERMSG:
.ASCII /BEGINNING TIMER TESTS ... /

TIMERLEN:
.LONG TIMERLEN-TIMERMSG

EFNWAITMSG:
.ASCII /TIMER SET; WAIT TEN SECONDS/

EFNWAITLEN:
.LONG EFNWAITLEN-EFNWAITMSG

ASTWAITMSG:
.ASCII /TIMER SET; AST IN 20 SECONDS/

ASTWAITLEN:
.LONG ASTWAITLEN-ASTWAITMSG

Prompt for terminal input

PROMPT: .ASCII /ENTER 1-15 CHARACTER NAME FOR PROCESS:/
PROMPTLEN:

.LONG PROMPTLEN-PROMPT

Error message control strings

ERRSTR formats error message if a system service fails
IOERRSTR formats error message if I/O fails
BADASTSTR formats error message if error in AST routine

ERRSTR:
.ASCID "!/SYSTEM SERVICE ERROR AT APP. !XL RO=!XL"

IOERRSTR:
.ASCID "!/I/0 ERROR; IOSB !XW"

BADASTSTR:
.ASCID /BAD AST PARAMETER !UL/

WAKEUP: .ASCII /AWAKENED ... /
WAKEUPLEN:

.LONG WAKEUPLEN-WAKEUP

Read/write data

.PSECT RWDATA,RD,WRT,NOEXE

; FAQ control string and buffer for all announcement messages

FAODESC:
.LONG 80
.ADDRESS -

FAOBUF
FAOBUF: .BLKB 80
FAOLEN: .WORD 0

.WORD 0

Descriptor for FAQ output buff er

Address of buff er
FAQ buffer
Length of final string, always
need longword for $QIOW

Buffer to format messages from AST routine; a separate output buffer
ensures that if the AST is delivered while another message is being
written into the FAQ output buffer, no data or message will be lost.

13-3

Programming Examples
13.1 ORION Program Example

FASTDESC:

FASTBUF:

.LONG 80

.ADDRESS -
FASTBUF

.BLKB 80
FASTLEN:

.WORD 0

.WORD 0

Descriptor for FAD output buff er

Address of buff er

FAD buff er

Length of final string, always
need longword for $QIOW

Receive channel number assigned to terminal and I/O status here

TTCHAN: .BLKW 1 Terminal channel

TTIOSB: IOSB for terminal input
.BLKW 1 Return status

TTLEN: .BLKW 1 Length of I/O
.BLKL 1 Device char

Argument list for $NAME_G form of a system service call

READLST:
$READEF EFN=32, -

STATE=EFNTEST

Buffer to obtain numeric values of components of time. Since
the only field of interest is the hours field, the remaining
fields in the buffer are not formatted .

TIMES:
HOURS:

. BLKW

.BLKW

.BLKW

3
1
3

Year, month, day
Current time in hours
Remainder of buff er

Buff er for terminal input (will create input descriptor for
$SETPRN system service)

NAMEDESC:
.LONG 15
.ADDRESS -

NAME
NAME: .BLKB 15

; Fields for timer tests

NOON: .BLKQ 1
TEN: .BLKQ 1
EFNTEST:

.LONG 0
EFNTEST2:

.LONG 0

Descriptor setup
Initial size of buffer

Address of buff er
Name string here

Will contain 12:00 in system format
Will contain 10 second delta time

Receive status of event flags

Status after timer test

Longword to save PC on entry to error handling subroutine

SAVEPC: .BLKL 1

; Code begins here .

. PSECT TIMER,EXE,NOWRT

.ENTRY ORION,AM<R2,R3,R4,R5,R6> ; Entry mask

Assign an I/O channel to the device specified by the logical name
TERMINAL and issue a message indicating we're off and running.
Do not perform normal error checking here; instead, let the
command interpreter issue a message based on the status in RO
if the ~hannel assignment fails.

13-4

Programming Examples
13.1 ORION Program Example

SETUP:

'

$ASSIGN_S -
DEVNAM=TTNAME, -
CHAN=TTCHAN

BLBS R0,10$
RET

All okay, continue
Otherwise exit with status in RO

10$: $QIOW_S CHAN=TTCHAN, -
FUNC=#IO$_WRITEVBLK, -
P1=HELLO, -
P2=HELLOLEN, -
P4=#32

BSBW ERROR

Call Read Event Flags to get status of event flags before beginning
tests and use FAD to output the contents of local event flag cluster 2

$READEF_G -
READLST

BSBW ERROR
$FAO_S CTRSTR=DISPLAYEFN, -

OUTBUF=FAODESC, -
OUTLEN=FAOLEN,
P1=EFNTEST

BSBW ERROR
MESSAGE

Announce start of timer tests

TIMETEST:
$QIOW_S CHAN=TTCHAN, -

FUNC=#IO$_WRITEVBLK, -
P1=TIMERMSG, -
P2=TIMERLEN, -
P4=#32

BSBW ERROR

Use MESSAGE MACRO

Call $NUMTIM to find out if it is currently AM or PM. If
the program is being run in the AM (any time), we'll call
$SETIMR to notify us via an AST when the time rolls over
to afternoon. If it's already PM, skip this setting of
the timer.

$NUMTIM_S -

BSBW
CMPW
BGEQ

TIMBUF=TIMES
ERROR
HOURS,#12
10$

; Before or after noon?
; After or noon, skip setting timer

Fall through here: format ASCII string representing 12 noon
into system quadword time format and call $SETIMR with
the address of AST service routine to handle timer requests.

$BINTIM_S -
TIMBUF=ASCNOON, -
TIMADR=NOON

BSBW ERROR

$SETIMR_S -
DAYTIM=NOON, -
ASTADR=TIMEAST, -
REQIDT=#12

BSBW ERROR

; Get binary noon time

Error check

; Error check

Now, get a delta time of 10 seconds formatted into a quadword

13-5

Programming Examples
13.1 ORION Program Example

10$: $BINTIM_S -
TIMBUF=TENSEC, -
TIMADR=TEN

BSBW ERROR
$SETIMR_S -

EFN=#33, -
DAYTIM=TEN

BSBW ERROR

Get binary delta time

Error check
Set timer (ten seconds)

; Error check

Announce wait for event flag and wait; then read the
event flag cluster and output its contents

$QIOW_S CHAN=TTCHAN, -
FUNC=#IO$_WRITEVBLK, -
P1=EFNWAITMSG, -
P2=EFNWAITLEN, -
P4=#32

$WAITFR_S -
EFN=#33

BSBW ERROR
Now wait
Error check

Update argument list for $READEF and then call it with new address
to write the cluster into. When complete, format a message and
display the contents of the cluster.

MOVAL EFNTEST2,READLST+READEF$_STATE
$READEF_G -

READLST
BSBW ERROR Error check
$FAO_S CTRSTR=TIMSTR, -

OUTLEN=FAOLEN, -
OUTBUF=FAODESC,-
P1=EFNTEST2

BSBW ERROR ; Error check
MESSAGE

Announce setting of timer with AST in 20 seconds (using
alternate method of specifying delta time). Then, set timer
and continue.

$QIOW_S CHAN=TTCHAN, -
FUNC=#IO$_WRITEVBLK, -
P1=ASTWAITMSG, -
P2=ASTWAITLEN, -
P4=#32

$SETIMR_S -
DAYTIM=TWENTY, -
ASTADR=TIMEAST; -
REQIDT=#20

BSBW ERROR ; Error check

Issue a prompt for terminal input: request a name for the current
process and then use the character string entered as the process
name.

RDNAME:

13-6

$QIOW_S CHAN=TTCHAN, -
FUNC=#IO$_WRITEVBLK, -
P1=PROMPT, -
P2=PROMPTLEN, -
P4=#32

BSBW ERROR Error check

Programming Examples
13.1 ORION Program Example

10$:

$QIOW_S CHAN=TTCHAN, -
FUNC=#IO$_READVBLK, -
IOSB=TTIOSB, -
P1=NAME, -
P2=NAMEDESC

BSBW ERROR

CMPW TTIOSB,#SS$_NORMAL
BEQL 10$
$FAO_S CTRSTR=IOERRSTR,

OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
P1=TTIOSB

MESSAGE
BRW RD NAME
MOVZWL TTLEN,NAMEDESC
$SETPRN_S -

PRCNAM=NAMEDESC
BSBW ERROR

I/O successful?
Yes, go on

Go try again
Update descriptor length

Set process name

Hibernate. When ORION is run interactively, the terminal is dormant.
When the AST for the Set Timer service is delivered, ORION
will awaken long enough to execute the AST service routine and
then resume execution.

If ORION is run in a subprocess, wakeups can be scheduled for
delta time intervals. Each time it is awakened, ORION displays a
message and then resumes hibernating.

HIB: $HIBER_S
$QIOW_S CHAN=TTCHAN, -

FUNC=#IO$_WRITEVBLK, -
P1=WAKEUP, -
P2=WAKEUPLEN, -
P4=#32

BRB HIB
RET

AST routine to handle timer requests

.ENTRY
CMPL
BEQL
CMPL
BEQL
BRW

TIMEAST, -M<>
#12,4(AP)
10$
#20,4(AP)
20$
30$

Format message for noon AST

10$: $FAO_S CTRSTR=FAOSTR, -
OUTBUF=FASTDESC, -
OUTLEN=FASTLEN, -
P1=#NOONMSG

BSBW ERROR
$QIOW_S CHAN=TTCHAN, -

FUNC=#IO$_WRITEVBLK, -
P1=FASTBUF, -
P2=FASTLEN, -
P4=#32

BSBW ERROR
RET

Format message for 20 second AST

Hibernate for now

Entry mask for timer AST routine
Is it noon AST?
Yes, go do it
Is it delta time AST?
Yes, go do that
Neither, issue error message

Error check

Error check

13-7

13.2

Programming Examples
13.1 ORION Program Example

20$: $FAO_S CTRSTR=SECMSGDESC, -
OUTBUF=FASTDESC, -
OUTLEN=FASTLEN,
P1=#TWENTY

$QIOW_S CHAN=TTCHAN, -
FUNC=#IO$_WRITEVBLK, -
P1=FASTBUF, -
P2=FASTLEN, -
P4=#32

RET

Format message if spurious AST

30$: $FAO_S CTRSTR=BADASTSTR, -
OUTLEN=FASTLEN, -
OUTBUF=FASTDESC,
P1=4(AP)

$QIOW_S CHAN=TTCHAN, -
FUNC=#IO$_WRITEVBLK, -
P1=FASTBUF, -
P2=FASTLEN, -
P4=#32

RET

Error-handling routine: checks status code in RO.
If low bit set, returns to mainline routine. Otherwise,
displays approximate PC and RO when system service call
encounters an error and issues RET that causes image exit.

ERROR:
BLBC
RSB

R0,10$ If error, branch
Otherwise, continue

Use FAD to format output error message

10$: MOVL (SP),SAVEPC

END:

$FAO_S CTRSTR=ERRSTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
P1=SAVEPC, -
P2=RO

BLBC RO.END
$QIOW_S CHAN=TTCHAN, -

FUNC=#IO$_WRITEVBLK, -
P1=FAOBUF, -
P2=FAOLEN, -

RET
END

P4=#32

ORION

CYGNUS Program Example
The program CYGNUS uses the following system services:

$ASSIGN Assign 1/0 Channel

$DCLEXH Declare Exit Handler

$CREMBX Create Mailbox

$GETDVI Get Device/Volume Information

$CREPRC Create Process

13-8

. !DENT /01/

$FAQ

$010

$CRELNM

$WAKE

$SETSFM

$WAITFR

$DELLNM

Programming Examples
13.2 CYGNUS Program Example

Formatted ASCII Output

Queue 1/0 Request

Create Logical Name

Wake Process

Set System Service Failure Exception Mode

Wait for Single Event Flag

Delete Logical Name

$DASSGN Deassign 1/0 Channel

This sample program illustrates the following:

1 Assigning a channel to the current output device assigned to the logical
name SYS$0UTPUT.

2 Declaring an exit handler to receive control at image exit. The exit
handler ensures that the image exits efficiently.

3 Creating a mailbox and using the $GETDVI system service to obtain the
unit number.

4 Obtaining the logical name translation of SYS$0UTPUT, and checking
for a concealed device name, by using the $GETDVI system service.

5 Creating a subprocess and using the mailbox created as a termination
mailbox. When the subprocess terminates, an AST service routine
interprets the message.

6 Placing names in the group logical name table.

7 Waking a hibernating subprocess. The subprocess created by this program
places itself in hibernation after starting up. When awakened, it translates
the logical names placed in the group logical name table .

System macro definitions required by CYGNUS

$SSDEF
$IODEF
$MSGDEF
$PQLDEF
$ACCDEF
$DIBDEF
$DVIDEF
$LNMDEF

Local macros:

Define status codes for returns
Define I/0 function codes for $QIO
Define names for mailbox messages
Define names for quota list
Define names for termination message
Define names for device information buff er
Define item codes for device information
Define item codes for logical names

MESSAGE, to output messages formatted by FAD

.MACRO MESSAGE
$QIOW_S CHAN=TTCHAN, -

FUNC=#IO$_WRITEVBLK, -
P1=FAOBUF, -
P2=FAOLEN
P4=#32

BSBW ERROR
.ENDM MESSAGE

13-9

Programming Examples
13.2 CYGNUS Program Example

GRPNAME, to place logical name/equivalence name
pairs in the group logical name table with $CRELOG and
to do error checking .

. MACRO GRPNAME LOGICAL.EQUAL
MOVW EQUAL,CREITM
MOVL EQUAL+4,CREBF
$CRELNM_S -

TABNAM=GRPTBL, -
LOGNAM=LOGICAL,
ITMLST=CREITM

BSBW ERROR
.ENDM GRPNAME

Read-only data program section

.PSECT RODATA,NOWRT,NOEXE

Descriptor for input logical name

OUTPUT: .ASCID /SYS$0UTPUT/

; Descriptor for group logical name table
GRPTBL: .ASCID /LNM$GROUP/

; Buffers for announcement messages and lengths

HELLO: .ASCID /CYGNUS ... HELLO/
HELLOLEN:

.LONG HELLOLEN-HELLO

BYE: .ASCII /CYGNUS EXIT HANDLER ... /
BYELEN: .LONG BYELEN-BYE

; Control strings for output messages formatted by FAD and associated
; counted ASCII strings to insert in messages

PRCSTR:
.ASCID

ASTERRSTR:
.ASCID

IOERR: .ASCIC
!DERR: .ASCIC

/LYRA CREATED, PIO !XL/ ; Display PIO of subprocess

"!/MAILBOX MESSAGE HAS !AC !XW"
'I/O ERROR' I/O error in AST routine
/BAD MSG ID/ ; Mailbox message not

termination message
PIDERRSTR:

.ASCID
DONESTR:

.ASCID
BADEXSTR:

.ASCID

"!/SPURIOUS PROCESS ID !XL IN DELETION MAILBOX"

"!/LYRA COMPLETED; STATUS !XL TIME !%T"

"!/EXIT DUE TO ERROR !XL"

Item list for $GETDVI to find unit number of mailbox

MBX_DVILIST:
.WORD 4
.WORD DVI$_UNIT
.ADDRESS -

UNIT_NUMBER
.LONG 0
.LONG 0

Begin $GETDVI item list
Maximum of 4 bytes long
Item code for unit number

Address of buff er
No return length needed
End item list

Item list for $GETDVI finding logical name translation of SYS$0UTPUT

13-10

Programming Examples
13.2 CYGNUS Program Example

TERM_DVILIST:
.WORD 64
.WORD DVI$_DEVNAM
.ADDRESS -

TERM
.ADDRESS -

TERM_DESC
.LONG 0

Begin $GETDVI item list
Maximum of 64 bytes long
Item code for device name

Destination of terminal name

Destination of length of string
End item list

Descriptor to define name of image for subprocess to execute.

LYRAEXE:
.ASCID /LYRA.EXE/

Quota list for subprocess: defines minimal quotas required
for the subprocess to execute and ensures that the creating
image will have sufficient quotas to continue.

QLIST: .BYTE PQL$_BYTLM Buff er quota
.LONG 1024
.BYTE PQL$_FILLM Open file quota
.LONG 3
.BYTE PQL$_PGFLQUOTA Paging file quota
.LONG 256
.BYTE PQL$_PRCLM Subprocess quota
.LONG 1
.BYTE PQL$_TQELM Timer queue quota
.LONG 3
.BYTE PQL$_LISTEND

Logical name/equivalence name pairs for group table.
Note that one of the names in the table is nested.

ORION: .ASCID /ORION/
HUNTER: .ASCID /HUNTER/
PEGASUS: .ASCID /PEGASUS/
HORSE: .ASCID /HORSE/
LYRA: .ASCID /LYRA/
HARP: .ASCID /HARP/
CYG: .ASCID /CYGNUS/
SWAN: .ASCID /SWAN/
DUCK: .ASCID /UGLY DUCKLING/
TALE: .ASCID /FAIRY TALE!/

Read/write data program section

.PSECT RWDATA,RD,WRT,NOEXE

UNIT_NUMBER:
.LONG 0

TERM_DESC:
.LONG 64

TERM_ADDRESS:
.ADDRESS -

TERM

CONC_TERM:
.ASCII I_/

TERM: .BLKB 64

TTCHAN: .BLKW 1

$CRELNM item list

Destination of unit number

Maximum of 64 bytes

2nd underscore for concealed device
Terminal name is placed here

Channel number of terminal

This list is filled in for each invocation of the GRPNAME macro

13-11

Programming Examples
13.2 CYGNUS Program Example

CREITM: .WORD
.WORD

CREBF: .LONG
.LONG
.LONG

0
LNM$_STRING
0
0
0

Termination control block

EXITBLOCK:
.BLKL 1
.ADDRESS -

EX I TR TN
.LONG 2
.ADDRESS -

STATUS
ERRPC: .BLKL 1
STATUS: .BLKL 1

Equivalence length
Item code
Equivalence buffer
No return length
List terminator

Exit control block
System uses this for pointer

Address of routine
Number of arguments for handler

Address to store status
Store PC (if error)
Status code at exit

; Fields used for termination mailbox creation, message buffering

EXCHAN: .BLKW 1
MBXIOSB:

.BLKW 1
MBLEN: .BLKW 1
MBPID: .BLKL 1

EXITMSG:
.BLKB ACC$K_TERMLEN

Receive PIO of subprocess here

LYRAPID:
.BLKL 1

Channel number of mailbox
I/O status block
Status of I/0 completion
Length of operation here
PIO of process deleted

Buff er for mailbox message

Output buffers for strings formatted by FAD

FAODESC:
.LONG 80
.ADDRESS -

FAOBUF
FAOBUF: .BLKB 80
FAOLEN: .BLKW 1

.BLKW 1

Descriptor for output buff er
80-character buff er

Address
Buff er
Receive length here
Need longword for $QIO

; Need separate FAD buffers for use in AST routine to ensure
; that data doesn't get clobbered asynchronously

FASTDESC:

FASTBUF:

.LONG 80

.ADDRESS -
FASTBUF

.BLKB 80
FASTLEN:

.BLKW 1

.BLKW 1

Program code begins here .

. PSECT CODE~EXE,RD,NOWRT

Length

Address

Buff er

Get length
Need longword for $QIO

.ENTRY CYGNUS,AM<R2,R3,R4,R5,R6,R7,R8,R9,R10,R11>

Call $ASSIGN to assign an I/O channel to device assigned to SYS$0UTPUT
and issue message verifying successful initialization

13-12

Programming Examples
13.2 CYGNUS Program Example

10$: $ASSIGN_S -
DEVNAM=OUTPUT, -
CHAN=TTCHAN

BSBW ERROR

$QIOW_S CHAN=TTCHAN, -
FUNC=#IO$_WRITEVBLK, -
P1=HELLO, -
P2=HELLOLEN, -
P4=#32

BSBW ERROR

Error check

Declare exit handler to do cleanup operations

$DCLEXH_S -
DESBLK=EXITBLOCK

BSBW ERROR

Create a mailbox for subprocess termination message

MAILBOX:
$CREMBX_S -

CHAN=EXCHAN. -
MAXMSG=#120, -
BUFQU0=#240, -
PROMSK=#O

BSBW ERROR

Use $GETDVI to determine the unit number of the mailbox

$GETDVI_S -
EFN=#2, -
CHAN=EXCHAN, -
ITMLST=MBX_DVILIST

BSBW ERROR

$WAITFR_S -
EFN=#2

BSBW ERROR

Specify event flag
Channel just assigned
List of information

Wait for synchronous completion

Translate the logical name SYS$0UTPUT, using $GETDVI

$GETDVI_S -
EFN=#2, -
DEVNAM=OUTPUT, -
ITMLST=TERM_DVILIST

BSBW ERROR

$WAITFR_S -
EFN=#2

BSBW ERROR

CMPL
BNEQ
INCW
DECL

RO,#SS$_CONCEALED
PROCESS
TERM_DESC
TERM_ADDRESS

Specify event flag
Descriptor for SYS$0UTPUT
List of information

Wait for synchronous completion

Was the device concealed?
No, branch
Yes, add one to length of name ...
and change pointer to CONC_TERM

Create the subprocess. The logical name SYS$0UTPUT will be
equated to the same device as SYS$0UTPUT of the creating process.
The MBXUNT argument specifies the name of the mailbox just
created; the mailbox will receive a message when LYRA exits.

13-13

Programming Examples
13.2 CYGNUS Program Example

PROCESS:
$CREPRC_S -

IMAGE=LYRAEXE, -
PIDADR=LYRAPID,
MBXUNT=UNIT_NUMBER,
OUTPUT=TERM_DESC, -
QUOTA=QLIST

BSBW ERROR

If okay, format an output message showing the process ID.

$FAO_S CTRSTR=PRCSTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
P1=LYRAPID

BSBW ERROR
$QIOW_S CHAN=TTCHAN, -

FUNC=#IO$_WRITEVBLK, -
P1=FAOBUF, -
P2=FAOLEN, -
P4=#32

BSBW ERROR

Queue an I/O request to the mailbox with an AST
to receive notification when LYRA completes.

$QIO_S EFN=#4, -
CHAN=EXCHAN, -
FUNC=#IO$_READVBLK,
ASTADR=EXITAST, -
IOSB=MBXIOSB,
P1=EXITMSG, -
P2=#ACC$K_TERMLEN

BSBW ERROR

Place names in the group logical name table using the macro GRPNAME.
It will be LYRA's task, when awakened, to translate these
names and display the results at the terminal.
Note that translation of the name CYGNUS wi.11 require
iterative translation.

PUT_NAMES:
GRPNAME ORION.HUNTER

GRPNAME PEGASUS.HORSE

GRPNAME LYRA.HARP

GRPNAME CYG,SWAN

GRPNAME SWAN.DUCK

GRPNAME DUCK.TALE

After placing names in the table, wake LYRA, which has been hibernating,
to perform the logical name translation.

$WAKE_S PIDADR=LYRAPID
BSBW ERROR
RET ; All finished

AST service routine to read the termination mailbox.
In this example, only one message is actually expected in the mailbox
but the program performs all the following checks:

13-14

Programming Examples
13.2 CYGNUS Program Example

1. That the I/0 completed successfully.
2. That the message in the mailbox is a process termination message.
3. That the process being deleted is the subprocess created.

This service routine enables system service failure exception
mode as an error-handling device: if a system service
call fails, an exception condition will occur. CYGNUS
does not declare a condition handler, so the image
will be forced to terminate, and the system will display
pertinent information about the exception condition .

. ENTRY EXITAST,AM<R2,R3,R4,R5,R6,R7,R8,R9,R10,R11>
$SETSFM_S -

ENBFLG=#l ; Enable SSFAIL exceptions

Check IOSB to ensure that I/O completed successfully

CMPW MBXIOSB,#SS$_NORMAL
BEQL 20$
$FAO_S CTRSTR=ASTERRSTR,

OUTLEN=FASTLEN, -
OUTBUF=FASTDESC
Pl=#IOERR, -
P2=MBXIOSB

$QIOW_S CHAN=TTCHAN, -
FUNC=#IO$_WRITEVBLK, -
Pl=FASTBUF, -
P2=FASTLEN, -
P4=#32

BRW 50$

Check that I/O was successful
Okay, go on
Otherwise, format error msg

I/O error
Display IOSB

; Return

Check message type field in mailbox message to ensure that the message
is a process termination message.

20$: CMPW EXITMSG+ACC$W_MSGTYP,#MSG$_DELPROC ; Check message type
BEQL 30$ Okay, go on
$FAO_S CTRSTR=ASTERRSTR,- ; Otherwise, format error message

OUTLEN=FASTLEN, -
OUTBUF=FASTDESC,-
Pl=#IDERR, - Invalid PID error
P2=EXITMSG+ACC$W_MSGTYP Print message type code

$QIOW_S CHAN=TTCHAN, -
FUNC=#IO$_WRITEVBLK, -
Pl=FASTBUF, -
P2=FASTLEN, -
P4=#32

BRW 50$; Return

Compare the second longword in the IOSB with the PID returned
by $CREPRC to ensure that the termination message is for LYRA.

30$: CMPL LYRAPID,MBPID LYRA deletion?

35$:

BNEQ 35$ Yes, go on
BRW 40$

$FAO_S CTRSTR=PIDERRSTR,
OUTLEN=FASTLEN, -
OUTBUF=FASTDESC,
Pl=MBPID

$QIOW_S CHAN=TTCHAN, -
FUNC=#IO$_WRITEVBLK, -
Pl=FASTBUF, -
P2=FASTLEN, -
P4=#32

BRW 50$

Otherwise, format error message

Display spurious PID

Return

13-15

Programming Examples
13.2 CYGNUS Program Example

; Format an output message indicating LYRA's final exit status
; and the time of day at which LYRA terminated.

40$: $FAO_S CTRSTR=DONESTR, - ; Format message telling
OUTLEN=FASTLEN, - ; of LYRA's demise
OUTBUF=FASTDESC,-
P1=EXITMSG+ACC$L_FINALSTS, - Get status code
P2=#EXITMSG+ACC$Q_TERMTIME and time of deletion

$QIOW_S CHAN=TTCHAN, -
FUNC=#IO$_WRITEVBLK, -
P1=FASTBUF, -
P2=FASTLEN, -
P4=#32

50$: $SETSFM_S -
ENBFLG=#O ; Disable exceptions

RET ; Return

This is the exit handler for CYGNUS. It receives control
when CYGNUS exits, either normally, or as a result of
an error condition .

. ENTRY EXITRTN,AM<> Entry mask
$QIOW_S CHAN=TTCHAN, -

FUNC=#IO$_WRITEVBLK, -
P1=BYE, -
P2=BYELEN, -
P4=#32

BSBW ERROR
BLBS STATUS,20$; Normal exit, continue

; If error, format error message using argument list in
; exit control block

10$: $FAO_S CTRSTR=BADEXSTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
P1=STATUS, -
P2=ERRPC

BSBW ERROR
$QIOW_S CHAN=TTCHAN, -

FUNC=#IO$_WRITEVBLK, -
P1=FAOBUF, -
P2=FAOLEN, -
P4=#32

Common code for both normal and error exit: wait for subprocess
to terminate (if it hasn't already), then delete all names
from the group logical name table.

20$:

30$:

13-16

$WAITFR_S -
EFN=#4

BSBW ERROR
$DELLNM_S -

TABNAM=GRPTBL
BSBW ERROR
$DASSGN_S -

CHAN=EXCHAN
BSBW
MOVL
RET

ERROR
STATUS,RO

Wait for termination message

Delete all names

Deassign mailbox channel

Restore saved status code
Exit with status

13.3

Programming Examples
13.2 CYGNUS Program Example

Common error handling routine. This routine checks the
status code in RO; if success, returns to main
program. If there is an error, the PC is placed in the exit
control block so that exit routine can format and display
an error message.

ERROR:

10$:

BLBC
RSB
MOVL
RET
.END

RO, 10$

(SP),ERRPC

CYGNUS

LYRA Program Example

Check status code
Low bit set, go back
Store PC
RET will cause image exit

The program LYRA uses the following system services:

$TRNLNM

$ASSIGN

$HIBER

$FAOL

Translate Logical Name

Assign 1/0 Channel

Hibernate

Formatted ASCII Output with List Parameter

The program LYRA is a subprocess created by CYGNUS. After assigning
a channel to its current output device, LYRA hibernates. When awakened
by CYGNUS, LYRA translates the logical names placed in the group logical
name table by CYGNUS, and displays the results of the translations on the
terminal.

When LYRA exits, a termination message is sent to the mailbox specified by
CYGNUS .

. !DENT /01/

Macro library call

$SSDEF
$LNMDEF

Local macro

Define system status values
Define logical name item codes

MESSAGE, to output messages formatted by FAD

.MACRO MESSAGE
$QIOW_S CHAN=TTCHAN, -

FUNC=#IO$_WRITEVBLK, -
P1=FAOBUF, -
P2=FAOLEN, -
P4=#32

BSBW ERROR
.ENDM MESSAGE

Local data program section starts here

.PSECT RODATA,NOWRT,NOEXE

Logical name of logical output device

OUTPUT: .ASCID /SYS$0UTPUT/

; Group logical name table

GRPTBL: .ASCID /LNM$GROUP/

13-17

Programming Examples
13.3 L VRA Program Example

; Announcement messages

HELLO: .ASCII /LYRA: INITIALIZING ... AND SO TO SLEEP/
HELLOLEN:

.LONG HELLOLEN-HELLO

WAKEMSG:
.ASCII /LYRA: OKAY, WILL DO LOGICAL NAME TRANSLATION ... /

WAKELEN:
.LONG WAKELEN-WAKEMSG

; FAD control string for logical name output message

LOGNAMSTR:
.ASCID II! /LYRA: !AS IS A !AS"

; Error message control string

ERRSTR:
.ASCID "!/LYRA: SYSTEM SERVICE ERROR AT APP. !XL RO=!XL"

Logical names to be translated

ORIONLOG:
.ASCID /ORION/

CYGNUSLOG:
.ASCID /CYGNUS/

LYRALOG:
.ASCID /LYRA/

PEGASUSLOG:
.ASCID /PEGASUS/

Read/write data program section starts here

.PSECT RWDATA,RD,WRT,NOEXE

; Item list for $TRNLNM

TRNITM: .WORD 255
.WORD LNM$_STRING
.LONG 0
.ADDRESS -

LO GLEN
.LONG 0

Buff er length
Item code
Buff er address
Returned string length

List terminator

Output buff er for all output formatted by FAD

FAOLEN: .WORD 0
.WORD 0

FAODESC:
.LONG 80
.ADDRESS -

FAOBUF
FAOBUF: .BLKB 80

Length of final string, always
need longword for $OUTPUT

Address of buff er

; Word to receive channel number of terminal

OUTCHAN:
.BLKW 1

Buffers to maintain logical name/equivalence name pairs
in routine that performs logical name translation

13-18

Programming Examples
13.3 L VRA Program Example

LOGBUFA:
.LONG 255
.ADDRESS -

BUFA
BUFA: .BLKB 255
LOGBUFB:

.LONG 255

.ADDRESS -
BUFB

BUFB: .BLKB 255

LOGLEN: .LONG 0 ; Save length of equivalence name

; Parameter list for call to FAOL (used by translate routine)

TLIST:
TLOGNAM:

.LONG 0
TEQLNAM:

.LONG 0
SAVER3: .LONG 0

Address of logical name descriptor

Address of equivalence descriptor
Save register contents for switch

Longword to store the PC when a system service call results in an
error. LYRA checks the low bit of RO following each service call.
If set, LYRA continues; otherwise, it saves the PC and branches
to an error-handling routine that displays the saved PC and the
contents of RO.

ERRPC: .LONG 0

Code begins here .

. PSECT CODE,EXE,RD,NOWRT

.ENABL LSB

For address of SSFAIL

.ENTRY LYRA,AM<R2,R3,R4,R5,R6> ; Entry mask

Assign channel to device ref erred to by logical name
SYS$0UTPUT. This name was placed in the logical name
table by CYGNUS (it is also CYGNUS's logical output device).

20$: $ASSIGN_S -

30$:

DEVNAM=OUTPUT, -
CHAN=OUTCHAN

BLBS R0,30$
RET
$QIOW_S CHAN=OUTCHAN, -

FUNC=#IO$_WRITEVBLK, -
Pl=HELLO, -
P2=HELLOLEN, -
P4=#32

BLBS R0,40$
MOVAL 30$,ERRPC
BRW ERROR

40$: $HIBER_S
BLBS R0,50$
MOVAL 40$,ERRPC
BRW ERROR

Exit with status if ASSIGN fails

13-19

Programming Examples
13.3 L VRA Program Example

50$: $QIOW_S CHAN=OUTCHAN, -

60$:

FUNC=#IO$_WRITEVBLK, -
P1=WAKEMSG, -
P2=WAKELEN, -
P4=#32

BLBS R0,60$
MOVAL 50$,ERRPC
BRW ERROR

When awakened, begin translating logical names. To translate the
names, place address of a logical name descriptor in R2 and then
go to the subroutine that performs the translation. Repeat for
each logical name to translate.

MOVAL ORIONLOG,R2
JSB TRANSLATE
MOVAL CYGNUSLOG,R2
JSB TRANSLATE
MOVAL LYRALOG,R2
JSB TRANSLATE
MOVAL PEGASUSLOG,R2
JSB TRANSLATE

All finished, return

RET

.ENABL LSB

Subroutine to translate and print logical names:
On entry to this subroutine,
R2 = address of logical name to translate
It uses: R3 to hold address of final result buffer

R4 to hold address of intermediate buff er

TRANSLATE:
MOVAL
MOVAL

LOGBUFA,R3
LOGBUFB,R4

Get addresses of buffers

Initial translation places resultant equivalence name in buffer pointed
to by R3

10$: MOVL 4(R3),TRNITM+4
$TRNLNM_S -

TABNAM=GRPTBL, -
LOGNAM=(R2), -
ITMLST=TRNITM

BLBS R0,30$
MOVAL 10$,ERRPC
BRW ERROR

Place length of equivalence name in first word of descriptor and use this
descriptor as input for next translation. If SS$_NOLOGNAM is returned,
then there was no nesting of name. If not, update registers to
provide input and output descriptors for translation and repeat
translation until SS$_NOLOGNAM is returned.

13-20

Programming Examples
13.3 LYRA Program Example

30$:

40$:

MOVZWL LOGLEN, (R3)
MOVL 4(R4),TRNITM+4
$TRNLNM_S -

BLBS
CMPL
BEQL
MOVAL
BRW

MOVL
MOVL
MOVL
BRB

TABNAM=GRPTBL, -
LOGNAM=(R3), -
ITMLST=TRNITM
R0,40$
RO,#SS$_NOLOGNAM
50$
30$,ERRPC
ERROR

R3,SAVER3
R4,R3
SAVER3,R4
30$

Fix length in buff er

Switch

; Try again

Place addresses of logical name and equivalence names in FAD parameter list
and call FAQ to format output message, then output the message.

50$: MOVL R2,TLOGNAM

60$:

70$:

MOVL R3,TEQLNAM
$FAOL_S CTRSTR=LOGNAMSTR, -

OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
PRMLST=TLIST

BLBS R0,60$
MOVAL 50$,ERRPC
BRW ERROR

$QIOW_S CHAN=OUTCHAN, -
FUNC=#IO$_WRITEVBLK, -
P1=FAOBUF, -
P2=FAOLEN, -

BLBS
MOVAL
BRW
RSB

P4=#32
R0,70$
60$,ERRPC
ERROR

Error-handling routine:

To main routine

This routine uses the saved PC and RO to format a message describing
the conditions under which a call to a system service failed.

ERROR:
$FAO_S CTRSTR=ERRSTR, -

OUTBUF=FAODESC, -
OUTLEN=FAOLEN,
P1=ERRPC, -
P2=RO

$QIOW_S CHAN=OUTCHAN, -
FUNC=#IO$_WRITEVBLK, -
P1=FAOBUF, -
P2=FAOLEN, -
P4=#32

RET
.END LYRA

13-21

A User-Written System Services

A user-written system service is a shareable image containing one or more
routines that nonprivileged users can call to perform privileged functions.
The creator of the user-written system service codes, compiles or assembles,
links, and installs the routine; other users can then call this routine in their
programs using the standard CALL interface, provided they have linked their
object module or modules with the user-written system service.
User-written system services thus provide a vehicle for you to write and use
your own system services. Note that a protected shareable image cannot
make outbound calls.

A.1 Coding the User-Written System Service

A.1.1

The following requirements must be met in coding a user-written system
service:

• It must contain a special change-mode vector identifying a kernel-mode
or executive-mode dispatcher, or both.

• Its entry point must be followed by a CHMK or CHME instruction with a
negative operand.

• Any kernel-mode or executive-mode dispatcher pointed to in the
change-mode vector must validate the CHMK or CHME operand, and
must be followed by one or more routines that perform the desired
function or functions.

• The user-written system service (or each routine in it) must enable any
necessary user privileges and disable them when they are no longer
needed. You use the Set Privileges ($SETPRV) system service to enable
and disable user privileges.

Each of the preceding considerations is discussed in the following sections.

Change-Mode Vector
One of the program sections in a user-written system service must start with
a change-mode vector. The purpose of this vector is to point (by means of
self-relative offsets) to the start of the kernel-mode or executive-mode
dispatch routine within the user-written system service.

The program section containing the change-mode vector must be assigned the
VEC attribute. (See the VAX MACRO and Instruction Set Reference Manual or
the VMS Linker Utility Manual for a discussion of program section attributes.)

The change-mode vector must have the following format. The offsets from
the base of the vector to specific items are expressed by symbols starting with
PLV$L_. The $PLVDEF macro defines these symbols, which are contained
in SYS$LIBRARY:STARLET.MLB.

A-1

User-Written System Services
A.1 Coding the User-Written System Service

A-2

Symbols Defined by $PL VDEF Macro

Vector Type Code PL V$L _TYPE
(PLV$C_ TYP _CMOD)

Kernel Mode Dispatcher Offset PLV$L_KERNEL

Exec Mode Entry Offset PLV$L_EXEC

User Rundown Service Offset PLV$L_USRUNDWN
Reserved

RMS Dispatcher Offset PL V$L _RMS

Address Check PLV$L_CHECK

The significant offsets in the change-mode vector and their contents are
as follows:

• PLV$L_TYPE-Contains the type code PLV$C_TYP_CMOD, identifying
this as a change-mode vector.

• PLV$L_KERNEL-Contains a self-relative pointer to the user-supplied
kernel-mode dispatcher. ("Self-relative" means relative to the start of the
longword field.) A zero value indicates that no kernel-mode dispatcher
exists.

• PL V$L _EXEC-Contains a self-relative pointer to the user-supplied
executive-mode dispatcher. A zero value indicates that no executive-mode
dispatcher exists.

• PL V$L _USRUNDWN-Contains a self-relative pointer to the user
supplied rundown routine. This offset is optional. This routine is
intended to be used for image-specific cleanup and resource deallocation.
When the image linked against the user-written system service is run
down by the system, this run-time routine is invoked. Unlike exit
handlers, it is always called when a process or image exits. (You call
this routine with a JSB instruction; it returns with an RSB instruction
in kernel mode, at IPL 0.) For information about exit handlers, see
Section 8.6.3.

• PL V$L _RMS-Contains a self-relative pointer to the dispatcher for VMS
RMS services. A zero value indicates that no user-supplied VMS RMS
dispatcher exists. Only one user-written system service should specify the
VMS RMS vector, because only the last value will be used. This field is
intended for use only by DIGITAL.

• PL V$L _CHECK-Contains a value to verify that a user-written system
service that is not position-independent is located at the proper virtual
address. If the image is position-independent, this field should contain
zero. If the image is not position-independent, this field should contain
its own address.

A.1.2

A.1.3

A.1.4

User-Written System Services
A.1 Coding the User-Written System Service

Entry Point to the User-Written System Service
The entry point to a user-written system service must be an entry mask
followed by a CHMK (Change Mode to Kernel) or CHME (Change Mode to
Executive) instruction, depending on whether you want control transferred
to a kernel-mode or executive-mode dispatcher (specified in the vector).
The operand of the CHMK or CHME instruction must be a negative value,
because positive values are reserved for calling system services supplied by
DIGITAL.

Kernel-Mode or Executive-Mode Dispatcher
The kernel-mode or executive-mode code you write must do the following:

• Validate the CHMK or CHME operand, handling any invalid operands.

• Transfer control to the appropriate coding segment if the user-written
system service contains functionally separate coding segments. The CASE
instruction in VAX MACRO or a computed GOTO-type statement in a
high-level language provides a convenient mechanism for determining
where to transfer control.

• Precede the coding segments performing the functions the user-written
system service was designed to perform.

Enabling and Disabling User Privileges
A user-written system service must enable any privileges it needs but that the
nonprivileged user of the user-written system service lacks. The user-written
system service must also disable any such privileges before the nonprivileged
user receives control again. To enable or disable a set of privileges, use the
Set Privileges ($SETPRV) system service. The following example shows the
operator (OPER) and physical 1/0 (PHY_IO) privileges being enabled.

PRVMSK: .LONG <1©PRV$V_OPER>!<1©PRV$V_PHY_IO> ;OPER and PHY_IO
.LONG 0 ;quadword mask required. No bits set in

;high-order longword for these privileges.

$SETPRV_S ENBFLG=#1,
PRVADR=PRVMSK

;1=enable, O=disable
;Identifies the privileges

Any code executing in executive or kernel mode is granted an implicit
SETPRV privilege.

A-3

User-Written System Services
A.2 Linking the User-Written System Service

A.2 Linking the User-Written System Service

A.2.1

The following conventions apply when you link (create) a user-written system
service:

• Use the /SHAREABLE command qualifier to identify the image to be
created as shareable.

• Use the /PROTECT command qualifier or the PROTECT= option to
identify the entire image or specific clusters, respectively, as protected
against user-mode or supervisor-mode write access.

• Define the user-written system service's entry point as a universal symbol,
using the UNIVERSAL= option.

Specifying Protection for the Image or Clusters
The VMS Linker allows you to protect all or part of a user-written system
service from write access by code executing in user or supervisor mode.
The /PROTECT command qualifier causes all image sections to be so
protected. The PROTECT= option in a linker options file permits you to
specify protection for individual clusters, thus allowing user-written system
services to contain parts into which the nonprivileged user can write.

The linker option takes the form PROTECT=YES or PROTECT=NO and
precedes the specifications for clusters that are to be protected or unprotected,
respectively. The following example shows the linker options file entries to
designate clusters A, B, and Das protected, and cluster C as unprotected:

PROTECT= YES
CLUSTER=A,, ,MODULE1,MODULE2
CLUSTER=B,, ,MODULE3,MODULE4,MODULE5
PROTECT= NO
CLUSTER=C,, ,MODULE6,MODULE7
PROTECT= YES
CLUSTER=D,, ,MODULE8,MODULE9

The VMS Linker Utility Manual discusses linker options files and explains each
available option.

A.3 Installing the User-Written System Service

A-4

To make a user-written system service usable by nonprivileged programs,
you must install it as a protected permanent global section. The following
procedure is recommended:

1 Move the user-written system service to a protected directory, such as
SYS$SHARE.

2 Run the Install Utility, specifying the /PROTECT, /OPEN, and
/SHARED qualifiers. You can also specify the /HEADER_RESIDENT
qualifier. The following entry could be used to install a user-written
system service whose image name is USS:

$ INSTALL
ADD SYS$SHARE:USS/PROTECT/OPEN/SHARED/HEADER_RES

The Install Utility is discussed in the VMS Install Utility Manual.

User-Written System Services
A.4 Using the User-Written System Service

A.4 Using the User-Written System Service
To the nonprivileged user of a user-written system service there is no
difference between using it and using an ordinary shareable image. To
use a user-written system service, you must do the following:

1 Call the user-written system service.

2 Link the user-written system service into the executable image being
created.

Note: If the user-written system service was installed as writable, you
cannot link it into an executable image. You must link an uninstalled
copy of the writable user-written system service into the executable
image.

A.5 Program Listings
Refer to SYS$EXAMPLES:USSDISP.MAR for listings of modules in a user
written system service and of a module that calls the user-written system
service.

A-5

B Using Shared Memory

The MA780 is a multiport memory unit that can be attached to VAX-11/780
processors. Each VAX-11/780 processor can support up to two MA780s.
Each MA780 has four ports, thereby allowing up to four VAX-11/780
processors to be attached to it.

Using one or more multiport memory units, an application can consist of
multiple processes running on different VAX-11/780 processors. Regardless
of the processor on which they are running, these processes can communicate
the completion of an event, send messages, and share common data and code
by means of the shared memory.

B.1 Preparing Multiport Memory for Use
Before an application using multiport memory can execute under VMS, the
system manager must activate the VMS operating system in the processors
connected to the multiport memory unit and initialize that memory. See your
operations guide for an explanation of the system management responsibilities
associated with a multiport memory unit; this section summarizes the system
management functions for the benefit of the application programmer.

First, the system manager activates the VMS operating system in a
VAX-11/780 and initializes the multiport memory unit. These actions cause
the following to occur:

• The uninitialized shared memory is connected to the VMS operating
system running in the processor.

• A name is defined that all processes running in all processors can use to
refer to the shared memory (see Section B.3).

• Limits are set for the following resources in this multiport memory unit:

Common event flag clusters: the total number that can be created,
and the number that can be created by processes running on this
processor

Mailboxes: the total number that can be created, and the number that
can be created by processes running on this processor

Global sections: the total number that can be created, and the number
that can be created by processes running on this processor

The system manager activates the VMS operating system in the other
processors connected to the multiport memory unit. The system manager
then connects the initialized shared memory to the VMS operating system
running in each of these processors and sets limits for the number of common
event flag clusters, global sections, and mailboxes that processes on each
processor can create in the multiport memory.

B-1

Using Shared Memory
B.1 Preparing Multiport Memory for Use

The system manager can also install global sections in shared memory just as
they are installed in local memory. The Install Utility can be used to create
shared memory global sections for known files. After the global sections
are installed, a process running in any processor connected to the multiport
memory can map to the section, if the process has the appropriate privilege.
The process can gain access to the global section either by using a logical
name defined by the system manager or by using the section name specified
when the global section was created. In the latter case, the section name
must be unique on the processor running the process attempting to access the
global section.

B.2 Privileges Required for Shared Memory Use
To use facilities in memory shared by multiple processors, you must have
all of the user privileges required to use the equivalent facility in local
memory. For example, to create a permanent global section, you must have
the PRMGBL privilege, and to create a temporary or permanent mailbox, you
must have the TMPMBX or PRMMBX privilege, respectively.

In addition to any other required privileges, you must have the SHMEM
privilege to create or delete a common event flag cluster, mailbox, or global
section in memory shared by multiple processors. However, you do not need
the SHMEM privilege to use an existing cluster, mailbox, or global section in
multiport memory.

B.3 Naming Facilities in Shared Memory

B-2

To allow access to facilities in memory shared by multiple processors, the
system manager and application programmers define names that application
programs use to refer to individual shared memory units. During system
installation, the system manager defines the name that processes on that
particular processor use to refer to the shared memory itself. Application
programs define the names that they use to refer to common event flag
clusters, global sections, and mailboxes located in the shared memory.

By convention, facilities in shared memory have a name string in the
following format:

memory-name:facility-name

where:

Using Shared Memory
B.3 Naming Facilities in Shared Memory

memory-name Name assigned by the system manager during system
installation to the shared memory containing the facility.
VMS requires the memory name when you specify a
common event flag cluster or mailbox. The colon is
recognized as a delimiter separating the two parts of
the name string. The name must contain 43 or fewer
characters, and can consist only of alphabetic characters,
numeric characters, the dollar sign ($), and the
underscore (_).

facility-name Logical name assigned to the event flag cluster, global
section, or mailbox. The name must contain 43 or fewer
characters, and can consist only of alphabetic characters,
numeric characters, the dollar sign ($), and the
underscore(_).

Following are examples of facility names:

SHRMEM:GS_DAT A Identifies the global section GS_DAT A in the shared
memory named SHRMEM

SHRMEM:MAILBX Identifies the mailbox MAILBX in the same shared memory

B.4 Assigning Logical Names and Logical Name Translation
You can define a logical name for a shared memory facility with the DEFINE
or ASSIGN command or with the Create Logical Name ($CRELNM) system
service. Application programs can then refer to the facility using the logical
name; for example, a process can invoke the Create Mailbox and Assign
Channel ($CREMBX) system service specifying the logical name for an
existing mailbox to which a channel is to be assigned.

When translating a logical name for a shared memory facility, the VMS
operating system uses a slightly different approach from that used for other
logical names. The purpose of this approach is to allow programmers to
specify either the complete name (memory name and facility name) or a
logical name that the system will translate to the complete name. If you
define logical names properly, a program that uses a given facility in local
memory can be run without change to use the facility in shared memory.

Whenever VMS encounters the name of a common event flag cluster,
mailbox, or global section, it performs the following special logical name
translation sequence:

1 Inserts one of the following prefixes to the name (or to the part of the
name before the colon if a colon is present):

CEF$ for common event flag clusters
MBX$ for mailboxes
GBL$ for global sections

2 Subjects the resultant string to logical name translation. If translation
does not succeed (that is, the original name did not use a logical name),
passes the original name string to the system service. If translation does
succeed, goes to step 3.

3 Appends the part of the original string after the colon (if any) to the
translated name.

B-3

Using Shared Memory
8.4 Assigning Logical Names and Logical Name Translation

4 Repeats steps 1 to 3 (up to a number of times determined by the system,
if necessary) until logical name translation fails. When translation fails,
passes the string to the system service.

For example, assume that you have made the following logical name
assignment:

$ DEFINE MBX$CHKPNT SHRMEM$1:CHKPNT

Assume also that your program refers to the mailbox name as CHKPNT in a
system service argument. The following logical name translation takes place:

1 MBX$ is prefixed to CHKPNT.

2 MBX$CHKPNT is translated to SHRMEM$1 :CHKPNT.

3 No further translation is successful; therefore, the string
SHRMEM$1:CHKPNT is passed to the system service.

The logical name definition in the preceding example allows a program that
used a mailbox named CHKPNT in local memory to run using the mailbox in
shared memory, without being recompiled or relinked.

Note that if a process creates one or more subprocesses and they use a
mailbox or common event flag cluster in shared memory, the creator should
place the logical name in the job or group logical name table (for example,
specify the /JOB or /GROUP qualifier with the DEFINE command). If
the name is defined in the process logical name table (the default), the
subprocesses do not receive the correct equivalence name, because each
subprocess has its own process logical name table.

There are two exceptions to the logical name translation method discussed in
this section:

• If the facility name starts with an underscore (-), the VMS operating
system strips the underscore and considers the resultant string the actual
name (that is, no further translation is performed).

• If the facility is a global section with a name in the format name_nnn,
VMS first strips the underscore and the digits (nnn), then translates the
resultant name according to the sequence discussed in this section, and
finally reappends the underscore and digits. The system uses this method
with known images and shared files installed by the system manager.

8.5 How VMS Finds Facilities in Shared Memory

B-4

After the VMS operating system performs the logical name translation
described in Section B.4, the final equivalence name must be the name of
a facility in either the processor's local memory or in shared memory. If the
equivalence name specifies the name of a shared memory (that is, the name
is in the format memory-name:facility-name), VMS searches for the facility in
the appropriate database of the specified shared memory unit.

If the equivalence name specifies a common event flag cluster or mailbox and
does not specify a memory name, VMS searches through the local memory
common event flag cluster database or mailbox database until it locates the
specified cluster or mailbox. Absence of a memory name as part of a common
event flag cluster name or mailbox name indicates that the facility is located
in local memory.

Using Shared Memory
B.5 How VMS Finds Facilities in Shared Memory

If the equivalence name specifies a global section and does not specify a
memory name, VMS looks for the section in the following order:

1 It searches the global section tables for sections in the processor's local
memory.

2 It searches the global section tables for each initialized shared memory
connected to the processor in the order in which they were connected and
recognized by the processor.

The result of searching in this order is that global sections in the processor's
local memory take precedence over those in shared memories. Thus, absence
of a memory name as part of a global section name is not used as an
indication of where the global section is located.

B.6 Using Common Event Flags in Shared Memory
Under VMS, any process can associate with up to two common event flag
clusters (event flag numbers 64 through 95 and 96 through 127). These
clusters can be located in shared memory or in local memory. To create and
associate with a common event flag cluster in shared memory and manipulate
flags in the cluster, you use the same steps as you would to associate with a
common event flag cluster in local memory:

1 Issue the Associate Common Event Flag Cluster ($ASCEFC) system
service to create and name the cluster or to associate with an existing
named cluster.

2 Issue any of the services that set, clear, and wait for designated event
flags, as appropriate.

Creation of a shared memory common event flag cluster requires CEF PORT
quota. You can set up this quota by using the SYSGEN command SHARE.
This quota is restored when the common event flag cluster is deleted.

As with local memory clusters, the first process among cooperating processes
to issue the Associate Common Event Flag Cluster ($ASCEFC) system service
causes the cluster to be created and named. Any other process calling this
service and specifying the same cluster name associates with that existing
cluster. VMS implicitly qualifies cluster names with the group number of the
creator's UIC; therefore, other cooperating processes must belong to the same
group. All of the event flag system services, with the exception of Associate
Common Event Flag Cluster and Disassociate Common Event Flag Cluster,
function identically whether they are used with local or shared memory
clusters. The only difference with the associate and disassociate system
services is that, to specify a cluster in shared memory, you must provide
the memory name as well as the cluster name. That is, after VMS performs
logical name translation of the name argument, the cluster name must have
the following format:

memory-name:cluster-name

Section B.3 describes the name format, and Section B.4 explains the logical
name translation performed by the system. Chapter 4 describes all of the
event flag services in detail.

B-5

Using Shared Memory
B. 7 Using Mailboxes in Shared Memory

B. 7 Using Mailboxes in Shared Memory

B-6

The creation of a mailbox in shared memory requires MAILBOX PORT quota.
This quota is acquired by means of the SYSGEN command SHARE and is
returned when the mailbox is deleted.

The first process on each processor must use the Create Mailbox and Assign
Channel ($CREMBX) system service to create a shared memory mailbox
and assign a channel to it. Any $CREMBX system service call referring to a
shared memory mailbox must specify a mailbox name that has or translates
to the following format (Section B.4 explains the logical name translation
procedure):

memory-name: mailbox-name

When the mailbox is created, the $CREMBX system service also creates
the mailbox-name portion of the name string as a logical name with an
equivalence name in the format MBn. For example, if the complete name
string is SHMEM:MAILBOX, the system service creates MAILBOX as a logical
name with an equivalence name of, for example, MBBOOS.

The Assign I/O Channel ($ASSIGN) and Deassign I/O Channel ($DASSGN)
system services require that you specify only the mailbox-name portion of
a shared memory mailbox name string. Likewise, any high-level language
program statements that open, close, read from, or write to a shared memory
mailbox must specify only the mailbox-name portion.

The following code example shows two VAX FORTRAN programs using a
shared-memory mailbox. The memory name in this example is SHMEM. The
programs are running in processes on separate processors.

PROGRAM ONE
INTEGER*4 SYS$CREMBX,STATUS,CHAN

STATUS= SYS$CREMBX(,CHAN,,,, ,'SHMEM:MAILBOX')
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

C-- Open the mailbox using the mailbox-name; write a message.

OPEN (UNIT=1,NAME='MAILBOX' ,STATUS='NEW')
WRITE (1,*) MESSAGE

END

PROGRAM TWO
INTEGER*4 SYS$CREMBX,STATUS,CHAN

STATUS= SYS$CREMBX(,CHAN, ,,, ,'SHMEM:MAILBOX')
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

C-- Open the mailbox using the mailbox-name; read the message.

OPEN (UNIT=1,NAME='MAILBOX' ,STATUS='OLD')
READ (1,*) MESSAGE

END

You cannot use a mailbox in shared memory as a process termination
mailbox. Note that because the processes run on different processors, each
must issue a $CREMBX system service request.

Using Shared Memory
B. 7 Using Mailboxes in Shared Memory

A mailbox located in memory shared by multiple processors is deleted when
all of the following occur:

• A processor is rebooted.

• The multiport memory is not reinitialized.

• No other processor has any processes with channels assigned to the
mailbox.

Section 7.20 discusses mailboxes and related system services in detail.

8.8 Using Global Sections in Shared Memory
You need GLOBAL SECTION PORT quota to create a global section in
memory shared by more than one processor. You acquire this quota using the
SYSGEN command SHARE; it is returned when the global section is deleted
or when you reissue the SYSGEN command SHARE after the processor on
that port is rebooted.

Under VMS, processes can map global sections located in local memory or
in shared memory. A global section in shared memory can be mapped to an
image file or a data file, just like a global section in local memory. To create
a global section in shared memory, you perform the same steps as you would
to create a global section in local memory:

1 Using VMS RMS, open the file to be mapped.

2 Issue the Create and Map Section ($CRMPSC) system service.

The file to be mapped must reside on a disk device attached to the local
processor. After the section is created, however, processes on all processors
attached to the shared memory can map the section. To map to an existing
global section in shared memory, you issue a Map Global Section ($MGBLSC)
system service specifying the name of the section. After the section is
mapped, processes gain access to shared memory global sections in the
same manner as they do to local memory sections. VMS thus makes use of
the shared memory unit transparent to the process.

VMS treats the pages of a global section in shared memory differently from
pages in local memory. When a process creates a shared-memory global
section, VMS brings all of the pages of the mapped image or data file into
memory. Any process mapped to that global section can gain access to those
pages without incurring a page fault because the pages are already in physical
memory. Unlike process pages in local memory, global section pages in
shared memory are not included in the working sets of the processes that
map the section.

Because no paging occurs, VMS never writes the contents of shared memory
global section pages back to their disk file. For read/write global sections in
which you want to maintain an updated file while the application executes,
you must issue an Update Section File on Disk ($UPDSEC) system service.
The process issuing the update request must execute on the same processor
as the process that created the global section. You can update the disk file
periodically during execution of the application as a checkpoint precaution.
The disk file is automatically updated when the section is deleted.

B-7

B.8.1

Using Shared Memory
8.8 Using Global Sections in Shared Memory

Each process that has mapped a global section in shared memory can unmap
the section in either of the following ways:

• Issue a Delete Virtual Address Space ($DEL TVA) system service to delete
the process's virtual address space that maps the section.

• Terminate the current image, thereby causing VMS to unmap the process
from the section automatically.

Deleting a global section in shared memory requires an explicit deletion
request, because all global sections in shared memory must be permanent
sections. The deletion request can be either a Delete Global Section
($DGBLSC) system service issued by the application or a deletion request
issued by the system manager using the Install Utility. In either case, VMS
does not perform the actual deletion until all processes that have mapped the
section unmap it.

When a process requests deletion of a shared memory global section page,
VMS waits until no direct I/O is outstanding for the process before deleting
the page. This is because no reference count is maintained for shared
memory global section pages. (For example, VMS cannot determine whether
outstanding direct I/O is for the shared memory global section page or not.)
Applications using devices that have direct I/O perpetually outstanding, such
as the DR32, must not delete shared memory global section pages because
this causes the process to hang in the MWAIT state (unless the applications
cancel the outstanding I/O request first).

Removing Shared Memory Global Sections

B-8

A shared memory global section can be deleted only by the creating
processor.

If you rebootstrap a processor and reconnect it to an MA780 without
reinitializing the MA780, the System Generation Utility (SYSGEN) does
cleanup for the processor. This cleanup causes all global sections created
by processes running on this processor to be marked as having no creating
processor. (The data structures that allow the data in the global section pages
to be written back into the disk file no longer exist.)

Without a creating processor, you must do the following before you attempt
to delete shared memory global sections:

1 Reboot all processors.

2 Reinitialize the MA780.

Section 11. 7 provides information on the use of the VMS system services used
with global sections, that is, memory management system services. Section
B.8.2 provides information specifically related to creating and mapping a
global section in shared memory. The $CRMPSC, $MGBLSC, $DGBLSC, and
$UPDSEC system services are the only memory management system services
for which the shared memory has any direct implications.

B.8.2

Using Shared Memory
B.8 Using Global Sections in Shared Memory

Create and Map Section System Service
The Create and Map Section system service has the following general formats
when issued to create or map (or both) a global section in shared memory:

VAX MACRO Format

$CRMPSC [inadr],
,[ident),

[retadr],
[relpag],

High-Level Language Format

[acmode), [flags), gsdnam
[chan), [pagcnt), [vbn), [prot)

SYS$CRMPSC [inadr],
,[ident),

[retadr),
[relpag),

[acmode], [flags), gsdnam
[chan), [pagcnt), [vbn), [prot]

With the exception of the flags, gsdnam, and pfc arguments, the arguments
of this service are not affected by MA780 considerations.

flags
Mask defining the section type and characteristics. Of the flags defined, you
must set the following two:

Flag

SEC$M_GBL

SEC$M_PERM

Meaning

Global section

Permanent section

That is, sections in shared memory must be permanent global sections.

If appropriate, you can also set the following flags:

Flag Meaning Default

SEC$M_DZRO Pages are demand-zero
pages

Pages are not zeroed when copied

SEC$M_WRT

SEC$M_SYSGBL

SEC$M_EXPREG

Read/write section

System global section

Map section into the
first free range of
virtual addresses large
enough to hold the
section

Read-only

Group global section

Map section according to the
INADR argument

When using the Create and Map Section system service to create global
sections in shared memory, you cannot set either SEC$M_CRF (copy-on
reference) or SEC$M_pfNMAP (page frame number mapping). If you set
SEC$M_CRF, VMS places the global section in local memory.

gsdnam
Address of a character string descriptor pointing to the text name string for
the global section. This argument is required for creating sections in shared
memory.

The string can be either the name of a global section or the logical name
of a global section. VMS performs logical name translation as described in
Section B.4.

B-9

Using Shared Memory
8.8 Using Global Sections in Shared Memory

B-10

VMS implicitly qualifies global section names with an identification. For
group global sections, the section name is also implicitly qualified by the
group number of the process creating the global section.

pfc
Page fault cluster size for local memory sections. This argument is ignored for
global sections in shared memory, because VMS reads the file into memory
when it creates the section and does not allow paging for sections in shared
memory.

C Loading Installation-Specific Executive Loaded
Images

This appendix contains step-by-step instructions for preparing an
installation-specific executive loaded image, for loading this image into
the operating system, and for removing the image. The example creates an
MTACCESS.EXE executive loaded image. A similar example can be found in
SYS$EXAMPLES:DOD_ERAPAT.MAR on the VMS operating system.

Preparing and Loading the Executive Loaded Image

1 Create the source module MTACCESS.MAR .

a. Include the following macro to define system service vector offsets:

$SYSVECTORDEF ; Define system service vector off sets

b. Use the following macros to define the system service entry point:

SYSTEM_SERVICE MTACCESS, -
<R2,R4>, -
MODE=KERNEL,
NARG=6

Entry point name
Registers to save
Mode of system service
Number of arguments

The instruction following the preceding macros is the first instruction
of the $MTACCESS system service.

c. Use the following macros to declare the desired program sections
(PSECT):

DECLARE_PSECT EXEC$PAGED_CODE Pageable code PSCET

DECLARE_PSECT EXEC$PAGED_DATA Pageable data PSECT

DECLARE_PSECT EXEC$NONPAGED_DATA Nonpageable data PSECT

DECLARE_PSECT EXEC$NONPAGED_CODE Nonpageable code PSCET

2 Assemble the source module, by using the following command:

$ MACRO/OBJ=MTACCESS MTACCESS+SYS$LIBRARY:LIB.MLB/LIB

3 Link the module to create an MTACCESS.EXE executive loaded image.
You can link the module by using a command procedure as follows:

$ LINK /NOSYSSHR/NOTRACEBACK -
/SHARE=MTACCESS -
/MAP=MTACCESS /FULL /CROSS -
/SYMBOL=MTACCESS -
SYS$INPUT/OPTION

MTACCESS, -
SYS$LIBRARY:STARLET/INCLUDE:(SYS$DOINIT),
SYS$SYSTEM:SYS.STB/SELECTIVE
VECTOR_TABLE=SYS$SYSTEM:SYS.STB

C-1

Loading Installation-Specific Executive Loaded Images

COLLECT=NONPAGED_READONLY_PSECTS/ATTRIBUTES=RESIDENT,
EXEC$NONPAGED_CODE

COLLECT=NONPAGED_READWRITE_PSECTS/ATTRIBUTES=RESIDENT,
EXEC$NONPAGED_DATA

COLLECT=PAGED_READONLY_PSECTS,-
EXEC$PAGED_CODE

COLLECT=PAGED_READWRITE_PSECTS,-
EXEC$PAGED_DATA

COLLECT=INITIALIZATION_PSECTS/ATTRIBUTES=INITIALIZATION_CODE,
EXEC$INIT_CODE,-
EXEC$INIT_OOO,-
EXEC$INIT_001,-
EXEC$INIT_002,-
EXEC$INIT_PFNTBL_OOO,-
EXEC$INIT_PFNTBL_001,-
EXEC$INIT_PFNTBL_002,-
EXEC$INIT_SSTBL_OOO,-
EXEC$INIT_SSTBL_001,-
EXEC$INIT_SSTBL_002

4 Prepare the executive loaded image to be loaded.

a. Copy MTACCESS.EXE images produced by the preceding link
command into the SYS$LOADABLE_IMAGES directory. Note
that privilege is required to put files into this directory.

b. Add an entry for the MTACCESS.EXE image in the
SYS$UPDATE:VMS$SYSTEM_IMAGES.IDX data file.

You add an entry by using the Sysman Utility. The SYSMAN
command is as follows:

SYSMAN SYS_LOADABLE ADD _LOCAL_ image_nameO
/LOAD_STEP8 = {INIT I SYSINIT} -

C-2

/SEVERITY 8 = {WARNING I SUCCESS I FAT AL I INFORMATION} -
/MESSAGE 0 = "error message text"

0 The image_name defines the file specification of the image to be
loaded. The default directory is <SYS$LDR> and the default
file type is EXE.

8 /LOAD_STEP

= INIT, image to be loaded by the system initialization code.

= SYSINIT, image to be loaded by the SYSINIT process.

8 /SEVERITY

=WARNING, if error loading the image, output the error message
and continue processing.

= SUCCESS, continue even if there is an error loading the image.
No message is issued.

=FATAL, if error loading the image, output the error message and
BUGCHECK.

= INFORMATION, always output the message and continue.

0 /MESSAGE is a supplied error message text to be issued under
the appropriate condition.

Loading Installation-Specific Executive Loaded Images

For example, you can add the following entry to
VMS$SYSTEM_IMAGES.IDX for MTACCESS.EXE.

$ SYSMAN SYS_LOADABLE ADD _LOCAL_ MTACCESS -
_$ /LOAD_STEP = SYSINIT -
_$ /SEVERITY = WARNING -
_$ /MESSAGE = "failure to load installation-specific - $MTACCESS service"

This entry specifies that the MTACCESS.EXE image is to be loaded
by the SYSINIT process during the bootstrap. If there is an error
loading the image, the following messages are printed on the console
terminal:

%SYSINIT-E-failure to load installation-specific $MTACCESS service
-SYSINIT-E-error loading <SYS$LDR>MTACCESS.EXE, status = "status"

c. Invoke the SYS$UPDATE:VMS$SYSTEM_IMAGES.COM command
procedure to generate a new system image data file. The system
bootstrap uses this image data file to load the appropriate images into
the system.

d. Reboot the system, which loads the installation-specific
MTACCESS.EXE executive loaded image into system. Subsequent
calls to the $MTACCESS system service use the installation-specific
routine.

As the default, the system bootstrap loads all images described in the
system image data file (VMS$SYSTEM_IMAGES.DATA). You can
disable this functionality by setting the special SYSGEN parameter
LOAD_SYS_IMAGES to 0.

Removing the Executive Loaded Image

You can remove an executive loaded image by using the following procedure:

1 Use the following SYSMAN command (based on the specific example in
the preceding instructions).

$ SYSMAN SYS_LOADABLE REMOVE _LOCAL_ MTACCESS

2 Repeat steps c and d from instruction 4.

C-3

Index

A
Absolute time• 9-2

in system format• 9-3
Access

logical l/0•7-10
physical 1/0 • 7-8

Access control entry

See ACE
Access control list

See ACL
Access entry• 1-7
Access method • 1-7
Access mode• 2-2

effect on AST delivery• 5-6
specifying• 2-2
types of• 2-2
with AST• 5-2
with logical names• 6-7

Access types• 1-8
ACE (access control entry)

alarm• 3-19
application• 3-20
creating• 3-18, 3-25
default protection• 3-2 1
identifier• 3-23
maintaining• 3-18, 3-25
translating• 3-18, 3-24
types of•3-18

ACL (access control list)• 3-2
Alarm ACE• 3-19

format of• 3-1 9
purpose of• 3-19

Application ACE• 3-20
format of• 3-20
purpose of• 3-20

Argument
characteristics of• 2-3

passing mechanism• 1-7
mechanism array• 10-10
signal array• 10-10
specifying• 2-7
VMS usage• 1-6

Argument data type• 1-7
Argument list• 2-3

creating• 2-8

Argument list (cont'd.)

for AST service routine• 5-4
for condition handler• 10-8
for system services• 2-3
using macros• 2-6

Argument passing meQhanism • 1-8
Arguments heading• 1-6
Array

mechanism• 10-10
signal• 10-10
virtual address• 11-5

ASCII time• 9-7
ASSIGN command• 6-2
AST

process wait state• 5-3
AST (asynchronous system trap)

access mode• 5-2
blocking• 12-9, 12-15
declaring • 5-3
delivery• 5-5
example • 5-6
parameter• 5-4
quota• 7-4
service routine • 5-4
system service • 5-1

Asynchronous system service• 2-12
Asynchronous system trap

See AST

B
Balance set

swapping• 11-7
BIOLM (buffered 1/0 limit) quota• 7-3
Blocking AST

description• 12-9
using• 12-15

BYPASS privilege• 7-6
BYTELM (buffered 1/0 byte count) quota• 7-3

c
Caching• 12-14

lndex-1

Index

Call
testing for successful completion of• 2-16

CALLG (Call Procedure with General Argument List)
instruction

example• 2-11
using MACRO• 2-10

CALLS (Call Procedure with Stack Argument List)
instruction

argument• 2-6
example• 2-10
using MACRO• 2-10

Call stack
unwinding • 10-14

Change mode handler• 10-6
Channel

assigning 1/0 • 7-14
deassigning• 7-20

Clock
setting system • 9-8

Common event flag cluster• 4-4
Compatibility mode handler• 10-6
Condition

for exception • 1 0-1
Condition handler

argument list• 10-8
course of action • 10-12
example• 10-13
specifying• 10-6

Condition-handling services• 1-2, 10-1
Condition value• 1-5, 1-9, 2-15

high-level language• 2-18
information provided by• 2-16
testing• 2-16

Control region• 11-2
Convention

for calling• 2-1

D
Date

getting current system• 9-2
Smithsonian base• 9-2
system format• 9-2

Deadlock detection• 12-6
Default logical name table

group• 6-6
job•6-5
process • 6-4
system•6-6

lndex-2

Default protection ACE• 3-21
Default system macro library• 2-5
DEFINE command• 6-2
Delta time• 9-2

example• 9-4
in system format• 9-3

Detached process• 8-2, 8-7
Device

allocating• 7-22
deallocating• 7-24
default name• 7-27
getting information about• 7-27
implicit allocation• 7-23
name• 7-26
protection• 7-6

DIOLM (direct 1/0 limit) quota• 7-3
Directory logical name table

process • 6-3
system• 6-3

Disk file
opening• 11-9

Disk volume
mounting• 7-24

Dispatcher
exception• 10-7

DYNAMIC attribute• 3-5

E
Equivalence name

defining• 6-1
format convention • 6-10

Error check• 2-16
Error recovery• 7-13
Event flag

clearing• 4-4
for interprocess communication • 8-10
setting• 4-4
specifying• 4-2
wait•4-3

Event flag cluster• 4-2
deleting• 4-5
disassociating• 4-5
number•4-2
specifying name for• 4-7

Event flag number• 4-2
Event flag service

example using• 4-8

Exception

dispatcher• 10-7
multiple• 10-17
type• 10-1

Execution context• 8-2
Exit

forced • 8-1 6
image•8-14

Exit handler• 8-15
Extent

defining section• 11-1 O

F
Failure exception mode• 2-14
Forced exit • 8-16
Foreign device• 7-7
Foreign volume• 7-4, 7-5, 7-7
Function code• 7-12
Function modifier• 7-13

types of

G

10$M_DAT A CHECK• 7-13
10$M_INHERLOG • 7-7
10$M_INHRETRY • 7-13

Global section • 11-11
characteristic • 11-11
defining• 11-8
for interprocess communication• 8-11
mapping• 11-15
name• 11-12
paging file• 11-15

Granularity
in lock• 12-2

Group logical name table• 6-6

H
Handler

change and compatibility mode• 10-6
Hibernation• 8-11

alternate method• 8-13
and AST•5-3
compared with suspension• 8-11

High-level language
call from•2-17

Holder record• 3-5
adding•3-9
format of• 3-5
modifying • 3-13
removing• 3-15

I
1/0 channel•7-14

deassigning• 7-20
1/0 completion

recommended test • 7-17
status• 7-19
synchronizing• 7-1 5

1/0 function
code• 7-12, 7-14
modifier• 7-13

1/0 operation
logical• 7-7
physical • 7-7
quotas, privileges, and protection• 7-2
summary of• 7-6
virtual• 7-8

1/0 request
canceling• 7-22
queuing• 7-14

1/0 service
synchronous version • 7-18

1/0 status block
in synchronization• 7-15
return condition value field • 7-19

Identifier• 3-2
adding to rights database• 3-9
attributes • 3-5
defining• 3-2
determining holders of• 3-1 O
format of• 3-2, 3-3
general• 3-4
removing from rights database• 3-15
system-defined• 3-4
UIC format• 3-3

Identifier ACE• 3-23
Identifier name• 3-3

translating • 3-8
Identifier record • 3-5

adding to rights database• 3-9
format of• 3-5

Index

lndex-3

Index

Identifier record (cont'd.)

modifying • 3-12
removing from rights database• 3-1 5

Identifier value
translating• 3-8

IFI (internal file identifier)
removing• 6-11

Image
exit• 8-14
for subprocess• 8-3
rundown activity• 8-14

Image rundown
effect on logical names• 6-5

Image section • 11-19
Input address array• 11-4
Internal file identifier

See IFI
Interprocess

communication• 8-10
Interprocess communication• 8-7

using event flags for• 8-10
using global sections for• 8-11
using lock management services for• 8-11
using logical names for• 8-10
using mailboxes for• 8-11

Interprocess control• 8-7

J
Job logical name table• 6-5

L
Local buffer caching

with lock management service• 12-14
Lock

choice of mode• 12-3
concept of• 12-1
conversion• 12-6, 12-10
deadlock detection• 12-6
dequeuing• 12-13
level• 12-4
mode• 12-3

Lock management service• 1-3
for interprocess communication • 8-11

Lock request
queuing• 12-4
synchronizing• 12-8

lndex-4

Lock status block• 12-9
Lock value block

description• 12-12
using• 12-15

Logical 1/0
access checks • 7-10
operations• 7-7
privilege• 7-4, 7-7

Logical name• 7-26
attributes• 6-8
creating • 6-12
defining • 6-1
deleting • 6-1 7
duplicating • 6-13
for interprocess communication• 8-10
format convention • 6-10
image rundown• 6-5
multivalued• 6-2
supersession • 6-1 5
translating • 6-17

Logical name system service call
example of

SYS$CRELNM • 6-12
SYS$CRELNT • 6-16
SYS$DELLNM • 6-1 7
SYS$TRNLNM • 6-18

Logical name table
creating • 6-16
default• 6-3
directory• 6-3
group•6-6
job•6-5
predefined logical names• 6-2
process • 6-4
process-private • 6-6
quotas•6-9
search list• 6-11

modifying• 6-12
shareable• 6-6, 6-16
system•6-6
types of• 6-2
user-defined• 6-6

Longword condition value• 1-5
Longwords• 2-4

M
MACRO

CALLG (Call Procedure with General Argument
List) instruction• 2-10

MACRO (cont'd.)

calling system service using• 2-9
CALLS (Call Procedure with Stack Argument

List) instruction• 2-10
expansion• 2-8
system service• 2-1, 2-5

Mailbox•2-1, 7-30
for interprocess communication• 8-11
name• 7-32
protection• 7-4, 7-5
system• 7-33

messages• 7-33
termination • 8-18

Mechanism array argument• 10-10
Mechanism entry• 1-8
Memory

locking page into• 11-7
Memory management serices • 1-2
Message

system• 2-17
MOUNT privilege• 7-4
Multiple exception• 10-17

N
NARGS keyword• 2-8
Null arguments• 1-5
Null device• 7-28
Numeric time• 9-7

0
Out swap

by suspension• 8-14

p
Page• 11-2

copy-on-reference• 11-11
demand-zero• 11-11
locking into memory• 11-7
owner• 11-5
ownership and protection• 11-5

Page frame section • 11-19

Paging file section • 11-16
global• 11-1 5

Parent lock• 12-11
Passing arguments• 1-7
Passing mechanisms• 1-8
Physical 1/0

access checks• 7-8
operations• 7-7
privilege•7-4, 7-7

Physical name• 7-26
PID (process identification) number• 8-8
Predefined logical name

LNM$FILE_DEV • 6-12
Private section

defining• 11-8
Privilege• 6-6

BYPASS•7-6
defined by access mode• 2-2
1/0 operations• 7-2
logical l/0•7-4, 7-7
MOUNT•7-4
physical 1/0 • 7-4, 7-7
SYSTEM• 7-6
user• 2-2

Privileged shareable image

See User-written system service
Process

creating• 8-2
creation restriction • 8-7
deleting• 8-1 7
detached• 8-2, 8-7
disabling swap mode• 11-7
disallowing swapping• 11-7
hibernating• 8-11
identification• 8-8
information• 8-10
name•8-8
name within group• 8-9
subprocess• 8-2
suspending• 8-11 , 8-14
swapping• 11-7
swapping by suspension• 8-14
termination mailbox• 7-34, 8-18

Process control services• 1-2
Process directory table• 6-3
Process identification

See PID
Process logical name table• 6-4
Process rights list• 3-2
Programming examples

interpreting• 2-18

Index

lndex-5

Index

Program region• 11-2
Protected shareable image

See User-written system service
Protection

by access mode• 2-2
device• 7-6
1/0 operations• 7-2
mailbox• 7-4, 7-5
page• 11-5
volume•7-4

Protection mask• 7-4

Q
Queue

lock management• 12-4
Quota

AST•7-4
buffered 1/0 • 7-3
buffered 1/0 byte count• 7-3
direct 1/0 • 7-3
establishing • 6-9
1/0 operations• 7-2
resource• 2-2

R
Record Management Services

See VMS RMS
Resource

controlling• 8-6
lock management concept• 12-1
name• 12-2
quota• 2-2

RESOURCE attribute• 3-5
Resource wait mode• 2-2
Return address array• 11-4
Return condition

special• 2-13
Return condition value• 2-15

high-level language• 2-18
Rights database• 3-2, 3-5, 3-15

adding to• 3-9
default protection• 3-6
elements of• 3-7
holder record • 3-5
identifier record • 3-5

lndex-6

Rights database (cont'd.)

initializing• 3-6
keys•3-6
modifying•3-12, 3-13, 3-15

Rights list• 3-30
RMS (Record Management Services)

See VMS RMS

s
Sample program • 13-1
Search list• 6-2
Search operations• 3-15
Section • 11-8

characteristic• 11-10
creating • 11-8
defining extent• 11-10
deleting • 11-18
global paging file• 11-1 5
image• 11-19
mapping• 11-13
page frame• 11-19
paging• 11-16
releasing• 11-18
unmapping • 11-18
using to share data • 11-18
writing back• 11-1 9

Security services• 1-1
Service routine

AST•5-4
Signal array argument• 10-10
Sublock • 12-11
Subprocess• 8-2

disk and directory default• 8-5
image•8-3
input, output, and error device• 8-3

Suspension • 8-11 , 8-14
compared with hibernation • 8-11

Symbolic definition macro• 2-8
Symbolic names

for argument lists• 2-8
Synchronous system service• 2-12
SYS$ADD_HQLDER•3-9
SYS$ADD_IDENT • 3-9
SYS$ADJWSL • 11-6
SYS$ALLOC

example• 7-23
SYS$ASCTIM

example• 9-2

SYS$ASCTOID • 3-8
SYS$ASSIGN

example• 7-14
SYS$BINTIM • 9-3
SYS$CANCEL

example• 7-22
SYS$CANTIM

example• 9-6
SYS$CANW AK• 9-7
SYS$CHANGE_ACL•3-18,3-25
SYS$CHECK_ACCESS•3-31
SYS$CHFDEF macro• 10-8
SYS$CHKPRO • 3-30
SYS$CLREF • 4-4
SYS$CREATE_RDB•3-6
SYS$CREPRC

example• 8-3
SYS$DASSGN

example• 7-20
SYS$DCLAST

example• 5-5
SYS$DCLEXH

example• 8-1 6
SYS$DELPRC • 8-18
SYS$DEQ

example• 12-14
SYS$DISMOU • 7-26
SYS$ENO

example• 12-7, 12-10
SYS$ERAPA T • 3-35
SYS$EXIT • 8-15
SYS$EXPREG

example• 11-2
SYS$FAO

example• 7-28
SYS$FIND_HELD • 3-10, 3-15
SYS$FIND_HOLDER • 3-10, 3-1 5
SYS$FORCEX

example • 8-16
SYS$FORMAT_ACL • 3-18, 3-25
SYS$GETTIM • 9-2
SYS$HIBER

example• 8-13
SYS$1DTOASC•3-8, 3-15
SYS$LKWSET • 11-6
SYS$MOD_HOLDER•3-13
SYS$MQD_IDENT • 3-12
SYS$MOUNT • 7-24
SYS$MTACCESS•3-35
SYS$NUMTIM • 9-7
SYS$PARSE_ACL•3-18,3-25

SYS$010
example• 7-14

SYS$REM_HOLDER • 3-15
SYS$REM_IDENT • 3-15
SYS$SCHDWK

canceling• 9-7
example• 9-6
request • 9-6

SYS$SETEF•4-4
SYS$SETEXV

example• 10-6
SYS$SETIME • 9-8
SYS$SETIMR • 9-4

example with AST• 5-1
SYS$SETRWM • 7-3
SYS$SETSFM

example• 2-14
SYS$SETSWM

example• 11-7
SYS$UNWIND

example• 10-16
SYS$WAKE

example• 8-13
SYSPRV•7-6
System

exception dispatcher• 10-7
library• 2-1, 2-5
mailbox• 7-33
message• 2-17

System directory table• 6-3
System logical name table• 6-6
System service

executing
asynchronously• 2-12
synchronously• 2-12

failure exception condition• 2-14
MACRO• 2-1, 2-5

T
Tape volume

mounting• 7-24
Terminal 1/0

example• 7-20
Termination mailbox• 7-34, 8-18
Time

absolute• 9-2
conversion • 9-1
converting ASCII to binary• 9-3

Index

lndex-7

Index

Time (cont'd.)

delta •9-2
getting current system• 9-2
numeric and ASCII • 9-7
setting system• 9-8
system format• 9-2

Timer request• 9-4
canceling• 9-6

u
User-defined logical name tables• 6-6
User privilege• 2-2
User-written system service• A-1

v
VAX BLISS-32 • 2-4
VAX MACR0•2-1, 2-4, 2-5
VAX procedure calling conventions• 2-1

lndex-8

Virtual address space• 11-2, 11-3
increasing and decreasing• 11-2
layout• 11-2
mapping section of• 11-13
specifying array• 11-5

Virtual 1/0 • 7-8
VMS data type • 1-6
VMS RMS (Record Management Services)• 7-1

opening file for mapping• 11-9
VMS usage• 1-6
Volume

mounting• 7-24
Volume protection• 7-4

w
Wakeup

scheduling• 9-6
Working set

adjusting size • 11-6
locking page into• 11-6
paging • 11-6

Write back section• 11-19

Reader's Comments Introduction to VMS
System Services

AA-LA68A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 •• 1.1 .. 1 •• 1.1 ••• 1.11 .. 1

·- Do Not Tear - Fold Here --

c
.! .. .,
c
• • c
i:
l
I
~
<Ill!

