
VMS

•

digital VMS System Services Reference Manual

Order Number AA-LA69A-TE

VMS System Services
Reference Manual

Order Number: AA-LA69A-TE

April 1988

This manual describes a set of routines the VMS operating system uses to
control resources, to allow process communication, to control 1/0, and to
perform other such operating-system functions.

Revision/Update Information: This manual supersedes the VAX/VMS
System Services Reference Manual,
Version 4.4.

Software Version: VMS Version 5.0

digital equipment corporation
maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT
DECUS RSTS

~urnuo~u TM DECwriter RSX

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO Rico* CANADA INTERNATIONAL

ZK4527

Digital Equipment Corporation
P.O. Box CS2008

Digital Equipment
of Canada Ltd.

Digital Equipment Corporation
PSG Business Manager

Nashua, New Hampshire
03061

100 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
In Canada call 800-267-6215.

c/o Digital's local subsidiary
or approved distributor

*Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).
Internal orders should be placed through the Software Distribution Center (SOC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use
DIGITAL-supported devices, such as the LN03 laser printer and PostScript®
printers (PrintServer 40 or LN03R ScriptPrinter), to produce a typeset-quality
copy containing integrated graphics.

® PostScript is a trademark of Adobe Systems, Inc.

Contents

PREFACE ix

NEW AND CHANGED FEATURES xi

SYSTEM SERVICE DESCRIPTIONS
$ADD_HOLDER SYS-3
$ADD_IDENT SYS-5
$ADJSTK SYS-8
$ADJWSL SYS-10
$ALLOC SYS-12
$ASCEFC SYS-15
$ASCTIM SYS-18
$ASCTOID SYS-21
$ASSIGN SYS-23
$BINTIM SYS-27
$BRKTHRU SYS-30
$BRKTHRUW SYS-38
$CANCEL SYS-39
$CANEXH SYS-41
$CANTIM SYS-42
$CANWAK SYS-44
$CHANGE_ACL SYS-46
$CHECK-ACCESS SYS-51
$CHKPRO SYS-56
$CLREF SYS-63
$CM EXEC SYS-64
$CMKRNL SYS-66
$CRELNM SYS-68
$CRELNT SYS-74
$CREATE_RDB SYS-80
$CREMBX SYS-82
$CREPRC SYS-88
$CRETVA SYS-102
$CRMPSC SYS-105
$DACEFC SYS-116
$DALLOC SYS-117
$DASSGN SYS-119

v

Contents

$DCLAST SYS-121
$DCLCMH SYS-123
$DCLEXH SYS-125
$DELLNM SYS-127
$DELMBX SYS-130
$DELPRC SYS-132
$DEL TVA SYS-134
$DEQ SYS-136
$DGBLSC SYS-140
$DISMOU SYS-143
$DLCEFC SYS-146
$ENQ SYS-148
$ENQW SYS-158
$ERAPAT SYS-159
$EXIT SYS-162
$EXPREG SYS-163
$FAO SYS-165
$FILESCAN SYS-180
$FIND_HELD SYS-184
$FIND_HOLDER SYS-187
$FINISH_RDB SYS-190
$FORCEX SYS-191
$FORMAT_ACL SYS-193
$GETDVI SYS-203
$GETDVIW SYS-221
$GETJPI SYS-222
$GETJPIW SYS-238
$GETLKI SYS-239
$GETLKIW SYS-252
$GETMSG SYS-253
$GETQUI SYS-257
$GETQUIW SYS-298
$GETSYI SYS-299
$GETSYIW SYS-313
$GETTIM SYS-314
$GETUAI SYS-315
$GRANTID SYS-326
$HIBER SYS-330
$1DTOASC SYS-332
$LCKPAG SYS-335
$LKWSET SYS-337
$MGBLSC SYS-339

vi

Contents

$MOD_HQLDER SYS-344
$MOD_IDENT SYS-347
$MOUNT SYS-350
$MT ACCESS SYS-363
$NUMTIM SYS-366
$PARSE_ACL SYS-368
$PURGWS SYS-370
$PUTMSG SYS-371
$QIO SYS-379
$QIOW SYS-384
$READEF SYS-385
$REM_HQLDER SYS-387
$REM_IDENT SYS-389
$RESUME SYS-391
$REVOKID SYS-393
$SCHDWK SYS-397
$SET AST SYS-400
SSETEF SYS-401
$SETEXV SYS-402
$SETI ME SYS-404
$SETI MR SYS-406
$SETPRA SYS-409
$SETPRI SYS-411
$SETPRN SYS-413
$SETPRT SYS-414
$SETPRV SYS-417
$SETRWM SYS-421
$SETS FM SYS-423
$SETSSF SYS-425
SSETSTK SYS-427
$SETSWM SYS-429
$SETUAI SYS-431
$SN DERR SYS-441
$SN DJ BC SYS-442
$SNDJBCW SYS-494
$SN DO PR SYS-495
$SUSPND SYS-509
$SYNCH SYS-512
SYS$RMSRUNDWN SYS-514
SYSSSETDDIR SYS-516
SYSSSETDFPROT SYS-518
$TRNLNM SYS-520

vii

Contents

$ULKPAG SYS-526
$ULWSET SYS-528
$UNWIND SYS-530
$UPDSEC SYS-532
$UPDSECW SYS-536
$WAITFR SYS-537
$WAKE SYS-538
$WFLAND SYS-540
$WFLOR SYS-542

APPENDIX A OBSOLETE SERVICES

INDEX

TABLES
SYS-1

SYS-2

viii

SYS-3

SYS-4

SYS-5

SYS-6

SYS-7

SYS-8

User Privileges

Required and Optional Arguments for the $CRMPSC
Service

List of FAQ Directives

FAQ Output Field Lengths and Fill Characters

Process Identification in $GETJPI

User Privileges

CPU Time Limit Decision Table

Working Set Decision Table

A-1

SYS-89

SYS-109

SYS-168

SYS-171

SYS-235

SYS-418

SYS-462

SYS-483

Preface

This manual provides reference information about the system services on the
VMS operating system.

You can use VMS system services only in programs written in languages
that produce native code for the VAX hardware. At present these languages
include VAX MACRO and the following high-level languages:

VAX® Ada®
VAX BASIC
VAX BLISS-32
VAXC
VAX COBOL
VAX COBOL-74
VAX CORAL
VAX DIBOL
VAX FORTRAN
VAX PASCAL
VAX PL/1

Intended Audience
This manual is intended for system and application programmers who want
to call system services.

Document Structure
This manual provides detailed reference information about each system
service. This information is presented using the documentation format
described in the Introduction to VMS System Services. Service descriptions
appear in alphabetical order by service name. Appendix A lists the obsolete
services and the current services that have replaced them.

Readers should note that the introduction to the system services (formerly
Part I) has been removed. For information and guidelines about using the
system services, see the Introduction to VMS System Services.

Associated Documents
The Introduction to VMS System Services describes how to use the system
services.

The VAX Procedure Calling and Condition Handling Standard, which is
documented in the Introduction to VMS System Routines, contains useful
information for anyone who wants to call system services.

VAX MACRO programmers can find additional information about calling
' system services in the VAX MACRO and Instruction Set Reference Manual.

® VAX is a trademark of Digital Equipment Corporation.
® Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

ix

Preface

Conventions

x

High-level language programmers can find additional information about
calling system services in the language reference manual and language user's
guide provided with the VAX language.

The following documents may also be useful:

• Guide to Using VMS Command Procedures

• Guide to VMS File Applications

• Guide to VMS System Security

• VMS Networking Manual

• VMS Record Management Services Manual

• VMS 1/0 User's Reference Manual: Part I

• VMS 1/0 User's Reference Manual: Part II

For a complete list and description of the manuals in the "VMS document set,
see the Overview of VMS Documentation.

The conventions used in this document are described in the Introduction to
VMS System Services.

New and Changed Features

Modified Services

The section that follows describes the changes that have been made to the
VMS System Services Reference Manual for VMS Version 5.0.

The following list describes the system services that have been modified for
Version 5.0:

• The flags argument has been added to the following services:

$SETIMR
$SUSPND

• The $GETDVI service contains two new item codes.

DVI$_DISPLAY_DEVNAM
DVI$_TT__ACCPORNAM

• The following changes have been made to $GETLKI.

The $GETLKI service contains new item codes.

LKI$_CSID
LKI$_CVTCOUNT
LKI$_GRANTCOUNT
LKI$_LKID
LKI$__MSTCSID
LKI$__MSTLKID
LKI$_WAITCOUNT

Four of the new item codes supersede existing item codes, which are
supported for compatibility with VAX/VMS Version 4.n. DIGITAL
recommends that you use the new item codes. You should update
programs with the new item codes, as convenient.

The following table lists the obsolete item codes and the new item codes
that replace them:

Obsolete Item Code New Item Code

LKl$_LCKCOUNT LKl$_GRANTCOUNT

LKl$_REMLKID LKl$_LKID
LKl$_MSTLKID

LKl$_SYSTEM LKl$_MSTCSID

Four symbolic names have been changed for items returned by
LKI$_BLOCKEDBY, LKI$_BLOCKING, and LKI$_LOCKS. The obsolete
symbolic names are supported for compatibility with VAX/VMS Version
4.n. DIGITAL recommends that you use the new symbolic names. You
should update programs with the new symbolic names, as convenient.

xi

New and Changed Features

xii

The following table lists the obsolete symbolic names and the new
symbolic names that replace them.

Obsolete Symbolic Name

LKl$L_LQCKID

LKl$L _SYSID

LKl$L _REMLKID

LKl$L _REMSYSID

New Symbolic Name

LK1$L_MSTLKID

LKl$L_MSTCSID

LKl$L_LKID

LK1$L_CSID

• The $GETQUI service has the following additions:

New function code

QUI$_DISPLAY_ENTRY

New item codes

QUI$_EXECUTING_JOB_COUNT
QUI$J'ILE _IDENTIFICATION
QUI$_HQLDING_JQB_COUNT
QUI$_pENDING_JQB_BLOCK_COUNT
QUI$_pENDING_JQB_COUNT
QUI$_PENDING_JQB_REASON
QUI$_QUEUE _DESCRIPTION
QUI$_RESTART_QUEUE_NAME
QUI$_RETAINED_JQB_COUNT
QUI$_SEARCH_USERNAME
QUI$_TIMED_RELEASE_JQB_CQUNT

New flags

For the QUI$_JQB_STATUS item code

QUI$V_JQB_PENDING
QUI$V_JQB_SUSPENDED

For the QUI$_QUEUE_FLAGS item code

QUI$V_QUEUE_ACL _SPECIFIED
QUI$V_QUEUE_pRJNTER
QUI$V_QUEUE_SERVER

For the QUI$_QUEUE_STATUS item code

QUI$V_QUEUE_CLOSED

For the QUI$_SEARCH_FLAGS item code

QUI$V_FREEZE_CQNTEXT
QUI$V_SEARCH_EXECUTING_JOBS
QUI$V_SEARCH_GENERIC
QUI$V_SEARCH_HQLDING_JOBS
QUI$V_SEARCH_PENDING_JOBS
QUI$V_SEARCH_PRINTER

New and Changed Features

QUI$V_SEARCH_RETAINED_JOBS
QUI$V_SEARCH_SERVER
QUI$V_SEARCH_TERMINAL
QUI$V_SEARCH_TIMED_RELEASE_JOBS

• The $GETSYI service contains the following new item codes:

SYI$_ACTIVECPU_CNT
SYI$_A VAILCPU_CNT
SYl$_CLUSTER_ENODES
SYl$_CONTIG_GBLPAGES
SYl$_ERRORLOGBUFFERS
SYl$_FREE_GBLP AGES
SYI$JREE_GBLSECTS
SYI$JiW_MODEL
SYl$_HW_NAME
SYl$_NODE_EVOTES

The SYl$_HW_NAME item code supersedes SYl$_NODE_HWTYPE,
which is supported now for compatibility with VAX/VMS Version 4.n.
DIGITAL recommends that you use SYl$_HW_NAME. You should
update programs with the new item code, as convenient.

• The following changes have been made to $SNDJBC.

The $SNDJBC service contains new item codes.

SJC$_CLOSE_QUEUE
SJC$_0PEN _QUEUE
SJC$_PRINTER
SJC$_QUEUE_DESCRIPTION, SJC$_NO_QUEUE_DESCRIPTION
SJC$_SERVER

The following item codes for $SNDJBC are supported now for
compatibility with VAX/VMS Version 4.n, and may not be supported
in the future.

For the SJC$_CREATE_QUEUE function code

SJC$_NO_TERMINAL

For the SJC$_START_QUEUE function code

SJC$_BATCH, SJC$_NO_BATCH
SJC$_TERMINAL, SJC$_NO_TERMINAL

• The $MOUNT service contains the following ne"V option for the
MNT$_FLAGS item code:

MNT$M_MULTL VOL

• The ACL$C_JOBCTL _QUEUE object type has been added for the objtyp
argument to the following services:

$CHANGE_ACL
$CHECK_ACCESS

• The $GETUAI and $SETUAI services have a new flag for the
UAl$_FLAGS item code.

UAI$V_FORCE_EXP_PWD_CHANGE

xiii

System Service Descriptions

SYSTEM SERVICE DESCRIPTIONS
$ADD_HOLDER

$ADD_HOLDER Add Holder Record to Rights
Database

FORMAT

RETURNS

ARGUMENTS

The Add Holder Record to Rights Database service adds a specified holder
record to a target identifier.

SYS$ADD_HQLDER id ,holder ,{attrib]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

id
VMS usage: rights_id
type: longword (unsigned)
access: read only
mechanism: by value

Target identifier granted to the specified holder when $ADD_HOLDER
completes execution. The id argument is a longword containing the binary
value of the target identifier.

holder
VMS usage: rights_holder
type: quadword (unsigned)
access: read only
mechanism: by reference

Holder identifier that is granted access to the target identifier when
$ADD_HOLDER completes execution. The holder argument is the address of
a quadword data structure that consists of a longword containing the holder's
UIC identifier followed by a longword containing a value of zero.

attrib
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Attributes to be placed in the holder record when the $ADD_HOLDER
completes execution. The attrib argument is a longword containing a bit
mask specifying the attributes. A holder is granted a specified attribute only
if the target identifier has the attribute.

SVS-3

SYSTEM SERVICE DESCRIPTIONS
$ADD_HQLDER

DESCRIPTION

CONDITION
VALUES
RETURNED

SVS-4

Symbol values are offsets to the bits within the longword. You can also
obtain the values as masks with the appropriate bit set using the prefix
KGB$M rather than KGB$V. The symbols are defined in the system macro
library ($KGBDEF). The symbolic name for each bit position is listed in the
following table:

Bit Position

KGB$V_DYNAMIC

KGB$V_RESOURCE

Meaning When Set

Allows the unprivileged holder to add or remove the
identifier from the process rights list

Allows the holder to charge resources, such as disk
blocks, to the identifier

The Add Holder Record to Rights Database service registers the specified user
as a holder of the specified identifier with the rights database.

You need write access to the rights database to use this service. If the
database is in SYS$SYSTEM, which is the default, you need SYSPRV privilege
to grant write access to the database.

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_DUPIDENT

SS$_1NSFMEM

SS$_1VIDENT

SS$_NOSUCHID

RMS$_PRV

The service completed successfully.

The holder argument cannot be read by the caller.

The specified attributes contain invalid attribute
flags.

The specified holder already exists in the rights
database for this identifier.

The process dynamic memory is insufficient for
opening the rights database.

The specified identifier or holder is of invalid
format, or the specified identifier and holder are
equal.

The specified identifier does not exist in the rights
database, or the specified holder identifier does
not exist in the rights database.

The user does not have write access to the rights
database.

Because the rights database is an indexed file accessed with VMS RMS, this
service may also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the VMS Record
Management Services Manual.

SYSTEM SERVICE DESCRIPTIONS
$ADD_IDENT

$ADD_IDENT Add Identifier to Rights Database

FORMAT

RETURNS

ARGUMENTS

The Add Identifier to Rights Database service adds the specified identifier
to the rights database.

SYS$ADD_IDENT name ,[id] ,[attrib] ,[resid]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

name
VMS usage: char-string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Identifier name to be added to the rights database when $ADD-1DENT
completes execution. The name argument is the address of the descriptor
pointing to the identifier name string.

An identifier name consists of 1 to 31 alphanumeric characters, including
dollar signs ($) and underscores (_), and must contain at least one
nonnumeric character. Any lowercase characters specified are automatically
converted to uppercase.

id
VMS usage: rights_id
type: longword (unsigned)
access: read only
mechanism: by value

Identifier to be created when $ADD-1DENT completes execution. The id
argument is a longword containing the binary value of the identifier to be
created.

If omitted, $ADD_IDENT selects a unique available value from the general
identifier space and returns it in resid, if it is specified.

SYS-5

SYSTEM SERVICE DESCRIPTIONS
$ADD_IDENT

DESCRIPTION

SYS-6

attrib
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Attributes placed in the identifier's record when $ADD_IDENT completes
execution. The attrib argument is a longword containing a bit mask that
specifies the attributes.

Symbol values are offsets to the bits within the longword. You can also
obtain the values as masks with the appropriate bit set using the prefix
KGB$M rather than KGB$V. The symbols are defined in the system macro
library ($KGBDEF). The symbolic name for each bit position is listed in the
following table:

Bit Position

KGB$V_DYNAMIC

KGB$V_RESOURCE

res id

Meaning When Set

Allows the unprivileged holder to add or remove the
identifier from the process rights list

Allows the holder to charge resources, such as disk
blocks, to the identifier

VMS usage: rights_id
type: longword (unsigned)
access: write only
mechanism: by reference

Identifier value assigned by the system when $ADD_IDENT completes
execution. The resid argument is the address of a longword in which the
system-assigned identifier value is written.

The Add Identifier to Rights Database service adds the specified identifier to
the rights database.

You need write access to the rights database to use this service. If the
database is in SYS$SYSTEM, which is the default, you need SYSPRV privilege
to grant write access to the database.

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$ADO_IDENT

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_DUPIDENT

SS$_DUPLNAM

SS$_1NSFMEM

SS$_1VIDENT

RMS$_PRV

The service completed successfully.

The name argument cannot be read by the caller,
or the resid argument cannot be written by the
caller.

The specified attributes contain invalid attribute
flags.

The specified identifier already exists in the rights
database.

The specified identifier name already exists in the
rights database.

The process dynamic memory is insufficient for
opening the rights database.

The specified identifier is of invalid format.

The user does not have write access to the rights
database.

Because the rights database is an indexed file accessed with VMS RMS, this
service may also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the VMS Record
Management Services Manual.

SVS-7

SYSTEM SERVICE DESCRIPTIONS
$ADJSTK

$ADJSTK Adjust Outer Mode Stack Pointer

FORMAT

RETURNS

ARGUMENTS

SVS-8

The Adjust Outer Mode Stack Pointer service modifies the stack pointer
for a less privileged access mode. The operating system uses this service
to modify a stack pointer for a less privileged access mode after placing
arguments on the stack.

SYS$ADJSTK [acmode} ,{adjust] ,newadr

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

a cm ode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode for which the stack pointer is to be adjusted. The acmode
argument is this longword value. If not specified, the default value 0 (kernel
access mode) is used.

adjust
VMS usage: word_signed
type: word (signed)
access: read only
mechanism: by value

Signed adjustment value used to modify the value specified by the newadr
argument. The adjust argument is a signed longword, which is the
adjustment value.

Only the low-order word of this argument is used. The value specified by
the low-order word is added or subtracted (depending on the sign) from the
value specified by the newadr argument. The result is loaded into the stack
pointer for the specified access mode.

If the adjust argument is not specified or is specified as 0, the stack pointer is
loaded with the value specified by the newadr argument.

For additional information about the various combinations of values for
adjust and newadr, see the Description section.

DESCRIPTION

CONDITION
VALUES
RETURNED

newadr

SYSTEM SERVICE DESCRIPTIONS
$ADJSTK

VMS usage: address
type: longword (unsigned)
access: modify
mechanism: by reference

Value that $ADJUST is to adjust. The newadr argument is the address of
this longword value. The value specified by this argument is both read
and written by $ADJSTK. The $ADJSTK service reads the value specified
and adjusts it by the value of the adjust argument (if specified). After
this adjustment is made, $ADJSTK writes the adjusted value back into the
longword specified by newadr and then loads the stack pointer with the
adjusted value.

If the value specified by newadr is 0, the current value of the stack pointer
is adjusted by the value specified by adjust. This new value is then written
back into newadr, and the stack pointer is modified.

For additional information about the various combinations of values for
adjust and newadr, see the Description section.

Combinations of zero and nonzero values for the adjust and newadr
arguments provide the following results:

If the adjust And the value The stack
argument specified by pointer
specifies: newadr is: is:

0 0 Not changed

0 An address Loaded with the address
specified

A value 0 Adjusted by the specified
value

A value An address Loaded with the specified
address, adjusted by the
specified value

In all cases, the updated stack pointer value is written into the value specified
by the newadr argument.

SS$_NORMAL

SS$_ACCVIO

SS$_NOPRIV

The service completed successfully.

The value specified by newadr or a portion of the
new stack segment cannot be written by the caller.

The specified access mode is equal to or more
privileged than the calling access mode.

SYS-9

SYSTEM SERVICE DESCRIPTIONS
$ADJWSL

$ADJWSL Adjust Working Set Limit

FORMAT

RETURNS

ARGUMENTS

SYS-10

The Adjust Working Set Limit service adjusts a process's current working
set limit by the specified number of pages and returns the new value to
the caller. The working set limit specifies the maximum number of process
pages that can be resident in physical memory.

SYS$ADJWSL {pagcnt] ,{wsetlm}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

pa gent
VMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Signed adjustment value specifying the number of pages to add to (if positive)
or subtract from (if negative) the current working set limit. The pagcnt
argument is this signed longword value.

If pagcnt is not specified or is specified as 0, no adjustment is made and the
current working set limit is returned in the longword specified by the wsetlm
argument (if this argument is specified).

wsetlm
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Value of the working set limit, returned by $ADJWSL. The wsetlm argument
is the address of this longword value. The wsetlm argument specifies the
newly adjusted value if pagcnt is specified, and it specifies the old, unadjusted
value if pagcnt is not specified.

DESCRIPTION

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$ADJWSL

If a program attempts to adjust the working set limit beyond the system
defined upper and lower limits, no error condition is returned; instead, the
working set limit is adjusted to the maximum or minimum size allowed.

The initial value of a process's working set limit is controlled by the working
set default (WSDEFAULT) quota. The maximum value to which it may be
increased is controlled by the working set extent (WSEXTENT) quota; the
minimum value to which it may be decreased is limited by the SYSGEN
parameter MINWSCNT.

SS$_NORMAL

SS$_ACCVIO

The service completed successfully.

The longword specified by wsetlm cannot be
written by the caller.

SYS-11

SYSTEM SERVICE DESCRIPTIONS
$ALLOC

$ALLOC

FORMAT

RETURNS

ARGUMENTS

SYS-12

Allocate Device

The Allocate Device service allocates a device for exclusive use by a
process and its subprocesses. No other process can allocate the device or
assign channels to it until the image that called $ALLOC exits or explicitly
deallocates the device with the Deallocate Device ($DALLOC) service.

SYS$ALLOC devnam ,[phylen] ,[phybuf] ,{acmode]
,[flags]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

devnam
VMS usage: device_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Device name of the device to be allocated. The devnam argument is the
address of a character string descriptor pointing to the device name string.

The string may be either a physical device name or a logical name. If it is a
logical name, it must translate to a physical device name.

phylen
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Word into which $ALLOC writes the length of the device name string for the
device it has allocated. The phylen argument is the address of this word.

phybuf
VMS usage: device_name
type: character-coded text string
access: write only
mechanism: by descriptor-fixed-length string descriptor

Buffer into which $ALLOC writes the device name string for the device it has
allocated. The phybuf argument is the address of a character string descriptor
pointing to this buffer.

DESCRIPTION

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$ALLOC

acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the allocated device. The acmode
argument is a longword containing the access mode.

The most privileged access mode used is the access mode of the caller. Only
equal or more privileged access modes can deallocate the device.

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Longword of status flags indicating whether to interpret the devnam
argument as the type of device to be allocated. Only one flag exists,
bit 0. When it is set, the $ALLOC service allocates the first available device
that has the type specified in the devnam argument.

This feature is available for the following mass storage devices:

RA60 RASO RA81 RC25

RCF25 RK06 RK07 RL01

RL02 RM03 RM05 RM80

RP04 RP05 RP06 RP07

RX01 RX02 TA78 TA81

TS11 TU16 TU58 TU77

TU78 TU80 TU81

The calling process must have ALLSPOOL privilege to allocate a spooled
device.

When a process calls the Assign 1/0 Channel ($ASSIGN) service to assign
a channel to a nonshareable, nonspooled device, such as a terminal or line
printer, the device is implicitly allocated to the process.

You can use this service only to allocate devices that either exist on the host
system or are made available to the host system in a VAXcluster environment.

SS$_NORMAL

SS$_BUFFEROVF

SS$_DEV ALRALLOC

The service completed successfully.

The service completed successfully. The physical
name returned overflowed the buffer provided, and
has been truncated.

The service completed successfully. The device
was already allocated to the calling process.

SYS-13

SYSTEM SERVICE DESCRIPTIONS
$ALLOC

SYS-14

SS$_ACCVIO

SS$_DEV ALLOC

SS$_DEVMOUNT

SS$_DEVOFFLINE

SS$_1VDEVNAM

SS$_1VLOGNAM

SS$_1VSTSFLG

SS$_NODEV A VL

SS$_NQNLOCAL

SS$_NOPRIV

SS$_NOSUCHDEV

SS$_ TEMPLA TEDEV

The device name string, string descriptor, or
physical name buffer descriptor cannot be read by
the caller; or the physical name buffer cannot be
written by the caller.

The device is already allocated to another process,
or an attempt to allocate an unmounted shareable
device failed because other processes had
channels assigned to the device.

The specified device is currently mounted and
cannot be allocated, or the device is a mailbox.

The specified device is marked off line.

The device name string contains invalid characters,
or no device name string was specified.

The device name string has a length of 0 or has
more than 63 characters.

The bits set in the longword of status flags are
invalid.

The specified device in a generic search exists but
is allocated to another user.

The device is on a remote node.

The requesting process attempted to allocate a
spooled device, and does not have the required
privilege; or the device protection or access control
list (or both) denies access.

The specified device does not exist in the host
system. This error is usually the result of a
typographical error.

The process attempted to allocate a template
device; a template device cannot be allocated.

The $ALLOC service can also return any condition value returned by $ENQ.
For a list of these condition values, see the description of $ENQ.

$ASCEFC

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$ASCEFC

Associate Common Event Flag Cluster

The Associate Common Event Flag Cluster service causes a named
common event flag cluster to be associated with a process for the
execution of the current image and to be assigned a process-local cluster
number for use with other event flag services. If the named cluster does
not exist but the process has suitable privilege, the service creates the
cluster.

SYS$ASCEFC efn ,name ,[prot} ,[perm]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

efn
VMS usage: eLnumber
type: longword (unsigned)
access: read only
mechanism: by value

Number of any event flag contained within the desired common event flag
cluster. The efn argument is a longword value specifying this number;
however, $ASCEFC uses only the low-order byte.

There are two common event flag clusters: cluster 2 and cluster 3. Cluster
2 contains event flag numbers 64 to 95, and cluster 3 contains event flag
numbers 96 to 127. (Clusters 0 and 1 are process-local event flag clusters.)

To associate with common event flag cluster 2, specify any flag number in the
cluster (64 to 95); to associate with common event flag cluster 3, specify any
event flag number in the cluster (96 to 127).

name
VMS usage: ef_cluster_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of the common event flag cluster with which to associate. The name
argument is the address of a character string descriptor pointing to this name
string.

Common event flag clusters are accessible only to processes having the same
UIC group number, and each such process must associate with the cluster
using the same name (specified in the name argument). VMS implicitly

SYS-15

SYSTEM SERVICE DESCRIPTIONS
$ASCEFC

DESCRIPTION

SVS-16

associates the group UIC number with the name, making the name unique to
a UIC group.

prof
VMS usage: boolean
type: byte (unsigned)
access: read only
mechanism: by value

Protection specifier that allows or disallows access to the common event flag
cluster for processes with the same UIC group number as the creating process.
The prot argument is a longword value, which is interpreted as Boolean.

The default value 0 specifies that any process with the same UIC group
number as the creator may access the event flag cluster. The value 1 specifies
that only processes with the creator's UIC can access the event flag cluster.

perm
VMS usage: boolean
type: byte (unsigned)
access: read only
mechanism: by value

Permanent specifier that marks a common event flag cluster as either
permanent or temporary. The perm argument is a longword value, which is
interpreted as Boolean.

The default value 0 specifies that the cluster is temporary. The value 1
specifies that the cluster is permanent.

The calling process must have PRMCEB privilege to create a permanent
common event flag cluster.

Creation of temporary common event flag clusters uses the quota of the
process for timer queue entries (TQELM); the creation of a permanent cluster
does not affect the quota. The quota is restored to the creator of the cluster
when all processes associated with the cluster have disassociated.

When a process associates with a common event flag cluster, that cluster's
reference count is increased by 1. The reference count is decreased when a
process disassociates from the cluster, whether explicitly with the Disassociate
Common Event Flag Cluster ($DACEFC) service or implicitly at image exit.

Temporary clusters are automatically deleted when their reference count goes
to 0; you must explicitly mark permanent clusters for deletion with the Delete
Common Event Flag Cluster ($DLCEFC) service.

Because the $ASCEFC service automatically creates the common event
flag cluster if it does not already exist, cooperating processes need not be
concerned with which process executes first to create the cluster. The first
process to call $ASCEFC creates the cluster and the others associate with it
regardless of the order in which they call the service.

The initial state for all event flags in a newly created common event flag
cluster is 0.

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$ASCEFC

If a process has already associated a cluster number with a named common
event flag cluster and then issues another call to $ASCEFC with the same
cluster number, the service disassociates the number from its first assignment
before associating it with its second.

If you previously called any system service that will set an event flag (and the
event flag is contained within the cluster being reassigned), the event flag will
be set in the newly associated named cluster, not the previously associated
named cluster.

For more information about common event flag clusters in shared memory,
refer to Introduction to VMS System Services.

SS$_NORMAL

SS$_ACCVIO

SS$_EXPORTQUOT A

SS$_EXQUOT A

SS$_1NSFMEM

SS$_1LLEFC

SS$_1NTERLOCK

SS$_1VLOGNAM

SS$_NOPRIV

SS$_NOSHMBLOCK

SS$_SHMNOTCNCT

The service completed successfully.

The cluster name string or string descriptor cannot
be read by the caller.

The process has exceeded the number of event
flag clusters with which processes on this port of
the multiport (shared) memory can associate.

The process has exceeded its timer queue
entry quota; this quota controls the creation of
temporary common event flag clusters.

The system dynamic memory is insufficient for
completing the service.

You specified an illegal event flag number. The
cluster number must be in the range of event flags
64 through 127.

The bit map lock for allocating common event
flag clusters from the specified shared memory is
locked by another process.

The cluster name string has a length of 0 or has
more than 15 characters.

The process does not have the privilege to create
a permanent cluster; the process does not have
the privilege to create a common event flag cluster
in memory shared by multiple processors, or the
protection applied to an existing cluster by its
creator prohibits association.

The common event flag cluster has no shared
memory control block available.

The shared memory named in the name argument
is not known to the system. This error can
be caused by a spelling error in the string, an
improperly assigned logical name, or the failure
to identify the memory as shared at system
generation time.

SYS-17

SYSTEM SERVICE DESCRIPTIONS
$ASCTIM

$ASCTIM

FORMAT

RETURNS

ARGUMENTS

SYS-18

Convert Binary Time to ASCII String

The Convert Binary Time to ASCII String service converts an absolute or
delta time from 64-bit system time format to an ASCII string.

SYS$ASCTIM {timlen} ,timbuf ,{timadr} ,{cvtflg}

VMS usage: cond_value
type: longword (unsigned)
access: write only,
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

ti mien
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length (in bytes) of the ASCII string returned by $ASCTIM. The timlen
argument is the address of a word containing this length.

timbuf
VMS usage: time_name
type: character-coded text string
access: write only
mechanism: by descriptor-fixed-length string descriptor

Buffer into which $ASCTIM writes the ASCII string. The timbuf argument is
the address of a character string descriptor pointing to the buffer.

The buffer length specified in the timbuf argument, together with the cvtflg
argument, controls what information is returned.

timadr
VMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

Time value that $ASCTIM is to convert. The timadr argument is the address
of this 64-bit time value. A positive time value represents an absolute time.
A negative time value represents a delta time. If you specify a delta time, it
must be less than 10 ,000 days.

If timadr is not specified or is specified as 0 (the default), $ASCTIM returns
the current date and time.

DESCRIPTION

SYSTEM SERVICE DESCRIPTIONS
$ASCTIM

cvtflg
VMS usage: longword_unsigned
type: longword {unsigned)
access: read only
mechanism: by value

Conversion indicator specifying which date and time fields $ASCTIM should
return. The cvtflg argument is a longword value, which is interpreted
as Boolean. The value 1 specifies that $ASCTIM should return only the
hour, minute, second, and hundredths of second fields. The default value 0
specifies that $ASCTIM should return the full date and time.

The $ASCTIM service executes at the access mode of the caller and does not
check whether address arguments are accessible before it executes. Therefore,
an access violation causes an exception condition if the input time value
cannot be read or the output buffer or buffer length cannot be written.

This service does not check the length of the argument list, and therefore
cannot return the SS$_INSFARG (insufficient arguments) condition value.

The ASCII strings returned have the following formats:

Absolute Time: dd-mmm-yyyy hh:mm:ss.cc

Delta Time: dddd hh:mm:ss.cc

The following table lists the length (bytes), contents, and range of values for
each field in the absolute time and delta time formats.

Length
Field (Bytes) Contents Range of Values

dd 2 Day of month 1-31

1 Hyphen Required syntax

mmm 3 Month JAN, FEB, MAR, APR, MA y I JUN, JUL,
AUG, SEP, OCT, NOV, DEC

1 Hyphen Required syntax

yyyy 4 Year 1858-9999

blank n Blank Required syntax

hh 2 Hour 00-23

1 Colon Required syntax

mm 2 Minutes 00-59

1 Colon Required syntax

SS 2 Seconds 00-59

Period Required syntax

cc 2 Hundredths of 00-99
second

dddd 4 Number of 000-9999
days (in 24-hr
units)

SYS-19

SYSTEM SERVICE DESCRIPTIONS
$ASCTIM

CONDITION
VALUES
RETURNED

SYS-20

Month abbreviations must be uppercase. The hundredths of second field now
represents a true fraction; for example, the string .1 represents ten hundredths
of a second (one tenth of a second); the string .01 represents one hundredth
of a second.

Also, you can add a third digit to the hundredths of second field; this
thousandths of second digit is used to round the hundredths of second
value. Digits beyond the thousandths of second digits are ignored.

The results of specifying some possible combinations for the values of the
cvtflg and timbuf arguments are as follows:

Buffer Length CVTFLG Information
Time Value Specified

Absolute 23

Absolute 12

Absolute 11

Delta 16

Delta 11

SS$_NORMAL

SS$_BUFFEROVF

SS$_1VTIME

Argument Returned

0 Date and time

0 Date

Time

0 Days and time

Time

The service completed successfully.

The buffer length specified in the timbuf argument
is too small.

The specified delta time is equal to or greater than
10,000 days.

SYSTEM SERVICE DESCRIPTIONS
$ASCTOID

$ASCTOID Translate Identifier Name to Identifier

FORMAT

RETURNS

ARGUMENTS

The Translate Identifier Name to Identifier service translates the specified
identifier name into its binary identifier value.

SVS$ASCTOID name ,[id] ,[attrib}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

name
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Identifier name translated when $ASCTOID completes execution. The name
argument is the address of a descriptor pointing to the identifier name.

id
VMS usage: rights_id
type: longword (unsigned)
access: write only
mechanism: by reference

Identifier value resulting when $ASCTOID completes execution. The id
argument is the address of a longword in which the identifier value is written.

attrib
VMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Attributes associated with the identifier returned in id when $ASCTOID
completes execution. The attrib argument is the address of a longword
containing a bit mask specifying the attributes.

SVS-21

SYSTEM SERVICE DESCRIPTIONS
$ASCTOID

DESCRIPTION

CONDITION
VALUES
RETURNED

SVS-22

Symbol values are offsets to the bits within the longword. You can also
obtain the values as masks with the appropriate bit set using the prefix
KGB$M rather than KGB$V. The symbols are defined in the system macro
library ($KGBDEF). The symbolic names for each bit position are listed in the
following table:

Bit Position

KGB$V_DYNAMIC

KGB$V_RESOURCE

Meaning When Set

Allows the unprivileged holder to add or remove the
identifier from the process rights list

Allows the holder to charge resources, such as disk
blocks, to the identifier

The Translate Identifier Name to Identifier converts the specified identifier
name to its binary identifier value. Note that when you use wildcards with
this service, the records are returned alphabetically by identifier name.

SS$_NORMAL

SS$_ACCVIO

SS$_1NSFMEM

SS$_1VIDENT

SS$_NOSUCHID

RMS$_PRV

The service completed successfully.

The name argument cannot be read by the caller,
or the id or attribute argument cannot be written
by the caller.

The process dynamic memory is insufficient for
opening the rights database.

The specified identifier is of invalid format.

The specified identifier name does not exist in the
rights database.

The user does not have read access to the rights
database.

Because the rights database is an indexed file accessed with VMS RMS, this
service may also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the VMS Record
Management Services Manual.

$ASSIGN

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$ASSIGN

Assign 1/0 Channel

The Assign 1/0 Channel service (1) provides a process with an 1/0
channel so that input/ output operations can be performed on a device
or (2) establishes a logical link with a remote node on a network.

SYS$ASSIGN devnam ,chan ,[acmode} ,[mbxnam}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

devnam
VMS usage: device_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of the device to which $ASSIGN is to assign a channel. The devnam
argument is the address of a character string descriptor pointing to the device
name string.

If the device name contains a double colon (::), the system assigns a channel
to the first available network device (NET:) and performs an access function
on the network.

chan
VMS usage: channel
type: word (unsigned)
access: write only
mechanism: by reference

Number of the channel that is assigned. The chan argument is the address of
a word into which $ASSIGN writes the channel number.

acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the channel. The acmode argument
specifies the access mode. The most privileged access mode used is the access
mode of the caller. I/O operations on the channel can be performed only
from equal and more privileged access modes.

SYS-23

SYSTEM SERVICE DESCRIPTIONS
$ASSIGN

DESCRIPTION

CONDITION
VALUES
RETURNED

SYS-24

mbxnam
VMS usage: device_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Logical name of the mailbox to be associated with the device. The mbxnam
argument is the address of a character string descriptor pointing to the logical
name string.

If you specify mbxnam as 0, no mailbox is associated with the device. This is
the default.

You must specify the mbxnam argument when performing a nontransparent
task-to-task DECnet-VAX operation.

Only the owner of a device can associate a mailbox with the device; the
owner of a device is the process that has allocated the device, whether
implicitly or explicitly. Only one mailbox can be associated with a device at
any one time.

A mailbox cannot be associated with a device if the device has foreign
(DEV$M_FOR) or shareable (DEV$M_SHR) characteristics.

A mailbox is disassociated from a device when the channel that associated it
is deassigned.

If a mailbox is associated with a device, the device driver can send status
information to the mailbox. For example, if the device is a terminal, this
information may indicate dial-up, hang-up, or the reception of unsolicited
input; if the device is a network device, it may indicate that the network is
connected or perhaps that the line is down.

For details on the nature and format of the information returned to the
mailbox, refer to the VMS 1/0 User's Reference Volume.

The calling process must have NETMBX privilege to perform network
operations.

System dynamic memory is required if the target device is on a remote
system.

Channels remain assigned until they are explicitly deassigned with the
Deassign 1/0 Channel ($DASSGN) service or, if they are user-mode
channels, until the image that assigned the channel exits.

The $ASSIGN service establishes a path to a device but does not check
whether the caller can actually perform input/ output operations to the
device. Privilege and protection restrictions may be applied by the device
drivers.

SS$_NORMAL

SS$_REMOTE

The service completed successfully.

The service completed successfully. A logical link
is established with the target on a remote node.

SYSTEM SERVICE DESCRIPTIONS
$ASSIGN

SS$_ABORT

SS$_ACCVIO

SS$_DEV ACTIVE

SS$_DEV ALLOC

SS$_DEVNOTMBX

SS$_EXQUOT A

SS$_1NSFMEM

SS$_1VDEVNAM

SS$_1VLOGNAM

SS$_NOIOCHAN

SS$_NOLINKS

SS$_NOPRIV

SS$_NOSUCHDEV

SS$_NOSUCHNODE

SS$_REJECT

SS$_CONNECFAIL

SS$_DEVOFFLINE

A physical line went down during a network
connect operation.

The device or mailbox name string or string
descriptor cannot be read by the caller, or the
channel number cannot be written by the caller.

You specified a mailbox name, but a mailbox is
already associated with the device.

The device is allocated to another process.

You specified a logical name for the associated
mailbox, but the logical name refers to a device
that is not a mailbox.

The target of the assignment is on a remote node
and the process has insufficient buffer quota to
allocate a network control block.

The target of the assignment is on a remote node
and there is insufficient system dynamic memory
to complete the request.

No device name was specified, the logical name
translation failed, or the device or mailbox name
string contains invalid characters. If the device
name is a target on a remote node, this status
code indicates that the Network Connect Block has
an invalid format.

The device or mailbox name string has a length of
0 or has more than 63 characters.

No 1/0 channel is available for assignment.

For network operations, no logical links are
available. The maximum number of logical links
as set for the NCP executor MAXIMUM LINKS
parameter was exceeded.

For network operations, the issuing task does not
have the required privilege to perform network
operations or to confirm the specified logical link.

The specified device or mailbox does not exist, or,
for DECnet-VAX operations, the network device
driver is not loaded (for example, the DECnet-VAX
software is not currently running on the local VAX
node).

The specified network node is nonexistent or
unavailable.

The network connect was rejected by the network
software or by the partner at the remote node, or
the target image exited before the connect confirm
could be issued.

For network operations, the connection to a
network object timed out or failed.

For network operations, the physical link is shutting
down.

SYS-25

SYSTEM SERVICE DESCRIPTIONS
$ASSIGN

SS$_FILALRACC

SS$_1NVLOGIN

SS$_LINKEXIT

SS$_NOSUCHOBJ

SS$_NOSUCHUSER

SS$_PROTOCOL

SS$_REMRSRC

SS$_SHUT

SS$_ THIRDPARTY

SS$_ TOOMUCHDA TA

SS$_UNREACHABLE

SYS-26

For network operations, a logical link already exists
on the channel.

For network operations, the access control
information was found to be invalid at the remote
node.

For network operations, the network partner task
was started, but exited before confirming the
logical link (that is, $ASSIGN to SYS$NET).

For network operations, the network object
number is unknown at the remote node; for
a TASK= connect, the named DCL command
procedure file cannot be found at the remote node.

For network operations, the remote node could not
recognize the login information supplied with the
connection request.

For network operations, a network protocol
error occurred, most likely because of a network
software error.

For network operations, the link could not be
established because system resources at the
remote node were insufficient.

For network operations, the local or remote node
is no longer accepting connections.

For network operations, the logical link connection
was terminated by a third party (for example, the
system manager).

For network operations, the task specified too
much optional or interrupt data.

For network operations, the remote node is
currently unreachable.

$BINTIM

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

SYSTEM SERVICE DESCRIPTIONS
$BINTIM

Convert ASCII String to Binary Time

The Convert ASCII String to Binary Time service converts an ASCII string
to an absolute or delta time value in the system 64-bit time format suitable
for input to the Set Timer ($SETIMR) or Schedule Wakeup ($SCHDWK)
service.

SYS$BI NTI M timbuf, timadr

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

timbuf
VMS usage: time_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Buffer that holds the ASCII time to be converted. The timbuf argument
specifies the address of a character string descriptor pointing to the VMS
time string. The VMS time string specifies the absolute or delta time to be
converted by $BINTIM. The VMS Data Type Table describes the VMS time
string.

timadr
VMS usage: date_time
type: quadword (unsigned)
access: write only
mechanism: by reference

Time value that $BINTIM has converted. The timadr argument is the address
of the VMS quadword system time, which receives the converted _time.

The $BINTIM service executes at the access mode of the caller and does not
check whether address arguments are accessible before it executes. Therefore,
an access violation causes an exception condition if the input buffer or buffer
descriptor cannot be read or the output buffer cannot be written.

This service does not check the length of the argument list and therefore
cannot return the SS$_INSFARG (insufficient arguments) error status code.
If the service does not receive enough arguments (for example, if you omit
required commas in the call), errors may result.

SYS-27

SYSTEM SERVICE DESCRIPTIONS
$BINTIM

SYS-28

The required ASCII input strings have the following format:

Absolute Time: dd-mmm-yyyy hh:mm:ss.cc

Delta Time: dddd hh:mm:ss.cc

The following table lists the length (bytes), contents, and range of values for
each field in the absolute time and delta time formats.

Field

dd

mmm

yyyy

blank

hh

mm

SS

cc

dddd

Length
(Bytes)

2

1

3

1

4

n

2

1

2

1

2

1

2

4

Contents Range of Values

Day of month 1-31

Hyphen Required syntax

Month JAN, FEB, MAR, APR, MAY, JUN, JUL,
AUG, SEP, OCT, NOV, DEC

Hyphen Required syntax

Year 1858-9999

Blank Required syntax

Hour 00-23

Colon Required syntax

Minutes 00-59

Colon Required syntax

Seconds 00-59

Period Required syntax

Hundredths of 00-99
second

Number of days 000-9999
(in 24-hour
units)

Note that month abbreviations must be uppercase and that the hundredths of
second field represents a true fraction. For example, the string .1 represents
ten hundredths of a second (one tenth of a second) and the string .01
represents one hundredth of a second. Note also that you can add a
third digit to the hundredths of second field; this thousandths of second
digit is used to round the hundredths of second value. Digits beyond the
thousandths of second digits are ignored.

The following two syntax rules apply to specifying the ASCII input string:

• You can omit any of the date and time fields.

For absolute time values, the $BINTIM service supplies the current system
date and time for nonspecified fields. Trailing fields can be truncated. If
leading fields are omitted, you must specify the punctuation (hyphens,
blanks, colons, periods). For example, the following string results in an
absolute time of 12:00 on the current day:

-- 12:00:00.00

CONDITION
VALUES
RETURNED

EXAMPLE

SYSTEM SERVICE DESCRIPTIONS
$BINTIM

For delta time values, the $BINTIM service uses a default value of 0
for unspecified hours, minutes, and seconds fields. Trailing fields can
be truncated. If you omit leading fields from the time value, you must
specify the punctuation (blanks, colons, periods). If the number of days
in the delta time is 0, you must specify a 0. For example, the following
string results in a delta time of 10 seconds:

0 : : 10

Note the space between the 0 in the day field and the two colons.

• For both absolute and delta time values, there can be any number of
leading blanks, and any number of blanks between fields normally
delimited by blanks. However, there can be no embedded blanks within
either the date or time field.

SS$_NORMAL

SS$_1VTIME

The service completed successfully.

The syntax of the specified ASCII string is invalid,
or the time component is out of range.

Column 1 of the following table lists legal input strings to the $BINTIM
service; column 2 lists the $BINTIM output of these strings translated through
the Convert Binary Time to ASCII String ($ASCTIM) system service. The
current date is assumed to be 30-DEC-1988 04:15:28.00.

Input to $BINTIM

-- :50

--1989 0:0:0.0

30-DEC-1988 12:32: 1.1161

29-DEC-1989 16:35:0.0

0 ::.1

0 ::.06

5 3:18:32.068

20 12:

05

$ASCTIM Output String

30-DEC-1988 04:50:28.00

29-DEC-1989 00:00:00.00

30-DEC-1988 12:32:01. 12

29-DEC-1989 16:35:00.00

0 00:00:00. 10

0 00:00:00.06

5 03: 18:32:07

20 12:00:00.00

0 05:00:00.00

SYS-29

SYSTEM SERVICE DESCRIPTIONS
$BRKTHRU

$BRKTHRU

FORMAT

RETURNS

ARGUMENTS

SYS-30

Breakthrough

The Breakthrough service sends a message to one or more terminals.
The $BRKTHRU service completes asynchronously; that is, it returns to
the caller after queueing the message request, without waiting for the
message to be written to the specified terminal(s).

For synchronous completion, use the Breakthrough and Wait
($BRKTHRUW) service. The $BRKTHRUW service is identical to the
$BRKTHRU service in every way except that $BRKTHRUW returns to the
caller after the message is written to the specified terminal(s).

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System
Services.

The $BRKTHRU service supersedes the Broadcast ($BRDCST) service.
When writing new programs, you should use $BRKTHRU instead of
$BRDCST. When updating old programs, you should change all uses of
$BRDCST to $BRKTHRU.

SVS$BRKTHRU [efn] ,msgbuf [,sendto] [,sndtyp] [,iosb}
[,carcon] [,flags} [,reqid] [,timout]
[,astadr} [,astprm]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

efn
VMS usage: eLnumber
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when the message has been written to
the specified terminal(s). The efn argument is a longword containing this
number; however, $BRKTHRU uses only the low-order byte.

When the message request is queued, $BRKTHRU clears the specified event
flag (or event flag 0 if efn is not specified). Then, after the message is sent,
$BRKTHRU sets the specified event flag (or event flag 0).

SYSTEM SERVICE DESCRIPTIONS
$BRKTHRU

msgbuf
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Message text to be sent to the specified terminal(s). The msgbuf argument is
the address of a descriptor pointing to this message text.

The $BRKTHRU service permits the message text to be as long as 16,350
bytes; however, both the SYSGEN parameter MAXBUF and the caller's
available process space may affect the maximum length of the message text.

sendto
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of a single device (terminal) or single user name to which the message
is to be sent. The sendto argument is the address of a descriptor pointing to
this name.

The sendto argument is used in conjunction with the sndtyp argument.
When sndtyp specifies BRK$C_DEVICE or BRK$C_USERNAME, the sendto
argument is required.

If you do not specify sndtyp or if sndtyp does not specify BRK$C_DEVICE
or BRK$C_USERNAME, you should not specify sendto; if sendto is specified,
$BRKTHRU ignores it.

sndtyp
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Terminal type to which $BRKTHRU is to send the message. The sndtyp
argument is a longword value specifying the terminal type.

Each terminal type has a symbolic name, which is defined by the $BRKDEF
macro. The following list describes each terminal type:

Terminal Type

BRK$C_ALLUSERS

BRK$C_ALL TERMS

BRK$C_DEVICE

Description

When specified, $BRKTHRU sends the message to all
users who are currently logged in to the system.

When specified, $BRKTHRU sends the message to all
terminals at which users are logged in and to all other
terminals that are connected to the system except those
with the AUTOBAUD characteristic set.

When specified, $BRKTHRU sends the message to
a single terminal; you must specify the name of the
terminal by using the sendto argument.

SYS-31

SYSTEM SERVICE DESCRIPTIONS
$BRKTHRU

SVS-32

Terminal Type

BRK$C_USERNAME

iosb

Description

When specified, $BRKTHRU sends the message to a
user with a specified user name; you must specify the
user name by using the sendto argument.

VMS usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

1/0 status block that is to receive the final completion status. The iosb is the
address of this quadword block.

When the iosb argument is specified, $BRKTHRU sets the quadword to zero
when it queues the message request. Then, after the message is sent to the
specified terminal(s), $BRKTHRU returns four informational items, one item
per word, in the quadword 1/0 status block.

These informational items indicate the status of the messages sent only to
terminals and mailboxes on the local VAX node; these items do not include
the status of messages sent to terminals and mailboxes on other VAX nodes
in a VAXcluster.

The following lists, in order, each word of the quadword block and the
informational item it contains:

Word Informational Item

1 A condition value describing the final completion status.

2 A decimal number indicating the number of terminals and mailboxes to
which $BRKTHRU successfully sent the message.

3 A decimal number indicating the number of terminals to which $BRKTHRU
failed to send the message because the write to the terminal(s) timed out.

4 A decimal number indicating the number of terminals to which $BRKTHRU
failed to send the message because the terminal(s) was set to the
NOBROADCAST characteristic (by using the DCL command SET
TERMINAL/NOBROADCAST).

carcon
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Carriage control specifier indicating the carriage control sequence to follow
the message that $BRKTHRU sends to the terminal(s). The carcon argument
is a longword containing the carriage control specifier.

For a list of the carriage control specifiers that you may use in the carcon
argument, refer to the VMS 1/0 User's Reference Volume.

If you do not specify the carcon argument, $BRKTHRU uses a default value
of 32, which represents a space in the ASCII character set. The message
format resulting from this default value is a line feed, the message text, and a
carriage return.

SYSTEM SERVICE DESCRIPTIONS
$BRKTHRU

The carcon argument has no effect on message formatting specified by the
BRK$M_SCREEN flag in the flags argument. See the description of the flags
argument.

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag bit mask specifying options for the $BRKTHRU operation. The flags
argument is a longword value that is the logical OR of each desired flag
option.

Each flag option has a symbolic name. The $BRKDEF macro defines the
following symbolic names:

Symbolic Name

BRK$V_ERASE_LINES

BRK$M_SCREEN

BRK$M_BOTTOM

Description

When specified with the BRK$M_SCREEN flag,
BRK$V_ERASE_LINES causes a specified number
of lines to be cleared from the screen before the
message is displayed. When BRK$M_SCREEN is not
also specified, BRK$V_ERASE_LINES is ignored.

Unlike the other Boolean flags, BRK$V_ERASE_LINES
specifies a 1-byte integer in the range 0 to 24. It
occupies the first byte in the longword flag mask.
In coding the call to $BRKTHRU, specify the desired
integer value in the OR operation with any other desired
flags.

When specified, $BRKTHRU sends screen-formatted
messages as well as messages formatted through the
use of the carcon argument. $BRKTHRU sends screen
formatted messages to terminals with the DEC_CRT
characteristic, and it sends messages formatted by
carcon to those without the DEC_CRT characteristic.
You set the DEC_CRT characteristic for the terminal by
using the DCL command SET TERMINAL/DEC_CRT.

A screen-formatted message is displayed at the top
of the terminal screen, and the cursor is repositioned
at the point it was prior to the broadcast message.
However, the BRK$V_ERASE_LINES and
BRK$M_BOTTOM flags also affect the display.

When BRK$M _BOTTOM is specified and
BRK$M_SCREEN is also specified, $BRKTHRU writes
the message to the bottom of the terminal screen
instead of the top. BRK$M_BOTTOM is ignored if the
BRK$M_SCREEN flag is not set.

SYS-33

SYSTEM SERVICE DESCRIPTIONS
$BRKTHRU

SYS-34

Symbolic Name

BRK$M_NOREFRESH

BRK$M _CLUSTER

reqid

Description

When BRK$M_NOREFRESH is specified, $BRKTHRU,
after writing the message to the screen, does not
redisplay the last line of a read operation that was
interrupted by the broadcast message. This flag is
useful only when the BRK$M_SCREEN flag is not
specified, because BRK$M_NOREFRESH is the default
for screen-formatted messages.

Specifying BRK$M_CLUSTER enables $BRKTHRU to
send the message to terminals or mailboxes on other
VAX nodes in a VAXcluster. If BRK$M_CLUSTER
is not specified, $BRKTHRU sends messages only to
terminals or mailboxes on the local VAX node.

VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Class requestor identification, which identifies to $BRKTHRU the application
(or image) that is calling $BRKTHRU. The reqid argument is this longword
identification value.

The reqid argument is used by several VMS images that send messages to
terminals and may be used by as many as 16 different user images as well.

When such an image calls $BRKTHRU, specifying reqid, $BRKTHRU notifies
the terminal that this image wants to write to the terminal. This makes it
possible for you to allow the image to write or prevent it from writing to the
terminal.

To prevent a particular image from writing to your terminal, you
use the image's name in the DCL command SET TERMINAL
/NOBROADCAST=image-name. Note that image-name in this DCL
command is the same as the value of the reqid argument that the image
passed to $BRKTHRU.

For example, you can pr~vent the VMS Mail Utility (which is an
image) from writing to the terminal by issuing the DCL command SET
BROADCAST=NOMAIL.

The $BRKDEF macro defines class names that are used by several VMS
components. These components specify their class names by using the reqid
argument in calls to $BRKTHRU. The $BRKDEF macro also defines 16 class
names (BRK$C_USER1 through BRK$C_USER16) for the use of user images
that call $BRKTHRU. The class names and the components to which they
correspond are as follows:

Class Name

BRK$C_GENERAL

Component

This class name is used by (1) the VMS image invoked
by the DCL command REPLY and (2) the callers of the
$BRDCST service. This is the default if the reqid
argument is not specified.

SYSTEM SERVICE DESCRIPTIONS
$BRKTHRU

Class Name

BRK$C_PHONE

BRK$C_MAIL

BRK$C_DCL

BRK$C_QUEUE

BRK$C_SHUTDOWN

BRK$C_URGENT

BRK$C_USER 1
through

timout

Component

This class name is used by the VMS Phone Facility.

This class name is used by the VMS Mail Utility.

This class name is used by the Digital Command
Language (DCL) interpreter for the CTRL/T command,
which displays the process status.

This class name is used by the VMS queue manager,
which manages print and batch jobs.

This class name is used by the VMS system shutdown
image, which is invoked by the DCL command
REPLY /ID=SHUTDOWN.

This class name is used by the VMS image invoked by
the DCL command REPLY /ID=URGENT.

These class names can be used by user-written
images.

VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Timeout value, which is the number of seconds that must elapse before an
attempted write by $BRKTHRU to a terminal is considered to have failed.
The timout argument is this longword value (in seconds).

Because $BRKTHRU calls the $QIO service to perform writes to the terminal,
the timeout value specifies the number of seconds allotted to $QIO to perform
a single write to the terminal.

If you do not specify the timout argument, $BRKTHRU uses a default value
of 0 seconds, which specifies infinite time (no timeout occurs).

The value specified by timout may be 0 or any number greater than 4; the
numbers 1, 2, 3, and 4 are illegal.

When you press CTRL/S or the NO SCROLL key, $BRKTHRU cannot send
a message to the terminal. In such a case, the value of timout is usually
exceeded and the attempted write to the terminal fails.

astadr
VMS usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed after $BRKTHRU has sent the message
to the specified terminal(s). The astadr argument is the address of the entry
mask of this routine.

If you specify astadr, the AST routine executes at the same access mode as
the caller of $BRKTHRU.

SYS-35

SYSTEM SERVICE DESCRIPTIONS
$BRKTHRU

DESCRIPTION

SYS-36

astprm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST routine specified by the astadr
argument. The astprm argument specifies this longword parameter.

The calling process must have OPER privilege to send a message to more
than one terminal or to a terminal that is allocated to another user.

The calling process must have WORLD privilege to send a message to a
specific user by specifying the BRK$C_USERNAME symbolic code for the
sndtyp argument.

The $BRKTHRU service permits the message text to be as long as 16,350
bytes; however, both the SYSGEN parameter MAXBUF and the caller's
available process space may also affect the maximum length of the message
text.

The $BRKTHRU service operates by assigning a channel (by using the
$ASSIGN service) to the terminal and then writing to the terminal (by using
the $QIO service). When calling $QIO, $BRKTHRU specifies the
IO$_WRITEVBLK function code, together with the 10$M_BREAKTHRU,
IO$M_CANCTRLO, and (optionally) IO$M-REFRESH function modifiers.

The current state of the terminal determines if and when the broadcast
message is displayed on the screen. For example:

• If the terminal is performing a read operation when $BRKTHRU sends the
message, the read operation is suspended, the message is displayed, and
then the line that was being read when the read operation was suspended
is redisplayed (equivalent to the action produced by CTRL/R).

• If the terminal is performing a write operation when $BRKTHRU sends
the message, the message is displayed after the current write operation
has completed.

• If the terminal has the NOBROADCAST characteristic set for all images,
or if you have disabled the receiving of messages from the image that is
issuing the $BRKTHRU call (see the description of the reqid argument),
the message is not displayed.

After the message is displayed, the terminal is returned to the state it was in
prior to receiving the message.

CONDITION
VALUES
RETURNED

CONDITION
VALUES
RETURNED
IN THE 1/0
STATUS BLOCK

SYSTEM SERVICE DESCRIPTIONS
$BRKTHRU

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_EXQUOT A

SS$_1NSFMEM

SS$_NONLOCAL

SS$_NOOPER

SS$_NOSUCHDEV

The service completed successfully.

The message buffer, message buffer descriptor,
device name string, or device name string
descriptor cannot be read by the caller.

The message length exceeds 16,350 bytes, the
process's buffered 1/0 byte count limit (BYTLM)
quota is insufficient, the message length exceeds
the value specified by the SYSGEN parameter
MAXBUF, the value of the TIMOUT parameter is
nonzero and less than 4 seconds, the value of the
REQID is outside the range 0 to 63, or the value of
the SNDTYP is not one of the legal ones listed.

The process has exceeded its buffer space quota
and has disabled resource wait mode with the Set
Resource Wait Mode ($SETRWM) service.

The system dynamic memory is insufficient for
completing the request and the process has
disabled resource wait mode with the Set Resource
Wait Mode ($SETRWM) service.

The device is on a remote node.

The process does not have the necessary OPER
privilege.

The specified terminal does not exist, or it cannot
receive the message.

Any condition values returned by the $ASSIGN, $FAO, $GETDVI, $GETJPI,
or $QIO service.

SYS-37

SYSTEM SERVICE DESCRIPTIONS
$BRKTHRUW

$BRKTHRUW Breakthrough and Wait

FORMAT

SYS-38

The Breakthrough and Wait service sends a message to one or more
terminals. The $BRKTHRUW service operates synchronously; that is,
it returns to the caller after the message has been sent to the specified
terminal(s).

For asynchronous operations, use the Breakthrough ($BRKTHRU) service;
$BRKTHRU returns to the caller after queueing the message request,
without waiting for the message to be delivered.

Aside from the preceding, $BRKTHRUW is identical to $BRKTHRU. For all
other information about the $BRKTHRUW service, refer to the description
of $BRKTHRU.

For additional information about system service completion, refer to
the documentation of the Synchronize ($SYNCH) service and to the
Introduction to VMS System Services.

The $BRKTHRU and $BRKTHRUW services supersede the Broadcast
($BRDCST) service. When writing new programs, you should use
$BRKTHRU or $BRKTHRUW instead of $BRDCST. When updating old
programs, you should change all uses of $BRDCST to $BRKTHRU or
$BRKTHRUW. $BRDCST is now an obsolete system service and is no
longer being enhanced.

SYS$BRKTHRUW [efn] ,msgbuf [,sendto} [,sndtyp}
[,iosb} [,carcon} [,flags} [,reqid}
[,timout} [,astadr} [,astprm}

$CANCEL

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

SYSTEM SERVICE DESCRIPTIONS
$CANCEL

Cancel 1/0 On Channel

The Cancel 1/0 On Channel service cancels all pending 1/0 requests on
a specified channel. In general, this includes all 1/0 requests that are
queued as well as the request currently in progress. To cancel 1/0 on a
channel, the access mode of the calling process must be equal to or more
privileged than the access mode of the process that made the original
channel assignment.

SVS$CANCEL chan

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

chan
VMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

1/0 channel on which 1/0 is to be canceled. The chan argument is a
longword containing the channel number.

The $CANCEL service requires system dynamic memory and uses the
process's buffered 1/0 limit (BIOLM) quota.

When you cancel a request currently in progress, the driver is notified
immediately. The actual cancellation may or may not occur immediately,
depending on the logical state of the driver. When cancellation does occur,
the following action for 1/0 in progress, similar to that for queued requests,
takes place:

1 The specified event flag is set.

2 The first word of the 1/0 status block, if specified, is set to SS$_CANCEL
if the 1/0 request is queued, or to SS$_ABORT if the 1/0 is in progress.

3 The AST, if specified, is queued.

Proper synchronization between this service and the actual canceling of 1/0
requests requires the issuing process to wait for 1/0 completion in the normal
manner and then note that the 1/0 has been canceled.

SVS-39

SYSTEM SERVICE DESCRIPTIONS
$CANCEL

CONDITION
VALUES
RETURNED

SYS-40

If the 1/0 operation is a virtual 1/0 operation involving a disk or tape
ACP, the 1/0 cannot be canceled. In the case of a magnetic tape, however,
cancellation may occur if the device driver is hung.

Outstanding 1/0 requests are automatically canceled at image exit.

SS$_NORMAL

SS$_EXQUOT A

SS$_1NSFMEM

SS$_1VCHAN

SS$_NOPRIV

The service completed successfully.

The process has exceeded its buffered 1/0 limit
(BIOLM) quota.

The system dynamic memory is insufficient for
canceling the 1/0.

You specified an invalid channel, that is, a channel
number of 0 or a number larger than the number of
channels available.

The specified channel is not assigned or was
assigned from a more privileged access mode.

$CANEXH

FORMAT

RETURNS

ARGUMENT

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$CANEXH

Cancel Exit Handler

The Cancel Exit Handler service deletes an exit control block from the
list of control blocks for the calling access mode. Exit control blocks are
declared by the Declare Exit Handler ($DCLEXH) service and are queued
according to access mode in a last-in first-out order.

SYS$CANEXH [desblk]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

desblk
VMS usage: exit_handler_block
type: longword (unsigned)
access: read only
mechanism: by reference

Control block describing the exit handler to be canceled. If you do not specify
desblk or specify it as 0, all exit control blocks are canceled for the current
access mode. The desblk argument is the address of this control block.

SS$_NORMAL

SS$_ACCVIO

SS$_1VSSRQ

SS$_NOHANDLER

The service completed successfully.

The first longword of the exit control block or the
first longword of a previous exit control block in
the list cannot be read by the caller, or the first
longword of the preceding control block cannot be
written by the caller.

The call to the service is invalid because it was
made from kernel mode.

The specified exit handler does not exist.

SVS-41

SYSTEM SERVICE DESCRIPTIONS
$CANTIM

$CANTIM

FORMAT

RETURNS

ARGUMENTS

SVS-42

Cancel Timer

The Cancel Timer Request service cancels all or a selected subset of the
Set Timer requests previously issued by the current image executing in a
process. Cancellation is based on the request identification specified in the
Set Timer ($SETIMR) service. If you give the same request identification
to more than one timer request, all requests with that request identification
are canceled. The calling process can cancel only timer requests that are
issued by a process whose access mode is equal to or less privileged than
that of the calling process.

SYS$CANTIM [reqidt} ,[acmode}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

reqidt
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

Request identification of the timer request(s) to be canceled. If you specify it
as 0 (the default), all timer requests are canceled. The reqidt argument is a
longword containing this identification.

acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode of the request(s) to be canceled. The acmode argument is a
longword containing the access mode. The $PSLDEF macro defines the
following symbols for the four access modes:

Symbol Access Mode

PSL$C_KERNEL Kernel

PSL$C_EXEC Executive

PSL$C_SUPER Supervisor

PSL$C_USER User

DESCRIPTION

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$CANTIM

The most privileged access mode used is the access mode of the caller. Only
those timer requests issued from an access mode equal to or less privileged
than the resultant access mode are canceled.

Canceled timer requests are restored to the process's quota for timer queue
entries (TQELM quota).

Outstanding timer requests are automatically canceled at image exit.

SS$_NORMAL The service completed successfully.

SVS-43

SYSTEM SERVICE DESCRIPTIONS
$CANWAK

$CANWAK

FORMAT

RETURNS

ARGUMENTS

~V~-44

Cancel Wakeup

The Cancel Wakeup service removes all scheduled wakeup requests
for a process from the timer queue, including those made by the caller
or by other processes. The Schedule Wakeup ($SCHDWK) service
makes scheduled wakeup requests. Depending on the operation, use
of $CANWAK may require the calling process to have a certain privilege.
You need GROUP privilege to cancel wakeup requests issued for other
processes in the same group, unless the process has the same UIC. You
need WORLD privilege to cancel wakeup requests issued for any process
in the system.

SYS$CANWAK {pidadr} ,{prcnam}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

pidadr
VMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) of the process for which wakeups are to be
canceled. The pidadr argument is the address of a longword specifying the
PID.

prcnam
VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of the process for which wakeups are to be canceled. The prcnam
argument is the address of a character string descriptor pointing to the
process name string.

VMS interprets the UIC group number of the calling process as part of the
process name; the names of processes are unique to UIC groups. Because of
this, you can use the prcnam argument only on behalf of processes in the
same group as the calling process.

DESCRIPTION

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$CANWAK

Canceled wakeup requests are restored to the process's AST limit (ASTLM)
quota.

If you specify neither the pidadr nor prcnam argument, scheduled wakeup
requests for the calling process are canceled.

Pending wakeup requests issued by the current image are automatically
canceled at image exit.

This service cancels only wakeup requests that have been scheduled; it does
not cancel wakeup requests made with the Wake Process from Hibernation
($WAKE) service.

SS$_NORMAL

SS$_ACCVIO

SS$_1VLOGNAM

SS$_NONEXPR

SS$_NOPRIV

The service completed successfully.

The process name string or string descriptor
cannot be read by the caller, or the process
identification cannot be written by the caller.

The process name string has a length of 0 or has
more than 15 characters.

The specified process does not exist, or you
specified an invalid process identification.

The process does not have the privilege to cancel
wakeups for the specified process.

SVS-45

SYSTEM SERVICE DESCRIPTIONS
$CHANGE_ACL

$CHANGE_ACL Change Access Control List

FORMAT

RETURNS

ARGUMENTS

SYS-46

The Change Access Control List service creates or modifies an object's
access control list.

SVS$CHANGE_ACL {chan} ,objtyp ,{objnam} ,itmlst
,{acmode} ,{nullarg] ,[contxt]
,{nullarg} ,{nullarg}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

chan
VMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

Number of the 1/0 channel assigned to the object whose ACL is modified
when $CHANGE_ACL completes execution. The chan argument is a word
containing the number of the channel. If you specify objnam, you must omit
chan or specify it as zero.

objtyp
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Type of object whose ACL is modified when $CHANGE_ACL completes
execution. The objtyp argument is the address of a longword containing
a value indicating whether the object is a file or a device. The symbols
are defined in the system macro library ($ACLDEF). The values and their
meanings are as follows.

SYSTEM SERVICE DESCRIPTIONS
$CHANGE_ACL

Value

ACL$C_DEVICE

ACL$C_FILE

ACL$C_GROUP _GLOBAL _SECTION

ACL$C_JOBCTL_QUEUE

ACL$C_LOGICAL_NAME_ TABLE

ACL$C_SYSTEM _GLOBAL _SECTION

objnam
VMS usage: char_string

Meaning

Object is a device

Object is a Files-11 structure level 2
file

Object is a group global section

Object is a batch or print queue

Object is a logical name table

Object is a system global section

type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of the object whose ACL is modified when $CHANGE_ACL completes
execution. The objnam argument is the address of a descriptor pointing to a
character text string containing the name of the object. The maximum length
of objnam depends on the object.

itmlst
VMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Modifications to be made to the ACL when $CHANGE_ACL completes
execution. The itmlst argument is the address of a variable length data
structure defining the changes to be made. The data structure consists of
three elements for each item code, as shown in the following diagram.

code

buflen

code

bufadr

I buflen

bufadr

unused

ZK-1701-84

Word containing the number of bytes in the buffer pointed to by
bufadr

Word containing the item code

Longword containing the address of a buffer for information being
passed to or from $CHANGE_ACL

The third longword of the standard item list entry (the return length
address) is not used by $CHANGE_ACL and should be zero.

End the item list with a longword containing the value zero.

SVS-47

SYSTEM SERVICE DESCRIPTIONS
$CHANGE_ACL

SYS-48

The symbols for the item codes are defined in the system macro library
($ACLDEF). The values and their meanings are as follows:

Value

ACL$C_ACLLENGTH

ACL$C_ADDACLENT

ACL$C_DELACLENT

ACL$C_DELETEACL

ACL$C_FNDACETYP

ACL$C_FNDACLENT

ACL$C_RLOCK_ACL

ACL$C_WLOCK_ACL

ACL$C_MODACLENT

ACL$C_HEADACE

ACL$C_READACL

ACL$C_UNLOCK_ACL

Meaning

Returns the size, in bytes, of the object's ACL. The
bufadr argument points to a longword that contains
the size.

Adds an ACE to the beginning of the ACL when contxt
is 0, to the end of the ACL when contxt is -1, or at
a location pointed to by a prior ACL$C_FNDACETYP
or ACL$C_FNDACLENT. The bufadr argument points
to a variable-length data structure containing the ACE
to be added. You can add more than one ACE with
ACL$C_ADDACLENT; however, buflen must contain
the total size of all ACEs contained in the buffer.

Deletes the ACE pointed to by bufadr, or if bufadr
is specified as zero, the ACE pointed to by a prior
ACL$C_FNDACETYP or ACL$C_FNDACLENT.

Deletes the entire ACL with the exception of protected
ACEs.

Locates an ACE of the type pointed to by bufadr.

Locates the ACE pointed to by bufadr.

Obtains a read lock on an object in order to lock out
all writers to the object's ACL. Regardless of the
caller's mode, ACL locks are user-mode locks so that
all access modes will interlock AC Ls correctly.

Obtains an exclusive lock on an object in order to
lock out all other readers and writers to the object's
ACL. Regardless of the caller's mode, ACL locks are
user-mode locks so that all access modes will interlock
ACLs correctly.

Replaces the ACE pointed to by a prior~
ACL$C_FNDACETYP or ACL$C_FNDACLENT with the
ACE pointed to by bufadr.

Reads the ACE pointed to by ACL$C_FNDACETYP
or ACL$C_FNDACLENT into the buffer pointed to by
bufadr.

Reads the object's ACL. You should set the contxt
argument initially to zero. Complete ACEs are read into
the buffer pointed to by bufadr.

Releases the lock obtained with ACL$C_RLOCK_ACL
or ACL$C_WLOCK_ACL.

When you add an ACE with ACL$C-.ADDACLENT or locate an ACE with
ACL$C_FNDACETYP or ACL$C_FNDACLENT, $CHANGE_ACL searches
the ACL for a match for the ACE in the ACE buffer. The $CHANGE-.ACL
service does not always make a match based on the entire ACE buffer;
instead, the ACE type determines how $CHANGE_ACL makes a match. For
example: ,

SYSTEM SERVICE DESCRIPTIONS
$CHANGE_ACL

• A default protection ACE (ACE$C_DIRDEF) matches only on the type
field (ACE$B_TYPE). An ACL can have only one default protection ACE
because $CHANGE_ACL stops searching after it locates a match.

• An identifier ACE (ACE$C_KEYID) matches on the flags
(ACE$WJLAGS) and identifier (ACE$L_KEY) fields.

• An alarm ACE (ACE$C_ALARM) matches on the flags
(ACE$W_FLAGS) and access mask (ACE$L_ACCESS) fields.

• All other ACE types match on the entire ACE buffer.

Because $CHANGE_ACL uses these matching rules, adding an ACE
sometimes results in the replacement of another ACE. For example, if you
add an identifier ACE with the same flags and identifier fields but a different
access mask, the new ACE replaces the old ACE. When you add an ACE on
the top of an ACL, $CHANGE_ACL deletes any matching ACE. If you add
an ACE below a matching ACE in an ACL, the added ACE has no effect.

acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by reference

Access mode to use in checking file access protection. The acmode argument
is the address of a longword containing the access mode. The acmode
argument defaults to kernel mode; however, the system compares acmode
against the caller's access mode and uses the least privileged mode.

The following access modes and their symbols are defined in the system
macro library ($PSLDEF):

Symbol Access Mode

PSL$C_USER User

PSL$C_SUPER Supervisor

PSL$C_EXEC Executive

PSL$C_KERNEL Kernel

nullarg
VMS usage: nulLarg
type: longword (unsigned)
access: read only
mechanism: by value

Place-holding argument. This argument is reserved by DIGITAL.

contxt
VMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Context value that points to an ACE. The contxt argument is the address of a
longword containing the context value.

SYS-49

SYSTEM SERVICE DESCRIPTIONS
$CHANGE_ACL

DESCRIPTION

CONDITION
VALUES
RETURNED

SVS-50

The Change Access Control List service creates or modifies an object's ACL.
For information about the various types of ACLs and their associated formats,
see the description of the $FORMAT_ACL service. For information about
how to convert an ASCII string to an ACE, see the description of the
$PARSE_ACL service.

SS$_NORMAL

SS$_ACCVIO

SS$_8ADPARAM

SS$_1NSFARG

SS$_1VACL

The service completed successfully.

The string or its descriptor cannot be read by the
caller, or the buffer descriptor cannot be read by
the caller, or the buffer cannot be written by the
caller, or the buffer is too small to hold the ACL
entry.

You specified an invalid object type, attribute code,
item size, or access mode.

The objtyp argument is not specified, or neither
chan nor objnam is specified.

The format of the access control list entry is
invalid.

SYSTEM SERVICE DESCRIPTIONS
$CHECK-ACCESS

$CHECK_ACCESS Check Access

FORMAT

RETURNS

ARGUMENTS

The Check Access service determines, on behalf of a third-party user,
whether that user can access the object specified.

SYS$CHECK_ACCESS objtyp ,objnam ,usrnam ,itmlst

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

objtyp
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Type of object being accessed. The objtyp argument is the address of a
longword containing a value specifying the type of object. The following
symbols are defined in the system macro library ($ACLDEF):

Symbol

ACL$C_DEVICE

ACL$C_FILE

ACL$C_GROUP _GLOBAL_SECTION

ACL$C_SYSTEM_GLOBAL _SECTION

ACL$C_JOBCTL_QUEUE

ACL$C_LOGICAL_NAME_ TABLE

objnam
VMS usage: char_string

Meaning

Object is a device

Object is a Files-11 structure level 2
file

Object is a group global section

Object is a system global section

Object is a batch or print queue

Object is a logical name table

type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of the object being accessed. The objnam argument is the address of
a descriptor pointing to a character text string containing the name of the
object. The maximum length of objnam depends on the object.

SVS-51

SYSTEM SERVICE DESCRIPTIONS
$CHECK-ACCESS

SVS-52

usrnam
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of the user attempting access. The usrnam argument is the address of
a descriptor pointing to a character text string containing the user name of the
user attempting to gain access to the specified object. The user name string
may contain a maximum of 12 alphanumeric characters.

itmlst
VMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Attributes describing how the object is to be accessed and information
returned after $CHECK_ACCESS performs the protection check (for instance,
security alarm information).

For each item code, you must include a set of four elements and end the
list with a longword containing the value 0 (CHP$_END), as shown in the
following diagram.

code

buflen

code

bufadr

retlenadr

I buflen

bufadr

retlenadr

ZK-1703-84

Word containing the number of bytes in the buffer pointed to by
bufadr.

Word containing the item code. The item codes are defined in the
system macro library ($CHPDEF).

Longword containing the address of a buffer used to pass
information to or receive information from SYS$CHECK_ACCESS.

Longword containing the address of a word-long buffer in which
SYS$CHECK_ACCESS writes the number of bytes written to the
buffer pointed to by bufadr. If the buffer pointed to by bufadr is
used to pass information to SYS$CHECK_ACCESS, retlenadr is
ignored but must be included.

All items are optional. If you do not specify the access type item code
(CHP$_ACCESS), read access is assumed.

The item codes used with $CHECK_ACCESS are described next. The first list
of item codes defines the type of access desired. The second list of item codes
allows you to determine which rights and privileges were used to access the
object. The item codes are defined in the system macro library ($CHPDEF).

SYSTEM SERVICE DESCRIPTIONS
$CHECK_ACCESS

Input Items-Type of Access Desired

Item
Identifier

Data
Type Description

CHP$_ACCESS Longword Bit mask representing the type of access
desired ($ARMDEF)

CHP$_ACMODE Byte Accessor' s processor access mode
($PSLDEF)

CHP$_FLAGS Longword Accessor' s access to the object

CHP$_ACCESS

Only those bits set in CHP$_ACCESS are checked against the protection of
the object to determine whether access is granted. (You can find the default
definitions in the $ARMDEF macro.)

CHP$_ACMODE

The following access modes and their symbols are defined in the system
macro library ($PSLDEF):

Symbol Access Mode

PSL$C_USER User

PSL$C_SUPER Supervisor

PSL$C_EXEC Executive

PSL$C_KERNEL Kernel

CHP$_FLAGS

The symbols in the next table are offsets to the bits within the longword. You
can also obtain the values as masks with the appropriate bit set by using the
prefix CHP$M rather than CHP$V. The following symbols are defined only
in the system macro library ($CHPDEF):

Symbol Access

CHP$V_READ Accessor has read access.

CHP$V_WRITE Accessor has write access.

CHP$V_USEREADALL Accessor is eligible for READALL privilege.

SVS-53

SYSTEM SERVICE DESCRIPTIONS
$CHECK-ACCESS

DESCRIPTION

SVS-~4

Output Items-Information Returned

Item Identifier Data Type Description

CHP$_ALARMNAME String Character string containing the alarm
name

CHP$_AUDITNAME String Character string containing the audit
name

CHP$_MA TCHEDACE Block The ACE in object's ACL that allowed or
denied the accessor access to the object

CHP$_PRIVUSED Longword Mask of flags representing privileges
used to gain the requested access

CHP$-ALARMNAME

If the object does not have security alarms enabled, SYS$CHECK_ACCESS
returns retlenadr as 0.

CHP$_AUDITNAME

If the object does not have auditing enabled, SYS$CHECK_ACCESS returns
retlenadr as 0.

CHP$_MATCHEDACE

This output item is a variable-length data structure containing the first
identifier ACE in the object's ACL that allowed the accessor to access the
object. The SYS$FORMAT_ACL system services describe the format of an
identifier ACE.

CHP$_PRIVUSED

The following symbols are offsets to the bits within the longword:

Symbol

CHP$_SYSPRV

CHP$_GRPPRV

CHP$_BYPASS

CHP$_READALL

Meaning

SYSPRV was used to gain the requested access.

GRPPRV was used to gain the requested access.

BYPASS was used to gain the requested access.

READALL was used to gain the requested access.

You can also obtain the values as masks with the appropriate bit set by using
the prefix CHP$M rather than CHP$V. The symbols are defined in the system
macro library ($CHPDEF).

The Check Access system service checks access to an object on behalf of a
third-party process. One use of the $CHECK_ACCESS service might be for
a file server that uses the service to check the protection attributes of a user
(the third-party accessor) attempting access to a file (the object).

If the accessor can access the object, SYS$CHECK_ACCESS returns the
SS$_NORMAL status code; otherwise, SYS$CHECK_ACCESS returns
SS$_NOPRIV.

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$CHECK_ACCESS

The arguments accepted by this service specify the name and type of object
being accessed, the name of the user requesting access to the object, the type
of access desired, and the type of information returned.

Alarm name strings are returned if an alarm record is to be written. A
nonzero string length (as returned in the item descriptor) specifies the
presence of an alarm request; if none is requested, a zero length is returned.
Note that alarms may be requested whether the protection check succeeds or
fails.

SS$_NORMAL

SS$_NOPRIV

SS$_ACCVIO

The service completed successfully; the desired
access is granted.

The desired access is not granted.

The item list cannot be read by the caller, or one
of the buffers specified in the item list cannot be
written by the caller.

SYS-55

SYSTEM SERVICE DESCRIPTIONS
$CHKPRO

$CHKPRO

FORMAT

RETURNS

ARGUMENT

SYS-56

Check Access Protection

The Check Access Protection service determines whether an accessor
with the specified rights and privileges can access an object with the
specified attributes.

SYS$CHKPRO itmlst

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

itmlst
VMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Protection attributes of the object and the rights and privileges of the accessor
used when $CHKPRO determines if the accessor can access the object. The
itmlst argument is the address of an item list of descriptors used to specify
the protection attributes of the object and the rights and privileges of the
accessor.

For each item code, you must include a set of four elements and end the list
with a longword containing the value zero (CHP$_END), as shown in the
following diagram.

code

buflen

code

bufadr

I buflen

bufadr

retlenadr

ZK-1703-84

Word containing the number of bytes in the buffer pointed to by
bufadr.

Word containing the item code. The item codes are defined in the
system macro library ($ACLDEF).

Longword containing the address of a buffer used to pass
information to or receive information from SYS$CHKPRO.

SYSTEM SERVICE DESCRIPTIONS
$CHKPRO

retlenadr Lorgword containing the address of a word-long buffer in which
SYS$CHKPRO writes the number of bytes written to the buffer
pointed to by bufadr. If the buffer pointed to by bufadr is used to
pass information to SYS$CHKPRO, retlenadr is ignored but must
be included.

All items are optional. Specifying any particular protection attribute causes
that protection check to be made; any protection attribute not specified is not
checked. Rights and privileges specified are used as needed. If a protection
check requires any right or privilege not specified in the item list, the right or
privilege of the caller's process is used.

The item codes used with $CHKPRO are described next. The first list of item
codes defines the accessor's rights and privileges. The second list of item
codes defines the object's protection attributes. The third list of item codes
allows you to determine which rights and priviliges were used to access the
object. The item codes are defined in the system macro library ($CHPDEF).

Input ltems-Accessor's Rights and Privileges

Item
Identifier

CHP$_ACCESS

CHP$_ACMODE

CHP$_ADDRIGHTS

CHP$_FLAGS

CHP$_PRIV

CHP$_RIGHTS

CHP$_ACCESS

Data
Type Description

Longword Bit mask representing the type of access
desired ($ARMDEF)

Byte Accessor' s processor access mode

Vector Additional rights list segment to be
appended to existing rights list

Longword Accessor' s access to the object

Quadword Accessor' s privilege mask

Vector Accessor's rights list

Be aware that the $CHKPRO service does not interpret the bits in the access
mask; instead, it compares them against the object's protection mask
(CHP$_pRQT). Any bits not specified by CHP$_ACCESS or CHP$_pRQT
are assumed to be clear, which grants access.

CHP$-ACMODE
The following access modes and their symbols are defined in the system
macro library ($PSLDEF):

Symbol

PSL$C_USER

PSL$C_SUPER

PSL$C_EXEC

PSL$C_KERNEL

Access Mode

User

Supervisor

Executive

Kernel

SYS-57

SYSTEM SERVICE DESCRIPTIONS
$CHKPRO

SYS-58

CHP$-ADDRIGHTS

Each entry of the rights list is a quadword data structure consisting of a
longword containing the identifier value, followed by a longword containing
a mask identifying the attributes of the holder. The SYS$CHKPRO service
ignores the attributes.

A maximum of 11 rights descriptors is allowed. If you specify
CHP$-ADDRIGHTS without specifying CHP$_RIGHTS, the accessor's
rights list consists of the rights list specified by the CHP$-ADDRIGHTS item
code(s) and the rights list of the current process.

If you specify CHP$_RIGHTS and CHP$_ADDRIGHTS, you should be
aware of the following:

1 CHP$-RIGHTS must come first.

2 The accessor's UIC is the identifier of the first entry in the rights list
specified by the CHP$_RIGHTS item code.

3 The accessor's rights list consists of the rights list specified by the
CHP$-RIGHTS item code and the CHP$-ADDRIGHTS item code(s).

CHP$_fLAGS

The symbols in the next table are offsets to the bits within the longword. You
can also obtain the values as masks with the appropriate bit set by using the
prefix CHP$M rather than CHP$V. The following symbols are defined only
in the system macro library ($CHPDEF).

Symbol Access

CHP$V_READ Accessor is making a read access

CHP$V_ WRITE Accessor is making a write access

CHP$V_USEREADALL Accessor is eligible for READALL privilege

Because the access mask (CHP$-ACCESS) is not interpreted by $CHKPRO,
CHP$FLAGS is used to determine whether the accessor is making a read or
write access to the object, or both.

CHP$_PRIV

To form the symbolic names for the bits in the privilege mask, you must
preface the name of the privileges with PRV$V_, For example, the bit
associated with the BYPASS privilege is PRV$V_BYP ASS. The privilege
symbols are defined in the system macro library ($PRVDEF).

CHP$_RIGHTS

The accessor' s UIC is the identifier of the first entry in the rights list. The
accessor's rights list consists of the rights list specified by CHP$-RIGHTS and
optionally the rights list specified by the CHP$-ADDRIGHTS item code(s).

SYSTEM SERVICE DESCRIPTIONS
$CHKPRO

Input Items-Object's Protection Attributes

Item
Identifier

CHP$_ACL

CHP$_MODE

CHP$_MODES

CHP$_0WNER

CHP$_PROT

CHP$_ACL

Data
Type

Vector

Byte

Quadword

Longword

Vector

Description

Object's access control list

Object's owner access mode

Object's access mode protection

Object's owner identifier (UIC or general
identifier)

Object's "SOGW" protection mask

The buffer address, bufadr, specifies a buffer containing one or more ACEs.
The number that specifies the length of the CHP$_ACL buffer, buflen, must
be equal to the sum of all ACE lengths. The format of the ACE structure
depends on the value of the second byte in the structure, which specifies the
ACE type. The SYS$FORMAT_ACL system service description describes each
ACE type and its format.

You may specify the CHP$_ACL item multiple times to point to multiple
segments of an access control list. You may specify a maximum of 20
segments. The segments are processed in the order specified.

CHP$_MODE

The following access modes of the object's owner and their symbols are
defined in the system macro library ($PSLDEF):

Symbol

PSL$C_USER

PSL$C_SUPER

PSL$C_EXEC

PSL$C_KERNEL

CHP$_MODES

Access Mode

User

Supervisor

Executive

Kernel

You specify a 2-bit access mode as shown in CHP$_MODE for each possible
access type. The following figure illustrates the format of an access mode
vector.

31 109876543210

I c D I E I w I R

63 32

ZK-1943-84

Each pair of bits in the access mode vector represents the access mode for
the particular type of access. For example, bits <6:7> represent the access
mode value used to check for delete access.

SVS-59

SYSTEM SERVICE DESCRIPTIONS
$CHKPRO

SYS-60

CHP$_QWNER

Specify a longword identifier indicating the owner of the object. This may be
either a UIC format identifier or a general identifier.

Note: CHP$_0WNER is used in conjunction with the CHP$_pRQT item code.

CHP$_PROT

The following diagram depicts the format for describing the object's
protection.

15 11 7 3 0 ACCESS BITS

world group owner system 0 - 3

' l J I

I I I I 4 - 7

..J. ..J. ..J. _L
T T T T

I I I I 8 - 11
..... _L
T I I T

I I I I 12 - 15
~ ~

I I I T

I I I I 16 - 19
J _J_

T T T I

I I I I 20 - 23
,,

I T l I

I I I I 24 - 27
....L _L

T T T T

j_ 1 1 1
28 - 31

ZK-1704-84

The first word contains the first four protection bits for each field, the second
word the next four protection bits, and so on. If a bit is clear, access is
granted. By convention, the first five protection bits are (from right to left in
each field of the first word) read, write, execute, delete, and (in the low-order
bit in each field of the second word) control access. You may specify the
CHP$_pRQT item in increments of words; if a short buffer is given, zeroes
are assumed for the remainder.

The $CHKPRO service compares the low-order four bits of CHP$-ACCESS
against one of the four bit fields in the low-order word of CHP$_pRQT, the
next four bits of CHP$-ACCESS against one of the four bit fields in the next
word of CHP$_pRQT, and so on. The $CHKPRO service chooses a field of
CHP$_pRQT based on the privileges specified for the accessor (CHP$_pRJV),
the UICs of the accessor (CHP$-RIGHTS or CHP$-ADDRIGHTS, or both),
and the object's owner (CHP$_0WNER).

You must also specify the identifier of the object's owner with
CHP$_QWNER when you use CHP$_pRQT.

DESCRIPTION

SYSTEM SERVICE DESCRIPTIONS
$CHKPRO

Output Items-Information Returned

Item
Identifier

CHP$_ALARMNAME

CHP$_MATCHEDACE

CHP$_PRIVUSED

Data
Type

String

Block

Longword

Description

Character string containing the alarm
record

Contains the ACE in object's ACL that
allowed the accessor to access the
object

Mask of flags representing privileges
used to gain the requested access

CHP$_ALARMNAME

If the object does not have security alarms enabled, SYS$CHKPRO returns
retlenadr as zero.

CHP$_MATCHEDACE

This output item is a variable-length data structure containing the first
identifier ACE in the object's ACL that allowed the accessor to access the
object. The SYS$FORMAT_ACL system services describes the format of an
identifier ACE.

CHP$_PRIVUSED

The following symbols are used as offsets to the bits within the longword:

Symbol

CHP$_SYSPRV

CHP$_GRPPRV

CHP$_BYPASS

CHP$_READALL

Meaning

Uses SYSPRV to gain the requested access

Uses GRPPRV to gain the requested access

Uses BYPASS to gain the requested access

Uses READALL to gain the requested access

You can also obtain the values as masks with the appropriate bit set by using
the prefix CHP$M rather than CHP$V. The symbols are defined in the system
macro library ($CHPDEF).

The Check Access Protection service invokes the system's access protection
check, allowing layered products and other subsystems to build protected
structures within themselves whose protection is consistent with the
protection facilities provided by the base system. It also allows a privileged
subsystem to perform protection checks on behalf of some requester.

If the accessor can access the object, SYS$CHKPRO returns the
SS$_NORMAL status code; otherwise, SYS$CHKPRO returns SS$_NOPRIV.

The arguments accepted by this service specify the protection of the object
being accessed, the rights and privileges of the accessor, and the type of
access desired. Because of the diverse and extensible nature of protections
available in VMS, the arguments are presented in an item list.

SVS-61

SYSTEM SERVICE DESCRIPTIONS
$CHKPRO

CONDITION
VALUES
RETURNED

SVS-62

When a protection check is to be invoked on behalf of another process, the
privilege mask (CHP$JRIV) is almost always mandatory, because it is used
for all types of protection checks.

Alarm name strings are returned if an alarm record is to be written. A
nonzero string length (as returned in the item descriptor) specifies the
presence of an alarm request; if none is requested, a zero length is returned.
Note that you may request alarms whether the protection check succeeds or
fails.

For a flowchart detailing the operation of $CHKPRO, see the chapter on
security services in the Introduction to VMS System Services.

SS$_NORMAL

SS$_NQPRIV

SS$_ACCVIO

SS$_BADPARAM

SS$_1VACL

The service completed successfully; the desired
access is granted.

The desired access is not granted.

The item list cannot be read by the caller, or one
of the buffers specified in the item list cannot be
written by the caller.

The argument is invalid.

You supplied an invalid ACL segment with the
CHP$_ACL item.

$CLREF

FORMAT

RETURNS

ARGUMENT

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$CLREF

Clear Event Flag

The Clear Event Flag service clears (sets to 0) an event flag in a local or
common event flag cluster.

SYS$CLREF efn

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

ef n
VMS usage: eLnumber
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be cleared. The efn argument is a longword
containing this number; however, $CLREF uses only the low-order byte.

SS$_WASCLR

SS$_WASSET

SS$_1LLEFC

SS$_UNASEFC

The service completed successfully. The specified
event flag was previously 0.

The service completed successfully. The specified
event flag was previously 1 .

You specified an illegal event flag number.

The process is not associated with the cluster
containing the specified event flag.

SYS-63

SYSTEM SERVICE DESCRIPTIONS
$CM EXEC

$CM EXEC

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

SYS-64

Change to Executive Mode

The Change to Executive Mode service changes the access mode of
the calling process to executive mode. This service allows a process to
change its access mode to executive, execute a specified routine, and then
return to the access mode in effect before the call was issued.

SYS$CMEXEC routin ,[arglst]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

routin
VMS usage: procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

Routine to be executed while the process is in executive mode. The routin
argument is the address of the entry point to this routine.

arglst
VMS usage: arg_list
type: longword (unsigned)
access: read only
mechanism: by reference

Argument list to be passed to the routine specified by the routin argument.
The arglst argument is the address of this argument list.

To call this service, the process must either have CMEXEC or CMKRNL
privilege or be currently executing in executive or kernel mode.

The $CMEXEC service uses standard procedure calling conventions to pass
control to the specified routine. If no argument list is specified, the argument
pointer (AP) contains a 0. However, to conform to the VAX Procedure Calling
Standard, you must not omit the arglist argument.

When you use the $CMEXEC service, the system service dispatcher modifies
both RO and Rl before entry into the target routine. The specified routine
must exit with a RET instruction and should place a status value in RO before
returning.

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$CM EXEC

All of the Change Mode system services are intended to allow for the
execution of a routine at an access mode more (not less) privileged than
the access mode from which the call is made. If $CMEXEC is called while
a process is executing in kernel mode, the routine specified by the routin
argument executes in kernel mode, not executive mode.

SS$_NOPRIV

All other values

The process does not have the privilege to change
mode to executive.

The routine executed returns all other values.

SYS-65

SYSTEM SERVICE DESCRIPTIONS
$CM KR NL

$CM KR NL

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

SYS-66

Change to Kernel Mode

The Change to Kernel Mode service changes the access mode of the
calling process to kernel mode. This service allows a process to change
its access mode to kernel, execute a specified routine, and then return to
the access mode in effect before the call was issued.

SYS$CMKRNL routin ,[arglst]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

routin
VMS usage: procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

Routine to be executed while the process is in kernel mode. The routin
argument is the address of the entry point to this routine.

arglst
VMS usage: arg_list
type: longword (unsigned)
access: read only
mechanism: by reference

Argument list to be passed to the routine specified by the routin argument.
The arglst argument is the address of this argument list.

To call the $CMKRNL service, a process must either have CMKRNL privilege
or be currently executing in executive or kernel mode.

The $CMKRNL service uses standard procedure calling conventions to pass
control to the specified routine. If no argument list is specified, the argument
pointer (AP) contains a 0. However, to conform to the VAX Procedure Calling
Standard, you must not omit the arglist argument.

When you use the $CMKRNL service, the system service dispatcher modifies
both RO and Rl before entry into the target routine. The specified routine
must exit with a RET instruction and should place a status value in RO before
returning.

The system loads R4 with the address of the Process Control Block (PCB).

CONDITION
VALUES
RETURNED

SS$_NOPRIV

All other values

SYSTEM SERVICE DESCRIPTIONS
$CM KR NL

The process does not have the privilege to change
mode to kernel.

The routine executed returns all other values.

SVS-67

SYSTEM SERVICE DESCRIPTIONS
$CRELNM

$CRELNM

FORMAT

RETURNS

ARGUMENTS

SVS-68

Create Logical Name

The Create Logical Name service creates a logical name and specifies its
equivalence name(s).

SYS$CRELNM [attr] ,tabnam ,lognam ,[acmode} ,[itmlst]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

attr
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Attributes to be associated with the logical name. The attr argument is the
address of a longword bit mask specifying these attributes.

Each bit in the longword corresponds to an attribute and has a symbolic
name. These symbolic names are defined by the $LNMDEF macro. To
specify an attribute, specify its symbolic name or set its corresponding
bit. The longword bit mask is the logical OR of all desired attributes. All
undefined bits in the longword must be 0.

If you do not specify this argument or specify it as 0 (no bits set), no attributes
are associated with the logical name.

SYSTEM SERVICE DESCRIPTIONS
$CRELNM

The attributes are as follows:

Attribute

LNM$M_CONFINE

Description

If set, the logical name is not copied from the process
to its spawned subprocesses. You create a subprocess
with the DCL command SP AWN or the LIB$SPA WN Run
Time Library routine. If the logical name is placed into a
process-private table that has the CONFINE attribute, the
CONFINE attribute is automatically associated with the
logical name. This applies only to process-private logical
names.

LNM$M_NO_ALIAS If set, the logical name cannot be duplicated in this table
at an outer access mode. If another logical name with the
same name already exists in the table at an outer access
mode, it is deleted.

tabnam
VMS usage: logicaLname
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of the table in which to create the logical name. The tabnam argument
is the address of a descriptor that points to the name of this table. This
argument is required.

If tabnam is not the name of a logical name table, it is assumed to be a
logical name and is translated iteratively until either the name of a logical
name table is found or the number of translations allowed by the system
has been performed. If tabnam translates to a list of logical name tables, the
logical name is entered into the first table in the list.

You need the SYSNAM or SYSPRV privilege to specify the system table, and
the GRPNAM or SYSPRV privilege to specify the group table.

You need the SYSPRV privilege to specify the system directory table
LNM$SYSTEM_DIRECTORY.

lognam
VMS usage: logicaLname
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of the logical name to be created. The lognam argument is the address
of a descriptor that points to the logical name string. Logical name strings
of logical names created within either the system or process directory table
must consist of alphanumeric characters, dollar signs, and underscores; the
maximum length is 31 characters. The maximum length of logical name
strings created within other tables is 255 characters with no restrictions on the
types of characters that can be used. This argument is required.

SYS-69

SYSTEM SERVICE DESCRIPTIONS
$CRELNM

SVS-70

a cm ode
VMS usage: access_mode
type: byte (unsigned)
access: read only
mechanism: by reference

Access mode to be associated with the logical name. The acmode argument
is the address of a byte that specifies the access mode.

The access mode associated with the logical name is determined by
"maximizing" the access mode of the caller with the access mode specified
by the acmode argument, which means that the less privileged of the two is
used. Symbols for the four access modes are defined by the $PSLDEF macro.

You cannot specify an access mode more privileged than that of the
containing table. However, if the caller has SYSNAM privilege, then the
specified access mode is associated with the logical name regardless of the
access mode of the caller.

If you omit this argument or specify it as 0, the access mode of the caller is
associated with the logical name.

itmlst
VMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list describing the equivalence name(s) to be defined for the logical name
and information to be returned to the caller. The itmlst argument is the
address of a list of item descriptors, each of which specifies information about
an equivalence name. The list of item descriptors is terminated by a longword
of 0. This argument is required. The following diagram depicts a single item
descriptor.

31 15

item code l
buffer address

return length address

$CRELNM Item Descriptor Fields

buffer length

0

buffer length

ZK-1705-84

A word specifying the number of bytes in the buffer pointed to by the buffer
address field.

item code
A word that contains a symbolic code describing the nature of the information
in the buffer or to be returned to the buffer pointed to by the buffer address
field. The item codes are described under "$CRELNM Item Codes."

SYSTEM SERVICE DESCRIPTIONS
$CRELNM

buffer address
A longword containing the address of the buffer that receives or passes
information.

return length address
A longword containing the address of a word that receives the actual length
in bytes of the information returned by $CRELNM in the buffer pointed to by
the buffer address field. The return length address field is used only when
the item code specified is LNM$_TABLE. Although this field is ignored for
all other item codes, it must nevertheless be present as a placeholder in each
item descriptor:

$CRELNM Item Codes

LNM$_ATTRIBUTES
When you specify LNM$_ATTRIBUTES, the buffer address field of the
item descriptor points to a longword bit mask that specifies the current
translation attributes for the logical name. The current translation attributes
are applied to all subsequently specified equivalence strings until another
LNM$_ATTRIBUTES item descriptor is encountered in the item list. The
symbolic names for these attributes are defined by the $LNMDEF macro. The
symbolic name and description of each attribute are as follows:

Attribute Description

LNM$M_CQNCEALED If set, RMS interprets the equivalence name as a device
name or logical name with the LNM$M_CONCEALED
attribute.

LNM$M_ TERMINAL If set, further iterative logical name translation on the
equivalence name is not to be performed.

LNM$_CHAIN
When you specify LNM$_CHAIN, the buffer address field of the item
descriptor points to another item list that $CRELNM is to process immediately
after it has processed the current item list.

If you specify the LNM$_CHAIN item code, it must be the last item code in
the current item list.

LNM$_STRING
When you specify LNM$_STRING, the buffer address field of the item
descriptor points to a buffer containing a user-specified equivalence name
for the logical name. The maximum length of the equivalence string is 255
characters.

SYS-71

SYSTEM SERVICE DESCRIPTIONS
$CRELNM

DESCRIPTION

CONDITION
VALUES
RETURNED

SYS-72

When $CRELNM encounters an item descriptor with the item code
LNM$_STRING, it creates an equivalence name entry for the logical name
using the most recently specified values for LNM$_ATTRIBUTES. The
equivalence name entry includes the following information:

• The name specified by LNM$_STRING.

• The next available index value. Each equivalence is assigned a unique
value from 0 to 127.

• The attributes specified by the most recently encountered item descriptor
with item code LNM$_ATTRIBUTES (if these are present in the item list).

Therefore, you should construct the item list so that the LNM$_ATTRIBUTES
item codes immediately precede the LNM$_STRING item code or codes to
which they apply.

LNM$_TABLE
When you specify LNM$_ TABLE, the buffer address field of the item
descriptor points to a buffer in which $CRELNM writes the name of the
logical name table in which it entered the logical name. The return length
address field points to a word that contains a buffer that specifies the length
in bytes of the information returned by $CRELNM. The maximum length of
the name of a logical name table is 31 characters.

This item code may appear anywhere in the item list.

The calling process must have the following:

• Write access to shareable tables to create logical names in those tables

• SYSNAM privilege to create executive or kernel mode logical names

• GRPNAM or SYSPRV privilege to enter a logical name into the group
logical name table

• SYSNAM or SYSPRV privilege to enter a logical name into the system
logical name table

SS$_NQRMAL

SS$_SUPERSEDE

SS$_BUFFEROVF

SS$_ACCVIO

The service completed successfully; the logical
name has been created.

The service completed successfully; the logical
name has been created and a previously existing
logical name with the same name has been
deleted.

The service completed successfully; the buffer
length field in an item descriptor specified an
insufficient value, so the buffer was not large
enough to hold the requested data.

The service cannot access the location(s) specified
by one or more arguments.

SYSTEM SERVICE DESCRIPTIONS
$CRELNM

SS$_BADPARAM

SS$_DUPLNAM

SS$_EXLNMQUOT A

SS$_1NSFMEM

SS$_1VLOGNAM

SS$_1VLOGT AB

SS$_NOLOGTAB

SS$_NOPRIV

One or more arguments have an invalid value, or a
logical name table name or logical name was not
specified.

An attempt was made to create a logical name
with the same name as an already existing logical
name, and the existing logical name was created
at a more privileged access mode and with the
LNM$M_NQ_ALIAS attribute.

The quota associated with the specified logical
name table for the creation of the logical name is
insufficient.

The dynamic memory is insufficient for the creation
of the logical name.

The tabnam argument, lognam argument, or
the equivalence string specifies a string whose
length is not in the required range of 1 through
255 characters. The lognam argument specifies a
string whose length is not in the required range of
1 to 31 characters for directory table entries.

The tabnam argument does not specify a logical
name table.

Either the specified logical name table does
not exist or the logical name translation of the
table name exceeded the allowable depth of 10
translations.

The caller lacks the necessary privilege to create
the logical name.

SYS-73

SYSTEM SERVICE DESCRIPTIONS
$CRELNT

$CRELNT Create Logical Name Table

FORMAT

RETURNS

ARGUMENTS

SVS-74

The Create Logical Name Table service creates a process-private or
shareable logical name table.

SYS$CRELNT [attr] ,[resnam} ,{res/en} ,[quota]
,[promsk] ,[tabnam} ,partab ,{acmode}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

attr
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Attributes to affect the creation of the logical name table and to be associated
with the newly created logical name table. The attr argument is the address
of a longword bit mask specifying these attributes.

Each bit in the longword corresponds to an attribute and has a symbolic
name. These symbolic names are defined by the $LNMDEF macro. To
specify an attribute, specify its symbolic name or set its corresponding bit.
The longword bit mask is the logical OR of all desired attributes. All unused
bits in the longword must be 0.

If you do not specify this argument or specify it as 0 (no bits set), no attributes
are associated with the logical name table or affect the creation of the new
table.

The following list describes each attribute:

Attribute

LNM$M_CONFINE

· Description

If set, the logical name table is not copied from the
process to its spawned subprocesses. You create
a subprocess with the DCL command SP AWN or
the Run-Time Library LIB$SPAWN routine. You may
specify this attribute only for process-private logical
name tables; it is ignored for shareable tables.

SYSTEM SERVICE DESCRIPTIONS
$CRELNT

Attribute

LNM$M_CREATE_IF

LNM$M_NQ_ALIAS

resnam

Description

The state of this bit is also propagated from the
parent table to the newly created table and can be
overridden only if the parent table does not have the
bit set. Thus, if the parent table has the LNM$M_
CONFINE attribute, the newly created table will
also have it, no matter what is specified in the attr
argument. On the other hand, if the parent table does
not have the LNM$M_CONFINE attribute, the newly
created table can be given this attribute through the
attr argument.

The process-private directory table
LNM$PROCESS_DIRECTORY does not have the
LNM$M_CONFINE attribute.

If set, a new logical name table is created only if the
specified table name is not already entered at the
specified access mode in the appropriate directory
table. If the table name exists, a new table is not
created and no modification is made to the existing
table name. This holds true even if the existing name
has differing attributes or quota values, or even if it is
not the name of. a logical name table.

If LNM$M_CREATE_IF is not set, the new logical
name table will supersede any existing table name
with the same access mode within the appropriate
directory table. Setting this attribute is useful when
two or more users want to create and use the same
table but do not want to synchronize its creation.

If set, the name of the logical name table cannot
be duplicated at an outer access mode within the
appropriate directory table. If this name already exists
at an outer access mode, it is deleted.

VMS usage: logicaLname
type: character-coded text string
access: write only
mechanism: by descriptor-fixed-length string descriptor

Name of the newly created logical name table, returned by $CRELNT. The
resnam argument is the address of a descriptor pointing to this name. The
name is a character string whose maximum length is 31 characters.

res/en
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length in bytes of the name of the newly created logical name table, returned
by $CRELNT. The reslen argument is the address of a word to receive this
length.

SVS-75

SYSTEM SERVICE DESCRIPTIONS
$CRELNT

SYS-76

quota
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Maximum number of bytes of memory to be allocated for logical names
contained in this logical name table. The quota argument is the address of a
longword specifying this value.

If you specify no quota value, the logical name table has an infinite quota.
Note that a shareable table created with infinite quota permits users with
write access to that table to consume system dynamic memory without limit.

promsk
VMS usage: file_protection
type: word (unsigned)
access: read only
mechanism: by reference

Protection mask to be associated with the newly created shareable logical
name table. The promsk argument is the address of a word that contains
a value that represents four 4-bit fields, where each field describes the type
of access allowed for system, owner, group, and world users. The following
diagram depicts these protection bits.

WORLD GROUP OWNER SYSTEM

DEWRDEWRDEWRDEWR

13 12 11 10 9 8 7 6 5 4 3 2 0

ZK-1706-84

Each field consists of four bits specifying protection for the logical name table.
The remaining bits in the protection mask are as follows:

• Read privileges allow access to names in the logical name table.

• Write privileges allow creation and deletion of names within the logical
name table.

• Delete privileges allow deletion of the logical name table.

Note: The "E" protection bit is reserved by DIGIT AL.

If a bit is clear, access is granted. If you omit the mask, complete access is
granted to system and owner, and no access is granted to world and group.

tabnam
VMS usage: logicaLname
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

The name of the new logical name table. The tabnam argument is the
address of a character string descriptor pointing to this name string.
Table names are contained in either the process or system directory table

SYSTEM SERVICE DESCRIPTIONS
$CRELNT

(LNM$PROCESS_DIRECTORY or LNM$SYSTEM_DIRECTORY). Therefore,
table names must consist of alphanumeric characters, dollar signs ($), and
underscores (-); the maximum length is 31 characters.

If you do not specify this argument, a default name in the format LNM$xxxx
is used, where xxxx is a unique hexadecimal number.

You need SYSPRV privilege to specify the name of a shareable logical name
table.

partab
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name string for the parent table name. The partab argument is the address
of a character string descriptor pointing to this name string. If the parent
table is shareable, then the newly created table is shareable and is entered
into the system directory LNM$SYSTEM_DIRECTORY. If the parent table is
process-private, then the newly created table is process-private and is entered
in the process directory LNM$PROCESS_DIRECTORY. You need SYSPRV
privilege or write access to the system directory to create a named shareable
table. This argument is required.

acmode
VMS usage: access_mode
type: byte (unsigned)
access: read only
mechanism: by reference

Access mode to be associated with the newly created logical name table. The
acmode argument is the address of a byte containing this access mode. The
$PSLDEF macro defines symbolic names for the four access modes.

If you do not specify the acmode argument or specify it as 0, the access mode
of the caller is associated with the newly created logical name table.

The access mode associated with the logical name table is determined by
"maximizing" the access mode of the caller with the access mode specified by
the acmode. The less privileged of the two access modes is used.

However, if the caller has SYSNAM privilege, then the specified access mode
is associated with the logical name table, regardless of the access mode of the
caller.

Access modes associated with logical name tables govern logical name table
processing and provide a protection mechanism that prevents the deletion of
inner access mode logical name tables by nonprivileged users. You cannot
specify an access mode more privileged than that of the parent table.

A logical name table with supervisor-mode access may contain supervisor
mode and user-mode logical names and may be a parent to supervisor-mode
and user-mode logical name tables, but may not contain executive- or kernel
mode logical names or be a parent to executive- or kernel-mode logical name
tables.

You need SYSNAM privilege to specify executive- or kernel-mode access for
a logical name table.

SVS-77

SYSTEM SERVICE DESCRIPTIONS
$CRELNT

DESCRIPTION

CONDITION
VALUES
RETURNED

SYS-78

Depending on the operation, use of $CRELNT may require the calling process
to have certain privileges:

• You need the SYSPRV privilege to create a shareable table.

• You need the SYSNAM privilege to create a table at an access mode more
privileged than that of the calling process.

The $CRELNT service uses the following system resources:

• System paged dynamic memory to create a shareable logical name table

• Process dynamic memory to create a process-private logical name table

The parent table governs whether the new table is process-private or
shareable. If the parent table is process-private, so is the new table; if the
parent table is shareable, so is the new table.

SS$_NORMAL

SS$_LNMCREA TED

SS$_SUPERSEDE

SS$_ACCVIO

SS$_BADPARAM

SS$_DUPLNAM

SS$_EXLNMQUOT A

SS$_1NSFMEM

SS$_1VLOGNAM

SS$_1VLOGT AB

SS$_NOLOGTAB

SS$_NOPRIV

The service completed successfully; the logical
name table already exists.

The service completed successfully; the logical
name table was created.

The service completed successfully; the logical
name table was created and its logical name
superseded already existing logical name(s) in the
directory table.

The service cannot access the location(s) specified
by one or more arguments.

One or more arguments has an invalid value, or a
parent logical name table was not specified.

You attempted to create a logical name table with
the same name as an already existing name within
the appropriate directory table, and the existing
name was created at a more privileged access
mode with the LNM$M_NQ_ALIAS attribute.

The parent table has insufficient quota for the
creation of the new table.

The dynamic memory is insufficient for the creation
of the table.

The partab argument specifies a string whose
length is not within the required range of 1 to 31
characters.

The tabnam argument is not alphanumeric or
specifies a string whose length is not within the
required range of 1 to 31 characters.

The parent logical name table does not exist.

The caller lacks the necessary privilege to create
the table.

SYSTEM SERVICE DESCRIPTIONS
$CRELNT

SS$_P ARENT _DEL

SS$_RESUL TOVF

The creation of the new table would have resulted
in the deletion of the parent table.

The table name buffer is not large enough to
contain the name of the new table.

SYS-79

SYSTEM SERVICE DESCRIPTIONS
$CREATE_RDB

$CREATE_RDB Create Rights Database

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

CONDITION
VALUES
RETURNED

SYS-80

The Create Rights Database service initializes a rights database.

SVS$CREATE_RDB [sysid]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

sysid
VMS usage:
type:
access:
mechanism:

system_access_id
quadword (unsigned)
read only
by reference

System identification value associated with the rights database when
$CREATE-RDB completes execution. The sysid argument is the address
of quadword containing the system identification value. If you omit sysid,
the current system time in 64-bit format is used.

The Create Rights Database service initializes a rights database. The database
name is the file equated to the logical name RIGHTSLIST, which must be
defined as a system logical name at executive mode. If the logical name does
not exist, the database is named SYS$SYSTEM:RIGHTSLIST.DAT.

If the database already exists, $CREATE_RDB fails with the error
RMS$_FEX.

You need write access to the rights database to use this service. If the
database is in SYS$SYSTEM (which is the default), you need SYSPRV
privilege to grant write access to the database.

SS$_NORMAL

SS$_ACCVIO

SS$·_1NSFMEM

The service completed successfully.

The sysid argument cannot be read by the caller.

The process dynamic memory is insufficient for
opening the rights database.

RMS$_FEX

RMS$_PRV

SYSTEM SERVICE DESCRIPTIONS
$CREATE_RDB

A rights database already exists. To create a new
one, you must explicitly delete or rename the old
one.

The user does not have write access to
SYS$SYSTEM.

Because the rights database is an indexed file accessed with VMS RMS, this
service may also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the VMS Record
Management Services Manual.

SVS-81

SYSTEM SERVICE DESCRIPTIONS
$CR EM BX

$CREMBX Create Mailbox and Assign Channel

FORMAT

RETURNS

ARGUMENTS

SVS-82

The Create Mailbox and Assign Channel service creates a virtual mailbox
device named MBAn and assigns an 1/0 channel to it. The system
provides the unit number n when it creates the mailbox. If a mailbox
with the specified name already exists, the $CREMBX service assigns a
channel to the existing mailbox.

SYS$CREMBX [prmflg} ,chan ,{maxmsg} ,{bufquo}
,{promsk} ,{acmode} ,[lognam}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

prmflg
VMS usage: boolean
type: byte (unsigned)
access: read only
mechanism: by value

Indicator specifying whether the created mailbox is to be permanent or
temporary. The prmflg argument is a byte value. The value 1 specifies a
permanent mailbox; the value 0, which is the default, specifies a temporary
mailbox. Any other values result in an error.

ch an
VMS usage: channel
type: word (unsigned)
access: write only
mechanism: by reference

Channel number assigned by $CREMBX to the mailbox. The chan argument
is the address of a word into which $CREMBX writes the channel number.

maxmsg
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Maximum size (in bytes) of a message that can be sent to the mailbox. The
maxmsg argument is a longword value containing this size. If you do not
specify maxmsg or you specify it as 0, VMS provides a default value.

SYSTEM SERVICE DESCRIPTIONS
$CR EM BX

bufquo
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Number of bytes of system dynamic memory that can be used to buffer
messages sent to the mailbox. The bufquo argument is a longword value
containing this number. If you do not specify the bufquo argument or you
specify it as 0, VMS provides a default value.

The maximum value you can specify with the bufquo argument is 65355.
For a temporary mailbox, this value must be less than or equal to the process
buffer quota.

promsk
VMS usage: file_protection
type: longword (unsigned)
access: read only
mechanism: by value

Protection mask to be associated with the created mailbox. The promsk
argument is a longword value that is the combined value of the bits set in the
protection mask. Cleared bits grant access and set bits deny access to each
of the four classes of user: world, group, owner, and system. The following
diagram depicts these protection bits.

WORLD GROUP OWNER SYSTEM

L P W R L R L P W R L P W R

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

ZK-1707-84

If you do not specify the promsk argument or you specify it as 0, read, write,
physical, and logical access are granted to all users.

The physical access bit is ignored for all categories of user. The logical access
bit must be clear for all categories of user because logical access is required to
read or write to a mailbox; thus, setting or clearing the read and write access
bits is meaningless unless the logical access bit is also cleared.

Logical access also allows you to queue read or write attention ASTs.

acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the channel to which the mailbox is
assigned. The acmode argument is a longword containing the access mode.

SYS-83

SYSTEM SERVICE DESCRIPTIONS
$CR EM BX

DESCRIPTION

SYS-84

The $PSLDEF macro defines the following symbols for the four access modes:

Symbol

PSL$C_KERNEL

PSL$C_EXEC

PSL$C_SUPER

PSL$C_USER

Access Mode

Kernel

Executive

Supervisor

User

The most privileged access mode used is the access mode of the caller.

lognam
VMS usage: logicaLname
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Logical name to be assigned to the mailbox. The lognam argument is the
address of a character string descriptor pointing to the logical name string.

The equivalence name for the mailbox is MBAn. The equivalence name is
marked with the terminal attribute. Processes can use the logical name to
assign other 1/0 channels to the mailbox.

For permanent mailboxes, the $CREMBX service enters the specified logical
name, if any, in the LNM$PERMANENT_MAILBOX logical name table and,
for temporary mailboxes, into the LNM$TEMPORARY_MAILBOX logical
name table.

Depending on the operation, the calling process may need one of the
following privileges to use $CREMBX:

• TMPMBX privilege to create a temporary mailbox

• PRMMBX privilege to create a permanent mailbox

• SYSNAM privilege to place a logical name for a mailbox in the system
logical name table

• GRPNAM privilege to place a logical name for a mailbox in the group
logical name table

The $CREMBX service uses system dynamic memory to allocate a device
database for the mailbox and for an entry in the logical name table (if a
logical name is specified).

When a temporary mailbox is created, the process's buffered 1/0 byte count
(BYTLM) quota is reduced by the amount specified in the bufquo argument.
The size of the mailbox unit control block and the logical name (if specified)
are also subtracted from the quota. The quota is returned to the process when
the mailbox is deleted.

After the process creates a mailbox, it and other processes can assign
additional channels to it by calling the Assign 1/0 Channel ($ASSIGN)
or Create Mailbox ($CREMBX) service. If the mailbox already exists, the
$CREMBX service assigns a channel to that mailbox; in this way, cooperating
processes need not consider which process must execute first to create the

SYSTEM SERVICE DESCRIPTIONS
$CREMBX

mailbox. The system maintains a reference count of the number of channels
assigned to a mailbox, and this count is decreased whenever a channel is
deassigned with the Deassign 1/0 Channel ($DASSGN) service or when the
image that assigned the channel exits.

A temporary mailbox is deleted when no more channels are assigned to
it. A permanent mailbox must be explicitly marked for deletion with the
Delete Mailbox ($DELMBX) service; its actual deletion occurs when no more
channels are assigned to it.

A mailbox is treated as a shareable device; it cannot, however, be mounted or
allocated.

Mailboxes are assigned sequentially increasing unit numbers (from 1 to a
maximum of 9999) as they are created. When all unit numbers have been
used, the system starts numbering again at unit 1.

A process can obtain the unit number of the created mailbox by calling the
Get Device/Volume Information ($GETDVI) service.

Default values for the maximum message size and the buffer quota
(an appropriate multiple of the message size) are determined for a
specific system during system generation. The SYSGEN parameter
DEFMBXMXMSG determines the maximum message size; the SYSGEN
parameter DEFMBXBUFQUO determines the buffer quota. For termination
mailboxes, the maximum message size must be at least as large as the
termination message (currently 84 bytes).

When you specify a logical name for a temporary mailbox, the $CREMBX
service enters the name into the LNM$TEMPORARY_MAILBOX logical name
table.

Normally, LNM$TEMPORARY_MAILBOX specifies LNM$JOB, the job-wide
logical name table; thus, only processes in the same job as the process that
first creates the mailbox can use the logical name to access the temporary
mailbox. If you want to use the temporary mailbox to enable communication
between processes in different jobs, you must redefine
LNM$TEMPORARY_MAILBOX in the process logical name directory table
(LNM$PROCESS_DIRECTORY) to specify a logical name table that those
processes can access.

For instance, if you want to use the mailbox as a communication device for
processes in the same group, you must redefine
LNM$TEMPORARY_MAILBOX to specify LNM$GROUP, the group logical
name table. The following DCL command assigns temporary mailbox logical
names to the group logical name table:

$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY-
_$ LNM$TEMPORARY_MAILBOX LNM$GROUP

When you specify a logical name for a permanent mailbox, the system enters
the name in the logical name table specified by the logical name table name
LNM$PERMANENT_MAILBOX, which normally specifies LNM$SYSTEM,
the system logical name table. If you want the logical name that you specify
for the mailbox to be entered in a logical name table other than the system
logical name table, you must redefine LNM$PERMANENT_MAILBOX to
specify the desired table. For more information about logical name tables, see
the Introduction to VMS System Services.

SVS-85

SYSTEM SERVICE DESCRIPTIONS
$CR EM BX

CONDITION
VALUES
RETURNED

SYS-86

If you redefine either LNM$TEMPORARY_MAILBOX or
LNM$PERMANENT_MAILBOX, be sure that the name of the new table
appears in the logical name table LNM$FILE_DEV. RMS and the 1/0
system services use LNM$FILE_DEV to translate 1/0 device names. If the
logical name table specified by either LNM$TEMPORARY_MAILBOX or
LNM$PERMANENT_MAILBOX does not appear in LNM$FILE_DEV, the
system will be unable to translate the logical name of your mailbox and
therefore will be unable to access your mailbox as an 1/0 device.

If you redirect a logical name table to point to a process-private table, then
the following occurs:

• Other processes cannot access the mailbox by its name.

• If the creating process issues a second call to $CREMBX, a different
mailbox is created and a channel is assigned to the new mailbox. (If the
creating process issues a second call to $CREMBX using a shared logical
name, a second channel is assigned to the existing mailbox.)

• The logical name is not deleted when the mailbox disappears.

SS$_NQRMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_EXBYTLM

SS$_1NSFMEM

SS$_1NTERLOCK

SS$_1VLOGNAM

SS$_1VSTSFLG

SS$_NOIOCHAN

SS$_NQPRIV

SS$_NQSHMBLOCK

The service completed successfully.

The logical name string or string descriptor cannot
be read by the caller, or the channel number cannot
be written by the caller.

The bufquo argument specified a value greater
than approximately 65355, which is 65535 minus
the size of a mailbox unit control block (UCB).

The process has insufficient buffer 1/0 byte count
(BYTLM) quota to allocate the mailbox UCB or to
satisfy buffer requirements.

The system dynamic memory is insufficient for
completing the service.

The bit map lock for allocating mailboxes from
the specified shared memory is locked by another
process.

The logical name string has a length of 0 or has
more than 255 characters.

The bit set in the prmflg argument is undefined;
this argument may have a value of 1 or 0.

No 1/0 channel is available for assignment.

The process does not have the privilege to create
a temporary mailbox, a permanent mailbox, a
mailbox in memory that is shared by multiple
processors, or a logical name.

No shared memory mailbox control block is
available for use to create a new mailbox.

SYSTEM SERVICE DESCRIPTIONS
$CR EM BX

SS$_0PINCOMPL

SS$_SHMNOTCNCT

SS$_ TOOMANYLNAM

A duplicate unit number was encountered while
linking a shared memory mailbox UCB. If this
condition value is returned, submit an SPR to
DIGITAL.

The shared memory named in the lognam
argument is not known to the system. This
error can be caused by a spelling error in the
string, an improperly assigned logical name, or the
failure to identify the memory as shared at system
generation time.

The logical name translation of the string named in
the lognam argument exceeded the allowed depth.

SYS-87

SYSTEM SERVICE DESCRIPTIONS
$CREPRC

$CREPRC

FORMAT

RETURNS

ARGUMENTS

SYS-88

Create Process

The Create Process service creates a subprocess or detached process on
behalf of the calling process.

SYS$CREPRC {pidadr} ,[image} ,[input] ,[output] ,[error}
,[prvadr} ,{quota] ,[prcnam] ,[baspri] ,[uic]
,[mbxunt] ,[stsflg}

VMS usage: cond_value
type: longword {unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

pidadr
VMS usage: process_id
type: longword {unsigned)
access: write only
mechanism: by reference

Process identification (PID) of the newly created process. The pidadr
argument is the address of a longword into which $CREPRC writes the
PID.

image
VMS usage: logicaLname
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of the image to be activated in the newly created process. The image
argument is the address of a character string descriptor pointing to the file
specification of the image.

The image name can have a maximum of 63 characters. If the image name
contains a logical name, the equivalence name must be in a logical name table
that the created process can access.

input
VMS usage: logicaLname
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Equivalence name to be associated with the logical name SYS$INPUT in the
logical name table of the created process. The input argument is the address
of a character string descriptor pointing to the equivalence name string.

SYSTEM SERVICE DESCRIPTIONS
$CREPRC

output
VMS usage: logicaLname
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Equivalence name to be associated with the logical name SYS$0UTPUT in
the logical name table of the created process. The output argument is the
address of a character string descriptor pointing to the equivalence name
string.

error
VMS usage: logicaLname
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Equivalence name to be associated with the logical name SYS$ERROR in the
logical name table of the created process. The error argument is the address
of a character string descriptor pointing to the equivalence name string.

Note that the error argument is ignored if the image argument specifies
SYS$SYSTEM:LOGINOUT.EXE; in this case, SYS$ERROR points to
SYS$0UTPUT.

prvadr
VMS usage: mask_privileges
type: quadword (unsigned)
access: read only
mechanism: by reference

Privileges to be given to the created process. The prvadr argument is the
address of a quadword bit vector wherein each bit corresponds to a privilege;
setting a bit gives the privilege.

Each bit has a symbolic name; the $PRVDEF macro defines these names.
You form the bit vector by specifying the symbolic name of each desired
privilege in a logical OR operation. Table SYS-1 gives the symbolic name
and description of each privilege.

Table SVS-1 User Privileges

Privilege Symbolic Name Description

ALLS POOL PRV$V_ALLSPOOL Allocate a spooled device

BUGCHK PRV$V_BUGCHK Make bugcheck error log entries

BYPASS PRV$V_BYPASS Bypass UIC-based protection

CMEXEC PRV$V_CMEXEC Change mode to executive

CMKRNL PRV$V_CMKRNL Change mode to kernel

DETACH PRV$V_DET ACH Create detached processes

DIAGNOSE PRV$V_DIAGNOSE May diagnose devices

DOWNGRADE PRV$V_DOWNGRADE May downgrade classification

EXQUOTA PRV$V_EXQUOT A May exceed quotas

SVS-89

SYSTEM SERVICE DESCRIPTIONS
$CREPRC

SYS-90

Table SYS-1 (Cont.) User Privileges

Privilege Symbolic Name Description

GROUP PRV$V_GROUP Group process control

GRPNAM PRV$V_GRPNAM Place name in group logical name
table

GR PP RV PRV$V_GRPPRV Group access via system protection
field

LOG_IO PRV$V_LOG_IO Perform logical 1/0 operations

MOUNT PRV$V_MOUNT Issue mount volume 010

NETMBX PRV$V_NETMBX Create a network device

ACNT PRV$V_NOACNT Create processes for which no
accounting is done

OPER PRV$V_OPER All operator privileges

PFNMAP PRV$V_PFNMAP Map to section by physical page
frame number

PHY_IO PRV$V_PHY _IO Perform physical 1/0 operations

PRMCEB PRV$V_PRMCEB Create permanent common event
flag clusters

PRMGBL PRV$V_PRMGBL Create permanent global sections

PRMMBX PRV$V_PRMMBX Create permanent mailboxes

PSWAPM PRV$V_PSWAPM Change process swap mode

READ ALL PRV$V_READALL Possess read access to everything

SECURITY PRV$V_SECURITY May perform security functions

ALTPRI PRV$V_SETPRI Set (alter) any process priority

SETPRV PRV$V_SETPRV Set any process privileges

SHARE PRV$V_SHARE May assign a channel to a non-
shared device

SYSGBL PRV$V_SYSGBL Create system global sections

SYSLCK PRV$V_SYSLCK Queue system-wide locks

SYSNAM PRV$V_SYSNAM Place name in system logical name
table

SYSPRV PRV$V_SYSPRV Access files and other resources as
if you have a system UIC

TM PM BX PRV$V_ TMPMBX Create temporary mailboxes

UPGRADE PRV$V_UPGRADE May upgrade classification

VOLPRO PRV$V_ VOLPRO Override volume protection

WORLD PRV$V_ WORLD World process control

Note that the names of the privilege bits PRV$V_NOACNT and
PRV$V_SETPRI correspond to the names of the DCL privileges ACNT and
AL TPRI, yet have different names.

You need the user privilege SETPRV to grant a process any privileges
other than your own. If the caller does not have this privilege, the mask
is minimized with the current privileges of the creating process; any privileges
the creator does not have are not granted, but no error status code is returned.

SYSTEM SERVICE DESCRIPTIONS
$CREPRC

quota
VMS usage: item_quota_list
type: longword (unsigned)
access: read only
mechanism: by reference

Process quotas to be established for the created process. These quotas limit
the created process's use of system resources. The quota argument is the
address of a list of quota descriptors, where each quota descriptor consists of
a 1-byte quota name followed by a longword that specifies the desired value
for that quota. The list of quota descriptors is terminated by the symbolic
name PQL$_LISTEND.

If you do not specify the quota argument or specify it as 0, VMS supplies a
default value for each quota.

For example, in VAX MACRO you may specify a quota list, as follows:

QLIST: .BYTE
.LONG
.BYTE
.LONG
.BYTE

PQL$_PRCLM
2
PQL$_ASTLM
6
PQL$_LISTEND

Limit number of subprocesses
Max = 2 subprocesses
Limit number of asts
Max = 6 outstanding asts
End of quota list

The $PQLDEF macro defines symbolic names for quotas.

Individual Quota Descriptions

A description of each quota follows. The description of each quota lists
its minimum value (a SYSGEN parameter), its default value (a SYSGEN
parameter), and whether it is deductible, nondeductible, or pooled. These
terms have the following meaning:

Minimum value

Default value

Deductible quota

Nondeductible quota

You cannot create a process if it does not
have a quota equal to or greater than this
minimum. You obtain the minimum value
for a quota by running SYSGEN to display
the corresponding SYSGEN parameter.

If the quota list does not specify a value for
a particular quota, the system assigns the
process this default value. You obtain the
default value by running SYSGEN to display
the corresponding SYSGEN parameter.

When you create a subprocess, the value
for a deductible quota is subtracted from
the creator's current quota and is returned
to the creator when the subprocess is
deleted. There is currently only one
deductible quota, the CPU time limit. Note
that quotas are never deducted from the
creator when a detached process is created.

Nondeductible quotas are established and
maintained separately for each process and
subprocess.

SYS-91

SYSTEM SERVICE DESCRIPTIONS
$CREPRC

SVS-92

Pooled quota Pooled quotas are established when a
detached process is created and are shared
by that process and all its descendent
subprocesses. Charges against pooled
quota values are subtracted from the
current available totals as they are used and
are added back to the total when they are
not being used.

To run SYSGEN to determine the minimum and default values of a quota,
enter the following sequence of commands:

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> SHOW/PQL

Minimum values are named PQL _Mxxxxx, where xxxxx are the last five
characters of the quota name.

Default values are named PQL _Dxxxxx, where xxxxx are the last five
characters of the quota name.

Individual Quotas

PQL$-ASTLM
AST limit. This quota restricts both the number of outstanding AST routines
specified in system service calls that accept an AST address and the number
of scheduled wakeup requests that can be issued.

Minimum: PQL_MASTLM
Default: PQL_DASTLM
Nondeductible

PQL$_BIOLM
Buffered 1/0 limit. This quota limits the number of outstanding system
buffered 1/0 operations. A buffered 1/0 operation is one that uses an
intermediate buffer from the system pool rather than a buffer specified in a
process's $QIO request.

Minimum: PQL_MBIOLM
Default: PQL _DBIOLM
Nondeductible

PQL$_BVTLM
Buffered 1/0 byte count quota. This quota limits the amount of system space
that can be used to buffer 1/0 operations or to create temporary mailboxes.

Minimum: PQL_MBYTLM
Default: PQL _DBYTLM
Pooled

PQL$_CPULM
CPU time limit, specified in units of 10 milliseconds. This quota limits
the total amount of CPU time that a created process can use. When it has
exhausted its CPU time limit quota, the created process is deleted and the
status code SS$_EXCPUTIM is returned.

If you do not specify this quota and the created process is a detached process,
the detached process receives a default value of 0, that is, unlimited CPU
time.

SYSTEM SERVICE DESCRIPTIONS
$CREPRC

If you do not specify this quota and the created process is a subprocess, the
subprocess receives half the CPU time limit quota of the creating process.

If you specify this quota as 0, the created process has unlimited CPU time,
provided the creating process also has unlimited CPU time. If, however,
the creating process does not have unlimited CPU time, the created process
receives half the CPU time limit quota of the creating process.

The CPU time limit quota is a consumable quota; that is, the amount of CPU
time used by the created process is not returned to the creating process when
the created process is deleted.

Minimum: PQL_MCPULM
Default: PQL _DCPULM
Deductible

PQL$_DIOLM
Direct 1/0 quota. This quota limits the number of outstanding direct IjO
operations. A direct IjO operation is one for which the system locks the
pages containing the associated IjO buffer in memory for the duration of the
1/0 operation.

Minimum: PQL_MDIOLM
Default: PQL _DDIOLM
Nondeductible

PQL$_ENQLM
Lock request quota. This quota limits the number of lock requests that a
process can queue.

Minimum: PQL_MENQLM
Default: PQL _DENQLM
Pooled

PQL$_flLLM
Open file quota. This quota limits the number of files that a process can have
open at one time.

Minimum: PQL_MFlLLM
Default: PQL _DFILLM
Pooled

PQL$_JTQUOTA
Job table quota. This quota limits the number of bytes of system paged
pool used for the job logical name table. If the process being created is a
subprocess, this item is ignored.

Minimum: PQL_MJTQUOA
Default: PQL _DJTQUOTA
Deductible

PQL$_PGFLQUOTA
Paging file quota. This quota limits the number of pages that can be used to
provide secondary storage in the paging file for the execution of a process.

Minimum: PQL_MPGFLQUOTA
Default: PQL _DPGFLQUOTA
Pooled

SYS-93

SYSTEM SERVICE DESCRIPTIONS
$CREPRC

SVS-94

PQL$_PRCLM
Subprocess quota. This quota limits the number of subprocesses a process can
create.

Minimum: PQL_MPRCLM
Default: PQL_DPRCLM
Pooled

PQL$_TQELM
Timer queue entry quota. This quota limits both the number of timer queue
requests a process can have outstanding and the creation of temporary
common event flag clusters.

Minimum: PQL_MTQELM
Default: PQL _DTQELM
Pooled

PQL$_WSDEFAULT
Default working set size. This quota defines the number of pages in the
default working set for any image the process executes. The working set size
quota determines the maximum size you can specify for this quota.

Minimum: PQL_MWSDEFAULT
Default: PQL_DWSDEFAULT
Nondeductible

PQL$_WSEXTENT
Working set expansion quota. This quota limits the maximum size to which
an image can expand its working set size with the Adjust Working Set Limit
($ADJWSL) system service.

Minimum: PQL_MWSEXTENT
Default: PQL _DWSEXTENT
Nondeductible

PQL$_WSQUOTA
Working set size quota. This quota limits the maximum size to which an
image can lock pages in its working set with the Lock Pages in Memory
($LCKPAG) system service.

Minimum: PQL_MWSQUOTA
Default: PQL _DWSQUOTA
Nondeductible

Use of the Quota List

The values specified in the quota list are not necessarily the quotas that are
actually assigned to the created process. The $CREPRC service performs the
following steps to determine the quota values that are assigned:

1 It constructs a default quota list for the process being created, assigning it
the default values for all quotas. Default values are SYSGEN parameters
and so may vary from system to system.

2 It reads the specified quota list, if any, and updates the corresponding
items in the default list. If the quota list contains multiple entries for a
quota, only the last specification is used.

SYSTEM SERVICE DESCRIPTIONS
$CREPRC

3 For each item in the updated quota list, it compares the quota value with
the minimum value required (also a SYSGEN parameter) and uses the
larger value. Then, the following occurs:

• If a subprocess is being created or a detached process is being created
and the creator does not have DETACH privilege, the resulting value
is compared with the current value of the corresponding quota of the
creator and the lesser value is used.

Then, if the quota is a deductible quota, that value is deducted from
the creator's quota, and a check is performed to ensure that the
creator will still have at least the minimum quota required. If not, the
condition value SS$_EXQUOTA is returned and the subprocess or
detached process is not created.

Pooled quota values are ignored.

• If a detached process is being created and the creator has DETACH
privilege, the resulting value is not compared with the current value
of the corresponding quota of the creator and the resulting value is
not deducted from the creator's quota. The $CREPRC service does
not check that a specified quota value exceeds the maximum allowed
by the system.

prcnam
VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Process name to be assigned to the created process. The prcnam argument
is the address of a character string descriptor pointing to a 1- to 15-character
process name string.

If a subprocess is being created, the process name is implicitly qualified by
the UIC group number of the creating process. If a detached process is being
created, the process name is qualified by the group number specified in the
uic argument.

baspri
VMS usage:
type:
access:
mechanism:

longword_unsigned
longword (unsigned)
read only
by value

Base priority to be assigned to the created process. The baspri argument is a
longword value in the range 0 to 31, where 31 is the highest priority and 0 is
the lowest. Usual priorities are in the range 0 to 15, and real-time priorities
are in the range 16 to 31.

You need the AL TPRI privilege to set a priority higher than your own. If
the caller does not have this privilege, the specified base priority is compared
with the caller's priority and the lower of the two values is used.

SYS-95

SYSTEM SERVICE DESCRIPTIONS
$CREPRC

SYS-96

uic
VMS usage: uic
type: longword (unsigned)
access: read only
mechanism: by value

User identification code (UIC) to be assigned to the created process. The uic
argument is a longword value containing the UIC.

If you do not specify the uic argument or you specify it as 0 (the default),
$CREPRC creates a process and assigns it the UIC of the creating process.

If you specify a nonzero value for the uic argument, $CREPRC creates a
detached process. This value is interpreted as a 32-bit octal number, with two
16-bit fields:

bits 0-15-member number
bits 16-31-group number

You need the DETACH privilege to create a detached process with a UIC that
is different from the UIC of the creating process.

mbxunt
VMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by value

Unit number of a mailbox to receive a termination message when the created
process is deleted. The mbxunt argument is a word containing this number.

If you do not specify the mbxunt argument or specify it as 0 (the default),
VMS sends no termination message when it deletes the process.

The Get Device/Volume Information ($GETDVI) service must be used to
obtain the unit number of the mailbox.

If you specify the mbxunt argument, the mailbox is used only after the
created process actually terminates. At that time, the $ASSIGN service is
issued for the mailbox in the context of the terminating process and an
accounting message is sent to the mailbox. If the mailbox no longer exists,
cannot be assigned, or is full, the error is treated as if no mailbox had been
specified.

The accounting message is sent before process rundown is initiated but after
the process name has been set to null. Thus, a significant interval of time can
occur between the sending of the accounting message and the final deletion
of the process.

To receive the accounting message, the caller must issue a read to the
mailbox. When the 1/0 completes, the second longword of the 1/0 status
block, if one is specified, contains the process identification of the deleted
process.

The $ACCDEF macro defines symbolic names for offsets of fields within the
accounting message. The offsets, their symbolic names, and the contents
of each field are shown in the following table. Unless stated otherwise, the
length of the field is four bytes.

Offset

0

2

4

8

12

16

24

32

44

48

52

56

60

64

68

72

80

SYSTEM SERVICE DESCRIPTIONS
$CREPRC

Symbolic Name Contents

ACC$W_MSGTYP MSG$_DELPROC (2 bytes)

Not used (2 bytes)

ACC$L_FINALSTS Exit status code

ACC$L_PID Process identification

Not used (4 bytes)

ACC$Q_ TERMTIME Current time in system format at
process termination (8 bytes)

ACC$T_ACCOUNT Account name for process, blank
filled (8 bytes)

ACC$T_USERNAME User name, blank filled (12 bytes)

ACC$L _CPUTIM CPU time used by the process, in
10-millisecond units

ACC$L_PAGEFL TS Number of page faults incurred by
the process

ACC$L _PGFLPEAK Peak paging file usage

ACC$L_WSPEAK Peak working set size

ACC$L _BIOCNT Count of buffered 1/0 operations
performed by the process

ACC$L _DIOCNT Count of direct 1/0 operations
performed by the process

ACC$L_ VOLUMES Count of volumes mounted by the
process

ACC$Q_LOGIN Time, in system format, that process
logged in (8 bytes)

ACC$L_OWNER Process identification of owner

The length of the termination message is equated to the constant
ACC$K_ TERMLEN.

stsflg
VMS usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
read only
by value

Options selected for the created process. The stsflg argument is a longword
bit vector wherein a bit corresponds to an option. Only bits 0 to 10 are used;
bits 11 to 31 are reserved and must be 0.

SYS-97

SYSTEM SERVICE DESCRIPTIONS
$CREPRC

SVS-98

Each option (bit) has a symbolic name, which the $PRCDEF macro defines.
You construct the stsflg argument by performing a logical OR operation using
the symbolic names of each desired option. The following table describes the
symbolic name of each option:

Symbolic Name

PRC$M_SSRWAIT

PRC$M_SSFEXCU

PRC$M_PSWAPM

PRC$M_NOACNT

PRC$M_BATCH

PRC$M_HIBER

PRC$M_IMGDMP

PRC$M_NQUAF

PRC$M_NETWRK

PRC$M_DISAWS

PRC$M_DET ACH

PRC$M_INTER

Description

Disable resource wait mode.

Enable system service failure exception mode.

Inhibit process swapping. PSWAPM privilege is
required

Do not perform accounting. NOACNT privilege is
required.

Create a batch process. DETACH privilege is required.

Force process to hibernate before it executes the
image

Enable image dump facility. If an image terminates
due to an unhandled condition, the image dump
facility writes the contents of the address space to a
file in your current default directory. The file name is
the same as the name of the terminated image. The
file type is DMP.

Do not check authorization file if the process is
detached and the image is LOGINOUT.EXE. You
should not specify this option if a subprocess is being
created.

In previous versions of VMS, the symbolic name
of this option was PRC$M_LOGIN. The symbolic
name has been changed to more accurately denote
the effect of setting this bit. For compatibility with
existing user programs, you can still specify this bit
as PRC$M_LQGIN.

Create a process that is a network connect object.
DETACH privilege required.

Disable system-initiated working set adjustment.

Create a detached process.

Create an interactive process. This option is
meaningful only if the image argument specifies
SYS$SYSTEM:LOGINOUT.EXE. The purpose of this
option is to provide you with information about the
process. When you specify this option, it identifies
the process as one that is in communication with
another user, an interactive process. For example, if
you make an inquiry, using the DCL lexical function
F$MODE, about a process that has specified the
PRC$M_INTER option, F$MODE returns the value
"INTERACTIVE."

DESCRIPTION

SYSTEM SERVICE DESCRIPTIONS
$CREPRC

Symbolic Name Description

PRC$M_NOPASSWORD Do not display the Username: and Password:
prompts if the process is interactive and detached
and the image is SYS$SYSTEM:LOGINOUT.EXE. If
you specify this option in your call to $CREPRC, the
process created by the call is logged in under the
user name associated with the creating process.
If you do not specify this option for an interactive
process, SYS$SYSTEM:LOGINOUT.EXE prompts you
for the user name and password to be associated
with the process. The prompts are displayed at the
SYS$1NPUT device.

Note that options PRCM_BATCH, PRCM_INTER, PRC$M_UAF,
PRC$M_NETWRK, and PRC$M_NOP ASSWORD are intended for use
by DIGITAL software. Complete documentation of the possible ramifications
of their use is not provided.

The calling process must have the following:

• DETACH or CMKRNL privilege to create any of the following types of
process:

A detached process with a UIC that is different from the UIC of the
calling process

A batch process

A network process

• AL TPRI privilege to create a subprocess with a higher base priority than
the calling process

• SETPRV privilege to create a process with privileges that the calling
process does not have

• PSWAPM privilege to create a process with process swap mode disabled

• NOACNT privilege to create a process with accounting functions disabled

• NETMBX privilege to create a network connect object

A detached process is a fully independent process. For example, the process
that the system creates when you log in is a detached process.

A subprocess, on the other hand, is related to its creator in a treelike structure;
it receives a portion of the creating process's resource quotas and must
terminate before the creating process. The uic argument or the
PRC$M_DETACH flag controls whether the created process is a subprocess
or a detached process.

The $CREPRC service requires system dynamic memory.

The number of subprocesses that a process can create is controlled by the
subprocess (PRCLM) quota; this quota is returned when a subprocess is
deleted.

SVS-99

SYSTEM SERVICE DESCRIPTIONS
$CREPRC

CONDITION
VALUES
RETURNED

SYS-100

The number of detached processes that a process can create with the same
user name is controlled by the MAXDETACH entry in the user authorization
file (UAF).

When a subprocess is created, the value of any deductible quota is subtracted
from the total value the creator has available; and when the subprocess is
deleted, the unused portion of any deductible quota is added back to the total
available to the creator. Any pooled quota value is shared by the creator and
all its subprocesses.

Some error conditions are not detected until the created process executes.
These conditions include an invalid or nonexistent image; invalid
SYS$INPUT, SYS$0UTPUT, or SYS$ERROR logical name equivalence;
inadequate quotas; or insufficient privilege to execute the requested image.

All subprocesses created by a process must terminate before the creating
process can be deleted. If subprocesses exist when their creator is deleted,
they are automatically deleted.

A created process is unable to run an image that calls the Run-Time Library
procedure LIB$DQ_CQMMAND unless the process was created with
the image argument specifying SYS$SYSTEM:LOGINOUT.EXE. This is
so because SYS$SYSTEM:LOGINOUT.EXE causes a command language
interpreter to be mapped into the created process, a prerequisite for calling
LIB$DO_CQMMAND.

A detached process is considered an interactive process only if (1) the process
is created with the PRC$M_INTER option specified and (2) SYS$INPUT is
not defined as a file-oriented device.

SS$_NORMAL

SS$_ACCVIO

SS$_DUPLNAM

SS$_EXQUOT A

SS$_1NSFMEM

The service completed successfully.

The caller cannot read a specified input string or
string descriptor, the privilege list, or the quota list;
or the caller cannot write the process identification.

The specified process name duplicates one already
specified within that group.

At least one of the three following conditions is
true:

• The process has exceeded its quota for the
creation of subprocesses.

• A quota value specified for the creation
of a subprocess exceeds the creator's
corresponding quota.

• The quota is deductible and the remaining
quota for the creator would be less than the
minimum.

The system dynamic memory is insufficient for the
requested operation.

SYSTEM SERVICE DESCRIPTIONS
$CREPRC

SS$_1VLOGNAM

SS$_1VQUOT AL

SS$_1VSTSFLG

SS$_NOPRIV

SS$_NOSLOT

SS$_1NSSWAPSPACE

SS$_EXPRCLM

At least one of the following two conditions is
true:

• The specified process name has a length of 0
or has more than 15 characters.

• The specified image name, input name, output
name, or error name has more than 255
characters.

The quota list is not in the proper format.

You set a reserved status flag.

The caller violated one of the privilege restrictions.

No process control block is available; in other
words, the maximum number of processes that
can exist concurrently in the system has been
reached.

The swap space is insufficient for creating the
process.

The creation of a detached process failed because
the creating process already reached its limit for
the creation of detached processes. This limit is
established by the MAXDET ACH quota in the user
authorization file (UAF) of the creating process.

SYS-101

SYSTEM SERVICE DESCRIPTIONS
$CRETVA

$CRETVA

FORMAT

RETURNS

ARGUMENTS

SVS-102

Create Virtual Address Space

The Create Virtual Address Space service adds a range of demand-zero
allocation pages to a process's virtual address space for the execution of
the current image.

SYS$CRETVA inadr ,[retadr] ,[acmode]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

inadr
VMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Address of a 2-longword array containing the starting and ending virtual
addresses of the pages to be created. If the starting and ending virtual
addresses are the same, a single page is created. Only the virtual page
number portion of the virtual addresses is used; the low-order 9 bits are
ignored.

retadr
VMS usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference-array reference or descriptor

Address of a 2-longword array to receive the starting and ending virtual
addresses of the pages created.

acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode and protection for the new pages. The acmode argument is
a longword containing the access mode. The $PSLDEF macro defines the
following symbols for the four access modes.

Symbol

PSL$C_KERNEL

PSL$C_EXEC

PSL$C_SUPER

PSL$C_USER

SYSTEM SERVICE DESCRIPTIONS
$CRETVA

Access Mode

Kernel

Executive

Supervisor

User

The most privileged access mode used is the access mode of the caller. The
protection of the pages is read/write for the resultant access mode and those
more privileged.

DESCRIPTION The paging file quota (PGFLQUOTA) of the process must be sufficient to
accommodate the increased size of the virtual address space.

CONDITION
VALUES
RETURNED

Pages are created starting at the address contained in the first longword of
the location addressed by the inadr argument and ending with the second
longword. The ending address can be lower than the starting address. The
retadr argument indicates the byte addresses of the pages created.

If an error occurs while pages are being created, the retadr argument, if
specified, indicates the pages that were successfully created before the error
occurred. If no pages were created, both longwords of the retadr argument
contain a -1.

If $CRETVA creates pages that already exist, the service deletes those pages if
they are not owned by a more privileged access mode than that of the caller.
Any such deleted pages are reinitialized as demand-zero pages.

Note that the Expand Program/Control Region ($EXPREG) service also adds
pages to a process's virtual address space.

Note: Do not use the $CRETV A system service in conjunction with other
user-written procedures or DIGIT J\L-supp~ied procedures (including
Run-Time Library procedures). This system service provides no means
to communicate a change in virtual address space with other routines.
DIGIT AL recommends that you use either $EXPREG or the Run-Time
Library procedure Allocate Virtual ·Memory (LIB$GET_ VM) to get
memory. You can find documentation on LIB$GET_ VM in the VMS
Run-Time Library Routines Volume. When using $DEL TV A, you should
take care to delete only pages that you have specifically created.

SS$_NORMAL

SS$_ACCVIO

SS$_EXQUOT A

SS$_1NSFWSL

The service completed successfully.

The inadr argument cannot be read by the caller,
or the retadr argument cannot be written by the
caller. ·

The process has exceeded its paging file quota.

The process's working set limit is not large enough
to accommodate the increased size of the virtual
address space.

SYS-103

SYSTEM SERVICE DESCRIPTIONS
$CRETVA

SS$_NOPRIV

SS$_PAGOWNVIO

SS$_ V ASFULL

SYS-104

A page in the specified range is in the system
address space.

A page in the specified range already exists and
cannot be deleted because it is owned by a more
privileged access mode than that of the caller.

The process's virtual address space is full; no
space is available in the page tables for the
requested pages.

$CRMPSC

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$CRMPSC

Create and Map Section

The Create and Map Section service allows a process to associate (map)
a section of its address space with (1) a specified section of a file (a disk
file section) or (2) specified physical addresses represented by page frame
numbers (a page frame section). This service also allows the process to
create either type of section, and to specify that the section be available
only to the creating process (private section) or to all processes that map
to it (global section).

SYS$CRMPSC [inadr} ,{retadr} ,{acmode} ,[flags}
,{gsdnam] ,{ident} ,{relpag} ,{chan}
,{pagcnt] ,{vbn} ,{prot} ,{pfc}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

inadr
VMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Starting and ending virtual addresses into which the section is to be mapped.
The inadr argument is the address of a 2-longword array containing, in
order, the starting and ending process virtual addresses. Only the virtual
page number portion of each virtual address is used; the low-order 9 bits are
ignored.

If the starting and ending virtual addresses are the same, a single page is
mapped, unless you set the SEC$M_EXPREG bit in the flags argument. If
you set this bit, the specified address determines only whether the section is
mapped in the program (PO) or control (Pl) region.

If you do not specify the inadr argument or specify it as 0, the section is not
mapped.

SVS-105

SYSTEM SERVICE DESCRIPTIONS
$CRMPSC

SVS-106

retadr
VMS usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference-array reference or descriptor

Starting and ending process virtual addresses into which the section was
actually mapped by $CRMPSC. The retadr argument is the address of a
2-longword array containing, in order, the starting and ending process virtual
addresses.

acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode that is to be the owner of the pages created during the mapping.
The acmode argument is a longword containing the access mode. The
$PSLDEF macro defines the following symbols for the four access modes:

Symbol Access Mode

PSL$C_KERNEL Kernel

PSL$C_EXEC Executive

PSL$C_SUPER Supervisor

PSL$C_USER User

The most privileged access mode used is the access mode of the caller.

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying the type of section to be created or mapped to, as well
as its characteristics. The flags argument is a longword bit vector wherein
each bit corresponds to a flag. The $SECDEF macro defines a symbolic name
for each flag. You construct the flags argument by performing a logical OR
operation on the symbol names for all desired flags. The following table
describes each flag and the default value that it supersedes:

Flag

SEC$M_GBL

SEC$M_CRF

SEC$M_DZRO

Description

Pages form a global section. The default is private
section.

Pages are copy-on-reference. By default, pages are
shared.

Pages are demand-zero pages. By default, they are
not zeroed when copied.

SYSTEM SERVICE DESCRIPTIONS
$CRMPSC

Flag

SEC$M_EXPREG

SEC$M_WRT

SEC$M_PERM

SEC$M_PFNMAP

SEC$M_SYSGBL

SEC$M_PAGFIL

SEC$M_EXECUTE

SEC$M_NQ_OVERMAP

gsdnam

Description

Pages are mapped into the first available space. By
default, pages are mapped into the range specified by
the inadr argument.

Pages form a read/write section. By default, pages
form a read-only section.

Pages are permanent. By default, pages are
temporary.

Pages form a page-frame section. By default, pages
form a disk-file section. Pages mapped by
SEC$M_PFNMAP are not included in or charged
against the process's working set; they are always
valid. Do not lock these pages in the working set by
using $LKWSET; this may result in a machine check if
they are in 1/0 space.

Pages form a system global section. By default,
pages form a group global section.

Pages form a global page-file section. By default,
pages form a disk-file section.

Pages are mapped if the caller has execute access.
This flag is valid only (1) when specified from
executive or kernel mode and (2) when the
SEC$M_GBL flag is also specified. By default, the
pages are mapped whether the caller has execute
access or not.

The mapped section overmaps existing address
space.

VMS usage: section_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of the global section. The gsdnam argument is the address of a
character string descriptor pointing to this name string.

For group global sections, VMS interprets the UIC group as part of the global
section name; thus, the names of global sections are unique to UIC groups.

ident
VMS usage: section _id
type: quadword (unsigned)
access: read only
mechanism: by reference

Identification value specifying the version number of a global section and,
for processes mapping to an existing global section, the criteria for matching
the identification. The ident argument is the address of a quadword structure
containing three fields.

SYS-107

SYSTEM SERVICE DESCRIPTIONS
$CRMPSC

SVS-108

The version number is in the second longword. The version number contains
two fields: a minor identification in the low-order 24 bits and a major
identification in the high-order 8 bits. You can assign values for these fields
by installation convention to differentiate versions of global sections. If no
version number is specified when a section is created, processes that specify a
version number when mapping cannot access the global section.

The first longword specifies, in its low-order 3 bits, the matching criteria.
The valid values, symbolic names by which they can be specified, and their
meanings are as follows.

Value/Name

0 SEC$K_MA TALL

1 SEC$K_MA TEQU

2 SEC$K_MA TLEO

Match Criteria

Match all versions of the section.

Match only if major and minor identifications match.

Match if the major identifications are equal and the
minor identification of the mapper is less than or equal
to the minor identification of the global section.

When a section is mapped at creation time, the match control field is ignored.

If you do not specify the ident argument or specify it as 0 (the default), the
version number and match control fields default to 0.

relpag
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Relative page number within the global section of the first page in the section
to be mapped. The relpag argument is a longword containing this page
number.

You use this argument only for global sections. If you do not specify the
relpag argument or specify it as 0 (the default), the global section is mapped
beginning with the first virtual block in the file. This argument must be 0 for
demand-zero sections in memory shared by multiple processors.

ch an
VMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

Number of the channel on which the file has been accessed. The chan
argument is a word containing this number.

The file must have been accessed with a VMS RMS $OPEN macro; the file
options parameter (FOP) in the FAB must indicate a user file open (UFO
keyword). The access mode at which the channel was opened must be the
same as or less privileged than the access mode of the caller.

SYSTEM SERVICE DESCRIPTIONS
$CRMPSC

pa gent
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Number of pages in the section. The pagcnt argument is a longword
containing this number.

The specified page count is compared with the number of pages in the section
file; if they are different, the lower value is used. If you do not specify the
page count or you specify it as 0 (the default), the size of the section file is
used. However, for physical page frame sections, this argument must not
be 0.

vbn
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Virtual block number in the file that marks the beginning of the section. The
vbn argument is a longword containing this number. If you do not specify
the vbn argument or you specify it as 0 (the default), the section is created
beginning with the first virtual block in the file.

If you specified page frame number mapping (by setting the
SEC$M_pfNMAP flag), the vbn argument specifies the page frame number
where the section begins in memory.

Table SYS-2 depicts which arguments are required and which are optional
for three different uses of the $CRMPSC service.

Table SYS-2 Required and Optional Arguments for the $CRMPSC
Service

Create/Map Map Global1 Create/Map
Argument Global Section Section Private Section

inadr Optional2 Required Required

retadr Optional Optional Optional

acmode Optional Optional Optional

1 The Map Global Section ($MGBLSC) service maps an existing global section.

2 You can omit the inadr argument only if you want to create but not map a global
section; however, in such a case, you must make the section permanent because
temporary sections are automatically deleted when no processes are mapped to them.
You cannot omit the inadr argument for demand-zero sections in memory shared by
multiple processors.

SYS-109

SYSTEM SERVICE DESCRIPTIONS
$CRMPSC

SVS-110

Table SVS-2 (Cont.) Required and Optional Arguments for the
$CRMPSC Service

Create/Map Map Global1 Create/Map
Argument Global Section Section Private Section

flags

SEC$M_GBL Required Ignored Not used

SEC$M_CRF3 Optional Not used Optional

SEC$M_DZR03 Optional Not used Optional

SEC$M_EXPREG Optional Optional Optional

SEC$M_PERM Optional2 Not used Not used

SEC$M_PFNMAP Optional Not used Not used

SEC$M_SYSGBL Optional Optional Not used

SEC$M_WRT Optional Optional Optional

SEC$M_P AGFIL Optional Not used Not used

gsdnam Required Required Not used

ident Optional Optional Not used

relpag3 Optional Optional Not used

chan3 Required Required

pagcnt Required Required

vbn3 Optional Optional

prot Optional Not used

pf c3 Optional4 Optional

1 The Map Global Section ($MGBLSC) service maps an existing global section.

2You can omit the inadr argument only if you want to create but not map a global
section; however, in such a case, you must make the section permanent because
temporary sections are automatically deleted when no processes are mapped to them.
You cannot omit the inadr argument for demand-zero sections in memory shared by
multiple processors.

3For physical page frame sections: vbn specifies the starting page frame number; chan
must be zero; relpag and pfc are not used; and the SEC$M_CRF and SEC$M_DZRO flag
bit settings are invalid. For page-file sections, chan must be zero, and relpag and pfc are
not used.
4This argument is not used for global sections in memory shared by multiple processors.

DESCRIPTION

SYSTEM SERVICE DESCRIPTIONS
$CRMPSC

prot
VMS usage: file_protection
type: longword (unsigned)
access: read only
mechanism: by value

Numeric value representing the protection mask to be applied to the global
section. You OR this value with the protection mask associated with the file;
if the file protection does not allow access to a particular category of user and
the protection mask allows access, access is denied.

The mask contains four 4-bit fields. Bits are read from right to left in each
field. The following diagram depicts the mask.

WORLD GROUP OWNER SYSTEM

DEWRDEWRDEWRDEWR

13 12 11 10 9 8 7 6 5 4 3 2 0

ZK-1706-84

Cleared bits indicate that read, write, execute, and delete access, in that order,
are granted to the particular category of user.

Only read, write, and execute access are meaningful for section protection.
Delete access bits are ignored. The $CRMPSC service checks the execute
access bit only for calls from executive or kernel mode.

If you do not specify the prot argument or specify it as 0, read access and
write access are granted to all users.

pfc
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Page fault cluster size indicating how many pages are to be brought into
memory when a page fault occurs for a single page. This argument is not
used for page-file sections, physical page frame sections, or for global sections
in memory shared by multiple processors.

If the section pages are copy-on-reference, the process must have sufficient
paging file quota (PGFLQUOTA). The systemwide number of global page-file
pages is limited by the SYSGEN parameter GBLP AGFIL.

Creating a disk file section involves defining all or part of a disk file as
a section. Mapping a disk file section involves making a correspondence
between virtual blocks in the file and pages in the caller's virtual address
space. If the $CRMPSC service specifies a global section that already exists,
the service maps it.

SYS-111

SYSTEM SERVICE DESCRIPTIONS
$CRMPSC

SYS-112

If $CRMPSC specifies a global section and the SS$NOPRIV condition value
is returned, the process may not have the required privilege to create
that section. In order to create global sections, the process must have the
following privileges:

• SYSGBL privilege to create a system global section

• PRMGBL privilege to create a permanent global section

• PFNMAP privilege to create a page frame section

• SHMEM privilege to create a global section in memory shared by multiple
processors

Note that you do not need the PFNMAP privilege to map an existing page
frame section, or the SHMEM privilege to map an existing global section in
memory shared by multiple processors.

Depending on the actual operation requested, certain arguments are required
or optional. Table SYS-2 summarizes how the $CRMPSC service interprets
the arguments passed to it, and under what circumstances it requires or
ignores arguments.

The $CRMPSC service returns the virtual addresses of the pages created in
the retadr argument, if specified. The section is mapped from a low address
to a high address, whether the section is mapped in the program or control
region.

If an error occurs during the mapping of a global section, the retadr argument,
if specified, indicates the pages that were successfully mapped when the error
occurred. If no pages were mapped, both longwords of the retadr argument
contain -1.

The SEC$M_pfNMAP flag setting identifies the memory for the section
as starting at the page frame number specified in the vbn argument and
extending for the number of pages specified in the pagcnt argument. Setting
the SEC$M_pfNMAP flag places restrictions on the following arguments:

relpag

chan

pagcnt

vbn

pf c

Does not apply

Must be zero

Must be specified; cannot be zero

Specifies first page frame to be mapped

Does not apply

Setting the SEC$M_pfNMAP flag also places restrictions on these other flag
values:

SEC$M_CRF

SEC$M_DZRO

SEC$M_PERM

Must be 0

Must be 0

Must be 1 if the flags SEC$M_GBL or SEC$M_SYSGBL are
set

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$CRMPSC

Setting the SEC$M_P AGFIL flag places the following restrictions on the
following flags:

SEC$M_CRF Must be 0

SEC$M_GBL

SEC$M_PFNMAP

Must be 1

Must be 0

The flag argument bits 4 through 13 and 18 through 31 must be 0.

The flag bit SEC$M_WRT applies only to the way in which the newly created
section is mapped. For a file to be made writable, the channel used to open
the file must allow write access to the file.

If the flag bit SEC$M_SYSGBL is set, the flag bit SEC$M_GBL must be set
also.

SS$_NORMAL

SS$_CREA TED

SS$_ACCVIO

SS$_ENDOFFILE

SS$_EXBYTLM

SS$_EXGBLPAGFIL

SS$_EXPORTQUOTA

SS$_EXQUOT A

SS$_GPTFULL

SS$_GSDFULL

SS$_1LLPAGCNT

SS$_1NSFMEM

The service completed successfully. The specified
global section already exists and has been mapped.

The service completed successfully. The specified
global section did not previously exist and has
been created.

The inadr argument, gsdnam argument, or name
descriptor cannot be read by the caller; or the
retadr argument cannot be written by the caller.

The starting virtual block number specified is
beyond the logical end-of-file, or the value in the
relpag argument is greater than or equal to the
value in the pagcnt argument.

The process has exceeded the byte count quota;
the system was unable to map the requested file.

The process has exceeded the system-wide limit
on global page-file pages; no part of the section
was mapped.

The process has exceeded the number of global
sections that processes on this port of the
multiport (shared) memory can create.

The process exceeded its paging file quota while
creating copy-on-reference or page-file-backing
store pages.

There is no more room in the system global page
table to set up page table entries for the section.

There is no more room in the system space
allocated to maintain control information for global
sections.

The page count value is negative or is zero for a
physical page frame section.

Not enough pages are available in the specified
shared memory to create the section.

SVS-113

SYSTEM SERVICE DESCRIPTIONS
$CRMPSC

SYS-114

SS$_1NSFWSL

SS$_1NTERLOCK

SS$_1VCHAN

SS$_1VCHNLSEC

SS$_1VLOGNAM

SS$_1VLVEC

SS$_1VSECFLG

SS$_1VSECIDCTL

SS$_NOTFILEDEV

SS$_NOPRIV

SS$_NOSHMBLOCK

SS$_NOWRT

SS$_PAGOWNVIO

SS$_SECTBLFUL

The process's working set limit is not large enough
to accommodate the increased size of the address
space.

The bit map lock for allocating global sections from
the specified shared memory is locked by another
process.

An invalid channel number was specified, that is,
a channel number of 0 or a number larger than the
number of channels available.

The channel number specified is currently active.

The specified global section name has a length of
0 or has more than 15 characters.

The specified section was not installed using the
/PROTECT qualifier.

An invalid flag, a reserved flag, a flag requiring
a privilege you lack, or an invalid combination of
flags was specified.

The match control field of the global section
identification is invalid.

The device is not a file-oriented, random-access,
or directory device.

The process does not have the privileges to create
a system global section (SYSGBL) or a permanent
group global section (PRMGBL).

The process does not have the privilege to create
a section starting at a specific physical page frame
number (PFNMAP).

The process does not have the privilege to create
a global section in memory shared by multiple

' processors (SHMEM).

A page in the input address range is in the system
address space.

The specified channel is not assigned or was
assigned from a more privileged access mode.

No shared memory control block for global
sections is available.

The section cannot be written to because the flag
bit SEC$M_WRT is set, the file is read only, and
the flag bit SEC$M_CRF is not set.

A page in the specified input address range is
owned by a more privileged access mode.

There are no entries available in the system global
section table.

SYSTEM SERVICE DESCRIPTIONS
$CRMPSC

SS$_SHMNOTCNCT

SS$_ TOOMANYLNAM

SS$_ V ASFULL

The shared memory named in the gsdnam
argument is not known to the system. This
error can be caused by a spelling error in the
string, an improperly assigned logical name, or
your failure to identify the memory as shared at
system generation time.

The logical name translation of the gsdnam
argument exceeded the allowed depth.

The process's virtual address space is full; no
space is available in the page tables for the pages
created to contain the mapped global section.

SYS-115

SYSTEM SERVICE DESCRIPTIONS
$DACEFC

$DACEFC

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

CONDITION
VALUES
RETURNED

SVS-116

Disassociate Common Event Flag
Cluster

The Disassociate Common Event Flag Cluster service releases the calling
process's association with a common event flag cluster.

SYS$DACEFC efn

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

efn
VMS usage: eLnumber
type: longword (unsigned)
access: read only
mechanism: by value

Number of any event flag in the common cluster to be disassociated. The efn
argument is a longword containing this number; however, $DACEFC uses
only the low-order byte. The number must be in the range of 64 through 95
for cluster 2, and 96 through 127 for cluster 3.

The count of processes associated with the cluster is decreased for each
process that disassociates. When the image that associated with a cluster
exits, the system disassociates the cluster. When the count of processes
associated with a temporary cluster or with a permanent cluster that is
marked for deletion reaches zero, the cluster is automatically deleted.

If a process issues this service specifying an event flag cluster with which it is
not associated, the service completes successfully.

SS$_NQRMAL

SS$_1LLEFC

SS$_INTERLOCK

The service completed successfully.

You specified an illegal event flag number. The
number must be in the range of event flags 64
through 127.

The bit map lock for allocating common event
flag clusters from the specified shared memory is
locked by another process.

$DALLOC

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$DALLOC

Deallocate Device

The Deallocate Device service deallocates a previously allocated device.
The issuing process relinquishes exclusive use of the device, thus allowing
other processes to assign or allocate that device.

SYS$DALLOC {devnam] ,[acmode]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

devnam
VMS usage:
type:
access:
mechanism:

device_name
character-coded text string
read only
by descriptor-fixed-length string descriptor

Name of the device to be deallocated. The devnam argument is the address
of a character string descriptor pointing to the device name string. The string
may be either a physical device name or a logical name. If it is a logical
name, it must translate to a physical device name.

If you do not specify a device name, all devices allocated by the process from
access modes equal to or less privileged than that specified are deallocated.

acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode from which the deallocation is to be performed. The acmode
argument is a longword containing the access mode. The $PSLDEF macro
defines the following symbols for the four access modes:

Symbol

PSL$C_KERNEL
PSL$C_EXEC
PSL$C_SUPER
PSL$C_USER

Access Mode

Kernel

Executive

Supervisor

User

The most privileged access mode used is the access mode of the caller.

SVS-117

SYSTEM SERVICE DESCRIPTIONS
$DALLOC

DESCRIPTION

CONDITION
VALUES
RETURNED

SYS-118

You can deallocate an allocated device only from access modes equal to or
more privileged than the access mode from which the original allocation was
made.

This service does not deallocate a device if, at the time of deallocation, the
issuing process has one or more 1/0 channels assigned to the device; in such
a case, the device remains allocated.

At image exit, the system automatically deallocates all devices that are
allocated at user mode.

If you attempt to deallocate a mailbox, success is returned but no operation is
performed.

SS$_NORMAL

SS$_ACCVIO

SS$_DEV ASSIGN

SS$_DEVNOT ALLOC

SS$_IVDEVNAM

SS$_1VLOGNAM

SS$_NONLOCAL

SS$_NOPRIV

SS$_NOSUCHDEV

The service completed successfully.

The device name string or string descriptor cannot
be read by the caller.

The device cannot be deallocated because the
process still has channels assigned to it.

The device is not allocated to the requesting
process.

You did not specify a device name string, or the
device name string contains invalid characters.

The device name string has a length of 0 or has
more than 63 characters.

The device is on a remote node.

The device was allocated from a more privileged
access mode.

The specified device does not exist in the host
system.

$DASSGN

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

SYSTEM SERVICE DESCRIPTIONS
$DASSGN

Deassign 1/0 Channel

The Deassign 1/0 Channel service deassigns (releases) an 1/0 channel that
it acquired using the Assign 1/0 Channel ($ASSIGN) service.

SYS$DASSGN chan

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

chan
VMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

Number of the 1/0 channel to be deassigned. The chan argument is a word
containing this number.

You can deassign an 1/0 channel only from an access mode equal to or more
privileged than the access mode from which the original channel assignment
was made.

When you deassign a channel, any outstanding 1/0 requests on the channel
are canceled. If a file is open on the specified channel, the file is closed.

If a mailbox was associated with the device when the channel was assigned,
the link to the mailbox is cleared.

If the 1/0 channel was assigned for a network operation, the network link is
disconnected.

If the specified channel is the last channel assigned to a device that has been
marked for dismounting, the device is dismounted.

1/0 channels assigned from user mode are automatically deassigned at image
exit.

SYS-119

SYSTEM SERVICE DESCRIPTIONS
$DASSGN

CONDITION
VALUES
RETURNED

SYS-120

SS$_NORMAL

SS$_1VCHAN

SS$_NOPRIV

The service completed successfully.

You specified an invalid channel number, that is, a
channel number of 0 or a number larger than the
number of channels available.

The specified channel is not assigned or was
assigned from a more privileged access mode.

$DCLAST

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$DCLAST

Declare AST

The Declare AST service queues an AST for the calling access mode or
for a less privileged access mode.

SYS$DCLAST astadr ,[astprm] ,{acmode]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

astadr
VMS usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed. The astadr argument is the address of
the entry mask of this routine.

astprm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST routine specified by the astadr
argument. The astprm argument is a longword containing this parameter.

a cm ode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode for which the AST is to be declared. The most privileged access
mode used is the access mode of the caller. The resultant mode is the access
mode for which the AST is declared.

SYS-121

SYSTEM SERVICE DESCRIPTIONS
$DCLAST

DESCRIPTION

CONDITION
VALUES
RETURNED

SVS-122

The Declare AST service queues an AST for the calling access mode or for a
less privileged access mode. For example, a routine executing in supervisor
mode can declare an AST for either supervisor or user mode.

The $DCLAST service requires system dynamic memory and uses the AST
limit (ASTLM) quota of the process.

The service does not validate the address of the AST service routine. If you
specify an illegal address (such as 0), an access violation occurs when the
AST service routine is given control.

SS$_NORMAL

SS$_EXQUOT A

SS$_INSFMEM

The service completed successfully.

The process has exceeded its AST limit (ASTLM)
quota.

The system dynamic memory is insufficient for
completing the service.

SYSTEM SERVICE DESCRIPTIONS
$DCLCMH

$DCLCMH Declare Change Mode or
Compatibility Mode Handler

FORMAT

RETURNS

ARGUMENTS

The Declare Change Mode or Compatibility Mode Handler service specifies
the address of a routine to receive control when (1) a Change Mode
to User or Change Mode to Supervisor instruction trap occurs, or (2) a
compatibility mode fault occurs.

SYS$DCLCMH addres ,[prvhnd] ,[type]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

add res
VMS usage: procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

Routine to receive control when a change mode trap or a compatibility mode
fault occurs. The addres argument is the address of a subroutine called with
a JSB instruction.

If you specify the addres argument as 0, $DCLCMH clears the previously
declared handler.

prvhnd
VMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of a previously declared handler. The prvhnd argument is the
address of a longword containing the address of the previously declared
handler.

type
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Handler type indicator. The type argument is a longword value. The value
0 (the default) indicates that a change mode handler is to be declared for

SYS-123

SYSTEM SERVICE DESCRIPTIONS
$DCLCMH

DESCRIPTION

CONDITION
VALUES
RETURNED

SYS-124

the access mode at which the request is issued; the value 1 specifies that a
compatibility mode handler is to be declared.

A change mode handler provides users with a dispatching mechanism similar
to that used for system service calls. It allows a routine that executes in
supervisor mode to be called from user mode. You declare the change mode
handler from supervisor mode; then when the process executing in user mode
issues a Change Mode to Supervisor instruction, the change mode handler
receives control and executes in supervisor mode.

The operating system uses compatibility mode handlers to bypass normal
condition handling procedures when an image executing in compatibility
mode causes a compatibility mode exception.

Before the change mode handler exits, it must push the saved PC and PSL
onto the stack from the location CTL$AL _CMCNTX, and it must exit by
issuing an REI instruction.

You can declare a change mode handler only from user or supervisor mode.

SS$_NQRMAL

SS$_ACCVIO

The service completed successfully.

The longword to receive the address of the
previous change mode handler cannot be written
by the caller.

$DCLEXH

FORMAT

RETURNS

ARGUMENT

SYSTEM SERVICE DESCRIPTIONS
$DCLEXH

Declare Exit Handler

The Declare Exit Handler service declares an exit handling routine that
receives control when an image exits. Image exit normally occurs when
the image currently executing in a process returns control to the operating
system. Image exit may also occur when you call the Exit ($EXIT} or Force
Exit ($FORCEX} service.

SYS$DCLEXH desblk

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

desblk
VMS usage: exit_handler_block
type: longword (unsigned)
access: read only
mechanism: by reference

Exit handler control block. The desblk argument is the address of this control
block. This control block, which describes the exit handler, is depicted in the
following diagram.

31

1

forward link (used by VMS only)

exit handler address

these 3 bytes must be 0 I
address of condition value (written by VMS)

additional arguments for the
exit handler; these are optional;
one argument per longword

0

arg. count

r
ZK-1714-84

SVS-125

SYSTEM SERVICE DESCRIPTIONS
$DCLEXH

DESCRIPTION

CONDITION
VALUES
RETURNED

SYS-126

Exit handlers are described by exit control blocks. The operating system
maintains a separate list of these control blocks for user, supervisor, and
executive modes. The $DCLEXH service adds the description of an exit
handler to the front of one of these lists. The actual list to which the exit
control block is added is determined by the access mode of the caller.

You can call this service only from user, supervisor, and executive modes.

At image exit, the exit handlers declared from user mode are called first; they
are called in the reverse order from which they were declared.

Each exit handler is executed only once; it must be redeclared before it can
be executed again. The exit handling routine is called as a normal procedure
with the argument list specified in the third through nth longwords of the
exit control block. The first argument is the address of a longword to receive
a system status code indicating the reason for exit; the system always fills in
this longword before calling the exit handler.

The Cancel Exit Handler ($CANEXH) service removes an exit control block
from the list.

SS$_NORMAL

SS$_ACCVIO

SS$_1VSSRQ

SS$_NOHANDLER

The service completed successfully.

The first longword of the exit control block cannot
be written by the caller.

The call to the service is invalid because it was
made from kernel mode.

The exit handler control block address was not
specified or was specified as 0.

$DELLNM

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$DELLNM

Delete Logical Name

The Delete Logical Name service deletes all logical names with the
specified name at the specified access mode or outer access mode, or
it deletes all the logical names with the specified access mode or outer
access mode in a specified table. If any logical names being deleted
are also the names of logical name tables, then all of the logical names
contained within those tables and all of their subtables are also deleted.

SYS$DELLNM tabnam ,{Jognam] ,[acmode]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

tabnam
VMS usage: logicaLname
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of a logical name table or a list of tables to be searched for the logical
name to be deleted. The tabnam argument is the address of a descriptor that
points to the table name. This argument is required.

If tabnam is not the name of a logical name table, it is assumed to be a
logical name and is translated iteratively until either the name of a logical
name table is found or the number of translations allowed by the system has
been performed.

If tabnam translates to the name of a list of tables, $DELLNM does the
following:

• If you specify the lognam argument, $DELLNM searches (in order) each
table in the list until it finds the first table that contains the specified
logical name. If the logical name is at the specified access mode,
$DELLNM then deletes occurrences of the logical name at the specified
access mode and at outer access modes within the table.

• If you do not specify the lognam argument, $DELLNM deletes all of the
logical names at the specified access mode or at outer access modes from
the first table in the list whose access mode is equal to or less privileged
than the caller's access mode.

SYS-127

SYSTEM SERVICE DESCRIPTIONS
$DELLNM

DESCRIPTION

CONDITION
VALUES
RETURNED

SYS-128

lognam
VMS usage: logicaLname
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Logical name to be deleted. The lognam argument is the address of a
descriptor that points to the logical name string.

acmode
VMS usage: access_mode
type: byte (unsigned)
access: read only
mechanism: by reference

Access mode to be used in the delete operation. The acmode argument is the
address of a byte containing this access mode. The $PSLDEF macro defines
symbolic names for the four access modes.

You determine the access mode actually used in the delete operation by
"maximizing" the access mode of the caller with the access mode specified by
the acmode argument; that is, the less privileged of the two is used.

However, if you have SYSNAM privilege, the delete operation is executed at
the specified access mode regardless of the caller's access mode.

If you omit this argument or you specify it as 0, the access mode of the caller
is used in the delete operation. The access mode used in the delete operation
determines which tables are used and which names are deleted.

Depending on the operation, the calling process may need a certain privilege
to use $DELLNM:

• You need write access to the logical name table that contains a logical
name to delete the logical name from a shareable table.

• You need either delete access to the logical name table or write access
to the directory table that contains the table name to delete a shareable
logical name table.

• You need SYSNAM privilege to delete either a logical name or table at an
inner access mode.

• You need GRPNAM or SYSPRV privilege to delete a logical name from a
group table.

• You need SYSNAM or SYSPRV privilege to delete a logical name from a
system table.

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

The service completed successfully.

The service cannot access the location{s) specified
by one or more arguments.

One or more arguments have an invalid value, or a
logical name table name was not specified.

SYSTEM SERVICE DESCRIPTIONS
$DELLNM

SS$_1VLOGNAM

SS$_IVLOGT AB

SS$_NOLOGNAM

SS$_NOLOGTAB

SS$_NOPRIV

SS$_ TOOMANYLNAM

The lognam argument specifies a string whose
length is not in the required range of 1 through
255 characters.

The tabnam argument does not specify a logical
name table.

The specified logical name table does not exist, or
a logical name with an access mode equal to or
less privileged than the caller's access mode does
not exist in the logical name table.

The specified logical name table does not exist.

The caller lacks the necessary privilege to delete
the logical name.

The logical name translation of the table name
exceeded the allowable depth (10 translations).

SVS-12~

SYSTEM SERVICE DESCRIPTIONS
$DELMBX

$DELMBX

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

CONDITION
VALUES
RETURNED

SVS-130

Delete Mailbox

The Delete Mailbox service marks a permanent mailbox for deletion.
The actual deletion of the mailbox and of its associated logical name
assignment occurs when no more 1/0 channels are assigned to the
mailbox.

SYS$DELMBX chan

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

chan
VMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

Number of the channel assigned to the mailbox that is to be deleted. The
chan argume_nt is a word containing this number.

You need PRMMBX privilege to delete a permanent mailbox.

You can delete a mailbox only from an access mode equal to or more
privileged than the access mode from which the mailbox channel was
assigned.

Temporary mailboxes are automatically deleted when their reference count
goes to zero.

The $DELMBX service does not deassign the channel assigned by the caller,
if any. The caller must deassign the channel with the Deassign 1/0 Channel
($DASSGN) service.

SS$_NORMAL

SS$_DEVNOTMBX

SS$_1NTERLOCK

The service completed successfully.

The specified channel is not assigned to a mailbox.

The bit map lock for allocating mailboxes from
the specified shared memory is locked by another
process.

SS$_1VCHAN

SS$_NOPRIV

SYSTEM SERVICE DESCRIPTIONS
$DELMBX

You specified an invalid channel number, that is, a
channel number of 0 or a number larger than the
number of channels available.

The specified channel is not assigned to a device;
the process does not have the privilege to delete a
permanent mailbox or a mailbox in memory shared
by multiple processors; or the access mode of the
caller is less privileged than the access mode from
which the channel was assigned.

SYS-131

SYSTEM SERVICE DESCRIPTIONS
$DELPRC

$DELPRC

FORMAT

RETURNS

ARGUMENTS

SYS-132

Delete Process

The Delete Process service allows a process to delete itself or another
process.

SYS$DELPRC {pidadr] ,{prcnam]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

pidadr
VMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) of the process to be deleted. The pidadr argument
is the address of a longword that contains the PID.

You must specify the pidadr argument to delete processes in other UIC
groups.

prcnam
VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Process name of the process to be deleted. The prcnam is the address of
a character string descriptor pointing to a 1- to 15-character process name
string.

You use the prcnam argument to delete only processes in the same UIC group
as the calling process, because process names are unique to UIC groups, and
VMS uses the UIC group number of the calling process to interpret the
process name specified by the prcnam argument.

You must use the pidadr argument to delete processes in other groups.

If you specify neither the pidadr nor prcnam argument, $DELPRC deletes the
calling process; control is not returned.

DESCRIPTION

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$DELPRC

Depending on the operation, the calling process may need certain privileges
to use $DELPRC:

• You need GROUP privilege to delete processes in the same group that do
not have the same UIC.

• You need WORLD privilege to delete any process in the system.

The Delete Process system service requires system dynamic memory.

Deductible resource quotas granted to subprocesses are returned to the creator
when the subprocesses are deleted.

When you delete a process or subprocess, a termination message is sent
to its creator, provided the mailbox to receive the message still exists and
the creating process has access to the mailbox. The termination message is
sent before the final rundown is initiated; thus, the creator may receive the
message before the process deletion is complete.

Due to the complexity of the required rundown operations, a significant
time interval occurs between a delete request and the actual deletion of the
process. However, the $DELPRC service returns to the caller immediately
after initiating the rundown operation.

If you issue subsequent delete requests for a process currently being deleted,
the requests return immediately with a successful completion status.

For a complete list of the actions performed by the system when it deletes a
process, see the Introduction to VMS System Services.

SS$_NQRMAL

SS$_ACCVIO

SS$_1NSFMEM

SS$_NONEXPR

SS$_NQPRIV

The service completed successfully.

The process name string or string descriptor
cannot be read by the caller, or the process
identification cannot be written by the caller.

The system dynamic memory is insufficient for
completing the operation.

The specified process does not exist, or an invalid
process identification was specified.

The caller does not have the privilege to delete the
specified process.

SVS-133

SYSTEM SERVICE DESCRIPTIONS
$DEL TVA

$DEL TVA

FORMAT

RETURNS

ARGUMENTS

SYS-134

Delete Virtual Address Space

The Delete Virtual Address Space service deletes a range of addresses
from a process's virtual address space. Upon successful completion of
the service, the deleted pages are inaccessible, and references to them
cause access violations.

SYS$DEL TVA inadr ,{retadr] ,{acmode]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

inadr
VMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Starting and ending virtual addresses of the pages to be deleted. The inadr
argument is the address of a 2-longword array containing, in order, the
starting and the ending process virtual addresses. If the starting and ending
virtual addresses are the same, a single page is deleted. Only the virtual
page number portion of each virtual address is used; the low-order 9 bits are
ignored.

The $DEL TVA service deletes pages starting at the address contained in the
second longword of the inadr argument and ending at the address in the first
longword. Thus, if you use the same address array for both the Create Virtual
Address Space ($CRETVA) and the $DELTVA services, the pages are deleted
in the reverse order from which they were created.

retadr
VMS usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference

Starting and ending process virtual addresses of the pages that $DELTVA has
deleted. The retadr argument is the address of a 2-longword array containing,
in order, the starting and ending process virtual addresses.

DESCRIPTION

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$DEL TVA

acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode on behalf of which the service is to be performed. The acmode
argument is a longword containing the access mode.

The most privileged access mode used is the access mode of the caller. The
calling process can delete pages only if those pages are owned by an access
mode equal to or less privileged than the access mode of the calling process.

If any of the pages in the specified range have already been deleted or do not
exist, the service continues as if the pages were successfully deleted.

If an error occurs while pages are being deleted, the retadr argument specifies
the pages that were successfully deleted before the error occurred. If no pages
are deleted, both longwords in the return address array contain the value -1.

SS$_NQRMAL

SS$_ACCVIO

SS$_NQPRIV

SS$_PAGOWNVIO

The service completed successfully.

The input address array cannot be read by the
caller, or the return address array cannot be
written by the caller.

A page in the specified range is in the system
address space.

A page in the specified range is owned by an
access mode more privileged than the access
mode of the caller.

SVS-135

SYSTEM SERVICE DESCRIPTIONS
$DEQ

$DEQ Dequeue Lock Request

FORMAT

RETURNS

ARGUMENTS

SVS-136

The Dequeue Lock Request service dequeues (unlocks) granted locks;
dequeues the sublocks of a lock; or cancels an ungranted lock request.
The calling process must have previously acquired the lock or queued the
lock request by calling the Enqueue Lock Request ($ENO) service.

The $DEO, $ENO, $ENOW, and $GETLKI services together provide
the user interface to the VMS lock management facility. For additional
information about lock management, refer to the descriptions of these
other services and to the Introduction to VMS System Services.

SYS$DEQ [/kid] ,[valblk] ,[acmode} ,[flags}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

/kid
VMS usage: lock_id
type: longword (unsigned)
access: read only
mechanism: by value

Lock identification of the lock to be dequeued. The lkid argument specifies
this lock identification.

Note that if you do not specify the lkid argument, you must specify the
LCK$M_DEQALL flag in the flags argument.

When you specify the LCK$M_DEQALL flag in the flags argument, different
values (or no value) for the lkid argument produce varying behavior:

• When you do not specify the lkid argument (or specify it as 0) and you
do specify the LCK$M_DEQALL flag, $DEQ dequeues all locks held by
the process, at access modes equal to or less privileged than the effective
access mode, on all resources. The effective access mode is the least
privileged of the caller's access mode and the access mode specified in the
acmode argument.

• When you specify the lkid argument as a nonzero value together with
the LCK$M_DEQALL flag, $DEQ dequeues all sublocks of the lock
identified by lkid; it does not dequeue the lock identified by lkid. For
this operation, $DEQ ignores the LCK$M_CANCEL flag if it is set. A
sublock of a lock is a lock that was created when the parid argument in
the call to $ENQ was specified, where parid is the lock ID of the parent
lock.

SYSTEM SERVICE DESCRIPTIONS
$DEQ

If you omit the lkid argument (or specify it as 0) and the LCK$M_DEQALL
flag is not set, the $DEQ service returns the invalid lock ID condition value
(SS$-1VLOCKID).

valblk
VMS usage: lock_value_block
type: longword (unsigned)
access: modify
mechanism: by reference

Lock value block for the resource associated with the lock to be dequeued.
The valblk argument is the address of the 16-byte lock value block. When
you specify the LCK$M_DEQALL flag, you cannot use this argument.

When a protected write (PW) or exclusive (EX) mode lock is being dequeued
and you specify a lock value block in the valblk argument, the contents of
that lock value block are written to the lock value block in the lock database.
Further, if the lock value block in the lock database was marked as invalid,
that condition is cleared; the block becomes valid.

acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode of the lock to be dequeued. The acmode argument is a
longword containing the access mode. The $PSLDEF macro defines the
following symbols for the four access modes:

Symbol

PSL$C_KERNEL

PSL$C_EXEC

PSL$C_SUPER

PSL$C_USER

Access Mode

Kernel

Executive

Supervisor

User

The effective access mode used by $DEQ is the least privileged of the caller's
access mode and the access mode specified by the acmode argument. If you
do not specify the acmode argument, $DEQ uses the caller's access mode.

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flags specifying options for the $DEQ operation. The flags argument is a
longword bit mask that is the logical OR of each bit set, where each bit
corresponds to an option.

Note that if you do not specify the lkid argument, you must specify the
LCK$M_DEQALL flag in the flags argument.

SYS-137

SYSTEM SERVICE DESCRIPTIONS
$DEQ

DESCRIPTION

SYS-138

A symbolic name for each flag bit is defined by the $LCKDEF macro. The
following table describes each flag.

Flag

LCK$M_DEOALL

LCK$M_CANCEL

Description

When you specify this flag, $DEO dequeues multiple
locks, depending on the value of the lkid argument. Refer
to the description of the lkid argument for details. If you
specify LCK$M_DEOALL, the LCK$M_CANCEL flag, if
set, is ignored.

When you specify this flag, $DEO attempts to cancel
a lock conversion request that was queued by $ENO.
This attempt can succeed only if the lock request has
not yet been granted, in which case the request is in the
conversion queue. If you specify the LCK$M_DEOALL
flag, the LCK$M_CANCEL flag is ignored. Specifying the
LCK$M_CANCEL flag can result in the following actions:

If the lock conversion request has already been granted,
then the attempt to cancel the request has failed; in this
case $DEO returns the condition value
SS$_CANCELGRANT in RO.

If the lock conversion request has not yet been granted,
$DEO cancels the request. As a result, the lock is
regranted at its previous lock mode; the $ENO service
receives the condition value SS$_CANCEL in the lock
status block; and the $DEO service returns the condition
value SS$_NORMAL in RO.

If the lock request was not a conversion request, but
was a new lock request and was therefore on the waiting
queue, $DEO aborts the lock request. As a result, the
$ENO service receives the condition value SS$_ABORT
in the lock status block, and $DEO returns the condition
value SS$_NORMAL in RO.

LCK$M_INVV ALBLK When you specify this flag, $DEO marks the lock
value block, which is maintained for the resource in
the lock database, as invalid. The lock value block
remains marked as invalid until it is again written to.
The Description section of the $ENO service provides
additional information about lock value block invalidation.

This flag is ignored if (1) the lock mode of the lock being
dequeued is not protected write or exclusive, or (2) you
specify the LCK$M_CANCEL flag.

When a protected write (PW) or exclusive (EX) mode lock is being dequeued
and you specify a lock value block in the valblk argument, the contents of
that lock value block are written to the lock value block in the lock database.

If you specify the LCK$M_INVVALBLK flag in the flags argument and the
lock mode of the lock being dequeued is PW or EX, the lock value block in
the lock database is marked as invalid whether or not a lock value block was
specified in the valblk argument.

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$DEQ

SS$_NORMAL

SS$_ACCVIO

SS$_1VLOCKID

SS$_SUBLOCKS

SS$_CANCELGRANT

The lock was dequeued successfully.

The value block specified by the valblk argument
cannot be accessed by the caller.

An invalid or nonexistent lock identification was
specified or the process does not have the
privilege to dequeue a lock at the specified access
mode.

The lock has sublocks and cannot be dequeued.

The LCK$M_CANCEL flag in the flags argument
was specified, but the lock request that $DEQ was
to cancel had already been granted.

SYS-139

SYSTEM SERVICE DESCRIPTIONS
$DGBLSC

$DGBLSC

FORMAT

RETURNS

ARGUMENTS

SVS-140

Delete Global Section

The Delete Global Section service marks an existing permanent global
section for deletion. The actual deletion of the global section takes place
when all processes that have mapped the global section have deleted the
mapped pages.

SYS$DGBLSC {flags} ,gsdnam ,[ident}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

flags
VMS usage:
type:
access:
mechanism:

mask_longword
longword (unsigned)
read only
by value

Mask indicating global section characteristics. The flags argument is a
longword value. A value of 0 (the default) specifies a group global section; a
value of SEC$M_SYSGBL specifies a system global section.

gsdnam
VMS usage:
type:
access:
mechanism:

section_name
character-coded text string
read only
by descriptor-fixed-length string descriptor

Name of the global section to be deleted. The gsdnam argument is the
address of a character string descriptor pointing to this name string.

For group global sections, VMS interprets the group UIC as part of the global
section name; thus, the names of global sections are unique to UIC groups.

ident
VMS usage: section_id
type: quadword (unsigned)
access: read only
mechanism: by reference

Identification value specifying the version number of the global section to be
deleted and the matching criteria to be applied. The ident argument is the
address of a quadword structure containing three fields.

DESCRIPTION

SYSTEM SERVICE DESCRIPTIONS
$DGBLSC

The version number is in the second longword. The version number contains
two fields: a minor identification in the low-order 24 bits and a major
identification in the high-order 8 bits. Values for these fields can be assigned
by installation convention to differentiate versions of global sections. If you
specify no version number when creating a section, processes that specify a
version number when mapping cannot access the global section.

The first longword specifies, in its low-order 3 bits, the matching criteria.
The valid values, symbolic names by which they can be specified, and their
meanings are listed in the following table.

Value Name Match Criteria

0 SEC$K_MA TALL Match all versions of the section

SEC$K_MA TEQU Match only if major and minor identifications
match

2 SEC$K_MA TLEQ Match if the major identifications are equal and
the minor identification of the mapper is less than
or equal to the minor identification of the global
section

If you specify no address or specify it as 0 (the default), the version number
and match control fields default to 0.

Depending on the operation, the calling process may need a certain privilege
to use $DGBLSC:

• You need SYSGBL privilege to delete a system global section.

• You need PRMGBL privilege to delete a permanent global section.

• You need PFNMAP privilege to delete a page frame section.

• You need SHMEM privilege to delete a global section located in memory
shared by multiple processors.

After a global section has been marked for deletion, any process that attempts
to map it receives the warning return status code SS$_NOSUCHSEC.

Temporary global sections are automatically deleted when the count of
processes using the section goes to 0.

The $DGBLSC service does not unmap a global section from a process's
virtual address space. To do this, the process should call the Delete Virtual
Address Space ($DEL TVA) service, which deletes the pages to which the
section is mapped.

A section located in memory that is shared by multiple processors can be
marked for deletion only by a process running on the same processor that
created the section.

SYS-141

SYSTEM SERVICE DESCRIPTIONS
$DGBLSC

CONDITION
VALUES
RETURNED

SVS-142

SS$_NORMAL

SS$_ACCVIO

SS$_1NTERLOCK

SS$_1VLOGNAM

SS$_1VSECFLG

SS$_1VSECIDCTL

SS$_NOPRIV

SS$_NQSUCHSEC

SS$_NOTCREATOR

SS$_SHMNOTCNCT

SS$_ TOOMANYLNAM

The service completed successfully.

The global section name or name descriptor or the
section identification field cannot be read by the
caller.

The bit map lock for allocating global sections from
the specified shared memory is locked by another
process.

The global section name has a length of 0 or has
more than 15 characters.

You set an invalid flag, reserved flag, or flag
requiring a user privilege.

The section identification match control field is
invalid.

The caller does not have the privilege to delete a
system global section, does not have read/write
access to a group global section, or does not have
the privilege to delete a global section located in
memory that is shared by multiple processors.

The specified global section does not exist, or the
identifications do not match.

The section is in memory shared by multiple
processors and was created by a process on
another processor.

The shared memory named in the gsdnam
argument is not known to the system. This
error can be caused by a spelling error in the
string, an improperly assigned logical name, or the
failure to identify the memory as shared at system
generation time.

The logical name translation of the gsdnam string
exceeded the allowed depth of 10.

$DISMOU

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$DISMOU

Dismount Volume

The Dismount Volume service dismounts a mounted volume or volume
sets.

SYS$DISMOU devnam ,{flags}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

devnam
VMS usage: device_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Device name of the device to be dismounted. The devnam argument is the
address of a character string descriptor pointing to the device name string.
The string may be either a physical device name or a logical name. If it is a
logical name, it must translate to a physical device name.

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

A longword bit vector specifying options for the dismount operation. The
flags argument is a longword bit vector wherein a bit, when set, selects the
corresponding option. Each bit has a symbolic name; these names are defined
by the $DMTDEF macro. The flags and their meanings are listed in the
following table.

SYS-143

SYSTEM SERVICE DESCRIPTIONS
$DISMOU

DESCRIPTION

SVS-144

Flag

DMT$M_ABORT

DMT$M_CLUSTER

Meaning

The volume is to be dismounted even if the caller did
not mount the volume. If the volume was mounted with
MNT$M_SHARE specified, $DISMOU dismounts the
volume for all of the users who mounted it.

To specify DMT$M_ABORT, the caller must:
{ 1) have GRPNAM privilege for a group volume;
{ 2) have SYSNAM privilege for a system volume; or
{ 3) either own the volume or have VOLPRO privilege.

The volume is to be dismounted cluster wide, that is,
from all nodes in the VAXcluster. $DISMOU dismounts
the volume from the caller's node first, and then from
every other node in the existing V AXcluster.

DMT$M_CLUSTER dismounts only system or group
volumes. To dismount a group volume clusterwide,
the caller must have GRPNAM privilege. To dismount
a system volume cluster wide, the caller must have
SYSNAM privilege.

DMT$M_CLUSTER has no effect if the system is not a
member of a VAXcluster. DMT$M_CLUSTER applies
only to disks.

DMT$M_NQUNLOAD Volume is not unloaded.

DMT$M_UNIT The specified device, rather than the entire volume set,
is dismounted.

Depending on the operation, the calling process may need a certain privilege
to use $DISMOU:

• You need GRPNAM privilege to dismount a volume mounted with the
/GROUP qualifier.

• You need SYSNAM privilege to dismount a volume mounted with the
/SYSTEM qualifier.

To dismount a private volume, the caller must own the volume.

When you issue the $DISMOU service, $DISMOU removes the volume from
your list of mounted volumes, deletes the logical name (if any) associated
with the volume, and decrements the mount count.

If the mount count does not equal 0 after being decremented, $DISMOU
does not mark the volume for dismounting (because the volume must have
been mounted shared). In this case, the total effect for the issuing process is
that the process is denied access to the volume and a logical name entry is
deleted.

If the mount count equals 0 after being decremented, $DISMOU marks
the volume for dismounting. After marking the volume for dismounting,
$DISMOU waits until the volume is idle before dismounting it. A native
volume is idle when no user has an open file to the volume, and a foreign
volume is idle when no channels are assigned to the volume.

Native volumes are Files-11 structured disks or ANSI-structured tapes.
Foreign volumes are not Files-11 or ANSI structured.

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$DISMOU

After a volume is dismounted, nonpaged pool is returned to the system.
Paged pool is also returned if you mounted the volume using the /GROUP
or /SYSTEM qualifier.

If a volume is part of a Files-11 volume set and the flag bit DMT$V_UNIT is
not set, the entire volume set is dismounted.

When a Files-11 volume has been marked for dismount, new channels can
be assigned to the volume, but no new files can be opened.

Note that the SS$_NORMAL status code indicates only that $DISMOU
has successfully performed one or more of the actions just described:
decremented the mount count, marked the volume for dismount, or
dismounted the volume. The only way to determine that the dismount
has actually occurred is to check the device characteristics using the Get
Device/Volume Information ($GETDVI) service.

By specifying the DVl$_DEVCHAR item code in a call to $GETDVI, you can
learn whether a volume is mounted (it is if the DEV$V_MNT bit is set) or
whether it is marked for dismounting (it is if the DEV$M_DMT bit is set). If
DEV$V_MNT is clear or if DEV$M_DMT is set, the mount count is zero.

SS$_NORMAL

SS$_ACCVIO

SS$_DEV ALLOC

SS$_1VLOGNAM

SS$_1VDEVNAM

SS$_NOGRPNAM

SS$_NOIOCHAN

SS$_NONLOCAL

SS$_NOSUCHDEV

SS$_NOSYSNAM

SS$_NOTFILEDEV

SS$_DEVOFFLINE

SS$_DEVNOTMOUNT

The service completed successfully.

The device name descriptor cannot be read or
does not describe a readable device name.

The device is allocated to another process and
cannot be dismounted by the caller.

The device logical name has a length of zero or is
longer than the allowable logical name length.

The device name string is not valid.

The GRPNAM privilege is required to dismount a
volume mounted for groupwide access.

No 1/0 channel is available. To use $DISMOU, a
channel must be assigned to the volume.

The device is on a remote node.

The specified device does not exist.

The SYSNAM privilege is required to dismount a
volume mounted for systemwide access.

The specified device is not file-structured.

The specified device is not available.

The specified device is not mounted.

SYS-145

SYSTEM SERVICE DESCRIPTIONS
$DLCEFC

$DLCEFC

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

SYS-146

Delete Common Event Flag Cluster

The Delete Common Event Flag Cluster service marks a permanent
common event flag cluster for deletion. The cluster is actually deleted
when no more processes are associated with it.

SYS$DLCEFC name

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

name
VMS usage: ef_cluster_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of the common event flag cluster to be deleted. The name argument is
the address of a character string descriptor pointing to the name of the cluster.

The names of event flag clusters are unique to UIC groups, and the UIC group
number of the calling process is part of the name. Refer to the Introduction to
VMS System Services for more information on this argument.

To delete a common event flag cluster, the calling process must either have
PRMCEB privilege or have the same UIC as the process that created the
cluster.

The $DLCEFC service does not disassociate a process from a common event
flag cluster; the Disassociate Common Event Flag Cluster ($DACEFC) service
does this. However, the system disassociates a process from an event flag
cluster at image exit.

If the cluster has already been deleted or does not exist, the $DLCEFC service
returns the status code SS$_NORMAL.

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$DLCEFC

SS$_NORMAL

SS$_1VLOGNAM

SS$_NOPRIV

The service completed successfully.

The cluster name string has a length of 0 or has
more than 15 characters.

The process does not have the privilege to delete
a permanent common event flag cluster, or the
process does not have the privilege to delete a
common event flag cluster in memory shared by
multiple processors.

SYS-147

SYSTEM SERVICE DESCRIPTIONS
$ENQ

$ENQ Enqueue Lock Request

FORMAT

RETURNS

ARGUMENTS

SVS-148

The Enqueue Lock Request service queues a new lock or lock conversion
on a resource. The $ENO service completes asynchronously; that is, it
returns to the caller after queueing the lock request, without waiting for
the lock to be either granted or converted. For synchronous completion,
use the Enqueue Lock Request and Wait ($ENOW) service. The $ENOW
service is identical to the $ENO service in every way except that $ENOW
returns to the caller when the lock is either granted or converted.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System
Services.

The $ENO, $ENOW, $DEO (Dequeue Lock Request), and $GETLKI (Get
Lock Information) services together provide the user interface to the VMS
lock management facility. Refer to the descriptions of these other services
and to the Introduction to VMS System Services for additional information
about lock management.

SYS$ENQ [efn] ,lkmode ,/ksb {,flags] [,resnam] [,parid}
[,astadr} [,astprm] [,blkast]
[,acmode] [,nullarg}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

efn
VMS usage: eLnumber
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when the lock request has been granted.
The efn argument is a longword containing this number; however, $ENQ
uses only the low-order byte.

Upon request initiation, $ENQ clears the specified event flag (or event flag 0 if
efn was not specified). Then, when the lock request is granted, the specified
event flag (or event flag 0) is set unless you specified the LCK$M_SYNCSTS
flag in the flags argument.

SYSTEM SERVICE DESCRIPTIONS
$ENQ

lkmode
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Lock mode requested. The lkmode argument is a longword specifying this
lock mode.

Each lock mode has a sy1nbolic name. The $LCKDEF macro defines these
symbolic names. The following table gives the symbolic name and description
for each lock mode:

Lock Mode

LCK$K_NLMODE

LCK$K_CRMODE

LCK$K_CWMODE

LCK$K_PRMODE

LCK$K_PWMODE

LCK$K_EXMODE

Description

Null mode. This mode grants no access to the resource
but serves rather as a place holder and indicator of future
interest in the resource. The null mode does not inhibit
locking at other lock modes; further, it prevents the
deletion of the resource and lock value block, which would
otherwise occur if the locks held at the other lock modes
were dequeued.

Concurrent read. This mode grants the caller read access
to the resource while permitting write access to the
resource by other users. This mode is used to read data
from a resource in an unprotected manner, because other
users can modify that data as it is being read. This mode
is typically used when additional locking is being performed
at a finer granularity with sublocks.

Concurrent write. This mode grants the caller write access
to the resource while permitting write access to the
resource by other users. This mode is used to write data
to a resource in an unprotected fashion, because other
users may simultaneously write data to the resource. This
mode is typically used when additional locking is being
performed at a finer granularity with sublocks.

Protected read. This mode grants the caller read access
to the resource while permitting only read access to the
resource by other users. Write access is not allowed. This
is the traditional "share lock."

Protected write. This mode grants the. caller write access
to the resource while permitting only read access to
the resource by other users; the other users must have
specified concurrent read mode access. No other writers
are allowed access to the resource. This is the traditional
"update lock."

Exclusive. The exclusive mode grants the caller write
access to the resource and allows no access to the
resource by other users. This is the traditional "exclusive
lock."

SYS-149

SYSTEM SERVICE DESCRIPTIONS
$ENQ

SYS-150

lksb
VMS usage: lock_status_block
type: longword (unsigned)
access: write only
mechanism: by reference

Lock status block in which $ENQ writes the final completion status of the
operation. The lksb argument is the address of the 8-byte lock status block.

The lock status block may optionally contain a 16-byte lock value block.
When you specify the LCK$M_ VALBLK flag in the flags argument, the lock
status block contains a lock value block; in this case, the 16-byte lock value
block appears beginning at the first byte following the eighth byte of the lock
status block, bringing the total length of the lock status block to 24 bytes.

The following diagram shows the format of the lock status block and the
optional lock value block.

31 15

reserved l VMS condition value

lock identification

16-byte lock value b!ock

(used only when the LCK$M _ V ALBLK flag is set)

0

ZK-1708-84

Lock Status Block Fields

Condition value
A word in which $ENQ writes a VMS condition value describing the final
disposition of the lock request, for example, whether the lock was granted,
converted, and so on. The condition values returned in this field are described
under the heading "Condition Values Returned in the Lock Status Block,"
which appears following the list of condition values returned in RO.

Reserved
A word reserved by DIGITAL.

Lock identification
A longword containing the lock identification of the lock.

For a new lock, $ENQ writes the lock identification of the requested lock into
this longword when the lock request is queued.

For a lock conversion on an existing lock, you must supply the lock
identification of the existing lock in this field.

SYSTEM SERVICE DESCRIPTIONS
$ENQ

Lock value block
A user-defined, 16-byte structure containing information about the resource.
This information is user defined and is interpreted only by the user program.

When a process acquires a lock on a resource, the lock management facility
provides that process with a process-private copy of the lock value block
associated with the resource, provided that process has specified the
LCK$M_ VALBLK flag in the flags argument. The copy provided to the
process is a copy of the lock value block stored in the lock manager's
database.

The copy of the lock value block maintained in the lock database is updated
in the following way: whenever a process either (1) dequeues a lock at
protected write (PW) or exclusive (EX) mode or (2) converts a lock at one of
these modes to a lower lock mode, VMS stores the caller's lock value block
in the lock database, provided the caller has specified the LCK$M_ VALBLK
flag.

Callers of $ENQ are provided with copies of the updated lock value block
from the lock database in the following way: when $ENQ grants a new lock
to the caller or converts the caller's existing lock to a higher lock mode, $ENQ
copies the lock value block from the lock database to the caller's lock value
block, provided the caller has specified the LCK$M_ VALBLK flag.

The Description section describes events that may cause the lock value block
to become invalid.

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flags specifying options for the $ENQ operation. The flags argument is a
longword bit 'mask that is the logical OR of each bit set, where each bit
corresponds to an option.

The $LCKDEF macro defines a symbolic name for each flag bit. The following
table describes each flag.

Flag

LCK$M _NOQUEUE

Description

When this flag is specified, $ENQ does not queue the
lock request unless the lock can be granted immediately.
By default, $ENQ always queues the request.

If you specify LCK$M_NOQUEUE in a lock conversion
operation and the conversion cannot be granted
immediately, the lock remains in the original lock mode.

SYS-151

SYSTEM SERVICE DESCRIPTIONS
$ENQ

Flag

LCK$M_SYNCSTS

LCK$M_SYSTEM

LCK$M_ V ALBLK

LCK$M_CQNVERT

LCK$M_NQDLCKWT

SVS-152

Description

When you specify this flag, $ENQ returns the successful
condition value SS$_SYNCH in RO if the lock request is
granted immediately; in this case, no completion AST is
delivered and no event flag is set. If the lock request is
queued successfully but cannot be granted immediately,
$ENQ returns the condition value SS$_NQRMAL in RO;
then when the request is granted, $ENO sets the event
flag and queues an AST if the astadr argument was
specified.

When you specify this flag, the resource name is
interpreted as systemwide. By default, resource names
are qualified by the UIC group number of the creating
process. This flag is ignored in lock conversions.

When you specify this flag, the lock status block
contains a lock value block. See the description of the
lksb argument for more information.

When you specify this flag, $ENQ performs a lock
conversion. In this case, the caller must supply (in the
second longword of the lock status block) the lock
identification of the lock to be converted.

By specifying this flag, a process indicates to the
lock management services that it is not blocked from
execution while waiting for the lock request to complete.
For example, a lock request might be left outstanding
on the waiting queue as a signaling device between
processes.

This flag helps to prevent false deadlocks by providing
the lock management services with additional
information about the process issuing the lock request.
When you set this flag, the lock management services
do not consider this lock when trying to detect deadlock
conditions.

A process should specify the LCK$M_NQDLCKWT flag
only in a call to the $ENQ system service. The $ENQW
system service waits for the lock request to be granted
before returning to the caller; therefore, specifying the
LCK$M_NODLCKWT flag in a call to the $ENQW system
service defeats the purpose of the flag and can result in
a genuine deadlock being ignored.

The lock management services make use of the
LCK$M_NODLCKWT flag only when the lock specified
by the call to $ENQ is in either the waiting or the
conversion queue.

Improper use of the LCK$M_NODLCKWT flag can
result in the lock management services ignoring genuine
deadlocks.

SYSTEM SERVICE DESCRIPTIONS
$ENQ

Flag

LCK$M _NODLCKBLK

LCK$M_NQOUOT A

LCK$M_CVTSYS

resnam

Description

By specifying this flag, a process indicates to the
lock management services that, if this lock is blocking
another lock request, the process intends to give up
this lock on demand. When you specify this flag, the
lock management services do not consider this lock
as blocking other locks when trying to detect deadlock
conditions.

A process typically specifies the LCK$M _NODLCKBLK
flag only when it also specifies a blocking AST. Blocking
AST s notify processes with granted locks that another
process with an incompatible lock mode has been
queued to access the same resource. Use of blocking
ASTs may cause false deadlocks, because the lock
management services detect a blocking condition, even
though a blocking AST has been specified; however, the
blocking condition will disappear as soon as the process
holding the lock executes, receives the blocking AST,
and dequeues the lock. Specifying the
LCK$M_NQDLCKBLK flag prevents this type of false
deadlock.

To enable blocking ASTs, the blkast argument of the
$ENO system service must contain the address of a
blocking AST service routine. If the process specifies
the LCK$M_NODLCKBLK flag, the blocking AST service
routine should either dequeue the lock or convert it to a
lower lock mode without issuing any new lock requests.
If the blocking AST routine does otherwise, a genuine
deadlock could be ignored.

The lock management services make use of the
LCK$M_NQDLCKBLK flag only when the lock specified
by the call to $ENO has been granted.

Improper use of the LCK$M_NODLCKBLK flag can
result in the lock management services ignoring genuine
deadlocks.

This flag is reserved by DIGIT AL. When you set this
flag, the calling process is not charged Enqueue Limit
(ENOLM) quota for this new lock. The calling process
must be running in executive or kernel mode to set this
flag. This flag is ignored for lock conversions.

This flag is reserved by DIGIT AL. When you set this
flag, the lock is converted from a process-owned lock
to a system-owned lock. The calling process must be
running in executive or kernel mode to set this flag.

VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of the resource to be locked by this lock. The resnam argument is
the address of a character string descriptor pointing to this name. The name
string may be from 1 to 31 bytes in length.

SVS-153

SYSTEM SERVICE DESCRIPTIONS
$ENQ

SVS-154

The resnam argument is required for new locks and is ignored for lock
conversions.

pa rid
VMS usage: lock_id
type: longword (unsigned)
access: read only
mechanism: by value

Lock identification of the parent lock. The parid argument is a longword
containing this identification value.

If you do not specify this argument or specify it as 0, $ENQ assumes that the
lock does not have a parent lock. This argument is optional for new locks
and is ignored for lock conversions.

astadr
VMS usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed when the lock is either granted or
converted. The astadr argument is the address of the entry mask of this
routine.

If you specify the astadr argument, the AST routine executes at the same
access mode as the caller of $ENQ.

astprm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST routine specified by the astadr
argument. The astprm argument specifies this longword parameter.

b/kast
VMS usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

Blocking AST routine to be called whenever this lock is granted and is
blocking any other lock requests. The blkast argument is the address of the
entry mask to this routine.

You may pass a parameter to this routine by using the astprm argument.

acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the resource name. For more information
on the components of the resource name, see the Resource Names section in
the "Lock Management Services" chapter of the Introduction to VMS System

DESCRIPTION

SYSTEM SERVICE DESCRIPTIONS
$ENQ

Services. The acmode argument indicates the least privileged access mode
from which locks can be queued on the resource.

This argument does not affect the access mode associated with the lock or
its blocking and completion ASTs. The acmode argument is a longword
containing the access mode. The $PSLDEF macro defines the following
symbols for the four access modes:

Symbol

PSL$C_KERNEL

PSL$C_EXEC

PSL$C_SUPER

PSL$C_USER

Access Mode

Kernel

Executive

Supervisor

User

The $ENQ service associates an access mode with the lock in the following
way:

• If you specified a parent lock (with the parid argument), $ENQ uses the
access mode associated with the parent lock and ignores both the acmode
argument and the caller's access mode.

• If the lock has no parent lock (you did not specify the parid argument
or specified it as 0), $ENQ uses the least privileged of the caller's access
mode and the access mode specified by the acmode argument. If you do
not specify the acmode argument, $ENQ uses the caller's access mode.

nullarg
VMS usage: nulLarg
type: longword {unsigned)
access: read only
mechanism: by value

Place-holding argument reserved by DIGITAL.

To queue a lock on a systemwide resource, the calling process must either
have SYSLCK privilege or be executing in executive or kernel mode.

To specify a parent lock when queuing a lock, the access mode of the caller
must be equal to, or less privileged than, the access mode associated with the
parent lock.

To queue a lock conversion, the access mode associated with the lock being
converted must be equal to, or less privileged than, the access mode of the
calling process.

The $ENQ service uses the following system resources:

• Enqueue Limit (ENQLM) quota

• AST limit (ASTLM) quota in lock conversion requests that specify either
the astadr or blkast argument

• System dynamic memory for the creation of the lock and resource blocks

SYS-155

SYSTEM SERVICE DESCRIPTIONS
$ENQ

CONDITION
VALUES
RETURNED

SYS-156

When $ENQ queues a lock request, it returns the status of the request in RO
and writes the lock identification of the lock in the lock status block. Then,
when the lock request is granted, $ENQ writes the final completion status in
the lock status block, sets the event flag, and calls the AST routine, if this has
been requested.

When $ENQW queues a lock request, it returns status in RO and in the lock
status block when the lock has been either granted or converted. At this time,
it also sets the event flag and calls the AST routine, if this has been requested.

Invalidation of the Lock Value Block

In some situations, the lock value block may become invalid. In these
situations, $ENQ warns the caller by returning the condition value
SS$_ VALNOTVALID in the lock status block, provided the caller has
specified the flag LCK$M_ VALBLK in the flags argument.

The SS$_ VALNOTVALID condition value is a warning message, not an error
message. Therefore, the $ENQ service will proceed to grant the requested
lock. Further, $ENQ will return this warning on all subsequent calls to $ENQ
until either a new lock value block is written to the lock database or the
resource is deleted. Resource deletion occurs when no locks are associated
with the resource.

The following events may cause the lock value block to become invalid:

• If any process holding a protected write or exclusive mode lock on a
resource is terminated abnormally, the lock value block becomes invalid.

• If a VAX node in a VAXcluster fails and a process on that node was
holding (or may have been holding) a protected write or exclusive mode
lock on the resource, the lock value block becomes invalid.

• If a process holding a protected write or exclusive mode lock on the
resource calls the Dequeue Lock Request ($DEQ) service to dequeue this
lock and specifies the flag LCK$M-1NVVALBLK in the flags argument,
the lock value block maintained in the lock database is marked invalid.

SS$_NORMAL

SS$_SYNCH

SS$_ACCVIO

SS$_BADPARAM

SS$_CVTUNGRANT

SS$_EXDEPTH

SS$_EXENOLM

The service completed successfully; the lock
request was successfully queued.

The service completed successfully; the
LCK$M_SYNCSTS flag in the flags argument was
specified, and $ENO was able to grant the lock
request immediately.

The lock status block or the resource name cannot
be read.

You specified an invalid lock mode in the lkmode
argument.

You attempted a lock conversion on a lock that is
not currently granted.

The limit of levels of sublocks has been exceeded.

The process has exceeded its Enqueue Limit
(ENOLM) quota.

CONDITION
VALUES
RETURNED
IN THE LOCK
STATUS BLOCK

SYSTEM SERVICE DESCRIPTIONS
$ENQ

SS$_1NSFMEM

SS$_1VBUFLEN

SS$_1VLOCKID

SS$_NOLOCKID

SS$_NOTOUEUED

SS$_NOSYSLCK

SS$_PARNOTGRANT

SS$_NORMAL

SS$_ABORT

SS$_DEADLOCK

SS$_CANCEL

SS$_ V ALNOTV AUD

The system dynamic memory is insufficient for
creating the necessary data structures.

The length of the resource name was either 0 or
greater than 3 1 .

You specified an invalid or nonexistent lock
identification, or the lock identified by the lock
identification has an associated access mode that
is more privileged than the caller's, or the access
mode of the parent was less privileged than that of
the caller.

No lock identification was available for the lock
request.

The lock request was not queued; the
LCK$M_NOOUEUE flag in the flags argument was
specified and $ENO was not able to grant the lock
request immediately.

The LCK$M_SYSTEM flag in the flags argument
was specified but the caller lacks the necessary
SYSLCK privilege.

The parent lock specified in the parid argument
was not granted.

The service completed successfully; the lock was
successfully granted or converted.

The lock was dequeued (by the $DEO service)
before $ENO could grant the lock.

A deadlock was detected.

The lock conversion request has been canceled
and the lock has been regranted at its previous
lock mode. This condition value is returned when
$ENO queues a lock conversion request, the
request has not been granted yet (it is in the
conversion queue), and, in the interim, the $DEO
service is called (with the LCK$M_CANCEL flag
specified) to cancel this lock conversion request.
If the lock is granted before $DEO can cancel the
conversion request, the call to $DEO returns the
condition value SS$_CANCELGRANT, and the call
to $ENO returns SS$_NORMAL.

The lock value block is marked invalid. This
warning message is returned only if the caller
has specified the flag LCK$M_ V ALBLK in the
flags argument. Note that the lock has been
successfully granted despite the return of this
warning message. Refer to the Description section
for a complete discussion of lock value block
invalidation.

SYS-157

SYSTEM SERVICE DESCRIPTIONS
$ENQW

$ENQW . Enqueue Lock Request and Wait

FORMAT

SYS-158

The Enqueue Lock Request and Wait service queues a lock on a resource.
The $ENOW service completes synchronously; that is, it returns to
the caller when the lock has been either granted or converted. For
asynchronous completion, use the Enqueue Lock Request ($ENO) service;
$ENO returns to the caller after queueing the lock request, without waiting
for the lock to be either granted or converted. In all other respects,
$ENOW is identical to $ENO. Refer to the documentation of $ENO for all
other information about the $ENOW service.

For additional information about system service completion, refer to
the documentation of the Synchronize ($SYNCH) service and to the
Introduction to VMS System Services.

The $ENO, $ENOW, $DEO, and $GETLKI services together provide
the user interface to the VMS lock management facility. For additional
information about lock management, refer to the descriptions of these
other services and to the Introduction to VMS System Services.

SYSSENQW [efn] ,Jkmode ,Jksb [,flags} [,resnam] [,parid]
[,astadr] [,astprm] [,b/kast] [,acmode]
[,nullarg}

SYSTEM SERVICE DESCRIPTIONS
$ERAPAT

$ERAPA T Get Security Erase Pattern

FORMAT

RETURNS

ARGUMENTS

The Get Security Erase Pattern service generates a security erase pattern.
A user-written erase routine can then write this pattern into areas of
memory containing sensitive data that is no longer in use to prevent the
inadvertent disclosure of the sensitive data.

SYS$ERAPAT {type} ,{count] ,{patadr]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

type
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Type of storage to be written over with the erase pattern. The type argument
is a longword containing the type of storage. The three storage types and
their symbolic names (defined by the $ERADEF macro) follow:

Storage Type

Main memory

Disk

Tape

count

Symbolic Name

ERA$K_MEMORY

ERA$K_DISK

ERA$K_TAPE

VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The number of times that $ERAP AT has been called in a single security erase
operation. The count argument is a longword containing the iteration count.

You should call the $ERAPAT service initially with the count argument set
to l, the second time with the count argument set to 2, and so on, until the
status code SS$_NOTRAN is returned.

SYS-159

SYSTEM SERVICE DESCRIPTIONS
$ERAPAT

DESCRIPTION

CONDITION
VALUES
RETURNED

EXAMPLE

patadr
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

The security erase pattern to be written. The patadr argument is the address
of a longword into which the security erase pattern is to be written.

The $ERAPAT service provides a consistent mechanism for performing
security erase operations. This service is used primarily by VMS, but it may
also be used by users who want to perform security erase operations on
foreign disks.

You should call the $ERAPAT service iteratively until the completion status
55$-NOTRAN is returned.

SS$_NORMAL

SS$_NOTRAN

SS$_BADPARAM

SS$_ACCVIO

The service completed successfully; proceed with
the next erase step.

The service completed successfully; security erase
completed.

The type argument or count argument is invalid.

The patadr argument cannot be written by the
caller.

The following example demonstrates how to use the $ERAP AT service to
perform a security erase to a disk. Note that after each call to $ERAPAT, a
test for the status SS$_NOTRAN is made. If SS$_NOTRAN has not been
returned, $QIO is called to write the pattern returned by $ERAP AT onto the
disk. After this write, $ERAP AT is called again and the cycle is repeated
until the code 55$-NOTRAN is returned, at which point the security erase
procedure is complete.

; Code fragment that erases 20 blocks (blocks 15 through 34)
; on a disk

PATTERN:
.LONG 0

CHANNEL:
.WORD 0

DEVICE: .ASCID /DISK:/

$ASSIGN_S DEVNAM=DISK,
CHAN=CHANNEL

BLBC RO, EXIT

MOVL #1, R2

$ERADEF

SYS-160

Cell to contain output from $ERAPAT

Channel assigned to disk device
Disk device name

Assign a channel to the device

Branch if error

Set initial count

Macro to define names
used by $ERAPAT

SYSTEM SERVICE DESCRIPTIONS
$ERAPAT

10$: $ERAPAT_S - Call the $ERAPAT service
COUNT=R2,-
TYPE=#ERA$K_DISK,-
PATADR=PATTERN

BLBC RO, EXIT Branch if error
CMPL #SS$_NOTRAN, RO Are we done?
BEQL EXIT Branch if so
$QIO_S CHAN=CHANNEL,-

FUNC=#IO$_WRITELBLK! IO$M_ERASE,- ; Call
P1=PATTERN,- to the $QIO service
P2=#<20*512>,- to write the erase
P3=#15 pattern

INCL R2 Increase count

BRB 10$

EXIT:

SVS-161

SYSTEM SERVICE DESCRIPTIONS
$EXIT

$EXIT Exit

FORMAT

ARGUMENT

DESCRIPTION

CONDITION
VALUES
RETURNED

SVS-162

The Exit service is used by the operating system to initiate image rundown
when the current image in a process completes execution. Control
normally returns to the command interpreter.

SYS$EXIT [code]

code
VMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by value

Longword value to be saved in the process header as the completion status of
the current image. If you do not specify this argument in a macro call, a value
of 1 is passed as the completion code for VAX MACRO and VAX BLISS-32,
and a value of 0 is passed for other languages. You can test this value at the
command level to provide conditional command execution.

The $EXIT service is unlike all other system services in that it does not return
status codes in RO or anywhere else. The $EXIT service does not return
control to the caller; it performs an exit to the command interpreter or causes
the process to terminate if no command interpreter is present.

For a summary of the actions taken by the system at image exit, see the
Introduction to VMS System Services.

None

$EXPREG

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$EXPREG

Expand Program/Control
Region

The Expand Program/Control Region service adds a specified number of
new virtual pages to a process's program region or control region for the
execution of the current image. Expansion occurs at the current end of
that region's virtual address space.

SYSSEXPREG pagcnt ,[retadr] ,[acmode] ,[region]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

pa gent
VMS usage:· longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Number of pages to add to the current end of the program or control region.
The pagcnt argument is a longword value containing this number.

retadr
VMS usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference

Starting and ending process virtual addresses of the pages that $EXPREG has
actually added. The retadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses.

acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the newly added pages. The acmode
argument is a longword containing the access mode.

The most privileged access mode used is the access mode of the caller.

SYS-163

SYSTEM SERVICE DESCRIPTIONS
$EXPREG

DESCRIPTION

CONDITION
VALUES
RETURNED

SYS-164

The newly added pages are given the following protection: (1) read and
write access for access modes equal to or more privileged than the access
mode used in the call and (2) no access for access modes less privileged than
that used in the call.

region
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Number specifying which program region is to be expanded. The region
argument is a longword value. A value of 0 (the default) specifies that the
program region (PO region) is to be expanded. A value of 1 specifies that the
control region (Pl region) is to be expanded.

The process's paging file quota (PGFLQUOTA) must be sufficient to
accommodate the increased size of the virtual address space.

The new pages, which were previously inaccessible to the process, are created
as demand-zero pages.

Because the bottom of the user stack is normally located at the end of the
control region, expanding the control region is equivalent to expanding the
user stack. The effect is to increase the available stack space by the specified
number of pages.

The starting address returned is always the first available page in the
designated region; therefore, the ending address is smaller than the starting
address when the control region is expanded and is larger than the starting
address when the program region is expanded.

If an error occurs while pages are being added, the retadr argument (if
specified) indicates the pages that were successfully added before the error
occurred. If no pages were added, both longwords of the retadr argument
contain the value -1.

The information returneq in the location addressed by the retadr argument (if
specified) can be used as the input range to the Delete Virtual Address Space
($DEL TVA) service.

$$$_NORMAL

SS$_ACCVIO

SS$_EXOUOT A

SS$_1LLPAGCNT

SS$_1NSFWSL

SS$_ V ASFULL

The service completed successfully.

The return address array cannot be written by the
caller.

The process exceeded its paging file quota.

The specified page count was less than 1 .

The process's working set limit is not large enough
to accommodate the increased virtual address
space.

The process's virtual address space is full. No
space is available in the process page table for the
requested regions.

SYSTEM SERVICE DESCRIPTIONS
SFAO

$FAO Formatted ASCII Output

FORMAT

RETURNS

ARGUMENTS

The Formatted ASCII Output service (1) converts a binary value into
an ASCII character string in decimal, hexadecimal, or octal notation and
returns the character string in an output string and (2) inserts variable
character string data into an output string.

The Formatted ASCII Output with List Parameter ($FAOL) service provides
an alternate way to specify input parameters for a call to the $FAQ
system service. The formats for both $FAQ and $FAOL are shown under
FORMAT.

SYS$FAO
SYS$FAOL

ctrstr ,[out/en} ,outbuf ,[p 1 }. .. [pn}
ctrstr ,[out/en} ,outbuf [,prmlst]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

ctrstr
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Control string passed to $FAO that contains the text to be output together
with one or more FAO directives. The ctrstr argument is the address of a
character string descriptor pointing to the control string. The FAO directives
are described in the Description section.

There is no restriction on the length of the control string, nor on the number
of FAO directives it may contain. However, if an exclamation point (!)must
appear in the output string, it must be represented in the control string by
a double exclamation point (!!). A single exclamation point in the control
string indicates to $FAO that the next characters are to be interpreted as FAO
directives.

When $FAO processes the control string, it writes each character that is not
part of an FAO directive to the output buffer.

If the FAO directive is valid, $FAO processes it. If the directive requires a
parameter, $FAO processes the next consecutive parameter in the specified
parameter list. If the FAO directive is not valid, $F AO terminates and returns
a condition value in RO.

SYS-165

SYSTEM SERVICE DESCRIPTIONS
$FAQ

SYS-166

The $FAO service reads parameters from the argument list specified in the
call; these arguments have the names pl, p2, p3, and so on, up to p20. Each
argument specifies one parameter. Because $FAO accepts a maximum of 20
parameters in a single call, you must use the $FAOL service if the number of
parameters exceeds 20. The $FAOL service accepts any number of parameters
used with the prmlst argument.

out/en
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length in bytes of the fully formatted output string returned by $FAO. The
outlen argument is the address of a word containing this value.

outbuf
VMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor-fixed-length string descriptor

Output buffer into which $FAO writes the fully formatted output string. The
outbuf argument is the address of a character string descriptor pointing to the
output buffer.

p1 topn
VMS usage: varying_arg
type: longword (signed)
access: read only
mechanism: by value

FAO directive parameter(s). The pl argument is a longword containing
the parameter needed by the first FAO directive encountered in the control
string, the p2 argument is a longword containing the parameter needed for
the second FAO directive, and so on for the remaining arguments up to
p20. If an FAO directive does not require a parameter, that FAO directive is
processed without reading a parameter from the argument list.

Depending on the directive, a parameter may be a value to be converted,
an address of a string to be inserted into the output string, or a length
or argument count. Each directive in the control string may require a
corresponding parameter or parameters.

prmlst
VMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

List of FAO directive parameters to be passed to the $FAOL service. The
prmlst argument is the address of a list of longwords wherein each longword
is a parameter. The $FAOL service processes these parameters sequentially as
it encounters, in the control string, FAO directives that require parameters.

The parameter list may be a data structure that already exists in a program
and from which certain values are to be extracted.

DESCRIPTION

SYSTEM SERVICE DESCRIPTIONS
$FAQ

The $FAQ_S macro form uses a PUSHL instruction for all parameters (pl
through pn) passed to the service; if you specify a symbolic address, it must
be preceded by a number sign character (#) or loaded into a register.

You can specify a maximum of 20 parameters on the $FAO macro. If more
than 20 parameters are required, use the $FAOL macro.

This service does not check the length of the argument list, and therefore
cannot return the SS$_INSFARG (insufficient arguments) error status code.
If the service does not receive enough arguments (for example, if you omit
required commas in the call), you may not get the desired result.

Format of FAO Directives

FAO directives may appear anywhere in the control string. The general
format of an FAO directive is as follows:

!DD

The exclamation point (!) specifies that the following character(s) are to be
interpreted as an FAO directive and the characters "DD" represent a 1- or
2-character FAO directive. When the characters of the FAO directive are
alphabetic, they must be uppercase.

An FAO directive may optionally specify the following:

• A repeat count. The format is as follows:

!n(DD)

In this case n is a decimal value specifying the number of times that
$FAO is to repeat the directive. If the directive requires a parameter or
parameters, $FAO uses successive parameters from the parameter list for
each repetition of the directive; it does not use the same parameter(s) for
each repetition. The parentheses are required syntax.

• An output field length. The format is as follows:

lmDD

In this case m is a decimal value specifying the length of the field (within
the output string) into which $FAO is to write the output resulting from
the directive. The length is expressed as a number of characters.

• Both a repeat count and output field length. In this case the format is as
follows:

!n(mDD)

Specifying Variables for Repeat Count and Field Length

You may specify repeat counts and output field lengths as variables by using
a number sign (#) in place of an absolute numeric value. If you specify
a number sign (#) for a repeat count, the next parameter passed to FAO
must contain the count. If you specify a number sign (#) for an output field
length, the next parameter must contain the length value.

If you specify a number sign (#) for both the output field length and for the
repeat count, only one length parameter is required; each output string will
have the specified length.

SVS-167

SYSTEM SERVICE DESCRIPTIONS
$FAQ

SYS-168

If you specify a number sign (#) for the repeat count, the output field length,
or both, the parameter(s) specifying the count, length, or both, must precede
other parameters required by the directive.

Table SYS-3 lists and describes the FAO directives.

Table SYS-3 List of FAQ Directives

Directive Description

Directives for Character String Substitution

!AC

!AD

!AF

!AS

Inserts a counted ASCII string. It requires one parameter: the
address of the string to be inserted. The first byte of the string
must contain the length in characters of the string.

Inserts an ASCII string. It requires two parameters: the length of
the string and the address of the string. Each of these parameters
is a separate argument.

Inserts an ASCII string and replaces all nonprintable ASCII codes
with periods (.). It requires two parameters: the length of the
string and the address of the string. Each of these parameters is
a separate argument.

Inserts an ASCID string. It requires one parameter: the address of
a character string descriptor pointing to the string.

Directives for Zero-Filled Numeric Conversion

!OB

IOW

!OL

IXB

!XW

!XL

Converts a byte value to the ASCII representation of the value's
octal equivalent. It requires one parameter: the value to be
converted. $FAO uses only the low-order byte of the longword
parameter.

Converts a word value to the ASCII representation of the value's
octal equivalent. It requires one parameter: the value to be
converted. $FAQ uses only the low-order word of the longword
parameter.

Converts a longword value to the ASCII representation of the
value's octal equivalent. It requires one parameter: the value to be
converted.

Converts a byte value to the ASCII representation of the value's
hexadecimal equivalent. It requires one parameter: the value to be
converted. $FAQ uses only the low-order byte of the longword
parameter.

Converts a word value to the ASCII representation of the value's
hexadecimal equivalent. It requires one parameter: the value to be
converted. $FAQ uses only the low-order word of the longword
parameter.

Converts a longword value to the ASCII representation of the
value's hexadecimal equivalent. It requires one parameter: the
value to be converted.

SYSTEM SERVICE DESCRIPTIONS
$FAQ

Table SVS-3 (Cont.) List of FAQ Directives

Directive Description

Directives for Zero-Filled Numeric Conversion

!ZB

!ZW

!ZL

Converts an unsigned byte value to the ASCII representation of
the value's decimal equivalent. It requires one parameter: the
value to be converted. $FAQ uses only the low-order byte of the
longword parameter.

Converts an unsigned word value to the ASCII representation of
the value's decimal equivalent. It requires one parameter: the
value to be converted. $FAQ uses only the low-order word of the
longword parameter.

Converts an unsigned longword value to the ASCII representation
of the value's decimal equivalent. It requires one parameter: the
value to be converted.

Directives for Blank-Filled Numeric Conversion

!UB

!UW

!UL

!SB

!SW

!SL

Converts an unsigned byte value to the ASCII representation of
the value's decimal equivalent. It requires one parameter: the
value to be converted. $FAQ uses only the low-order byte of the
longword parameter.

Converts an unsigned word value to the ASCII representation of
the value's decimal equivalent. It requires one parameter: the
value to be converted. $FAQ uses only the low-order word of the
longword parameter.

Converts an unsigned longword value to the ASCII representation
of the value's decimal equivalent. It requires one parameter: the
value to be converted.

Converts a signed byte value to the ASCII representation of the
value's decimal equivalent. It requires one parameter: the value to
be converted. $FAQ uses only the low-order byte of the longword
parameter.

Converts a signed word value to the ASCII representation of the
value's decimal equivalent. It requires one parameter: the value
to be converted. $FAQ uses only the low-order word of the
longword parameter.

Converts a signed longword value to the ASCII representation
of the value's decimal equivalent. It requires one parameter: the
value to be converted.

Directives for Output String Formatting

!/

!_

r
!!

Inserts a new line, that is, a carriage return and line feed. It takes
no parameters.

Inserts a tab. It takes no parameters.

Inserts a form feed. It takes no parameters.

Inserts an exclamation point. It takes no parameters.

SVS-169

SYSTEM SERVICE DESCRIPTIONS
$FAQ

SYS-170

Table SYS-3 (Cont.) List of FAO Directives

Directive Description

Directives for Output String Formatting

!%S

!%T

!%U

!%1

!%0

!n <
!>

!n*C

Inserts the letter "S" if the most recently converted numeric value
is not 1 . An uppercase "S" is inserted if the character before
the !%S directive is an uppercase character; a lowercase "s" is
inserted if the character is lowercase.

Inserts the system time. It takes one parameter: the address of a
quadword time value to be converted to ASCII. If you specify 0,
the current system time is inserted.

Converts a longword integer UIC to a standard UIC specification
in the format [xxx,yyy], where xxx is the group number and yyy is
the member number. It takes one parameter: a longword integer.
The directive inserts the surrounding brackets ([]) and
comma(,).

Converts a longword to the appropriate alphanumeric identifier.
If the longword represents a UIC, surrounding brackets ([]) and
comma (,) are added as necessary. If no identifier exists and the
longword represents a UIC, the longword is formatted as in !%U.
Otherwise it is formatted as in !XL with a preceding ! %X added to
the formatted result.

Inserts the system date and time. It takes one parameter: the
address of a quadword time value to be converted to ASCII. If you
specify 0, the current system date and time are inserted.

See description of next directive (!>).

This directive and the preceding one (!n <) are used together
to define an output field width of n characters within which all
data and directives to the right of !n < and to the left of ! > are
left-justified and blank-filled. It takes no parameters.

Repeats the character c in the output string n times.

Directives for Parameter Interpretation

!-

!+

Causes $FAQ to reuse the most recently used parameter in the
list. It takes no parameters.

Causes $FAQ to skip the next parameter in the list. It takes no
parameters.

Table SYS-4 shows the FAO output field lengths and their fill characters.

SYSTEM SERVICE DESCRIPTIONS
$FAQ

Table SVS-4 FAO Output Field Lengths and Fill Characters

Conversion/Substitution
Type

Hexadecimal
Byte
Word
Longword

Octal
Byte
Word
Longword

Default Length of
Output Field

2 (zero-filled)
4 (zero-filled)
8 (zero-filled)

3 (zero-filled)
6 (zero-filled)
11 (zero-filled)

Action When Explicit
Output Field Length Is
Longer than Default

ASCII result is right
justified and blank-filled
to the specified length

Hexadecimal or octal
output is always zero
filled to the default
output field length then
blank-filled to specified
length

Action When
Explicit Output
Field Length Is
Shorter than Default

ASCII result is
truncated on the
left

Signed or Unsigned Decimal As many characters as
necessary

ASCII result is right
justified and blank-filled
to the specified length

Signed and unsigned
decimal output fields
and completely filled
with asterisks (*)

Unsigned Zero-filled
Decimal

ASCII String Substitution

CONDITION
VALUES
RETURNED

EXAMPLES

As many characters as
necessary

Length of input character
string

SS$_NORMAL

SS$_BUFFEROVF

SS$_ACCVIO

SS$_BADPARAM

ASCII result is right
justified and zero-filled to
the specified length

ASCII string is left
justified and blank-filled
to the specified length

ASCII string is
truncated on the
right

The service completed successfully.

The service completed successfully. The formatted
output string overflowed the output buffer and has
been truncated.

The ctrstr, p1 through pn, or prmlst argument
cannot be read, or the outlen argument cannot be
written (it may specify 0).

You specified an invalid directive in the FAO
control string.

Each of the following examples shows an FAO control string with several
directives, parameters defined as input for the directives, and the calls to
$FAO to format the output strings. The numbered examples illustrate the
following:

1 $FAO macro, !AC, !AS, !AD, and !/ directives

2 $FAO macro, !!, and !AS directives, repeat count, output field length

3 $FAO macro, !UL, !XL, !SL directives

4 $FAOL macro, !UL, !XL, !SL directives

5 $FAOL macro, !UB, !XB, !SB directives

SVS-171

SYSTEM SERVICE DESCRIPTIONS
$FAQ

FAODESC:

6 $FAO macro, !XW, !ZW, !- directives, repeat count, output field length

7 $FAOL macro, !AS, !UB, !%S, !- directives, variable repeat count

8 $FAO macro, !nc(repeat character), !%D directives

9 $FAO macro, !%D and !%T (with output field lengths), !n (with variable
repeat count)

10 $FAO macro, ! < and!> (define field width), !AC, and !UL directives

11 $FAO macro, !AS and !SL directives

Each example is accompanied by notes. These notes show the output string
created by the call to $FAO and describe in more detail some considerations
for using directives. The sample output strings show a delta character (-) for
each space in all places where FAO output contains multiple spaces.

Each of the first 10 examples refers to the following output fields (these fields
are not shown in the data areas for each example):

.LONG 80

.ADDRESS -
FAOBUF

FAOBUF: .BLKB 80
FAOLEN: .BLKW 1

.BLKW 1

Descriptor for output buff er
Output buff er length

Address of buff er
80-character buff er
Receive length of output
Reserve word for $QIO

These examples assume that each call to $FAO will be followed by a call to
$QIO to write the output string produced by $FAO. The $QIO system service
requires that the length be specified as a longword; therefore, an extra word is
provided following the word defined to receive the length of the output string
returned by $FAO.

The final example shows how to make a call to $FAO from a VAX FORTRAN
program.

The examples, numbered 1 through 11, follow.

iJ ; Control String and input parameters .
SLEEPSTR: . ASCID "!/SAILORS: ! AC ! AS ! AD"

WINKEN: .ASCIC /WINKEN/
BLINKEN:

.ASCID /BLINKEN/
NOD: .ASCII /NOD/
NODLEN: .LONG NODLEN-NOD

Call to $FAD

SVS-172

$FAO_S CTRSTR=SLEEPSTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
P1=#WINKEN, -
P2=#BLINKEN, -
P3=NODLEN, -
P4=#NOD

Descriptor for control
string

Counted ASCII string

Character string descriptor
ASCII string
Length of ASCII string

SYSTEM SERVICE DESCRIPTIONS
$FAQ

$FAO writes the following output string into FAOBUF:

<CR><KEY>(LF\TEXT)SAILORS: WINKEN BLINKEN NOD

The !/ directive provides a carriage-return/line-feed character (shown as
<CR> <KEY> (LF\TEXT)) for terminal output.

The !AC directive requires the address of a counted ASCII string (pl
argument); the number sign (#) is required to specify the parameter, so
that the PUSHL instruction used by the $FAO macro pushes the address
rather than its contents.

The !AS directive requires the address of a character string descriptor (p2
argument).

The !AD directive requires two parameters: the length of the string to be
substituted (p3 argument) and its address (p4 argument).

~ Control string and input parameters

NAMESTR:
.ASCID /UNABLE TO LOCATE !3(8AS)!!/ ; Descriptor for

; control string

JONES: .ASCID /JONES/
HARRIS: .ASCID /HARRIS/
WILSON: .ASCID /WILSON/

Name descriptor
Name descriptor
Name descriptor

Call to $FAD

$FAO_S CTRSTR=NAMESTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
P1=#JONES, -
P2=#HARRIS, -
P3=#WILSON

$FAO writes the following output string into FAOBUF:

UNABLE TO LOCATE JONES ___ HARRIS __ WILSON __ !

The !3(8AS) directive contains a repeat count: three parameters (addresses of
character string descriptors) are required. $FAO left-justifies each string into a
field of eight characters (the output field length specified).

The double exclamation point directive (!!) supplies a literal exclamation
point (!) in the output.

If the directive were specified without an output field length, that is, if
the directive were specified as !3(AS), the three output fields would be
concatenated, as follows:

UNABLE TO LOCATE JONESHARRISWILSON!

SYS-173

SYSTEM SERVICE DESCRIPTIONS
$FAQ

~ ; Control strings and input parameters for next three examples

' ; Descriptor for control string (longword conversion)
LONGSTR:

.ASCID /VALUES !UL (DEC) !XL (HEX) !SL (SIGNED)/

; Descriptor for control string (byte conversion)
BYTESTR:

VAL1:
VAL2:
VAL3:

.ASCID /VALUES !UB (DEC) !XB (HEX) !SB (SIGNED)/

.LONG

.LONG

.LONG

200
300
-400

Decimal 200
Decimal 300
Negative 400

Example 3: Call to $FAD

SYS-174

$FAO_S CTRSTR=LONGSTR, -
OUTBUF=FAODESC, -
OUTLEN=FAOLEN,
P1=VAL1, -
P2=VAL2, -
P3=VAL3

$FAO writes the following output string:

VALUES 200 (DEC) 0000012C (HEX) -400 (SIGNED)

The longword value 200 is converted to decimal, the value 300 is converted
to hexadecimal, and the value -400 is converted to signed decimal. The
ASCII results of each conversion are placed in the appropriate position in the
output string.

Note that the hexadecimal output string has eight characters and is zero-filled
to the left. This is the default output length for hexadecimal longwords.

Call to $FAOL

$FAOL_S CTRSTR=LONGSTR, -
OUTBUF=FAODESC, -
OUTLEN=FAOLEN,
PRMLST=VAL1

$FAO writes the following output string:

VALUES 200 (DEC) 0000012C (HEX) -400 (SIGNED)

The results are the same as the results of Example 3. However, unlike the
$FAO macro, which requires each parameter on the call to be specified, the
$FAOL macro points to a list of consecutive longwords, which $FAO reads as
parameters.

Call to $FAOL

$FAOL_S CTRSTR=BYTESTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
PRMLST=VAL1

SYSTEM SERVICE DESCRIPTIONS
$FAQ

$FAO writes the following output string:

VALUES 200 (DEC) 2C (HEX) 112 (SIGNED)

The input parameters are the same as those for Example 4. However, the
control string (BYTES TR) specifies that byte values are to be converted. $F AO
uses the low-order byte of each longword parameter passed to it. The high
order three bytes are not evaluated. Compare these results with the results of
Example 4.

Control string

MULTSTR:
.ASCID /HEX: !2(6XW) ZERO-DEC: !2(-) !2(7ZW)/

Call to $FAQ

$FAO_S CTRSTR=MULTSTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
P1=#10000, -
P2=#9999

FAO writes the following output string:

HEX: ___ 2710 __ 270F ZERO-DEC: 00100000009999

Each of the directives !2(6XW) and !2(7ZW) contains repeat counts and output
lengths. First, $FAO performs the !XW directive twice, using the low-order
word of the numeric parameters passed. The output length specified is two
characters longer than the default output field width of hexadecimal word
conversion, so two spaces are placed between the resulting ASCII strings.

The !- directive causes $FAO to back up over the parameter list. A repeat
count is specified with the directive so that $F AO skips back over two
parameters; then, it uses the same two parameters for the !ZW directive. The
!ZW directive causes the output string to be zero-filled to the specified length,
in this example, of seven characters. Thus, there are no spaces between the
output fields.

SYS-175

SYSTEM SERVICE DESCRIPTIONS
$FAQ

Control string and input parameters

ARGSTR: .ASCID /!AS RECEIVED !UB ARG!%S: !-!#(4UB)/

LISTA: .ADDRESS -
ORION Address of name string

.LONG 3 Number of args in list

.LONG 10 Argument 1

.LONG 123 Argument 2

.LONG 210 Argument 3

LISTB: .ADDRESS -
LYRA Address of name string

.LONG 1 Number of args in list

.LONG 255 Argument 1

ORION: .ASCID /ORION/ Descriptor for process ORION

LYRA: .ASCID /LYRA/ Descriptor for process LYRA

Calls to $FAD

SYS-176

$FAOL_S CTRSTR=ARGSTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
PRMLST=LISTA

$FAOL_S CTRSTR=ARGSTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
PRMLST=LISTB

After the first call to $FAOL, $FAO writes the following output strin:

ORION RECEIVED 3 ARGS: ___ 10 123 210

Following the second call, $FAO writes the following output string:

LYRA RECEIVED 1 ARG: __ 255

In each of the examples, the PRMLST argument points to a different
parameter list; each list contains, in the first longword, the address of a
character string descriptor. The second longword begins an argument list,
with the number of arguments remaining in the list. The control string
uses this second longword twice: first to output the value contained in the
longword, and then to provide the repeat count to output the number of
arguments in the list (the !- directive indicates that $FAO should reuse the
parameter).

The !%5 directive provides a conditional plural. When the last value
converted has a value not equal to l, $FAO outputs the character "S"; if
the value is a 1 (as in Example 2), $FAO does not output the character "S".

The output field length defines a width of four characters for each byte value
converted, to provide spacing between the output fields.

SYSTEM SERVICE DESCRIPTIONS
$FAQ

Control string

TIMESTR:
.ASCID /!5> NOW IS: !%D/

Call to $FAD

$FAO_S CTR3TR=TIMESTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
P1=#0

Control string

DAYTIMSTR:

FAO writes the following output string:

>>>>> NOW IS: dd-mmm-yyyy hh:mm:ss.cc

where:

dd

mmm

yyyy

hh:mm:ss.cc

Is the day of the month.

Is the month.

Is the year.

Is the time in hours, minutes, seconds, and hundredths of
seconds.

The !5 > directive requests $FAO to write five greater-than (>) characters
into the output string. Because there is a space after the directive, $FAO also
writes a space after the greater-than (>) characters on output.

The !%D directive requires the address of a quadword time value, which must
be in the system time format. However, when the address of the time value
is specified as 0, $FAO uses the current date and time. For information on
how to obtain system time values in the required format, see the Introduction
to VMS System Services. For a detailed description of the ASCII date and time
string returned, see the discussion of the Convert Binary Time to ASCII String
($ASCTIM) system service.

.ASCID /DATE: !11%D!#_TIME: !5%T/

Call to $FAD

$FAO_S CTRSTR=DAYTIMSTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
P1=#0, -
P2=#5, -
P3=#0

FAO writes the following output string:

DATE: dd-mmm-yyyy _____ TIME: hh:mm

SVS-177

SYSTEM SERVICE DESCRIPTIONS
$FAQ

An output length of eleven bytes is specified with the !%D directive so that
$FAO truncates the time from the date and time string, and outputs only the
date.

The !#_ directive requests that the underscore character (-) be repeated the
number of times specified by the next parameter. Because p2 is specified as 5,
five underscores are written into the output string.

The !%T directive normally returns the full system time. The !5%T directive
provides an output length for the time; only the hours and minutes fields of
the time string are written into the output buffer.

Control string and parameters

WIDTHSTR:
.ASCID /!25<VAR: !AC VAL: !UL!>TOTAL: !7UL/

VAR1NAME:
.ASCIC /INVENTORY/ Variable 1 name

VAR1: .LONG 334 Current value
VAR1TOT:

.LONG 6554 Var 1 total

VAR2NAME:
.ASCIC /SALES/ Var 2 name

VAR2: .LONG 280 Current value
VAR2TOT:

.LONG 10750 Var 2 total

Calls to $FAD

SYS-178

$FAO_S CTRSTR=WIDTHSTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
P1=#VAR1NAME, -
P2=VAR1, -
P3=VAR1TOT

$FAO_S CTRSTR=WIDTHSTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,
P1=#VAR2NAME, -
P2=VAR2, -
P3=VAR2TOT

After the first call to $FAO, $FAO writes the following output string:

VAR: INVENTORY VAL: 334 __ TOTAL: ___ 6554

After the second call, $FAO writes the following output string:

VAR: SALES VAL: 280 ______ TOTAL: __ 10750

The !25 < directive requests an output field width of 25 characters; the end
of the field is delimited by the ! > directive. Within the field defined are two
directives, !AC and !UL. The strings substituted by these directives can vary
in length, but the entire field always has 25 characters.

The !7UL directive formats the longword passed in each example (p2
argument) and right-justifies the result in a 7-character output field.

ill

SYSTEM SERVICE DESCRIPTIONS
$FAQ

INTEGER STATUS,
2 SYS$FAO,
2 SYS$FAOL

! Resultant string
CHARACTER*80 OUTSTRING
INTEGER*2 LEN
! Array for directives in $FAOL
INTEGER*4 PARAMS(2)

! File name and error number
CHARACTER*80 FILE
INTEGER*4 FILE_LEN,
2 ERROR
! Descriptor for $FAOL
INTEGER*4 DESCR(2)

! These variables would generally be set following an error
FILE = I [BOELITZ]TESTING.DAT'
FILE_LEN = 18
ERROR = 25

! Call $FAD
STATUS = SYS$FAO
2
2
2
2
IF (.NOT. STATUS)

('File !AS aborted at error !SL',
LEN,
OUTSTRING,
FILE(1:FILE_LEN),
%VAL(ERROR))
CALL LIB$SIGNAL (%VAL(STATUS))

TYPE*· 'From SYS$FAO:'
TYPE *,DUTSTRING (!:LEN)

! Set up descriptor for filename
DESCR(1) = FILE_LEN ! Length
DESCR(2) = %LOC(FILE) ! Address
! Set up array for directives
PARAMS(1) = %LOC(DESCR) ! File name
PARAMS(2) = ERROR ! Error number
! Call $FAOL
STATUS = SYS$FAOL
2
2
2
IF (.NOT. STATUS)

('File !AS aborted at error !SL',
LEN,
OUTSTRING,
PARAMS)

CALL LIB$SIGNAL (%VAL(STATUS))

TYPE*· 'From SYS$FAOL:'
TYPE *,OUTSTRING (!:LEN)

END

This example shows a segment of a VAX FORTRAN program used to output
the following string:

FILE [BOELITZ]TESTING.DAT ABORTED AT ERROR 25

SYS-179

SYSTEM SERVICE DESCRIPTIONS
$FILESCAN

$Fl LESCAN Scan String for File
Specification

FORMAT

RETURNS

ARGUMENTS

SYS-180

The Scan String for File Specification service searches a string for a file
specification and parses the components of that file specification.

SYS$FILESCAN srcstr ,value/st ,[fldflags]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

srcstr
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

String to be searched for the file specification. The srcstr argument is the
address of a descriptor pointing to this string.

value/st
VMS usage: item_list_2
type: longword (unsigned)
access: modify
mechanism: by reference

Item list specifying which components of the file specification are to be
returned by $FILESCAN. The components are the node, device, directory, file
name, file type, and version number. The itmlst argument is the address of a
list of item descriptors wherein each item descriptor specifies one component.
The list of item descriptors is terminated by a longword of 0.

The following diagram depicts a single item descriptor.

31 15 0

item code l component length

component address

ZK-1709-84

SYSTEM SERVICE DESCRIPTIONS
$FILESCAN

$Fl LESCAN Item Descriptor Fields

component length
A word in which $FILESCAN writes the length (in characters) of the
requested component. If $FILESCAN does not locate the component, it
returns the value 0 in this field and in the component address field and
returns the SS$_NORMAL condition value.

item code
A user-supplied, word-length symbolic code that specifies the component
desired. The $FSCNDEF macro defines the item codes. Each item code is
described under "$FILESCAN Item Codes."

component address
A longword in which $FILESCAN writes the starting address of the
component. This address points to a location in the input string itself.

$FILESCAN Item Codes

FSCN$_FILESPEC
When you specify FSCN$_FJLESPEC, $FILESCAN returns the length and
starting address of the full file specification. The full file specification may
contain the node, device, directory, name, type, and version.

FSCN$_NQDE
When you specify FSCN$_NODE, $FILESCAN returns the length and
starting address of the node name. The node name includes the double colon
(::), as well as an access control string (if present).

FSCN$_DEVICE
When you specify FSCN$_DEVICE, $FILESCAN returns the length and
starting address of the device name. The device name includes the single
colon (:).

FSCN$_RQOT
When you specify FSCN$_ROOT, $FILESCAN returns the length and starting
address of the root directory string. The root directory name string includes
the opening and closing brackets ([]) or angle brackets (< >).

FSCN$_DIRECTORY
When you specify FSCN$_DIRECTORY, $FILESCAN returns the length
and starting address of the directory name. The directory name includes the
opening and closing brackets ([]) or angle brackets (< >).

FSCN$_NAME
When you specify FSCN$_NAME, $FILESCAN returns the length and
starting address of the file name. The file name includes no syntactical
elements.

In addition, when you specify FSCN$_NAME, $FILESCAN returns the length
and starting address of a quoted file specification following a node name (as in
the specification NODE::"FILE-SPEC"). The beginning and ending quotation
marks are included.

SYS-181

SYSTEM SERVICE DESCRIPTIONS
$FILESCAN

DESCRIPTION

SYS-182

FSCN$_TVPE
When you specify FSCN$~ TYPE, $FILESCAN returns the length and starting
address of the file type. The file type includes the preceding period (.).

FSCN$_VERSION
When you specify FSCN$_ VERSION, $FILESCAN returns the length and
starting address of the file version number. The file version number includes
the preceding period (.) or semicolon (;) delimiter.

fldflags
VMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Longword flag mask in which $FILESCAN sets a bit for each file specification
component found in the input string. The fldflags argument is the address of
this longword flag mask.

The $FSCNDEF macro defines a symbolic name for each significant flag bit.
The following table shows the file specification component that corresponds
to the symbolic name of each flag bit.

Symbolic Name

FSCN$V_NODE

FSCN$V_DEVICE

FSCN$V_RQOT

FSCN$V_DIRECTORY

FSCN$V_NAME

FSCN$V_ TYPE

FSCN$V_ VERSION

Corresponding Component

Node name

Device name

Root directory name string

Directory name

File name

File type

Version number

The fldflags argument is optional. When you want to know which
components of a file specification are present in a string, but do not need
to know the contents or length of these components, you should specify
fldflags instead of valuelst.

When $FILESCAN locates a partial file specification (for example,
DISK:[FOO]), it returns the length and starting address of those components
that were both requested in the item list and found in the string. If a
component was requested in the item list but not found in the string,
$FILESCAN returns a length of 0 and starting address of 0 to the component
length and component address fields of the item descriptor for that
component.

The information returned about all individual components, when taken
together, describes the entire contiguous file specification string. For example,
to extract only the file name and file type from a full file specification string,
you can add the length of these two components and use the address of the
first component (file name).

The $FILESCAN service does not perform comprehensive syntax checking.
Specifically, it does not check that a component has a valid length.

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$FILESCAN

However, $FILESCAN does make the following checks:

• The component must have required syntactical elements; for example, a
directory component must be enclosed in brackets and a node name must
be followed by a double colon (::).

• The component must not contain invalid characters. Invalid characters
are specific to each component. For example, a comma (,) is a valid
character in a directory component but not in a file type component.

• Spaces, tabs, and carriage returns are permitted within quoted strings, but
are invalid anywhere else.

Invalid characters are treated as terminators. For example, if $FILESCAN
encounters a space within a file name component, it assumes that the space
terminates the full file specification string.

The $FILESCAN service recognizes the DEC Multinational alphabetical
characters (such as a) as alphanumeric characters.

The $FILESCAN service does not (1) assume default values for unspecified
file specification components, (2) perform logical name translation on
components, (3) perform wildcard processing, or (4) perform directory
lookups.

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

The service completed successfully.

The service could not read the string pointed to by
the srcstr argument or could not write to an item
descriptor in the item list specified by the valuelst
argument.

The item list contains an invalid item code.

SYS-183

SYSTEM SERVICE DESCRIPTIONS
$FIND_HELD

$FIND_HELD Find Identifiers Held by User

FORMAT

RETURNS

ARGUMENTS

SVS-184

The Find Identifiers Held by User service returns the identifier(s) held by
a specified holder. When called repeatedly with a context longword, it
returns in succession all the identifiers held by the specified holder.

SVS$FIND_HELD holder ,[id} ,[attrib} ,{contxt]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

holder
VMS usage: rights_holder
type: quadword (unsigned)
access: read only
mechanism: by reference

Holder whose identifier(s) are to be found when $FIND-HELD completes
execution. The holder argument is the address of a quadword data structure
containing the holder identifier. This quadword data structure consists of a
longword containing the holder UIC, followed by a longword containing the
value zero.

id
VMS usage: rights_id
type: longword (unsigned)
access: write only
mechanism: by reference

Identifier value found when $FIND-HELD completes execution. The id
argument is the address of a longword containing the identifier value with
which the holder is associated.

attrib
VMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Attributes associated with the identifier returned in id when $FIND-HELD
completes execution. The attrib argument is the address of a longword
containing a bit mask specifying the attributes.

DESCRIPTION

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$FIND_HELD

Symbol values are offsets to the bits within the longword. You can also
obtain the values as masks with the appropriate bit set using the prefix
KGB$M rather than KGB$V. The symbols are defined in the system macro
library ($KGBDEF). The following are the symbols for each bit position:

Bit Position

KGB$V_DVNAMIC

KGB$V_RESOURCE

contxt
VMS usage: context

Meaning When Set

Allows the unprivileged holder to add or remove the
identifier from the process rights list

Allows the holder to charge resources, such as disk
blocks, to the identifier

type: longword (unsigned)
access: modify
mechanism: by reference

Context value used when repeatedly calling $FIND_HELD. The contxt
argument is the address of a longword used while searching for all identifiers.
The context value must be initialized to zero, and the resulting context of
each call to $FIND_HELD must be presented to each subsequent call. After
contxt is passed to SYS$FIND_HELD, you must not modify its value.

The Find Identifier Held by User service returns the identifier(s) associated
with the specified holder. To determine all the identifiers held by the
specified holder, you call SYS$FIND_HELD repeatedly until it returns
the status code SS$_NOSUCHID. When SS$_NOSUCHID is returned,
$FIND_HELD has returned all the identifiers, cleared the context value, and
deallocated the record stream.

If you complete your calls to SYS$FIND_HELD before SS$_NOSUCHID is
returned, you use SYS$FINISH_RDB to clear the context value and deallocate
the record stream.

Note that when you use wildcards with this service, the records are returned
in the order in which they were originally written, because the first record is
located on the basis of the holder ID. Thus, all the target records have the
same holder ID or, in other words, they have duplicate keys, which leads to
retrieval in the order in which they were written.

SS$_NQRMAL

SS$_ACCVIO

SS$_1VCHAN

SS$_1NSFMEM

SS$_1VIDENT

The service completed successfully.

The id argument cannot be read by the caller, or
the holder, attrib, or contxt argument cannot be
written by the caller.

The contents of the contxt longword are not valid.

The process dynamic memory is insufficient for
opening the rights database.

The specified holder identifier is of invalid format.

SYS-185

SYSTEM SERVICE DESCRIPTIONS
$FIND_HELD

SVS-186

SS$_NOIOCHAN

SS$_NOSUCHID

RMS$_PRV

No more rights database context streams are
available.

The specified holder identifier does not exist, or no
further identifiers are held by the specified holder.

You do not have read access to the rights
database.

Because the rights database is an indexed file accessed with VMS RMS, this
service may also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the VMS Record
Management Services Manual.

SYSTEM SERVICE DESCRIPTIONS
$FIND_HQLDER

$FIND_HOLDER Find Holder of Identifier

FORMAT

RETURNS

ARGUMENTS

The Find Holder of Identifier service returns the holder of a specified
identifier. When called repeatedly with a context longword, it returns
all the holders of the specified identifier in the order in which they were
added.

SYS$FIND_HOLDER id ,{holder] ,{attrib} ,{contxt]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

id
VMS usage: rights_id
type: longword (unsigned)
access: read only
mechanism: by value

Binary identifier value whose holders are found by $FIND_HOLDER. The id
argument is a longword containing the binary identifier value.

holder
VMS usage: rights_holder
type: quadword (unsigned)
access: write only
mechanism: by reference

Holder identifier returned when $FIND_HOLDER completes execution.
The holder argument is the address of a quadword containing the holder
identifier. The first longword contains the UIC of the holder with the high
order word containing the group number and the low-order word containing
the member number. The second longword contains the value zero.

attrib
VMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Mask of attributes associated with the holder record specified by holder. The
attrib argument is the address of a longword containing the attribute mask.

SYS-187

SYSTEM SERVICE DESCRIPTIONS
$FIND_HQLDER

DESCRIPTION

CONDITION
VALUES
RETURNED

SVS-188

Symbol values are offsets to the bits within the longword. You can also
obtain the values as masks with the appropriate bit set using the prefix
KGB$M rather than KGB$V. The symbols are defined in the system macro
library ($KGBDEF). The following are the symbols for each bit position:

Bit Position

KGB$V_DYNAMIC

KGB$V_RESOURCE

contxt
VMS usage: context

Meaning When Set

Allows the unprivileged holder to add or remove the
identifier from the process rights list

Allows the holder to charge resources, such as disk
blocks, to the identifier

type: longword (unsigned)
access: modify
mechanism: by reference

Context value used while searching for all the holders of the specified
identifier when executing $FIND_HOLDER. The contxt argument is
the address of a longword containing the context value. When calling
$FIND_HOLDER repeatedly, contxt must be set initially to zero and the
resulting context of each call to $FIND__HOLDER must be presented to each
subsequent call. After the argument is passed to SYS$FIND_HOLDER, you
must not modify its value.

The Find Holder of Identifier service returns the holder of the specified
identifier. To determine all the holders of the specified identifier, you call
SYS$FIND__HOLDER repeatedly until it returns the status code
SS$_NOSUCHID, which indicates that $FIND__HOLDER has returned all
identifiers, cleared the context longword, and deallocated the record stream.
If you complete your calls to $FIND__HOLDER before SS$_NOSUCHID is
returned, you use the $FINISH_RDB service to clear the context value and
deallocate the record stream.

Note that when you use wildcards with this service, the records are returned
in the order in which they were originally written. (This action results from
the fact that the first record is located on the basis of the identifier. Thus,
all the target records have the same identifier or, in other words, they have
duplicate keys, which leads to retrieval in the order in which they were
written.)

SS$_NQRMAL

SS$_ACCVIO

SS$_1VCHAN

SS$_1NSFMEM

The service completed successfully.

The id argument cannot be read by the caller, or
the holder, attrib, or contxt argument cannot be
written by the caller.

The contents of the contxt longword are not valid.

The process dynamic memory is insufficient for
opening the rights database.

SYSTEM SERVICE DESCRIPTIONS
$FINO_HQLDER

SS$_1VIDENT

SS$_NOIOCHAN

SS$_NOSUCHID

RMS$_PRV

The specified identifier or holder identifier is of
invalid format.

No more rights database context streams are
available.

The specified identifier does not exist in the
rights database, or no further holders exist for the
specified identifier.

The user does not have read access to the rights
database.

Because the rights database is an indexed file accessed with VMS RMS, this
service may also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the VMS Record
Management Services Manual.

SYS-189

SYSTEM SERVICE DESCRIPTIONS
$FINISH_RDB

$FINISH_RDB Terminate Rights Database
Context

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

CONDITION
VALUES
RETURNED

SYS-190

The Terminate Rights Database Context service deallocates the record
stream and clears the context value used with $FIND_HELD,
$FIND_HOLDER, or $1DTOASC.

SYS$FINISH_RDB contxt

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

contxt
VMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Context value to be cleared when $FINISH_RDB completes execution. The
contxt argument is a longword containing the address of the context value.

The $FINISH_RDB service clears the context longword and deallocates
the record stream associated with a sequence of rights database lookups
performed by the $IDTOASC, $FIND-HOLDER, and $FIND-HELD services.

If you repeatedly call $IDTOASC, $FIND_HOLDER, or $FIND_HELD until
SS$_NOSUCHID is returned, you do not need to call $FINISH-RDS because
the record stream has already been deallocated and the context longword has
already been cleared.

SS$_NORMAL

SS$_ACCVIO

SS$_1VCHAN

The service completed successfully.

The contxt argument cannot be written by the
caller.

The contents of the contxt longword are not valid.

Because the rights database is an indexed file accessed with VMS RMS, this
service may also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the VMS Record
Management Services Manual.

$FORCEX

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$FORCEX

Force Exit

The Force Exit system service causes an Exit ($EXIT) service call to be
issued on behalf of a specified process.

SYS$FORCEX {pidadr] ,[prcnam] ,{code]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

pidadr
VMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) of the process to be forced to exit. The pidadr
argument is the address of a longword containing the PID.

The pidadr argument is optional, but must be specified if the process that is
to be forced to exit is not in the same UIC group as the calling process.

If you specify neither the pidadr nor prcnam argument, the caller is forced to
exit and control is not returned.

prcnam
VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Process name of the process that is to be forced to exit. The prcnam argument
is the address of a character string descriptor pointing to a 1- to 15-character
process name string.

The prcnam argument can be used only on behalf of processes in the same
UIC group as the calling process. To force processes in other groups to exit,
you must specify the pidadr argument. This restriction exists because VMS
interprets the UIC group number of the calling process as part of the specified
process name; the names of processes are unique to UIC groups.

If you specify neither the pidadr nor prcnam argument, the caller is forced to
exit and control is not returned.

SYS-191

SYSTEM SERVICE DESCRIPTIONS
$FORCEX

DESCRIPTION

CONDITION
VALUES
RETURNED

SVS-192

code
VMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by value

Completion code value to be used as the exit parameter. The code argument
is a longword containing this value. If you do not specify the code argument,
a value of 0 is passed as the completion code.

Depending on the operation, the calling process may need a certain privilege
to use $FORCEX:

• You need GROUP privilege to force an exit for a process in the same
group that does not have the same UIC as the calling process.

• You need WORLD privilege to force an exit for any process in the system.

The Force Exit system service requires system dynamic memory.

The image executing in the target process follows normal exit procedures. For
example, if any exit handlers have been specified, they gain control before the
actual exit occurs. Use the Delete Process ($DELPRC) service if you do not
want a normal exit.

When a forced exit is requested for a process, a user mode AST is queued
for the target process. The AST routine causes the $EXIT service call to be
issued by the target process. Because the AST mechanism is used, user mode
ASTs must be enabled for the target process, or no exit occurs until ASTs
are reenabled. Thus, for example, a suspended process cannot be stopped by
$FORCEX. The process that calls $FORCEX receives no notification that the
exit is not being performed.

The $FORCEX service completes successfully if a force exit request is already
in effect for the target process but the exit is not yet completed.

SS$_NORMAL

SS$_ACCVIO

SS$_IVLOGNAM

SS$_NONEXPR

SS$_NOPRIV

SS$_INSFMEM

The service completed successfully.

The process name string or string descriptor
cannot be read by the caller, or the process
identification cannot be written by the caller.

The process name string has a length equal to 0 or
greater than 15.

The specified process does not exist, or an invalid
process identification was specified.

The process does not have the privilege to force
an exit for the specified process.

The system dynamic memory is insufficient for the
operation.

SYSTEM SERVICE DESCRIPTIONS
$FORMAT_ACL

$FORMAT_ACL Format Access Control List Entry

FORMAT

RETURNS

ARGUMENTS

The Format Access Control List Entry service formats the specified ACL
entry (ACE) into a text string.

SYS$FORMAT_ACL aclent ,[acllen] ,aclstr ,[width]
,{trmdsc] ,{indent] ,[accnam]
,[nullarg} ,[nullarg]

VMS usage: cond_value
type: longword {unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

aclent
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Description of the ACE formatted when $FORMAT_ACL completes execution.
The aclent argument is the address of a descriptor pointing to a buffer
containing the description of the input ACE. The first byte of the buffer
contains the length of the ACE; the second byte contains a value that
identifies the type of ACE, which in turn determines the ACE format.

For more information about the ACE format, see the DESCRIPTION section.

a ell en
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the output string resulting when $FORMAT_ACL completes
execution. The acllen argument is the address of a word containing the
number of characters written to aclstr.

aclstr
VMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor-fixed-length string descriptor

Formatted ACE resulting when $FORMAT_ACL completes its execution.
The aclstr argument is the address of a string descriptor pointing to a buffer
containing the output string.

SVS-193

SYSTEM SERVICE DESCRIPTIONS
$FORMAT_ACL

SYS-194

width
VMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Maximum width of the formatted ACE resulting when $FORMAT_ACL
completes its execution. The width argument is the address of a word
containing the maximum width of the formatted ACE. If this argument is
omitted or contains zero, an infinite length display line is assumed. When the
width is exceeded, the character specified by trmdsc is inserted.

trmdsc
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Line termination character(s) used in the formatted ACE. The trmdsc
argument is the address of a descriptor pointing to a character string
containing the termination character(s) that are inserted for each formatted
ACE when the width has been exceeded.

indent
VMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Number of blank characters beginning each line of the formatted ACE. The
indent argument is the address of a word containing the number of blank
characters you want inserted at the beginning of each formatted ACE.

accnam
VMS usage: access_bit_names
type: longword (unsigned)
access: read only
mechanism: by reference

Names of the bits in the access mask when executing the $FORMAT_ACL.
The accnam argument is the address of an array of 32 quadword descriptors
that define the names of the bits in the access mask. Each element points to
the name of a bit. The first element names bit 0, the second element names
bit 1, and so on. If you omit accnam, the following names are used:

Bit 0 READ
Bit 1 WRITE
Bit 2 EXECUTE
Bit 3 DELETE
Bit 4 CONTROL
Bit 5 BIT_5
Bit 6 BIT_6

Bit 31 BIT_31

DESCRIPTION

SYSTEM SERVICE DESCRIPTIONS
$FORMAT_ACL

nullarg
VMS usage: nulLarg
type: longword (unsigned)
access: read only
mechanism: by value

Place-holding argument reserved by DIGITAL.

The Format Access Control List Entry service formats the specified ACL entry
(ACE) into text string representation. The format for ACE type is described
in the following sections. The byte offsets and type values are defined in the
system macro library ($ACEDEF).

Alarm ACE

The access alarm ACE sets a security alarm. Its format is as follows:

flags l type l length

access

alarm name

ZK-1710-84

Field Symbol Name Description

length ACE$B_SIZE Byte containing the length in bytes of
the ACE buffer

type ACE$B_TYPE Byte containing the type value
ACE$C_ALARM

flags ACE$W_FLAGS Word containing alarm ACE information
and ACE type-independent information

access ACE$L_ACCESS Longword containing a mask indicating
the access modes to be watched

alarm name ACE$T _AUDITNAME Counted character string containing the
alarm name

The flag field contains information specific to alarm ACEs and information
applicable to all types of ACE. The following symbols are bit offsets to the
alarm ACE information:

Bit Position

ACE$V_SUCCESS

ACE$V_F Al LURE

Meaning When Set

Indicates that the alarm is raised when access is
successful

Indicates that the alarm is raised when access fails

SYS-195

SYSTEM SERVICE DESCRIPTIONS
$FORMAT_ACL

SYS-196

The following symbols are bit offsets to ACE information that is independent
of ACE type:

Bit Position

ACE$V_DEFAULT

ACE$V_HIDDEN

Meaning When Set

This ACE is added to the ACL of any file created in
the directory whose ACL contains this ACE. This
option is applicable only for an ACE in a directory
file's ACL.

This ACE is application dependent. You cannot
use the DCL ACL commands and the ACL editor to
change the setting; the DCL command
DIRECTORY/ ACL does not display it.

ACE$V_NOPROPAGATE This ACE is not propagated among versions of the
same file.

ACE$V_PROTECTED This ACE is not deleted if the entire ACL is deleted;
instead you must delete this ACE explicitly.

The following symbol values are offsets to bits within the access mask. You
can also obtain the symbol values as masks with the appropriate bit set using
the prefix ACE$M rather than ACE$V.

Bit Position

ACE$V_READ

ACE$V_ WRITE

ACE$V_EXECUTE

ACE$V_DELETE

ACE$V_CONTROL

Application ACE

Meaning When Set

Read access is monitored.

Write access is monitored.

Execute access is monitored.

Delete access is monitored.

Modification of the access field is monitored.

The application ACE contains application-dependent information. Its format
is as follows:

flags 1 type I length

application mask

application information
.
.

ZK-1711-84

SYSTEM SERVICE DESCRIPTIONS
$FORMAT-ACL

Field

length

type

flags

application mask

application
information

Symbol Name Description

ACE$B_SIZE Byte containing the length in bytes
of the ACE buffer.

ACE$B_ TYPE Byte containing the type value
ACE$C_INFO.

ACE$W_FLAGS Word containing application
ACE information and ACE type
independent information.

ACE$L _INFO_FLAGS Longword containing a mask
defined and used by the
application.

ACE$T_INFQ_START Variable length data structure
defined and used by the
application. The length of this
data is implied by length field.

The flag field contains information specific to application ACEs and
information applicable to all types of ACE. The following symbol is a bit
offset to the application ACE information:

Bit Position

ACE$V_INFQ_ TYPE

Meaning When Set

Four-bit field containing a value indicating whether the
application is a CSS application (ACE$C_CSS) or a
customer application (ACE$C_CUST)

The following symbols are bit offsets to ACE information that is independent
of ACE type:

Bit Position

ACE$V_DEFAUL T

ACE$V_HIDDEN

ACE$V_NOPROPAGATE

ACE$V_PROTECTED

Directory Default ACE

Meaning When Set

This ACE is added to the ACL of any file created in
the directory whose ACL contains this ACE. This
bit is applicable only for an ACE in a directory file's
ACL.

This bit is application dependent. You cannot use
the DCL ACL commands and the ACL editor to
change the setting; the DCL command
DIRECTORY/ ACL does not display it.

This ACE is not propagated between versions of the
same file.

This ACE is not deleted if the entire ACL is deleted;
instead you must delete this ACE explicitly.

The directory default ACE specifies the UIC-based protection for all files
created in the directory. You can use this type of ACE only in the ACL of a
directory file. Its format is as follows.

SYS-197

SYSTEM SERVICE DESCRIPTIONS
$FORMAT_ACL

SYS-198

flags l
spare

system

owner

group

world

Field Symbol Name

length ACE$B_SIZE

type ACE$B_TYPE

flags ACE$W_FLAGS

spare ACE$L_SPARE 1

system ACE$L_SYS_PROT

owner ACE$L_OWN_PROT

group ACE$L _GRP _PROT

world ACE$L_WOR_PROT

type l length

ZK-1712-84

Description

Byte containing the length in bytes of the
ACE buffer.

Byte containing the type value
ACE$C_DIRDEF.

Word containing ACE type-independent
information.

Longword that is reserved for future use and
must be zero.

Longword containing a mask indicating the
access mode granted to system users. Each
bit represents one type of access.

Longword containing a mask indicating the
access mode granted to the owner. Each bit
represents one type of access.

Longword containing a mask indicating the
access mode granted to group users. Each
bit represents one type of access.

Longword containing a mask indicating the
access mode granted to the world. Each bit
represents one type of access.

The flag field contains information applicable to all types of ACE. The
following symbols are bit offsets to ACE information that is independent
of ACE type:

Bit Position

ACE$V_DEFAUL T

Meaning When Set

This ACE is added to the ACL of any file created in
the directory whose ACL contains this ACE. This
option is applicable only for an ACE in a directory
file's ACL.

SYSTEM SERVICE DESCRIPTIONS
$FORMAT_ACL

Bit Position

ACE$V_HIDDEN

Meaning When Set

This ACE is application dependent. You cannot
use the DCL ACL commands and the ACL editor to
change the setting; the DCL command
DIRECTORY/ ACL does not display it.

ACE$V_NOPROPAGATE This ACE is not propagated among versions of the
same file.

ACE$V_PROTECTED This ACE is not deleted if the entire ACL is deleted;
instead you must delete this ACE explicitly.

The system interprets the bits within the access mask as shown in the
following table. The following symbol values are offsets to bits within the
mask indicating the access mode granted in the system, owner, group, and
world fields:

Bit Position

ACE$V_READ

ACE$V_ WRITE

ACE$V_EXECUTE

ACE$V_DELETE

Meaning When Set

Read access is granted.

Write access is granted.

Execute access is granted.

Delete access is granted.

You can also obtain the symbol values as masks with the appropriate bit set
by using the prefix ACE$M rather than ACE$V.

Identifier ACE

The identifier ACE controls access to an object based on identifiers. Its format
is as follows.

SYS-199

SYSTEM SERVICE DESCRIPTIONS
$FORMAT_ACL

flags l type

access

reserved

reserved

.

identifier

identifier

.

.

Field Symbol Name

length ACE$B_SIZE

type ACE$B_TYPE

flags ACE$W _FLAGS

access ACE$L_ACCESS

reserved ACE$V_RESERVED

identifier ACE$L_KEY

SYS-200

l length

ZK-1713-84

Description

Byte containing the length in bytes of
the A CE buffer.

Byte containing the type value
ACE$C_KEYID.

Word containing identifier ACE
information and ACE type-independent
information.

Longword containing a mask indicating
the access mode granted to the
specified identifiers.

Longwords containing application
specific information. The number of
reserved longwords is specified in the
flags field.

' Longwords containing identifiers. The
number of longwords is implied by
ACE$B_LENGTH. If an accessor holds
all of the listed identifiers, the ACE is
said to match the accessor, and the
access specified in ACE$L_ACCESS is
granted.

SYSTEM SERVICE DESCRIPTIONS
$FORMAT-ACL

The flag field contains information specific to identifier ACEs and information
applicable to all types of ACE. The following symbol is a bit offset to identifier
ACE information:

Bit Position Meaning When Set

ACE$V_RESERVED Four-bit field containing the number of longwords to
reserve for application-dependent data. The number must
be between 0 and 15. The reserved longwords, if any,
immediately precede the identifiers.

The following symbols are bit offsets to ACE information that is independent
of ACE type:

Bit Position

ACE$V_DEFAUL T

ACE$V_HIDDEN

Meaning When Set

This ACE is added to the ACL of any file created in
the directory whose ACL contains this ACE. This
bit is applicable only for an ACE in a directory file's
ACL.

This bit is application dependent. You cannot use
the DCL ACL commands and the ACL editor to
change the setting; the DCL command
DIRECTORY/ ACL does not display it.

ACE$V_NOPROPAGATE This ACE is not propagated between versions of the
same file.

ACE$V_PROTECTED This ACE is not deleted if the entire ACL is deleted;
instead you must delete this ACE explicitly.

The following symbol values are offsets to bits within the mask indicating the
access mode granted in the system, owner, group, and world fields:

Bit Position

ACE$V_READ

ACE$V_WRITE

ACE$V_EXECUTE

ACE$V_DELETE

ACE$V_CONTROL

Meaning When Set

Read access is granted.

Write access is granted.

Execute access is granted.

Delete access is granted.

Modification of the access field is granted.

You can also obtain the symbol values as masks with the appropriate bit set
by using the prefix ACE$M rather than ACE$V.

SVS-201

SYSTEM SERVICE DESCRIPTIONS
$FORMAT_ACL

CONDITION
VALUES
RETURNED

SYS-202

SS$_NORMAL

SS$_ACCVIO

SS$_BUFFEROVF

The service completed successfully.

The ACL entry or its descriptor cannot be read
by the caller, or the string descriptor cannot be
read by the caller, or the length word or the string
buffer cannot be written by the caller.

The service completed successfully. The output
string has overflowed the buffer and has been
truncated.

$GETDVI

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$GETDVI

Get Device/Volume
Information

The Get Device/Volume Information service returns information about
an 1/0 device; this information consists of primary and secondary device
characteristics.

The $GETDVI service completes asynchronously; that is, it returns to
the caller after queuing the information request, without waiting for the
requested information to be returned.

For synchronous completion, use the Get Device/Volume Information and
Wait ($GETDVIW) service. The $GETDVIW service is identical to the
$GETDVI service in every way except that $GETDVIW returns to the caller
with the requested information.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System
Services.

SYS$GETDVI [efn] ,[chan] ,{devnam] ,itmlst [,iosb}
[,astadr] [,astprm] [,nul/arg}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

efn
VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when $GETDVI returns the requested
information. The efn argument is a longword containing this number;
however, $GETDVI uses only the low-order byte.

Upon request initiation, $GETDVI clears the specified event flag (or event
flag 0 if efn was not specified). Then, when $GETDVI returns the requested
information, it sets the specified event flag (or event flag 0).

SYS-203

SYSTEM SERVICE DESCRIPTIONS
$GETDVI

SYS-204

ch an
VMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

Number of the 1/0 channel assigned to the device about which information
is desired. The chan argument is a word containing this number.

To identify a device to $GETDVI, you can specify either the chan or devnam
argument, but you should not specify both. If you specify both arguments,
the chan argument is used.

If you specify neither chan nor devnam, $GETDVI uses a default value of 0
for chan.

devnam
VMS usage: device_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

The name of the device about which $GETDVI is to return information. The
devnam argument is the address of a character string descriptor pointing to
this name string.

The device name string may be either a physical device name or a logical
name. If the first character in the string is an underscore (-), the string
is considered a physical device name; otherwise, the string is considered a
logical name and logical name translation is performed until either a physical
device name is found or the system default number of translations has been
performed.

If the device name string contains a colon, the colon and the characters that
follow it are ignored.

To identify a device to $GETDVI, you can specify either the chan or devnam
argument, but you should not specify both. If both arguments are specified,
the chan argument is used.

If you specify neither chan nor devnam, $GETDVI uses a default value of 0
for chan.

itmlst
VMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying which information about the device is to be returned. The
itmlst argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
a longword of 0.

SYSTEM SERVICE DESCRIPTIONS
$GETDVI

The following diagram depicts the format of a single item descriptor.

31 15 0

item code I buffer length

buffer address

return length address

ZK-1705-84

$GETDVI Item Descriptor Fields

buffer length
A word containing a user-supplied integer specifying the length (in bytes) of
the buffer in which $GETDVI is to write the information. The length of the
buffer needed depends upon the item code specified in the item code field
of the item descriptor. If the value of buffer length is too small, $GETDVI
truncates the data.

item code
A word containing a user-supplied symbolic code specifying the item of
information that $GETDVI is to return. The $DVIDEF macro defines these
codes. Each item code is described under "$GETDVI Item Codes."

buffer address
A longword containing the user-supplied address of the buffer in which
$GETDVI is to write the information.

return length address
A longword containing the user-supplied address of a word in which
$GETDVI writes the length in bytes of the information it returned.

$GETDVI Item Codes

DV1$--ACPPI D
When you specify DVI$_ACPPID, $GETDVI returns the ACP process ID as a
4-byte hexadecimal number.

DV1$--ACPTVPE
When you specify DVI$_ACPTYPE, $GETDVI returns the ACP type code as
a 4-byte hexadecimal number. The following symbols define each of the ACP
type codes that $GETDVI can return.

SVS-205

SYSTEM SERVICE DESCRIPTIONS
$GETDVI

SYS-206

Symbol

DVl$C_ACP_F11V1

DVl$C_ACP_F11V2

DVl$C_ACP _MT A

DVl$C_ACP _NET

DVl$C_ACP _REM

DV1$_ALLDEVNAM

Description

Files-11 Level 1

Files-11 Level 2

Magnetic tape

Networks

Remote 1/0

When you specify DVI$-ALLDEVNAM, $GETDVI returns the allocation
class-device-name, which is a 64-byte hexadecimal string. The allocation
class-device-name uniquely identifies each device that is currently connected
to any VAX node in a VAXcluster or to a single-node VAX. This item code
generates a single unique name for a device even if the device is dual ported.

One use for the allocation-class-device-name might be in an application
wherein processes need to coordinate their access to devices (not volumes)
using the VMS lock manager. In this case, the program would make the
device a resource to be locked by the VMS lock manager, specifying as the
resource name the following concatenated components: (1) a user facility
prefix followed by an underscore character and (2) the allocation-class
device-name of the device.

Note that the name returned by the DVI$_DEVLOCKNAM item code should
be used to coordinate access to volumes.

DVl$_ALLOCLASS
When you specify DVI$-ALLOCLASS, $GETDVI returns the allocation class
of the host as a longword integer between 0 and 255. An allocation class is a
unique number between 0 and 255 that the system manager assigns to a pair
of hosts and the dual-pathed devices that the hosts make available to other
nodes in the VAXcluster.

The allocation class provides a way for you to access dual-pathed devices
through either of the hosts that serve you to the VAXcluster. In this way,
if one host of an allocation class set is not available, you can gain access
to a device specified by that allocation class through the other host of the
allocation class. You do not have to be concerned with which host of the
allocation class provides access to the device. Specifically, the device name
string is constructed of the following format:

$allocation_class$device__name

For a detailed discussion of allocation classes, refer to the VMS VAXcluster
Manual.

DV1$_AL T_HQST_A VAIL
When you specify DVI$-AL T.Jf OST_A VAIL, $GETDVI returns a longword
that is interpreted as Boolean. A value of 1 indicates that the host serving the
alternate path is available; a value of 0 indicates that it is not.

The host is the node that makes the device available to other nodes in the
VAXcluster. A host node can be either a VAX with an MSCP server or an
HSC-50.

SYSTEM SERVICE DESCRIPTIONS
$GETDVI

A dual-pathed device is one that is made available to the VAXcluster by two
hosts. Each of the hosts provides access (serves a path) to the device for
users. One host serves the primary path; the other host serves the alternate
path. The primary path is the path that the system creates through the first
available host.

You should not be concerned with which host provides access to the device.
When accessing a device, you specify the allocation class of the desired
device, not the name of the host that serves it.

If the host serving the primary path fails, the system automatically creates a
path to the device through the alternate host.

DVl$_ALT_HQST_NAME
When you specify DVI$_AL TJiOST_NAME, $GETDVI returns the name of
the host serving the alternate path as a 64-byte zero-filled string.

For more information about hosts, dual-pathed devices and primary and
alternate paths, refer to the description of the DVl$_AL T-80ST_A VAIL item
code.

DVl$_AL T_HQST_ TVPE
When you specify DVI$_ALT-80ST_TYPE, $GETDVI returns, as a
4-byte string, the hardware type of the host serving the alternate path.
Each hardware type has a symbolic name. The following table shows each
symbolic name and the host it denotes:

Name

VAX

HS50

HS70

Host

Any VAX family processor

HSC-50

HSC-70

For more information about hosts, dual-pathed devices, and primary and
alternate paths, refer to the description of the DVl$_AL T-80ST_A VAIL item
code.

DVl$_CLUSTER
When you specify DVl$_CLUSTER, $GETDVI returns the volume cluster size
as a 4-byte decimal number. This item code is applicable only to disks.

DVl$_CVLINDERS
When you specify DVl$_CYLINDERS, $GETDVI returns the number of
cylinders on the volume as a 4-byte decimal number. This item code is
applicable only to disks.

DVl$_DEVBUFSIZ
When you specify DVl$_DEVBUFSIZ, $GETDVI returns the device buffer
size (for example, the width of a terminal or the block size of a tape) as a
4-byte decimal number.

DVl$_DEVCHAR
When you specify DVl$_DEVCHAR, $GETDVI returns device-independent
characteristics as a 4-byte bit vector. Each characteristic is represented
by a bit. When $GETDVI sets a bit, the device has the corresponding

SYS-207

SYSTEM SERVICE DESCRIPTIONS
$GETDVI

SYS-208

characteristic. Each bit in the vector has a symbolic name. The $DEVDEF
macro defines the following symbolic names:

Symbol

DEV$V_REC

DEV$V_CCL

DEV$V_TRM

DEV$V_DIR

DEV$V_SDI

DEV$V_SQD

DEV$V_SPL

DEV$V_OPR

DEV$V_RCT

DEV$V_NET

DEV$V_FOD

DEV$V_DUA

DEV$V_SHR

DEV$V_GEN

DEV$V_AVL

DEV$V_MNT

DEV$V_MBX

DEV$V_DMT

DEV$V_ELG

DEV$V_ALL

DEV$V_FOR

DEV$V_SWL

DEV$V_IDV

DEV$V_ODV

DEV$V_RND

DEV$V_RTM

DEV$V_RCK

DEV$V_WCK

Description

Device is record oriented.

Device is a carriage control device.

Device is a terminal.

Device is directory structured.

Device is single-directory structured.

Device is sequential and block oriented.

Device is being spooled.

Device is an operator.

Disk contains ACT; DEC standard 166 disk.

Device is a network device.

Device is files oriented.

Device is dual ported.

Device is shareable.

Device is a generic device.

Device is available for use.

Device is mounted.

Device is a mailbox.

Device is marked for dismount.

Device has error logging enabled.

Device is allocated.

Device is mounted foreign.

Device is software write locked.

Device can provide input.

Device can provide output.

Device allows random access.

Device is a real-time device.

Device has read-checking enabled.

Device has write-checking enabled.

Note that each device characteristic has its own individual $GETDVI item
code with the format DVI$_xxxx, where xxxx are the characters following the
underscore character in the symbolic name for that device characteristic.

For example, when you specify the item code DVI$_REC, $GETDVI returns
a longword value that is interpreted as Boolean. If the value is 0, the device
is not record oriented; if the value is l, it is record oriented. This information
is identical to that returned in the DEV$V_REC bit of the longword vector
specified by the DVl$_DEVCHAR item code.

The buffer must specify a longword for all of these device-characteristic item
codes.

SYSTEM SERVICE DESCRIPTIONS
$GETDVI

DVl$_DEVCHAR2
When you specify DVl$_DEVCHAR2, $GETDVI returns additional device
independent characteristics as a 4-byte bit vector. Each bit in the vector,
when set, corresponds to a symbolic name. The $DEVDEF macro defines
these symbolic names.

DVl$_DEVCLASS
When you specify DVl$_DEVCLASS, $GETDVI returns the device class
as a 4-byte decimal number. Each class has a corresponding symbol. The
$DCDEF macro defines these symbols. The following table describes each
device class symbol.

Symbol

DC$_DISK

DC$_ TAPE

DC$_ SC OM

DC$_ CARD

DC$_ TERM

DC$_LP

DC$_REAL TIME

DC$_MAILBOX

DC$_MISC

Description

Disk device

Tape device

Synchronous communications device

Card reader

Terminal

Line printer

Real-time

Mailbox

Miscellaneous device

DVl$_DEVDEPEND
When you specify DVl$_DEVDEPEND, $GETDVI returns device-dependent
characteristics as a 4-byte bit vector. To determine what information is
returned for a particular device, refer to the VMS 1/0 User's Reference Volume.

Note that, for terminals only, individual $GETDVI item codes are provided
for most of the informational items returned in the DVl$_DEVDEPEND
longword bit vector. The names of these item codes have the format
DVl$_TT_xxxx, where xxxx is the characteristic name. The same characteristic
name follows the underscore character in the symbolic name for each bit
(defined by the $TTDEF macro) in the DVl$_DEVDEPEND longword. For
example, the DVl$_TT_NOECHO item code returns the same information as
that returned in the DVl$_DEVDEPEND bit whose symbolic name is
TT$V_NOECHO.

Each such item code requires that the buffer specify a longword value, which
is interpreted as Boolean. A value of 0 indicates that the terminal does not
have that characteristic; a value of 1 indicates that it does.

The list of these terminal-specific item codes follows this list of item codes.

SVS-209

SYSTEM SERVICE DESCRIPTIONS
$GETDVI

SYS-210

DVl$_DEVDEPEND2
When you specify DVl$_DEVDEPEND2, $GETDVI returns additional device
dependent characteristics as a 4-byte bit vector. Refer to the VMS I/O User's
Reference Volume to determine what information is returned for a particular
device.

Note that, for terminals only, individual $GETDVI item codes are provided
for most of the informational items returned in the DVl$_DEVDEPEND2
longword bit vector. As with DVl$_DEVDEPEND, the same characteristic
name appears in the item code as appears in the symbolic name defined
for each bit in the DVl$_DEVDEPEND2 longword, except that in the case
of DVl$_DEVDEPEND2, the symbolic names for bits are defined by the
$ TT2DEF macro.

The list of these terminal-specific item codes follows this list of item codes.

DVl$_DEVLOCKNAM
When you specify DVl$_DEVLOCKNAM, $GETDVI returns the device lock
name, which is a 64-byte hexadecimal string. The device lock name uniquely
identifies each volume or volume set in a VAXcluster or in a single node VAX.
This item code is applicable only to disks.

The item code is applicable to all disk volumes and volume sets: mounted,
not mounted, mounted shared, mounted private, or mounted foreign.

The device lock name is assigned to a volume when it is first mounted, and
you cannot change this name, even if the volume name itself is changed. This
allows any process on any VAX node in a VAXcluster to access a uniquely
identified volume.

One use for the device lock name might be in an application wherein
processes need to coordinate their access to files using the VMS lock manager.
In this case, the program would make the file a resource to be locked by
the VMS lock manager, specifying as the resource name the following
concatenated components: (1) a user facility prefix followed by an underscore
character, (2) the device lock name of the volume on which the file resides,
and (3) the file ID of the file.

DVl$_DEVNAM
When you specify DVl$_DEVNAM, $GETDVI returns the device name as a
64-byte, zero-filled string. The node name is not returned.

DVl$_DEVSTS
When you specify DVl$_DEVSTS, $GETDVI returns device-dependent status
information as a 4-byte bit vector. The $UCBDEF macro defines symbols for
the status bits. For this device-dependent information, refer to the VMS l/O
User's Reference Volume.

DVl$_DEVTYPE
When you specify DVl$_DEVTYPE, $GETDVI returns the device type as a
4-byte decimal number. The $DCDEF macro defines symbols for the device
types.

DVl$_DISPLA V _DEVNAM
When you specify DVl$_DISPLAY_DEVNAM, $GETDVI returns the
preferred device name for user displays as a 256-byte zero-filled string.
The DVl$_DISPLAY_DEVNAM item code is not recommended for use with

SYSTEM SERVICE DESCRIPTIONS
$GETDVI

the $ASSIGN service. Use the DVI4_ALLDEVNAM item code to return an
allocation class device name that is usable as input to a program.

DVl$_ERRCNT
When you specify DVI$_ERRCNT, $GETDVI returns the device's error count
as a 4-byte decimal number.

DVl$_FREEBLOCKS
When you specify DVI$_FREEBLOCKS, $GETDVI returns the number of free
blocks on a disk as a 4-byte decimal number. This item code is applicable
only to disks.

DVl$_FULLDEVNAM
When you specify DVI$_FULLDEVNAM, $GETDVI returns the node name
and device name as a 64-byte, zero-filled string.

The DVI$_FULLDEVNAM item code is useful in a VAXcluster environment
because, unlike DVI$_DEVNAM, DVI$JULLDEVNAM returns the name of
the VAX node on which the device resides.

One use for the DVI$_FULLDEVNAM item code might be to retrieve the
name of a device in order to have that name displayed on a terminal.
However, you should not use this name as a resource name as input to
the lock manager; use the name returned by the DVI$_DEVLOCKNAM item
code for locking volumes and the name returned by DVI$_ALLDEVNAM for
locking devices.

DVl$_HQST_AVAIL
When you specify DVI$_HOST_AVAIL, $GETDVI returns a longword, which
is interpreted as Boolean. A value of 1 indicates that the host serving the
primary path is available; a value of 0 indicates that it is not.

For more information about hosts, dual-pathed devices, and primary and
alternate paths, refer to the description of the DVI$_ALT_HOST_A VAIL item
code.

DVl$_HOST_CQUNT
When you specify DVI$_HOST_COUNT, $GETDVI returns, as a longword
integer, the number of hosts that make the device available to other nodes in
the VAXcluster. One or two hosts, but no more, can make a device available
to other nodes in the VAXcluster.

For more information about hosts, dual-pathed devices, and primary and
alternate paths, refer to the description of the DVI$_ALT_HOST_AVAIL item
code.

DVl$_HOST_NAME
When you specify DVI$_HOST_NAME, $GETDVI returns (as a 64-byte,
zero-filled string) the name of the host serving the primary path.

For more information about hosts, dual-pathed devices, and primary and
alternate paths, refer to the description of the DVI$_AL T_HOST_A VAIL item
code.

DVl$_HQST_ TVPE
When you specify DVI$_HOST_ TYPE, $GETDVI returns, as a 4-byte string,
the type of host serving the primary path. Each hardware type has a

SYS-211

SYSTEM SERVICE DESCRIPTIONS
$GETDVI

SYS-212

symbolic name. The following table shows each symbolic name and the
host it denotes.

Name

VAX

HS50

HS70

Host

Any VAX family processor

HSC-50

HSC-70

For more information about hosts, dual-pathed devices, and primary and
alternate paths, refer to the description of the DVl$__AL T_HOST__A VAIL item
code.

DVl$_LQCKID
When you specify DVl$_LOCKID, $GETDVI returns the lock ID of the
lock on a disk. The VMS lock manager locks a disk if it is available to all
VAX nodes in a VAXcluster and it is either allocated or mounted. A disk is
available to all VAX nodes in a VAXcluster if, for example, it is served by an
HSC controller or MSCP server, or if it is a dual-ported MASSBUS disk.

The buffer must specify a longword into which $GETDVI is to return the
4-byte hexadecimal lock ID.

DVl$_LOGVOLNAM
When you specify DVl$_LOGVOLNAM, $GETDVI returns the logical name
of the volume or volume set as a 64-byte string.

DVl$_MAXBLOCK
When you specify DVl$_MAXBLOCK $GETDVI returns the maximum
number of blocks on the volume as a 4-byte decimal number. This item code
is applicable only to disks.

DVl$_MAXFILES
When you specify DVI$_MAXFILES, $GETDVI returns the maximum number
of files on the volume as a 4-byte decimal number. This item code is
applicable only to disks.

DVl$_MEDIA_ID
When you specify DVI$_MEDIA-1D, $GETDVI returns the nondecoded
media ID as a longword. This item code is applicable only to disks and tapes.

DVl$_MEDIA_NAME
When you specify DVI$_MEDIA-NAME, $GETDVI returns the name of the
volume type (for example, RK07 or TA78) as a 64-byte, zero-filled string. This
item code is applicable only to disks and tapes.

DVl$_MEDIA_ TVPE
When you specify DVl$_MEDIA_ TYPE, $GETDVI returns the device name
prefix of the volume (for example, DM for an RK07 device or MU for a TA78
device) as a 64-byte, zero-filled string. This item code is applicable only to
disks and tapes.

DVl$_MQUNTCNT
When you specify DVl$_MOUNTCNT, $GETDVI returns the mount count
for the volume as a 4-byte decimal number.

SYSTEM SERVICE DESCRIPTIONS
$GETDVI

DVl$_MSCP _UNIT_NUMBER
When you specify DVI$_MSCP_UNIT_NUMBER, $GETDVI returns the
internal coded value for MSCP unit numbers as a longword integer. This
item code is reserved by DIGITAL.

DVl$_NEXTDEVNAM
When you specify DVI$_NEXTDEVNAM, $GETDVI returns the device name
of the next volume in the volume set as a 64-byte, zero-filled string. This
item code is applicable only to disks.

DVl$_QPCNT
When you specify DVl$_0PCNT, $GETDVI returns the operation count for
the volume as a 4-byte decimal number.

DVl$_QWNUIC
When you specify DVl$_0WNUIC, $GETDVI returns the user identification
code (UIC) of the owner of the device as a standard 4-byte VMS UIC.

DVl$_PID
When you specify DVJ$_pID, $GETDVI returns the process identification
(PID) of the owner of the device as a 4-byte hexadecimal number.

DVl$_RECSIZ
When you specify DVI$_RECSIZ, $GETDVI returns the blocked record size
as a 4-byte decimal number.

DVl$_REFCNT
When you specify DVl$_REFCNT, $GETDVI returns the number of channels
assigned to the device as a 4-byte decimal number.

DVl$_REMOTE_DEVICE
When you specify DVI$_REMOTE_DEVICE, $GETDVI returns a longword,
which is interpreted as Boolean. A value of 1 indicates that the device is a
remote device; a value of 0 indicates that it is not a remote device. A remote
device is a device which is not directly connected to the local node, but
instead is visible through the VAXcluster.

DVl$_ROOTDEVNAM
When you specify DVI$_ROOTDEVNAM, $GETDVI returns the device name
of the root volume in the volume set as a 64-byte, zero-filled string. This item
code is applicable only to disks.

DVl$_SECTORS
When you specify DVl$_SECTORS, $GETDVI returns the number of sectors
per track as a 4-byte decimal number. This item code is applicable only to
disks.

DVl$_SERIALNUM
When you specify DVl$_SERIALNUM, $GETDVI returns the serial number
of the volume as a 4-byte decimal number. This item code is applicable only
to disks.

SVS-213

SYSTEM SERVICE DESCRIPTIONS
$GETDVI

SYS-214

DVl$_SERVED_DEVICE
When you specify DVl$_SERVED_DEVICE, $GETDVI returns a longword,
which is interpreted as Boolean. A value of 1 indicates that the device is a
served device; a value of 0 indicates that it is not a served device. A served
device is one whose local node makes it available to other nodes in the
VAXcluster.

DVl$_SHDW_CATCHUP_CQPYING
This item code applies only to the volume shadowing option. See the VAX
Volume Shadowing Manual.

DVl$_SHDW_fAILED_MEMBER
This item code applies only to the volume shadowing option. See the VAX
Volume Shadowing Manual.

DVl$_SHDW_MASTER
This item code applies only to the volume shadowing option. See the VAX
Volume Shadowing Manual.

DVl$_SHDW_MASTER_NAME
This item code applies only to the volume shadowing option. See the VAX
Volume Shadowing Manual.

DVl$_SHDW_MEMBER
This item code applies only to the volume shadowing option. See the VAX
Volume Shadowing Manual.

DVl$_SHDW_MERGE_CQPYING
This item code applies only to the volume shadowing option. See the VAX
Volume Shadowing Manual.

DVl$_SHDW_NEXT_MBR_NAME
This item code applies only to the volume shadowing option. See the VAX
Volume Shadowing Manual.

DVl$_STS
When you specify DVl$_STS, $GETDVI returns the device unit status as a
4-byte bit vector. Each bit in the vector, when set, corresponds to a symbolic
name that is defined by the $UCBDEF macro. The following table describes
each name.

Symbol

UCB$V_TIM

UCB$V_INT

UCB$V_ERLOGIP

UCB$V_CANCEL

UCB$V_ONLINE

UCB$V_POWER

UCB$V_ TIMOUT

UCB$V_INTTYPE

Description

Time out is enabled.

Interrupt is expected.

Error log is in progress on unit.

1/0 on unit is cancelled.

Unit is on line.

Power failed while unit busy.

Unit timed out.

Receiver interrupt.

SYSTEM SERVICE DESCRIPTIONS
$GETDVI

Symbol

UCB$V_BSY

UCB$V_MOUNTING

UCB$V_DEADMO

UCB$V_ V AUD

UCB$V_UNLOAD

UCB$V_ TEMPLATE

UCB$V_MNTVERIP

UCB$V_ WRONGVOL

UCB$V_DELETEUCB

DVl$_ TRACKS

Description

Unit is busy.

Device is being mounted.

Deallocate at dismount.

Volume is software valid.

Unload volume at dismount.

Template UCB from which other UCBs for this device
type are made.

Mount verification is in progress.

Wrong volume detected during mount verification.

Delete this UCB when reference count equals 0.

When you specify DVI$_TRACKS, $GETDVI returns the number of tracks
per cylinder as a 4-byte decimal number. This item code is applicable only to
disks.

DVl$_ TRANSCNT
When you specify DVI$_TRANSCNT, $GETDVI returns the transaction count
for the volume as a 4-byte decimal number.

DVl$_ TT_ACCPORNAM
When you specify DVI$_ TT_ACCPORNAM, $GETDVI returns the name of
the remote access port associated with a channel number, or a physical or
virtual terminal device number. If you specify a device which is not a remote
terminal, or a remote type that does not support this feature, $GETDVI
returns a null string. The $GETDVI service returns the access port name as a
64-byte zero-fill string.

The $GETDVI service returns the name in the format of the remote system.
If the remote system is a LAT terminal server, $GETDVI returns the name as
server_name/port_name. The names are separated by the slash(/) character.
If the remote system is an X.29 (VAX PSI) terminal, the name is returned as
network. remote_DTE.

When writing applications, you should use the string returned by
DVI$-ACCPORNAM, instead of the physical device name, to identify remote
terminals.

DVl$_ TT_PHYDEVNAM
When you specify DVI$_TT_pHYDEVNAM, $GETDVI returns a string
containing the physical device name of a terminal. If the caller specifies a
disconnected virtual terminal, or a device that is not a terminal, $GETDVI
returns a null string. $GETDVI returns the physical device name as a 64-byte
zero-filled string.

DVl$_UNIT
When you specify DVI$_UNIT, $GETDVI returns the unit number as a 4-byte
decimal number.

SYS-215

SYSTEM SERVICE DESCRIPTIONS
$GETDVI

SVS-216

DVl$_VQLCOUNT
When you specify DVI$_VOLCOUNT, $GETDVI returns the number of
volumes in the volume set as a 4-byte decimal number. This item code is
applicable only to disks.

DVl$_VQLNAM
When you specify DVI$_ VOLNAM, $GETDVI returns the volume name as a
12-byte zero-filled string.

DVl$_VQLNUMBER
When you specify DVI$_ VOLNUMBER, $GETDVI returns the volume
number of this volume in the volume set as a 4-byte decimal number. This
item code is applicable only to disks.

DVl$_VQLSETMEM
When you specify DVI$_ VOLSETMEM, $GETDVI returns a longword value,
which is interpreted as Boolean. A value of 1 indicates that the device is
part of a volume set; a value of 0 indicates that it is not. This item code is
applicable only to disks.

DVl$_VPROT
When you specify DVI$_ VPROT, $GETDVI returns the volume protection
mask as a standard 4-byte protection mask.

DVI$:_ TT _xxxx

DVI$_TT_xxxx is the format for a series of item codes that return information
about terminals. This information consists of terminal characteristics. The
xxxx portion of the item code name specifies a single terminal characteristic.

Each of these item codes requires that the buffer specify a longword into
which $GETDVI will write a 0 or 1: 0 if the terminal does not have the
specified characteristic, and 1 if the terminal does have it. The one exception
is the DVI$_TT_pAGE item code, which when specified causes $GETDVI to
return a decimal longword value that is the page size of the terminal.

You can also obtain this terminal-specific information by using the
DVI$_DEVDEPEND and DVI$_DEVDEPEND2 item codes. Each of these
two item codes specifies a longword bit vector wherein each bit corresponds
to a terminal characteristic; $GETDVI sets the corresponding bit for each
characteristic possessed by the terminal.

Following is a list of the item codes that return information about terminal
characteristics. For information about these characteristics, refer to the
description of the F$GETDVI lexical function in the VMS DCL Dictionary.

Terminal-Specific $GETDVI Item Codes

DVI$_ TT _NOECHO

DVI$_ TT _HOSTSYNC

DVl$_ TT_ESCAPE

DVl$_ TT_MECHT AB

DVl$_ TT_LFFILL

DVl$_ TT_CRFILL

DVl$_ TT_NOTYPEAHD

DVl$_ TT_ TTSYNC

DVl$_ TT_LOWER

DVl$_TT_WRAP

DVl$_ TT_SCOPE

DVl$_ TT_SETSPEED

SYSTEM SERVICE DESCRIPTIONS
$GETDVI

Terminal-Specific $GETDVI Item Codes

DVl$_ TT_EIGHTBIT

DVl$_ TT_READSYNC

DVI$_ TT _NOBRDCST

DVI$_ TT _MODEM

DVI$_ TT _LOCALECHO

DVI$_ TT _PAGE

DVI$_ TT_MODHANGUP

DVl$_ TT_DMA

DVl$_ TT_ANSICRT

DVI$_ TT_A VO

DVI$_ TT_BLOCK

DVl$_ TT_EDITING

DVl$_ TT_DIALUP

DVl$_ TT_FALLBACK

DVl$_ TT_PASTHRU

DVl$_ TT_PRINTER

DVI$_ TT_DRCS

DVl$_ TT_DECCRT2

DVl$_yyyy

DVl$_ TT_MBXDSABL

DVI$_ TT _MECHFORM

DVl$_ TT_HALFDUP

DVI$_ TT_OPER

DVl$_ TT_AUTOBAUD

DVl$_ TT_HANGUP

DVI$_ TT _BRDCSTMBX

DVl$_ TT_AL TYPEAHD

DVl$_ TT_REGIS

DVl$_ TT_EDIT

DVI$_ TT_DECCRT

DVl$_ TT_INSERT

DVl$_ TT_SECURE

DVI$_ TT_DISCONNECT

DVl$_ TT_SIXEL

DVI$_ TT _APP _KEYPAD

DVl$_ TT_SYSPWD

DVI$_yyyy is the format for a series of item codes that return device
independent characteristics of a device. There is an item code for each
device characteristic returned in the longword bit vector specified by the
DVI$_DEVCHAR item code.

In the description of the DVI$_DEVCHAR item code is a list of symbol
names, in which each symbol represents a device characteristic. To construct
the $GETDVI item code for each device characteristic, substitute for yyyy
that portion of the symbol name that follows the underscore character. For
example, the DVI$-REC item code returns the same information as the
DEV$V-REC bit in the DVl$_DEVCHAR longword bit vector.

The buffer for each of these item codes must specify a longword value, which
is interpreted as Boolean. The $GETDVI service writes the value 1 into the
longword, if the device has the specified characteristic, and the value 0 if it
does not.

iosb
VMS usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

1/0 status block that is to receive the final completion status. The iosb
argument is the address of the quadword 1/0 status block.

When you specify the iosb argument, $GETDVI sets the quadword to zero
upon request initiation. Upon request completion, a condition value is
returned to the first longword; the second longword is reserved by DIGITAL.

SYS-217

SYSTEM SERVICE DESCRIPTIONS
$GETDVI

DESCRIPTION

SYS-218

Though this argument is optional, DIGITAL strongly recommends that you
specify it, for the following reasons:

• If you are using an event flag to signal the completion of the service, you
can test the I/O status block for a condition value to be sure that the
event flag was not set by an event other than service completion.

• If you are using the $SYNCH service to synchronize completion of the
service, the I/O status block is a required argument for $SYNCH.

• The condition value returned in RO and the condition value returned in
the I/O status block provide information about different aspects of the
call to the $GETDVI service. The condition value returned in RO gives
you information about the success or failure of the service call itself; the
condition value returned in the I/O status block gives you information
about the success or failure of the service operation. Therefore, to
accurately assess the success or failure of the call to $GETDVI, you
must check the condition values returned in both RO and the I/O status
block.

Refer to the Introduction to VMS System Services for more information about
system service completion.

astadr
VMS usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed when $GETDVI completes. The astadr
argument is the address of the entry mask of this routine.

If you specify astadr, the AST routine executes at the same access mode as
the caller of the $GETDVI service.

astprm
VMS usage: user_arg
type: longword {unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST service routine specified by the astadr
argument. The astprm argument is the longword parameter.

nullarg
VMS usage: nulLarg
type: quadword {unsigned)
access: read only
mechanism: by reference

Place-holding argument reserved by DIGITAL.

You can use the chan argument only if (1) the channel has already been
assigned, and (2) the caller's access mode is equal to or more privileged than
the access mode from which the original channel assignment was made.

The caller of $GETDVI does not need to have a channel assigned to the
device about which information is desired.

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$GETDVI

The $GETDVI service returns information about both primary device
characteristics and secondary device characteristics. By default, $GETDVI
returns information about the primary device characteristics only.

To obtain information about secondary device characteristics, you must OR
the item code specifying the information desired with the code
DVI$C_SECONDARY.

You can obtain information about primary and secondary devices in a single
call to $GETDVI.

In most cases, the two sets of characteristics (primary and secondary)
returned by $GETDVI are identical. However, the two sets provide different
information in the following cases:

• If the device has an associated mailbox, the primary characteristics are
those of the assigned device and the secondary characteristics are those of
the associated mailbox.

• If the device is a spooled device, the primary characteristics are
those of the intermediate device (such as the disk) and the secondary
characteristics are those of the spooled device (such as the printer).

• If the device represents a logical link on the network, the secondary
characteristics contain information about the link.

Unless otherwise stated in the description of the item code, $GETDVI returns
information about the local node only.

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_EXASTLM

SS$_1VCHAN

SS$_1VDEVNAM

SS$_1VLOGNAM

SS$_NONLOCAL

SS$_NOPRIV

SS$_NOSUCHDEV

The service completed successfully.

The device name string descriptor, device name
string, or itmlst argument cannot be read; or the
buffer or return length longword cannot be written
by the caller.

The item list contains an invalid item code, or the
return length address field in an item descriptor
specifies less than four bytes for the return length
information.

The process has exceeded its AST limit quota.

You specified an invalid channel number, that
is, a channel number larger than the number of
channels.

The device name string contains invalid characters,
or neither the devnam nor chan argument was
specified.

The device name string has a length of 0 or has
more than 63 characters.

The device is on a remote system.

The specified channel is not assigned or was
assigned from a more privileged access mode.

The specified device does not exist on the host
system.

SYS-219

SYSTEM SERVICE DESCRIPTIONS
$GETDVI

CONDITION Same as those returned in RO.

VALUES
RETURNED
IN THE 1/0
STATUS BLOCK

SVS-220

SYSTEM SERVICE DESCRIPTIONS
$GETDVIW

$GETDVIW Get Device/Volume
Information and Wait

FORMAT

The Get Device/Volume Information and Wait service returns information
about an 1/0 device; this information consists of primary and secondary
device characteristics.

The $GETDVIW service completes synchronously; that is, it returns to the
caller with the requested information.

For asynchronous completion, use the Get Device/Volume Information
($GETDVI) service; $GETDVI returns to the caller after queuing the
information request, without waiting for the information to be returned.
In all other respects, $GETDVIW is identical to $GETDVI. For all other
information about the $GETDVIW service, refer to the documentation of
$GETDVI.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System
Services.

SYS$GETDVIW {efn] ,[chan] ,[devnam} ,itmlst {,iosb]
{,astadr] {,astprm] {,nullarg}

SVS-221

SYSTEM SERVICE DESCRIPTIONS
$GETJPI

$GETJPI

FORMAT

RETURNS

ARGUMENTS

SVS-222

Get Job/Process Information

The Get Job/Process Information service returns information about one or
more processes on the system.

The $GET JPI service completes asynchronously; that is, it returns to
the caller after queuing the information request, without waiting for the
requested information to be returned.

For synchronous completion, you use the Get Job/Process Information
and Wait ($GET JPIW) service. The $GET JPIW service is identical to the
$GET JPI service in every way except that $GET JPIW returns to the caller
with the requested information.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System
Services.

SYS$GET JPI {efn] ,{pidadr] ,{prcnam] ,itmlst {,iosb]
{,astadr] {,astprm]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

efn
VMS usage: eLnumber
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when $GETJPI returns the requested
information. The efn argument is a longword containing this number;
however, $GETJPI uses only the low-order byte.

Upon request initiation, $GETJPI clears the specified event flag (or event
flag 0 if efn was not specified). Then, when $GETJPI returns the requested
information, it sets the specified event flag (or event flag 0).

SYSTEM SERVICE DESCRIPTIONS
$GETJPI

pidadr
VMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) of the process about which $GETJPI is to return
information. The pidadr argument is the address of a longword containing
the PID.

If you specify pidadr as -1, $GETJPI assumes a wildcard operation and
returns the requested information for each process on the system that it
has the privilege to access, one process per call. To perform a wildcard
operation, you must call $GETJPI in a loop, testing for the condition value
SS$_NOMOREPROC after each call and exiting the loop when
SS$_NOMOREPROC is returned.

For more information, see the Introduction to VMS System Services.

prcnam
VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of the process about which $GETJPI is to return information. The
prcnam argument is the address of a character string descriptor pointing to
this name string.

The process name string must contain from 1 to 15 characters and must
correspond exactly to the process name; no trailing blanks or abbreviations
are permitted.

You may use the prcnam argument only if the process identified by prcnam
has the same UIC group number as the calling process. If the process
has a different group number, $GETJPI returns no information. To obtain
information about processes in other groups, you must use the pidadr
argument.

itmlst
VMS usage: item_list_J
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying which information about the process or processes is to
be returned. The itmlst argument is the address of a list of item descriptors,
each of which describes an item of information. The list of item descriptors is
terminated by a longword of 0.

SYS-223

SYSTEM SERVICE DESCRIPTIONS
$GETJPI

SYS-224

The following diagram depicts the format of a single item descriptor.

31 15 0

item code I buffer length

buffer address

return length address

ZK-1705-84

$GETJPI Item Descriptor Fields

buffer length
A word containing a user-supplied integer specifying the length (in bytes) of
the buffer in which $GETJPI is to write the information. The length of the
buffer needed depends upon the item code specified in the item code field
of the item descriptor. If the value of buffer length is too small, $GETJPI
truncates the data.

item code
A word containing a user-supplied symbolic code specifying the item of
information that $GETJPI is to return. The $JPIDEF macro defines these
codes. Each item code is described after this list of item descriptor fields.

buffer address
A longword containing the user-supplied address of the buffer in which
$GETJPI is to write the information.

return length address
A longword containing the user-supplied address of a word in which $GETJPI
writes the length in bytes of the information it actually returned.

$GETJPI Item Codes

JP1$-ACCOUNT
When you specify JPl$_ACCOUNT, $GETJPI returns the account name of the
process, which is an 8-byte string, filled with traili:..1g blanks if necessary.

JPl$_APTCNT
When you specify JPI$-APTCNT, $GETJPI returns the active page table
count of the process, which is a longword integer value.

JPl$_ASTACT
When you specify JPI$-ASTACT, $GETJPI returns the names of the access
modes having active ASTs. This information is returned in a longword
bit vector. When bit 0 is set, an active kernel-mode AST exists; bit l, an
executive-mode AST; bit 2, a supervisor-mode AST; and bit 3, a user-mode
AST.

JP1$_ASTCNT
When you specify JPl$_ASTCNT, $GETJPI returns a count of the remaining
AST quota, which is a longword integer value.

SYSTEM SERVICE DESCRIPTIONS
$GETJPI

JP1$_ASTEN
When you specify JPI$-ASTEN, $GETJPI returns the names of the access
modes having ASTs enabled. This information is returned in a longword bit
vector. When bit 0 is set, kernel mode has ASTs enabled; bit 1, executive
mode; bit 2, supervisor mode; and bit 3, user mode.

JPl$_ASTLM
When you specify JPI$-ASTLM, S:GETJPI returns the AST limit quota of the
process, which is a longword integer value.

JPl$_AUTHPRI
When you specify JPI$-AUTHPRI, $GETJPI returns the authorized base
priority of the process, which is a longword integer value. The authorized
base priority is the highest priority a process without AL TPRI privilege can
attain by means of the $SETPRI service.

JPl$_AUTHPRIV
When you specify JPI$-AUTHPRIV, $GETJPI returns the privileges that the
process is authorized to enable. These privileges are returned in a quadword
privilege mask and are defined by the $PRVDEF macro.

JPl$_BIOCNT
When you specify JPI$_BIOCNT, $GETJPI returns a count of the remaining
buffered IjO quota, which is a longword integer value.

JPl$_BIOLM
When you specify JPI$_BIOLM, $GETJPI returns the buffered IjO limit quota
of the process, which is a longword integer value.

JPl$_BUFIO
When you specify JPI$_BUFIO, $GETJPI returns a count of the buffered 1/0
operations of the process, which is a longword integer value.

JPl$_BYTCNT
When you specify JPI$_BYTCNT, $GETJPI returns the remaining buffered
1/0 byte count quota of the process, which is a longword integer value.

JPl$_BYTLM
When you specify JPI$_BYTLM, $GETJPI returns the buffered I/O byte count
limit quota of the process, which is a longword integer value.

JPl$_CHAIN
When you specify JPI$_CHAIN, $GETJPI processes another item list
immediately after processing the current one. The buffer address field in
the item descriptor specifies the address of the next item list to be processed.
You must specify the JPl$_CHAIN item code last in the item list.

JPl$_CLINAME
When you specify JPI$_CLINAME, $GETJPI returns the name of the
command language interpreter that the process is currently using. Because
the CLI name can include up to 39 characters, the buffer length field in the
item descriptor should specify 39 bytes.

SYS-225

SYSTEM SERVICE DESCRIPTIONS
$GETJPI

SYS-226

JPl$_CPULIM
When you specify JPl$_CPULIM, $GETJPI returns the CPU time limit of the
process, which is a longword integer value.

JPl$_CPUTIM
When you specify JPl$_CPUTIM, $GETJPI returns the process's accumulated
CPU time in IO-millisecond ticks, which is a longword integer value.

JPl$_CREPRC_FLAGS
When you specify JPl$_CREPRC_FLAGS, $GETJPI returns the flags specified
by the stsflg argument in the $CREPRC call that created the process. The
flags are returned as a longword bit vector.

JPl$_CURPRIV
When you specify JPl$_CURPRIV, $GETJPI returns the current privileges of
the process. These privileges are returned in a quadword privilege mask and
are defined by the $PRVDEF macro.

JPl$_0FPFC
When you specify JPl$_DFPFC, $GETJPI returns the default page fault cluster
size of the process, which is a longword integer value.

JPl$_0FWSCNT
When you specify JPl$_DFWSCNT, $GETJPI returns the default working set
size of the process, which is a longword integer value.

JPl$_DIOCNT
When you specify JPl$_DIOCNT, $GETJPI returns the remaining direct 1/0
quota of the process, which is a longword integer value.

JPl$_DIOLM
When you specify JPl$_DIOLM, $GETJPI returns the direct 1/0 quota limit
of the process, which is a longword integer value.

JPl$_DIRIO
When you specify JPl$_DIRIO, $GETJPI returns a count of the direct 1/0
operations of the process, which is a longword integer value.

JPl$_EFCS
When you specify JP1$-EFCS, $GETJPI returns the state of the process's local
event flags 0 through 31 as a longword bit vector.

JPl$_EFCU
When you specify JP1$-EFCU, $GETJPI returns the state of the process's local
event flags 32 through 63 as a longword bit vector.

JPl$_EFWM
When you specify JPl$-EFWM, $GETJPI returns the event flag wait mask of
the process, which is a longword bit vector.

JPl$_ENQCNT
When you specify JPl$_ENQCNT, $GETJPI returns the remaining lock
request quota of the process, which is a longword integer value.

SYSTEM SERVICE DESCRIPTIONS
$GETJPI

JPl$_ENQLM
When you specify JPI$_ENQLM, $GETJPI returns the lock request quota of
the process, which is a longword integer value.

JPl$_EXCVEC
When you specify JPI$_EXCVEC, $GETJPI returns the address of a list
of exception vectors for the process. Each exception vector in the list is a
longword. There are eight vectors in the list: these are, in order, a primary
and a secondary vector for kernel-mode access, for executive-mode access, for
supervisor-mode access, and for user-mode access.

The $GETJPI service cannot return this information for any process other
than the calling process; if you specify this item code and the process is not
the calling process, $GETJPI returns a zero in the buffer.

JPl$_flLCNT
When you specify JPI$_FILCNT, $GETJPI returns the remaining open file
quota of the process, which is a longword integer value.

JPl$_FILLM
When you specify JPI$__FILLM, $GETJPI returns the open file limit quota of
the process, which is a longword value.

JPl$_FINALEXC
When you specify JPI$_FINALEXC, $GETJPI returns the address of a list o~
final exception vectors for the process. Each exception vector in the list is a
longword. There are four vectors in the list, one for each access mode, in the
order kernel, executive, supervisor, and user.

The $GETJPI service cannot return this information for any process other
than the calling process; if you specify this item code and the process is not
the calling process, $GETJPI returns a zero in the buffer.

JPl$_FREPOVA
When you specify JPI$_FREPOVA, $GETJPI returns the address of the first
free page at the end of the program region (PO space) of the process.

JPl$_fREP1 VA
When you specify JPI$_FREP1 VA, $GETJPI returns the address of the first
free page at the end of the control region (Pl space) of the process.

JPl$_FREPTECNT
When you specify JPI$_FREPTECNT, $GETJPI returns the number of pages
that the process has available for virtual memory expansion. This value is a
longword integer value.

JPl$_GPGCNT
When you specify JPI$_GPGCNT, $GETJPI returns the process's global page
count in the working set, which is a longword integer value.

JPl$_GRP
When you specify JPI$_GRP, $GETJPI returns the group number of the
process's UIC. This is a longword integer value.

SYS-227

SYSTEM SERVICE DESCRIPTIONS
$GETJPI

SVS-228

JPl$_IMAGECOUNT
When you specify JPI$-1MAGECOUNT, $GETJPI returns, as a longword
integer value, the number of images that have been run down for the process.

JPl$_IMAGNAME
When you specify JPI$_JMAGNAME, $GETJPI returns, as a character string,
the directory specification and the image file name.

JPl$_1MAGPRIV
When you specify JPI$_IMAGPRIV, $GETJPI returns a quadword mask of the
privileges with which the current image was installed. If the current image
was not installed, $GETJPI returns a zero in the buffer.

JPl$_JQBPRCCNT
When you specify JPI$_JOBPRCCNT, $GETJPI returns the total number of
subprocesses owned by the job, which is a longword integer value.

JPl$_JQBTYPE
When you specify JPI$_JOBTYPE, $GETJPI returns the execution mode of the
process at the root of the job tree, which is a longword integer value. The
symbolic name and value for each execution mode are listed in the following
table. The $JPIDEF macro defines the symbolic names.

Mode Name Value

JPl$K_OET ACHED 0

JPl$K_NETWORK 1

JPl$K_BATCH 2

JPl$K_LOCAL 3

JPl$K_DIALUP 4

JPl$K_REMOTE 5

JPl$_LQGINTIM
When you specify JPI$_LOGINTIM, $GETJPI returns the time at which the
process was created, which is a standard 64-bit absolute time.

JPl$_MASTER_PID
When you specify JPI$_MASTER_pJD, $GETJPI returns the process
identification (PID) of the master process in the job. The PID is a longword
hexadecimal value.

JPl$_MAXDETACH
When you specify JPI$_MAXDETACH, $GETJPI returns the maximum
number of detached processes allowed for the user who owns the process
specified in the call to $GETJPI. This limit is set in the UAF record of the
user. The number is returned as a word decimal value. A value of 0 means
that there is no limit on the number of detached processes for that user name.

JPl$_MAXJOBS
When you specify JPI$_MAXJOBS, $GETJPI returns the maximum number of
active processes allowed for the user who owns the process specified in the
call to $GETJPI. This limit is set in the UAF record of the user. The number

SYSTEM SERVICE DESCRIPTIONS
$GETJPI

is returned as a word decimal value. A value of 0 means that there is no limit
on the number of active processes for that user name.

JPl$_MEM
When you specify JPI$__MEM, $GETJPI returns the member number of the
process's UIC, which is a longword integer value.

JPl$_MODE
When you specify JPI$__MODE, $GETJPI returns the mode of the process,
which is a longword integer value. The symbolic name and value for
each mode are listed in the following table; the $JPIDEF macro defines
the symbolic names.

Mode Name Value

JPl$K_OTHER 0

JPl$K_NETWORK 1

JPl$K_BA TCH 2

JPl$K_INTERACTIVE 3

JPl$_MSGMASK
When you specify JPI$_MSGMASK, $GETJPI returns the default message
mask of the process, which is a longword bit mask.

JPl$_QWNER
When you specify JPl$_QWNER, $GETJPI returns the process identification
(PID) of the process that created the specified process. The PID is a longword
hexadecimal value.

JPl$_PAGEFLTS
When you specify JPl$_P AGEFL TS, $GETJPI returns the total number of
page faults incurred by the process. This is a longword integer value.

JPl$_PAGFILCNT
When you specify JPI$J AGFILCNT, $GETJPI returns the remaining paging
file quota of the process, which is a longword integer value.

JPl$_PAGFILLOC
When you specify JP!$_P AGFILLOC, $GETJPI returns the current paging file
assignment of the process. The fourth byte of the returned longword value is
the index of the system page file to which the process is currently assigned.

JPl$_PGFLQUOTA
When you specify JPI$JGFLQUOTA, $GETJPI returns the paging file quota
of the process, which is a longword integer value.

JPl$_PHDFLAGS
When you specify JPl$_PHDFLAGS, $GETJPI returns the process header
flags as a longword bit vector.

JPl$_PID
When you specify JPI$JID, $GETJPI returns the process identification (PID)
of the process. The PID is a longword hexadecimal value.

SYS-229

SYSTEM SERVICE DESCRIPTIONS
$GETJPI

SYS-230

JPl$_PPGCNT
When you specify JPJ$_pPGCNT, $GETJPI returns the number of pages the
process has in the working set. This is a longword integer value.

JPl$_PRCCNT
When you specify JPJ$_pRCCNT, $GETJPI returns, as a longword integer
value, the number of subprocesses created by the process. The number
returned by JPJ$_pRCCNT does not include any subprocesses created by
subprocesses of the process named in the procnam argument.

JPl$_PRCLM
When you specify JPl$_PRCLM, $GETJPI returns the subprocess quota of the
process, which is a longword integer value.

JPl$_PRCNAM
When you specify JPJ$_pRCNAM, $GETJPI returns, as a character string,
the name of the process. Because the process name can include up to 15
characters, the buffer length field of the item descriptor should specify
15 (bytes).

JPl$_PRI
When you specify JPl$_PRI, $GETJPI returns the current priority of the
process, which is a longword integer value.

JPl$_PRIB
When you specify JPl$_PRIB, $GETJPI returns the base priority of the
process, which is a longword integer value.

JPl$_PRQC_INDEX
When you specify JPl$_PROC_JNDEX, $GETJPI returns, as a longword
integer value, the process index number of the process. The process
index number is a number between 1 and the SYSGEN parameter
MAXPROCESSCNT, which identifies the process. Although process index
numbers are reassigned to different processes over time, at any one instant,
each process in the system has a unique process index number.

You can use the process index number as an index into system global sections.
Because the process index number is unique for each process, the use of it
as an index into system global sections guarantees no collisions with other
system processes accessing those sections.

The process index is intended to serve users who formerly used the low
order word of the PID as an index number. Because, as of Version 4.0, the
meaning of the PID changed due to the introduction of clusters, the use of
the low-order word of the PID as a unique identifier is no longer valid.

JPl$_PROCPRIV
When you specify JPl$_PROCPRIV, $GETJPI returns the default privileges of
the process in a quadword bit mask.

JPl$_SHRFILLM
When you specify JPl$_SHRFILLM, $GETJPI returns the maximum number
of open shared files allowed for the job to which the process specified in the
call to $GETJPI belongs. This limit is set in the UAF record of the user who
owns the process. The number is returned as a word decimal value. A value

SYSTEM SERVICE DESCRIPTIONS
$GETJPI

of 0 means that there is no limit on the number of open shared files for that
job.

JPl$_SITESPEC
When you specify JPl$_SITESPEC, $GETJPI returns the per-process, site
specific longword, which is a longword integer value.

JPl$_STATE
When you specify JPl$_STATE, $GETJPI returns the state of the process,
which is a longword integer value. Each state has a symbolic representation.
If the process is currently executing, its state is always SCH$K_CUR. The
$STATEDEF macro defines the following symbols, which identify the various
possible states.

State

SCH$C_CEF

SCH$C_COM

SCH$C_COMO

SCH$C_CUR

SCH$C_COLPG

SCH$C_FPG

SCH$C_HIB

SCH$C_HIBO

SCH$C_LEF

SCH$C_LEFO

SCH$C_MW AIT

SCH$C_PFW

SCH$C_SUSP

SCH$C_SUSPO

JPl$_STS

Description

Common event flag wait

Computable

Computable, out of balance set

Current process

Collided page wait

Free page wait

Hibernate wait

Hibernate wait, out of balance set

Local event flag wait

Local event flag wait, out of balance set

Mutex and miscellaneous resource wait

Page fault wait

Suspended

Suspended, out of balance set

When you specify JPl$_STS, $GETJPI returns the status flags of the process,
which are contained in a longword bit vector. The $PCBDEF macro defines
the following symbols for these flags:

Flag

PCB$V_ASTPEN

PCB$V_BATCH

PCB$V_DELPEN

PCB$V_DISA WS

PCB$V_FORCPEN

PCB$V_HARDAFF

PCB$V_HIBER

PCB$V_INOUAN

Description

AST pending

Process is a batch job

Delete pending

Disable automatic working set adjustment

Force exit pending

Process bound to a particular CPU

Hibernate after initial image activate

Initial quantum in progress

SYS-231

SYSTEM SERVICE DESCRIPTIONS
$GETJPI

SYS-232

Flag

PCB$V_INTER

PCB$V_LOGIN

PCB$V_NETWRK

PCB$V_NQACNT

PCB$V_NQDELET

PCB$V_PHDRES

PCB$V_PREEMPTED

PCB$V_PSWAPM

PCB$V_PWRAST

PCB$V_RECOVER

PCB$V_RES

PCB$V_RESPEN

PCB$V_SECAUDIT

PCB$V_SQFTUSP

PCB$V_SSFEXC

PCB$V_SSFEXCE

PCB$V_SSFEXCS

PCB$V_SSFEXCU

PCB$V_SSRWAIT

PCB$V_SUSPEN

PCB$V_SWPVBN

PCB$V_WAKEPEN

PCB$V_WALL

JPl$_SWPFILLOC

Description

Process is an interactive job

Log in without reading authorization file

Process is a network connect object

No accounting for process

No delete

Process header resident

Kernel-mode suspend has overidden supervisor-mode
suspend

Process swap mode (1 =noswap)

Power fail AST

Process can recover locks

Resident, in balance set

Resume pending, skip suspend

Mandatory security auditing

Process is in supervisor-mode suspend

System service exception enable (kernel)

System service exception enable (exec)

System service exception enable (super)

System service exception enable (user)

System service resource wait disable

Suspend pending

Write for swap VBN in progress

Wake pending, skip hibernate

Wait for all events in mask

When you specify JPl$_SWPFILLOC, $GETJPI returns the location of
the process's swapping file, which is a longword hexadecimal value. If
the number returned is positive, the fourth byte of this value identifies a
specific swapping file, and the lower three bytes contain the VBN within
the swapping file. If the number returned is zero or negative, the swap file
location information is not currently available for the process.

JPl$_ TABLENAME
When you specify JPl$_ TABLENAME, $GETJPI returns the file specification
of the process's current command language interpreter (CLI) table. Because
the file specification can include up to 255 characters, the buffer length field
in the item descriptor should specify 255 (bytes).

JPl$_ TERMINAL
When you specify JP!$_ TERMINAL, $GETJPI returns, for interactive users,
the process's login terminal name as a character string. Because the terminal
name can include up to 7 characters, the buffer length field in the item
descriptor should specify 7 (bytes).

SYSTEM SERVICE DESCRIPTIONS
$GETJPI

JPl$_TMBU
When you specify JPI$_TMBU, $GETJPI returns the termination mailbox unit
number, which is a longword integer value.

JPl$_TQCNT
When you specify JPI$_ TQCNT, $GETJPI returns the remaining timer queue
entry quota of the process, which is a longword integer value.

JPl$_TQLM
When you specify JPl$_ TQLM, $GETJPI returns the process's limit on timer
queue entries, which is a longword integer value.

JPl$_UAf _flAGS
When you specify JPI$_UAFJLAGS, $GETJPI returns the UAF flags from
the UAF record of the user who owns the process. The flags are returned as
a longword bit vector. For a list of the symbolic names of these flags, see the
UAI$JLAGS item code under the $GETUAI system serice.

JPl$_UIC
When you specify JPI$_UIC, $GETJPI returns the UIC of the process in the
standard longword format.

JPl$_USERNAME
When you specify JPI$_USERNAME, $GETJPI returns the user name of the
process as a 12-byte string. If the name is less than 12 bytes, $GETJPI fills
out the 12 bytes with trailing blanks.

JPl$_VIRTPEAK
When you specify JPI$_ VIRTPEAK, $GETJPI returns the peak virtual address
size of the process as a longword integer value.

JPl$_VQLUMES
When you specify JP!$_ VOLUMES, $GETJPI returns the number of volumes
that the process currently has mounted, which is a longword integer value.

JPl$_WSAUTH
When you specify JPI$_WSAUTH, $GETJPI returns the maximum authorized
working set size of the process as a longword integer value.

JPl$_WSAUTHEXT
When you specify JPI$_WSAUTHEXT, $GETJPI returns the maximum
authorized working set extent of the process as a longword integer value.

JPl$_WSEXTENT
When you specify JPI$_WSEXTENT, $GETJPI returns the current working set
extent of the process as a longword integer value.

JPl$_WSPEAK
When you specify JPI$_ WSPEAK, $GETJPI returns the peak working set size
of the process as a longword integer value.

JPl$_WSQUOTA
When you specify JPI$_WSQUOTA, $GETJPI returns the working set size
quota of the process as a longword integer value.

SVS-233

SYSTEM SERVICE DESCRIPTIONS
$GETJPI

SYS-234

JPl$_WSSIZE
When you specify JPI$_ WSSIZE, $GETJPI returns the current working set
size of the process as a longword integer value.

iosb
VMS usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

I/O status block that is to receive the final completion status. The iosb
argument is the address of the quadword I/O status block.

When you specify the iosb argument, $GETJPI sets the quadword to zero
upon request initiation. Upon request completion, a condition value is
returned to the first longword; the second longword is reserved to DIGITAL.

Though this argument is optional, DIGITAL strongly recommends that you
specify it, for the following reasons:

• If you are using an event flag to signal the completion of the service, you
can test the IjO status block for a condition value to be sure that the
event flag was not set by an event other than service completion.

• If you are using the $SYNCH service to synchronize completion of the
service, the IjO status block is a required argument for $SYNCH.

• The condition value returned in RO and the condition value returned in
the I/O status block provide information about different aspects of the
call to the $GETJPI service. The condition value returned in RO gives
you information about the success or failure of the service call itself; the
condition value returned in the I/O status block gives you information
about the success or failure of the service operation. Therefore, to
accurately assess the success or failure of the call to $GETJPI, you must
check the condition values returned in both RO and the I/O status block.

For more information about system service completion, refer to the
Introduction to VMS System Services.

astadr
VMS usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed when $GETJPI completes. The astadr
argument is the address of the entry mask of this routine.

If you specify astadr, the AST routine executes at the same access mode as
the caller of the $GETJPI service.

astprm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST service routine specified by the astadr
argument. The astprm argument is the longword parameter.

SYSTEM SERVICE DESCRIPTIONS
$GETJPI

DESCRIPTION The calling process must have GROUP privilege to obtain information about
other processes with the same group UIC number as the calling process.

The calling process must have WORLD privilege to obtain information about
other processes on the system that are not in the same group as the calling
process.

Getting information about another process is an asynchronous operation
because the information may be contained in the other process's virtual
address space, and the process may have a lower priority or may be currently
swapped out of the balance set. To allow your program to overlap other
functions with the time needed to schedule the other process for execution or
swap it into the balance set, $GETJPI returns immediately after it has queued
its information-gathering request to the other process.

You should use the pidadr argument instead of the prcnam argument when
specifying a process to $GETJPI, for the following reasons:

• The pidadr argument may be used to identify any process in the system,
whereas the prcnam argument can be used only to identify processes that
have the same UIC group number as the caller of $GETJPI.

• $GETJPI executes faster when you use pidadr rather than prcnam. When
you specify prcnam, $GETJPI must search a table of process names and
UICs for an entry that contains the specified process name and the UIC
group number of the calling process; this search is unnecessary when you
use pidadr.

The calling process must have GROUP privilege to obtain information about
any process (except itself) in the same group. The calling process must
have WORLD privilege (and must use pidadr rather than prcnam) to obtain
information about a process with a different UIC group number.

Table SYS-5 shows how $GETJPI operates given various values for the
prcnam and pidadr arguments.

Table SYS-5 Process Identification in $GET JPI

Process Name
Specified?

No

No

No
Yes

Yes

Yes

Process ID
Specified?

No

Yes

Yes

No

Yes

Yes

Process ID
Contains

0

Process ID

0

Process ID

Action by
$GETJPI

The process identification of the calling process is
used, and the process identification is not returned.

The process identification of the calling process is used
and returned.

The process identification is used and returned.

The process name is used, and the process
identification is not returned.

The process name is used, and the process
identification is returned.

The process identification is used and returned, and
the process name is ignored.

SYS-235

SYSTEM SERVICE DESCRIPTIONS
$GETJPI

CONDITION
VALUES
RETURNED

SS$_NQRMAL

SS$_BADPARAM

SS$_ACCVIO

SS$_1VLOGNAM

SS$_NOMOREPROC

SS$_NQNEXPR

SS$_NOPRIV

SS$_SUSPENDED

The service completed successfully.

The item list contains an invalid identifier.

The item list cannot be read by the caller, or the
buffer length or buffer cannot be written by the
caller.

The process name string has a length of 0 or has
more than 15 characters.

In a wildcard operation, $GET JPI found no more
processes.

The specified process does not exist, or an invalid
process identification was specified.

The process does not have the privilege to obtain
information about the specified process.

The specified process is suspended or in a
miscellaneous wait state, and the requested
information cannot be obtained.

CONDITION Same as those returned in RO.

VALUES
RETURNED
IN THE 1/0
STATUS BLOCK

SVS-236

SYSTEM SERVICE DESCRIPTIONS
$GETJPI

EXAMPLE The following example shows a segment of a program used to obtain the
user name of every process for which the caller has the privilege to obtain
information.

$JPIDEF

PID: .LONG -1
ITEMS: .WORD 12

.WORD JPI$_USERNAME

.ADDRESS -
UN AME

.ADDRESS -
UN AMES

.LONG 0
UNAME: .BLKB 12
UNAMES: .BLKL 1
IOSB: .BLKQ 1

START: .WORD 0

LOOP: $GETJPI_S -
EFN=#l, -
PIDADR=PID, -
ITMLST=ITEMS, -
IOSB=IOSB

Define $GETJPI item codes

"Wild card" PID
Size of username buff er
Username item code

Address of username buff er

Address to return username
End of list
Username buff er
Username size buff er
Completion status

BLBS RO.WAIT If success, continue

size

CMPW RO,#SS$_NOPRIV No privilege to get info on process?
BEQL LOOP ; If no priv, try next process
CMPW RO,#SS$_SUSPENDED ; Process suspended?
BEQL LOOP ; If yes, try next process
CMPW RO,#SS$_NOMOREPROC ; No more processes?
BEQL DONE If yes, all done
BSBW ERROR ; Else, error

WAIT: $WAITFR_S -
EFN=#l

MOVZWL IOSB,RO
BSBW ERROR
BSBW DISPLAY_NAME
BRB LOOP

Wait for information
Get completion status
Check for errors
Display the name

SYS-237

SYSTEM SERVICE DESCRIPTIONS
$GETJPIW

$GET JPIW Get Job/Process Information and
Wait

FORMAT

SYS-238

The Get Job/Process Information and Wait service returns information
about one or more processes on the system.

The $GET JPIW service completes synchronously; that is, it returns to the
caller with the requested information.

For asynchronous completion, use the Get Job/Process Information
($GET JPI) service; $GET JPI returns to the caller after queuing the
information request, without waiting for the information to be returned.

In all other respects, $GET JPIW is identical to $GET JPI. For all other
information about the $GET JPIW service, refer to the documentation of
$GETJPI.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System
Services.

SVS$GET JPIW [efn] ,[pidadr] ,[prcnam} ,itmlst [,iosb}
[,astadr] [,astprm]

$GETLKI

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$GETLKI

Get Lock Information

The Get Lock Information service returns information about the lock
database on a VMS system.

The $GETLKI service completes asynchronously; that is, it returns to
the caller after queuing the information request, without waiting for the
information to be returned.

For synchronous completion, you use the Get Lock Information and Wait
($GETLKIW) service; $GETLKIW returns to the caller with the requested
information. In all other respects, $GETLKIW is identical to $GETLKI.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System
Services.

The $GETLKI, $GETLKIW, $ENQ, $ENQW, and $DEQ services together
provide the user interface to the VMS lock management facility. For
additional information about lock management, refer to the descriptions of
these other services and to the Introduction to VMS System Services.

SVS$GETLKI [efn] ,lkidadr ,itmlst [,iosb] [,astadr]
[,astprm] [,nullarg]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

ef n
VMS usage: eLnumber
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when $GETLKI completes. The efn
argument is a longword containing this number; however, $GETLKI uses only
the low-order byte. If you do not specify efn, $GETLKI sets event flag 0.

lkidadr
VMS usage: lock_id
type: longword (unsigned)
access: modify
mechanism: by reference

Lock identification (lock ID) for the lock about which information is to be
returned. The lock ID is the second longword in the lock status block, which

SYS-239

SYSTEM SERVICE DESCRIPTIONS
$GETLKI

SYS-240

was created when the lock was granted. The lkidadr argument is the address
of this longword.

If the value specified by lkidadr is 0 or -1, $GETLKI assumes a wildcard
operation and returns information about each lock to which the calling
process has access, one lock per call.

To use the $GETLKI service, you must have read/write access to the lock ID.

itmlst
VMS usage: item_list_J
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying the lock information that $GETLKI is to return. The
itmlst argument is the address of a list of item descriptors, each of which
describes an item of information. The list of item descriptors is terminated by
a longword of 0. The following diagram depicts the format of a single item
descriptor.

31 15 0

item code I buffer length

buffer address

return length address

ZK-1705-84

$G ETLKI Item Descriptor Fields

buffer length
A word containing a user-supplied integer specifying the length (in bytes) of
the buffer in which $GETLKI is to write the information. The length of the
buffer needed depends upon the item code specified in the item code field
of the item descriptor. If the value of buffer length is too small, $GETLKI
truncates the data and returns the success condition value SS$_NORMAL.

item code
A word containing a user-supplied symbolic code specifying the item of
information that $GETLKI is to return. The $LKIDEF macro defines these
codes. Each item code is described in the list of $GETLKI Item Codes that
follows this list of descriptor fields.

buffer address
A longword containing the user-supplied address of the buffer in which
$GETLKI is to write the information.

return length address
A longword containing the user-supplied address of a longword in which
$GETLKI writes return length information. This longword contains the
following three bit fields.

Bits

0 to 15

16 to 30

31

SYSTEM SERVICE DESCRIPTIONS
$GETLKI

Description

In this field $GETLKI writes the length in bytes of the data actually
written to the buff er specified by the buffer address field in the
item descriptor.

$GETLKI uses this field only when the item code field of the item
descriptor specifies LKl$_BLOCKEDBY, LKl$_BLOCKING, or
LKl$_LOCKS, each of which requests information about a list
of locks. $GETLKI writes in this field the length in bytes of the
information returned for a single lock in the list. You can divide this
length into the total length returned for all locks (bits 0 to 15) to
determine the number of locks located by that item code request.

$GETLKI sets this bit if the user-supplied buffer length argument
specifies too small a buffer to contain the information returned.
Note that in such a case $GETLKI will return the SS$_NQRMAL
condition value in RO. Therefore, to locate any faulty item
descriptor, you need to check the state of bit 31 in the longword
specified by the return length fief d of each item descriptor.

$GETLKI Item Codes

LKl$_BLOCKEDBY
When you specify LKI$_BLOCKEDBY, $GETLKI returns information about
all locks that are currently blocked by the lock specified by lkidadr. The
$GETLKI service returns eight items of information about each blocked lock.

The $LKIDEF macro defines the following symbolic names that refer to the
eight items in the buffer.

SymJ;>01ic Name

LKl$L _MSTLKID

LKl$L_PID

LKl$L_MSTCSID

LKl$B_RQMODE

LKl$B_GRMODE

LK1$B_QUEUE

L.Kl$L_LKID

LKl$L_CSID

Description

Lock ID of the blocked lock on the system maintaining
the resource (4 bytes)

Process ID (PIO) of the process that took out the
blocked lock (4 bytes)

Cluster system identifier (CSID) of the VAX node
maintaining the resource that is locked by the blocked
lock (4 bytes)

Lock mode requested for the blocked lock; this lock
mode was specified by the lkmode argument in the
call to $ENO (1 byte)

Lock mode granted to the blocked lock; this lock mode
is written to the lock value block (1 byte)

Name of the queue on which the blocked lock currently
resides (1 byte)

Lock ID of the lock on the system where the lock was
requested (4 bytes)

Cluster system identifier (CSID) of the system where
the lock was requested (4 bytes)

The values that $GETLKI may write into the LKI$B_RQMODE,
LKI$B_GRMODE, and LKI$B_QUEUE items have symbolic names; these

SYS-241

SYSTEM SERVICE DESCRIPTIONS
$GETLKI

SYS-242

symbolic names specify the six lock modes and the three types of queue in
which a lock may reside. The DESCRIPTION section describes these names.

Thus, the buffer specified by the buffer address field in the item descriptor
will contain the eight items of information, repeated in sequence, for each
blocked lock.

The length of the information returned for each blocked lock is returned in
bits 16 to 30 of the longword specified by the return length address field
in the item descriptor, while the total length of information returned for all
blocked locks is returned in bits 0 to 15. Therefore, to determine the number
of blocked locks, you divide the value of bits 16 to 30 into the value of bits 0
to 15.

LKl$_BLOCKING
When you specify LKI$_BLOCKING, $GETLKI returns information about all
locks that are currently blocking the lock specified by lkidadr. The $GETLKI
service returns eight items of information about each blocking lock.

The $LKIDEF macro defines the following symbolic names that refer to the
eight items in the buffer.

Symbolic Name

LKl$L _MSTLKID

LKl$L_PID

LKl$L_MSTCSID

LKl$B_RQMODE

LKl$B_GRMODE

LKl$B_QUEUE

LKl$L_LKID

LKl$L_CSID

Description

Lock ID of the blocked lock on the system maintaining
the resource (4 bytes)

Process ID (PIO) of the process that took out the
blocking lock (4 bytes)

Cluster system identifier (CSID) of the VAX node
maintaining the resource that is locked by the blocking
lock (4 bytes)

Lock mode requested for the blocking lock; this lock
mode was specified by the lkmode argument in the
call to $ENO (1 byte)

Lock mode granted to the blocking lock; this lock
mode is written to the lock value block (1 byte)

Name of the queue on which the blocking lock currently
resides (1 byte)

Lock ID of the lock on the system where the lock was
requested (4 bytes)

Cluster system identifier (CSID) of the system where
the lock was requested (4 bytes)

The values that $GETLKI may write into the LKI$B_RQMODE,
LKI$B_GRMODE, and LKI$B_QUEUE items have symbolic names; these
symbolic names specify the six lock modes and the three types of queue in
which a lock may reside. The DESCRIPTION section describes these names.

Thus, the buffer specified by the buffer address field in the item descriptor
will contain the eight items of information, repeated in sequence, for each
blocking lock.

SYSTEM SERVICE DESCRIPTIONS
$GETLKI

The length of the information returned for each blocking lock is returned in
bits 16 to 30 of the longword specified by the return length address field
in the item descriptor, while the total length of information returned for all
blocking locks is returned in bits 0 to 15. Therefore, to determine the number
of blocking locks, you divide the value of bits 16 to 30 into the value of bits 0
to 15.

LKl$_CSID
When you specify LKl$_CSID, $GETLKI returns the Cluster System ID
(CSID) of the system where the process owning the lock resides. LKl$_CSID
returns the CSID of the node where the $GETLKI system service is issued
when the resource is mastered on that node. When the processor is not part
of a VAXcluster, LKl$_CSID returns zero.

The buffer length field in the item descriptor should specify 4 (bytes).

LKl$_CVTCOUNT
When you specify LKl$_CVTCOUNT, $GETLKI returns the total number of
locks that are currently on the conversion queue of the resource associated
with the lock. These locks are granted at one mode and are waiting to be
converted to another.

The buffer length field in the item descriptor should specify 4 (bytes).

LKl$_GRANTCOUNT
When you specify LKl$_GRANTCOUNT, $GETLKI returns the total number
of locks that are currently on the grant queue of the resource associated with
the lock. Note that the total number of granted locks on the resource is equal
to the sum of LKl$_CVTCOUNT and LKl$_GRANTCOUNT.

The buffer length field in the item descriptor should specify 4 (bytes).

Note: This item code supersedes LKI$_LCKCOUNT, which is supported in
this release for compatibility with VAX/VMS Version 4.n. DIGITAL
recommends that you use LKI$_GRANTCOUNT. You should update old
programs with the new item code, as convenient.

LKl$_LCKREFCNT
When you specify LKl$_LCKREFCNT, $GETLKI returns the number of locks
that have this lock as a parent lock. When these locks were created, the parid
argument in the call to $ENQ or $ENQW specified the lock ID of this lock.

The buffer length field in the item descriptor should specify 4 (bytes).

LKl$_LKID
When you specify LKl$_LKID, $GETLKI returns the lock ID of the lock on
the system where the process owning the lock resides. The lock ID returned
by this item code is meaningful only on the system specified in the value
returned by the LKl$_CSID item code.

The buffer length field in the item descriptor should specify 4 (bytes).

Note: This item code and LKI$_MSTLKID supersede LKI$-REMLKID, which
is supported for compatibility with VAX/VMS Version 4.n. DIGIT AL
recommends that you use the new item codes. You should update old
programs with the new item codes, as convenient.

SYS-243

SYSTEM SERVICE DESCRIPTIONS
$GETLKI

SYS-244

LKl$_LQCKID
When you specify LKl$_LOCKID, $GETLKI returns the lock ID of the current
lock. The current lock is the one specified by the lkidadr argument unless
lkidadr is specified as -1 or 0, which indicates a wildcard operation. Thus,
this item code is usually specified only in wildcard operations where it is
useful to know the lock IDs of the locks that $GETLKI has discovered in the
wildcard operation.

The lock ID is a longword value, so the buffer length field in the item
descriptor should specify 4 (bytes).

LKl$_LQCKS
When you specify LKl$_LOCKS, $GETLKI returns information about all locks
on the resource associated with the lock specified by lkidadr. These locks are
the sum of blocking locks and blocked locks.

The $LKIDEF macro defines the following symbolic names that refer to the
eight items in the buffer.

Symbolic Name

LKl$L _MSTLKID

LKl$L_PID

LKl$L _MSTCSID

LKl$B_RQMODE

LKl$B_GRMODE

LKl$B_QUEUE

LKl$L_LKID

LKl$L_CSID

Description

Lock ID of the blocked lock on the system maintaining
the resource (4 bytes)

Process ID (PID) of the process that took out the lock
(4 bytes)

Cluster system identifier (CSID) of the VAX node
maintaining the resource that is locked by the lock (4
bytes)

Lock mode requested for the lock; this lock mode was
specified by the lkmode argument in the call to $ENO
(1 byte)

Lock mode granted to the lock; this lock mode is
written to the lock value block (1 byte)

Name of the queue on which the lock currently resides
(1 byte)

Lock ID of the lock on the system where the lock was
requested (4 bytes)

Cluster system identifier (CSID) of the system where
the lock was requested (4 bytes)

The values that $GETLKI may write into the LKI$B_RQMODE,
LKI$B_GRMODE, and LKI$B_QUEUE items have symbolic names; these
symbolic names specify the six lock modes and the three types of queue in
which a lock may reside. The DESCRIPTION section describes these names.

Thus, the buffer specified by the buffer address field in the item descriptor
will contain the eight items of information, repeated in sequence, for each
lock.

The length of the information returned for each lock is returned in bits 16
to 30 of the longword specified by the return length address field in the
item descriptor, while the total length of information returned for all locks is
returned in bits 0 to 15. Therefore, to determine the number of locks, you
divide the value of bits 16 to 30 into the value of bits 0 to 15.

SYSTEM SERVICE DESCRIPTIONS
$GETLKI

LKl$_MSTCSID
When you specify LKI$_MSTCSID, $GETLKI returns the Cluster System ID
(CSID) of the node currently mastering the resource that is associated with
the specified lock. Although the resource may be locked by processes on
any node in the cluster, the resource itself is maintained on a single node.
You can use the DCL command SHOW CLUSTER or the $GETSYI service
to determine which VAX node in the cluster is identified by the CSID that
$GETLKI returns.

Because the processor mastering the lock can change at any time, multiple
calls to $GETLKI for the same lock may produce different values for this item
code. LKI$_MSTCSID returns the CSID of the node where the $GETLKI
system service is issued when the resource is mastered on that node. When
the processor where the $GETLKI was issued is not part of a VAXcluster, this
item code returns zero.

The buffer length field in the item descriptor should specify 4 (bytes).

Note: This item code supersedes LKI$_SYSTEM, which is supported for
compatibility with VAX/VMS Version 4.n. DIGIT AL recommends that
you use LKl$_MSTCSID. You should update old programs with the new
item code, as convenient.

LKl$_MSTLKID
When you specify LKI$_MSTLKID, $GETLKI returns the lock ID for the
current master copy of the lock. Although the resource may be locked by
processes on any node in the cluster, the resource itself is maintained on a
single node. Because lock IDs are unique to each processor on a VAXcluster,
the lock ID returned by this item code has meaning only for the processor
that is specified in the value returned by the LKI$_MSTCSID item code.

Because the processor mastering the lock can change at any time, multiple
calls to $GETLKI for the same lock may produce different values for this item
code. When the lock is mastered on the node where the $GETLKI system
service is issued, or when the node is not a member of a VAXcluster, this item
code returns the same information as LKI$_LKID.

The buffer length field in the item descriptor should specify 4 (bytes).

Note: This item code and LKI$_LKID supersede LKl$-REMLKID, which is
supported for compatibility with VAX/VMS Version 4.n. DIGIT AL
recommends that you use LKl$_MSTLKID and LKl$_LKID. You should
update old programs with the new item codes, as convenient.

LKl$_NAMSPACE
When you specify LKI$_NAMSP ACE, $GETLKI returns information about
the resource name space. This information is contained in a longword
consisting of four bit fields; therefore, the buffer length field in the item
descriptor should specify 4 (bytes).

Each of the four bit fields may be referred to by their symbolic names; the
$LKIDEF macro defines the symbolic names. The following table lists, in
order, the symbolic name of each bit field:

SVS-245

SYSTEM SERVICE DESCRIPTIONS
$GETLKI

SYS-246

Symbolic Name Description

LKl$W_GROUP In this field (bits 0 to 15) $GETLKI writes the UIC group
number of the process that took out the first lock on the
resource, thereby creating the resource name. This process
issued a call to $ENO or $ENOW specifying the name of the
resource in the resnam argument.

However, if this process specified the LCK$_SYSTEM flag
in the call to $ENO or $ENOW, the resource name is
systemwide. In this case, the UIC group number of the
process is not associated with the resource name.

Consequently, this field (bits 0 to 15) is significant only if the
resource name is not systemwide. $GETLKI sets bit 31 if the
resource name is systemwide.

LK1$B_RMOD In this field (bits 16 to 23) $GETLKI writes the access mode
associated with the first lock taken out on the resource.

LKl$B_ST ATUS This field (bits 24 to 30) is not used. $GETLKI sets it to 0.

LKl$V_SYSNAM This field (bit 31) indicates whether the resource name is
systemwide. $GETLKI sets this bit if the resource name is
systemwide and clears it if the resource name is qualified by
the creating process's UIC group number. The state of this bit
determines the interpretation of bits 0 to 15.

LKl$_PARENT
When you specify LKl$_PARENT, $GETLKI returns the lock ID of the
parent lock for the lock, if a parent lock was specified in the call to $ENQ or
$ENQW. If the lock does not have a parent lock, $GETLKI returns the
value 0.

Because the parent lock ID is a longword, the buffer length field in the item
descriptor should specify 4 (bytes).

LKl$_PID
When you specify LKl$_PID, $GETLKI returns the process identification
(process ID) of the process that owns the lock.

The process ID is a longword value, so the buffer length field in the item
descriptor should specify 4 (bytes).

LKl$_RESNAM
When you specify LKl$_RESNAM, $GETLKI returns the resource name string
and its length, which must be from 1 to 31 bytes. The resource name string
was specified in the resnam argument in the initial call to $ENQ or $ENQW.

The $GETLKI service returns the length of the string in the return length
address field in the item descriptor. However, in the call to $GETLKI, you
do not know how long the string is. Therefore, to avoid buffer overflow, you
should specify the maximum length (31 bytes) in the buffer length field in
the item descriptor.

LKl$_RSBREFCNT
When you specify LKl$_RSBREFCNT, $GETLKI returns the number of
subresources of the resource associated with the lock. A subresource has
the resource as a parent resource. Note, however, that the number of
subresources may differ from the number of sublocks of the lock, because

SYSTEM SERVICE DESCRIPTIONS
$GETLKI

any number of processes may lock the resource. If any of these processes
then locks another resource, and in doing so specifies the lock ID of the lock
on the first resource as a parent lock, then the second resource becomes a
subresource of the first resource.

Thus, the number of sublocks on a lock is limited to the number of sublocks
that a single process takes out, whereas the number of subresources on a
resource is determined by (potentially) multiple processes.

The subresource reference count is a longword value, so the buffer length
field in the item descriptor should specify 4 (bytes).

LKl$_STATE
When you specify LKI$_STATE, $GETLKI returns the current state of the
lock. The current state of the lock is described by the following three 1-byte
items (in the order specified): (1) the lock mode requested (in the call to
$ENQ or $ENQW) for the lock, (2) the lock mode granted (by $ENQ or
$ENQW) for the lock, and (3) the name of the queue on which the lock
currently resides.

The buffer length field in the item descriptor should specify 3 (bytes). The
$LKIDEF macro defines the following symbolic names that refer to the three
1-byte items in the buffer.

Symbolic Name

LKl$B_ST A TE_RQMODE

LKl$B_ST A TE_GRMODE

LKl$B_ST A TE_QUEUE

Description

Lock mode requested

Lock mode granted

Name of queue on which the lock resides

The values that $GETLKI may write into each 1-byte item have symbolic
names; these symbolic names specify the six lock modes and the three types
of queue in which a lock may reside. The DESCRIPTION section describes
these names.

LKl$_VALBLK
When you specify LKI$_ VALBLK, $GETLKI returns the lock value block of
the locked resource. This lock value block is the master copy that the lock
manager maintains for the resource, not the process-private copy.

Because the lock value block is 16 bytes, the buffer length field in the item
descriptor should specify 16.

LKl$_WAITCOUNT
When you specify LKI$_WAITCOUNT, $GETLKI returns the total number of
locks that are currently on the wait queue of the resource associated with the
lock. These locks are waiting to be granted.

The buffer length field in the item descriptor should specify 4 (bytes).

SYS-247

SYSTEM SERVICE DESCRIPTIONS
$GETLKI

SYS-248

iosb
VMS usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

1/0 Status Block that is to receive the final completion status. The iosb
argument is the address of a quadword.

When $GETLKI is called, it sets the 1/0 status block to 0. When $GETLKI
completes, it writes a condition value to the first longword in the quadword.
The remaining two words in the quadword are unused.

Although this argument is optional, DIGITAL strongly recommends that you
specify it, for the following reasons:

• If you are using an event flag to signal the completion of the service, you
can test the 1/0 status block for a condition value to be sure that the
event flag was not set by an event other than service completion.

• If you are using the $SYNCH service to synchronize completion of the
service, the 1/0 status block is a required argument for $SYNCH.

• The condition value returned in RO and the condition value returned in
the 1/0 status block provide information about different aspects of the
call to the $GETLKI service. The condition value returned in RO gives
you information about the success or failure of the service call itself; the
condition value returned in the 1/0 status block gives you information
about the success or failure of the service operation. Therefore, to
accurately assess the success or failure of the call to $GETLKI, you
must check the condition values returned in both RO and the 1/0 status
block.

astadr
VMS usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed when the service completes. The astadr
argument is the address of the entry mask of this routine.

If you specify this argument, the AST routine executes at the same access
mode as the caller of the $GETLKI service.

astprm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST service routine specified by the astadr
argument. The astprm argument is the longword parameter.

DESCRIPTION

SYSTEM SERVICE DESCRIPTIONS
$GETLKI

nullarg
VMS usage: nulLarg
type: longword {unsigned)
access: read only
mechanism: by value

Place-holding argument reserved by DIGITAL.

Depending on the operation, the calling process may need a certain privilege
to use $GETLKI:

• You need WORLD privilege to obtain information about locks held by
processes in other groups.

• To obtain information about system locks, you need either SYSLCK
privilege, or the process must be executing in executive or kernel access
mode.

The access mode of the calling process must be equal to or more privileged
than the access mode at which the lock was initially granted.

When locking on a resource is clusterwide, a single master copy of the
resource is maintained on the node that owns the process that created the
resource by taking out the first lock on it. When a process on another VAX
node locks that same resource, a local copy of the resource is copied to the
node and the lock is identified by a lock ID that is unique to that node.

In a VAXcluster environment, however, you cannot use $GETLKI to obtain
directly information about locks on other nodes in the cluster; that is, you
cannot specify in a call to $GETLKI the lock ID of a lock held by a process on
another node. The $GETLKI service interprets the lkidadr argument as the
lock ID of a lock on the caller's node, even though the resource associated
with a lock may or may not have its master copy on the caller's node.

However, because a process on another node in the cluster may have a
lock on the same resource as the caller of $GETLKI, the caller, in obtaining
information about the resource, may indirectly obtain some information
about locks on the resource that are held by processes on other nodes. One
example of information indirectly obtained about a resource is the contents of
lock queues; these queues contain information about all locks on the resource,
and some of these locks may be held by processes on other nodes.

Another example of information more directly obtained is the remote lock
ID of a lock held by a process on another node. Specifically, if the caller of
$GETLKI on node A specifies a lock (by means of lkidadr) and that lock is
held by a process on node B, $GETLKI will return the lock ID of the lock
from node B's lock database if the LKI$_REMLKID item code is specified in
the call.

SYS-249

SYSTEM SERVICE DESCRIPTIONS
$GETLKI

CONDITION
VALUES
RETURNED

SYS-250

Item codes LKl$_BLOCKEDBY, LKl$_BLOCKING, LKl$_LQCKS, and
LKJ$_STATE specify that $GETLKI return various items of information; some
of these items are the names of lock modes or the names of lock queues. The
$LCKDEF macro defines the following symbolic names:

Symbolic Name

LCK$K_NLMODE

LCK$K_CRMODE

LCK$K_CWMODE

LCK$K_PRMODE

LCK$K_PWMODE

LCK$K_EXMODE

Symbolic Name

LK1$C_GRANTED

LK1$C_CONVERT

LKl$C_ WAITING

SS$_NQRMAL

SS$_NQMORELOCK

SS$_ACCVIO

SS$_BADPARAM

SS$_1VLOCKID

SS$_IVMODE

SS$_NOSYSLCK

SS$_NQWORLD

Lock Mode

Null mode

Concurrent read mode

Concurrent write mode

Protected read mode

Protected write mode

Exclusive mode

Queue Name

Granted queue, holding locks that have been granted

Converting queue, holding locks that are currently being
converted to another lock mode

Waiting queue, holding locks that are neither granted nor
converting (for example, a blocked lock)

The service completed successfully.

The caller requested a wildcard operation by
specifying a value of 0 or -1 for the lkidadr
argument, and $GETLKI has exhausted the locks
about which it can return information to the caller;
or no lkidadr argument is specified. This is an
alternate success status.

The item list cannot be read; the areas specified
by the buffer address and return length address
fields in the item descriptor cannot be written;
or the location specified by the lkidadr argument
cannot be written.

You specified an invalid item code.

The lkidadr argument specified an invalid lock ID.

A more privileged access mode is required.

The caller attempted to acquire information about
a systemwide lock and did not have the required
SYSLCK privilege.

The caller attempted to acquire information about
a lock held by a process in another group and did
not have the required WORLD privilege.

SYSTEM SERVICE DESCRIPTIONS
$GETLKI

SS$_EXOUOT A

SS$_1NSFMEM

The caller has insufficient ASTLM or BYTLM quota.

The nonpaged dynamic memory is insufficient for
the operation.

CONDITION Same as those returned in RO.

VALUES
RETURNED
IN THE 1/0
STATUS BLOCK

SYS-251

SYSTEM SERVICE DESCRIPTIONS
$GETLKIW

$GETLKIW Get Lock Information and
Wait

FORMAT

SYS-252

The Get Lock Information and Wait service returns information about the
lock database on a VMS system.

The $GETLKIW service completes synchronously; that is, it returns to the
caller with the requested information.

For asynchronous completion, you use the Get Lock Information ($GETLKI)
service; $GETLKI returns to the caller after queueing the information
request, without waiting for the information to be returned.

In all other respects, $GETLKIW is identical to $GETLKI. For all other
information about the $GETLKIW service, refer to the documentation of
$GETLKI.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System
Services.

The $GETLKI, $GETLKIW, $ENO, $ENQW, and $DEQ services together
provide the user interface to the VMS lock management facility. Refer to
the descriptions of these other services and to the Introduction to VMS
System Services for additional information about lock management.

SYS$GETLKIW [efn] ,/kidadr ,itmlst [,iosb] [,astadr]
[,astprm] [,nullarg}

$GETMSG

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$GETMSG

Get Message

The Get Message service locates and returns message text associated
with a given message identification code into the caller's buffer. The
message can be from the system message file or a user-defined message.

SYS$GETMSG msgid ,msglen ,bufadr ,[flags] ,[outadr]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

msgid
VMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by value

Identification of the 0 ssage to be retrieved. The msgid argument is a
longword value cont"' tg the message identification. Each message has
a unique identification, contained in bits 3 through 27 of system longword
condition values.

msglen
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the message string returned by $GETMSG. The msglen argument
is the address of a word into which $GETMSG writes this length.

bufadr
VMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor-fixed-length string descriptor

Buffer to receive the message string. The bufadr argument is the address of a
character string descriptor pointing to the buffer into which $GETMSG writes
the message string. The maximum size of any message string is 256 bytes.

SYS-253

SYSTEM SERVICE DESCRIPTIONS
$GETMSG

SYS-254

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Message components to be returned. The flags argument is a longword bit
vector wherein a bit, when set, specifies that the message component is to be
returned. The following table describes the significant bits:

Bit

0

Value

1

0

Description

Include text of message

Do not include text of message

1 Include message identifier

0 Do not include message identifier

2

3

1

0

Include severity indicator

Do not include severity indicator

Include facility name

0 Do not include facility name

If you omit this argument in a VAX MACRO or BLISS-32 service call, it
defaults to a value of 15; that is, all flags are set and all components of the
message are returned. If you omit this argument in a FORTRAN service call,
it defaults to a value of 0; the value 0 causes $GETMSG to use the process
default flags.

outadr
VMS usage: vector_byte_unsigned
type: byte (unsigned)
access: write only
mechanism: by reference

Optional information to be returned by $GETMSG. The outadr argument
is the address of a 4-byte array into which $GETMSG writes the following
information:

Byte Contents

0 Reserved

Count of FAO arguments associated with message

2 User-specified value in message, if any

3 Reserved

DESCRIPTION

SYSTEM SERVICE DESCRIPTIONS
$GETMSG

VMS uses this service to retrieve messages based on unique message
identifications and to prepare to output the messages.

The message identifications correspond to the symbolic names for condition
values returned by system components, for example, SS$_code from system
services, RMS$_code for VMS RMS messages, and so on.

When you set all bits in the flags argument, $GETMSG returns a string in the
following format:

facility-severity-ident, message-text

where:

Identifies the component of the operating system. facility

severity Is the severity code (the low-order 3 bits of the condition
value).

ident

message-text

Is the unique message identifier.

Is the text of the message.

For example, if you specify the MSGID=#SS$_DUPLNAM argument, the
$GETMSG service returns the following string:

%SYSTEM-F-DUPLNAM, duplicate process name

You can define your own messages with the Message Utility. See the VMS
Message Utility Manual for additional information.

The message text associated with a particular 32-bit message identification
can be retrieved from one of several places. This service takes the following
steps to locate the message text:

1 All message sections linked into the currently executing image are
searched for the associated information.

2 If the information is not found, the process-permanent message file is
searched. (You can specify the process-permanent message file by using
the SET MESSAGE command.)

3 If the information is not found, the system-wide message file is searched.

4 If the information is not found, the SS$_MSGNOTFND condition value
is returned in RO and a message in the following form is returned to the
caller's buffer:

%facility-severity-NONAME, message=xxxxxxxx[hex],
(facility=n, message=n[dec])

SYS-255

SYSTEM SERVICE DESCRIPTIONS
$GETMSG

CONDITION
VALUES
RETURNED

EXAMPLE

SS$_NORMAL

SS$_BUFFEROVF

SS$_1NSFARG

SS$_MSGNOTFND

The service completed successfully.

The service completed successfully. The string
returned overflowed the buffer provided and has
been truncated.

The call arguments are insufficient.

The service completed successfully; however, the
message code cannot be found, and a default
message has been returned.

The following example shows a segment of a program used to obtain only
the text portion of the message associated with the system message code
SS$_DUPLNAM. The $GETMSG service returns the following string:

duplicate process name

CODE: .LONG SS$_DUPLNAM ; Message identification
LENGTH: .WORD 0
BUFDESC:

.LONG 256

.ADDRESS -
BUFFER

BUFFER: .BLKB 256
FLAGS: .WORD AB0001

$GETMSG_S -

SYS-256

MSGID=CODE, -
MSGLEN=LENGTH, -
BUFADR=BUFDESC, -
FLAGS= FLAGS

Message flags - text only

$GET QUI

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

Get Queue Information

The Get Queue Information service returns information about queues
and the jobs initiated from those queues. The $GETQUI and $SNDJBC
services together provide the user interface to the VMS Job Controller,
which is the VMS queue and accounting manager. See the DESCRIPTION
section of the $SNDJBC service for a discussion of the different types of
jobs and queues.

The $GETQUI service completes asynchronously; that is, it returns to
the caller after queuing the request, without waiting for the operation to
complete.

For synchronous completion, you use the Get Queue Information and Wait
($GETQUIW) service. The $GETQUIW service is identical to $GETQUI in
every way except that $GETQUIW returns to the caller after the operation
has completed.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System
Services.

SYS$GETQUI [efn] ,tune [,nullarg] [,itmlst] [,iosb]
[,astadr] [,astprm]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

efn
VMS usage: eLnumber
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when $GETQUI completes. The efn
argument is a longword containing this number; however, $GETQUI uses
only the low-order byte. The efn argument is optional.

When the request is queued, $GETQUI clears the specified event flag (or
event flag 0 if efn was not specified). Then, when the operation completes,
$GETQUI sets the specified event flag (or event flag 0).

SYS-257

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

SYS-258

tune
VMS usage: function_code
type: word (unsigned)
access: read only
mechanism: by value

Function code specifying the function that $GETQUI is to perform. The func
argument is a word containing this function code. The $QUIDEF macro
defines the names of each function code.

You can specify only one function code in a single call to $GETQUI. Most
function codes require or allow for additional information to be passed in the
call. You pass this information by using the itmlst argument, which specifies
a list of one or more item descriptors. Each item descriptor in turn specifies
an item code, which either describes the specific information to be returned
by $GETQUI, or otherwise affects the action designated by the function code.

You can use wildcard mode to make a sequence of calls to $GETQUI to
get information about all characteristics, form definitions, queues, or jobs
contained in the system job queue file. For information on using wildcard
mode, see the DESCRIPTION section.

The following list specifies each function code, describes the action it
designates, and lists which item code or codes are applicable; descriptions
of the item codes appear in the description of the itmlst argument.

$GETQUI Function Codes with Their Valid Item Codes

QUl$_CANCEL_OPERATION
This request terminates any wildcard operation that may have been initiated
by a previous call to $GETQUI by releasing the GETQUI context block (GQC)
that the system maintains for your process. Because only one wildcard search
sequence can be outstanding at any one time, you do not have to specify any
item codes.

When you call $GETQUI to perform a series of wildcard requests to retrieve
information about characteristics, forms, queues (and their associated jobs
and files) or job entries, the job controller maintains a GQC between calls
that points to the next object in the wildcard sequence. The system retains
this information until (1) you have made calls to $GETQUI to examine every
object in the sequence; (2) your process has terminated; or (3) you explicitly
cancel the wildcard operation by using the QUI$_CANCEL _OPERATION
function code. If your calls to $GETQUI have located all the objects in the
sequence in which you are interested, you should terminate the wildcard
operation. This frees job controller resources and allows you to initiate
another $GETQUI operation.

QUl$_DISPLA V_CHARACTERISTIC
This request returns information about a specific characteristic definition, or
the next characteristic definition in a wildcard operation.

A successful QUI$_DJSPLAY_CHARACTERISTIC wildcard operation
terminates when the $GETQUI service has returned information about all
characteristic definitions included in the wildcard sequence. The $GETQUI
service indicates termination of this sequence by returning the condition value
JBC$_NOMORECHAR in the 1/0 status block. If the $GETQUI service does
not find any characteristic definitions, it returns the condition value
JBC$_NOSUCHCHAR in the 1/0 status block.

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

For more information on how to request information about characteristics, see
the DESCRIPTION section.

You must specify one of the following input item codes; you may specify
both:

QUI$_SEARCH_NAME
QUI$_SEARCH__NUMBER

You may specify the following input item code:

QUI$_SEARCHJLAGS

You may specify the following output item codes:

QUI$_CHARACTERISTIC__NAME
QUI$_CHARACTERISTIC__NUMBER

QUl$_DISPLAV_ENTRV
This request returns information about a specific job entry, or the next job
entry that matches the selection criteria in a wildcard operation. You use the
QUI$_SEARCH__NUMBER item code to specify the job entry number.

In wildcard mode, the QUI$_DISPLAY_ENTRY operation also establishes a
job context for subsequent QUI$_DISPLAYJILE operations. The job context
established remains in effect until you make another call to the $GETQUI
service that specifies either the QUI$_DISPLAY_ENTRY or
QUI$_CANCEL_OPERATION function code.

A successful QUI$_DISPLAY_ENTRY wildcard operation terminates when
the $GETQUI service has returned information about all job entries for the
specified user (or the current user name if the QUI$_SEARCH_USERNAME
item code is not specified). The $GETQUI service signals termination of this
sequence by returning the condition value JBC$__NOMOREENT in the I/O
status block. I{ the $GETQUI service does not find a job with the specified
entry number, or does not find a job meeting the search criteria, it returns the
condition value JBC$__NOSUCHENT in the first longword of the I/O status
block.

You may specify the following input item codes:

QUI$_SEARCH_USERNAME
QUI$_SEARCH__NUMBER
QUI$_SEARCH__FLAGS

You may specify the following output item codes:

QUI$_ACCOUNT__NAME
QUI$_AFTER_ TIME
QUI$_CHARACTERISTICS
QUI$_CHECKPOINT_DATA
QUI$_CLI
QUI$_COMPLETED_BLOCKS
QUI$_CONDITION _VECTOR
QUI$_CPU_LIMIT
QUI$_ENTRY_NUMBER
QUI$JORM_NAME
QUI$JORM_STOCK
QUI$-1NTERVENING _BLOCKS
QUJ$_INTERVENING_JOBS

SVS-259

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

SYS-260

QUI$_JQB_CQPIES
QUI$_JQB_CQPIES_DONE
QUI$_JQBJLAGS
QUI$_JQB_NAME
QUI$_JQB_pID
QUI$_JQB_SIZE
QUI$_JQB_STATUS
QUI$_LQG _QUEUE
QUI$_LQG_SPECIFICATION
QUI$__NOTE
QUI$_QPERATOR__REQUEST
QUI$_P ARAMETER_l through 8
QUI$_p£NDING_JQB_REASON
QUI$_PRIORITY
QUI$_QUEUE_NAME
QUl$__RESTART_QUEUE__NAME
QUl$__REQUEUE_QUEUE__NAME
QUI$_SUBMISSIQN _TIME
QUI$_UIC
QUI$_USERNAME
QUI$_WSDEFAULT
QUI$_WSEXTENT
QUI$_WSQUOTA

QUl$_DISPLAV_FILE
This request returns information about the next file defined for the current
job context. You normally make this request as part of a nested wildcard
sequence of queue-job-file operations or a nested wildcard sequence of
entry-file operations; that is, before you make a call to $GETQUI to request
file information, you have already made a call to the $GETQUI service to
establish the job context of the job that contains the files in which you are
interested.

The $GETQUI service signals that it has returned information about all the
files defined for the current job context by returning the condition value
JBC$__NOMOREFILE in the 1/0 status block. If the current job context
contains no files, $GETQUI returns the condition value JBC$__NOSUCHFILE
in the 1/0 status block.

A batch job can make a call to the $GETQUI service to request information
about the command file that is currently executing without first making calls
to the service to establish a queue and job context. To do this, the batch job
specifies the QUI$V_SEARCH_THIS_JOB option of the
QUI$_SEARCHJLAGS item code. The system does not save the queue or
job context established in such a call.

For more information about how to request file information, see the
DESCRIPTION section.

You may specify the following input item code:

QUI$_SEARCHJLAGS

You may specify the following output item codes:

QUI$_FILE_COPIES
QUI$_FILE_COPIES_DONE
QUI$_FILE_FLAGS
QUl$__FILE_IDENTIFICATION

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

QUI$JILE_SETUP_MODULES
QUI$JILE_SPECIFICATION
QUI$JILE_STATUS
QUI$JIRST_P AGE
QUI$_LAST_P AGE

QUl$_DISPLAV_fQRM
This request returns information about a specific form definition, or the next
form definition in a wildcard operation.

A successful QUI$_DISPLAYJORM wildcard operation terminates when the
$GETQUI service has returned information about all form definitions included
in the wildcard sequence. The $GETQUI service signals termination of this
wildcard sequence by returning the condition value JBC$_NOMOREFORM
in the I/O status block. If the $GETQUI service finds no form definitions, it
returns the condition value JBC$_NOSUCHFORM in the I/O status block.

For more information on how to request information about forms, see the
DESCRIPTION section.

You must specify one of the following input item codes. You may specify
both:

QUI$_SEARCH_NAME
QUI$_SEARCH_NUMBER

You may specify the following input item code:

QUI$_SEARCHJLAGS

You may specify the following output item codes:

QUI$JORM_DESCRIPTION
QUI$JORM_FLAGS
QUI$JORM_LENGTH
QUI$JORM_MARGIN _BOTTOM
QUI$JORM_MARGIN_LEFT
QUI$JORM_MARGIN _RIGHT
QUI$JORM_MARGIN _TOP
QUI$JORM_NAME
QUI$JORM_NUMBER
QUI$JORM_SETUP_MODULES
QUI$JORM_STOCK
QUI$JORM_WIDTH
QUI$_p AGE_SETUP_MODULES

QUl$_DISPLAV_JQB
This request returns information about the next job defined for the current
queue context. You normally make this request as part of a nested wildcard
queue-job sequence of operations; that is, before you make a call to $GETQUI
to request job information, you have already made a call to the $GETQUI
service to establish the queue context of the queue that contains the job in
which you are interested.

In wildcard mode, the QUI$_DISPLAY_JOB operation also establishes a job
context for subsequent QUI$_DISPLAY_FILE operations. The job context
established remains in effect until another call is made to the $GETQUI
service that specifies the QUI$_DISPLAY_JOB, QUI$_DISPLAY_QUEUE, or
QUI$_CANCEL _OPERATION function code.

SVS-261

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

SYS-262

The $GETQUI service signals that it has returned information about all the
jobs contained in the current queue context by returning the condition value
JBC$_NOMOREJOB in the 1/0 status block. If the current queue context
contains no jobs, $GETQUI returns the condition value JBC$_NOSUCHJOB
in the first longword of the I/O status block.

A batch job can make a call to the $GETQUI service to request information
about itself without first making a call to the service to establish a queue
context. To do this, the batch job must specify the
QUI$V_SEARCH_ THIS_JOB option of the QUI$_SEARCH_FLAGS item
code. The system does not save the queue or job context established in such
a call.

For more information about how to request job information, see the
DESCRIPTION section.

You may specify the following input item code:

QUI$_SEARCH_FLAGS

You may specify the following output item codes:

QUI$__ACCOUNT_NAME
QUI$__AFTER_ TIME
QUI$_CHARACTERISTICS
QUI$_CHECKPOINT_DATA
QUI$_CLI
QUI$_COMPLETED_BLOCKS
QUI$_CONDITION _VECTOR
QUI$_CPU_LIMIT
QUI$_ENTRY_NUMBER
QUI$_FORM_NAME
QUI$_FORM_STOCK
QUI$_INTERVENING _BLOCKS
QUI$_INTERVENING _JOBS
QUI$_JOB_COPIES
QUI$_JOB_COPIES_DONE
QUI$_JOB_FLAGS
QUI$_JOB_NAME
QUI$_JOB_PID
QUI$_JOB_SIZE
QUI$_JOB_STATUS
QUI$_LOG _QUEUE
QUI$_LOG _SPECIFICATION
QUI$_NOTE
QUI$_0PERATOR_REQUEST
QUI$_P ARAMETER_l through 8
QUJ$_p£NDING_JOB_REASON
QUJ$_pRIORITY
QUI$_QUEUE_NAME
QUI$_REQUEUE_QUEUE_NAME
QUI$_RESTART_QUEUE_NAME
QUI$_SUBMISSION _TIME
QUI$_UIC
QUI$_USERNAME
QUI$_WSDEFAULT
QUI$_WSEXTENT
QUI$_WSQUOTA

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

QUl$_DISPLAV_QUEUE
This request returns information about a specific queue definition, or the next
queue definition in a wildcard operation.

In wildcard mode, the QUI$_DISPLAY_QUEUE operation also establishes
a queue context for subsequent QUI$_DISPLAY_JOB operations. The
queue context established remains in effect until another call is made to
the $GETQUI service that specifies either the QUI$_DISPLAY_QUEUE or
QUI$_CANCEL_QPERATION function code.

The $GETQUI service indicates that it has returned information about all
the queues contained in the current wildcard sequence by returning the
condition value JBC$_NOMOREQUE in the I/O status block. If no queue is
found, $GETQUI returns the condition value JBC$_NOSUCHQUE in the first
longword of the I/O status block.

A batch job can make a call to the $GETQUI service to request information
about the queue in which it is contained without first making a call to the
service to establish a queue context. To do this, the batch job must specify
the QUI$V_SEARCH_THIS_JOB option of the QUI$_SEARCHJLAGS item
code. The system does not save the queue context established in such a call.

For more information about how to request queue information, see the
DESCRIPTION section.

You must specify the following input item code:

QUI$_SEARCH_NAME

You may specify the following input item code:

QUI$_SEARCHJLAGS

You may specify the following output item codes:

QUI$__ASSIGNED_QUEUE__NAME
QUI$_BASE_PRIORITY
QUI$_CHARACTERISTICS
QUI$_CPU_DEFAULT
QUI$ __ CPU_LIMIT
QUI$_DEFAULTJORM__NAME
QUI$_DEFAULTJORM_STOCK
QUI$_DEVICE__NAME
QUI$_EXECUTING_JOB_COUNT
QUI$_FORM__NAME
QUI$JORM_STOCK
QUI$_GENERIC_TARGET
QUI$_HOLDING_JQB_COUNT
QUI$_JQB_LIMIT
QUI$_JOB__RESET_MODULES
QUI$_JQB_SIZE_MAXIMUM
QUI$_JQB_SIZE_MINIMUM
QUI$_LIBRARY_SPECIFICATION
QUI$_0WNER_UIC
QUI$_PENDING_JQB_BLOCK_CQUNT
QUI$_PENDING_JQB_CQUNT
QUI$_PROCESSOR
QUI$_PROTECTION
QUI$_QUEUE_DESCRIPTION
QUI$_QUEUE_FLAGS

SYS-263

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

SYS-264

QUI$_QUEUE_NAME
QUI$_QUEUE_STATUS
QUI$_RETAINED_JQB_CQUNT
QUI$_SCSNODE_NAME
QUI$_TIMED_RELEASE_JQB_CQUNT
QUI$_WSDEFAULT
QUI$_WSEXTENT
QUI$_WSQUOTA

QUI$_ TRANSLA TE_QUEUE
This request translates a logical name for a queue to the equivalence name
for the queue. The logical name is specified by QUI$_SEARCH_NAME. The
translation is performed iteratively until the equivalence string is found or the
number of translations allowed by the system has been reached.

You must specify the following input item code:

QUI$_SEARCH_NAME

You may specify the following output item code:

QUI$_QUEUE_NAME

nullarg
VMS usage: nulLarg
type: longword (unsigned)
access: read only
mechanism: by value

Place-holding argument reserved by DIGITAL.

itmlst
VMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list supplying information to be used in performing the function specified
by the func argument. The itmlst argument is the address of the item list.
The item list consists of one or more item descriptors, each of which contains
an item code. The item list is terminated by an item code of 0 or by a
longword of 0. The following diagram depicts the structure of a single item
descriptor.

31 15 0

item code 1 buffer length

buffer address

return length address

ZK-1705-84

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

SGETQUI Item Descriptor Fields

buffer length
A word specifying the length of the buffer; the buffer either supplies input
information for $GETQUI or receives information from $GETQUI. The
required length of the buffer varies depending on the item code specified and
is given in the description of each item code.

item code
A word containing an item code, which identifies the nature of the
information supplied for $GETQUI or that is received from $GETQUI. Each
item code has a symbolic name; the $QUIDEF macro defines these symbolic
names that have the following format:

QUI$_code

There are two types of item code:

• Input value item code. The $GETQUI service has only three input value
item codes: QUI$_SEARCH_NAME, QUJ$_SEARCH_NUMBER, and
QUI$_SEARCHJLAGS. These item codes specify the object name or
number for which $GETQUI is to return information, and the extent of
$GETQUI's search for these objects. Most function codes require that you
specify at least one input value item code. The function code or codes for
which each item code is valid is shown in parentheses after the item code
description.

For input value item codes, the buffer length and buffer address fields
of the item descriptor must be nonzero; the return length field must be
zero. Specific buffer length requirements are given in the description of
each item code.

• Output value item code. Output value item codes specify a buffer for
information returned by $GETQUI. For output value item codes, the
buffer length and buffer address fields of the item descriptor must be
nonzero; the return length field may be zero or nonzero. Specific buffer
length requirements are given in the description of each item code.

Several item codes specify a queue name, form name, or characteristic
name to $GETQUI, or request that $GETQUI return one of these names.
For these item codes, the buffer must specify or be prepared to receive a
string containing from 1 to 31 characters, exclusive of spaces, tabs, and null
characters, which are ignored. Allowable characters in the string are the
uppercase alphabetic characters, the lowercase alphabetic characters (which
are converted to uppercase), the numeric characters, the dollar sign ($), and
the underscore(_).

buffer address
Address of the buffer that specifies or receives the information.

return length address
Address of a word to receive the length of information returned by $GETQUI.

SYS-265

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

SVS-266

$GETQUI Item Codes

QUl$_ACCOUNT_NAME
When you specify QUI$-ACCOUNT__NAME, $GETQUI returns, as a
character string, the account name of the owner of the specified job. Because
the account name can include up to 8 characters, the buffer length field of the
item descriptor should specify 8 (bytes).

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_AFTER_ TIME
When you specify QUI$-AFTER_ TIME, $GETQUI returns, as a quadword
absolute time value, the system time at or after which the specified job can
execute.

(Valid for QUI$_D1SPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_ASSIGNED_QUEUE_NAME
When you specify QUI$-ASSIGNED_QUEUE__NAME, $GETQUI returns,
as a character string, the name of the execution queue to which the logical
queue specified in the call to $GETQUI is assigned. Because the queue name
can include up to 31 characters, the buffer length field of the item descriptor
should specify 31 (bytes).

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_BASE_PRIORITY
When you specify QUI$_BASE_pRJORITY, $GETQUI returns, as a longword
value in the range 0 to 15, the priority at which batch jobs are initiated from
a batch execution queue or the priority of a symbiont process that controls
output execution queues.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_CHARACTERISTIC_NAME
When you specify QUI$_CHARACTERISTIC__NAME, $GETQUI returns,
as a character string, the name of the specified characteristic. Because the
characteristic name can include up to 31 characters, the buffer length field of
the item descriptor should specify 31 (bytes).

(Valid for QUI$_DISPLAY_CHARACTERISTIC function code)

QUl$_CHARACTERISTIC_NUMBER
When you specify QUI$_CHARACTERISTIC_NUMBER, $GETQUI returns,
as a longword value in the range 0 to 127, the number of the specified
characteristic.

(Valid for QUI$_DISPLAY_CHARACTERISTIC function code)

QUl$_CHARACTERISTICS
When you specify QUI$_CHARACTERISTICS, $GETQUI returns, as a 128-
bit string (16-byte field), the characteristics associated with the specified queue
or job. Each bit set in the bit mask represents a characteristic number in the
range 0 to 127.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB,
QUI$_DISPLAY_QUEUE function codes)

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

QUl$_CHECKPOINT_DATA
When you specify QUI$_CHECKPOINT_DATA, $GETQUI returns, as a
character string, the value of the DCL symbol BATCH$RESTART when the
specified batch job is restarted. Because the value of the symbol can include
up to 255 characters, the buffer length field of the item descriptor should
specify 255 (bytes).

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_CLI
When you specify QUI$_CLI, $GETQUI returns, as an RMS file name
component, the name of the command language interpreter used to execute
the specified batch job. The file specification returned assumes the logical
name SYS$SYSTEM and the file type EXE. Because a file name can include
up to 39 characters, the buffer length field in the item descriptor should
specify 39 (bytes). This item code is applicable only to batch jobs.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_COMPLETED_BLOCKS
When you specify QUI$_COMPLETED_BLOCKS, $GETQUI returns, as
a longword integer value, the number of blocks that the symbiont has
processed for the specified print job. This item code is applicable only to
print jobs.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

au 1$_CQN DITI ON_ VECTOR
When you specify QUI$_CONDITION _VECTOR, $GETQUI returns, as a
longword condition value, the completion status of the specified job.

(Valid for QUI$_DISPLAY__ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_CPU_DEFAULT
When you specify QUI$_CPU_DEFAULT, $GETQUI returns, as a longword
integer value, the default CPU time limit specified for the queue in
10-millisecond units. This item code is applicable only to batch execution
queues.

For more information about default forms, see the Guide to Maintaining a VMS
System.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_CPU_LIMIT
When you specify QUI$_CPU_LIMIT, $GETQUI returns, as a longword
integer value, the maximum CPU time limit specified for the specified job or
queue in 10-millisecond units. This item code is applicable only to batch jobs
and batch execution queues.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB,
QUI$_DISPLAY_QUEUE function codes)

QUl$_DEFAUL T_fQRM_NAME
When you specify QUI$_DEFAULT_FORM_NAME, $GETQUI returns, as a
character string, the name of the default form associated with the specified
output queue. Because the form name can include up to 31 characters, the
buffer length field of the item descriptor should specify 31 (bytes).

SYS-267

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

SVS-268

For more information about default forms, see the Guide to Maintaining a VMS
System.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_DEFAULT_FQRM_STOCK
When you specify QUI$_DEFAULTJORM_STOCK, $GETQUI returns, as a
character string, the name of the paper stock on which the specified default
form is to be printed. Because the name of the paper stock can include up to
31 characters, the buffer length field of the item descriptor should specify 31
(bytes).

For more information on default forms, see the Guide to Maintaining a VMS
System.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_DEVICE_NAME
When you specify QUI$_DEVICE_NAME, $GETQUI returns, as a character
string, the name of the device on which the specified output execution queue
is located. Because the device name can include up to 31 characters, the
buffer length field of the item descriptor should specify 31 (bytes).

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_ENTRV_NUMBER
When you specify QUI$_ENTRY_NUMBER, $GETQUI returns, as a
longword integer value, the queue entry number of the specified job.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_EXECUTING_JQB_COUNT
When you specify QUI$_EXECUTING_JQB_COUNT, $GETQUI returns, as
a longword integer value, the number of jobs in the queue that are currently
executing.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_FILE_CQPIES
When you specify QUI$JILE_COPIES, $GETQUI returns the number of
times the specified file is to be processed, which is a longword integer value
in the range 1 to 255. This item code is applicable only to output execution
queues.

(Valid for QUI$_DISPLAYJILE function code)

QUl$_FILE_CQPIES_DQNE
When you specify QUI$JILE_CQPIES_DQNE, $GETQUI returns the
number of times the specified file has been processed, which is a longword
integer value in the range 1 to 255. This item code is applicable only to
output execution queues.

(Valid for QUI$_DISPLAYJILE function code)

QUl$_FILE_FLAGS
When you specify QUI$_FILEJLAGS, $GETQUI returns, as a longword bit
vector, the processing options that have been selected for the specified file.
Each processing option is represented by a bit. When $GETQUI sets a bit, the
file is processed according to the corresponding processing option. Each bit in

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

the vector has a symbolic name. The $QUIDEF macro defines the following
symbolic names:

Symbolic Name

QUl$V_FILE _BURST

QUl$V_FILE_DELETE

QUl$V_FILE_DOUBLE_SPACE

QUl$V_FILE_FLAG

OUl$V_FILE_ TRAILER

QUl$V_FILE_PAGE_HEADER

QUl$V_FILE_PAGINATE

OUl$V_FILE_PASSALL

Description

Burst and flag pages are to be printed
preceding the file.

File is to be deleted after execution of
request.

Symbiont formats the file with double
spacing.

Flag page is to be printed preceding the file.

Trailer page is to be printed following the
file.

Page header is to be printed on each page
of output.

Symbiont paginates output by inserting a
form feed whenever output reaches the
bottom margin of the form.

Symbiont prints the file in PASSALL mode.

(Valid for QUI$_DISPLAYJILE function code)

QUl$_FILE_IDENTIFICATION
When you specify QUI$JILE-1DENTIFICATION, $GETQUI returns, as a
28-byte string, the internal file-identification value that uniquely identifies
the selected file. This string contains (in order) the following three file
identification fields from the RMS NAM block for the selected file: the
16-byte NAM$T_DVI field, the 6-byte NAM$W_FID field, and the 6-byte
NAM$W_DID field.

(Valid for QUI$_DISPLAYJILE function code)

QUl$_FILE_SETUP_MQDULES
When you specify QUI$_FILE_SETUP_MODULES, $GETQUI returns, as a
comma-separated list, the names of the text modules that are to be extracted
from the device control library and copied to the printer before the specified
file is printed. Because a text module name can include up to 31 characters
and is separated from the previous text module name with a comma, the
buffer length field of the item descriptor should specify 32 (bytes) for each
possible text module. This item code is meaningful only for output execution
queues.

(Valid for QUI$_DISPLAY_FILE function code)

QUl$_FILE_SPECIFICATION
When you specify QUI$_FILE_SPECIFICATION, $GETQUI returns the fully
qualified RMS file specification of the file about which $GETQUI is returning
information. Because a file specification can include up to 255 characters, the
buffer length field of the item descriptor should specify 255 (bytes).

Note: The file specification is the result of an RMS file-passing operation that
occurs at the time you submit the job. If you renamed the file or created
the job as a result of copying a file to a spooled device, then you cannot

SYS-269

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

SVS-270

use this file specification to access the file through RMS. You use
QUI$JILE-1DENTIFICA TION to obtain a unique identifier for the file.

(Valid for QUI$_DISPLAY_FILE function code)

QUl$_FILE_STATUS
When you specify QUI$_FJLE_STATUS, $GETQUI returns file status
information as a longword bit vector. Each file status condition is represented
by a bit. When $GETQUI sets the bit, the file status corresponds to the
condition represented by the bit. Each bit in the vector has a symbolic name.
The $QUIDEF macro defines the following symbolic names.

Symbolic Name

OUl$V_FILE_CHECKPOINTED

OUl$V_FILE_EXECUTING

Description

File is checkpointed.

File is being processed.

(Valid for QUI$_DISPLAYJILE function code)

QUl$_FIRST_PAGE
When you specify QUI$JIRST_p AGE, $GETQUI returns, as a longword
integer value, the page number at which the printing of the specified file is to
begin. This item code is applicable only to output execution queues.

(Valid for QUI$_DISPLAY_FILE function code)

QUl$_FORM_DESCRIPTION
When you specify QUI$JORM_DESCRIPTION, $GETQUI returns, as a
character string, the text string that describes the specified form. Because the
text string can include up to 255 characters, the buffer length field in the item
descriptor should specify 255 (bytes).

(Valid for QUI$_DISPLAYJORM function code)

QUl$_FORM_FLAGS
When you specify QUI$_FORMJLAGS, $GETQUI returns, as a longword
bit vector, the processing options that have been selected for the specified
form. Each processing option is represented by a bit. When $GETQUI sets a
bit, the form is processed according to the corresponding processing option.
Each bit in the vector has a symbolic name. The $QUIDEF macro defines the
following symbolic names.

Symbolic Name

OUl$V_FORM _SHEET _FEED

OUl$V_FORM_ TRUNCATE

OUl$V_FORM_WRAP

Description

Symbiont pauses at the end of each
physical page so that another sheet of
paper can be inserted.

Printer discards any characters that exceed
the specified right margin.

Printer prints any characters that exceed the
specified right margin on the following line.

(Valid for QUI$_DISPLAY_FORM function code)

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

QUl$_FQRM_LENGTH
When you specify QUI$_FORM_LENGTH, $GETQUI returns, as a longword
integer value, the physical length of the specified form in lines. This item
code is applicable only to output execution queues.

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_fQRM_MARGIN_BQTTOM
When you specify QUI$.JORM_MARGIN _BOTTOM, $GETQUI returns, as
a longword integer value, the bottom margin of the specified form in lines.

(Valid for QUI$_DISPLAY.JORM function code)

QUl$_FQRM_MARGIN_LEFT
When you specify QUI$.JORM_MARGIN _LEFT, $GETQUI returns, as a
longword integer value, the left margin of the specified form in characters.

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_FQRM_MARGIN_RIGHT
When you specify QUI$.JORM_MARGIN__RIGHT, $GETQUI returns, as a
longword integer value, the right margin of the specified form in characters.

(Valid for QUI$_DISPLAY.JORM function code)

QUl$_FQRM_MARGIN_TQP
When you specify QUI$_FORM_MARGIN _TOP, $GETQUI returns, as a
longword integer value, the top margin of the specified form in lines.

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_FQRM_NAME
When you specify QUI$_FORM_NAME, $GETQUI returns, as a character
string, the name of the specified form or the mounted form associated with
the specified job or queue. Because the form name can include up to 31
characters, the buffer length field of the item descriptor should specify 31
(bytes).

For more information about mounted forms, see the Guide to Maintaining a
VMS System.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_FORM,
QUI$_DISPLAY_JOB, QUI$_DISPLAY_QUEUE function codes)

QUl$_FQRM_NUMBER
When you specify QUI$_FORM_NUMBER, $GETQUI returns, as a longword
integer value, the number of the specified form.

(Valid for QUI$_DISPLAYJORM function code)

SYS-271

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

SYS-272

QUl$_FQRM_SETUP_MQDULES
When you specify QUI$_FORM_SETUP_MODULES, $GETQUI returns,
as a comma-separated list, the names of the text modules that are to be
extracted from the device control library and copied to the printer before a file
is printed on the specified form. Because a text module name can include up
to 31 characters and is separated from the previous text module name by a
comma, the buffer length field of the item descriptor should specify 32 (bytes)
for each possible text module. This item code is meaningful only for output
execution queues.

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_FORM_STOCK
When you specify QUI$_FORM_STOCK, $GETQUI returns, as a character
string, the name of the paper stock on which the specified form is to be
printed. Because the name of the paper stock can include up to 31 characters,
the buffer length field of the item descriptor should specify 31 (bytes).

For more information about forms, see the Guide to Maintaining a VMS System.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_FORM,
QUI$_DISPLAY_JOB, QUI$_DISPLAY_QUEUE function codes)

QUl$_FQRM_WIDTH
When you specify QUI$_FORM_WIDTH, $GETQUI returns, as a longword
integer value, the width of the specified form in characters.

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_GENERIC_ TARGET
When you specify QUI$_GENERIC_TARGET, $GETQUI returns, as a
comma-separated list, the names of the execution queues that are enabled
to accept work from the specified generic queue. Because a queue name can
include up to 31 characters and is separated from the previous queue name
with a comma, the buffer length field of the item descriptor should specify
32 (bytes) for each possible queue name. A generic queue can send work to
up to 124 execution queues. This item code is meaningful only for generic
queues.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_HQLDING_JQB_CQUNT
When you specify QUI$_HOLDING_JOB_COUNT, $GETQUI returns, as
a longword integer value, the number of jobs in the queue being held until
explicitly released.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_1NTERVENING_BLOCKS
When you specify QUI$_INTERVENING_BLOCKS, $GETQUI returns, as
a longword integer value, the number of blocks to be processed before the
specified job can begin to execute. This item code is meaningful only for
output execution queues.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

QUl$_1NTERVENING_JQBS
When you specify QUI$_JNTERVENING_JOBS, $GETQUI returns, as a
longword integer value, the number of jobs to be processed before the
specified job can begin to execute. This item code is meaningful only for
output execution queues.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QU1$_JQB_CQPIES
When you specify QUI$_JOB_COPIES, $GETQUI returns, as a longword
integer value, the number of times the specified print job is to be repeated.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_JQB_COPIES_DONE
When you specify QUI$_JOB_COPIES_DONE, $GETQUI returns, as a
longword integer value, the number of times the specified print job has been
repeated.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QU1$_JQB_FLAGS
When you specify QUI$_JOB_FLAGS, $GETQUI returns, as a longword bit
vector, the processing options that have been selected for the specified job.
Each processing option is represented by a bit. When $GETQUI sets a bit, the
job is processed according to the corresponding processing option. Each bit in
the vector has a symbolic name. The $QUIDEF macro defines the following
symbolic names.

Symbolic Name

QUl$V_JQB_CPU_LIMIT

OUl$V_JQB_FILE_BURST

OUl$V_JQB_FILE_BURST _ONE

OUl$V_JQB_FILE_FLAG

OUl$V_JQB_FILE_FLAG_ONE

OUl$V_JQB_FILE_P AGINA TE

OUl$V_JQB_FILE_ TRAILER

OUl$V_JQB_FILE_ TRAILER_QNE

QUl$V_JQB_LQG_DELETE

QUl$V_JQB_LQG_NULL

QUl$V_JQB_LOG_SPOOL

Description

CPU time limit for the job.

Burst and flag pages precede each file in the
job.

Burst and flag pages precede only the first
copy of the first file in the job.

Flag page precedes each file in the job.

Flag page precedes only the first copy of
the first file in the job.

Symbiont paginates output by inserting a
form feed whenever output reaches the
bottom margin of the form.

Trailer page follows each file in the job.

Trailer page follows only the last copy of
the last file in the job.

Log file is deleted after it is printed.

No log file is created.

Job log file is queued for printing when job
is complete.

SYS-273

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

SYS-274

Symbolic Name

QUl$V_JQB_LOWERCASE

QUl$V_JQB_NOTIFY

QUl$V_JQB_REST ART

QUl$V_JQB_WSDEFAUL T

QUl$V_JQB_ WSEXTENT

QUl$V_JQB_WSQUOT A

Description

Job is to be printed on printer that can print
both uppercase and lowercase letters.

Message is broadcast to terminal when job
completes or aborts.

Job will restart after a system failure or can
be requeued during execution.

Default working set size is specified for the
job.

Working set extent is specified for the job.

Working set quota is specified for the job.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_JQB_LIMIT
When you specify QUI$_JOB_LIMIT, $GETQUI returns the number of jobs
that can execute simultaneously on the specified queue, which is a longword
integer value in the range 1 to 255. This item code is applicable only to batch
execution queues.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_JQB_NAME
When you specify QUI$_JOB_NAME, $GETQUI returns, as a character
string, the name of the specified job. Because the job name can include up to
39 characters, the buffer length field of the item descriptor should specify 39
(bytes).

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QU1$_JQB_PID
When you specify QUI$_JOB_PID, $GETQUI returns the process
identification (PID) of the executing batch job in standard longword format.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QU1$_JQB_RESET_MQDULES
When you specify QUI$_JOB_RESET_MODULES, $GETQUI returns, as a
comma-separated list, the names of the text modules that are to be extracted
from the device control library and copied to the printer before each job in
the specified queue is printed. Because a text module name can include up
to 31 characters and is separated from the previous text module name by a
comma, the buffer length field of the item descriptor should specify 32 (bytes)
for each possible text module. This item code is meaningful only for output
execution queues.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_JQB_SIZE
When you specify QUI$_JOB_SIZE, $GETQUI returns, as a longword integer
value, the total number of disk blocks in the specified print job.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

QUl$_JQB_SIZE_MAXIMUM
When you specify QUI$_JOB_SIZE_MAXIMUM, $GETQUI returns, as a
longword integer value, the maximum number of disk blocks that a print job
initiated from the specified queue can contain. This item code is applicable
only to output execution queues.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_JQB_SIZE_MINIMUM
When you specify QUI$_JOB_SIZE_MINIMUM, $GETQUI returns, as a
longword integer value, the minimum number of disk blocks that a print job
initiated from the specified queue can contain. This item code is applicable
only to output execution queues.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_JQB_STATUS
When you specify QUI$_JOB_STATUS, $GETQUI returns the specified job's
status flags, which are contained in a longword bit vector. The $QUIDEF
macro defines the following symbolic names for these flags.

Symbolic Name

OUl$V_JQB_ABORTING

QUl$V_JQB_EXECUTING

QUl$V_JQB_HQLDING

OUl$V_JQB_INACCESSIBLE

QUl$V_JQB_PENDING

QUl$V_JQB_REFUSED

QUl$V_JQB_RET AINED

Description

System is attempting to abort execution of
job.

Job is executing or printing.

Job will be held until it is explicitly released.

Caller does not have READ access to the
specific job and file information in the
system queue file. Therefore, the
QUl$_DISPLA Y _JQB and
QUl$_DISPLA Y _FILE operations can return
information for only the following output
value item codes:

QUl$_AFTER_ TIME
QUl$_CQMPLETED_BLOCKS
OUl$_ENTRY _NUMBER
QUl$_1NTERVENING_BLOCKS
OUl$_1NTERVENING_JOBS
OUl$_JQB_SIZE
QUl$_JQB_ST ATUS.

Job is pending. See
QUl$_PENDING_JQB_REASON for the
reason the job is in a pending state.

Job was refused by symbiont and is waiting
for symbiont to accept it for processing.

Job has completed, but it is being retained
in the queue.

SVS-275

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

SYS-276

Symbolic Name

QUl$V_JQB_ST ARTING

QUl$V_JQB_SUSPENDED

QUl$V_JQB_ TIMED_RELEASE

Description

Job controller is starting to process the
job and has begun communicating with
an output symbiont or a job controller on
another node in the cluster.

Job is suspended.

Job is waiting for specified time to execute.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_LAST_PAGE
When you specify QUI$_LAST_P AGE, $GETQUI returns, as a longword
integer value, the page number at which the printing of the specified file
should end. This item code is applicable only to output execution queues.

(Valid for QUI$_DISPLAY_FILE function code)

QUl$_LIBRARV_SPECIFICATION
When you specify QUI$_LIBRARY_SPECIFICATION, $GETQUI returns, as
an RMS file name component, the name of the device control library for the
specified queue. The library specification assumes th~ device and directory
name SYS$LIBRARY and a file type of TLB. Because a file name can include
up to 39 characters, the buffer length field of the item descriptor should
specify 39 (bytes). This item code is meaningful only for output execution
queues.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_LQG_QUEUE
When you specify QUI$_LQG _QUEUE, $GETQUI returns, as a character
string, the name of the queue into which the log file produced for the
specified batch job is to be entered for printing. This item code is applicable
only to batch jobs. Because a queue name can contain up to 31 characters,
the buffer length field of the item descriptor should specify 31 (bytes).

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_LQG_SPECIFICATION
When you specify QUI$_LQG_SPECIFICATION, $GETQUI returns, as an
RMS file specification, the name of the log file to be produced for the specified
job. Because a file specification can include up to 255 characters, the buffer
length field of the item descriptor should specify 255 (bytes). This item code
is meaningful only for batch jobs.

The string returned is the log file specification that was provided to the
$SNDJBC service to create the job. Therefore, to determine whether a log file
is to be produced, testing this item code for a zero-length string is insufficient;
instead, you need to examine the QUI$V_JOB_LOG_NULL bit of the
QUI$_JOB_FLAGS item code.

(Valid for QUI$_DISPLAY_ENTRY, QU1$_DISPLAY_JOB function codes)

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

QUl$_NQTE
When you specify QUI$_NOTE, $GETQUI returns, as a character string, the
note that is to be printed on the job flag and file flag pages of the specified
job. Because the note can include up to 255 characters, the buffer length
field of the item descriptor should specify 255 (bytes). This item code is
meaningful only for output execution queues.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_QPERATQR_REQUEST
When you specify QUI$_0PERATOR_REQUEST, $GETQUI returns, as a
character string, the message that is to be sent to the queue operator before
the specified job begins to execute. Because the message can include up to
255 characters, the buffer length field of the item descriptor should specify
255 (bytes). This item code is meaningful only for output execution queues.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_QWNER_UIC
When you specify QUI$_0WNER_UIC, $GETQUI returns the owner UIC as
a longword value in standard UIC format. For information on UIC format,
see the Identifier Format section in the "Security Services" chapter of the
Introduction to VMS System Services.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_PAGE_SETUP_MODULES
When you specify QUI$_p AGE_SETUP_MODULES, $GETQUI returns, as
a comma-separated list, the names of the text modules to be extracted from
the device control library and copied to the printer before each page of the
specified form is printed. Because a text module name can include up to 31
characters and is separated from the previous text module name by a comma,
the buffer length field of the item descriptor should specify 32 (bytes) for each
possible text module. This item code is meaningful only for output execution
queues.

(Valid for QUI$_DISPLAY_FORM function code)

QUl$_PARAMETER_ 1 through QUl$_PARAMETER_8
When you specify QUI$_P ARAMETER_l through
QUI$_p ARAMETER_8, $GETQUI returns, as a character string, the value of
the user-defined parameters, that in batch jobs become the value of the DCL
symbols Pl through PS, respectively. Because these parameters may include
up to 255 characters, the buffer length field of the item descriptor should
specify 255 (bytes).

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JQB function codes)

QUl$_PENDING_JQB_BLOCK_CQUNT
When you specify QUI$_p£NDING_JOB_BLOCK_COUNT, $GETQUI
returns, as a longword integer value, the total number of blocks for all
pending jobs in the queue (valid only for output execution queues).

(Valid for QUI$_DISPLAY_QUEUE function code)

SYS-277

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

SYS-278

QUl$_PENDING_JQB_CQUNT
When you specify QUI$_PENDING_JQB_COUNT, $GETQUI returns, as a
longword integer value, the number of jobs in the queue in a pending state.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_PENDING_JQB_REASON
When you specify QUI$_p£NDING_JOB__REASON, $GETQUI returns, as
a longword bit vector, the reason that the job is in a pending state. The
$QUIDEF macro defines the following symbolic names for the flags.

Symbolic Name

OUl$V_PEND_CHAR_MISMA TCH

OUl$V_PEND_JQB_SIZE_MAX

OUl$V_PEND_JQB_SIZE_MIN

OUl$V_PEND_LOWERCASE_MISMATCH

OUl$V_PEND_NQ_ACCESS

OUl$V_PEND_QUEUE_BUSY

OUl$V_PEND_QUEUE_ST ATE

OUl$V_PEND_STOCK_MISMA TCH

Description

Job requires characteristics that
are not available on the execution
queue.

Block size of job exceeds the
upper block limit of the execution
queue.

Block size of job is less than the
lower limit of the execution queue.

Job requires lowercase printer.

Owner of job does not have
access to the execution queue.

Job is pending because the
number of jobs currently executing
on the queue equals the job limit
for the queue.

Job is pending because the
execution queue is not in a
running, open state as indicated
by QUl$_QUEUE_ST A TUS.

Stock type required by the job's
form does not match the stock
type of the form mounted on the
execution queue.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_PRIORITY
When you specify QUI$_PRIORITY, $GETQUI returns the scheduling priority
of the specified job, which is a longword integer value in the range 0 through
255.

Scheduling priority affects the order in which jobs assigned to a queue are
initiated; it has no effect on the base execution priority of a job. The lowest
scheduling priority value is 0, the highest is 255; that is, if a queue contains a
job with a scheduling priority of 10 and a job with a scheduling priority of 2,
the queue manager initiates the job with the scheduling priority of 10 first.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

QUl$_PROCESSOR
When you specify QUI$_PROCESSOR, $GETQUI returns, as an RMS file
name component, the name of the symbiont image that executes print jobs
initiated from the specified queue. The file name assumes the device and
directory name SYS$SYSTEM and the file type EXE. Because an RMS file
name can include up to 39 characters, the buffer length field of the item
descriptor should specify 39 (bytes).

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_PROTECTION
When you specify QUI$_PROTECTION, $GETQUI returns, as a longword,
the specified queue's protection mask. The following diagram depicts the
protection mask.

Value change enable Protection value

WORLD GROUP OWNER SYSTEM WORLD GROUP OWNER SYSTEM

DEWRDEWRDEWRDEWR DEWRDEWRDEWRDEWR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ZK-1724-84

Bits 0 through 15 specify the protection value: the four types of access (read,
write, execute, delete) to be granted to the four classes of user (system, owner,
group, world). Set bits deny access and clear bits allow access.

Bits 16 through 31 enable or disable bits 0 through 15. When you set a bit
in the second word, the corresponding bit in the first word affects the queue
protection. When you clear a bit in the second word, the corresponding bit in
the first word is ignored.

By default, the queue protection is (S:E,O:D,G:R,W:W).

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_QUEUE_DESCRIPTION
When you specify QUI$_QUEUE_DESCRIPTION, $GETQUI returns, as a
character string, the text that describes the specified queue. Because the text
can include up to 255 characters, the buffer length field of the item descriptor
should specify 255 (bytes).

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_QUEUE-FLAGS
When you specify QUI$_QUEUE_FLAGS, $GETQUI returns, as a longword
bit vector, the processing options that have been selected for the specified
queue. Each processing option is represented by a bit. When $GETQUI
sets a bit, the jobs initiated from the queue are processed according to the
corresponding processing option. Each bit in the vector has a symbolic name.
The $QUIDEF macro defines the following symbolic names.

SYS-279

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

SYS-280

Symbolic Name

OUl$V_QUEUE_ACL_SPECIFIED

OUl$V_QUEUE_BA TCH

OUl$V_QUEUE_CPU_DEFAUL T

Description

An access control list has been
specified for the queue. You cannot
retrieve a queue's ACL through the
$GETOUI service. Instead, you must
use the $CHANGE_ACL service.

Queue is a batch queue or a generic
batch queue.

A default CPU time limit has been
specified for all jobs in the queue.

OUl$V_QUEUE_CPU_LIMIT A maximum CPU time limit has been
specified for all jobs in the queue.

OUl$V_QUEUE_FILE_BURST Burst and flag pages precede each file
in each job initiated from the queue.

OUl$V_QUEUE_FILE_BURST_ONE Burst and flag pages precede only the
first copy of the first file in each job
initiated from the queue.

OUl$V_QUEUE_FILE_FLAG Flag page precedes each file in each job
initiated from the queue.

OUl$V_QUEUE_FILE_FLAG_ONE Flag page precedes only the first copy
of the first file in each job initiated from
the queue.

OUl$V_QUEUE_FILE_PAGINA TE Output symbiont paginates output for
each job initiated from this queue. The
output symbiont paginates output by
inserting a form feed whenever output
reaches the bottom margin of the form.

OUl$V_QUEUE_FILE_ TRAILER Trailer page follows each file in each
job initiated from the queue.

OUl$V_QUEUE_FILE_ TRAILER_ONE Trailer page follows only the last copy
of the last file in each job initiated from
the queue.

OUl$V_QUEUE_GENERIC The queue is a generic queue.

OUl$V_QUEUE_GENERIC_SELECTION The queue is an execution queue that
can accept work from a generic queue.

OUl$V_QUEUE_JQB_BURST Burst and flag pages precede each job
initiated from the queue.

OUl$V_QUEUE_JQB_FLAG A flag page precedes each job initiated
from the queue.

OUl$V_QUEUE_JQB_SIZE_SCHED Jobs initiated from the queue are
scheduled according to size, with
the smallest job of a given priority
processed first (meaningful only for
output queues).

OUl$V_QUEUE_JQB_ TRAILER A trailer page follows each job initiated
from the queue.

OUl$V_QUEUE_PRINTER The queue is a printer queue.

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

Symbolic Name

QUl$V_QUEUE_RECORD_BLOCKING

QUl$V_QUEUE_RET AIN_ALL

QUl$V_QUEUE _RETAIN _ERROR

QUl$V_QUEUE_SWAP

QUl$V_QUEUE_ TERMINAL

QUl$V_QUEUE_ WSDEFAUL T

QUl$V_QUEUE_ WSEXTENT

QUl$V_QUEUE_WSQUOT A

Description

The symbiont is permitted to
concatenate, or block together, the
output records it sends to the output
device.

All jobs initiated from the queue remain
in the queue after they finish executing.
Completed jobs are marked with a
completion status.

Only jobs that do not complete
successfully are retained in the queue.

Jobs initiated from the queue can be
swapped.

The queue is a terminal queue.

Default working set size is specified for
each job initiated from the queue.

Working set extent is specified for each
job initiated from the queue.

Working set quota is specified for each
job initiated from the queue.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_QUEUE_NAME
When you specify QUI$_QUEUE_NAME, $GETQUI returns, as a character
string, the name of the specified queue or the name of the queue that contains
the specified job. Because a queue name can include up to 31 characters, the
buffer length field of the item descriptor should specify 31 (bytes).

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB,
QUI$_DISPLAY_QUEUE function codes)

QUl$_QUEUE_STATUS
When you specify QUI$_QUEUE_STATUS, $GETQUI returns the specified
queue's status flags, which are contained in a longword bit vector. The
$QUIDEF macro defines the following symbolic names for these flags.

Symbolic Name

QUl$V_QUEUE_ALIGNING

QUl$V_QUEUE_CLOSED

QUl$V_QUEUE_IDLE

QUl$V_QUEUE_LOWERCASE

QUl$V_QUEUE_PAUSED

Description

Queue is printing alignment pages.

Queue is closed and will not accept new
jobs until the queue is put in an open state.

Queue contains no job requests.

Queue is associated with a printer that
can print both uppercase and lowercase
characters.

Execution of all current jobs in the queue is
temporarily halted.

SYS-281

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

SYS-282

Symbolic Name

QUl$V_QUEUE_PAUSING

QUl$V_QUEUE_REMOTE

QUl$V_QUEUE_RESETTING

QUl$V_QUEUE_RESUMING

QUl$V_QUEUE _SERVER

QUl$V_QUEUE_ST ALLED

QUl$V_QUEUE_ST ARTING

QUl$V_QUEUE_STOPPED

QUl$V_QUEUE_STOPPING

QUl$V_QUEUE_UNAVAILABLE

Description

Queue is temporarily halting execution.
Currently executing jobs are completing; no
new jobs can begin executing.

Queue is assigned to a physical device that
is not connected to the local node.

Queue is resetting and stopping.

Queue is restarting after pausing.

Queue processing is directed to a server
symbiont.

Physical device to which queue is assigned
is stalled; that is, the device has not
completed the last 1/0 request submitted to
it.

Queue is starting.

Queue is stopped.

Queue is stopping.

Physical device to which queue is assigned
is not available.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_REQUEUE_QUEUE_NAME
When you specify QUI$_REQUEUE_QUEUE_NAME, $GETQUI returns,
as a character string, the name of the queue to which the specified job is
reassigned. Because a queue name can contain up to 31 characters, the buffer
length field of the item descriptor should specify 31 (bytes).

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_RESTART_QUEUE_NAME
When you specify QUI$_RESTART_QUEUE_NAME, $GETQUI returns, as a
character string, the name of the queue in which the job will be placed if the
job is restarted.

(Valid for QUI$_DISPLAY_JQB function code)

QUl$_RETAINEO_JQB_COUNT
When you specify QUI$_RETAINED_JQB_CQUNT, $GETQUI returns, as
a longword integer value, the number of jobs in the queue retained after
successful completion plus those retained on error.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_SCSNOOE_NAME
When you specify QUI$_SCSNODE_NAME, $GETQUI returns, as a
character string, the name of the VAX node on which the specified execution
queue is located. Because the node name can include up to 6 characters, the
buffer length field of the item descriptor should specify 6 (bytes).

(Valid for QUI$_DISPLAY_QUEUE function code)

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

QUl$_SEARCH_FLAGS
When you specify QUI$_SEARCH_FLAGS, an input value item code,
it specifies a longword bit vector wherein each bit specifies the scope of
$GETQUI's search for objects specified in the call to $GETQUI. The $QUIDEF
macro defines symbols for each option (bit) in the bit vector. The following
table contains the symbolic names for each option and the function code for
which each flag is meaningful.

Symbolic Name Function Code Description

OUl$V_FREEZE_CONTEXT QUl$_DISPLAY_CHARACTERISTIC Does not advance wildcard
QUl$_DISPLA Y_ENTRY context on completion of
QUl$_DISPLA Y _FILE this service call.
QUl$_DISPLA Y_FORM
QUl$_DISPLA Y _JOB
QUl$_DISPLA Y _QUEUE

OUl$V_SEARCH_ALL _JOBS QUl$_DISPLAY_JOB $GETOUI searches all jobs
included in the established
queue context. If you do not
specify this flag, $GETOUI
only returns information
about jobs that have the
same user name as the
caller.

OUl$V_SEARCH_BA TCH QUl$_DISPLA Y _ENTRY
QUl$_DISPLA Y _QUEUE

OUl$V_SEARCH_EXECUTING_JOBS QUl$_DISPLA Y _ENTRY
QUl$_DISPLA Y _JOB

QUl$V_SEARCH_GENERIC QUl$_DISPLA Y _QUEUE

OUl$V_SEARCH_HOLDING_JOBS QUl$_DISPLA Y _ENTRY
QUl$_DISPLA Y _JOB

OUl$V_SEARCH_PENDING_JOBS QUl$_DISPLA Y _ENTRY
QUl$_DISPLA Y _JOB

OUl$V_SEARCH_PRINTER QUl$_DISPLA Y _ENTRY
QUl$_DISPLA Y _QUEUE

OUl$V_SEARCH _RET AINED_JOBS QUl$_DISPLA Y _ENTRY
QUl$_DISPLA Y _JOB

OUl$V_SEARCH_SERVER QUl$_DISPLA Y_ENTRY
QUl$_DISPLA Y _QUEUE

OUl$V_SEARCH_SYMBIONT QUl$_DISPLA Y_ENTRY
QUl$_DISPLA Y _QUEUE

QUl$V_SEARCH_ TERMINAL QUl$_DISPLA Y _ENTRY
QUl$_DISPLA Y _QUEUE

Selects batch queues.

Selects executing jobs.

Selects generic queues.

Selects jobs on
unconditional hold.

Selects pending jobs.

Selects printer queues.

Selects jobs being retained.

Selects server queues.

Selects output queues.

Selects terminal queues.

SYS-283

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

Symbolic Name Function Code Description

OU1$V_SEARCH_ THIS_JOB QUl$_DISPLA Y _FILE
QUl$_DISPLA Y _JOB
QUl$_DISPLA Y _QUEUE

$GETOUI returns information
about the calling batch
job, the command file
being executed, or the
queue associated with the
calling batch job. $GETQUI
establishes a new queue
and job context based on
the job entry of the caller;
this queue and job context
is dissolved when $GETQUI
finishes executing. If you
specify
QUl$V_SEARCH_ THIS_
JOB, $GETOUI ignores
all other OUl$_SEARCH_
FLAGS options.

QU1$V_SEARCH _ TIMED_RELEASE _ QUl$_DISPLA Y _ENTRY Selects jobs on hold until a
specified time. JOBS QUl$_DISPLA Y _JQB

OUl$V_SEARCH_ WILDCARD OUl$_DISPLA Y _CHARACTERISTIC
OUl$_DISPLA Y _ENTRY
QUl$_DISPLA Y _FORM
OUl$_DISPLA Y _QUEUE

$GETOUI performs a search
in wildcard mode even if
QUl$_SEARCH_NAME
contains no wildcard
characters.

SYS-284

QUl$_SEARCH_NAME
QUI$_SEARCH_NAME is an input value item code, which specifies, as a
1- to 31-character string, the name of the object about which $GETQUI is
to return information. The buffer must specify the name of a characteristic,
form, or queue.

To direct $GETQUI to perform a wildcard search, you specify
QUI$_SEARCH_NAME as a string containing one or more of the wildcard
characters(% or *).

(Valid for QUI$_DISPLAY_CHARACTERISTIC, QUI$_DISPLAY_FORM,
QUI$_DISPLAY_QUEUE function codes)

QUl$_SEARCH_NUMBER
QUI$_SEARCH_NUMBER is an input value item code, which specifies, as a
longword integer value, the number of the characteristic, form, or job entry
about which $GETQUI is to return information. The buffer must specify a
longword integer value.

(Valid for QUI$_DISPLAY_CHARACTERISTIC, QUI$_DISPLAY_ENTRY,
QUI$_DISPLAY_FORM function codes)

QUl$_SEARCH_USERNAME
QUI$_SEARCH_USERNAME is an input value item code, which specifies,
as a 1- to 12-character string, the user name for $GETQUI to use to restrict its
search for jobs. By default, $GETQUI searches for jobs whose owner has the
same user name as the calling process.

(Valid for QU1$_DISPLAY_ENTRY function code)

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

QUl$_SUBMISSIQN_ TIME
When you specify QUI$_SUBMISSION _TIME, $GETQUI returns, as a
quadword absolute time value, the time at which the specified job was
submitted to the queue.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUI$_ TIMED_RELEASE_JQB_CQUNT
When you specify QUI$_TIMED_RELEASE_JOB_CQUNT, $GETQUI
returns, as a longword value, the number of jobs in the queue on hold
until a specified time.

(Valid for QUI$_DISPLAY_QUEUE function code)

QUl$_UIC
When you specify QUI$_UIC, $GETQUI returns, in standard longword
format, the UIC of the owner of the specified job.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_USERNAME
When you specify QUI$_USERNAME, $GETQUI returns, as a character
string, the user name of the owner of the specified job. Because the user
name can include up to 12 characters, the buffer length field of the item
descriptor should specify 12 (bytes).

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB function codes)

QUl$_WSDEFAUL T
When you specify QUI$_WSDEFAULT, $GETQUI returns the default
working set size specified for the specified job or queue, which is a longword
integer in the range 1 through 65,535. This value is meaningful only for
batch jobs and execution and output queues.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB,
QUI$_DISPLAY_QUEUE function codes)

QUl$_WSEXTENT
When you specify QUI$_WSEXTENT, $GETQUI returns the working set
extent specified for the specified job or queue, which is a longword integer in
the range 1 through 65,535. This value is meaningful only for batch jobs and
execution and output queues.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB,
QUI$_DISPLAY_QUEUE function codes)

QUl$_WSQUOTA
When you specify QUI$_WSQUOTA, $GETQUI returns the working set
quota for the specified job or queue, which is a longword integer in the range
1 through 65,535. This value is meaningful only for batch jobs and execution
and output queues.

(Valid for QUI$_DISPLAY_ENTRY, QUI$_DISPLAY_JOB,
QUI$_DISPLAY_QUEUE function codes)

SVS-285

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

SYS-286

iosb
VMS usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

1/0 status block into which $GETQUI writes the completion status after the
requested operation has completed. The iosb argument is the address of the
1/0 status block.

At request initiation $GETQUI sets the value of the quadword 1/0 status
block to 0. When the requested operation has completed, $GETQUI writes
a condition value in the first longword of the 1/0 status block. It writes the
value 0 into the second longword; this longword is unused and reserved for
future use.

The condition values returned by $GETQUI in the 1/0 status block are
condition values from the JBC facility, which are defined by the $JBCMSGDEF
macro. The condition values returned from the JBC facility are listed under
CONDITION VALUES RETURNED IN THE 1/0 STATUS BLOCK.

Though this argument is optional, DIGITAL strongly recommends that you
specify it, for the following reasons:

• If you are using an event flag to signal the completion of the service, you
can test the 1/0 status block for a condition value to be sure that the
event flag was not set by an event other than service completion.

• If you are using the $SYNCH service to synchronize completion of the
service, the 1/0 status block is a required argument for $SYNCH.

• The condition value returned in RO and the condition value returned in
the 1/0 status block provide information about different aspects of the
call to the $GETQUI service. The condition value returned in RO gives
you information about the success or failure of the service call itself; the
condition value returned in the 1/0 status block gives you information
about the success or failure of the service operation. Therefore, to
accurately assess the success or failure of the call to $GETQUI, you
must check the condition values returned in both RO and the 1/0 status
block.

astadr
VMS usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed when $GETQUI completes. The astadr
argument is the address of the entry mask of this routine.

If specified, the AST routine executes at the same access mode as the caller of
$GETQUI.

DESCRIPTION

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

astprm
VMS usage: user_parm
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST service routine specified by the astadr
argument. The astprm argument is this longword parameter.

$GETQUl's Information Search

The $GETQUI service returns information about objects defined in the system
job queue file. You may specify the following function codes to return
information for the object types listed:

Function Code

QUl$_DISPLA Y _CHARACTERISTIC

QUl$_DISPLA Y _FORM

QUl$_DISPLA Y _QUEUE

QUl$_DISPLA Y _JOB

QUl$_DISPLA Y _FILE

QUl$_DISPLA Y _ENTRY

Object Type

Characteristic

Form

Queue

Job within a queue context

File within a job context

Job independent of queue

When you call the $GETQUI service, the job controller establishes an
internal GETQUI context block (GQC). The system uses the GQC to store
information temporarily and to keep track of its place in a wildcard sequence
of operations. The system provides only one GQC per process; therefore,
only one $GETQUI operation can be in progress at any one time.

To allow you to obtain information either about a particular object in a single
call or about several objects in a sequence of calls, $GETQUI supports three
different search modes. The following search modes affect the disposition of
the GQC in different ways:

• Nonwildcard Mode-$GETQUI returns information about a particular
object in a single call. After the call completes, the system dissolves the
GQC.

• Wildcard Mode-$GETQUI returns information about several objects of
the same type in a sequence of calls. The system saves the GQC between
calls until the wildcard sequence completes.

• Nested Wildcard Mode-$GETQUI returns information about objects
defined within another object. Specifically, this mode allows you to query
jobs contained in a selected queue or files contained in a selected job in a
sequence of calls. After each call, the system saves the GQC so that the
GQC can provide the queue or job context necessary for subsequent calls.

The sections that follow describe how each of the three search methods affects
$GETQUI's search for information; how you direct $GETQUI to undertake
each method; and how each method affects the contents of the GQC.

SYS-287

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

SYS-288

Nonwildcard Mode

In nonwildcard mode, $GETQUI can return information about the following
objects:

• A specific characteristic or form definition that you identify by name or
number.

• A specific queue definition that you identify by name.

• A specific batch or print job that you identify by job entry number.

• The queue, job, or executing command procedure file associated with the
calling batch job. You invoke this special case of nonwildcard mode by
specifying the QUJ$_SEARCH_THIS_JOB option of the
QUI$_SEARCHJLAGS item code for a display queue, job, or file
operation.

To obtain information about a specific characteristic or form definition, you
call $GETQUI using the QUI$_DISPLAY_CHARACTERISTIC or
QUJ$_DISPLAYJORM function code. You also need to specify either the
name of the characteristic or form in the QUJ$_SEARCH_NAME item code
or the number of the characteristic or form in the
QUJ$_SEARCH_NUMBER item code. The name string you specify may not
include either of the wildcard characters (* or %). You may specify both the
QUJ$_SEARCH_NAME and QUJ$_SEARCH_NUMBER item codes, but the
name and number you specify must be associated with the same characteristic
or form definition.

To obtain information about a specific queue definition, you specify the
QUJ$_DISPLAY_QUEUE function code and provide the name of the queue
in the QUI$_SEARCH_NAME item code. The name string you specify may
not include the wildcard characters (* or %).

To obtain information about a specific batch or print job, you specify the
QUJ$_DISPLAY_ENTRY function code and provide the entry number of the
job in the QUJ$_SEARCH_NUMBER item code.

Finally, the $GETQUI service provides an option that allows a batch job to
obtain information about the queue, job, or command file that the associated
batch job is executing without first entering wildcard mode to establish a
queue or job context. You can make a call from the batch job that specifies
the QUI$_DISPLAY_QUEUE function code to obtain information about the
queue from which the batch job was initiated; the QUJ$_DISPLAY_JOB
function code to obtain information about the batch job itself; or the
QUJ$_DISPLAY_FJLE function code to obtain information about the
command file for the batch job. For each of these calls, you must select
the
QUI$V_SEARCH_THJS_JOB option of the QUI$_SEARCH_FLAGS item
code. When you select this option, $GETQUI ignores all other options in the
QUI$_SEARCH_FLAGS item code.

Wildcard Mode

In wildcard mode, the system saves the GQC between calls to $GETQUI so
that you can make a sequence of calls to $GETQUI to get information about
all characteristics, form definitions, queues, or jobs contained in the system
job queue file.

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

To set up .a wildcard search for characteristic or form definitions, specify the
QUI$_DISPLAY_CHARACTERISTIC or QUI$_DISPLAYJORM function
code and specify a name in the QUI$_SEARCH_NAME item code that
includes one or more wildcard characters (* or %).

To set up a wildcard search for queue definitions, you specify the
QUI$_DISPLAY_QUEUE function code and specify a name in the
QUI$_SEARCH_NAME item code that includes one or more wildcard
characters (* or %). You can indkate the type of the queue you want to
search for by specifying any combination of the following options for the
QUI$_SEARCH_FLAGS item code:

QUI$V_SEARCH_BATCH
QUI$V_SEARCH_PRINTER
QUI$V_SEARCH_SERVER
QUI$V_SEARCH_TERMINAL
QUI$V_SEARCH_SYMBIONT
QUI$V_SEARCH_GENERIC

For example, if you select the QUI$V_SEARCH_BATCH option, $GETQUI
returns information only about batch queues; if you select the
QUI$V_SEARCH_SYMBIONT option, $GETQUI returns information only
about output queues (printer, terminal, and server queues). If you specify
none of the queue type options, $GETQUI searches all queues.

To set up a wildcard search for jobs, you specify the QUI$_DISPLAY_ENTRY
function code and the QUI$_SEARCH_WILDCARD option of the
QUI$_SEARCHJLAGS item code. When you specify this option, omit the
QUI$_SEARCH_NUMBER item code. You can restrict the search to jobs
having particular status, or to jobs residing in specific types of queues, or
both, by including any combination of the following options for the
QUI$_SEARCH_FLAGS item code:

QUI$V_SEARCH_BATCH
QUI$V_SEARCH_EXECUTING_JOBS
QUI$V_SEARCH_HOLDING_JOBS
QUI$V_SEARCH_pENDING_JOBS
QUI$V_SEARCH_pRJNTER
QUI$V_SEARCH_RETAINED-JOBS
QUI$V_SEARCH_SERVER
QUI$V_SEARCH_SYMBIONT
QUI$V_SEARCH_TERMINAL
QUI$V_SEARCH_TIMED_RELEASE_JOBS

You can also force wildcard mode for characteristic, form, or queue display
operations by specifying the QUI$V_SEARCH_WILDCARD option of the
QUI$_SEARCH_FLAGS item code. If you specify this option, the system
saves the GQC between calls, even if you specify a nonwildcard name in the
QUI$_SEARCH_NAME item code. Whether you specify a wildcard name in
the QUI$_SEARCH_NAME item code, selecting the
QUI$V_SEARCH_WILDCARD option ensures that wildcard mode is enabled.

Once established, wildcard mode remains in effect until one of the following
actions occurs, which causes the GQC to be released.

• $GETQUI returns a JBC$_NOMORExxx or JBC$_NOSUCHxxx condition
value on a call to display characteristic, form, queue, or entry information,
where xxx refers to CHAR, FORM, QUE, or ENT.

SVS-289

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

SYS-290

• You explicitly cancel the wildcard operation by specifying the
QUI$_CANCEL_OPERATION function code in a call to the $GETQUI
service.

• Your process terminates.

Note that wildcard mode is a prerequisite for entering nested wildcard mode.

Nested Wildcard Mode

In nested wildcard mode, the system saves the GQC between calls to
$GETQUI so that you can make a sequence of calls to $GETQUI to get
information about jobs that are contained in a selected queue or files of the
selected job. Nested wildcard mode reflects the parent-child relationship
between queues and jobs and between jobs and files. The $GETQUI service
can locate and return information about only one object in a single call.
However, queues are objects that contain jobs and jobs are objects that
contain files. Therefore, to get information about an object contained within
another object, you must first make a call to $GETQUI that specifies and
locates the containing object and then make a call to request information
about the contained object. The system saves the location of the containing
object in the GQC along with the location of the contained object.

Two of $GETQUI's operations, QUI$_DISPLAY_JOB and
QUI$_DISPLAY_FILE, can be used only in a nested wildcard mode, with one
exception. The exceptional use of these two operations involves calls made
to $GETQUI from a batch job to find out more information about itself. This
exceptional use is described at the end of the Nonwildcard Mode section.

You can enter nested wildcard mode from either wildcard display queue mode
or from wildcard display entry mode. To obtain job and file information in
nested wildcard mode, you can use a combination of
QUI$_DISPLAY_QUEUE, QUI$_DISPLAY_JOB, and QUI$_DISPLAYJILE
operations. To obtain file information, you can use a combination of
QUI$_DISPLAY_ENTRY and QUJ$_DISPLAY_FILE operations as an
alternative.

To set up a nested wildcard search for job and file information, you first
perform one or more QUJ$_DISPLAY_QUEUE operations in wildcard mode
to establish the queue context necessary for the nested display job and file
operations. Next you specify the QUI$_DISPLAY_JOB operation repetitively;
these calls search the current queue until a call locates the job that contains
the file or files you want. This call establishes the job context. Having located
the queue and the job that contain the file or files, you can now use the
QUI$_DISPLAY_FILE operation repetitively to request file information.

You can enter the nested wildcard mode for the display queue operation in
two different ways: by specifying a wildcard name in the
QUJ$_SEARCH_NAME item code, or by specifying a nonwildcard queue
name and selecting the QUI$V_SEARCH_WILDCARD option of the
QUI$_SEARCH_FLAG item code. The second method of entering wildcard
mode is useful if you want to obtain information about one or more jobs
or files within jobs for a specific queue and, therefore, want to specify a
nonwildcard queue name, but still want to save the GQC after the queue
context is established.

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

When you make calls to $GETQUI that specify the QUI$_DISPLAY_JQB
function code, by default $GETQUI locates all the jobs in the selected queue
that have the same user name as the calling process. If you want to obtain
information about all the jobs in the selected queue, you select the
QUI$V_SEARCH__ALL _JOBS option of the QUI$_SEARCH_FLAGS item
code.

After you establish a queue context, it remains in effect until either you
change the context by making another call to $GETQUI that specifies the
QUI$_DISPLAY_QUEUE function code, or one of the actions listed at the end
of the Wildcard Mode section causes the GQC to be released. An established
job context remains in effect until you change the context by making another
call to $GETQUI that specifies the QUI$_DISPLAY_JOB function code or
$GETQUI returns a JBC$_NQMOREJOB or JBC$_NOSUCHJOB condition
value. While the return of either of these two condition values releases the
job context, the wildcard search remains in effect, because the GQC continues
to maintain the queue context. Similarly, return of the JBC$_NOMOREFILE
or JBC$_NOSUCHFILE condition value signals that no more files remain in
the current job context. However, these condition values do not cause the job
context to be dissolved.

To set up a nested wildcard search for file information for a particular
entry, you first perform one or more QUI$_DISPLAY_ENTRY operations in
wildcard mode to establish the desired job context. Next you call $GETQUI
iteratively with the QUI$_DISPLAYJILE function code to obtain file
information for the selected job.

When you make calls to $GETQUI that specify the QUI$_DISPLAY_ENTRY
function code, by default $GETQUI locates all jobs that have the same user
name as the calling process. If you want to obtain information about jobs
owned by another user, you specify the user name in the
QUI$_SEARCH_USERNAME item code.

You can use the QUI$_FREEZE_CONTEXT option of the
QUI$_SEARCH_FLAGS item code in any wildcard or nested wildcard call
to prevent advancement of context to the next object on the list. This allows
you to make successive calls for information about the same queue, job, file,
characteristic, or form.

Privileges Required for Obtaining Job Information

The caller must have READ access to the job or SYSPRV or OPER privilege
to obtain job and file information. If the caller does not have privilege to
access a job specified in a QUI$_DISPLAY_JOB or QUI$_DISPLAY_FILE
operation, $GETQUI returns a successful condition value. However, it sets
the QUI$V_JQB_INACCESSIBLE bit of the QUI$_JQB_STATUS item code
and returns information only for the following item codes:

QUI$__AFTER_ TIME
QUI$_COMPLETED_BLOCKS
QUI$_ENTRY_NUMBER
QUI$_INTERVENING _BLOCKS
QUI$_INTERVENING _JOBS
QUI$_JQB_SIZE
QUI$_JQB_STATUS

SYS-291

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

CONDITION
VALUES
RETURNED

CONDITION
VALUES
RETURNED
IN THE 1/0
STATUS BLOCK

SVS-292

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_DEVOFFLINE

SS$_EXASTLM

SS$_1LLEFC

SS$_1NSFMEM

SS$_MBFULL

SS$_MBTOOSML

SS$_UNASEFC

JBC$_NORMAL

JBC$_1NVFUNCOD

JBC$_1NVITMCOD

JBC$_1NVPARLEN

JBC$_1NVOUENAM

JBC$_JOBQUEDIS

JBC$_MISREQP AR

JBC$_NOJOBCTX

JBC$_NOMORECHAR

JBC$_NOMOREENT

JBC$_NOMOREFILE

The service completed successfully.

The item list or input buffer cannot be read by the
caller; or the return length buffer, output buffer, or
status block cannot be written by the caller.

The function code is invalid; the item list contains
an invalid item code; a buffer descriptor has an
invalid length; or the reserved parameter has a
nonzero value.

The job controller process is not running.

The astadr argument was specified, and the
process has exceeded its ASTLM quota.

The efn argument specifies an illegal event flag
number.

The space for completing the request is
insufficient.

The job controller mailbox is full.

The mailbox message is too large for the job
controller mailbox.

The efn argument specifies an unassociated event
flag cluster.

The service completed successfully.

The specified function code is invalid.

The item list contains an invalid item code.

The length of a specified string is outside the valid
range for that item code.

The queue name is not syntactically valid.

The request cannot be executed because the
system job queue manager has not been started.

An item code that is required for the specified
function code has not been specified.

No job context has been established for
a QUl$_DISPLAY_FILE operation.

No more characteristics are defined, which
indicates the termination of a
QUl$_DISPLA Y _CHARACTERISTIC wildcard
operation.

There are no more job entries for the specified user
or current user name, which indicates termination
of a OUl$_DISPLAY_ENTRY wildcard operation.

No more files are associated with the current
job context, which indicates the termination of a
QUl$_DISPLA Y _FILE wildcard operation for the
current job context.

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

JBC$_NOMOREFORM

JBC$_NOMOREJOB

JBC$_NOMOREQUE

JBC$_NQQUECTX

JBC$_NOSUCHCHAR

JBC$_NOSUCHENT

JBC$_NOSUCHFILE

JBC$_NOSUCHFORM

JBC$_NOSUCHJOB

JBC$_NOSUCHQUE

No more forms are defined, which indicates the
termination of a QUl$_DISPLA Y _FQRM wildcard
operation.

No more jobs are associated with the current
queue context, which indicates the termination of
a QUl$_DISPLA Y _JQB wildcard operation for the
current queue context.

No more queues are defined, which indicates the
termination of a QUl$_DISPLA Y _QUEUE wildcard
operation.

No queue context has been established for a
QUl$_DISPLA Y _JQB or QUl$_DISPLA Y _FILE
operation.

The specified characteristic does not exist.

There is no job with the specified entry number,
or there is no job for the specified user or current
username.

The specified file does not exist.

The specified form does not exist.

The specified job does not exist.

The specified queue does not exist.

EXAMPLES The following FORTRAN program demonstrates how a batch job can
obtain information about itself from the system job queue file by using
the $GETQUIW system service. Use of the QUI$M_SEARCH_ THIS_JOB
option in the QUI$_SEARCH_FLAGS input item requires that the calling
program run as a batch job; otherwise, the $GETQUIW service returns a
JBC$__NOSUCHJOB error.

il
! Declare system service related symbols
INTEGER*4 SYS$GETQUIW,
2 LIB$MATCH_COND,
2 STATUS
INCLUDE 1 ($QUIDEF) 1

! Define item list structure
STRUCTURE /ITMLST/

UNION
MAP

INTEGER*2 BUFLEN, ITMCOD
INTEGER*4 BUFADR, RETADR

END MAP
MAP

INTEGER*4 END_LIST
END MAP

END UNION
END STRUCTURE

! Define I/O status block structure
STRUCTURE /IOSBLK/
INTEGER*4 STS, ZEROED
END STRUCTURE

SYS-293

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

SYS-294

! Declare $GETQUIW item list and I/0 status block
RECORD /ITMLST/ GETQUI_LIST(4)
RECORD /IOSBLK/ IOSB

! Declare variables used in $GETQUIW item list
CHARACTER*31 QUEUE_NAME
INTEGER*2 QUEUE_NAME_LEN
INTEGER*4 SEARCH_FLAGS,
2 ENTRY_NUMBER

! Initialize item list
GETQUI_LIST(1).BUFLEN = 4
GETQUI_LIST(1).ITMCOD = QUI$_SEARCH_FLAGS
GETQUI_LIST(1) .BUFADR = %LOC(SEARCH_FLAGS)
GETQUI_LIST(1) .RETADR = 0
GETQUI_LIST(2) .BUFLEN = 4
GETQUI_LIST(2).ITMCOD = QUI$_ENTRY_NUMBER
GETQUI_LIST(2) .BUFADR = %LOC(ENTRY_NUMBER)
GETQUI_LIST(2).RETADR = 0
GETQUI_LIST(3).BUFLEN = 31
GETQUI_LIST(3).ITMCOD = QUI$_QUEUE_NAME
GETQUI_LIST(3).BUFADR = %LOC(QUEUE_NAME)
GETQUI_LIST(3).RETADR = %LOC(QUEUE_NAME_LEN)
GETQUI_LIST(4) .END_LIST = 0

SEARCH_FLAGS = QUI$V_SEARCH_THIS_JOB

! Call $GETQUIW service to obtain job information
STATUS = SYS$GETQUIW (,
2 %VAL(QUI$_DISPLAY_JOB),,
2 GETQUI_LIST,
2 IOSB,,)
IF (LIB$MATCH_COND (IOSB.STS, %LOC(JBC$_NOSUCHJOB))) THEN

! The search_this_job option can be used only by
! a batch job to obtain information about itself
TYPE*· '<<<this job is not being run in batch mode>>>'

ENDIF
IF (STATUS) STATUS = IOSB.STS
IF (STATUS) THEN

! Display information
TYPE*· 'Job entry number= '. ENTRY_NUMBER
TYPE*· 'Queue name = ', QUEUE_NAME(1:QUEUE_NAME_LEN)

ELSE
! Signal error condition
CALL LIB$SIGNAL (%VAL(STATUS))

ENDIF
END

The following FORTRAN program demonstrates how any job can obtain
information about other jobs from the system job queue file by using the
$GETQUIW system service. This program lists all print jobs in output queues
with a job size of 500 blocks or more. It also displays queue name, job size,
user name, and job name information for each job listed.

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

! Declare system service related symbols
INTEGER*4 SYS$GETQUIW,
2 STATUS_Q,
2 STATUS_J,
2 NOACCESS
INCLUDE I ($QUIDEF) I

! Define item list structure
STRUCTURE /ITMLST/

UNION
MAP

INTEGER*2 BUFLEN, ITMCOD
INTEGER*4 BUFADR, RETADR

END MAP
MAP

INTEGER*4 END_LIST
END MAP

END UNION
END STRUCTURE

! Define I/O status block structure
STRUCTURE /IOSBLK/
INTEGER*4 STS, ZEROED
END STRUCTURE

! Declare $GETQUIW item lists and I/0 status block
RECORD /ITMLST/ QUEUE_LIST(4)
RECORD /ITMLST/ JOB_LIST(6)
RECORD /IOSBLK/ IOSB

! Declare variables used in $GETQUIW item lists
CHARACTER*31
CHARACTER*31
CHARACTER*39
CHARACTER*12
INTEGER*2
2
2
2
INTEGER*4
2
2

SEARCH_NAME
QUEUE_ NAME
JOB_NAME
USERNAME
SEARCH_NAME_LEN,
QUEUE_NAME_LEN,
JOB_NAME_LEN,
USERNAME_LEN
SEARCH_FLAGS,
JOB_SIZE,
JOB_STATUS

! Solicit queue name to search; it may be a wildcard name
TYPE 9000
ACCEPT 9010, SEARCH_NAME_LEN, SEARCH_NAME

! Initialize item list for the display queue operation
QUEUE_LIST(1).BUFLEN = SEARCH_NAME_LEN
QUEUE_LIST(1).ITMCOD = QUI$_SEARCH_NAME
QUEUE_LIST(1) .BUFADR = %LOC(SEARCH_NAME)
QUEUE_LIST(1).RETADR = 0
QUEUE_LIST(2).BUFLEN = 4
QUEUE_LIST(2).ITMCOD = QUI$_SEARCH_FLAGS
QUEUE_LIST(2).BUFADR = %LOC(SEARCH_FLAGS)
QUEUE_LIST(2).RETADR = 0
QUEUE_LIST(3).BUFLEN = 31
QUEUE_LIST(3).ITMCOD = QUI$_QUEUE_NAME
QUEUE_LIST(3).BUFADR = %LOC(QUEUE_NAME)
QUEUE_LIST(3).RETADR = %LOC(QUEUE_NAME_LEN)
QUEUE_LIST(4) .END_LIST = 0

SYS-295

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

SYS-296

! Initialize item list for the display job operation
JOB_LIST(1).BUFLEN = 4
JOB_LIST(1).ITMCOD = QUI$_SEARCH_FLAGS
JOB_LIST(1).BUFADR = %LOC(SEARCH_FLAGS)
JOB_LIST(1).RETADR = 0
JOB_LIST(2).BUFLEN = 4
JOB_LIST(2).ITMCOD = QUI$_JOB_SIZE
JOB_LIST(2).BUFADR = %LOC(JOB_SIZE)
JOB_LIST(2).RETADR = 0
JOB_LIST(3).BUFLEN = 39
JOB_LIST(3).ITMCOD = QUI$_JOB_NAME
JOB_LIST(3).BUFADR = %LOC(JOB_NAME)
JOB_LIST(3).RETADR = %LOC(JOB_NAME_LEN)
JOB_LIST(4).BUFLEN = 12
JOB_LIST(4).ITMCOD = QUI$_USERNAME
JOB_LIST(4).BUFADR = %LOC(USERNAME)
JOB_LIST(4).RETADR = %LOC(USERNAME_LEN)
JOB_LIST(5).BUFLEN = 4
JOB_LIST(5).ITMCOD = QUI$_JOB_STATUS
JOB_LIST(5).BUFADR = %LOC(JOB_STATUS)
JOB_LIST(5).RETADR = 0
JOB_LIST(6) .END_LIST = 0

Request search of all jobs present in output queues; also force
wildcard mode to maintain the internal search context block after
the first call when a non-wild queue name is entered--this preserves
queue context for the subsequent display job operation

SEARCH_FLAGS = (QUI$M_SEARCH_WILDCARD .OR.
2 QUI$M_SEARCH_SYMBIONT .OR.
2 QUI$M_SEARCH_ALL_JOBS)

! Dissolve any internal search context block for the process
STATUS_Q = SYS$GETQUIW (,%VAL(QUI$_CANCEL_OPERATION),,,, ,)

! Locate next output queue; loop until an error status is returned
DO WHILE (STATUS_Q)

STATUS_Q = SYS$GETQUIW (,
2 %VAL(QUI$_DISPLAY_QUEUE),,
2 QUEUE_LIST,
2 IOSB,,)

IF (STATUS_Q) STATUS_Q = IOSB.STS
IF (STATUS_Q) TYPE 9020, QUEUE_NAME(1:QUEUE_NAME_LEN)
STATUS_J = 1

! Get information on next job in queue; loop until error return
DO WHILE (STATUS_Q .AND. STATUS_J)

STATUS_J = SYS$GETQUIW (,
2 %VAL(QUI$_DISPLAY_JOB),,
2 JOB_LIST,
2 IOSB,,)

IF (STATUS_J) STATUS_J = IOSB.STS
IF ((STATUS_J) .AND. (JOB_SIZE .GE. 500)) THEN

NOACCESS = (JOB_STATUS .AND. QUI$M_JOB_INACCESSIBLE)
IF (NOACCESS .NE. 0) THEN

TYPE 9030, JOB_SIZE
ELSE

TYPE 9040, JOB_SIZE,
2 USERNAME(1:USERNAME_LEN),
2 JOB_NAME(1:JOB_NAME_LEN)

ENDIF
END IF

END DO
END DO

SYSTEM SERVICE DESCRIPTIONS
$GETQUI

9000 FORMAT (' Enter queue name to search: ', $)
9010 FORMAT (Q, A31)
9020 FORMAT ('OQueue name = ' A)
9030 FORMAT (' Job size = ' IS, ' <no read access privilege>')
9040 FORMAT (' Job size = ' IS,

2 Username = ' A, T46,
2 Job name = ' A)
END

SYS-297

SYSTEM SERVICE DESCRIPTIONS
$GETQUIW

$GETQUIW Get Queue Information and Wait for
Completion

FORMAT

SYS-298

The Get Queue Information and Wait for Completion service returns
information about queues and jobs initiated from those queues. The
$SNDJBC service is the major interface to the VMS Job Controller, which
is the VMS queue and accounting manager. For a discussion of the
different types of job and queue, see the DESCRIPTION section of the
$SN DJ BC service.

The $GETQUIW service completes synchronously; that is, it returns to
the caller with the requested information. For asynchronous completion,
you use the Get Queue Information ($GETQUI) service; $GETQUI returns
to the caller after queuing the information request, without waiting for the
information to be returned.

In all other respects, $GETQUIW is identical to $GETQUI. For all other
information about the $GETQUIW service, refer to the documentation of
$GETQUI.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service.

SYS$GETQUIW [efn] ,func [,nullarg} [,itmlst] [,iosb}
[,astadr} [,astprm]

$GETSYI

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$GETSVI

Get Systemwide Information

The Get Systemwide Information service returns information about the
local VAX system or about other VAX systems in a cluster.

For Version 5.0 of VMS, both the $GETSYI service and the Get
Systemwide Information and Wait ($GETSYIW) services complete
synchronously; that is, they return to the caller with the requested
information.

However, in the future, $GETSYI may be modified to complete
asynchronously; that is, it will return to the caller after queueing the
information request, without waiting for the information to be returned.
For this reason, DIGIT AL recommends that you use the $GETSYIW service
for synchronous completion.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System
Services.

SVS$GETSVI [efn} ,[csidadr} ,[nodename] ,itmlst [,iosb}
[,astadr} [,astprm]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

efn
VMS usage: eLnumber
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when the $GETSYI request completes.
The efn argument is a longword containing this number; however, $GETSYI
uses only the low-order byte.

Upon request initiation, $GETSYI clears the specified event flag (or event flag
0 if efn was not specified). Then, when the request completes, the specified
event flag (or event flag 0) is set.

SYS-299

SYSTEM SERVICE DESCRIPTIONS
$GETSYI

SVS-300

csidadr
VMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Cluster system identification of the VAX node ab'Jut which $GETSYI is to
return information. The csidadr argument is the address of a longword
containing this identification value.

The cluster-connection software assigns the cluster system identification of
a VAX node. You may obtain this information by using the DCL command
SHOW CLUSTER. The value of the cluster system identification for a VAX
node is not permanent; a new value is assigned to a VAX node whenever it
joins or rejoins the VAXcluster.

You may also specify a VAX node to $GETSYI by using the nodename
argument. If you specify csidadr, you need not specify nodename, and vice
versa. If you specify both, they must identify the same VAX node. If you
specify neither, $GETSYI returns information about the local VAX node.
However, for wildcard operations, you must use the csidadr argument.

If you specify csidadr as -1, $GETSYI assumes a wildcard operation and
returns the requested information for each VAX node in the cluster, one node
per call. In this case, the program should test for the condition value
SS$_NOMORENODE after each call to $GETSYI and should stop calling
$GETSYI when SS$_NOMORENODE is returned.

nodename
VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of the VAX node about which $GETSYI is to return information. The
nodename argument is the address of a character string descriptor pointing to
this name string.

The node name string must contain from 1 to 15 characters and must
correspond exactly to the VAX node name; no trailing blanks or abbreviations
are permitted.

You may also specify a VAX node to $GETSYI by using the csidadr argument.
See the description of csidadr.

itmlst
VMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying which information is to be returned about the VAX node
or nodes. The itmlst argument is the address of a list of item descriptors,
each of which describes an item of information. The list of item descriptors is
terminated by a longword of 0. The following diagram depicts a single item
descriptor.

SYSTEM SERVICE DESCRIPTIONS
$GETSYI

31 15 0

item code J buffer length

buffer address

return length address

ZK-1705-84

$GETSVI Item Descriptor Fields

buffer length
A word containing a user-supplied integer specifying the length (in bytes) of
the buffer in which $GETSYI is to write the information. The length of the
buffer needed depends upon the item code specified in the item code field
of the item descriptor. If the value of buffer length is too small, $GETSYI
truncates the data.

item code
A word containing a user-supplied symbolic code specifying the item of
information that $GETSYI is to return. The $SYIDEF macro defines these
codes. A description of each item code is given in the $GETSYI Item Codes
section.

buffer address
A longword containing the user-supplied address of the buffer in which
$GETSYI is to write the information.

return length address
A longword containing the user-supplied address of a word in which
$GETSYI writes the length in bytes of the information it actually returned.

$G ETSVI Item Codes

SVl$_ACTIVECPU_CNT
When you specify SYl$_ACTIVECPU_CNT, $GETSYI returns a count
of CPUs actively participating in the current boot of the Symmetric
MultiProcessing (SMP) system.

Because this number is a longword, the buffer length field in the item
descriptor should specify 4 (bytes).

SYl$_A VAi LCPU_CNT
When you specify SYl$_AVAILCPU_CNT, $GETSYI returns the number of
CPUs available in the current boot of the SMP system.

Because this number is a longword, the buffer length field in the item
descriptor should specify 4 (bytes).

SYl$_BQOTTIME
When you specify SYl$_BOOTTIME, $GETSYI returns the time when the
VAX node was booted. The $GETSYI service returns this information only for
the local VAX node.

SVS-301

SYSTEM SERVICE DESCRIPTIONS
$GETSYI

Because the returned time is in the standard 64-bit absolute time format, the
buffer length field in the item descriptor should specify 8 (bytes).

SYl$_CHARACTER_EMULA TED
When you specify SYl$_CHARACTER_EMULATED, $GETSYI returns the
number 1 if the character string instructions are emulated on the CPU and a
0 if they are not. The $GETSYI service returns this information only for the
local VAX node.

Because this number is a Boolean value (1 or 0), the buffer length field in the
item descriptor should specify 1 (byte).

SYl$_CLUSTER_EVOTES
When you specify SYl$_CLUSTER_EVOTES, $GETSYI returns the number
of votes expected to be found in the VAX cluster. The VAX cluster determines
this value by selecting the highest number from all of the following: each
node's SYSGEN parameter EXPECTED_ VOTES, the sum of the votes
currently in the VAXcluster, and the previous value for the number of
expected votes.

Because this number is a word in length, the buffer length field in the item
descriptor should specify 2 (bytes).

SYl$_CLUSTER_FSYSID
When you specify SYl$_CLUSTERJSYSID, $GETSYI returns the system
identification of the founding node, which is the first node in the cluster to
boot.

The cluster management software assigns this system identification to the
node. You may obtain this information by using the DCL command SHOW
CLUSTER. Because the system identification is a 6-byte hexadecimal numbers,
the buffer length field in the item descriptor should specify 6 (bytes).

SYl$_CLUSTER _FTI ME
When you specify SYI$_CLUSTER_FTIME, $GETSYI returns the time when
the founding node is booted. The founding node is the first node in the
cluster to boot.

Because the returned time is in the standard 64-bit absolute time format, the
buffer length field in the item descriptor should specify 8 (bytes).

SYl$_CLUSTER_MEMBER
When you specify SYl$_CLUSTER_MEMBER, $GETSYI returns the
membership status of the node in the cluster. The membership status specifies
whether the node is currently a member of the cluster.

Because the membership status of a node is described in a 1-byte bit field, the
buffer length field in the item descriptor should specify 1 (byte). If bit 0 in
the bit field is set, the node is a member of the cluster; if it is clear, then it is
not a member of the cluster.

SYl$_CLUSTER_NQDES
When you specify SYl$_CLUSTER_NODES, $GETSYI returns the number
(in decimal) of nodes currently in the cluster.

Because this number is a word in lengf, the buffer length field in the item
descriptor should specify 2 (bytes).

SYSTEM SERVICE DESCRIPTIONS
$GETSYI

SYl$_CLUSTER_QUORUM
When you specify SYl$_CLUSTER_QUORUM, $GETSYI returns the number
(in decimal) that is the total of the quorum values held by all nodes in the
cluster. Each node's quorum value is derived from its SYSGEN parameter
EXPECTED_ VOTES.

Because this number is a word in length, the buffer length field in the item
descriptor should specify 2 (bytes).

SYl$_CLUSTER_VQTES
When you specify SYl$_CLUSTER_ VOTES, $GETSYI returns the total
number of votes held by all nodes in the cluster. The number of votes held
by any one node is determined by that node's SYSGEN parameter VOTES.

Because this decimal number is a word in length, the buffer length field in
the item descriptor should specify 2 (bytes).

SYl$_CONTIG_GBLPAGES
When you specify SYl$_CQNTIG_GBLPAGES, $GETSYI returns the
maximum number of free, contiguous global pages. This number is the
largest size global section that can be created.

Because this number is a longword, the buffer length in the item descriptor
should specify 4 (bytes).

SYl$_CPU
When you specify SYl$_CPU, $GETS YI returns the CPU processor type of
the node. The $GETSYI service returns this information only for the local
VAX node.

Because the processor type is a longword decimal number, the buffer length
field in the item descriptor should specify 4 (bytes).

The $PRDEF macro defines the following symbols for the processor types.

Processor

VAX-11 730

VAX-11 780, 785

VAX-11 750

MicroVAX I

MicroVAX II series

V AXstation 2000

VAX 8600, 8650

VAX 8200, 8300, 8250, 8350

VAX 8530, 8550, 8700, 8800

MicroVAX 3000 Series
V AXstation 3000 Series

Symbol

PR$_SID_ TYP730

PR$_SID_ TYP780

PR$_SID_ TYP750

PR$_SID_ TYPUV 1

PR$_SID_ TYPUV2

PR$_SID_ TYP4 10

PR$_SID_ TYP790

PR$_SID_ TYP8SS

PR$_SID_ TYP8NN

PR$_SID_ TYP650

For information about extended processor type codes, see the description for
the SYI$_xcpu item code.

SYS-303

SYSTEM SERVICE DESCRIPTIONS
$GETSYI

SYS-304

SYl$_DECIMAL_EMULA TED
When you specify SYl$_DECIMAL_EMULATED, $GETSYI returns the
number 1 if the decimal string instructions are emulated on the CPU and a
0 if they are not. The $GETSYI service returns this information only for the
local VAX node.

Because this number is a Boolean value (1 or 0), the buffer length field in the
item descriptor should specify 1 (byte).

SYl$_0_fLOAT_EMULATED
When you specify SYl$_D_FLOAT_EMULATED, $GETSYI returns the
number 1 if the D_floating instructions are emulated on the CPU, and 0 if
they are not. The $GETSYI service returns this information only for the local
VAX node.

Because this number is a Boolean value (1 or 0), the buffer length field in the
item descriptor should specify 1 (byte).

SYl$_ERRORLOGBUFFERS
When you specify SYI$_ERRORLOGBUFFERS, $GETSYI returns the number
of system pages in use as buffers for the Error Logger.

Because this number is a word in length, the buffer length field in the item
descriptor should specify 2 (bytes).

SYl$_f _fLOAT_EMULA TED
When you specify SYl$_F_FLOAT_EMULATED, $GETSYI returns the
number 1 if the F_floating instructions are emulated on the CPU, and 0 if
they are not. The $GETSYI service returns this information only for the local
VAX node.

Because this number is a Boolean value (1 or 0), the buffer length field in the
item descriptor should specify 1 (byte).

SYl$_FREE_GBLPAGES
When you specify SYl$JREE_GBLPAGES, $GETSYI returns the current
number of free global pages. The SYSGEN parameter GBLP AGES sets the
number of global pages that can exist systemwide.

Because the current number is a longword, the buffer length in the item
descriptor should specify 4 (bytes).

SYl$_fREE_GBLSECTS
When you specify SYl$_FREE_GBLSECTS, $GETSYI returns the current
number of free global section table entries. The SYSGEN parameter
GBLSECTIONS sets the maximum number of global sections that can exist
system wide.

Because the current number is a longword, the buffer length in the item
descriptor should specify 4 (bytes).

SYl$_G_fLOAT_EMULATED
When you specify SYl$_G_FLOAT_EMULATED, $GETSYI returns the
number 1 if the G _floating instructions are emulated on the CPU, and a 0 if
they are not. The $GETSYI service returns this information only for the local
VAX node.

Because this number is a Boolean value (1 or 0), the buffer length field in the
item descriptor should specify 1 (byte).

SYSTEM SERVICE DESCRIPTIONS
$GETSYI

SYl$_H_FLOAT_EMULA TED
When you specify SYl$_H_FLOAT_EMULATED, $GETSYI returns the
number 1 if the H_floating instructions are emulated on the CPU, and a 0 if
they are not. The $GETSYI service returns this information only for the local
VAX node.

Because this number is a Boolean value (1 or 0), the buffer length field in the
item descriptor should specify 1 (byte).

SYl$_HW_MQDEL
When you specify SYI$_HW_MQDEL, $GETSYI returns a small integer that
can be used to identify the VAX model type of the node. The $VAXDEF
macro in SYS$LIBRARY:STARLET defines the model type integers. See the
table under SYI$_HW_NAME for the VAX model processor names and the
corresponding model types.

Because the HW_MODEL is a word, the buffer length field in the item
descriptor should specify 2 (bytes).

SYl$_HW_NAME
When you specify SYI$_HW_NAME, $GETSYI returns the VAX model name
string of the node. The VAX model name is a character string that describes
the model of the VAX node (such as VAX 8800, MicroVAX II). The VAX model
name usually corresponds to the nameplate that appears on the outside of
the CPU cabinet. This item code supersedes SYI$_NODE-HWTYPE, which
is supported in this release for compatibility with VAX/VMS Version 4.n.
DIGITAL recommends that you use SYI$-HW_NAME. You should update
old programs with the new item code, as convenient.

Because the HW_NAME can include up to 31 characters, the buffer length
field in the item descriptor should specify 31 (bytes).

The following table lists the VAX model processor names and the
corresponding model types.

VAX Model Processor Name VAX Model Type

VAX-11/730 VAX$K_V730

VAX-11/750 VAX$K_V750

VAX-11/780 VAX$K_V780

VAX-11 /785 VAX$K_V785

MicroVAX I VAX$K_VUV1

V AXstation I VAX$K_VWS1

MicroVAX II VAX$K_VUV2

V AXstation II VAX$K_VWS2

V AXstation 11/GPX VAX$K_VWSD

VAX 8200 V AX$K_ V8200

VAX 8250 VAX$K_V8250

VAX 8300 V AX$K_ V8300

VAX 8350 VAX$K_V8350

VAX 8530 V AX$K_ V8500

SYS-305

SYSTEM SERVICE DESCRIPTIONS
$GETSYI

SYS-306

VAX Model Processor Name

VAX 8550

VAX 8600

VAX 8650

VAX 8700

VAX 8800

V AXstation 2000

MicroVAX 2000

V AXstation 2000

MicroVAX 3000 Series

V AXstation 3000 Series

V AXstation 3000 Series

SYl$_NODE_AREA

VAX Model Type

V AX$K_ V8550

V AX$K_ V8600

V AX$K_ V8650

V AX$K_ V8700

V AX$K_ V8800

V AX$K_ VWS2000

V AX$K_ VUV2000

V AX$K_ VWSD2000

VAX$K_V650

VAX$K_V65W

VAX$K_V65D

When you specify SYI$_.NODE_AREA, $GETSYI returns the DECNET area
of the node.

Because the DECNET area is a longword decimal number, the buffer length
field in the item descriptor should specify 4 (bytes).

SYl$_NOOE_CSID
When you specify SYI$_.NODE_CSID, $GETSYI returns the cluster system
ID (CSID) of the VAX node. The CSID is a longword hexadecimal number
assigned to the node by the cluster management software.

Because the CSID is a longword, the buffer length field in the item descriptor
should specify 4 (bytes).

SYl$_NQOE_EVOTES
When you specify SYI$_.NODE_EVOTES, $GETSYI returns the number of
votes the node expects to find in the VAXcluster. This number is determined
by the SYSGEN parameter EXPECTED_ VOTES.

Because the number is a word in length, the buffer length field in the item
descriptor should specify 2 (bytes).

SYl$_NOOE_HWVERS
When you specify SYl$_NODEJiWVERS, $GETSYI returns the hardware
version of the node. The high word of the buffer length contains the VAX
CPU type. The $VAXDEF macro defines the VAX CPU type.

Because the hardware version is a 12-byte hexadecimal number, the buffer
length field in the item descriptor should specify 12 (bytes).

SYl$_NOOE_NUMBER
When you specify SYI$_.NODE_NUMBER, $GETSYI returns the DECNET
number of the node.

Because the DECNET number is a longword decimal number, the buffer
length field in the item descriptor should specify 4 (bytes).

SYSTEM SERVICE DESCRIPTIONS
$GETSYI

SYl$_NODE_QUORUM
When you specify SYI$__NODE_QUORUM, $GETSYI returns the value (in
decimal) of the quorum held by the node. This number is derived from the
node's SYSGEN parameter EXPECTED_ VOTES.

Because this number is a word in length, the buffer length field in the item
descriptor should specify 2 (bytes).

SYl$_NODE_SWINCARN
When you specify SYI$__NODE_SWINCARN, $GETSYI returns the software
incarnation of the node.

Because the software incarnation of the node is an 8-byte hexadecimal
number, the buffer length field in the item descriptor should specify 8
(bytes).

SYl$_NQDE_SWTYPE
When you specify SYI$__NODE_SWTYPE, $GETSYI returns the software
type of the node. The software type indicates whether the node is a VMS
system or an HSC storage controller.

Because the software type is a 4-byte ASCII string, the buffer length field in
the item descriptor should specify 4 (bytes).

SYl$_NODE_SWVERS
When you specify SYI$__NODE_SWVERS, $GETSYI returns the software
version of the node.

Because the software version is a 4-byte ASCII string, the buffer length field
in the item descriptor should specify 4 (bytes).

SYl$_NQDE_SVSTEMID
When you specify SYI$__NODE_SYSTEMID, $GETSYI returns the system
identification of the node.

The cluster management software assigns this system identification to the
node. You may obtain this information by using the DCL command SHOW
CLUSTER. Because the system identification is a 6-byte hexadecimal number,
the buffer length field in the item descriptor should specify 6 (bytes).

SYl$_NODE_VQTES
When you specify SYI$__NODE_ VOTES, $GETSYI returns the number (in
decimal) of votes held by the node. This number is determined by the node's
SYSGEN parameter VOTES.

Because this number is a word in length, the buffer length field in the item
descriptor should specify 2 (bytes).

SYl$_NQDENAME
When you specify SYI$__NODENAME, $GETSYI returns, as a character
string, the name of the node in the returned length area specified in the item
list.

Because this name can inculde up to 15 characters, the buffer length field in
the item descriptor should specify 15 (bytes).

SYS-307

SYSTEM SERVICE DESCRIPTIONS
$GETSVI

SVS-308

SYl$_PAGEFILE_FREE
When you specify SYl$_PAGEFILE_FREE, $GETSYI returns the number of
free pages in the currently installed paging files. The $GETSYI service returns
this information only for the local VAX node.

Because this number is a longword, the buffer length field in the item
descriptor should specify 4 (bytes).

SYl$_PAGEFILE_PAGE
When you specify SYl$_P AGEFILE_p AGE, $GETSYI returns the number of
pages in the currently installed paging files. The $GETSYI service returns this
information only for the local VAX node.

Because this number is a longword, the buffer length field in the item
descriptor should specify 4 (bytes).

SVl$_scs_EXISTS
When you specify SYl$_SCS_EXISTS, $GETSYI returns a longword value
that is interpreted as Boolean. If the value is l, the System Communication
Subsystem (SCS) is currently loaded on the VAX node; if the value is 0, the
SCS is not currently loaded.

SYl$_SID
When you specify SYl$_SID, $GETS YI returns the contents of the system
identification register of the VAX node. For more information about the
meaning of the contents of the system identification register, see the VAX
Hardware Handbook. The $GETSYI service returns this information only for
the local VAX node.

Because the value of this register is a longword hexadecimal number, the
buffer length field in the item descriptor should specify 4 (bytes).

SYl$_SWAPFILE_FREE
When you specify SYl$_SWAPFILEJREE, $GETSYI returns the number of
free pages in the currently installed swapping files. The $GETSYI service
returns this information only for the local VAX node.

Because this number is a longword, the buffer length field in the item
descriptor should specify 4 (bytes).

SYl$_SWAPFILE_PAGE
When you specify SYl$_SWAPFILE_PAGE, $GETSYI returns the number of
pages in the currently installed swapping files. The $GETSYI service returns
this information only for the local VAX node.

Because this number is a longword, the buffer length field in the item
descriptor should specify 4 (bytes).

SYl$_VERSION
When you specify SYl$_ VERSION, $GETSYI returns, as a charcter string, the
software version number of the VMS operating system running on the VAX
node. The $GETSYI service returns this information only for the local VAX
node.

Because the version number is 8-byte blank-filled, the buffer length field in
the item descriptor should specify 8 (bytes).

SYSTEM SERVICE DESCRIPTIONS
$GETSYI

SYl$->CCPU
When you specify SYI$_xcpu, $GETSYI returns the extended CPU processor
type of the node. The $GETSYI service returns this information only for the
local VAX node.

You should obtain the general processor type value first by using the
SYl$_CPU item code. For some of the general processor types, extended
processor type information is provided by the item code, SY1$_x:CPU. For
other general processor types, the value returned by the SYI$_xcpu item
code is currently undefined.

Because the processor type is a longword decimal number, the buffer length
field in the item descriptor should specify 4 (bytes).

The $PRDEF macro defines the following symbols for the extended processor
types.

VAX
Processor
Type Symbol

PR$_SID_ TYPUV

PR$_SID_ TYPCV

PR$_SID_ TYP8NN

SYl$->CSID

Extended
Processor
Type

MicroVAX II
V AXstation II

MicroVAX 2000
V AXstation 2000

MicroVAX 3000 Series
V AXstation 3000 Series

VAX 8530

VAX 8550

VAX 8700

VAX 8800

Extended
Processor
Symbol

PR$_xs1o_uv_uv2

PR$_XSID_UV_410

PR$_XSID_CV_650

PRS$_XSID_N8500

PRS$_XSID_N8550

PRS$_XSID_N8700

PRS$_XSID_N8800

When you specify SYI$_xsm, $GETSYI returns processor-specific
information. For the Micro VAX II, this information is the contents of the
system type register of the VAX node. The system type register contains
the full extended information used in determining the extended system type
codes. For other processors, the data returned by SYI$_xsm are currently
undefined.

Because the value of this register is a longword hexadecimal number, the
buffer length field in the item descriptor should specify 4 (bytes).

SYl$_xxxx
When you specify SYl$_xxxx, $GETSYI returns the current value of the
SYSGEN parameter named xxxx for the VAX node. The $GETSYI service
returns this information only for the local VAX node.

The buffer must specify a longword into which $GETSYI writes the value
of the specified SYSGEN parameter. For a list and description of all system
parameters, refer to the VMS System Generation Utility Manual.

SYS-309

SYSTEM SERVICE DESCRIPTIONS
$GETSYI

DESCRIPTION

SYS-310

iosb
VMS usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

1/0 status block to receive the final completion status. The iosb argument is
the address of the quadword IjO status block.

When you specify the iosb argument, $GETSYI sets the quadword to zero
upon request initiation. Upon request completion, a condition value is
returned to the first longword; the second longword is reserved to DIGITAL.

Though this argument is optional, DIGITAL strongly recommends that you
specify it, for the following reasons:

• If you are using an event flag to signal the completion of the service, you
can test the 1/0 status block for a condition value to be sure that the
event flag was not set by an event other than service completion.

• If you are using the $SYNCH service to synchronize completion of the
service, the 1/0 status block is a required argument for $SYNCH.

• The condition value returned in RO and the condition value returned in
the 1/0 status block provide information about different aspects of the
call to the $GETSYI service. The condition value returned in RO gives
you information about the success or failure of the service call itself; the
condition value returned in the 1/0 status block gives you information
about the success or failure of the service operation. Therefore, to
accurately assess the success or failure of the call to $GETSYI, you
must check the condition values returned in both RO and the 1/0 status
block.

astadr
VMS usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed when $GETSYI completes. The astadr
argument is the address of the entry mask of this routine.

If you specify astadr, the AST routine executes at the same access mode as
the caller of the $GETSYI service.

astprm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST service routine specified by the astadr
argument. The astprm argument is the longword parameter.

This service uses the process's AST limit quota (ASTLM).

SYSTEM SERVICE DESCRIPTIONS
$GETSVI

CONDITION
VALUES
RETURNED

SS$_NORMAL

SS$_NOMORENODE

SS$_BADPARAM

SS$_ACCVIO

SS$_EXASTLM

SS$_NOSUCHNODE

The service completed successfully.

You requested a wildcard operation, and $GETSYI
has returned information about all available VAX
nodes.

The item list contains an invalid item code.

The caller cannot read the item list; cannot write
to the buffer specified by the buffer address field
in an item descriptor; or cannot write to the return
length address field in an item descriptor.

The process has exceeded its AST limit quota.

The specified VAX node does not exist or is not
currently a member of the V AXcluster.

CONDITION Same as those returned in RO.

VALUES
RETURNED
IN THE 1/0
STATUS BLOCK

EXAMPLE The following FORTRAN program demonstrates how to use the $GETSYIW
service to obtain the operating system version number string and the system's
node name.

! Declare system service related symbols
INTEGER*4 SYS$GETSYIW,
2 STATUS
! External declaration is an alternative to including $SYIDEF
EXTERNAL SYI$_VERSION,
2 SYI$_NODENAME

! Define item list structure
STRUCTURE /ITMLST/

UNION
MAP

INTEGER*2 BUFLEN
INTEGER*2 ITMCOD
INTEGER*4 BUFADR
INTEGER*4 RETADR

END MAP
MAP

INTEGER*4 END_LIST
END MAP

END UNION
END STRUCTURE

! Define I/0 status block structure
STRUCTURE /IOSBLK/
INTEGER*4 STS, RESERVED
END STRUCTURE

SYS-311

SYSTEM SERVICE DESCRIPTIONS
$GETSYI

! Declare $GETSYIW item list and I/0 status block
RECORD /ITMLST/ GETSYI_LIST(3)
RECORD /IOSBLK/ IOSB

! Declare variables used in $GETSYIW item list
CHARACTER*8 VERSION
CHARACTER*15 NODENAME
INTEGER*2 VERSION_LEN,
2 NODENAME_LEN

! Initialize item list
GETSYI_LIST(1).BUFLEN = 8
GETSYI_LIST(1).ITMCOD = %LOC(SYI$_VERSION)
GETSYI_LIST(1).BUFADR = %LOC(VERSION)
GETSYI_LIST(1).RETADR = %LOC(VERSION_LEN)
GETSYI_LIST(2).BUFLEN = 15
GETSYI_LIST(2).ITMCOD = %LOC(SYI$_NODENAME)
GETSYI_LIST(2) .BUFADR = %LOC(NODENAME)
GETSYI_LIST(2).RETADR = %LOC(NODENAME_LEN)
GETSYI_LIST(3).END_LIST = 0

! Display the system version number string
STATUS= SYS$GETSYIW (,,,GETSYI_LIST,IOSB,,)
IF (STATUS) STATUS = IOSB.STS
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

TYPE *· 'System version is ', VERSION(1:VERSION_LEN)
END

SYS-312

SYSTEM SERVICE DESCRIPTIONS
$GETSVIW

$GETSYIW Get Systemwide Information and
Wait

FORMAT

The Get Systemwide Information and Wait service returns information
about the local VAX system or about other VAX systems in a cluster.

For Version 5.0 of VMS, the $GETSYIW service is identical to the Get
Systemwide Information ($GETSYI) service. Both services return the same
information, and both complete synchronously; that is, they return to the
caller with the requested information.

In the future, however, the $GETSYI service may be modified to complete
asynchronously; that is, it will return to the caller after queueing the
information request, without waiting for the information to be returned.
For this reason, DIGIT AL recommends that you use the $GETSYIW service
for synchronous completion.

For all other information about the $GETSYIW service, refer to the
documentation of $GETS YI.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System
Services.

SYS$GETSYIW [efn} ,[csidadr} ,{nodename] ,itmlst
[,iosb} [,astadr] [,astprm]

You must specify either the csidadr or the nodename argument, but
not both. For wildcard operations, however, you must use the csidadr
argument.

SYS-313

SYSTEM SERVICE DESCRIPTIONS
$GETTIM

$GETTIM

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

CONDITION
VALUES
RETURNED

SVS-314

Get Time

The Get Time service returns the current system time in 64-bit format.

SYS$GETTIM timadr

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

timadr
VMS usage: date_time
type: quadword (unsigned)
access: write only
mechanism: by reference

Address of a quadword to receive the current time in 64-bit format.

The system time is updated every 10 milliseconds, and the time is returned in
100-nanosecond units from the system base time.

For additional information about the system time, see the Introduction to VMS
System Services.

SS$_NORMAL

SS$_ACCVIO

The service completed successfully.

The quadword to receive the time cannot be
written by the caller.

$GETUAI

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$GETUAI

Get User Authorization Information

The Get User Authorization Information service returns authorization
information about a specified user.

SYS$GETUAI [nullarg} ,{nullarg} ,usrnam ,itmlst ,[nullarg}
,[nullarg} ,[nullarg]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

nullarg
VMS usage: nulLarg
type: longword (unsigned)
access: read only
mechanism: by value

Place-holding argument reserved by DIGITAL.

usrnam
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of the user about whom $GETUAI returns authorization information.
The usrnam argument is the address of a descriptor pointing to a character
text string containing the user name. The user name string may contain a
maximum of 12 alphanumeric characters.

itmlst
VMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying which information from the specified user's user
authorization file (UAF) record is to be returned. The itmlst argument is
the address of a list of one or more item descriptors, each of which specifies
an item code. The item list is terminated by an item code of 0 or by a
longword of 0. The following diagram depicts the structure of a single item
descriptor.

SVS-315

SYSTEM SERVICE DESCRIPTIONS
$GETUAI

SYS-316

31 15 0

item code J buffer length

buffer address

return length address

ZK-1705-84

$GETUAI Item Descriptor Fields

buffer length
A word specifying the length (in bytes) of the buffer in which $GETUAI is to
write the information. The length of the buffer varies depending on the item
code specified in the item code field of the item descriptor and is given in
the description of each item code. If the value of buffer length is too small,
$GETUAI truncates the data.

item code
A word containing a user-supplied symbolic code specifying the item of
information that $GETUAI is to return. The $UAIDEF macro defines these
codes, which have the following format:

UAl$_code

Each item code is described under $GETUAI Item Codes.

buffer address
A longword containing the user-supplied address of the buffer in which
$GETUAI is to write the information.

return length address
A longword containing the user-supplied address of a word in which
$GETUAI writes the length in bytes of the information it actually returned.

$GETUAI Item Codes

UAl$-ACCOUNT
When you specify UAI$_ACCOUNT, $GETUAI returns, as a blank-filled
character string, the account name of the user.

Because an account name can include up to 8 characters plus a size-byte
prefix, the buffer length field of the item descriptor should specify 9 (bytes).

UAl$_ASTLM
When you specify UAI$_ASTLM, $GETUAI returns the AST queue limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

SYSTEM SERVICE DESCRIPTIONS
$GETUAI

UAl$_BATCH_ACCESS_P
When you specify UAl$_BATCH_ACCEss_p, $GETUAI returns, as a 3-byte
value, the range of times during which batch access is permitted for primary
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m.
to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_BATCH_ACCESS_S
When you specify UAl$_BATCH_ACCESS_S, $GETUAI returns, as a 3-byte
value, the range of times during which batch access is permitted for secondary
days. Each bit set represents a one-hour period, from bit 0 as midnight to 1
a.m. to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_BIOLM
When you specify UAl$_BIOLM, $GETUAI returns the buffered 1/0 count.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_BVTLM
When you specify UAl$_BYTLM, $GETUAI returns the buffered 1/0 byte
limit.

Because the buffered 1/0 byte limit is a longword decimal number, the buffer
length field in the item descriptor should specify 4 (bytes).

UAl$_CLITABLES
When you specify UAl$_CLITABLES, $GETUAI returns, as a character string,
the name of the user-defined CLI table for the account, if any.

Because the CLI table name can include up to 31 characters plus a size-byte
prefix, the buffer length field of the item descriptor should specify 32 (bytes).

UAl$_CPUTIM
When you specify UAl$_CPUTIM, $GETUAI returns the maximum CPU
time limit (per session) for the process in 10-millisecond units.

Because the maximum CPU time limit is a longword decimal number, the
buffer length field in the item descriptor should specify 4 (bytes).

UAl$_DEFCLI
When you specify UAl$_DEFCLI, $GETUAI returns, as an RMS file name
component, the name of the command language interpreter used to execute
the specified batch job. The file specification returned assumes the device
name and directory SYS$SYSTEM and the file type EXE.

Because a file name can include up to 31 characters plus a size-byte prefix,
the buffer length field in the item descriptor should specify 32 (bytes).

UAl$_DEFDEV
When you specify UAl$_DEFDEV, $GETUAI returns, as a 1- to 31-character
string, the name of the default device.

Because the device name string can include up to 31 characters plus a size
byte prefix, the buffer length field in the item descriptor should specify 32
(bytes).

SVS-317

SYSTEM SERVICE DESCRIPTIONS
$GETUAI

SYS-318

UAl$_DEFDIR
When you specify UAl$_DEFDIR, $GETUAI returns, as a 1- to 63-character
string, the name of the default directory.

Because the directory name string can include up to 63 characters plus a
size-byte prefix, the buffer length field in the item descriptor should specify
64 (bytes).

UAl$_DEF _PRIV
When you specify UAl$_DEF_PRIV, $GETUAI returns the default privileges
for the user.

Because the default privileges are returned as a quadword value, the buffer
length field in the item descriptor should specify 8 (bytes).

UAl$_DFWSCNT
When you specify UAl$_DFWSCNT, $GETUAI returns the default working
set size.

Because the default working set size is a longword decimal number, the buffer
length field in the item descriptor should specify 4 (bytes).

UAl$_DIOLM
When you specify UAl$_DIQLM, $GETUAI returns the direct 1/0 count
limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptbr should specify 2 (bytes).

UAl$_DIALUP _ACCESS_P
When you specify UAl$_DIALUP_ACCESS_p, $GETUAI returns, as a 3-byte
value, the range of times during which dialup access is permitted for primary
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m.
to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_DIALUP -ACCESS_S
When you specify UAl$_DIALUP_ACCESS_S, $GETUAI returns, as a
3-byte value, the range of times during which dialup access is permitted
for secondary days. Each bit set represents a 1-hour period, from bit 0 as
midnight to 1 a.m. to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_ENCRYPT
When you specify UAI$-ENCRYPT, $GETUAI returns a code indicating the
encryption algorithm for the primary password.

Because the encryption algorithm is a byte in length, the buffer length field in
the item descriptor should specify 1 (byte).

UAl$_ENCRYPT2
When you specify UAl$_ENCRYPT2, $GETUAI returns a code indicating the
encryption algorithm for the secondary password.

Because the encryption algorithm is a byte in length, the buffer length field in
the item descriptor should specify 1 (byte).

SYSTEM SERVICE DESCRIPTIONS
$GETUAI

UAl$_ENQLM
When you specify UAI$__ENQLM, $GETUAI returns the lock queue limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_EXPIRATION
When you specify UAl$_EXPIRATION, $GETUAI returns, as a quadword
absolute time value, the expiration date and time of the account.

Because the absolute time value is a quadword in length, the buffer length
field in the item descriptor should specify 8 (bytes).

UAl$_flLLM
When you specify UAl$_FILLM, $GETUAI returns the open file limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_fLAGS
When you specify UAI$JLAGS, $GETUAI returns, as a longword bit vector,
the various login flags set for the user.

Each flag is represented by a bit. The $UAIDEF macro defines the following
symbolic names for these flags.

Symbolic Name

UAl$V_AUDIT

UAl$V_AUTOLOGIN

UAl$V_CAPTIVE

UAl$V_DEFCLI

UAl$V_DISACNT

UAl$V_DISCTL Y

UAl$V_DISMAIL

UA 1$V_DISRECONNECT

UA 1$V_DISREPORT

UAl$V_DISWELCOME

UAl$V_FQRCE_EXP _
PWD_CHANGE

UAl$V_GENPWD

UAl$V_LQCKPWD

UAl$V_NQMAIL

UAl$V_PWD_EXPIRED

UAl$V_PWD2_EXPIRED

UAl$_JTQUOTA

Description

All actions are audited.

User can only log in to terminals defined by the
automatic login facility (ALF).

User is restricted to captive account.

User is restricted to default command interpreter.

User account is disabled.

User cannot use CTRL/Y.

Announcement of new mail is suppressed.

User cannot reconnect to existing processes.

User will not receive last login mesages.

User will not receive the login welcome message.

User is required to change expired passwords.

User is required to use generated passwords.

SET PASSWORD command is disabled.

Mail delivery to user is disabled.

Primary password is expired.

Secondary password is expired.

When you specify UAl$_JTQUOTA, $GETUAI returns the initial byte quota
with which the jobwide logical name table is to be created.

SVS-319

SYSTEM SERVICE DESCRIPTIONS
$GETUAI

SYS-320

Because this quota is a longword decimal number, the buffer length field in
the item descriptor should specify 4 (bytes).

UAl$_LASTLOGIN_I
When you specify UAl$_LASTLOGIN _I, $GETUAI returns, as a quadword
absolute time value, the date of the last interactive login.

UAl$_LASTLOGIN_N
When you specify UAl$_LASTLOGIN _N, $GETUAI returns, as a quadword
absolute time value, the date of the last noninteractive login.

UAl$_LGICMD
When you specify UAl$_LGICMD, $GETUAI returns, as an RMS file
specification, the name of the default login command file.

Because a file specification can include up to 63 characters plus a size-byte
prefix, the buffer length field of the item descriptor should specify 64 (bytes).

UAl$_LOCAL_ACCESS_P
When UAl$_LOCAL_ACCESS_P, $GETUAI returns, as a 3-byte value, the
range of times during which local interactive access is permitted for primary
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m.
to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_LOCAL-ACCESS_S
When you specify UAl$_LOCAL-ACCESS_S, $GETUAI returns, as a 3-byte
value, the range of times during which batch access is permitted for secondary
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1 a.m.
to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_LOGFAILS
When you specify UAl$_LOGFAILS, $GETUAI returns the count of login
failures.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_MAXACCT JOBS
When you specify UAl$_MAXACCTJOBS, $GETUAI returns the maximum
number of batch, interactive, and detached processes that may be active
at one time for all users of the same account. The value 0 represents an
unlimited number.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_MAXDETACH
When you specify UAl$_MAXDETACH, $GETUAI returns the detached
process limit. A value of 0 represents an unlimited number.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

SYSTEM SERVICE DESCRIPTIONS
$GETUAI

UAl$_MAXJOBS
When you specify UAl$_MAXJOBS, $GETUAI returns the active process
limit. A value of 0 represents an unlimited number.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_NETWORK-ACCESS_P
When you specify UAl$_NETWORK-ACCESS_p, $GETUAI returns, as a
3-byte value, the range of times during which network access is permitted for
primary days. Each bit set represents a 1-hour period, from bit 0 as midnight
to 1 a.m. to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_NETWORK-ACCESS_S
When you specify UA1$_NETWORK_ACCESS_S, $GETUAI returns, as a
3-byte value, the range of times during which network access is permitted
for secondary days. Each bit set represents a 1-hour period, from bit 0 as
midnight to 1 a.m. to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_QWNER
When you specify UAl$_0WNER, $GETUAI returns, as a character string,
the name of the owner of the account.

Because the owner name can include up to 31 characters plus a size-byte
prefix, the buffer length field of the item descriptor should specify 32 (bytes).

UAl$_PBYTLM
When you specify UAl$_PBYTLM, $GETUAI returns the paged buffer 1/0
byte count limit.

Because the paged buffer 1/0 byte count limit is a longword decimal number,
the buffer length field in the item descriptor should specify 4 (bytes).

UAl$_PGFLQUOTA
When you specify UAl$_pGFLQUOTA, $GETUAI returns the paging file
quota.

Because the paging file quota is a longword decimal number, the buffer length
field in the item descriptor should specify 4 (bytes).

UAl$_PRCCNT
When you specify UAl$_pRCCNT, $GETUAI returns the subprocess creation
limit.

Because the subprocess creation limit is a longword decimal number, the
buffer length field in the item descriptor should specify 4 (bytes).

UAl$_PRI
When you specify UAl$_pR1, $GETUAI returns the default base priority in
the range 0 through 31.

Because this decimal number is a byte in length, the buffer length field in the
item descriptor should specify 1 (byte).

SYS-321

SYSTEM SERVICE DESCRIPTIONS
$GETUAI

SYS-322

UAl$_PRIMEDAYS
When you specify UAI$_PRIMEDAYS, $GETUAI returns, as a longword bit
vector, the primary and secondary days of the week.

Each bit represents a day of the week, with the bit clear representing a
primary day and the bit set representing a secondary day. The $UAIDEF
macro defines the following symbolic names for these bits:

UAI$V_MONDAY
UAI$V_TUESDAY
UAI$V_WEDNESDAY
UAI$V_THURSDAY
UAI$VJRIDAY
UAI$V_SATURDAY
UAI$V_SUNDAY

UAl$_PRIV
When you specify UAI$_PRIV, $GETUAI returns, as a quadword value, the
names of the privileges the user holds.

Because this value is a quadword in length, the buffer length field in the item
descriptor should specify 8 (bytes).

UAl$_PWD
When you specify UAJ$_pWD, $GETUAI returns, as a quadword value, the
hashed primary password of the user.

Because this value is a quadword in length, the buffer length field in the item
descriptor should specify 8 (bytes).

UAl$_PWD_DATE
When you specify UAJ$_pWD_DATE, $GETUAI returns, as a quadword
absolute time value, the date of the last password change.

Because this value is a quadword in length, the buffer length field in the item
descriptor should specify 8 (bytes).

UAl$_PWD_LENGTH
When you specify UAI$_PWD_LENGTH, $GETUAI returns the minimum
password length.

Because this decimal number is a byte in length, the buffer length field in the
item descriptor should specify 1 (byte).

UAl$_PWD_LIFETIME
When you specify UAI$_PWD_LIFETIME, $GETUAI returns, as a quadword
absolute time value, the password lifetime.

Because this value is a quadword in length, the buffer length field in the item
descriptor should specify 8 (bytes).

UAl$_PWD2
When you specify UAI$_PWD2, $GETUAI returns, as a quadword value, the
hashed secondary password of the user.

Because this value is a quadword in length, the buffer length field in the item
descriptor should specify 8 (bytes).

SYSTEM SERVICE DESCRIPTIONS
$GETUAI

UAl$_PWD2_DATE
When you specify UAl$_PWD2_DATE, $GETUAI returns, as a quadword
absolute time value, the last date on which the secondary password was
changed.

Because this value is a quadword in length, the buffer length field in the item
descriptor should specify 8 (bytes).

UAl$_QUEPRI
When you specify UAl$_QUEPRI, $GETUAI returns the maximum job queue
priority.

Because this decimal number is a byte in length, the buffer length field in the
item descriptor should specify 1 (byte).

UAl$_REMOTE-ACCESS_P
When you specify UAI$_REMOTE_ACCESS_p, $GETUAI returns, as a
3-byte value, the range of times during which remote interactive access is
permitted for primary days. Each bit set represents a 1-hour period, from bit
0 as midnight to 1 a.m. to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_REMOTE-ACCESS_S
When you specify UAI$_REMOTE_ACCESS_S, $GETUAI returns, as a
3-byte value, the range of times during which remote interactive access is
permitted for secondary days. Each bit set represents a 1-hour period, from
bit 0 as midnight to 1 a.m. to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_SALT
When you specify UAl$_SAL T, $GETUAI returns the random password salt.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_SHRFILLM
When you specify UAl$_SHRFILLM, $GETUAI returns the shared file limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_TQCNT
When you specify UAl$_TQCNT, $GETUAI returns the timer queue entry
limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

SVS-323

SYSTEM SERVICE DESCRIPTIONS
$GETUAI

DESCRIPTION

SVS-324

UAl$_UIC
When you specify UAl$_UIC, $GETUAI returns, as a longword, the user
identification code (UIC), containing the following two word-length subfields:

Symbolic Name Description

UIC$W _MEM The member number subfield of the UIC

UIC$W _GRP The group number subfield of the UIC

UAl$_USERNAME
When you specify UAl$_USERNAME, $GETUAI returns the user name of
the owner of the specified job.

Because a user name can include up to 12 characters, the buffer length field
of the item descriptor should specify 12 (bytes).

UAl$_WSEXTENT
When you specify UAl$_WSEXTENT, $GETUAI returns the working set
extent for the user of the specified queue or job.

Because the working set extent is a longword decimal number, the buffer
length field in the item descriptor should specify 4 (bytes).

UAl$_WSQUOTA
When you specify UAl$_WSQUOTA, $GETUAI returns the working set
quota for the specified user.

Because this quota is a longword decimal number, the buffer length field in
the item descriptor should specify 4 (bytes).

Use the following list to determine the privileges required to use the
$GETUAI service:

• BYPASS or SYSPRV-Allows access to any record in the user
authorization file (UAF)

• GRPPRV-Allows access to any record in the UAF whose UIC group
matches that of the requester

• No privilege-Allows access to any UAF record whose UIC matches that
of the requester

CONDITION
VALUES
RETURNED

SS$_NORMAL

SS$_ACCVIO

SYSTEM SERVICE DESCRIPTIONS
$GETUAI

The service completed successfully.

The item list or input buffer cannot be read by the
caller; or the return length buffer, output buffer, or
status block cannot be written by the caller.

SS$_BADPARAM The function code is invalid; the item list contains
an invalid item code; a buffer descriptor has an
invalid length; or the reserved parameter has a
nonzero value.

SS$_NQPRIV The user does not have the privileges required
to examine the authorization information for the
specified user.

This service may also return RMS status codes associated with operations on
indexed files. For a description of RMS status codes that are returned by this
service, refer to the VMS Record Management Services Manual.

SYS-325

SYSTEM SERVICE DESCRIPTIONS
$GRANTID

$GRANTID Grant Identifier to Process

FORMAT

RETURNS

ARGUMENTS

SYS-326

The Grant Identifier to Process service adds the specified identifier record
to the rights list of the process or the system. If the identifier is already in
the rights list, the attributes are modified as specified.

SYS$GRANTID {pidadr] ,{prcnam] ,{id] ,{name] ,{prvatr]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

pidadr
VMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) number of the process affected when $GRANTID
completes execution. The pidadr argument is the address of longword
containing the PID of the process to be affected. You use -1 to indicate the
system rights list. When pidadr is passed, it is also returned; therefore, you
must pass it as a variable rather than a constant. If you specify neither pidadr
nor prcnam, your own process is used.

prcnam
VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Process name on which $GRANTID operates. The prcnam argument is
the address of a character string descriptor containing the process name.
The maximum length of the name is 15 characters. Because the UIC group
number is interpreted as part of the process name, you must use pidadr to
specify the rights list of a process in a different group. If you specify neither
pidadr nor prcnam, your own process is used.

id
VMS usage: rights_holder
type: quadword (unsigned)
access: modify
mechanism: by reference

Identifier and attributes to be granted when $GRANTID completes execution.
The id argument is the address of a quadword containing the binary identifier

DESCRIPTION

SYSTEM SERVICE DESCRIPTIONS
$GRANTID

code to be granted in the first longword and the attributes in the second
longword.

Symbol values are offsets to the bits within the longword. You can also
obtain the values as masks with the appropriate bit set using the prefix
KGB$M rather than KGB$V. The following symbols for each bit position are
defined in the macro library ($KGBDEF).

Bit Position Meaning When Set

KGB$V_DYNAMIC Allows the unprivileged holder to add or remove the
identifier from the process rights list

KGB$V_RESOURCE Allows the holder to charge resources, such as disk
blocks, to the identifier

You must specify either id or name. Because the id argument is returned as
well as passed if you specify name, you must pass it as a variable rather than
a constant in this case.

name
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of the identifier granted when $GRANTID completes execution. The
name argument is the address of a descriptor pointing to the name of the
identifier. You must specify either id or name.

prvatr
VMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Previous attributes of the identifier. The prvatr argument is the address of
a longword used to store the attributes of the identifier if it was previously
present in the rights list. If you added rather than modified the identifier,
prvatr is ignored.

The Grant Identifier to Process service adds the specified identifier to the
rights list of the process or the system. If the identifier is already in the rights
list, its attributes are modified to those specified. This service is meant to be
used by a privileged subsystem to alter the access rights profile of a user,
based on installation policy. It is not meant to be used by the general system
user.

You need CMKRNL privilege to invoke this service. In addition, you need
GROUP privilege to modify the rights list of a process in the same group
as the calling process (unless the process has the same UIC as the calling
process). You need WORLD privilege to modify the rights list of a process
outside the caller's group. You need SYSNAM privilege to modify the system
rights list.

SYS-327

SYSTEM SERVICE DESCRIPTIONS
$GRANTID

CONDITION
VALUES
RETURNED

SVS-328

The result of passing the pidadr or the prcnam argument, or both, to
SYS$GRANTID is summarized in the following table:

prcnam pidadr Result

Omitted Omitted Current process ID is used; process ID is not
returned.

Omitted 0 Current process ID is used; process ID is returned.

Omitted Specified Specified process ID is used; process ID is
returned.

Specified Omitted Specified process name is used; process ID is not
returned.

Specified 0 Specified process name is used; process ID is
returned.

Specified Specified Specified process ID is used, process ID is
returned, and process name is ignored.

The result of passing the name or the id argument, or both, to
SYS$GRANTID is summarized in the following table:

name id

Omitted Omitted

Omitted Specified

Specified Omitted

Specified 0

Specified Specified

SS$_WASCLR

SS$_WASSET

SS$_ACCVIO

SS$_1VIDENT

SS$_1NSFMEM

Result

Illegal.

Specified identifier value is used; identifier value is
returned.

Specified identifier name is used; identifier value is
not returned.

Specified identifier name is used; identifier value is
returned.

Specified identifier value is used, identifier value is
returned, and identifier name is ignored.

The service completed successfully; the rights list
did not contain the specified identifier.

The service completed successfully; the rights list
already held the specified identifier.

The pidadr argument cannot be read or written,
or prcnam cannot be read, or id cannot be read
or written, or the name cannot be read, or prvatr
cannot be written.

The specified identifier or holder is of invalid
format, or the specified identifier and holder are
equal.

The process dynamic memory is insufficient for
opening the rights database.

SYSTEM SERVICE DESCRIPTIONS
$GRANTID

SS$_NOPRIV

SS$_NOSUCHID

SS$_RIGHTSFULL

SS$_NOSYSNAM

SS$_1VLOGNAM

SS$_NONEXPR

RMS$_PRV

The caller does not have CMKRNL privilege, or is
not running in executive or kernel mode, or the
caller lacks GROUP, WORLD, or SY SN AM privilege
as required.

The specified identifier name does not exist in the
rights database. Note that the binary identifier, if
given, is not validated against the rights database.

The rights list of the process or system is full.

The operation requires SYSNAM privilege.

You specified an invalid logical name.

You specified a nonexistent process.

The user does not have read access to the rights
database.

Because the rights database is an indexed file accessed with VMS RMS, this
service may also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the VMS Record
Management Services Manual.

SYS-329

SYSTEM SERVICE DESCRIPTIONS
$HIBER

$HIBER Hibernate

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

SYS-330

The Hibernate service allows a process to make itself inactive but to
remain known to the system so that it can be interrupted, for example,
to receive ASTs. A hibernate request is a wait-for-wake-event request.
When you call the Wake Process from Hibernation ($WAKE) service or
when the time specified with the Schedule Wakeup ($SCHDWK) service
occurs, the process continues execution at the instruction following the
Hibernate call.

SYS$HIBER

VMS usage: cond_value
type: longword {unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

None.

In VAX MACRO, you can call the Hibernate service only by using the
$name_S macro.

A hibernating process can be swapped out of the balance set if it is not locked
into the balance set.

An AST can interrupt the wait state caused by $HIBER if the access mode at
which the AST is to execute is equal to or more privileged than the access
mode from which the hibernate request was issued and the process is enabled
for ASTs at that access mode.

When the AST service routine completes execution, the system reexecutes the
$HIBER service on behalf of the process. If a wakeup request has been issued
for the process during the execution of the AST service routine (either by
itself or another process), the process resumes execution. If a wakeup request
has not been issued, it continues to hibernate.

If one or more wakeup requests are issued for the process while it is not
hibernating, the next hibernate call returns immediately; that is, the process
does not hibernate. No count is maintained of outstanding wakeup requests.

Although this service has no arguments, a FORTRAN function reference must
use parentheses to indicate a null argument list, as in the following example:

ISTAT=SYS$HIBER()

CONDITION
VALUES
RETURNED

SS$_NORMAL

SYSTEM SERVICE DESCRIPTIONS
$HIBER

The service completed successfully.

SYS-331

SYSTEM SERVICE DESCRIPTIONS
$1DTOASC

$1 DTOASC Translate Identifier to
Identifier Name

FORMAT

RETURNS

ARGUMENTS

SVS-332

The Translate Identifier to Identifier Name service translates the specified
identifier value to its identifier name.

SYS$1DTOASC id ,[namlen] ,[nambuf] ,[resid] ,[attrib]
,[contxt]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

id
VMS usage: rights-id
type: longword (unsigned)
access: read only
mechanism: by value

Binary identifier value translated by $IDTOASC. The id argument is a
longword containing the binary value of the identifier. To determine the
identifier names of all identifiers in the rights database, you specify
id as -1 and call SYS$IDTOASC repeatedly until it returns the status code
SS$_NOSUCHID. The identifiers are returned in alphabetical order.

namlen
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of characters in the identifier name translated by $IDTOASC. The
namlen argument is the address of a word containing the length of the
identifier name written to nambuf.

nambuf
VMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor-fixed-length string descriptor

Identifier name text string returned when $IDTOASC completes the
translation. The nambuf argument is the address of a descriptor pointing
to the buffer in which the identifier name is written.

DESCRIPTION

SYSTEM SERVICE DESCRIPTIONS
$1DTOASC

res id
VMS usage: rights_id
type: longword (unsigned)
access: write only
mechanism: by reference

Identifier value of the identifier name returned in nambuf. The resid
argument is the address of a longword containing the 32-bit code of the
identifier.

attrib
VMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Mask of attributes associated with the identifier returned in resid. The attrib
argument is the address of a longword containing the attribute mask.

Symbol values are offsets to the bits within the longword. You can also
obtain the values as masks with the appropriate bit set using the prefix
KGB$M rather than KGB$V. The following symbols for each bit position are
defined in the system macro library ($KGBDEF).

Bit Position

KGB$V_DYNAMIC

KGB$V_RESOURCE

contxt
VMS usage: context

Meaning When Set

Allows the unprivileged holder to add or remove the
identifier from the process rights list

Allows the holder to charge resources, such as disk
blocks, to the identifier

type: longword (unsigned)
access: modify
mechanism: by reference

Context value used when repeatedly calling $IDTOASC. The contxt argument
is the address of a longword used while $IDTOASC searches for all
identifiers. The context value must be initialized to zero, and the resulting
context of each call to $IDTOASC must be presented to each subsequent call.
After contxt is passed to $IDTOASC, you must not modify its value.

The Translate Identifier to Identifier Name service translates the specified
binary identifier value to an identifier name. While the primary purpose of
this service is to translate the specified identifier to its name, you may also use
it to find all identifiers in the rights database. To determine all the identifiers,
call $IDTOASC repeatedly until it returns the status code
SS$_NOSUCHID. When SS$_NQSUCHID is returned, $IDTOASC has
returned all the identifiers, cleared the context value, and deallocated the
record stream.

SYS-333

SYSTEM SERVICE DESCRIPTIONS
$1DTOASC

CONDITION
VALUES
RETURNED

SVS-334

If you complete your calls to $1DTOASC before SS$_NOSUCHID is returned,
use SYS$FINISH_RDB to clear the context value and deallocate the record
stream.

When you use wildcards with this service, the records are returned in
identifier name order.

SS$_NORMAL

SS$_ACCVIO

SS$_INSFMEM

SS$_IVCHAN

SS$_1VIDENT

SS$_NQIOCHAN

SS$_NQSUCHID

RMS$_PRV

The service completed successfully.

The namlen, nambuf, res id, attrib, or contxt
argument cannot be written by the caller.

The process dynamic memory is insufficient for
opening the rights database.

The contents of the context longword are not
valid.

The specified identifier is of invalid format.

No more rights database context streams are
available.

The specified identifier name does not exist in the
rights database, or the entire rights database has
been searched if the ID is -1 .

The user does not have read access to the rights
database.

Because the rights database is an indexed file that you access with VMS RMS,
this service may also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the VMS Record
Management Services Manual.

$LCKPAG

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$LCKPAG

Lock Pages in Memory

The Lock Pages In Memory service locks a page or range of pages in
memory. The specified virtual pages are forced into the working set and
then locked in memory. A locked page is not swapped out of memory
if the working set of the process is swapped out. These pages are not
candidates for page replacement and in this sense are locked in the
working set as well.

SYS$LCKPAG inadr ,{retadr} ,{acmode}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

inadr
VMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Starting and ending virtual addresses of the range of pages to be locked. The
inadr argument is the address of a 2-longword array containing, in order, the
starting and ending process virtual addresses. Only the virtual page number
portion of each virtual address is used; the low-order 9 bits are ignored.

If the starting and ending virtual addresses are the same, a single page is
locked.

retadr
VMS usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference-array reference or descriptor

Starting and ending process virtual addresses of the pages that $LCKP AG
actually locked. The retadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses.

SYS-335

SYSTEM SERVICE DESCRIPTIONS
$LCKPAG

DESCRIPTION

CONDITION
VALUES
RETURNED

SVS-336

a cm ode
VMS usage: access_mode
type: longword {unsigned)
access: read only
mechanism: by value

Access mode to be associated with the pages to be locked. The acmode
argument is a longword containing the access mode. The $PSLDEF macro
defines the four access modes.

The most privileged access mode used is the access mode of the caller. For
the $LCKP AG service to complete successfully, the resultant access mode
must be equal to or more privileged than the access mode already associated
with the pages to be locked.

The calling process must have PSWAPM privilege to lock pages into memory.

If more than one page is being locked and you need to determine specifically
which pages were previously locked, the pages should be locked one at a
time.

If an error occurs while the $LCKPAG service is locking pages, the return
array, if requested, indicates the pages that were successfully locked before
the error occurred. If no pages are locked, both longwords in the return
address array contain the value -1.

You can unlock pages locked in memory with the Unlock Pages from Memory
($ULKP AG) service. Locked pages are automatically unlocked at image exit.

SS$_WASCLR

SS$_WASSET

SS$_ACCVIO

SS$_LCKPAGFUL

SS$_NOPRIV

The service completed successfully. All of the
specified pages were previously unlocked.

The service completed successfully. At least one
of the specified pages was previously locked.

The input array cannot be read by the caller; the
output array cannot be written by the caller; or a
page in the specified range is inaccessible or does
not exist.

The system-defined maximum limit on the number
of pages that can be locked in memory has been
reached.

The process does not have the privilege to lock
pages in memory.

$LKWSET

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
SLKWSET

Lock Pages in Working Set

The Lock Pages in Working Set service locks a range of pages in the
working set; if the pages are not already in the working set, it brings them
in and locks them. A page locked in the working set does not become a
candidate for replacement.

SYS$LKWSET inadr ,[retadr] ,[acmode}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

inadr
VMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Starting and ending virtual addresses of the range of pages to be locked in
the working set. The inadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses. Only
the virtual page number portion of each virtual address is used; the low-order
9 bits are ignored.

If the starting and ending virtual addresses are the same, a single page is
locked.

retadr
VMS usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference

Starting and ending process virtual addresses of the range of pages actually
locked by $LCKWSET. The retadr argument is the address of a 2-longword
array containing, in order, the starting and ending process virtual addresses.

acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the pages to be locked. The acmode
argument is a longword containing the access mode. The $PSLDEF macro
defines the four access modes.

SVS-337

SYSTEM SERVICE DESCRIPTIONS
$LKWSET

DESCRIPTION

CONDITION
VALUES
RETURNED

SYS-338

The most privileged access mode used is the access mode of the caller. For
the $LKWSET service to complete successfully, the resultant access mode
must be equal to or more privileged than the access mode already associated
with the pages to be locked.

If more than one page is being locked and you need to determine specifically
which pages were previously locked, the pages should be locked one at a
time.

If an error occurs while the $LKWSET service is locking pages, the return
array, if requested, indicates the pages that were successfully locked before
the error occurred. If no pages are locked, both longwords in the return
address array contain -1.

You can unlock pages locked in the working set with the Unlock Page from
Working Set ($ULWSET) service.

Global pages with write access cannot be locked into the working set.

SS$_WASCLR

SS$_WASSET

SS$_ACCVIO

SS$_LKWSETFUL

SS$_NOPRIV

SS$_PAGOWNVIO

The service completed successfully. All of the
specified pages were previously unlocked.

The service completed successfully. At least one
of the specified pages was previously locked in the
.working set.

The input address array cannot be read by the
caller; the output address array cannot be written
by the caller; or a page in the specified range is
inaccessible or nonexistent.

The locked working set is full. If any more pages
are locked, not enough dynamic pages will be
available to continue execution.

A page in the specified range is in the system
address space, or a global page with write access
was specified.

The pages could not be locked because the access
mode associated with the call to $LKWSET was
less privileged than the access mode associated
with the pages that were to be locked.

$MGBLSC

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$MGBLSC

Map Global Section

The Map Global Section service establishes a correspondence between
pages (maps) in the virtual address space of the process and physical
pages occupied by a global section.

SYS$MGBLSC inadr ,{retadr} ,{acmode} ,{flags} ,gsdnam
,{ident} ,{relpag}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

inadr
VMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Starting and ending virtual addresses in the virtual address space of the
process (either the PO or Pl regions) into which the section is to be mapped.
The inadr argument is the address of a 2-longword array containing, in
order, the starting and the ending process virtual addresses. Only the virtual
page number portion of each virtual address is used; the low-order 9 bits are
ignored.

If the starting and ending virtual addresses are the same, a single page is
mapped (except when the SEC$M_EXPREG bit is set in the flags argument).

If the SEC$M_EXPREG bit is set in the flags argument, the starting address
(first longword) specified in the inadr argument determines only whether
the section is mapped in the program (PO) region or control (Pl) region; the
ending address (second longword) is ignored.

retadr
VMS usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference

Starting and ending process virtual addresses into which the section was
actually mapped by $MGBLSC. The retadr argument is the address of a
2-longword array containing, in order, the starting and ending process virtual
addresses.

SYS-339

SYSTEM SERVICE DESCRIPTIONS
$MGBLSC

SYS-340

acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode to be associated with the pages mapped into the process virtual
address space. The acmode argument is a longword containing the access
mode. The $PSLDEF macro defines symbols for the four access modes.

The most privileged access mode used is the access mode of the caller.

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Flag mask specifying options for the operation. The flags argument is a
longword bit vector wherein a bit, when set, specifies the corresponding
option.

The $SECDEF macro defines symbolic names for the flag bits. You construct
the flags argument by specifying the symbolic names of each desired option
in a logical OR operation. The following table describes each flag option.

Flag Description

SEC$M_WRT Map section with read/write access. By default, the section
is mapped with read-only access.

SEC$M_SYSGBL Map a system global section. By default, the section is a
group global section.

SEC$M_EXPREG Map the section in the first available virtual address range.

gsdnam

By default, the section is mapped into the range specified by
the inadr argument.

VMS usage: section_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Name of the global section. The gsdnam argument is the address of a
character string descriptor pointing to this name string.

For group global sections, VMS interprets the group UIC as part of the global
section name; thus, the names of global sections are unique to UIC groups.
Further, all global section names are implicitly qualified by their identification
fields.

DESCRIPTION

SYSTEM SERVICE DESCRIPTIONS
$MGBLSC

ident
VMS usage: section_id
type: quadword (unsigned)
access: read only
mechanism: by reference

Identification value specifying the version number of a global section, and,
for processes mapping to an existing global section, the criteria for matching
the identification. The ident argument is the address of a quadword structure
containing three fields.

The first longword specifies, in the low-order 3 bits, the matching criteria.
Their valid values, the symbolic names by which they can be specified, and
their meanings are as follows.

Value/Name Match Criteria

0 SEC$K_MAT ALL Match all versions of the section.

1 SEC$K_MA TEQU Match only if major and minor identifications match.

2 SEC$K_MA TLEQ Match if the major identifications are equal and the minor
identification of the mapper is less than or equal to the
minor identification of the global section.

The version number is in the second longword and contains two fields: a
minor identification in the low-order 24 bits and a major identification in the
high-order 8 bits.

If you do not specify ident or specify it as 0 (the default), the version number
and match control fields default to 0.

relpag
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Relative page number within the section of the first page to be mapped. The
relpag argument is a longword containing this number.

If you do not specify relpag or specify it as 0 (the default), the global section
is mapped beginning with the first virtual block in the section.

The protection mask specified at the time the global section is created
determines the type of access (for example, read/write or read/only) that
a particular process has to the section.

The $MGBLS service uses the following system resources:

• The working set limit quota (WSQUOTA) of the process must be sufficient
to accommodate the increased size of the virtual address space when the
$MGBLSC service maps a section.

• If the section pages are copy-on-reference, the process must also have
sufficient paging file quota (PGFLQUOTA).

SVS-341

SYSTEM SERVICE DESCRIPTIONS
$MGBLSC

CONDITION
VALUES
RETURNED

SVS-342

This system service causes the working set of the calling process to be
adjusted to the size specified by the working set quota (WSQUOTA). If the
working set size of the process is less than quota, the working set size is
increased; if the working set size of the process is greater than quota, the
working set size is decreased.

When $MGBLSC maps a global section, it adds pages to the virtual address
space of the process. The section is mapped from a low address to a high
address, whether the section is mapped in the program or control region.

If an error occurs during the mapping of a global section, the return address
array, if specified, indicates the pages that were successfully mapped when
the error occurred. If no pages were mapped, both longwords of the return
address array contain -1.

SS$_NORMAL

SS$_ACCVIO

SS$_ENDOFFILE

SS$_EXOUOT A

SS$_1NSFWSL

SS$_1NTERLOCK

SS$_1VLOGNAM

SS$_1VSECFLG

SS$_1VSECIDCTL

SS$_NOPRIV

SS$_NQSUCHSEC

SS$_PAGOWNVIO

SS$_SHMNOTCNCT

The service completed successfully.

The input address array, the global section name
or name descriptor, or the section identification
field cannot be read by the caller; or the return
address array cannot be written by the caller.

The starting virtual block number specified is
beyond the logical end-of-file.

The process exceeded its paging file quota,
creating copy-on-reference pages.

The working set limit of the process is not large
enough to accommodate the increased virtual
address space.

The bit map lock for allocating global sections from
the specified shared memory is locked by another
process.

The global section name has a length of 0 or has
more than 15 characters.

You set a reserved flag.

The match control field of the global section
identification is invalid.

The file protection mask specified when the global
section was created prohibits the type of access
requested by the caller; or a page in the input
address range is in the system address space.

The specified global section does not exist.

A page in the specified input address range is
owned by a more privileged access mode.

The shared memory named in the gsdnam
argument is not known to the system. This
error can be caused by a spelling error in the
string, an improperly assigned logical name, or the
failure to identify the memory as shared at system
generation time.

SYSTEM SERVICE DESCRIPTIONS
$MGBLSC

SS$_ TOOMANYLNAM Logical name translation of the gsdnam string
exceeded the allowed depth.

SS$_ V ASFULL The virtual address space of the process is full; no
space is available in the page tables for the pages
created to contain the mapped global section.

SYS-343

SYSTEM SERVICE DESCRIPTIONS
$MQD_HQLDER

$MQD_HOLDER Modify Holder Record in Rights
Database

FORMAT

RETURNS

ARGUMENTS

SYS-344

The Modify Holder Record in Rights Database service modifies the
specified holder record of the target identifier in the rights database.
Identifier attributes may be added or removed, or both.

SYS$MOD_HOLDER id ,holder ,{set_attrib} ,{c/r_attrib}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

id
VMS usage: rights_id
type: longword (unsigned)
access: read only
mechanism: by value

Binary value of target identifier whose holder record is modified when
$MOD_HOLDER completes execution. The id argument is a longword
containing the identifier value.

holder
VMS usage: rights_holder
type: quadword (unsigned)
access: read only
mechanism: by reference

Identifier of holder being modified when $MOD-80LDER completes
execution. The holder argument is the address of a quadword containing
the UIC identifier of the holder in the first longword and the value of zero in
the second longword.

seLattrib
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Bit mask of attributes to be enabled for the identifier when $MOD_HOLDER
completes execution. The set_attrib argument is a longword containing the
attribute mask.

DESCRIPTION

SYSTEM SERVICE DESCRIPTIONS
$MQD_HOLDER

The attributes actually enabled are the intersection of those specified and the
attributes of the identifier. If you specify the same attribute in set_attrib and
clr_attrib, the attribute is enabled.

Symbol values are offsets to the bits within the longword. You can also
obtain the values as masks with the appropriate bit set using the prefix
KGB$M rather than KGB$V. The following symbols for each bit position are
defined in the system macro library ($KGBDEF).

Bit Position

KGB$V_DYNAMIC

KGB$V_RESOURCE

c/r_attrib

Meaning When Set

Allows the unprivileged holder to add or remove the
identifier from the process rights list.

Allows the holder to charge resources, such as disk
blocks, to the identifier.

VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Bit mask of attributes to be disabled for the identifier when $MQD_HOLDER
completes execution. The clr_attrib argument is a longword containing the
attribute mask.

If you specify the same attribute in set_attrib and clr_attrib, the attribute is
enabled.

Symbol values are offsets to the bits within the longword. You can also
obtain the values as masks with the appropriate bit set using the prefix
KGB$M rather than KGB$V. The following symbols for each bit position are
defined in the system macro library ($KGBDEF).

Bit Position

KGB$V_DYNAMIC

KGB$V_RESOURCE

Meaning When Set

Allows the unprivileged holder to add or remove the
identifier from the process rights list.

Allows the holder to charge resources, such as disk
blocks, to the identifier.

The Modify Holder Record In Rights Database service modifies the specified
holder record in the rights database. Identifier attributes may be added or
removed, or both.

When you specify both the set_attrib and clr_attrib arguments, the attribute
is cleared first. Thus, if you specify the same attribute bit with each argument,
the result is that the bit is set.

You need write access to the rights database to use this service. If the
database is in SYS$SYSTEM (the default), you need SYSPRV privilege to
grant write access to the database.

SYS-345

SYSTEM SERVICE DESCRIPTIONS
$MQD_HQLDER

CONDITION
VALUES
RETURNED

SVS-346

SS$_NORMAL

SS$_ACCVIO

SS$_8ADPARAM

SS$_1NSFMEM

SS$_1VIDENT

SS$_NOSUCHID

RMS$_PRV

The service completed successfully.

The holder argument cannot be read by the caller.

The specified attributes contain invalid attribute
flags.

The process dynamic memory is insufficient for
opening the rights database.

The specified identifier or holder identifier is of
invalid format.

The specified identifier does not exist in the rights
database, or the specified holder identifier does
not exist in the rights database.

The user does not have write access to the rights
database.

Because the rights database is an indexed file accessed with VMS RMS, this
service may also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the VMS Record
Management Services Manual.

SYSTEM SERVICE DESCRIPTIONS
$MQD_IDENT

$MQD_IDENT Modify Identifier in Rights
Database

FORMAT

RETURNS

ARGUMENTS

The Modify Identifier in Rights Database service modifies the specified
identifier record in the rights database. Identifier attributes may be added
or removed, or both. The identifier name or value may be changed.

SYS$MQD_IDENT id ,{set_attrib] ,{c/r_attrib]
,[new_name] ,{new_value]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

id
VMS usage: rights_id
type: longword (unsigned)
access: read only
mechanism: by value

Binary value of identifier whose identifier record is modified when
$MOD-1DENT completes execution. The id argument is a longword
containing the identifier value.

seLattrib
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Bit mask of attributes to be enabled for the identifier when $MOD-1DENT
completes execution. The set_attrib argument is a longword containing the
attribute mask.

The attributes actually enabled are the intersection of those specified and the
attributes of the identifier. If you specify the same attribute in set_attrib and
clr_attrib, the attribute is enabled.

Symbol values are offsets to the bits within the longword. You can also
obtain the values as masks with the appropriate bit set using the prefix
KGB$M rather than KGB$V. The following symbols for each bit position are
defined in the system macro library ($KGBDEF).

SVS-347

SYSTEM SERVICE DESCRIPTIONS
$MOD_IDENT

SYS-348

Bit Position

KGB$V_DYNAMIC

KGB$V_RESOURCE

c/r_attrib

Meaning When Set

Allows the unprivileged holder to add or remove the
identifier from the process rights list.

Allows the holder to charge resources, such as disk
blocks, to the identifier.

VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Bit mask of attributes to be disabled for the identifier when $MOD_IDENT
completes execution. The clr_attrib argument is a longword containing the
attribute mask.

If you specify the same attribute in set_attrib and clr_attrib, the attribute is
enabled.

Symbol values are offsets to the bits within the longword. You can also
obtain the values as masks with the appropriate bit set using the prefix
KGB$M rather than KGB$V. The following symbols for each bit position are
defined in the system macro library ($KGBDEF).

Bit Position

KGB$V_DYNAMIC

KGB$V_RESOURCE

new_name

Meaning When Set

Allows the unprivileged holder to add or remove the
identifier from the process rights list.

Allows the holder to charge resources, such as disk
blocks, to the identifier.

VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

New name to be given to the specified identifier. The new_name argument
is the address of the descriptor pointing to the identifier name string.

An identifier name consists of 1 to 31 alphanumeric characters including
dollar signs ($) and underscores (_), and must contain at least 1 nonnumeric
character. Any lowercase characters specified are automatically converted to
uppercase.

new_ value
VMS usage: rights_id
type: longword (unsigned)
access: read only
mechanism: by value

New value to be assigned to the specified identifier. The new_value
argument is a longword containing the binary value of the specified identifier.
When the identifier value is changed, $MOD-1DENT also changes the value
of the identifier in all of the holder records in which the specified identifier
appears.

DESCRIPTION

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$MQD_IDENT

The Modify Identifier in Rights Database service modifies the specified
identifier record in the rights database. When you specify both the set_attrib
and clr_attrib arguments, the attribute is cleared first. Thus, if you specify
the same attribute bit with each argument, the result is that the bit is set.

You need write access to the rights database to use this service. If the
database is in SYS$SYSTEM (the default) you need SYSPRV privilege to
grant write access to the database.

SS$_NORMAL

SS$_NOSUCHID

SS$_BADPARAM

SS$_1NSFMEM

SS$_1VIDENT

RMS$_PRV

The service completed successfully.

The specified identifier does not exist in the rights
database.

The specified attributes contain invalid attribute
flags.

The process dynamic memory is insufficient for
opening the rights database.

The specified identifier is of invalid format.

The user does not have write access to the rights
database.

Because the rights database is an indexed file accessed with VMS RMS, this
service may also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the VMS Record
Management Services Manual.

SYS-349

SYSTEM SERVICE DESCRIPTIONS
$MOUNT

$MOUNT

FORMAT

RETURNS

ARGUMENT

SYS-350

Mount Volume

The Mount Volume service mounts a tape, disk volume, or volume set and
specifies options for the mount operation.

SYS$MOUNT itmlst

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

itmlst
VMS usage:
type:
access:
mechanism:

item _list_3
longword (unsigned)
read only
by reference

Item list specifying options for the mount operation. The itmlst argument is
the address of a list of item descriptors, each of which specifies an option and
provides the information needed to perform the operation.

The item list must include at least one device item descriptor, and is
terminated by a longword of 0.

The following diagram depicts the format of a single item descriptor.

31 15

item code I buffer length

buffer address

return length address

0

ZK-1705-84

$MOUNT Item Descriptor Fields

buffer length
A word specifying the length (in bytes) of the buffer that supplies the
information $MOUNT needs to process the specified item code. The
required length of the buffer depends upon the item code specified in the
item code field of the item descriptor. If the value of buffer length is too
small, $MOUNT truncates the data.

SYSTEM SERVICE DESCRIPTIONS
$MOUNT

item code
A word containing a user-supplied symbolic code that specifies an option for
the mount operation. The $MNTDEF macro defines these codes, which are
described in the $MOUNT Item Codes section.

buffer address
A longword containing the address of the buffer that supplies information to
$MOUNT.

return length address
This field is not used.

$MOUNT Item Codes

MNT$_ACCESSED
The MNT$_ACCESSED item code specifies the number of directories that will
be in use, concurrently, on the volume. The buffer must contain a longword
integer value in the range 0 to 255. This value overrides the number of
directories specified when the volume was initialized. To specify
MNT$_.ACCESSED, the caller must have OPER privilege. The
MNT$_.ACCESSED item code applies only to disks.

MNT$_BLOCKSIZE
The MNT$_BLOCKSIZE item code specifies the default block size for tape
volumes. The buffer must contain a longword integer value in the range 20
to 65,532 bytes for VMS RMS operations or 10 to 65,534 bytes for operations
that do not use VMS RMS. The MNT$_BLOCKSIZE item code applies only
to tapes.

If you do not specify MNT$_BLOCKSIZE, the default block size is 2048 bytes
for Files-11 tape volumes and 512 bytes for foreign and unlabeled tapes.

You must specify MNT$_BLOCKSIZE when mounting (1) tapes that do
not have ANSI HDR2 labels, (2) tapes to which data will be written from
compatibility mode, and (3) tapes that are to contain records whose size is
larger than the default value.

MNT$_CQMMENT
The MNT$_COMMENT item code specifies text to be associated with an
operator request. The buffer must contain a character string of no more
than 78 characters. This text will be printed on the operator's console if an
operator request is issued for the device being mounted.

MNT$_0ENSITY
The MNT$_DENSITY item code specifies the density at which data is to be
written to a foreign or unlabeled tape. The buffer must contain a longword
value that specifies one of the following legal densities: 800, 1600, or 6250
bpi. The MNT$_DENSITY item code applies only to tapes.

The specified density will be used only if (1) the tape is foreign or unlabeled
and (2) the first operation is a write.

MNT$_0EVNAM
The MNT$_DEVNAM item code specifies the name of the device to be
mounted. The buffer must contain a character string of from 1 to 64
characters, which is the device name. The device name may be a physical

SYS-351

SYSTEM SERVICE DESCRIPTIONS
$MOUNT

SYS-352

device name or a logical name; if it is a logical name, it must translate to a
physical device name.

The MNT$_DEVNAM item code must appear at least once in an item list,
and it may appear more than once. It appears more than once when a volume
set is being mounted, because, in this case, one device is being mounted for
each volume in the volume set.

MNT$_EXTENSION
The MNT$-EXTENSION item code specifies the number of blocks by which
files will be extended. The buffer must contain a longword value in the range
0 to 65,535. The MNT$_EXTENSION item code applies only to disks.

MNT$_EXTENT
The MNT$-EXTENT item code specifies the size of the extent cache in units
of extent pointers. The buffer must contain a longword value, which specifies
this size. To specify MNT$_EXTENT, you need OPER privilege. The value 0
(the default) disables caching. The MNT$_EXTENT item code applies only to
disks.

MNT$_flLEID
The MNT$JILEID item code specifies the size of the file-ID cache in units
of file numbers. The buffer must contain a longword value, which specifies
this size. To specify MNT$_FILEID, you need OPER privilege. The value 1
disables caching. The MNT$_FILEID item code applies only to disks.

MNT$_FLAGS
The MNT$JLAGS item code specifies a longword bit vector wherein each
bit specifies an option for the mount operation. The buffer must contain a
longword, which is the bit vector.

The $MNTDEF macro defines symbolic names for each option (bit) in the bit
vector. You construct the bit vector by specifying the symbolic names for the
desired options in a logical OR operation. The following table describes the
symbolic names for each option.

SYSTEM SERVICE DESCRIPTIONS
$MOUNT

Option

MNT$M_FOREIGN

MNT$M_GROUP

MNT$M_MUL TLVOL

MNT$M_NOASSIST

MNT$M_NODISKO

MNT$M_NOHDR3

Description

The volume is to be mounted as a foreign
volume; a foreign volume is not Files-11
structured. If you specify
MNT$M_FOREIGN, the following item
codes may each appear in the item list only
once: MNT$_DEVNAM, MNT$_ VOLNAM,
and MNT$_LOGNAM. To specify
MNT$M_FOREIGN, the caller must either
own the volume or have VOLPRO privilege.

The logical name for the volume to be
mounted is entered in the group logical
name table, and the volume is made
accessible to other users with the same
UIC group number as that of the calling
process. To specify MNT$M_GROUP,
the caller must have GRPNAM privilege.
MNT$M_GROUP applies only to disks.

Specifies, for foreign or unlabeled magnetic
tapes, that subsequent volumes can be
processed by overriding MOUNT' s access
checks. You can use this option when a
utility that supports multivolume magnetic
tape sets needs to process subsequent
volumes, and these volumes do not contain
labels that MOUNT can interpret. You need
VOLPRO privilege to specify the
MNT$M_MULTl_VOL option. This
option can only be used together with
the MNT$M_FOREIGN option.

$MOUNT does not request operator
assistance if errors are encountered during
the mount operation. If not specified,
$MOUNT requests operator assistance to
recover from some error conditions.

Disk quotas are not to be enforced for the
volume to be mounted. If not specified,
disk quotas are enforced. To specify
MNT$M_NODISKQ, the caller must either
own the volume or have VOLPRO privilege.
MNT$M_NODISKQ applies only to disks.

ANSI HDR3 and HDR4 labels are not to
be written to magnetic tapes as they are
mounted. If not specified, ANSI HDR3 and
HDR4 labels are written to all tapes.

Use MNT$M_NOHDR3 when writing to
volumes that will be read by a system,
such as the RT -11 system, which does not
process HDR3 and HDR4 labels correctly.
MNT$M_NOHDR3 applies only to tapes.

SYS-353

SYSTEM SERVICE DESCRIPTIONS
$MOUNT

Option

MNT$M_NOWRITE

MNT$M_OVR_ACCESS

MNT$M_OVR_EXP

MNT$M_QVR_IDENT

MNT$M_OVR_LOCK

MNT$M_OVR_SETID

MNT$M_READCHECK

SYS-354

Description

The volume to be mounted is software
write locked. If not specified, the volume is
assumed to have read and write access.

If the installation allows, this option
overrides any character in the Accessibility
Field of the volume. The necessity of this
option is defined by the installation. That is,
each installation has the option of specifying
a routine that the magnetic tape file system
will use to process this field. By default,
VMS provides a routine that checks this
field in the folllowing manner:

• If the magnetic tape was created on
a version of VMS that conforms to
Version 3 of ANSI, then you must use
this option to override any character
other than an ASCII space.

• If a VMS protection is specified and
that magnetic tape conforms to an
ANSI standard that is higher than
Version 3, then you must use this
option to override any character other
than an ASCII 1 .

To specify MNT$M_OVR_ACCESS, the
caller must either own the volume or have
VOLPRO privilege. MNT$M_OVR_ACCESS
applies only to tapes.

A tape that has not yet reached its
expiration date may be overwritten. To
specify MNT$M_OVR_EXP, the caller must
own the volume or have VOLPRO privilege.

You can mount the volume without
specifying the volume name (by using the
MNT$_VOLNAM item code). If specified,
the following options must not be specified:
MNTM_GROUP, MNTM_SHARE, and
MNT$M_SYSTEM.

The software write lock that occurs when
a volume has a corrupted storage bit mask
may be overridden.

Checks on the volume set identification are
not to be performed when subsequent reels
in the volume set are mounted.
MNT$M_OVR_SETID applies only to tapes.

Read checks are to be performed following
all read operations.

SYSTEM SERVICE DESCRIPTIONS
$MOUNT

Option

MNT$M_SHARE

MNT$M_MESSAGE

MNT$M_SYSTEM

MNT$M_ WRITECHECK

MNT$M_ WRITETHRU

MNT$M_NOMNTVER

MNT$M_NOCACHE

Description

Volume is to be mounted shared and
is therefore accessible to other users.
MNT$M_SHARE applies only to disks.

If the volume was previously mounted
shared by another user and
MNT$M_SHARE is specified in the current
call, all other options specified in the current
call are ignored.

If the caller allocated the device and
specified MNT$M_SHARE in the call to
$MOUNT, $MOUNT will deallocate the
device so that other users may access the
volume.

Messages will be sent to the caller's
SYS$0UTPUT device.

The logical name for the volume to be
mounted is entered in the system logical
name table, and the volume is made
accessible to all other users, provided
that UIC-based protection allows access to
the volume. To specify MNT$M_SYSTEM,
the caller must have SYSNAM privilege.
MNT$M_SYSTEM applies only to disks.

Write checks are to be performed after all
write operations.

Write-back caching is disabled so that
file headers are written back to disk with
every write operation. If not specified, file
headers are cached until the file is closed.
Caching file headers improves performance
at the risk of losing written data if the
system fails. MNT$M_WRITETHRU applies
only to disks.

The volume is not marked as a candidate
for automatic mount verification. If not
specified, the volume is marked as a
candidate for mount verification.
MNT$M_NOMNTVER applies only to disks.

All caching associated with the volume is
turned off. Specifying MNT$M_NOCACHE
is equivalent to (1) specifying
MNT$M_WRITETHRU, (2) specifying a
value of 1 for the item descriptor
MNT$_FILEID, and (3) specifying a value
of 0 for the item descriptors MNT$M_
EXTENT and MNT$M_QUOT A. MNT$M_
NOCACHE applies only to disks.

SYS-355

SYSTEM SERVICE DESCRIPTIONS
$MOUNT

Option

MNT$M_NOAUTO

MNT$M_INIT_CONT

SVS-356

Description

Automatic volume labeling (A VL) and
automatic volume recognition (A VR) are
to be disabled. If MNT$M_NOAUTO
is specified, the operator must enter
commands from the console to process
each additional volume in a volume set.
When a volume is finished processing, the
operator specifies the drive on which the
next volume is loaded and the label name
of the next volume. You may want to use
MNT$M_NOAUTO to disable AVL and AVR
when not reading a volume set sequentially.

You can enable A VL and A VR by specifying
MNT$M_INIT_CONT. MNT$M_NOAUTO
applies only to magnetic tapes.

Additional volumes in the volume set are to
be initialized without operator intervention.
$MOUNT initializes new volumes with the
protections specified for the first magnetic
tape of the volume set and creates unique
volume label names for up to 99 volumes in
a volume set.

If MNT$M_INIT_CONT is specified, you
must allocate multiple magnetic tape drives
to the volume set. If $MOUNT switches to
a drive that has no magnetic tape loaded
or has the wrong magnetic tape loaded, or
if $MOUNT tries to read a magnetic tape
that is not loaded, it notifies the operator to
load the correct magnetic tape. $MOUNT
will dismount and unload volumes as soon
as they have been read or written. The
operator can load the next volume in the
volume set before the current reel of the
volume set reaches the end of the magnetic
tape.

If writing to the volume set, $MOUNT
automatically (1) switches to the next
magnetic tape drive; (2) initializes that
magnetic tape with the same volume name
and protection as specified in the volume
labels of the first volume in the set; and
(3) notifies the operator that the switch
has occurred. If reading the volume set,
$MOUNT generates the label for the next
volume in the volume set and reads that
volume.

Option

SYSTEM SERVICE DESCRIPTIONS
$MOUNT

Description

The label name that $MOUNT generates
for each additional volume in the volume
set consists of six characters: the first four
characters are the same as the first four
characters of the label name of the previous
volume; the fifth and sixth characters
represent the number of the volume in the
volume set.

MNT$M_INIT_CONT applies only to
magnetic tapes.

MNT$M_CLUSTER The volume is to be mounted for
clusterwide access; that is, every node
on the cluster can access the volume.
$MOUNT mounts the volume first on the
caller's node and then on every other node
in the existing VAXcluster.

Only system or group volumes can be
mounted clusterwide. If you do not
specify MNT$M_GROUP or MNT$M_
SYSTEM, $MOUNT mounts the volume
as a system volume, provided the caller
has SYSNAM privilege. To mount a group
volume clusterwide, the caller must have
GRPNAM privilege. To mount a system
volume clusterwide, the caller must have
SYSNAM privilege.

MNT$M_CLUSTER has no effect if the
system is not a member of a VAX cluster.
MNT$M_CLUSTER applies only to disks.

SYS-357

SYSTEM SERVICE DESCRIPTIONS
$MOUNT

SYS-358

Option

MNT$M_OVR_ VOLO

MNT$M_ T APE_DATA_WRITE

MNT$_LIMIT

Description

The volume label's owner identifier field
is not to be processed. $MOUNT reads
volume owner and protection information
from the volume owner field of the volume
labels.

VMS requires that you specify
MNT$M_OVR_ VOLO to process magnetic
tapes when all of the following conditions
exist: (1) the volume was created on
a DIGIT AL operating system other than
VMS; (2) the volume was initialized with
a protection specified; and (3) the volume
conforms to the Version 3 ANSI label
standard.

To specify MNT$M_OVR_VOLO, the caller
must either have VOLPRO privilege or own
the volume. MNT$M_OVR_ VOLO applies
only to tapes.

Enables the tape controller's write cache for
this device. Enabling the write cache
improves data throughput for write
operations. By default, the tape controller's
write cache is disabled for the device.

This option applies only to tape systems
that support a write cache.

The MNT$_LIMIT item code specifies the maximum amount of free space in
the extent cache. The buffer must contain a longword value, which specifies
the amount of free space in units of tenths of a percent of the disk's total free
space. The MNT$_LIMIT item code applies only to disks.

MNT$_LOGNAM
The MNT$_LQGNAM item code specifies a logical name for the volume; this
logical name is equated to the device name specified by the first
MNT$_DEVNAM item code. The buffer must contain a character string from
1 to 64 characters, which is the logical name.

Unless you specify MNT$M_GROUP or MNT$M_SYSTEM, the logical name
is entered in the process logical name table.

MNT$_0WNER
The MNT$_0WNER item code specifies the UIC to be assigned ownership
of the volume. The buffer must contain a longword octal value, which is the
UIC. If the volume is Files-11 structured, the specified value overrides the
ownership recorded on the volume. You need either VOLPRO privilege or
ownership of the volume to assign a UIC to a Files-11 structured volume.

MNT$_PROCESSOR
For magnetic tapes and Files-11 Structure Level 1 disks, MNT$_pRQCESSOR
specifies the name of the ancillary control process (ACP) that is to process
the volume. The specified ACP overrides the default ACP associated with the
device.

SYSTEM SERVICE DESCRIPTIONS
$MOUNT

For Files-11 Structure Level 2 disks, MNT$_PROCESSOR controls block
cache allocation.

To specify MNT$_PROCESSOR, the caller must have OPER privilege.

The buffer must contain a character string specifying either the string
UNIQUE, a device name, or a file specification. Following is a description of
the action taken for each of these cases.

String

UNIQUE

Description

For magnetic tapes and Files-11 Structure Level 1 disks, UNIQUE
specifies that $MOUNT create a new process to execute a copy
of the default ACP image associated with the device specified by
the MNT$_DEVNAM item code.

For Files-11 Structure Level 2 disks, UNIQUE allocates a separate
block cache.

ddcu For magnetic tapes and Files-11 Structure Level 1 disks, ddcu
specifies that $MOUNT use the ACP process currently being used
by the device ddcu. The device specified must be in the format
ddcu, for example, DRA3.

file-spec

For Files-11 Structure Level 1 disks, ddcu specifies that $MOUNT
take the block allocation from the specified device.

Specifies that $MOUNT create a new process to execute the ACP
image with the file specification file-spec. Wildcard characters are
not allowed in the file specification. The file must be in the disk
and directory specified by the logical name SYS$SYSTEM. This
operation requires CMKRNL privilege.

MNT$_QUOTA
The MNT$_QUOTA item code specifies the size of the quota record cache in
units of quota records. The buffer must contain a longword value, which is
this size. To specify MNT$_QUOTA, you need OPER privilege. The value 0
disables caching. The MNT$_QUOTA item code applies only to disks.

MNT$_RECORDSIZ
The MNT$-RECORDSIZ item code specifies the number of characters in each
record, and is used with MNT$_BLOCKSIZE to specify the data formats for
foreign volumes. The buffer must contain a longword value less than or equal
to the block size. The MNT$-RECORDSIZ item code applies only to tapes.

If you do not specify MNT$-RECORDSIZ, the record size is assumed to be
equal to the block size.

MNT$_SHAMEM
The MNT$_SHAMEM item code applies only to the volume shadowing
option. See the VAX Volume Shadowing Manual.

MNT$_SHAMEM_COPY
The MNT$_SHAMEM_CQPY item code applies only to the volume
shadowing option. See the VAX Volume Shadowing Manual.

MNT$_SHAMEM_MGCOPY
The MNT$_SHAMEM-MGCOPY item code applies only to the volume
shadowing option. See the VAX Volume Shadowing Manual.

SVS-359

SYSTEM SERVICE DESCRIPTIONS
$MOUNT

SYS-360

MNT$_SHANAM
The MNT$_SHANAM item code applies only to the volume shadowing
option. See the VAX Volume Shadowing Manual.

MNT$_VQLNAM
The MNT$_ VOLNAM item code specifies the name of the volume to be
mounted on the device. The buffer must contain a character string from 1 to
12 characters, which is the volume name.

The MNT$_ VOLNAM item code may appear more than once in an item list;
it appears more than once when a volume set is being mounted because, in
this case, one volume name is given to each volume in the volume set.

When a disk volume set is being mounted, you must specify
MNT$_DEVNAM and MNT$_ VOLNAM once for each volume of the
volume set. The $MOUNT service mounts the volume specified by the first
MNT$_ VQLNAM item code on the device specified by the first
MNT$_DEVNAM item code in the item list; it mounts the volume specified
by the second MNT$_VQLNAM code on the device specified by the second
MNT$_DEVNAM code, and so on for all specified volumes and devices.
Thus, there must be an equal number of these two item codes in the item list.

When a tape volume set is being mounted, the number of MNT$_DEVNAM
item codes specified need not be equal to the number of MNT$_ VQLNAM
item codes specified, because more than one volume may be mounted on the
same device.

MNT$_VQLSET
The MNT$_ VOLSET item code specifies the name of a volume set. The
buffer must contain a character string from 1 to 12 alphanumeric characters,
which is the volume set name.

When you specify MNT$_ VOLSET, volumes specified by the
MNT$_ VOLNAM item code are bound into a new volume set or added to an
existing volume set, depending on whether the name specified by
MNT$_ VOLSET is a new or already existing name.

When you specify MNT$_ VOLSET to add volumes to an existing volume
set, the root volume (RVNl) must either (1) already be mounted or (2) be
specified first (by the MNT$_DEVNAM and MNT$_VOLNAM item codes) in
the item list.

When you specify MNT$_ VOLSET to create a new volume set, the first
volume specified (by the MNT$_DEVNAM and MNT$_ VOLNAM item
codes) in the item list becomes the root volume.

MNT$_VPROT
The MNT$_ VPROT item code specifies the protection to be assigned to the
volume. The buffer must contain a longword protection mask, which specifies
the four types of access allowed to the four categories of user.

The protection mask consists of four 4-bit fields. Each field grants or denies
read, write, logical, and physical access to a particular category of user.
Cleared bits grant access; set bits deny access. The following diagram depicts
the structure of the protection mask.

DESCRIPTION

SYSTEM SERVICE D'ESCRIPTIONS
$MOUNT

WORLD GROUP OWNER SYSTEM

PL WRPLWRPLWRPLWR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

ZK-1715-84

If you do not specify MNT$_ VPROT or specify it as 0, the volume receives
the protection that it was assigned when it was initialized. To specify
MNT$_ VPROT for a Files-11 structured volume, the caller must either own
the volume or have VOLPRO privilege.

MNT$_WINDOW
The MNT$_WINDOW item code specifies the number of mapping pointers
to be allocated for file windows. The buffer must contain a longword value
in the range 7 to 80. This value overrides the default value that was applied
when the volume was initialized. The MNT$_WINDOW item code applies
only to disks.

When a file is opened, the file system uses the mapping pointers to access the
data in the file. To specify MNT$_WINDOW, you need OPER privilege.

To mount a particular volume, the caller must either own or have privilege to
access the specified volume or volumes. The privileges required depend on
the operation and are listed with the item codes that specify the operation.

The calling process must have TMPMBX or PRMMBX privilege to perform an
operator-assisted mount.

When a subprocess mounts a private volume without explicitly allocating the
device, the master process of the job becomes the owner of this device. This
provision is necessary because the subprocess may be deleted and the volume
should remain privately mounted for this job.

When a subprocess explicitly allocates a device and then mounts a private
volume on this device, this subprocess retains the device ownership. In this
case, only subprocesses of the device owner, and processes with SHARE
privilege, have access to the device.

The $MOUNT service uses the following system resources to mount volumes
with group or systemwide access allowed:

• Nonpaged pool

• Paged pool

When $MOUNT mounts a disk volume, the logical name DISK$volume-label
is always created. If you specify a logical name in the mount request that is
different from DISK$volume-label, there will be two logical names associated
with the device.

If the logical name of a volume is in a process-private table, then the name is
not deleted when the volume is dismounted.

SVS-361

SYSTEM SERVICE DESCRIPTIONS
$MOUNT

CONDITION
VALUES
RETURNED

SYS-362

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_NOGRPNAM

SS$_NOSYSNAM

SS$_NOOPER

SS$_NOPRIV

SS$_NOSUCHDEV

The service completed successfully.

The item list or an address specified in the item list
cannot be accessed.

A buffer length of zero was specified with a
nonzero item code; an illegal item code was
specified; or no device was specified.

The caller does not have GRPNAM privilege.

The caller does not have SYSNAM privilege.

The caller does not have the required OPER
privilege.

The caller does not have sufficient privilege to
access a specified volume.

The specified device does not exist on the host
system.

The $MOUNT service may also return a condition value that is specific to
the Mount Utility. The symbolic definition macro $MOUNDEF defines these
condition values. For information about how to obtain these symbolic codes,
see the Introduction to VMS System Services.

SYSTEM SERVICE DESCRIPTIONS
$MTACCESS

$MT ACCESS Magnetic Tape Accessibility

FORMAT

RETURNS

ARGUMENTS

The Magnetic Tape Accessibility service allows installations to provide
their own routine to interpret and output the accessibility field in the VOL 1
and HDR 1 labels of an ANSI labeled magnetic tape. (ANSI refers to the
American National Standard for Magnetic Tape Labels and File Structure
for Information Interchange-ANSI, x3.27-1978.)

SVS$MTACCESS lblnam ,{uic] ,[std_version]
,{access_char} ,{access_spec] ,type

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. For the input of a label, condition
values that this service returns are listed under CONDITION VALUES
RETURNED. For the output of a label, the value returned in the low byte in
RO is the access_char to write to the label.

lblnam
VMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

ANSI label to be processed. The lblnam argument is the address of a
longword containing the label. On input, the label passed is either the VOLl
or HDRl label read from the magnetic tape; on output of labels, this field is
zero. The type of label passed is determined by type.

uic
VMS usage: uic
type: longword (unsigned)
access: read only
mechanism: by value

VIC of the user performing the operation. The uic argument is a longword
containing the VIC.

std_ version
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Decimal equivalent of the ANSI standard version read from the VOLl label.
The stLversion argument is a longword containing the standard version
number.

SVS-363

SYSTEM SERVICE DESCRIPTIONS
$MTACCESS

DESCRIPTION

SVS-364

access_ char
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Accessibility character specified by the user. The access_char argument is a
byte containing the accessibility character used for the output of labels.

access_spec
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Value specifying whether the accessibility character passed in access_char
was specified by the user. The access-spec argument is a byte containing
one of the following values.

Value

MTA$K_CHARVALIO

MTA$K_NOCHAR

Meaning

Yes

No

This argument is used only for the output of labels.

type
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Type of accessibility field to process. The type argument is a byte containing
one of the following values.

Value

MT A$K_INVOL 1

MT A$K_INHOR 1

MT A$K_OUTVOL 1

MT A$K_OUTHOR 1

Meaning

Input a VOL 1 label

Input a HOR 1 label

Output a VOL 1 label

Output a HOR 1 label

The $MTACCESS service allows installations to provide their own routine
to interpret and output the accessibility field in the VOLl and HDRl labels
of ANSI labeled magnetic tapes. The installation can override the default
routine by providing an MTACCESS.EXE executive loaded image. See
the Introduction to VMS System Services for the procedure for loading an
installation-specific executive loaded image.

The default installation routine first checks the ANSI standard version of the
label. For magnetic tapes with a version number of 3 or less, the routine
outputs either a blank or the character you specified. On input of these
magnetic tapes, the routine checks for a blank and returns the value
SS$_FILACCERR if the field is not blank.

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$MTACCESS

For magnetic tapes with a version number greater than 3, the routine outputs
either the character specified by access_char or an ASCII 1 if no character
was specified. On input of these magnetic tapes, the routine checks for a
blank. If the field is blank, RO is set to 0. In that case, you are given full
access and VMS protection is not checked. If the field contains an ASCII
1 and the VOLl IMPLEMENTATION IDENTIFIER field contains the VMS
system code, RO is set to SS$_NORMAL. In that case, the VMS protection is
checked.

If the field is not blank and does not contain an ASCII 1, RO is set to
SS$JILACCERR, which forces you to override the accessibility checking,
and allows the magnetic tape file system to check VMS protection.

The following summarizes the results of label input check:

Contents of RO

SS$_NORMAL

0

SS$_FILACCERR

Result

Check the VMS protection on the magnetic tape.

Give the user full access. VMS protection is not checked.

Check for explicit override, then check VMS protection.

Note that the default accessibility routine does not output SS$_NOVOLACC
or SS$_NOFILACC. These statuses are included for the installation's use, and
the magnetic file system handles these cases.

The magnetic tape file system calls $MTACCESS to process the accessibility
field in the VOLl and HDRl labels. After a call to the system service, the
magnetic tape file system checks to ensure that the installation did not move
the magnetic tape. If the magnetic tape was moved, the magnetic tape file
system completes the current operation with an SS$_TAPEPOSLOST error.
Finally, it processes the remainder of the label according to the status returned
by $MTACCESS.

Because accessibility is an installation-provided routine, VMS cannot
determine which users have the authority to override the processing of
this field. However, the magnetic tape file system allows only operator class
users to deal with blank magnetic tapes so that a user must have both OPER
and VOLPRO privileges to initialize or mount blank magnetic tapes.

SS$_NORMAL

SS$_FILACCERR

SS$_NOFILACC

SS$_NOVOLACC

The service completed successfully.

The accessibility characteristic in the HOR 1 label is
not blank and you cannot access the file without
overriding the field.

The user has no access to the file.

The user has no access to the volume.

SYS-365

SYSTEM SERVICE DESCRIPTIONS
$NUMTIM

$NUMTIM

FORMAT

RETURNS

ARGUMENTS

SYS-366

Convert Binary Time to
Numeric Time

The Convert Binary Time to Numeric Time service converts an absolute or
delta time from 64-bit system time format to binary integer date and time
values.

SYS$NUMTIM timbuf ,[timadr]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

timbuf
VMS usage: vector_word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Buffer into which $NUMTIM writes the converted date and time. The
numtim argument is the address of a 7-word structure. The following
diagram depicts the fields in this structure.

31 15

month of year year since O

hour of day day of month

second of minute minute of hour

hundredths of second

0

ZK-1716-84

If the timadr argument specifies a delta time, $NUMTIM returns 0 in the year
since 0 and month of year fields. It returns in the day of month field the
number of days specified by the delta time, which must be less than 10,000
days.

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$NUMTIM

timadr
VMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

The 64-bit time value to be converted. The timadr argument is the address of
a quadword containing this time. A positive time value represents an absolute
time, while a negative time value indicates a delta time.

If you do not specify timadr, $NUMTIM returns the current system time.

If timadr specifies 0, $NUMTIM returns the base date (November 17, 1858).

SS$_NORMAL

SS$_ACCVIO

SS$_1VTIME

The service completed successfully.

The 64-bit time value cannot be read by the caller,
or the buffer cannot be written by the caller.

The specified delta time is equal to or greater than
10,000 days.

SYS-367

SYSTEM SERVICE DESCRIPTIONS
$PARSE_ACL

$PARSE_ACL Parse Access Control List Entry

FORMAT

RETURNS

ARGUMENTS

SVS-368

The Parse Access Control List Entry service parses the specified text
string and converts it into the binary representation for an access control
list entry (ACE).

SVS$PARSE_ACL aclstr ,aclent ,[errpos] ,[accnam]
,[nullarg] ,[nullarg]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

aclstr
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Formatted ACE that is parsed when $PARSE_ACL completes execution. The
aclstr argument is the address of a string descriptor pointing to the text string
to be parsed.

aclent
VMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor-fixed-length string descriptor

Description of the ACE that is parsed when $PARSE-ACL completes
execution. The aclent argument is the address of a descriptor pointing to
the buffer in which the ACE is written. The first byte of the buffer contains
the length of the ACE; the second byte contains a value that identifies the
type of ACE, which in turn defines the format of the ACE. For information
about the ACE types and their associated formats, see the
SYS$FORMAT_ACL service.

errpos
VMS usage:
type:
access:
mechanism:

word_unsigned
word (unsigned)
write only
by reference

Number of characters from aclstr processed by SYS$PARSE_ACL. The
errpos argument is the address of a word that receives the number of

DESCRIPTION

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$PARSE_ACL

characters actually processed by the service. If the service fails, this count
points to the failing point in the string.

accnam
VMS usage: access_bit_names
type: longword (unsigned)
access: read only
mechanism: by reference

Names of the bits in the access mask when $PARSE_ACL is executing. The
accnam argument is the address of an array of 32 quadword descriptors that
define the names of the bits in the access mask. Each element points to the
name of a bit. The first element names bit 0, the second element names bit 1,
and so on. If you omit accnam, the following names are used:

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6

Bit 31

READ
WRITE
EXECUTE
DELETE
CONTROL
BIT_5
BIT_6

BIT_31

nullarg
VMS usage: nulLarg
type: longword (unsigned)
access: read only
mechanism: by value

Place-holding argument reserved by DIGITAL.

The Parse Access Control List Entry service parses the specified text string
and converts it into the binary representation for an access control list entry.

SS$_NORMAL

SS$_ACCVIO

SS$_IVACL

The service completed successfully.

The string or its descriptor cannot be read by the
caller, or the buffer descriptor cannot be read by
the caller, or the buffer cannot be written by the
caller, or the buffer is too small to hold the ACL
entry.

The format of the access control list entry is not
valid.

SYS-369

SYSTEM SERVICE DESCRIPTIONS
$PURGWS

$PURGWS

FORMAT

RETURNS

ARGUMENT

CONDITION
VALUES
RETURNED

SYS-370

Purge Working Set

The Purge Working Set service removes a specified range of pages from
the current working set of the calling process to make room for pages
required by a new program segment. However, the Adjust Working Set
Limit ($ADJWSL) service is the preferred mechanism for controlling a
process's use of physical memory resources.

SYS$PURGWS inadr

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

inadr
VMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Starting and ending virtual addresses of the range of pages to be purged. The
inadr argument is the address of a 2-longword array containing, in order, the
starting and ending process virtual addresses. Only the virtual page number
portion of each virtual address is used; the low-order 9 bits are ignored.

The $PURGWS service locates pages within the specified range and removes
them if they are in the working set.

If the starting and ending virtual addresses are the same, only that single
page is purged.

To purge the entire working set, specify a range of pages from 0 through
7FFFFFFF; in this case, the image will continue to execute and pages will be
faulted back into the working set as they are needed.

SS$_NORMAL

SS$_ACCVIO

The service completed successfully.

The input address array cannot be read by the
caller.

$PUTMSG

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$PUTMSG

Put Message

The Put Message service writes one or more error messages to
SYS$ERROR (and to SYS$0UTPUT if it is different from SYS$ERROR). The
$PUTMSG service is a generalized message-formatting and output routine
used by VMS to write informational and error messages to processes.

SYS$PUTMSG msgvec ,[actrtn] ,{facnam} ,[actprm]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

msgvec
VMS usage: cntrlblk
type: longword (unsigned)
access: read only
mechanism: by reference

Message argument vector specifying the message or messages to be written
and options that $PUTMSG is to use in writing the message or messages.
The msgvec argument is the address of the message vector.

The message vector consists of one longword followed by one or more
message descriptors, one descriptor per message. The following diagram
depicts the contents of the first longword.

31 15

default message options argument count

0

ZK-1717-84

Message Vector Fields

argument count
This word-length field specifies the total number of longwords in the message
vector, not including the first longword (of which it is a part).

default message options
This word-length field specifies which message component or components are
to be written. The default message options field is a word-length bit vector
wherein a bit, when set, specifies that the corresponding message component
is to be written. For a description of each of these components, refer to the
DESCRIPTION section.

SVS-371

SYSTEM SERVICE DESCRIPTIONS
$PUTMSG

SVS-372

The following table shows the significant bit numbers. Note that the bit
numbers shown (0, 1, 2, 3) are the bit positions from the beginning of the
word; however, because the word is the second word in the longword, you
should add the number 16 to each bit number to specify its exact offset within
the longword.

Bit Value

0 1
0

1
0

2 1
0

3 1
0

Description

Include message text
Do not include message text

Include mnemonic name for message text
Do not include mnemonic name for message text

Include severity level indicator
Do not include severity level indicator

Include facility prefix
Do not include facility prefix

Bits 4 through 15 must be 0.

You can override the default setting specified by the default message options
field for any or all messages by specifying different options in the new
message options field of any subsequent message descriptor. When you
specify new message options, the options it specifies become the new default
settings for all remaining messages until you specify new message options
again.

The $PUTMSG service passes the default message flags field to the
$GETMSG service as the flags argument.

If you do not specify the default message flags field, the default message
options for the process are used; you can set the process default message
options by using the DCL command SET MESSAGE.

The DESCRIPTION section shows the format that $PUTMSG uses to write
these message components.

Following the first longword of the message vector are one or more message
descriptors. A message descriptor may have one of four possible formats,
depending on the type of message it describes. There are four types of
message:

• User-supplied

• System

• VMS RMS

• System exception

SYSTEM SERVICE DESCRIPTIONS
$PUTMSG

Message Descriptor for User-Supplied Messages

31 15 0

message code

new message options 1 FAQ parameter count

first FAQ parameter

second F AO parameter

ZK-1718-84

Fields in Message Descriptor for User-Supplied Messages

message code
Longword value that uniquely identifies the message. The DESCRIPTION
section discusses the message code; the VMS Message Utility Manual explains
how to create message codes.

FAO parameter count
Word-length value specifying the number of longword FAQ parameters that
follow in the message descriptor. The number of FAQ parameters needed
depends on the FAQ directives used in the message text; some FAQ directives
require one or more parameters, while some directives require none.

new message options
Word-length bit vector specifying new message options for the current
message. The contents and format of this field is identical to that of the
default message options field.

FAQ parameter
Longword value used by an FAQ directive appearing in the message text. The
FAQ parameters listed in the message descriptor must appear in the order in
which they will be used by the FAQ directives in the message text.

Message Descriptor for System Messages

31 0

message code

ZK-1719-84

Fields in Message Descriptor for System Messages

message code
Longword value that uniquely identifies the message. The facility number
field in the message code identifies the facility associated with the message.
A system message has a facility number of 0. You cannot specify the FAQ

SYS-373

SYSTEM SERVICE DESCRIPTIONS
$PUTMSG

SYS-374

parameter count, new message options, and F AO parameter fields. Each
longword following the message identification field in the message vector
will be interpreted as another message identification.

Message Descriptor for VMS RMS Messages

31 0

message code

RMS Status Value (STV)

ZK-1720-84

Fields in Message Descriptor for VMS RMS Messages

message code
Longword value that uniquely identifies the message. The facility number
field in the message code identifies the facility associated with the message.
An RMS message has a facility number of 1. You cannot specify the F AO
parameter count, new message options, and F AO parameter fields. The
longword following the message identification field in the message vector
will be interpreted as a standard value field (STV).

RMS Status Value
Longword containing an STV for use by an RMS message that has an
associated STV value. The $PUTMSG service uses the STV value as an
F AO parameter or as another message identification, depending on the RMS
message identified by the message identification field. If the RMS message
does not have an associated STV, $PUTMSG ignores the STV longword in
the message descriptor.

Message Descriptor for System Exception Messages

31

message code

first FAO parameter

second F AO parameter

0

ZK-1721-84

Fields in Message Descriptor for System Exception Messages

message code
Longword value that uniquely identifies the message. The facility number
field in the message code identifies the facility associated with the message.
A system exception message has a facility number of 0. You cannot specify

SYSTEM SERVICE DESCRIPTIONS
$PUTMSG

the FAQ parameter count and new message options fields. The longword
or longwords following the message code field in the message vector will be
interpreted as FAO parameters.

actrtn
VMS usage: procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

User-supplied action routine to be executed during message processing. The
actrtn argument is the address of the entry mask of this routine.

Note that the first argument passed to the action routine is the address of
a character string descriptor pointing to the message text; the parameter
specified by actprm is the second.

The action routine receives control after a message is formatted but before it
is actually written to the user.

The completion code in general register RO from the action routine indicates
whether the message should be written. If the low-order bit of RO is set (1),
then the message will be written. If the low-order bit is cleared (0), then the
message will not be written.

If you do not specify actrtn or you specify it as 0 (the default), no action
routine executes.

Because $PUTMSG writes messages only to SYS$ERROR and SYS$0UTPUT,
an action routine is useful when output must be directed to, for example, a
file.

facnam
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Facility prefix to be used in the first or only message written by $PUTMSG.
The facnam argument is the address of a character string descriptor pointing
to this facility prefix.

If you do not specify facnam, $PUTMSG uses the default facility prefix
associated with the .message.

actprm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

Parameter to be passed to the action routine. The actprm argument is a
longword value containing this parameter. If you do not specify actprm, no
parameter is passed.

SYS-375

SYSTEM SERVICE DESCRIPTIONS
$PUTMSG

DESCRIPTION

SYS-376

In VMS, a message is identified by a longword value, which is called the
message code. To construct a message code, you specify values for its four
fields, using the Message Utility. The following diagram depicts the longword
message code.

31 27 15 2 0

cntl facility number message number sev

ZK-1722-84

Thus, each message has a unique longword value associated with it: its
message code. You can give this longword value a symbolic name using the
Message Utility. Such a symbolic name is called the message symbol.

The Message Utility describes how to construct a message symbol according
to the conventions for VMS messages. Basically, the message symbol has
two parts: (1) a facility prefix, which is an abbreviation of the name of the
facility with which the message is associated, and (2) a mnemonic name for
the message text, which serves to hint at the nature of the message. These
two parts are separated by an underscore character (-) in the case of a user
constructed message and by a dollar sign/underscore ($_) in the case of
system messages.

The message components written by $PUTMSG are derived both from the
message code and from the message symbol. For additional information
about both the message code and the message symbol, refer to the VMS
Message Utility Manual.

The $PUTMSG service writes the message components in the following
format:

%FACILITY-L-IDENT, message text

where:

%

FACILITY

L

IDENT

message text

Is the prefix used for the first message written. The hyphen (-)
is the prefix used for the remaining messages.

Is the facility prefix taken from the message symbol. This
facility prefix may be overridden by a facility prefix specified in
the facnam argument in the call to $PUTMSG.

Is the severity level indicator. The severity level indicator is
taken from the message code.

Is a mnemonic name for the message text, taken from the
message symbol.

Is the message text specified in the message source file.

The $PUTMSG service does not check the length of the argument list and
therefore cannot return the SS$-1NSFARG (insufficient arguments) condition
value. Be sure you specify the required number of arguments.

If an error occurs while $PUTMSG calls the Formatted ASCII Output ($FAO)
service, FAO parameters specified in the message vector do not appear in the
output.

You cannot call the $PUTMSG service from kernel mode.

SYSTEM SERVICE DESCRIPTIONS
$PUTMSG

CONDITION
VALUES
RETURNED

EXAMPLES

D VECTOR: . LONG
.LONG
.LONG
.LONG

SS$_NORMAL

3
SS$_ABORT
RMS$_FNF
0

$PUTMSG_S -
MSGVEC=VECTOR

The service completed successfully.

Argument count & null msg. flags
Abort message
File not found message
Null STV parameter

This example shows a segment of a program used to request $PUTMSG to
write the following messages to the current SYS$0UTPUT device (and to
SYS$ERROR, if it is different):

• The complete message associated with the system status code
55$-ABORT (%SYSTEM-F-ABORT, abort)

• The complete message associated with the system status code RMS$JNF
(-RMS-E-FNF, file not found)

~ INTEGER STATUS,
2 OLDHND

CHARACTER*5 NUM

INCLUDE '($SSDEF)'
INCLUDE '($LIBDEF)'

INTEGER LIB$GET_INPUT,
2 LIB$ESTABLISH,
2 SYS$GETJPI
EXTERNAL ERR

OPEN (UNIT = 1,
2 TYPE = 'NEW',
2 CARRIAGECONTROL = 'LIST',
2 FILE = 'ERROR.LOG')

OLDHND = LIB$ESTABLISH (ERR)

! This routine executes successfully
STATUS = LIB$GET_INPUT (NUM, 'NUM: ')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! This routine fails with insufficient arguments
STATUS = SYS$GETJPI(,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

SYS-377

SYSTEM SERVICE DESCRIPTIONS
$PUTMSG

INTEGER FUNCTION ERR (SIGARGS,
2 MECHARGS)

INTEGER SIGARGS(*),
2 MECHARGS(*)
INTEGER NEWSIGARGS(10),

2 ELEMENT

INCLUDE 1 ($SSDEF) 1

EXTERNAL PUT_LINE
INTEGER PUT_LINE

Must specify a length for
array so choose one large enough
to cover any eventuality

! Get rid of last two elements in SIGARGS (the PC and PSL),
! then pad NEWSIGARGS with zeros.

ELEMENT = 1
NEWSIGARGS(ELEMENT) = 10

DO I = 1, SIGARGS(1) - 2
ELEMENT = ELEMENT + 1
NEWSIGARGS (ELEMENT) = SIGARGS (ELEMENT)
END DO

DO I = ELEMENT + 1, 10
ELEMENT = ELEMENT + 1
NEWSIGARGS (ELEMENT) = 0
END DO

CALL SYS$PUTMSG (NEWSIGARGS, PUT_LINE,)
ERR = SS$_RESIGNAL

Could use CONTINUE and let $PUTMSG
! write the message

END
INTEGER FUNCTION PUT_LINE (LINE)

CHARACTER*(*) LINE

PUT_LINE = 0

WRITE (UNIT = 1,

Since you're resignalling, don't let
SYS$PUTMSG write the error.

2 FMT = '(A)') LINE
END

SVS-378

This VAX FORTRAN example uses $PUTMSG to write any error messages to
a file (ERROR.LOG) as well as to the terminal.

SYSTEM SERVICE DESCRIPTIONS
$QIO

$QIO Queue 1/0 Request

FORMAT

RETURNS

ARGUMENTS

The Queue 1/0 Request service queues an 1/0 request to a channel
associated with a device.

The $QIO service completes asynchronously; that is, it returns to the
caller immediately after queuing the 1/0 request, without waiting for the
1/0 operation to complete.

For synchronous completion, you use the Queue 1/0 Request and Wait
($QIOW) service. The $QIOW service is identical to the $QIO service in
every way except that $QIOW returns to the caller after the 1/0 operation
has completed.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System
Services.

SYS$QIO [efn} ,chan ,tune [,iosb} {,astadr} [,astprm}
{,p 11 {,p2} {,p3} [,p4} {,p5} {,p6}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

ef n
VMS usage: eLnumber
type: longword (unsigned)
access: read only
mechanism: by value

Event flag that $QIO is to set when the 1/0 operation completes. The efn
argument is a longword value containing the number of the event flag;
however, $QIO uses only the low-order byte.

If you do not specify efn, event flag 0 is set.

When $QIO begins execution, it clears the specified event flag or event flag 0
if efn was not specified.

The specified event flag is set if the service terminates without queuing an
1/0 request.

ch an
VMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

SYS-379

SYSTEM SERVICE DESCRIPTIONS
$QIO

SVS-380

1/0 channel assigned to the device to which the request is directed. The chan
argument is a longword value containing the number of the 1/0 channel;
however, $QIO uses only the low-order word.

tune
VMS usage: function_code
type: word (unsigned)
access: read only
mechanism: by value

Device-specific function codes and function modifiers specifying the operation
to be performed. The func argument is a longword value containing the
function code.

Each device has its own function codes and function modifiers. For complete
information about the function codes and function modifiers that apply to
the particular device to which the 1/0 operation is to be directed, refer to the
VMS 1/0 User's Reference Volume.

iosb
VMS usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

1/0 status block to receive the final completion status of the 1/0 operation.
The iosb argument is the address of the quadword 1/0 status block. The
following diagram depicts the structure of the 1/0 status block.

31

transfer count

1/0 Status Block Fields

condition value

15 0

l condition value

device-specific information

ZK-1723-84

Word-length condition value that $QIO returns when the 1/0 operation
actually completes.

transfer count
Number of bytes of data transferred in the 1/0 operation. For information
about how specific devices handle this field of the 1/0 status block, refer to
the VMS 1/0 User's Reference Volume.

device-specific information
Contents of this field vary depending on the specific device and on the
specified function code. For information on how specific devices handle this
field of the I/O status block, refer to the VMS 1/0 User's Reference Volume.

When $QIO begins execution, it clears the quadword 1/0 status block if the
iosb argument is specified.

DESCRIPTION

SYSTEM SERVICE DESCRIPTIONS
$QIO

Though this argument is optional, DIGITAL strongly recommends that you
specify it, for the following reasons:

• If you are using an event flag to signal the completion of the service, you
can test the IjO status block for a condition value to be sure that the
event flag was not set by an event other than service completion.

• If you are using the $SYNCH service to synchronize completion of the
service, the I/O status block is a required argument for $SYNCH.

• The condition value returned in RO and the condition value returned
in the I/O status block provide information about different aspects of
the call to the $QIO service. The condition value returned in RO gives
you information about the success or failure of the service call itself; the
condition value returned in the I/O status block gives you information
about the success or failure of the service operation. Therefore, to
accurately assess the success or failure of the call to $QIO, you must
check the condition values returned in both RO and the I/O (status block.

astadr
VMS usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference II,

AST service routine to be executed when the I/O completes. The astadr
argument is the address of a longword value that is the entry mask to the
AST routine.

The AST routine executes at the access mode of the caller of $QIO.

astprm
VMS usage: user_arg
type: longword {unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST service routine. The astprm argument
is a longword value containing the AST parameter.

p1 top6
VMS usage: varying_arg
type: longword {unsigned)
access: read only
mechanism: by reference or by value depending on the 1/0 function

Optional device- and function-specific 1/0 request parameters.

For more information about these parameters, see the VMS I/O User's
Reference Volume.

The $QIO service operates only on assigned I/O channels and only from
access modes that are equal to or more privileged than the access mode from
which the original channel assignment was made.

The $QIO service uses the following system resources:

• The process's quota for buffered I/O limit (BIOLM) or direct I/O limit
(DI OLM)

SYS-381

SYSTEM SERVICE DESCRIPTIONS
$QIO

CONDITION
VALUES
RETURNED

SYS-382

• The process's buffered 1/0 byte count (BYTLM) quota

• The process's AST limit (ASTLM) quota, if an AST service routine is
specified

• System dynamic memory to construct a database to queue the 1/0 request

• Possibly, additional memory on a device-dependent basis

For $QIO, you can synchronize completion by (1) specifying the astadr
argument to have an AST routine execute when the 1/0 completes or (2)
by calling the Synchronize ($SYNCH) service to await completion of the 1/0
operation. The $QIOW service completes synchronously, and it is the best
choice when synchronous completion is required.

For information about how to use the $QIO service for network operations,
refer to the VMS Networking Manual.

SS$_NORMAL

SS$_ABORT

SS$_ACCVIO

SS$_DEVOFFLINE

SS$_EXQUOT A

SS$_1LLEFC

SS$_1NSFMEM

SS$_1VCHAN

SS$_NOPRIV

SS$_UNASEFC

SS$_LINKABORT

The service completed successfully. The 1/0
request was successfully queued.

A network logical link was broken.

Either the 1/0 status block cannot be written by
the caller, or the parameters for device-dependent
function codes are specified incorrectly.

The specified device is off line and not currently
available for use.

The process has (1) exceeded its AST limit
(ASTLM) quota, (2) exceeded its buffered 1/0 byte
count (BYTLM) quota, (3) exceeded its buffered
1/0 limit (BIOLM) quota, (4) exceeded its direct 1/0
limit (DIOLM) quota, or (5) requested a buffered
1/0 transfer smaller than the buffered byte count
quota limit (BYTLM), but when added to other
current buffer requests, the buffered 1/0 byte
count quota was exceeded.

You specified an illegal event flag number.

The system dynamic memory is insufficient for
completing the service.

You specified an invalid channel number, that is, a
channel number of 0 or a number larger than the
number of channels available.

The specified channel does not exist, was assigned
from a more privileged access mode, or the
process does not have the necessary privileges
to perform the specified functions on the device
associated with the specified channel.

The process is not associated with the cluster
containing the specified event flag.

The network partner task aborted the logical link.

CONDITION
VALUES
RETURNED
IN THE 1/0
STATUS BLOCK

SYSTEM SERVICE DESCRIPTIONS
$010

SS$_LINKDISCON

SS$_PATHLOST

SS$_PROTOCOL

SS$_CONNECFAIL

SS$_FILALRACC

SS$_1NVLOGIN

SS$_1VDEVNAM

SS$_LINKEXIT

SS$_NQLINKS

SS$_NQSUCHNODE

SS$_NOSUCHOBJ

SS$_NQSUCHUSER

SS$_PROTOCOL

SS$_REJECT

SS$_REMRSRC

SS$_SHUT

SS$_ THIRDPARTY

SS$_ TOOMUCHDA TA

SS$_UNREACHABLE

The network partner task disconnected the logical
link.

The path to the network partner task node was
lost.

A network protocol error occurred. This is most
likely due to a network software error.

The connection to a network object timed out or
failed.

A logical link is already accessed on the channel
(that is, a previous connect on the channel).

The access control information was invalid at the
remote node.

The NCB has an invalid format or content.

The network partner task was started, but exited
before confirming the logical link (that is, $ASSIGN
to SYS$NET).

No logical links are available. The maximum
number of logical links as set for the executor
MAXIMUM LINKS parameter was exceeded.

The specified node is unknown.

The network object number is unknown at the
remote node; or for a TASK= connect, the named
DCL command procedure file cannot be found at
the remote node.

The remote node could not recognize the login
information supplied with the connection request.

A network protocol error occurred. This error is
most likely due to a network software error.

The network object rejected the connection.

The link could not be established because system
resources at the remote node were insufficient.

The local or remote node is no longer accepting
connections.

The logical link was terminated by a third party (for
example, the system manager).

The task specified too much optional or interrupt
data.

The remote node is currently unreachable.

Device-specific condition values; the VMS 1/0 User's Reference Volume lists
these condition values for each device.

SYS-383

SYSTEM SERVICE DESCRIPTIONS
$QIOW

$QIOW Queue 1/0 Request and Wait

FORMAT

SYS-384

The Queue 1/0 Request and Wait service queues an 1/0 request to a
channel associated with a device.

The $QIOW service completes synchronously; that is, it returns to the
caller after the 1/0 operation has actually completed.

For asynchronous completion, you use the Queue 1/0 Request ($QIO)
service; $QIO returns to the caller after queuing the 1/0 request, without
waiting for the 1/0 operation to be completed.

In all other respects, $QIOW is identical to $QIO. For all other information
about the $QIOW service, refer to the documentation of $QIO.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System
Services.

SYS$QIOW [efn] ,chan ,func [,iosb} {,astadr} [,astprmj
{,p 11 {,p2} {,p3} {,p4] {,p5} {,p6}

$READEF

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$READEF

Read Event Flags

The Read Event Flags service returns the current status of all 32 event
flags in a local or common event flag cluster. In addition, the condition
value returned indicates whether the specified event flag is set or clear.

SYS$READEF efn ,state

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

efn
VMS usage: eLnumber
type: longword (unsigned)
access: read only
mechanism: by value

Number of any event flag in the cluster whose status is to be returned. The
efn argument is a longword containing this number; however, $READEF uses
only the low-order byte. Specifying an event flag within a cluster requests
that $READEF return the status of all event flags in that cluster.

There are two local event flag clusters, which are local to the process: cluster
0 and cluster 1. Cluster 0 contains event flag numbers 0 to 31, and cluster 1
contains event flag numbers 32 to 63.

There are two common event flag clusters: cluster 2 and cluster 3. Cluster
2 contains event flag numbers 64 to 95, and cluster 3 contains event flag
numbers 96 to 127.

state
VMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

State of all event flags in the specified cluster. The state argument is the
address of a longword into which $READEF writes the state (set or clear) of
the 32 event flags in the cluster.

SYS-38f

SYSTEM SERVICE DESCRIPTIONS
$READEF

CONDITION
VALUES
RETURNED

SYS-386

SS$_WASCLR

SS$_WASSET

SS$_ACCVIO

SS$_1LLEFC

SS$_UNASEFC

The service completed successfully. The specified
event flag is clear.

The service completed successfully. The specified
event flag is set.

The longword that is to receive the current state
of all event flags in the cluster cannot be written
by the caller.

You specified an illegal event flag number.

The process is not associated with the cluster
containing the specified event flag.

SYSTEM SERVICE DESCRIPTIONS
$REM_HQLDER

$REM_HOLDER Remove Holder Record from
Rights Database

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

Deletes the specified holder record from the target identifier's list of
holders.

SYS$REM_HOLDER id ,holder

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

id
VMS usage: rights_id
type: longword (unsigned)
access: read only
mechanism: by value

Binary value of target identifier whose holder is deleted when
$REM-HOLDER completes execution. The id argument is a longword
containing the identifier value.

holder
VMS usage: rights_holder
type: quadword (unsigned)
access: read only
mechanism: by reference

Identifier of holder being deleted when $REM-80LDER completes
execution. The holder argument is the address of a quadword containing
the UIC identifier of the holder in the first longword and the value of zero in
the second longword.

The Remove Holder Record from Rights Database service removes the
specified holder record from the target identifier's list of holders.

You need write access to the rights database to use this service. If the
database is in SYS$SYSTEM (the default), you need SYSPRV privilege to
grant write access to the database.

SYS-387

SYSTEM SERVICE DESCRIPTIONS
$REM_HOLDER

CONDITION
VALUES
RETURNED

SVS-388

SS$_NORMAL

SS$_ACCVIO

SS$_1NSFMEM

SS$_1VIDENT

SS$_NOSUCHID

RMS$_PRV

The service completed successfully.

The id or holder argument cannot be read by the
caller.

The process dynamic memory is insufficient for
opening the rights database.

The specified identifier or holder identifier is of
invalid format.

The specified identifier does not exist in the rights
database, or the specified holder identifier does
not exist in the rights database.

The user does not have write access to the rights
database.

Because the rights database is an indexed file accessed with VMS RMS, this
service may also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the VMS Record
Management Services Manual.

SYSTEM SERVICE DESCRIPTIONS
$REM_IDENT

$REM_IDENT Remove Identifier from Rights
Database

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

CONDITION
VALUES
RETURNED

The Remove Identifier from Rights Database service removes the specified
identifier record and all its holder records (if any) from the rights database.

SYS$REM_IDENT id

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

id
VMS usage: rights_id
type: longword (unsigned)
access: read only
mechanism: by value

Binary value of identifier deleted from rights database when $REM-1DENT
completes execution. The id argument is a longword containing the identifier
value.

The $REM-1DENT system service deletes the specified identifier from the
rights database. All holder records associated with the identifier are also
deleted. In addition, any records in identifiers that the deleted identifier held
are also deleted.

You need write access to the rights database to use this service. If the
database is in SYS$SYSTEM (the default), you need SYSPRV privilege to
grant write access to the database.

SS$_NORMAL

SS$_1NSFMEM

SS$_1VIDENT

The service completed successfully.

The process dynamic memory is insufficient for
opening the rights database.

The specified identifier is of invalid format.

SYS-389

SYSTEM SERVICE DESCRIPTIONS
$REM_IDENT

SYS-390

SS$_NOSUCHID

RMS$_PRV

The specified identifier does not exist in the rights
database.

The user does not have write access to the rights
database.

Because the rights database is an indexed file accessed with VMS RMS, this
service may also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the VMS Record
Management Services Manual.

$RESUME

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$RESUME

Resume Process

The Resume Process service (1) causes a process previously suspended
by the Suspend Process ($SUSPND) service to resume execution or
(2) cancels the effect of a subsequent suspend request.

SYS$RESUME [pidadr] ,[prcnam]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

pidadr
VMS usage: process-id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) of the process to be resumed. The pidadr
argument is the address of a longword containing the PID.

You must specify the pidadr argument to delete processes in other UIC
groups.

prcnam
VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of the process to be resumed. The prcnam argument is the address of a
character string descriptor pointing to the process name, which is a character
string of from 1 to 15 characters.

You can use the prcnam argument to resume only processes in the same UIC
group as the calling process, because process names are unique to UIC groups,
and VMS uses the UIC group number of the calling process to interpret the
process name specified by the prcnam argument. You must use the pidadr
argument to delete processes in other UIC groups.

If you specify neither the pidadr nor prcnam argument, the resume request is
issued on behalf of the calling process.

SVS-391

SYSTEM SERVICE DESCRIPTIONS
$RESUME

DESCRIPTION

CONDITION
VALUES
RETURNED

SYS-392

Depending on the operation, the calling process may need a certain privilege
to use $RESUME:

• GROUP privilege to resume execution of a process in the same group
unless the process has the same UIC as the calling process

• WORLD privilege to resume execution of any process in the system

If one or more resume requests are issued for a process that is not suspended,
a subsequent suspend request completes immediately; that is, the process is
not suspended. No count is maintained of outstanding resume requests.

SS$_NORMAL

SS$_ACCVIO

SS$_1VLOGNAM

SS$_NQNEXPR

SS$_NQPRIV

The service completed successfully.

The process name string or string descriptor
cannot be read by the caller, or the process
identification cannot be written by the caller.

The specified process name has a length of 0 or
has more than 15 characters.

The specified process does not exist, or an invalid
process identification was specified.

The process does not have the privilege to resume
the execution of the specified process.

SYSTEM SERVICE DESCRIPTIONS
$REVOKID

$REVOKID Revoke Identifier from
Process

FORMAT

RETURNS

ARGUMENTS

The Revoke Identifier from Process service removes the specified identifier
from the rights list of the process or the system. If the identifier is listed
as a holder of any other identifier, the appropriate holder records are also
deleted.

SVS$REVOKID [pidadr] ,[prcnam] ,[id] ,{name] ,{prvatr]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

pidadr
VMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) number of the process affected when $REVOKID
completes execution. The pidadr argument is the address of longword
containing the PID of the process to be affected. You use -1 to indicate the
system rights list. When pidadr is passed, it is also returned; therefore, you
must pass it as a variable rather than a constant.

prcnam
VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Process name on which $REVOKID operates. The prcnam argument is
the address of a character string descriptor containing the process name.
The maximum length of the name is 15 characters. Because the UIC group
number is interpreted as part of the process name, you must use pidadr to
specify the rights list of a process in a different group.

id
VMS usage: rights_id
type: quadword (unsigned)
access: modify
mechanism: by reference

Identifier and attributes to be removed when $REVOKID completes execution.
The id argument is the address of a quadword containing the binary identifier

SYS-393

SYSTEM SERVICE DESCRIPTIONS
$REVOKID

DESCRIPTION

SYS-394

code to be removed in the first longword and the attributes in the second
longword.

Symbol values are offsets to the bits within the longword. You can also
obtain the values as masks with the appropriate bit set using the prefix
KGB$M rather than KGB$V. The following symbols for each bit position are
defined in the system macro library ($KGBDEF).

Bit Position

KGB$V_DYNAMIC

KGB$V_RESOURCE

Meaning When Set

Allows the unprivileged holder to add or remove the
identifier from the process rights list.

Allows the holder to charge resources, such as disk
blocks, to the identifier.

You must specify either id or name. Because the id argument is returned as
well as passsed if you specify name, you must pass it as a variable rather
than a constant in this case.

name
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of the identifier removed when $REVOKID completes execution. The
name argument is the address of a descriptor pointing to the name of the
identifier.

prvatr
VMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Attributes of the deleted identifier. The prvatr argument is the address of a
longword used to store the attributes of the identifier.

Because the Revoke Identifier from Process service removes the specified
identifier from the rights list of the process or the system, this service is
meant for use by a privileged subsystem to alter the access rights profile of
a user, based on installation policy. It is not meant for use by the general
system user.

You need CMKRNL privilege to invoke this service. In addition, you need
GROUP privilege to modify the rights list of a process in the same group
as the calling process (unless the process has the same UIC as the calling
process). You need WORLD privilege to modify the rights list of a process
outside the caller's group. You need SYSNAM privilege to modify the system
rights list.

The result of passing the pidadr or the prcnam argument or both to
SYS$REVOKID is summarized in the following table.

CONDITION
VALUES
RETURNED

prcnam

Omitted

Omitted

Omitted

Specified

Specified

Specified

SYSTEM SERVICE DESCRIPTIONS
$REVOKID

pidadr Result

Omitted Current process ID is used; process ID is not
returned.

0 Current process ID is used; process ID is returned.

Specified Specified process ID is used; process ID is
returned.

Omitted Specified process name is used; process ID is not
returned.

0 Specified process name is used; process ID is
returned.

Specified Specified process ID is used; process ID is
returned; process name is ignored.

The result of passing either the name or the id argument or both to
SYS$REVOKID is summarized in the following table.

name id

Omitted Omitted

Omitted Specified

Specified Omitted

Specified 0

Specified Specified

SS$_WASCLR

SS$_WASSET

SS$_ACCVIO

SS$_1NSFMEM

SS$_NOPRIV

SS$_NOSUCHID

Result

Illegal

Specified identifier value is used; identifier value is
returned.

Specified identifier name is used; identifier value is
not returned.

Specified identifier name is used; identifier value is
returned.

Specified identifier value is used, identifier value is
returned, identifier name is ignored.

The service completed successfully; the rights list
did not contain the specified identifier.

The service completed successfully; the rights list
already held the specified identifier.

The pidadr argument cannot be read or written, or
prcnam cannot be read, or id cannot be read or
written, or name cannot be read, or prvatr cannot
be written.

The process dynamic memory is insufficient for
opening the rights database.

The caller does not have CMKRNL privilege; or is
not running in exec or kernel mode; or the caller
lacks GROUP, WORLD, or SYSNAM privilege as
required.

The specified identifier name does not exist in the
rights database. Note that the binary identifier, if
given, is not validated against the rights database.

SYS-395

SYSTEM SERVICE DESCRIPTIONS
$REVOKID

SVS-396

SS$_RIGHTSFULL

SS$_1VIDENT

SS$_NOSYSNAM

SS$_1VLOGNAM

SS$_NONEXPR

RMS$_PRV

The rights list of the process or system is full.

The specified identifier or holder is of invalid
format, or the specified identifier and holder are
equal.

The operation requires SYSNAM privilege.

You specified an invalid logical name.

You specified a nonexistent process.

The user does not have read access to the rights
database.

Because the rights database is an indexed file accessed with VMS RMS, this
service may also return RMS status codes associated with operations on
indexed files. For descriptions of these status codes, refer to the VMS Record
Management Services Manual.

$SCHDWK

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$SCHDWK

Schedule Wakeup

The Schedule Wakeup service schedules the awakening of a process
that has placed itself in a state of hibernation with the Hibernate ($HIBER)
service. A wakeup can be scheduled for a specified absolute time or for a
delta time, and can be repeated at fixed intervals.

SVS$SCHDWK [pidadr} ,[prcnam} ,daytim ,[reptim}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

pidadr
VMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PIO) of the process to be awakened. The pidadr
argument is the address of a longword containing the PIO.

You must specify the pidadr argument to awaken processes in other UIC
groups.

prcnam
VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of the process to be awakened. The prcnam is the address of a
character string descriptor pointing to the process name, which is a character
string of from 1 to 15 characters.

You can use the prcnam argument to awaken only processes in the same UIC
group as the calling process because process names are unique to UIC groups,
and VMS uses the UIC group number of the calling process to interpret the
process name specified by the prcnam argument. You must use the pidadr
argument to awaken processes in other UIC groups.

If you specify neither the pidadr nor prcnam argument, the wakeup request
is issued on behalf of the calling process.

SYS-397

SYSTEM SERVICE DESCRIPTIONS
$SCHDWK

DESCRIPTION

SYS-398

daytim
VMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

Time at which the process is to be awakened. The daytim argument is the
address of a quadword containing this time in the system 64-bit time format.
A positive time value specifies an absolute time at which the specified process
is to be awakened. A negative time value specifies an offset (delta time) from
the current time.

reptim
VMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

Time interval at which the wakeup request is to be repeated. The reptim
argument is the address of a quadword containing this time interval. The
time interval must be expressed in delta time format.

The time interval specified cannot be less than 10 milliseconds; if it is,
$SCHDWK automatically increases it to 10 milliseconds.

If you do not specify reptim, a default value of 0 is used, which specifies that
the wakeup request is not to be repeated.

Depending on the operation, the calling process may need a certain privilege
to use $SCHDWK:

• GROUP privilege to schedule wakeup requests for a process in the same
group unless it has the same UIC.

• WORLD privilege to schedule wakeup requests for any other process in
the system.

$SCHDWK uses the following system resources:

• The AST limit (ASTLM) quota of the calling process to schedule a wakeup
request.

• System dynamic memory to allocate a timer queue entry.

If you issue one or more scheduled wakeup requests for a process that is not
hibernating, a subsequent hibernate request by the target process completes
immediately; that is, the process does not hibernate. No count is maintained
of outstanding wakeup requests.

You can cancel scheduled wakeup requests that have not yet been processed
by using the Cancel Wakeup ($CANWAK) service.

If a specified absolute time value has already passed and no repeat time is
specified, the timer expires at the next clock cycle (within 10 milliseconds).

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$SCHDWK

SS$_NORMAL

SS$_ACCVIO

SS$_EXQUOT A

SS$_1NSFMEM

SS$_1VLOGNAM

SS$_1VTIME

SS$_NQNEXPR

SS$_NQPRIV

The service completed successfully.

The expiration time, repeat time, process name
string or string descriptor cannot be read by the
caller, or the process identification cannot be
written by the caller.

The process has exceeded its AST limit quota.

The system dynamic memory is insufficient for
allocating a timer queue entry.

The process name string has a length of 0 or has
more than 15 characters.

The specified delta repeat time is a positive value,
or an absolute time plus delta repeat time is less
than the current time.

The specified process does not exist, or an invalid
process identification was specified.

The process does not have the privilege to
schedule a wakeup request for the specified
process.

SYS-399

SYSTEM SERVICE DESCRIPTIONS
$SETAST

$SETAST Set AST Enable

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

CONDITION
VALUES
RETURNED

SYS-400

The Set AST Enable service enables or disables the delivery of ASTs for
the access mode from which the service call was issued.

SVS$SET AST enbflg

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

enbflg
VMS usage:
type:
access:
mechanism:

boolean
byte (unsigned)
read only
by value

Value specifying whether ASTs are to be enabled. The enbflg argument is a
byte containing this value. The value 1 enables AST delivery for the calling
access mode; the value 0 disables AST delivery.

When an image is executing in user mode, ASTs are enabled for all higher
access modes.

If ASTs are disabled for a more privileged access mode, VMS cannot deliver
ASTs for less privileged access modes until ASTs are enabled once again for
the more privileged access mode. Therefore, a process that has disabled ASTs
for a more privileged access mode must re-enable ASTs for that mode before
returning to a less privileged access mode.

SS$_WASCLR

SS$_WASSET

The service completed successfully. AST delivery
was previously disabled for the calling access
mode.

The service completed successfully. AST delivery
was previously enabled for the calling access
mode.

$SETEF

FORMAT

RETURNS

ARGUMENT

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$SETEF

Set Event Flag

The Set Event Flag service sets an event flag in a local or common event
flag cluster. The condition value returned by $SETEF indicates whether
the specified flag was previously set or clear. After the event flag is set,
processes waiting for the event flag to be set resume execution.

SVS$SETEF efn

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

efn
VMS usage: eLnumber
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set. The efn argument is a longword
containing this number; however, $SETEF uses only the low-order byte.

Two local event flag clusters are local to the process: cluster 0 and cluster 1.
Cluster 0 contains event flag numbers 0 to 31, and cluster 1 contains event
flag numbers 32 to 63.

There are two common event flag clusters: cluster 2 and cluster 3. Cluster
2 contains event flag numbers 64 to 95, and cluster 3 contains event flag
numbers 96 to 12 7.

SS$_WASCLR

SS$_WASSET

SS$_1LLEFC

SS$_UNASEFC

The service completed successfully. The specified
event flag was previously 0.

The service completed successfully. The specified
event flag was previously 1 .

You specified an illegal event flag number.

The process is not associated with the cluster
containing the specified event flag.

SVS-401

SYSTEM SERVICE DESCRIPTIONS
$SETEXV

$SETEXV

FORMAT

RETURNS

ARGUMENTS

SVS-402

Set Exception Vector

The Set Exception Vector service (1) assigns a condition handler address
to the primary, secondary, or last chance exception vectors or
(2) removes a previously assigned handler address from any of these
three vectors.

SYS$SETEXV [vector} ,{addres] ,{acmode} ,{prvhnd}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

vector
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Vector for which a condition handler is to be established or removed. The
vector argument is a longword value. The value 0 (the default) specifies the
primary vector; the value 1, the secondary vector; and the value 2, the last
chance exception vector.

add res
VMS usage: procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

Condition handler address to be established for the exception vector specified
by vector. The addres argument is a longword value containing the address
of the entry mask to the condition handler routine.

If you do not specify addres or specify it as 0, the condition handler address
already established for the specified vector is removed; that is, the contents of
the longword vector is set to 0.

a cm ode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode for which the exception vector is to be modified. The acmode
argument is a longword containing the access mode. The $PSLDEF macro
defines symbols for the four access modes.

DESCRIPTION

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$SETEXV

The most privileged access mode used is the access mode of the caller.
Exception vectors for access modes more privileged than the caller's access
mode cannot be modified.

prvhnd
VMS usage: procedure
type: longword (unsigned)
access: write only
mechanism: by reference

Previous condition handler address contained by the specified exception
vector. The prvhnd argument is the address of a longword into which
$SETEF writes the handler address.

A process cannot modify a vector associated with a more privileged access
mode.

VMS provides two different methods for establishing condition handlers:

• Using the call stack associated with each access mode. Each call frame
includes a longword to contain the address of a condition handler
associated with that frame. The RTL routine LIB$ESTABLISH establishes
a condition handler; the RTL routine LIB$REVERT removes a handler.

• Using the software exception vectors (by using $SETEXV) associated with
each access mode. These vectors are set aside in the control region (Pl
space) of the process.

The modular properties associated with the first method do not apply to
the second. The software exception vectors are intended primarily for
performance monitors and debuggers. For example, the primary exception
vector and the last chance exception vector are used by the VMS Debugger
for user-mode access, and DCL uses the last chance exception vector for
supervisor-mode access.

User-mode exception vectors are canceled at image exit.

SS$_NORMAL

SS$_ACCVIO

The service completed successfully.

The longword to receive the previous contents of
the vector cannot be written by the caller.

SYS-403

SYSTEM SERVICE DESCRIPTIONS
$SETI ME

$SETI ME

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

SYS-404

Set System Time

The Set System Time service (1) changes the value of or (2) recalibrates
the system time.

The system time is defined by a quadword value that specifies the number
of 100 nanosecond intervals since 00:00 o'clock, November 17, 1858.

The system time is the reference used for nearly all timer-related software
activities in VMS.

SYS$SETIME [timadr}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

timadr
VMS usage: date_ time
type: quadword (unsigned)
access: read only
mechanism: by reference

New absolute time value for the system time, specifying the number of 100
nanosecond intervals since 00:00 o'clock, November 17, 1858. The timadr
argument is the address of a quadword containing the new system time value.
A negative (delta) time value is invalid.

If you do not specify timadr or specify it as 0, $SETIME recalibrates the
system time using the time-of-year clock.

To set the system time, the calling process must have OPER and LOG-10
privileges.

After changing or recalibrating the system clock, $SETIME updates the timer
queue by adjusting each element in the timer queue by the difference between
the previous system time and the new system time.

The $SETIME service saves the new time (for future bootstrap operations)
in the system image SYS$SYSTEM:SYS.EXE. To save the time, the service
assigns a channel to the system boot device and calls the $QIOW service.
You need the LOG_IQ user privilege to perform this operation.

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$SETI ME

SS$_NORMAL

SS$_1VTIME

SS$_ACCVIO

SS$_NOIOCHAN

SS$_NQPRIV

The service completed successfully.

The caller specified no time value or a negative
time value and an invalid processor clock was
found.

The quadword that contains the new system time
value cannot be read by the caller.

No 1/0 channel is available for assignment.

The process does not have the privileges to set
the system time.

SVS-405

SYSTEM SERVICE DESCRIPTIONS
$SETI MR

$SETI MR

FORMAT

RETURNS

ARGUMENTS

SVS-406

Set Timer

The Set Timer service sets the timer to expire at a specified time. When
the timer expires, an event flag is set and (optionally) an AST routine
executes.

SYS$SETIMR [efn] ,daytim ,[astadr] ,[reqidt} ,[flags]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

efn
VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Event flag to be set when the timer expires. The efn argument is a longword
value containing the number of the event flaG; however, $SETIMR uses only
the low-order byte. If you do not specify efn, event flag 0 is set.

When $SETIMR first executes, it clears the specified event flag or event flag 0.

daytim
VMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

Time at which the timer expires. The daytim argument is the address of a
quadword time value. A positive time value specifies an absolute time at
which the timer expires; a negative time value specifies an offset (delta time)
from the current time.

If a specified absolute time value has already passed, the timer expires at the
next clock cycle, which is within 10 milliseconds.

The Convert ASCII String to Binary Time ($BINTIM) service converts an
ASCII string time value to the quadword time value required by $SETIMR.

SYSTEM SERVICE DESCRIPTIONS
$SETI MR

astadr
VMS usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

AST service routine that is to execute when the timer expires. The astadr
argument is the address of the entry mask of this routine. If you do not
specify astadr or specify it as 0 (the default), no AST routine executes.

The AST routine, if specified, executes at the access mode of the caller.

reqidt
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

Identification of the timer request. The reqidt argument is a longword value
containing a number that uniquely identifies the timer request. If you do not
specify reqidt, the value 0 is used.

To cancel a timer request, the identification of the timer request (as specified
by reqidt in $SETIMR) is passed to the Cancel Timer ($CANTIM) service (as
the reqidt argument).

If you want to cancel specific timer requests, but not all timer requests, be
sure to specify a nonzero value for reqidt in the $SETIMR call; $CANTIM
interprets an identification value of zero as a request to cancel all timer
requests.

You can specify unique values for reqidt for each timer request, or give the
same value can be given to related timer requests. This allows for selective
cancelling of a single timer request, a group of related timer requests, or all
timer requests.

If you specify the astadr argument in the $SETIMR call, the value specified by
the reqidt argument is passed as a parameter to the AST routine. If the AST
routine requires more than one parameter, specify an address for the value of
reqidt; the AST routine can then interpret that address as the beginning of a
list of parameters.

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Longword of bit flags for the set timer operation. Currently, only bit 0 is used
for the flags argument. When the low bit (bit 0) is set, it indicates that this
timer request should be in units of CPU time, rather than elapsed time. When
bit 0 is clear (the default), the timer request is in units of elapsed time.

SVS-407

SYSTEM SERVICE DESCRIPTIONS
$SETI MR

DESCRIPTION

CONDITION
VALUES
RETURNED

SVS-408

The Set Timer service requires dynamic memory and uses the process's timer
queue entries (TQELM) quota. If you specify an AST routine, the service uses
the AST limit (ASTLM) quota of the process.

The $SETIMR service executes at the access mode of the caller, as does the
AST routine, if one is specified.

SS$_NORMAL

SS$_ACCVIO

SS$_EXQUOT A

SS$_1LLEFC

SS$_1NSFMEM

SS$_UNASEFC

The service completed successfully.

The expiration time cannot be read by the caller.

The process exceeded its quota for timer entries
or its AST limit quota; or the system dynamic
memory is insufficient for completing the request.

You specified an illegal event flag number.

The dynamic memory is insufficient for allocating a
timer queue entry.

The process is not associated with the cluster
containing the specified event flag.

$SETPRA

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$SETPRA

Set Power Recovery AST

The Set Power Recovery AST service establishes a routine to receive
control after a power recovery is detected.

SYS$SETPRA astadr ,[acmode}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

astadr
VMS usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

Power recovery AST routine to receive control when a power recovery is
detected. The astadr argument is the address of the entry mask of this
routine.

If you specify astadr as 0, an AST is not delivered to the process when a
power recovery is detected.

The system passes one parameter to the specified AST routine. This
parameter is a longword value containing the length of time that the power
was off, expressed as the number of 1/lOOth of a second intervals that have
elapsed.

acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode at which the power recovery AST routine is to execute. The
acmode argument is a longword containing the access mode. The $PSLDEF
macro defines symbols for the four access modes.

The most privileged access mode used is the access mode of the caller.

SYS-409

SYSTEM SERVICE DESCRIPTIONS
$SETPRA

DESCRIPTION

CONDITION
VALUES
RETURNED

SYS-410

The $SETPRA system service uses the AST limit (ASTLM) quota of the
process.

You can specify only one power recovery AST routine for a process. The AST
entry point address is cleared at image exit.

The entry and exit conventions for the power recovery AST routine are the
same as for all AST service routines. These conventions are described in the
Introduction to VMS System Services.

SS$_NORMAL

SS$_EXQUOT A

The service completed successfully.

The process exceeded its quota for outstanding
AST requests.

$SETPRI

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$SETPRI

Set Priority

The Set Priority service changes the base priority of the process. The
base priority is used to determine the order in which executable processes
are to run.

SVS$SETPRI [pidadr} ,[prcnam} ,pri ,[prvpri]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

pidadr
VMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) of the process whose priority is to be set. The
pidadr argument is the address of the PID.

prcnam
VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Process name of the process whose priority is to be changed. The prcnam
argument is the address of a character string descriptor pointing to a 1- to
15-character process name string.

You can use the prcnam argument only on behalf of processes in the same
UIC group as the calling process. To set the priority for processes in other
groups, you must specify the pidadr argument.

If you specify neither the pidadr nor prcnam argument, $SETPRI sets the
base priority of the calling process.

pri
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

New base priority to be established for the process. The pri argument is a
longword value containing the new priority. Priorities that are not real time

SYS-411

SYSTEM SERVICE DESCRIPTIONS
$SETPRI

DESCRIPTION

CONDITION
VALUES
RETURNED

SYS-412

are in the range 0 through 15; real-time priorities are in the range 16 through
31.

If the specified priority is higher than the base priority of the target process,
and if the caller does not have AL TPRI privilege, then the base priority of the
target process is used.

prvpri
VMS usage:
type:
access:
mechanism:

longword_unsigned
longword (unsigned)
write only
by reference

Base priority of the process before the call to $SETPRI. The prvpri argument
is the address of a longword into which $SETPRI writes the previous base
priority of the process.

Depending on the operation, the calling process may need one of the
following privileges to use $SETPRI:

• GROUP privilege to change the priority of a process in the same group,
unless the target process has the same UIC as the calling process.

• WORLD privilege to change the priority of any other process in the
system.

• ALTPRI privilege to set any process's priority to a value greater than the
target process's initial base priority.

The base priority of a process remains in effect until specifically changed or
until the process is deleted.

If a process does not have AL TPRI privilege and attempts to set a priority
higher than the base priority of the target process, the priority is set to the
base priority of the target process, and the status code 55$--NORMAL is
returned.

To determine the priority set by the $SETPRI service, use the Get Job/Process
Information ($GETJPI) service.

SS$_NORMAL

SS$_ACCVIO

SS$_1VLOGNAM

SS$_NONEXPR

SS$_NOPRIV

The service completed successfully.

The process name string or string descriptor
cannot be read by the caller, or the process
identification or previous priority longword cannot
be written by the caller.

The process name string has a length of 0 or has
more than 15 characters.

The specified process does not exist, or an invalid
process identification was specified.

The process does not have the privilege to affect
other processes.

$SETPRN

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$SETPRN

Set Process Name

The Set Process Name service allows a process to establish or to change
its own process name.

SVS$SETPRN {prcnam]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

prcnam
VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed length string descriptor

Process name to be given to the calling process. The prcnam argument is the
address of a character string descriptor pointing to a 1- to 15-character process
name string. If you do not specify prcnam, the calling process is given no
name.

A process name remains in effect until you change it (using $SETPRN) or
until the process is deleted.

Process names provide an identification mechanism for processes executing
with the same group number. A process can also be identified by its process
identification (PID).

SS$_NORMAL

SS$_ACCVIO

SS$_DUPLNAM

SS$_1VLOGNAM

The service completed successfully.

The process name string or string descriptor
cannot be read by the caller.

The specified process name duplicates one already
specified within that group.

The specified process name has a length of 0 or
has more than 15 characters.

SYS-413

SYSTEM SERVICE DESCRIPTIONS
$SETPRT

$SETPRT

FORMAT

RETURNS

ARGUMENTS

SVS-414

Set Protection on Pages

The Set Protection on Pages service allows a process to change the
protection on a page or range of pages.

SYS$SETPRT inadr ,[retadr] ,[acmode} ,prot ,[prvprt]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

inadr
VMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Starting and ending virtual addresses of the range of pages whose protection
is to be changed. The inadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses. Only
the virtual page number portion of each virtual address is used; the low-order
9 bits are ignored.

If the starting and ending virtual addresses are the same, the protection is
changed for a single page.

retadr
VMS usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference-array reference or descriptor

Starting and ending virtual addresses of the range of pages whose protection
was actually changed by $SETPRT. The retadr argument is the address of a
2-longword array containing, in order, the starting and ending process virtual
addresses.

If an error occurs while the protection is being changed, $SETPRT writes
into retadr the range of pages that were successfully changed before the error
occurred. If no pages were affected before the error occurred, $SETPRT writes
the value -1 into each longword of the 2-longword array.

SYSTEM SERVICE DESCRIPTIONS
$SETPRT

acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode associated with the call to $SETPRT. The acmode argument is a
longword containing the access mode. The $PSLDEF macro defines symbols
for the four access modes.

The $SETPRT service uses whichever of the following two access modes is
least privileged: (1) the access mode specified by acmode or (2) the access
mode of the caller. To change the protection of any page in the specified
range, the resultant access mode must be equal to or more privileged than the
access mode of the owner of that page.

prot
VMS usage: page_protection
type: longword (unsigned)
access: read only
mechanism: by value

Page protection to be assigned to the specified pages. The prot argument is a
longword value containing the protection code. Only bits 0 to 3 are used; bits
4 to 31 are ignored.

The $PRTDEF macro defines the following symbolic names for the protection
codes.

Symbolic Name

PRT$C_NA

PRT$C_KR

PRT$C_KW

PRT$C_ER

PRT$C_EW

PRT$C_SR

PRT$C_SW

PRT$C_UR

PRT$C_UW

PRT$C_ERKW

PRT$C_SRKW

PRT$C_SREW

PRT$C_URKW

PRT$C_UREW

PRT$C_URSW

Description

No access

Kernel read only

Kernel write

Executive read only

Executive write

Supervisor read only

Supervisor write

User read only

User write

Executive read; kernel write

Supervisor read; kernel write

Supervisor read; executive write

User read; kernel write

User read; executive write

User read; supervisor write

If you specify the protection as 0, the protection defaults to kernel read only.

SVS-415

SYSTEM SERVICE DESCRIPTIONS
$SETPRT

DESCRIPTION

CONDITION
VALUES
RETURNED

SYS-416

prvprt
VMS usage: page_protection
type: byte (unsigned)
access: write only
mechanism: by reference

Protection previously assigned to the last page in the range. The prvprt
argument is the address of a byte into which $SETPRT writes the protection
of this page. The prvprt argument is useful only when protection for a single
page is being changed.

If a process changes any pages in a private section from read only to
read/write, $SETPRT uses the paging file (PGFLQUOTA) quota of the
process.

For pages in global sections, the new protection can alter only copy-on
reference pages.

SS$_NORMAL

SS$_ACCVIO

SS$_EXQUOT A

SS$_1VPROTECT

SS$_LENVIO

SS$_NOPRIV

SS$_PAGOWNVIO

The service completed successfully.

The input address array cannot be read by the
caller; the output address array or the byte to
receive the previous protection cannot be written
by the caller; or an attempt was made to change
the protection of a nonexistent page.

The process exceeded its paging file quota while
changing a page in a read-only private section to a
read/write page.

The specified protection code has a numeric value
of 1 or is greater than 15.

A page in the specified range is beyond the end of
the program or control region.

A page in the specified range is in the system
address space.

The process attempted to change the protection
on a page owned by ci more privileged access
mode.

$SETPRV

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$SETPRV

Set Privileges

The Set Privileges service enables or disables specified privileges for the
calling process.

SYS$SETPRV {enbflg] ,[prvadr] ,[prmflg] ,[prvprv]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

enbflg
VMS usage: boolean
type: byte (unsigned)
access: read only
mechanism: by value

Indicator specifying whether the specified privileges are to be enabled or
disabled. The enbflg argument is a byte value. The value 1 indicates that the
privileges specified in the prvadr argument are to be enabled. The value 0
(the default) indicates that the privileges are to be disabled.

prvadr
VMS usage: mask_privileges
type: quadword (unsigned)
access: read only
mechanism: by reference

Privileges to be enabled or disabled for the calling process. The prvadr
argument is the address of a quadword bit vector wherein each bit
corresponds to a privilege that is to be enabled or disabled.

Each bit has a symbolic name. The $PRVDEF macro defines these names.
You form the bit vector by specifying the symbolic name of each desired
privilege in a logical OR operation. Table SYS-6 provides the symbolic name
and description of each privilege.

SVS-417

SYSTEM SERVICE DESCRIPTIONS
$SETPRV

Table SYS-6 User Privileges

Privilege Symbolic Name

ALLS POOL PRV$M_ALLSPOOL

BUGCHK PRV$M_BUGCHK

BYPASS PRV$M_BYPASS

CM EXEC PRV$M_CMEXEC

CMKRNL PRV$M_CMKRNL

DETACH PRV$M_DET ACH

DIAGNOSE PRV$M_DIAGNOSE

DOWNGRADE PRV$M_DOWNGRADE

EXQUOTA PRV$M_EXQUOT A

GROUP PRV$M _GROUP

GRPNAM PRV$M_GRPNAM

GRPPRV PRV$M_GRPPRV

LOG_IO PRV$M_LQG_IO

MOUNT PRV$M_MOUNT

NETMBX PRV$M_NETMBX

ACNT PRV$M_NOACNT

OPER PRV$M_OPER

PFNMAP PRV$M_PFNMAP

PHY_IO PRV$M_PHY _IO

PR MC EB PRV$M_PRMCEB

PRMGBL PRV$M_PRMGBL

PRMMBX PRV$M_PRMMBX

PSWAPM PRV$M_PSW APM

READ ALL PRV$M_READALL

SECURITY PRV$M_SECURITY

ALTPRI PRV$M_SETPRI

SETPRV PRV$M_SETPRV

SHARE PRV$M_SHARE

SHMEM PRV$M_SHMEM

SYSGBL PRV$M_SYSGBL

SYSLCK PRV$M_SYSLCK

SYSNAM PRV$M_SYSNAM

SYS-418

Description

Allocate a spooled device

Make bugcheck error log entries

Bypass UIC-based protection

Change mode to executive

Change mode to kernel

Create detached processes

May diagnose devices

May downgrade classification

May exceed quotas

Group process control

Place name in group logical name
table

Group access by means of system
protection field

Perform logical 1/0 operations

Issue mount volume 010

Create a network device

Create processes for which no
accounting is done

All operator privileges

Map to section by physical page
frame number

Perform physical 1/0 operations

Create permanent common event
flag clusters

Create permanent global sections

Create permanent mailboxes

Change process swap mode

Possess read access to everything

May perform security functions

Set (alter) any process priority

Set any process privileges

May assign a channel to a nonshared
device

Allocate structures in memory shared
by multiple processors

Create system global sections

Queue systemwide locks

Place name in system logical name
table

DESCRIPTION

SYSTEM SERVICE DESCRIPTIONS
$SETPRV

Table SYS-6 (Cont.) User Privileges

Privilege Symbolic Name

SY SP RV PRV$M_SYSPRV

TMPMBX PRV$M_TMPMBX

UPGRADE PRV$M _UPGRADE

VO LP RO PRV$M_VOLPRO

WORLD PRV$M_ WORLD

Description

Access files and other resources as
if you have a system UIC

Create temporary mailboxes

May upgrade classification

Override volume protection

World process control

Note that the names of the privilege bits PRV$M_NQACNT and
PRV$M_SETPRI correspond to the names of the DCL privileges ACNT and
AL TPRI, yet have different names.

If you do not specify prvadr or specify it as 0, the privileges are not altered.

get jobprmflg
VMS usage: boolean
type: byte (unsigned)
access: read only
mechanism: by value

Indicator specifying whether the privileges are to be affected permanently
or temporarily. The prmflg argument is a byte value. The value 1 specifies
that the privileges are to be affected permanently, that is, until you change
them again by using $SETPRV or until the process is deleted. The value
0 (the default) specifies that the privileges are to be affected temporarily,
that is, until the current image exits (at which time the permanently enabled
privileges of the process will be restored).

prvprv
VMS usage:
type:
access:
mechanism:

mask_privileges
quadword (unsigned)
write only
by reference

Privileges previously possessed by the calling process. The prvprv argument
is the address of a quadword bit vector wherein each bit corresponds to a
privilege that was previously either enabled or disabled. If you do not specify
prvprv or specify it as 0, the previous privilege mask is not returned.

To set a privilege permanently, the calling process must be authorized to set
the specified privilege, or the process must be executing in kernel or executive
mode.

To set a privilege temporarily, one of the following three conditions must be
true:

• The calling process must be authorized to set the specified privilege.

• The calling process must be executing in kernel or executive mode.

• The image currently executing must be one that was installed with the
specified privilege.

SYS-419

SYSTEM SERVICE DESCRIPTIONS
$SETPRV

CONDITION
VALUES
RETURNED

SYS-420

VMS maintains four separate privilege masks for each process:

• AUTHPRIV-Privileges that the process is authorized to enable,
as designated by the system manager or the process creator. The
AUTHPRIV mask never changes during the life of the process.

• PROCPRIV-Privileges that are designated as permanently enabled for
the process. The PROCPRIV mask can be modified by $SETPRV.

• IMAGPRIV-Privileges with which the current image is installed.

• CURPRIV-Privileges that are currently enabled. The CURPRIV mask
can be modified by $SETPRV.

When a process is created, its AUTHPRIV, PROCPRIV, and CURPRIV masks
have the same contents. Whenever a system service (other than $SETPRV)
must check the process privileges, that service checks the CURPRIV mask.

When a process runs an installed image, the privileges with which that image
was installed are enabled in the CURPRIV mask. When the installed image
exits, the PROCPRIV mask is copied to the CURPRIV mask.

The $SETPRV service can set bits only in the CURPRIV and PROCPRIV
mask, but $SETPRV checks the AUTHPRIV mask to see whether a process
can set specified privilege bits in the CURPRIV or PROCPRIV masks.
Consequently, a process can give itself the SETPRV privilege only if this
privilege is enabled in the AUTHPRIV mask.

You can obtain each of a process's four privilege masks by calling the
Get Job/Process Information ($GETJPI) service and specifying the desired
privilege mask or masks as item codes in the itmlst argument. You construct
the item code for a privilege mask by prefixing the name of the privilege
mask with the characters JPI$_ (for example, JPl$_CURPRIV is the item code
for the current privilege mask).

The DCL command SET PROCESS /PRIVILEGES also enables or disables
specified privileges; refer to the VMS DCL Dictionary for details.

SS$_NORMAL

SS$_NOT ALLPRIV

SS$_ACCVIO

The service completed successfully. All privileges
were enabled or disabled as specified.

The service completed successfully. Not all
specified privileges were enabled; see the
Description section for details.

The privilege mask cannot be read or the previous
privilege mask cannot be written by the caller.

$SETRWM

FORMAT

RETURNS

ARGUMENT

SYSTEM SERVICE DESCRIPTIONS
$SETRWM

Set Resource Wait Mode

The Set Resource Wait Mode service allows a process to specify what
action system services should take when system resources required for
their execution are unavailable.

When resource wait mode is enabled, system services wait for the
required system resources to become available and then continue
execution.

When resource wait mode is disabled, system services return to the caller
when required system resources are unavailable.

The condition value returned by $SETRWM indicates whether resource
wait mode was previously enabled or previously disabled.

SYS$SETRWM {watflg}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

watflg
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Indicator specifying whether system services should wait for required
resources. The watflg argument is a longword value. The value 0 (the
default) specifies that system services should wait until resources needed for
their execution become available. The value 1 specifies that system services
should return failure status immediately when resources needed for their
execution are unavailable.

VMS enables resource wait mode for all processes. You can disable resource
wait mode only by calling $SETRWM.

If resource wait mode is disabled, it remains disabled until it is explicitly
re-enabled or until the process is deleted.

SYS-421

SYSTEM SERVICE DESCRIPTIONS
$SETRWM

DESCRIPTION

CONDITION
VALUES
RETURNED

SYS-422

The following system resources and process quotas are affected by resource
wait mode:

• System dynamic memory

• UNIBUS adapter map registers

• Direct 1/0 limit (DIOLM) quota

• Buffered 1/0 limit (BIOLM) quota

• Buffered 1/0 byte count limit (BYTLM) quota

SS$_WASCLR

SS$_WASSET

The service completed successfully. Resource wait
mode was previously enabled.

The service completed successfully. Resource wait
mode was previously disabled.

$SETS FM

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

SYSTEM SERVICE DESCRIPTIONS
$SETS FM

Set System Service Failure
Exception Mode

The Set System Service Failure Exception Mode service allows a process
to specify whether VMS should generate a software exception when a
system service returns an error or severe error condition value to the
calling process.

The $SETSFM indicates in the condition value it returns whether system
service exception mode was enabled or disabled prior to the call to
$SETSFM.

Initially, system service failure exception mode is disabled, so the caller
should explicitly test for successful completion following a system service
call.

SYS$SETSFM [enbflg}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

enbflg
VMS usage: boolean
type: byte (unsigned)
access: read only
mechanism: by value

Number specifying whether the system service failure exception mode is to be
enabled. The enbflg argument is a byte value. The value 1 specifies that the
system service failure exception mode is enabled. The value 0 (the default)
specifies that the system service failure exception mode is disabled.

When enabled, a software exception is generated when a system service
returns an error or severe error condition value. System service failure
exceptions are generated only if the service call originated from user mode.
You can call the $SETSFM service, however, from any access mode.

If enabled, system service failure exception mode remains enabled until
explicitly disabled or until the image exits. You can specify a condition
handler in the first longword of the procedure call stack or with the Set
Exception Vector ($SETEXV) service. If you do not specify a condition
handler, a default system handler is used. This condition handler causes the
image to exit and then displays the exit status.

SVS-423

SYSTEM SERVICE DESCRIPTIONS
$SETS FM

CONDITION
VALUES
RETURNED

SVS-424

The argument list provided to the condition handler contains the code
SS$_SSFAIL in the condition name argument of the signal array.

For an explanation and examples of condition handling routines, the format
of the argument lists passed to the condition handler, and a discussion of the
appropriate actions a condition handler may take, see the Introduction to VMS
System Services.

SS$_WASCLR

SS$_WASSET

The service completed successfully. Failure
exceptions were previously disabled.

The service completed successfully. Failure
exceptions were previously enabled.

$SETSSF

FORMAT

RETURNS

ARGUMENT

SYSTEM SERVICE DESCRIPTIONS
$SETSSF

Set System Services Filter

The Set System Services Filter service inhibits user mode calls to certain
system services. The $SETSSF service cannot inhibit the following
services:

$ASCTIM

$FAOL

$BINTIM

$PUTMSG

$EXIT

$UNWIND

SYS$SETSSF [mask]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

$FAO

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

mask
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Category of system services that are to be inhibited for user-mode calls. The
mask argument is a longword value of which only the first byte is significant.
The first byte is a bit vector wherein a bit, when set, specifies a category of
system service to be inhibited. Only bits 0 and 1 are used; bits 2 to 7 are
reserved.

When bit 0 is set, all system services, including user-written system services,
are inhibited except those listed previously.

When bit 1 is set, all system services, including user-written system services,
are inhibited except the following and those listed previously.

$ADJSTK

$SETSFM

$CRETVA $DEL TVA $GETMSG

Bit 1 inhibits fewer system services than bit 0. Specifically, bit 1 does not
inhibit the system services required by condition-handling and image
rundown services, whereas bit 0 does.

SYS-425

SYSTEM SERVICE DESCRIPTIONS
$SETSSF

DESCRIPTION

CONDITION
VALUES
RETURNED

SYS-426

To call $SETSSF successfully, the access mode of the caller must be equal to
or more privileged than supervisor-mode access, and the SYSGEN parameter
SSINHIBIT must be set when the system is bootstrapped.

If a system service that has been inhibited is called from user mode, one of
the following two condition values is returned:

SS$_1NHCHME

SS$_1NHCHMK

SS$_NORMAL

SS$_NOPRIV

You called a disabled executive mode system service.

You called a disabled kernel mode system service.

The service completed successfully.

The process does not have the privilege to call the
service.

$SETSTK

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$SETSTK

Set Stack Limits

The Set Stack Limits service allows a process to change the size of its
supervisor, executive, and kernel stacks by altering the values in the stack
limit and base arrays held in P1 (per-process) space.

SYS$SETSTK inadr ,[retadr] ,[acmode}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

inadr
VMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Range of addresses that express the stack's new limits. The inadr argument
is the address of a 2-longword array containing, in order, the address of the
top of the stack and the address of the base of the stack. Because stacks in Pl
space expand from high to low addresses, the address of the base of the stack
must be greater than the address of the top of the stack.

retadr
VMS usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference

Range of addresses that express the stack's previous limits. The retadr
argument is the address of a 2-longword array into which $SETSTK writes,
in the first longword, the previous address of the top of the stack and, in the
second longword, the previous address of the base of the stack.

a cm ode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode of the stack to be altered. The acmode argument is a longword
containing the access mode. The $PSLDEF macro defines symbols for the
four access modes. The most privileged access mode used is the access mode
of the caller.

SYS-427

SYSTEM SERVICE DESCRIPTIONS
$SETSTK

DESCRIPTION

CONDITION
VALUES
RETURNED

SYS-428

If acmode specifies user mode, $SETSTK performs no operation and returns
the SS$_NORMAL condition value.

The calling process can adjust the size of stacks only for access modes that
are equal to or less privileged than the access mode of the calling process.

SS$_NORMAL

SS$_ACCVIO

The service completed successfully.

The input address array cannot be read by the
caller; the input range is invalid; or the return
address array cannot be written by the caller.

$SETSWM

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

SYSTEM SERVICE DESCRIPTIONS
$SETSWM

Set Process Swap Mode

The Set Process Swap Mode service allows a process to control whether
it can be swapped out of the balance set.

When process swap mode is enabled, the process can be swapped out;
when disabled, the process remains in the balance set until (1) process
swap mode is re-enabled or (2) the process is deleted.

The $SETSWM service returns a condition value indicating whether
process swap mode was enabled or disabled prior to the call to
$SETSWM.

To lock some but not necessarily all process pages into the balance set,
use the Lock Pages in Memory ($LCKPAG) service.

SYS$SETSWM [swpflg}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

swpflg
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Indicator specifying whether the process can be swapped. The swpflg
argument is a longword value. The value 0 (the default) enables process
swap mode, meaning the process can be swapped. The value 1 disables
process swap mode, meaning the process cannot be swapped.

To change its process swap mode, the calling process must have PSWAPM
privilege.

SVS-429

SYSTEM SERVICE DESCRIPTIONS
$SETSWM

CONDITION
VALUES
RETURNED

SVS-430

SS$_WASCLR

SS$_WASSET

SS$_NQPRIV

The service completed successfully. The process
was not previously locked in the balance set.

The service completed successfully. The process
was previously locked in the balance set.

The process does not have the necessary
PSW APM privilege.

$SETUAI

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$SETUAI

Set User Authorization Information

The Set User Authorization Information service is used to modify the user
authorization file (UAF) record for a specified user.

SVS$SETUAI [nullarg} ,[nullarg} ,usrnam ,itmlst ,[nullarg}
,{nullarg} ,{nullarg}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

nullarg
VMS usage: nulLarg
type: longword (unsigned)
access: read only
mechanism: by value

Place-holding argument reserved by DIGITAL.

usrnam
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of the user whose user authorization file (UAF) record is modified.
The usrnam argument is the address of a descriptor pointing to a character
text string containing the user name. The user name string may contain a
maximum of 12 alphanumeric characters.

itmlst
VMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list specifying which information from the specified user's user
authorization file (UAF) record is to be modified. The itmlst argument is the
address of a list of one or more item descriptors, each of which specifies an
item code. The item list is terminated by the item code 0 or by the longword
0. The following diagram depicts the structure of a single item descriptor.

SYS-431

SYSTEM SERVICE DESCRIPTIONS
$SETUAI

SYS-432

31 15 0

item code l buff er length

buffer address

return length address

ZK-1705-84

$SETUAI Item Descriptor Fields

buffer length
A word specifying the length (in bytes) of the buffer in which $SETUAI is to
write the information. The length of the buffer varies depending on the item
code specified in the item code field of the item descriptor and is given in
the description of each item code. If the value of buffer length is too small,
$SETUAI truncates the data.

item code
A word containing a user-supplied symbolic code specifying the item of
information that $SETUAI is to set. The $UAIDEF macro defines these codes,
which have the following format:

UAl$_code

Each item code is described under $SETUAI Item Codes.

buffer address
A longword address of the buffer that specifies the information to be set by
$SETUAI.

return length address
A longword containing the user-supplied address of a word in which
$SETUAI writes the length in bytes of the information it actually set.

$SETUAI Item Codes

UAl$_ACCOUNT
When you specify UAl$_ACCOUNT, $SETUAI sets, as a blank-filled
character string, the account name of the user.

Because an account name can include up to 8 characters plus a size-byte
prefix, the buffer length field of the item descriptor should specify 9 (bytes).

UAl$-ASTLM
When you specify UAl$_ASTLM, $SETUAI sets the AST queue limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

SYSTEM SERVICE DESCRIPTIONS
$SETUAI

UAl$_BATCH_ACCESS_P
When you specify UAl$_BATCH_ACCESS_P, $SETUAI sets, as a 3-byte
value, the range of times during which batch access is permitted for primary
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1
a.m., to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_BATCH_ACCESS_S
When you specify UAl$_BATCH_ACCESS_S, $SETUAI sets, as a 3-byte
value, the range of times during which batch access is permitted for secondary
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1
a.m., to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_BIOLM
When you specify UAl$_BIOLM, $SETUAI sets the buffered 1/0 count limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_BVTLM
When you specify UAl$_BYTLM, $SETUAI sets the buffered 1/0 byte limit.

Because the buffered 1/0 count limit is a longword decimal number, the
buffer length field in the item descriptor should specify 4 (bytes).

UAl$_CLITABLES
When you specify UAl$_CLITABLES, $SETUAI sets, as a character string, the
name of the user-defined CLI table for the account, if any.

Because the CLI table name can include up to 31 characters plus a size-byte
prefix, the buffer length field of the item descriptor should specify 32 (bytes).

UAl$_CPUTIM
When you specify UAl$_CPUTIM, $SETUAI sets the maximum CPU time
limit (per session) for the process in 10-millisecond units.

Because the maximum CPU time limit is a longword decimal number, the
buffer length field in the item descriptor should specify 4 (bytes).

UAl$_0EFCLI
When you specify UAl$_DEFCLI, $SETUAI sets, as an RMS file name
component, the name of the command language interpreter used to execute
the specified batch job. The file specification set assumes the device name
and directory SYS$SYSTEM and the file type EXE.

Because a file name can include up to 31 characters plus a size-byte prefix,
the buffer length field in the item descriptor should specify 32 (bytes).

UAl$_DEFDEV
When you specify UAl$_DEFDEV, $SETUAI sets, as a 1- to 31-character
string, the name of the default device.

Because the device name string can include up to 31 characters plus a size
byte prefix, the buffer length field in the item descriptor should specify 32
(bytes).

SYS-433

SYSTEM SERVICE DESCRIPTIONS
$SETUAI

SYS-434

UAl$_DEFDIR
When you specify UAl$_DEFDIR, $SETUAI sets, as a 1- to 63-character
string, the name of the default directory.

Because the directory name string can include up to 63 characters plus a
size-byte prefix, the buffer length field in the item descriptor should specify
64 (bytes).

UAl$_DEF _PRIV
When you specify UAl$_DEF_pRJV, $SETUAI sets, as a quadword value, the
default privileges for the user.

Because the default privileges are set as a quadword value, the buffer length
field in the item descriptor should specify 8 (bytes).

UAl$_DFWSCNT
When you specify UAl$_DFWSCNT, $SETUAI sets the default working set
size.

Because the default working set size is a longword decimal number, the buffer
length field in the item descriptor should specify 4 (bytes).

UAl$_DIOLM
When you specify UAl$_DIOLM, $SETUAI sets the direct 1/0 count limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_DIALUP -ACCESS_P
When you specify UAl$_DIALUP__ACCESS_P, $SETUAI sets, as a 3-byte
value, the range of times during which dialup access is permitted for primary
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1
a.m., to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_DIALUP -ACCESS_$
When you specify UAl$_DIALUP--ACCESS_S, $SETUAI sets, as a 3-
byte value, the range of times during which dialup access is permitted
for secondary days. Each bit set represents a 1-hour period, from bit 0 as
midnight to 1 a.m., to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_ENQLM
When you specify UAl$_ENQLM, $SETUAI sets the lock queue limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_EXPIRATION
When you specify UAl$_EXPIRATION, $SETUAI sets, as a quadword
absolute time value, the expiration date and time of the account.

Because the absolute time value is a quadword in length, the buffer length
field in the item descriptor should specify 8 (bytes).

SYSTEM SERVICE DESCRIPTIONS
$SETUAI

UAl$_FILLM
When you specify UAl$JILLM, $SETUAI sets the open file limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_FLAGS
When you specify UAl$JLAGS, $SETUAI sets, as a longword bit vector, the
various login flags set for the user.

Each flag is represented by a bit. The $UAIDEF macro defines the following
symbolic names for these flags:

Symbolic Name

UAl$V_AUDIT

UAl$V_AUTOLOGIN

UAl$V_CAPTIVE

UAl$V_DEFCLI

UAl$V_DISACNT

UAl$V_DISCTL Y

UAl$V_DISMAIL

UAl$V_DISRECONNECT

UAl$V_DISREPORT

UAl$V_DISWELCOME

UAl$V_FORCE_EXP_
PWD_CHANGE

UAl$V_GENPWD

UAl$V_LOCKPWD

UAl$V_NOMAIL

UAl$V_PWD_EXPIRED

UAl$V_PWD2_EXPIRED

UA1$_JTQUOTA

Description

All actions are audited.

User can only log in to terminals defined by the
automatic login facility (ALF).

User is restricted to captive account.

User is restricted to default command interpreter.

User account is disabled.

User cannot use CTRL/Y.

Announcement of new mail is suppressed.

User cannot reconnect to existing processes.

User will not receive last login messages.

User will not receive the login welcome message.

User is required to changed expired passwords.

User is required to use generated passwords.

SET PASSWORD command is disabled.

Mail delivery to user is disabled.

Primary password is expired.

Secondary password is expired.

When you specify UAl$_JTQUOTA, $SETUAI sets the initial byte quota with
which the jobwide logical name table is to be created.

Because this quota is a longword decimal number, the buffer length field in
the item descriptor should specify 4 (bytes).

UAl$_LGICMD
When you specify UAl$_LGICMD, $SETUAI sets, as an RMS file
specification, the name of the default login command file.

Because a file specification can include up to 63 characters plus a size-byte
prefix, the buffer length field of the item descriptor should specify 64 (bytes).

SYS-435

SYSTEM SERVICE DESCRIPTIONS
$SETUAI

SVS-436

UAl$_LQCAL_ACCESS_P
When you specify UAl$_LOCAL__ACCESS_P, $SETUAI sets, as a 3-byte
value, the range of times during which local interactive access is permitted for
primary days. Each bit set represents a 1-hour period, from bit 0 as midnight
to 1 a.m., to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_LQCAL_ACCESS_S
When you specify UAl$_LOCAL__ACCESS_S, $SETUAI sets, as a 3-byte
value, the range of times during which local interactive access is permitted
for secondary days. Each bit set represents a 1-hour period, from bit 0 as
midnight to 1 a.m., to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_MAXACCT JOBS
When you specify UAl$_MAXACCTJOBS, $SETUAI sets the maximum
number of batch, interactive, and detached processes that can be active at one
time for all users of the same account. The value 0 represents an unlimited
number.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_MAXDETACH
When you specify UAI$_MAXDETACH, $SETUAI sets the detached process
limit. The value 0 represents an unlimited number.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_MAXJOBS
When you specify UAI$_MAXJOBS, $SETUAI sets the active process limit. A
value of 0 represents an unlimited number.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_NETWORK_ACCESS_P
When you specify UAI$_NETWORK__ACCESSJ, $SETUAI sets, as a
3-byte value, the range of times during which network access is permitted for
primary days. Each bit set represents a 1-hour period, from bit 0 as midnight
to 1 a.m., to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_NETWORK_ACCESS_S
When you specify UAI$_t'\JETWORK__ACCESS_S, $SETUAi sets, as a
3-byte value, the range of times during which network access is permitted
for secondary days. Each bit set represents a 1-hour period, from bit 0 as
midnight to 1 a.m., to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

SYSTEM SERVICE DESCRIPTIONS
$SETUAI

UAl$_QWNER
When you specify UAl$_0WNER, $SETUAI sets, as a character string, the
name of the owner of the account.

Because the owner name can include up to 31 characters plus a size-byte
prefix, the buffer length field of the item descriptor should specify 32 (bytes).

UAl$_PBYTLM
When you specify UAl$_PBYTLM, $SETUAI sets the paged buffer 1/0 byte
count limit.

Because the paged buffer 1/0 byte count limit is a longword decimal number,
the buffer length field in the item descriptor should specify 4 (bytes).

UAl$_PGFLQUOTA
When you specify UAl$_PGFLQUOTA, $SETUAI sets the paging file quota.

Because the paging file quota is a longword decimal number, the buffer length
field in the item descriptor should specify 4 (bytes).

UAl$_PRCCNT
When you specify UAl$_pRCCNT, $SETUAI sets the subprocess creation
limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_PRI
When you specify UAl$_pRI, $SETUAI sets the default base priority.

Because this decimal number is a byte in length, the buffer length field in the
item descriptor should specify 1 (byte).

UAl$_PRIMEDAYS
When you specify UAl$_pRJMEDAYS, $SETUAI sets, as a longword bit
vector, the primary and secondary days of the week.

Each bit represents a day of the week, with the bit clear representing a
primary day and the bit set representing a secondary day. The $UAIDEF
macro defines the following symbolic names for these bits:

UAl$V_MONDAY
UAl$V_TUESDAY
UAl$V_WEDNESDAY
UAl$V_THURSDAY
UAl$VJRIDAY
UAl$V_SATURDAY
UA1$V_SUNDAY

UAl$_PRIV
When you specify UAl$_pRIV, $SETUAI sets, as a quadword value, the
names of the privileges the user holds.

Because the privileges are set as a quadword value, the buffer length field in
the item descriptor should specify 8 (bytes).

SYS-437

SYSTEM SERVICE DESCRIPTIONS
$SETUAI

SVS-438

UAl$_PWD
When you specify UAl$_PWD, $SETUAI sets, as a quadword value, the
hashed primary password of the user.

Because the hashed primary password is set as a quadword value, the buffer
length field in the item descriptor should specify 8 (bytes).

UAl$_PWD_LENGTH
When you specify UAl$_PWD_LENGTH, $SETUAI sets the minimum
password length.

Because this decimal number is a byte in length, the buffer length field in the
item descriptor should specify 1 (byte).

UAl$_PWD_LI FETI ME
When you specify UAl$_PWD_LIFETIME, $SETUAI sets, as a quadword
absolute time value, the password lifetime.

Because the absolute time value is a quadword in length, the buffer length
field in the item descriptor should specify 8 (bytes).

UAl$_PWD2
When you specify UAl$_PWD2, $SETUAI sets, as a quadword value, the
hashed secondary password of the user.

Because the hashed secondary password is set as a quadword value, the
buffer length field in the item descriptor should specify 8 (bytes).

UAl$_QUEPRI
When you specify UAl$_QUEPRI, $SETUAI sets the maximum job queue
priority in the range 0 through 31.

Because this decimal number is a byte in length, the buffer length field in the
item descriptor should specify 1 (byte).

UAl$_REMOTE_ACCESS_P
When you specify UAl$_REMOTE_ACCESS_P, $SETUAI sets, as a 3-byte
value, the range of times during which batch access is permitted for primary
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1
a.m., to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_REMOTE_ACCESS_S
When you specify UAl$_REMOTE_ACCESS_S, $SETUAI sets, as a 3-byte
value, the range of times during which batch access is permitted for secondary
days. Each bit set represents a 1-hour period, from bit 0 as midnight to 1
a.m., to bit 23 as 11 p.m. to midnight.

The buffer length field in the item descriptor should specify 3 (bytes).

UAl$_SHRFILLM
When you specify UAl$_SHRFILLM, $SETUAI sets the shared file limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

DESCRIPTION

SYSTEM SERVICE DESCRIPTIONS
$SETUAI

UAl$_TQCNT
When you specify UAl$_TQCNT, $SETUAI sets the timer queue entry limit.

Because this decimal number is a word in length, the buffer length field in the
item descriptor should specify 2 (bytes).

UAl$_UIC
When you specify UAl$_UIC, $SETUAI sets, as a longword, the user
identification code (UIC), containing the following two word-length subfields.

Symbolic Name

UIC$W_MEM

UIC$W_GRP

Description

The member number subfield of the UIC

The group number subfield of the UIC

UAl$_USERNAME
When you specify UAl$_USERNAME, $SETUAI sets, as a blank-filled
character string of up to 12 bytes, the user name of the owner of the specified
job.

Because a user name can include up to 12 characters, the buffer length field
of the item descriptor should specify 12 (bytes).

UAl$_WSEXTENT
When you specify UAl$_WSEXTENT, $SETUAI sets the working set extent
specified for the job or queue.

Because the working set extent is a longword decimal number, the buffer
length field in the item descriptor should specify 4 (bytes).

UAl$_WSQUOTA
When you specify UAl$_WSQUOTA, $SETUAI sets the working set quota
for the specified user.

Because the working set quota is a longword decimal number, the buffer
length field in the item descriptor should specify 4 (bytes).

The following list determines the privileges you need to use the $SETUAI
service:

• BYPASS or SYSPRV-allows modification of any record in the UAF (user
authorization file).

• GRPPRV-allows modification of any record in the UAF whose UIC
group matches that of the requester. A group manager with GRPPRV
privilege is limited in the extent to which he may modify the UAF records
of users in the same group; values such as privileges and quotas may
only be changed if the modification does not exceed the values set in the
group manager's U AF record.

• No privilege-does not allow access to any UAF record.

SVS-439

SYSTEM SERVICE DESCRIPTIONS
$SETUAI

CONDITION
VALUES
RETURNED

SYS-440

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_NOPRIV

The service completed successfully.

The item list or input buffer cannot be read by the
caller; or the return length buffer, output buffer, or
status block cannot be written by the caller.

The function code is invalid; the item list contains
an invalid item code; a buffer descriptor has an
invalid length; or the reserved parameter has a
nonzero value.

The user does not have the privileges required
to examine the authorization information for the
specified user.

This service may also return RMS status codes associated with operations on
indexed files. For a description of RMS status codes that are returned by this
service, refer to the VMS Record Management Services Manual.

$SN DERR

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$SN DERR

Send Message to Error Logger

The Send Message to Error Logger service writes a user-specified
message to the system error log file, preceding it with the date and
time.

SYS$SNDERR msgbuf

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

msgbuf
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Message to be written to the error log file. The msgbuf argument is the
address of a character string descriptor pointing to the message text.

To send a message to the error log file, the calling process must have
BUGCHK privilege.

The $SNDERR service requires system dynamic memory.

SS$_NORMAL

SS$_ACCVIO

SS$_1NSFMEM

SS$_NOPRIV

The service completed successfully.

The message buffer or buffer descriptor cannot be
read by the caller.

The system dynamic memory is insufficient for
completing the service.

The process does not have the required BUGCHK
privilege.

SYS-441

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

$SNDJBC Send to Job Controller

FORMAT

RETURNS

ARGUMENTS

SYS-442

The Send to Job Controller service creates, stops, and manages queues
and the batch and print jobs in those queues. For a discussion of the types
of queue supported by the VMS batch/print facility, see the DESCRIPTION
section. The $SNDJBC and $GETQUI services together provide the
user interface to the VMS Job Controller, which is the VMS queue and
accounting manager.

The $SNDJBC service completes asynchronously; that is, it returns to
the caller after queuing the request, without waiting for the operation to
complete.

To synchronize the completion of most operations, you use the Send to
Job Controller and Wait ($SNDJBCW) service. The $SNDJBCW service is
identical to $SNDJBC in every way except that $SNDJBCW returns to the
caller after the operation completes.

For a discussion of the types of queue supported by the VMS batch/print
facility, see the DESCRIPTION section.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System
Services.

The $SNDJBC and $SNDJBCW services supersede the Send Message
to Symbiont Manager ($SNDSMB) and Send Message to Accounting
Manager ($SNDACC) services. You should write new programs using
$SNDJBC or $SNDJBCW, instead of $SNDSMB or $SNDACC. You should
convert old programs containing $SNDSMB or $SNDACC to use $SNDJBC
or $SNDJBCW.

SYS$SNDJBC [efn} ,tune {,nullarg] [,itmlst] [,iosb}
{,astadr} {,astprm}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

efn
VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when $SNDJBC completes. The efn
argument is a longword containing this number; however, $SNDJBC uses
only the low-order byte.

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

When you queue the request, $SNDJBC clears the specified event flag (or
event flag 0 if efn was not specified). Then, when the operation completes,
$SNDJBC sets the specified event flag (or event flag 0).

tune
VMS usage: function_code
type: word (unsigned)
access: read only
mechanism: by value

Function code specifying the function that $SNDJBC is to perform. The
func argument is a word containing this function code. The $SJCDEF macro
defines the names of each function code.

You may specify only one function code in a single call to $SNDJBC. Most
function codes require or allow for additional information to be passed in the
call. You pass this information by using the itmlst argument, which specifies
a list of one or more item descriptors. Each item descriptor in turn specifies an
item code, which modifies, restricts, or otherwise affects the action designated
by the function code.

The following lists and describes each function code, and lists which item
code or codes you must and may specify for each function code; descriptions
of the item codes appear in the description of the itmlst argument.

$SNDJBC Function Codes with Their Valid Item Codes

SJC$__ABORT_JQB
This request aborts the execution of the current job from an output execution
queue or the job you specified from a batch queue. By default, the job is
deleted. However, for a restartable job, you can requeue it to the same queue
or to another queue.

You must specify the following input item code:

SJC$_QUEUE

You must specify the following input item code for batch jobs:

SJC$_ENTRY_NUMBER

You may specify the following optional input or Boolean item codes:

SJC$_DESTINA TION_QUEUE

SJC$_HOLD

SJC$_PRIORITY

SJC$_REQUEUE

SJC$--ADD_fl LE

SJC$_NQ_HOLD

This request adds a file to the open job owned by the requesting process.
You use this operation as part of a sequence of calls to the $SNDJBC service
to create a job with one or more files. The first call in the sequence specifies
the SJC$_CREATE_JOB operation to create an open job. Each subsequent
SJC$_ADDJILE request associates an additional file with the job. Finally,
you make a SJC$_CLOSE_JOB request to complete the batch or print job
specification. To create a job that contains only one file, you can make a
single call to $SNDJBC that specifies the SJC$_ENTERJILE function code.

SVS-443

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SYS-444

You must specify one of the following input item codes:

SJC$JILE_JDENTIFICATION
SJC$JILE_SPECIFICATION

You may specify the following input or Boolean item codes:

SJC$_DELETE_FILE

SJC$_DOUBLE _SPACE

SJC$_FILE_BURST

SJC$_FILE _COPIES

SJC$_FILE_FLAG

SJC$_FILE_SETUP _MODULES

SJC$_FILE_ TRAILER

SJC$_FIRST _PAGE

SJC$_LAST _PAGE

SJC$_PAGE_HEADER

SJC$_P AGINA TE

SJC$_P ASSA LL

SJC$_AL TER_JQB

SJC$_NQ_DELETE_FILE

SJC$_NQ_DOUBLE_SPACE

SJC$_NQ_FILE_BURST

SJC$_NQ_FILE_FLAG

SJC$_NQ_FILE _SETUP _MODULES

SJC$_NQ_FILE_ TRAILER

SJC$_NQ_FIRST_PAGE

SJC$_NQ_LAST_PAGE

SJC$_NQ_PAGE_HEADER

SJC$_NQ_PAGINA TE

SJC$_NQ_P ASSA LL

This request alters the parameters of an existing job that is not currently
executing.

You must specify the following input item code:

SJC$_ENTRY_NUMBER

You may specify the following input or Boolean item codes:

SJC$_AFTER_ TIME

SJC$_CHARACTERISTIC_NAME

SJC$_CHARACTERISTIC_NUMBER

S..)C$_CLI

SJC$_CPU_LIMIT

SJC$_DESTINA TION_QUEUE

SJC$_DOUBLE_SPACE

SJC$_FILE _BURST

SJC$_FILE_COPIES

SJC$_FILE_FLAG

SJC$_FILE_SETUP _MODULES

SJC$_FILE_ TRAILER

SJC$_FIRST_PAGE

SJC$_FORM_NAME

SJC$_FORM_NUMBER

SJC$_NQ_AFTER_ TIME

SJC$_NO_CHARACTERISTICS

SJC$_NQ_CHECKPOINT_DA TA

SJC$_NQ_CLI

SJC$_NQ_CPU_LIMIT

SJC$_NQ_DELETE_FILE

SJC$_NQ_DOUBLE_SPACE

SJC$_NQ_FILE_BURST

SJC$_NQ_FILE_FLAG

SJC$_NQ_FILE_SETUP _MODULES

SJC$_NQ_FILE_ TRAILER

SJC$_NQ_FIRST _PAGE

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SJC$_HOLD

SJC$_JQB_COPIES

SJC$_JQB_NAME

SJC$_LAST _PAGE

SJC$_LQG_DELETE

SJC$_LQG_QUEUE

SJC$_LQG_SPECIFICA TION

SJC$_LQG_SPOOL

SJC$_LOWERCASE

SJC$_NOTE

SJC$_NOTIFY

SJC$_0PERATQR_REQUEST

SJC$_PAGE_HEADER

SJC$_P AGINA TE

SJC$_P ARAMETER_ 1 through 8

SJC$_P ASSA LL

SJC$_PRIORITY

SJC$_QUEUE

SJC$_REST ART

SJC$_WSDEFAUL T

SJC$_ WSEXTENT

SJC$_ WSQUOT A

SJC$_NO_HOLD

SJC$_NO_LAST_PAGE

SJC$_NO_LQG _DELETE

SJC$_NO_LQG_SPECIFICA TION

SJC$_NO_LQG_SPOOL

SJC$_NO_LOWERCASE

SJC$_NO_NOTE

SJC$_NQ_NOTIFY

SJC$_NO_OPERATOR_REQUEST

SJC$_NO_PAGE_HEADER

SJC$_NO_PAGINA TE

SJC$_NO_PARAMETERS

SJC$_NQ_p ASSALL

SJC$_NO_REST ART

SJC$_NO_ WSDEFAUL T

SJC$_NO_WSEXTENT

SJC$_NQ_ WSQUOT A

If you specify the SJC$_QUEUE item code, the $SNDJBC service verifies that
the selected job entry exists on the specified queue before modifying the job.

SJC$__AL TER_QUEUE
This request alters the parameters of a queue. The execution of current jobs is
unaffected.

You must specify the following input item code:

SJC$_QUEUE

You may specify the following input or Boolean item codes:

SJC$_BASE _PRIORITY

SJC$_CHARACTERISTIC_NAME

SJC$_CHARACTERISTIC_NUMBER

SJC$_CLOSE_QUEUE

SJC$_CPU_DEFAULT

SJC$_CPU_LIMIT

SJC$_NO_CHARACTERISTICS

SJC$_DEFAUL T_FORM_NAME

SJC$_DEFAUL T _FORM _NUMBER

SJC$_FILE_BURST

SJC$_NO_CPU_DEFAULT

SJC$_NO_CPU_LIMIT

SJC$_NO_FILE_BURST

SVS-445

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SYS-446

SJC$_FILE _BURST _ONE

SJC$_FILE_FLAG

SJC$_FILE _FLAG_ONE

SJC$_FILE_ TRAILER

SJC$_FILE_ TRAILER_ONE

SJC$_FORM_NAME

SJC$_FORM_NUMBER

SJC$_GENERIC_SELECTION

SJC$_JQB_BURST

SJC$_JQB_FLAG

SJC$_JQB_LIMIT

SJC$_JQB_RESET _MODULES

SJC$_JQB_SIZE_MAXIMUM

SJC$_JQB_SIZE_MINIMUM

SJC$_JQB_SIZE_SCHEDULING

SJC$_JQB_ TRAILER

SJC$_0PEN_QUEUE

SJC$_0WNER_UIC

SJC$_PAGINA TE

SJC$_PROTECTION

SJC$_QUEUE_DESCRIPTION

SJC$_RECORD_BLOCKING

SJC$_RET AIN _ALL _JOBS

SJC$_RET AIN_ERROR_JOBS

SJC$_SWAP

SJC$_WSDEFAUL T

SJC$_ WSEXTENT

SJC$_ WSOUOT A

SJC$J\SSIGN_QUEUE

SJC$_NQ_FILE_FLAG

SJC$_NQ_FILE_ TRAILER

SJC$_NQ_GENERIC_SELECTION

SJC$_NQ_JOB_BURST

SJC$_NQ_JQB_FLAG

SJC$_NQ_JQB_RESET _MODULES

SJC$_NQ_JQB_SIZE_MAXIMUM

SJC$_NQ_JQB_SIZE_MINIMUM

SJC$_NQ_JQB_SIZE_SCHEDULING

SJC$_NQ_JQB_ TRAILER

SJC$_NQ_PAGINATE

SJC$_NO_QUEUE_DESCRIPTION

SJC$_NQ_RECORD_BLOCKI NG

SJC$_NO_RET AIN_JOBS

SJC$_NQ_SWAP

SJC$_NO_WSDEFAUL T

SJC$_NO_WSEXTENT

SJC$_NO_ WSOUOT A

This request assigns a logical queue to an execution queue. The
SJC$_QUEUE item code specifies the logical queue; the
SJC$_DESTINATION _QUEUE item code specifies the execution queue.

You must specify the following input item codes:

SJC$_QUEUE
CTI""~ T"'\L'C'T'Tll. TA 'T'T/""\11. T /""\T TT.'T TT.'
'-'J'-.P-LJL:.v .l.ll'lr\..1.lVl'l -\,,,!U.C.U.C.

SJC$_BATCH_CHECKPOINT
This request establishes a checkpoint in a batch job. No operation is
performed if the requesting process is not a batch process.

You must specify the following input item code:

SJC$_CHECKPOINT_DATA

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SJC$_CLOSE_OELETE
This request deletes the open job owned by the requesting process. No item
codes are allowed.

SJC$_CLOSE_JQB
This request completes the specification of the open job owned by the
requesting process and places the job in the queue specified in the
SJC$_CREATE_JOB request that opened the job. If the SJC$_CLOSE_JQB
request completes successfully, the job is no longer an open job; it becomes a
normal batch or print job.

You may specify the following output item code:

SJC$_JQB_STATUS_OUTPUT

SJC$_CREATE_JQB
This request creates an open job for the requesting process. If the process
already owns an open job, that job is deleted.

An open job is a batch or print job that has not yet been completely specified.
After you make the SJC$_CREATE_JOB request to open the job, you can
make subsequent calls to $SNDJBC using the SJC$_ADD_FILE function code
to specify the files associated with the job. Finally, you can complete the job
specification with an SJC$_CLOSE_JOB request. If the
SJC$_CREATE_JOB operation completes successfully, the open job created is
given an entry number; the job is not assigned to the queue specified in the
SJC$_CREATE_JOB operation until the SJC$_CLOSE-JOB completes
successfully.

You must specify the following input item code:

SJC$_QUEUE

You may specify the following input or Boolean item codes:

SJC$_ACCOUNT_NAME

SJC$_AFTER_ TIME

SJC$_CHARACTERISTIC_NAME

SJC$_CHARACTERISTIC_NUMBER

SJC$_CLI

SJC$_CPU_LIMIT

SJC$_FILE_BURST

SJC$_FILE_BURST _ONE

SJC$_FILE_FLAG

SJC$_FILE_FLAG_QNE

SJC$_FILE_ TRAILER

SJC$_FILE_ TRAILER_ONE

SJC$_FQRM_NAME

SJC$_FORM _NUMBER

SJC$_HOLD

SJC$_JQB_COPIES

SJC$_NQ_AFTER_ TIME

SJC$_NQ_CHARACTERISTICS

SJC$_NQ_CLI

SJC$_NQ_CPU_LIMIT

SJC$_NQ_FILE_BURST

SJC$_NQ_FILE_FLAG

SJC$_NQ_FILE_ TRAILER

SJC$_NQ_HQLD

SYS-447

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SYS-448

SJC$_JQB_NAME

SJC$_LQG_DELETE

SJC$_LQG_QUEUE

SJC$_LQG_SPECIFICA TION

SJC$_LQG_SPOOL

SJC$_LQWERCASE

SJC$_NQTE

SJC$_NQTIFY

SJC$_QPERATOR_REOUEST

SJC$_PARAMETER_ 1 through 8

SJC$_PRIORITY

SJC$_REST ART

SJC$_UIC

SJC$_USERNAME

SJC$_WSDEFAUL T

SJC$_ WSEXTENT

SJC$_WSOUOT A

SJC$_NQ_LQG_DELETE

SJC$_NQ_LQG_SPECIFICA TION

SJC$_NQ_LQG _SPOOL

SJC$_NQ_LOWERCASE

SJC$_NQ_NOTE

SJC$_NQ_NOTIFY

SJC$_NQ_OPERATQR_REQUEST

SJC$_NQ_P ARA METERS

SJC$_NQ_REST ART

SJC$_NQ_ WSDEFAUL T

SJC$_NQ_WSEXTENT

SJC$_NQ_ WSOUOT A

You may specify the following output item code:

SJC$-ENTRY_NUMBER_OUTPUT

SJC$_CREATE_QUEUE
This request creates a queue. If the queue already exists and is not stopped,
this request performs no operation. However, if the queue already exists and
is stopped, the request alters the parameters of the queue based on the item
codes specified in the request; if you specify the SJC$_CREATE_START item
code, the request starts the queue.

You must specify the following input item code:

SJC$_QUEUE

You may specify the following input or Boolean item codes:

SJC$_BASE_PRIORITY

SJC$_BATCH

SJC$_CHARACTERISTIC_NAME

SJC$_CHARACTERISTIC_NUMBER

SJC$_CLOSE_QUEUE

SJC$_CPU_DEFAULT
SJC$_CPU_LIMIT

SJC$_CREATE_START

SJC$_DEFAUL T_FQRM_NAME

SJC$_DEFAUL T_FORM_NUMBER

SJC$_DEVICE_NAME

SJC$_NQ_BA TCH

SJC$_NQ_CHARACTERISTICS

SJC$_NQ_CPU_LIMIT

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SJC$_FILE_BURST

SJC$_FILE_BURST_QNE

SJC$_FILE_FLAG

SJC$_FILE_FLAG_QNE

SJC$_FILE_ TRAILER

SJC$_FILE_ TRAILER_ONE

SJC$_FORM_NAME

SJC$_FORM_NUMBER

SJC$_GENERIC_QUEUE

SJC$_GENERIC_SELECTION

SJC$_GENERIC_ TARGET

SJC$_JQB_BURST

SJC$_JQB_FLAG

SJC$_JQB_LIMIT

SJC$_JQB_RESET _MODULES

SJC$_JQB_SIZE_MAXIMUM

SJC$_JQB_SIZE_MINIMUM

SJC$_JQB_SIZE_SCHEDULING

SJC$_JQB_ TRAILER

SJC$_LIBRARY _SPECIFICATION

SJC$_QPEN_QUEUE

SJC$_0WNER_UIC

SJC$_PAGINA TE

SJC$_PRINTER

SJC$_PROCESSOR

SJC$_PROTECTION

SJC$_QUEUE_DESCRIPTION

SJC$_RECORD_BLOCKING

SJC$_RETAIN_ALL_JQBS

SJC$_RET AIN_ERRQR_JQBS

SJC$_SCSNODE_NAME

SJC$_SERVER

SJC$_SWAP

SJC$_ TERMINAL

SJC$_ WSDEFAUL T

SJC$_ WSEXTENT

SJC$_ WSOUOT A

SJC$_DEASSIGN_QUEUE

SJC$_NQ_FILE_BURST

SJC$_NQ_FILE_FLAG

SJC$_NQ_FILE_ TRAILER

SJC$_NQ_GENERIC_QUEUE

SJC$_NQ_GENERIC_SELECTION

SJC$_NQ_JQB_BURST

SJC$_NQ_JQB_FLAG

SJC$_NQ_JQB_RESET _MODULES

SJC$_NQ_JQB_SIZE_MAXIMUM

SJC$_NQ_JQB_SIZE_MINIMUM

SJC$_NQ_JQB_SIZE_SCHEDULING

SJC$_NQ_JQB_ TRAILER

SJC$_NQ_LIBRARY _SPECIFICATION

SJC$_NQ_PAGINA TE

SJC$_NQ_PROCESSOR

SJC$_NQ_QUEUE _DESCRIPTION

SJC$_NQ_RECORD_BLOCKING

SJC$_NQ_RET AIN_JQBS

SJC$_NQ_SWAP

SJC$_NQ_ TERMINAL

SJC$_NQ_ WSDEFAUL T

SJC$_NQ_WSEXTENT

SJC$_NQ_ WSOUOT A

This request deassigns a logical queue from an execution queue.

You must specify the following input item code:

SJC$_QUEUE

SYS-449

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SYS-450

SJC$_DEFINE_CHARACTERISTIC
This request defines a characteristic name and number and inserts this
definition in the queue file. The characteristic name can be up to 31 characters
in length. Each characteristic name must have a unique number in the range
0 to 127. If the characteristic name is already defined, the request alters the
definition of the characteristic.

A job cannot execute on an execution queue unless the queue possesses all
the characteristics possessed by the job; the queue may possess additional
characteristics and the job will still execute.

You must specify the following input item codes:

SJC$_CHARACTERISTIC_NAME
SJC$_CHARACTERISTIC_NUMBER

SJC$_DEFINE_FQRM
This request defines a form name and number, as well as other physical
attributes of the paper stock used in printers, and inserts this definition into
the system job queue file. If the form name is already defined, this request
alters the definition of the form.

Forms are used only by output execution queues and print jobs. A print job
cannot execute unless the stock name of a form specified for the queue is
the same as the stock name specified for the job. The stock name of a form,
which you specify by using the SJC$JORM_STOCK item code, specifies the
paper stock used by the printer. Other item codes specify printing parameters
for a job such as the margins, length of paper, and so on.

Each form must have a unique number. Numbers can range from 0 to 999.
When a new queue file is created, the system supplies the definition of a form
named DEFAULT with number 0 and default characteristics.

You must specify the following input item codes:

SJC$JORM_NAME
SJC$_FORM_NUMBER

You may specify the following input or Boolean item codes:

SJC$_FORM _DESCRIPTION

SJC$_FORM _LENGTH

SJC$_FORM_MARGIN_BOTTOM

SJC$_FORM_MARGIN_LEFT

SJC$_FORM_MARGIN_RIGHT

SJC$_FORM_MARGIN_ TOP

SJC$_FORM _SETUP _MODULES
c1~~ cno~n cuccT cccn
v..J'-'..P-• v1 uv1_ ... ,. 11...1... •-• 1...1...u

SJC$_FORM _STOCK

SJC$_FORM_ TRUNCATE

SJC$_FORM_ WIDTH

SJC$_NQ_FQRM_SETUP _MODULES

SJC$_NQ_FQRM_ TRUNCATE

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SJC$_FORM_WRAP

SJC$_PAGE_SETUP _MODULES

SJC$_NQ_FORM_ WRAP

SJC$_NQ_PAGE _SETUP _MQDULES

SJC$_DELETE_CHARACTERISTIC
This request deletes the definition of a characteristic name.

You must specify the following input item code:

SJC$_CHARACTERISTIC_NAME

SJC$_DELETE_FQRM
This request deletes the definition of a form name. There must be no queues
or jobs that reference the form.

You must specify the following input item code:

SJC$JORM_NAME

SJC$_DELETE_JQB
This request deletes a job from the system job queue file. If the job is
currently executing, it is aborted.

You must specify the following input item code:

SJC$_ENTRY_NUMBER

You may specify the following input item code:

SJC$_QUEUE

If you specify the SJC$_QUEUE item code, the $SNDJBC service verifies that
the selected job entry exists on the specified queue before deleting the job.

SJC$_DELETE_QUEUE
This request deletes a queue and all of the jobs in the queue. The queue must
be stopped, and there must be no other queues or jobs that reference the
queue.

You must specify the following input item code:

SJC$_QUEUE

SJC$_ENTER_FI LE
This request creates a job containing one file and places the job in the
specified queue. To create a job with more than one file, you must make
a sequence of calls to the $SNDJBC service using the SJC$_CREATE_JOB,
SJC$_ADDJILE, and SJC$_CLOSE_JOB function codes.

You must specify the following input item code:

SJC$_QUEUE

You must specify one of the following input item codes:

SJC$JILE _IDENTIFICATION
SJC$JILE_SPECIFICATION

SYS-451

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

You may specify the following input or Boolean item codes:

SYS-452

SJC$_ACCOUNT _NAME

SJC$_AFTER_ TIME

SJC$_CHARACTERISTIC_NAME

SJC$_CHARACTERISTIC_NUMBER

SJC$_CLI

SJC$_CPU_LIMIT

SJC$_DELETE_FILE

SJC$_DOUBLE_SPACE

SJC$_FILE _BURST

SJC$_FILE_COPIES

SJC$_FILE_FLAG

SJC$_FILE_SETUP _MODULES

SJC$_FILE_ TRAILER

SJC$_FIRST _PAGE

SJC$_FORM_NAME

SJC$_FORM_NUMBER

SJC$_HOLD

SJC$_JQB_COPIES

SJC$_JQB_NAME

SJC$_LAST_PAGE

SJC$_LQG_DELETE

SJC$_LQG_QUEUE

SJC$_LQG_SPECIFICA TION

SJC$_LOG_SPOOL

SJC$_LOWERCASE

SJC$_NOTE

SJC$_NOTIFY

SJC$_0PERATOR_REQUEST

SJC$_PAGE_HEADER

SJC$_P AGINA TE

SJC$_PARAMETER_ 1 through 8

SJC$_P ASSALL

SJC$_PRIORITY

SJC$_REST ART

SJC$_UIC

SJC$_USERNAME

SJC$_ WSDEFAUL T

SJC$_ WSEXTENT

SJC$_ WSQUOT A

SJC$_NO_AFTER_ TIME

SJC$_NQ_CHARACTERISTICS

SJC$_NQ_CLI

SJC$_NQ_CPU_LIMIT

SJC$_NQ_DELETE_FILE

SJC$_NQ_DOUBLE_SPACE

SJC$_NQ_FILE_BURST

SJC$_NQ_FILE_FLAG

SJC$_NQ_FILE_SETUP _MODULES

SJC$_NQ_FILE_ TRAILER

SJC$_NQ_FIRST_PAGE

SJC$_NQ_HOLD

SJC$_NQ_LAST_PAGE

SJC$_NQ_LOG_DELETE

SJC$_NQ_LQG_SPECIFICA TION

SJC$_NO_LOG_SPOOL

SJC$_NQ_LOWERCASE

SJC$_NQ_NOTE

SJC$_NQ_NOTIFY

SJC$_NQ_OPERATOR_REQUEST

SJC$_NQ_PAGE_HEADER

SJC$_NQ_PAGINA TE

SJC$_NQ_P ARAMETERS

SJC$_NQ_P ASSALL

SJC$~_NQ_REST ART

SJC$_NQ_WSDEFAUL T

SJC$_NQ_WSEXTENT

SJC$_NQ_ WSQUOT A

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

You may specify the following output item codes:

SJC$_ENTRY_NUMBER_OUTPUT
SJC$_JQB_STATUS_QUTPUT

SJC$_MERGE_QUEUE
This request requeues all jobs in the queue specified by the item code
SJC$_QUEUE to the queue specified by the item code
SJC$_DESTINATION _QUEUE. The execution of current jobs is unaffected.

You must specify the following input item codes:

SJC$_QUEUE
SJC$_DESTINATIQN _QUEUE

SJC$_PAUSE_QUEUE
This request pauses the execution of current jobs in the specified queue and
prevents the starting of jobs in that queue.

You must specify the following input item code:

SJC$_QUEUE

SJC$_RESET_QUEUE
This request resets the specified queue by (1) terminating and deleting each
executing job that is not restartable, (2) terminating and requeuing each
executing job that is restartable, and (3) stopping the queue.

You must specify the following input item code:

SJC$_QUEUE

SJC$_ST ART --ACCOUNTING
This request performs two functions. If you specify the
SJC$_ACCOUNTING_TYPES item code, the request enables recording of
the specified types of accounting records; if you do not specify
SJC$_ACCOUNTING_TYPES, the request starts the accounting manager and
opens the system accounting file.

You may specify the following input or Boolean item codes:

SJC$_ACCOUNTING_TYPES
SJC$_NEW_ VERSION

SJC$_START_QUEUE
This request permits the starting of jobs in the specified queue. If the queue
was paused, current jobs are resumed.

You must specify the following input item code:

SJC$_QUEUE

You may specify the following input or Boolean item codes:

SJC$_ALIGNMENT _MASK

SJC$_ALIGNMENT _PAGES

SJC$_BASE_PRIORITY

SJC$_BATCH SJC$_NQ_BA TCH

SYS-453

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SYS-454

SJC$_CHARACTERISTIC_NAME

SJC$_CHARACTERISTIC_NUMBER

SJC$_CLOSE_QUEUE

SJC$_CPU_DEFAULT

SJC$_CPU_LIMIT

SJC$_DEFAUL T _FORM _NAME

SJC$_DEFAUL T _FORM _NUMBER

SJC$_DEVICE_NAME

SJC$_FILE_BURST

SJC$_FILE _BURST _QNE

SJC$_FILE_FLAG

SJC$_FILE_FLAG_ONE

SJC$_FILE_ TRAILER

SJC$_FILE_ TRAILER_ONE

SJC$_FORM_NAME

SJC$_FORM _NUMBER

SJC$_GENERIC_QUEUE

SJC$_GENERIC_SELECTION

SJC$_GENERIC_ TARGET

SJC$_JQB_BURST

SJC$_JQB_FLAG

SJC$_JQB_LIMIT

SJC$_JQB_RESET _MQDULES

SJC$_JOB_SIZE_MAXIMUM

SJC$_JQB_SIZE_MINIMUM

SJC$_JQB_SIZE_SCHEDULING

SJC$_JQB_ TRAILER

SJC$_LIBRARY _SPECIFICATION

SJC$_NEXT _JOB

SJC$_0PEN _QUEUE

SJC$_0WNER_UIC

SJC$_PAGINA TE

SJC$_PROCESSOR

SJC$_PROTECTION
C' lf"d' f"\I ICI IC nCCl"'DIDTlf"'\1\1
v.J\.....P-UVL.VL.-L..IL.vvl 111 I IVl'll

SJC$_RECORD_BLOCKING

SJC$_RELA TIVE_PAGE

SJC$_RET AIN_ALL_JOBS

SJC$_RET AIN_ERRQR_JQBS

SJC$_SCSNODE_NAME

SJC$_NQ_CHARACTERISTICS

SJC$_NQ_CPU_DEFAULT

SJC$_NQ_CPU_LIMIT

SJC$_NO_FILE_BURST

SJC$_NQ_FILE_FLAG

SJC$_NQ_FILE_ TRAILER

SJC$_NQ_GENERIC_QUEUE

SJC$_NQ_GENERIC_SELECTION

SJC$_NQ_JQB_BURST

SJC$_NQ_JQB_FLAG

SJC$_NQ_JQB_RESET_MODULES

SJC$_NQ_JQB_SIZE_MAXIMUM

SJC$_NQ_JQB_SIZE_MINIMUM

SJC$_NQ_JQB_SIZE_SCHEDULING

SJC$_NQ_JQB_ TRAILER

SJC$_NQ_LIBRARY _SPECIFICATION

SJC$_NQ_p AGINA TE c

SJC$_NO_PROCESSOR

SJC$_NQ_RECORD_BLOCKING

SJC$_NQ_RET AIN_JQBS

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SJC$_SEARCH_STRING

SJC$_SWAP

SJC$_ TERMINAL

SJC$_ TOP _QF _FILE

SJC$_WSDEFAUL T

SJC$_ WSEXTENT

SJC$_WSQUOT A

SJC$_START_QUEUE_MANAGER

SJC$_NQ_SWAP

SJC$_NQ_ TERMINAL

SJC$_NQ_WSDEFAUL T

SJC$_NQ_WSEXTENT

SJC$_NO_WSQUOT A

This request starts the queue manager; it either opens an existing system job
queue file or creates a new one. You use the
SJC$_QUEUEJILE_SPECIFICATION item code to specify the name of
the job queue file to be used, applying file specification defaults from
SYS$SYSTEM:JBCSYSQUE.DAT. Use of the SJC$_NEW_ VERSION item
code forces the creation of a new system job queue file.

You may specify the following input or Boolean item codes:

SJC$_BUFFER_COUNT

SJC$_EXTEND_QUANTITY

SJC$_NEW _VERSION

SJC$_QUEUE_f ILE _SPECIFICATION

SJC$_QUEMAN_REST ART SJC$_NQ_QUEMAN_REST ART

SJC$_STOP -ACCOUNTING
This request performs two functions. If you specify the
SJC$_ACCOUNTING_TYPES item code, the request disables recording of
the specified types of accounting records. If you do not specify
SJC$_ACCOUNTING_TYPES, the request stops the accounting manager and
closes the system accounting file.

You may specify the following input item code:

SJC$_ACCOUNTING _TYPES

SJC$_STOP_QUEUE
This request prevents the starting of jobs in the specified queue. The
execution of current jobs is unaffected.

You must specify the following input item code:

SJC$_QUEUE

SJC$_STQP _QUEUE_MANAGER
This request shuts down the queue manager: it stops each queue that is
managed by the requesting node; it aborts each job that is currently executing,
requeuing those jobs that are restartable; and closes the system job queue file.
No item codes are allowed.

SJC$_SVNCHRONIZE_JQB
This request waits for the completion of a job, then sets the event flag,
executes the completion AST if you specified astadr, and returns the
completion status of the job to the 1/0 Status Block, provided you specified
the iosb argument.

SYS-455

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SYS-456

You must specify the following input item code:

SJC$_QUEUE

You must specify one of the following input item codes:

SJC$J:NTRY_NUMBER
SJC$_JQB_NAME

SJC$_WRITE_ACCOUNTING
This request writes an accounting record.

You must specify the following input item code:

SJC$_ACCOUNTING_MESSAGE

nullarg
VMS usage: nulLarg
type: longword (unsigned)
access: read only
mechanism: by value

Place-holding argument reserved by DIGITAL.

itmlst
VMS usage: item_list_J
type: longword (unsigned)
access: read only
mechanism: by reference

Item list supplying information to be used in performing the function specified
by the func argument. The itmlst argument is the address of the item list.
The item list consists of one or more item descriptors, each of which specifies
an item code. The item list is terminated by an item code of 0 or by a
longword of 0. The following diagram depicts the structure of a single item
descriptor.

31 15 0

item code l buffer length

buffer address

return length address

ZK-1705-84

$SNDJBC Item Desciiptoi Fields

buffer length
A word specifying the length of the buffer; the buffer either supplies
information to be used by $SNDJBC or receives information from $SNDJBC.
The required length of the buffer varies depending on the item code specified
and is given in the description of each item code.

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

item code
A word containing an item code, which identifies the nature of the
information supplied for use by $SNDJBC or received from $SNDJBC. Each
item code has a symbolic name. The $SJCDEF macro defines these symbolic
names, which have the following format:

SJC$_code

There are three types of item code:

• Boolean item code. Boolean item codes specify a true or false value: the
form SJC$_code specifies a true value; SJC$_NO_code specifies a false
value. For Boolean item codes, the buffer length, buffer address, and
return length fields of the item descriptor must be zero.

• Input value item code. Input value item codes specify an input value to
be used by $SNDJBC. For input value item codes, the buffer length and
buffer address fields of the item descriptor must be nonzero; the return
length field must be zero. Specific buffer length requirements are given
in the description of each item code.

• Output value item code. Output value item codes specify a buffer for
information returned by $SNDJBC. For output value item codes, the
buffer length and buffer address fields of the item descriptor must be
nonzero; the return length field may be zero or nonzero. Specific buffer
length requirements are given in the description of each item code.

Several item codes specify a queue name, form name, or characteristic name.
For these item codes, the buffer must specify a string containing from 1 to 31
characters, exclusive of spaces, tabs, and null characters, which are ignored.
Allowable characters in the string are the uppercase alphabetic characters,
the lowercase alphabetic characters (which are converted to uppercase), the
numeric characters, the dollar sign ($), and the underscore (-)·

buffer address
Address of the buffer that specifies or receives the information.

return length address
Address of a word to receive the length in bytes of information returned by
$SNDJBC. If you specify this address as 0, no length is returned.

$SNDJBC Item Codes

SJC$_ACCOUNT_NAME
The SJC$-.ACCOUNT_N AME item code is an input value item code. It
specifies the account name of the user on behalf of whom the request is made.
The buffer must specify a string from one to eight characters. By default, the
account name for batch and print jobs is taken from the requesting process.

You need CMKRNL privilege to use this item code.

(Valid for SJC$_CREATE_JOB, SJC$J:NTERJILE function codes)

SJC$_ACCOUNTING_MESSAGE
The SJC$-.ACCOUNTING_MESSAGE item code is an input value item
code. It causes the contents of the buffer to be placed in a "user message"
accounting record. The buffer must specify a string from 1 to 255 characters.

(Valid for SJC$_WRITE-.ACCOUNTING function code)

SYS-457

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SYS-458

SJC$_ACCOUNTING_ TVPES
The SJC$_ACCOUNTING_TYPES item code is an input value item code.
It enables or disables accounting-record types. When an accounting-record
type is enabled, the event designated by that type will be recorded in the
accounting record. The buffer must contain a longword bit vector wherein
each bit set specifies an accounting-record type. Undefined bits must be zero.

The $SJCDEF macro defines the symbolic names for the accounting-record
types. Following is a list of each accounting-record type and the system event
to which it corresponds.

Accounting-Record Type

SJC$V_ACCT_IMAGE

SJC$V_ACCT_LQGIN_FAILURE

SJC$V_ACCT_MESSAGE

SJC$V_ACCT _PRINT

SJC$V_ACCT_PROCESS

Corresponding System Event

Image terminations

Login failures

User messages sent

Print job terminations

Process terminations

The following accounting-record types, when enabled, provide additional
information about image and process termination; specifically, they describe
the type of image or process that has terminated.

Accounting-Record Type

SJC$V_ACCT_BATCH

SJC$V_ACCT_DETACHED

SJC$V_ACCT_INTERACTIVE

SJC$V_ACCT_NETVVORK

SJC$V_ACCT_SUBPROCESS

Type of Image or Process

Batch process

Detached process

Interactive process

Network process

Subprocess

(Valid for SJC$_STARL.ACCOUNTING, SJC$_STOP_ACCOUNTING
function codes)

SJC$_AFTER_ TIME
SJC$_NQ_AFTER_ TIME
The SJC$_AFTER_TIME item code is an input value item code. It specifies
that the job can execute only if the system time is greater than or equal to the
quadword time value contained in the buffer. The buffer must contain either
an absolute time value or a delta time value; $SNDJBC converts delta time
values to absolute time values by adding the current system time.

The SJC$_NQ_AFTER_TIME item code is a Boolean item code. It cancels
J.ha ...,.4'.(...,.,..J. ,...., ..,. C:.Trct. /1 P'TP~ 'TT~,fp ;._...,......., ,..,...A...,. ,....,...,;,....,,"1" cnor;fioA +,..,, ... f-'ho ;n.h•
L.ll\ ... \....1..1\,..\..\. V.l. U. UJ'--''f'-.l:1...l. .&..L..!.l'--.1.J..l'f.l..&...I .1.\.\,,...1..1.l '-'\J\.A.\... t'.J."-V.l.VU.i.:1.1.J '1.:J_t''-'-.1..1..1.\,,..U. .&."-'.&.1.1.""' J'V'VJ

the job can execute immediately. It is the default.

(Valid for SJC_ALTER_JOB, SJC_CREATE_JOB, SJC$_ENTERJILE
function codes)

SJC$_ALIGNMENT_MASK
The SJC$_ALIGNMENT_MASK item code is a Boolean item code. It is
meaningful only for output execution queues and only when the
SJC$_ALIGNMENT_P AGES item code is also specified. The
SJC$_ALIGNMENT_MASK item code causes the data printed on form

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

alignment pages to be masked: all alphabetic characters are replaced with the
letter "X" and all numeric characters with the number "9".

(Valid for SJC$_START_QUEUE function code)

SJC$--ALIGNM ENT_PAGES
The SJC$__ALIGNMENT_P AGES item code is an input value item code. It
is meaningful only for output execution queues. It specifies that the queue
be placed in form-alignment state and that a number of alignment pages be
printed. The buffer must contain a longword value in the range 1 to 20; this
value specifies how many alignment pages are to be printed.

(Valid for SJC$_START_QUEUE function code)

SJC$_BASE_PRIORITY
The SJC$_BASE_pRJORITY item code is an input value item code. It
is meaningful only for execution queues. It specifies the base priority of
batch processes initiated from a batch execution queue or of a symbiont
process connected to an output execution queue. A symbiont process can
control several queues; however, the base priority of the symbiont process
is established by the first queue to which it is connected. The buffer must
contain a longword value in the range 0 to 15; this value specifies the base
priority.

By default, the base priority is the value of the SYSGEN parameter DEFPRI.
If the value of DEFPRI is 0, the default base priority is the base priority of the
requesting process.

(Valid for SJC$__ALTER_QUEUE, SJC$_CREATE_QUEUE,
SJC$_START_QUEUE function codes)

SJC$_BATCH
SJC$_NQ_BATCH
The SJC$_BATCH item code is a Boolean item code. It specifies that the
queue is a batch execution queue or a generic batch queue, and thus can
process only batch jobs.

The SJC$_BATCH, SJC$_PRINTER, SJC$_SERVER, and SJC$_TERMINAL
item codes are mutually exclusive. If none of these item codes are specified,
the default is SJC$_PRINTER.

The SJC$_NQ_BATCH item code is a Boolean item code. It specifies that the
queue is not a batch queue but rather an output execution or generic output
queue, and thus can process only print jobs. It is the default.

For the SJC$_START_QUEUE function code, SJC$_BATCH and
SJC$_NO_BATCH are supported now for compatibility with VAX/VMS
Version 4.n, but may not be supported in the future.

(Valid for SJC$_CREATE_QUEUE, SJC$_START_QUEUE function codes)

SJC$_BUFFER_CQUNT
The SJC$_BUFFER_COUNT item code is an input value item code. It
specifies the number of buffers that the job controller should allocate to its
local buffer cache for performing 1/0 operations to the system job queue file.
The buffer must contain a longword integer value in the range 1 through 127
or 0; this value specifies the number of buffers the job controller allocates to
its local buffer cache. If you specify zero, a default value of 50 is used.

(Valid for SJC$_START_QUEUE__MANAGER function code)

SYS-459

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SYS-460

SJC$_CHARACTERISTIC_NAME
SJC$_CHARACTERISTIC_NUMBER
SJC$_NQ_CHARACTERISTICS
The SJC$_CHARACTERISTIC_NAME and
SJC$_CHARACTERISTIC_NUMBER item codes are both input value item
codes. Both specify characteristics for jobs or queues, and they may be used
interchangeably. The characteristics are user defined.

The SJC$_DEFINE_CHARACTERISTIC and
SJC$_DELETE_CHARACTERISTIC function codes include and delete,
respectively, a specified characteristic from the system job queue file. A
job cannot execute on an execution queue unless the queue possesses all
the characteristics possessed by the job; the queue may possess additional
characteristics and the job will still execute.

The SJC$_CHARACTERISTIC_NAME and
SJC$_CHARACTERISTIC_NUMBER item codes may appear as many times
as necessary in a single call to $SNDJBC; the set of characteristics so defined
in the call completely replaces the set of characteristics defined by a prior
call. The SJC$_NO_CHARACTERISTICS item code cancels all defined
characteristics for the job or queue. By default, a queue or job has no defined
characteristics.

The string may contain uppercase or lowercase characters (lowercase are
converted to uppercase), numeric characters, dollar signs ($), and underscores
(-). If the string is a logical name, SYS$SNDJBC translates it iteratively until
the equivalence string is found or the number of translations allowed by the
system has been performed. The maximum length of the final character string
is 31 characters; spaces, tabs, and null characters are ignored.

For SJC$_CHARACTERISTIC_NUMBER, the buffer must contain a longword
value in the range 0 to 127. This number identifies a characteristic.

SJC$_NQ_CHARACTERISTICS is a Boolean item code.

(For SJC$_CHARACTERISTIC_NAME: Valid for SJC$_ALTER-JOB,
SJC$_ALTER_QUEUE, SJC$_CREATE_JOB, SJC$_CREATE_QUEUE,
SJC$_DEFINE_CHARACTERISTIC, SJC$_DELETE_CHARACTERISTIC,
SJC$_ENTERJILE, SJC$_START_QUEUE function codes)

(For SJC$_CHARACTERISTIC_NUMBER: Valid for SJC$_ALTER_JOB,
SJC$_ALTER_QUEUE, SJC$_CREATE_JOB, SJC$_CREATE_QUEUE,
SJC$_DEFINE_CHARACTERISTIC, SJC$_ENTERJILE,
SJC$_START_QUEUE function codes)

SJC$_CHECKPOI NT_DATA
SJC$_NQ_CHECKPOINT_DATA
The SJC$_CHECKPOINT_DATA item code is an input value item code. It
specifies the value of the DCL symbol BATCH$RESTART for a batch job that
is restarted. The buffer must contain a string no longer than 255 characters;
this string is the value of the symbol BATCH$RESTART.

The SJC$_NO_CHECKPOINT_DATA item code is a Boolean item code. It
cancels a previous specification of the BATCH$RESTART symbol; the
SJC$_NQ_CHECKPOINT_DATA item code also cancels a checkpoint in a
print job so that the entire job is reprinted. By default, the BATCH$RESTART
symbol is undefined.

(Valid for SJC$_BATCH_CHECKPOINT function code)

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SJC$_CLI
SJC$_NQ_CLI
The SJC$_CLI item code is an input value item code. It is meaningful only
for batch jobs. It specifies that the command language interpreter to be
executed is SYS$SYSTEM:name.EXE, where name is a valid RMS file name.
The buffer must specify a name string from 1 to 39 characters.

The SJC$__NO_CLI item code is a Boolean item code. It specifies that the
command language interpreter to be executed is the one specified in the user
authorization file. It is the default.

(Valid for SJC$-AL TER_JOB, SJC$_CREATE_JOB, SJC$_ENTERJILE
function codes)

SJC$_CLOSE_QUEUE
The SJC$_CLOSE_QUEUE item code is a Boolean item code. It specifies
that jobs cannot be entered in the queue. If the queue is closed, you can
specify the SJC$_0PEN _QUEUE item code to permit jobs to be entered in
the queue. By default, the queue is open.

Whether a queue is open or closed is independent of any other queue states
(such as paused, stalled, stopped).

(Valid for SJC$-ALTER_QUEUE, SJC$_CREATE_QUEUE,
SJC$_START_QUEUE function codes)

SJC$_CPU_DEFAULT
SJC$_NQ_CPU_DEFAULT
The SJC$_CPU_DEFAULT item code is an input value item code. It is
meaningful only for batch execution queues. It specifies the default CPU time
limit in 10-millisecond units. The buffer contains this longword value. The
value 0 specifies unlimited CPU time. You can specify a value that represents
up to 497 days of CPU time.

The SJC$_NQ_CPU_DEFAULT item code is a Boolean item code. It is
meaningful only for batch execution queues. It specifies that no default CPU
time limit is to apply to the job. It is the default.

A CPU time limit for the process is included in each user record in the system
user authorization file (UAF). You can also specify any or all of the following:
a CPU time limit for individual jobs, a default CPU time limit for all jobs
in a given queue, and a maximum CPU time limit for all jobs in a given
queue. Table SYS-7 shows the action taken when you specify a value for
SJC$_CPU_DEFAULT.

SYS-461

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SYS-462

Table SYS-7 CPU Time Limit Decision Table

CPU Time Limit
Specified for
Job?

No

Yes

Yes

Yes

Yes

No

No

No

Default CPU Time
Limit Specified for
Queue?

No

No

Yes

No

Yes

Yes

No

Yes

Maximum CPU
Time Specified
for Queue?

No

No

No

Yes

Yes

Yes

Yes

No

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE,
SJC$_START_QUEUE function codes)

SJC$_CPU_LI MIT
SJC$_NQ_CPU_LI MIT

Action Taken

Use UAF value

Use smaller of
job's limit and
UAF value

Use smaller of
job's limit and
UAF value

Use smaller of
job's limit and
maximum

Use smaller of
job's limit and
maximum

Use smaller
of queue's
default and
maximum

Use maximum

Use smaller
of UAF value
and queue's
default

The SJC$_CPU_LIMIT item code is an input value item code. It is
meaningful only for batch execution queues and batch jobs. It specifies
the maximum CPU time limit for batch jobs in 10 millisecond units. The
buffer must contain this longword value. The value 0 specifies unlimited
CPU time. You can specify a value that represents up to 497 days of CPU
time.

The SJC$_NQ_CPU_LIMIT item code is a Boolean item code. It is
meaningful only for batch execution queues and batch jobs. It specifies
that no maximum CPU time limit is to apply to the job. It is the default.

For information about the action taken when you specify a value for
SJC$_CPU_LIMIT, refer to the description of the SJC$_CPU_DEFAULT item
code and to Table SYS-7.

(Valid for SJC$_AL TER_JOB, SJC$_AL TER_QUEUE,
SJC$_CREATE_JQB, SJC$_CREATE_QUEUE, SJC$_ENTERJILE,
SJC$_START_QUEUE function codes)

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SJC$_CREATE_START
The SJC$_CREATE_START item code is a Boolean item code. It specifies
that a queue be started after it is created. By default, a queue remains stopped
after it is created.

(Valid for SJC$_CREATE_QUEUE function code)

SJC$_DEFAULT_FQRM_NAME
SJC$_DEFAUL T_FQRM_NUMBER
The SJC$_DEFAULT_FORM_NAME and
SJC$_DEFAULT_FORM_NUMBER item codes are input value item codes.
They specify the default form for a specific output queue by name and by
number, respectively.

When you specify a default form for an output queue, the queue uses the
queue-specific default form, rather than the systemwide default form, to
process any job that does not explicitly specify a form.

For SJC$_DEFAULT_FORM_NAME, the buffer must specify a form name.
The string may contain uppercase or lowercase characters (lowercase are
converted to uppercase), numeric characters, dollar signs ($), and underscores
(-)· If the string is a logical name, SYS$SNDJBC translates it iteratively until
the equivalence string is found or the number of translations allowed by the
system has been performed. The maximum length of the final character string
is 31 characters; spaces, tabs, and null characters are ignored.

For SJC$_DEFAULTJORM_NUMBER, the buffer must specify a longword
value. You should use only one of these item codes to identify a default form
for the queue.

(Valid for SJC$_A.LTER_QUEUE, SJC$_CREATE_QUEUE,
SJC$_START_QUEUE function codes)

SJC$_DELETE_FILE
SJC$_NQ_OELETE_FILE
The SJC$_DELETE_FILE item code is a Boolean item code. It specifies that
a file should be deleted after the job completes. The file that is deleted is the
batch or print file submitted for execution. You cannot specify this item code
with the SJC$_A.LTER_JOB function code, which alters the parameters for an
already existing job; you can make a file deletion request only when a job is
first submitted to the queue.

The SJC$_NO_DELETE_FILE item code is a Boolean item code. It specifies
that a file should not be deleted after execution of the job. It is the default.
You can specify this item code with the SJC$_A.LTER_JOB function code;
this makes it possible to cancel a file deletion request that was made when
the job was first submitted to the queue.

(Valid for SJC$_A.DD_FILE, SJC$_ENTER_FILE function codes)

SJC$_DESTINATIQN_QUEUE
The SJC$_DESTINATION _QUEUE item code is an input value item code.
When you specify the SJC$_ASSIGN _QUEUE function code,
SJC$_DESTINATION _QUEUE specifies the name of the execution queue to
which the logical queue is assigned. When you specify the
SJC$_ABORT_JOB, SJC$_A.L TER_JOB, or SJC$_MERGE_QUEUE function
code, SJC$_DESTINATION _QUEUE specifies the name of the queue into
which jobs are placed. By default, jobs remain in the original queue.

SYS-463

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SYS-464

The string may contain uppercase or lowercase characters (lowercase are
converted to uppercase), numeric characters, dollar signs ($), and underscores
(-)· If the string is a logical name, SYS$SNDJBC translates it iteratively until
the equivalence string is found or the number of translations allowed by the
system has been performed. The maximum length of the final character string
is 31 characters; spaces, tabs, and null characters are ignored.

(Valid for SJC$_ABORT_JOB, SJC$_ALTER_JOB, SJC$_ASSIGN_QUEUE,
and SJC$_MERGE_QUEUE function codes)

SJC$_DEVICE_NAME
The SJC$_DEVICE_NAME item code is an input value item code. It specifies
the name of the device managed by the output execution queue. The buffer
must specify a string from 1 to 31 characters. In a VAXcluster environment,
the SJC$_SCSNODE item code is used to specify the name of the node on
which the device is located.

(Valid for SJC$_CREATE_QUEUE, SJC$_START_QUEUE function codes)

SJC$_DQUBLE_SPACE
SJC$_NQ_DQUBLE_SPACE
The SJC$_DOUBLE_SP ACE item code is a Boolean item code. It is
meaningful only for output execution queues. It specifies that the symbiont
should print the file with double spacing.

The SJC$_NQ_DQUBLE_SP ACE item code is a Boolean item code. It
specifies that the symbiont should print the file with single spacing. It is the
default.

(Valid for SJC$_ADD_FILE, SJC$_ALTER_JOB, SJC$_ENTER_FILE
function codes)

SJC$_ENTRV_NUMBER
The SJC$_ENTRY_NUMBER item code is an input value item code. It
specifies the entry number of the job on which to perform the function. The
buffer must contain this entry number.

(Valid for SJC$_ABORT_JOB, SJC$_ALTER_JOB, SJC$_DELETE_JOB,
SJC$_SYNCHRONIZE function codes)

SJC$_ENTRV_NUMBER_QUTPUT
The SJC$_ENTRY_NUMBER_OUTPUT item code is an output value item
code. The buffer must specify a longword into which $SNDJBC will write the
entry number of a created job.

(Valid for SJC$_CREATE_JOB, SJC$_ENTER_FILE function codes)

SJC$_EXTEND_QUANTITY
The SJC$_EXTEND_QUANTiTY item code is an input value item code. It
specifies the system job queue file extension size in blocks. This extension
size is used when the queue file is extended. This value is also used to
establish an initial allocation size for the queue file when it is created. The
buffer must contain a longword integer value in the range 10 through 65 ,535,
or 0. This value specifies the number of blocks by which the queue should
be extended. The default value is 100 blocks. If you specify the value 0, the
default size is used.

(Valid for SJC$_START_QUEUE_MANAGER function code)

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SJC$_FILE_BURST
SJC$_FILE_BURST_QNE
SJC$_NQ_FILE_BURST
The SJC$JILE_BURST item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that burst and flag pages are
to be printed preceding a file. If you specify SJC$JILE_BURST for a job,
it specifies the default for all files in the job; if you specify it for an output
execution queue, it specifies the default for all jobs executed from that queue.

The SJC$JILE_BURST_ONE item code is a Boolean item code. It is
meaningful only for output execution queues. It specifies that a burst page is
to be printed preceding a file. If you specify SJC$JILE_BURST_ONE for a
job, this item code specifies that a burst page is to be printed preceding only
the first copy of the first file in the job; if you specify
SJC$JILE_BURST_ONE for an output execution queue, the item code
specifies this behavior as the default for all jobs executed from that queue.

The SJC$_NOJILE_BURST item code is a Boolean item code. It is
meaningful only for output execution queues. It specifies that no burst
page should be printed. It is the default.

(For SJC$JILE_BURST: Valid for SJC$_ADDJILE, SJC$_AL TER_JQB,
SJC$_ALTER_QUEUE, SJC$_CREATE_JOB, SJC$_CREATE_QUEUE,
SJC$_ENTERJILE, SJC$_START_QUEUE function codes)

(For SJC$JILE_BURST_ONE: Valid for SJC$_ALTER_QUEUE,
SJC$_CREATE_JQB, SJC$_CREATE_QUEUE, SJC$_START_QUEUE
function codes)

SJC$_FILE_COPIES
The SJC$JILE_CQPIES item code is an input value item code. It is
meaningful only for output execution queues. It specifies the number of
times a file is printed. By default, a file is repeated once. The buffer must
specify a longword value from 1 to 255; this value is the repeat count.

(Valid for SJC$_ADDJILE, SJC$_ALTER_JQB, SJC$_ENTERJILE
function codes)

SJC$_FILE_FLAG
SJC$_FILE_FLAG_QNE
SJC$_NQ_FILE_fLAG
The SJC$JILEJLAG item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that a flag page is to be printed
preceding a file. If you specify SJC$JILEJLAG for a job, this item code
indicates the default for all files in the job; if you specify it for an output
execution queue, SJC$JILE_FLAG indicates the default for all jobs executed
from that queue.

The SJC$_FILEJLAG_ONE item code is a Boolean item code. It is
meaningful only for output execution queues. It specifies that a flag page
is to be printed preceding a file. If you specify SJC$JILEJLAG_ONE for
a job, this item code specifies that a flag page is to be printed preceding only
the first copy of the first file in the job; if you specify
SJC$JILE_FLAG_ONE for an output execution queue, it indicates this
behavior as the default for all jobs executed from that queue.

The SJC$_NOJILE_FLAG item code is a Boolean item code. It is
meaningful only for output execution queues. It specifies that no flag page
should be printed by default for jobs within the queue.

SYS-465

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SYS-466

(For SJC$_FILE_FLAG: Valid for SJC$_ADD_FILE, SJC$_ALTER_JOB,
SJC$_ALTER_QUEUE, SJC$_CREATE_JOB, SJC$_CREATE_QUEUE,
SJC$_ENTER_FILE, SJC$_START_QUEUE function codes)

(For SJC$_FILE_FLAG_ONE: Valid for SJC$_ALTER_QUEUE,
SJC$_CREATE_JOB, SJC$_CREATE_QUEUE, SJC$_START_QUEUE
function codes)

SJC$_FILE_IDENTIFICATION
The SJC$_FILE_IDENTIFICATION item code is an input value item code.
It specifies the file to be processed. The buffer contains a 28-byte value that
identifies the file to be processed. This value specifies (in order) the following
three file-identification fields in the RMS NAM block: the 16-byte
NAM$T_DVI field, the 6-byte NAM$W_FID field, and the
6-byte NAM$W_DID field. These fields occur consecutively, in the NAM
block.

If you specify SJC$JILE_IDENTIFICATION, you must omit the
SJC$JILE_SPECIFICATION item code.

(Valid for SJC$_ADD_FILE, SJC$_ENTER_FILE function codes)

SJC$_FILE_SETUP_MODULES
SJC$_NQ_FILE_SETUP_MQDULES
The SJC$JILE_SETUP_MODULES item code is an input value item code. It
is meaningful only for output execution queues. It specifies that a list of text
modules should be extracted from the device control library and copied to the
printer before a file is printed. The buffer must contain a list of text module
names, with a comma separating each name.

The SJC$_NQ_FILE_SETUP_MODULES item code is a Boolean item code.
It is meaningful only for output execution queues. It specifies that no text
modules should be copied before printing a file. It is the default.

(Valid for SJC$_ADD_FILE, SJC$_AL TER_JOB, SJC$_ENTER_FILE
function codes)

SJC$_FILE_SPECIFICATION
The SJC$JILE_SPECIFICATION item code is an input value item code.
It identifies the file to be processed. The buffer must contain the file
specification of the file to be processed. The $SNDJBC service converts
the file specification to the corresponding file identification and proceeds as
if the SJC$JILE_IDENTIFICATION item code had been specified. If you
specify SJC$JILE_SPECIFICATION, you must omit the
SJC$_FILE_IDENTIFICATION item code.

(Valid for SJC$_ADDJILE, SJC$_ENTER_FILE function codes)

~II"~ Cll C TDAll CD
.,;,'1'-'"'1-1 I L..L..- I l'r"\I L..L..11

SJC$_FILE_ TRAILER_ONE
SJC$_NQ_FILE_ TRAILER
The SJC$_FILE_TRAILER item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that a trailer page is to be
printed following a file. If you specify SJC$_FILE_TRAILER for a job, this
item code indicates the default for all files in the job; if you specify it for an
output execution queue, SJC$JILE_TRAILER specifies the default for all
jobs executed on that queue.

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

The SJC$_FILE_TRAILER_QNE item code is a Boolean item code. It is
meaningful only for output execution queues. It specifies that a trailer page
is to be printed following a file. If you specify SJC$_FILE_TRAILER_ONE
for a job, this item code indicates that a trailer page is to be printed following
only the last copy of the last file in the job; if you specify it for an output
execution queue, SJC$_FILE_TRAILER_ONE indicates this behavior as the
default for all jobs executed on that queue.

The SJC$__NQ_FILE_TRAILER item code is a Boolean item code. It is
meaningful only for output execution queues. It specifies that no trailer page
should be printed. It is the default.

(For SJC$_FILE_TRAILER: Valid for SJC$_ADDJILE,
SJC$_AL TER_JOB, SJC$__A.L TER_QUEUE, SJC$_CREATE_JOB,
SJC$_CREATE_QUEUE, SJC$-E:NTERJILE, SJC$_START_QUEUE
function codes)

(For SJC$_FILE_TRAILER_QNE: Valid for SJC$__A.LTER_QUEUE,
SJC$_CREATE_JQB, SJC$_CREATE_QUEUE, SJC$_START_QUEUE
function codes)

SJC$_flRST_PAGE
SJC$_NQ_flRST_PAGE
The SJC$JIRST_p AGE item code is an input value item code. It is
meaningful only for jobs queued to output execution queues. It specifies
the page number at which printing should begin. The buffer must contain a
nonzero longword value specifying this page number.

The SJC$__NO_FIRST_p AGE item code is a Boolean item code. It is
meaningful only for jobs queued to output execution queues. It specifies
that printing should begin with the first page. It is the default.

(Valid for SJC$_ADDJILE, SJC$__A.L TER_JOB, SJC$-E:NTERJILE
function codes)

SJC$_fQRM_DESCRIPTION
The SJC$_FORM_DESCRIPTION item code is an input value item code. It
provides operator-supplied information describing the form. By default, the
form name is used. The buffer must specify a string of no more than 255
characters.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_fQRM_LENGTH
The SJC$_FORM_LENGTH item code is an input value item code. It
specifies the physical length of the form in lines. The buffer must contain
a nonzero longword integer value. By default, the form length is 66 lirres.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_fQRM_MARGI N_BQTTOM
The SJC$JORM_MARGIN _BOTTOM item code is an input value item
code. It specifies the bottom margin of the form in lines. By default, the
bottom margin is 6 lines.

(Valid for SJC$_DEFINEJORM function code)

SYS-467

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SYS-468

SJC$_f QRM _MARG IN _LE FT
The SJC$JORM_MARGIN _LEFT item code is an input value item code. It
specifies the width of the left margin of the form in characters. By default,
the left margin is 0. The buffer must specify a longword value.

(Valid for SJC$_DEFINEJORM function code)

SJC$_FQRM_MARGIN_RIGHT
The SJC$JORM_MARGIN _RIGHT item code is an input value item code.
It specifies the width of the right margin of the form in characters. By default,
the right margin is 0. The buffer must specify a longword value.

(Valid for SJC$_DEFINEJORM function code)

SJC$_FORM_MARGIN_ TQP
The SJC$JORM_MARGIN_TOP item code is an input value item code. It
specifies the top margin of the form in lines. By default, the top margin is 0.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_FQRM_NAME
SJC$_FORM_NUMBER
The SJC$JORM_NAME and SJC$_FQRM_NUMBER item codes are input
value item codes. They specify a mounted form for the queue by name and
by number, respectively. For SJC$JORM_NAME, the buffer must specify a
form name. For SJC$JORM_NUMBER, the buffer must specify a longword
value. You should use only one of these two item codes to identify a form in
queue- and job-related function codes.

The SJC$_DEFINE_FORM and SJC$_DELETE_FORM function codes
include and delete a specified form name and number, respectively, from
the system job queue file. The mounted form indicates the stock type of the
output queue. A job cannot execute on an output queue unless the stock
type of the form specified (by name or number) for the job item code is the
same as the stock type of the mounted form specified for the queue. For more
information about how the stock type of a form affects job processing, see the
Guide to Maintaining a VMS System.

The string may contain uppercase or lowercase characters (lowercase are
converted to uppercase), numeric characters, dollar signs ($), and underscores
(_). If the string is a logical name, SYS$SNDJBC translates it iteratively until
the equivalence string is found or the number of translations allowed by the
system has been performed. The maximum length of the final character string
is 31 characters; spaces, tabs, and null characters are ignored.

(For SJC$_FORM_NAME: Valid for SJC$-AL TER_JOB,
SJC$-ALTER_QUEUE, SJC$_CREATE_JOB, SJC$_CREATE_QUEUE,
SJC$_DEFINEJORM, SJC$_DELETEJORM, SJC$_ENTERJILE,
SJC$_START_QUEUE function codes)

(For SJC$JORM_NUMBER: Valid for SJC$-ALTER_JOB,
SJC$-ALTER_QUEUE, SJC$_CREATE_JOB, SJC$_CREATE_QUEUE,
SJC$_DEFINE_FORM, SJC$_ENTERJILE, SJC$_START_QUEUE function
codes)

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SJC$_FQRM_SETUP_MQDULES
SJC$_NQ_FQRM_SETUP_MQDULES
The SJC$JORM_SETUP_MODULES item code is an input value item code.
The buffer must specify one or more text module names, with a comma
separating each name. This item code specifies that these modules should be
extracted from the device control library and copied to the printer before each
file that is printed on the form.

The SJC$_NOJORM_SETUP_MODULES item code is a Boolean item code.
It specifies that no device control modules should be copied. It is the default.

(Valid for SJC$_DEFINEJORM function code)

SJC$_FQRM_SHEET_FEED
SJC$_NQ_FQRM_SHEET_FEED
The SJC$JORM_SHEETJEED item code is a Boolean item code. It
specifies that the symbiont should pause at the end of each physical page
so that a new sheet may be inserted.

The SJC$_NOJORM_SHEETJEED item code is a Boolean item code.
It specifies that the output symbiont should not pause at the end of every
physical page. It is the default.

(Valid for SJC$_DEFINE_FQRM function code)

SJC$_FQRM_STOCK
The SJC$JORM_STOCK item code is an input value item code. It specifies
a name for the paper stock. The buffer must contain a string of 1 to 31
characters. By default, the name of the paper stock is the form name.

(Valid for SJC$_DEFINEJORM function code)

SJC$_FQRM_TRUNCATE
SJC$_NQ_FORM_TRUNCATE
The SJC$JORM_ TRUNCATE item code is a Boolean item code. It specifies
that the symbiont should truncate lines that extend beyond the right margin.
Specifying SJC$_FORM_TRUNCATE cancels SJC$JORM_WRAP. The
SJC$JORM_TRUNCATE item code is the default.

The SJC$_NOJORM_TRUNCATE item code is a Boolean item code. It
specifies that the output symbiont should not truncate lines that extend
beyond the right margin.

(Valid for SJC$_DEFINEJORM function code)

SJC$_FQRM_WIDTH
The SJC$JORM_WIDTH item code is an input value item code. It specifies
the physical width of the form in characters. The buffer must contain a
nonzero longword integer. By default, the form width is 132 characters.

SJC$_FQRM_WRAP
SJC$_NQ_FORM_WRAP
The SJC$_FORM_WRAP item code is a Boolean item code. It specifies
that the symbiont should wrap lines that extend beyond the right margin.
Specifying SJC$JORM_WRAP cancels SJC$_FQRM_TRUNCATE.

SYS-469

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SYS-470

The SJC$_NOJORM_ WRAP item code is a Boolean item code. It specifies
that the output symbiont should not wrap lines. It is the default.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_GENERIC_QUEUE
SJC$_NQ_GENERIC_QUEUE
The SJC$_GENERIC_QUEUE item code is a Boolean item code. It specifies
that a queue is a generic queue.

The SJC$_NQ_GENERIC_QUEUE item code is a Boolean item code. It
specifies that a queue is not a generic queue. It is the default. By default, a
queue is an execution queue; see the Description section for a full discussion
of the types of queue.

(Valid for SJC$_CREATE_QUEUE, SJC$_START_QUEUE function codes)

SJC$_GENERIC_SELECTION
SJC$_NQ_GENERIC_SELECTION
The SJC$_GENERIC_SELECTION item code is a Boolean item code. It
specifies that an execution queue can accept jobs from a generic queue. It is
the default. It is meaningful only for execution queues.

The SJC$_NO_GENERIC_SELECTION item code is a Boolean item code. It
specifies that an execution queue cannot accept jobs from a generic queue.

(Valid for SJC$_AL TER_QUEUE, SJC$_CREATE_QUEUE,
SJC$_START_QUEUE function codes)

SJC$_GENERIC_ TARGET
The SJC$_GENERIC_TARGET item code is an input value item code.
The buffer must specify a queue name. This queue name identifies an
execution queue that can accept jobs from a generic queue. This item code is
meaningful only for generic queues.

This item code can appear up to 124 times in a single call to $SNDJBC. The
set of queues defined in a single call completely replaces the set defined by a
prior call.

The string may contain uppercase or lowercase characters (lowercase are
converted to uppercase), numeric characters, dollar signs ($), and underscores
(_). If the string is a logical name, SYS$SNDJBC translates it iteratively until
the equivalence string is found or the number of translations allowed by the
system has been performed. The maximum length of the final character string
is 31 characters; spaces, tabs, and null characters are ignored.

(Valid for SJC$_CREATE_QUEUE, SJC$_START_QUEUE function codes)

SJC$_HOLD
SJC$_NQ_HOLD
The SJC$_HOLD item code is a Boolean item code. It specifies that a job
cannot execute and must enter a holding status.

The SJC$_NQ_HOLD item code is a Boolean item code. It specifies that a
job can execute immediately when used with the SJC$_AL TER_JOB function
code. It makes the following types of job eligible for execution: (1) a job that
is holding because it was specified with the SJC$_HOLD item code, (2) a
job that was refused by the symbiont, and (3) a job that was retained after

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

execution. It is the default. SJC$_NO_HOLD does not release a job that is
specified with the SJC$_AFTER_ TIME item code.

(Valid for SJC$_ABORT_JOB, SJC$_ALTER_JOB, SJC$_CREATE_JOB,
SJC$_ENTER_FILE function codes)

SJC$_JQB_BURST
SJC$_NQ_JQB_BURST
The SJC$_JQB_BURST item code is a Boolean item code. It specifies that
burst and flag pages are to be printed preceding each job. It is meaningful
only for output execution queues.

The SJC$_NQ_JQB_BURST item code is a Boolean item code. It specifies
that a burst page is not to be printed preceding each job. It is meaningful
only for output execution queues. It is the default.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE,
SJC$_START_QUEUE function codes)

SJC$_JQB_COPIES
The SJC$_JQB_COPIES item code is an input value item code. It specifies
the number of times that the entire print job is to be repeated. The buffer
must contain this nonzero longword integer value. By default, the print job is
repeated once.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE
function codes)

SJC$_JQB_FLAG
SJC$_NQ_JQB_FLAG
The SJC$_JOBJLAG item code is a Boolean item code. It specifies that a
flag page is to be printed preceding each job. It is meaningful only for output
execution queues.

The SJC$_NQ_JQB_FLAG item code is a Boolean item code. It specifies that
a flag page is not to be printed preceding each job. It is meaningful only for
output execution queues. It is the default.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE,
SJC$_START_QUEUE function codes)

SJC$_JQB_LIMIT
The SJC$_JQB_LIMIT item code is an input value item code. It specifies the
maximum number of jobs that can execute simultaneously on a queue. The
buffer must contain a longword value in the range 1 to 255. It is meaningful
only for batch execution queues. By default, the job limit is 1.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE,
SJC$_START_QUEUE function codes)

SJC$_JQB_NAME
The SJC$_JQB_NAME item code is an input value item code. It specifies the
name of a job. The buffer must specify a string from 1 to 39 characters.

For function codes SJC$_ENTER_FILE, SJC$_CREATE_JOB, and
SJC$_ALTER_JOB, SJC$_JQB_NAME specifies the identifying name of the
job. By default, the name used is the name of the first file in the job.

SYS-471

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SYS-472

For function code SJC$_SYNCHRONIZE_JOB, SJC$_JOB_NAME specifies
the name of the job on which to operate. The job name is implicitly qualified
by the user name.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE,
SJC$_SYNCHRONIZE function codes)

SJC$_JQB_RESET_MQDULES
SJC$_NQ_JQB_RESET_MQDULES
The SJC$_JOB_RESET_MODULES item code is an input value item code. It
is meaningful only for output execution queues. The buffer must specify the
names of one or more text modules, with a comma separating each name.
This item code specifies that these modules are to be extracted from the
device control library and copied to the printer before each print job.

The SJC$_NO_JQB_RESET_MODULES item code is a Boolean item code.
It specifies that no text modules should be copied to the printer. It is the
default.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE,
SJC$_START_QUEUE function codes)

SJC$_JQB_SIZE_MAXIMUM
SJC$_NQ_JQB_SIZE_MAXIMUM
The SJC$_JQB_SIZE__MAXIMUM item code is an input value item code. It
is meaningful only for output execution queues. It specifies that a print job
can execute only if its total size in blocks is less than or equal to the specified
value. The buffer specifies this nonzero longword value.

The SJC$_NO_JOB_SIZE_MAXIMUM item code is a Boolean item code. It
specifies that a print job can execute immediately regardless of its size. It is
the default.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE,
SJC$_START_QUEUE function codes)

SJC$_JQB_SIZE_MINIMUM
SJC$_NQ_JQB_SIZE_MINIMUM
The SJC$_JOB_SIZE_MINIMUM item code is an input value item code. It is
meaningful only for output execution queues. It specifies that a print job can
execute only if its total size in blocks is greater than or equal to the specified
value. The buffer specifies this nonzero longword value.

The SJC$_NO_JOB_SIZE_MINIMUM item code is a Boolean item code. It
specifies that a print job can execute immediately regardless of its size. It is
the default.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE,

SJC$_JQB_SIZE_SCHEDULING
SJC$_NQ_JQB_SIZE_SCHEDULING
The SJC$_JQB_SIZE_SCHEDULING item code is a Boolean item code.
It specifies that print jobs entered in an output execution queue should
be scheduled according to size, with the smallest job of a given priority
processed first. It is the default.

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

The SJC$_NO_JQB_SIZE_SCHEDULING item code is a Boolean item
code. It specifies that print jobs of a given priority should not be scheduled
according to print size.

Changing the value of this item code for a queue while print jobs are pending
on any queue produces unpredictable results.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE,
SJC$_START_QUEUE function codes)

SJC$_JQB_STATUS_OUTPUT
The SJC$_JOB_STATUS_OUTPUT item code is an output value item code.
When specified, $SNDJBC returns, as a character string, a textual message
describing the status of a submitted job. Because the message can include up
to 255 characters, the buffer length field of the item descriptor should specify
255 (bytes).

(Valid for SJC$_CLOSE_JOB, SJC$__ENTER_FILE function codes)

SJC$_JQB_ TRAILER
SJC$_NQ_JQB_ TRAILER
The SJC$_JOB_TRAILER item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that a trailer page is to be
printed following each job.

The SJC$__NO_JQB_TRAILER item code is a Boolean item code. It is
meaningful only for output execution queues. It specifies that a trailer page is
not to be printed following each job. It is the default.

(Valid for SJC$_AL TER_QUEUE, SJC$_CREATE_QUEUE,
SJC$_START_QUEUE function codes)

SJC$_LAST_PAGE
SJC$_NQ_LAST_PAGE
The SJC$_LAST_pAGE item code is an input value item code. It is
meaningful only for jobs submitted to output execution queues. It specifies
the page number at which printing should end. The buffer specifies this
nonzero longword value.

The SJC$__NO_LAST_P AGE item code is a Boolean item code. It specifies
that printing should end after the last page. It is the default.

(Valid for SJC$_ADD_FILE, SJC$_AL TER_JOB, SJC$__ENTER_FILE
function codes)

SJC$_LIBRARV_SPECIFICATION
SJC$_NQ_LIBRARV_SPECIFICATION
The SJC$_LIBRARY_SPECIFICATION item code is an input value item code.
It is meaningful only for output execution queues. It specifies that the device
control library for the queue is SYS$LIBRARY:name.TLB, where name is a
valid RMS file name. The buffer must specify the RMS file name.

The SJC$__NO_LIBRARY_SPECIFICATION item code is a Boolean item code.
It specifies that the device control library is SYS$LIBRARY:SYSDEVCTL.TLB.
It is the default.

(Valid for SJC$_CREATE_QUEUE, SJC$_START_QUEUE function codes)

SYS-473

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SVS-474

SJC$_LQG_DELETE
SJC$_NQ_LQG_DELETE
The SJC$_LQG_DELETE item code is a Boolean item code. It specifies that
the log file produced for a batch job is to be deleted. It is meaningful only for
batch jobs. It is the default.

The SJC$_NQ_LQG_DELETE item code is a Boolean item code. It specifies
that the log file produced for a batch job is not to be deleted.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE
function codes)

SJC$_LQG_QUEUE
The SJC$_LQG_QUEUE item code is an input value item code. It is
meaningful only for batch jobs. It specifies the queue into which the log
file produced for the batch job is entered for printing. The buffer must
specify the name of the queue. By default, the log file is entered in queue
SYS$PRINT.

The string may contain uppercase or lowercase characters (lowercase are
converted to uppercase), numeric characters, dollar signs ($), and underscores
(-)· If the string is a logical name, SYS$SNDJBC translates it iteratively until
the equivalence string is found or the number of translations allowed by the
system has been performed. The maximum length of the final character string
is 31 characters; spaces, tabs, and null characters are ignored.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE
function codes)

SJC$_LQG_SPECIFICATION
SJC$_NQ_LQG_SPECIFICATION
The SJC$_LQG_SPECIFICATION item code is an input value item code.
It is meaningful only for batch jobs. It specifies the file specification of the
log file produced for a batch job. The buffer must contain this RMS file
specification. Omitted fields in the file specification are supplied from the
default file specification SYS$LOGIN:name.LOG, where name is the job
name. By default a log file is produced using this default file specification to
generate the log file name.

The SJC$_NQ_LQG_SPECIFICATION item code is a Boolean item code. It
specifies that no log file should be produced for the batch job.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTERJILE
function codes)

SJC$_LQG_SPOOL
SJC$_NQ_LQG_SPOOL
The SJC$_LQG_SPOOL item code is a Boolean item code. It specifies that
the log file produced for a batch job is to be printed. it is meaningful only for
batch jobs. It is the default.

The SJC$_NQ_LQG_SPOOL item code is a Boolean item code. It specifies
that the log file for a batch job is not to be printed.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTERJILE
function codes)

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SJC$_LQWERCASE
SJC$_NQ_LOWERCASE
The SJC$_LOWERCASE item code is a Boolean item code. It specifies that a
job can execute only on a device that has the LOWERCASE device-dependent
characteristic. It is meaningful only for jobs submitted to output execution
queues.

The SJC$_NO_LOWERCASE item code is a Boolean item code. It specifies
that a job can execute whether or not the output device has the LOWERCASE
device-dependent characteristic. It is the default.

(Valid for SJC$_AL TER_JOB, SJC$_CREATE_JOB, SJC$_ENTERJILE
function codes)

SJC$_NEW_VERSION
The SJC$_NEW_ VERSION item code is a Boolean item code. It specifies
that a new version of the system job queue file or system accounting file is to
be created, whether or not the file already exists. By default, the system job
queue file or accounting file is created only if it does not already exist.

(Valid for SJC$_START_ACCOUNTING, SJC$_START_QUEUE_MANAGER
function codes)

SJC$_NEXT_JQB
The SJC$_NEXT_JOB item code is a Boolean item code. It is meaningful
only for output execution queues. It specifies that the current job should be
aborted and that printing should be resumed with the next job.

(Valid for SJC$_START_QUEUE function code)

SJC$_NOTE
SJC$_NQ_NOTE
The SJC$_NOTE item code is an input value item code. It is meaningful only
for output execution queues. It specifies a string to be printed on the job flag
and file flag pages. The buffer must specify this string.

The SJC$_NO_NOTE item code is a Boolean item code. It specifies that no
string is to be printed on the job flag and file flag pages. It is the default.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTERJILE
function codes)

SJC$_NQTIFY
SJC$_NQ_NOTIFY
The SJC$_NOTIFY item code is a Boolean item code. It specifies that a
message is to be broadcast, at the time of job completion, to each logged-in
terminal, of the user who submitted the job.

The SJC$_NO_NOTIFY item code is a Boolean item code. It specifies that no
message is to be broadcast at the time of job completion. It is the default.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTERJILE
function codes)

SJC$_QPEN_QUEUE
The SJC$_0PEN _QUEUE item code is a Boolean item code. It specifies that
jobs can be entered in the queue. To specify that jobs cannot be entered in
the queue, use the SJC$_CLOSE_QUEUE item code. By default, the queue is
open.

SYS-475

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SYS-476

Whether a queue is open or closed is independent of any other queue states
(such as paused, stalled, stopped).

(Valid for SJC$-ALTER_QUEUE, SJC$_CREATE_QUEUE,
SJC$_START_QUEUE function codes)

SJC$_QPERATQR_REQUEST
SJC$_NQ_QPERATOR_REQUEST
The SJC$_0PERATOR_REQUEST item code is an input value item code.
It is meaningful only for output execution queues. The buffer must contain
a text string. This item code specifies that when a job begins execution, the
execution queue is to be placed in the paused state and the specified text
string is to be included in a message to the queue operator requesting service.

The SJC$__NQ_OPERATOR-REQUEST item code is a Boolean item code. It
specifies that no message is to be sent to the queue operator. It is the default.

(Valid for SJC$-ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTER_FILE
function codes)

SJC$_QWNER_UIC
The SJC$_0WNER_UIC item code is an input value item code. It specifies
the owner UIC of a queue. The buffer must specify the longword UIC. By
default, the owner UIC is [1,4].

(Valid for SJC$-ALTER_QUEUE, SJC$_CREATE_QUEUE,
SJC$_START_QUEUE function codes)

SJC$_PAGE_HEADER
SJC$_NQ_PAGE_HEADER
The SJC$_pAGE_HEADER item code is a Boolean item code. It is
meaningful only for output execution queues. It specifies that a page heading
is to be printed on each page of output.

The SJC$_NQ_p AGE__HEADER item code is a Boolean item code. It
specifies that no page heading is to be printed. It is the default.

(Valid for SJC$-ADDJILE, SJC$-AL TER_JOB, SJC$_ENTERJILE
function codes)

SJC$_PAGE_SETUP_MQDULES
SJC$_NQ_PAGE_SETUP_MQDULES
The SJC$_p AGE_SETUP_MODULES item code is an input value item code.
The buffer must specify one or more text module names, with a comma
separating each name. This item code specifies that these modules are to be
extracted from the device control library and copied to the printer before each
page is printed.

The SJC$__NO_PAGE_SETUP__MODULES item code is a Boolean item code.
It specifies that no device control modules are to be copied. It is the default.

(Valid for SJC$_DEFINE_FORM function code)

SJC$_PAGINATE
SJC$_NQ_PAGINATE
The SJC$_p AGIN ATE item code is a Boolean item code. It is meaningful
only for output execution queues and jobs submitted to output execution
queues. It specifies that the symbiont should paginate the output by inserting

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

a form feed whenever output reaches the bottom margin of the form. It is the
default.

The SJC$_NO_P AGIN ATE item code is a Boolean item code. It specifies that
the symbiont should not paginate the output.

(Valid for SJC$_ADD_FILE, SJC$_ALTER_JOB, SJC$_ALTER_QUEUE,
SJC$_CREATE_QUEUE, SJC$_ENTERJILE, SJC$_START_QUEUE
function codes)

SJC$_PARAMETER_ 1 through SJC$_PARAMETER_8
SJC$_NQ_PARAMETERS
The SJC$J ARAMETER_l through SJC$J ARAMETER_8 item codes are
input value item codes; the last digit of the item code name is a number from
1 through 8. For each item code specified, the buffer must specify a string of
no more than 255 characters. For batch jobs, the string becomes the value of
the DCL symbol Pl through P8, respectively, within the outermost command
procedure.

For print jobs, the system makes the string available to the symbiont, though
the standard VMS print symbiont does not use this information. By default,
each of the eight parameters specifies a null string.

For function code SJC$_ALTER_JOB, if any SJC$J ARAMETER item is
specified, the value of each unspecified item is the null string.

The SJC$_NQ_p ARAMETERS item code is a Boolean item code. It specifies
that none of the SJC$_PARAMETER items are to be passed in the batch or
print job. It is the default.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$_ENTERJILE
function codes)

SJC$_PASSALL
SJC$_NQ_PASSALL
The SJC$J ASSALL item code is a Boolean item code. It is meaningful only
for jobs submitted to output execution queues. It specifies that the symbiont
is to print the file in P ASSALL mode.

The SJC$_NQ_p ASSALL item code is a Boolean item code. It specifies that
the symbiont is not to print the file in P ASSALL mode. It is the default.

(Valid for SJC$_ADDJILE, SJC$_ALTER_JOB, SJC$_ENTERJILE
function codes)

SJC$_PRINTER
The SJC$JRINTER item code is a Boolean item code. It is meaningful only
for output queues. It specifies that the queue being created is a printer queue.
The SJC$_BATCH, SJC$_pRINTER, SJC$_SERVER, and SJC$_TERMINAL
item codes are mutually exclusive. If none of these item codes are specified,
the default is SJC$_pRINTER.

(Valid for SJC$_CREATE_QUEUE function code)

SJC$_PRIORITV
The SJC$JRIORITY item code is an input value item code. The buffer must
specify a longword value in the range 0 through 255. This value specifies the
scheduling priority of the job in a queue relative to the scheduling priority of
other jobs in the same queue.

SVS-477

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SYS-478

By default, the scheduling priority of the job is the value of the SYSGEN
parameter DEFQUEPRI. If the value of DEFQUEPRI is 0, the default
scheduling priority is the base priority of the requesting process.

If you specify a value for SJC$_PRIORITY that is greater than the SYSGEN
parameter MAXQUEPRI and you do not have either AL TPRI or OPER
privilege, the system uses thf value of MAXQUEPRI. If you have either
AL TPRI or OPER privilege, the system uses any value you specify for
SJC$_pRJORITY, even if it is included in the range between
MAXQUEPRI + 1 and 255.

(Valid for SJC$__ABORT_JOB, SJC$__ALTER_JOB, SJC$_CREATE_JOB,
SJC$_ENTER_FILE function codes)

SJC$_PROCESSOR
SJC$_NQ_PROCESSOR
The SJC$_PROCESSOR item code is an input value item code. The buffer
must specify a valid RMS file name.

When specified for an output execution queue, SJC$_PROCESSOR specifies
that the symbiont image to be executed is SYS$SYSTEM:name.EXE, where
name is the RMS file name contained in the buffer.

When specified for a generic output queue, SJC$_pRQCESSOR specifies that
the generic queue can place jobs only in server queues that are executing the
symbiont image SYS$SYSTEM:name.EXE, where name is the RMS file name
contained in the buffer.

The SJC$__NO_PROCESSOR item code is a Boolean item code. It specifies
that the symbiont image to be executed is SYS$SYSTEM:PRTSMB.EXE. It is
the default.

(Valid for SJC$_CREATE_QUEUE, SJC$_START_QUEUE function codes)

SJC$_PROTECTION
SJC$_pRQTECTION is an input value item code. It specifies the protection
of a queue. The buffer must specify a longword in the format shown in the
following diagram.

Value change enable Protection value

WORLD GROUP OWNER SYSTEM WORLD GROUP OWNER SYSTEM

DEWRDEWRDEWRDEWR DEWRDEWRDEWRDEWR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ZK-1724-84

Bits 0 through 15 specify the protection value: the four types of access (read,
write, execute, delete) to be granted to the four classes of user (system, owner,
group, world). Set bits deny access and clear bits allow access.

Bits 16 through 31 enable or disable the interpretation of bits 0 through 15.
When a bit in the second word is set, the corresponding bit in the first word
will affect the queue protection. When a bit in the second word is clear, the
corresponding bit in the first word is ignored.

By default, the queue protection is (S:E,O:D,G:R,W:W).

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

Note that you can assign ACLs to queues using the $CHANGE_ACL system
service.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE,
SJC$_START_QUEUE function codes)

SJC$_QUEMAN_RESTART
SJC$_NQ_QUEMAN_RESTART
The SJC$_QUEMAN _RESTART item code is a Boolean item code. It specifies
that the job controller should automatically restart the queue manager when
the job controller recovers from an internal fatal error. An internal fatal error
causes the job controller to close the job queue manager file and stop the
queue manager.

If you specify SJC$_QUEMAN -RESTART, batch and output queues are
restored to the states that existed prior to the job controller failure. The job
controller opens the job queue manager file that was open when the job
controller aborted. The system uses the default values of 100 for
SJC$_EXTEND_QUANTITY and 50 for SJC$_BUFFER_COUNT, rather than
the values you may have specified for these item codes when you last started
the queue manager with a SJC$_START_QUEUE_MANAGER operation.

Note: To prevent a looping condition, the job controller does not restart the
queue manager if it detects a job controller error within 2 minutes of
starting the queue manager. This algorithm may change in a future
release of VMS.

The SJC$_NO_QUEMAN _RESTART item code is a Boolean item code. It
specifies that the job controller should not restart the queue manager when
it recovers from an internal job controller fatal error. In this case, a user
with OPER privilege must restart the queue manager and restore the queuing
environment. It is the default.

(Valid for SJC$_START_QUEUE_MANAGER function code)

SJC$_QUEUE
The SJC$_QUEUE item code is an input value item code. It specifies the
queue to which the operation is directed. The buffer must specify the name
of the queue.

The string may contain uppercase or lowercase characters (lowercase
are converted to uppercase), numeric characters, dollar signs ($), and
underscores(-). If the string is a logical name, SYS$SNDJBC translates it
iteratively until the equivalence string is found or the maximum number of
translations allowed by the system has been performed. The maximum length
of the final character string is 31 characters; spaces, tabs, and null characters
are ignored.

(Valid for SJC$_ABORT_JQB, SJC$_ALTER_JQB, SJC$_ALTER_QUEUE,
SJC$_CREATE_JOB, SJC$_CREATE_QUEUE, SJC$_DELETE_JOB,
SJC$_DELETE_QUEUE, SJC$_ENTERJILE, SJC$_START_QUEUE,
SJC$_SYNCHRONIZE function codes)

SJC$_QUEUE_DESCRIPTION
SJC$_NQ_QUEUE_DESCRIPTION
The SJC$_QUEUE_DESCRIPTION item code is an input value item code.
It provides operator-supplied information about the queue. The buffer must
specify a string of no more than 255 characters.

SYS-479

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SYS-480

The SJC$_NQ_QUEUE_DESCRIPTION item code is a Boolean item code. It
specifies that no description is associated with the queue.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE,
SJC$_START_QUEUE function codes)

SJC$_QUEUE_FILE_SPECIFICATION
The SJC$_QUEUEJILE_SPECIFICATION item code is an input value
item code. It specifies the file specification of the system job queue file.
The buffer must contain a valid RMS file specification. Omitted fields
in the file specification are supplied from the default file specification
SYS$SYSTEM:JBCSYSQUE.DAT.

(Valid for SJC$_START_QUEUE_MANAGER function code)

SJC$_RECORD_BLOCKING
SJC$_NQ_RECORD_BLOCKING
The SJC$__RECORD_BLOCKING item code is a Boolean item code. It is
meaningful only for output execution queues. It specifies that the symbiont
can merge the output records it sends to the output device into a single 1/0
request. For the standard VMS print symbiont, record blocking can have a
significant performance advantage over single-record mode. It is the default.

The SJC$_NQ__RECORD_BLOCKING item code is a Boolean item code. It
specifies that the symbiont must send each record in a separate 1/0 request
to the output device.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE,
SJC$_START_QUEUE function codes)

SJC$_RELATIVE_PAGE
The SJC$__RELATIVE_PAGE item code is an input value item code. It is
meaningful only for output execution queues. The buffer must specify a
signed longword integer. This item code specifies that printing should be
resumed after spacing forward (if the buffer value is positive) or backward (if
the buffer value is negative) the specified number of pages.

(Valid for SJC$_START_QUEUE function code)

SJC$_REQUEUE
The SJC$__REQUEUE item code is a Boolean item code. It specifies that a job
is to be requeued. By default, the job is deleted.

(Valid for SJC$_ABORT_JOB function code)

SJC$_RESTART
SJC$_NQ_RESTART
The SJC$__RESTART item code is a Boolean item code. It specifies that a job
can restart after a system failUie or can be requeued during execution. It is
the default for print jobs.

The SJC$_NQ_RESTART item code is a Boolean item code. It specifies that a
job cannot restart after a system failure or after a requeue operation. It is the
default for batch jobs.

(Valid for SJC$_ALTER_JOB, SJC$_CREATE_JOB, SJC$__ENTERJILE
function codes)

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SJC$_RETAIN_ALL_JQBS
SJC$_RETAIN_ERRQR_JQBS
SJC$_NQ_RETAIN_JQBS
The SJC$_RETAIN _ALL _JOBS item code is a Boolean item code. It specifies
that jobs are to be retained in the queue with a completion status after they
have been executed.

The SJC$_RETAIN _ERROR_JOBS item code is a Boolean item code. It
specifies that jobs are to be retained only if the job completed unsuccessfully
(the job's completion status has the low bit clear).

The SJC$_NQ_RETAIN _JOBS item code is a Boolean item code. It specifies
that jobs are not to be retained in the queue after they have completed. It is
the default.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE,
SJC$_START_QUEUE function codes)

SJC$_SCSNODE_NAME
The SJC$_SCSNODE_NAME item code is an input value item code. It
is meaningful only for execution queues in a VAXcluster environment. It
specifies the name of the VAX node on which the queue is to execute. The
buffer must specify a string, from 1 to 6 characters, that matches the value of
the SYSGEN parameter SCSNODE in effect on the target node.

By default, the queue executes on the VAX node from which the queue is first
started. For an output execution queue, you use the SJC$_DEVICE_NAME
item code to specify the name of the device managed by the queue.

(Valid for SJC$_CREATE_QUEUE, SJC$_START_QUEUE function codes)

SJC$_SEARCH_STRING
The SJC$_SEARCH_STRING item code is an input value item code. It is
meaningful only for output execution queues. The buffer must specify a
string of no more than 63 characters. This item code specifies that printing is
to resume at the page containing the first occurrence of the specified string.
The search for the string proceeds in the forward direction.

(Valid for SJC$_START_QUEUE function code)

SJC$_SERVER
The SJC$_SERVER item code is a Boolean item code. It is meaningful only
for output queues. It specifies that the queue being created is a server queue.
The term server indicates that a user-modified or user-written symbiont
process is controlling an output execution queue, or a generic queue has
server execution queues as its targets.

The SJC$_BATCH, SJC$_FRINTER, SJC$_SERVER, and SJC$_TERMINAL
item codes are mutually exclusive. If none of these item codes are specified,
the default is SJC$_pRJNTER.

(Valid for SJC$_CREATE_QUEUE function code)

SJC$_SWAP
SJC$_NQ_SWAP
The SJC$_SWAP item code is a Boolean item code. It is meaningful only for
batch execution queues. It specifies that jobs initiated from a queue can be
swapped. It is the default.

SYS-481

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SYS-482

The SJC$_NQ_SWAP item code is a Boolean item code. It specifies that jobs
in this queue cannot be swapped.

(Valid for SJC$_ALTER_QUEUE, SJC$_CREATE_QUEUE,
SJC$_START_QUEUE function codes)

SJC$_ TERMINAL
SJC$_NQ_ TERMINAL
The SJC$_TERMINAL item code is a Boolean item code. It is meaningful
only for output queues. It specifies that the queue being created is a terminal
queue.

The SJC$_BATCH, SJC$_PRINTER, SJC$_SERVER, and SJC$_ TERMINAL
item codes are mutually exclusive. If none of these item codes are specified,
the default is SJC$_PRINTER.

The SJC$_NQ_TERMINAL item code is a Boolean item code. It designates
the queue type as printer rather than terminal. It is the default.

For the SJC$_START_QUEUE function code, SJC$_TERMINAL and
SJC$_NO_ TERMINAL are supported now for compatibility with
VAX/VMS Version 4.n, but may not be supported in the future. For
SJC$_CREATE_QUEUE, SJC$_NO_TERMINAL is supported for
compatibility with VAX/VMS Version 4.n, and may not be supported in
the future.

(Valid for SJC$_CREATE_QUEUE, SJC$_START_QUEUE function codes)

SJC$_TQP_Qf_FILE
The SJC$_ TOP_OF_FILE item code is a Boolean item code. It is meaningful
only for output queues. It specifies that printing is to be resumed at the
beginning of the file.

(Valid for SJC$_START_QUEUE function code)

SJC$_UIC
The SJC$_UIC item code is an input value item code. This value specifies the
4-byte UIC of the user on behalf of whom the request is made. By default,
the UIC is taken from the requesting process.

(Valid for SJC$_CREATE_JOB, SJC$_ENTERJILE function codes)

SJC$_USERNAME
The SJC$_USERNAME item code is an input value item code. It specifies the
user name of the user on behalf of whom the request is made. The buffer
must specify a string from 1 to 12 characters. By default, the user name is
taken from the requesting process.

You need CMKRNL privilege to use this item code.

(Valid for SJC$_CREATE_JOB, SJC$_ENTER_FILE function codes)

SJC$_WSDEFAULT
SJC$_NQ_WSDEFAUL T
The SJC$_WSDEFAULT item code is an input value item code. It is
meaningful only for batch jobs and execution queues. It specifies the default
working set size for batch jobs or jobs initiated from a batch queue, or the
default working set size of a symbiont process connected to an output queue.
A symbiont process can control several output queues; however, the default

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

working set size of the symbiont process is established by the first queue to
which it is connected. The buffer must contain a longword integer value in
the range 1 through 65,535.

The SJC$_NO_WSDEFAULT item code is a Boolean item code. It specifies
that the system is to determine the working set default. It is the default.

For batch jobs, the default working set size, working set quota, and working
set extent (maximum size) are included in each user record in the system user
authorization file (UAF). You can specify values for these items for individual
jobs or for all jobs in a given queue, or for both. Table SYS-8 shows the
action taken when you specify a value for SJC$_WSDEFAULT.

Table SYS-8 Working Set Decision Table

Value Specified
for Job?

No

No

Yes

Yes

Value Specified
for Queue?

No

Yes

Yes

No

Action Taken

Use UAF value

Use value for queue

Use lower of the two

Compare specified value with UAF
value; use lower

(Valid for SJC$_ALTER_JOB, SJC$_ALTER_QUEUE,
SJC$_CREATE_JOB, SJC$_CREATE_QUEUE, SJC$_ENTERJILE,
SJC$_START_QUEUE function codes)

SJC$_WSEXTENT
SJC$_NQ_WSEXTENT
The SJC$_WSEXTENT item code is an input value item code. It is
meaningful only for batch jobs and execution queues. It specifies the working
set extent for batch jobs or jobs initiated from a batch queue, or the working
set extent of a symbiont process connected to an output queue. A symbiont
process can control several output queues; however, the working set extent
of the symbiont process is established by the first queue to which it is
connected. The buffer must contain a longword integer value in the range 1
through 65 ,535.

The SJC$_NO_WSEXTENT item code is a Boolean item code. It specifies
that the system determine the working set extent. It is the default.

For information about the action taken when you specify a value for
SJC$_WSEXTENT for a batch job or batch queue, refer to the description of
the SJC$_WSDEFAULT item code and to Table SYS-8.

(Valid for SJC$_AL TER_JOB, SJC$_AL TER_QUEUE,
SJC$_CREATE_JOB, SJC$_CREATE_QUEUE, SJC$_ENTERJILE,
SJC$_START_QUEUE function codes)

SJC$_WSQUOTA
SJC$_NQ_WSQUOTA
The SJC$_WSQUOTA item code is an input value item code. It is meaningful
only for batch jobs and execution queues. It specifies the working set quota
for batch jobs or default WSQUOTA for jobs initiated from a batch queue, or
the working set quota of a symbiont process connected to an output queue.
A symbiont process can control several output queues; however, the working

SYS-483

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SVS-484

set quota of the symbiont process is established by the first queue to which it
is connected. The buffer must contain a longword integer value in the range
1 through 65,535.

The SJC$_NO_WSQUOTA item code is a Boolean item code. It specifies that
the system is to determine the working set quota. It is the default.

For information about the action taken when you specify a value for
SJC$_WSQUOTA for a batch job or batch queue, refer to the description of
the SJC$_WSDEFAULT item code and to Table SYS-8.

(Valid for SJC$_ALTER_JOB, SJC$_ALTER_QUEUE,
SJC$_CREATE_JOB, SJC$_CREATE_QUEUE, SJC$_ENTER_FILE,
SJC$_START_QUEUE function codes)

iosb
VMS usage: io_status_block
type: quadword {unsigned)
access: write only
mechanism: by reference

1/0 status block into which $SNDJBC writes the completion status after the
requested operation has completed. The iosb argument is the address of the
I/O status block.

At request initiation, $SNDJBC sets the value of the quadword I/O status
block to 0. When the requested operation completes, $SNDJBC writes a
condition value in the first longword of the I/O status block. It writes the
value 0 into the second longword; this longword is unused and reserved for
future use.

The condition values returned by $SNDJBC in the I/O status block are
usually condition values from the JBC facility. These condition values are
defined by the $JBCMSGDEF macro. In some cases, the condition value
returned by $SNDJBC may be an error return from a system service or an
RMS service that is used in executing the request. For the
SJC$_SYNCHRONIZE_JOB request, the condition value returned is the
completion status of the requested job.

The condition values returned from the JBC facility are listed under the
heading CONDITION VALUES RETURNED IN THE I/O STATUS BLOCK.

Though this argument is optional, DIGITAL strongly recommends that you
specify it, for the following reasons:

• If you are using an event flag to signal the completion of the service, you
can test the I/O status block for a condition value to be sure that the
event flag was not set by an event other than service completion.

• If you are using the $SYNCH service to synchronize completion of the
service, the I/O status block is a required argument for $SYNCH.

• The condition value returned in RO and the condition value returned in
the I/O status block provide information about different aspects of the
call to the $SNDJBC service. The condition value returned in RO gives
you information about the success or failure of the service call itself; the
condition value returned in the I/O status block gives you information
about the success or failure of the service operation. Therefore, to
accurately assess the success or failure of the call to $SNDJBC, you
must check the condition values returned in both RO and the I/O status
block.

DESCRIPTION

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

astadr
VMS usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed when $SNDJBC completes. The astadr
argument is the address of the entry mask of this routine.

If specified, the AST routine executes at the same access mode as the caller of
$SNDJBC.

astprm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST service routine specified by the astadr
argument. The astprm argument is this longword parameter.

Types of Queue

The VMS batch/print facility supports several types of queue, which aid in
the processing of batch and print jobs. The different types of queue can be
divided into three major categories according to the way the system processes
the jobs assigned to the queue. The three types of queue are execution,
generic, and logical. Execution queues schedule jobs for execution; generic
and logical queues transfer jobs to execution queues. Within these major
classifications, queue type is further defined by the kinds of job the queue
can accept for processing. Some types of execution and generic queue accept
batch jobs; other types accept print jobs. Logical queues are restricted to print
jobs.

You create a queue by making a call to $SNDJBC specifying the
SJC$_CREATE_QUEUE function code. Item codes that you optionally
specify in the call determine the type of queue you create. The following
list describes the various types of execution, generic, and logical queues and
indicates which item codes you need to specify to create them.

1 Execution queue. An execution queue schedules jobs for processing. In
a VAXcluster environment, jobs are processed on the node that manages
the execution queue. There are two types of execution queue:

a. Batch execution queue. A batch execution queue can schedule only
batch jobs for execution. A batch job executes as a detached process
that sequentially runs one or more command procedures; you define
the list of command procedures as part of the initial job description.
You create a batch execution queue by specifying the SJC$_BATCH
item code in the call to the $SNDJBC service.

b. Output execution queue. An output execution queue schedules print
jobs for processing by an independent symbiont process associated
with the queue. The job controller sends the symbiont a list of
files to process; you define this list of files as part of the initial job
description. As the symbiont processes each file, it produces output
for the device it controls, such as a printer or terminal.

SYS-485

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SVS-486

The standard print symbiont image provided by VMS is designed
to print files on hardcopy devices. User-modified or user-written
symbionts also can be designed for this or any other file processing
activity managed by the VMS batch/print facility. The symbiont
image that executes jobs from an output queue is specified by the
SJC$_pRQCESSOR item code. If you omit this item code, the
standard VMS print symbiont image, PRTSMB, is associated with the
queue.

There are three types of output execution queue:

• Printer execution queue. This type of queue typically uses the
standard print symbiont to direct output to a line printer. You
can specify a user-provided symbiont in the SJC$_pRQCESSOR
item code. You create a printer execution queue by specifying the
SJC$_PRINTER item code when you create the output execution
queue. A printer execution queue is the default type of output
execution queue.

• Terminal execution queue. This type of queue typically uses
the standard print symbiont to direct output to a terminal printer.
You can specify a user-provided symbiont in the
SJC$_pRQCESSOR item code. You create a terminal execution
queue by specifying the SJC$_ TERMINAL item code when you
create the output execution queue.

• Server execution queue. This type of queue uses the user
modified or user-written symbiont you specify in the
SJC$_PROCESSOR item code to process the files that belong
to jobs in the queue. You create a server execution queue by
specifying the SJC$_SERVER item code when you create the
output execution queue.

When you create an output execution queue, you can initially mark
it as either a printer, terminal, or server execution queue. However,
when the queue is started, the symbiont process associated with the
queue can change the queue type from the type designated at its
creation to a printer, terminal, or server execution queue, as follows:

• When an output execution queue associated with the standard
VMS print symbiont is started, the symbiont determines whether
it is controlling a printer or terminal. It communicates this
information to the job controller. If necessary, the job controller
then changes the type designation of the output execution queue.

• When an output execution queue associated with a user-modified
or user-written symbiont is started, the symbiont has the option
of identifying the queue to the job controller as a server queue.
If the user-written or user-modified symbiont does not notify the
job controller that it wants to change the queue type designation,
the output execution queue retains the queue type designation it
received when it was created.

2 Generic queue. A generic queue holds a job until an appropriate
execution queue becomes available to initiate the job; the job controller
then requeues the job to the available execution queue. In a VAXcluster
environment, a generic queue can direct jobs to execution queues that are
located on other nodes in the VAXcluster.

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

You create a generic queue by specifying the SJC$_GENERIC_QUEUE
item code in the call to the $SNDJBC service. You designate each
execution queue to which the generic queue can direct jobs by specifying
the SJC$_GENERIC_TARGET item code. Because a generic queue
can direct jobs to more than one execution queue, you can specify the
SJC$_GENERIC_TARGET item code up to 124 times in a single call to
$SNDJBC to define a complete set of execution queues for any generic
queue. If you do not specify the SJC$_GENERIC_TARGET item code,
the generic queue directs jobs to any execution queue that is the same
type of queue as the generic queue; that is, a generic batch queue will
direct a job to any available batch execution queue, and so on. There
is one exception-a generic queue will not direct work to any execution
queue that was created in a call to $SNDJBC that specified the
SJC$_NQ_GENERIC_SELECTION item code.

There are two types of generic queue:

a. Generic batch queue. A generic batch queue can direct jobs only
to batch execution queues. You create a generic batch queue by
specifying both the SJC$_GENERIC_QUEUE and SJC$_BATCH item
codes in the call to the $SNDJBC service.

b. Generic output queue. A generic output queue can direct jobs to
any of the three types of output execution queue: printer, terminal,
or server. Creating a generic output queue that directs jobs to any
combination of the three types of output execution queue is possible.
Typically, however, when you create a generic output queue, you
specify a list of type-specific target queues. This way, the generic
output queue directs jobs to a single type of output execution queue.
Thus, you can control whether the jobs submitted to the generic
output execution queue are output on a line printer or a terminal
printer, or are sent to a server symbiont for processing. You create
a generic output queue by specifying the SJC$_GENERIC_QUEUE
item code in the call to the $SNDJBC service.

3 Logical queue. A logical queue performs the same function as a generic
output queue, except that a logical queue can direct jobs to only a single
printer, terminal, or server execution queue. A logical queue is only an
output queue that has been assigned to transfer its jobs to one execution
queue.

To change an output queue into a logical queue, you make a call to the
$SNDJBC service while the output queue is in a stopped state. The call
must specify the SJC$_ASSIGN _QUEUE function code and the
SJC$_DESTINATION_QUEUE item code.You use the
SJC$_DESTINATION _QUEUE item code to specify the execution queue
to which the logical queue should direct jobs. When the logical queue is
started, it automatically requeues its jobs to the specified execution queue
as that execution queue becomes available. You can change a logical
queue back to its original output queue definition by specifying the
SJC$_DEASSIGN _QUEUE function code in a subsequent call to the
$SNDJBC service.

SYS-487

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SYS-488

Queue Protection

This section describes VIC-based protection checking that is performed by
the $SNDJBC service to control access to queues. As an alternative to this
form of protection checking, you can associate ACLs with queues using the
appropriate security services. For example, the $CHANGE_ACL service
allows you to create or modify ACL identifiers and their protection masks.
For a complete discussion of access control lists, see the chapter on security
services in the Introduction to VMS System Services.

There are two aspects to UIC-based queue protection:

• The queue has an associated UIC. When you create a queue, you assign it
a UIC by using the SJC$_0WNER_UIC item code. If you do not specify
this item code, the queue is given the default UIC [1,4).

• You may assign a queue a protection mask by specifying the
SJC$_pROTECTION item code. This protection mask specifies read,
write, execute, and delete access for the four categories of user: owner,
group, world, and system.

In addition, certain queue operations require the caller of $SNDJBC to have
certain privileges. The function codes that require privileges are listed under
the heading Privileges and Restrictions.

When a job is submitted to a queue, it is assigned a UIC that is the same as
the UIC of the process submitting the job, unless the SJC$_UIC item code is
specified to supply a different UIC.

For each requested operation, the $SNDJBC service checks the UIC and
privileges of the requesting process against the UIC of the queue, protection
specified for the queue, and the privilege or privileges, if any, required for the
operation. This checking is performed in a way similar to the way that the
file system checks access to a file by comparing the owner UIC and protection
of the file with the UIC and privileges of the requester.

Operations that apply to jobs are checked against (1) the R (read) and D
(delete) protection specified for the queue in which the job is entered and
(2) the owner UIC of the job. In general, R access to a job allows you to
determine that the job exists; D access to a job allows you to affect the job.

Operations that apply to queues are checked against (1) the W (Write) and
E (Execute) protection specified for the queue and (2) the owner UIC of the
queue. In general, W access to a queue allows you to submit jobs to the
queue; E access to a queue allows you to act as an operator for the queue,
including the ability to affect jobs in the queue, to affect accounting, and to
alter queues. OPER privilege grants E access to all queues.

Privileges and Restrictions

To specify the following function codes, the caller must have both OPER and
SYSNAM privilege:

SJC$_START_QUEUE_MANAGER
SJC$_STOP_QUEUE_MANAGER

To specify the following function codes, the caller must have OPER privilege:

SJC$_CREATE_QUEUE
SJC$_DEFINE_CHARACTERISTIC
SJC$_DEFINE_FORM

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

SJC$_DELETE_CHARACTERISTIC
SJC$_DELETE_FORM
SJC$_DELETE_QUEUE
SJC$_START_ACCOUNTING
SJC$_STOP_ACCOUNTING

To specify the following function code, the caller must have (1) OPER
privilege, (2) E access to the queue containing the specified job, or (3) R
access to the specified job:

SJC$_SYNCHRONIZE_JOB

To specify the following function codes, the caller must have (1) OPER
privilege, (2) E access to the specified queue, or (3) W access to the specified
queue:

SJC$-ADD_FILE
SJC$_CLOSE_DELETE
SJC$_CLOSE_JOB
SJC$_CREATE_JOB
SJC$_ENTERJILE

To specify the following function codes, the caller must have OPER privilege
or E access to the specified queues or queues:

SJC$_AL TER_QUEUE
SJC$-ASSIGN _QUEUE
SJC$_DEASSIGN _QUEUE
SJC$-MERGE_QUEUE
SJC$_p AUSE_QUEUE
SJC$--RESET_QUEUE
SJC$_START_QUEUE
SJC$_STQP_QUEUE

To specify the following function codes, the caller must have (1) OPER
privilege, (2) E access to the queue containing the specified job, or (3) D
access to the specified job:

SJC$_ABORT_JOB
SJC$_ALTER_JOB
SJC$_DELETE_JOB

To specify the following function codes, no privilege is required:

SJC$_BATCH_CHECKPOINT
SJC$_WRITE_ACCOUNTING

To specify a base priority (using the SJC$_BASE_pRJORITY item code)
higher than the base priority of the requesting process, the caller needs OPER
or AL TPRI privilege.

To specify a scheduling priority (using the SJC$_pRJQRITY item code) higher
than the value of the SYSGEN parameter MAXQUEPRI, the caller needs
OPER or AL TPRI privilege.

To specify the following item codes, the caller must have OPER privilege:

SJC$_pRQTECTION
SJC$_0WNER_UIC

SYS-489

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

CONDITION
VALUES
RETURNED

CONDITION
VALUES
RETURNED
IN THE 1/0
STATUS BLOCK

SYS-490

To specify the following item codes, the caller must have CMKRNL privilege:

SJC$_ACCOUNT_NAME
SJC$_UIC
SJC$_USERNAME

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_DEVOFFLINE

SS$_EXASTLM

SS$_1LLEFC

SS$_1NSFMEM

SS$_MBFULL

SS$_MBTOOSML

SS$_UNASEFC

JBC$_NQRMAL

JBC$_DELACCESS

JBC$_DUPFORM

JBC$_EMPTYJOB

JBC$_EXECUTING

JBC$_!NCDSTQUE

JBC$_1NCFORMP AR

The service completed successfully.

The item list or input buffer cannot be read by the
caller; or the return length buffer, output buffer, or
status block cannot be written by the caller.

The function code is invalid; the item list contains
an invalid item code; a buffer descriptor has an
invalid length; or the reserved parameter has a
nonzero value.

The job controller process is not running.

You specified the astadr argument, and the
process has exceeded its ASTLM quota.

The efn argument specifies an illegal event flag
number.

Insufficient space exists for completing the request.

The job controller mailbox is full.

The mailbox message is too large for the job
controller mailbox.

The efn argument specifies an unassociated event
flag cluster.

The service completed successfully.

The file protection of the specified file, which was
entered with the delete option, does not allow
delete access to the caller.

The specified form number is invalid because it
is already defined; each form must have a unique
form number.

The open job cannot be closed because it contains
no files.

The parameters of the specified job cannot be
modified because the job is currently executing.

The type of the specified destination queue is
inconsistent with the requested operation.

The specified length, width, and margin parameters
are inconsistent; the value of the difference
between the top and bottom margin parameters
must be less than the form length, and the
difference between the left and right margin
parameters must be less than the line width.

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

JBC$_1NCOMPLETE

JBC$_1NCOUETYP

JBC$_1NVCHANAM

JBC$_1NVDSTOUE

JBC$_1NVFORNAM

JBC$_1NVFUNCOD

JBC$_1NVITMCOD

JBC$_1NVP ARLEN

JBC$_1NVPARV AL

JBC$_1NVOUENAM

JBC$_JOBOUEDIS

JBC$_JOBOUEENA

JBC$_MISREOPAR

JBC$_NODSTOUE

JBC$_NOOPENJOB

JBC$_NOPRIV

JBC$_NOOUESPACE

JBC$_NOREST ART

JBC$_NOSUCHCHAR

The requested queue management operation
cannot be executed because a previously
requested queue management operation has
not yet completed.

The type of the specified queue is inconsistent
with the requested operation.

A specified characteristic name is not syntactically
valid.

The destination queue name is not syntactically
valid.

The form name is not syntactically valid.

The specified function code is invalid.

The item list contains an invalid item code.

The length of a specified string is outside the valid
range for that item code.

A parameter value specified for an item code is
outside the valid range for that item code.

The queue name is not syntactically valid.

The request cannot be executed because the
system job queue manager has not been started.

The system job queue manager cannot be started
because it is already running.

An item code that is required for the specified
function code has not been specified.

The specified destination queue does not exist.

The requesting process did not open a job with
the SJC$_CREATE_JOB function.

The queue protection denies access to the queue
for the specified operation.

The system job queue file was full and could not
be extended.

The specified job cannot be requeued because it
was not defined to be restartable.

The specified characteristic does not exist.

SYS-491

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

JBC$_NOSUCHFORM

JBC$_NOSUCHJOB

JBC$_NOSUCHNODE

JBC$_NOSUCHOUE

JBC$_NOT ASSIGN

JBC$_QUENOTSTOP

JBC$_REFERENCED

JBC$_STARTED

The specified form does not exist.

The specified job does not exist.

The specified node does not exist.

The specified queue does not exist.

The specified queue cannot be deassigned because
it is not assigned.

The specified queue cannot be deleted because it
is not in a stopped state.

The specified queue cannot be deleted because of
existing references by other queues or jobs.

The specified queue cannot be started because it
is already running.

EXAMPLE The following FORTRAN program demonstrates the use of the $SNDJBCW
service to submit a batch job that is to execute on behalf of another user.
No log file is produced for the batch job. This program saves the job's entry
number. You need CMKRNL privilege to run this program.

! Declare system service related symbols
INTEGER*4 SYS$SNDJBCW,
2 STATUS
INCLUDE '($SJCDEF)'

! Define item list structure
STRUCTURE /ITMLST/

UNION
MAP

INTEGER*2 BUFLEN, ITMCOD
INTEGER*4 BUFADR, RETADR

END MAP
MAP

INTEGER*4 END_LIST
END MAP

END UNION
END STRUCTURE

! Define I/O status block structure
STRUCTURE /IOSBLK/
INTEGER*4 STS, ZEROED
END STRUCTURE

! Declare $SNDJBCW item list and I/0 status block
RECORD /ITMLST/ SUBMIT_LIST(6)
RECORD /IOSBLK/ IOSB

! Declare variables used in $SNDJBCW item list
CHARACTER*9
CHARACTER*23
CHARACTER*12
INTEGER*4

SYS-492

QUEUE
FILE_SPECIFICATION
USERNAME
ENTRY_NUMBER

/
1 SYS$BATCH 1

/

/'$DISK1: [COMMON]TEST.COM'/
/'PROJ3036 '/

SYSTEM SERVICE DESCRIPTIONS
$SN DJ BC

! Initialize item list for the enter file operation
SUBMIT_LIST(1).BUFLEN = 9
SUBMIT_LIST(1) .ITMCOD = SJC$_QUEUE
SUBMIT_LIST(1).BUFADR = %LOC(QUEUE)
SUBMIT_LIST(1) .RETADR = 0
SUBMIT_LIST(2).BUFLEN = 23
SUBMIT_LIST(2) .ITMCOD = SJC$_FILE_SPECIFICATION
SUBMIT_LIST(2).BUFADR = %LOC(FILE_SPECIFICATION)
SUBMIT_LIST(2).RETADR = 0
SUBMIT_LIST(3).BUFLEN = 12
SUBMIT_LIST(3).ITMCOD = SJC$_USERNAME
SUBMIT_LIST(3).BUFADR = %LOC(USERNAME)
SUBMIT_LIST(3).RETADR = 0
SUBMIT_LIST(4).BUFLEN = 0
SUBMIT_LIST(4).ITMCOD = SJC$_NO_LOG_SPECIFICATION
SUBMIT_LIST(4) .BUFADR = 0
SUBMIT_LIST(4).RETADR = 0
SUBMIT_LIST(5) .BUFLEN = 4
SUBMIT_LIST(5).ITMCOD = SJC$_ENTRY_NUMBER_OUTPUT
SUBMIT_LIST(5).BUFADR = %LOC(ENTRY_NUMBER)
SUBMIT_LIST(5) .RETADR = 0
SUBMIT_LIST(6).END_LIST = 0

! Call $SNDJBCW service to submit the batch job
STATUS = SYS$SNDJBCW (,
2 %VAL(SJC$_ENTER_FILE),,
2 SUBMIT_LIST,
2 IOSB,,)
IF (STATUS) STATUS = IOSB.STS
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
END

SYS-493

SYSTEM SERVICE DESCRIPTIONS
$SNDJBCW

$SNDJBCW Send to Job Controller and Wait for
Completion

FORMAT

SVS-494

The Send to Job Controller and Wait for Completion and $GETQUI
services together provide the user interface to the Job Controller (JBC)
facility. The $SNDJBW service allows you to create, stop, and manage
queues and the jobs in those queues. Queues may be generic, batch,
execution, or output queues. Jobs may be batch or print jobs.

The $SNDJBCW service queues a request to the Job Controller. For most
operations, $SNDJBCW completes synchronously; that is, it returns to the
caller after the operation completes. However, if the requested operation
is a pause queue, stop queue, or abort job operation, $SNDJBCW returns
to the caller after queuing the request. There is no way to synchronize
completion of these operations. Also, $SNDJBCW does not wait for a job
to complete before it returns to the caller; to synchronize completion of a
job, the caller must specify the SJC$_SYNCHRONIZE_JOB function code.

The $SNDJBCW service is identical to the Send to Job Controller
($SN DJ BC) service except that $SNDJBC completes asynchronously;
the $SNDJBC service returns to the caller immediately after queuing the
request, without waiting for the operation to complete.

For additional information about the $SNDJBCW service, refer to the
documentation of the $SN DJ BC service.

The $SNDJBC and $SNDJBCW services supersede the Send Message to
Symbiont Manager ($SNDSMB) and Send Message to Accounting Manager
($SNDACC) services. You should write new programs using $SNDJBC or
$SNDJBCW, instead of $SNDSMB or $SNDACC. You should convert old
programs using $SNDSMB or $SNDACC to use $SNDJBC or $SNDJBCW,
as convenient.

SYS$SNDJBCW [efn} ,tune [,nullarg} [,itmlst} {,iosb]
{,astadr} {,astprm}

$SNDOPR

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$SNDOPR

Send Message to Operator

The $SNDOPR service performs the following functions:

• Sends a user request to operator terminals

• Sends a user cancellation request to operator terminals

• Sends an operator reply to a user terminal

• Enables an operator terminal

• Displays the status of an operator terminal

• Initializes the operator log file

SYS$SNDOPR msgbuf ,[chan}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

msgbuf
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

User buffer specifying the operation to be performed and the information
needed to perform that operation. The msgbuf argument is the address of a
character string descriptor pointing to the buffer.

The format and contents of the buffer vary with the requested operation;
however, the first byte in any buffer is the request code, which specifies
the operation to be performed. The $0PCMSG macro defines the symbolic
names for these request codes. The following table shows each operation that
$SNDOPR performs and the request code that specifies that operation.

SYS-495

SYSTEM SERVICE DESCRIPTIONS
$SNDOPR

SYS-496

Request Code Corresponding Operation

OPC$_RQ_RQST Sends a user request to operator terminals. This request
code is used to make an operator request. If you specify
a reply to the request (by using the chan argument),
the operator request is kept active until the operator
responds.

OPC$_RQ_CANCEL Sends a user cancellation request to specified operator
terminals. You use this request code to notify one or
more operators that a previous request is to be cancelled.
To specify OPC$_RQ_CANCEL, you must also specify
the chan argument.

OPC$_RQ_REPLY Sends an operator reply to a user who has made a
request. Operators use this request code to report the
status of a user request. The format of the message
buffer for this request is the format of the reply found in
the user's mailbox after the call to $SNDOPR completes.
All functions of $SNDOPR that deliver a reply to a mailbox
do so in the format described for this request code.

OPC$_RQ_ TERME Enables an operator terminal. You use this request to
enable a specified terminal to receive operator messages.

OPC$_RQ_ST A TUS Reports the status of an operator terminal. Operators
use this request to display the operator classes for which
the specified terminal is enabled and a list of outstanding
requests.

OPC$_RQ_LOGI Initializes the operator log file.

The following diagrams depict the message buffer for each of these request
codes. Each field within a diagram has a symbolic name, which serves to
identify the field; in other words, these names specify offsets into the message
buffer. The list following each diagram shows each field name and what its
contents can or should be. The $0PCDEF macro defines the field names, as
well as any other symbolic name that may be specified as the contents of a
field.

Message Buffer Format for OPC$_RQ_RQST

31

OPC$B_MS_ TYPE

7 0

OPC$B_MS_ TARGET IOPC$B_MS_ TYPE

OPC$L __ MS __ RQSTID

OPCL_M_ TEXT

ZK-1725-84

This 1-byte field contains the request code
OPC$_RQ_RQST.

SYSTEM SERVICE DESCRIPTIONS
$SNDOPR

OPC$B_MS_ TARGET

OPC$L_MS_RQSTID

OPC$L _MS_ TEXT

This 3-byte field contains a 24-bit bit vector that
specifies which operator terminal types are to receive
the request. The $0PCDEF macro defines symbolic
names for the operator terminal types. You construct
the bit vector by specifying the desired symbolic
names in a logical OR operation. Following is the
symbolic name of each operator terminal type:
OPC$M_NM_CARDS Card device operator

OPC$M_NM_CENTRL

OPC$M_NM_CLUSTER

OPC$M_NM_DEVICE

OPC$M_NM_DISKS

OPC$M_NM_NTWORK

OPC$M_NM_ TAPES

OPC$M_NM_PRINT

OPC$M_NM_SECURITY

OPC$M_NM_OPER 1

to

Central operator

V AXcluster operator

Device status information

Disk operator

Network operator

Tape operator

Printer operator

Security operator

OPC$M_NM_OPER 1
through

OPC$M_NM_OPER 12
specify

OPC$M_NM_OPER 12 system manager-defined
operator functions.

This longword field contains a user-supplied longword
message code.

This variable-length field contains an ASCII string
specifying text to be sent to the specified operator
terminals. The length of the string must be in the
range 0 to 255 bytes.

Message Buffer Format for OPC$_RQ_CANCEL

31

OPC$B_MS_ TYPE

15 7 0

OPC$B __ MS_TARGET l OPC$B_MS_ TYPE

OPC$L __ MS __ RQSTID

ZK-1726-84

This 1-byte field contains the request code
OPC$_RQ_CANCEL.

SYS-497

SYSTEM SERVICE DESCRIPTIONS
$SN DO PR

SYS-498

OPC$B_MS_ TARGET

OPC$L _MS_RQSTID

This 3-byte field contains a 24-bit bit vector that
specifies which operator terminal types are to receive
the cancellation request. The $0PCDEF macro defines
symbolic names for the operator terminal types. You
construct the bit vector by specifying the desired
symbolic names in a logical OR operation. Following is
the symbolic name of each operator terminal type:

OPC$M_NM_CARDS Card device operator

OPC$M_NM_CENTRL

OPC$M_NM_SECURITY

OPC$M_NM_CLUSTER

OPC$M_NM_DEVICE

OPC$M_NM_DISKS

OPC$M_NM_NTWORK

OPC$M_NM_ TAPES

OPC$M_NM_PRINT

OPC$M_NM_OPER 1

to

Central operator

Security operator

V AXcluster operator

Device status information

Disk operator

Network operator

Tape operator

Printer operator

OPC$M_NM_OPER1
through

OPC$M_NM_OPER 12
specify

OPC$M_NM_QPER 12 system manager-defined
operator functions.

This longword field contains a user-supplied longword
message code.

Message Buffer Format for OPC$_RQ_REPL Y

31 15 7 0

OPC$W_MS_ST ATUS J reserved I OPC$B_MS_ TYPE

OPC$L_MS_RPL YID

l OPC$W_MS_OUNIT

OPC$LMS_ONAME

l
OPC$L_MS_OTEXT

ZK-1727-84

SYSTEM SERVICE DESCRIPTIONS
$SNDOPR

OPC$B_MS_ TYPE This 1-byte field contains the request code
OPC$_RQ_REPL Y.

Reserved This 1-byte field is reserved for future use.

OPC$W_MS_STATUS This 2-byte field contains the low-order word of the
longword condition value that $SNDOPR returns in

OPC$L _MS_RPL YID

OPC$W _MS_OUNIT

OPC$T_MS_ONAME

OPC$L_MS_OTEXT

the mailbox specified by the chan argument. You can
find a list of these longword condition values under
CONDITION VALUES RETURNED IN THE MAILBOX.
To test the completion status, you need to extract the
low-order word from the longword condition value and
compare it to the contents of the
OPC$W_MS_ST A TUS field.

This 4-byte field contains a user-supplied message
code.

This 2-byte field contains the unit number of the
terminal to which the operator reply is to be sent.
To obtain the unit number of the terminal, you can
call $GETDVI, specifying the DVl$_FULLDEVNAM
item code. The information returned will consist of
the node name and device name as a padded string.
Because the unit number is found on the tail end of
the string, you must parse the string. One way to do
this is, starting from the tail end, to search for the
first alphabetic character; the digits to the right of this
alphabetic character constitute the unit number.

After extracting the unit number, count the remaining
characters in the string. Then, construct a counted
ASCII string and use this for the following field,
OPC$T_MS_ONAME.

This variable-length field contains a counted ASCII
string specifying the device name of the terminal that
is to receive the operator reply. The maximum total
length of the string is 14 bytes. See the preceding
field description (OPC$T_MS_OUNIT) to learn how to
obtain the device name.

This variable-length field contains an ASCII string
specifying operator-written text to be sent to the user
terminal. The length of the string must be in the range
0 to 255 bytes. This field is optional.

SYS-499

SYSTEM SERVICE DESCRIPTIONS
$SN DO PR

SYS-500

Message Buffer Format for OPC$_RQ_ TERME

31

OPC$B_MS_ TYPE

OPC$B_MS_ENAB

15 7 0

1 OPC$B_MS_ENAB ; l OPC$B_MS_ TYPE

OPC$L _MS_MASK

1 OPC$W _MS_OUNIT

OPC$LMS_ONAME

ZK-1728-84

This 1-byte field contains the request code
OPC$_RQ_ TERME.

This 3-byte field contains a user-supplied value. The
value 0 indicates that the specified terminal is to
be disabled for the specified operator classes. Any
nonzero value indicates that the specified terminal is to
be enabled for the specified operator classes.

SYSTEM SERVICE DESCRIPTIONS
$SN DO PR

OPC$B_MS_MASK

OPC$W _MS_OUNIT

OPC$T _MS_ONAME

This 4-byte field contains a 4-byte bit vector that
specifies which operator terminal types are to be
enabled or disabled for the specified terminal. The
$0PCDEF macro defines symbolic names for the
operator terminal types. You construct the bit vector
by specifying the desired symbolic names in a logical
OR operation. Following is the symbolic name of each
operator terminal type:
OPC$M_NM_CARDS

OPC$M_NM_CENTRL

OPC$M_NM_SECURITY

OPC$M_NM_CLUSTER

OPC$M_NM_DEVICE

OPC$M_NM_DISKS

OPC$M_NM_NTWORK

OPC$M_NM_ TAPES

OPC$M_NM_PRINT

OPC$M_NM_OPER 1

to

Card device operator

Central operator

Security operator

V AXcluster operator

Device status information

Disk operator

Network operator

Tape operator

Printer operator

OPC$M_NM_OPER 1
through

OPC$M_NM_OPER12
specify

OPC$M_NM_OPER 12 system manager-defined
operator functions.

This 2-byte field contains the unit number of the
operator terminal to be enabled or disabled for the
specified operator terminal types. To obtain the
unit number of the terminal, you can call $GETDVI,
specifying the DVl$_FULLDEVNAM item code. The
information returned will consist of the node name
and device name as a padded string. Because the unit
number is found on the tail end of the string, you must
parse the string. One way to do this is, starting from
the tail end, to search for the first alphabetic character;
the digits to the right of this alphabetic character
constitute the unit number.

After extracting the unit number, count the remaining
characters in the string. Then, construct a counted
ASCII string and use this for the following field,
OPC$T_MS_ONAME.

This variable-length field contains a counted ASCII
string specifying the device name of the operator
terminal to be enabled or disabled for the specified
operator terminal types. The maximum total length
of the string is 16 bytes. See the preceding field
description (OPC$T_MS_OUNIT) to learn how to obtain
the device name.

SYS-501

SYSTEM SERVICE DESCRIPTIONS
$SNDOPR

SYS-502

Message Buffer Format for OPC$_RQ_ST ATUS

31

OPC$B_MS_ TYPE

Reserved

Reserved

OPC$W _MS_OUNIT

OPC$T_MS_ONAME

15 7 0

reserved l OPC$B_MS_ TYPE

reserved

l OPC$W _MS_OUNIT

OPC$LMS_ONAME

This l-byte field contains the request code
OPC$_RQ_ST ATUS.

This 3-byte field is reserved for future use.

This 4-byte field is reserved for future use.

ZK-1729-84

This 2-byte field contains the unit number of the
operator terminal whose status is to be requested.
To obtain the unit number of the terminal, you can
call $GETDVI, specifying the DVl$_FULLDEVNAM item
code. The information returned will consist of the node
name and device name as a padded string. Because the
unit number is found on the tail end of the string, you
must parse the string. One way to do this is, starting
from the tail end, to search for the first alphabetic
character; the digits to the right of this alphabetic
character constitute the unit number.

After extracting the unit number, count the remaining
characters in the string. Then, construct a counted
ASCII string and use this for the following field,
OPC$T_MS_ONAME.

This variable-length field contains a counted ASCII string
specifying the device name of the operator terminal
whose status is requested. The maximum total length
of the string is 14 bytes. See the preceding field
description (OPC$T _MS_QUNIT) to !earn how to obtain
the device name.

SYSTEM SERVICE DESCRIPTIONS
$SNDOPR

Message Buffer Format for OPC$_RQ_LQGI

31

OPC$B_MS_ TYPE

Reserved

OPC$L_MS_RQSTID

OPC$W_MS_QUNIT

OPC$T_MS_QNAME

15 7 0

reserved l OPC$B_MS_ TYPE

OPC$W _MS_OUNIT

l OPC$L_MS_RQSTID

OPC$LMS_ONAME

This 1-byte field contains the request code
OPC$_RQ_LOGI.

This 3-byte field is reserved for future use.

ZK-1730-84

This longword field contains a user-supplied value. The
value 0 specifies that the current operator log file is
to be closed and a new log file opened. The value 1
specifies that the current operator log file is to be closed
but no new log file is to be opened.

This 2-byte field contains the unit number of the
operator terminal that is making the initialization request.
To obtain the unit number of the terminal, you can
call $GETDVI, specifying the DVl$_FULLDEVNAM item
code. The information returned will consist of the node
name and device name as a padded string. Because the
unit number is found on the tail end of the string, you
must parse the string. One way to do this is, starting
from the tail end, to search for the first alphabetic
character; the digits to the right of this alphabetic
character constitute the unit number.

After extracting the unit number, count the remaining
characters in the string. Then, construct a counted
ASCII string and use this for the following field,
OPC$T _MS_ONAME.

This variable-length field contains a counted ASCII string
specifying the device name of the operator terminal that
is making the initialization request. The maximum total
length of the string is 14 bytes. See the preceding field
description (OPC$T_MS_QUNIT) to learn how to obtain
the device name.

SYS-503

SYSTEM SERVICE DESCRIPTIONS
$SNDOPR

DESCRIPTION

SYS-504

ch an
VMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

Channel assigned to the mailbox to which the reply is to be sent. The chan
argument is a longword value containing the number of the channel. If you
do not specify chan or specify it as 0 (the default), no reply is sent.

If a reply from the operator is desired, you must specify the chan argument.

Depending on the operation, the calling process may need to have OPER
privilege to use $SNDOPR for the following functions:

• Enable a terminal as an operator's terminal.

• Reply to or cancel a user's request.

• Initialize the operator communication log file.

In addition, the operator must have SECURITY privilege as well as OPER
privilege to affect security functions.

The Send Message To Operator system service requires system dynamic
memory.

The general procedure for using this service is as follows:

1 Construct the message buffer and place its final length in the first word of
the buffer descriptor.

2 Call the $SNDOPR service.

3 Check the condition value returned in RO to ensure the request was
successfully made.

4 Issue a read request to the mailbox specified, if any.

5 When the read completes, check the 2-byte condition value in the
OPC$W_MS_STATUS field to ensure that the operation was performed
successfully.

The format of messages displayed on operator terminals follows:

%%%%%%%%%%% OPCOM dd-mmm-yyyy hh:mm:ss.cc
message specific information

The following example shows the message displayed on a terminal as a result
of a request to enable that terminal as an operator terminal:

%%%%%%%%%%% OPCOM 30-DEC-1988 13:44:40.37
Operator _NODE$LTA5: has been enabled, username HOEBLE

The following example shows the message displayed on an operator terminal
as a result of a request to display the status of that operator terminal:

%%%%%%%%%%% OPCOM 30-DEC-1988 12:11:10.48
Operator status for operator _NODE$0PAO:
CENTRAL, PRINTER, TAPES, DISKS, DEVICES, CARDS, CLUSTER, SECURITY,
OPER1, OPER2, OPER3, OPER4, OPER5, OPER6, OPER7, OPER8, OPER9,
OPER10, OPER11, OPER12

CONDITION
VALUES
RETURNED

CONDITION
VALUES
RETURNED IN
THE MAILBOX

SYSTEM SERVICE DESCRIPTIONS
$SNDOPR

The following example shows the message displayed on an operator terminal
as a result of a user request:

%%%%%%%%%%% OPCOM 30-DEC-1988 12:57:32.25
Request 1285, from user ROSS on NODE_NAME
Please mount device _NODE$DMAO:

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_DEVNOTMBX

SS$_1NSFMEM

SS$_1VCHAN

SS$_NOPRIV

OPC$_BLANKT APE

OPC$_1NIT APE

OPC$_NOPERA TOR

OPC$_RQSTCMPL TE

OPC$_RQSTPEND

OPC$_RQSTABORT

OPC$_RQSTCAN

The service completed successfully.

The message buffer or buffer descriptor cannot be
read by the caller.

The specified message has a length of 0 or has
more than 986 bytes.

The channel specified is not assigned to a mailbox.

The system dynamic memory is insufficient for
completing the service.

You specified an invalid channel number. An
invalid channel number is one that is 0 or a number
larger than the number of channels available.

The process does not have the privilege to reply
to or cancel a user's request; the process does not
have read/write access to the specified mailbox; or
the channel was assigned from a more privileged
access mode.

The service completed successfully; the operator
responded with the DCL command REPLY
/BLANK_ T APE=n.

The service completed successfully; the operator
responded with the DCL command REPLY
/INITIALIZE_ T APE=n.

The service completed successfully; no operator
terminal was enabled to receive the message.

The service completed successfully; the operator
completed the request.

The service completed successfully; the operator
will perform the request when possible.

The operator could not satisfy the request.

The caller canceled the request.

SYS-505

SYSTEM SERVICE DESCRIPTIONS
$SNDOPR

EXAMPLES

il ;++
; Build and send an operator request.

$dscdef
$opcdef

$opcmsg

Local storage and data

bufsiz = <opc$l_ms_text+120>

rqstprmpt:

rqst:

msgdsc:

.ascid /Request> I

.word

.byte

.byte

.long

0
dsc$k_dtype_t
dsc$k_class_d
0

.long bufsiz

.address msgbuf

Define descriptor off sets
Define OPCOM message off sets
and codes
Define message type codes

Maximum request buff er size

Prompt for user request

User request text
(dynamic string)

Desciptor of request
message buff er

msgbuf: Request message buffer
.blkb bufsiz

rqstid: User request ID number
.long 0
.page
.sbttl Main routine

;+
Prompt user for request text.

Build the request message.

Send the request to the operator .

. entry oprexample,-m<r2,r3,r4,r5,r6,r7,r8,r9,r10,r11>

; Prompt user for request text.

movaq
movaq

prompt: pushaq
pushaq
calls
blbs
ret

10$: tstw
beql

rqstprmpt,r2
rqst ,r3
(r2)
(r3)
#2,g~lib$get_input

r0,10$

dsc$w_length(r3)
prompt

; Build the request message.

movab msgbuf ,r4
movb #opc$_rq_rqst,-

opc$b_ms_type(r4)

Get address of prompt string
Get address of result buffer desc.
Prompt string
Result buffer
Get the request text
Branch if success
Return error status
Check for text
Branch if none - try again

Get address
Insert message type

SYS-506

SYSTEM SERVICE DESCRIPTIONS
$SNDOPR

insv

mo val
incl
movl
pushr
movc5

po pr
movaq

addw3

#opc$m_nm_disks,
#O,-
#24,
opc$b_ms_target(r4)
rqstid,r5
(r5) ;
(r5),opc$l_ms_rqstid(r4);
#-m<r2,r3,r4,r5>
dsc$w_length(r3),-

©dsc$a_pointer(r3),
#0,-
#120,
opc$l_ms_text(r4)
#-m<r2,r3,r4,r5>
msgdsc,r6

#opc$l_ms_text,
dsc$w_length(r3) ,
dsc$w_length(r6)

Insert target mask (disks)
starting at bit 0
continue for 24 bits
into the TARGET field

Get address of request id
Set to next request number
Insert request number
Save registers
Copy request text

to message buff er

Fill with zeros
Truncate to 120 characters

Restore registers
Get address of

message descriptor
Calculate message length

Send the request to the operator.

$sndopr_s msgdsc

ret
.end oprexample

Send request
(no reply expected)

Return to caller

This VAX MACRO example allows you to build an operator request and send
the request to the operator.

IMPLICIT NONE

! Symbol definitions
INCLUDE 1 ($DVIDEF) 1

INCLUDE 1 ($DPCDEF) 1

! Structures for SNDOPR
STRUCTURE /MESSAGE/

UNION
MAP

BYTE TYPE,
2 ENABLE(3)

INTEGER*4 MASK
INTEGER*2 OUNIT
CHARACTER*14 ONAME

END MAP
MAP

CHARACTER*24 STRING
END MAP

END UNION
END STRUCTURE
RECORD /MESSAGE/ MSGBUF
! Length of MSGBUF.ONAME
INTEGER*4 ONAME_LEN

! Status and routines
INTEGER*4 STATUS,
2 LIB$GETDVI,
2 SYS$SNDOPR

SYS-507

SYSTEM SERVICE DESCRIPTIONS
$SNDOPR

SYS-508

! Type
MSGBUF.TYPE = OPC$_RQ_TERME
! Enable
MSGBUF.ENABLE(1) = 1
! Operator type
MSGBUF.MASK = OPC$M_NM_OPER1
! Terminal unit number
STATUS= LIB$GETDVI (DVI$_UNIT,
2 •
2 I SYS$0UTPUT I •

2 MSGBUF.OUNIT,,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Terminal name
STATUS = LIB$GETDVI (DVI$_FULLDEVNAM,
2
2 I SYS$0UTPUT I ••

2 MSGBUF.ONAME,
2 ON AME_ LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Remove unit number from ONAME and set up counted string
ONAME_LEN = ONAME_LEN - 3
MSGBUF.ONAME(2:0NAME_LEN+1) = MSGBUF.ONAME(1:0NAME_LEN)
MSGBUF.ONAME(1:1) = CHAR(ONAME_LEN)
! Call $SNDOPR
STATUS= SYS$SNDOPR (MSGBUF.STRING,)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
END

This VAX FORTRAN program enables the current terminal to receive OPERl
operator messages.

$SUSPND

FORMAT

RETURNS

ARGUMENTS

SYSTEM SERVICE DESCRIPTIONS
$SUSPND

Suspend Process

The Suspend Process service allows a process to suspend itself or another
process.

A suspended process can receive executive or kernel mode ASTs, unless
it is suspended at kernel mode. If a process is suspended at kernel mode,
the process cannot receive any ASTs or otherwise be executed until
another process resumes or deletes it.

SYS$SUSPND [pidadr] ,[prcnam] ,[flags}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

pidadr
VMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PIO) of the process to be suspended. The pidadr
argument is the address of the longword PIO.

You must specify the pidadr argument to suspend a process whose UIC
group number is different from that of the calling process.

prcnam
VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of the process to be suspended. The prcnam argument is the address
of a character string descriptor pointing to a 1- to 15-character process name
string.

A process name is implicitly qualified by its UIC group number. Because of
this, you can use the prcnam argument only to suspend processes in the same
UIC group as the calling process.

To suspend processes in other groups, you must specify the pidadr argument.

If you specify neither the pidadr nor prcnam argument, the caller process is
suspended.

SYS-509

SYSTEM SERVICE DESCRIPTIONS
$SUSPND

DESCRIPTION

CONDITION
VALUES
RETURNED

SYS-510

flags
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Longword of bit flags specifying options for the suspend operation. Currently,
only bit 0 is used for the flags argument. When bit 0 is set, the process should
be suspended at kernel mode and ASTs are not deliverable to the process.

To request a kernel mode suspend, the caller must be in either kernel mode
or executive mode. For Version 5.0 of VMS, the default (bit 0 is clear) is to
suspend the process at supervisor mode, where executive or kernel mode
ASTs can be delivered to the process. If executive or kernel mode ASTs have
been delivered to a process suspended at supervisor mode, that process will
return to its suspended state after the AST routine executes.

Depending on the operation, the calling process may need one of the
following privileges to use $SUSPND:

• GROUP privilege to suspend another process in the same group, unless
the process to be suspended has the same UIC as the calling process

• WORLD privilege to suspend any other process in the system

The $SUSPND service requires system dynamic memory.

The $SUSPND service completes successfully if the target process is already
suspended.

Unless it has pages locked in the balance set, a suspended process can be
removed from the balance set to allow other processes to execute.

Note that a kernel-mode suspend request can override a supervisor-mode
suspend state, but a supervisor suspend request cannot override a kernel
mode suspend state.

The Resume Process ($RESUME) service allows a suspended process to
continue. If one or more resume requests are issued for a process that is not
suspended, a subsequent suspend request completes immediately; that is,
the process is not suspended. No count is maintained of outstanding resume
requests.

SS$_NORMAL

SS$_ACCVIO

SS$_1NSFMEM

SS$_1VLOGNAM

The service completed successfully.

The process name string or string descriptor
cannot be read by the caller, or the process
identification cannot be written by the caller.

The system dynamic memory is insufficient for
completing the service.

The specified process name has a length of 0 or
has more than 15 characters.

SS$_NONEXPR

SS$_NOPRIV

SYSTEM SERVICE DESCRIPTIONS
$SUSPND

The specified process does not exist, or an invalid
process identification was specified.

The target process was not created by the caller
and the calling process does not have GROUP or
WORLD privilege.

SYS-511

SYSTEM SERVICE DESCRIPTIONS
$SYNCH

$SYNCH

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

SYS-512

Synchronize

The Synchronize service checks the completion status of a system service
that completes asynchronously. The service whose completion status is
to be checked must have been called with the efn and iosb arguments
specified, because the $SYNCH service uses the event flag and 1/0 status
block of the service to be checked.

Refer to the Introduction to VMS System Services for a complete
discussion of system service completion.

SYS$SYNCH [efn} ,[iosb}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

efn
VMS usage: eLnumber
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag specified in the call to the system service whose
completion status is to be checked by $SYNCH. The efn argument is a
longword containing this number; however, $SYNCH uses only the low-order
byte.

iosb
VMS usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

IJO status block specified in the call to the system service whose completion
status is to be checked by $SYNCH. The iosb argument is the address of this
quadword I/O status block.

The $SYNCH service performs a true test for the completion of an
asynchronous service such as $GETJPI. The $SYNCH service operates in
the following way:

1 When called, $SYNCH waits (by calling the $WAITFR service) for the
event flag to be set.

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$SYNCH

2 When the event flag is set, $SYNCH checks to see whether the I/O status
block is nonzero. If it is nonzero, then the asynchronous service has
completed, and $SYNCH returns to the caller.

3 If the I/O status block is zero, then the asynchronous service has not yet
completed and the event flag was set by the completion of an event not
associated with the completion of $GETJPI. In this case, $SYNCH clears
the event flag (by calling the $CLREF service) and waits again (by calling
$WAITFR) for the event flag to be set, repeating this cycle until the I/O
status block is nonzero.

The $SYNCH service always sets the specified event flag when it returns to
the caller. This ensures that different program segments can use the same
event flag without clashing. For example, assume that calls to $GETJPI
and $GETSYI both specify the same event flag and that $SYNCH is called
to check for the completion of $GETJPI. If $GETSYI sets the event flag,
$SYNCH clears the flag and waits for $GETJPI to set it. When $GETJPI sets
the flag, $SYNCH returns to the caller and sets the event flag. In this way,
the flag set by $GETSYI is not lost, and another call to $SYNCH will show
the completion of $GETSYI.

The $SYNCH service is useful when a program calls an asynchronous service
but must perform some other work before testing for the completion of the
asynchronous service. In this case, the program should call $SYNCH at
that point when it must know that the service has completed and when it is
willing to wait for the service to actually complete.

When a program calls an asynchronous service (for example, $QIO) and
actually waits in line (by calling $WAITFR) for its completion without
performing any other work, you could improve that program by calling
the synchronous form of that service (for example, $QIOW). The synchronous
services such as $QIOW execute code that checks for the true completion
status in the same way that $SYNCH does.

SS$_NORMAL The service completed successfully. The
asynchronous service has completed, and the 1/0
status block contains the condition value describing
the completion status of the asynchronous service.

SYS-513

SYSTEM SERVICE DESCRIPTIONS
SYS$RMSRUNDWN

SYS$RMSRUNDWN RMS Rundown

FORMAT

RETURNS

ARGUMENTS

SYS-514

The RMS Rundown service closes all files opened by RMS for the image or
process and halts 1/0 activity. This routine performs a $CLOSE service for
each file opened for processing.

SYS$RMSRUNDWN buf-addr, type-value

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

buf-addr
VMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor

A descriptor pointing to a 22-byte buffer that is to receive the device
identification (16 bytes) and the file identification (6 bytes) of an improperly
closed output file. The buf-addr argument is the address of the descriptor
that points to the buffer.

type-value
VMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by value

A single byte code that specifies the type of IjO rundown to be performed.
The type-value argument is the actual value used.

This type of code has the following values and meanings:

0
Rundown of image and indirect 1/0 for process permanent files.

1
Rundown of image and process permanent files: the caller's mode must not
be user.

2
Abort RMS 1/0: the caller's mode must be either executive or kernel (the
system calls the 1/0 rundown control routine with this argument for process
deletion).

DESCRIPTION

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
SYS$RMSRUNDWN

In addition to closing all files and terminating 1/0 activity, the 1/0 rundown
control routine releases all locks held on records in shared files, clears buffers,
and returns other resources allocated for file processing. You should continue
to call the rundown control routine until you receive the success completion
status code of RMS$_NORMAL.

Note that, prior to the execution of the $CLOSE service, the rundown control
routine cancels all outstanding file operations specified in a FAB control block
or any QIO requests related to file operations (an Open, Create, or Extend
service, for example). It also cancels any read/write requests to nondisk
devices such as terminals or mailboxes prior to the execution of the Close
service, resulting in possible loss of data. All read/write requests of disk I/O
buffers, however, are allowed to complete, which guarantees that none of the
data written to disk files will be lost.

There is no predefined macro of the form $RMSRUNDWN _G or
$RMSRUNDWN _S to call this service.

RMS$_NORMAL

RMS$_CCF

RMS$_1AL

The service completed successfully.

The 1/0 rundown routine cannot close the file.

The argument list is invalid. An output file could
not be closed successfully, and the user buffer
could not be written.

SYS-515

SYSTEM SERVICE DESCRIPTIONS
SVS$SETDDIR

SYS$SETDDIR Set Default Directory

FORMAT

RETURNS

ARGUMENTS

SYS-516

The Set Default Directory service allows you to read and change the
default directory string for the process. You should restore the old default
directory string to its original status unless you want the changed default
directory string to last beyond the exit of your image.

SYS$SETDDIR {new-dir-addr] {,length-addr]
[,cur-dir-addr}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

new-dir-addr
VMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

A descriptor of the new default directory. The new-dir-addr argument is the
address of the descriptor that points to the buffer containing the new directory
specification that RMS will use to set the new process-default directory. If
the default directory is not to be changed, the value of the new-dir-addr
argument should be 0.

length-addr
VMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

A word that is to receive the length of the current default directory. The
length-addr argument is the address of the word that will receive the length.
If you do not want this value returned, specify the value 0.

cur-dir-addr
VMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor-fixed-length string descriptor

A descriptor of a buffer that is to receive the current default directory string.
The cur-dir-addr argument is the address of the descriptor that points to the
buffer area that is to receive the current directory string.

SYSTEM SERVICE DESCRIPTIONS
SVS$SETDDIR

DESCRIPTION The new directory name string is checked for correct syntax.

CONDITION
VALUES
RETURNED

There is no predefined macro of the form $SETDDIR_G or $SETDDIR_S to
call this service.

RMS$_NORMAL

RMS$_DIR

RMS$_1AL

The service completed successfully.

The directory name contains an error.

The argument list is invalid.

SYS-517

SYSTEM SERVICE DESCRIPTIONS
SVS$SETDFPROT

SYS$SETDFPROT Set Default File Protection

FORMAT

RETURNS

ARGUMENTS

DESCRIPTION

SYS-518

The Set Default File Protection service allows you to read and write the
default file protection for the process. You should restore the old default
file protection specification unless you want the changed default to last
beyond the exit of your image.

SVS$SETDFPROT [new-def-prot-addr,]
[cur-def-prot-addr]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

new-def-prot-addr
VMS usage: file_protection
type: word (unsigned)
access: read only
mechanism: by reference

A word that specifies the new default file protection specification. The
new-def-prot-addr argument is the address of the word that specifies the
desired protection. If you do not want the process-default file protection to be
changed, specify the value 0.

cur-def-prot-addr
VMS usage: file_protection
type: word (unsigned)
access: write only
mechanism: by reference

A word that is to receive the current default file protection specification. The
cur-def-prot-addr argument is the address of the word that receives the
current process-default protection. If you do not want the current default file
protection, specify the value 0.

There is no predefined macro of the form $SETDEFPROT_G or
$SETDEFPROT_S to call this service.

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
SVS$SETDFPROT

RMS$_NORMAL

RMS$_1AL

The service completed successfully.

The argument list is invalid.

SYS-519

SYSTEM SERVICE DESCRIPTIONS
$TRNLNM

$TRNLNM

FORMAT

RETURNS

ARGUMENTS

SYS-520

Translate Logical Name

The Translate Logical Name service returns information about a logical
name.

SVS$TRNLNM [attr] ,tabnam ,lognam ,[acmode] ,[itmlst]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

attr
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Attributes controlling the search for the logical name. The attr argument is
the address of a longword bit mask specifying these attributes. Currently,
only bit 0 is used for this argument.

Each bit in the longword corresponds to an attribute and has a symbolic
name. The $LNMDEF macro defines these symbolic names. To specify an
attribute, specify its symbolic name or set its corresponding bit. All undefined
bits in the longword must be 0.

If you do not specify this argument or specify it as 0 (no bits set), the
following attribute is not used.

Attribute Description

LNM$M_CASE_BLIND If set, $TRNLNM does not distinguish between
uppercase and lowercase letters in the logical name to
be translated.

tabnam
VMS usage: logicaLname
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Name of the table or name of a list of table names in which to search for the
logical name. The tabnam argument is the address of a descriptor pointing to
this name. This argument is required.

SYSTEM SERVICE DESCRIPTIONS
$TRNLNM

If the table name is not the name of a logical name table, it is assumed to be
a logical name and is translated iteratively until either the name of a logical
name table is found or the number of translations allowed by the system have
been performed. If the table name translates to a list of logical name tables,
the tables are searched in the specified order.

lognam
VMS usage: logicaLname
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Logical name about which information is to be returned. The lognam
argument is the address of a descriptor pointing to the logical name string.
This argument is required.

a cm ode
VMS usage: access_mode
type: byte (unsigned)
access: read only
mechanism: by reference

Access mode to be used in the translation. The acmode argument is the
address of a byte specifying the access mode. The $PSLDEF macro defines
symbolic names for the four access modes.

When you specify the acmode argument, $TRNLNM ignores all names (both
logical names and table names) at access modes less privileged than the
specified access mode. The specified access mode is not checked against that
of the caller.

If you do not specify acmode, $TRNLNM performs the translation without
regard to access mode; however, the translation process proceeds from the
outermost to the innermost access modes. Thus, if two logical names with the
same name, but at different access modes, exist in the same table, $TRNLNM
translates the name with the outermost access mode.

itmlst
VMS usage: item_list_3
type: longword (unsigned)
access: read only
mechanism: by reference

Item list describing the information that $TRNLNM is to return. The itmlst
argument is the address of a list of item descriptors, each of which specifies
or controls an item of information to be returned. The list of item descriptors
is terminated by a longword of 0.

The following diagram depicts a single item descriptor.

SYS-521

SYSTEM SERVICE DESCRIPTIONS
$TRNLNM

SYS-522

31 15 0

item code 1 buffer length

buffer address

return length address

ZK-1705-84

$TRNLNM Item Descriptor Fields

buffer length
A word specifying the number of bytes in the buffer pointed to by the buffer
address field.

item code
A word containing a symbolic code describing the nature of the information
in the buffer or to be returned to the buffer pointed to by the buffer address
field. Each item code is described under $TRNLNM Item Codes.

buffer address
A longword containing the address of the buffer that specifies or receives the
information.

return length address
A longword containing the address of a word that specifies the actual length
in bytes of the information returned by $TRNLNM in the buffer pointed to
by the buffer address field.

$TRNLNM Item Codes

LNM$-ACMODE
When you specify LNM$-ACMODE, $TRNLNM returns the access mode
that was associated with the logical name at the time of its creation. The
buffer address field in the item descriptor is the address of a byte in which
$TRNLNM writes the access mode.

LNM$_ATTRIBUTES
When you specify LNM$-ATTRIBUTES, $TRNLNM returns the attributes
of the logical name and the equivalence name associated with the current
LNM$-1NDEX value.

The buffer address field of the item descriptor points to a longword bit mask
wherein each bit corresponds to an attribute. The $TRNLNM service sets the
corresponding bit for each attribute possessed by either the logical name or
the equivalence name.

SYSTEM SERVICE DESCRIPTIONS
$TRNLNM

The $LNMDEF macro defines the following symbolic names for these
attributes.

Attribute Description

LNM$M_CONCEALED If $TRNLNM sets this bit, the equivalence name at the
current index value for the logical name is a concealed
logical name, as interpreted by RMS.

LNM$M_CONFINE If $TRNLNM sets this bit, the logical name is not copied
from a process to any of its spawned subprocesses.
The DCL command SPAWN creates subprocesses.

LNM$M_CRELOG If $TRNLNM sets this bit, the logical name was created
using the $CRELOG system service.

LNM$M_EXISTS If $TRNLNM sets this bit, an equivalence name with the
specified index does exist.

LNM$M_NQ_ALIAS If $TRNLNM sets this bit, the name of the logical name
cannot be given to another logical name defined in the
same table at an outer access mode.

LNM$M_ TABLE If $TRNLNM sets this bit, the logical name is the name
of a logical name table.

LNM$M_ TERMINAL If $TRNLNM sets this bit, the equivalence name for the
logical name cannot be subjected to further (recursive)
logical name translation.

LNM$_CHAIN
When you specify LNM$_CHAIN, $TRNLNM processes another item list
immediately following the current item list. The LNM$_CHAIN item code
must be the last one in the current item list. The buffer address field of the
item descriptor points to the next item list.

LNM$_1NDEX
When you specify LNM$-1NDEX, $TRNLNM searches for an equivalence
name that has the specified index value. The buffer address field of the item
descriptor points to a longword containing a user-specified integer in the
range 0 to 127.

If you do not specify this item code, the implied value of LNM$-1NDEX is 0
and $TRNLNM returns information about the equivalence name at index 0.

Because a logical name may have more than one equivalence name and each
equivalence name is identified by an index value, you should specify the
LNM$-1NDEX item code first in the item list, before specifying
LNM$_STRING, LNM$_LENGTH, or LNM$--ATTRIBUTES. These item
codes return information about the equivalence name identified by the current
index value, LNM$-1NDEX.

LNM$_LENGTH
When you specify LNM$_LENGTH, $TRNLNM returns the length of the
equivalence name string corresponding to the current LNM$-1NDEX value.
The buffer address field in the item descriptor is the address of the longword
in which $TRNLNM writes this length.

If an equivalence name does not exist at the current LNM$-1NDEX value,
$TRNLNM returns a zero to the longword pointed to by the return length
field of the item descriptor.

SYS-523

SYSTEM SERVICE DESCRIPTIONS
$TRNLNM

DESCRIPTION

CONDITION
VALUES
RETURNED

SYS-524

LNM$_MAX_INDEX
Each equivalence name for the logical name has an index associated with it.
When you specify LNM$_MAX_INDEX, $TRNLNM returns a value equal
to the largest equivalence name index. The buffer address field in the item
descriptor is the address of a longword in which $TRNLNM writes this value.
If no equivalence names (and, therefore, no index values) exist, $TRNLNM
returns a value of -1.

LNM$_STRING
When you specify LNM$_STRING, $TRNLNM returns the equivalence name
string corresponding to the current LNM$_INDEX value. The buffer address
field of the item descriptor points to a buffer containing this string. The
return length address field of the item descriptor contains an address of a
word that contains the length of this string in bytes. The maximum length of
the equivalence name string is 255 characters.

If an equivalence name does not exist at the current LNM$_INDEX value,
$TRNLNM returns the value 0 in the return length address field of the the
item descriptor.

LNM$_TABLE
When you specify LNM$_TABLE, $TRNLNM returns the name of the table
containing the logical name being translated. The buffer address field of the
item descriptor points to the buffer in which $TRNLNM returns this name.
The return length address field of the item descriptor specifies the address of
a word in which $TRNLNM writes the size of the table name. The maximum
length of the table name is 31 characters.

You need read access to a shareable logical name table to translate a logical
name located in that shareable logical name table.

SS$_ACCVIO

SS$_BADPARAM

SS$_BUFFEROVF

SS$_1VLOGNAM

SS$_1VLOGT AB

SS$_NOLOGNAM

SS$_NOPRIV

The service cannot access the location or locations
specified by one or more arguments.

One or more arguments have an invalid value, or a
logical name table name or logical name was not
specified.

The service completed successfully. The buffer
length field in an item descriptor specified an
insufficient value, so the buffer was not large
enough to hold the requested data.

The tabnam argument or lognam argument
specifies a string whose length is not in the
required range of 1 through 255 characters.

The tabnam argument does not specify a logical
name table.

The logical name was not found in the specified
logical name table or tables.

The caller lacks the necessary privilege to access
the specified name.

SS$_NORMAL

SYSTEM SERVICE DESCRIPTIONS
$TRNLNM

The service completed successfully. An
equivalence name for the logical name has been
found.

SS$_ TOOMANYLNAM Logical name translation of the table name
exceeded the allowable depth (10 translations).

SYS-525

SYSTEM SERVICE DESCRIPTIONS
$ULKPAG

$ULKPAG

FORMAT

RETURNS

ARGUMENTS

SYS-526

Unlock Pages from Memory

The Unlock Pages from Memory service unlocks pages that were
previously locked in memory by the Lock Pages in Memory {$LCKPAG)
service. Locked pages are automatically unlocked and deleted at image
exit.

SVS$ULKPAG inadr ,[retadr} ,[acmode}

VMS usage: cond_value
type: longword {unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

inadr
VMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Starting and ending virtual addresses of the pages to be unlocked. The inadr
argument is the address of a 2-longword array containing, in order, the
starting and ending process virtual addresses. Only the virtual page number
portion of each virtual address is used; the low-order 9 bits are ignored. If the
starting and ending virtual addresses are the same, a single page is unlocked.

If more than one page is being unlocked and you need to determine
specifically which pages had been previously unlocked, you should unlock
the pages one at a time, that is, one page per call to $ULWSET. The condition
value returned by $ULWSET indicates whether the page was previously
unlocked.

retadr
VMS usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference-array reference or descriptor

Starting and ending process virtual addresses of the pages actually unlocked
by $ULKPAG. The retadr argument is the address of a 2-longword array
containing, in order, the starting and ending process virtual addresses.

If an error occurs while multiple pages are being unlocked, retadr specifies
those pages that were successfully unlocked before the error occurred. If no
pages were successfully unlocked, both longwords in the retadr array contain
the value -1.

DESCRIPTION

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$ULKPAG

acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode on behalf of which the request is being made. The acmode
argument is a longword containing the access mode. The $PSLDEF macro
defines the symbols for the four access modes.

The most privileged access mode used is the access mode of the caller. To
unlock any specified page, the resultant access mode must be equal to or
more privileged than the access mode of the owner of that page.

To call the $ULKPAG service, a process must have PSWAPM privilege.

SS$_WASCLR

SS$_WASSET

SS$_ACCVIO

The service completed successfully. At least one
of the specified pages was previously unlocked.

The service completed successfully. All of the
specified pages were previously locked.

The input array cannot be read by the caller; the
output array cannot be written by the caller; or a
page in the specified range is inaccessible or does
not exist.

SYS-527

SYSTEM SERVICE DESCRIPTIONS
$ULWSET

$ULWSET

FORMAT

RETURNS

ARGUMENTS

SVS-528

Unlock Pages from Working Set

The Unlock Pages from Working Set service unlocks pages that were
previously locked in the working set by the Lock Pages in Working Set
($LKWSET) service. Unlocked pages become candidates for replacement
within the working set of the process.

SYS$ULWSET inadr ,{retadr} ,{acmode}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

inadr
VMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference-array reference or descriptor

Starting and ending virtual addresses of the pages to be unlocked. The inadr
argument is the address of a 2-longword array containing, in order, the
starting and ending process virtual addresses. Only the virtual page number
portion of each virtual address is used; the low-order 9 bits are ignored. If the
starting and ending virtual address are the same, a single page is unlocked.

If more than one page is being unlocked and you need to determine
specifically which pages had been previously unlocked, you should unlock
the pages one at a time, that is, one page per call to $ULWSET. The condition
value returned by $ULWSET indicates whether the page was previously
unlocked.

retadr
VMS usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference-array reference or descriptor

Starting and ending process virtual addresses of the pages that were actually
unlocked by $CRMPSC. The retadr argument is the address of a 2-longword
array containing, in order, the starting and ending process virtual addresses.

If an error occurs while multiple pages are being unlocked, retadr specifies
those pages that were successfully unlocked before the error occurred. If no
pages were successfully unlocked, both longwords in the retadr array contain
the value -1.

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$ULWSET

acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode on behalf of which the request is being made. The acmode
argument is a longword containing the access mode. The $PSLDEF macro
defines the symbols for the four access modes.

The most privileged access mode used is the access mode of the caller. To
unlock any specified page, the resultant access mode must be equal to or
more privileged than the access mode of the owner of that page.

SS$_WASCLR

SS$_WASSET

SS$_ACCVIO

SS$_NOPRIV

The service completed successfully. At least one
of the specified pages was previously unlocked.

The service completed successfully. All of the
specified pages were previously locked in the
working set.

The inadr argument cannot be read by the
caller; the retadr argument cannot be written
by the caller; or a page in the specified range is
inaccessible or does not exist.

A page in the specified range is in the system
address space.

SYS-529

SYSTEM SERVICE DESCRIPTIONS
$UNWIND

$UNWIND

FORMAT

RETURNS

ARGUMENTS

SYS-530

Unwind Call Stack

The Unwind Call Stack service unwinds the procedure call stack; that is,
it removes a specified number of call frames from the stack. Optionally,
it may return control to a new program counter (PC) unwinding the stack.
The $UNWIND service is intended to be called from within a condition
handling routine.

SVS$UNWIND {depadr} ,{newpc}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

depadr
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Depth to which the procedure call stack is to be unwound. The depadr
argument is the address of a longword value. The value 0 specifies the call
frame of the procedure that was executing when the condition occurred (that
is, no call frames are unwound), 1 specifies the caller of that frame, 2 specifies
the caller of the caller of that frame, and so on.

If depadr specifies the value 0, no unwind occurs and $UNWIND returns a
successful condition value in RO.

If you do not specify depadr, $UNWIND unwinds the stack to the call frame
of the procedure that called the procedure that established the condition
handler that is calling the $UNWIND service. This is the default and the
normal method of unwinding the procedure call stack.

newpc
VMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

New value for the program counter (PC); this value replaces the current value
of the PC in the call frame of the procedure that receives control when the
unwinding operation is complete. The newpc argument is a longword value
containing the address at which execution is to resume.

Execution resumes at this address when the unwinding operation is complete.

DESCRIPTION

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$UNWIND

If you do not specify newpc, execution resumes at the location specified by
the PC in the call frame of the procedure that receives control when the
unwinding operation is complete.

The actual unwind is not performed immediately. Rather, the return
addresses in the call stack are modified so that when the condition handler
returns, the unwind procedure is called from each frame being unwound.

During the actual unwinding of the call stack, $UNWIND examines each
frame in the call stack to see if a condition handler has been declared. If a
handler has been declared, $UNWIND calls the handler with the condition
value SS$_UNWIND (indicating that the call stack is being unwound) in
the condition name argument of the signal array. When you call a condition
handler with this condition value, that handler can perform any procedure
sp~cific clean-up operations that may be required. After the condition handler
returns, the call frame is removed from the stack.

SS$_NQRMAL

SS$_ACCVIO

SS$_1NSFRAME

SS$_NOSIGNAL

SS$_UNWINDING

The service completed successfully.

The call stack is not accessible to the caller.
This condition is detected when the call stack is
scanned to modify the return address.

There are insufficient call frames to unwind to the
specified depth.

No signal is currently active for an exception
condition.

An unwind operation is already in progress.

SYS-531

SYSTEM SERVICE DESCRIPTIONS
$UPDSEC

$UPDSEC

FORMAT

RETURNS

ARGUMENTS

SVS-532

Update Section File on Disk

The Update Section File on Disk service writes all modified pages in an
active private or global section back into the section file on disk. One or
more 1/0 requests are queued, based on the number of pages that have
been modified.

SYS$UPDSEC inadr ,[retadr] ,{acmode] ,{updflg]
,{efn] ,{iosb] ,[astadr] ,{astprm]

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

inadr
VMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference-array reference or descriptor

Starting and ending virtual addresses of the pages that are to be written to the
section file if they have been modified. The inadr argument is the address
of a 2-longword array containing, in order, the starting and ending process
virtual addresses. Only the virtual page number portion of each virtual
address is used; the low-order 9 bits are ignored.

The $UPDSEC service scans pages starting at the address contained in the
first longword specified by inadr and ending at the address contained in the
second longword. Within this range, $UPDSEC locates read/write pages that
have been modified and writes them (contiguously, if possible) to the section
file on disk. Unmodified pages are also written to disk if they share the same
cluster with modified pages.

If the starting and ending virtual addresses are the same, a single page is
written to the section file if the page has been modified.

The address specified by the second longword may be smaller than the
address specified by the first longword.

retadr
VMS usage: address_range
type: longword (unsigned)
access: write only
mechanism: by reference-array reference or descriptor

Addresses of the first and last pages that were actually queued for writing, in
the first $QIO request, back to the section file on disk. The retadr argument

SYSTEM SERVICE DESCRIPTIONS
$UPDSEC

is the address of a 2-longword array containing, in order, the addresses of the
first and last pages.

If $UPDSEC returns an error condition value in RO, each longword specified
by retadr will contain the value -1. In this case, an event flag is not set, no
AST is delivered, and the I/O status block is not written to.

acmode
VMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode on behalf of which the service is performed. The acmode
argument is a longword containing the access mode. The $PSLDEF macro
defines the symbols for the four access modes.

The most privileged access mode used is the access mode of the caller. A
page cannot be written to disk unless the access mode used by $UPDSEC is
equal to or more privileged than the access mode of the owner of the page to
be written.

updflg
VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Update specifier for read/write global sections. The updflg argument is a
longword value. The value 0 (the default) specifies that all read/write pages
in the global section are to be written to the section file on disk, whether they
have been modified or not. The value 1 specifies that (1) the caller is the
only process actually writing the global section, and (2) only those pages that
were actually modified by the caller are to be written to the section file on
disk.

ef n
VMS usage: eLnumber
type: longword (unsigned)
access: read only
mechanism: by value

Event flag to be set when the section file on disk is actually updated. The efn
argument is a longword specifying the number of the event flag; however,
$UPDSEC uses only the low-order byte.

If you do not specify efn, event flag 0 is used.

When you invoke $UPDSEC, the specified event flag or event flag 0 is
cleared; when the update operation is complete, the event flag is set.

iosb
VMS usage: io_status_block
type: quadword (unsigned)
access: write only
mechanism: by reference

IjO status block to receive the final completion status of the updating
operation. The iosb argument is the address of the quadword IjO status
block.

SVS-533

SYSTEM SERVICE DESCRIPTIONS
$UPDSEC

SYS-534

When you invoke $UPDSEC, the I/O status block is cleared. After the update
operation is complete, that is, when all I/O to the disk is complete, the 1/0
status block is written as follows:

• The first word contains the condition value returned by $QIO, indicating
the final completion status.

• The first bit in the second word is set only if an error occurred during the
1/0 operation and the error was a hardware write error.

• The second longword contains the virtual address of the first page that
was not written.

Though this argument is optional, DIGITAL strongly recommends that you
specify it, for the following reasons:

• If you are using an event flag to signal the completion of the service, you
can test the IjO status block for a condition value to be sure that the
event flag was not set by an event other than service completion.

• If you are using the $SYNCH service to synchronize completion of the
service, the I/O status block is a required argument for $SYNCH.

• The condition value returned in RO and the condition value returned in
the 1/0 status block provide information about different aspects of the
call to the $UPDSEC service. The condition value returned in RO gives
you information about the success or failure of the service call itself; the
condition value returned in the IjO status block gives you information
about the success or failure of the service operation. Therefore, to
accurately assess the success or failure of the call to $UPDSEC, you
must check the condition values returned in both RO and the I/O status
block.

astadr
VMS usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding
mechanism: by reference-procedure reference or descriptor

AST routine to be executed when the section file has been updated. The
astadr argument is the address of the entry mask of this routine.

If you specify astadr, the AST routine executes at the access mode from which
the section file update was requested.

astprm
VMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST routine. The astprm argument is this
longword parameter.

DESCRIPTION

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$UPDSEC

The $UPDSEC service uses the calling process's direct 1/0 limit (DIRIO)
quota in queuing the IjO request and uses the calling process's AST limit
(ASTLM) quota if the astadr argument is specified.

Proper use of this service requires the caller to synchronize completion of the
update request. You do this by first checking the condition value returned in
RO by $UPDSEC. If SS$-NOTMODIFIED is returned, the caller can continue.
If SS$-NORMAL is returned, the caller should wait for the 1/0 to complete
and then check the first word of the IjO status block for the final completion
status. You can use the Synchronize ($SYNCH) service to determine whether
the 1/0 operation has actually completed.

For a global section located in memory shared by multiple processors, only
processes running on the processor that created the section can specify
that global section in a call to the $UPDSEC service. Processes on another
processor that attempt to update the section file will receive an error condition
value indicating that the request was not performed.

SS$_NORMAL

SS$_NOTMODIFIED

SS$_ACCVIO

SS$_EXOUOT A

SS$_1LLEFC

SS$_1VSECFLG

SS$_NOTCREATOR

SS$_NOPRIV

SS$_PAGOWNVIO

SS$_SHMNOTCNCT

SS$_UNASCEFC

The service completed successfully. One or more
1/0 requests were queued.

The service completed successfully. No pages in
the input address range were section pages that
had been modified. No 1/0 requests were queued.

The input address array cannot be read by the
caller, or the output address array cannot be
written by the caller.

The process has exceeded its AST limit quota.

You specified an illegal event flag number.

You specified an invalid flag.

The section is in memory shared by multiple
processors and was created by a process on
another processor.

A page in the specified range is in the system
address space.

A page in the specified range is owned by an
access mode more privileged than the access
mode of the caller.

The section is specified as being in memory shared
by multiple processors, but this shared memory is
not known to the system.

The process is not associated with the cluster
containing the specified event flag.

SYS-535

SYSTEM SERVICE DESCRIPTIONS
$UPDSECW

$UPDSECW Update Section File on Disk and
Wait

FORMAT

SVS-536

The Update Section File on Disk and Wait service writes all modified pages
in an active private or global section back into the section file on disk. One
or more 1/0 requests are queued, based on the number of pages that have
been modified.

The $UPDSECW service completes synchronously; that is, it returns to
the caller after writing all updated pages.

For asynchronous completion, you use the Update Section File on Disk
($UPDSEC) service; $UPDSEC returns to the caller after queuing the
update request, without waiting for the pages to be updated.

In all other respects, $UPDSECW is identical to $UPDSEC. For all other
information about the $UPDSECW service, refer to the documentation of
$UPDSEC.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System
Services.

SYS$UPDSECW inadr [,retadr] [,acmode} [,updflg} [,efn]
[,iosb} [,astadr] [,astprm]

$WAITFR

FORMAT

RETURNS

ARGUMENT

DESCRIPTION

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$WAITFR

Wait for Single Event Flag

The Wait for Single Event Flag service tests a specific event flag and
returns immediately if the flag is set. Otherwise, the process is placed in a
wait state until the event flag is set.

SYS$WAITFR efn

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

efn
VMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag for which to wait The efn argument is a longword
containing this number; however, $WAITFR uses only the low-order byte.

The wait state caused by this service can be interrupted by an asynchronous
system trap (AST) if (1) the access mode at which the AST executes is equal
to or more privileged than the access mode from which the $WAITFR service
was issued and (2) the process is enabled for ASTs at that access mode.

When a wait state is interrupted by an AST and after the AST service routine
completes execution, VMS repeats the $WAITFR request on behalf of the
process. At this point, if the event flag has been set, the process resumes
execution.

SS$_NORMAL

SS$_1LLEFC

SS$_UNASEFC

The service completed successfully.

You specified an illegal event flag number.

The process is not associated with the cluster
containing the specified event flag.

SYS-537

SYSTEM SERVICE DESCRIPTIONS
$WAKE

$WAKE Wake Process from Hibernation

FORMAT

RETURNS

ARGUMENTS

SYS-538

The Wake Process from Hibernation service activates a process that has
placed itself in a state of hibernation with the Hibernate ($HISER) service.

SVS$WAKE [pidadr} ,[prcnam}

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

pidadr
VMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identification (PID) of the process to be awakened. The pidadr
argument is the address of a longword containing the PID.

prcnam
VMS usage: process_name
type: character-coded text string
access: read only
mechanism: by descriptor-fixed-length string descriptor

Process name of the process to be awakened. The prcnam argument is the
address of a character string descriptor pointing to a 1- to 15-character process
name string.

The process name is implicitly qualified by the UIC group number of the
calling process. For this reason, you can use the prcnam argument only if
the process to be awakened is in the same UIC group as the calling process.
To awaken a process in another UIC group, you must specify the pidadr
argument.

If you specify neither the pidadr nor the prcnam argument, the wake request
is issued for the calling process.

DESCRIPTION

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$WAKE

Depending on the operation, the calling process may need one of the
following privileges to use $WAKE:

• GROUP privilege to wake another process in the same group, unless the
process has the same UIC as the calling process

• WORLD privilege to wake any other process in the system

If one or more wake requests are issued for a process not currently
hibernating, a subsequent hibernate request completes immediately; that
is, the process does not hibernate. No count is maintained of outstanding
wakeup requests.

You can also awaken a hibernating process with the Schedule Wakeup
($SCHDWK) service.

SS$_NORMAL

SS$_ACCVIO

SS$_1VLOGNAM

SS$_NONEXPR

SS$_NOPRIV

The service completed successfully.

The process name string or string descriptor
cannot be read by the caller, or the process
identification cannot be written by the caller.

The specified process name string has a length of
0 or has more than 15 characters.

The specified process does not exist, or you
specified an invalid process identification.

The process does not have the privilege to wake
the specified process.

SYS-539

SYSTEM SERVICE DESCRIPTIONS
$WFLAND

$WFLAND Wait for Logical AND of Event Flags

FORMAT

RETURNS

ARGUMENTS

SYS-540

The Wait for Logical AND of Event Flags service allows a process to
specify a set of event flags for which it wants to wait. The process is
put in a wait state until all specified event flags are set, at which time
$WFLAND returns to the caller and execution resumes.

SYS$WFLAND efn ,mask

VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

efn
VMS usage: eLnumber
type: longword (unsigned)
access: read only
mechanism: by value

Number of any event flag within the event flag cluster to be used. The efn
argument is a longword containing this number; however, $WFLAND uses
only the low-order byte. Specifying the number of an event flag within the
cluster serves to identify the event flag cluster.

There are two local event flag clusters: cluster 0 and cluster 1. Cluster
0 contains event flag numbers 0 to 31, and cluster 1 contains event flag
numbers 32 to 63.

There are two common event flag clusters: cluster 2 and cluster 3. Cluster
2 contains event flag numbers 64 to 95, and cluster 3 contains event flag
numbers 96 to 127.

mask
VMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Event flags for which the process is to wait. The mask argument is a
longword bit vector wherein a bit, when set, selects the corresponding event
flag for which to wait.

DESCRtPTION

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$WFLAND

The wait state caused by this service can be interrupted by an asynchronous
system trap (AST) if (1) the access mode at which the AST executes is equal
to or more privileged than the access mode from which the $WAITFR service
was issued and (2) the process is enabled for ASTs at that access mode.

When a wait state is interrupted by an AST and after the AST service routine
completes execution, VMS repeats the $WFLAND request on behalf of the
process. At this point, if all the specified event flags have been set, the
process resumes execution.

SS$_NORMAL

SS$_1LLEFC

SS$_UNASEFC

The service completed successfully.

You specified an illegal event flag number.

The process is not associated with the cluster
containing the specified event flag.

SYS-541

SYSTEM SERVICE DESCRIPTIONS
$WFLOR

$WFLOR

FORMAT

RETURNS

ARGUMENTS

SYS-542

Wait for Logical OR of Event
Flags

The Wait for Logical OR of Event Flags service allows a process to specify
a set of event flags for which it wants to wait. The process is put in a
wait state until any one of the specified event flags is set, at which time
$WFLOR returns to the caller and execution resumes.

SYS$WFLOR efn ,mask

VMS usage: cond_value
type: longword {unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values that this service
returns are listed under CONDITION VALUES RETURNED.

ef n
VMS usage: eLnumber
type: longword {unsigned)
access: read only
mechanism: by value

Number of any event flag within the event flag cluster to be used. The efn
argument is a longword containing this number; however, $WFLOR uses only
the low-order byte. Specifying the number of an event flag within the cluster
serves to identify the event flag cluster.

There are two local event flag clusters: cluster 0 and cluster 1. Cluster
0 contains event flag numbers 0 to 31, and cluster 1 contains event flag
numbers 32 to 63.

There are two common event flag clusters: cluster 2 and cluster 3. Cluster
2 contains event flag numbers 64 to 95, and cluster 3 contains event flag
numbers 96 to 127.

mask
VMS usage: mask_longword
type: longword {unsigned)
access: read only
mechanism: by value

Event flags for which the process is to wait. The mask argument is a
longword bit vector wherein a bit, when set, selects the corresponding event
flag for which to wait.

DESCRIPTION

CONDITION
VALUES
RETURNED

SYSTEM SERVICE DESCRIPTIONS
$WFLOR

The wait state caused by this service can be interrupted by an asynchronous
system trap (AST) if (1) the access mode at which the AST executes is equal
to or more privileged than the access mode from which the $WFLOR service
was issued and (2) the process is enabled for ASTs at that access mode.

When a wait state is interrupted by an AST and after the AST service routine
completes execution, VMS repeats the $WFLOR request on behalf of the
process. At this point, if all the specified event flags have been set, the
process resumes execution.

SS$_NORMAL

SS$_1LLEFC

SS$_UNASEFC

The service completed successfully.

You specified an illegal event flag number.

The process is not associated with the cluster
containing the specified event flag.

SYS-543

A Obsolete Services

The following table lists the obsolete system services and the current services
that have replaced them. For descriptions of the obsolete services, see the
VMS Obsolete Features Manual.

Obsolete Service Current Service

$BRDCST $BRKTHRU,$BRKTHRU\N

$CRELOG $CRELNM

$CNTREG $DEL TVA

$DELLOG $DELLNM

$GETCHN $GETDVI, $GETDVl\N

$GETDEV $GETDVI, $GETDVl\N

$INPUT $010 ,$010\N

$OUTPUT $010 ,$QIO\N

$SNDACC $SNDJBC,$SNDJBC\N

$SNDSMB $SNDJBC,$SNDJBC\N

$TRNLOG $TRNLNM

A-1

Index

A
Absolute time

as input to SYS$BINTIM • SYS-28
converting to numeric• SYS-366

Access mode
changing to executive• SYS-64
changing to kernel• SYS-66

Accounting message
format of• SYS-96

Allocation class• SYS-206
ASCII string

converting to binary• SYS-27
AST (asynchronous system trap)

declaring• SYS-121
disabling• SYS-400
enabling• SYS-400
setting for power recovery• SYS-409
setting timer for• SYS-406

ASTLM (AST limit) quota
effect of canceling wakeup on• SYS-45

Asynchronous system trap

See AST

B
Binary value

converting to ASCII string• SYS-165

c
Call frame

removing from stack• SYS-530
Call stack

removing frame from• SYS-530
Change mode handler

declaring• SYS-123
Channel

assigning 1/0 • SYS-23
canceling 1/0 • SYS-39

Characteristic
getting information about

Characteristic
getting information about (cont'd.)

asynchronously• SYS-25 7
synchronously• SYS-297

Compatibility mode handler
declaring• SYS-123

Control region
adding page to• SYS-1 63

D
Default form• SYS-463
Delta time

as input to SYS$BINTIM • SYS-28
converting to numeric• SYS-366

Detached process • SYS-99
Device

allocating • SYS-12
deallocating• SYS-117
dual-pathed • SYS-207
getting information about

asynchronously• SYS-203
synchronously• SYS-221

lock name• SYS-210
served• SYS-214

Directive
SYS$FAO • SYS-167

E
Equivalence name

specifying • SYS-68
Error logger

sending message to• SYS-441
Event flag

clearing• SYS-63
getting current status• SYS-385
setting • SYS-401
waiting for entire set of• SYS-540
waiting for one of set• SYS-542
waiting for setting of• SYS-53 7

Event flag cluster
associating with a process • SYS-15
deleting• SYS-146

lndex-1

Index

Event flag cluster (cont'd.)

disassociating • SYS-116
getting current status• SYS-385

Exception
generating on system service failure• SYS-423

Exception vector
setting• SYS-402

Executive mode
changing to• SYS-64

Exit handler
canceling • SYS-41
control block• SYS-125

deleting• SYS-4 1
declaring• SYS-125

F
File

getting information about
asynchronously• SYS-257
synchronously• SYS-297

File specification
parsing components of• SYS-179
searching string for• SYS-1 79

Form
getting information about

asynchronously• SYS-25 7
synchronously• SYS-297

G
Global section

creating • SYS-105
deleting • SYS-140
mapping• SYS-105, SYS-339

H
Host• SYS-206

I
1/0 channel

assigning• SYS-23

lndex-2

1/0 channel (cont'd.)

deassigning• SYS-119
1/0 device

getting information about
asynchronously• SYS-203
synchronously• SYS-221

1/0 request
canceling on channel• SYS-39
queuing

asynchronously• SYS-379
synchronously• SYS-384

Image exit• SYS-162
Image rundown

forcing• SYS-191

J
Job

getting information about
asynchronously• SYS-222, SYS-25 7
synchronously• SYS-238, SYS-297

Job controller
major interface

K

asynchronous• SYS-441
synchronous• SYS-493

Kernel mode
changing to• SYS-66

L
Lock

getting information about
asynchronously• SYS-239
synchronously• SYS-252

Lock database
in a V AXcluster • SYS-249

Lock request
dequeuing• SYS-136
queuing

asynchronously • SYS-148
synchronously• SYS-158

Lock status block• SYS-150
Lock value block• SYS-150

Logical name
creating• SYS-68
deleting• SYS-127
getting information about. SYS~520
translating• SYS-520

Logical name table
creating •SYS-7 4
deleting• SYS-127

M
Mailbox

assigning channel to• SYS-82
creating• SYS-82
deleting

permanent• SYS-85, SYS-130
temporary• SYS-85

Memory
locking page into• SYS-335
unlocking page from• SYS-526

Message
formatting and outputting• SYS-371
obtaining text of• SYS-253
sending to error logger• SYS-441
sending to operator• SYS-495
writing to terminal• SYS-30, SYS-38

Message symbol• SYS-376

0
Operator

sending message• SYS-495
Output

formatting character string• SYS-165

p
Page

locking into memory• SYS-335
locking into working set• SYS-337
removing from working set• SYS-370
setting protection • SYS-414
unlocking from memory• SYS-526
unlocking from working set• SYS-528

Power recovery
setting AST for• SYS-409

Priority
setting • SYS-4 11

Privilege
setting for process • SYS-4 1 7

Process
creating• SYS-88
deleting• SYS-132
getting information about

asynchronously• SYS-222
synchronously• SYS-238

hibernating• SYS-330
resuming after suspension• SYS-391
scheduling wakeup for• SYS-397
setting name of• SYS-413
setting priority of• SYS-4 11
setting privilege• SYS-417
setting swap mode for• SYS-429
suspending • SYS-509

Index

waiting for entire set of event flags• SYS-540
waiting for event flag to be set• SYS-537
waiting for one of set of event flags• SYS-542
waking• SYS-538

Process index number• SYS-230
Process quota

symbolic names for (PQL$_xxxx) • SYS-91
Program region

adding page to • SYS-163
Protection

queue• SYS-488
setting for page• SYS-414

Q
Queue

creating and managing
asynchronously • SYS-44 1
synchronously • SYS-493

getting information about
asynchronously• SYS-25 7
synchronously• SYS-297

protection • SYS-488
types of• SYS-485

R
Remote node

establishing logical link with• SYS-23

lndex-3

Index

Resource wait mode
setting • SYS-42 1

s
Section

creating• SYS-105
deleting global• SYS-140
mapping• SYS-105
writing modifications to disk• SYS-532,

SYS-536
Section file

updating• SYS-532, SYS-536
Stack limit

changing size of• SYS-427
Stack pointer

adjusting• SYS-8
String

formatting output• SYS-165
searching for file specification in• SYS-179

Subprocess • SYS-99
SYS$ADD_HOLDER•SYS-3
SYS$ADD_IDENT • SYS-5
SYS$ADJSTK•SYS-8
SYS$ADJVVSL•SYS-10
SYS$ALLOC • SYS-12
SYS$ASCEFC•SYS-15
SYS$ASCTIM • SYS-18
SYS$ASCTOID • SYS-21
SYS$ASSIGN • SYS-23
SYS$BINTIM • SYS-27
SYS$BRKTHRU•SYS-30
SYS$BRKTHRUVV•SYS-38
SYS$CANCEL•SYS-39
SYS$CANEXH•SYS-41
SYS$CANTIM • SYS-42
SYS$CANVVAK•SYS-44
SYS$CHANGE_ACL•SYS-46
SYS$CHECK_ACCESS•SYS-51
SYS$CHKPRO•SYS-56
SYS$CLREF•SYS-63
SYS$CMEXEC•SYS-64
SYS$CMKRNL•SYS-66
SYS$CREATE_RDB•SYS-80
SYS$CRELNM • SYS-68
SYS$CRELNT•SYS-74
SYS$CREMBX•SYS-82
SYS$CREPRC•SYS-88 ,
SYS$CRETVA•SYS-102

lndex-4

SYS$CRETVA (cont'd.)

See also SYS$EXPREG
SYS$CRMPSC•SYS-105
SYS$DACEFC•SYS-116
SYS$DALLOC•SYS-117
SYS$DASSGN•SYS-119
SYS$DCLAST•SYS-121
SYS$DCLCMH•SYS-123
SYS$DCLEXH•SYS-125
SYS$DELLNM • SYS-127
SYS$DELMBX • SYS-130
SYS$DELPRC•SYS-132
SYS$DEL TV A• SYS-134
SYS$DEQ • SYS-136
SYS$DGBLSC•SYS-140
SYS$DISMOU • SYS-143
SYS$DLCEFC•SYS-146
SYS$ENQ • SYS-148
SYS$ENOVV•SYS-158
SYS$ERAPAT•SYS-159
SYS$EXIT • SYS-162

causing call to for process• SYS-191
SYS$EXPREG•SYS-163
SYS$FAO • SYS-165

directive
format of• SYS-167
list of• SYS-168

example• SYS-17 1 , SYS-1 7 2
SYS$FAOL

example• SYS-17 4
SYS$FILESCAN • SYS-179
SYS$FIND_HELD • SYS-184
SYS$FIND_HOLDER • SYS-187
SYS$FINISH_RDB • SYS-190
SYS$FORCEX•SYS-191

See also SYS$DELPRC
SYS$FORMAT_ACL•SYS-193
SYS$GETDVl•SYS-203
SYS$GETDVIVV • SYS-221
SYS$GETJ~•SYS-222

example• SYS-237
SYS$GET JPIVV • SYS-238
SYS$GETL~•SYS-239

SYS$GETLKIVV • SYS-252
SYS$GETMSG•SYS-253
SYS$GETOUI • SYS-257
SYS$GETOUIVV • SYS-297
SYS$GETSYl•SYS-299
SYS$GETSYIVV • SYS-313
SYS$GETTIM • SYS-314
SYS$GETUAl•SYS-315

SYS$GRANTID • SYS-326
SYS$HIBER • SYS-330
SYS$1DTOASC • SYS-332
SYS$LCKPAG•SYS-335
SYS$LKVVSET•SYS-337
SYS$MGBLSC•SYS-339
SYS$MOD_HOLDER•SYS-344
SYS$MOD_IDENT • SYS-34 7
SYS$MOUNT•SYS-350
SYS$MTACCESS•SYS-363
SYS$NUMTIM • SYS-366
SYS$PARSE_ACL•SYS-368
SYS$PURGVVS•SYS-370

See also SYS$ADJVVSL
SYS$PUTMSG•SYS-371
SYS$QIO • SYS-379
SYS$QIOVV • SYS-384
SYS$READEF•SYS-385
SYS$REM_HOLDER • SYS-387
SYS$REM_IDENT • SYS-389
SYS$RESUME•SYS-391
SYS$REVOKID • SYS-393
SYS$RMSRUNDVVN•SYS-514
SYS$SCHDVVK•SYS-397

converting time format for• SYS-27
SYS$SETAST•SYS-400
SYS$SETDDIR • SYS-516
SYS$SETDFPROT•SYS-518
SYS$SETEF•SYS-401
SYS$SETEXV•SYS-402
SYS$SETIME • SYS-404
SYS$SETIMR • SYS-406

converting time format for• SYS-2 7
SYS$SETPRA•SYS-409
SYS$SETPRI • SYS-411
SYS$SETPRN•SYS-413
SYS$SETPRT•SYS-414
SYS$SETPRV•SYS-417
SYS$SETRVVM • SYS-421
SYS$SETSFM • SYS-423
SYS$SETSSF•SYS-425
SYS$SETSTK•SYS-427
SYS$SETSVVM • SYS-429
SYS$SETUAl•SYS-431
SYS$SNDERR•SYS-441
SYS$SNDJBC•SYS-441
SYS$SNDJBCVV•SYS-493
SYS$SNDOPR•SYS-495
SYS$SUSPND•SYS-509
SYS$SYNCH•SYS-512
SYS$TRNLNM • SYS-520

SYS$ULKPAG•SYS-526
SYS$ULVVSET•SYS-528
SYS$UNVVIND • SYS-530
SYS$UPDSEC•SYS-532
SYS$UPDSECVV•SYS-536
SYS$VV AITFR • SYS-537
SYS$W AKE• SYS-538

See also SYS$HIBER
SYS$VVFLAND • SYS-540
SYS$VVFLOR•SYS-542
System

getting information about
asynchronously• SYS-299
synchronously• SYS-3 13

System service

Index

checking completion status of• SYS-512
inhibiting user mode calls to• SYS-425
setting failure exception mode• SYS-423
setting filter• SYS-425

System time
setting• SYS-404

T
Termination message

format• SYS-96
Time

converting binary to ASCII string• SYS-18
converting binary to numeric• SYS-366
getting current system• SYS-314
setting system• SYS-404

Timer
setting• SYS-406

Timer request
canceling• SYS-42

TQELM (timer queue entry limit) quota
effect of canceling timer request• SYS-43

u
UAF (user authorization file)

getting information about• SYS-315
modifying• SYS-431

lndex-5

Index

v
Virtual address space

adding page to• SYS-102, SYS-163
creating• SYS-102
deleting page from • SYS-134

Virtual 1/0
canceling requests for• SYS-39

Volume
dismounting • SYS-143
getting information about

asynchronously• SYS-203

synchronously• SYS-221
mounting • SYS-350

lndex-6

w
Wakeup

canceling• SYS-44
Working set

adjusting limit• SYS-10
locking page into• SYS-337
purging• SYS-370
unlocking page from • SYS-528

Reader's Comments VMS System Services
Reference Manual

AA-LA69A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

- Do Not Tear - Fold Here and Tape -------------------[lllr--------------
No Postage

mnmnnma™ ~;~=~=~y

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 •• 1.1 ... 1.11 •• 1

in the
United States

-- Do Not Tear - Fold Here --1
1

