VMS RTL Mathematics (MTH\$) Manual

Order Number: AA-LA72A-TE

April 1988

This manual documents the mathematics routines contained in the MTH\$ facility of the VMS Run-Time Library.

Revision/Update Information:

This document supersedes Section 4 and the MTH\$ portion of Part II of the VAX/VMS Run-Time Library Routines Reference Manual, Version 4.4.

Software Version:

VMS Version 5.0

digital equipment corporation maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1988 by Digital Equipment Corporation

All Rights Reserved. Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBC DEC/CMS Edus DEC/MMS IAS DECnet MAS DECsystem-10 PDP DECSYSTEM-20 PDT DECUS RSTS DECwriter RSX

DIBOL EduSystem IAS MASSBUS PDP PDT RSTS UNIBUS VAX VAXcluster VMS VT

ZK4610

HOW TO ORDER ADDITIONAL DOCUMENTATION DIRECT MAIL ORDERS

USA & PUERTO RICO*

CANADA

Digital Equipment Corporation P.O. Box CS2008 Nashua, New Hampshire 03061 Digital Equipment of Canada Ltd. 100 Herzberg Road

Kanata, Ontario K2K 2A6

Attn: Direct Order Desk

INTERNATIONAL

Digital Equipment Corporation PSG Business Manager c/o Digitals local subsidiary or approved distributor

In Continental USA and Puerto Rico call 800-258-1710.

In New Hampshire, Alaska, and Hawaii call 603-884-6660.

In Canada call 800-267-6215.

^{*}Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575). Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment Corporation, Westminster, Massachusetts 01473.

Production Note

This book was produced with the VAX DOCUMENT electronic publishing system, a software tool developed and sold by DIGITAL. In this system, writers use an ASCII text editor to create source files containing text and English-like code; this code labels the structural elements of the document, such as chapters, paragraphs, and tables. The VAX DOCUMENT software, which runs on the VMS operating system, interprets the code to format the text, generate a table of contents and index, and paginate the entire document. Writers can print the document on the terminal or line printer, or they can use DIGITAL-supported devices, such as the LN03 laser printer and PostScript[®] printers (PrintServer 40 or LN03R ScriptPrinter), to produce a typeset-quality copy containing integrated graphics.

[®] PostScript is a trademark of Adobe Systems, Inc.

Contents

	PREFA	CE	ix
CHAF	PTER 1	INTRODUCTION TO MTH\$	1–1
	1.1	ENTRY POINT NAMES	1–1
	1.2	CALLING CONVENTIONS	1–2
	1.3	ALGORITHMS	1–2
	1.4	CONDITION HANDLING	1–3
	1.5	COMPLEX NUMBERS	1–3
	1.6	ROUTINES NOT DOCUMENTED IN THE MTH\$ REFERENCE SECTION	1–4
	1.7	EXAMPLES OF CALLS TO RUN-TIME LIBRARY MATHEMATICS ROUTINES	1_9
	1.7.1	BASIC Example	1–9
	1.7.2	COBOL Example	1–9
	1.7.3	FORTRAN Examples	1–10
	1.7.4	MACRO Examples	1–12
	1.7.5	PASCAL Examples	1–14
	1.7.6	PL/I Examples	1–15

MTH\$ REFERENCE SECTION

MTH\$XACOS	MTH–3
MTH\$XACOSD	MTH–6
MTH\$XASIN	MTH–9
MTH\$XASIND	MTH-11
MTH\$XATAN	MTH-13
MTH\$XATAND	MTH15
MTH\$XATAN2	MTH–17

Contents

MTH\$XATAND2 **MTH\$XATANH** MTH\$CXABS MTH\$CCOS MTH\$CXCOS MTH\$CEXP MTH\$CXEXP MTH\$CLOG MTH\$CXLOG MTH\$CMPLX MTH\$XCMPLX MTH\$CONJG MTH\$XCONJG MTH\$XCOS MTH\$XCOSD MTH\$XCOSH MTH\$CSIN MTH\$CXSIN MTH\$CSQRT MTH\$CXSQRT MTH\$CVT_X_X MTH\$CVT_XA_XA MTH\$XEXP MTH\$HACOS MTH\$HACOSD MTH\$HASIN MTH\$HASIND **MTH\$HATAN** MTH\$HATAND MTH\$HATAN2 MTH\$HATAND2 MTH\$HATANH MTH\$HCOS MTH\$HCOSD MTH\$HCOSH MTH\$HEXP MTH\$HLOG MTH\$HLOG2 MTH\$HLOG10 MTH\$HSIN MTH\$HSIND MTH\$HSINH

MTH-19 MTH-21 MTH-23 **MTH-26 MTH-28 MTH-31 MTH-33 MTH-36 MTH-38 MTH-40** MTH-42 **MTH-44 MTH-45 MTH-47** MTH-49 **MTH-51 MTH-53 MTH-54 MTH-57 MTH-59 MTH-62 MTH-64 MTH-66 MTH-69** MTH-71 MTH-73 **MTH-75 MTH-77 MTH-79 MTH-81 MTH-83 MTH-85 MTH-87 MTH-88 MTH-89** MTH-91 **MTH-93 MTH-95 MTH-97 MTH-99** MTH-100 MTH-102

vi

Contents

MTH\$HSQRT	MTH-104
MTH\$HTAN	MTH-106
MTH\$HTAND	MTH-108
MTH\$HTANH	MTH-110
MTH\$XIMAG	MTH-112
MTH\$XLOG	MTH-114
MTH\$XLOG2	MTH-116
MTH\$XLOG10	MTH-118
MTH\$RANDOM	MTH-120
MTH\$XREAL	MTH-122
MTH\$XSIN	MTH-124
MTH\$XSINCOS	MTH-126
MTH\$XSINCOSD	MTH-129
MTH\$XSIND	MTH-132
MTH\$XSINH	MTH-134
MTH\$XSQRT	MTH-136
MTH\$XTAN	MTH-138
MTH\$XTAND	MTH-140
MTH\$XTANH	MTH-142
MTH\$UMAX	MTH-144
MTH\$UMIN	MTH-145

APPENDIX A UNDOCUMENTED MTH\$ ROUTINES

INDEX

TABLES		
1–1	Additional Mathematics Routines	1–4
A–1	Undocumented MTH\$ Routines	A–1

.

A–1

Preface

This manual provides users of the VMS operating system with detailed usage and reference information on mathematics routines supplied in the MTH\$ facility of the Run-Time Library.

Run-Time Library routines can only be used in programs written in languages that produce native code for the VAX hardware. At present, these languages include VAX MACRO and the following compiled high-level languages:

VAX Ada VAX BASIC VAX BLISS-32 VAX C VAX COBOL VAX COBOL-74 VAX CORAL VAX CORAL VAX DIBOL VAX FORTRAN VAX Pascal VAX PL/I VAX RPG VAX SCAN

Interpreted languages which can also access Run-Time Library routines include VAX DSM and DATATRIEVE.

Intended Audience

This manual is intended for system and application programmers who want to call Run-Time Library routines.

Document Structure

This manual is organized into two parts as follows:

- The introductory chapters provide guidelines on using the MTH\$ mathematics routines.
- The MTH\$ Reference Section provides detailed reference information on each mathematics routine contained in the MTH\$ facility of the Run-Time Library. This information is presented using the documentation format described in the *Introduction to the VMS Run-Time Library*. Routine descriptions appear in alphabetical order by routine name.

Associated Documents

The Run-Time Library routines are documented in a series of reference manuals. A general overview of the Run-Time Library and a description of how the Run-Time Library routines are accessed is presented in the *Introduction to the VMS Run-Time Library*. Descriptions of the other RTL facilities and their corresponding routines and usages are discussed in the following books:

- The VMS RTL DECtalk (DTK\$) Manual
- The VMS RTL Library (LIB\$) Manual
- The VMS RTL General Purpose (OTS\$) Manual
- The VMS RTL Parallel Processing (PPL\$) Manual
- The VMS RTL Screen Management (SMG\$) Manual
- The VMS RTL String Manipulation (STR\$) Manual

The VAX Procedure Calling and Condition Handling Standard, which is documented in the *Introduction to System Routines*, contains useful information for anyone who wants to call Run-Time Library routines.

Applications programmers of any language may refer to the *Guide to Creating VMS Modular Procedures* for the Modular Programming Standard and other guidelines.

High-level language programmers will find additional information on calling Run-Time Library routines in their language reference manual. Additional information may also be found in the language user's guide provided with your VAX language.

The Guide to Using VMS Command Procedures may also be useful.

For a complete list and description of the manuals in the VMS documentation set, see the *Overview of VMS Documentation*.

Conventions

Convention	Meaning In examples, a key name (usually abbreviated) shown within a box indicates that you press a key on the keyboard; in text, a key name is not enclosed in a box. In this example, the key is the RETURN key. (Note that the RETURN key is not usually shown in syntax statements or in all examples; however, assume that you must press the RETURN key after entering a command or responding to a prompt.)		
RET			
CTRL/C	A key combination, shown in uppercase with a slash separating two key names, indicates tha you hold down the first key while you press th second key. For example, the key combination CTRL/C indicates that you hold down the key labeled CTRL while you press the key labeled of In examples, a key combination is enclosed in box.		
\$ SHOW TIME 05-JUN-1988 11:55:22	In examples, system output (what the system displays) is shown in black. User input (what you enter) is shown in red.		
\$ TYPE MYFILE.DAT	In examples, a vertical series of periods, or ellipsis, means either that not all the data that the system would display in response to a command is shown or that not all the data a user would enter is shown.		
input-file,	In examples, a horizontal ellipsis indicates that additional parameters, values, or other information can be entered, that preceding items can be repeated one or more times, or that optional arguments in a statement have been omitted.		
[logical-name]	Brackets indicate that the enclosed item is optional. (Brackets are not, however, optional in the syntax of a directory name in a file specification or in the syntax of a substring specification in an assignment statement.)		
quotation marks apostrophes	The term quotation marks is used to refer to double quotation marks ("). The term apostrophe (') is used to refer to a single quotation mark.		

Other conventions used in the documentation of Run-Time Library routines are described in the *Introduction to the VMS Run-Time Library*.

The Run-Time Library mathematics routines may be called to perform a wide variety of computations including the following:

- Complex exponentiation
- Complex function evaluation
- Exponentiation
- Floating-point trigonometric function evaluation
- Miscellaneous function evaluation

The OTS\$ facility provides additional language-independent arithmetic support routines.

This introduction to Run-Time Library mathematics routines includes examples of how to call mathematics routines from BASIC, COBOL, FORTRAN, MACRO, PASCAL, and PL/I.

1.1 Entry Point Names

The names of the mathematics routines are formed by adding the MTH\$ prefix to the function names.

When function arguments and returned values are of the same data type, the first letter of the name indicates this data type. When function arguments and returned values are of different data types, the first letter indicates the data type of the returned value, and the second letter indicates the data type of the argument(s).

The letters used as data type prefixes are listed below.

Letter	Data Type	
1	Word	
J	Longword	
D	D_floating	
G	G_floating	
н	H_floating	
С	F_floating complex	
CD	D_floating complex	
CG	G_floating complex	

Generally, F-floating data types have no letter designation. For example, MTH\$SIN returns an F-floating value of the sine of an F-floating argument and MTH\$DSIN returns a D-floating value of the sine of a D-floating argument. However, in some of the miscellaneous functions, F-floating data types are referenced by the letter designation A.

1.2 Calling Conventions

1.2 Calling Conventions

All calls to mathematics routines, as described in the FORMAT section of each routine, accept arguments passed by reference. JSB entry points accept arguments passed by value.

All mathematics routines return values in R0 or R0/R1 except those routines for which the values cannot fit in 64 bits. D-floating complex, G-floating complex and H-floating values are data structures which are larger than 64 bits. Routines that return values which cannot fit in registers R0/R1 return their function values into the first argument in the argument list.

The notation JSB MTH $NAME_Rn$, where *n* is the highest register number referenced, indicates that an equivalent JSB entry point is available. No registers are saved; only registers R0:Rn are changed.

Routines with JSB entry points accept a single argument in R0:Rm, where m, which is defined below, is dependent on the data type.

Data Type	m	
Ffloating	0	
D_floating	1	
G_floating	1	
H_floating	3	

A routine which returns one value returns it to registers R0:Rm.

When a routine returns two values, for example MTHSINCOS, the first value is returned in R0:Rm and the second value is returned in (R <m+1> :R <2*m+1>).

Note that for routines that return a single value, $n \ge m$. For routines that return two values, $n \ge 2*m + 1$.

All CALL entry points for mathematics routines do the following:

- Disable floating-point underflow
- Enable integer overflow
- Cause no floating-point overflow or other arithmetic traps or faults
- Preserve all other enabled operations across the CALL

JSB entry points execute in the context of the caller with the enable operations as set by the caller. Since the routines do not cause arithmetic traps or faults, their operation is not affected by the setting of the arithmetic trap enables, except as noted.

For more detailed information on CALL and JSB entry points, refer to the *Introduction to the VMS Run-Time Library*.

1.3 Algorithms

For those mathematics routines that have corresponding algorithms, the complete algorithm can be found in the Description section of the routine description appearing in the MTH\$ Reference Section of this manual.

1.4 Condition Handling

Error conditions are indicated by using the VAX signaling mechanism. The VAX signaling mechanism signals all conditions in mathematics routines as SEVERE by calling LIB\$SIGNAL. When a SEVERE error is signaled, the image is caused to exit after printing an error message. A user-established condition handler can be written to cause execution to continue at the point of the error by returning SS\$_CONTINUE. A mathematics routine returns to its caller after the contents of R0/R1 have been restored from the mechanism argument vector CHF\$L_MCH_SAVR0/R1. Thus, the user-established handler should correct CHF\$L_MCH_SAVR0/R1 to the desired function value to be returned to the caller of the mathematics routine.

D-floating complex, G-floating complex, and H-floating values cannot be corrected with a user-established condition handler, because R2/R3 are not available in the mechanism argument vector.

Note that it is more reliable to correct R0 and R1 to resemble R0 and R1 of a double-precision floating-point value. A double-precision floating-point value correction works for both single- and double-precision values. If the correction is not performed, the floating-point reserved operand -0.0 is returned. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Accessing the floating-point reserved operand fault. See the VMS RTL Library (LIB\$) Manual for a complete description of how to write user condition handlers for SEVERE errors.

A few mathematics routines signal floating underflow if the calling program (JSB or CALL) has enabled floating underflow faults or traps.

All mathematics routines access input arguments and the real and imaginary parts of complex numbers using floating-point instructions. Therefore, a reserved operand fault can occur in any mathematics routine.

1.5 Complex Numbers

A complex number y is defined as an ordered pair of real numbers r and i, where r is the real part and i is the imaginary part of the complex number.

y=(r,i)

VMS supports three floating-point complex types: F-floating complex, D-floating complex, and G-floating complex. There is no H-floating complex data type.

Run-Time Library mathematics routines that use complex arguments require two x-floating values to be passed by reference for each argument. The first x-floating value contains r, the real part of the complex number. The second x-floating value contains i, the imaginary part of the complex number. Similarly, Run-Time Library mathematics routines that return complex function values return two x-floating values. Some Language Independent Support (OTS\$) routines also calculate complex functions.

Note that complex functions have no JSB entry points.

1.6 Routines Not Documented in the MTH\$ Reference Section

1.6 **Routines Not Documented in the MTH\$ Reference Section**

The mathematics routines in Table 1–1 are not found in the reference section of this manual. Instead, their entry points and argument information are listed in Appendix A of this manual.

A reserved operand fault can occur for any floating-point input argument in any mathematics routine. Other condition values signaled by each mathematics routine are indicated in the footnotes.

Table 1–1 Additional Mathematics Routines Function

Absolute Value Routines

Entry Point

MTH\$ABS	F-floating absolute value
MTH\$DABS	D-floating absolute value
MTH\$GABS	G-floating absolute value
MTH\$HABS	H-floating absolute value ¹
MTH\$IIABS	Word absolute value ²
MTH\$JIABS	Longword absolute value ²

Bitwise AND Operator Routines

MTH\$IIAND	Bitwise AND of two word arguments
MTH\$JIAND	Bitwise AND of two longword arguments

F-floating Conversion Routines

MTH\$DBLE	Convert F-floating to D-floating (exact)
MTH\$GDBLE	Convert F-floating to G-floating (exact)
MTH\$IIFIX	Convert F-floating to word (truncated) ²
MTH\$JIFIX	Convert F-floating to longword (truncated) ²

¹Returns value to the first argument; value exceeds 64 bits. ²Integer overflow exceptions can occur.

Introduction to MTH\$ 1.6 Routines Not Documented in the MTH\$ Reference Section

Entry Point	Function
Floating-Point Pos	sitive Difference Routines
MTH\$DIM	Positive difference of two F-floating arguments ^{3,4}
MTH\$DDIM	Positive difference of two D-floating arguments ^{3,4}
MTH\$GDIM	Positive difference of two G-floating arguments ^{3,4}
MTH\$HDIM	Positive difference of two H-floating arguments ^{1,3,4}
MTH\$IIDIM	Positive difference of two word arguments ²
MTH\$JIDIM	Positive difference of two longword arguments ²
Bitwise Exclusive	• OR Operator Routines
MTH\$IIEOR	Bitwise exclusive OR of two word arguments
MTH\$JIEOR	Bitwise exclusive OR of two longword arguments
Integer to Floating	g-point Conversion Routines
	Convert word to F-floating (exact)
MTH\$FLOATI	Convert word to F-hoating (exact)
	Convert word to D-floating (exact)
MTH\$DFLOTI	
MTH\$DFLOTI MTH\$GFLOTI	Convert word to D-floating (exact)
MTH\$DFLOTI MTH\$GFLOTI MTH\$FLOATJ	Convert word to D-floating (exact) Convert word to G-floating (exact)
MTH\$FLOATI MTH\$DFLOTI MTH\$GFLOTI MTH\$FLOATJ MTH\$DFLOTJ MTH\$GFLOTJ	Convert word to D-floating (exact) Convert word to G-floating (exact) Convert longword to F-floating (exact)
MTH\$DFLOTI MTH\$GFLOTI MTH\$FLOATJ MTH\$DFLOTJ MTH\$GFLOTJ	Convert word to D-floating (exact) Convert word to G-floating (exact) Convert longword to F-floating (exact) Convert word to D-floating (exact)
MTH\$DFLOTI MTH\$GFLOTI MTH\$FLOATJ MTH\$DFLOTJ MTH\$GFLOTJ	Convert word to D-floating (exact) Convert word to G-floating (exact) Convert longword to F-floating (exact) Convert word to D-floating (exact) Convert longword to G-floating (exact)
MTH\$DFLOTI MTH\$GFLOTI MTH\$FLOATJ MTH\$DFLOTJ MTH\$GFLOTJ Conversion to Gre	Convert word to D-floating (exact) Convert word to G-floating (exact) Convert longword to F-floating (exact) Convert word to D-floating (exact) Convert longword to G-floating (exact)

Convert H-floating to greatest H-floating integer¹

¹Returns value to the first argument; value exceeds 64 bits.

²Integer overflow exceptions can occur.

MTH\$HFLOOR

³Floating-point overflow exceptions can occur.

⁴Floating-point underflow exceptions can occur.

1.6 Routines Not Documented in the MTH\$ Reference Section

Tabl	le 1–1	(Cont.)	Additional	Mathematics	Routines
------	--------	---------	------------	-------------	----------

Entry Point	Function	· · ·		

Floating-point Truncation Routines

MTH\$AINT	Convert F-floating to truncated F-floating ³
MTH\$DINT	Convert D-floating to truncated D-floating
MTH\$IIDINT	Convert D-floating to truncated word ²
MTH\$JIDINT	Convert D-floating to truncated longword ²
MTH\$GINT	Convert G-floating to truncated G-floating
MTH\$IIGINT	Convert G-floating to truncated word ²
MTH\$JIGINT	Convert G-floating to truncated longword ²
MTH\$HINT	Convert H-floating to truncated H-floating ^{1,3}
MTH\$IIHINT	Convert H-floating to truncated word ²
MTH\$JIHINT	Convert H-floating to truncated longword ²
MTH\$IINT	Convert F-floating to truncated word ²
MTH\$JINT	Convert F-floating to truncated longword ²

Bitwise Inclusive OR Operator Routines

MTH\$IIOR	Bitwise inclusive OR of two word arguments
MTH\$JIOR	Bitwise inclusive OR of two longword arguments

Maximum Value Routines

MTH\$AIMAXO	F-floating maximum of n word arguments
MTH\$AJMAX0	F-floating maximum of n longword arguments
MTH\$IMAX0	Word maximum of n word arguments
MTH\$JMAX0	Longword maximum of n longword arguments
MTH\$AMAX1	F-floating maximum of n F-floating arguments ²
MTH\$DMAX1	D-floating maximum of n D-floating arguments
MTH\$GMAX1	G-floating maximum of n G-floating arguments
MTH\$HMAX1	H-floating maximum of n H-floating arguments ¹
MTH\$IMAX1	Word maximum of n F-floating arguments ²
MTH\$JMAX1	Longword maximum of n F-floating arguments ²

¹Returns value to the first argument; value exceeds 64 bits.

²Integer overflow exceptions can occur.

³Floating-point overflow exceptions can occur.

Introduction to MTH\$ 1.6 Routines Not Documented in the MTH\$ Reference Section

Entry Point	Function
Minimum Value Ro	putines
MTH\$AIMINO	F-floating minimum of n word arguments
MTH\$AJMINO	F-floating minimum of n longword arguments
MTH\$IMINO	Word minimum of n word arguments
MTH\$JMINO	Longword minimum of n longword arguments
MTH\$AMIN1	F-floating minimum of n F-floating arguments ²
MTH\$DMIN1	D-floating minimum of n D-floating arguments
MTH\$GMIN1	G-floating minimum of n G-floating arguments
MTH\$HMIN1	H-floating minimum of n H-floating arguments ¹
MTH\$IMIN1	Word minimum of n F-floating arguments ²

Table 1–1 (Cont.) Additional Mathematics Routines

Remainder Routines

MTH\$JMIN1

MTH\$AMODRemainder of two F-floating arguments, arg1/arg23MTH\$DMODRemainder of two D-floating arguments, arg1/arg23MTH\$GMODRemainder of two G-floating arguments, arg1/arg23MTH\$HMODRemainder of two H-floating arguments, arg1/arg21,3MTH\$IMODRemainder of two word arguments, arg1/arg25MTH\$JMODRemainder of two longword arguments, arg1/arg25

Longword minimum of n F-floating arguments²

Floating-point Conversion to Nearest Value Routines

MTH\$ANINT	Convert F-floating to nearest F-floating integer
MTH\$DNINT	Convert D-floating to nearest D-floating integer ³
MTH\$IIDNNT	Convert D-floating to nearest word integer
MTH\$JIDNNT	Convert D-floating to nearest longword integer
MTH\$GNINT	Convert G-floating to nearest G-floating integer ³
MTH\$IIGNNT	Convert G-floating to nearest word integer ²
MTH\$JIGNNT	Convert G-floating to nearest longword integer ²
MTH\$HNINT	Convert H-floating to nearest H-floating integer ¹

¹Returns value to the first argument; value exceeds 64 bits.

²Integer overflow exceptions can occur.

³Floating-point overflow exceptions can occur.

⁵Divide-by-zero exceptions can occur.

1.6 Routines Not Documented in the MTH\$ Reference Section

Table 1–1 (Cont.)	Additional Mathematics Routines
Entry Point	Function
MTH\$IIHNNT	Convert H-floating to nearest word integer ²
MTH\$JIHNNT	Convert H-floating to nearest longword integer ²
MTH\$ININT	Convert F-floating to nearest word integer ²
MTH\$JNINT	Convert F-floating to nearest longword integer ^{3,6}

Bitwise Complement Operator Routines

MTH\$INOT	Bitwise complement of word argument
MTH\$JNOT	Bitwise complement of longword argument

Floating-point Multiplication Routines

MTH\$DPROD	D-floating product of two F-floating arguments ³
MTH\$GPROD	G-floating product of two F-floating arguments ³

Bitwise Shift Operator Routines

MTH\$IISHFT Bitwise shift of word MTH\$JISHFT Bitwise shift of longword

Floating-point Sign Function Routines

MTH\$SGN	F- or D-floating sign function
MTH\$SIGN	F-floating transfer of sign of y to sign of x
MTH\$DSIGN	D-floating transfer of sign of y to sign of x
MTH\$GSIGN	G-floating transfer of sign of y to sign of x
MTH\$HSIGN	H-floating transfer of sign of y to sign of x^1

¹Returns value to the first argument; value exceeds 64 bits.

²Integer overflow exceptions can occur.

³Floating-point overflow exceptions can occur.

⁶Returns contents of RO if a negative argument is input.

1.6 Routines Not Documented in the MTH\$ Reference Section

Table 1–1 (Cont.)	Additional Mathematics Routines
-------------------	---------------------------------

Entry Point	Function
MTH\$IISIGN	Word transfer of sign of y to sign of x
MTH\$JISIGN	Longword transfer of sign of y to sign of x

Conversion of Double to Single Floating-point Routines

MTH\$SNGL	Convert D-floating to F-floating (rounded) ³
MTH\$SNGLG	Convert G-floating to F-floating (rounded) ^{3,4}

³Floating-point overflow exceptions can occur.

⁴Floating-point underflow exceptions can occur.

1.7 Examples of Calls to Run-Time Library Mathematics Routines

1.7.1 BASIC Example

The following BASIC program uses the H-floating data type. BASIC also supports the D-floating, F-floating and G-floating data types, but does not support the complex data types.

10

A = 1.254507891254507891254507892 H
CALL MTH\$HEXP (Y,X)
A\$ = 'MTH\$HEXP of ' + DIGITS\$ + ' is ' + DIGITS\$
PRINT USING A\$, X, Y
END

The output from this program is as follows:

MTH\$HEXP of 1.234567890123456789123456789200000 is 3.436893084346008004973301321342110

1.7.2 COBOL Example

The following COBOL program uses the F-floating and D-floating data types. COBOL does not support the G-floating and H-floating data types or the complex data types.

This COBOL program calls MTH\$EXP and MTH\$DEXP.

1.7 Examples of Calls to Run-Time Library Mathematics Routines

IDENTIFICATION DIVISION. PROGRAM-ID. FLOATING_POINT. Calls MTH\$EXP using a Floating Point data type. * * Calls MTH\$DEXP using a Double Floating Point data type. ENVIRONMENT DIVISION. DATA DIVISION. WORKING-STORAGE SECTION. 01 FLOAT_PT COMP-1. 01 ANSWER_F COMP-1. 01 DOUBLE_PT COMP-2. 01 ANSWER_D COMP-2. PROCEDURE DIVISION. PO. MOVE 12.34 TO FLOAT_PT. MOVE 3.456 TO DOUBLE_PT. CALL "MTH\$EXP" USING BY REFERENCE FLOAT_PT GIVING ANSWER_F. DISPLAY " MTH\$EXP of ", FLOAT_PT CONVERSION, " is ", ANSWER_F CONVERSION. CALL "MTH\$DEXP" USING BY REFERENCE DOUBLE_PT GIVING ANSWER_D. DISPLAY " MTH\$DEXP of ", DOUBLE_PT CONVERSION, " is ", ANSWER_D CONVERSION .

STOP RUN.

The output from this example program is as follows:

MTH\$EXP of 1.234000E+01 is 2.286620E+05 MTH\$DEXP of 3.4560000000000E+00 is 3.168996280537917E+01

1.7.3 FORTRAN Examples

The first two FORTRAN programs below use the D-floating and H-floating data types. The third FORTRAN program below uses the F-floating complex data type. FORTRAN supports the four floating data types and the three complex data types.

C+

```
C This FORTRAN program computes exp(x) in

C double precision by using the RTL routine " MTH$DEXP x ".

C

C Declare X,Y and MTH$DEXP as double precision values.

C MTH$DEXP(X) will return a double precision value to variable Y.

C-

REAL*8 X,Y,MTH$DEXP

X = 3.456

Y = MTH$DEXP(X)

WRITE(6,1) X,Y

1 FORMAT(' ', 'MTH$DEXP(',F20.15,') IS ',F20.15)

END
```

The output generated by this FORTRAN example is as follows:

MTH\$DEXP(3.45600000000000) IS 31.689962805379165

1.7 Examples of Calls to Run-Time Library Mathematics Routines

```
2
     C+
     C This FORTRAN program computes exp(x) using
     C the RTL routine MTH$HEXP. MTH$HEXP is CALLed by
     C MTH$HEXP(return_value , argument)
     С
     C Declare X,Y as H-floating point values.
     C Given X MTHHEXP will return the value of exp(X) in Y by the call
     C CALL MTH$HEXP(Y, X).
     C-
             REAL*16 X,Y
             X = 1.2345678901234567891234567892
             CALL MTH$HEXP(Y,X)
             WRITE(6,1) X,Y
             FORMAT(' ', 'MTH$HEXP of ', E35.30,' is ', E35.30)
     1
             END
```

3

This FORTRAN program generates the following output:

MTH\$HEXP of .123456789012345678912345678920E+01 is .343689308434600800497330132134E+01

```
C+
C This FORTRAN program computes the complex log
C of x using the RTL routine MTH$CLOG. This program also demonstrates
C two ways the user can create a complex number.
С
C Declare Z,Z_LOG,MTH$CMPLX, and MTH$CLOG as complex values and R and I
C as real values. MTH$CMPLX takes two real arguments and returns one
C complex number: Z = MTH$CMPLX(R,I) is a complex number with "real"
C part R and "imaginary" part I.
C
C Given a complex number Z, MTH$CLOG(Z) returns the complex natural
C logarithm of Z.
C-
        COMPLEX Z, Z_LOG, MTH$CMPLX, MTH$CLOG
        REAL*4 R,I
        R = 3.142563
        I = 7.4367846
        Z = MTH$CMPLX(R, I)
C+
C Z is a complex number with real part R and imaginary part I.
C-
        TYPE *, ' The complex number z is',z
C+
C Compute the natural logarithm of Z = (2,1).
C Directly define the complex number Z.
C-
        Z = (2.0, 1.0)
        Z_LOG = MTH$CLOG(Z)
        TYPE *,' The complex log of (2,1) is ',Z_LOG
        END
```

The output generated by this program is as follows:

The complex number z is (3.142563, 7.436785)The complex log of (2,1) is (0.8047190, 0.4636476)

1.7 Examples of Calls to Run-Time Library Mathematics Routines

1.7.4 MACRO Examples

MACRO and BLISS support JSB entry points as well as CALLS and CALLG entry points. Both MACRO and BLISS support the four floating data types and the three complex data types.

The MACRO programs below illustrate the use of the CALLS and CALLG instructions, as well as JSB entry points.

1	.TITLE	EXAMPLE_JSB	
- ;+ ; ;-	This example The JSB comma	and expects RO/R1	by using a Macro JSB command. . to contain the quadword input value X. e located in RO/R1.
3	. EXTRN . PSECT	MTH\$DEXP_R6 DATA, PIC, EXE,	;MTH\$DEXP is an external routine. NOWRT
X :		EXAMPLE_JSB, ^M<	
	MOVQ JSB	X, RO G^MTH\$DEXP_R6	; X is in registers RO and R1 ; The result is returned in RO/R1.
	RET . END	EXAMPLE_JSB	

This MACRO program generates the following output:

RO <-- 732541EC R1 <-- ED6EC6A6

That is, MTH\$DEXP(2) is 7.3890560989306502

.TITLE EXAMPLE_CALLG			
;+ · · · · · · · · · · · · · · · · · · ·			
; This example calls MTH\$HEXP by using a Macro CALLG command.			
; The CALLG command expects that the address of the return value			
; Y, the address of the input value X, and the argument count 2 be			
; stored in memory; this program stores this information in ARGUMENTS.			
; The result of the CALLG will be located in RO/R1.			
;-			
.EXTRN MTH\$HEXP ; MTH\$HEXP is an external routine.			
.PSECT DATA, PIC, EXE, WRT			
ARGUMENTS:			
LONG 2 ; The CALLG will use two arguments.			
ADDRESS Y, X ; The first argument must be the address			
; receiving the computed value, while			
; the second argument is used to			
; compute exp(X).			
X: $.H_{FLOATING 2}$; X = 2.0			
Y: .H_FLOATING 0 ; Y is the result, initially set to 0.			
.ENTRY EXAMPLE_G, ^M<>			
CALLG ARGUMENTS, G^MTH\$HEXP ; CALLG returns the value to Y.			
RET			

. END

EXAMPLE_G

Introduction to MTH\$ 1.7 Examples of Calls to Run-Time Library Mathematics Routines

The output generated by this MACRO program is as follows:

address of Y <-- D8E64003 <-- 4DDA4B8D <-- 3A3BDCC3 <-- B68BA206

That is, MTH\$HEXP of 2.0 returns 7.38905609893065022723042746057501

.TITLE EXAMPLE_CALLS ;+ This example calls MTH\$HEXP by using the Macro CALLS command. : The CALLS command expects the SP to contain the H-floating address of the return value, the address of the input argument X and the argument count 2. The result of the CALLS will be located in registers RO-R3. : :-.EXTRN MTH\$HEXP ; MTH\$HEXP is an external routine. .PSECT DATA, PIC, EXE, WRT ; Y is the result, initially set to O. Υ: .H_FLOATING O Χ: .H_FLOATING 2 ; X = 2 .ENTRY EXAMPLE_S, ^M<> MOVAL X, -(SP) ; The address of X is in the SP. MOVAL Y, -(SP) ; The address of Y is in the SP CALLS Y, G^MTH\$HEXP ; The value is returned to the address of Y. RET . END EXAMPLE_S

The output generated by this program is as follows:

address of Y <-- D8E64003 <-- 4DDA4B8D <-- 3A3BDCC3 <-- B68BA206

That is, MTH\$HEXP of 2.0 returns 7.38905609893065022723042746057501

4

3

.TITLE COMPLEX_EX1

:+ This example calls MTH\$CLOG by using a MACRO CALLG command. To compute the complex natural logarithm of Z = (2.0, 1.0) register RO is loaded with 2.0, the real part of Z, and register R1 is loaded with 1.0, the imaginary part of Z. The CALLG to MTH\$CLOG returns the value of the natural logarithm of Z in registers RO and R1. RO gets the real part of Z and R1 gets the imaginary part. : ; -.EXTRN MTH\$CLOG .PSECT DATA, PIC, EXE, NOWRT ARGS : LONG 1 ; The CALLG will use one argument. . ADDRESS REAL ; The one argument that the CALLG ; uses is the address of the argument ; of MTH\$CLOG. REAL: .FLOAT 2 ; real part of Z is 2.0 IMAG: . FLOAT ; imaginary part Z is 1.0 1 .ENTRY COMPLEX_EX1, ^M<> ARGS, G^MTH\$CLOG; MTH\$CLOG return the real part of the CALLG ; complex natural logarithm in RO and the imaginary part in R1. ; RET END COMPLEX_EX1

1.7 Examples of Calls to Run-Time Library Mathematics Routines

This program generates the following output:

RO <--- 0210404E R1 <--- 63383FED That is, MTH\$CLOG(2.0,1.0) is

(0.8047190,0.4636476)

5

TITLE COMPLEX_EX2

;+ This example calls MTH\$CLOG by using a MACRO CALLS command. ; To compute the complex natural logarithm of Z = (2.0, 1.0) register RO is loaded with 2.0, the real part of Z, and register R1 is loaded with 1.0, the imaginary part of Z. The CALLS to MTH\$CLOG returns the value of the natural logarithm of Z in registers RO and R1. RO gets the real part of Z and R1 gets the imaginary part. : ;-.EXTRN MTH\$CLOG .PSECT DATA, PIC, EXE, NOWRT .FLOAT 2 REAL: ; real part of Z is 2.0 ; imaginary part Z is 1.0 IMAG: .FLOAT 1 .ENTRY COMPLEX_EX2, ^M<> MOVAL REAL, -(SP) ; SP <-- address of Z. Real part of Z is

CALLS #1, G^MTH\$CLOG; (GSP) and imaginary part is in CALLS #1, G^MTH\$CLOG; @(SP)+4. ; MTH\$CLOG return the real part of the ; complex natural logarithm in RO and ; the imaginary part in R1. RET

.END COMPLEX_EX2

This MACRO example program generates the following output:

R0 <--- 0210404E R1 <--- 63383FED That is, MTH\$CLOG(2.0,1.0) is (0.8047190,0.4636476)

1.7.5 PASCAL Examples

The following PASCAL programs use the D-floating and H-floating data types. PASCAL also supports the F-floating and G-floating data types. PASCAL does not support the complex data types, however.

```
{+}
{ Sample program to demonstrate a call to MTH$DEXP from PASCAL.
{-}
PROGRAM CALL_MTH$DEXP (OUTPUT);
{+}
{ Declare variables used by this program.
{-}
VAR
X : DOUBLE := 3.456; { X,Y are D-floating unless overridden }
Y : DOUBLE; { with /DOUBLE qualifier on compilation }
```

1.7 Examples of Calls to Run-Time Library Mathematics Routines

```
{+}
{ Declare the RTL routine used by this program.
{-}
[EXTERNAL,ASYNCHRONOUS] FUNCTION MTH$DEXP (VAR value : DOUBLE) : DOUBLE; EXTERN;
BEGIN
    Y := MTH$DEXP (x);
    WRITELN ('MTH$DEXP of ', X:5:3, ' is ', Y:20:16);
END.
```

The output generated by this PASCAL program is as follows:

MTH\$DEXP of 3.456 is 31.6899656462382318

```
2
     {+}
     { Sample program to demonstrate a call to MTH$HEXP from PASCAL.
     {-}
     PROGRAM CALL_MTH$HEXP (OUTPUT);
     {+}
     { Declare variables used by this program.
     {-}
     VAR
         X : QUADRUPLE := 1.2345678901234567891234567892; { X is H-floating }
         Y : QUADRUPLE;
                                                           { Y is H-floating }
     {+}
     { Declare the RTL routine used by this program.
     {-}
     [EXTERNAL, ASYNCHRONOUS] PROCEDURE MTH$HEXP (VAR h_exp : QUADRUPLE;
     value : QUADRUPLE); EXTERN;
     BEGIN
         MTH$HEXP (Y,X);
         WRITELN ('MTH$HEXP of ', X:30:28, ' is ', Y:35:33);
     END.
```

This PASCAL program generates the following output:

MTH\$DEXP of 3.456 is 31.6899656462382318

1.7.6 PL/I Examples

The following PL/I programs use the D-floating and H-floating data types to test entry points. PL/I also supports the F-floating and G-floating data types. PL/I does not support the complex data types, however.

1.7 Examples of Calls to Run-Time Library Mathematics Routines

```
1
     /*
     *
             This program tests a MTH$D entry point
     *
                                                                                    *
     */
     TEST :
             PROC OPTIONS (MAIN) ;
             DCL (MTH$DEXP)
                      ENTRY (FLOAT(53)) RETURNS (FLOAT(53));
             DCL OPERAND FLOAT(53);
             DCL RESULT FLOAT(53);
     /*** Begin test ***/
             OPERAND = 3.456;
             RESULT = MTH$DEXP(OPERAND);
             PUT EDIT ('MTH$DEXP of ', OPERAND, ' is ', RESULT)(A(12),F(5,3),A(4),F(20,15));
     END TEST:
```

ND TEST;

The output generated by this PL/I program is as follows:

MTH\$DEXP of 3.456 is 31.689962805379165

2 /* * This program tests a MTH\$H entry point. Note that in the PL/I statement below, the /G-float switch is needed to compile both G- and H-floating point MTH\$ routines. */ TEST: PROC OPTIONS (MAIN) ; DCL (MTH\$HEXP) ENTRY (FLOAT (113), FLOAT (113)) ; DCL OPERAND FLOAT (113); DCL RESULT FLOAT (113); /*** Begin test ***/ OPERAND = 1.234578901234567891234567892; CALL MTH\$HEXP(RESULT, OPERAND); PUT EDIT ('MTH\$HEXP of ', OPERAND, ' is ', RESULT) (A(12),F(29,27),A(4),F(29,27));

end test;

To run this program, you must use the following DCL commands:

\$ PLI/G_FLOAT EXAMPLE
\$ LINK EXAMPLE
\$ RUN EXAMPLE

This program generates the following output:

MTH\$ Reference Section

This section provides detailed descriptions of the routines provided by the VMS RTL Mathematics (MTH\$) Facility.

-

MTH\$xACOS Arc Cosine of Angle Expressed in Radians

Given the cosine of an angle, the Arc Cosine of Angle Expressed in Radians routine returns that angle (in radians).

FORMAT MTH\$ACOS cosine MTH\$DACOS cosine MTH\$GACOS cosine

Each of the above three formats accepts as input one of the floating-point types.

jsb entries

MTH\$ACOS_R4 MTH\$DACOS_R7 MTH\$GACOS_R7

Each of the above three JSB entries accepts as input one of the floating-point types.

RETURNS

VMS usage: floating_point type: F_floating, D_floating, G_floating access: write only mechanism: by value

Angle in radians. The angle returned will have a value in the range

 $0 \leq angle \leq \pi$

MTH\$ACOS returns an F-floating number. MTH\$DACOS returns a D-floating number. MTH\$GACOS returns a G-floating number.

ARGUMENTS

cosine

VMS usage: floating_point type: F_floating, D_floating, G_floating access: read only mechanism: by reference

The cosine of the angle whose value (in radians) is to be returned. The **cosine** argument is the address of a floating-point number that is this cosine. The absolute value of **cosine** must be less than or equal to 1. For MTH\$ACOS, **cosine** specifies an F-floating number. For MTH\$DACOS, **cosine** specifies a D-floating number. For MTH\$GACOS, **cosine** specifies a G-floating number.

DESCRIPTION

The angle in radians whose cosine is X is computed as:

Value of Cosine	Value Returned	
0	$\pi/2$	
1	0	
-1	π	
0 < X < 1	$zATAN(zSQRT(1 - X^2)/X)$, where zATAN and zSQRT are the Math Library arc tangent and square root routines, respectively, of the appropriate data type	
-1 < X < 0	$zATAN(zSQRT(1-X^2)/X)+\pi$	
1 < X	The error MTH\$_INVARGMAT is signaled	

The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HACOS.

CONDITION VALUES SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$xACOS routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of one and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$_INVARGMAT

Invalid argument. The absolute value of **cosine** is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

EXAMPLES

1	100	!+ ! This BASIC program demonstrates the use of ! MTH\$ACOS. !-
		EXTERNAL REAL FUNCTION MTH\$ACOS
		DECLARE REAL COS_VALUE, ANGLE
	300	INPUT "Cosine value between -1 and +1 "; COS_VALUE
	400	IF (COS_VALUE < -1) OR (COS_VALUE > 1)
		THEN PRINT "Invalid cosine value"
		GOTO 300
	500	ANGLE = MTH\$ACOS(COS_VALUE)
		PRINT "The angle with that cosine is "; ANGLE; "radians"
	32767	END

MTH\$xACOS

This BASIC program prompts for a cosine value and determines the angle that has that cosine. The output generated by this program is as follows:

\$ RUN ACOS Cosine value betwen -1 and +1 ? .5 The angle with that cosine is 1.0472 radians

```
PROGRAM GETANGLE(INPUT,OUTPUT);
```

```
{+}
{ This PASCAL program uses MTH$ACOS to determine
{ the angle which has the cosine given as input.
{-}
VAR
COS : REAL;
```

FUNCTION MTH\$ACOS(COS : REAL) : REAL; EXTERN;

BEGIN

2

```
WRITE('Cosine value between -1 and +1: ');
READ (COS);
WRITELN('The angle with that cosine is ', MTH$ACOS(COS),
' radians');
```

END.

This PASCAL program prompts for a cosine value and determines the angle that has that cosine. The output generated by this program is as follows:

```
$ RUN ACOS
Cosine value between -1 and +1: .5
The angle with that cosine is 1.04720E+00 radians
```

MTH\$xACOSD Arc Cosine of Angle Expressed in Degrees

Given the cosine of an angle, the Arc Cosine of Angle Expressed in Degrees routine returns that angle (in degrees).

FORMAT MTH\$ACOSD cosine MTH\$DACOSD cosine MTH\$GACOSD cosine

Each of the above formats accepts as input one of the floating-point types.

jsb entries MTH\$ACOSD_R4 MTH\$DACOSD_R7 MTH\$GACOSD_R7

Each of the above JSB entries accepts as input one of the floating-point types.

RETURNS

VMS usage: floating_point type: F_floating, D_floating, G_floating access: write only mechanism: by value

Angle in degrees. The angle returned will have a value in the range

 $0 \leq angle \leq 180$

MTH\$ACOSD returns an F-floating number. MTH\$DACOSD returns a D-floating number. MTH\$GACOSD returns a G-floating number.

ARGUMENTS cosine

VMS usage: floating_point type: F_floating, G_floating, D_floating access: read only mechanism: by reference

Cosine of the angle whose value (in degrees) is to be returned. The **cosine** argument is the address of a floating-point number that is this cosine. The absolute value of **cosine** must be less than or equal to 1. For MTH\$ACOSD, **cosine** specifies an F-floating number. For MTH\$DACOSD, **cosine** specifies a D-floating number. For MTH\$GACOSD, **cosine** specifies a G-floating number.

MTH\$xACOSD

DESCRIPTION

The angle in degrees whose cosine is X is computed as:

Value of Cosine	Angle Returned	
0	90	
1	0	
-1	180	
0 < X < 1	$zATAND(zSQRT(1 - X^2)/X)$, where zATAND and zSQRT are the Math Library arc tangent and square root routines, respectively, of the appropriate data type	
-1 < X < 0	$zATAND(zSQRT(1-X^2)/X) + 180$	
1 < X	The error MTH\$_INVARGMAT is signaled	

The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HACOSD.

CONDITION VALUES SIGNALED	SS\$_ROPRAND	Reserved operand. The MTH\$xACOSD routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of one and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
	MTH\$_INVARGMAT	Invalid argument. The absolute value of cosine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

EXAMPLE

```
PROGRAM ACOSD(INPUT,OUTPUT);
{+}
{ This PASCAL program demonstrates the use of
{ MTH$ACOSD.
{-}
FUNCTION MTH$ACOSD(COS : REAL): REAL; EXTERN;
VAR
    COSINE : REAL;
BEGIN
    COSINE := 0.5;
    RET_STATUS := MTH$ACOSD(COSINE);
    WRITELN('The angle, in degrees, is: ', RET_STATUS);
END.
```

MTH\$xACOSD

The output generated by this PASCAL example program is as follows: The angle, expressed in degrees, is: 6.00000E+01

MTH\$xASIN Arc Sine in Radians

Given the sine of an angle, the Arc Sine in Radians routine returns that angle (in radians).

FORMAT MTH\$ASIN sine MTH\$DASIN sine MTH\$GASIN sine

Each of the above formats accepts as input one of the floating-point types.

jsb entries

MTH\$ASIN_R4 MTH\$DASIN_R7 MTH\$GASIN_R7

Each of the above JSB entries accepts as input one of the floating-point types.

RETURNS

VMS usage: floating_point type: F_floating, D_floating, G_floating access: write only mechanism: by value

Angle in radians. The angle returned will have a value in the range

 $-\pi/2 \leq angle \leq \pi/2$

MTH\$ASIN returns an F-floating number. MTH\$DASIN returns a D-floating number. MTH\$GASIN returns a G-floating number.

ARGUMENTS

 Sine

 VMS usage:
 floating_point

 type:
 F_floating, D_floating, G_floating

 access:
 read only

 mechanism:
 by reference

The sine of the angle whose value (in radians) is to be returned. The **sine** argument is the address of a floating-point number that is this sine. The absolute value of **sine** must be less than or equal to 1. For MTH\$ASIN, **sine** specifies an F-floating number. For MTH\$DASIN, **sine** specifies a D-floating number. For MTH\$GASIN, **sine** specifies a G-floating number.

DESCRIPTION

t

ź

The angle in radians whose sine is X is computed as:

Value of Sine	Angle Returned
0	0
1	$\pi/2$
-1	$-\pi/2$
0 < X < 1	$zATAN(X/zSQRT(1 - X^2))$, where zATAN and zSQRT are the Math Library arc tangent and square root routines, respectively, of the appropriate data type
1 < X	The error MTH\$_INVARGMAT is signaled

The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HASIN.

CONDITION VALUES SIGNALED	SS\$_ROPRAND	Reserved operand. The MTH\$xASIN routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
	MTH\$_INVARGMAT	Invalid argument. The absolute value of sine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$xASIND Arc Sine in Degrees

Given the sine of an angle, the Arc Sine in Degrees routine returns that angle (in degrees).

1

FORMAT MTH\$ASIND sine MTH\$DASIND sine MTH\$GASIND sine

Each of the above formats accepts as input one of the floating-point types.

jsb entries MTH\$ASIND_R4 MTH\$DASIND_R7 MTH\$GASIND_R7

type:

sine

Each of the above JSB entries accepts as input one of the floating-point types.

RETURNS

VMS usage: floating_point F_floating, D_floating, G_floating access: write only mechanism: by value

Angle in degrees. The angle returned will have a value in the range

 $-90 \leq angle \leq 90$

MTH\$ASIND returns an F-floating number. MTH\$DASIND returns a Dfloating number. MTH\$GASIND returns a G-floating number.

ARGUMENTS

VMS usage: floating_point F_floating, D_floating, G_floating type: access: read only mechanism: by reference

Sine of the angle whose value (in degrees) is to be returned. The sine argument is the address of a floating-point number that is this sine. The absolute value of sine must be less than or equal to 1. For MTH\$ASIND, sine specifies an F-floating number. For MTH\$DASIND, sine specifies a D-floating number. For MTH\$GASIND, sine specifies a G-floating number.

MTH\$xASIND

Value of Sine	Value Returned
0	0
1	90
-1	-90
0 < X < 1	$zATAND(X/zSQRT(1 - X^2))$, where zATAND and zSQRT are the Math Library arc tangent and square root routines, respectively, of the appropriate data type
1 < X	The error MTH\$_INVARGMAT is signaled

DESCRIPTION The angle in degrees whose sine is X is computed as:

The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HASIND.

CONDITION VALUES SIGNALED	SS\$_ROPRAND	Reserved operand. The MTH\$xASIND routine encountered a floating point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of one and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
	MTH\$_INVARGMAT	Invalid argument. The absolute value of sine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVR0/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVR0/R1.

MTH\$xATAN Arc Tangent in Radians

Given the tangent of an angle, the Arc Tangent in Radians routine returns that angle (in radians).

FORMAT	MTH\$ATAN tangent MTH\$DATAN tangent MTH\$GATAN tangent Each of the above formats accepts as input one of the floating-point types.
jsb entries	MTH\$ATAN_R4 MTH\$DATAN_R7 MTH\$GATAN_R7
	Each of the above JSB entries accepts as input one of the floating-point types.
RETURNS	VMS usage: floating_point type: F_floating, D_floating, G_floating access: write only mechanism: by value
	Angle in radians. The angle returned will have a value in the range
	$-\pi/2 \leq angle \leq \pi/2$
	MTH\$ATAN returns an F-floating number. MTH\$DATAN returns a D-floating number. MTH\$GATAN returns a G-floating number.
ARGUMENTS	tangent VMS usage: floating_point type: F_floating, D_floating, G_floating access: read only mechanism: by reference
	The tangent of the angle whose value (in radians) is to be returned. The tangent argument is the address of a floating-point number that is this tangent. For MTH\$ATAN, tangent specifies an F-floating number. For MTH\$DATAN, tangent specifies a D-floating number. For MTH\$GATAN, tangent specifies a G-floating number.

MTH\$xATAN

DESCRIPTION	In radians, the computation of the arc tangent function is based on the following identities:
	$\arctan(X) = X - X^3/3 + X^5/5 - X^7/7 + \dots$
	$\arctan(X) = X + X * Q(X^2),$ where $Q(Y) = -Y/3 + Y^2/5 - Y^3/7 +$
	$\arctan(X) = X * P(X^2),$ where $P(Y) = 1 - Y/3 + Y^2/5 - Y^3/7 +$
	$\arctan(X) = \pi/2 - \arctan(1/X)$
	$\arctan(X) = \arctan(A) + \arctan((X - A)/(1 + A * X))$ for any real A

The angle in radians whose tangent is X is computed as:

Value of X	Angle Returned
$0 \le X \le 3/32$	$X + X * Q(X^2)$
$3/32 < X \le 11$	$ATAN(A) + V * (P(V^2))$, where A and ATAN(A) are chosen by table lookup and $V = (X - A)/(1 + A * X)$
11 < X	$\pi/2 - W * (P(W^2))$ where $W = 1/X$
X < 0	-zATAN(X)

The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HATAN.

CONDITION VALUE SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$xATAN routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$xATAND Arc Tangent in Degrees

Given the tangent of an angle, the Arc Tangent in Degrees routine returns that angle (in degrees).

FORMAT MTH\$ATAND tangent MTH\$DATAND tangent MTH\$GATAND tangent Each of the above formats accepts as input one of the floating-point types. isb entries MTH\$ATAND_R4 MTH\$DATAND_R7 MTH\$GATAND_R7 Each of the above JSB entries accepts as input one of the floating-point types. RETURNS VMS usage: floating_point type: F_floating, D_floating, G_floating access: write only mechanism: by value Angle in degrees. The angle returned will have a value in the range $-90 \leq angle \leq 90$ MTH\$ATAND returns an F-floating number. MTH\$DATAND returns a D-floating number. MTH\$GATAND returns a G-floating number. ARGUMENTS tangent VMS usage: floating_point F_floating, D_floating, G_floating type: read only access: mechanism: by reference The tangent of the angle whose value (in degrees) is to be returned. The tangent argument is the address of a floating-point number that is this

tangent. For MTH\$ATAND, **tangent** specifies an F-floating number. For MTH\$DATAND, **tangent** specifies a D-floating number. For MTH\$GATAND,

tangent specifies a G-floating number.

MTH\$xATAND

DESCRIPTION	The computation of the arc tangent function is based on the following identities:
	$\arctan(X) = (180/\pi) * (X - X^3/3 + X^5/5 - X^7/7 +)$
	$ \arctan(X) = 64 * X + X * Q(X^2), \\ \text{where } Q(Y) = 180/\pi * \left[(1 - 64 * \pi/180) \right] - Y/3 + Y^2/5 - Y^3/7 + Y^4/9 $
	$\arctan(X) = X * P(X^2),$ where $P(Y) = 180/\pi * [1 - Y/3 + Y^2/5 - Y^3/7 + Y^4/9]$
	$\arctan(X) = 90 - \arctan(1/X)$
	$\arctan(X) = \arctan(A) + \arctan((X - A)/(1 + A * X))$

The angle in degrees whose tangent is X is computed as:

Tangent	Angle Returned
$X \le 3/32$	$64 * X + X * Q(X^2)$
$3/32 < X \le 11$	$ATAND(A) + V * P(V^2)$, where A and ATAND(A) are chosen by table lookup and $V = (X - A)/(1 + A * X)$
11 < X	$90-Wst(P(W^2)),$ where $W=1/X$
X < 0	-zATAND(IXI)

The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HATAND.

CONDITION VALUE SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$xATAND routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$xATAN2 Arc Tangent in Radians with Two Arguments

Given sine and cosine, the Arc Tangent in Radians with Two Arguments routine returns the angle (in radians) whose tangent is given by the quotient of sine and cosine, (sine/cosine).

FORMAT MTH\$ATAN2 sine, cosine MTH\$DATAN2 sine ,cosine MTH\$GATAN2 sine ,cosine

Each of the above formats accepts as input one of the floating-point types.

RETURNS

VMS usage: floating_point F_floating, D_floating, G_floating access: write only mechanism: by value

Angle in radians. MTH\$ATAN2 returns an F-floating number. MTH\$DATAN2 returns a D-floating number. MTH\$GATAN2 returns a G-floating number.

ARGUMENTS

sine

type:

VMS usage: floating_point F_floating, D_floating, G_floating type: access: read only mechanism: by reference

Dividend. The sine argument is the address of a floating-point number that is this dividend. For MTH\$ATAN2, sine specifies an F-floating number. For MTH\$DATAN2, sine specifies a D-floating number. For MTH\$GATAN2, sine specifies a G-floating number.

cosine

VMS usage:	floating_point
type:	F_floating, D_floating, G_floating
access:	read only
mechanism:	by reference

Divisor. The **cosine** argument is the address of a floating-point number that is this divisor. For MTH\$ATAN2, cosine specifies an F-floating number. For MTH\$DATAN2, cosine specifies a D-floating number. For MTH\$GATAN2, cosine specifies a G-floating number.

MTH\$xATAN2

DESCRIPTION

The angle in radians whose tangent is Y/X is computed as follows, where f is defined in the description of MTH\$zCOSH.

Value of Input Arguments	Angle Returned
$X = 0 \text{ or } Y/X > 2^{(f+1)}$	$\pi/2*(signY)$
$X > 0$ and $Y/X \le 2^{(f+1)}$	zATAN(Y/X)
$X < 0$ and $Y/X \le 2^{(f+1)}$	$\pi * (signY) + zATAN(Y/X)$

The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HATAN2.

CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$xATAN2 routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Invalid argument. Both **cosine** and **sine** are zero. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVR0/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_ MCH_SAVR0/R1.

Arc Tangent in Degrees with MTH\$xATAND2 **Two Arguments**

Given sine and cosine, the Arc Tangent in Degrees with Two Arguments routine returns the angle (in degrees) whose tangent is given by the quotient of sine and cosine, (sine/cosine).

FORMAT MTH\$ATAND2 sine ,cosine MTH\$DATAND2 sine ,cosine MTH\$GATAND2 sine ,cosine

Each of the above formats accepts as input one of the floating-point types.

RETURNS

VMS usage: floating_point F_floating, D_floating, G_floating write only access: mechanism: by value

Angle (in degrees). MTH\$ATAND2 returns an F-floating number. MTH\$DATAND2 returns a D-floating number. MTH\$GATAND2 returns a G-floating number.

ARGUMENTS

sine

type:

VMS usage: floating_point F_floating, D_floating, G_floating type: read only access: mechanism: by reference

Dividend. The sine argument is the address of a floating-point number that is this dividend. For MTH\$ATAND2, sine specifies an F-floating number. For MTH\$DATAND2, sine specifies a D-floating number. For MTH\$GATAND2, sine specifies a G-floating number.

cosine

VMS usage:	floating_point
type:	F_floating, D_floating, G_floating
access:	read only
mechanism:	by reference

Divisor. The **cosine** argument is the address of a floating-point number that is this divisor. For MTH\$ATAND2, cosine specifies an F-floating number. For MTH\$DATAND2, cosine specifies a D-floating number. For MTH\$GATAND2, cosine specifies a G-floating number.

MTH\$xATAND2

DESCRIPTION

The angle in degrees whose tangent is Y/X is computed below and where f is defined in the description of MTH\$zCOSH.

Value of Input Arguments	Angle Returned
$X = 0 \text{ or } Y/X > 2^{(f+1)}$	90*(signY)
$X > 0 \ and \ Y/X \le 2^{(f+1)}$	zATAND(Y/X)
$X < 0 \ and \ Y/X \le 2^{(f+1)}$	180*(signY) + zATAND(Y/X)

The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HATAND2.

MCH_SAVRO/R1.

CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$xATAND2 routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Invalid argument. Both **cosine** and **sine** are zero. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVR0/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_

MTH\$xATANH Hyperbolic Arc Tangent

Given the hyperbolic tangent of an angle, the Hyperbolic Arc Tangent routine returns the hyperbolic arc tangent of that angle.

FORMAT MTH\$ATANH hyperbolic-tangent MTH\$DATANH hyperbolic-tangent MTH\$GATANH hyperbolic-tangent

type:

Each of the above formats accepts as input one of the floating-point types.

RETURNS

VMS usage: floating_point F_floating, D_floating, G_floating access: write only mechanism: by value

The hyperbolic arc tangent of hyperbolic-tangent. MTH\$ATANH returns an F-floating number. MTH\$DATANH returns a D-floating number. MTH\$GATANH returns a G-floating number.

ARGUMENTS

hyperbolic-tangent

VMS usage: floating_point type: F_floating, D_floating, G_floating access: read only mechanism: by reference

Hyperbolic tangent of an angle. The hyperbolic-tangent argument is the address of a floating-point number that is this hyperbolic tangent. For MTH\$ATANH, hyperbolic-tangent specifies an F-floating number. For MTH\$DATANH, hyperbolic-tangent specifies a D-floating number. For MTH\$GATANH, hyperbolic-tangent specifies a G-floating number.

DESCRIPTION The hyperbolic arc tangent function is computed as follows:

Value of x	Value Returned
X < 1	zATANH(X) = zLOG((X+1)/(X-1))/2
$ X \ge 1$	An invalid argument is signaled

The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HATANH.

MTH\$xATANH

CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$xATANH routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Invalid argument: $|X| \ge 1$. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$CxABS Complex Absolute Value

The Complex Absolute Value routine returns the absolute value of a complex number (r,i).

FORMAT MTH\$CABS complex-number MTH\$CDABS complex-number MTH\$CGABS complex-number

Each of the above three formats accepts as input one of the three floatingpoint complex types.

RETURNS VMS usage: floating_point type: F_floating, D_floating, G_floating access: write only mechanism: by value

The absolute value of a complex number. MTH\$CABS returns an F-floating number. MTH\$CDABS returns a D-floating number. MTH\$CGABS returns a G-floating number.

ARGUMENT

complex-number

 VMS usage:
 complex_number

 type:
 F_floating complex, D_floating complex, G_floating

 access:
 read only

 mechanism:
 by reference

A complex number (r,i), where r and i are both floating-point complex values. The **complex-number** argument is the address of this complex number. For MTH\$CABS, **complex-number** specifies an F-floating complex number. For MTH\$CDABS, **complex-number** specifies a D-floating complex number. For MTH\$CGABS, **complex-number** specifies a G-floating complex number.

DESCRIPTION The complex absolute value is computed as follows, where *MAX* is the larger of |r| and |i|, and *MIN* is the smaller of |r| and |i|.

 $result = MAX * SQRT((MIN/MAX)^2 + 1)$

MTH\$CxABS

CONDITION VALUES SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$CxABS routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$_FLOOVEMAT

Floating-point overflow in Math Library when both ${\bf r}$ and ${\bf i}$ are large.

EXAMPLES

8

```
C+
С
     This FORTRAN example forms the absolute value of an
С
     F-floating complex number using MTH$CABS and the
С
     FORTRAN random number generator RAN.
С
С
     Declare Z as a complex value and MTH$CABS as a REAL*4 value.
С
     MTH$CABS will return the absolute value of Z: Z_NEW = MTH$CABS(Z).
C-
        COMPLEX Z
        COMPLEX CMPLX
        REAL*4 Z_NEW, MTH$CABS
        INTEGER M
        M = 1234567
C+
С
     Generate a random complex number with the FORTRAN generic CMPLX.
C-
        Z = CMPLX(RAN(M), RAN(M))
C+
С
     Z is a complex number (r,i) with real part "r" and
С
     imaginary part "i".
C-
       TYPE *, ' It has real part', REAL(Z), 'and imaginary part', AIMAG(Z) TYPE *, ' '
C+
С
     Compute the complex absolute value of Z.
C-
        Z_NEW = MTH(CABS(Z))
        TYPE *, ' The complex absolute value of',z,' is',Z_NEW
        END
                   This example uses an F-floating complex number for complex-number. The
                   output of this FORTRAN example is as follows:
```

The complex number z is (0.8535407,0.2043402) It has real part 0.8535407 and imaginary part 0.2043402 The complex absolute value of (0.8535407,0.2043402) is 0.8776597

```
2
```

```
C+
С
     This FORTRAN example forms the absolute
     value of a G-floating complex number using
С
С
     MTH$CGABS and the FORTRAN random number
C
     generator RAN.
С
С
     Declare Z as a complex value and MTH$CGABS as a
С
     REAL*8 value. MTH$CGABS will return the absolute
С
     value of Z: Z_NEW = MTH$CGABS(Z).
C-
        COMPLEX*16 Z
        REAL*8 Z_NEW, MTH$CGABS
C+
С
     Generate a random complex number with the FORTRAN
С
     generic CMPLX.
C-
        Z = (12.34567890123, 45.536376385345)
        TYPE *, ' The complex number z is',z
        TYPE *, ' '
C+
С
     Compute the complex absolute value of Z.
C-
        Z_NEW = MTH CGABS(Z)
        TYPE *, ' The complex absolute value of',z,' is',Z_NEW
        END
```

This FORTRAN example uses a G-floating complex number for **complex-number**. Because this example uses a G-floating number, it must be compiled as follows:

\$ FORTRAN/G MTHEX.FOR

Notice the difference in the precision of the output generated:

The complex number z is (12.3456789012300,45.5363763853450) The complex absolute value of (12.3456789012300,45.5363763853450) is 47.1802645376230

MTH\$CCOS Cosine of a Complex Number (F-floating Value)

The Cosine of a Complex Number (F-floating Value) routine returns the cosine of a complex number as an F-floating value.

FORMAT MTH\$CCOS complex-number

RETURNS VMS usage: complex_number type: F_floating complex access: write only mechanism: by value

The complex cosine of the complex input number. MTH\$CCOS returns an F-floating complex number.

ARGUMENTS complex-number

VMS usage: complex_number type: F_floating complex access: read only mechanism: by reference

A complex number (r,i) where r and i are floating-point numbers. The **complex-number** argument is the address of this complex number. For MTH\$CCOS, **complex-number** specifies an F-floating complex number.

DESCRIPTION The complex cosine is calculated as follows:

result = (COS(r) * COSH(i), -SIN(r) * SINH(i))

The routine descriptions for the D- and G-floating point versions of this routine are listed alphabetically under MTH\$CxCOS.

CONDITION VALUES SIGNALED	SS\$_ROPRAND	Reserved operand. The MTH\$CCOS routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
	MTH\$_FLOOVEMAT	Floating-point overflow in Math Library: the absolute value of i is greater than about 88.029 for F-floating values.

EXAMPLE

```
C+
С
     This FORTRAN example forms the complex
С
     cosine of an F-floating complex number using
С
     MTH$CCOS and the FORTRAN random number
С
     generator RAN.
С
С
     Declare Z and MTH$CCOS as complex values.
С
     MTH$CCOS will return the cosine value of
С
     Z:
                Z_NEW = MTH(COS(Z))
C-
        COMPLEX Z, Z_NEW, MTH$CCOS
        COMPLEX CMPLX
        INTEGER M
        M = 1234567
C+
С
     Generate a random complex number with the
С
     FORTRAN generic CMPLX.
C-
        Z = CMPLX(RAN(M), RAN(M))
C+
С
     Z is a complex number (r,i) with real part "r" and
С
     imaginary part "i".
C-
        TYPE *, ' The complex number z is',z
        TYPE *, ' It has real part', REAL(Z), 'and imaginary part', AIMAG(Z)
        TYPE *, ',
C+
     Compute the complex cosine value of Z.
С
C-
        Z_NEW = MTH(COS(Z))
        TYPE *, ' The complex cosine value of',z,' is',Z_NEW
        END
```

This FORTRAN example demonstrates the use of MTH\$CCOS, using the MTH\$CCOS entry point. The output of this program is as follows:

The complex number z is (0.8535407,0.2043402) It has real part 0.8535407 and imaginary part 0.2043402 The complex cosine value of (0.8535407,0.2043402) is (0.6710899,-0.1550672)

MTH\$CxCOS Cosine of a Complex Number

The Cosine of a Complex Number routine returns the cosine of a complex number.

FORMAT MTH\$CDCOS complex-cosine , complex-number MTH\$CGCOS complex-cosine , complex-number

Each of the above formats accepts as input one of the floating-point complex types.

RETURNS None.

ARGUMENTS co

complex-cosine

VMS usage:complex_numbertype:D_floating complex, G_floating complexaccess:write onlymechanism:by reference

Complex cosine of the **complex-number**. The complex cosine routines that have D-floating and G-floating complex input values write the address of the complex cosine into the **complex-cosine** argument. For MTH\$CDCOS, the **complex-cosine** argument specifies a D-floating complex number. For MTH\$CGCOS, the **complex-number** argument specifies a G-floating complex number.

complex-number

VMS usage: complex_number type: D_floating complex, G_floating complex access: read only mechanism: by reference

A complex number (r,i) where r and i are floating-point numbers. The **complex-number** argument is the address of this complex number. For MTH\$CDCOS, **complex-number** specifies a D-floating complex number. For MTH\$CGCOS, **complex-number** specifies a G-floating complex number.

DESCRIPTION The complex cosine is calculated as follows:

result = (COS(r) * COSH(i), -SIN(r) * SINH(i))

CONDITION SS\$_ROPRAND Reserved operand. The MTH\$CxCOS routine VALUES encountered a floating-point reserved operand due SIGNALED to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL. MTH\$_FLOOVEMAT Floating-point overflow in Math Library: the absolute value of i is greater than about 88.029 for F-floating and D-floating values or greater than 709.089 for G-floating values.

EXAMPLE

```
C+
С
     This FORTRAN example forms the complex
С
     cosine of a D-floating complex number using
С
     MTH$CDCOS and the FORTRAN random number
С
     generator RAN.
С
С
     Declare Z and MTH$CDCOS as complex values.
С
     MTH$CDCOS will return the cosine value of
С
     Z :
                Z_NEW = MTH CDCOS(Z)
C-
        COMPLEX*16 Z.Z_NEW.MTH$CDCOS
        COMPLEX*16 DCMPLX
        INTEGER M
        M = 1234567
C+
С
     Generate a random complex number with the
С
     FORTRAN generic DCMPLX.
C-
        Z = DCMPLX(RAN(M), RAN(M))
C+
     Z is a complex number (r,i) with real part "r" and
С
С
     imaginary part "i".
C-
        TYPE *, ' The complex number z is',z TYPE *, ' '
C+
С
     Compute the complex cosine value of Z.
C-
        Z_NEW = MTH(CDCOS(Z))
        TYPE *, ' The complex cosine value of',z,' is',Z_NEW
        END
```

MTH\$CxCOS

This FORTRAN example program demonstrates the use of MTH\$CxCOS, using the MTH\$CDCOS entry point. Notice the high precision of the output generated:

The complex number z is (0.8535407185554504, 0.2043401598930359)The complex cosine value of (0.8535407185554504, 0.2043401598930359) is (0.6710899028500762, -0.1550672019621661)

MTH\$CEXP Complex Exponential (F-floating Value)

The Complex Exponential (F-floating Value) routine returns the complex exponential of a complex number as an F-floating value.

FORMAT MTH\$CEXP complex-number

RETURNS

VMS usage: complex_number type: F_floating complex access: write only mechanism: by value

Complex exponential of the complex input number. MTH\$CEXP returns an F-floating complex number.

ARGUMENTS complex-number VMS usage: complex_number type: F_floating complex access: read only mechanism: by reference

Complex number whose complex exponential is to be returned. This complex number has the form (r,i), where r is the real part and i is the imaginary part. The **complex-number** argument is the address of this complex number. For MTH\$CEXP, **complex-number** specifies an F-floating number.

DESCRIPTION The complex exponential is computed as follows:

complex - exponent = (EXP(r) * COS(i), EXP(r) * SIN(i))

The routine descriptions for the D- and G-floating point versions of this routine are listed alphabetically under MTH\$CxEXP.

MTH\$CEXP

CONDITION VALUES SIGNALED

SS\$__ROPRAND

Reserved operand. The MTH\$CEXP routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$__FLOOVEMAT

Floating-point overflow in Math Library: the absolute value of \mathbf{r} is greater than about 88.029 for F-floating values.

EXAMPLE

```
C+
     This FORTRAN example forms the complex exponential
С
С
     of an F-floating complex number using MTH$CEXP
С
     and the FORTRAN random number generator RAN.
С
С
     Declare Z and MTH$CEXP as complex values. MTH$CEXP
Ċ
     will return the exponential value of Z: Z_NEW = MTH$CEXP(Z)
C-
        COMPLEX Z, Z_NEW, MTH$CEXP
        COMPLEX CMPLX
        INTEGER M
        M = 1234567
C+
С
     Generate a random complex number with the
С
     FORTRAN generic CMPLX.
C-
        Z = CMPLX(RAN(M), RAN(M))
C+
С
     Z is a complex number (r,i) with real part "r"
     and imaginary part "i".
С
C-
       TYPE *, ' The complex number z is',z
       TYPE *, ' It has real part', REAL(Z), 'and imaginary part', AIMAG(Z)
       TYPE *, ' '
C+
С
     Compute the complex exponential value of Z.
C-
        Z_NEW = MTH CEXP(Z)
        TYPE *, ' The complex exponential value of',z,' is',Z_NEW
        END
                         This FORTRAN program demonstrates the use of MTH$CEXP as a function
                         call. The output generated by this example is as follows:
                               The complex number z is (0.8535407,0.2043402)
```

It has real part 0.8535407 and imaginary part 0.2043402) The complex exponential value of (0.8535407,0.2043402) is (2.299097,0.4764476)

MTH\$CxEXP

MTH\$CxEXP Complex Exponential

The Complex Exponential routine returns the complex exponential of a complex number.

FORMATMTH\$CDEXPcomplex-exponent , complex-numberMTH\$CGEXPcomplex-exponent , complex-number

Each of the above formats accepts as input one of the floating-point complex types.

RETURNS None.

ARGUMENTS

S complex-exponent

VMS usage:	complex_number
type:	D_floating complex, G_floating complex
access:	write only
mechanism:	by reference

Complex exponential of **complex-number**. The complex exponential routines that have D-floating complex and G-floating complex input values write the **complex-exponent** into this argument. For MTH\$CDEXP, **complex-exponent** argument specifies a D-floating complex number. For MTH\$CGEXP, **complex-exponent** specifies a G-floating complex number.

complex-number

VMS usage:complex_numbertype:D_floating complex, G_floating complexaccess:read onlymechanism:by reference

Complex number whose complex exponential is to be returned. This complex number has the form (r,i), where r is the real part and i is the imaginary part. The **complex-number** argument is the address of this complex number. For MTH\$CDEXP, **complex-number** specifies a D-floating number. For MTH\$CGEXP, **complex-number** specifies a G-floating number.

DESCRIPTION The complex exponential is computed as follows:

complex - exponent = (EXP(r) * COS(i), EXP(r) * SIN(i))

MTH\$CxEXP

CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$_FLOOVEMAT

Reserved operand. The MTH\$CxEXP routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library: the absolute value of **r** is greater than about 88.029 for D-floating values or greater than about 709.089 for G-floating values.

EXAMPLE

```
C+
С
     This FORTRAN example forms the complex exponential
С
     of a G-floating complex number using MTH$CGEXP
С
     and the FORTRAN random number generator RAN.
С
С
     Declare Z and MTH$CGEXP as complex values.
С
     MTH$CGEXP will return the exponential value
Ċ
     of Z:
                CALL MTH$CGEXP(Z_NEW,Z)
C-
        COMPLEX*16 Z,Z_NEW
        COMPLEX*16 MTH$GCMPLX
        REAL*8 R.I
        INTEGER M
        M = 1234567
C+
С
     Generate a random complex number with the FORTRAN
C-
     generic CMPLX.
C-
        R = RAN(M)
        I = RAN(M)
        Z = MTH GCMPLX(R, I)
        TYPE *, ' The complex number z is',z
        TYPE *, ' '
C+
С
     Compute the complex exponential value of Z.
C-
        CALL MTH$CGEXP(Z_NEW,Z)
        TYPE *, ' The complex exponential value of ',z,' is',Z_NEW
        END
```

This FORTRAN example demonstrates how to access MTH\$CGEXP as a procedure call. Because G-floating numbers are used, this program must be compiled using the command "FORTRAN/G filename".

MTH\$CxEXP

Notice the high precision of the output generated:

The complex number z is (0.853540718555450,0.204340159893036) The complex exponential value of (0.853540718555450,0.204340159893036) is (2.29909677719458,0.476447678044977)

MTH\$CLOG Complex Natural Logarithm (F-floating Value)

The Complex Natural Logarithm (F-floating Value) routine returns the complex natural logarithm of a complex number as an F-floating value.

FORMAT MTH\$CLOG complex-number

RETURNS VMS usage: complex_number F_floating complex type: write only access: mechanism: by value The complex natural logarithm of a complex number. MTH\$CLOG returns an F-floating complex number. ARGUMENTS complex-number VMS usage: complex_number F__floating complex type: access: read only mechanism: by reference Complex number whose complex natural logarithm is to be returned. This complex number has the form (r,i), where r is the real part and i is the imaginary part. The complex-number argument is the address of this complex number. For MTH\$CLOG, complex-number specifies an F-floating number. DESCRIPTION The complex natural logarithm is computed as follows: CLOG(x) = (LOG(CABS(x)), ATAN2(i, r))The routine descriptions for the D- and G-floating point versions of this routine are listed alphabetically under MTH\$CxLOG. CONDITION SS\$_ROPRAND Reserved operand. The MTH\$CLOG routine VALUE encountered a floating-point reserved operand due SIGNALED

encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

.

EXAMPLE

Examples of using MTH\$CLOG from VAX MACRO (using both the CALLS and the CALLG instructions) appear in the introductory section of this manual.

MTH\$CxLOG Complex Natural Logarithm

The Complex Natural Logarithm routine returns the complex natural logarithm of a complex number.

FORMAT MTH\$CDLOG complex-natural-log, complex-number MTH\$CGLOG complex-natural-log, complex-number

Each of the above formats accepts as input one of the floating-point complex types.

RETURNS None.

ARGUMENTS complex-

complex-natural-log

VMS usage:complex_numbertype:D_floating complex, G_floating complexaccess:write onlymechanism:by reference

Natural logarithm of the complex number specified by **complex-number**. The complex natural logarithm routines that have D-floating complex and G-floating complex input values write the address of the complex natural logarithm into **complex-natural-log**. For MTH\$CDLOG, the **complex-natural-log** argument specifies a D-floating complex number. For MTH\$CGLOG, the **complex-natural-log** argument specifies a G-floating complex number.

complex-number

VMS usage: complex_number type: D_floating complex, G_floating complex access: read only mechanism: by reference

Complex number whose complex natural logarithm is to be returned. This complex number has the form (r,i), where r is the real part and i is the imaginary part. The **complex-number** argument is the address of this complex number. For MTH\$CDLOG, **complex-number** specifies a D-floating number. For MTH\$CGLOG, **complex-number** specifies a G-floating number.

DESCRIPTION The complex natural logarithm is computed as follows:

CLOG(x) = (LOG(CABS(x)), ATAN2(i, r))

CONDITION VALUE SIGNALED

SS\$__ROPRAND

Reserved operand. The MTH\$CxLOG routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

EXAMPLE

```
C+
С
     This FORTRAN example forms the complex logarithm
С
     of a D-floating complex number by using MTH$CDLOG
С
     and the FORTRAN random number generator RAN.
С
С
     Declare Z and MTHCDLOG as complex values. Then MTHCDLOG
     will return the logarithm of Z: CALL MTH CDLOG(Z_NEW,Z).
с
С
С
     Declare Z,Z_LOG, and MTH$DCMPLX as complex values,
С
     and R and I as real values. MTH$DCMPLX takes two real
С
     arguments and returns one complex number.
С
С
     Given a complex number Z, MTH$CDLOG(Z) returns the
С
     complex natural logarithm of Z.
C-
        COMPLEX*16 Z, Z_NEW, MTH$DCMPLX
        REAL*8 R.I
        R = 3.1425637846746565
        I = 7.43678469887
        Z = MTH (R, I)
C+
С
     Z is a complex number (r,i) with real part "r" and imaginary
С
     part "i".
C-
        TYPE *, ' The complex number z is',z
        TYPE *, ' '
        CALL MTH$CDLOG(Z_NEW,Z)
        TYPE *,' The complex logarithm of',z,' is',Z_NEW
        END
```

This FORTRAN example program uses MTH\$CDLOG by calling it as a procedure. The output generated by this program is as follows:

The complex number z is (3.142563784674657,7.436784698870000) The complex logarithm of (3.142563784674657,7.436784698870000) is (2.088587642177504,1.170985519274141)

MTH\$CMPLX Complex Number Made from F-floating-Point

The Complex Number Made from F-floating-Point routine returns a complex number from two floating-point input values.

FORMAT MTH\$CMPLX real-part , imaginary-part

RETURNS VMS usage: type: complex_number type: F_floating complex access: write only mechanism: by value

A complex number. MTH\$CMPLX returns an F-floating complex number.

ARGUMENTS real-part

VMS usage: floating_point type: F_floating access: read only mechanism: by reference

Real part of a complex number. The **real-part** argument is the address of a floating-point number that contains this real part, r, of (r,i). For MTH\$CMPLX, **real-part** specifies an F-floating number.

imaginary-part

VMS usage: floating_point type: F_floating access: read only mechanism: by reference

Imaginary part of a complex number. The **imag-parg** argument is the address of a floating-point number that contains this imaginary part, i, of (r,i). For MTH\$CMPLX, **imaginary-part** specifies an F-floating number.

DESCRIPTION

The MTH\$CMPLX routines return a complex number from two F-floating input values. The routine descriptions for the D- and G-floating point versions of this routine are listed alphabetically under MTH\$xCMPLX.

CONDITION VALUE SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$CMPLX routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

EXAMPLE

```
C+
С
     This FORTRAN example forms two F-floating
С
     point complex numbers using MTH$CMPLX
С
     and the FORTRAN random number generator RAN.
С
С
     Declare Z and MTH$CMPLX as complex values, and R
С
     and I as real values. MTH$CMPLX takes two real
С
     F-floating point values and returns one COMPLEX*8 number.
С
С
     Note, since CMPLX is a generic name in FORTRAN, it would be
С
     sufficient to use CMPLX.
С
     CMPLX must be declare to be of type COMPLEX*8.
С
С
     Z = CMPLX(R, I)
C-
        COMPLEX Z, MTH$CMPLX, CMPLX
        REAL*4 R,I
        INTEGER M
        M = 1234567
        R = RAN(M)
        I = RAN(M)
        Z = MTH$CMPLX(R,I)
C+
С
     Z is a complex number (r,i) with real part "r" and
С
     imaginary part "i".
C-
        TYPE *, ' The two input values are:',R,I
        TYPE *, ' The complex number z is',z
        z = CMPLX(RAN(M), RAN(M))
        TYPE *, ' '
        TYPE *, ' Using the FORTRAN generic CMPLX with random R and I:'
        TYPE *, ' The complex number z is',z
        END
```

This FORTRAN example program demonstrates the use of MTH\$CMPLX. The output generated by this program is as follows:

The two input values are: 0.8535407 0.2043402The complex number z is (0.8535407, 0.2043402)Using the FORTRAN generic CMPLX with random R and I: The complex number z is (0.5722565, 0.1857677)

MTH\$xCMPLX Complex Number Made from Dor G-floating-Point

The Complex Number Made from D- or G-floating-Point routine returns a complex number from two D- or G-floating input values.

FORMAT MTH\$DCMPLX complx ,real-part ,imaginary-part MTH\$GCMPLX complx ,real-part ,imaginary-part

Each of the above formats accepts as input one of floating-point complex types.

RETURNS None.

ARGUMENTS complx

VMS usage:	complex_number
type:	D_floating complex, G_floating complex
access:	write only
mechanism:	by reference

The floating-point complex value of a complex number. The complex exponential functions that have D-floating complex and G-floating complex input values write the address of this floating-point complex value into **complx**. For MTH\$DCMPLX, **complx** specifies a D-floating complex number. For MTH\$GCMPLX, **complx** specifies a G-floating complex number. For MTH\$CMPLX, **complx** is not used.

real-part

VMS usage:	floating_point
type:	D_floating, G_floating
access:	read only
mechanism:	by reference

Real part of a complex number. The **real-part** argument is the address of a floating-point number that contains this real part, r, of (r,i). For MTH\$DCMPLX, **real-part** specifies a D-floating number. For MTH\$GCMPLX, **real-part** specifies a G-floating number.

imaginary-part

VMS usage:floating_pointtype:D_floating, G_floatingaccess:read onlymechanism:by reference

Imaginary part of a complex number. The **imag-parg** argument is the address of a floating-point number that contains this imaginary part, i, of (r,i). For MTH\$DCMPLX, **imaginary-part** specifies a D-floating number. For MTH\$GCMPLX, **imaginary-part** specifies a G-floating number.

CONDITION VALUE SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$xCMPLX routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

EXAMPLE

```
C+
С
     This FORTRAN example forms two D-floating
С
     point complex numbers using MTH$CMPLX
С
     and the FORTRAN random number generator RAN.
С
С
     Declare Z and MTH$DCMPLX as complex values, and R
С
     and I as real values. MTH$DCMPLX takes two real
С
     D-floating point values and returns one
С
     COMPLEX*16 number.
С
C-
        COMPLEX*16 Z
        REAL*8 R,I
        INTEGER M
        M = 1234567
        R = RAN(M)
        I = RAN(M)
        CALL MTH$DCMPLX(Z,R,I)
C+
С
     Z is a complex number (r,i) with real part "r" and imaginary
С
     part "i".
C-
        TYPE *, ' The two input values are:',R,I
        TYPE *, ' The complex number z is',Z
        END
```

This FORTRAN example demonstrates how to make a procedure call to MTH\$DCMPLX. Notice the difference in the precision of the output generated.

The two input values are: 0.8535407185554504 0.2043401598930359 The complex number z is (0.8535407185554504,0.2043401598930359)

MTH\$CONJG Conjugate of a Complex Number (F-floating Value)

The Conjugate of a Complex Number (F-floating Value) routine returns the complex conjugate (r,-i) of a complex number (r,i) as an F-floating value.

FORMAT MTH\$CONJG complex-number

RETURNS VMS usage: complex_number type: F__floating complex access: write only mechanism: by value Complex conjugate of a complex number. MTH\$CONJG returns an F-floating complex number. ARGUMENTS complex-number VMS usage: complex_number F_floating complex type: access: read only mechanism: by reference A complex number (r,i), where r and i are floating-point numbers. The complex-number argument is the address of this floating-point complex number. For MTH\$CONJG, complex-number specifies an F-floating number. DESCRIPTION The MTH\$CONJG routine return the complex conjugate (r,-i) of a complex number (r,i) as an F-floating value. The routine descriptions for the Dand G-floating point versions of this routine are listed alphabetically under MTH\$xCONIG. CONDITION SS\$_ROPRAND Reserved operand. The MTH\$CONJG routine VALUE encountered a floating-point reserved operand due SIGNALED to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$xCONJG Conjugate of a Complex Number

The Conjugate of a Complex Number routine returns the complex conjugate (r,-i) of a complex number (r,i).

FORMAT MTH\$DCONJG complex-conjugate ,complex-number MTH\$GCONJG complex-conjugate ,complex-number

Each of the above formats accepts as input one of the floating-point complex types.

RETURNS None.

ARGUMENTS complex-conjugate

VMS usage:	complex_number
type:	D_floating complex, G_floating complex
access:	write only
mechanism:	by reference

The complex conjugate (r,-i) of the complex number specified by **complex-number**. MTH\$DCONJG and MTH\$GCONJG write the address of this complex conjugate into **complex-conjugate**. For MTH\$DCONJG, the **complex-conjugate** argument specifies the address of a D-floating complex number. For MTH\$GCONJG, the **complex-conjugate** argument specifies the address of a G-floating complex number.

complex-number

VMS usage:complex_numbertype:D_floating complex, G_floating complexaccess:read onlymechanism:by reference

A complex number (r,i), where r and i are floating-point numbers. The **complex-number** argument is the address of this floating-point complex number. For MTH\$DCONJG, **complex-number** specifies a D-floating number. For MTH\$GCONJG, **complex-number** specifies a G-floating number.

CONDITION VALUE SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$xCONJG routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$xCONJG

EXAMPLE

```
C+
С
     This FORTRAN example forms the complex conjugate
С
     of a G-floating complex number using MTH$GCONJG
С
     and the FORTRAN random number generator RAN.
С
С
    Declare Z, Z_NEW, and MTH$GCONJG as a complex values.
С
    MTH$GCONJG will return the complex conjugate
С
     value of Z: Z_NEW = MTH$GCONJG(Z).
C-
        COMPLEX*16 Z,Z_NEW,MTH$GCONJG
        COMPLEX*16 MTH$GCMPLX
        REAL*8 R, I, MTH$GREAL, MTH$GIMAG
        INTEGER M
        M = 1234567
C+
С
    Generate a random complex number with the
С
     FORTRAN generic CMPLX.
C-
        R = RAN(M)
        I = RAN(M)
        Z = MTH GCMPLX(R, I)
        TYPE *, ' The complex number z is',z
        TYPE 1, MTH$GREAL(Z), MTH$GIMAG(Z)
   1
        FORMAT(' with real part ', F20.16,' and imaginary part', F20.16)
        TYPE *, ' '
C+
С
     Compute the complex absolute value of Z.
C-
        Z_NEW = MTH GCONJG(Z)
        TYPE *, ' The complex conjugate value of',z,' is',Z_NEW
        TYPE 1, MTH$GREAL(Z_NEW), MTH$GIMAG(Z_NEW)
        END
```

This FORTRAN example demonstrates how to make a function call to MTH\$GCONJG. Because G-floating numbers are used, the examples must be compiled with the statement "FORTRAN/G filename".

The output generated by this program is as follows:

The complex number z is (0.853540718555450,0.204340159893036) with real part 0.8535407185554504 and imaginary part 0.2043401598930359 The complex conjugate value of (0.853540718555450,0.204340159893036) is (0.853540718555450,-0.204340159893036) with real part 0.8535407185554504 and imaginary part -0.2043401598930359

MTH\$xCOS Cosine of Angle Expressed in Radians

The Cosine of Angle Expressed in Radians routine returns the cosine of a given angle (in radians).

FORMAT	MTH\$COS angle-in-radians MTH\$DCOS angle-in-radians MTH\$GCOS angle-in-radians Each of the above formats accepts as input one of the floating-point types.
jsb entries	MTH\$COS_R4 MTH\$DCOS_R7 MTH\$GCOS_R7
	Each of the above JSB entries accepts as input one of the floating-point types.
RETURNS	VMS usage: floating_point type: F_floating, D_floating, G_floating access: write only mechanism: by value
	Cosine of the angle. MTH\$COS returns an F-floating number. MTH\$DCOS returns a D-floating number. MTH\$GCOS returns a G-floating number.
ARGUMENTS	angle-in-radians VMS usage: floating_point type: F_floating, D_floating, G_floating access: read only mechanism: by reference
	The angle in radians. The angle-in-radians argument is the address of a floating-point number. For MTH\$COS, angle-in-radians is an F-floating number. For MTH\$DCOS, angle-in-radians specifies a D-floating number. For MTH\$GCOS, angle-in-radians specifies a G-floating number.
DESCRIPTION	See the MTH\$xSINCOS routine for the algorithm used to compute the cosine.
	The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HCOS.

MTH\$xCOS

CONDITION VALUE SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$xCOS procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$xCOSD Cosine of Angle Expressed in Degrees

The Cosine of Angle Expressed in Degrees routine returns the cosine of a given angle (in degrees).

FORMAT	MTH\$COSDangle-in-degreesMTH\$DCOSDangle-in-degreesMTH\$GCOSDangle-in-degreesEach of the above formats accepts as input one of the floating-point types.
jsb entries	MTH\$COSD_R4 MTH\$DCOSD_R7 MTH\$GCOSD_R7
	Each of the above JSB entries accepts as input one of the floating-point types.
RETURNS	VMS usage: floating_point type: F_floating, D_floating, G_floating access: write only mechanism: by value
	Cosine of the angle. MTH\$COSD returns an F-floating number. MTH\$DCOSD returns a D-floating number. MTH\$GCOSD returns a G- floating number.
ARGUMENTS	angle-in-degrees VMS usage: floating_point type: F_floating, D_floating, G_floating access: read only mechanism: by reference
	Angle (in degrees). The angle-in-degrees argument is the address of a floating-point number. For MTH\$COSD, angle-in-degrees specifies an F-floating number. For MTH\$DCOSD, angle-in-degrees specifies a D-floating number. For MTH\$GCOSD, angle-in-degrees specifies a G-floating number.
DESCRIPTION	See the MTH\$SINCOSD routine for the algorithm used to compute the cosine.
	The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HCOSD.

MTH\$xCOSD

CONDITION VALUE SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$xCOSD procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$xCOSH Hyperbolic Cosine

The Hyperbolic Cosine routine returns the hyperbolic cosine of the input value.

FORMAT MTH\$COSH floating-point-input-value MTH\$DCOSH floating-point-input-value MTH\$GCOSH floating-point-input-value

Each of the above formats accepts as input one of the floating-point types.

RETURNS

VMS usage: floating_point type: F_floating, D_floating, G_floating access: write only mechanism: by value

The hyperbolic cosine of the input value **floating-point-input-value**. MTH\$COSH returns an F-floating number. MTH\$DCOSH returns a D-floating number. MTH\$GCOSH returns a G-floating number.

ARGUMENTS

floating-point-input-value VMS usage: floating_point

type: F_floating, D_floating, G_floating access: read only mechanism: by reference

The input value. The **floating-point-input-value** argument is the address of this input value. For MTH\$COSH, **floating-point-input-value** specifies an F-floating number. For MTH\$DCOSH, **floating-point-input-value** specifies a D-floating number. For MTH\$GCOSH, **floating-point-input-value** specifies a G-floating number.

DESCRIPTION Computation of the hyperbolic cosine depends on the magnitude of the input argument. The range of the function is partitioned using four data-type-dependent constants: a(z), b(z), and c(z). The subscript *z* indicates the data type. The constants depend on the number of exponent bits (*e*) and the number of fraction bits (*f*) associated with the data type (*z*).

The values of *e* and *f* are:

z	е	f	· · · · · · · · · · · · · · · · · · ·
F	8	24	
D	8	56	
G	11	53	

The values of the constants in terms of e and f are:

Variable	Value	· · · · · · · · ·
a(z)	$2^{(-f/2)}$	
b(z)	$CEILING[\ (f+1)/2*\ln(2)]$	
c(z)	$(2^{e-1}) * \ln(2)$	

Based on the above definitions, zCOSH(X) is computed as follows:

Value of X Value Returned	
X < a(z)	1
$a(z) \leq X < .25$	Computed using a power series expansion in $ X ^2$
$.25 \le X \le b(z)$	(zEXP(X) + 1/zEXP(X))/2
$b(z) \leq X < c(z)$	zEXP(X)/2
$c(z) \leq x $	Overflow occurs

This routine description for the H-floating point value is listed alphabetically under MTH\$HCOSH.

CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$__FLOOVEMAT

Reserved operand. The MTH\$xCOSH procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library: the absolute value of **floating-point-input-value** is greater than about *yyy*; LIB\$SIGNAL copies the reserved operand to the signal mechanism vector. The result is the reserved operand -0.0 unless a condition handler changes the signal mechanism vector.

The values of yyy are:

MTH\$COSH-88.722 MTH\$DCOSH-88.722 MTH\$GCOSH-709.782

MTH\$CSIN Sine of a Complex Number (F-floating Value)

The Sine of a Complex Number (F-floating Value) routine returns the sine of a complex number (r,i) as an F-floating value.

for F-floating values.

FORMAT	MTH\$CSIN con	nplex-number
RETURNS	VMS usage: complex. type: F_floatin access: write onl mechanism: by value	g complex
	Complex sine of the con complex number.	nplex number. MTH\$CSIN returns an F-floating
ARGUMENTS	complex-numberVMS usage:complex.type:F_floatingaccess:read onlymechanism:by refere	_number g complex
	complex-number argum	where r and i are floating-point numbers. The tent is the address of this complex number. For umber specifies an F-floating complex number.
DESCRIPTION	The complex sine is com	puted as follows:
	complex - sine	= (SIN(r) * COSH(i), COS(r) * SINH(i))
		for the D- and G-floating point versions of this etically under MTH\$CxSIN.
CONDITION VALUES SIGNALED	SS\$_ROPRAND	Reserved operand. The MTH\$CSIN procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
	MTH\$_FLOOVEMAT	Floating-point overflow in Math Library: the absolute value of i is greater than about 88.029

MTH\$CxSIN Sine of a Complex Number

The Sine of a Complex Number routine returns the sine of a complex number (r,i).

FORMAT MTH\$CDSIN complex-sine , complex-number MTH\$CGSIN complex-sine , complex-number

Each of the above formats accepts as input one of the floating-point complex types.

RETURNS None.

ARGUMENTS complex-sine

VMS usage:	complex_number
type:	D_floating complex, G_floating complex
access:	write only
mechanism:	by reference

Complex sine of the complex number. The complex sine routines with D-floating complex and G-floating complex input values write the complex sine into this **complex-sine** argument. For MTH\$CDSIN, **complex-sine** specifies a D-floating complex number. For MTH\$CGSIN, **complex-sine** specifies a G-floating complex number.

complex-number

VMS usage:	complex_number
type:	D_floating complex, G_floating complex
access:	read only
mechanism:	by reference

A complex number (r,i), where r and i are floating-point numbers. The **complex-number** argument is the address of this complex number. For MTH\$CDSIN, **complex-number** specifies a D-floating complex number. For MTH\$CGSIN, **complex-number** specifies a G-floating complex number.

DESCRIPTION The complex sine is computed as follows:

complex - sine = (SIN(r) * COSH(i), COS(r) * SINH(i))

MTH\$CxSIN

CONDITION SS\$__ROPRAND Reserved operand. The MTH\$CxSIN procedure VALUES encountered a floating-point reserved operand due SIGNALED to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL. MTH\$__FLOOVEMAT Floating-point overflow in Math Library: the absolute value of i is greater than about 88.029 for D-floating values or greater than about 709.089 for G-floating values.

EXAMPLE

```
C+
     This FORTRAN example forms the complex
С
С
     sine of a G-floating complex number using
С
     MTH$CGSIN and the FORTRAN random number
С
     generator RAN.
С
     Declare Z and MTH$CGSIN as complex values.
С
С
     MTH$CGSIN will return the sine value
С
     of Z:
                CALL MTH$CGSIN(Z_NEW,Z)
C-
        COMPLEX*16 Z,Z_NEW
        COMPLEX*16 DCMPLX
        REAL*8 R.I
        INTEGER M
        M = 1234567
C+
С
     Generate a random complex number with the
     FORTRAN generic DCMPLX.
С
C-
        R = RAN(M)
        I = RAN(M)
        Z = DCMPLX(R,I)
C+
С
      Z is a complex number (r,i) with real part "r" and
      imaginary part "i".
С
C-
        TYPE *, ' The complex number z is',z
        TYPE *, ',
C+
С
     Compute the complex sine value of Z.
C-
        CALL MTH$CGSIN(Z_NEW,Z)
        TYPE *, ' The complex sine value of',z,' is',Z_NEW
        END
```

MTH\$CxSIN

This FORTRAN example demonstrates a procedure call to MTH\$CGSIN. Because this program uses G-floating numbers, it must be compiled with the statement "FORTRAN/G filename".

The output generated by this program is as follows:

The complex number z is (0.853540718555450,0.204340159893036) The complex sine value of (0.853540718555450,0.204340159893036) is (0.769400835484975,0.135253340912255)

MTH\$CSQRT

MTH\$CSQRT Complex Square Root (F-floating Value)

The Complex Square Root (F-floating Value) routine returns the complex square root of a complex number (r,i).

FORMAT MTH\$CSQRT complex-number

mechanism: by value

RETURNS VMS usage: complex_number type: F_floating complex access: write only

The complex square root of **complex-number**. MTH\$CSQRT returns an F-floating number.

ARGUMENTS complex-number

VMS usage: complex_number type: F_floating complex access: read only mechanism: by reference

Complex number (r,i). The **complex-number** argument contains the address of this complex number. For MTH\$CSQRT, **complex-number** specifies an F-floating number.

DESCRIPTION The complex square root is computed as follows.

First, calculate **ROOT** and **Q** using the following equations:

ROOT = SQRT((ABS(r) + (CABS(r, i))/2))

Q = i/(2 * ROOT)

Then, the complex result is given as follows:

r	i	CSQRT((r,i))	
≥0	Any	(ROOT,Q)	
<0	≥0	(Q,ROOT)	
<0	<0	(-Q,-ROOT)	

The routine descriptions for the D- and G-floating point versions of this routine are listed alphabetically under MTH\$CxSQRT.

MTH\$CSQRT

CONDITION VALUE SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$CSQRT procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$CxSQRT

MTH\$CxSQRT Complex Square Root

The Complex Square Root routine returns the complex square root of a complex number (r,i).

FORMATMTH\$CDSQRTcomplex-square-root , complex-numberMTH\$CGSQRTcomplex-square-root , complex-number

Each of the above formats accepts as input one of the floating-point complex types.

RETURNS None.

ARGUMENTS

complex-square-root

VMS usage:	complex_number
type:	D_floating complex, G_floating complex
access:	write only
mechanism:	by reference

Complex square root of the complex number specified by **complex-number**. The complex square root routines that have D-floating complex and Gfloating complex input values write the complex square root into **complexsquare-root**. For MTH\$CDSQRT, **complex-square-root** specifies a D-floating complex number. For MTH\$CGSQRT, **complex-square-root** specifies a G-floating complex number.

complex-number

VMS usage: complex_number type: D_floating complex, G_floating complex access: read only mechanism: by reference

Complex number (r,i). The **complex-number** argument contains the address of this complex number. For MTH\$CDSQRT, **complex-number** specifies a D-floating number. For MTH\$CGSQRT, **complex-number** specifies a G-floating number.

DESCRIPTION

The complex square root is computed as follows.

First, calculate **ROOT** and **Q** using the following equations:

ROOT = SQRT((ABS(r) + (CABS(r, i))/2))

Q = i/(2 * ROOT)

MTH\$CxSQRT

r	i	CSQRT((r,i))	
≥0	any	(ROOT,Q)	
<0	≥0	(Q,ROOT)	
<0	<0	(-Q,-ROOT)	
<0	<0	(-0,-ROOT)	

Then, the complex result is given as follows:

CONDITION VALUE SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$CxSQRT procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

EXAMPLE

```
C+
С
     This FORTRAN example forms the complex square
С
     root of a D-floating complex number using
С
     MTH$CDSQRT and the FORTRAN random number
С
     generator RAN.
С
С
     Declare Z and Z_NEW as complex values. MTH$CDSQRT
С
     will return the complex square root of
С
         CALL MTH$CDSQRT(Z_NEW,Z).
     Z:
C-
        COMPLEX*16 Z,Z_NEW
        COMPLEX*16 DCMPLX
        INTEGER M
        M = 1234567
C+
С
     Generate a random complex number with the
С
     FORTRAN generic CMPLX.
C-
        Z = DCMPLX(RAN(M), RAN(M))
C+
С
     Z is a complex number (r,i) with real part "r" and imaginary
С
     part "i".
C-
        TYPE *, ' The complex number z is', z
        TYPE *, ' '
C+
С
     Compute the complex complex square root of Z.
C-
        CALL MTH$CDSQRT(Z_NEW,Z)
        TYPE *, ' The complex square root of',z,' is',Z_NEW
        END
```

This FORTRAN example program demonstrates a procedure call to MTH\$CDSQRT. The output generated by this program is as follows:

The complex number z is (0.8535407185554504,0.2043401598930359) The complex square root of (0.8535407185554504,0.2043401598930359) is (0.9303763973040062,0.1098158554350485)

MTH\$CVT_x_x Convert One Double-Precision Value

The Convert One Double-Precision Value routines convert one doubleprecision value to the destination data type and return the result as a function value. MTH\$CVT_D_G converts a D-floating value to G-floating and MTH\$CVT_G_D converts a G-floating value to a D-floating value.

FORMAT MTH\$CVT_D_G floating-point-input-val MTH\$CVT_G_D floating-point-input-val

RETURNS

VMS usage: floating_point type: G_floating, D_floating access: write only mechanism: by value

The converted value. MTH\$CVT_D_G returns a G-floating value. MTH\$CVT_G_D returns a D-floating value.

ARGUMENT

floating-point-input-val

VMS usage: floating_point type: D_floating, G_floating access: read only mechanism: by reference

The input value to be converted. The **floating-point-input-val** argument is the address of this input value. For MTH\$CVT_D_G, the **floating-point-input-val** argument specifies a D-floating number. For MTH\$CVT_G_D, the **floating-point-input-val** argument specifies a G-floating number.

DESCRIPTION

These procedures are designed to function as hardware conversion instructions. They fault on reserved operands. If floating-point overflow is detected, an error is signaled. If floating-point underflow is detected and floating-point underflow is enabled, an error is signaled.

MTH\$CVT_x_x

CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$__FLOOVEMAT MTH\$__FLOUNDMAT Reserved operand. The MTH\$CVT_x_x procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library. Floating-point underflow in Math Library.

MTH-63

MTH\$CVT_xA_xA Convert an Array of Double-Precision Values

The Convert an Array of Double-Precision Values routines convert a contiguous array of double-precision values to the destination data type and return the results as an array. MTH\$CVT_DA_GA converts D-floating values to G-floating and MTH\$CVT_GA_DA converts G-floating values to D-floating.

FORMAT	MTH\$CVT_DA_GA	floating-point-input-array ,floating-point-dest-array [,array-size]
	MTH\$CVT_GA_DA	floating-point-input-array ,floating-point-dest-array [,array-size]

RETURNS MTH\$CVT_DA_GA and MTH\$CVT_GA_DA return the address of the output array to the **floating-point-dest-array** argument.

ARGUMENTS

floating-point-input-array

VMS usage: floating_point type: D_floating, G_floating access: read only mechanism: by reference, array reference

Input array of values to be converted. The **floating-point-input-array** argument is the address of an array of floating-point numbers. For MTH\$CVT_DA_GA, **floating-point-input-array** specifies an array of D-floating numbers. For MTH\$CVT_GA_DA, **floating-point-input-array** specifies an array of a G-floating numbers.

floating-point-dest-array

VMS usage:	floating_point
type:	G_floating, D_floating
access:	write only
mechanism:	by reference, array reference

Output array of converted values. The **floating-point-dest-array** argument is the address of an array of floating-point numbers. For MTH\$CVT_DA_ GA, **floating-point-dest-array** specifies an array of G-floating numbers. For MTH\$CVT_GA_DA, **floating-point-dest-array** specifies an array of D-floating numbers.

MTH\$CVT_xA_xA

array-size

VMS usage: longword_signed type: longword (signed) access: read only mechanism: by reference

Number of array elements to be converted. The default value is 1. The **array-size** argument is the address of a longword containing this number of elements.

DESCRIPTION These procedures are designed to function as hardware conversion instructions. They fault on reserved operands. If floating-point overflow is detected, an error is signaled. If floating-point underflow is detected and floating-point underflow is enabled, an error is signaled.

CONDITION VALUES SIGNALED	SS\$_ROPRAND	Reserved operand. The MTH\$CVT_xA_xA procedure encountered a floating-point reserved operand due to incorrect user input. A floating- point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
	MTH\$_FLOOVEMAT	Floating-point overflow in Math Library.
	MTH\$_FLOUNDMAT	Floating-point underflow in Math Library.

MTH\$xEXP Exponential

The Exponential routine returns the exponential of the input value.

FORMAT MTH\$EXP floating-point-input-value MTH\$DEXP floating-point-input-value MTH\$GEXP floating-point-input-value

Each of the above formats accepts as input one of the floating-point types.

jsb entries MTH\$EXP_R4 MTH\$DEXP_R6 MTH\$GEXP_R6

Each of the above JSB entries accepts as input one of the floating-point types.

 RETURNS
 VMS usage:
 floating_point

 type:
 F_floating, D_floating, G_floating

 access:
 write only

 mechanism:
 by value

The exponential of **floating-point-input-value**. MTH\$EXP returns an F-floating number. MTH\$DEXP returns a D-floating number. MTH\$GEXP returns a G-floating number.

ARGUMENTS floating-point-input-value VMS usage: floating_point type: E floating_D floating G

type: F_floating, D_floating, G_floating access: read only mechanism: by reference

The input value. The **floating-point-input-value** argument is the address of a floating-point number. For MTH\$EXP, **floating-point-input-value** specifies an F-floating number. For MTH\$DEXP, **floating-point-input-value** specifies a D-floating number. For MTH\$GEXP, **floating-point-input-value** specifies a G-floating number.

DESCRIPTION

The exponential of *x* is computed as:

Value of x	Value Returned	
$\overline{X > c(z)}$	Overflow occurs	
$X \le -c(z)$	0	
$ X < 2^{-(f+1)}$	1	
Otherwise	$2^Y * 2^U * 2^W$	

where:

Y = INTEGER(x * ln2(E))

V = FRAC(x * ln2(E)) * 16

U = INTEGER(V)/16

W = FRAC(V)/16

SS\$_ROPRAND

MTH\$__FLOOVEMAT

 2^{W} = polynomial approximation of degree 4,8, or 8 for z = F, D, or G.

See also the section on the hyperbolic cosine for definitions of f and c(z).

The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HEXP.

CONDITION VALUES SIGNALED

Reserved operand. The MTH\$xEXP routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library: **floatingpoint-input-value** is greater than *yyy*; LIB\$SIGNAL copies the reserved operand to the signal mechanism vector. The result is the reserved operand -0.0 unless a condition handler changes the signal mechanism vector.

The values of *yyy* are approximately:

MTH\$EXP-88.029 MTH\$DEXP-88.029 MTH\$GEXP-709.089

MTH\$xEXP

MTH\$_FLOUNDMAT

Floating-point underflow in Math Library: floatingpoint-input-value is less than or equal to yyy and the caller (CALL or JSB) has set hardware floating-point underflow enable. The result is set to 0.0. If the caller has not enabled floating-point underflow (the default), a result of 0.0 is returned but no error is signaled.

The values of yyy are approximately:

MTH\$EXP— -	-88.722
MTH\$DEXP—	-88.722
MTH\$GEXP	-709.774

EXAMPLE

*

*

IDENTIFICATION DIVISION. PROGRAM-ID. FLOATING_POINT. Calls MTH\$EXP using a Floating Point data type. Calls MTH\$DEXP using a Double Floating Point data type. ENVIRONMENT DIVISION. DATA DIVISION. WORKING-STORAGE SECTION. 01 FLOAT_PT COMP-1. COMP-1. 01 ANSWER_F 01 DOUBLE_PT COMP-2. 01 ANSWER_D COMP-2. PROCEDURE DIVISION. PO. MOVE 12.34 TO FLOAT_PT. MOVE 3.456 TO DOUBLE_PT. CALL "MTH\$EXP" USING BY REFERENCE FLOAT_PT GIVING ANSWER_F. DISPLAY " MTH\$EXP of ", FLOAT_PT CONVERSION, " is ", ANSWER_F CONVERSION. CALL "MTH\$DEXP" USING BY REFERENCE DOUBLE_PT GIVING ANSWER_D. DISPLAY " MTH\$DEXP of ", DOUBLE_PT CONVERSION, " is ", ANSWER_D CONVERSION . STOP RUN.

> This sample program demonstrates calls to MTH\$EXP and MTH\$DEXP from COBOL.

The output generated by this program is as follows:

MTH\$EXP of 1.234000E+01 is 2.286620E+05 3.168996280537917E+01

MTH\$HACOS Arc Cosine of Angle Expressed in Radians (H-floating Value)

Given the cosine of an angle, the Arc Cosine of Angle Expressed in Radians (H-floating Value) routine returns that angle (in radians) in Hfloating-point precision.

FORMAT	MTH\$HACOS h-radians , cosine
sb entries	MTH\$HACOS_R8
RETURNS	None.
ARGUMENTS	h-radians VMS usage: floating_point type: H_floating access: write only mechanism: by reference
	Angle (in radians) whose cosine is specified by cosine . The h-radians argument is the address of an H-floating number that is this angle. MTH\$HACOS writes the address of the angle into h-radians .
	COSINEVMS usage:floating_pointtype:H_floatingaccess:read onlymechanism:by reference
	The cosine of the angle whose value (in radians) is to be returned. The cosine

argument is the address of a floating-point number that is this cosine. The absolute value of **cosine** must be less than or equal to 1. For MTH\$HACOS, **cosine** specifies an H-floating number.

MTH\$HACOS

DESCRIPTION

The angle in radians whose cosine is X is computed as:

Value of Cosine	Value Returned
0	$\pi/2$
1	0
-1	π
0 < X < 1	$zATAN(zSQRT(1 - X^2)/X)$, where zATAN and zSQRT are the Math Library arc tangent and square root routines, respectively, of the appropriate data type
-1 < X < 0	$zATAN(zSQRT(1-X^2)/X)+\pi$
1 < X	The error MTH\$_INVARGMAT is signaled

CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$_INVARGMAT

encountered a flo to incorrect user operand is a floa one and a biased	d. The MTH\$xACOS routine bating-point reserved operand due input. A floating-point reserved ting-point datum with a sign bit of exponent of zero. Floating-point
	ds are reserved for future use by
Invalid argument	The absolute value of cosine

Invalid argument. The absolute value of **cosine** is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$HACOSD Arc Cosine of Angle Expressed in Degrees (H-Floating Value)

Given the cosine of an angle, the Arc Cosine of Angle Expressed in Degrees (H-Floating Value) routine returns that angle (in degrees) as an H-floating value.

I\$HACOSD_R8	
h-degrees VMS usage: floating_point type: H_floating access: write only mechanism: by reference Angle (in degrees) whose cosine is specified by cosine. The h-degrees argument is the address of an H-floating number that is this angle. MTH\$HACOSD writes the address of the angle into h-degrees.	
Te usage: floating_point H_floating s: read only anism: by reference	
e of the angle whose value (in degrees) is to be returned. The cosine ent is the address of a floating-point number that is this cosine. The te value of cosine must be less than or equal to 1. For MTH\$HACOSD, specifies an H-floating number.	

MTH\$HACOSD

DESCRIPTION

The angle in degrees whose cosine is X is computed as:

Value of Cosine	Angle Returned
0	90
1	0
-1	180
0 < X < 1	$zATAND(zSQRT(1 - X^2)/X)$, where zATAND and zSQRT are the Math Library arc tangent and square root routines, respectively, of the appropriate data type
-1 < X < 0	$zATAND(zSQRT(1-X^2)/X) + 180$
1 < X	The error MTH\$_INVARGMAT is signaled

CONDITION VALUES SIGNALED

SS\$__ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$xACOSD routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of one and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Invalid argument. The absolute value of **cosine** is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$HASIN Arc Sine in Radians (H-floating Value)

Given the sine of an angle, the Arc Sine in Radians (H-floating Value) routine returns that angle (in radians) as an H-floating value.

FORMAT	MTH\$HASIN h-radians , sine	
jsb entries	MTH\$HASIN_R8	
RETURNS	None.	
ARGUMENTS	h-radians VMS usage: floating_point type: H_floating access: write only mechanism: by reference	
	Angle (in radians) whose sine is specified by sine . The h-radians argument is the address of an H-floating number that is this angle. MTH\$HASIN writes the address of the angle into h-radians .	
	sineVMS usage:floating_pointtype:H_floatingaccess:read onlymechanism:by reference	
	The sine of the angle whose value (in radians) is to be returned. The sine argument is the address of a floating-point number that is this sine. The absolute value of sine must be less than or equal to 1. For MTH\$HASIN, sine specifies an H-floating number.	

DESCRIPTION

The angle in radians whose sine is X is computed as:

Value of Sine	Angle Returned
0	0
1	$\pi/2$
-1	$-\pi/2$
0 < X < 1	$zATAN(X/zSQRT(1 - X^2))$, where zATAN and zSQRT are the Math Library arc tangent and square root routines, respectively, of the appropriate data type
1 < X	The error MTH\$_INVARGMAT is signaled

CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$xASIN routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Invalid argument. The absolute value of **sine** is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$HASIND Arc Sine in Degrees (H-Floating Value)

Given the sine of an angle, the Arc Sine in Degrees (H-Floating Value) routine returns that angle (in degrees) as an H-floating value.

FORMAT MTH\$HASIND *h*-degrees , sine

jsb entries MTH\$HASIND_R8

RETURNS

None.

ARGUMENTS

h-degrees

VMS usage: floating_point type: H_floating access: write only mechanism: by reference

Angle (in degrees) whose sine is specified by **sine**. The **h-degrees** argument is the address of an H-floating number that is this angle. MTH\$HASIND writes the address of the angle into **h-degrees**.

sine

VMS usage: floating_point type: H_floating access: read only mechanism: by reference

Sine of the angle whose value (in degrees) is to be returned. The **sine** argument is the address of a floating-point number that is this sine. The absolute value of **sine** must be less than or equal to 1. For MTH\$HASIND, **sine** specifies an H-floating number.

MTH\$HASIND

DESCRIPTION

The angle in degrees whose sine is X is computed as:

Value of Sine	Value Returned
0	0
1	90
-1	-90
0 < X < 1	$zATAND(X/zSQRT(1 - X^2))$, where zATAND and zSQRT are the Math Library arc tangent and square root routines, respectively, of the appropriate data type
1 < X	The error MTH\$_INVARGMAT is signaled

CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$xASIND routine encountered a floating point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of one and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Invalid argument. The absolute value of **sine** is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$HATAN Arc Tangent in Radians (H-floating Value)

Given the tangent of an angle, the Arc Tangent in Radians (H-floating Value) routine returns that angle (in radians) as an H-floating value.

FORMAT	MTH\$HATAN h-radians , tangent	
jsb entries	MTH\$HATAN_R8	
RETURNS	None.	
ARGUMENTS	h-radians VMS usage: floating_point type: H_floating access: write only mechanism: by reference	
	Angle (in radians) whose tangent is specified by tangent . The h-radians argument is the address of an H-floating number that is this angle. MTH\$HATAN writes the address of the angle into h-radians .	
	tangentVMS usage:floating_pointtype:H_floatingaccess:read onlymechanism:by reference	
	The tangent of the angle whose value (in radians) is to be returned. The tangent argument is the address of a floating-point number that is this tangent. For MTH\$HATAN, tangent specifies an H-floating number.	
DESCRIPTION	In radians, the computation of the arc tangent function is based on the following identities:	
	$\begin{aligned} \arctan(X) &= X - X^3/3 + X^5/5 - X^7/7 + \dots \\ \arctan(X) &= X + X * Q(X^2), \\ \text{where } Q(Y) &= -Y/3 + Y^2/5 - Y^3/7 + \dots \\ \arctan(X) &= X * P(X^2), \\ \text{where } P(Y) &= 1 - Y/3 + Y^2/5 - Y^3/7 + \dots \\ \arctan(X) &= \pi/2 - \arctan(1/X) \end{aligned}$	
	$\arctan(X) = \arctan(A) + \arctan((X - A)/(1 + A * X))$ for any real A	

MTH\$HATAN

Value of X	Angle Returned
$0 \le X \le 3/32$	$X + X * Q(X^2)$
$3/32 < X \le 11$	$ATAN(A) + V * (P(V^2))$, where A and ATAN(A) are chosen by table lookup and $V = (X - A)/(1 + A * X)$
11 < X	$\pi/2 - W * (P(W^2))$ where $W = 1/X$
X < 0	-zATAN(X)

¥

The angle in radians whose tangent is X is computed as:

CONDITION VALUE SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$xATAN routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$HATAND Arc Tangent in Degrees (H-floating Value)

Given the tangent of an angle, the Arc Tangent in Degrees (H-floating Value) routine returns that angle (in degrees) as an H-floating point value.

FORMAT jsb entries	MTH\$HATAND h-degrees , tangent	
	MTH\$HATAND_R8	
RETURNS	None.	
ARGUMENTS	h-degrees VMS usage: floating_point type: H_floating access: write only mechanism: by reference	
	Angle (in degrees) whose tangent is specified by tangent . The h-degrees argument is the address of an H-floating number that is this angle. MTH\$HATAND writes the address of the angle into h-degrees .	
	tangent VMS usage: floating_point type: H_floating access: read only mechanism: by reference	
	The tangent of the angle whose value (in degrees) is to be returned. The tangent argument is the address of a floating-point number that is this tangent. For MTH\$HATAND, tangent specifies an H-floating number.	
DESCRIPTION	The computation of the arc tangent function is based on the following identities:	
	$\arctan(X) = 180/\pi * (X - X^3/3 + X^5/5 - X^7/7 +)$	
	$arctan(X) = 64 * X + X * Q(X^2),$ where $Q(Y) = 180/\pi * [(1 - 64 * \pi/180) - Y/3 + Y^2/5 - Y^3/7 + Y^4/9]$	
	$\arctan(X) = X * P(X^2),$ where $P(Y) = 180/\pi * [1 - Y/3 + Y^2/5 - Y^3/7 + Y^4/9]$	
	$\arctan(X) = 90 - \arctan(1/X)$	
	$\arctan(X) = \arctan(A) + \arctan((X - A)/(1 + A * X))$	

MTH\$HATAND

Tangent	Angle Returned
$X \le 3/32$	$64 * X + X * Q(X^2)$
$3/32 < X \le 11$	$ATAND(A) + V * P(V^2)$, where A and ATAND(A) are chosen by table lookup and $V = (X - A)/(1 + A * X)$
11 < X	$90 - W * (P(W^2))$, where $W = 1/X$
X < 0	-zATAND(X)

The angle in degrees whose tangent is X is computed as:

CONDITION VALUE SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$xATAND routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$HATAN2

MTH\$HATAN2 Arc Tangent in Radians (H-floating Value) with Two Arguments

Given **sine** and **cosine**, the Arc Tangent in Radians (H-floating Value) with Two Arguments routine returns the angle (in radians) as an H-floating value whose tangent is given by the quotient of **sine** and **cosine**, (**sine/cosine**).

FORMAT MTH\$HATAN2 *h*-radians , sine , cosine

RETURNS

None.

ARGUMENTS

h-radians

VMS usage: floating_point type: H_floating access: write only mechanism: by reference

Angle (in radians) whose tangent is specified by (**sine/cosine**). The **h**-radians argument is the address of an H-floating number that is this angle. MTH\$HATAN2 writes the address of the angle into **h**-radians.

sine

VMS usage: floating_point type: H_floating access: read only mechanism: by reference

Dividend. The **sine** argument is the address of a floating-point number that is this dividend. For MTH\$HATAN2, **sine** specifies an H-floating number.

cosine

VMS usage: floating_point type: H_floating access: read only mechanism: by reference

Divisor. The **cosine** argument is the address of a floating-point number that is this divisor. For MTH\$HATAN2, **cosine** specifies an H-floating number.

MTH\$HATAN2

DESCRIPTION

The angle in radians whose tangent is Y/X is computed as follows, where f is defined in the description of MTH\$zCOSH.

Value of Input Arguments	Angle Returned	
$X = 0 \text{ or } Y/X > 2^{(f+1)}$	$\pi/2*(signY)$	
$X > 0$ and $Y/X \le 2^{(f+1)}$	zATAN(Y/X)	
$X < 0$ and $Y/X \le 2^{(f+1)}$	$\pi*(signY)+zATAN(Y/X)$	

CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$HATAN2 routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Invalid argument. Both cosine and sine are zero.
LIB\$SIGNAL copies the floating-point reserved
operand to the mechanism argument vector
CHF\$L_MCH_SAVR0/R1. The result is the
floating-point reserved operand unless you have
written a condition handler to change CHF\$L_
MCH_SAVRO/R1.

MTH\$HATAND2 Arc Tangent in Degrees (H-floating Value) with Two Arguments

Given **sine** and **cosine**, MTH\$xHTAND2 returns the angle (in degrees) whose tangent is given by the quotient of **sine** and **cosine**, (**sine/cosine**).

FORMAT MTH\$HATAND2 *h*-degrees , sine , cosine

RETURNS

ARGUMENTS

h-degrees

None.

VMS usage: floating_point type: H_floating access: write only mechanism: by reference

Angle (in degrees) whose tangent is specified by (**sine/cosine**). The **h**-**degrees** argument is the address of an H-floating number that is this angle. MTH\$HATAND2 writes the address of the angle into **h-degrees**.

sine

VMS usage: floating_point type: H_floating access: read only mechanism: by reference

Dividend. The **sine** argument is the address of a floating-point number that is this dividend. For MTH\$HATAND2, **sine** specifies an H-floating number.

cosine

VMS usage:	floating_point
type:	H_floating
access:	read only
mechanism:	by reference

Divisor. The **cosine** argument is the address of a floating-point number that is this divisor. For MTH\$HATAND2, **cosine** specifies an H-floating number.

MTH\$HATAND2

DESCRIPTION

The angle in degrees whose tangent is Y/X is computed below. The value of f is defined in the description of MTH\$zCOSH.

Value of Input Arguments	Angle Returned	
$X = 0 \text{ or } Y/X > 2^{(f+1)}$	90*(signY)	
$X > 0$ and $Y/X \le 2^{(f+1)}$	zATAND(Y/X)	
$X < 0$ and $Y/X \le 2^{(f+1)}$	180*(signY) + zATAND(Y/X)	

CONDITION VALUES SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$HATAND2 routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$_INVARGMAT

Invalid argument. Both **cosine** and **sine** are zero. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVR0/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_ MCH_SAVR0/R1.

MTH\$HATANH

MTH\$HATANH Hyperbolic Arc Tangent (H-floating Value)

Given the hyperbolic tangent of an angle, the Hyperbolic Arc Tangent (Hfloating Value) routine returns the hyperbolic arc tangent (as an H-floating value) of that angle.

FORMAT **MTH\$HATANH** *h-atanh*, hyperbolic-tangent

RETURNS

ARGUMENTS

h-atanh	
VMS usage:	floating_point

None.

type:	H_floating
access:	write only
mechanism:	by reference

Hyperbolic arc tangent of the hyperbolic tangent specified by hyperbolictangent. The h-atanh argument is the address of an H-floating number that is this hyperbolic arc tangent. MTH\$HATANH writes the address of the hyperbolic arc tangent into h-atanh.

hyperbolic-tangent

VMS usage:	floating_point
type:	H_floating
access:	read only
mechanism:	by reference

Hyperbolic tangent of an angle. The hyperbolic-tangent argument is the address of a floating-point number that is this hyperbolic tangent. For MTH\$HATANH, hyperbolic-tangent specifies an H-floating number.

DESCRIPTION The hyperbolic arc tangent function is computed as follows:

Value of x	Value Returned	
X < 1	zATANH(X) = zLOG((X+1)/(X-1))/2	
$ X \ge 1$	An invalid argument is signaled	A A A A A A A A A A A A A A A A A A A

MTH\$HATANH

CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$xATANH routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Invalid argument: $|X| \ge 1$. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$HCOS Cosine of Angle Expressed in Radians (H-floating Value)

The Cosine of Angle Expressed in Radians (H-floating Value) routine returns the cosine of a given angle (in radians) as an H-floating value.

FORMAT	MTH\$HCOS h-co	sine ,angle-in-radians
jsb entries	MTH\$HCOS_R5	
RETURNS	None.	
ARGUMENTS	h-cosineVMS usage:floating_potype:H_floatingaccess:write onlymechanism:by referenc	
	Cosine of the angle specified by angle-in-radians . The h-cosine argument the address of an H-floating number that is this cosine. MTH\$HCOS write the address of the cosine into h-cosine .	
	angle-in-radiansVMS usage:floating_potype:H_floatingaccess:read onlymechanism:by referenc	
	The angle in radians. The angle-in-radians argument is the address of a floating-point number. For MTH\$HCOS, angle-in-radians specifies an H-floating number.	
DESCRIPTION	See the MTH\$xSINCOS routine for the algorithm used to compute the cosine.	
CONDITION VALUE SIGNALED	SS\$_ROPRAND	Reserved operand. The MTH\$HCOS procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$HCOSD Cosine of Angle Expressed in Degrees (H-floating Value)

The Cosine of Angle Expressed in Degrees (H-floating Value) routine returns the cosine of a given angle (in degrees) as an H-floating value.

FORMAT	MTH\$HCOSD h-cosine ,angle-in-degrees MTH\$HCOSD_R5 None.		
jsb entries			
RETURNS			
ARGUMENTS	h-cosineVMS usage:floating_poitype:H_floatingaccess:write onlymechanism:by reference		
	Cosine of the angle specified by angle-in-degrees . The h-cosine argument is the address of an H-floating number that is this cosine. MTH\$HCOSD writes this cosine into h-cosine .		
	angle-in-degreesVMS usage:floating_poitype:H_floatingaccess:read onlymechanism:by reference		
		gle-in-degrees argument is the address of a MTH\$HCOSD, angle-in-degrees specifies an	
DESCRIPTION	See the MTH\$SINCOSD routine for the algorithm used to compute the cosine.		
CONDITION VALUE SIGNALED	SS\$_ROPRAND	Reserved operand. The MTH\$HCOSD procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.	

MTH\$HCOSH

MTH\$HCOSH Hyperbolic Cosine (H-floating Value)

The Hyperbolic Cosine routine returns the hyperbolic cosine of the input value as an H-floating value.

FORMAT MTH\$HCOSH *h*-cosh , floating-point-input-value

RETURNS None.

ARGUMENTS h-cosh

VMS usage: floating_point type: H_floating access: write only mechanism: by reference

Hyperbolic cosine of the input value specified by **floating-point-input-value**. The **h-cosh** argument is the address of an H-floating number that is this hyperbolic cosine. MTH\$HCOSH writes the address of the hyperbolic cosine into **h-cosh**.

floating-point-input-value

VMS usage: floating_point type: H_floating access: read only mechanism: by reference

The input value. The **floating-point-input-value** argument is the address of this input value. For MTH\$HCOSH, **floating-point-input-value** specifies an H-floating number.

DESCRIPTION

Computation of the hyperbolic cosine depends on the magnitude of the input argument. The range of the function is partitioned using four data-type-dependent constants: a(z), b(z), and c(z). The subscript z indicates the data type. The constants depend on the number of exponent bits (*e*) and the number of fraction bits (*f*) associated with the data type (z).

The values of *e* and *f* are as follows:

e = 15

f = 113

MTH\$HCOSH

The values of the constants in terms of *e* and *f* are:

Variable	Value	
a(z)	$2^{-f/2}$	
b(z)	$(f+1)/2*\ln(2)$	
c(z)	$2^{e-1} * \ln(2)$. <u></u>

Based on the above definitions, zCOSH(X) is computed as follows:

Value of X	Value Returned
${ X < a(z)}$	1
$a(z) {\leq} X < .25$	Computed using a power series expansion in $ X ^2$
$.25 {\leq} X < b(z)$	(zEXP(X) + 1/zEXP(X))/2
$b(z) \leq X < c(z)$	zEXP(X)/2
$c(z) \leq X $	Overflow occurs

CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$__FLOOVEMAT

Reserved operand. The MTH\$HCOSH procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library: the absolute value of **floating-point-input-value** is greater than about *yyy*; LIB\$SIGNAL copies the reserved operand to the signal mechanism vector. The result is the reserved operand -0.0 unless a condition handler changes the signal mechanism vector. The value of *yyy* is 11356.523.

MTH\$HEXP Exponential (H-floating Value)

The Exponential routine returns the exponential of the input value as an H-floating value.

FORMAT	MTH\$HEXP h-exp ,floating-point-input-value	
jsb entries	MTH\$HEXP_R6	
RETURNS	None.	
ARGUMENTS	h-exp VMS usage: floating_point type: H_floating access: write only mechanism: by reference	
	Exponential of the input value specified by floating-point-input-value . The h-exp argument is the address of an H-floating number that is this exponential. MTH\$HEXP writes the address of the exponential into h-exp	
	floating-point-input-value VMS usage: floating_point type: H_floating access: read only mechanism: by reference	
	The input value. The floating-point-input-value argument is the address of a floating-point number. For MTH\$HEXP, floating-point-input-value specifies an H-floating number.	

DESCRIPTION The exponential of *x* is computed as:

Value of x	Value Returned	
$\overline{x > c(z)}$	Overflow occurs	
$x \leq -c(z)$	0	
$ x < 2^{-(f+1)}$	1	
Otherwise	$2^Y * 2^U * 2^W$	

where:

Y = INTEGER(x * ln2(E))

V = FRAC(x * ln2(E)) * 16

U = INTEGER(V)/16

MTH\$HEXP

W = FRAC(V)/16

 2^W = polynomial approximation of degree 14 for z = H.

See also the section on the hyperbolic cosine for definitions of f and c(z).

CONDITION VALUES SIGNALED	SS\$_ROPRAND	Reserved operand. The MTH\$xEXP routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
	MTH\$_FLOOVEMAT	Floating-point overflow in Math Library: floating- point-input-value is greater than <i>yyy</i> ; LIB\$SIGNAL copies the reserved operand to the signal mechanism vector. The result is the reserved operand -0.0 unless a condition handler changes the signal mechanism vector. The value of <i>yyy</i> is approximately 11355.830 for MTH\$HEXP.
	MTH\$FLOUNDMAT	Floating-point underflow in Math Library: floating- point-input-value is less than or equal to yyy and the caller (CALL or JSB) has set hardware floating- point underflow enable. The result is set to 0.0. If the caller has not enabled floating-point underflow (the default), a result of 0.0 is returned but no error is signaled. The value of yyy is approximately -11356.523 for MTH\$HEXP.

MTH\$HLOG Natural Logarithm (H-floating Value)

The Natural Logarithm (H-floating Value) routine returns the natural (base e) logarithm of the input argument as an H-floating value.

FORMAT	MTH\$HLOG h-natlog ,floating-point-input-value		
jsb entries	MTH\$HLOG_R8		
RETURNS	None.		
ARGUMENTS	h-natlogVMS usage:floating_pointtype:H_floatingaccess:write onlymechanism:by referenceNatural logarithm of floating-point-input-value.The h-natlog argumentis the address of an H-floating number that is this natural logarithm.MTH\$HLOG writes the address of this natural logarithm into h-natlog.		
	floating-point-input-valueVMS usage:floating_pointtype:H_floatingaccess:read onlymechanism:by referenceThe input value.The floating-point-input-value argument is the address ofa floating-point number that is this value.For MTH\$HLOG, floating-point-input-value		
	input-value specifies an H-floating number.		
DESCRIPTION	Computation of the natural logarithm routine is based on the following: 1 $\ln(X * Y) = \ln(X) + \ln(Y)$ 2 $\ln(1 + X) = X - X^2/2 + X^3/3 - X^4/4$ for $ X < 1$ 3 $\ln(X) = \ln(A) + 2 * (V + V^3/3 + V^5/5 + V^7/7)$ where $V = (X - A)/(X + A), A > 0$, and $p(y) = 2 * (1 + y/3 + y^2/5)$		
	For $x = 2^n * f$, where n is an integer and f is in the interval of 0.5 to 1, define the following quantities:		
	If $n \ge 1$, then $N = n - 1$ and $F = 2f$		
	If $n \leq 0$, then $N = n$ and $F = f$		

,

MTH\$HLOG

From (1) above it follows that:

4 $\ln(X) = N * \ln(2) + \ln(F)$

Based on the above relationships, zLOG is computed as follows:

- **1** If $|F-1| < 2^{-5}$, zLOG(X) = N * zLOG(2) + W + W * p(W), where W = F-1.
- 2 Otherwise, $zLOG(X) = N * zLOG(2) + zLOG(A) + V * p(V^2)$, where V = (F - A)/(F + A) and A and zLOG(A)are obtained by table look up.

CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$_LOGZERNEG

Reserved operand. The MTH\$HLOG procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Logarithm of zero or negative value. Argument floating-point-input-value is less than or equal to 0.0. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_ MCH_SAVRO/R1.

MTH\$HLOG2 Base 2 Logarithm (H-floating Value)

The Base 2 Logarithm (H-floating Value) routine returns the base 2 logarithm of the input value specified by **floating-point-input-value** as an H-floating value.

FORMAT MTH\$HLOG2 h-log2, floating-point-input-value

RETURNS None.

ARGUMENTS

h-log2VMS usage:floating_pointtype:H_floatingaccess:write onlymechanism:by reference

Base 2 logarithm of **floating-point-input-value**. The **h-log2** argument is the address of an H-floating number that is this base 2 logarithm. MTH\$HLOG2 writes the address of this logarithm into **h-log2**.

floating-point-input-value

VMS usage:	floating_point
type:	H_floating
access:	read only
mechanism:	by reference

The input value. The **floating-point-input-value** argument is the address of a floating-point number that is this input value. For MTH\$HLOG2, **floating-point-input-value** specifies an H-floating number.

DESCRIPTION The base 2 logarithm function is computed as follows:

zLOG2(X) = zLOG2(E) * zLOG(X)

MTH\$HLOG2

CONDITION VALUES SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$HLOG2 procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$_LOGZERNEG

Logarithm of zero or negative value. Argument floating-point-input-value is less than or equal to 0.0. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_ MCH_SAVRO/R1.

MTH\$HLOG10 Common Logarithm (H-floating Value)

The Common Logarithm (H-floating Value) routine returns the common (base 10) logarithm of the input argument as an H-floating value.

FORMAT	MTH\$HLOG10 h-log10, floating-point-input-value		
jsb entries	MTH\$HLOG10_R8		
RETURNS	None.		
ARGUMENTS	<i>h-log10</i> VMS usage: floating_point type: H_floating access: write only mechanism: by reference		
	Common logarithm of the input value specified by floating-point-input-value . The h-log10 argument is the address of an H-floating number that is this common logarithm. MTH\$HLOG10 writes the address of the common logarithm into h-log10 .		
	floating-point-input-value VMS usage: floating_point type: H_floating access: read only mechanism: by reference		
	The input value. The floating-point-input-value argument is the address of a floating-point number. For MTH\$HLOG10, floating-point-input-value specifies an H-floating number.		
DESCRIPTION	The common logarithm function is computed as follows:		

zLOG10(X) = zLOG10(E) * zLOG(X)

MTH\$HLOG10

CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$_LOGZERNEG

Reserved operand. The MTH\$HLOG10 procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Logarithm of zero or negative value. Argument floating-point-input-value is less than or equal to 0.0. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVR0/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_ MCH_SAVR0/R1.

MTH\$HSIN Sine of Angle Expressed in Radians (H-floating Value)

The Sine of Angle Expressed in Radians (H-floating Value) routine returns the sine of a given angle (in radians) as an H-floating value.

FORMAT	MTH\$HSIN h-sine ,angle-in-radians
jsb entries	MTH\$HSIN_R5
RETURNS	None.
ARGUMENTS	h-sine VMS usage: floating_point type: H_floating access: write only mechanism: by reference
	The sine of the angle specified by angle-in-radians . The h-sine argument is the address of an H-floating number that is this sine. MTH\$HSIN writes the address of the sine into h-sine .
	angle-in-radians VMS usage: floating_point type: H_floating access: read only mechanism: by reference
	Angle (in radians). The angle-in-radians argument is the address of a floating-point number that is this angle. For MTH\$HSIN, angle-in-radians specifies an H-floating number.
DESCRIPTION	See the MTH\$SINCOS routine for the algorithm used to compute this sine.
CONDITION VALUE SIGNALED	SS\$_ROPRAND Reserved operand. The MTH\$HSIN procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$HSIND Sine of Angle Expressed in Degrees (H-floating Value)

The Sine of Angle Expressed in Degrees (H-floating Value) routine returns the sine of a given angle (in degrees) as an H-floating value.

FORMAT	MTH\$HSIND h-sine ,angle-in-degrees		
jsb entries	MTH\$HSIND_R5		
RETURNS	None.		
ARGUMENTS	h-sine VMS usage: floating_point type: H_floating access: write only mechanism: by reference		
	Sine of the angle specified by angle-in-degrees . The h-sine argument is the address of an H-floating number that is this sine. MTH\$HSIND writes the address of the angle into h-sine .		
	angle-in-degreesVMS usage:floating_pointtype:H_floatingaccess:read onlymechanism:by reference		
	Angle (in degrees). The angle-in-degrees argument is the address of a floating-point number that is this angle. For MTH\$HSIND, angle-in-degrees specifies an H-floating number.		
DESCRIPTION	See MTH\$SINCOSD for the algorithm used to compute the sine.		

MTH\$HSIND

CONDITION VALUES SIGNALED

MTH\$__FLOUNDMAT

SS\$_ROPRAND

Reserved operand. The MTH\$HSIND procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased ecponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Floating-point underflow in Math Library. The absolute value of the input angle is less than $180/\pi * 2^{-m}$ (where m = 16,384 for H-floating).

MTH\$HSINH Hyperbolic Sine (H-floating Value)

The Hyperbolic Sine (H-floating Value) routine returns the hyperbolic sine of the input value specified by **floating-point-input-value** as an H-floating value.

FORMAT MTH\$HSINH h-sinh ,floating-point-input-value

RETURNS None.

ARGUMENTS h-sinh

VMS usage: floating_point type: H_floating access: write only mechanism: by reference

Hyperbolic sine of the input value specified by **floating-point-input-value**. The **h-sinh** argument is the address of an H-floating number that is this hyperbolic sine. MTH\$HSINH writes the address of the hyperbolic sine into **h-sinh**.

floating-point-input-value

VMS usage:	floating_point
type:	Hfloating
access:	read only
mechanism:	by reference

The input value. The **floating-point-input-value** argument is the address of a floating-point number that is this value. For MTH\$HSINH, **floating-point-input-value** specifies an H-floating number.

DESCRIPTION

Computation of the hyperbolic sine function depends on the magnitude of the input argument. The range of the function is partitioned using four data type dependent constants: a(z), b(z), and c(z). The subscript z indicates the data type. The constants depend on the number of exponent bits (e) and the number of fraction bits (f) associated with the data type (z).

The values of *e* and *f* are as follows:

e = 15f = 113

MTH\$HSINH

The values of the constants in terms of *e* and *f* are:

Variable	Value	
a(z)	$2^{(-f/2)}$	
b(z)	$(f+1)/2*\ln(2)$	
c(z)	$2^{e-1} * \ln(2)$	

Based on the above definitions, zSINH(X) is computed as follows:

Value of X	Value Returned
X < a(z)	X
$a(z) \leq X < 1.0$	zSINH(X) is computed using a power series expansion in $ X ^2$
$1.0 {\leq} X < b(z)$	(zEXP(X) - zEXP(-X))/2
$b(z) \leq X < c(z)$	SIGN(X) * zEXP(X)/2
$c(z) \leq X $	Overflow occurs

CONDITION VALUES SIGNALED

Reserved operand. The MTH\$HSINH procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$_FLOOVEMAT

SS\$_ROPRAND

Floating-point overflow in Math Library: the absolute value of **floating-point-input-value** is greater than *yyy*. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1. The value of *yyy* is approximately 11356.523.

MTH\$HSQRT

MTH\$HSQRT Square Root (H-floating Value)

The Square Root (H-floating Value) routine returns the square root of the input value **floating-point-input-value** as an H-floating value.

FORMAT	MTH\$HSQRT h-sqrt ,floating-point-input-value
jsb entries	MTH\$HSQRT_R8
RETURNS	None.
ARGUMENTS	h-sqrt VMS usage: floating_point type: H_floating access: write only mechanism: by reference
	Square root of the input value specified by floating-point-input-value . The h-sqrt argument is the address of an H-floating number that is this square root. MTH\$HSQRT writes the address of the square root into h-sqrt .
	floating-point-input-value VMS usage: floating_point type: H_floating access: read only mechanism: by reference
	Input value. The floating-point-input-value argument is the address of a floating-point number that contains this input value. For MTH\$HSQRT, floating-point-input-value specifies an H-floating number.
DESCRIPTION	The square root of X is computed as follows:
	If $X < 0$, an error is signaled. Let $X = 2^{K} * F$
	where:
	K is the exponential part of the floating-point data F is the fractional part of the floating-point data
	If K is even: $X = 2^{(2*P)} * F,$ $zSQRT(X) = 2^{P} * zSQRT(F),$ $1/2 \le F < 1, \text{ where } P = K/2$

MTH\$HSQRT

If K is odd:

 $X = 2^{(2*P+1)} * F = 2^{(2*P+2)} * (F/2),$ $zSQRT(X) = 2^{(P+1)} * zSQRT(F/2),$ $1/4 \le F/2 < 1/2, \text{ where } p = (K-1)/2$ Let F' = A * F + B, when K is even: A = 0.95F6198 (hex) B = 0.6BA5918 (hex) Let F' = A * (F/2) + B, when K is odd: A = 0.D413CCC (hex) B = 0.4C1E248 (hex) Let K' = P, when K is even Let K' = P+1, when K is odd

Let $Y[0] = 2^{K'} * F'$ be a straight line approximation within the given interval using coefficients A and B which minimize the absolute error at the midpoint and endpoint.

Starting with Y[0], n Newton-Raphson iterations are performed:

Y[n+1] = 1/2 * (Y[n] + X/Y[n])

where n = 5 for H-floating.

CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$_SQUROONEG

Reserved operand. The MTH\$HSQRT procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Square root of negative number. Argument **floating-point-input-value** is less than 0.0. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$HTAN Tangent of Angle Expressed in Radians (H-floating Value)

The Tangent of Angle Expressed in Radians (H-floating Value) routine returns the tangent of a given angle (in radians) as an H-floating value.

FORMAT	MTH\$HTAN h-tan ,angle-in-radians			
jsb entries	MTH\$HTAN_R5			
RETURNS	None.			
ARGUMENTS	h-tan VMS usage: floating_point type: H_floating access: write only mechanism: by reference			
	Tangent of the angle specified by angle-in-radians . The h-tan argument is the address of an H-floating number that is this tangent. MTH\$HTAN writes the address of the tangent into h-tan .			
	angle-in-radians VMS usage: floating_point type: H_floating access: read only mechanism: by reference			
	The input angle (in radians). The angle-in-radians argument is the address of a floating-point number that is this angle. For MTH\$HTAN, angle-in-radians specifies an H-floating number.			
DESCRIPTION	When the input argument is expressed in radians, the tangent function is computed as follows:			
	1 If $ X < 2^{(-f/2)}$, then $zTAN(X) = X$ (see the section on MTH\$zCOSH for the definition of <i>f</i>)			
	2 Otherwise, call MTH\$zSINCOS to obtain zSIN(X) and zCOS(X); then			
	a. If $zCOS(X) = 0$, signal overflow			
	b. Otherwise, $zTAN(X) = zSIN(X)/zCOS(X)$			

MTH\$HTAN

CONDITION VALUES SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$HTAN procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$__FLOOVEMAT

Floating-point overflow in math library.

MTH\$HTAND Tangent of Angle Expressed in Degrees (H-floating Value)

The Tangent of Angle Expressed in Degrees (H-floating Value) routine returns the tangent of a given angle (in degrees) as an H-floating value.

FORMAT	MTH\$HTAND	h-tan ,angle-in-degrees

jsb entries MTH\$HTAND_R5

RETURNS None.

ARGUMENTS h-tan

VMS usage: floating_point type: H_floating access: write only mechanism: by reference

Tangent of the angle specified by **angle-in-degrees**. The **h-tan** argument is the address of an H-floating number that is this tangent. MTH\$HTAND writes the address of the tangent into **h-tan**.

angle-in-degrees

VMS usage:	floating_point
type:	H_floating
access:	read only
mechanism:	by reference

The input angle (in degrees). The **angle-in-degrees** argument is the address of a floating-point number which is this angle. For MTH\$HTAND, **angle-in-degrees** specifies an H-floating number.

DESCRIPTION When the input argument is expressed in degrees, the tangent function is computed as follows:

- **1** If $|X| < (180/\pi) \cdot 2^{(-2/(e-1))}$ and underflow signaling is enabled, underflow is signaled (see the section on MTH\$zCOSH for the definition of *e*).
- **2** Otherwise, if $|X| < (180/\pi) * 2^{(-f/2)}$, then $zTAND(X) = (\pi/180) * X$. See the description of MTH\$zCOSH for the definition of *f*.
- **3** Otherwise, call MTH\$zSINCOSD to obtain zSIND(X) and zCOSD(X).
 - **a.** Then, if zCOSD(X) = 0, signal overflow
 - **b.** Else, zTAND(X) = zSIND(X)/zCOSD(X)

MTH\$HTAND

CONDITION
VALUES
SIGNALED SS\$_ROPRAND Reserved operand. The MTH\$HTAND procedure
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
DIGITAL. MTH\$_FLOOVEMAT Floating-point overflow in math library.

MTH\$HTANH Compute the Hyperbolic Tangent (H-floating Value)

The Compute the Hyperbolic Tangent (H-floating Value) routine returns the hyperbolic tangent of the input value as an H-floating value.

FORMAT MTH\$HTANH h-tanh ,floating-point-input-value

RETURNS	None.			
ARGUMENTS	type: access:	floating_point H_floating write only by reference		
	Hyperbolic tangent of the value specified by floating-point-input-value . The h-tanh argument is the address of a H-floating number that is this hyperbolic tangent. MTH\$HTANH writes the address of the hyperbolic tangent into h-tanh .			
	floating-point-input-value VMS usage: floating_point type: H_floating access: read only mechanism: by reference			
	The input value. The floating-point-input-value argument is the address of a floating-point number that contains this input value. For MTH\$HTANH, floating-point-input-value specifies an H-floating number.			
DESCRIPTION	For MTH\$HTANH, the hyperbolic tangent of X is computed using a value of 56 for g and a value of 40 for h. The hyperbolic tangent of X is computed as follows:			
	Value of x	Hyperbolic Tangent Returned		
	$ X \le 2^{-g}$ $2^{-g} < X \le 0.2$ 0.25 < X < h			

sign(X) * 1

 $h \leq |X|$

MTH\$HTANH

CONDITION VALUE SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$HTANH procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$xIMAG Imaginary Part of a Complex Number

The Imaginary Part of a Complex Number routine returns the imaginary part of a complex number.

FORMAT MTH\$AIMAG complex-number MTH\$DIMAG complex-number MTH\$GIMAG complex-number

Each of the above three formats corresponds to one of the three floating-point complex types.

RETURNS

VMS usage: floating_point type: F_floating, D_floating, G_floating access: write only mechanism: by value

Imaginary part of the input **complex-number**. MTH\$AIMAG returns an Ffloating number. MTH\$DIMAG returns a D-floating number. MTH\$GIMAG returns a G-floating number.

ARGUMENT complex-number

 VMS usage:
 complex_number

 type:
 F_floating complex, D_floating complex,

 G_floating complex
 access:

 read only
 by reference

The input complex number. The **complex-number** argument is the address of this floating-point complex number. For MTH\$AIMAG, **complex-number** specifies an F-floating number. For MTH\$DIMAG, **complex-number** specifies a D-floating number. For MTH\$GIMAG, **complex-number** specifies a G-floating number.

CONDITION VALUE SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$xIMAG routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

EXAMPLE

```
C+
С
     This FORTRAN example forms the imaginary part of
С
     a G-floating complex number using MTH$GIMAG
С
     and the FORTRAN random number generator
С
     RAN.
С
С
     Declare Z as a complex value and MTH$GIMAG as
С
     a REAL*8 value. MTH$GIMAG will return the imaginary
С
     part of Z: Z_NEW = MTH$GIMAG(Z).
C-
        COMPLEX*16 Z
        COMPLEX*16 DCMPLX
        REAL*8 R, I, MTH$GIMAG
        INTEGER M
        M = 1234567
C+
С
     Generate a random complex number with the
С
     FORTRAN generic CMPLX.
C-
        R = RAN(M)
        I = RAN(M)
        Z = DCMPLX(R, I)
C+
     Z is a complex number (r,i) with real part "r" and
C
С
     imaginary part "i".
C-
        TYPE *, ' The complex number z is', z
        TYPE *, ' It has imaginary part', MTH$GIMAG(Z)
        END
```

This FORTRAN example demonstrates a procedure call to MTH\$GIMAG. Because this example uses G-floating numbers, it must be compiled with the statement "FORTRAN/G filename".

The output generated by this program is as follows:

The complex number z is (0.8535407185554504,0.2043401598930359) It has imaginary part 0.2043401598930359

MTH\$xLOG Natural Logarithm

The Natural Logarithm routine returns the natural (base e) logarithm of the input argument.

FORMATMTH\$ALOGfloating-point-input-valueMTH\$DLOGfloating-point-input-valueMTH\$GLOGfloating-point-input-value

Each of the above formats accepts as input one of the floating-point types.

jsb entries MTH\$ALOG_R5 MTH\$DLOG_R8 MTH\$GLOG_R8

Each of the above JSB entries accepts as input one of the floating-point types.

 RETURNS
 VMS usage:
 floating_point

 type:
 F_floating, D_floating, G_floating

 access:
 write only

 mechanism:
 by value

The natural logarithm of **floating-point-input-value**. MTH\$ALOG returns an F-floating number. MTH\$DLOG returns a D-floating number. MTH\$GLOG returns a G-floating number.

ARGUMENTS	floating-point-input-value VMS usage: floating_point type: F_floating, D_floating, G_floating access: read only mechanism: by reference		
	The input value. The floating-point-input-value argument is the address of a floating-point number that is this value. For MTH\$ALOG, floating- point-input-value specifies an F-floating number. For MTH\$DLOG, floating-point-input-value specifies a D-floating number. For MTH\$GLOG floating-point-input-value specifies a G-floating number.		
DESCRIPTION	Computation of the natural logarithm routine is based on the following:		
	1 $\ln(X * Y) = \ln(X) + \ln(Y)$		
	2 $\ln(1+X) = X - X^2/2 + X^3/3 - X^4/4 \dots$ for $ X < 1$		
	3 $\ln(X) = \ln(A) + 2 * (V + V^3/3 + V^5/5 + V^7/7)$ = $ln(A) + V * p(V^2)$, where $V = (X - A)/(X + A)$, $A > 0$, and $p(y) = 2 * (1 + y/3 + y^2/5)$		

For $x = 2^n * f$, where n is an integer and f is in the interval of 0.5 to 1, define the following quantities:

If $n \ge 1$, then N = n - 1 and F = 2f

If $n \leq 0$, then N = n and F = f

From (1) above it follows that:

4 $\ln(X) = N * \ln(2) + \ln(F)$

Based on the above relationships, zLOG is computed as follows:

- **1** If $|F-1| < 2^{-5}$, zLOG(X) = N * zLOG(2) + W + W * p(W), where W = F-1.
- **2** Otherwise, $zLOG(X) = N * zLOG(2) + zLOG(A) + V * p(V^2)$, where V = (F - A)/(F + A) and A and zLOG(A)are obtained by table look up.

The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HLOG.

CONDITION VALUES SIGNALED	SS\$_ROPRAND	Reserved operand. The MTH\$xLOG procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
	MTH\$LOGZERNEG	Logarithm of zero or negative value. Argument floating-point-input-value is less than or equal to 0.0. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVR0/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_ MCH_SAVR0/R1.

MTH\$xLOG2

MTH\$xLOG2 Base 2 Logarithm

The Base 2 Logarithm routine returns the base 2 logarithm of the input value specified by **floating-point-input-value**.

FORMATMTH\$ALOG2floating-point-input-valueMTH\$DLOG2floating-point-input-valueMTH\$GLOG2floating-point-input-value

Each of the above formats accepts as input one of the floating-point types.

RETURNSVMS usage:floating_point
type:type:F_floating, D_floating, G_floating
access:write only
mechanism:by valueThe base 2 logarithm of floating-point-input-value.MTH\$ALOG2
returns an F-floating number.MTH\$GLOG2 returns a G-floating number.

ARGUMENTS floating-point-input-value

VMS usage: floating_point type: F_floating, D_floating, G_floating access: read only mechanism: by reference

The input value. The **floating-point-input-value** argument is the address of a floating-point number that is this input value. For MTH\$ALOG2, **floatingpoint-input-value** specifies an F-floating number. For MTH\$DLOG2, **floating-point-input-value** specifies a D-floating number. For MTH\$GLOG2, **floating-point-input-value** specifies a G-floating number.

DESCRIPTION The base 2 logarithm function is computed as follows:

zLOG2(X) = zLOG2(E) * zLOG(X)

The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HLOG2.

MTH\$xLOG2

CONDITION VALUES SIGNALED

MTH\$_LOGZERNEG

SS\$__ROPRAND

Reserved operand. The MTH\$xLOG2 procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Logarithm of zero or negative value. Argument floating-point-input-value is less than or equal to 0.0. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVR0/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_ MCH_SAVR0/R1.

MTH\$xLOG10 Common Logarithm

The Common Logarithm routine returns the common (base 10) logarithm of the input argument.

FORMATMTH\$ALOG10floating-point-input-valueMTH\$DLOG10floating-point-input-valueMTH\$GLOG10floating-point-input-value

Each of the above formats accepts as input one of the floating-point types.

jsb entries MTH\$ALOG10_R5 MTH\$DLOG10_R8 MTH\$GLOG10_R8

Each of the above JSB entries accepts as input one of the floating-point types.

RETURNS VMS usage: floating_point type: F_floating, D_floating, G_floating access: write only mechanism: by value

The common logarithm of **floating-point-input-value**. MTH\$ALOG10 returns an F-floating number. MTH\$DLOG10 returns a D-floating number. MTH\$GLOG10 returns a G-floating number.

ARGUMENTS floating-point-input-value VMS usage: floating_point type: F_floating, D_floating, G_floating access: read only mechanism: by reference

The input value. The **floating-point-input-value** argument is the address of a floating-point number. For MTH\$ALOG10, **floating-point-input-value** specifies an F-floating number. For MTH\$DLOG10, **floating-point-input-value** specifies a D-floating number. For MTH\$GLOG10, **floating-point-input-value** specifies a G-floating number.

DESCRIPTION The common logarithm function is computed as follows:

zLOG10(X) = zLOG10(E) * zLOG(X)

The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HLOG10.

MTH\$xLOG10

CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$_LOGZERNEG

Reserved operand. The MTH\$xLOG10 procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Logarithm of zero or negative value. Argument floating-point-input-value is less than or equal to 0.0. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVR0/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_ MCH_SAVR0/R1.

MTH\$RANDOM Random Number Generator, Uniformly Distributed

The Random Number Generator, Uniformly Distributed routine is a general random number generator.

FORMAT MTH\$RANDOM seed

RETURNS

VMS usage: floating_point type: F_floating access: write only mechanism: by value

MTH\$RANDOM returns an F-floating random number.

ARGUMENT se

 seed

 VMS usage:
 longword_unsigned

 type:
 longword (unsigned)

 access:
 modify

 mechanism:
 by reference

 The integer seed, a 32-bit number whose high-order 24 bits are converted by

The integer seed, a 32-bit number whose high-order 24 bits are converted by MTH\$RANDOM to an F-floating random number. The **seed** argument is the address of an unsigned longword that contains this integer seed. The seed is modified by each call to MTH\$RANDOM.

DESCRIPTION This routine must be called again to obtain the next pseudorandom number. The seed is updated automatically.

The result is a floating-point number that is uniformly distributed between 0.0 inclusively and 1.0 exclusively.

There are no restrictions on the seed, although it should be initialized to different values on separate runs in order to obtain different random sequences. MTH\$RANDOM uses the following method to update the seed passed as the argument:

 $SEED = (69069 * SEED + 1)(modulo2^{32})$

CONDITION VALUE SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$RANDOM procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

EXAMPLE

RAND: PROCEDURE OPTIONS (MAIN); DECLARE FOR\$SECNDS ENTRY (FLOAT BINARY (24)) RETURNS (FLOAT BINARY (24)); DECLARE MTH\$RANDOM ENTRY (FIXED BINARY (31)) RETURNS (FLOAT BINARY (24)); DECLARE TIME FLOAT BINARY (24); DECLARE SEED FIXED BINARY (31); DECLARE I FIXED BINARY (7); DECLARE RESULT FIXED DECIMAL (2); /* Get floating random time value */ TIME = FOR\$SECNDS (OEO); /* Convert to fixed */ SEED = TIME;/* Generate 100 random numbers between 1 and 10 */ DO I = 1 TO 100; RESULT = 1 + FIXED ((10E0 * MTH\$RANDOM (SEED)),31); PUT LIST (RESULT); END; END RAND;

> This PL/I program demonstrates the use of MTH\$RANDOM. The value returned by FOR\$SECNDS is used as the seed for the random-number generator to insure a different sequence each time the program is run. The random value returned is scaled so as to represent values between 1 and 10.

> Because this program generates random numbers, the output generated will be different each time the program is executed. One example of the outut generated by this program is as follows:

7	• 4	6	5	9	10	5	5	3	8	8	1	3	1	3	2
4	4	2	4	4	8	3	8	9	1	7	1	8	6	9	10
1	10	10	6	7	3	2	2	1	2	6	6	3	9	5	8
6	2	3	6	10	8	5	5	4	2	8	5	9	6	4	2
8	5	4	9	8	7	6	6	8	10	9	5	9	4	5	7
1	2	2	3	6	5	2	3	4	4	8	9	2	8	5	5
2	0	4													

MTH\$xREAL Real Part of a Complex Number

The Real Part of a Complex Number routine returns the real part of a complex number.

FORMAT MTH\$REAL complex-number MTH\$DREAL complex-number MTH\$GREAL complex-number

Each of the above three formats accepts as input one of the three floatingpoint complex types.

Real part of the complex number. MTH\$REAL returns an F-floating number.

F_floating, D_floating, G_floating

RETURNS

MTH\$DREAL returns a D-floating number. MTH\$GREAL returns a G-floating number.

VMS usage: floating_point

mechanism: by value

write only

ARGUMENT complex-number

type: access:

VMS usage: complex_number type: F_floating complex, D_floating complex, G_floating complex access: read only mechanism: by reference

The complex number whose real part is returned by MTH\$REAL. The **complex-number** argument is the address of this floating-point complex number. For MTH\$REAL, **complex-number** is an F-floating complex number. For MTH\$DREAL, **complex-number** is a D-floating complex number. For MTH\$GREAL, **complex-number** is a G-floating complex number.

CONDITION VALUE SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$xREAL procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

EXAMPLE

```
C+
С
     This FORTRAN example forms the real
С
     part of an F-floating complex number using
С
     MTH$REAL and the FORTRAN random number
С
     generator RAN.
С
С
     Declare Z as a complex value and MTH$REAL as a
С
     REAL*4 value. MTH$REAL will return the real
С
     part of Z: Z_NEW = MTH$REAL(Z).
C-
        COMPLEX Z
        COMPLEX CMPLX
        REAL*4 MTH$REAL
        INTEGER M
        M = 1234567
C+
С
     Generate a random complex number with the FORTRAN
С
     generic CMPLX.
C-
        Z = CMPLX(RAN(M), RAN(M))
C+
С
     Z is a complex number (r,i) with real part "r" and imaginary
С
     part "i".
C-
        TYPE *, ' The complex number z is',z
        TYPE *, ' It has real part', MTH$REAL(Z)
        END
```

This FORTRAN example demonstrates the use of MTH\$REAL. The output of this program is as follows:

The complex number z is (0.8535407,0.2043402) It has real part 0.8535407

MTH\$xSIN Sine of Angle Expressed in Radians

The Sine of Angle Expressed in Radians routine returns the sine of a given angle (in radians).

FORMAT MTH\$SIN angle-in-radians MTH\$DSIN angle-in-radians MTH\$GSIN angle-in-radians

Each of the above formats accepts as input one of the floating-point types.

jsb entries

MTH\$SIN_R4 MTH\$DSIN_R7 MTH\$GSIN_R7

Each of the above JSB entries accepts as input one of the floating-point types.

 RETURNS
 VMS usage: floating_point type: F_floating, D_floating, G_floating access: write only mechanism: by value

 Sine of the angle specified by angle-in-radians. MTH\$SIN returns an Fterm of the angle specified by angle-in-radians. MTH\$SIN returns an F

Sine of the angle specified by **angle-in-radians**. MTH\$SIN returns an F-floating number. MTH\$DSIN returns a D-floating number. MTH\$GSIN returns a G-floating number.

ARGUMENTSangle-in-radians
VMS usage: floating_point
type:type:F_floating, D_floating, G_floating
access:access:read only
mechanism:by referenceAngle (in radians).Angle (in radians).The angle-in-radians argument is the address of a
floating-point number that is this angle.For MTH\$SIN, angle-in-radians
specifies an F-floating number.For MTH\$DSIN, angle-in-radians
specifies a G-floating
number.

DESCRIPTION See the MTH\$SINCOS routine for the algorithm used to compute this sine.

The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HSIN.

MTH\$xSIN

CONDITION VALUE SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$xSIN procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$xSINCOS Sine and Cosine of Angle Expressed in Radians

The Sine and Cosine of Angle Expressed in Radians routine returns the sine and cosine of a given angle (in radians).

FORMATMTH\$SINCOSangle-in-radians ,sine ,cosineMTH\$DSINCOSangle-in-radians ,sine ,cosineMTH\$GSINCOSangle-in-radians ,sine ,cosineMTH\$HSINCOSangle-in-radians ,sine ,cosine

Each of the above four formats accepts as input one of the four floating-point types.

jsb entries MTH\$SINCOS_R5 MTH\$DSINCOS_R7 MTH\$GSINCOS_R7 MTH\$HSINCOS_R7

Each of the above four JSB entries accepts as input one of the four floatingpoint types.

RETURNS

MTH\$SINCOS, MTH\$DSINCOS, MTH\$GSINCOS, and MTH\$HSINCOS return the sine and cosine of the input angle by reference in the **sine** and **cosine** arguments.

ARGUMENTS angle-in-radians VMS usage: floating_point type: F_floating, D_floating, G_floating, H_floating access: read only mechanism: by reference Angle (in radians) whose sine and cosine are to be returned. The ar

Angle (in radians) whose sine and cosine are to be returned. The **angle-in-radians** argument is the address of a floating-point number that is this angle. For MTH\$SINCOS, **angle-in-radians** is an F-floating number. For MTH\$DSINCOS, **angle-in-radians** is a D-floating number. For MTH\$GSINCOS, **angle-in-radians** is a G-floating number. For MTH\$HSINCOS, **angle-in-radians** is an H-floating number.

sine

VMS usage: floating_point type: F_floating, D_floating, G_floating, H_floating access: write only mechanism: by reference

Sine of the angle specified by **angle-in-radians**. The **sine** argument is the address of a floating-point number. MTH\$SINCOS writes an F-floating

MTH\$xSINCOS

number into **sine**. MTH\$DSINCOS writes a D-floating number into **sine**. MTH\$GSINCOS writes a G-floating number into **sine**. MTH\$HSINCOS writes an H-floating number into **sine**.

cosine

VMS usage:	floating_point
type:	F_floating, D_floating, G_floating, H_floating
access:	write only
mechanism:	by reference

Cosine of the angle specified by **angle-in-radians**. The **cosine** argument is the address of a floating-point number. MTH\$SINCOS writes an F-floating number into **cosine**. MTH\$DSINCOS writes a D-floating number into **cosine**. MTH\$GSINCOS writes a G-floating number into **cosine**. MTH\$HSINCOS writes an H-floating number into **cosine**.

DESCRIPTION

All routines with JSB entry points accept a single argument in R0:Rm, where m, which is defined below, is dependent on the data type.

Data Type	m	
F_floating	0	
D_floating	1	
G_floating	1	
H_floating	3	

In general, Run-Time Library routines with JSB entry points return one value in R0:Rm. The MTH\$SINCOS routine returns two values, however. The sine of **angle-in-radians** is returned in R0:Rm and the cosine of **angle-in-radians** is returned in $(R \le m+1) : R \le 2*m+1>)$.

In radians, the computation of zSIN(X) and zCOS(X) is based on the following polynomial expansions:

$$sin(X) = X - X^{3}/(3!) + X^{5}/(5!) - X^{7}/(7!)...$$

$$= X + X * P(X^{2}), \text{ where}$$

$$P(y) = y/(3!) + y^{2}/(5!) + y^{3}/(7!)...$$

$$cos(X) = 1 - X^{2}/(2!) + x^{4}/(4!) - X^{6}/(6!)...$$

$$= Q(X^{2}), \text{ where}$$

$$Q(y) = (1 - y/(2!) + y^{2}/(4!) + y^{3}/(6!)...)$$

1 If $|X| < 2^{(-f/2)}$,
then $zSIN(X) = X$ and $zCOS(X) = 1$
(see the section on MTH\$zCOSH for
the definition of f)
2 If $2^{-f/2} \le |X| < \pi/4$,

$$dx = 2X + 2x^{3}/(5!) - 2x^{3}/(5!) = 1$$

then $zSIN(X) = X + P(X^2)$ and $zCOS(X) = Q(X^2)$

- **3** If $\pi/4 \le |X|$ and X > 0,
 - **a.** Let $J = INT(X/(\pi/4))$ and I = Jmodulo 8

b. If J is even, let $Y = X - J * (\pi/4)$ otherwise, let $Y = (J + 1) * (\pi/4) - X$

With the above definitions, the following table relates zSIN(X) and zCOS(X) to zSIN(Y) and zCOS(Y):

Value of <i>I</i>	zSIN(X)	zCOS(X)	
0	zSIN(Y)	zCOS(Y)	
1	zCOS(Y)	zSIN(Y)	
2	zCOS(Y)	-zSIN(Y)	
3	zSIN(Y)	-zCOS(Y)	
4	-zSIN(Y)	-zCOS(Y)	
5	-zCOS(Y)	-zSIN(Y)	
6	-zCOS(Y)	zSIN(Y)	
7	-zSIN(Y)	zCOS(Y)	

c. zSIN(Y) and zCOS(Y) are computed as follows: $zSIN(Y) = Y + P(Y^2),$

and $zCOS(Y) = Q(Y^2)$

4 If $\pi/4 \le |X|$ and X < 0, then zSIN(X) = -zSIN(|X|)and zCOS(X) = zCOS(|X|)

CONDITION VALUE RETURNED

SS\$_ROPRAND

Reserved operand. The MTH\$xSINCOS procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$xSINCOSD

MTH\$xSINCOSD Sine and Cosine of Angle Expressed in Degrees

The Sine and Cosine of Angle Expressed in Degrees routine returns the sine and cosine of a given angle (in degrees).

FORMAT	MTH\$SINCOSD MTH\$DSINCOSD MTH\$DSINCOSD MTH\$GSINCOSD MTH\$GSINCOSD MTH\$HSINCOSDangle-in-degrees , sine , cosine angle-in-degrees , sine , cosine angle-in-degrees , sine , cosineEach of the above four formats accepts as input one of the four floating-point types.
jsb entries	MTH\$SINCOSD_R5 MTH\$DSINCOSD_R7 MTH\$GSINCOSD_R7 MTH\$HSINCOSD_R7
	Each of the above four JSB entries accepts as input one of the four floating- point types.
RETURNS	MTH\$SINCOSD, MTH\$DSINCOSD, MTH\$GSINCOSD, and MTH\$HSINCOSD return the sine and cosine of the input angle by reference in the sine and cosine arguments.
ARGUMENTS	angle-in-degrees VMS usage: floating_point type: F_floating, D_floating, G_floating, H_floating access: read only mechanism: by reference
	Angle (in degrees) whose sine and cosine are returned by MTH\$xSINCOSD. The angle-in-degrees argument is the address of a floating-point number that is this angle. For MTH\$SINCOSD, angle-in-degrees is an F-floating number. For MTH\$DSINCOSD, angle-in-degrees is a D-floating number. For MTH\$GSINCOSD, angle-in-degrees is a G-floating number. For MTH\$HSINCOSD, angle-in-degrees is an H-floating number.
	<i>sine</i> VMS usage: floating_point type: F_floating, D_floating, G_floating, H_floating access: write only mechanism: by reference

Sine of the angle specified by **angle-in-degrees**. The **sine** argument is the address of a floating-point number. MTH\$SINCOSD writes an F-floating

MTH\$xSINCOSD

number into **sine**. MTH\$DSINCOSD writes a D-floating number into **sine**. MTH\$GSINCOSD writes a G-floating number into **sine**. MTH\$HSINCOSD writes an H-floating number into **sine**.

cosine

VMS usage:	floating_point
type:	F_floating, D_floating, G_floating, H_floating
access:	write only
mechanism:	by reference

Cosine of the angle specified by **angle-in-degrees**. The **cosine** argument is the address of a floating-point number. MTH\$SINCOSD writes an Ffloating number into **cosine**. MTH\$DSINCOSD writes a D-floating number into **cosine**. MTH\$GSINCOSD writes a G-floating number into **cosine**. MTH\$HSINCOSD writes an H-floating number into **cosine**.

DESCRIPTION All routines with JSB entry points accept a single argument in R0:Rm, where *m*, which is defined below, is dependent on the data type.

Data Type	m	
F_floating	0	
D_floating	1	
G_floating	1	
H_floating	3	

In general, Run-Time Library routines with JSB entry points return one value in R0:Rm. The MTHSINCOSD routine returns two values, however. The sine of **angle-in-degrees** is returned in R0:Rm and the cosine of **angle-in-degrees** is returned in (R <m+1> :R <2*m+1>).

In degrees, the computation of zSIND(X) and zCOSD(X) is based on the following polynomial expansions:

- $SIND(X) = (C * X) (C * X)^{3}/(3!) + (C * X)^{5}/(5!) (C * X)^{7}/(7!) \dots = X/2^{6} + X * P(X^{2}), \text{ where}$ $P(y) = -y/(3!) + y^{2}/(5!) y^{3}/(7!) \dots$
- $COSD(X) = 1 (C * X)^{2}/(2!) + (C * X)^{4}/(4!) (C * X)^{6}/(6!)... = Q(X^{2}), \text{ where}$ $Q(y) = 1 - y/(2!) + y^{2}/(4!) - y^{3}/(6!)... + y^{3}/(6!)$
- **1** If $|X| < (180/\pi) * 2^{-2^{e-1}}$ and underflow signaling is enabled, underflow is signaled for zSIND(X) and zSINCOSD(X). See MTH\$zCOSH for the definition of e.

OTHERWISE:

2 If $|X| < (180/\pi) * 2^{(-f/2)}$, then $zSIND(X) = (\pi/180) * X$ and zCOSD(X) = 1. (See MTH\$zCOSH for the definition of *f*.)

MTH\$xSINCOSD

- **3** If $(180/\pi) * 2^{(-f/2)} \le |X| < 45$ then $zSIND(X) = X/2^6 + P(X^2)$ and $zCOSD(X) = Q(X^2)$
- **4** If $45 \le |X|$ and X > 0,
 - **a.** Let J = INT(X/(45)) and $I = J \mod 8$
 - **b.** If J is even, let Y = X J * 45; otherwise, let Y = (J + 1) * 45 - X. With the above definitions, the following table relates zSIND(X) and zCOSD(X) to zSIND(Y) and zCOSD(Y):

Value of <i>I</i>	zSIND(X)	zCOSD(X)	
0	zSIND(Y)	zCOSD(Y)	
1	zCOSD(Y)	zSIND(Y)	
2	zCOSD(Y)	-zSIND(Y)	
3	zSIND(Y)	-zCOSD(Y)	
4	-zSIND(Y)	-zCOSD(Y)	
5	-zCOSD(Y)	-zSIND(Y)	
6	-zCOSD(Y)	zSIND(Y)	
7	-zSIND(Y)	zCOSD(Y)	

- **c.** zSIND(Y) and zCOSD(Y) are computed as follows: $zSIND(Y) = Y/2^6 + P(Y^2)$ $zCOSD(Y) = Q(Y^2)$
- **d.** If $45 \le |X|$ and X < 0, then zSIND(X) = -zSIND(|X|)and zCOSD(X) = zCOSD(|X|)

CONDITION Reserved operand. The MTH\$xSINCOSD SS\$_ROPRAND VALUES procedure encountered a floating-point reserved SIGNALED operand due to incorrect user input. A floatingpoint reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL. MTH\$_FLOUNDMAT Floating-point underflow in math library. The absolute value of the input angle is less than $180/\pi * 2^{-m}$ (where m = 128 for F-floating and D-floating, 1,024 for G-floating, and 16,384 for H-floating).

MTH\$xSIND Sine of Angle Expressed in Degrees

The Sine of Angle Expressed in Degrees routine returns the sine of a given angle (in degrees).

FORMAT MTH\$SIND angle-in-degrees MTH\$DSIND angle-in-degrees MTH\$GSIND angle-in-degrees

Each of the above formats accepts as input one of the floating-point types.

jsb entries

MTH\$SIND_R4 MTH\$DSIND_R7 MTH\$GSIND_R7

Each of the above JSB entries accepts as input one of the floating-point types.

 RETURNS
 VMS usage: floating_point type: F_floating, D_floating, G_floating access: write only mechanism: by value

 The sine of the angle.
 MTH\$SIND returns an F-floating number. MTH\$DSIND returns a D-floating number. MTH\$GSIND returns a G-floating number.

ARGUMENTSangle-in-degrees
VMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by referenceAngle (in degrees). The angle-in-degrees argument is the address of a
floating-point number that is this angle. For MTH\$SIND, angle-in-degrees
specifies an F-floating number. For MTH\$DSIND, angle-in-degrees specifies
a D-floating number. For MTH\$GSIND, angle-in-degrees specifies a G-floating number.

DESCRIPTION See MTH\$SINCOSD for the algorithm that is used to compute the sine.

The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HSIND.

MTH\$xSIND

CONDITION VALUES SIGNALED	SS\$_ROPRAND	Reserved operand. The MTH\$SIND procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased ecponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.				
	MTH\$_FLOUNDMAT	Floating-point underflow in math library. The absolute value of the input angle is less than $180/\pi * 2^{-m}$ (where m = 128 for F-floating and D-floating, and 1,024 for G-floating).				

MTH\$xSINH Hyperbolic Sine

The Hyperbolic Sine routine returns the hyperbolic sine of the input value specified by **floating-point-input-value**.

FORMAT MTH\$SINH floating-point-input-value MTH\$DSINH floating-point-input-value MTH\$GSINH floating-point-input-value

Each of the above formats accepts as input one of the floating-point types.

RETURNS

VMS usage: floating_point type: F_floating, D_floating, G_floating access: write only mechanism: by value

The hyperbolic sine of **floating-point-input-value**. MTH\$SINH returns an F-floating number. MTH\$DSINH returns a D-floating number. MTH\$GSINH returns a G-floating number.

ARGUMENTS floating-point-input-value

VMS usage: floating_point type: F_floating, D_floating, G_floating access: read only mechanism: by reference

The input value. The **floating-point-input-value** argument is the address of a floating-point number that is this value. For MTH\$SINH, **floatingpoint-input-value** specifies an F-floating number. For MTH\$DSINH, **floating-point-input-value** specifies a D-floating number. For MTH\$GSINH, **floating-point-input-value** specifies a G-floating number.

DESCRIPTION

Computation of the hyperbolic sine function depends on the magnitude of the input argument. The range of the function is partitioned using four data type dependent constants: a(z), b(z), and c(z). The subscript z indicates the data type. The constants depend on the number of exponent bits (e) and the number of fraction bits (f) associated with the data type (z).

The values of *e* and *f* are:

z	е	f	
F	8	24	
D	8	56	
G	11	53	

MTH\$xSINH

The values of the constants in terms of *e* and *f* are:

Variable	Value
a(z)	$2^{(-f/2)}$
b(z)	$CEILING[\ (f+1)/2*\ln(2)]$
c(z)	$(2^{(e-1)} * \ln(2))$

Based on the above definitions, zSINH(X) is computed as follows:

Value of X	Value Returned
$ \mathbf{X} < \mathbf{a}(\mathbf{z})$	X
$a(z) \le X < 1.0$	zSINH(X) is computed using a power series expansion in $ X ^2$
$1.0 \le X \le b(z)$	(zEXP(X) - zEXP(-X))/2
$b(z) \leq X < c(z)$	SIGN(X) * zEXP(X)/2
$c(z) \leq X $	Overflow occurs

The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HSINH.

CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$_FLOOVEMAT

Reserved operand. The MTH\$xSINH procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library: the absolute value of **floating-point-input-value** is greater than *yyy*. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

The values of yyy are approximately:

MTH\$SINH—88.722 MTH\$DSINH—88.722 MTH\$GSINH—709.782

MTH\$xSQRT

MTH\$xSQRT Square Root

The Square Root routine returns the square root of the input value **floating-point-input-value**.

FORMATMTH\$SQRTfloating-point-input-valueMTH\$DSQRTfloating-point-input-valueMTH\$GSQRTfloating-point-input-value

Each of the above formats accepts as input one of the floating-point types.

jsb entries

MTH\$SQRT_R3 MTH\$DSQRT_R5 MTH\$GSQRT_R5

Each of the above JSB entries accepts as input one of the floating-point types.

 RETURNS
 VMS usage:
 floating_point

 type:
 F_floating, D_floating, G_floating

 access:
 write only

 mechanism:
 by value

The square root of **floating-point-input-value**. MTH\$SQRT returns an F-floating number. MTH\$DSQRT returns a D-floating number. MTH\$GSQRT returns a G-floating number.

ARGUMENTS *floating-point-input-value*

VMS usage: floating_point type: F_floating, D_floating, G_floating access: read only mechanism: by reference

Input value. The **floating-point-input-value** argument is the address of a floating-point number that contains this input value. For MTH\$SQRT, **floating-point-input-value** specifies an F-floating number. For MTH\$DSQRT, **floating-point-input-value** specifies a D-floating number. For MTH\$GSQRT, **floating-point-input-value** specifies a G-floating number.

DESCRIPTION	The square root of X is computed as follows:
	If $X < 0$, an error is signaled.
	Let $X = 2^K * F$

where:

K is the exponential part of the floating-point data

F is the fractional part of the floating-point data

MTH\$xSQRT

If K is even: $X = 2^{(2*P)} * F$, $zSQRT(X) = 2^P * zSQRT(F)$, $1/2 \le F < 1$, where P = K/2 If K is odd: $X = 2^{(2*P+1)} * F = 2^{(2*P+2)} * (F/2)$, $zSQRT(X) = 2^{(P+1)} * zSQRT(F/2)$, $1/4 \le F/2 < 1/2$, where p = (K-1)/2 Let F' = A * F + B, when K is even: A = 0.95F6198 (hex) B = 0.6BA5918 (hex) Let F' = A * (F/2) + B, when K is odd: A = 0.D413CCC (hex) B = 0.4C1E248 (hex) Let K' = P, when K is even

Let K' = P+1, when K is odd

Let $Y[0] = 2^{K'} * F'$ be a straight line approximation within the given interval using coefficients A and B which minimize the absolute error at the midpoint and endpoint.

Starting with Y[0], n Newton-Raphson iterations are performed:

Y[n+1] = 1/2 * (Y[n] + X/Y[n])

where n = 2, 3, or 3 for z = F-floating, D-floating, or G-floating, respectively.

The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HSQRT.

CONDITION VALUES SIGNALED	SS\$_ROPRAND	Reserved operand. The MTH\$xSQRT procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
	MTH\$_SQUROONEG	Square root of negative number. Argument floating-point-input-value is less than 0.0. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVR0/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_ MCH_SAVR0/R1.

MTH\$xTAN Tangent of Angle Expressed in Radians

The Tangent of Angle Expressed in Radians routine returns the tangent of a given angle (in radians).

FORMAT MTH\$TAN angle-in-radians MTH\$DTAN angle-in-radians MTH\$GTAN angle-in-radians

Each of the above formats accepts as input one of the floating-point types.

jsb entries MTH\$TAN_R4 MTH\$DTAN_R7 MTH\$GTAN_R7

Each of the above JSB entries accepts as input one of the floating-point types.

RETURNS

VMS usage: floating_point type: F_floating, D_floating, G_floating access: write only mechanism: by value

The tangent of the angle specified by **angle-in-radians**. MTH\$TAN returns an F-floating number. MTH\$DTAN returns a D-floating number. MTH\$GTAN returns a G-floating number.

ARGUMENTS angle-in-radians VMS usage: floating_point type: F_floating, D_floating, G_floating access: read only mechanism: by reference

The input angle (in radians). The **angle-in-radians** argument is the address of a floating-point number that is this angle. For MTH\$TAN, **angle-in-radians** specifies an F-floating number. For MTH\$DTAN, **angle-in-radians** specifies a D-floating number. For MTH\$GTAN, **angle-in-radians** specifies a G-floating number.

MTH\$xTAN

DESCRIPTION When the input argument is expressed in radians, the tangent function is computed as follows:

- **1** If $|X| < 2^{(-f/2)}$, then zTAN(X) = X (see the section on MTH\$zCOSH for the definition of *f*)
- 2 Otherwise, call MTH\$zSINCOS to obtain zSIN(X) and zCOS(X); then
 - **a.** If zCOS(X) = 0, signal overflow
 - **b.** Otherwise, zTAN(X) = zSIN(X)/zCOS(X)

The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HTAN.

CONDITION VALUES SIGNALED	SS\$_ROPRAND	Reserved operand. The MTH\$xTAN procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
	MTH\$FLOOVEMAT	Floating-point overflow in Math Library.

MTH\$xTAND Tangent of Angle Expressed in Degrees

The Tangent of Angle Expressed in Degrees routine returns the tangent of a given angle (in degrees).

FORMAT MTH\$TAND angle-in-degrees MTH\$DTAND angle-in-degrees MTH\$GTAND angle-in-degrees

Each of the above formats accepts as input one of the floating-point types.

jsb entries MTH\$TAND_R4 MTH\$DTAND_R7 MTH\$GTAND_R7

Each of the above JSB entries accepts as input one of the floating-point types.

RETURNS

VMS usage: floating_point type: F_floating, D_floating, G_floating access: write only mechanism: by value

Tangent of the angle specified by **angle-in-degrees**. MTH\$TAND returns an F-floating number. MTH\$DTAND returns a D-floating number. MTH\$GTAND returns a G-floating number.

ARGUMENTS angle-in-degrees VMS usage: floating_point type: F_floating, D_floating, G_floating access: read only

mechanism: by reference

The input angle (in degrees). The **angle-in-degrees** argument is the address of a floating-point number which is this angle. For MTH\$TAND, **angle-in-degrees** specifies an F-floating number. For MTH\$DTAND, **angle-in-degrees** specifies a D-floating number. For MTH\$GTAND, **angle-in-degrees** specifies a G-floating number.

MTH\$xTAND

DESCRIPTION	When the input argument is expressed in degrees, the tangent function is computed as follows:
	1 If $ X < (180/\pi) * 2^{(-2/(e-1))}$ and underflow signaling is enabled, underflow is signaled (see the section on MTH\$2COSH for the definition of e).
	2 Otherwise, if $ X < (180/\pi) * 2^{(-f/2)}$, then $zTAND(X) = (\pi/180) * X$. See the description of MTH\$zCOSH for the definition of f.
	3 Otherwise, call MTH\$zSINCOSD to obtain zSIND(X) and zCOSD(X).
	a . Then, if $zCOSD(X) = 0$, signal overflow
	b. Else, $zTAND(X) = zSIND(X)/zCOSD(X)$
	The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HTAND.

CONDITION VALUES SIGNALED	SS\$_ROPRAND	Reserved operand. The MTH\$xTAND procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
	MTH\$_FLOOVEMAT	Floating-point overflow in Math Library.

MTH\$xTANH Compute the Hyperbolic Tangent

The Compute the Hyperbolic Tangent routine returns the hyperbolic tangent of the input value.

FORMAT MTH\$TANH floating-point-input-value MTH\$DTANH floating-point-input-value MTH\$GTANH floating-point-input-value

Each of the above formats accepts as input one of the floating-point types.

RETURNS VMS usage: floating_point type: F_floating, D_floating, G_floating access: write only mechanism: by value The hyperbolic tangent of floating-point-input-value. MTH\$TANH

returns an F-floating number. MTH\$DTANH returns a D-floating number. MTH\$GTANH returns a G-floating number. Unlike the other three routines, MTH\$HTANH returns the hyperbolic tangent by reference in the **h-tanh** argument.

ARGUMENTS

floating-point-input-value

VMS usage:floating_pointtype:F_floating, D_floating, G_floatingaccess:read onlymechanism:by reference

The input value. The **floating-point-input-value** argument is the address of a floating-point number that contains this input value. For MTH\$TANH, **floating-point-input-value** specifies an F-floating number. For MTH\$DTANH, **floating-point-input-value** specifies a D-floating number. For MTH\$GTANH, **floating-point-input-value** specifies a G-floating number.

DESCRIPTION In calculating the hyperbolic tangent of *x*, the values of *g* and *h* are:

z	g	h	
F	12	10	
D	28	21	
G	26	20	

For MTH\$TANH, MTH\$DTANH, and MTH\$GTANH the hyperbolic tangent of *x* is then computed as follows:

Value of x	Hyperbolic Tangent Returned
$ x \leq 2^{-g}$	X
$2^{-g} < X < 0.5$	$xTANH(X) = X + X^3 * R(X^2)$, where $R(X^2)$ is a rational function of X^2 .
$0.5 \le X < 1.0$	xTANH(X) = xTANH(xHI) + xTANH(xLO) * C/B
	where $C = 1 - xTANH(xHI) * xTANH(xHI)$,
	B = 1 + xTANH(xHI) * xTANH(xLO),
	xHI = 1/2 + N/16 + 1/32 for N=0,1,,7,
	and $xLO = X - xHI$.
1.0 < X < h	xTANH(X) = (xEXP(2*X) - 1)/(xEXP(2*X) + 1)
$h \leq X $	xTANH(X) = sign(X) * 1

The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HTANH.

CONDITION VALUE SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$xTANH procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$UMAX Compute Unsigned Maximum

The Compute Unsigned Maximum routine computes the unsigned longword maximum of n unsigned longword arguments, where n is greater than or equal to 1.

FORMAT MTH\$UMAX argument [argument,...]

RETURNSVMS usage:
type:
access:longword_unsigned
longword (unsigned)
write only
by value

Maximum value returned by MTH\$UMAX.

ARGUMENTS argument

VMS usage: iongword_unsigned type: longword (unsigned) access: read only mechanism: by reference

Argument whose maximum MTH\$UMAX computes. Each **argument** argument is an unsigned longword that contains one of these values.

argument

None.

VMS usage: longword_unsigned type: longword (unsigned) access: read only mechanism: by reference

Additional arguments whose maximum MTH\$UMAX computes. Each **argument** argument is an unsigned longword that contains one of these values.

DESCRIPTION MTH\$UMAX is the unsigned version of MTH\$JMAX0.

CONDITION	
VALUES	
RETURNED	

MTH\$UMIN Compute Unsigned Minimum

The Compute Unsigned Minimum routine computes the unsigned longword minimum of n unsigned longword arguments, where n is greater than or equal to 1.

FORMAT MTH\$UMIN argument [argument,...]

RETURNS VMS usage: longword_unsigned type: longword (unsigned) access: write only mechanism: by value

Minimum value returned by MTH\$UMIN.

ARGUMENTS argument

VMS usage: longword_unsigned type: longword (unsigned) access: read only mechanism: by reference

Argument whose minimum MTH\$UMIN computes. Each **argument** argument is an unsigned longword that contains one of these values.

argument

VMS usage: longword_unsigned type: longword (unsigned) access: read only mechanism: by reference

Additional arguments whose minimum MTH\$UMIN computes. Each **argument** argument is an unsigned longword that contains one of these values.

DESCRIPTION MTH\$UMIN is the unsigned version of MTH\$JMIN0.

CONDITION VALUES RETURNED

None.

This appendix lists all of the entry point and argument information for the MTH\$ routines not documented in the MTH\$ Reference Section of this manual.

Routine Name		Entry Point Information
MTH\$ABS		F-floating Absolute Value Routine
	Format:	MTH\$ABS f-floating
	Returns:	floating_point, F_floating, write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$DABS		D-floating Absolute Value Routine
	Format:	MTH\$DABS d-floating
	Returns:	floating_point, D_floating, write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$GABS		G-floating Absolute Value Routine
	Format:	MTH\$GABS g-floating
	Returns:	floating_point, G_floating, write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$HABS		H-floating Absolute Value Routine
	Format:	MTH\$ABS h-abs-val, h-floating
	Returns:	None
	h-abs-val:	floating_point, H_floating, write only, by reference
	h-floating:	floating_point, H_floating, read only, by reference
MTH\$IIABS		Word Absolute Value Routine
	Format:	MTH\$IIABS word
	Returns:	word_signed, word (signed), write only, by value
	word:	word_signed, word (signed), read only, by reference
MTH\$JIABS		Longword Absolute Value Routine
	Format:	MTH\$JIABS longword
	Returns:	longword_signed, longword (signed), write only, by value
	longword:	longword_signed, longword (signed), read only, by reference

Table A–1 Undocumented MTH\$ Routines

Routine Name		Entry Point Information
MTH\$IIAND		Bitwise AND of Two Word Parameters Routine
	Format:	MTH\$IIAND word1, word2
	Returns:	word_unsigned, word (unsigned), write only, by value
	word1:	word_unsigned, word (unsigned), read only, by value word_unsigned, word (unsigned), read only, by reference
	word2:	word_unsigned, word (unsigned), read only, by reference word_unsigned, word (unsigned), read only, by reference
		word_unsigned, word (unsigned), read only, by reference
MTH\$JIAND		Bitwise AND of Two Longword Parameters Routine
	Format:	MTH\$JIAND longword1, longword2
	Returns:	longword_unsigned, longword (unsigned), write only, by value
	longword1:	longword_unsigned, longword (unsigned), read only, by reference
	longword2:	longword_unsigned, longword (unsigned), read only, by reference
MTH\$DBLE		Convert F-floating to D-floating (Exact) Routine
	Format:	MTH\$DBLE f-floating
	Returns:	floating_point, D_floating, write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$GDBLE		Convert F-floating to G-floating (Exact) Routine
	Format:	MTH\$GDBLE f-floating
	Returns:	floating_point, G_floating, write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$DIM		Positive Difference of Two F-floating Parameters Routine
	Format:	MTH\$DIM f-floating1, f-floating2
	Returns:	floating_point, F_floating, write only, by value
	f-floating1:	floating_point, F_floating, read only, by reference
	f-floating2:	floating_point, F_floating, read only, by reference
MTH\$DDIM		Positive Difference of Two D-floating Parameters Routine
	Format:	MTH\$DDIM d-floating1, d-floating2
	Returns:	floating_point, D_floating, write only, by value
	d-floating1:	floating_point, D_floating, read only, by reference
	d-floating2:	floating_point, D_floating, read only, by reference

Table A-1 (Cont.) Undocumented MTH\$ Routines

Routine Name		Entry Point Information
MTH\$GDIM		Positive Difference of Two G-floating Parameters Routine
	Format:	MTH\$GDIM g-floating1, g-floating2
	Returns:	floating_point, G_floating, write only, by value
	g-floating1:	floating_point, G_floating, read only, by reference
	g-floating2:	floating_point, G_floating, read only, by reference
MTH\$HDIM		Positive Difference of Two H-floating Parameters Routine
	Format:	MTH\$HDIM h-floating, h-floating1, h-floating2
	Returns:	None
	h-floating:	floating_point, H_floating, write only, by reference
	h-floating1:	floating_point, H_floating, read only, by reference
	h-floating2:	floating_point, H_floating, read only, by reference
MTH\$IIDIM		Positive Difference of Two Word Parameters Routine
	Format:	MTH\$IIDIM word1, word2
	Returns:	word_signed, word (signed), write only, by value
	word1:	word_signed, word (signed), read only, by reference
	word2:	word_signed, word (signed), read only, by reference
MTH\$JIDIM		Positive Difference of Two Longword Parameters Routine
	Format:	MTH\$JIDIM longword1, longword2
	Returns:	longword_signed, longword (signed), write only, by value
	longword1:	longword_signed, longword (signed), read only, by reference
	longword2:	longword_signed, longword (signed), read only, by reference
MTH\$IIEOR		Bitwise Exclusive OR of Two Word Parameters Routine
	Format:	MTH\$IIEOR word1, word2
	Returns:	word_unsigned, word (unsigned), write only, by value
	word1:	word_unsigned, word (unsigned), read only, by reference
	word2:	word_unsigned, word (unsigned), read only, by reference
MTH\$JIEOR		Bitwise Exclusive OR of Two Longword Parameters Routine
	Format:	MTH\$JIEOR longword1, longword2
	Returns:	longword_unsigned, longword (unsigned), write only, by value
	longword1:	longword_unsigned, longword (unsigned), read only, by reference
	longword2:	longword_unsigned, longword (unsigned), read only, by reference

Table A–1 (Cont.) Undocumented MTH\$ Routines

Routine Name		Entry Point Information
MTH\$IIFIX		Convert F-floating to Word (Truncated) Routine
	Format:	MTH\$IIFIX f-floating
	Returns:	word_signed, word (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$JIFIX		Convert F-floating to Longword (Truncated) Routine
	Format:	MTH\$JIFIX f-floating
	Returns:	longword_signed, longword (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$FLOATI		Convert Word to F-floating (Exact) Routine
	Format:	MTH\$FLOATI word
	Returns:	floating_point, F_floating, write only, by value
	word:	word_signed, word (signed), read only, by reference
MTH\$DFLOTI		Convert Word to D-floating (Exact) Routine
	Format:	MTH\$DFLOTI word
	Returns:	floating_point, D_floating, write only, by value
	word:	word_signed, word (signed), read only, by reference
MTH\$GFLOTI		Convert Word to G-floating (Exact) Routine
	Format:	MTH\$GFLOTI word
	Returns:	floating_point, G_floating, write only, by value
	word:	word_signed, word (signed), read only, by reference
MTH\$FLOATJ		Convert Longword to F-floating (Exact) Routine
	Format:	MTH\$FLOATJ longword
	Returns:	floating_point, F_floating, write only, by value
	longword:	longword_signed, longword (signed), read only, by reference
MTH\$DFLOTJ		Convert Longword to D-floating (Exact) Routine
	Format:	MTH\$DFLOTJ longword
	Returns:	floating_point, D_floating, write only, by value
	longword:	longword_signed, longword (signed), read only, by reference

Table A-1 (Cont.) Undocumented MTH\$ Routines

Routine Name		Entry Point Information
MTH\$GFLOTJ		Convert Longword to G-floating (Exact) Routine
	Format:	MTH\$GFLOTJ longword
	Returns:	floating_point, G_floating, write only, by value
	longword:	longword_signed, longword (signed), read only, by reference
MTH\$FLOOR		Convert F-floating to Greatest F-floating Integer Routine
	Format:	MTH\$FLOOR f-floating
	JSB:	MTH\$FLOOR_R1 f-floating
	Returns:	floating_point, F_floating, write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$DFLOOR		Convert D-floating to Greatest D-floating Integer Routine
	Format:	MTH\$DFLOOR d-floating
	JSB:	MTH\$DFLOOR_R3 d-floating
	Returns:	floating_point, D_floating, write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$GFLOOR		Convert G-floating to Greatest G-floating Integer Routine
	Format:	MTH\$GFLOOR g-floating
	JSB:	MTH\$GFLOOR_R3 g-floating
	Returns:	floating_point, G_floating, write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$HFLOOR		Convert H-floating to Greatest H-floating Integer Routine
	Format:	MTH\$HFLOOR max-h-float, h-floating
	JSB:	MTH\$HFLOOR_R7 h-floating
	Returns:	None
	max-h-float:	floating_point, H_floating, write only, by reference
	h-floating:	floating_point, H_floating, read only, by reference
MTH\$AINT		Convert F-floating to Truncated F-floating Routine
	Format:	MTH\$AINT f-floating
	JSB:	MTH\$AINT_R2 f-floating
	Returns:	floating_point, F_floating, write only, by value
	f-floating:	floating_point, F_floating, read only, by reference

Table A-1 (Cont.) Undocumented MTH\$ Routines

Routine Name		Entry Point Information
MTH\$DINT		Convert D-floating to Truncated D-floating Routine
	Format:	MTH\$DINT d-floating
	JSB:	MTH\$DINT_R4 d-floating
	Returns:	floating_point, D_floating, write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$IIDINT		Convert D-floating to Word (Truncated) Routine
	Format:	MTH\$IIDINT d-floating
	Returns:	word_signed, word (signed), write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$JIDINT		Convert D-floating to Longword (Truncated) Routine
	Format:	MTH\$JIDINT d-floating
	Returns:	longword_signed, longword (signed), write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$GINT		Convert G-floating to G-floating (Truncated) Routine
	Format:	MTH\$GINT g-floating
	JSB:	MTH\$GINT_R4 g-floating
	Returns:	floating_point, G_floating, write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$IIGINT		Convert G-floating to Word (Truncated) Routine
	Format:	MTH\$IIGINT g-floating
	Returns:	word_signed, word (signed), write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$JIGINT		Convert G-floating to Longword (Truncated) Routine
	Format:	MTH\$JIGINT g-floating
	Returns:	longword_signed, longword (signed), write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$HINT		Convert H-floating to H-floating (Truncated) Routine
	Format:	MTH\$HINT trunc-h-flt, h-floating
	JSB:	MTH\$HINT_R8 h-floating
	Returns:	None
	trunc-h-flt:	floating_point, H_floating, write only, by reference
	h-floating:	floating_point, H_floating, read only, by reference

Table A-1 (Cont.) Undocumented MTH\$ Routines

Routine Name		Entry Point Information
MTH\$IIHINT		Convert H-floating to Truncated Word Routine
	Format:	MTH\$IIHINT h-floating
	Returns:	word_signed, word (signed), write only, by value
	h-floating:	floating_point, H_floating, read only, by reference
MTH\$JIHINT		Convert H-floating to Truncated Longword Routine
	Format:	MTH\$JIHINT h-floating
	Returns:	longword_signed, longword (signed), write only, by value
	h-floating:	floating_point, H_floating, read only, by reference
MTH\$IINT		Convert F-floating to Word (Truncated) Routine
	Format:	MTH\$IINT f-floating
	Returns:	word_signed, word (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$JINT		Convert F-floating to Longword (Truncated) Routine
	Format:	MTH\$JINT f-floating
	Returns:	longword_signed, longword (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$IIOR		Bitwise Inclusive OR of Two Word Parameters Routine
	Format:	MTH\$IIOR word1, word2
	Returns:	word_unsigned, word (unsigned), write only, by value
	word1:	word_unsigned, word (unsigned), read only, by reference
	word2:	word_unsigned, word (unsigned), read only, by reference
MTH\$JIOR		Bitwise Inclusive OR of Two Longword Parameters Routine
	Format:	MTH\$JIOR longword1, longword2
	Returns:	longword_unsigned, longword (unsigned), write only, by value
	longword1:	longword_unsigned, longword (unsigned), read only, by reference
	longword2:	longword_unsigned, longword (unsigned), read only, by reference
MTH\$AIMAXO		F-floating Maximum of N Word Parameters Routine
	Format:	MTH\$AIMAXO word,
	Returns:	floating_point, F_floating, write only, by value
	word:	word_signed, word (signed), read only, by reference

Table A-1 (Cont.)	Undocumented MTH\$ Routines
-------------	--------	-----------------------------

Routine Name		Entry Point Information
		E flashing Marines of N Languaged Decembers Bauding
MTH\$AJMAXO	Format:	F-floating Maximum of N Longword Parameters Routine MTH\$AJMAX0 longword,
	Returns:	floating_point, F_floating, write only, by value
	longword:	longword_signed, longword (signed), read only, by reference
	iongworu.	longwold_signed, longwold (signed), read only, by reference
MTH\$IMAXO		Word Maximum of N Word Parameters Routine
	Format:	MTH\$IMAX0 word,
	Returns:	word_signed, word (signed), write only, by value
	word:	word_signed, word (signed), read only, by reference
MTH\$JMAX0		Longword Maximum of N Longword Parameters Routine
	Format:	MTH\$JMAX0 longword,
	Returns:	longword_signed, longword (signed), write only, by value
	longword:	longword_signed, longword (signed), read only, by reference
MTH\$AMAX1		F-floating Maximum of N F-floating Parameters Routine
	Format:	MTH\$AMAX1 f-floating,
	Returns:	floating_point, F_floating, write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$DMAX1		D-floating Maximum of N D-floating Parameters Routine
	Format:	MTH\$DMAX1 d-floating,
	Returns:	floating_point, D_floating, write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$GMAX1		G-floating Maximum of N G-floating Parameters Routine
	Format:	MTH\$GMAX1 g-floating,
	Returns:	floating_point, G_floating, write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$HMAX1		H-floating Maximum of N H-floating Parameters Routine
	Format:	MTH\$HMAX1 h-float-max, h-floating,
	Returns:	None
	h-float-max:	floating_point, H_floating, write only, by reference
	h-floating:	floating_point, H_floating, read only, by reference

Routine Name	····	Entry Point Information
MTH\$IMAX1		Word Maximum of N F-floating Parameters Routine
	Format:	MTH\$IMAX1 f-floating,
	Returns:	word_signed, word (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$JMAX1		Longword Maximum of N F-floating Parameters Routine
	Format:	MTH\$JMAX1 f-floating,
	Returns:	longword_signed, longword (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$AIMINO		F-floating Minimum of N Word Parameters Routine
	Format:	MTH\$AIMINO word,
	Returns:	floating_point, F_floating, write only, by value
	word:	word_signed, word (signed), read only, by reference
MTH\$AJMINO		F-floating Minimum of N Longword Parameters Routine
	Format:	MTH\$AJMINO longword,
	Returns:	floating_point, F_floating, write only, by value
	longword:	longword_signed, longword (signed), read only, by reference
MTH\$IMINO		Word Minimum of N Word Parameters Routine
	Format:	MTH\$IMINO word,
	Returns:	word_signed, word (signed), write only, by value
	word:	word_signed, word (signed), read only, by reference
MTH\$JMINO		Longword Minimum of N Longword Parameters Routine
	Format:	MTH\$JMINO longword,
	Returns:	longword_signed, longword (signed), write only, by value
	longword:	longword_signed, longword (signed), read only, by reference
MTH\$AMIN1		F-floating Minimum of N F-floating Parameters Routine
	Format:	MTH\$AMIN1 f-floating,
	Returns:	floating_point, F_floating, write only, by value
	f-floating:	floating_point, F_floating, read only, by reference

Routine Name		Entry Point Information
MTH\$DMIN1		D-floating Minimum of N D-floating Parameters Routine
	Format:	MTH\$DMIN1 d-floating,
	Returns:	floating_point, D_floating, write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$GMIN1		G-floating Minimum of N G-floating Parameters Routine
	Format:	MTH\$GMIN1 g-floating,
	Returns:	floating_point, G_floating, write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$HMIN1		H-floating Minimum of N H-floating Parameters Routine
	Format:	MTH\$HMIN1 h-float-max, h-floating,
	Returns:	None
	h-float-max:	floating_point, H_floating, write only, by reference
	h-floating:	floating_point, H_floating, read only, by reference
MTH\$IMIN1		Word Minimum of N F-floating Parameters Routine
	Format:	MTH\$IMIN1 f-floating,
	Returns:	word_signed, word (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$JMIN1		Longword Minimum of N F-floating Parameters Routine
	Format:	MTH\$JMIN1 f-floating,
	Returns:	longword_signed, longword (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$AMOD		Remainder of Two F-floating Parameters Routine
	Format:	MTH\$AMOD dividend, divisor
	Returns:	floating_point, F_floating, write only, by value
	dividend:	floating_point, F_floating, read only, by reference
	divisor:	floating_point, F_floating, read only, by reference
MTH\$DMOD		Remainder of Two D-floating Parameters Routine
	Format:	MTH\$DMOD dividend, divisor
	Returns:	floating_point, D_floating, write only, by value
	dividend:	floating_point, D_floating, read only, by reference
	divisor:	floating_point, D_floating, read only, by reference

Routine Name		Entry Point Information
MTH\$GMOD		Remainder of Two G-floating Parameters Routine
	Format:	MTH\$GMOD dividend, divisor
	Returns:	floating_point, G_floating, write only, by value
	dividend:	floating_point, G_floating, read only, by reference
	divisor:	floating_point, G_floating, read only, by reference
MTH\$HMOD		Remainder of Two H-floating Parameters Routine
	Format:	MTH\$HMOD h-mod, dividend, divisor
	Returns:	None
	h-mod:	floating_point, H_floating, write only, by reference
	dividend:	floating_point, H_floating, read only, by reference
	divisor:	floating_point, H_floating, read only, by reference
MTH\$IMOD		Remainder of Two Word Parameters Routine
	Format:	MTH\$IMOD dividend, divisor
	Returns:	word_signed, word (signed), write only, by value
	dividend:	word_signed, word (signed), read only, by reference
	divisor:	word_signed, word (signed), read only, by reference
MTH\$JMOD		Remainder of Two Longword Parameters Routine
	Format:	MTH\$JMOD dividend, divisor
	Returns:	longword_signed, longword (signed), write only, by value
	dividend:	longword_signed, longword (signed), read only, by reference
	divisor:	longword_signed, longword (signed), read only, by reference
MTH\$ANINT		Convert F-floating to Nearest F-floating Integer Routine
	Format:	MTH\$ANINT f-floating
	Returns:	floating_point, F_floating, write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$DNINT		Convert D-floating to Nearest D-floating Integer Routine
	Format:	MTH\$DNINT d-floating
	Returns:	floating_point, D_floating, write only, by value
	d-floating:	floating_point, D_floating, read only, by reference

Routine Name		Entry Point Information
MTH\$IIDNNT		Convert D-floating to Word Integer Routine
	Format:	MTH\$IIDNNT d-floating
	Returns:	word_signed, word (signed), write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$JIDNNT		Convert D-floating to Nearest Longword Integer Routine
	Format:	MTH\$JIDNNT d-floating
	Returns:	longword_signed, longword (signed), write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$GNINT		Convert G-floating to Nearest G-floating Integer Routine
	Format:	MTH\$GNINT g-floating
	Returns:	floating_point, G_floating, write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$IIGNNT		Convert G-floating to Nearest Word Integer Routine
	Format:	MTH\$IIGNNT g-floating
	Returns:	word_signed, word (signed), write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$JIGNNT		Convert G-floating to Nearest Longword Integer Routine
	Format:	MTH\$JIGNNT g-floating
	Returns:	longword_signed, longword (signed), write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$HNINT		Convert H-floating to Nearest H-floating Integer Routine
	Format:	MTH\$HNINT nearst-h-flt, h-floating
	Returns:	None
	nearst-h-flt:	floating_point, H_floating, write only, by reference
	h-floating:	floating_point, H_floating, read only, by reference
MTH\$IIHNNT	×.	Convert H-floating to Nearest Word Integer Routine
	Format:	MTH\$IIHNNT h-floating
	Returns:	word_signed, word (signed), write only, by value
	h-floating:	floating_point, H_floating, read only, by reference

Routine Name		Entry Point Information
MTH\$JIHNNT		Convert H-floating to Nearest Longword Integer Routine
	Format:	MTH\$JIHNNT h-floating
	Returns:	longword_signed, longword (signed), write only, by value
	h-floating:	floating_point, H_floating, read only, by reference
MTH\$ININT		Convert F-floating to Nearest Word Integer Routine
	Format:	MTH\$ININT f-floating
	Returns:	word_signed, word (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$JNINT		Convert F-floating to Nearest Longword Integer Routine
	Format:	MTH\$JNINT f-floating
	Returns:	longword_signed, longword (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$INOT		Bitwise Complement of Word Parameter Routine
	Format:	MTH\$INOT word
	Returns:	word_unsigned, word (unsigned), write only, by value
	word:	word_unsigned, word (unsigned), read only, by reference
MTH\$JNOT		Bitwise Complement of Longword Parameter Routine
	Format:	MTH\$JNOT longword
	Returns:	longword_unsigned, longword (unsigned), write only, by value
	longword:	longword_unsigned, longword (unsigned), read only, by reference
MTH\$DPROD		D-floating Product of Two F-floating Parameters Routine
	Format:	MTH\$DPROD f-floating1, f-floating2
	Returns:	floating_point, D_floating, write only, by value
	f-floating1:	floating_point, F_floating, read only, by reference
	f-floating2:	floating_point, F_floating, read only, by reference
MTH\$GPROD		G-floating Product of Two F-floating Parameters Routine
	Format:	MTH\$GPROD f-floating1, f-floating2
	Returns:	floating_point, G_floating, write only, by value
	f-floating1:	floating_point, F_floating, read only, by reference
	f-floating2:	floating_point, F_floating, read only, by reference

Routine Name		Entry Point Information
MTH\$SGN		F-floating Sign Function
	Format:	MTH\$SGN f-floating
	Returns:	longword_signed, longword (signed), write only, by reference
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$SGN		D-floating Sign Function
	Format:	MTH\$SGN d-floating
	Returns:	longword_signed, longword (signed), write only, by reference
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$IISHFT		Bitwise Shift of Word Routine
	Format:	MTH\$IISHFT word, shift-cnt
	Returns:	word_unsigned, word (unsigned), write only, by value
	word:	word_unsigned, word (unsigned), read only, by reference
	shift-cnt:	word_signed, word (signed), read only, by reference
MTH\$JISHFT		Bitwise Shift of Longword Routine
	Format:	MTH\$JISHFT longword, shift-cnt
	Returns:	longword_unsigned, longword (unsigned), write only, by value
	longword:	longword_unsigned, longword (unsigned), read only, by reference
	shift-cnt:	longword_signed, longword (signed), read only, by reference
MTH\$SIGN		F-floating Transfer of Sign of Y to Sign of X Routine
	Format:	MTH\$SIGN f-float-x, f-float-y
	Returns:	floating_point, F_floating, write only, by value
	f-float-x:	floating_point, F_floating, read only, by reference
	f-float-y:	floating_point, F_floating, read only, by reference
MTH\$DSIGN		D-floating Transfer of Sign of Y to Sign of X Routine
	Format:	MTH\$DSIGN d-float-x, d-float-y
	Returns:	floating_point, D_floating, write only, by value
	d-float-x:	floating_point, D_floating, read only, by reference
	d-float-y:	floating_point, D_floating, read only, by reference

Routine Name		Entry Point Information
MTH\$GSIGN		G-floating Transfer of Sign of Y to Sign of X Routine
	Format:	MTH\$GSIGN g-float-x, g-float-y
	Returns:	floating_point, G_floating, write only, by value
	g-float-x:	floating_point, G_floating, read only, by reference
	g-float-y:	floating_point, G_floating, read only, by reference
MTH\$HSIGN		H-floating Transfer of Sign of Y to Sign of X Routine
	Format:	MTH\$HSIGN h-result, h-float-x, h-float-y
	Returns:	None
	h-result:	floating_point, H_floating, write only, by reference
	h-float-x:	floating_point, H_floating, read only, by reference
	h-float-y:	floating_point, H_floating, read only, by reference
MTH\$IISIGN	× .	Word Transfer of Sign of Y to Sign of X Routine
	Format:	MTH\$IISIGN word-x, word-y
	Returns:	word_signed, word (signed), write only, by value
	word-x:	word_signed, word (signed), read only, by reference
	word-y:	word_signed, word (signed), read only, by reference
MTH\$JISIGN		Longword Transfer of Sign of Y to Sign of X Routine
	Format:	MTH\$JISIGN longwrd-x, longwrd-y
	Returns:	longword_signed, longword (signed), write only, by reference
	longwrd-x:	longword_signed, longword (signed), read only, by reference
	longwrd-y:	longword_signed, longword (signed), read only, by reference
MTH\$SNGL		Convert D-floating to F-floating (Rounded) Routine
	Format:	MTH\$SNGL d-floating
	Returns:	floating_point, F_floating, write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$SNGLG		Convert G-floating to F-floating (Rounded) Routine
	Format:	MTH\$SNGLG g-floating
	Returns:	floating_point, F_floating, write only, by value
	g-floating:	floating_point, G_floating, read only, by reference

Index

A

Absolute value
See also Mathematics routine
of complex number • MTH–23
Arc cosine
in degrees●MTH–6, MTH–71
in radians • MTH–3, MTH–69
Arc sine
in degrees●MTH–11, MTH–75
in radians∙MTH–9, MTH–73
Arc tangent
hyperbolic • MTH–21, MTH–85
in degrees ● MTH-15, MTH-19, MTH-79 MTH-83
in radians●MTH–13, MTH–17, MTH–77 MTH–81
Arrays
conversion of ● MTH–64

С

Complex number • 1-3, MTH-57, MTH-59, MTH-112, MTH-122 absolute value of • MTH-23 complex exponential of • MTH-31, MTH-33 conjugate of • MTH-44, MTH-45 cosine of • MTH-26, MTH-28 made from floating-point • MTH-40, MTH-42 natural logarithm of • MTH-36, MTH-38 sine of • MTH-53, MTH-54 Conjugate of complex number • MTH-44, MTH-45 Cosine in radians • MTH-126 Cosine hyperbolic • MTH-51, MTH-89 in degrees • MTH-49, MTH-88, MTH-129 in radians • MTH-47, MTH-87 of complex number • MTH-26, MTH-28

D

Double-precision value converting • MTH–62 converting an array of • MTH–64

Ε

Exponential • MTH-66, MTH-91 of complex number • MTH-31, MTH-33

H

Hyperbolic arc tangent • MTH–21, MTH–85 Hyperbolic cosine • MTH–51, MTH–89 Hyperbolic sine • MTH–102, MTH–134 Hyperbolic tangent • MTH–110, MTH–142

Logarithm base 2•MTH–95, MTH–116 common •MTH–97, MTH–118 natural •MTH–93, MTH–114 natural complex •MTH–36, MTH–38

M

Mathematics routine • 1-1
absolute value • 1-4
algorithm ● 1–2
bitwise AND operator • 1-4
bitwise complement operator • 1-8
bitwise exclusive OR operator • 1–5
bitwise inclusive OR operator • 1–6
bitwise shift • 1–8
calling convention • 1-2
complex number • 1–3

Index

Mathematics routine (cont'd.) condition handling • 1-3 conversion of double to single floating-point value • 1-9 conversion to greatest floating-point integer • 1--5 entry point name • 1-1 F-floating conversion • 1-4 floating-point conversion to nearest value • 1-7 floating-point multiplication • 1-8 floating-point positive difference • 1-5 floating-point sign function • 1-8 integer to floating-point conversion • 1-5 JSB entry point • 1-2 maximum value • 1-6 minimum value • 1-7 remainder • 1-7 truncation of floating-point value • 1-6 undocumented routines • A-1 to A-15 list of • 1-4 to 1-9 MTH\$ACOS • MTH-3 MTH\$ACOSD • MTH-6 MTH\$AIMAG•MTH-112 MTH\$ALOG•MTH-114 MTH\$ALOG10•MTH-118 MTH\$ALOG2•MTH-116 MTH\$ASIN • MTH-9 MTH\$ASIND • MTH-11 MTH\$ATAN•MTH-13 MTH\$ATAN2•MTH-17 MTH\$ATAND • MTH-15 MTH\$ATAND2 • MTH-19 MTH\$ATANH•MTH-21 MTH\$CABS • MTH-23 MTH\$CCOS • MTH-26 MTH\$CDABS • MTH-23 MTH\$CDCOS • MTH-28 MTH\$CDEXP • MTH-33 MTH\$CDLOG • MTH-38 MTH\$CDSIN • MTH-54 MTH\$CDSQRT • MTH-59 MTH\$CEXP • MTH-31 MTH\$CGABS • MTH-23 MTH\$CGCOS • MTH-28 MTH\$CGEXP • MTH-33 MTH\$CGLOG • MTH-38 MTH\$CGSIN • MTH-54 MTH\$CGSQRT • MTH-59 MTH\$CLOG • MTH-36 MTH\$CMPLX • MTH-40 MTH\$CONJG • MTH-44 MTH\$COS • MTH-47

MTH\$COSD • MTH-49 MTH\$COSH • MTH-51 MTH\$CSIN • MTH-53 MTH\$CSQRT • MTH-57 MTH\$CVT_DA_GA • MTH-64 MTH\$CVT_D_G•MTH-62 MTH\$CVT_GA_DA • MTH-64 MTH\$CVT_G_D•MTH-62 MTH\$DACOS • MTH-3 MTH\$DACOSD • MTH-6 MTH\$DASIN • MTH-9 MTH\$DASIND • MTH-11 MTH\$DATAN•MTH-13 MTH\$DATAN2 • MTH-17 MTH\$DATAND • MTH-15 MTH\$DATAND2 • MTH-19 MTH\$DATANH•MTH-21 MTH\$DCMPLX • MTH-42 MTH\$DCONJG•MTH-45 MTH\$DCOS • MTH-47 MTH\$DCOSD • MTH-49 MTH\$DCOSH • MTH-51 MTH\$DEXP•MTH-66 MTH\$DIMAG•MTH-112 MTH\$DLOG•MTH-114 MTH\$DLOG10•MTH-118 MTH\$DLOG2 • MTH-116 MTH\$DREAL • MTH-122 MTH\$DSIN • MTH-124 MTH\$DSINCOS • MTH-126 MTH\$DSINCOSD • MTH-129 MTH\$DSIND • MTH-132 MTH\$DSINH • MTH-134 MTH\$DSQRT • MTH-136 MTH\$DTAN•MTH-138 MTH\$DTAND • MTH-140 MTH\$DTANH•MTH-142 MTH\$EXP•MTH-66 MTH\$GACOS•MTH-3 MTH\$GACOSD • MTH-6 MTH\$GASIN • MTH-9 MTH\$GASIND • MTH-11 MTH\$GATAN•MTH-13 MTH\$GATAN2 • MTH-17 MTH\$GATAND • MTH-15 MTH\$GATAND2 • MTH-19 MTH\$GATANH • MTH-21 MTH\$GCMPLX • MTH-42 MTH\$GCONJG•MTH-45 MTH\$GCOS • MTH-47 MTH\$GCOSD • MTH-49

MTH\$GCOSH • MTH-51 MTH\$GEXP • MTH-66 MTH\$GIMAG•MTH-112 MTH\$GLOG • MTH-114 MTH\$GLOG10 • MTH-118 MTH\$GLOG2 • MTH-116 MTH\$GREAL • MTH-122 MTH\$GSIN • MTH-124 MTH\$GSINCOS • MTH-126 MTH\$GSINCOSD • MTH-129 MTH\$GSIND • MTH-132 MTH\$GSINH • MTH-134 MTH\$GSQRT • MTH-136 MTH\$GTAN•MTH-138 MTH\$GTAND • MTH-140 MTH\$GTANH•MTH-142 MTH\$HACOS • MTH--69 MTH\$HACOSD • MTH-71 MTH\$HASIN • MTH-73 MTH\$HASIND • MTH-75 MTH\$HATAN • MTH-77 MTH\$HATAN2•MTH-81 MTH\$HATAND•MTH-79 MTH\$HATAND2 • MTH-83 MTH\$HATANH•MTH-85 MTH\$HCOS • MTH-87 MTH\$HCOSD • MTH-88 MTH\$HCOSH • MTH-89 MTH\$HEXP • MTH-91 MTH\$HLOG • MTH-93 MTH\$HLOG10 • MTH-97 MTH\$HLOG2 • MTH-95 MTH\$HSIN • MTH-99 MTH\$HSINCOS • MTH-126 MTH\$HSINCOSD • MTH-129 MTH\$HSIND • MTH-100 MTH\$HSINH • MTH-102 MTH\$HSQRT • MTH-104 MTH\$HTAN • MTH-106 MTH\$HTAND • MTH-108 MTH\$HTANH • MTH-110 MTH\$RANDOM • MTH-120 MTH\$REAL • MTH-122 MTH\$SIN • MTH-124 MTH\$SINCOS • MTH-126 MTH\$SINCOSD • MTH-129 MTH\$SIND • MTH-132 MTH\$SINH • MTH-134 MTH\$SQRT • MTH-136 MTH\$TAN • MTH-138 MTH\$TAND • MTH-140

MTH\$TANH•MTH-142 MTH\$UMAX•MTH-144 MTH\$UMIN•MTH-145

R

Random number generator • MTH-120

S

Sine

hyperbolic • MTH-102, MTH-134 in degrees • MTH-100, MTH-129, MTH-132 in radians • MTH-99, MTH-124, MTH-126 of complex number • MTH-53, MTH-54 Square root • MTH-104, MTH-136

Τ

Tangent • MTH-106, MTH-108, MTH-138, MTH-140 hyperbolic • MTH-110, MTH-142

Reader's Comments

Please use this postage-paid form to comment on this manual. If you require a written reply to a software problem and are eligible to receive one under Software Performance Report (SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's:	Excellent	Good	Fair	Poor
Accuracy (software works as manual says)				
Completeness (enough information)				
Clarity (easy to understand)				
Organization (structure of subject matter) Figures (useful)				
Examples (useful)				
Index (ability to find topic)				
Page layout (easy to find information)				
I would like to see more/less				
What I like best about this manual is				
What I like least about this manual is				
I found the following errors in this manual: Page Description				
<u></u>				
· · ·		· · · · · · ·		
Additional comments or suggestions to improve th				
		· ···		
I am using Version of the software this m	nanual describes.			
Name/Title			ept	
Company			Date	
Mailing Address				
· · · · · · · · · · · · · · · · · · ·		Pn	one	

-- Do Not Tear - Fold Here and Tape ----

digital[™]

No Postage Necessary if Mailed in the United States

BUSINESS REPLY MAIL FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION Corporate User Publications—Spit Brook ZK01–3/J35 110 SPIT BROOK ROAD NASHUA, NH 03062-9987

Ոհատվեհետովեստեղեներերերերերեներ

-- Do Not Tear - Fold Here --