VMS RTL Mathematics (MTH\$) Manual

Order Number: AA-LA72A-TE

April 1988

This manual documents the mathematics routines contained in the MTH\$ facility of the VMS Run-Time Library.

Revision/Update Information: This document supersedes Section 4 and the MTH\$ portion of Part II of the VAX/VMS Run-Time Library Routines Reference Manual, Version 4.4.

Software Version:

VMS Version 5.0

April 1988

The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC	DIBOL	UNIBUS
DEC/CMS	EduSystem	VAX
DEC/MMS	IAS	VAXcluster
DECnet	MASSBUS	VMS
DECsystem-10	PDP	VT
DECSYSTEM-20	PDT	
DECUS	RSTS	
DECwriter	RSX	c 197

HOW TO ORDER ADDITIONAL DOCUMENTATION DIRECT MAIL ORDERS

USA \& PUERTO RICO
Digital Equipment Corporation P.O. Box CS2008 Nashua, New Hampshire 03061

CANADA
Digital Equipment of Canada Ltd. 100 Herzberg Road Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

INTERNATIONAL
Digital Equipment Corporation
PSG Business Manager c/o Digitals local subsidiary or approved distributor

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660. In Canada call 800-267-6215.
*Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575) Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment Corporation, Westminster, Massachusetts 01473.

Production Note

This book was produced with the VAX DOCUMENT electronic publishing system, a software tool developed and sold by DIGITAL. In this system, writers use an ASCII text editor to create source files containing text and English-like code; this code labels the structural elements of the document, such as chapters, paragraphs, and tables. The VAX DOCUMENT software, which runs on the VMS operating system, interprets the code to format the text, generate a table of contents and index, and paginate the entire document. Writers can print the document on the terminal or line printer, or they can use DIGITAL-supported devices, such as the LN03 laser printer and PostScript ${ }^{\text {ta }}$ printers (PrintServer 40 or LN03R ScriptPrinter), to produce a typeset-quality copy containing integrated graphics.

[^0]
Contents

CHAPTER 1 INTRODUCTION TO MTH\$ 1-1

1.1	ENTRY POINT NAMES	1-1
1.2	CALLING CONVENTIONS	1-2
1.3	ALGORITHMS	1-2
1.4	CONDITION HANDLING	1-3
1.5	COMPLEX NUMBERS	1-3
1.6	ROUTINES NOT DOCUMENTED IN THE MTH\$ REFERENCE SECTION	1-4
1.7	EXAMPLES OF CALLS TO RUN-TIME LIBRARY MATHEMATICS ROUTINES	1-9
1.7.1	BASIC Example	1-9
1.7.2	COBOL Example	1-9
1.7 .3	FORTRAN Examples	1-10
1.7 .4	MACRO Examples	1-12
1.7 .5	PASCAL Examples	1-14
1.7.6	PL/I Examples	1-15

MTH\$ REFERENCE SECTION

MTH\$XACOS	MTH-3
MTH\$XACOSD	MTH-6
MTH\$XASIN	MTH-9
MTH\$XASIND	MTH-11
MTH\$XATAN	MTH-13
MTH\$XATAND	MTH-15
MTH\$XATAN2	MTH-17

MTH\$XATAND2	MTH-19
MTH\$XATANH	MTH-21
MTH\$CXABS	MTH-23
MTH\$CCOS	MTH-26
MTH\$CXCOS	MTH-28
MTH\$CEXP	MTH-31
MTH\$CXEXP	MTH-33
MTH\$CLOG	MTH-36
MTH\$CXLOG	MTH-38
MTH\$CMPLX	MTH-40
MTH\$XCMPLX	MTH-42
MTH\$CONJG	MTH-44
MTH\$XCONJG	MTH-45
MTH\$XCOS	MTH-47
MTH\$XCOSD	MTH-49
MTH\$XCOSH	MTH-51
MTH\$CSIN	MTH-53
MTH\$CXSIN	MTH-54
MTH\$CSQRT	MTH-57
MTH\$CXSQRT	MTH-59
MTH\$CVT_X_X	MTH-62
MTH\$CVT_XA_XA	MTH-64
MTH\$XEXP	MTH-66
MTH\$HACOS	MTH-69
MTH\$HACOSD	MTH-71
MTH\$HASIN	MTH-73
MTH\$HASIND	MTH-75
MTH\$HATAN	MTH-102
MTH\$HATAND	MTH-77
MTH\$HATAN2	MTH-79
MTH\$HATAND2	MTH-81
MTH\$HATANH	MTH-83
MTH\$HCOS	MTH-85
MTH\$HCOSD	MTH-87
MTH\$HCOSH	MTH-88
MTH\$HEXP	MTH-91
MTH\$HLOG	MTH-93
MTH\$HLOG2	MTH-95
MTH\$HLOG10	MTH-99
MTH\$HSIN	MTH\$HSIND

MTH\$HSQRT	MTH-104
MTH\$HTAN	MTH-106
MTHSHTAND	MTH-108
MTH\$HTANH	MTH-110
MTH\$XIMAG	MTH-112
MTH\$XLOG	MTH-114
MTH\$XLOG2	MTH-116
MTH\$XLOG10	MTH-118
MTH\$RANDOM	MTH-120
MTH\$XREAL	MTH-122
MTH\$XSIN	MTH-124
MTH\$XSINCOS	MTH-126
MTH\$XSINCOSD	MTH-129
MTH\$XSIND	MTH-132
MTH\$XSINH	MTH-134
MTH\$XSQRT	MTH-136
MTH\$XTAN	MTH-138
MTH\$XTAND	MTH-140
MTH\$XTANH	MTH-142
MTH\$UMAX	MTH-144
MTH\$UMIN	MTH-145

APPENDIX A UNDOCUMENTED MTH\$ ROUTINES A-1

INDEX

TABLES

1-1	Additional Mathematics Routines	
A-1	Undocumented MTH\$ Routines	1-4
	A-1	

Preface

This manual provides users of the VMS operating system with detailed usage and reference information on mathematics routines supplied in the MTH\$ facility of the Run-Time Library.

Run-Time Library routines can only be used in programs written in languages that produce native code for the VAX hardware. At present, these languages include VAX MACRO and the following compiled high-level languages:

VAX Ada
VAX BASIC
VAX BLISS-32
VAX C
VAX COBOL
VAX COBOL-74
VAX CORAL
VAX DIBOL
VAX FORTRAN
VAX Pascal
VAX PL/I
VAX RPG
VAX SCAN
Interpreted languages which can also access Run-Time Library routines include VAX DSM and DATATRIEVE.

Intended Audience

This manual is intended for system and application programmers who want to call Run-Time Library routines.

Document Structure

This manual is organized into two parts as follows:

- The introductory chapters provide guidelines on using the MTH\$ mathematics routines.
- The MTH\$ Reference Section provides detailed reference information on each mathematics routine contained in the MTH\$ facility of the RunTime Library. This information is presented using the documentation format described in the Introduction to the VMS Run-Time Library. Routine descriptions appear in alphabetical order by routine name.

Preface

Associated Documents

The Run-Time Library routines are documented in a series of reference manuals. A general overview of the Run-Time Library and a description of how the Run-Time Library routines are accessed is presented in the Introduction to the VMS Run-Time Library. Descriptions of the other RTL facilities and their corresponding routines and usages are discussed in the following books:

- The VMS RTL DECtalk (DTK\$) Manual
- The VMS RTL Library (LIB\$) Manual
- The VMS RTL General Purpose (OTS\$) Manual
- The VMS RTL Parallel Processing (PPL\$) Manual
- The VMS RTL Screen Management (SMG\$) Manual
- The VMS RTL String Manipulation (STR\$) Manual

The VAX Procedure Calling and Condition Handling Standard, which is documented in the Introduction to System Routines, contains useful information for anyone who wants to call Run-Time Library routines.

Applications programmers of any language may refer to the Guide to Creating VMS Modular Procedures for the Modular Programming Standard and other guidelines.
High-level language programmers will find additional information on calling Run-Time Library routines in their language reference manual. Additional information may also be found in the language user's guide provided with your VAX language.
The Guide to Using VMS Command Procedures may also be useful.
For a complete list and description of the manuals in the VMS documentation set, see the Overview of VMS Documentation.

Conventions

Convention	Meaning
RET	In examples, a key name (usually abbreviated) shown within a box indicates that you press a key on the keyboard; in text, a key name is not enclosed in a box. In this example, the key is the RETURN key. (Note that the RETURN key is not usually shown in syntax statements or in all examples; however, assume that you must press the RETURN key after entering a command or responding to a prompt.)
	A key combination, shown in uppercase with a slash separating two key names, indicates that
	you hold down the first key while you press the
second key. For example, the key combination	

Other conventions used in the documentation of Run-Time Library routines are described in the Introduction to the VMS Run-Time Library.

1 Introduction to MTH\$

The Run-Time Library mathematics routines may be called to perform a wide variety of computations including the following:

- Complex exponentiation
- Complex function evaluation
- Exponentiation
- Floating-point trigonometric function evaluation
- Miscellaneous function evaluation

The OTS\$ facility provides additional language-independent arithmetic support routines.
This introduction to Run-Time Library mathematics routines includes examples of how to call mathematics routines from BASIC, COBOL, FORTRAN, MACRO, PASCAL, and PL/I.

1.1 Entry Point Names

The names of the mathematics routines are formed by adding the MTH\$ prefix to the function names.
When function arguments and returned values are of the same data type, the first letter of the name indicates this data type. When function arguments and returned values are of different data types, the first letter indicates the data type of the returned value, and the second letter indicates the data type of the argument(s).

The letters used as data type prefixes are listed below.

Letter	Data Type
I	Word
J	Longword
D	D_floating
G	G_floating
H	H_floating
C	F_floating complex
CD	D_floating complex
CG	G_floating complex

Generally, F-floating data types have no letter designation. For example, MTH\$SIN returns an F-floating value of the sine of an F-floating argument and MTH\$DSIN returns a D-floating value of the sine of a D-floating argument. However, in some of the miscellaneous functions, F-floating data types are referenced by the letter designation A.

Introduction to MTH\$

1.2 Calling Conventions

1.2 Calling Conventions

All calls to mathematics routines, as described in the FORMAT section of each routine, accept arguments passed by reference. JSB entry points accept arguments passed by value.

All mathematics routines return values in R0 or R0/R1 except those routines for which the values cannot fit in 64 bits. D-floating complex, G-floating complex and H -floating values are data structures which are larger than 64 bits. Routines that return values which cannot fit in registers R0/R1 return their function values into the first argument in the argument list.

The notation JSB MTH\$NAME_Rn, where n is the highest register number referenced, indicates that an equivalent JSB entry point is available. No registers are saved; only registers $\mathrm{R} 0: \mathrm{Rn}$ are changed.
Routines with JSB entry points accept a single argument in R0:Rm, where m, which is defined below, is dependent on the data type.

Data Type	\mathbf{m}
F_floating	0
D_floating	1
G_floating	1
H_floating	3

A routine which returns one value returns it to registers $\mathrm{R} 0: \mathrm{Rm}$.
When a routine returns two values, for example MTH\$SINCOS, the first value is returned in $\mathrm{R} 0: \mathrm{Rm}$ and the second value is returned in ($\mathrm{R}<\mathrm{m}+1>: \mathrm{R}<2 * \mathrm{~m}+1>$).
Note that for routines that return a single value, $n>=m$. For routines that return two values, $\mathrm{n}>=2 * \mathrm{~m}+1$.
All CALL entry points for mathematics routines do the following:

- Disable floating-point underflow
- Enable integer overflow
- Cause no floating-point overflow or other arithmetic traps or faults
- Preserve all other enabled operations across the CALL

JSB entry points execute in the context of the caller with the enable operations as set by the caller. Since the routines do not cause arithmetic traps or faults, their operation is not affected by the setting of the arithmetic trap enables, except as noted.
For more detailed information on CALL and JSB entry points, refer to the Introduction to the VMS Run-Time Library.

1.3 Algorithms

For those mathematics routines that have corresponding algorithms, the complete algorithm can be found in the Description section of the routine description appearing in the MTH\$ Reference Section of this manual.

Introduction to MTH\$

1.4 Condition Handling

Error conditions are indicated by using the VAX signaling mechanism. The VAX signaling mechanism signals all conditions in mathematics routines as SEVERE by calling LIB $\$$ SIGNAL. When a SEVERE error is signaled, the image is caused to exit after printing an error message. A user-established condition handler can be written to cause execution to continue at the point of the error by returning SS\$_CONTINUE. A mathematics routine returns to its caller after the contents of R0/R1 have been restored from the mechanism argument vector CHF\$L_MCH_SAVR0/R1. Thus, the user-established handler should correct CHF\$L_MCH_SAVR0/R1 to the desired function value to be returned to the caller of the mathematics routine.

D-floating complex, G-floating complex, and H -floating values cannot be corrected with a user-established condition handler, because R2/R3 are not available in the mechanism argument vector.

Note that it is more reliable to correct R0 and R1 to resemble R0 and R1 of a double-precision floating-point value. A double-precision floating-point value correction works for both single- and double-precision values. If the correction is not performed, the floating-point reserved operand -0.0 is returned. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Accessing the floatingpoint reserved operand will cause a reserved operand fault. See the VMS RTL Library (LIB\$) Manual for a complete description of how to write user condition handlers for SEVERE errors.

A few mathematics routines signal floating underflow if the calling program (JSB or CALL) has enabled floating underflow faults or traps.

All mathematics routines access input arguments and the real and imaginary parts of complex numbers using floating-point instructions. Therefore, a reserved operand fault can occur in any mathematics routine.

1.5 Complex Numbers

A complex number y is defined as an ordered pair of real numbers r and i, where r is the real part and i is the imaginary part of the complex number.

$$
y=(r, i)
$$

VMS supports three floating-point complex types: F-floating complex, Dfloating complex, and G-floating complex. There is no H -floating complex data type.

Run-Time Library mathematics routines that use complex arguments require two x-floating values to be passed by reference for each argument. The first x-floating value contains r, the real part of the complex number. The second x-floating value contains i, the imaginary part of the complex number. Similarly, Run-Time Library mathematics routines that return complex function values return two x-floating values. Some Language Independent Support (OTS\$) routines also calculate complex functions.
Note that complex functions have no JSB entry points.

Introduction to MTH\$

1.6 Routines Not Documented in the MTH\$ Reference Section

1.6 Routines Not Documented in the MTH\$ Reference Section

The mathematics routines in Table 1-1 are not found in the reference section of this manual. Instead, their entry points and argument information are listed in Appendix A of this manual.
A reserved operand fault can occur for any floating-point input argument in any mathematics routine. Other condition values signaled by each mathematics routine are indicated in the footnotes.

Table 1-1 Additional Mathematics Routines

Entry Point	Function
Absolute Value Routines	
MTH\$ABS	F-floating absolute value
MTH\$DABS	D-floating absolute value
MTH\$GABS	G-floating absolute value
MTH\$HABS	H-floating absolute value
MTH\$IABS	Word absolute value ${ }^{2}$
MTH\$JIABS	Longword absolute value ${ }^{2}$

Bitwise AND Operator Routines

MTH\$IIAND	Bitwise AND of two word arguments
MTH\$JIAND	Bitwise AND of two longword arguments

F-floating Conversion Routines

MTH\$DBLE	Convert F-floating to D-floating (exact)
MTH\$GDBLE	Convert F-floating to G-floating (exact)
MTH\$IFIX	Convert F-floating to word (truncated) ${ }^{2}$
MTH\$JIFIX	Convert F-floating to longword (truncated) ${ }^{2}$

[^1]
Introduction to MTH\$ 1.6 Routines Not Documented in the MTH\$ Reference Section

Table 1-1 (Cont.) Additional Mathematics Routines

| Entry Point \quad Function |
| :--- | :--- |
| Floating-Point Positive Difference Routines |

MTH\$DIM	Positive difference of two F-floating arguments ${ }^{3,4}$
MTHSDDIM	Positive difference of two D-floating arguments ${ }^{3,4}$
MTH\$GDIM	Positive difference of two G-floating arguments ${ }^{3,4}$
MTH\$HDIM	Positive difference of two H-floating arguments ${ }^{1,3,4}$
MTHSIIDIM	Positive difference of two word arguments ${ }^{2}$
MTH\$JIDIM	Positive difference of two longword arguments ${ }^{2}$

Bitwise Exclusive OR Operator Routines

MTH\$IIEOR	Bitwise exclusive OR of two word arguments
MTH\$JIEOR	Bitwise exclusive OR of two longword arguments

Integer to Floating-point Conversion Routines

MTH\$FLOATI	Convert word to F-floating (exact)
MTH\$DFLOTI	Convert word to D-floating (exact)
MTH\$GFLOTI	Convert word to G-floating (exact)
MTH\$FLOATJ	Convert longword to F-floating (exact)
MTH\$DFLOTJ	Convert word to D-floating (exact)
MTH\$GFLOTJ	Convert longword to G-floating (exact)

Conversion to Greatest Floating-point Integer Routines

MTHSFLOOR	Convert F-floating to greatest F-floating integer
MTH\$DFLOOR	Convert D-floating to greatest D-floating integer
MTH\$GFLOOR	Convert G-floating to greatest G-floating integer
MTH\$HFLOOR	Convert H-floating to greatest H-floating integer ${ }^{1}$

[^2]
Introduction to MTH\$

1.6 Routines Not Documented in the MTH\$ Reference Section

Table 1-1 (Cont.) Additional Mathematics Routines

Entry Point	Function
Floating-point Truncation Routines	
MTH\$AINT	Convert F-floating to truncated F-floating ${ }^{3}$
MTH\$DINT	Convert D-floating to truncated D-floating
MTH\$IIDINT	Convert D-floating to truncated word ${ }^{2}$
MTH\$JIDINT	Convert D-floating to truncated longword ${ }^{2}$
MTH\$GINT	Convert G-floating to truncated G-floating
MTH\$IIINT	Convert G-floating to truncated word ${ }^{2}$
MTH\$JIGINT	Convert G-floating to truncated longword ${ }^{2}$
MTH\$HINT	Convert H-floating to truncated H-floating ${ }^{1,3}$
MTH\$IHINT	Convert H-floating to truncated word ${ }^{2}$
MTH\$JIHINT	Convert H -floating to truncated longword ${ }^{2}$
MTH\$IINT	Convert F-floating to truncated word ${ }^{2}$
MTH\$JINT	Convert F-floating to truncated longword ${ }^{2}$

Bitwise Inclusive OR Operator Routines

MTH\$IIOR Bitwise inclusive OR of two word arguments
MTH\$JIOR Bitwise inclusive OR of two longword arguments

Maximum Value Routines

MTH\$AIMAX0	F-floating maximum of n word arguments
MTH\$AJMAX0	F-floating maximum of n longword arguments
MTH\$IMAX0	Word maximum of n word arguments
MTH\$JMAX0	Longword maximum of n longword arguments
MTH\$AMAX1	F-floating maximum of n F-floating arguments ${ }^{2}$
MTH\$DMAX1	D-floating maximum of n D-floating arguments
MTH\$GMAX1	G-floating maximum of n G-floating arguments
MTH\$HMAX1	H-floating maximum of n H-floating arguments ${ }^{1}$
MTH\$IMAX1	Word maximum of n F-floating arguments ${ }^{2}$
MTH\$JMAX1	Longword maximum of n F-floating arguments ${ }^{2}$

[^3]
Introduction to MTH\$ 1.6 Routines Not Documented in the MTH\$ Reference Section

Table 1-1 (Cont.) Additional Mathematics Routines
Entry Point \quad Function

Minimum Value Routines

MTH\$AIMINO	F-floating minimum of n word arguments
MTH\$AJMINO	F-floating minimum of n longword arguments
MTH\$IMINO	Word minimum of n word arguments
MTH\$JMIN0	Longword minimum of n longword arguments
MTH\$AMIN1	F-floating minimum of n F-floating arguments ${ }^{2}$
MTH\$DMIN1	D-floating minimum of n D-floating arguments
MTH\$GMIN1	G-floating minimum of n G-floating arguments
MTH\$HMIN1	H-floating minimum of n H-floating arguments ${ }^{1}$
MTH\$IMIN1	Word minimum of n F-floating arguments ${ }^{2}$
MTH\$JMIN1	Longword minimum of n F-floating arguments ${ }^{2}$

Remainder Routines

MTH\$AMOD	Remainder of two F-floating arguments, $\arg 1 / \arg 2^{3}$
MTH\$DMOD	Remainder of two D-floating $\operatorname{arguments,~} \arg 1 / \arg 2^{3}$
MTH\$GMOD	Remainder of two G-floating arguments, $\arg 1 / \arg 2^{3}$
MTH\$HMOD	Remainder of two H-floating arguments, $\arg 1 / \arg 2^{1,3}$
MTH\$IMOD	Remainder of two word arguments, $\arg 1 / \arg 2^{5}$
MTH\$JMOD	Remainder of two longword arguments, $\arg 1 / \arg 2^{5}$

Floating-point Conversion to Nearest Value Routines

MTH\$ANINT	Convert F-floating to nearest F-floating integer
MTH\$DNINT	Convert D-floating to nearest D-floating integer ${ }^{3}$
MTH\$IIDNNT	Convert D-floating to nearest word integer
MTH\$JIDNNT	Convert D-floating to nearest longword integer
MTH\$GNINT	Convert G-floating to nearest G-floating integer ${ }^{3}$
MTH\$IIGNNT	Convert G-floating to nearest word integer ${ }^{2}$
MTH\$JIGNNT	Convert G-floating to nearest longword integer ${ }^{2}$
MTH\$HNINT	Convert H-floating to nearest H-floating integer ${ }^{1}$

[^4]
Introduction to MTH\$

1.6 Routines Not Documented in the MTH\$ Reference Section

Table 1-1 (Cont.) Additional Mathematics Routines

Entry Point	Function
MTH\$IIHNNT	Convert H-floating to nearest word integer ${ }^{2}$
MTH\$JIHNNT	Convert H-floating to nearest longword integer ${ }^{2}$
MTH\$ININT	Convert F-floating to nearest word integer ${ }^{2}$
MTH\$JNINT	Convert F-floating to nearest longword integer ${ }^{3,6}$

Bitwise Complement Operator Routines

MTH\$INOT	Bitwise complement of word argument
MTH\$JNOT	Bitwise complement of longword argument

Floating-point Multiplication Routines

MTH\$DPROD	D-floating product of two F-floating arguments ${ }^{3}$
MTH\$GPROD	G-floating product of two F-floating arguments ${ }^{3}$

Bitwise Shift Operator Routines

MTH\$IISHFT	Bitwise shift of word
MTH\$JISHFT	Bitwise shift of longword

Floating-point Sign Function Routines

MTH\$SGN	F- or D-floating sign function
MTH\$SIGN	F-floating transfer of sign of y to sign of x
MTH\$DSIGN	D-floating transfer of sign of y to sign of x
MTH\$GSIGN	G-floating transfer of sign of y to sign of x
MTH\$HSIGN	H-floating transfer of sign of y to sign of x^{1}

[^5]
1.6 Routines Not Documented in the MTH\$ Reference Section

Table 1-1 (Cont.)	Additional Mathematics Routines
Entry Point	Function
MTH\$IISIGN	Word transfer of sign of y to sign of x
MTH\$JISIGN	Longword transfer of sign of y to sign of x
Conversion of Double to Single Floating-point Routines	
MTH\$SNGL	Convert D-floating to F-floating (rounded) MTH\$SNGLG

${ }^{3}$ Floating-point overflow exceptions can occur.
${ }^{4}$ Floating-point underflow exceptions can occur.

1.7 Examples of Calls to Run-Time Library Mathematics Routines

1.7.1 BASIC Example

The following BASIC program uses the H-floating data type. BASIC also supports the D-floating, F-floating and G-floating data types, but does not support the complex data types.

10

```
!+
    ! Sample program to demonstrate a call to MTH$HEXP from BASIC.
!-
EXTERNAL SUB MTH$HEXP ( HFLOAT, HFLOAT )
DECLARE HFLOAT X,Y ! X and Y are H-floating
DIGITS$ = '###.#################################'
X = '1.2345678901234567891234567892'H
CALL MTH$HEXP (Y,X)
A$ = 'MTH$HEXP of ' + DIGITS$ + ' is ' + DIGITS$
PRINT USING A$, X, Y
END
```

The output from this program is as follows:

MTH\$HEXP of 1.234567890123456789123456789200000
is 3.436893084346008004973301321342110

1.7.2 COBOL Example

The following COBOL program uses the F-floating and D-floating data types. COBOL does not support the G-floating and H-floating data types or the complex data types.
This COBOL program calls MTH\$EXP and MTH\$DEXP.

Introduction to MTH\$

1.7 Examples of Calls to Run-Time Library Mathematics Routines

```
IDENTIFICATION DIVISION.
PROGRAM-ID. FLOATING_POINT.
*
* Calls MTH$EXP using a Floating Point data type.
* Calls MTH$DEXP using a Double Floating Point data type.
*
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 FLOAT_PT COMP-1.
01 ANSWER_F COMP-1.
0 1 ~ D O U B L E \& P T ~ C O M P - 2 . ~
01 ANSWER_D COMP-2.
PROCEDURE DIVISION.
PO.
    MOVE 12.34 TO FLOAT_PT.
    MOVE 3.456 TO DOUBLE_PT.
    CALL "MTH$EXP" USING BY REFERENCE FLOAT_PT GIVING ANSWER_F.
    DISPLAY " MTH$EXP of ", FLOAT_PT CONVERSION, " is ",
        ANSWER_F CONVERSION.
    CALL "MTH$DEXP" USING BY REFERENCE DOUBLE_PT GIVING ANSWER_D.
    DISPLAY " MTH$DEXP of ", DOUBLE_PT CONVERSION, " is ",
        ANSWER_D CONVERSION .
    STOP RUN.
```

The output from this example program is as follows:

```
MTH$EXP of 1.234000E+01 is 2.286620E+05
MTH$DEXP of 3.456000000000000E+00 is
3.168996280537917E+01
```


1.7.3 FORTRAN Examples

The first two FORTRAN programs below use the D-floating and H -floating data types. The third FORTRAN program below uses the F-floating complex data type. FORTRAN supports the four floating data types and the three complex data types.
$1 \mathrm{C}^{+}$
C This FORTRAN program computes $\exp (x)$ in
C double precision by using the RTL routine " MTH\$DEXP x ".
C
C Declare X, Y and MTH\$DEXP as double precision values.
C MTH\$DEXP (X) will return a double precision value to variable Y.
C-
REAL*8 X,Y, MTH\$DEXP
$X=3.456$
$\mathrm{Y}=\mathrm{MTH} \mathrm{\$ DEXP}(\mathrm{X})$
WRITE $(6,1) \quad \mathrm{X}, \mathrm{Y}$
1 FORMAT(' ','MTH\$DEXP(',F20.15,') IS ',F20.15)
END
The output generated by this FORTRAN example is as follows:
MTH\$DEXP (3.456000000000000) IS
31.689962805379165

```
C+
    C This FORTRAN program computes exp(x) using
    C the RTL routine MTH$HEXP. MTH$HEXP is CALLed by
    C MTH$HEXP(return_value , argument)
    C
    C Declare X,Y as H-floating point values.
    C Given X MTH$HEXP will return the value of exp(X) in Y by the call
    C CALL MTH$HEXP (Y,X).
    C-
    REAL*16 X,Y
    X = 1. 2345678901234567891234567892
    CALL MTH$HEXP(Y,X)
    WRITE (6,1) X,Y
    FORMAT(' ','MTH$HEXP of ',E35.30,' is ',E35.30)
    END
This FORTRAN program generates the following output:
```

```
MTH$HEXP of .123456789012345678912345678920E+01
```

MTH\$HEXP of .123456789012345678912345678920E+01
is .343689308434600800497330132134E+01
is .343689308434600800497330132134E+01
3 C+
C This FORTRAN program computes the complex log
C of x using the RTL routine MTH\$CLOG. This program also demonstrates
C two ways the user can create a complex number.
C
C Declare Z,Z_LOG,MTH\$CMPLX, and MTH\$CLOG as complex values and R and I
C as real values. MTH\$CMPLX takes two real arguments and returns one
C complex number: $\mathrm{Z}=\mathrm{MTH} \$ \mathrm{CMPLX}(\mathrm{R}, \mathrm{I})$ is a complex number with "real"
C part R and "imaginary" part I.
C
C Given a complex number Z, MTH\$CLOG(Z) returns the complex natural
C logarithm of Z.
C-
COMPLEX Z,Z_LOG,MTH\$CMPLX,MTH\$CLOG
REAL*4 R,I
$\mathrm{R}=3.142563$
$\mathrm{I}=7.4367846$
$\mathrm{Z}=\mathrm{MTH} \$ \operatorname{CMPLX}(\mathrm{R}, \mathrm{I})$
C+
C Z is a complex number with real part R and imaginary part I.
C-
TYPE *, ' The complex number z is', z
C+
C Compute the natural logarithm of $Z=(2,1)$.
C Directly define the complex number Z.
C-
$Z=(2.0,1.0)$
Z_LOG = MTH\$CLOG(Z)
TYPE *,' The complex log of (2,1) is ', Z_LOG
END

```

The output generated by this program is as follows:

The complex number \(z\) is (3.142563,7.436785)
The complex log of \((2,1)\) is
(0.8047190,0.4636476)

\section*{Introduction to MTH\$}

\subsection*{1.7 Examples of Calls to Run-Time Library Mathematics Routines}

\subsection*{1.7.4 MACRO Examples}

MACRO and BLISS support JSB entry points as well as CALLS and CALLG entry points. Both MACRO and BLISS support the four floating data types and the three complex data types.
The MACRO programs below illustrate the use of the CALLS and CALLG instructions, as well as JSB entry points.
.TITLE EXAMPLE_JSB
; \({ }^{+}\)This example calls MTH\$DEXP by using a Macro JSB command.
; The JSB command expects R0/R1 to contain the quadword input value \(X\).
; The result of the JSB will be located in R0/R1.
;-
.EXTRN MTH\$DEXP_R6 ;MTH\$DEXP is an external routine.
. PSECT DATA, PIC, EXE, NOWRT
X: .DOUBLE \(2.0 \quad ; X\) is 2.0
.ENTRY EXAMPLE_JSB, "M<>
MOVQ \(X\), RO ; \(X\) is in registers \(R O\) and \(R 1\)
JSB G^MTH\$DEXP_R6 ; The result is returned in R0/R1.
RET
.END EXAMPLE_JSB

This MACRO program generates the following output:
```

RO <-- 732541EC
R1 <-- ED6EC6A6
That is, MTH\$DEXP(2) is 7.3890560989306502

```

2
.TITLE EXAMPLE_CALLG
; \({ }^{+}\)
; This example calls MTH\$HEXP by using a Macro CALLG command.
; The CALLG command expects that the address of the return value
; \(Y\), the address of the input value \(X\), and the argument count 2 be ; stored in memory; this program stores this information in ARGUMENTS. ; The result of the CALLG will be located in R0/R1. ;-
.EXTRN MTH\$HEXP ; MTH\$HEXP is an external routine.
.PSECT DATA, PIC, EXE, WRT
ARGUMENTS:
.LONG 2 ; The CALLG will use two arguments.
.ADDRESS \(Y\), \(X\); The first argument must be the address
; receiving the computed value, while
; the second argument is used to
, compute \(\exp (X)\).
\(X: \quad\).H_FLOATING \(2 \quad ; X=2.0\)
Y: .H_FLOATING 0 ; Y is the result, initially set to 0 .
.ENTRY EXAMPLE_G, ^M<>
CALLG ARGUMENTS, G^MTH\$HEXP ; CALLG returns the value to \(Y\).
RET
END EXAMPLE_G

\subsection*{1.7 Examples of Calls to Run-Time Library Mathematics Routines}

The output generated by this MACRO program is as follows:
\[
\begin{aligned}
\text { address of } Y & <-- \text { D8E64003 } \\
& <--~ 4 D D A 4 B 8 D \\
& <--~ 3 A 3 B D C C 3 \\
& <--~ B 68 B A 206
\end{aligned}
\]

That is, MTH\$HEXP of 2.0 returns 7.38905609893065022723042746057501
.TITLE EXAMPLE_CALLS
;+
; This example calls MTH\$HEXP by using the Macro CALLS command.
; The CALLS command expects the SP to contain the H-floating address of
; the return value, the address of the input argument \(X\) and the argument
; count 2. The result of the CALLS will be located in registers RO-R3.
. EXTRN MTH\$HEXP ; MTH\$HEXP is an external routine.
. PSECT DATA, PIC, EXE, WRT
.H_FLOATING \(0 \quad ; \quad \mathrm{Y}\) is the result, initially set to 0 .
\(\begin{array}{lll}\mathrm{Y}: & \text { H_PLOATING } 2 & , \mathrm{Y} \text { is } \\ \mathrm{X}: & \mathrm{X}=2\end{array}\)
.ENTRY EXAMPLE_S, ^M<>
MOVAL \(X,-(S P) \quad\); The address of \(X\) is in the SP.
MOVAL \(Y,-(S P) \quad\); The address of \(Y\) is in the SP
CALLS \(Y\), \(G^{\wedge}\) MTH\$HEXP ; The value is returned to the address of \(Y\).
RET
.END EXAMPLE_S
The output generated by this program is as follows:
address of \(Y<--\) D8E64003
<-- 4DDA4B8D
<-- 3A3BDCC3
<- B68BA206
That is, MTH\$HEXP of 2.0 returns
7.38905609893065022723042746057501

4
.TITLE COMPLEX_EX1
; +
; This example calls MTH\$CLOG by using a MACRO CALLG command.
; To compute the complex natural logarithm of \(Z=(2.0,1.0)\) register
; RO is loaded with 2.0, the real part of \(Z\), and register R1 is loaded with 1.0 , the imaginary part of \(Z\). The CALLG to MTH\$CLOG
; returns the value of the natural logarithm of \(Z\) in
; registers RO and R1. RO gets the real part of \(Z\) and R1
; gets the imaginary part.
;-
.EXTRN MTH\$CLOG
PSECT DATA, PIC, EXE, NOWRT
ARGS: . LONG 1 ; The CALLG will use one argument.
.ADDRESS REAL ; The one argument that the CALLG
; uses is the address of the argument
REAL: .FLOAT \(2 \quad\); of MTH\$CLOG.
IMAG: .FLOAT 1 ; imaginary part \(Z\) is 1.0
.ENTRY COMPLEX_EX1, `M<>
CALLG ARGS, G"MTH\$CLOG; MTH\$CLOG return the real part of the complex natural logarithm in RO and
; the imaginary part in R1.
RET
.END COMPLEX_EX1

\section*{Introduction to MTH\$}

\subsection*{1.7 Examples of Calls to Run-Time Library Mathematics Routines}

This program generates the following output:
\[
\begin{array}{ll}
\text { RO <--- } & 0210404 \mathrm{E} \\
\text { R1 }<--- & 63383 F E D
\end{array}
\]

That is, MTH\$CLOG(2.0,1.0) is ( \(0.8047190,0.4636476\) )
.TITLE COMPLEX_EX2
; This example calls MTH\$CLOG by using a MACRO CALLS command.
; To compute the complex natural logarithm of \(Z=(2.0,1.0)\) register
; RO is loaded with 2.0 , the real part of \(Z\), and register R1 is loaded
; with 1.0 , the imaginary part of Z . The CALLS to MTH\$CLOG
; returns the value of the natural logarithm of \(Z\) in registers RO
; and R1. RO gets the real part of Z and R 1 gets the imaginary
; part.
\begin{tabular}{|c|c|c|c|}
\hline & .EXTRN & TH\$CLOG & \\
\hline & . PSECT & DATA, PIC, EXE & NOWRT \\
\hline REAL: & . FLOAT & 2 & real part of Z is 2.0 \\
\hline \multirow[t]{5}{*}{IMAG:} & . FLOAT & 1 & imaginary part Z is 1.0 \\
\hline & . ENTRY & COMPLEX_EX2, & \\
\hline & MOVAL & REAL, -(SP) & SP <-- address of \(Z\). Real part of \(Z\) is in \(\mathbb{C}(S P)\) and imaginary part is in \\
\hline & CALLS & \#1, G^MTH\$CLOG & @(SP) +4 \\
\hline & & & MTH\$CLOG return the real part of the complex natural logarithm in RO and the imaginary part in R1. \\
\hline
\end{tabular}
.END COMPLEX_EX2

This MACRO example program generates the following output:
```

R0 <--- 0210404E
R1 <--- 63383FED
That is, MTH\$CLOG(2.0,1.0) is
(0.8047190,0.4636476)

```

\subsection*{1.7.5 PASCAL Examples}

The following PASCAL programs use the D-floating and H-floating data types. PASCAL also supports the F-floating and G-floating data types. PASCAL does not support the complex data types, however.
1 \{ \(\{+\}\)
\{ Sample program to demonstrate a call to MTH\$DEXP from PASCAL.
\{-\}
PROGRAM CALL_MTH\$DEXP (OUTPUT);
\{+\}
\{ Declare variables used by this program.
\{-\}
VAR
\(\mathrm{X}:\) DOUBLE : \(=3.456\); \(\{\mathrm{X}, \mathrm{Y}\) are D-floating unless overridden \}
Y : DOUBLE; \{ with /DOUBLE qualifier on compilation \}

\title{
Introduction to MTH\$ \\ 1.7 Examples of Calls to Run-Time Library Mathematics Routines
}
```

{+}
{ Declare the RTL routine used by this program.
{-}
[EXTERNAL,ASYNCHRONOUS] FUNCTION MTH$DEXP (VAR value : DOUBLE) : DOUBLE; EXTERN;
BEGIN
 Y := MTH$DEXP (x);
WRITELN ('MTH\$DEXP of ', X:5:3,' is ', Y:20:16);
END.

```

The output generated by this PASCAL program is as follows:
```

MTH\$DEXP of 3.456 is 31.6899656462382318

```

2 \{ \(\left\{\begin{array}{l} \\ 2\end{array}\right.\)
\{ Sample program to demonstrate a call to MTH\$HEXP from PASCAL.
\{-\}
PROGRAM CALL_MTH\$HEXP (OUTPUT);
\(\{+\}\)
\{ Declare variables used by this program.
\{-\}
VAR
X : QUADRUPLE \(:=1.2345678901234567891234567892\); \{ \(X\) is H-floating \(\}\)
Y : QUADRUPLE; \(\quad\{Y\) is H-floating \}
\(\{+\}\)
\{ Declare the RTL routine used by this program.
\(\{-\}\)
[EXTERNAL,ASYNCHRONOUS] PROCEDURE MTH\$HEXP (VAR h_exp : QUADRUPLE;
value : QUADRUPLE) ; EXTERN;
BEGIN
MTH\$HEXP ( \(\mathrm{Y}, \mathrm{X}\) ) ;
WRITELN ('MTH\$HEXP of ', X:30:28, ' is ', Y:35:33);
END.

This PASCAL program generates the following output:
\[
\text { MTH\$DEXP of } 3.456 \text { is } 31.6899656462382318
\]

\subsection*{1.7.6 PL/I Examples}

The following PL/I programs use the D-floating and H-floating data types to test entry points. PL/I also supports the F-floating and G-floating data types. PL/I does not support the complex data types, however.

\section*{Introduction to MTH\$}

\subsection*{1.7 Examples of Calls to Run-Time Library Mathematics Routines}
```

1/

* This program tests a MTH$D entry point *
*/
TEST: PROC OPTIONS (MAIN) ;
DCL (MTH$DEXP)
ENTRY (FLOAT(53)) RETURNS (FLOAT(53));
DCL OPERAND FLOAT(53);
DCL RESULT FLOAT(53);
/*** Begin test ***/
OPERAND = 3.456;
RESULT = MTH$DEXP(OPERAND);
 PUT EDIT ('MTH$DEXP of ', OPERAND, ' is ', RESULT) (A(12),F(5,3),A(4),F(20,15));
END TEST;
The output generated by this PL/I program is as follows:
MTH\$DEXP of 3.456 is 31.689962805379165

```
```

/*

```
/*
* This program tests a MTH$H entry point.
* This program tests a MTH$H entry point.
* Note that in the PL/I statement below, the /G-float switch
* Note that in the PL/I statement below, the /G-float switch
* is needed to compile both G- and H-floating point MTH$ routines. */
* is needed to compile both G- and H-floating point MTH$ routines. */
TEST: PROC OPTIONS (MAIN) ;
TEST: PROC OPTIONS (MAIN) ;
    DCL (MTH$HEXP)
    DCL (MTH$HEXP)
            ENTRY (FLOAT (113), FLOAT (113)) ;
            ENTRY (FLOAT (113), FLOAT (113)) ;
    DCL OPERAND FLOAT (113);
    DCL OPERAND FLOAT (113);
    DCL RESULT FLOAT (113);
    DCL RESULT FLOAT (113);
/*** Begin test ***/
/*** Begin test ***/
    OPERAND = 1.234578901234567891234567892;
    OPERAND = 1.234578901234567891234567892;
    CALL MTH$HEXP(RESULT,OPERAND);
    CALL MTH$HEXP(RESULT,OPERAND);
    PUT EDIT ('MTH$HEXP of ', OPERAND,' is ', RESULT) (A(12),F(29,27),A(4),F(29,27));
    PUT EDIT ('MTH$HEXP of ', OPERAND,' is ', RESULT) (A(12),F(29,27),A(4),F(29,27));
end test;
```

To run this program, you must use the following DCL commands:

```
$ PLI/G_FLOAT EXAMPLE
$ LINK EXAMPLE
$ RUN EXAMPLE
```

This program generates the following output:

MTH\$HEXP of 1.234578901234567891234567892 is 3.436930928565989790506225633

MTH\$ Reference Section

This section provides detailed descriptions of the routines provided by the VMS RTL Mathematics (MTH\$) Facility.

MTH\$xACOS Arc Cosine of Angle Expressed in Radians

Given the cosine of an angle, the Arc Cosine of Angle Expressed in Radians routine returns that angle (in radians).

FORMAT	MTH\$ACOS cosine MTH\$DACOS cosine MTH\$GACOS cosine

Each of the above three formats accepts as input one of the floating-point types.

MTH\$ACOS_R4
MTH\$DACOS_R7
MTH\$GACOS_R7
Each of the above three JSB entries accepts as input one of the floating-point types.

RETURNS

VMS usage:	floating_point type:
F_floating, access: writoating, G_floating mechanism: by value	

Angle in radians. The angle returned will have a value in the range

$$
0 \leq \text { angle } \leq \pi
$$

MTH\$ACOS returns an F-floating number. MTH\$DACOS returns a Dfloating number. MTH\$GACOS returns a G-floating number.

ARGUMENTS cosine

VMS usage: floating_point
type: \quad F_floating, D_floating, G_floating access: read only mechanism: by reference

The cosine of the angle whose value (in radians) is to be returned. The cosine argument is the address of a floating-point number that is this cosine. The absolute value of cosine must be less than or equal to 1 . For MTH\$ACOS, cosine specifies an F-floating number. For MTH\$DACOS, cosine specifies a D-floating number. For MTH\$GACOS, cosine specifies a G-floating number.

DESCRIPTION The angle in radians whose cosine is X is computed as:

Value of Cosine	Value Returned
0	$\pi / 2$
1	0
-1	π
$0<X<1$	$z A T A N\left(z S Q R T\left(1-X^{2}\right) / X\right)$, where zATAN and zSORT are the Math Library arc tangent and square root routines, respectively, of the appropriate data type
$-1<X<0$	$z A T A N\left(z S Q R T\left(1-X^{2}\right) / X\right)+\pi$
$1<\|X\|$	The error MTH\$_INVARGMAT is signaled

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HACOS.

CONDITION
 VALUES SIGNALED

SS\$_ROPRAND	Reserved operand. The MTH\$xACOS routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of one and a biased exponent of zero. Floating-point reserved operands are reserved for future use by
DIGITAL.	
MTHS_INVARGMAT	Invalid argument. The absolute value of cosine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

EXAMPLES

```
1) 100 !+
    ! This BASIC program demonstrates the use of
    ! MTH$ACOS.
    !-
    EXTERNAL REAL FUNCTION MTH$ACOS
    DECLARE REAL COS_VALUE, ANGLE
    300 INPUT "Cosine value between -1 and +1 "; COS_VALUE
    400 IF (COS_VALUE < -1) OR (COS_VALUE > 1)
            THEN PRINT "Invalid cosine value"
            GOTO 300
    500 ANGLE = MTH$ACOS( COS_VALUE )
    PRINT "The angle with that cosine is "; ANGLE; "radians"
    32767 END
```


MTH\$xACOS

This BASIC program prompts for a cosine value and determines the angle that has that cosine. The output generated by this program is as follows:
\$ RUN ACOS
Cosine value betwen -1 and +1 ? . 5
The angle with that cosine is 1.0472 radians
2 PROGRAM GETANGLE (INPUT, OUTPUT);
\{+\}
\{ This PASCAL program uses MTH\$ACOS to determine
\{ the angle which has the cosine given as input.
\{-\}
VAR
COS : REAL;
FUNCTION MTH\$ACOS (COS : REAL) : REAL;
EXTERN ;
BEGIN
WRITE('Cosine value between -1 and +1 : ');
READ (COS) ;
WRITELN('The angle with that cosine is ', MTH\$ACOS(COS),
' radians');
END

This PASCAL program prompts for a cosine value and determines the angle that has that cosine. The output generated by this program is as follows:

```
$ RUN ACOS
Cosine value between -1 and +1: . 5
The angle with that cosine is 1.04720E+00 radians
```


MTH\$xACOSD Arc Cosine of Angle Expressed in Degrees

Given the cosine of an angle, the Arc Cosine of Angle Expressed in Degrees routine returns that angle (in degrees).

FORMAT

jsb entries
MTH\$ACOSD cosine
MTH\$DACOSD cosine
MTH\$GACOSD cosine
Each of the above formats accepts as input one of the floating-point types.
MTH\$ACOSD_R4
MTH\$DACOSD_R7
MTH\$GACOSD_R7
Each of the above JSB entries accepts as input one of the floating-point types.

RETURNS

VMS usage:	floating_point
type:	F_floating, D _floating, G_floating
access:	write only
mechanism:	by value

Angle in degrees. The angle returned will have a value in the range

$$
0 \leq \text { angle } \leq 180
$$

MTH\$ACOSD returns an F-floating number. MTH\$DACOSD returns a D-floating number. MTH\$GACOSD returns a G-floating number.
cosine
VMS usage: floating_point
type: \quad F_floating, G_floating, D_floating
access: read only
mechanism: by reference
Cosine of the angle whose value (in degrees) is to be returned. The cosine argument is the address of a floating-point number that is this cosine. The absolute value of cosine must be less than or equal to 1. For MTH\$ACOSD, cosine specifies an F-floating number. For MTH\$DACOSD, cosine specifies a D-floating number. For MTH\$GACOSD, cosine specifies a G-floating number.

DESCRIPTION The angle in degrees whose cosine is x is computed as:

Value of Cosine	Angle Returned
0	90
1	0
-1	180
$0<X<1$	$z A T A N D\left(z S Q R T\left(1-X^{2}\right) / X\right)$, where zATAND and zSQRT are the Math Library arc tangent and square root routines, respectively, of the appropriate data type
$-1<X<0$	$z A T A N D\left(z S Q R T\left(1-X^{2}\right) / X\right)+180$ $1<\|X\|$

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HACOSD.

CONDITION

VALUES SS\$_ROPRAND

MTH\$_INVARGMAT
Reserved operand. The MTH\$xACOSD routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of one and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Invalid argument. The absolute value of cosine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

EXAMPLE

```
PROGRAM ACOSD(INPUT,OUTPUT);
{+}
{ This PASCAL program demonstrates the use of
{ MTH$ACOSD.
{-}
FUNCTION MTH$ACOSD(COS : REAL): REAL; EXTERN;
VAR
    COSINE : REAL;
    RET_STATUS : REAL;
BEGIN
    COSINE := 0.5;
    RET_STATUS := MTH$ACOSD(COSINE);
    WRITELN('The angle, in degrees, is: ', RET_STATUS);
END.
```


MTH\$xACOSD

The output generated by this PASCAL example program is as follows: The angle, expressed in degrees, is: $6.00000 \mathrm{E}+01$

MTH\$xASIN Arc Sine in Radians

Given the sine of an angle, the Arc Sine in Radians routine returns that angle (in radians).

FORMAT

MTHSASIN sine
MTH\$DASIN sine
MTH\$GASIN sine
Each of the above formats accepts as input one of the floating-point types.

jsb entries
 MTH\$ASIN_R4
 MTH\$DASIN_R7
 MTH\$GASIN_R7

Each of the above JSB entries accepts as input one of the floating-point types.

RETURNS

VMS usage:	floating_point
type:	F_floating, D _floating, G_floating
access:	write only
mechanism:	by value

Angle in radians. The angle returned will have a value in the range

$$
-\pi / 2 \leq \text { angle } \leq \pi / 2
$$

MTH\$ASIN returns an F-floating number. MTH\$DASIN returns a D-floating number. MTH\$GASIN returns a G-floating number.

ARGUMENTS sine

VMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: read only
mechanism: by reference
The sine of the angle whose value (in radians) is to be returned. The sine argument is the address of a floating-point number that is this sine. The absolute value of sine must be less than or equal to 1 . For MTH\$ASIN, sine specifies an F-floating number. For MTH\$DASIN, sine specifies a D-floating number. For MTH\$GASIN, sine specifies a G-floating number.

DESCRIPTION The angle in radians whose sine is X is computed as:

Value of Sine	Angle Returned
0	0
1	$\pi / 2$
-1	$-\pi / 2$
$0<\|X\|<1$	$z A T A N\left(X / z S Q R T\left(1-X^{2}\right)\right)$, where zATAN and zSQRT
are the Math Library arc tangent and square root routines,	
respectively, of the appropriate data type	
$1<\|X\|$	The error MTH\$_INVARGMAT is signaled

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HASIN.

Reserved operand. The MTH\$xASIN routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
MTH\$_INVARGMAT

Invalid argument. The absolute value of sine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$xASIND Arc Sine in Degrees

Given the sine of an angle, the Arc Sine in Degrees routine returns that angle (in degrees).

FORMAT	MTH\$ASIND sine
	MTH\$DASIND sine
	MTH\$GASIND sine

Each of the above formats accepts as input one of the floating-point types.
jsb entries
MTH\$ASIND_R4
MTH\$DASIND_R7
MTH\$GASIND_R7
Each of the above JSB entries accepts as input one of the floating-point types.

RETURNS

VMS usage:	floating_point
type:	F_floating, D_floating, G_floating
access:	write only
mechanism:	by value

Angle in degrees. The angle returned will have a value in the range

$$
-90 \leq \text { angle } \leq 90
$$

MTH\$ASIND returns an F-floating number. MTH\$DASIND returns a Dfloating number. MTH\$GASIND returns a G-floating number.

ARGUMENTS

Sine	
VMS usage:	floating_point
type:	F_floating, \mathbf{D} _floating,
acce_floating	
mechanism:	read only

Sine of the angle whose value (in degrees) is to be returned. The sine argument is the address of a floating-point number that is this sine. The absolute value of sine must be less than or equal to 1 . For MTH\$ASIND, sine specifies an F-floating number. For MTH\$DASIND, sine specifies a D-floating number. For MTH\$GASIND, sine specifies a G-floating number.

DESCRIPTION The angle in degrees whose sine is X is computed as:

Value of Sine	Value Returned
0	0
1	90
-1	-90
$0<\|X\|<1$	$z A T A N D\left(X / z S Q R T\left(1-X^{2}\right)\right)$, where zATAND and zSORT are the Math Library arc tangent and square root routines, respectively, of the appropriate data type
$1<\|X\|$	The error MTH\$_INVARGMAT is signaled

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HASIND.

CONDITION

VALUES SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$xASIND routine encountered a floating point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of one and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
MTHS_INVARGMAT
Invalid argument. The absolute value of sine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHFSL_MCH_SAVRO/R1.

MTH\$xATAN

MTH\$xATAN Arc Tangent in Radians

Given the tangent of an angle, the Arc Tangent in Radians routine returns that angle (in radians).

FORMAT

jsb entries

MTH\$ATAN tangent
 MTH\$DATAN tangent
 MTH\$GATAN tangent

Each of the above formats accepts as input one of the floating-point types.
MTH\$ATAN_R4
MTH\$DATAN_R7
MTH\$GATAN_R7
Each of the above JSB entries accepts as input one of the floating-point types.

RETURNS

VMS usage:	floating_point
type:	F_floating, \mathbf{D} _floating, G_floating
access:	write only
mechanism:	by value

Angle in radians. The angle returned will have a value in the range

$$
-\pi / 2 \leq \text { angle } \leq \pi / 2
$$

MTH\$ATAN returns an F-floating number. MTH\$DATAN returns a Dfloating number. MTH\$GATAN returns a G-floating number.

ARGUMENTS

tangent

VMS usage: floating_point
type: \quad F_floating, D_floating, G_floating access: read only mechanism: by reference
The tangent of the angle whose value (in radians) is to be returned. The tangent argument is the address of a floating-point number that is this tangent. For MTH\$ATAN, tangent specifies an F-floating number. For MTH\$DATAN, tangent specifies a D-floating number. For MTH\$GATAN, tangent specifies a G-floating number.

MTH\$xATAN

In radians, the computation of the arc tangent function is based on the following identities:

$$
\begin{aligned}
& \arctan (X)=X-X^{3} / 3+X^{5} / 5-X^{7} / 7+\ldots \\
& \arctan (X)=X+X * Q\left(X^{2}\right), \\
& \quad \text { where } Q(Y)=-Y / 3+Y^{2} / 5-Y^{3} / 7+\ldots \\
& \arctan (X)=X * P\left(X^{2}\right), \\
& \quad \text { where } P(Y)=1-Y / 3+Y^{2} / 5-Y^{3} / 7+\ldots \\
& \arctan (X)=\pi / 2-\arctan (1 / X) \\
& \arctan (X)=\arctan (A)+\arctan ((X-A) /(1+A * X)) \\
& \quad \text { for any real A }
\end{aligned}
$$

The angle in radians whose tangent is X is computed as:

Value of \boldsymbol{X}	Angle Returned
$0 \leq X \leq 3 / 32$	$X+X * Q\left(X^{2}\right)$
$3 / 32<X \leq 11$	ATAN $(A)+V *\left(P\left(V^{2}\right)\right)$, where A and ATAN(A) are chosen by table lookup and $V=(X-A) /(1+A * X)$
$11<X$	$\pi / 2-W *\left(P\left(W^{2}\right)\right)$ where $W=1 / X$
$X<0$	$-z A T A N(\|X\|)$

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HATAN.

Reserved operand. The MTH\$xATAN routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$xATAND Arc Tangent in Degrees

Given the tangent of an angle, the Arc Tangent in Degrees routine returns that angle (in degrees).

FORMAT
 MTH\$ATAND tangent
 MTH\$DATAND tangent
 MTH\$GATAND tangent

Each of the above formats accepts as input one of the floating-point types.

jsb entries

MTH\$ATAND_R4
MTH\$DATAND_R7
MTH\$GATAND_R7
Each of the above JSB entries accepts as input one of the floating-point types.

RETURNS	VMS usage: floating_point type: F_floating, D_floating, G_floating access: write only mechanism: by value

Angle in degrees. The angle returned will have a value in the range

$$
-90 \leq \text { angle } \leq 90
$$

MTH\$ATAND returns an F-floating number. MTH\$DATAND returns a D-floating number. MTH\$GATAND returns a G-floating number.

ARGUMENTS

tangent
VMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: read only
mechanism: by reference
The tangent of the angle whose value (in degrees) is to be returned. The tangent argument is the address of a floating-point number that is this tangent. For MTH\$ATAND, tangent specifies an F-floating number. For MTH\$DATAND, tangent specifies a D-floating number. For MTH\$GATAND, tangent specifies a G-floating number.

DESCRIPTION The computation of the arc tangent function is based on the following identities:

$$
\begin{aligned}
& \arctan (X)=(180 / \pi) *\left(X-X^{3} / 3+X^{5} / 5-X^{7} / 7+\ldots\right) \\
& \arctan (X)=64 * X+X * Q\left(X^{2}\right) \\
& \quad \text { where } Q(Y)=180 / \pi *[(1-64 * \pi / 180)]-Y / 3+Y^{2} / 5-Y^{3} / 7+Y^{4} / 9 \\
& \arctan (X)=X * P\left(X^{2}\right) \\
& \quad \text { where } P(Y)=180 / \pi *\left[1-Y / 3+Y^{2} / 5-Y^{3} / 7+Y^{4} / 9 \ldots\right] \\
& \arctan (X)=90-\arctan (1 / X) \\
& \arctan (X)=\arctan (A)+\arctan ((X-A) /(1+A * X))
\end{aligned}
$$

The angle in degrees whose tangent is X is computed as:

Tangent	Angle Returned
$X \leq 3 / 32$	$64 * X+X * Q\left(X^{2}\right)$
$3 / 32<X \leq 11$	ATAND(A)+V*P($\left.V^{2}\right)$, where A and ATAND(A) are chosen by table lookup and $V=(X-A) /(1+A * X)$ $11<X$
$X<0-W *\left(P\left(W^{2}\right)\right)$, where $W=1 / X$	
X	-zATAND(IXI)

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HATAND.

CONDITION VALUE SIGNALED

Reserved operand. The MTH\$xATAND routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$xATAN2 Arc Tangent in Radians with Two Arguments

Given sine and cosine, the Arc Tangent in Radians with Two Arguments routine returns the angle (in radians) whose tangent is given by the quotient of sine and cosine, (sine/cosine).

FORMAT	MTH\$ATAN2 sine, cosine
	MTH\$DATAN2 sine, cosine
	MTH\$GATAN2 sine, cosine

Each of the above formats accepts as input one of the floating-point types.

ARGUMENTS sine

VMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: read only
mechanism: by reference
Dividend. The sine argument is the address of a floating-point number that is this dividend. For MTH\$ATAN2, sine specifies an F-floating number. For MTH\$DATAN2, sine specifies a D-floating number. For MTH\$GATAN2, sine specifies a G-floating number.

cosine

VMS usage: floating_point
type: \quad F_floating, D_floating, G_floating access: read only mechanism: by reference

Divisor. The cosine argument is the address of a floating-point number that is this divisor. For MTH\$ATAN2, cosine specifies an F-floating number. For MTH\$DATAN2, cosine specifies a D-floating number. For MTH\$GATAN2, cosine specifies a G -floating number.

DESCRIPTION The angle in radians whose tangent is Y / X is computed as follows, where f is defined in the description of MTH\$zCOSH.

Value of Input Arguments	Angle Returned
$X=0$ or $Y / X>2^{(f+1)}$	$\pi / 2 *(\operatorname{sign} Y)$
$X>0$ and $Y / X \leq 2^{(f+1)}$	$z A T A N(Y / X)$
$X<0$ and $Y / X \leq 2^{(f+1)}$	$\pi *(\operatorname{sign} Y)+z A T A N(Y / X)$

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HATAN2.

CONDITION

VALUES SIGNALED

SS\$_ROPRAND	Reserved operand. The MTH\$xATAN2 routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by
DIGITAL.	
MTH\$_INVARGMAT	Invalid argument. Both cosine and sine are zero. LIB\$SIGNAL copies the floating-point reserved
	operand to the mechanism argument vector
	CHF\$L_MCH_SAVRO/R1. The result is the
	floating-point reserved operand unless you have
	written a condition handler to change CHF\$L_
	MCH_SAVRO/R1.

MTH\$xATAND2 Arc Tangent in Degrees with Two Arguments

Given sine and cosine, the Arc Tangent in Degrees with Two Arguments routine returns the angle (in degrees) whose tangent is given by the quotient of sine and cosine, (sine/cosine).

MTH\$ATAND2 sine, cosine MTH\$DATAND2 sine, cosine MTH\$GATAND2 sine, cosine

Each of the above formats accepts as input one of the floating-point types.

RETURNS

VMS usage:	floating_point
type:	F_floating, D _floating, G_floating
access:	write only
mechanism:	by value

Angle (in degrees). MTH\$ATAND2 returns an F-floating number. MTH\$DATAND2 returns a D-floating number. MTH\$GATAND2 returns a G-floating number.

ARGUMENTS sine

VMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: read only
mechanism: by reference
Dividend. The sine argument is the address of a floating-point number that is this dividend. For MTH\$ATAND2, sine specifies an F-floating number. For MTH\$DATAND2, sine specifies a D-floating number. For MTH\$GATAND2, sine specifies a G -floating number.

cosine

VMS usage: floating_point
type: \quad F_floating, D_floating, G_floating access: read only mechanism: by reference

Divisor. The cosine argument is the address of a floating-point number that is this divisor. For MTH\$ATAND2, cosine specifies an F-floating number. For MTH\$DATAND2, cosine specifies a D-floating number. For MTH\$GATAND2, cosine specifies a G-floating number.

DESCRIPTION The angle in degrees whose tangent is Y / X is computed below and where f is defined in the description of MTH\$zCOSH.

Value of Input Arguments	Angle Returned
$X=0$ or $Y / X>2^{(f+1)}$	$90 *(\operatorname{sign} Y)$
$X>0$ and $Y / X \leq 2^{(f+1)}$	$z A T A N D(Y / X)$
$X<0$ and $Y / X \leq 2^{(f+1)}$	$180 *(\operatorname{sign} Y)+z A T A N D(Y / X)$

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HATAND2.

CONDITION

SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$xATAND2 routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Invalid argument. Both cosine and sine are zero. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_ MCH_SAVRO/R1.

MTH\$xATANH Hyperbolic Arc Tangent

Given the hyperbolic tangent of an angle, the Hyperbolic Arc Tangent routine returns the hyperbolic arc tangent of that angle.

MTH\$ATANH hyperbolic-tangent
 MTH\$DATANH hyperbolic-tangent
 MTH\$GATANH hyperbolic-tangent

Each of the above formats accepts as input one of the floating-point types.

VMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: write only
mechanism: by value
The hyperbolic arc tangent of hyperbolic-tangent. MTH\$ATANH returns an F-floating number. MTH\$DATANH returns a D-floating number. MTH\$GATANH returns a G-floating number.

ARGUMENTS hyperbolic-tangent

VMS usage: floating_point
type: \quad F_floating, D_floating, G_floating access: read only mechanism: by reference

Hyperbolic tangent of an angle. The hyperbolic-tangent argument is the address of a floating-point number that is this hyperbolic tangent. For MTH\$ATANH, hyperbolic-tangent specifies an F-floating number. For MTH\$DATANH, hyperbolic-tangent specifies a D-floating number. For MTH\$GATANH, hyperbolic-tangent specifies a G-floating number.

DESCRIPTION
The hyperbolic arc tangent function is computed as follows:

Value of \mathbf{x}	Value Returned
$\|X\|<1$	$z A T A N H(X)=z L O G((X+1) /(X-1)) / 2$
$\|X\| \geq 1$	An invalid argument is signaled

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HATANH.

MTH\$xATANH

CONDITION
 VALUES
 SIGNALED

MTH\$_INVARGMAT

Reserved operand. The MTH\$xATANH routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Invalid argument: $|X| \geq 1$. LIB $\$$ SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$CxABS Complex Absolute Value

The Complex Absolute Value routine returns the absolute value of a complex number (r,i).

FORMAT

MTH\$CABS complex-number MTHSCDABS complex-number MTH\$CGABS complex-number

Each of the above three formats accepts as input one of the three floatingpoint complex types.

RETURNS

VMS usage:	floating_point
type:	F_floating, D_floating, G_floating
access:	write only
mechanism:	by value

The absolute value of a complex number. MTH\$CABS returns an F-floating number. MTH\$CDABS returns a D-floating number. MTH\$CGABS returns a G-floating number.

ARGUMENT complex-number

VMS usage: complex_number
type: \quad F_floating complex, D_floating complex, G_floating complex
access: read only
mechanism: by reference
A complex number (r, i), where r and i are both floating-point complex values. The complex-number argument is the address of this complex number. For MTH\$CABS, complex-number specifies an F-floating complex number. For MTH\$CDABS, complex-number specifies a D-floating complex number. For MTH\$CGABS, complex-number specifies a G-floating complex number.

DESCRIPTION The complex absolute value is computed as follows, where MAX is the larger of $|\mathrm{r}|$ and $|\mathrm{i}|$, and $M I N$ is the smaller of $|\mathrm{r}|$ and $\mid \mathrm{il}$.

$$
\text { result }=M A X * S Q R T\left((M I N / M A X)^{2}+1\right)
$$

CONDITION

VALUES
SIGNALED

SS\$_ROPRAND

NTH_FLOOVEMAT

Reserved operand. The MTH\$CxABS routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library when both r and i are large.

EXAMPLES

(1) ${ }^{\mathrm{C}+}$

C This FORTRAN example forms the absolute value of an
C F-floating complex number using MTH\$CABS and the
C FORTRAN random number generator RAN.
C
C Declare Z as a complex value and MTH\$CABS as a REAL*4 value.
C MTH\$CABS will return the absolute value of $Z: \quad Z_{-} N E W=M T H \$ C A B S(Z)$.
C-
COMPLEX Z
COMPLEX CMPLX
REAL*4 Z_NEW, MTH\$CABS
INTEGER M
$M=1234567$
C+
C
Generate a random complex number with the FORTRAN generic CMPLX.
$Z=\operatorname{CMPLX}(\operatorname{RAN}(M), \operatorname{RAN}(M))$
C+
C $\quad Z$ is a complex number (r, i) with real part " r " and
C imaginary part "i".
C-
TYPE $*$, ' The complex number z is', z
TYPE *, ' It has real part', REAL(Z),'and imaginary part', AIMAG(Z)
TYPE *, , ,

C+
C Compute the complex absolute value of Z.
C-
Z_NEW = MTH\$CABS (Z)
TYPE *, ' The complex absolute value of ', z, is', Z_NEW
END

This example uses an F-floating complex number for complex-number. The output of this FORTRAN example is as follows:
The complex number z is $(0.8535407,0.2043402)$
It has real part 0.8535407 and imaginary part 0.2043402
The complex absolute value of $(0.8535407,0.2043402)$ is 0.8776597

```
2 C+ C This FORTRAN example forms the absolute
    C value of a G-floating complex number using
    C MTH$CGABS and the FORTRAN random number
    C generator RAN.
    C
    C Declare Z as a complex value and MTH$CGABS as a
    C REAL*8 value. MTH$CGABS will return the absolute
    C value of Z: Z_NEW = MTH$CGABS(Z).
    C-
        COMPLEX*16 Z
        REAL*8 Z_NEW,MTH$CGABS
    C+
    C Generate a random complex number with the FORTRAN
    C generic CMPLX.
    C-
        Z = (12.34567890123,45.536376385345)
        TYPE *, ' The complex number z is',z
        TYPE *, , ,
    C+
    C Compute the complex absolute value of }Z\mathrm{ .
    C-
        Z_NEW = MTH$CGABS (Z)
        TYPE *, ' The complex absolute value of',z,' is',Z_NEW
        END
```

This FORTRAN example uses a G-floating complex number for complexnumber. Because this example uses a G-floating number, it must be compiled as follows:
\$ FORTRAN/G MTHEX.FOR
Notice the difference in the precision of the output generated:
The complex number z is (12.3456789012300,45.5363763853450)
The complex absolute value of ($12.3456789012300,45.5363763853450$) is
47.1802645376230

MTH\$CCOS Cosine of a Complex Number (F-floating Value)

The Cosine of a Complex Number (F-floating Value) routine returns the cosine of a complex number as an F -floating value.

FORMAT
 MTH\$CCOS complex-number

RETURNS
VMS usage: complex_number
type: \quad F-floating complex
access: write only
mechanism: by value
The complex cosine of the complex input number. MTH $\$ C C O S$ returns an F-floating complex number.

ARGUMENTS complex-number

$\begin{array}{ll}\text { VMS usage: } & \text { complex_number } \\ \text { type: } & \text { F_floating complex } \\ \text { access: } & \text { read only } \\ \text { mechanism: } & \text { by reference }\end{array}$
A complex number (r, i) where r and i are floating-point numbers. The complex-number argument is the address of this complex number. For MTH\$CCOS, complex-number specifies an F-floating complex number.

DESCRIPTION The complex cosine is calculated as follows:

$$
\text { result }=(\operatorname{COS}(r) * \operatorname{COSH}(i),-\operatorname{SIN}(r) * \operatorname{SINH}(i))
$$

The routine descriptions for the D - and G-floating point versions of this routine are listed alphabetically under MTH $\$ C \times C O S$.

CONDITION VALUES SIGNALED

Reserved operand. The MTH\$CCOS routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library: the absolute value of \mathbf{i} is greater than about 88.029 for F-floating values.

EXAMPLE

```
C+
C This FORTRAN example forms the complex
C cosine of an F-floating complex number using
C MTH$CCOS and the FORTRAN random number
C generator RAN.
C
C Declare Z and MTH$CCOS as complex values.
C MTH$CCOS will return the cosine value of
C Z: Z_NEW = MTH$CCOS(Z)
C-
    COMPLEX Z,Z_NEW,MTH$CCOS
    COMPLEX CMPLX
    INTEGER M
    M = 1234567
C+
C Generate a random complex number with the
C FORTRAN generic CMPLX.
C-
    Z = CMPLX(RAN(M),RAN(M))
C+
C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
C-
    TYPE *, ' The complex number z is',z
    TYPE *, ' It has real part',REAL(Z),'and imaginary part',AIMAG(Z)
    TYPE *, , ,
C+
C Compute the complex cosine value of Z.
C-
    Z_NEW = MTH$CCOS(Z)
    TYPE *, , The complex cosine value of',z,' is',\mp@subsup{Z}{_}{\prime}NEW
    END
```

This FORTRAN example demonstrates the use of MTH\$CCOS, using the MTH\$CCOS entry point. The output of this program is as follows:

The complex number z is $(0.8535407,0.2043402)$
It has real part 0.8535407 and imaginary part 0.2043402
The complex cosine value of $(0.8535407,0.2043402)$ is $(0.6710899,-0.1550672)$

MTH\$CxCOS Cosine of a Complex Number

The Cosine of a Complex Number routine returns the cosine of a complex number.

MTH\$CDCOS complex-cosine , complex-number
MTH\$CGCOS complex-cosine , complex-number
Each of the above formats accepts as input one of the floating-point complex types.

RETURNS
 None.

ARGUMENTS complex-cosine

VMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference
Complex cosine of the complex-number. The complex cosine routines that have D-floating and G-floating complex input values write the address of the complex cosine into the complex-cosine argument. For MTH\$CDCOS, the complex-cosine argument specifies a D-floating complex number. For MTH\$CGCOS, the complex-number argument specifies a G-floating complex number.

complex-number

VMS usage: complex_number
type: D_floating complex, G_floating complex access: read only mechanism: by reference
A complex number (r, i) where r and i are floating-point numbers. The complex-number argument is the address of this complex number. For MTH\$CDCOS, complex-number specifies a D-floating complex number. For MTH\$CGCOS, complex-number specifies a G-floating complex number.

DESCRIPTION The complex cosine is calculated as follows:

$$
\text { result }=(C O S(r) * C O S H(i),-S I N(r) * S I N H(i))
$$

MTH\$CxCOS

CONDITION
VALUES SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$CxCOS routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library: the absolute value of \mathbf{i} is greater than about 88.029 for F-floating and D-floating values or greater than 709.089 for G -floating values.

EXAMPLE

```
C+
C This FORTRAN example forms the complex
C cosine of a D-floating complex number using
C MTH$CDCOS and the FORTRAN random number
C generator RAN.
C
C Declare Z and MTH$CDCOS as complex values.
C MTH$CDCOS will return the cosine value of
C Z: Z_NEW = MTH$CDCOS (Z)
C-
    COMPLEX*16 Z,Z_NEW,MTH$CDCOS
        COMPLEX*16 DCMPLX
        INTEGER M
        M = 1234567
C+
C Generate a random complex number with the
C FORTRAN generic DCMPLX.
C-
        Z = DCMPLX(RAN(M),RAN(M))
C+
C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
C-
    TYPE *, ' The complex number z is',z
    TYPE *, , ,
C+
C Compute the complex cosine value of Z
C-
    Z_NEW = MTH$CDCOS(Z)
    TYPE *, ' The complex cosine value of',z,' is',Z_NEW
    END
```


MTH\$CxCOS

This FORTRAN example program demonstrates the use of MTH\$CxCOS, using the MTH\$CDCOS entry point. Notice the high precision of the output generated:

[^6]
MTH\$CEXP Complex Exponential (F-floating Value)

The Complex Exponential (F-floating Value) routine returns the complex exponential of a complex number as an F -floating value.

FORMAT MTH\$CEXP complex-number

RETURNS	VMS usage: type: access:
complex_number F_floating complex write only	
mechanism:	by value

ARGUMENTS complex-number

VMS usage: complex_number
type: \quad F_floating complex
access: read only
mechanism: by reference
Complex number whose complex exponential is to be returned. This complex number has the form (r, i), where r is the real part and i is the imaginary part. The complex-number argument is the address of this complex number. For MTH\$CEXP, complex-number specifies an F-floating number.

DESCRIPTION The complex exponential is computed as follows:

$$
\text { complex }- \text { exponent }=(E X P(r) * \operatorname{COS}(i), E X P(r) * S I N(i))
$$

The routine descriptions for the D- and G-floating point versions of this routine are listed alphabetically under MTH\$CXEXP.

CONDITION SIGNALED

 VALUES SS\$_ROPRAND

MTH\$_FLOOVEMAT

Reserved operand. The MTH\$CEXP routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Floating-point overflow in Math Library: the absolute value of r is greater than about 88.029 for F -floating values.

EXAMPLE

```
C+
C This FORTRAN example forms the complex exponential
C of an F-floating complex number using MTH$CEXP
C and the FORTRAN random number generator RAN.
C
C Declare Z and MTH$CEXP as complex values. MTH$CEXP
C will return the exponential value of Z: Z_NEW = MTH$CEXP(Z)
C-
    COMPLEX Z,Z_NEW,MTH$CEXP
    COMPLEX CMPLX
    INTEGER M
    M = 1234567
C+
C Generate a random complex number with the
C FORTRAN generic CMPLX.
C-
    Z = CMPLX (RAN}(M),\operatorname{RAN}(M)
C+
C Z is a complex number ( }r,i\mathrm{ ) with real part "r"
C and imaginary part "i".
C-
    TYPE *, ' The complex number z is',z
    TYPE *, ' It has real part',REAL(Z),'and imaginary part',AIMAG(Z)
    TYPE *, , ,
C+
C Compute the complex exponential value of Z.
C-
    Z_NEW = MTH$CEXP(Z)
    TYPE *, ' The complex exponential value of ',z,' is',Z_NEW
    END
```

This FORTRAN program demonstrates the use of MTH\$CEXP as a function call. The output generated by this example is as follows:

```
The complex number \(z\) is ( \(0.8535407,0.2043402\) )
It has real part 0.8535407 and imaginary part 0.2043402
The complex exponential value of ( \(0.8535407,0.2043402\) ) is
    (2.299097, 0.4764476)
```


MTH\$CxEXP Complex Exponential

The Complex Exponential routine returns the complex exponential of a complex number.

FORMAT
MTH\$CDEXP complex-exponent,complex-number MTH\$CGEXP complex-exponent,complex-number
Each of the above formats accepts as input one of the floating-point complex types.

RETURNS
 None.

ARGUMENTS

complex-exponent

VMS usage: complex_number
type: D_floating complex, G_floating complex access: write only mechanism: by reference

Complex exponential of complex-number. The complex exponential routines that have D-floating complex and G-floating complex input values write the complex-exponent into this argument. For MTH\$CDEXP, complex-exponent argument specifies a D-floating complex number. For MTH\$CGEXP, complex-exponent specifies a G-floating complex number.

complex-number

VMS usage: complex_number
type: D_floating complex, G_floating complex access: read only mechanism: by reference
Complex number whose complex exponential is to be returned. This complex number has the form (r, i), where r is the real part and i is the imaginary part. The complex-number argument is the address of this complex number. For MTH\$CDEXP, complex-number specifies a D-floating number. For MTH\$CGEXP, complex-number specifies a G-floating number.

$$
\text { complex }- \text { exponent }=(E X P(r) * \operatorname{COS}(i), E X P(r) * S I N(i))
$$

MTH\$CxEXP

CONDITION
 VALUES SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH\$CxEXP routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
MTH\$_FLOOVEMAT

Floating-point overflow in Math Library: the absolute value of \mathbf{r} is greater than about 88.029 for D-floating values or greater than about 709.089 for G-floating values.

EXAMPLE

```
C+
C This FORTRAN example forms the complex exponential
C of a G-floating complex number using MTH$CGEXP
C and the FORTRAN random number generator RAN.
C
C Declare Z and MTH$CGEXP as complex values.
C MTH$CGEXP will return the exponential value
C of Z: CALL MTH$CGEXP(Z_NEW,Z)
C-
    COMPLEX*16 Z,Z_NEW
    COMPLEX*16 MTH$GCMPLX
    REAL*8 R,I
    INTEGER M
    M = 1234567
C+
C Generate a random complex number with the FORTRAN
C- generic CMPLX.
C-
    R= RAN(M)
    I = RAN(M)
    Z = MTH$GCMPLX(R,I)
    TYPE *, ' The complex number z is',z
    TYPE *, ' ,
C+
C Compute the complex exponential value of Z.
C-
    CALL MTH$CGEXP(Z_NEW,Z)
    TYPE *, ' The complex exponential value of',z,' is',Z_NEW
    END
```

This FORTRAN example demonstrates how to access MTH\$CGEXP as a procedure call. Because G-floating numbers are used, this program must be compiled using the command "FORTRAN/G filename".

Notice the high precision of the output generated:
The complex number z is ($0.853540718555450,0.204340159893036$)
The complex exponential value of ($0.853540718555450,0.204340159893036$) is (2.29909677719458, 0.476447678044977)

MTH\$CLOG Complex Natural Logarithm (F-floating Value)

The Complex Natural Logarithm (F-floating Value) routine returns the complex natural logarithm of a complex number as an F -floating value.

FORMAT

MTH\$CLOG complex-number

RETURNS	VMS usage: type: access: mechanism:complex_number F_floating complex write only by value
	The complex natural logarithm of a complex number. MTH\$CLOG returns an F-floating complex number.

ARGUMENTS

complex-number
 VMS usage: complex_number
 type: \quad F-floating complex
 access: read only
 mechanism: by reference

Complex number whose complex natural logarithm is to be returned. This complex number has the form (r, i), where r is the real part and i is the imaginary part. The complex-number argument is the address of this complex number. For MTH\$CLOG, complex-number specifies an F-floating number.

DESCRIPTION The complex natural logarithm is computed as follows:

$$
\operatorname{CLOG}(x)=(\operatorname{LOG}(C A B S(x)), \operatorname{ATAN2}(i, r))
$$

The routine descriptions for the D- and G-floating point versions of this routine are listed alphabetically under MTH\$CxLOG.

Reserved operand. The MTH\$CLOG routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$CLOG

EXAMPLE

Examples of using MTH\$CLOG from VAX MACRO (using both the CALLS and the CALLG instructions) appear in the introductory section of this manual.

MTH\$CxLOG Complex Natural Logarithm

The Complex Natural Logarithm routine returns the complex natural logarithm of a complex number.

FORMAT

MTH\$CDLOG complex-natural-log, complex-number MTH\$CGLOG complex-natural-log ,complex-number

Each of the above formats accepts as input one of the floating-point complex types.

RETURNS None.

ARGUMENTS

complex-natural-log
VMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference
Natural logarithm of the complex number specified by complex-number. The complex natural logarithm routines that have D-floating complex and G-floating complex input values write the address of the complex natural logarithm into complex-natural-log. For MTH\$CDLOG, the complex-natural-log argument specifies a D-floating complex number. For MTH\$CGLOG, the complex-natural-log argument specifies a G-floating complex number.

complex-number

VMS usage: complex_number
type: D_floating complex, G_floating complex access: read only
mechanism: by reference
Complex number whose complex natural logarithm is to be returned. This complex number has the form (r, i), where r is the real part and i is the imaginary part. The complex-number argument is the address of this complex number. For MTH\$CDLOG, complex-number specifies a D-floating number. For MTH\$CGLOG, complex-number specifies a G-floating number.

DESCRIPTION The complex natural logarithm is computed as follows:

$$
\operatorname{CLOG}(x)=(\operatorname{LOG}(C A B S(x)), \operatorname{ATAN2}(i, r))
$$

CONDITION VALUE SIGNALED

SS\$_ROPRAND
Ss,

Reserved operand. The MTH\$CxLOG routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

EXAMPLE

```
C+
```

C This FORTRAN example forms the complex logarithm
C of a D-floating complex number by using MTH\$CDLOG
C and the FORTRAN random number generator RAN.
C
C Declare Z and MTH\$CDLOG as complex values. Then MTH\$CDLOG
c will return the logarithm of Z : CALL MTH\$CDLOG(Z_NEW, Z).
C
C Declare Z,Z_LOG, and MTH\$DCMPLX as complex values,
C and R and I as real values. MTH\$DCMPLX takes two real
C arguments and returns one complex number.
C
C Given a complex number Z, MTH\$CDLOG(Z) returns the
C complex natural logarithm of Z.
C-
COMPLEX*16 Z, Z_NEW,MTH\$DCMPLX
REAL*8 R,I
$R=3.1425637846746565$
$I=7.43678469887$
Z $=$ MTH\$DCMPLX (R, I)
C+
C $\quad \mathrm{Z}$ is a complex number (r, i) with real part " r " and imaginary
C part "i".
C-
TYPE *, ' The complex number z is', z
TYPE *, ,
CALL MTH\$CDLOG(Z_NEW, Z)
TYPE *,' The complex logarithm of ', z, , is', Z_{-}NEW
END

This FORTRAN example program uses MTH\$CDLOG by calling it as a procedure. The output generated by this program is as follows:

The complex number z is (3.142563784674657,7.436784698870000)
The complex logarithm of (3.142563784674657,7.436784698870000) is
($2.088587642177504,1.170985519274141$)

MTH\$CMPLX Complex Number Made from F-floating-Point

The Complex Number Made from F-floating-Point routine returns a complex number from two floating-point input values.

FORMAT	MTH\$CMPLX real-part ,imaginary-part
RETURNS	VMS usage: complex_number type: access: mechanism:
	F_floating complex write only by value
ARGUMPlex number. MTH\$CMPLX returns an F-floating complex number.	

DESCRIPTION
The MTH\$CMPLX routines return a complex number from two F-floating input values. The routine descriptions for the D - and G -floating point versions of this routine are listed alphabetically under MTH\$xCMPLX.

CONDITION VALUE SIGNALED

Reserved operand. The MTH\$CMPLX routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

EXAMPLE

```
C+
C This FORTRAN example forms two F-floating
C point complex numbers using MTH$CMPLX
C and the FORTRAN random number generator RAN.
C
C Declare Z and MTH$CMPLX as complex values, and R
C and I as real values. MTH$CMPLX takes two real
C F-floating point values and returns one COMPLEX*8 number.
C
C Note, since CMPLX is a generic name in FORTRAN, it would be
C sufficient to use CMPLX.
C CMPLX must be declare to be of type COMPLEX*8.
C
C Z = CMPLX (R,I)
C-
    COMPLEX Z,MTH$CMPLX,CMPLX
        REAL*4 R,I
        INTEGER M
        M = 1234567
        R = RAN(M)
        I = RAN(M)
        Z = MTH$CMPLX(R,I)
C+
C Z is a complex number ( }r,i\mathrm{ ) with real part "r" and
C imaginary part "i".
C-
    TYPE *, ' The two input values are:',R,I
    TYPE *, , The complex number z is',z
    z = CMPLX(RAN (M),RAN(M))
    TYPE *, , ,
    TYPE *,', Using the FORTRAN generic CMPLX with random R and I:'
    TYPE *,' The complex number z is',z
    END
```

This FORTRAN example program demonstrates the use of MTH\$CMPLX. The output generated by this program is as follows:

```
The two input values are: 0.8535407 0.2043402
The complex number z is (0.8535407,0.2043402)
Using the FORTRAN generic CMPLX with random R and I:
The complex number z is (0.5722565,0.1857677)
```


MTH\$xCMPLX Complex Number Made from Dor G-floating-Point

The Complex Number Made from D- or G-floating-Point routine returns a complex number from two D - or G-floating input values.

FORMAT
 MTH\$DCMPLX complx, real-part ,imaginary-part
 MTH\$GCMPLX complx, real-part,imaginary-part
 Each of the above formats accepts as input one of floating-point complex types.

RETURNS
None.

ARGUMENTS

complx

VMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference
The floating-point complex value of a complex number. The complex exponential functions that have D-floating complex and G-floating complex input values write the address of this floating-point complex value into complx. For MTH\$DCMPLX, complx specifies a D-floating complex number. For MTH\$GCMPLX, complx specifies a G-floating complex number. For MTH\$CMPLX, complx is not used.

real-part

VMS usage: floating_point
type: D_floating, G_floating
access: read only
mechanism: by reference
Real part of a complex number. The real-part argument is the address of a floating-point number that contains this real part, r, of (r, i). For MTH\$DCMPLX, real-part specifies a D-floating number. For MTH\$GCMPLX, real-part specifies a G-floating number.

imaginary-part

VMS usage: floating_point
type: D_floating, G_floating
access: read only
mechanism: by reference
Imaginary part of a complex number. The imag-parg argument is the address of a floating-point number that contains this imaginary part, i , of (r, i). For MTH\$DCMPLX, imaginary-part specifies a D-floating number. For MTH\$GCMPLX, imaginary-part specifies a G-floating number.

MTH\$xCMPLX

CONDITION	
VALUE	Reserved operand. The MTH $\$ \times C M P L X$ routine encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved	
operand is a floating-point datum with a sign bit	
of 1 and a biased exponent of zero. Floating-point	
reserved operands are reserved for future use by	
DIGITAL.	

EXAMPLE

```
C+
C This FORTRAN example forms two D-floating
C point complex numbers using MTH$CMPLX
C and the FORTRAN random number generator RAN.
C
C Declare Z and MTH$DCMPLX as complex values, and R
C and I as real values. MTH$DCMPLX takes two real
C D-floating point values and returns one
C COMPLEX*16 number.
C
C-
    COMPLEX*16 Z
    REAL*8 R,I
    INTEGER M
    M = 1234567
    R = RAN (M)
    I = RAN (M)
    CALL MTH$DCMPLX(Z,R,I)
C+
C Z is a complex number (r,i) with real part "r" and imaginary
C part "i".
C-
    TYPE *, , The two input values are:',R,I
    TYPE *, ' The complex number z is',Z
    END
```

This FORTRAN example demonstrates how to make a procedure call to MTH\$DCMPLX. Notice the difference in the precision of the output generated.

The two input values are: $0.8535407185554504 \quad 0.2043401598930359$
The complex number z is ($0.8535407185554504,0.2043401598930359$)

MTH\$CONJG Conjugate of a Complex Number (F-floating Value)

The Conjugate of a Complex Number (F -floating Value) routine returns the complex conjugate (r, i) of a complex number (r, i) as an F -floating value.

FORMAT MTH\$CONJG complex-number

RETURNS	VMS usage: type:	complex_number F_floating complex
	access:	write only
mechanism:	by value	

Complex conjugate of a complex number. MTH\$CONJG returns an F-floating complex number.

ARGUMENTS complex-number

VMS usage: complex_number
type: \quad F-floating complex
access: read only
mechanism: by reference
A complex number (r, i), where r and i are floating-point numbers. The complex-number argument is the address of this floating-point complex number. For MTH\$CONJG, complex-number specifies an F-floating number.

DESCRIPTION The MTH\$CONJG routine return the complex conjugate ($\mathrm{r},-\mathrm{i}$) of a complex number (r, i) as an F -floating value. The routine descriptions for the D and G-floating point versions of this routine are listed alphabetically under MTH\$xCONJG.

Reserved operand. The MTH\$CONJG routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$xCONJG Conjugate of a Complex Number

The Conjugate of a Complex Number routine returns the complex conjugate ($\mathbf{r},-\mathrm{i}$) of a complex number ($\mathrm{r}, \mathrm{i})$.

FORMAT

MTH\$DCONJG complex-conjugate ,complex-number MTH\$GCONJG complex-conjugate ,complex-number

Each of the above formats accepts as input one of the floating-point complex types.
RETURNS None.
ARGUMENTS
complex-conjugate
VMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference
The complex conjugate ($\mathrm{r},-\mathrm{i}$) of the complex number specified by complexnumber. MTH\$DCONJG and MTH\$GCONJG write the address of this complex conjugate into complex-conjugate. For MTH\$DCONJG, the complex-conjugate argument specifies the address of a D-floating complex number. For MTH\$GCONJG, the complex-conjugate argument specifies the address of a G-floating complex number.

complex-number

VMS usage: complex_number
type: \quad D_floating complex, G_floating complex access: read only mechanism: by reference
A complex number (r, i), where r and i are floating-point numbers. The complex-number argument is the address of this floating-point complex number. For MTH\$DCONJG, complex-number specifies a D-floating number. For MTH\$GCONJG, complex-number specifies a G-floating number.

Reserved operand. The MTH\$xCONJG routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$xCONJG

EXAMPLE

```
C+
C This FORTRAN example forms the complex conjugate
C of a G-floating complex number using MTH$GCONJG
C and the FORTRAN random number generator RAN.
C
C Declare Z, Z_NEW, and MTH$GCONJG as a complex values.
C MTH$GCONJG will return the complex conjugate
C value of Z: Z_NEW = MTH$GCONJG(Z).
C-
    COMPLEX*16 Z,Z_NEW,MTH$GCONJG
    COMPLEX*16 MTH$GCMPLX
    REAL*8 R,I,MTH$GREAL,MTH$GIMAG
    INTEGER M
    M = 1234567
C+
C Generate a random complex number with the
C FORTRAN generic CMPLX.
C-
    R = RAN(M)
    I = RAN (M)
    Z = MTH$GCMPLX(R,I)
    TYPE *, ' The complex number z is',z
    TYPE 1,MTH$GREAL(Z),MTH$GIMAG(Z)
    1 FORMAT(' with real part ',F20.16,' and imaginary part',F20.16)
    TYPE *, , ,
C+
C Compute the complex absolute value of }Z\mathrm{ .
    Z_NEW = MTH$GCONJG(Z)
    TYPE *, ' The complex conjugate value of',z,' is',Z_NEW
    TYPE 1,MTH$GREAL(Z_NEW),MTH$GIMAG(Z_NEW)
    END
```

This FORTRAN example demonstrates how to make a function call to MTH\$GCONJG. Because G-floating numbers are used, the examples must be compiled with the statement "FORTRAN/G filename".

The output generated by this program is as follows:

```
The complex number z is (0.853540718555450,0.204340159893036)
    with real part 0.8535407185554504
    and imaginary part 0.2043401598930359
The complex conjugate value of
    (0.853540718555450,0.204340159893036) is
    (0.853540718555450,-0.204340159893036)
    with real part 0.8535407185554504
    and imaginary part -0.2043401598930359
```


MTH\$xCOS Cosine of Angle Expressed in Radians

The Cosine of Angle Expressed in Radians routine returns the cosine of a given angle (in radians).

FORMAT	MTH\$COS angle-in-radians
	MTH\$DCOS angle-in-radians
	MTH\$GCOS angle-in-radians

Each of the above formats accepts as input one of the floating-point types.
jsb entries

MTH\$COS_R4
 MTHSDCOS_R7
 MTH\$GCOS_R7

Each of the above JSB entries accepts as input one of the floating-point types.

RETURNS

VMS usage:	floating_point
type:	F_floating, \mathbf{D} _floating, G_floating
access:	write only
mechanism:	by value

Cosine of the angle. MTH\$COS returns an F-floating number. MTH\$DCOS returns a D-floating number. MTH\$GCOS returns a G-floating number.

ARGUMENTS

ang/e-in-radians
VMS usage:
floating_point
type:
access:
F_floating, D_floating, G_floating
mechanism:
read only

The angle in radians. The angle-in-radians argument is the address of a floating-point number. For MTH\$COS, angle-in-radians is an F-floating number. For MTH\$DCOS, angle-in-radians specifies a D-floating number. For MTH\$GCOS, angle-in-radians specifies a G-floating number.

MTH\$xCOS

CONDITION VALUE SIGNALED

Reserved operand. The MTH\$xCOS procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$xCOSD Cosine of Angle Expressed in Degrees

The Cosine of Angle Expressed in Degrees routine returns the cosine of a given angle (in degrees).

FORMAT

jsb entries

MTH\$COSD_R4 MTH\$DCOSD_R7
 MTH\$GCOSD_R7

Each of the above JSB entries accepts as input one of the floating-point types.

RETURNS

```
VMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value
```

Cosine of the angle. MTH\$COSD returns an F-floating number. MTH\$DCOSD returns a D-floating number. MTH\$GCOSD returns a Gfloating number.

ARGUMENTS	angle-in-degrees VMS usage: floating_point type: F_floating, D_floating, G_floating
access: read only	
mechanism: by reference	

DESCRIPTION

See the MTH\$SINCOSD routine for the algorithm used to compute the cosine.
The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HCOSD.

MTH\$xCOSD

CONDITION

Reserved operand. The MTH\$xCOSD procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$xCOSH Hyperbolic Cosine

The Hyperbolic Cosine routine returns the hyperbolic cosine of the input value.

FORMAT

MTH\$COSH floating-point-input-value MTH\$DCOSH floating-point-input-value MTH\$GCOSH floating-point-input-value

Each of the above formats accepts as input one of the floating-point types.

RETURNS	VMS usage: type: access: mechanism:
	floating_point F_floating, write only by value

The hyperbolic cosine of the input value floating-point-input-value. MTH\$COSH returns an F-floating number. MTH\$DCOSH returns a Dfloating number. MTH\$GCOSH returns a G-floating number.

The input value. The floating-point-input-value argument is the address of this input value. For MTH\$COSH, floating-point-input-value specifies an F-floating number. For MTH\$DCOSH, floating-point-input-value specifies a D-floating number. For MTH\$GCOSH, floating-point-input-value specifies a G-floating number.

DESCRIPTION

Computation of the hyperbolic cosine depends on the magnitude of the input argument. The range of the function is partitioned using four data-type-dependent constants: $\mathrm{a}(\mathrm{z}), \mathrm{b}(\mathrm{z})$, and $\mathrm{c}(\mathrm{z})$. The subscript z indicates the data type. The constants depend on the number of exponent bits (e) and the number of fraction bits (f) associated with the data type (z).

The values of e and f are:

\mathbf{z}	\mathbf{e}	\mathbf{f}
F	8	24
D	8	56
G	11	53

MTH\$xCOSH

The values of the constants in terms of e and f are:

Variable	Value
$\mathrm{a}(\mathrm{z})$	$2^{(-f / 2)}$
$\mathrm{b}(\mathrm{z})$	CEILING[$(f+1) / 2 * \ln (2)]$
$\mathrm{c}(\mathrm{z})$	$\left(2^{e-1}\right) * \ln (2)$

Based on the above definitions, $\mathrm{zCOSH}(X)$ is computed as follows:

Value of X	Value Returned
$\|\mathrm{X}\|<\mathrm{a}(\mathrm{z})$	1
$\mathrm{a}(\mathrm{z}) \leq\|\mathrm{X}\|<.25$	Computed using a power series expansion in $\|X\|^{2}$
$.25 \leq\|\mathrm{X}\|<\mathrm{b}(\mathrm{z})$	$(z E X P(\|X\|)+1 / z E X P(\|X\|)) / 2$
$\mathrm{~b}(\mathrm{z}) \leq\|\mathrm{X}\|<\mathrm{c}(\mathrm{z})$	$z E X P(\|X\|) / 2$
$\mathrm{c}(\mathrm{z}) \leq\|\mathrm{x}\|$	Overflow occurs

This routine description for the H-floating point value is listed alphabetically under MTH\$HCOSH.

SS\$_ROPRAND

Reserved operand. The MTH\$xCOSH procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
MTH\$_FLOOVEMAT

Floating-point overflow in Math Library: the absolute value of floating-point-input-value is greater than about yyy; LIB\$SIGNAL copies the reserved operand to the signal mechanism vector. The result is the reserved operand -0.0 unless a condition handler changes the signal mechanism vector.
The values of yyy are:
MTH\$COSH-88.722
MTH\$DCOSH-88.722
MTH\$GCOSH—709.782

MTH\$CSIN Sine of a Complex Number (F-floating Value)

The Sine of a Complex Number (F-floating Value) routine returns the sine of a complex number (r, i) as an F -floating value.

MTH\$CSIN complex-number

RETURNS

VMS usage:	complex_number
type:	F_floating complex
access:	write only
mechanism:	by value

Complex sine of the complex number. MTH\$CSIN returns an F-floating complex number.

ARGUMENTS complex-number

VMS usage: complex_number
type: \quad F-floating complex
access: read only
mechanism: by reference
A complex number (r, i), where r and i are floating-point numbers. The complex-number argument is the address of this complex number. For MTH\$CSIN, complex-number specifies an F-floating complex number.

DESCRIPTION The complex sine is computed as follows:

$$
\text { complex }-\operatorname{sine}=(S I N(r) * \operatorname{COSH}(i), \operatorname{COS}(r) * S I N H(i))
$$

The routine descriptions for the D- and G-floating point versions of this routine are listed alphabetically under MTH\$CxSIN.

SS\$_ROPRAND

MTH\$_FLOOVEMAT

Reserved operand. The MTH\$CSIN procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Floating-point overflow in Math Library: the absolute value of \mathbf{i} is greater than about 88.029 for F -floating values.

MTH\$CxSIN Sine of a Complex Number

The Sine of a Complex Number routine returns the sine of a complex number (r, i).

MTH\$CDSIN complex-sine, complex-number
MTH\$CGSIN complex-sine , complex-number
Each of the above formats accepts as input one of the floating-point complex types.

RETURNS None.

ARGUMENTS complex-sine

VMS usage: complex_number
type: D_floating complex, G_floating complex access: write only mechanism: by reference
Complex sine of the complex number. The complex sine routines with Dfloating complex and G-floating complex input values write the complex sine into this complex-sine argument. For MTH\$CDSIN, complex-sine specifies a D-floating complex number. For MTH\$CGSIN, complex-sine specifies a G-floating complex number.

complex-number

VMS usage: complex_number
type: D_floating complex, G_floating complex access: read only mechanism: by reference
A complex number (r, i), where r and i are floating-point numbers. The complex-number argument is the address of this complex number. For MTH\$CDSIN, complex-number specifies a D-floating complex number. For MTH\$CGSIN, complex-number specifies a G-floating complex number.

DESCRIPTION The complex sine is computed as follows:

$$
\text { complex }-\operatorname{sine}=(S I N(r) * \operatorname{COSH}(i), \operatorname{COS}(r) * S I N H(i))
$$

CONDITION VALUES SIGNALED
 SS\$__ROPRAND

MTH\$_FLOOVEMAT

Reserved operand. The MTH\$CxSIN procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library: the absolute value of \mathbf{i} is greater than about 88.029 for D-floating values or greater than about 709.089 for G-floating values.

EXAMPLE

```
C+
C This FORTRAN example forms the complex
C sine of a G-floating complex number using
C MTH$CGSIN and the FORTRAN random number
C generator RAN.
C
C Declare Z and MTH$CGSIN as complex values.
C MTH$CGSIN will return the sine value
C of Z: CALL MTH$CGSIN(Z_NEW,Z)
C-
    COMPLEX*16 Z,Z_NEW
    COMPLEX*16 DCMPLX
    REAL*8 R,I
    INTEGER M
    M = 1234567
C+
C Generate a random complex number with the
C FORTRAN generic DCMPLX.
C-
        R = RAN (M)
        I = RAN (M)
        Z = DCMPLX(R,I)
C+
C Z is a complex number ( }r,i\mathrm{ ) with real part "r" and
C imaginary part "i".
C-
        TYPE *, ' The complex number z is',z
        TYPE *, , '
C+
C Compute the complex sine value of Z.
C-
    CALL MTH$CGSIN(Z_NEW,Z)
    TYPE *, ' The complex sine value of',z,' is',Z_NEW
    END
```


MTH\$CxSIN

This FORTRAN example demonstrates a procedure call to MTH\$CGSIN. Because this program uses G-floating numbers, it must be compiled with the statement "FORTRAN/G filename".

The output generated by this program is as follows:
The complex number z is ($0.853540718555450,0.204340159893036$)
The complex sine value of $(0.853540718555450,0.204340159893036)$ is ($0.769400835484975,0.135253340912255$)

MTH\$CSQRT Complex Square Root (F-floating Value)

The Complex Square Root (F-floating Value) routine returns the complex square root of a complex number (r, i).

FORMAT MTH\$CSQRT complex-number

RETURNS	VMS usage: type:	complex_number F_floating complex
	access:	write only
	mechanism:	by value

The complex square root of complex-number. MTH\$CSQRT returns an F-floating number.

ARGUMENTS complex-number

VMS usage: complex_number
type: \quad F_floating complex access: read only mechanism: by reference
Complex number (r, i). The complex-number argument contains the address of this complex number. For MTH\$CSQRT, complex-number specifies an F -floating number.

DESCRIPTION The complex square root is computed as follows.
First, calculate ROOT and \mathbf{Q} using the following equations:

$$
\begin{gathered}
R O O T=S Q R T((A B S(r)+(C A B S(r, i)) / 2) \\
Q=i /(2 * R O O T)
\end{gathered}
$$

Then, the complex result is given as follows:

\mathbf{r}	\mathbf{i}	CSQRT((r,i))
≥ 0	Any	(ROOT,Q)
<0	≥ 0	(Q,ROOT)
<0	<0	(-Q,-ROOT)

The routine descriptions for the D - and G-floating point versions of this routine are listed alphabetically under MTH\$CxSQRT.

MTH\$CSORT

CONDITION
 VALUE
 SS\$_ROPRAND
 SIGNALED

Reserved operand. The MTH\$CSQRT procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$CxSQRT Complex Square Root

The Complex Square Root routine returns the complex square root of a complex number (r, i).

FORMAT

MTH\$CDSQRT complex-square-root ,complex-number MTH\$CGSQRT complex-square-root, complex-number

Each of the above formats accepts as input one of the floating-point complex types.

RETURNS
 None.

ARGUMENTS

complex-square-root
VMS usage: complex_number
type: D_floating complex, G_floating complex access: write only mechanism: by reference
Complex square root of the complex number specified by complex-number.
The complex square root routines that have D-floating complex and Gfloating complex input values write the complex square root into complex-square-root. For MTH\$CDSQRT, complex-square-root specifies a D-floating complex number. For MTH\$CGSQRT, complex-square-root specifies a G-floating complex number.

complex-number

VMS usage: complex_number
type: D_floating complex, G_floating complex access: read only mechanism: by reference

Complex number (\mathbf{r}, i). The complex-number argument contains the address of this complex number. For MTH\$CDSQRT, complex-number specifies a Dfloating number. For MTH\$CGSQRT, complex-number specifies a G-floating number.

DESCRIPTION The complex square root is computed as follows.
First, calculate ROOT and \mathbf{Q} using the following equations:

$$
\begin{gathered}
R O O T=S Q R T((A B S(r)+(C A B S(r, i)) / 2) \\
Q=i /(2 * R O O T)
\end{gathered}
$$

MTH\$CxSQRT

Then, the complex result is given as follows:

\mathbf{r}	\mathbf{i}	CSQRT((r,i))
≥ 0	any	(ROOT,Q)
<0	≥ 0	(Q,ROOT)
<0	<0	$(-Q,-$ ROOT $)$

CONDITION
VALUE
SIGNALED

Reserved operand. The MTH\$CxSQRT procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

EXAMPLE

C+
C This FORTRAN example forms the complex square
C root of a D-floating complex number using
C MTH\$CDSQRT and the FORTRAN random number
C generator RAN.
C
C Declare Z and Z_NEW as complex values. MTH\$CDSQRT
C will return the complex square root of
C Z: CALL MTH\$CDSQRT (Z_NEW,Z).
C-
COMPLEX*16 Z,Z_NEW
COMPLEX*16 DCMPLX
INTEGER M
$M=1234567$
C+
C Generate a random complex number with the
C FORTRAN generic CMPLX.
C-
$Z=\operatorname{DCMPLX}(\operatorname{RAN}(M), \operatorname{RAN}(M))$
C+
C $\quad \mathrm{Z}$ is a complex number (r, i) with real part " r " and imaginary
C part "i".

$$
\mathrm{C}-
$$

TYPE *, ', The complex number z is', z
TYPE * , ,
C+
C Compute the complex complex square root of Z.
C-
CALL MTH\$CDSQRT (Z_NEW, Z)
TYPE $*$, ' The complex square root of ',z,' is', Z_NEW
END

MTH\$CxSQRT

This FORTRAN example program demonstrates a procedure call to MTH\$CDSQRT. The output generated by this program is as follows:

The complex number z is ($0.8535407185554504,0.2043401598930359$)
The complex square root of ($0.8535407185554504,0.2043401598930359$) is (0.9303763973040062,0.1098158554350485)

MTH\$CVT_x_x Convert One Double-Precision Value

> The Convert One Double-Precision Value routines convert one doubleprecision value to the destination data type and return the result as a function value. MTH $\$ C V T-D _G$ converts a D-floating value to G-floating and MTH\$CVT_G_D converts a G-floating value to a D-floating value.

FORMAT
 MTH\$CVT_D_G floating-point-input-val
 MTH\$CVT_G_D floating-point-input-val

RETURNS

VMS usage:	floating_point
type:	G_floating, D_floating
access:	write only
mechanism:	by value

The converted value. MTH\$CVT_D_-G returns a G-floating value. MTH\$CVT_G_D returns a D-floating value.

ARGUMENT

floating-point-input-val	
VMS usage:	floating_point
type:	D_floating, G_floating
access:	read only
mechanism:	by reference

The input value to be converted. The floating-point-input-val argument is the address of this input value. For MTH\$CVT_D_G, the floating-point-input-val argument specifies a D-floating number. For MTH\$CVT_G_D, the floating-point-input-val argument specifies a G-floating number.

DESCRIPTION

These procedures are designed to function as hardware conversion instructions. They fault on reserved operands. If floating-point overflow is detected, an error is signaled. If floating-point underflow is detected and floating-point underflow is enabled, an error is signaled.

MTH\$CVT_x_x

CONDITION VALUES SIGNALED
 SS\$_ROPRAND

MTH\$_FLOOVEMAT
MTH\$_FLOUNDMAT

Reserved operand. The MTH\$CVT_x_x procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library.
Floating-point underflow in Math Library.

MTH\$CVT_xA_xA
 Convert an Array of Double-Precision Values

The Convert an Array of Double-Precision Values routines convert a contiguous array of double-precision values to the destination data type and return the results as an array. MTH\$CVT_DA_GA converts D-floating values to G-floating and MTH\$CVT_GA_DA converts G-floating values to D-floating.

FORMAT
MTH\$CVT_DA_GA floating-point-input-array
,floating-point-dest-array [,array-size]
MTH\$CVT_GA_DA floating-point-input-array
,floating-point-dest-array
[,array-size]

RETURNS

MTH\$CVT_DA_GA and MTH\$CVT_GA_DA return the address of the output array to the floating-point-dest-array argument.

array-size
 VMS usage: longword_signed type: longword (signed) access: read only mechanism: by reference

Number of array elements to be converted. The default value is 1 . The array-size argument is the address of a longword containing this number of elements.

DESCRIPTION These procedures are designed to function as hardware conversion instructions. They fault on reserved operands. If floating-point overflow is detected, an error is signaled. If floating-point underflow is detected and floating-point underflow is enabled, an error is signaled.

CONDITION

VALUES SIGNALED

SS\$_ROPRAND

MTH\$_FLOUNDMAT

Reserved operand. The MTH\$CVT_xA _xA procedure encountered a floating-point reserved operand due to incorrect user input. A floatingpoint reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Floating-point overflow in Math Library.
Floating-point underflow in Math Library.

MTH\$xEXP Exponential

The Exponential routine returns the exponential of the input value.

FORMAT	MTH\$EXP floating-point-input-value
	MTH\$DEXP floating-point-input-value
	MTH\$GEXP floating-point-input-value

Each of the above formats accepts as input one of the floating-point types.
jsb entries
MTHSEXP_R4
MTH\$DEXP_R6
MTH\$GEXP_R6
Each of the above JSB entries accepts as input one of the floating-point types.

RETURNS	VMS usage: type:	floating_point F_floating, D _floating, access: floating write only
	mechanism:	by value

The exponential of floating-point-input-value. MTH\$EXP returns an Ffloating number. MTH\$DEXP returns a D-floating number. MTH\$GEXP returns a G-floating number.

ARGUMENTS

floating-point-input-value

VMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: read only

mechanism: by reference

The input value. The floating-point-input-value argument is the address of a floating-point number. For MTH\$EXP, floating-point-input-value specifies an F-floating number. For MTH\$DEXP, floating-point-input-value specifies a D-floating number. For MTH\$GEXP, floating-point-input-value specifies a G-floating number.

DESCRIPTION The exponential of x is computed as:

Value of \mathbf{x}	Value Returned
$X>c(z)$	Overflow occurs
$X \leq-c(z)$	0
$\|X\|<2^{-(f+1)}$	1
Otherwise	$2^{Y} * 2^{U} * 2^{W}$

where:
$Y=I N T E G E R(x * \ln 2(E))$
$V=F R A C(x * \ln 2(E)) * 16$
$U=I N T E G E R(V) / 16$
$W=F R A C(V) / 16$
$2^{W}=$ polynomial approximation of degree 4,8 , or 8 for $z=F, D$, or G.
See also the section on the hyperbolic cosine for definitions of f and $c(z)$.
The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HEXP.

CONDITION

VALUES SIGNALED

SS\$_ROPRAND

Reserved operand. The MTH $\$ \times E X P$ routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Floating-point overflow in Math Library: floating-point-input-value is greater than yyy; LIB\$SIGNAL copies the reserved operand to the signal mechanism vector. The result is the reserved operand -0.0 unless a condition handler changes the signal mechanism vector.
The values of $y y y$ are approximately:

$$
\begin{aligned}
& \text { MTH\$EXP-88.029 } \\
& \text { MTH\$DEXP-88.029 } \\
& \text { MTH\$GEXP-709.089 }
\end{aligned}
$$

MTH\$_FLOUNDMAT

Floating-point underflow in Math Library: floating-point-input-value is less than or equal to yyy and the caller (CALL or JSB) has set hardware floating-point underflow enable. The result is set to 0.0 . If the caller has not enabled floating-point underflow (the default), a result of 0.0 is returned but no error is signaled.
The values of $y y y$ are approximately:

$$
\begin{aligned}
& \text { MTH\$EXP- }-88.722 \\
& \text { MTH\$DEXP- }-88.722 \\
& \text { MTH\$GEXP- }-709.774
\end{aligned}
$$

EXAMPLE

```
IDENTIFICATION DIVISION.
PROGRAM-ID. FLOATING_POINT.
*
* Calls MTH$EXP using a Floating Point data type
* Calls MTH$DEXP using a Double Floating Point data type.
*
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 FLOAT_PT COMP-1
01 ANSWER_F COMP-1.
0 1 \text { DOUBLE_PT COMP-2.}
01 ANSWER_D COMP-2.
PROCEDURE DIVISION.
PO.
```

MOVE 12.34 TO FLOAT_PT.
MOVE 3.456 TO DOUBLE_PT.
CALL "MTH\$EXP" USING BY REFERENCE FLOAT_PT GIVING ANSWER_F.
DISPLAY " MTH\$EXP of ", FLOAT_PT CONVERSION, " is ",
ANSWER_F CONVERSION.
CALL "MTH\$DEXP" USING BY REFERENCE DOUBLE_PT GIVING ANSWER_D.
DISPLAY " MTH\$DEXP of ", DOUBLE_PT CONVERSION, " is ",
ANSWER_D CONVERSION .
STOP RUN.

This sample program demonstrates calls to MTH\$EXP and MTH\$DEXP from COBOL.

The output generated by this program is as follows:

```
MTH$EXP of 1.234000E+01 is 2.286620E+05
MTH$DEXP of 3.456000000000000E+00 is
3.168996280537917E+01
```


MTH\$HACOS Arc Cosine of Angle Expressed in Radians (H-floating Value)

Given the cosine of an angle, the Arc Cosine of Angle Expressed in Radians (H -floating Value) routine returns that angle (in radians) in H -floating-point precision.

FORMAT	MTH\$HACOS h-radians, cosine
jsb entries	MTH\$HACOS_R8

RETURNS None.

ARGUMENTS h-radians

VMS usage: floating_point
type: H_floating access: write only mechanism: by reference
Angle (in radians) whose cosine is specified by cosine. The \mathbf{h}-radians argument is the address of an H -floating number that is this angle. MTH\$HACOS writes the address of the angle into h-radians.

cosine

VMS usage: floating_point
type: $\quad H_{-}$floating
access: read only
mechanism: by reference
The cosine of the angle whose value (in radians) is to be returned. The cosine argument is the address of a floating-point number that is this cosine. The absolute value of cosine must be less than or equal to 1 . For MTH $\$$ HACOS, cosine specifies an H -floating number.

MTH\$HACOS

DESCRIPTION The angle in radians whose cosine is X is computed as:

Value of Cosine	Value Returned
0	$\pi / 2$
1	0
-1	π
$0<X<1$	$z A T A N\left(z S Q R T\left(1-X^{2}\right) / X\right)$, where zATAN and zSQRT are the Math Library arc tangent and square root routines, respectively, of the appropriate data type
$-1<X<0$	$z A T A N\left(z S Q R T\left(1-X^{2}\right) / X\right)+\pi$ $1<\|X\|$

Reserved operand. The MTH\$xACOS routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of one and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Invalid argument. The absolute value of cosine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$HACOSD Arc Cosine of Angle Expressed in Degrees (H-Floating Value)

Given the cosine of an angle, the Arc Cosine of Angle Expressed in Degrees (H -Floating Value) routine returns that angle (in degrees) as an H -floating value.
FORMAT MTH\$HACOSD h-degrees, cosine
jsb entries
MTH\$HACOSD_R8

RETURNS

None.

ARGUMENTS	h-degrees VMS usage: floating_point type: access: f_floating mechanism: write only
	Angle (in degrees) whose cosine is specified by cosine. The \mathbf{h}-degrees argument is the address of an H-floating number that is this angle.
MTH\$HACOSD writes the address of the angle into h-degrees.	
	cosine
VMS usage: floating_point	
type: H_floating	
access: read only	
mechanism: by reference	
Cosine of the angle whose value (in degrees) is to be returned. The cosine	
argument is the address of a floating-point number that is this cosine. The	
absolute value of cosine must be less than or equal to 1. For MTH\$HACOSD,	
cosine specifies an H-floating number.	

MTH\$HACOSD

DESCRIPTION The angle in degrees whose cosine is X is computed as:

Value of Cosine	Angle Returned
0	90
1	0
-1	180
$0<X<1$	$z A T A N D\left(z S Q R T\left(1-X^{2}\right) / X\right)$, where zATAND and zSQRT are the Math Library arc tangent and square root routines, respectively, of the appropriate data type $z A T A N D\left(z S Q R T\left(1-X^{2}\right) / X\right)+180$
$-1<X<0$	The error MTH\$_INVARGMAT is signaled
$1<\|X\|$	

CONDITION
 VALUES SIGNALED

SS\$_ROPRAND

MTH\$_INVARGMAT
Reserved operand. The MTH\$xACOSD routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of one and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Invalid argument. The absolute value of cosine is greater than 1. LIB $\$$ SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$HASIN Arc Sine in Radians (H-floating Value)

Given the sine of an angle, the Arc Sine in Radians (H -floating Value) routine returns that angle (in radians) as an H -floating value.

FORMAT	MTH\$HASIN h-radians, sine
jsb entries	MTH\$HASIN_R8
RETURNS	None.
ARGUMENTS	h-radians VMS usage: floating_point type: $\quad H_{\text {_floating }}$ access: write only mechanism: by reference
	Angle (in radians) whose sine is specified by sine. The \mathbf{h}-radians argument is the address of an H-floating number that is this angle. MTH\$HASIN writes the address of the angle into h-radians. sine VMS usage: floating_point type: \quad H_floating access: read only mechanism: by reference

The sine of the angle whose value (in radians) is to be returned. The sine argument is the address of a floating-point number that is this sine. The absolute value of sine must be less than or equal to 1. For MTH\$HASIN, sine specifies an H -floating number.

DESCRIPTION The angle in radians whose sine is X is computed as:

Value of Sine	Angle Returned
0	0
1	$\pi / 2$
-1	$-\pi / 2$
$0<\|X\|<1$	$z A T A N\left(X / z S Q R T\left(1-X^{2}\right)\right)$, where zATAN and zSQRT are the Math Library arc tangent and square root routines, respectively, of the appropriate data type
$1<\|X\|$	The error MTH\$_INVARGMAT is signaled

CONDITION

 VALUES SIGNALEDSS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$xASIN routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Invalid argument. The absolute value of sine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$HASIND Arc Sine in Degrees (H-Floating Value)

Given the sine of an angle, the Arc Sine in Degrees (H-Floating Value) routine returns that angle (in degrees) as an H -floating value.

FORMAT
jsb entries

RETURNS

ARGUMENTS

MTH\$HASIND h-degrees, sine

MTH\$HASIND_R8

None.
h-degrees
VMS usage: floating_point
type: \quad H_floating
access: write only
mechanism: by reference
Angle (in degrees) whose sine is specified by sine. The \mathbf{h}-degrees argument is the address of an H-floating number that is this angle. MTH\$HASIND writes the address of the angle into \mathbf{h}-degrees.

sine

VMS usage: floating_point
type: \quad H_floating
access: read only
mechanism: by reference
Sine of the angle whose value (in degrees) is to be returned. The sine argument is the address of a floating-point number that is this sine. The absolute value of sine must be less than or equal to 1 . For MTH\$HASIND, sine specifies an H -floating number.

MTH\$HASIND

DESCRIPTION The angle in degrees whose sine is X is computed as:

Value of Sine	Value Returned
0	0
1	90
-1	-90
$0<\|X\|<1$	$z A T A N D\left(X / z S Q R T\left(1-X^{2}\right)\right)$, where zATAND and zSQRT are the Math Library arc tangent and square root routines, respectively, of the appropriate data type The error MTH $\$$ INVARGMAT is signaled

CONDITION
SS\$_ROPRAND

Reserved operand. The MTH\$xASIND routine encountered a floating point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of one and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
MTH\$_INVARGMAT

Invalid argument. The absolute value of sine is greater than 1. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHFSL_MCH_SAVRO/R1.

MTH\$HATAN Arc Tangent in Radians (H-floating Value)

Given the tangent of an angle, the Arc Tangent in Radians (H-floating Value) routine returns that angle (in radians) as an H -floating value.

FORMAT MTH\$HATAN h-radians, tangent

jsb entries
MTH\$HATAN_R8

RETURNS None.

ARGUMENTS \boldsymbol{h}-radians

VMS usage: floating_point
type: H_floating access: write only mechanism: by reference

Angle (in radians) whose tangent is specified by tangent. The h-radians argument is the address of an H-floating number that is this angle. MTH\$HATAN writes the address of the angle into h -radians.

tangent

VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The tangent of the angle whose value (in radians) is to be returned. The tangent argument is the address of a floating-point number that is this tangent. For MTH\$HATAN, tangent specifies an H-floating number.

DESCRIPTION
In radians, the computation of the arc tangent function is based on the following identities:

$$
\begin{aligned}
& \arctan (X)=X-X^{3} / 3+X^{5} / 5-X^{7} / 7+\ldots \\
& \arctan (X)=X+X * Q\left(X^{2}\right), \\
& \quad \text { where } Q(Y)=-Y / 3+Y^{2} / 5-Y^{3} / 7+\ldots \\
& \arctan (X)=X * P\left(X^{2}\right), \\
& \quad \text { where } P(Y)=1-Y / 3+Y^{2} / 5-Y^{3} / 7+\ldots \\
& \arctan (X)=\pi / 2-\arctan (1 / X) \\
& \arctan (X)=\arctan (A)+\arctan ((X-A) /(1+A * X)) \\
& \quad \text { for any real A }
\end{aligned}
$$

MTHSHATAN

The angle in radians whose tangent is X is computed as:

Value of \boldsymbol{X}	Angle Returned
$0 \leq X \leq 3 / 32$	$X+X * Q\left(X^{2}\right)$
$3 / 32<X \leq 11$	$A T A N(A)+V *\left(P\left(V^{2}\right)\right)$, where A and ATAN(A) are
	chosen by table lookup and $V=(X-A) /(1+A * X)$ $11<X$
$X<0$	$-z A T A N(\|X\|)$

CONDITION
VALUE SS\$_ROPRAND
SIGNALED
Reserved operand. The MTH\$xATAN routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$HATAND Arc Tangent in Degrees (H-floating Value)

Given the tangent of an angle, the Arc Tangent in Degrees (H -floating Value) routine returns that angle (in degrees) as an H -floating point value.

FORMAT
 MTH\$HATAND h-degrees, tangent

jsb entries
MTH\$HATAND_R8

RETURNS
None.

ARGUMENTS h-degrees

VMS usage: floating_point
type: $\quad H_{\text {_floating }}$
access: write only
mechanism: by reference
Angle (in degrees) whose tangent is specified by tangent. The \mathbf{h}-degrees argument is the address of an H -floating number that is this angle. MTH\$HATAND writes the address of the angle into \mathbf{h}-degrees.

tangent

VMS usage: floating_point
type: $\quad H_{-}$floating
access: read only

mechanism: by reference

The tangent of the angle whose value (in degrees) is to be returned. The tangent argument is the address of a floating-point number that is this tangent. For MTH\$HATAND, tangent specifies an H-floating number.

DESCRIPTION The computation of the arc tangent function is based on the following identities:

$$
\begin{aligned}
& \arctan (X)=180 / \pi *\left(X-X^{3} / 3+X^{5} / 5-X^{7} / 7+\ldots\right) \\
& \arctan (X)=64 * X+X * Q\left(X^{2}\right), \\
& \text { where } Q(Y)=180 / \pi *[(1-64 * \pi / 180)-Y / 3+ \\
& \left.Y^{2} / 5-Y^{3} / 7+Y^{4} / 9 \ldots\right] \\
& \arctan (X)=X * P\left(X^{2}\right), \\
& \text { where } P(Y)=180 / \pi *\left[1-Y / 3+Y^{2} / 5-Y^{3} / 7+\right. \\
& \left.Y^{4} / 9 \ldots\right] \\
& \arctan (X)=90-\arctan (1 / X) \\
& \arctan (X)=\arctan (A)+\arctan ((X-A) /(1+A * X))
\end{aligned}
$$

MTH\$HATAND

The angle in degrees whose tangent is X is computed as:

Tangent	Angle Returned
$X \leq 3 / 32$	$64 * X+X * Q\left(X^{2}\right)$
$3 / 32<X \leq 11$	ATAND $(A)+V * P\left(V^{2}\right)$, where A and ATAND(A) are chosen by table lookup and $V=(X-A) /(1+A * X)$ $11<X$
$X<0-W *\left(P\left(W^{2}\right)\right)$, where $W=1 / X$	
X	$-z A T A N D(\|X\|)$

CONDITION

VALUE
SIGNALED

Reserved operand. The MTH\$×ATAND routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$HATAN2 Arc Tangent in Radians (H-floating Value) with Two Arguments

Given sine and cosine, the Arc Tangent in Radians (H -floating Value) with Two Arguments routine returns the angle (in radians) as an H -floating value whose tangent is given by the quotient of sine and cosine, (sine/cosine).
FORMAT MTH\$HATAN2 h-radians, sine , cosine

RETURNS None.

ARGUMENTS h-radians
 VMS usage: floating_point
 type: H_floating access: write only mechanism: by reference

Angle (in radians) whose tangent is specified by (sine/cosine). The hradians argument is the address of an H -floating number that is this angle. MTH\$HATAN2 writes the address of the angle into \mathbf{h}-radians.

sine

VMS usage: floating_point
type: $\quad H_{-}$floating access: read only mechanism: by reference

Dividend. The sine argument is the address of a floating-point number that is this dividend. For MTH\$HATAN2, sine specifies an H-floating number.

cosine

VMS usage: floating_point
type: $\quad H_{-}$floating access: read only mechanism: by reference
Divisor. The cosine argument is the address of a floating-point number that is this divisor. For MTH\$HATAN2, cosine specifies an H -floating number.

DESCRIPTION The angle in radians whose tangent is Y / X is computed as follows, where f is defined in the description of MTH\$zCOSH.

Value of Input Arguments	Angle Returned
$X=0$ or $Y / X>2^{(f+1)}$	$\pi / 2 *(\operatorname{sign} Y)$
$X>0$ and $Y / X \leq 2^{(f+1)}$	$z A T A N(Y / X)$
$X<0$ and $Y / X \leq 2^{(f+1)}$	$\pi *(\operatorname{sign} Y)+z A T A N(Y / X)$

CONDITION
 VALUES
 SIGNALED

SS\$_ROPRAND

MTH\$_INVARGMAT

Reserved operand. The MTH\$HATAN2 routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Invalid argument. Both cosine and sine are zero. LIB $\$$ SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_ MCH_SAVRO/R1.

MTH\$HATAND2 Arc Tangent in Degrees (H-floating Value) with Two Arguments

Given sine and cosine, MTH\$xHTAND2 returns the angle (in degrees) whose tangent is given by the quotient of sine and cosine, (sine/cosine).

FORMAT MTH\$HATAND2 h-degrees, sine , cosine

RETURNS None.

ARGUMENTS h-degrees

VMS usage: floating_point
type: $\quad H_{\text {_floating }}$
access: write only mechanism: by reference
Angle (in degrees) whose tangent is specified by (sine/cosine). The hdegrees argument is the address of an H -floating number that is this angle. MTH\$HATAND2 writes the address of the angle into \mathbf{h}-degrees.

sine

VMS usage: floating_point
type: $\quad H_{-}$floating access: read only mechanism: by reference

Dividend. The sine argument is the address of a floating-point number that is this dividend. For MTH\$HATAND2, sine specifies an H-floating number.

cosine

VMS usage: floating_point
type:
access:
H_floating read only mechanism: by reference
Divisor. The cosine argument is the address of a floating-point number that is this divisor. For MTH\$HATAND2, cosine specifies an H-floating number.

DESCRIPTION The angle in degrees whose tangent is Y / X is computed below. The value of f is defined in the description of MTH\$zCOSH.

Value of Input Arguments	Angle Returned
$X=0$ or $Y / X>2^{(f+1)}$	$90 *(\operatorname{sign} Y)$
$X>0$ and $Y / X \leq 2^{(f+1)}$	$z A T A N D(Y / X)$
$X<0$ and $Y / X \leq 2^{(f+1)}$	$180 *(\operatorname{sign} Y)+z A T A N D(Y / X)$

CONDITION
Reserved operand. The MTH\$HATAND2 routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
MTH\$_INVARGMAT Invalid argument. Both cosine and sine are zero. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_ MCH_SAVRO/R1.

MTH\$HATANH Hyperbolic Arc Tangent (H-floating Value)

Given the hyperbolic tangent of an angle, the Hyperbolic Arc Tangent (H floating Value) routine returns the hyperbolic arc tangent (as an H -floating value) of that angle.

FORMAT
 MTH\$HATANH h-atanh, hyperbolic-tangent

RETURNS None.

ARGUMENTS h-atanh

VMS usage: floating_point
type: $\quad H_{-}$floating
access: write only
mechanism: by reference
Hyperbolic arc tangent of the hyperbolic tangent specified by hyperbolictangent. The \mathbf{h}-atanh argument is the address of an H -floating number that is this hyperbolic arc tangent. MTH\$HATANH writes the address of the hyperbolic arc tangent into \mathbf{h}-atanh.

```
hyperbolic-tangent
VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
```

Hyperbolic tangent of an angle. The hyperbolic-tangent argument is the address of a floating-point number that is this hyperbolic tangent. For MTH\$HATANH, hyperbolic-tangent specifies an H-floating number.

DESCRIPTION The hyperbolic arc tangent function is computed as follows:

Value of \mathbf{x}	Value Returned
$\|X\|<1$	$z A T A N H(X)=z L O G((X+1) /(X-1)) / 2$
$\|X\| \geq 1$	An invalid argument is signaled

MTH\$HATANH

CONDITION VALUES SIGNALED	SS\$_ROPRAND	Reserved operand. The MTH\$xATANH routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
	MTH\$_INVARGMAT	Invalid argument: $\|X\| \geq 1$. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.

MTH\$HCOS Cosine of Angle Expressed in Radians (H-floating Value)

The Cosine of Angle Expressed in Radians (H -floating Value) routine returns the cosine of a given angle (in radians) as an H -floating value.

FORMAT MTH\$HCOS h-cosine, angle-in-radians

jsb entries
 MTH\$HCOS_R5

RETURNS None.

ARGUMENTS	h-cosine VMS usage:	
	floating_point	
type:	H_floating	
access:	write only	
	mechanism:	by reference

Cosine of the angle specified by angle-in-radians. The \mathbf{h}-cosine argument is the address of an H -floating number that is this cosine. MTH\$HCOS writes the address of the cosine into h-cosine.

angle-in-radians

VMS usage: floating_point
type: H_floating access: read only mechanism: by reference

The angle in radians. The angle-in-radians argument is the address of a floating-point number. For MTH\$HCOS, angle-in-radians specifies an H -floating number.

Reserved operand. The MTH\$HCOS procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$HCOSD

MTH\$HCOSD Cosine of Angle Expressed in Degrees (H-floating Value)

The Cosine of Angle Expressed in Degrees (H -floating Value) routine returns the cosine of a given angle (in degrees) as an H -floating value.

FORMAT
 MTH\$HCOSD h-cosine, angle-in-degrees

jsb entries
 MTH\$HCOSD_R5

RETURNS
 None.

ARGUMENTS	h-cosine VMS usage:	floating_point
	type:	H_floating
	access:	write only
	mechanism:	by reference

Cosine of the angle specified by angle-in-degrees. The h-cosine argument is the address of an H -floating number that is this cosine. MTH\$HCOSD writes this cosine into \mathbf{h}-cosine.

angle-in-degrees

VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
Angle (in degrees). The angle-in-degrees argument is the address of a floating-point number. For MTH\$HCOSD, angle-in-degrees specifies an H -floating number.

DESCRIPTION | See the MTH\$SINCOSD routine for the algorithm used to compute the |
| :--- |
| cosine. | cosine.

CONDITION

Reserved operand. The MTH\$HCOSD procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$HCOSH Hyperbolic Cosine (H-floating Value)

The Hyperbolic Cosine routine returns the hyperbolic cosine of the input value as an H -floating value.

RETURNS None.

ARGUMENTS h-cosh

VMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference
Hyperbolic cosine of the input value specified by floating-point-input-value. The \mathbf{h}-cosh argument is the address of an H -floating number that is this hyperbolic cosine. MTH\$HCOSH writes the address of the hyperbolic cosine into h-cosh.

floating-point-input-value

VMS usage: floating_point
type: H_floating access: read only mechanism: by reference

The input value. The floating-point-input-value argument is the address of this input value. For MTH\$HCOSH, floating-point-input-value specifies an H -floating number.

Computation of the hyperbolic cosine depends on the magnitude of the input argument. The range of the function is partitioned using four data-type-dependent constants: $\mathrm{a}(\mathrm{z}), \mathrm{b}(\mathrm{z})$, and $\mathrm{c}(\mathrm{z})$. The subscript z indicates the data type. The constants depend on the number of exponent bits (e) and the number of fraction bits (f) associated with the data type (z).

The values of e and f are as follows:

$$
\begin{aligned}
e & =15 \\
f & =113
\end{aligned}
$$

The values of the constants in terms of e and f are:

Variable	Value
$\mathbf{a}(\mathrm{z})$	$2^{-f / 2}$
$\mathrm{~b}(\mathrm{z})$	$(f+1) / 2 * \ln (2)$
$\mathbf{c}(\mathrm{z})$	$2^{e-1} * \ln (2)$

Based on the above definitions, $\mathrm{zCOSH}(\mathrm{X})$ is computed as follows:

Value of X	Value Returned
$\|X\|<a(z)$	1
$a(z) \leq\|X\|<.25$	Computed using a power series expansion in $\|X\|^{2}$
$.25 \leq\|X\|<b(z)$	$(z E X P(\|X\|)+1 / z E X P(\|X\|)) / 2$
$b(z) \leq\|X\|<c(z)$	$z E X P(\|X\|) / 2$
$c(z) \leq\|X\|$	Overflow occurs

Reserved operand. The MTH\$HCOSH procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
MTH\$_FLOOVEMAT Floating-point overflow in Math Library: the absolute value of floating-point-input-value is greater than about $y y y$; LIB\$SIGNAL copies the reserved operand to the signal mechanism vector. The result is the reserved operand -0.0 unless a condition handler changes the signal mechanism vector. The value of yyy is 11356.523 .

MTH\$HEXP Exponential (H-floating Value)

The Exponential routine returns the exponential of the input value as an H -floating value.

ARGUMENTS h-exp

VMS usage: floating_point
type: \quad H_floating
access: write only
mechanism: by reference
Exponential of the input value specified by floating-point-input-value. The h-exp argument is the address of an H -floating number that is this exponential. MTH\$HEXP writes the address of the exponential into h -exp.

floating-point-input-value

VMS usage: floating_point
type: \quad H_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of a floating-point number. For MTH\$HEXP, floating-point-input-value specifies an H -floating number.

DESCRIPTION The exponential of x is computed as:

Value of \mathbf{x}	Value Returned
$x>c(z)$	Overflow occurs
$x \leq-c(z)$	0
$\|x\|<2^{-(f+1)}$	1
Otherwise	$2^{Y} * 2^{U} * 2^{W}$

where:
$Y=\operatorname{INTEGER}(x * \ln 2(E))$
$V=F R A C(x * \ln 2(E)) * 16$
$U=I N T E G E R(V) / 16$

MTH\$HEXP

$W=F R A C(V) / 16$
$2^{W}=$ polynomial approximation of degree 14 for $\mathbf{z}=\mathrm{H}$.
See also the section on the hyperbolic cosine for definitions of f and $c(z)$.

CONDITION
 VALUES
 SIGNALED
 SS\$_ROPRAND

MTH\$_FLOOVEMAT

MTH\$_FLOUNDMAT Floating-point underflow in Math Library: floating-point-input-value is less than or equal to $y y y$ and the caller (CALL or JSB) has set hardware floatingpoint underflow enable. The result is set to 0.0 . If the caller has not enabled floating-point underflow (the default), a result of 0.0 is returned but no error is signaled. The value of $y y y$ is approximately -11356.523 for MTH\$HEXP.

MTH\$HLOG Natural Logarithm (H-floating Value)

The Natural Logarithm (H -floating Value) routine returns the natural (base e) logarithm of the input argument as an H -floating value.

ARGUMENTS h-natlog

VMS usage: floating_point
type: H_floating access: write only mechanism: by reference
Natural logarithm of floating-point-input-value. The h-natlog argument is the address of an H-floating number that is this natural logarithm. MTH\$HLOG writes the address of this natural logarithm into h-natlog.

floating-point-input-value

VMS usage: floating_point
type: \quad H_floating access: read only mechanism: by reference

The input value. The floating-point-input-value argument is the address of a floating-point number that is this value. For MTH\$HLOG, floating-point-input-value specifies an H -floating number.

DESCRIPTION Computation of the natural logarithm routine is based on the following:
$1 \ln (X * Y)=\ln (X)+\ln (Y)$
$2 \ln (1+X)=X-X^{2} / 2+X^{3} / 3-X^{4} / 4 \ldots$
for $|\mathrm{X}|<1$
$3 \ln (X)=\ln (A)+2 *\left(V+V^{3} / 3+V^{5} / 5+V^{7} / 7 \ldots\right)$
where $V=(X-A) /(X+A), A>0$,
and $p(y)=2 *\left(1+y / 3+y^{2} / 5 \ldots\right)$
For $x=2^{n} * f$, where n is an integer and f is in the interval of 0.5 to 1 , define the following quantities:

$$
\begin{aligned}
& \text { If } n \geq 1, \text { then } N=n-1 \text { and } F=2 f \\
& \text { If } n \leq 0, \text { then } N=n \text { and } F=f
\end{aligned}
$$

MTH\$HLOG

From (1) above it follows that:
$4 \ln (X)=N * \ln (2)+\ln (F)$
Based on the above relationships, zLOG is computed as follows:
1 If $|F-1|<2^{-5}$,
$z L O G(X)=N * z L O G(2)+W+W * p(W)$, where $\mathrm{W}=\mathrm{F}-1$.

2 Otherwise,
$z L O G(X)=N * z L O G(2)+z L O G(A)+V * p\left(V^{2}\right)$, where $V=(F-A) /(F+A)$ and A and zLOG(A) are obtained by table look up.

SS\$_ROPRAND

Reserved operand. The MTH\$HLOG procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
MTH\$_LOGZERNEG

Logarithm of zero or negative value. Argument floating-point-input-value is less than or equal to 0.0 . LIB $\$$ SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_ MCH_SAVRO/R1.

MTH\$HLOG2 Base 2 Logarithm (H-floating Value)

The Base 2 Logarithm (H -floating Value) routine returns the base 2 logarithm of the input value specified by floating-point-input-value as an H -floating value.

FORMAT

 MTH\$HLOG2 h-log2, floating-point-input-value
RETURNS
 None.

ARGUMENTS	h-log2 VMS usage: floating_point type: H_floating write only access: mechanism: by reference
	Base 2 logarithm of floating-point-input-value. The \mathbf{h} - $\log 2$ argument is the address of an H -floating number that is this base 2 logarithm. MTH\$HLOG2 writes the address of this logarithm into $\mathbf{h}-\log 2$.
	floating-point-input-value
	VMS usage: floating_point
	type: H_floating
	$\begin{array}{ll}\text { access: } & \text { read only } \\ \text { mechanism: }\end{array}$
	mechanism: by reference
	The input value. The floating-point-input-value argument is the address of a floating-point number that is this input value. For MTH\$HLOG2, floating-point-input-value specifies an H -floating number.

The base 2 logarithm function is computed as follows:

$$
z \operatorname{LOG} 2(X)=z \operatorname{LOG} 2(E) * z L O G(X)
$$

CONDITION

SS\$_ROPRAND

MTH\$_LOGZERNEG

Reserved operand. The MTH\$HLOG2 procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Logarithm of zero or negative value. Argument floating-point-input-value is less than or equal to 0.0 . LIB $\$$ SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_ MCH_SAVRO/R1.

MTH\$HLOG10 Common Logarithm (H-floating Value)

The Common Logarithm (H -floating Value) routine returns the common (base 10) logarithm of the input argument as an H -floating value.

FORMAT	MTH\$HLOG10	h-log10, floating-point-input-value
	Msb entries	MTH\$HLOG10_R8

RETURNS None.

ARGUMENTS	h-log10 VMS usage:
	type: acceating_poins: access Hfloating write only
	mechanism:
by reference	

Common logarithm of the input value specified by floating-point-inputvalue. The \mathbf{h}-log10 argument is the address of an H -floating number that is this common logarithm. MTH\$HLOG10 writes the address of the common logarithm into $h-\log 10$.

floating-point-input-value

VMS usage: floating_point
type: H_floating access: read only mechanism: by reference

The input value. The floating-point-input-value argument is the address of a floating-point number. For MTH\$HLOG10, floating-point-input-value specifies an H -floating number.

DESCRIPTION The common logarithm function is computed as follows:

$$
z \operatorname{LOG} 10(X)=z \operatorname{LOG} 10(E) * z \operatorname{LOG}(X)
$$

MTH\$HLOG10

CONDITION	
VALUES	SS\$_ROPRAND
SIGNALED	Reserved operand. The MTHSHLOG10 procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by
DIGITAL.	
	Logarithm of zero or negative value. Argument
floating-point-input-value is less than or equal	
to 0.0. LIB\$SIGNAL copies the floating-point	
reserved operand to the mechanism argument	
vector CHF\$L_MCH_SAVRO/R1. The result is the	
floating-point reserved operand unless you have	
	written a condition handler to change CHF\$L
MCH_SAVRO/R1.	

MTH\$HSIN Sine of Angle Expressed in Radians (H-floating Value)

The Sine of Angle Expressed in Radians (H-floating Value) routine returns the sine of a given angle (in radians) as an H -floating value.

FORMAT MTH\$HSIN h-sine, angle-in-radians

jsb entries MTH\$HSIN_R5

RETURNS

None.

ARGUMENTS \boldsymbol{h}-sine

VMS usage: floating_point
type: \quad H_floating
access: write only
mechanism: by reference
The sine of the angle specified by angle-in-radians. The \mathbf{h}-sine argument is the address of an H-floating number that is this sine. MTH\$HSIN writes the address of the sine into \mathbf{h}-sine.

angle-in-radians

VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
Angle (in radians). The angle-in-radians argument is the address of a floating-point number that is this angle. For MTH\$HSIN, angle-in-radians specifies an H -floating number.

DESCRIPTION See the MTH\$SINCOS routine for the algorithm used to compute this sine.

CONDITION

VALUE

 SIGNALEDReserved operand. The MTH\$HSIN procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$HSIND Sine of Angle Expressed in Degrees (H-floating Value)

The Sine of Angle Expressed in Degrees (H-floating Value) routine returns the sine of a given angle (in degrees) as an H -floating value.

FORMAT	MTH\$HSIND h-sine, angle-in-degrees
	Msb entries

RETURNS None.

ARGUMENTS \boldsymbol{h}-sine

VMS usage: floating_point
type: \quad H_floating
access: write only
mechanism: by reference
Sine of the angle specified by angle-in-degrees. The h-sine argument is the address of an H-floating number that is this sine. MTH\$HSIND writes the address of the angle into h-sine.

angle-in-degrees

VMS usage: floating_point
type: H_floating access: read only mechanism: by reference
Angle (in degrees). The angle-in-degrees argument is the address of a floating-point number that is this angle. For MTH\$HSIND, angle-in-degrees specifies an H -floating number.

CONDITION VALUES SIGNALED
 SS\$_ROPRAND

MTHS_FLOUNDMAT

Reserved operand. The MTH\$HSIND procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased ecponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Floating-point underflow in Math Library. The absolute value of the input angle is less than $180 / \pi * 2^{-m}$ (where $\mathrm{m}=16,384$ for H -floating).

MTH\$HSINH Hyperbolic Sine (H-floating Value)

The Hyperbolic Sine (H-floating Value) routine returns the hyperbolic sine of the input value specified by floating-point-input-value as an H -floating value.

FORMAT

MTH\$HSINH h-sinh, floating-point-input-value

RETURNS

None.

ARGUMENTS \boldsymbol{h}-sinh

VMS usage: floating_point
type: $\quad H_{\text {_floating }}$
access: write only
mechanism: by reference
Hyperbolic sine of the input value specified by floating-point-input-value. The h -sinh argument is the address of an H -floating number that is this hyperbolic sine. MTH\$HSINH writes the address of the hyperbolic sine into h-sinh.

floating-point-input-value

VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of a floating-point number that is this value. For MTH\$HSINH, floating-point-input-value specifies an H -floating number.

DESCRIPTION Computation of the hyperbolic sine function depends on the magnitude of the input argument. The range of the function is partitioned using four data type dependent constants: $\mathrm{a}(\mathrm{z}), \mathrm{b}(\mathrm{z})$, and $\mathrm{c}(\mathrm{z})$. The subscript z indicates the data type. The constants depend on the number of exponent bits (e) and the number of fraction bits (f) associated with the data type (z).
The values of e and f are as follows:

$$
\begin{aligned}
& e=15 \\
& f=113
\end{aligned}
$$

The values of the constants in terms of e and f are:

Variable	Value
$\mathrm{a}(\mathrm{z})$	$2^{(-f / 2)}$
$\mathrm{b}(\mathrm{z})$	$(f+1) / 2 * \ln (2)$
$\mathrm{c}(\mathrm{z})$	$2^{e-1} * \ln (2)$

Based on the above definitions, $\operatorname{zSINH}(X)$ is computed as follows:

Value of X	Value Returned
$\|X\|<a(z)$	X
$a(z) \leq\|X\|<1.0$	$\mathrm{zSINH}(\mathrm{X})$ is computed using a power series expansion in $\|X\|^{2}$
$1.0 \leq\|X\|<b(z)$	$(z E X P(X)-z E X P(-X)) / 2$
$b(z) \leq\|X\|<c(z)$	$S I G N(X) * z E X P(\|X\|) / 2$
$c(z) \leq\|X\|$	Overflow occurs

CONDITION

VALUES
SIGNALED

SS\$_ROPRAND

MTH\$_FLOOVEMAT

Reserved operand. The MTH\$HSINH procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Floating-point overflow in Math Library: the absolute value of floating-point-input-value is greater than yyy. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1. The value of $y y y$ is approximately 11356.523.

MTH\$HSQRT Square Root (H-floating Value)

The Square Root (H -floating Value) routine returns the square root of the input value floating-point-input-value as an H -floating value.

FORMAT
 jsb entries
 MTH\$HSORT_R8

MTH\$HSQRT h-sqrt, floating-point-input-value

RETURNS None.

ARGUMENTS h-sqit
VMS usage: floating_point
type: \quad H_floating
access: write only
mechanism: by reference
Square root of the input value specified by floating-point-input-value. The \mathbf{h}-sqrt argument is the address of an H -floating number that is this square root. MTH\$HSQRT writes the address of the square root into \mathbf{h}-sqrt.

floating-point-input-value

VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
Input value. The floating-point-input-value argument is the address of a floating-point number that contains this input value. For MTH\$HSQRT, floating-point-input-value specifies an H -floating number.

DESCRIPTION The square root of X is computed as follows:
If $X<0$, an error is signaled.
Let $X=2^{K} * F$
where:
K is the exponential part of the floating-point data
F is the fractional part of the floating-point data
If K is even:

$$
\begin{aligned}
& X=2^{(2 * P)} * F \\
& z S Q R T(X)=2^{P} * z S Q R T(F) \\
& 1 / 2 \leq F<1, \text { where } \mathrm{P}=\mathrm{K} / 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } \mathrm{K} \text { is odd: } \\
& \quad \begin{array}{l}
\quad \\
\quad z S Q R T(X)=2^{(2 * P+1)} * F=2^{(2 * P+2)} *(F / 2), \\
\\
\quad 1 / 4 \leq F / 2<1 / 2 \text {, where } \mathrm{p}=(\mathrm{K}-1) / 2
\end{array} \\
& \text { Let } F^{\prime}=A * F+B, \text { when } \mathrm{K} \text { is even: } \\
& \mathrm{A}=0.95 \mathrm{~F} 6198 \text { (hex) } \\
& \mathrm{B}=0.6 \mathrm{BA} 5918 \text { (hex) } \\
& \text { Let } F^{\prime}=A *(F / 2)+B \text {, when } \mathrm{K} \text { is odd: } \\
& \mathrm{A}=0 . \mathrm{D} 413 \mathrm{CCC} \text { (hex) } \\
& \mathrm{B}=0.4 \mathrm{C} 1 \mathrm{E} 248 \text { (hex) } \\
& \text { Let } \mathrm{K}^{\prime}=\mathrm{P}, \text { when } \mathrm{K} \text { is even } \\
& \text { Let } \mathrm{K}^{\prime}=\mathrm{P}+1 \text {, when } \mathrm{K} \text { is odd }
\end{aligned}
$$

Let $Y[0]=2^{K^{\prime}} * F^{\prime}$ be a straight line approximation within the given interval using coefficients A and B which minimize the absolute error at the midpoint and endpoint.

Starting with $\mathrm{Y}[0]$, n Newton-Raphson iterations are performed:

$$
Y[n+1]=1 / 2 *(Y[n]+X / Y[n])
$$

where $\mathrm{n}=5$ for H -floating.

CONDITION

VALUES
SIGNALED
SS\$_ROPRAND

Reserved operand. The MTH\$HSORT procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$_SQUROONEG

Square root of negative number. Argument floating-point-input-value is less than 0.0. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_ MCH_SAVRO/R1.

MTH\$HTAN Tangent of Angle Expressed in Radians (H-floating Value)

The Tangent of Angle Expressed in Radians (H-floating Value) routine returns the tangent of a given angle (in radians) as an H -floating value.

FORMAT MTH\$HTAN h-tan , angle-in-radians

jsb entries
MTH\$HTAN_R5

RETURNS
 None.

ARGUMENTS \boldsymbol{h}-tan

VMS usage: floating_point
type:
H_floating
access: write only
mechanism: by reference
Tangent of the angle specified by angle-in-radians. The \mathbf{h}-tan argument is the address of an H -floating number that is this tangent. MTH\$HTAN writes the address of the tangent into \mathbf{h}-tan.

angle-in-radians

VMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference
The input angle (in radians). The angle-in-radians argument is the address of a floating-point number that is this angle. For MTH\$HTAN, angle-in-radians specifies an H -floating number.

When the input argument is expressed in radians, the tangent function is computed as follows:
1 If $|X|<2^{(-f / 2)}$, then $z T A N(X)=X$ (see the section on MTH\$zCOSH for the definition of f)
2 Otherwise, call MTH\$zSINCOS to obtain $\operatorname{zSIN}(X)$ and $z \operatorname{COS}(X)$; then
a. If $z \operatorname{COS}(X)=0$, signal overflow
b. Otherwise, $z \operatorname{TAN}(X)=z S I N(X) / z \operatorname{COS}(X)$

MTH\$HTAN

CONDITION
 VALUES SS\$_ROPRAND SIGNALED

Reserved operand. The MTH\$HTAN procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$_FLOOVEMAT

MTH\$HTAND Tangent of Angle Expressed in Degrees (H-floating Value)

The Tangent of Angle Expressed in Degrees (H-floating Value) routine returns the tangent of a given angle (in degrees) as an H -floating value.

MTH\$HTAND h-tan, angle-in-degrees

MTH\$HTAND_R5
jsb entries

RETURNS
None.

ARGUMENTS

h-tan	
VMS usage:	floating_point
type:	H_floating write only
access:	mechanism:
by reference	

Tangent of the angle specified by angle-in-degrees. The \mathbf{h}-tan argument is the address of an H-floating number that is this tangent. MTH\$HTAND writes the address of the tangent into \mathbf{h}-tan.

angle-in-degrees

VMS usage: floating_point
type: H_floating access: read only mechanism: by reference
The input angle (in degrees). The angle-in-degrees argument is the address of a floating-point number which is this angle. For MTH\$HTAND, angle-indegrees specifies an H -floating number.

DESCRIPTION

When the input argument is expressed in degrees, the tangent function is computed as follows:
1 If $|X|<(180 / \pi) * 2^{(-2 /(e-1))}$ and underflow signaling is enabled, underflow is signaled (see the section on MTH $\$ \mathrm{zCOSH}$ for the definition of e).
2 Otherwise, if $|X|<(180 / \pi) * 2^{(-f / 2)}$, then $z \operatorname{TAND}(X)=(\pi / 180) * X$. See the description of MTH\$zCOSH for the definition of f.
3 Otherwise, call MTH\$zSINCOSD to obtain $\mathrm{zSIND}(\mathrm{X})$ and $\mathrm{zCOSD}(\mathrm{X})$.
a. Then, if $z \operatorname{COSD}(X)=0$, signal overflow
b. Else, $z \operatorname{TAND}(X)=z \operatorname{SIN} D(X) / z \operatorname{COSD}(X)$

CONDITION
 VALUES SS\$_ROPRAND
 SIGNALED

Reserved operand. The MTH\$HTAND procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Floating-point overflow in math library.

MTH\$HTANH

MTH\$HTANH Compute the Hyperbolic Tangent (H-floating Value)

The Compute the Hyperbolic Tangent (H -floating Value) routine returns the hyperbolic tangent of the input value as an H -floating value.

FORMAT
MTH\$HTANH h-tanh, floating-point-input-value

RETURNS None.

ARGUMENTS
h-tanh
VMS usage: floating_point
type:
H_floating
access:
write only
mechanism: by reference
Hyperbolic tangent of the value specified by floating-point-input-value. The h -tanh argument is the address of a H -floating number that is this hyperbolic tangent. MTH\$HTANH writes the address of the hyperbolic tangent into h -tanh.

floating-point-input-value
 VMS usage: floating_point
 type: H_floating
 access: read only mechanism: by reference

The input value. The floating-point-input-value argument is the address of a floating-point number that contains this input value. For MTH\$HTANH, floating-point-input-value specifies an H -floating number.

For MTH\$HTANH, the hyperbolic tangent of X is computed using a value of 56 for g and a value of 40 for h. The hyperbolic tangent of X is computed as follows:

Value of \mathbf{x}	Hyperbolic Tangent Returned
$\|X\| \leq 2^{-g}$	X
$2^{-g}<\|X\| \leq 0.25$	$z S I N H(X) / z \operatorname{COSH}(X)$
$0.25<\|X\|<h$	$(z E X P(2 * X)-1) /(z E X P(2 * X)+1)$
$h \leq\|X\|$	$\operatorname{sign}(X) * 1$

MTH\$HTANH

CONDITION

VALUE
SIGNALED

Reserved operand. The MTH\$HTANH procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$xIMAG Imaginary Part of a Complex Number

The Imaginary Part of a Complex Number routine returns the imaginary part of a complex number.

FORMAT
 MTH\$AIMAG complex-number
 MTH\$DIMAG complex-number
 MTH\$GIMAG complex-number

Each of the above three formats corresponds to one of the three floating-point complex types.

RETURNS	VMS usage: type: access:
	floating_point F_floating, mechanism: write only by value
	Imaginary,
	floating number. of the input complex-number. MTH\$DIMAG returns a D-floating number. MTH\$GIMAG
returns a G-floating number.	

ARGUMENT

complex-number
VMS usage: complex_number
type: F_floating complex, D_floating complex, G_floating complex
access: read only
mechanism: by reference
The input complex number. The complex-number argument is the address of this floating-point complex number. For MTH\$AIMAG, complex-number specifies an F-floating number. For MTH\$DIMAG, complex-number specifies a D-floating number. For MTH\$GIMAG, complex-number specifies a Gfloating number.

Reserved operand. The MTH\$xIMAG routine encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$xIMAG

EXAMPLE

```
C+
C This FORTRAN example forms the imaginary part of
C a G-floating complex number using MTH$GIMAG
C and the FORTRAN random number generator
C RAN.
C
C Declare Z as a complex value and MTH$GIMAG as
C a REAL*8 value. MTH$GIMAG will return the imaginary
C part of Z: Z_NEW = MTH$GIMAG(Z).
C-
    COMPLEX*16 Z
    COMPLEX*16 DCMPLX
    REAL*8 R,I,MTH$GIMAG
    INTEGER M
    M = 1234567
C+
C Generate a random complex number with the
C FORTRAN generic CMPLX.
C-
    R = RAN(M)
    I = RAN(M)
    Z = DCMPLX (R,I)
C+
C Z is a complex number ( }r,i\mathrm{ ) with real part "r" and
C imaginary part "i".
C-
    TYPE *, , The complex number z is',z
    TYPE *, ' It has imaginary part',MTH$GIMAG(Z)
    END
```

This FORTRAN example demonstrates a procedure call to MTH\$GIMAG. Because this example uses G-floating numbers, it must be compiled with the statement "FORTRAN/G filename".

The output generated by this program is as follows:
The complex number z is ($0.8535407185554504,0.2043401598930359$)
It has imaginary part 0.2043401598930359

MTH\$xLOG Natural Logarithm

The Natural Logarithm routine returns the natural (base e) logarithm of the input argument.

FORMAT

MTH\$ALOG floating-point-input-value
MTH\$DLOG floating-point-input-value
MTH\$GLOG floating-point-input-value
Each of the above formats accepts as input one of the floating-point types.

jsb entries

MTHSALOG_R5
MTH\$DLOG_R8
MTH\$GLOG_R8
Each of the above JSB entries accepts as input one of the floating-point types.

RETURNS

VMS usage: floating_point
type: \quad F_floating, D_floating, G_floating access: write only mechanism: by value
The natural logarithm of floating-point-input-value. MTH\$ALOG returns an F-floating number. MTH\$DLOG returns a D-floating number. MTH\$GLOG returns a G-floating number.

ARGUMENTS floating-point-input-value

VMS usage: floating_point
type: \quad F_floating, D_floating, G_floating access: read only mechanism: by reference

The input value. The floating-point-input-value argument is the address of a floating-point number that is this value. For MTH\$ALOG, floating-point-input-value specifies an F-floating number. For MTH\$DLOG, floating-point-input-value specifies a D-floating number. For MTH\$GLOG, floating-point-input-value specifies a G-floating number.

MTH\$xLOG

For $x=2^{n} * f$, where n is an integer and f is in the interval of 0.5 to 1 , define the following quantities:

$$
\begin{gathered}
\text { If } n \geq 1, \text { then } N=n-1 \text { and } F=2 f \\
\text { If } n \leq 0, \text { then } N=n \text { and } F=f
\end{gathered}
$$

From (1) above it follows that:
$4 \ln (X)=N * \ln (2)+\ln (F)$
Based on the above relationships, zLOG is computed as follows:
1 If $|F-1|<2^{-5}, z L O G(X)=N * z L O G(2)+W+W * p(W)$, where $\mathrm{W}=\mathrm{F}-1$.

2 Otherwise, $z L O G(X)=N * z L O G(2)+z L O G(A)+V * p\left(V^{2}\right)$, where $V=(F-A) /(F+A)$ and A and zLOG(A) are obtained by table look up.

The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HLOG.

CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$_LOGZERNEG

Reserved operand. The MTH\$xLOG procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Logarithm of zero or negative value. Argument floating-point-input-value is less than or equal to 0.0 . LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_ MCH_SAVRO/R1.

MTH\$xLOG2 Base 2 Logarithm

The Base 2 Logarithm routine returns the base 2 logarithm of the input value specified by floating-point-input-value.

FORMAT

MTH\$ALOG2 floating-point-input-value
MTH\$DLOG2 floating-point-input-value MTH\$GLOG2 floating-point-input-value
Each of the above formats accepts as input one of the floating-point types.

RETURNS :	VMS usage: type: access:\quadfloating_point F_floating, write only
	mechanism: by value

ARGUMENTS	```floating-point-input-value VMS usage: floating_point type: \(\quad\) F-floating, \(D\) _floating, \(\mathbf{G}_{\text {_floating }}\) access: read only mechanism: by reference```

The input value. The floating-point-input-value argument is the address of a floating-point number that is this input value. For MTH\$ALOG2, floating-point-input-value specifies an F-floating number. For MTH\$DLOG2, floating-point-input-value specifies a D-floating number. For MTH\$GLOG2, floating-point-input-value specifies a G-floating number.

DESCRIPTION

The base 2 logarithm function is computed as follows:

$$
z L O G 2(X)=z \operatorname{LOG} 2(E) * z L O G(X)
$$

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HLOG2.

MTH\$xLOG2

CONDITION VALUES SIGNALED	SS\$_ROPRAND	Reserved operand. The MTH\$xLOG2 procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
	MTH\$_LOGZERNEG	Logarithm of zero or negative value. Argument floating-point-input-value is less than or equal to 0.0 . LIB $\$$ SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change $\mathrm{CHF} \mathrm{LL}_{-}$ MCH_SAVRO/R1.

MTH\$xLOG10 Common Logarithm

The Common Logarithm routine returns the common (base 10) logarithm of the input argument.
jsb entries

\section*{\section*{FORMAT

 MTH\$ALOG10 floating-point-input-value

 MTH\$ALOG10 floating-point-input-value
 MTH\$DLOG10 floating-point-input-value
 MTH\$GLOG10 floating-point-input-value}

Each of the above formats accepts as input one of the floating-point types.

MTH\$ALOG10_R5
 MTH\$DLOG10_R8
 MTH\$GLOG10_R8

Each of the above JSB entries accepts as input one of the floating-point types.

RETURNS

VMS usage:	floating_point
type:	F_floating, \mathbf{D} _floating, G_floating
access:	write only
mechanism:	by value

The common logarithm of floating-point-input-value. MTH\$ALOG10 returns an F-floating number. MTH\$DLOG10 returns a D-floating number. MTH\$GLOG10 returns a G-floating number.

ARGUMENTS floating-point-input-value

 VMS usage: floating_pointtype: \quad F_floating, D_floating, G_floating access: read only mechanism: by reference

The input value. The floating-point-input-value argument is the address of a floating-point number. For MTH\$ALOG10, floating-point-input-value specifies an F-floating number. For MTH\$DLOG10, floating-point-inputvalue specifies a D-floating number. For MTH\$GLOG10, floating-point-input-value specifies a G-floating number.

$$
z L O G 10(X)=z L O G 10(E) * z L O G(X)
$$

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HLOG10.

CONDITION Values SIGNALED

SS\$_ROPRAND

MTH\$_LOGZERNEG

Reserved operand. The MTH\$xLOG 10 procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Logarithm of zero or negative value. Argument floating-point-input-value is less than or equal to 0.0 . LIB $\$$ SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_ MCH_SAVRO/R1.

MTH\$RANDOM Random Number Generator, Uniformly Distributed

The Random Number Generator, Uniformly Distributed routine is a general random number generator.

FORMAT MTH\$RANDOM seed

ARGUMENT seed

VMS usage: longword_unsigned
type: longword (unsigned)
access: modify
mechanism: by reference
The integer seed, a 32-bit number whose high-order 24 bits are converted by MTH\$RANDOM to an F-floating random number. The seed argument is the address of an unsigned longword that contains this integer seed. The seed is modified by each call to MTH\$RANDOM.

This routine must be called again to obtain the next pseudorandom number.
The seed is updated automatically.
The result is a floating-point number that is uniformly distributed between 0.0 inclusively and 1.0 exclusively.

There are no restrictions on the seed, although it should be initialized to different values on separate runs in order to obtain different random sequences. MTH\$RANDOM uses the following method to update the seed passed as the argument:

$$
S E E D=(69069 * S E E D+1)\left(\text { modulo } 2^{32}\right)
$$

MTH\$RANDOM

CONDITION
VALUE SS\$_ROPRAND SIGNALED

Reserved operand. The MTH\$RANDOM procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

EXAMPLE

```
RAND: PROCEDURE OPTIONS (MAIN);
DECLARE FOR$SECNDS ENTRY (FLOAT BINARY (24))
            RETURNS (FLOAT BINARY (24));
DECLARE MTH$RANDOM ENTRY (FIXED BINARY (31))
            RETURNS (FLOAT BINARY (24));
DECLARE TIME FLOAT BINARY (24);
DECLARE SEED FIXED BINARY (31);
DECLARE I FIXED BINARY (7);
DECLARE RESULT FIXED DECIMAL (2);
    /* Get floating random time value */
TIME = FOR$SECNDS (OEO);
    /* Convert to fixed */
SEED = TIME;
    /* Generate 100 random numbers between 1 and 10 */
DO I = 1 TO 100;
    RESULT = 1 + FIXED ( (10E0 * MTH$RANDOM (SEED) ),31 );
    PUT LIST (RESULT);
    END;
END RAND;
```

This PL/I program demonstrates the use of MTH\$RANDOM. The value returned by FOR\$SECNDS is used as the seed for the random-number generator to insure a different sequence each time the program is run. The random value returned is scaled so as to represent values between 1 and 10 .
Because this program generates random numbers, the output generated will be different each time the program is executed. One example of the outut generated by this program is as follows:

7	4	6	5	9	10	5	5	3	8	8	1	3	1	3
4	4	2	4	4	8	3	8	9	1	7	1	8	6	9
1	10	10	6	7	3	2	2	1	2	6	6	3	9	5
6	2	3	6	10	8	5	5	4	2	8	5	9	6	4
8	5	4	9	8	7	6	6	8	10	9	5	9	4	5
1	2	2	3	6	5	2	3	4	4	8	9	2	8	5
3	8	1	5											5

MTH\$xREAL Real Part of a Complex Number

The Real Part of a Complex Number routine returns the real part of a complex number.

FORMAT

MTH\$REAL complex-number
MTHSDREAL complex-number MTH\$GREAL complex-number
Each of the above three formats accepts as input one of the three floatingpoint complex types.

RETURNS

VMS usage:	floating_point
type:	F_floating, D _floating, G_floating
access:	write only
mechanism:	by value

Real part of the complex number. MTH\$REAL returns an F-floating number. MTH\$DREAL returns a D-floating number. MTH\$GREAL returns a Gfloating number.

ARGUMENT	complex-number VMS usage: complex_number type: \quadF_floating complex, D_floating complex, G_floating complex access: read only mechanism: by reference
The complex number whose real part is returned by MTH\$REAL. The complex-number argument is the address of this floating-point complex number. For MTH\$REAL, complex-number is an F-floating complex number. For MTH\$DREAL, complex-number is a D-floating complex number. For MTH\$GREAL, complex-number is a G-floating complex number.	

CONDITION

VALUE

SS\$_ROPRAND

Reserved operand. The MTH\$xREAL procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

EXAMPLE

```
C+
C This FORTRAN example forms the real
C part of an F-floating complex number using
C MTH$REAL and the FORTRAN random number
C generator RAN.
C
C Declare Z as a complex value and MTH$REAL as a
C REAL*4 value. MTH$REAL will return the real
C part of Z: Z_NEW = MTH$REAL(Z).
C-
    COMPLEX Z
    COMPLEX CMPLX
    REAL*4 MTH$REAL
    INTEGER M
    M = 1234567
C+
    Generate a random complex number with the FORTRAN
    generic CMPLX.
    Z = CMPLX(RAN (M),RAN (M))
C+
C Z is a complex number ( }\textrm{r},\textrm{i}\mathrm{ ) with real part "r" and imaginary
C part "i".
C-
    TYPE *,' The complex number z is',z
    TYPE *, ' It has real part',MTH$REAL(Z)
    END
```

This FORTRAN example demonstrates the use of MTH\$REAL. The output of this program is as follows:

The complex number z is ($0.8535407,0.2043402$)
It has real part 0.8535407

MTH\$xSIN Sine of Angle Expressed in Radians

The Sine of Angle Expressed in Radians routine returns the sine of a given angle (in radians).

FORMAT	MTH\$SIN angle-in-radians
	MTH\$DSIN angle-in-radians
	MTH\$GSIN angle-in-radians

Each of the above formats accepts as input one of the floating-point types.
jsb entries
MTH\$SIN_R4
MTH\$DSIN_R7
MTH\$GSIN_R7
Each of the above JSB entries accepts as input one of the floating-point types.

RETURNS

VMS usage: floating_point
type: \quad F_floating, D_floating, G_floating access: write only
mechanism: by value
Sine of the angle specified by angle-in-radians. MTH\$SIN returns an Ffloating number. MTH\$DSIN returns a D-floating number. MTH\$GSIN returns a G-floating number.

ARGUMENTS angle-in-radians
VMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference
Angle (in radians). The angle-in-radians argument is the address of a floating-point number that is this angle. For MTH\$SIN, angle-in-radians specifies an F-floating number. For MTH\$DSIN, angle-in-radians specifies a D-floating number. For MTH\$GSIN, angle-in-radians specifies a G-floating number.

See the MTH $\$$ SINCOS routine for the algorithm used to compute this sine.
The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HSIN.

CONDITION
VALUE SS\$_ROPRAND
SIGNALED

Reserved operand. The MTH $\$ x$ SIN procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$xSINCOS Sine and Cosine of Angle Expressed in Radians

The Sine and Cosine of Angle Expressed in Radians routine returns the sine and cosine of a given angle (in radians).

FORMAT	MTH\$SINCOS angle-in-radians, sine , cosine
	MTH\$DSINCOS angle-in-radians, sine, cosine
	MTH\$GSINCOS angle-in-radians, sine, cosine
	MTH\$HSINCOS angle-in-radians, sine, cosine

Each of the above four formats accepts as input one of the four floating-point types.

MTHSSINCOS_R5 MTH\$DSINCOS_R7 MTH\$GSINCOS_R7 MTH\$HSINCOS_R7

Each of the above four JSB entries accepts as input one of the four floatingpoint types.

RETURNS

 MTH\$SINCOS, MTH\$DSINCOS, MTH\$GSINCOS, and MTH\$HSINCOS return the sine and cosine of the input angle by reference in the sine and cosine arguments.
ARGUMENTS
 angle-in-radians

VMS usage:	floating_point
type:	F_floating, D _floating, G_floating, H_{-}floating
access:	read only
mechanism:	by reference

Angle (in radians) whose sine and cosine are to be returned. The angle-in-radians argument is the address of a floating-point number that is this angle. For MTH $\$$ SINCOS, angle-in-radians is an F-floating number. For MTH\$DSINCOS, angle-in-radians is a D-floating number. For MTH\$GSINCOS, angle-in-radians is a G-floating number. For MTH\$HSINCOS, angle-in-radians is an H -floating number.

sine

VMS usage: floating_point
type: \quad F_floating, D_floating, G_floating, H_floating access: write only mechanism: by reference

Sine of the angle specified by angle-in-radians. The sine argument is the address of a floating-point number. MTH\$SINCOS writes an F-floating
number into sine. MTH\$DSINCOS writes a D-floating number into sine. MTH\$GSINCOS writes a G-floating number into sine. MTH\$HSINCOS writes an H-floating number into sine.

cosine

VMS usage: floating_point
type:
access:
F_floating, D_floating, G_floating, H_floating
write only
mechanism: by reference
Cosine of the angle specified by angle-in-radians. The cosine argument is the address of a floating-point number. MTH\$SINCOS writes an F-floating number into cosine. MTH\$DSINCOS writes a D-floating number into cosine. MTH\$GSINCOS writes a G-floating number into cosine. MTH\$HSINCOS writes an H-floating number into cosine.

All routines with JSB entry points accept a single argument in R0:Rm, where m, which is defined below, is dependent on the data type.

Data Type	\mathbf{m}
F_floating	0
D_floating	1
G_floating	1
H_floating	3

In general, Run-Time Library routines with JSB entry points return one value in $\mathrm{R} 0: \mathrm{Rm}$. The MTH\$SINCOS routine returns two values, however. The sine of angle-in-radians is returned in $\mathrm{R} 0: \mathrm{Rm}$ and the cosine of angle-in-radians is returned in ($\mathrm{R}<\mathrm{m}+1>: \mathrm{R}<2 * \mathrm{~m}+1>$).
In radians, the computation of $\mathrm{zSIN}(X)$ and $\mathrm{zCOS}(X)$ is based on the following polynomial expansions:

$$
\begin{aligned}
& \sin (X)=X-X^{3} /(3!)+X^{5} /(5!)-X^{7} /(7!) \ldots \\
& \quad=X+X * P\left(X^{2}\right), \text { where } \\
& P(y)=y /(3!)+y^{2} /(5!)+y^{3} /(7!) \ldots \\
& \cos (X)=1-X^{2} /(2!)+x^{4} /(4!)-X^{6} /(6!) \ldots \\
& \quad=Q\left(X^{2}\right), \text { where } \\
& Q(y)=\left(1-y /(2!)+y^{2} /(4!)+y^{3} /(6!) \ldots\right)
\end{aligned}
$$

1 If $|X|<2^{(-f / 2)}$, then $z S I N(X)=X$ and $z \operatorname{COS}(X)=1$ (see the section on MTH\$zCOSH for the definition of f)
2 If $2^{-f / 2} \leq|X|<\pi / 4$,
then $z S I N(X)=X+P\left(X^{2}\right)$
and $\mathrm{zCOS}(\mathrm{X})=Q\left(X^{2}\right)$
3 If $\pi / 4 \leq|X|$ and $X>0$,
a. Let $J=\operatorname{INT}(X /(\pi / 4))$ and $I=$ Jmodulo 8
b. If J is even, let $Y=X-J *(\pi / 4)$ otherwise,

$$
\text { let } Y=(J+1) *(\pi / 4)-X
$$

With the above definitions, the following table relates $\mathrm{zSIN}(X)$ and $\mathrm{zCOS}(\mathrm{X})$ to $\mathrm{zSIN}(\mathrm{Y})$ and $\mathrm{zCOS}(\mathrm{Y})$:

Value of I	$z \operatorname{SIN}(X)$	$z \operatorname{COS}(X)$
0	$z \operatorname{SIN}(Y)$	$z \operatorname{COS}(Y)$
1	$z \operatorname{COS}(Y)$	$z \operatorname{SiN}(Y)$
2	$z \operatorname{COS}(Y)$	$-z \operatorname{SIN}(Y)$
3	$z \operatorname{SiN}(Y)$	$-z \operatorname{COS}(Y)$
4	$-z \operatorname{SiN}(Y)$	$-z \operatorname{COS}(Y)$
5	$-z \operatorname{COS}(Y)$	$-z \operatorname{SIN}(Y)$
6	$-z \operatorname{COS}(Y)$	$z \operatorname{SiN}(Y)$
7	$-z \operatorname{SiN}(Y)$	$z \operatorname{COS}(Y)$

c. $\mathrm{zSIN}(\mathrm{Y})$ and $\mathrm{zCOS}(\mathrm{Y})$ are computed as follows:

$$
z S I N(Y)=Y+P\left(Y^{2}\right)
$$

$$
\text { and } z C O S(Y)=Q\left(Y^{2}\right)
$$

4 If $\pi / 4 \leq|X|$ and $X<0$,
then $z \operatorname{SIN}(X)=-z S I N(|X|)$
and $z \operatorname{COS}(X)=z \operatorname{COS}(|X|)$

SS\$_ROPRAND

Reserved operand. The MTH\$xSINCOS procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$xSINCOSD Sine and Cosine of Angle Expressed in Degrees

The Sine and Cosine of Angle Expressed in Degrees routine returns the sine and cosine of a given angle (in degrees).

FORMAT

jsb entries

Abstract

MTH\$SINCOSD angle-in-degrees , sine ,cosine MTH\$DSINCOSD angle-in-degrees, sine, cosine MTH\$GSINCOSD angle-in-degrees, sine , cosine MTH\$HSINCOSD angle-in-degrees, sine, cosine

Each of the above four formats accepts as input one of the four floating-point types.

MTH\$SINCOSD_R5 MTHSDSINCOSD_R7
 MTH\$GSINCOSD_R7 MTHSHSINCOSD_R7

Each of the above four JSB entries accepts as input one of the four floatingpoint types.

RETURNS	MTH\$SINCOSD, MTH\$DSINCOSD, MTH\$GSINCOSD, and MTH\$HSINCOSD return the sine and cosine of the input angle by reference in the sine and cosine arguments.

ARGUMENTS
angle-in-degrees
VMS usage: floating_point
type: \quad F_floating, D_floating, G_floating, H_floating
access: read only
mechanism: by reference
Angle (in degrees) whose sine and cosine are returned by MTH\$xSINCOSD. The angle-in-degrees argument is the address of a floating-point number that is this angle. For MTH\$SINCOSD, angle-in-degrees is an F-floating number. For MTH\$DSINCOSD, angle-in-degrees is a D-floating number. For MTH\$GSINCOSD, angle-in-degrees is a G-floating number. For MTH\$HSINCOSD, angle-in-degrees is an H -floating number.

sine

VMS usage: floating_point
type: \quad F_floating, D_floating, G_floating, H_floating
access: write only
mechanism: by reference
Sine of the angle specified by angle-in-degrees. The sine argument is the address of a floating-point number. MTH\$SINCOSD writes an F-floating

MTH\$xSINCOSD

number into sine. MTH\$DSINCOSD writes a D-floating number into sine. MTH\$GSINCOSD writes a G-floating number into sine. MTH\$HSINCOSD writes an H -floating number into sine.

cosine

VMS usage: floating_point
type: \quad F_floating, D_floating, G_floating, H_floating access: write only
mechanism: by reference
Cosine of the angle specified by angle-in-degrees. The cosine argument is the address of a floating-point number. MTH\$SINCOSD writes an Ffloating number into cosine. MTH\$DSINCOSD writes a D-floating number into cosine. MTH\$GSINCOSD writes a G-floating number into cosine. MTH\$HSINCOSD writes an H-floating number into cosine.

DESCRIPTION

All routines with JSB entry points accept a single argument in R0:Rm, where m, which is defined below, is dependent on the data type.

Data Type	\mathbf{m}
F_floating	0
D_floating	1
G_floating	1
H_floating	3

In general, Run-Time Library routines with JSB entry points return one value in R0:Rm. The MTH\$SINCOSD routine returns two values, however. The sine of angle-in-degrees is returned in $\mathrm{R} 0: \mathrm{Rm}$ and the cosine of angle-indegrees is returned in ($\mathrm{R}<\mathrm{m}+1>: \mathrm{R}<2 * \mathrm{~m}+1>$).
In degrees, the computation of $z \operatorname{SIND}(X)$ and $z \operatorname{COSD}(X)$ is based on the following polynomial expansions:

$$
\begin{aligned}
& S I N D(X)=(C * X)-(C * X)^{3} /(3!)+ \\
& (C * X)^{5} /(5!)-(C * X)^{7} /(7!) \ldots \\
& =X / 2^{6}+X * P\left(X^{2}\right), \text { where } \\
& P(y)=-y /(3!)+y^{2} /(5!)-y^{3} /(7!) \ldots \\
& \operatorname{COSD}(X)=1-(C * X)^{2} /(2!)+ \\
& (C * X)^{4} /(4!)-(C * X)^{6} /(6!) \ldots \\
& =Q\left(X^{2}\right), \text { where } \\
& Q(y)=1-y /(2!)+y^{2} /(4!)-y^{3} /(6!) \ldots \\
& \text { and } \mathrm{C}=\pi / 180
\end{aligned}
$$

1 If $|X|<(180 / \pi) * 2^{-2^{e-1}}$ and underflow signaling is enabled, underflow is signaled for $\operatorname{zSIND}(\mathrm{X})$ and $\mathrm{zSINCOSD}(\mathrm{X})$.
See MTH\$zCOSH for the definition of e.

OTHERWISE:

2 If $|X|<(180 / \pi) * 2^{(-f / 2)}$,
then $z S I N D(X)=(\pi / 180) * X$ and $z \operatorname{COSD}(X)=1$.
(See MTH\$zCOSH for the definition of f.)

3 If $(180 / \pi) * 2^{(-f / 2)} \leq|X|<45$
then $z \operatorname{SIND}(X)=X / 2^{6}+P\left(X^{2}\right)$
and $z \operatorname{COSD}(X)=Q\left(X^{2}\right)$
4 If $45 \leq|X|$ and $X>0$,
a. Let $J=I N T(X /(45))$ and

$$
I=J \text { modulo } 8
$$

b. If J is even, let $Y=X-J * 45$; otherwise, let $Y=(J+1) * 45-X$. With the above definitions, the following table relates $\mathrm{zSIND}(\mathrm{X})$ and $\mathrm{zCOSD}(\mathrm{X})$ to $\mathrm{zSIND}(\mathrm{Y})$ and $\mathrm{zCOSD}(\mathrm{Y})$:

Value of I	zSIND(X)	zCosD(X)
0	zSIND(Y)	z $\operatorname{CoSD}(\mathrm{Y})$
1	zCOSD(Y)	zSIND(Y)
2	zCOSD(Y)	-zSIND(Y)
3	zSIND(Y)	-zCOSD(Y)
4	-zSIND(Y)	-zCOSD(Y)
5	-zCOSD(Y)	-zSIND(Y)
6	-zCOSD(Y)	zSIND(Y)
7	-zSIND(Y)	zCOSD(Y)

c. $\mathrm{zSIND}(\mathrm{Y})$ and $\mathrm{zCOSD}(\mathrm{Y})$ are computed as follows:

$$
\begin{aligned}
& z \operatorname{SIN}(Y)=Y / 2^{6}+P\left(Y^{2}\right) \\
& z \operatorname{COSD}(Y)=Q\left(Y^{2}\right)
\end{aligned}
$$

d. If $45 \leq|X|$ and $X<0$,
then $z S I N D(X)=-z S I N D(|X|)$
and $z \operatorname{COSD}(X)=z \operatorname{COSD}(|X|)$

CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$_FLOUNDMAT

Reserved operand. The MTH\$xSINCOSD procedure encountered a floating-point reserved operand due to incorrect user input. A floatingpoint reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Floating-point underflow in math library. The absolute value of the input angle is less than $180 / \pi * 2^{-m}$ (where $m=128$ for F-floating and D-floating, 1,024 for G-floating, and 16,384 for H -floating).

MTH\$xSIND Sine of Angle Expressed in Degrees

The Sine of Angle Expressed in Degrees routine returns the sine of a given angle (in degrees).

FORMAT	MTH\$SIND angle-in-degrees
	MTH\$DSIND angle-in-degrees
	MTH\$GSIND angle-in-degrees

Each of the above formats accepts as input one of the floating-point types.
jsb entries MTH\$SIND_R4
MTH\$DSIND_R7
MTH\$GSIND_R7
Each of the above JSB entries accepts as input one of the floating-point types.

RETURNS	VMS usage: type:	floating_point F_floating, D _floating, $G _$floating
	access:	write only
mechanism:	by value	

The sine of the angle. MTH\$SIND returns an F-floating number. MTH\$DSIND returns a D-floating number. MTH\$GSIND returns a G-floating number.

ARGUMENTS	angle-in-degrees VMS usage: floating-point type: \quad Ffloating, D_floating, G_floating access: read only
mechanism: by reference	

DESCRIPTION

See MTH\$SINCOSD for the algorithm that is used to compute the sine.
The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HSIND.

CONDITION VALUES SIGNALED
 SS\$_ROPRAND

MTH\$_FLOUNDMAT

Reserved operand. The MTH\$SIND procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased ecponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Floating-point underflow in math library. The absolute value of the input angle is less than $180 / \pi * 2^{-m}$ (where $\mathrm{m}=128$ for F-floating and D-floating, and 1,024 for G-floating).

MTH\$xSINH Hyperbolic Sine

The Hyperbolic Sine routine returns the hyperbolic sine of the input value specified by floating-point-input-value.

FORMAT

MTH\$SINH floating-point-input-value MTH\$DSINH floating-point-input-value MTH\$GSINH floating-point-input-value

Each of the above formats accepts as input one of the floating-point types.

RETURNS VMS usage: floating_point
type: \quad F_floating, D_floating, G_floating access: write only mechanism: by value

The hyperbolic sine of floating-point-input-value. MTH\$SINH returns an F-floating number. MTH\$DSINH returns a D-floating number. MTH\$GSINH returns a G-floating number.

ARGUMENTS floating-point-input-value VMS usage: floating_point type: \quad F_floating, D_floating, G_floating access: read only mechanism: by reference

The input value. The floating-point-input-value argument is the address of a floating-point number that is this value. For MTH\$SINH, floating-point-input-value specifies an F-floating number. For MTH\$DSINH, floating-point-input-value specifies a D-floating number. For MTH\$GSINH, floating-point-input-value specifies a G-floating number.

Computation of the hyperbolic sine function depends on the magnitude of the input argument. The range of the function is partitioned using four data type dependent constants: $\mathrm{a}(\mathrm{z}), \mathrm{b}(\mathrm{z})$, and $\mathrm{c}(\mathrm{z})$. The subscript z indicates the data type. The constants depend on the number of exponent bits (e) and the number of fraction bits (f) associated with the data type (z).

The values of e and f are:

\mathbf{z}	\mathbf{e}	\mathbf{f}
F	8	24
D	8	56
G	11	53

The values of the constants in terms of e and f are:

Variable	Value
$\mathrm{a}(\mathrm{z})$	$2^{(-f / 2)}$
$\mathrm{b}(\mathrm{z})$	CEILING $[f+1) / 2 * \ln (2)]$
$\mathrm{c}(\mathrm{z})$	$\left(2^{(e-1)} * \ln (2)\right)$

Based on the above definitions, $\mathrm{zSINH}(X)$ is computed as follows:

Value of X	Value Returned
$\|\mathrm{X}\|<\mathrm{a}(\mathrm{z})$	X
$\mathrm{a}(\mathrm{z}) \leq\|\mathrm{X}\|<1.0$	$\mathrm{zSINH}(\mathrm{X})$ is computed using a
	power series expansion in $\|X\|^{2}$
$1.0 \leq\|\mathrm{X}\|<\mathrm{b}(\mathrm{z})$	$(z E X P(X)-z E X P(-X)) / 2$
$\mathrm{~b}(\mathrm{z}) \leq\|\mathrm{X}\|<\mathrm{c}(\mathrm{z})$	$S I G N(X) * z E X P(\|X\|) / 2$
$\mathrm{c}(\mathrm{z}) \leq\|\mathrm{X}\|$	Overflow occurs

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HSINH.

CONDITION VALUES SIGNALED

SS\$_ROPRAND

MTH\$_FLOOVEMAT

Reserved operand. The MTH\$xSINH procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library: the absolute value of floating-point-input-value is greater than yyy. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_MCH_SAVRO/R1.
The values of $y y y$ are approximately:

```
MTH$SINH—88.722
MTH$DSINH—88.722
MTH$GSINH—709.782
```


MTH\$xSQRT Square Root

The Square Root routine returns the square root of the input value floating-point-input-value.

FORMAT

MTH\$SQRT floating-point-input-value
 MTH\$DSQRT floating-point-input-value
 MTH\$GSQRT floating-point-input-value

Each of the above formats accepts as input one of the floating-point types.

jsb entries

MTH\$SQRT_R3
 MTH\$DSQRT_R5
 MTH\$GSQRT_R5

Each of the above JSB entries accepts as input one of the floating-point types.

RETURNS	VMS usage: type:floating_point F_floating, access:\quadwrite only
	mechanism:
	The value

ARGUMENTS

floating-point-input-value
 VMS usage: floating_point
 type: \quad F_floating, D_floating, G_floating
 access: read only mechanism: by reference

Input value. The floating-point-input-value argument is the address of a floating-point number that contains this input value. For MTH $\$$ SQRT, floating-point-input-value specifies an F-floating number. For MTH\$DSQRT, floating-point-input-value specifies a D-floating number. For MTH\$GSQRT, floating-point-input-value specifies a G-floating number.

DESCRIPTION

The square root of X is computed as follows:
If $X<0$, an error is signaled.
Let $X=2^{K} * F$
where:
K is the exponential part of the floating-point data
F is the fractional part of the floating-point data

$$
\begin{aligned}
& \text { If } \mathrm{K} \text { is even: } \\
& \quad \begin{array}{l}
\quad \\
\quad z S Q R T(X)=2^{(2 * P)} * F, \\
\quad 1 / 2 \leq F<1, \text { where } \mathrm{P}=\mathrm{K} / 2
\end{array} \\
& \text { If } \mathrm{K} \text { is odd: } \\
& \quad X=2^{(2 * P+1)} * F=2^{(22 * P+2)} *(F / 2), \\
& \quad z S Q R T(X)=2^{(P+1)} * z S Q R T(F / 2), \\
& \quad 1 / 4 \leq F / 2<1 / 2 \text {, where } \mathrm{p}=(\mathrm{K}-1) / 2 \\
& \text { Let } F^{\prime}=A * F+B \text {, when } \mathrm{K} \text { is even: } \\
& \mathrm{A}=0.95 \mathrm{~F} 6198 \text { (hex) } \\
& \mathrm{B}=0.6 \mathrm{BA} 5918 \text { (hex) } \\
& \text { Let } F^{\prime}=A *(F / 2)+B \text {, when } \mathrm{K} \text { is odd: } \\
& \mathrm{A}=0 . \mathrm{D} 413 \mathrm{CCC} \text { (hex) } \\
& \mathrm{B}=0.4 \mathrm{C} 1 \mathrm{E} 248 \text { (hex) } \\
& \text { Let } \mathrm{K}^{\prime}=\mathrm{P}, \text { when } \mathrm{K} \text { is even } \\
& \text { Let } \mathrm{K}^{\prime}=\mathrm{P}+1 \text {, when } \mathrm{K} \text { is odd }
\end{aligned}
$$

Let $Y[0]=2^{K^{\prime}} * F^{\prime}$ be a straight line approximation within the given interval using coefficients A and B which minimize the absolute error at the midpoint and endpoint.

Starting with Y[0], n Newton-Raphson iterations are performed:

$$
Y[n+1]=1 / 2 *(Y[n]+X / Y[n])
$$

where $\mathrm{n}=2,3$, or 3 for $\mathrm{z}=\mathrm{F}$-floating, D-floating, or G-floating, respectively.
The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HSQRT.

SS\$_ROPRAND

Reserved operand. The MTH\$xSQRT procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Square root of negative number. Argument floating-point-input-value is less than 0.0. LIB\$SIGNAL copies the floating-point reserved operand to the mechanism argument vector CHF\$L_MCH_SAVRO/R1. The result is the floating-point reserved operand unless you have written a condition handler to change CHF\$L_ MCH_SAVRO/R1.

MTH\$xTAN Tangent of Angle Expressed in Radians

The Tangent of Angle Expressed in Radians routine returns the tangent of a given angle (in radians).

FORMAT	MTH\$TAN angle-in-radians
	MTH\$DTAN angle-in-radians
	MTH\$GTAN angle-in-radians

Each of the above formats accepts as input one of the floating-point types.
jsb entries MTH\$TAN_R4
MTH\$DTAN_R7
MTH\$GTAN_R7
Each of the above JSB entries accepts as input one of the floating-point types.

VMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value
The tangent of the angle specified by angle-in-radians. MTH\$TAN returns an F-floating number. MTH\$DTAN returns a D-floating number. MTH\$GTAN returns a G-floating number.

ARGUMENTS angle-in-radians
VMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: read only
mechanism: by reference
The input angle (in radians). The angle-in-radians argument is the address of a floating-point number that is this angle. For MTH\$TAN, angle-in-radians specifies an F-floating number. For MTH\$DTAN, angle-in-radians specifies a D-floating number. For MTH\$GTAN, angle-in-radians specifies a G-floating number.

MTH\$xTAN

DESCRIPTION When the input argument is expressed in radians, the tangent function is computed as follows:
1 If $|X|<2^{(-f / 2)}$, then $z \operatorname{TAN}(X)=X$ (see the section on MTH\$zCOSH for the definition of f)
2 Otherwise, call MTH\$zSINCOS to obtain $\mathrm{zSIN}(X)$ and $\mathrm{zCOS}(X)$; then
a. If $z \operatorname{COS}(X)=0$, signal overflow
b. Otherwise, $z \operatorname{TAN}(X)=z \operatorname{SIN}(X) / z \operatorname{COS}(X)$

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HTAN.

CONDITION
 VALUES
 SIGNALED

SS\$_ROPRAND

MTH\$_FLOOVEMAT

Reserved operand. The MTH\$xTAN procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

Floating-point overflow in Math Library.

MTH\$xTAND Tangent of Angle Expressed in Degrees

The Tangent of Angle Expressed in Degrees routine returns the tangent of a given angle (in degrees).

FORMAT
jsb entries

MTH\$TAND angle-in-degrees
MTH\$DTAND angle-in-degrees
MTH\$GTAND angle-in-degrees
Each of the above formats accepts as input one of the floating-point types.
MTH\$TAND_R4
MTH\$DTAND_R7
MTH\$GTAND_R7

Each of the above JSB entries accepts as input one of the floating-point types.

RETURNS

VMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: write only
mechanism: by value
Tangent of the angle specified by angle-in-degrees. MTH\$TAND returns an F-floating number. MTH\$DTAND returns a D-floating number. MTH\$GTAND returns a G-floating number.

ARGUMENTS angle-in-degrees

VMS usage: floating_point
type: \quad F_floating, D_floating, G_floating access: read only mechanism: by reference
The input angle (in degrees). The angle-in-degrees argument is the address of a floating-point number which is this angle. For MTH\$TAND, angle-indegrees specifies an F-floating number. For MTH\$DTAND, angle-in-degrees specifies a D-floating number. For MTH\$GTAND, angle-in-degrees specifies a G -floating number.

MTH\$xTAND

DESCRIPTION When the input argument is expressed in degrees, the tangent function is computed as follows:
1 If $|X|<(180 / \pi) * 2^{(-2 /(e-1))}$ and underflow signaling is enabled, underflow is signaled (see the section on MTH\$zCOSH for the definition of e).
2 Otherwise, if $|X|<(180 / \pi) * 2^{(-f / 2)}$, then $z \operatorname{TAND}(X)=(\pi / 180) * X$. See the description of MTH\$zCOSH for the definition of f.
3 Otherwise, call MTH\$zSINCOSD to obtain $\mathrm{zSIND}(X)$ and $\mathrm{zCOSD}(X)$.
a. Then, if $z \operatorname{COSD}(X)=0$, signal overflow
b. Else, $z \operatorname{TAND}(X)=z \operatorname{SIND}(X) / z \operatorname{COSD}(X)$

The routine description for the H -floating point version of this routine is listed alphabetically under MTH\$HTAND.

CONDITION
 VALUES SIGNALED

SS\$__ROPRAND

MTH\$_FLOOVEMAT

Reserved operand. The MTH\$xTAND procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.
Floating-point overflow in Math Library.

MTH\$xTANH Compute the Hyperbolic Tangent

The Compute the Hyperbolic Tangent routine returns the hyperbolic tangent of the input value.

FORMAT

MTH\$TANH floating-point-input-value
 MTH\$DTANH floating-point-input-value
 MTH\$GTANH floating-point-input-value

Each of the above formats accepts as input one of the floating-point types.

RETURNS	VMS usage: type: access: mechanism:
	floating_point F_floating, write only by value

The hyperbolic tangent of floating-point-input-value. MTH $\$ T A N H$ returns an F-floating number. MTH\$DTANH returns a D-floating number. MTH\$GTANH returns a G-floating number. Unlike the other three routines, MTH\$HTANH returns the hyperbolic tangent by reference in the \mathbf{h}-tanh argument.

ARGUMENTS floating-point-input-value

VMS usage: floating_point
type: \quad F_floating, D_floating, G_floating
access: read only
mechanism: by reference
The input value. The floating-point-input-value argument is the address of a floating-point number that contains this input value. For MTH\$TANH, floating-point-input-value specifies an F-floating number. For MTH\$DTANH, floating-point-input-value specifies a D-floating number. For MTH\$GTANH, floating-point-input-value specifies a G-floating number.

DESCRIPTION In calculating the hyperbolic tangent of x, the values of g and h are:

\mathbf{z}	\mathbf{g}	\mathbf{h}
F	12	10
D	28	21
G	26	20

For MTH\$TANH, MTH\$DTANH, and MTH\$GTANH the hyperbolic tangent of x is then computed as follows:

Value of \mathbf{x}	Hyperbolic Tangent Returned
$\|x\| \leq 2^{-g}$	X
$2^{-g}<\|X\|<0.5$	$x T A N H(X)=X+X^{3} * R\left(X^{2}\right)$, where $R\left(X^{2}\right)$ is a
	rational function of X^{2}.
$0.5 \leq\|X\|<1.0$	$x T A N H(X)=x T A N H(x H I)+x T A N H(x L O) * C / B$
	where $C=1-x T A N H(x H I) * x T A N H(x H I)$,
	$B=1+x T A N H(x H I) * x T A N H(x L O)$,
	$x H I=1 / 2+N / 16+1 / 32$ for $N=0,1, \ldots, 7$,
	and $x L O=X-x H I$.
$1.0<\|X\|<h$	$x T A N H(X)=(x E X P(2 * X)-1) /(x E X P(2 * X)+1)$
$h \leq\|X\|$	$x T A N H(X)=\operatorname{sign}(X) * 1$

The routine description for the H-floating point version of this routine is listed alphabetically under MTH\$HTANH.

Reserved operand. The MTH\$xTANH procedure encountered a floating-point reserved operand due to incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by DIGITAL.

MTH\$UMAX Compute Unsigned Maximum

The Compute Unsigned Maximum routine computes the unsigned longword maximum of \mathbf{n} unsigned longword arguments, where \mathbf{n} is greater than or equal to 1 .

FORMAT
 MTH\$UMAX argument [argument,...]

RETURNS	VMS usage: type: access: mechanism:
	longword_unsigned longword (unsigned) write only
	Maximum value returned by MTH\$UMAX.

ARGUMENTS argument
ViviS usage: iongword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Argument whose maximum MTH\$UMAX computes. Each argument argument is an unsigned longword that contains one of these values.

argument

VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Additional arguments whose maximum MTH\$UMAX computes. Each argument argument is an unsigned longword that contains one of these values.

DESCRIPTION MTH\$UMAX is the unsigned version of MTH\$JMAXO.

CONDITION

VALUES
None.

RETURNED

MTH\$UMIN Compute Unsigned Minimum

The Compute Unsigned Minimum routine computes the unsigned longword minimum of n unsigned longword arguments, where n is greater than or equal to 1 .

FORMAT
 MTH\$UMIN argument [argument,...]

RETURNS

```
VMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value
```

Minimum value returned by MTH\$UMIN.

ARGUMENTS argument

VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Argument whose minimum MTH\$UMIN computes. Each argument argument is an unsigned longword that contains one of these values.

argument

VMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference
Additional arguments whose minimum MTH\$UMIN computes. Each argument argument is an unsigned longword that contains one of these values.

DESCRIPTION MTH\$UMIN is the unsigned version of MTH\$JMIN0.

CONDITION
 VALUES
 RETURNED

 None.
A Undocumented MTH\$ Routines

This appendix lists all of the entry point and argument information for the MTH\$ routines not documented in the MTH\$ Reference Section of this manual.

Table A-1 Undocumented MTH\$ Routines

Routine Name		Entry Point Information
MTH\$ABS		F-floating Absolute Value Routine
	Format:	MTH\$ABS f-floating
	Returns:	floating_point, F_floating, write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$DABS		D-floating Absolute Value Routine
	Format:	MTH\$DABS d-floating
	Returns:	floating_point, D_floating, write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$GABS		G-floating Absolute Value Routine
	Format:	MTH\$GABS g-floating
	Returns:	floating_point, G_floating, write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$HABS		H-floating Absolute Value Routine
	Format:	MTH\$ABS h-abs-val, h-floating
	Returns:	None
	h-abs-val:	floating_point, H_floating, write only, by reference
	h-floating:	floating_point, H_floating, read only, by reference
MTH\$IIABS		Word Absolute Value Routine
	Format:	MTH\$IIABS word
	Returns:	word_signed, word (signed), write only, by value
	word:	word_signed, word (signed), read only, by reference
MTH\$JIABS		Longword Absolute Value Routine
	Format:	MTH\$JIABS longword
	Returns:	longword_signed, longword (signed), write only, by value
	longword:	longword_signed, longword (signed), read only, by reference

Undocumented MTH\$ Routines

Table A-1 (Cont.) Undocumented MTH\$ Routines

Routine Name		Entry Point Information
MTH\$IIAND		Bitwise AND of Two Word Parameters Routine
	Format:	MTH\$IIAND word1, word2
	Returns:	word_unsigned, word (unsigned), write only, by value
	word1:	word_unsigned, word (unsigned), read only, by reference
	word2:	word_unsigned, word (unsigned), read only, by reference
MTH\$JIAND		Bitwise AND of Two Longword Parameters Routine
	Format:	MTH\$JIAND longword1, longword2
	Returns:	longword_unsigned, longword (unsigned), write only, by value
	longword1:	longword_unsigned, longword (unsigned), read only, by reference
	longword2:	longword_unsigned, longword (unsigned), read only, by reference
MTH\$DBLE		Convert F-floating to D-floating (Exact) Routine
	Format:	MTH\$DBLE f-floating
	Returns:	floating_point, D_floating, write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$GDBLE		Convert F-floating to G-floating (Exact) Routine
	Format:	MTH\$GDBLE f-floating
	Returns:	floating_point, G_floating, write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$DIM		Positive Difference of Two F-floating Parameters Routine
	Format:	MTH\$DIM f-floating1, f-floating2
	Returns:	floating_point, F_floating, write only, by value
	f-floating1:	floating_point, F_floating, read only, by reference
	f-floating2:	floating_point, F_floating, read only, by reference
MTH\$DDIM		Positive Difference of Two D-floating Parameters Routine
	Format:	MTH\$DDIM d-floating1, d-floating2
	Returns:	floating_point, D_floating, write only, by value
	d-floating1:	floating_point, D_floating, read only, by reference
	d-floating2:	floating_point, D_floating, read only, by reference

Undocumented MTH\$ Routines

Table A-1 (Cont.) Undocumented MTH\$ Routines

Routine Name		Entry Point Information
MTH\$GDIM		Positive Difference of Two G-floating Parameters Routine
	Format:	MTH\$GDIM g-floating1, g-floating2
	Returns:	floating_point, G_floating, write only, by value
	g-floating1:	floating_point, G_floating, read only, by reference
	g-floating2:	floating_point, G_floating, read only, by reference
MTH\$HDIM		Positive Difference of Two H-floating Parameters Routine
	Format:	MTH\$HDIM h-floating, h-floating1, h-floating2
	Returns:	None
	h -floating:	floating_point, H_floating, write only, by reference
	h -floating1:	floating_point, H_floating, read only, by reference
	h -floating2:	floating_point, H_floating, read only, by reference
MTH\$IIDIM		Positive Difference of Two Word Parameters Routine
	Format:	MTH\$IIDIM word1, word2
	Returns:	word_signed, word (signed), write only, by value
	word1:	word_signed, word (signed), read only, by reference
	word2:	word_signed, word (signed), read only, by reference
MTH\$JIDIM		Positive Difference of Two Longword Parameters Routine
	Format:	MTH\$JIDIM longword1, longword2
	Returns:	longword_signed, longword (signed), write only, by value
	longword1:	longword_signed, longword (signed), read only, by reference
	longword2:	longword_signed, longword (signed), read only, by reference
MTH\$IEEOR		Bitwise Exclusive OR of Two Word Parameters Routine
	Format:	MTH\$IIEOR word1, word2
	Returns:	word_unsigned, word (unsigned), write only, by value
	word1:	word_unsigned, word (unsigned), read only, by reference
	word2:	word_unsigned, word (unsigned), read only, by reference
MTH\$JIEOR		Bitwise Exclusive OR of Two Longword Parameters Routine
	Format:	MTH\$JIEOR longword1, longword2
	Returns:	longword_unsigned, longword (unsigned), write only, by value
	longword1:	longword_unsigned, longword (unsigned), read only, by reference
	longword2:	longword_unsigned, longword (unsigned), read only, by reference

Undocumented MTH\$ Routines

Table A-1 (Cont.) Undocumented MTH\$ Routines

Routine Name		Entry Point Information
MTH\$IIFIX		Convert F-floating to Word (Truncated) Routine
	Format:	MTH\$IIFIX f-floating
	Returns:	word_signed, word (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$JIFIX		Convert F-floating to Longword (Truncated) Routine
	Format:	MTH\$JIFIX f-floating
	Returns:	longword_signed, longword (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$FLOATI		Convert Word to F-floating (Exact) Routine
	Format:	MTH\$FLOATI word
	Returns:	floating_point, F_floating, write only, by value
		word_signed, word (signed), read only, by reference
MTH\$DFLOTI		Convert Word to D-floating (Exact) Routine
	Format:	MTH\$DFLOTI word
	Returns:	floating_point, D_floating, write only, by value
	word:	word_signed, word (signed), read only, by reference
MTH\$GFLOTI		Convert Word to G-floating (Exact) Routine
	Format:	MTH\$GFLOTI word
	Returns:	floating_point, G_floating, write only, by value
		word_signed, word (signed), read only, by reference
MTH\$FLOATJ		Convert Longword to F-floating (Exact) Routine
	Format:	MTH\$FLOATJ longword
	Returns:	floating_point, F_floating, write only, by value
	longword:	longword_signed, longword (signed), read only, by reference
MTH\$DFLOTJ		Convert Longword to D-floating (Exact) Routine
	Format:	MTH\$DFLOTJ longword
	Returns:	floating_point, D_floating, write only, by value
	longword:	longword_signed, longword (signed), read only, by reference

Undocumented MTH\$ Routines

Table A-1 (Cont.) Undocumented MTH\$ Routines

Routine Name		Entry Point Information
MTH\$GFLOTJ		Convert Longword to G-floating (Exact) Routine
	Format:	MTH\$GFLOTJ longword
	Returns:	floating_point, G_floating, write only, by value
	longword:	longword_signed, longword (signed), read only, by reference
MTH\$FLOOR		Convert F-floating to Greatest F-floating Integer Routine
	Format:	MTH\$FLOOR f-floating
	JSB:	MTH\$FLOOR_R1 f-floating
	Returns:	floating_point, F_floating, write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$DFLOOR		Convert D-floating to Greatest D-floating Integer Routine
	Format:	MTH\$DFLOOR d-floating
	JSB:	MTH\$DFLOOR_R3 d-floating
	Returns:	floating_point, D_floating, write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$GFLOOR		Convert G-floating to Greatest G-floating Integer Routine
	Format:	MTH\$GFLOOR g-floating
	JSB:	MTH\$GFLOOR_R3 g-floating
	Returns:	floating_point, G_floating, write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$HFLOOR		Convert H-floating to Greatest H-floating Integer Routine
	Format:	MTH\$HFLOOR max-h-float, h-floating
	JSB:	MTH\$HFLOOR_R7 h-floating
	Returns:	None
	max-h-float:	floating_point, H_floating, write only, by reference
	h-floating:	floating_point, H_floating, read only, by reference
MTH\$AINT		Convert F-floating to Truncated F-floating Routine
	Format:	MTH\$AINT f-floating
	JSB:	MTH\$AINT_R2 f-floating
	Returns:	floating_point, F_floating, write only, by value
	f-floating:	floating_point, F_floating, read only, by reference

Undocumented MTH\$ Routines

Table A-1 (Cont.) Undocumented MTH\$ Routines

Routine Name		Entry Point Information
MTH\$DINT		Convert D-floating to Truncated D-floating Routine
	Format:	MTH\$DINT d-floating
		MTHSDINT_R4 d-floating
	Returns:	floating_point, D_floating, write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$IIDINT		Convert D-floating to Word (Truncated) Routine
	Format:	MTH\$IIDINT d-floating
	Returns:	word_signed, word (signed), write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$JIDINT		Convert D-floating to Longword (Truncated) Routine
	Format:	MTH\$JIDINT d-floating
	Returns:	longword_signed, longword (signed), write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$GINT		Convert G-floating to G-floating (Truncated) Routine
	Format:	MTH\$GINT g-floating
	JSB:	MTH\$GINT_R4 g-floating
	Returns:	floating_point, G_floating, write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$IIGINT		Convert G-floating to Word (Truncated) Routine
	Format:	MTH\$IIGINT g-floating
	Returns:	word_signed, word (signed), write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$JIGINT		Convert G-floating to Longword (Truncated) Routine
	Format:	MTH\$JIGINT g -floating
	Returns:	longword_signed, longword (signed), write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$HINT		Convert H -floating to H -floating (Truncated) Routine
	Format:	MTH\$HINT trunc-h-flt, h -floating
	JSB:	MTH\$HINT_R8 h -floating
	Returns:	None
	trunc-h-flt: h-floating:	floating_point, H_floating, write only, by reference
	h -floating:	floating_point, H__floating, read only, by reference

Undocumented MTH\$ Routines

Table A-1 (Cont.) Undocumented MTH\$ Routines

Routine Name		Entry Point Information
MTH\$IIHINT		Convert H-floating to Truncated Word Routine
	Format:	MTH\$IIHINT h-floating
	Returns:	word_signed, word (signed), write only, by value
	h-floating:	floating_point, H_floating, read only, by reference
MTH\$JIHINT		Convert H-floating to Truncated Longword Routine
	Format:	MTH\$JIHINT h-floating
	Returns:	longword_signed, longword (signed), write only, by value
	h-floating:	floating_point, H_floating, read only, by reference
MTH\$IINT		Convert F-floating to Word (Truncated) Routine
	Format:	MTH\$IINT f-floating
	Returns:	word_signed, word (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$JINT		Convert F-floating to Longword (Truncated) Routine
	Format:	MTH\$JINT f-floating
	Returns:	longword_signed, longword (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$IIOR		Bitwise Inclusive OR of Two Word Parameters Routine
	Format:	MTH\$IIOR word1, word2
	Returns:	word_unsigned, word (unsigned), write only, by value
	word1:	word_unsigned, word (unsigned), read only, by reference
	word2:	word_unsigned, word (unsigned), read only, by reference
MTH\$JIOR		Bitwise Inclusive OR of Two Longword Parameters Routine
	Format:	MTH\$JIOR longword 1, longword2
	Returns:	longword_unsigned, longword (unsigned), write only, by value
	longword1:	longword_unsigned, longword (unsigned), read only, by reference
	longword2:	longword_unsigned, longword (unsigned), read only, by reference
MTH\$AIMAXO		F-floating Maximum of N Word Parameters Routine
	Format:	MTH\$AIMAX0 word, . . .
	Returns:	floating_point, F_floating, write only, by value
	word:	word_signed, word (signed), read only, by reference

Undocumented MTH\$ Routines

Table A-1 (Cont.) Undocumented MTH\$ Routines

Routine Name		Entry Point Information
MTH\$AJMAXO		F-floating Maximum of N Longword Parameters Routine
	Format:	MTH\$AJMAXO longword, ...
	Returns:	floating_point, F_floating, write only, by value
	longword:	longword_signed, longword (signed), read only, by reference
MTH\$IMAXO		Word Maximum of N Word Parameters Routine
	Format:	MTH\$IMAXO word, . .
	Returns: word:	word_signed, word (signed), write only, by value word_signed, word (signed), read only, by reference
MTH\$JMAXO		Longword Maximum of N Longword Parameters Routine
	Format:	MTH\$JMAXO longword,
	Returns:	longword_signed, longword (signed), write only, by value
	longword:	longword_signed, longword (signed), read only, by reference
MTH\$AMAX1		F-floating Maximum of N F-floating Parameters Routine
	Format:	MTH\$AMAX1 f-floating,
	Returns:	floating_point, F_floating, write only, by value
	f-floating:	floating_point, F-floating, read only, by reference
MTH\$DMAX1		D-floating Maximum of N D-floating Parameters Routine
	Format:	MTH\$DMAX1 d-floating, . .
	Returns:	floating_point, D_floating, write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$GMAX1		G-floating Maximum of N G-floating Parameters Routine
	Format:	MTHSGMAX1 g-floating, . .
	Returns:	floating_point, G_floating, write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$HMAX1		H -floating Maximum of NH -floating Parameters Routine
	Format:	MTH\$HMAX1 h -float-max, h -floating, . . .
	Returns:	None
	h-float-max:	floating_point, H_floating, write only, by reference
	h-floating:	floating_point, H_floating, read only, by reference

Undocumented MTH\$ Routines

Table A-1 (Cont.) Undocumented MTH\$ Routines

Routine Name		Entry Point Information
MTH\$IMAX 1		Word Maximum of N F-floating Parameters Routine
	Format:	MTH\$IMAX1 f-floating, .
	Returns:	word_signed, word (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$JMAX 1		Longword Maximum of N F-floating Parameters Routine
	Format:	MTH\$JMAX1 f-floating, . . .
	Returns:	longword_signed, longword (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$AIMINO		F-floating Minimum of N Word Parameters Routine
	Format:	MTH\$AIMINO word,
	Returns:	floating_point, F_floating, write only, by value
		word_signed, word (signed), read only, by reference
MTH\$AJMINO		F-floating Minimum of N Longword Parameters Routine
	Format:	MTH\$AJMINO longword, . . .
	Returns:	floating_point, F-floating, write only, by value
	longword:	longword_signed, longword (signed), read only, by reference
MTH\$IMINO		Word Minimum of N Word Parameters Routine
	Format:	MTH\$IMINO word,
	Returns:	word_signed, word (signed), write only, by value
		word_signed, word (signed), read only, by reference
MTH\$JMINO		Longword Minimum of N Longword Parameters Routine
	Format:	MTH\$JMINO longword,
	Returns:	longword_signed, longword (signed), write only, by value
	longword:	longword_signed, longword (signed), read only, by reference
MTH\$AMIN1		F-floating Minimum of N F-floating Parameters Routine
	Format:	MTH\$AMIN1 f-floating, . .
	Returns:	floating_point, F_floating, write only, by value
	f-floating:	floating_point, F_floating, read only, by reference

Undocumented MTH\$ Routines

Table A-1 (Cont.) Undocumented MTH\$ Routines

Routine Name		Entry Point Information
MTH\$DMIN 1		D-floating Minimum of N D-floating Parameters Routine
	Format:	MTH\$DMIN1 d-floating,
	Returns:	floating_point, D_floating, write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$GMIN1		G-floating Minimum of N G-floating Parameters Routine
	Format:	MTH\$GMIN1 g-floating,
	Returns:	floating_point, G_floating, write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$HMIN 1		H-floating Minimum of NH -floating Parameters Routine
	Format:	MTH\$HMIN1 h-float-max, h-floating,
	Returns:	None
	h-float-max:	floating_point, H_floating, write only, by reference
	h-floating:	floating_point, H_floating, read only, by reference
MTH\$IMIN1		Word Minimum of N F-floating Parameters Routine
	Format:	MTH\$IMIN1 f-floating,
	Returns:	word_signed, word (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$JMIN1		Longword Minimum of N F-floating Parameters Routine
	Format:	MTH\$JMIN1 f-floating, . .
	Returns:	longword_signed, longword (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$AMOD		Remainder of Two F-floating Parameters Routine
	Format:	MTH\$AMOD dividend, divisor
	Returns:	floating_point, F_floating, write only, by value
	dividend:	floating_point, F_floating, read only, by reference
	divisor:	floating_point, F_floating, read only, by reference
MTH\$DMOD		Remainder of Two D-floating Parameters Routine
	Format:	MTH\$DMOD dividend, divisor
	Returns:	floating_point, D_floating, write only, by value
	dividend:	floating_point, D_floating, read only, by reference
	divisor:	floating_point, D_floating, read only, by reference

Undocumented MTH\$ Routines

Table A-1 (Cont.) Undocumented MTH\$ Routines

Routine Name		Entry Point Information
MTH\$GMOD		Remainder of Two G-floating Parameters Routine
	Format:	MTH\$GMOD dividend, divisor
	Returns:	floating_point, G_floating, write only, by value
	dividend:	floating_point, G_floating, read only, by reference
	divisor:	floating_point, G_floating, read only, by reference
MTH\$HMOD		Remainder of Two H-floating Parameters Routine
	Format:	MTH\$HMOD h-mod, dividend, divisor
	Returns:	None
	h-mod:	floating_point, H_floating, write only, by reference
	dividend:	floating_point, H_floating, read only, by reference
	divisor:	floating_point, H_floating, read only, by reference
MTH\$IMOD		Remainder of Two Word Parameters Routine
	Format:	MTH\$IMOD dividend, divisor
	Returns:	word_signed, word (signed), write only, by value
	dividend:	word_signed, word (signed), read only, by reference
	divisor:	word_signed, word (signed), read only, by reference
MTH\$JMOD		Remainder of Two Longword Parameters Routine
	Format:	MTH\$JMOD dividend, divisor
	Returns:	longword_signed, longword (signed), write only, by value
	dividend:	longword_signed, longword (signed), read only, by reference
	divisor:	longword_signed, longword (signed), read only, by reference
MTH\$ANINT		Convert F-floating to Nearest F-floating Integer Routine
	Format:	MTH\$ANINT f-floating
	Returns:	floating_point, F_floating, write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$DNINT		Convert D-floating to Nearest D-floating Integer Routine
	Format:	MTH\$DNINT d-floating
	Returns:	floating_point, D_floating, write only, by value
	d-floating:	floating_point, D_floating, read only, by reference

Undocumented MTH\$ Routines

Table A-1 (Cont.) Undocumented MTH\$ Routines

Routine Name		Entry Point Information
MTH\$IIDNNT		Convert D-floating to Word Integer Routine
	Format:	MTH\$IIDNNT d-floating
	Returns:	word_signed, word (signed), write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$JIDNNT		Convert D-floating to Nearest Longword Integer Routine
	Format:	MTH\$JIDNNT d-floating
	Returns:	longword_signed, longword (signed), write only, by value
MTH\$GNINT		Convert G-floating to Nearest G-floating Integer Routine
	Format:	MTH\$GNINT g-floating
	Returns:	floating_point, G_floating, write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$IIGNNT		Convert G-floating to Nearest Word Integer Routine
	Format:	MTH\$IIGNNT g-floating
	Returns:	word_signed, word (signed), write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$JIGNNT		Convert G-floating to Nearest Longword Integer Routine
	Format:	MTHSJIGNNT g -floating
	Returns:	longword_signed, longword (signed), write only, by value
	g-floating:	floating_point, G_floating, read only, by reference
MTH\$HNINT		Convert H-floating to Nearest H -floating Integer Routine
	Format:	MTH\$HNINT nearst-h-flt, h-floating
	Returns:	None
	nearst-h-flt:	floating_point, H_floating, write only, by reference
	h -floating:	floating_point, H_floating, read only, by reference
MTH\$IIHNNT		Convert H -floating to Nearest Word Integer Routine
	Format:	MTH\$IIHNNT h -floating
	Returns:	word_signed, word (signed), write only, by value
	h-floating:	floating_point, H_floating, read only, by reference

Undocumented MTH\$ Routines

Table A-1 (Cont.) Undocumented MTH\$ Routines

Routine Name		Entry Point Information
MTH\$JIHNNT		Convert H-floating to Nearest Longword Integer Routine
	Format:	MTH\$JIHNNT h-floating
	Returns:	longword_signed, longword (signed), write only, by value
	h-floating:	floating_point, H_floating, read only, by reference
MTH\$ININT		Convert F-floating to Nearest Word Integer Routine
	Format:	MTH\$ININT f-floating
	Returns:	word_signed, word (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$JNINT		Convert F-floating to Nearest Longword Integer Routine
	Format:	MTH\$JNINT f-floating
	Returns:	longword_signed, longword (signed), write only, by value
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$INOT		Bitwise Complement of Word Parameter Routine
	Format:	MTH\$INOT word
	Returns:	word_unsigned, word (unsigned), write only, by value
	word:	word_unsigned, word (unsigned), read only, by reference
MTH\$JNOT		Bitwise Complement of Longword Parameter Routine
	Format:	MTH\$JNOT longword
	Returns:	longword_unsigned, longword (unsigned), write only, by value
	longword:	longword_unsigned, longword (unsigned), read only, by reference
MTH\$DPROD		D-floating Product of Two F-floating Parameters Routine
	Format:	MTH\$DPROD f-floating1, f-floating2
	Returns:	floating_point, D_floating, write only, by value
	f-floating1:	floating_point, F_floating, read only, by reference
	f-floating2:	floating_point, F_floating, read only, by reference
MTH\$GPROD		G-floating Product of Two F-floating Parameters Routine
	Format:	MTH\$GPROD f-floating1, f-floating2
	Returns:	floating_point, G_floating, write only, by value
	f-floating 1 :	floating_point, F_floating, read only, by reference
	f-floating2:	floating_point, F_floating, read only, by reference

Undocumented MTH\$ Routines

Table A-1 (Cont.) Undocumented MTH\$ Routines

Routine Name		Entry Point Information
MTH\$SGN		F-floating Sign Function
	Format:	MTH\$SGN f-floating
	Returns:	longword_signed, longword (signed), write only, by reference
	f-floating:	floating_point, F_floating, read only, by reference
MTH\$SGN		D-floating Sign Function
	Format:	MTH\$SGN d-floating
	Returns:	longword_signed, longword (signed), write only, by reference
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$IISHFT		Bitwise Shift of Word Routine
	Format:	MTHSIISHFT word, shift-cnt
	Returns:	word_unsigned, word (unsigned), write only, by value
	word:	word_unsigned, word (unsigned), read only, by reference
	shift-cnt:	word_signed, word (signed), read only, by reference
MTH\$JISHFT		Bitwise Shift of Longword Routine
	Format:	MTH\$JISHFT longword, shift-cnt
	Returns:	longword_unsigned, longword (unsigned), write only, by value
	longword:	longword_unsigned, longword (unsigned), read only, by reference
	shift-cnt:	longword_signed, longword (signed), read only, by reference
MTH\$SIGN		F-floating Transfer of Sign of Y to Sign of X Routine
	Format:	MTH\$SIGN f-float-x, f-float-y
	Returns:	floating_point, F-floating, write only, by value
	f-float-x:	floating_point, F_floating, read only, by reference
	f-float-y:	floating_point, F_floating, read only, by reference
MTH\$DSIGN		D-floating Transfer of Sign of Y to Sign of X Routine
	Format:	MTH\$DSIGN d-float-x, d-float-y
	Returns:	floating_point, D_floating, write only, by value
	d-float-x:	floating_point, D_floating, read only, by reference
	d-float-y:	floating_point, D_floating, read only, by reference

Table A-1 (Cont.) Undocumented MTH\$ Routines

Routine Name		Entry Point Information
MTH\$GSIGN		G-floating Transfer of Sign of Y to Sign of X Routine
	Format:	MTH\$GSIGN g-float-x, g-float-y
	Returns:	floating_point, G_floating, write only, by value
	g-float-x:	floating_point, G_floating, read only, by reference
	g-float-y:	floating_point, G_floating, read only, by reference
MTH\$HSIGN		H-floating Transfer of Sign of Y to Sign of X Routine
	Format:	MTHSHSIGN h-result, h-float-x, h-float-y
	Returns:	None
	h-result:	floating_point, H_floating, write only, by reference
	h-float-x:	floating_point, H_floating, read only, by reference
	h-float-y:	floating_point, $\mathrm{H}_{\text {c }}$ floating, read only, by reference
MTH\$IISIGN		Word Transfer of Sign of Y to Sign of X Routine
	Format:	MTH\$IISIGN word-x, word-y
	Returns:	word_signed, word (signed), write only, by value
	word-x:	word_signed, word (signed), read only, by reference
	word-y:	word_signed, word (signed), read only, by reference
MTH\$JISIGN		Longword Transfer of Sign of Y to Sign of X Routine
	Format:	MTH\$JISIGN longwrd-x, longwrd-y
	Returns:	longword_signed, longword (signed), write only, by reference
	longwrd-x:	longword_signed, longword (signed), read only, by reference
	longwrd-y:	longword_signed, longword (signed), read only, by reference
MTH\$SNGL		Convert D-floating to F-floating (Rounded) Routine
	Format:	MTHSSNGL d-floating
	Returns:	floating_point, F_floating, write only, by value
	d-floating:	floating_point, D_floating, read only, by reference
MTH\$SNGLG		Convert G-floating to F-floating (Rounded) Routine
	Format:	MTH\$SNGLG g-floating
	Returns:	floating_point, F_floating, write only, by value
	g-floating:	floating_point, G_floating, read only, by reference

Index

A

Absolute value

See also Mathematics routine
of complex number \bullet MTH-23
Arc cosine
in degrees \bullet MTH-6, MTH-71
in radians \bullet MTH-3, MTH-69
Arc sine
in degrees \bullet MTH-11, MTH-75
in radians \bullet MTH-9, MTH-73
Arc tangent
hyperbolic • MTH-21, MTH-85
in degrees \bullet MTH-15, MTH-19, MTH-79, MTH-83
in radians \bullet MTH-13, MTH-17, MTH-77, MTH-81
Arrays
conversion of $\bullet \mathrm{MTH}-64$
C

Complex number • 1-3, MTH-57, MTH-59, MTH-112, MTH-122
absolute value of \bullet MTH-23
complex exponential of \bullet MTH-31, MTH-33
conjugate of \bullet MTH-44, MTH-45
cosine of \bullet MTH-26, MTH-28
made from floating-point \bullet MTH-40, MTH-42
natural logarithm of \bullet MTH-36, MTH-38
sine of \bullet MTH-53, MTH-54
Conjugate of complex number \bullet MTH-44, MTH-45
Cosine
in radians •MTH-126
Cosine
hyperbolic • MTH-51, MTH-89
in degrees \bullet MTH-49, MTH-88, MTH-129
in radians \bullet MTH-47, MTH-87
of complex number \bullet MTH-26, MTH-28

D

Double-precision value
converting • MTH-62
converting an array of \bullet MTH-64

Exponential • MTH-66, MTH-91
of complex number \bullet MTH-31, MTH-33

H

Hyperbolic arc tangent \bullet MTH-21, MTH-85
Hyperbolic cosine \bullet MTH-51, MTH-89
Hyperbolic sine \bullet MTH-102, MTH-134
Hyperbolic tangent \bullet MTH-110, MTH-142

L

Logarithm
base $2 \cdot \mathrm{MTH}-95, \mathrm{MTH}-116$
common •MTH-97, MTH-118
natural \bullet MTH-93, MTH-114
natural complex \bullet MTH-36, MTH-38
M

Mathematics routine $\cdot 1-1$
absolute value - 1-4
algorithm •1-2
bitwise AND operator • 1-4
bitwise complement operator ${ }^{-1-8}$
bitwise exclusive OR operator $\bullet 1-5$
bitwise inclusive OR operator • 1-6
bitwise shift • 1-8
calling convention $\cdot 1-2$
complex number •1-3

Index

Mathematics routine (cont'd.)	MTH\$COSD - MTH-49
condition handling ${ }^{\text {e }} 1-3$	MTH\$COSH • MTH-51
conversion of double to single floating-point	MTH\$CSIN • MTH-53
value - 1-9	MTH\$CSQRT • MTH-57
conversion to greatest floating-point integer ${ }^{\bullet}$	MTH\$CVT_DA_GA ${ }^{\text {M }}$ MTH-64
	MTH\$CVT_D_G \cdot MTH-62
entry point name - 1-1	MTH\$CVT_GA_DA ${ }^{\text {P MTH-64 }}$
F-floating conversion ${ }^{\text {e }} 1-4$	MTH\$CVT_G_D \cdot MTH-62
floating-point conversion to nearest value - 1-7	MTH\$DACOS • MTH-3
floating-point multiplication - 1-8	MTH\$DACOSD ${ }^{\text {MTH-6 }}$
floating-point positive difference ${ }^{\bullet}$	MTH\$DASIN • MTH-9
floating-point sign function ${ }^{1-8}$	MTH\$DASIND • MTH-11
integer to floating-point conversion - 1-5	MTH\$DATAN • MTH-13
JSB entry point • 1-2	MTH\$DATAN2 - MTH-17
maximum value - 1-6	MTH\$DATAND \cdot MTH-15
minimum value - 1-7	MTH\$DATAND2 ${ }^{\text {- MTH-19 }}$
remainder - 1-7	MTH\$DATANH • MTH-21
truncation of floating-point value - 1-6	M ${ }^{\text {THSDCMPLX }}$ - MTH-42
undocumented routines \bullet A-1 to A-15	MTH\$DCONJG • MTH-45
list of $1-4$ to 1-9	M'TH\$DCOS • MTH-47
MTH\$ACOS • MTH-3	MTH\$DCOSD • MTH-49
MTH\$ACOSD • MTH-6	MTH\$DCOSH • MTH-51
MTH\$AIMAG • MTH-112	MTH\$DEXP • MTH-66
MTH\$ALOG • MTH-114	MTH\$DIMAG • MTH-112
MTH\$ALOG10•MTH-118	MTH\$DLOG \bullet MTH-114
MTH\$ALOG2 • MTH-116	MTH\$DLOG10•MTH-118
MTH\$ASIN• MTH-9	MTH\$DLOG2 ${ }^{\text {• MTH-1 }} 16$
MTH\$ASIND • MTH-11	MTH\$DREAL \bullet MTH-122
MTH\$ATAN•MTH-13	MTH\$DSIN • MTH-124
MTH\$ATAN2 - MTH-17	MTH\$DSINCOS • MTH-126
MTH\$ATAND • MTH-15	MTH\$DSINCOSD•MTH-129
MTH\$ATAND2 - MTH-19	MTH\$DSIND • MTH-132
MTH\$ATANH • MTH-21	MTH\$DSINH•MTH-134
MTH\$CABS • MTH-23	MTH\$DSQRT • MTH-136
MTH\$CCOS • MTH-26	MTH\$DTAN•MTH-138
MTH\$CDABS • MTH-23	MTH\$DTAND •MTH-140
MTH\$CDCOS* MTH-28	MTH\$DTANH•MTH-142
MTH\$CDEXP • MTH-33	MTH\$EXP • MTH-66
MTH\$CDLOG • MTH-38	MTH\$GACOS • MTH-3
MTH\$CDSIN • MTH-54	MTH\$GACOSD • MTH-6
MTH\$CDSQRT • MTH-59	MTH\$GASIN • MTH-9
MTH\$CEXP • MTH-31	MTH\$GASIND • MTH-11
MTH\$CGABS • MTH-23	MTH\$GATAN \cdot MTH-13
MTH\$CGCOS • MTH-28	MTH\$GATAN2 - MTH-17
MTH\$CGEXP • MTH-33	MTH\$GATAND • MTH-15
MTH\$CGLOG • MTH-38	MTH\$GATAND2 - MTH-19
MTH\$CGSIN • MTH-54	MTH\$GATANH \bullet MTH-21
MTH\$CGSQRT • MTH-59	MTH\$GCMPLX ${ }^{\text {M M }}$ M -42
MTH\$CLOG • MTH-36	MTH\$GCONJG•MTH-45
MTH\$CMPLX • MTH-40	MTH\$GCOS • MTH-47
MTH\$CONJG • MTH-44	MTH\$GCOSD • MTH-49
MTH\$COS • MTH-47	

MTH\$GCOSH • MTH-51
MTH\$GEXP • MTH-66
MTH\$GIMAG•MTH-112
MTH\$GLOG•MTH-114
MTH\$GLOG10•MTH-118
MTH\$GLOG2 • MTH-116
MTH\$GREAL•MTH-122
MTH\$GSIN • MTH-124
MTH\$GSINCOS • MTH-126
MTH\$GSINCOSD • MTH-129
MTH\$GSIND • MTH-132
MTH\$GSINH • MTH-134
MTH\$GSQRT • MTH-136
MTH\$GTAN • MTH-138
MTH\$GTAND • MTH-140
MTH\$GTANH•MTH-142
MTH\$HACOS • MTH-69
MTH\$HACOSD • MTH-71
MTHSHASIN • MTH-73
MTH\$HASIND • MTH-75
MTH\$HATAN • MTH-77
MTH\$HATAN2•MTH-81
MTHSHATAND•MTH-79
MTH\$HATAND2 • MTH-83
MTH\$HATANH • MTH-85
MTH\$HCOS • MTH-87
MTH\$HCOSD•MTH-88
MTH\$HCOSH • MTH-89
MTH\$HEXP • MTH-91
MTH\$HLOG • MTH-93
MTH\$HLOG 10 • MTH-97
MTH\$HLOG2•MTH-95
MTH\$HSIN • MTH-99
MTH\$HSINCOS • MTH-126
MTH\$HSINCOSD • MTH-129
MTH\$HSIND • MTH-100
MTH\$HSINH • MTH-102
MTHSHSORT • MTH-104
MTH\$HTAN•MTH-106
MTH\$HTAND • MTH-108
MTHSHTANH • MTH-1 10
MTH\$RANDOM • MTH-120
MTHSREAL•MTH-122
MTH\$SIN • MTH-124
MTHSSINCOS • MTH-126
MTH\$SINCOSD • MTH-129
MTH\$SIND • MTH-132
MTH\$SINH • MTH-134
MTH\$SQRT • MTH-136
MTH\$TAN•MTH-138
MTH\$TAND • MTH-140

MTH\$TANH • MTH-142
MTH\$UMAX • MTH-144
MTH\$UMIN• MTH-145

R

Random number generator ${ }^{\bullet}$ MTH-120

S

Sine
hyperbolic • MTH-102, MTH-134
in degrees \bullet MTH-100, MTH-129, MTH-132
in radians \bullet MTH-99, MTH-124, MTH-126
of complex number \bullet MTH-53, MTH-54
Square root ${ }^{\bullet}$ MTH-104, MTH-136

Tangent•MTH-106, MTH-108, MTH-138, MTH-140
hyperbolic • MTH-110, MTH-142

Please use this postage-paid form to comment on this manual. If you require a written reply to a software problem and are eligible to receive one under Software Performance Report (SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's:

Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

Excellent
\square
\square
\square
\square
\square
\square
\square
\square

Good
\square
\square
\square
\square
\square
\square
\square
\square

Fair
\square

\square

Poor
\square
\square
\square
\square
\square
\square
\square
\square

I would like to see more/less \qquad
\qquad

What I like best about this manual is \qquad
\qquad
\qquad
What I like least about this manual is \qquad
\qquad

I found the following errors in this manual:
\qquad
Additional comments or suggestions to improve this manual:
\qquad
\qquad
\qquad

I am using Version \qquad of the software this manual describes.

Name/Title		Dept.
Company		
Mailing Address	Date _ Phone	

BUSINESS REPLY MAIL FIRST CLASS PERMIT NO. 33 MAYNARD MASS.
 POSTAGE WILL BE PAID BY ADDRESSEE
 DIGITAL EQUIPMENT CORPORATION
 Corporate User Publications-Spit Brook ZK01-3/J35 110 SPIT BROOK ROAD
 NASHUA, NH 03062-9987

[^0]: PostScript is a trademark of Adobe Systems, Inc.

[^1]: ${ }^{1}$ Returns value to the first argument; value exceeds 64 bits.
 ${ }^{2}$ Integer overflow exceptions can occur.

[^2]: ${ }^{1}$ Returns value to the first argument; value exceeds 64 bits.
 ${ }^{2}$ Integer overflow exceptions can occur.
 ${ }^{3}$ Floating-point overflow exceptions can occur.
 ${ }^{4}$ Floating-point underflow exceptions can occur.

[^3]: ${ }^{1}$ Returns value to the first argument; value exceeds 64 bits.
 ${ }^{2}$ Integer overflow exceptions can occur.
 ${ }^{3}$ Floating-point overflow exceptions can occur.

[^4]: ${ }^{1}$ Returns value to the first argument; value exceeds 64 bits.
 ${ }^{2}$ Integer overflow exceptions can occur.
 ${ }^{3}$ Floating-point overflow exceptions can occur.
 ${ }^{5}$ Divide-by-zero exceptions can occur.

[^5]: ${ }^{1}$ Returns value to the first argument; value exceeds 64 bits.
 ${ }^{2}$ Integer overflow exceptions can occur.
 ${ }^{3}$ Floating-point overflow exceptions can occur.
 ${ }^{6}$ Returns contents of RO if a negative argument is input.

[^6]: The complex number z is ($0.8535407185554504,0.2043401598930359$)
 The complex cosine value of $(0.8535407185554504,0.2043401598930359)$ is ($0.6710899028500762,-0.1550672019621661$)

